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Preface

Chemistry majors receive thermodynamic instruction of one form or another during
all four college years. Individuals who pursue graduate studies gain further exposure.
The curriculum is layered and standard given decades of development. First-year stu-
dents learn the basics of work, heat, state functions, and reaction spontaneity. The
advanced topics delve deeper into the thermodynamic laws, equations of state, and
phase transitions. The fundamentals and applications are inseparable throughout. A
student cannot understand how household refrigerators work without examining the
properties that determine inversion temperatures.

Yet, thermodynamics and chemistry appear to be at a juncture. The intersection
of subjects has enjoyed the maturity of years, and a rich combination of theory and
applications. The backdrop, however, is no longer confined to classrooms and stand-
alone textbooks. This is because information has leaped to the forefront as a funda-
mental and, at the same time, practical resource. It carries the same significance as
heat, work, and variables of state, being closely related to the entropy of a system.
Information operates as a fuel for some processes while it is a distinct product of
others. The advances in thermodynamics transpired largely during the industrial
revolution. Much of chemistry today, however, is threaded by programming, com-
putation, and data analysis. The author believes that the thermodynamic curriculum
should reflect this better by expanding the scope of fundamentals and the applica-
tion of elementary models. If energy is a system’s capacity for performing work and
transferring heat, then information is the capacity for controlling how the work is
performed and heat is exchanged.

This book is not the first to intertwine information and a physical science such as
chemistry. The author was introduced to the fundamentals of information by well-
known texts, in particular ones by Morowitz and Brillouin. Further, the information
aspects of biopolymers—proteins and polynucleotides—figure in several places,
from high school classes to the popular press. Most recently, new roots of informa-
tion have been established in electronic structure theory, quantum computation, and
drug discovery, to name a few areas.

This text nonetheless aims at a few new things while certainly not trying to
address everything. The goal is to provide a fresh perspective of select topics, such
as state transformations, heat and work exchanges, and chemical reactions. These
processes do not occur by themselves for a system, but rather in cooperation with
the surroundings and with information as the programming currency. The treatment
is quantitative to the extent that it employs basic calculus, probability, and statistics.
Wherever possible, however, the more intuitive elements of information and thermo-
dynamics have been emphasized. Further, the major ideas have been presented less
via derivation and more by example. As a result, the material should be appropriate
for intermediate students and beyond in special topics classes or for self-study. Just
as important, it is hoped that new perspectives and exercises are provided for instruc-
tors who will relay them to their clientele.
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This book has a number of sources. They include (1) three shelves of treatises
on thermodynamics, statistics, and computation—these have been purchased,
borrowed, and inherited over the years; (2) regular teaching assignments in gen-
eral and physical chemistry; (3) enlightening consultations with colleagues and
students; and (4) the author’s curiosity. Most important, the author is apprecia-
tive to his own teachers for intellectual foundations and inspiration, in particu-
lar Walter Rudolph and Drs. Eric Hutchinson, Robert Pecora, Bruce Hudson,
Suzanne Hudson, Tien-Sung Lin, Sam Weissman, Ron Lovett, Richard Clarke,
and William R. Moore. The author is equally grateful to his Loyola University
colleagues, especially Donald May, Bruno Jaselskis, Carl Moore, Sandra
Helquist, Jacob Ciszek, and Gordon Ramsey who have contributed helpful com-
ments and criticism. Last, the author is appreciative of Lance Wobus, Kathryn
Younce, and Linda Leggio of Taylor & Francis/CRC Press for their expertise,
advice, and editorial assistance.



’I A Qualitative Look
at Information

Information is examined in qualitative terms. The examples are drawn from both the
macroscopic and microscopic scale. These set the stage for quantitative aspects dis-
cussed in the chapters that follow. The suggested exercises address several contexts
where information is central.

1.1 THE NET OF INFORMATION

The word information motivates much discussion. It prompts almost 3 billion Google
hits. “Everything is information” in the view of the late John Archibald Wheeler [1].
“Information is physical” according to Rolf Landauer [2]. Information is power in
the eyes of educators, politicians, and computer hackers. Information is removed
from the universe by black holes as proposed by Stephen Hawking and disputed by
Leonard Susskind [3,4]. Information changes the state of a recipient [4]. According
to Carolyn Marvin, “information cannot be said to exist at all unless it has meaning,
and meaning is only established in social relationships with cultural reference and
value” [5]. Information is that which appears planned [6]. Information is anything
that alters a probability distribution [7]. Merriam-Webster’s Unabridged Dictionary
lists seven headings for information. The first definition is “an endowing with form”
[8]. Other pronouncements can be cited. Gregory Bateson defines information as a
“difference that makes a difference; if there is no difference, there is no information”
[9]. “The transmission of information is impossible save for a transmission of alter-
natives,” according to Norbert Wiener [10]. Information of certain genres is decried
in the song “Satisfaction” by The Rolling Stones [11]. The purpose of this paragraph
is not to fuel controversy. It is to show that a familiar term casts a multicontextual,
unusual net.

Nets have threads. One is that information is highly accommodating of digital
representations. If one reads this paragraph, one internally generates a set of electri-
cal signals. If the reading is accompanied by speaking, one sparks the brain elec-
tricity plus a collection of air pressure waves. The electric and acoustic signals vary
with the individual and environment. Yet, the kernel of information is captured quite
effectively via symbols printed on the paper. The information can be communicated
to equal effect using chalkboards and computer screens. In each venue, the represen-
tation is obtained by combinations of letters of a finite alphabet.
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Note the power of digitization. Every unit of the alphabet means the same thing
no matter what font size or style is used. All of the following are representations of
the letter c:

C ¢cc¢c ¢ c €C ¢ C

The symbols B, d, 1, ? and so forth can be used to make the point just as well,
namely, that the units are themselves not tunable. Rather, a message derives from
the capacity of the source to string units together and of the receiver to register the
combinations. There are 51 [i.e., (1 X 26) + (26 x 1) — 1] two-letter combinations that
contain letter ¢ drawn from the English alphabet. The number increases to 53 if the
space unit is included as an option. Clearly, the number of distinguishable combina-
tions grows exponentially with the cluster size and available symbols. There is no
need to worry about exhausting the possibilities for license plates or the nuances that
can be imbedded in alphanumeric messages.

A related thread is that information accommodates more than one representation.
Beethoven imagined music in complex ways. Yet, he communicated his thoughts using
the digital formats of black spots, horizontal and vertical lines, clef symbols, and so
forth—the notation of Western music. And he always had more than one way to convey
amessage. The same musical note can be represented using any of the treble, bass, tenor,
or alto clef systems. The assemblies of notes can be communicated to equal degree via
different key signatures. It is apparent that one information format can be substituted for
another. A vital property of information is that it is virtually always fungible.

The reliance on digital formats requires a structure dependence. Alphabet char-
acters can be strung in various combinations, but not any arrangement will do. The
letters e, a, and ¢, linked one way refer to food consumption. Combined another
way, they bring to mind a late afternoon beverage. Still another arrangement evokes
food consumption in the past tense. Structure is critical to the message, and thus the
content and impact of information. The receiver of messages from a source can only
comprehend the messages if the structure rules are well established in advance.

Another property of information is that it admits reproduction. Printed texts and
drawings can be hand- and photocopied. Their digital versions can also be burned
on compact disks and copied to flash drives. The reproduction of information was
limited in the Dark Ages due to the scarcity of paper and literate humans. Matters
are quite the opposite in this electronic age. The typical American consumes about
34 gigabytes of electronic information daily. This is an increase of about 350% over
the past three decades [12]. Citizens do not live by food alone for there are the dietary
requirements of information.

This points us to another property. Information is highly accommodating of trans-
formations. The texts and drawings that can be copied just as easily can be erased in
parts and appended in others. Information is important for all the reasons mentioned
so far. That it is mutable should occupy a prominent place on the list. Note that the
transformations need not be planned or orderly. Many mutations indeed transpire by
accident. The alterations of genetic material and computer files come to mind [13].
The learning of a new word, phrase, or concept on the part of an individual marks the
transformation of neurological information, in most cases irreversibly.
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Transformations and irreversibility mean that there is an energy price tag attached
to information, its production, and consumption. Beethoven was a source long ago.
Today a reader of his scores must work to process the information. The same holds
for a listener or a performer of the music. Information processing is not free of
charge, even when dollars appear nowhere in the transaction.

Yet work is not the only currency. Heat also plays a role in all manners of infor-
mation processing. Beethoven transferred thermal energy from his hand to a pen as
he applied notes to the paper. Heat was generated and dissipated by the pen at the
point of contact. Heat is dissipated within the piano keys or violin strings by their
contact with a performer. Heat is dispersed in the listener and score reader while
they process the musical information. Information processing is not free of energy
considerations because it entails the transfer of both work and heat.

A third currency is time, although along this dimension, there is neither a source
nor a recipient. Information involves work and heat in its production, copying, and
transformation. These activities do not take place instantaneously, but rather over a
period of time. The amount of time is variable and depends on the machinery and
circumstances. A performance of Beethoven’s Ninth Symphony takes about an hour.
The software that encodes the performance required several years for the composer
to develop. Copying the software to a computer hard drive requires a few seconds at
most. Information processing is not free on account of work and heat requirements.
That these resources are expended over finite time intervals is also a critical feature.

There is another thread in the net by way of statistics. Information accommodates
digital representations. Each element of a message generally appears with a characteristic
frequency. The elements are not independent of one another. The vowels «, e, and i, for
instance, appear more often in printed text than the consonants w, x, and z. When the
letter g appears, it is almost always followed by a u. Music offers a multitude of examples.
When Beethoven wrote in the key of C-minor, he committed the note E-flat to paper
more often than E-natural. When he included E-flat in a measure, he typically placed
G-natural somewhere else in the measure. The characters assembled in digital formats
pose natural frequencies and cluster patterns. Together these underpin the structure nec-
essary for transmitting, receiving, and making sense of musical information.

Information is statistical and thus possesses a facet that is probabilistic. A reader
of English texts knows and thus anticipates many sentences to begin with 7, and that
the symbol will be followed by he. A performer of Beethoven’s music expects certain
notes and sequences dependent on the key signature. In text and music, certain units
demonstrate higher occurrence frequencies than others. Yet more than elementary
probability weighs in on analysis and discussion. The concepts of conditional and
joint probability are also brought to the table.

Examples from everyday life illustrate quite a few properties of information.
Chemistry classrooms and labs contribute their share as well. Texts and music scores
offer digital reductions of neurological signals and acoustic waves. Molecular struc-
ture diagrams serve an analogous purpose for conveying Angstrom-scale packages
of electric charges. Cyclohexanone is one of several stable packages with the formula
C¢H,(,O. The real ketone in a laboratory flask is an assembly of 54 electrons, 54
protons, and (typically) 44 neutrons. While the assembly details are nontrivial, the
information can be represented in digital terms via:
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o}
Il

C

7N

H2C| (IZH2
H,C_CH,
C
H2

Note the methodology to employ nontunable elements: the letters, lines, and num-
bers mean the same regardless of size, shading, and font. The precise combination
represents on some level the electronic messages carried by the real molecule. The
method succeeds because the packaging is subject to the rules of atomic valence and
chemical structure theory. Not just any arrangement of one oxygen, six carbon, and
ten hydrogen units communicates the electronics of cyclohexanone. The same build-
ing blocks pieced in other ways reflect altogether different messages, stable and not
so stable, for example:

OH
| o

| )I\/\/

The Handbook of Chemistry and Physics lists 18 molecules portrayed by these same
units [14]. The Aldrich Handbook of Fine Chemicals lists 26 structural isomers of
cyclohexanone [15].

The digital messages in chemistry, as in written text and music, permit more than
one representation. Thus cyclohexanone can be depicted as

0O

or

peieNe

There are other ways with varying emphases and economy of ink. The digital
representations are not confined to two dimensions (2D). Ball-and-stick and space-
filling assemblies capture the molecular information in a three-dimensional (3D)

way. Computer graphics portray the electronics in 2D by transmitting the illusion
of 3D.
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It is both appreciated and cursed that information admits ready copying and
dispersal. Books, journals, and MP3 files drive this point home. So do everyday
molecules. A 1.00 milliliter sample of liquid cyclohexanone contains approximately
5.8 x 10?' copies of the same electric charge package, ignoring isotope consider-
ations. Further, the ketone can be prepared along numerous pathways, for instance,
beginning with cyclohexanol. It is straightforward for a chemist to assemble enor-
mous numbers of the cyclic ketone, each communicating the same root message.
The enterprise of chemistry succeeds because of high-fidelity copies of electronic
information prepared in astronomical-size numbers.

Issues of copying overlap with mutability. Cyclohexanone carries electronic infor-
mation and is obtained by the chemist transforming other molecules, for example:

CH, 0

ozonolysis
——

OH 0]

oxidation
with NalO,

——

OH o

OH

acid solution
——

There are work, heat, and time resources necessary for synthesizing cyclo-
hexanone, regardless of the source materials. There are free energy losses and
enthalpy changes for all the aforementioned reactions. There are work, heat, and
time costs of information processing by the chemist in the lab. He or she must expend
electrical and magnetic work, and dissipate heat when using an NMR spectrometer
and gas chromatograph to distinguish cyclohexanone from the starting materials.
Work and heat are integral to the chemical procedures (e.g., bromine titration, NMR
analysis), which discriminate cyclohexanone from its enol tautomer.

OH

Il
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Information mutates on its own if given the chance. If the chemist mixes cyclo-
hexane, cyclohexene, and bromine in a dark room, a reaction occurs involving the
latter two compounds. All the while, the cyclohexane molecules play the role of
spectators. The reactions transpire simply because they can—free energy is lost by
the solution and new entropy is generated. Yet a second critical reason is that there is
discrimination shown during each thermal collision. Each package of electric charge
bumps against another along myriad trajectories at a rate approaching 10'? sec!.
With every contact, there is an electronic interaction that depends on the atom/cova-
lent bond network of the different parties. The cyclohexene molecules possess a reac-
tive functional group; the cyclohexanes do not. The functional group predicates a
different set of interactions during collisions, which can be communicated in digital
code formats C-C, C=C, C-H, and so forth. The initiation and discrimination of all
reaction pathways take place by the processing of Angstrom-scale information.

Information maintains a statistical thread throughout the atomic and molecular
realm. The elements H, He, Li, and so forth are distributed on the planet with spatial
frequencies dependent on the source, say, coal mined in West Virginia as opposed
to water in Lake Michigan. The frequencies are by no means independent of one
another. If an H atom appears in a molecule extracted from coal, odds are that C, O,
or N units, and not Li, will be a spatially nearest neighbor.

Several basic properties of information are being illustrated in this chapter, includ-
ing ones that concern molecules. It is important that information links to chemical
systems at the macroscopic scale as well. Let a chemist prepare liquid cyclohexanone
in equilibrium with its vapor at temperature 294 K. Let the chemist then isolate
the vapor portion. The resulting material will be ever changing at the microscopic
level given the molecular translations, rotations, vibrations, and thermal collisions.
Yet the macroscopic level affords surprisingly compact representations via essential
information. With rare exception, the chemist needs only to measure and record
three quantities such as pressure (p), volume (V), and temperature (7). These are
the notebook entries that would enable a colleague to construct a system with iden-
tical macroscopic properties. In effect, the thermodynamic specifications in three
areas are required for successful duplication; any more data would be superfluous
for large-scale samples. The variables are tunable by the chemist transferring heat or
work to the cyclohexanone molecules. Thus, the information affiliated with the sys-
tem is transformable virtually without limit. Since the measurements of p, V, and T
transpire at finite resolution, each quantity can be represented in finite digital terms.
Specifying the state variables such as p, V, and T provides software for replicating
and transforming the real physical system.

The properties of information apply regardless of sample size and shape. Work
and heat exchanges plus time are necessary for producing and processing the macro-
scopic information. To ascertain p—obtain information about it—the chemist must
allow the cyclohexanone vapor to push down on the fluid of a barometer or vice versa.
Alternatively, he or she can measure the electrical or thermal conductivity of the
gas. Regardless of method, the chemist and apparatus must expend work in order to
purchase information about the system. There are heat exchanges between the vapor
and measuring devices if the material is not thermally equilibrated beforehand. Even
with equilibration, there is friction internal to a barometer and heat dissipation in the
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fluid motion. Transactions of work and heat are mandatory to obtaining the pressure
information; the same holds true for other quantities of state such as the volume,
temperature, and n number of moles of cyclohexanone.

Information at the macroscopic level accommodates transformations. If the chem-
ist compresses the vapor in a leak-proof container while holding the temperature
constant, such would yield a new system with new information. As per usual, the
costs of mutation are not zero in work, heat, and time. Further, digital methods per-
mit more than one representation. The macroscopic state can be described via p, V,
and 7T expressed in the International System of Units (SI units). Other sets such as
atmosphere, liter, and Rankine offer equivalent information, no more or less. They
enable preparation of exact replicas of the system.

Yet the different representations extend beyond the unit choices. Cyclohexanone
vapor at specified p, V, and T is described just as effectively by, for example, the
variable sets

{pressure, volume, moles of molecules}
{temperature, volume, moles of molecules}
{pressure, volume, mass}

Every quantity is measurable at finite resolution and thus admitting of digital reduc-
tion. Clearly, there is more than one way to represent the system information—suf-
ficient to allow another chemist to construct a replica. There is a catch in that at
least one of the variables must be extensive. The extensive variables hinge on the
sample size and amount, whereas the intensive ones do not. This is not too imposing
a restriction given that p and T are intensive; V, n moles, and m grams are extensive.
How many ways are there to choose three from a finite list and have at least one be
extensive? The answer is the objective of Exercise 1.7, at the end of the chapter.

Suffice to say that it is straightforward to assemble variable sets that meet the
restriction. There are more variables on the palette such as internal energy (U) and
entropy (S), both extensive; and density (p) and chemical potential (1), both intensive.
But one should note that not all system variables are easy to measure directly. The
pressure of a vapor is obtained via a McCleod or other suitable gauge. The entropy
of cyclohexanone vapor does not offer such an immediate handle.

It is important that even the variables themselves allow more than one represen-
tation. Symbol p stands for pressure and quantifies the force per unit area exerted
by the vapor; T performs likewise for temperature and determines the direction of
heat flow if the system is placed in contact with another. In an intriguing way, both
quantities are equivalent to differential functions:

__
p v o (1.1

U

T=+ =
as 1.2)
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The functions are themselves represented by alphabetic (nontunable) symbols. They
are implied to be continuous although their laboratory measurement is limited to
finite resolution.

The information expressed by macroscopic states is of a statistical nature as well.
Fluctuations are a feature of every state, equilibrium and not so. Thus, when a chem-
ist specifies the state of cyclohexanone vapor via p, 7, and V, he or she knows full well
such values are not rock solid. When the molecules collide, they adhere momentarily
to one another. The molecules adsorb to and desorb from the walls. Processes such
as these cause the sample pressure to rise and fall rapidly and interminably. There
are shape fluctuations and, as a result, volume changes of the glass container as
well. If the walls are diathermal, there are heat exchanges between the vapor and
the surrounding environment; adiabatic walls limit the exchanges to the work of
shape changes. The message is that any of the p, T, and V values recorded for the sys-
tem occur with a certain frequency and fluctuate around averages. Moreover, values
other than the averages can be anticipated with a certain probability. The vapor state
variables are not independent of one another. If p rises or falls, it affects the density
p. The information of any system is probabilistic in nature. It is also subject to cor-
relations and constraints. There will be much more to say about equilibrium states,
fluctuations, and probability in subsequent chapters.

In the discussion so far, several threads of the information net have been men-
tioned, most of them fairly simple. One should not be lulled into thinking, however,
that the threads are uniformly obvious and straightforward. As the first paragraph
implied, a discussion of information becomes quickly complicated. One reason is
that the value and action of information depend on the receiver. There is information
in the score of a Beethoven symphony. And many individuals are capable of appreci-
ating the black dots, lines, and digits on the printed page. Yet the impact depends on
whether the viewer is a conductor of an orchestra or of a passenger train. Equivalent
statements can be made about the formula diagrams for molecules. The information
can be processed if there is already certain information stored in the receiver—the
system placed in contact with the source.

The complexities only begin there. Information costs work to produce, copy, and
process. Yet, strangely it can function as a type of fuel itself—one capable of pro-
ducing, copying, and transforming additional information. One gathers this from:
mcules crry info. Text such as this grants another system a capacity to write copy,
and process the message in complete form. The same holds for formula diagrams. A
chemist can make sense of this chapter’s portrayals of cyclohexanone. The chemist
knows at once from each diagram that the atom constituency is C¢H,,O.

Information issues are equally complicated at the macroscopic scale. Chemist
A can prepare a sample of cyclohexanone vapor, and convey the state to Chemist B
using p, V, and T quantities. Such information empowers Chemist B to infer the mass
of the gas. This is true, however, only if he or she has access to the equation of state.
The multiplying of information is generally possible but requires information.

There is another complicating feature, namely, that information demonstrates
what can be thought of as level properties. The letter C appears on a page because
somewhere in the printing pipeline the ASC II code 01000011 was transmitted
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by one computer and received by another. In the same vein, C can appear only if
01000011 (more information than a single character) initiates a subroutine that acti-
vates a certain configuration of pixels (still more information than an eight-character
word). Clearly, information is underpinned by greater information; it demonstrates
layers in the manner of oil paint. The quantity of information invariably increases
the lower the level.

As processors of information, chemists are fortunate to operate at compara-
tively high levels most of the time, and do not have to sweat the lower-level details.
Formula diagrams offer a case in point. The examples of this chapter portray
Angstrom-scale charge packages, but their information is definitely of the high-
level variety. The molecules can be represented at lower levels and with greater
processing costs using molecular orbital, density functional, and other electronic
structure formats. The level properties of information apply to macroscopic systems
as well. Classical thermodynamics offers the chemist a comparatively high-level
description of a system. Kinetic theory and statistical mechanics offer lower-level
portrayals but at the cost of additional work. Note that the term lower-level does
not necessarily equate with better; the appropriate level depends on the challenge
at hand. The preparation of cyclohexanone from cyclohexanol starting material
can be communicated using high-level diagrams. A description that includes elec-
tronic, vibrational, and rotational wave functions and partition functions may only
obfuscate the methodology. At the macroscopic scale, an isothermal compression
of a gas may be described at the level of classical thermodynamics. An appeal to
kinetic theory and statistical distribution functions may not assist matters. The
point is that the chemist is usually able to travel and make progress on the basis of
high-level information. Information in simple diagrams enables the construction of
exact replicas of molecules. Information in p, 7, V and other variable sets enables
reproduction of macroscopic systems.

This chapter touched upon threads of a complicated net. Let it conclude by reiter-
ating points that chart the direction of subsequent chapters.

1. Information is physical as Landauer declares. And the most accessible han-
dles are digital, statistical, and structure dependent in nature. These proper-
ties are critical to the quantification of information presented in Chapter 2.

2. Information production, copying, processing, and transformation entail
transactions of work and heat. Information accordingly has a feature that is
thermodynamic. If energy is a system’s capacity to perform work or transfer
heat, then information represents a capacity for controlling the work and
heat transactions. These issues are at center stage in Chapters 3 through 5
in connection with the macroscopic scale.

3. Information is physical—and chemical. Molecules carry, transfer, and
transform electronic information. The information processing effected by
collisions in thermal environments makes chemistry possible. These sub-
jects propel Chapters 6 and 7.

4. Information casts a net approaching 3 billion Google hits. Not every aspect
can or should be addressed in one book. Issues regarding time costs, trans-
fer fidelity, and parallel processing receive glancing remarks in Chapter 8.
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1.2 SOURCES AND FURTHER READING

The net of information has logged multitudinous books of much thought-pro-
voking variety. Several have been cited already. The author further recommends
Lowenstein’s The Touchstone of Life: Molecular Information, Cell Communication,
and the Foundations of Life [16] and Berlinski’s The Advent of the Algorithm: The
Idea That Rules the World [17]. For insights into chemical information networks of

early days, by all means read The Invention of Air by Johnson [18].

1.3 SUGGESTED EXERCISES

1.1

1.2

1.3

1.4

1.5

The chapter opened with the statement “Information motivates much
discussion.” Several declarations followed. Choose one and write a two-
to three-page response paper. The response should argue the merits and
deficiencies regarding information.

This chapter presented the idea that information represents a system’s
capacity for controlling work and heat transactions. As in the first exer-
cise, compose a response paper that addresses the merits and deficien-
cies of the idea.

This chapter cited the combining of letters a, e, and ¢ to form mes-
sages. Some of the messages are closely related in meaning such as
eat and ate, whereas others are different, for example, fea. In a parallel
way, atoms combine to form molecules, each carrying an electronic
message.

For this exercise, identify the stable messages that can be assem-
bled using five carbon, eight hydrogen, and two oxygen atoms. These
should include the structural and valence isomers of C;HO, as well
as van der Waals dimers. Which combinations are closely related by
chemical functionality?

Each of the letters a, b, c, ... z composes 1/26 of the English alphabet.
Each can function as the first character of a word: ate, bobcat, chemistry,
and so forth. (a) Refer to an English language dictionary and identify
the fraction of pages associated with each letter as a first character. (b)
Arrange the fractions in ascending order, for example, 0.0565, 0.0684,
0.135, and so on. (c) Form a summation based on the ascending frac-
tions: 0.0565, (0.0565 + 0.0684), (0.0565 + 0.0684 + 0.135), and so on.
(d) Pair the summed terms, respectively, with 1/26, 2/26, 3/26, and so
on. (e) Prepare to construct a plot: the fraction sums on the abscissa and
1/26, 2/26, and so forth on the ordinate. (f) Write in advance the char-
acter (linear, exponential, etc.) anticipated for the plot. (g) Construct the
plot by hand. Does the plot match expectations? Please discuss.

The Handbook of Chemistry and Physics functions as an abridged
molecular dictionary [14]. It includes a tabulation of entries for a given
formula, for example, 10 entries correspond to C,H,Cl,. (a) Count the
number of entries associated with a single carbon atom. Do likewise
for entries for two-carbon, three-carbon, and so forth. (b) Prepare to
plot the number of entries versus carbon atoms on the ordinate and
abscissa, respectively. (c) Write in advance what the plot is anticipated
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to look like. (d) Construct the plot. Does it match expectations? Please
discuss.

1.6 Describe two examples drawn from chemistry where probability plays
arole. Do likewise regarding conditional probability.

1.7 The macroscopic state of a one-component system can be specified via
three variables as long as at least one is extensive. Consider a palette
of the following: p, V, T, n moles, mass m, density p, internal energy U,
molar volume V , and entropy S. How many valid combinations can be
assembled?
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2 A Quantitative Look
at Information

Information is examined in quantitative terms. The ingredients necessary for quan-
tifying are described, as are the units and interface with probability. The examples
include ones based on aromatic substitution and peptide chemistry. Three types of
information are illustrated. Peptide chemistry and mass spectrometry are used to
establish three probability functions of wide applicability. Several tools of probabil-
ity are described to close the chapter. Suggested exercises follow.

2.1 ESSENTIAL INGREDIENTS

The first chapter looked at information in the qualitative sense. A few of the exer-
cises ventured a short distance into quantitative territory where Chapter 2 plants
roots. We begin with the ingredients essential to realizing information in a quantita-
tive way. The first of these is a venue that expresses a finite number of well-defined
states. There is a lot of room to operate here, as state can be defined loosely as a “way
or condition of being.” The face of a coin describes a way for the coin to reside on a
flat surface. The face marks one state of the coin. Likewise, the diagram

NO,

describes one of the stable arrangements—and thus a viable state—of a molecule
with formula CgH,;NO,. Even the word stable represents a state because it is one
method for six letters to be arranged. The concept of state applies to venues everyday
and rarefied. One can argue that it applies to all venues, real and imaginable.

The second ingredient is a mechanism for the state to communicate an unambigu-
ous message. The viewer knows the coin’s face by the way it reflects visible light.
The optical pattern of the heads (H) state differs from that of tails (T). The previous
assembly of nine carbon, eleven hydrogen, one nitrogen, and two oxygen atoms dif-
fers from structural isomers such as

13
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(o]

OH
OH

N

Obviously, the word stable differs from tables in light-reflecting properties and English
language message—the two words mean very different things. Note that the state and
message, whether derived from coins, molecules, or printed text, must be digital in
nature. Thus, the essence of the state must be immune to changes in size, shading, and
other incidentals. This is clear in the examples. The H message of a 25-cent coin is
invariant to changes in the age, mint source, or metallic content. All of the following
refer to 3-nitro-4-ethyl-toluene irrespective of orientation and abbreviation details:

The message in stable is likewise not qualified by the style, color, or paper used for
representation. In short, for information to be quantifiable, a certain robustness is
necessary for the states and messages.

The third ingredient is also mechanistic. There must be some uncertainty to the
state message before the receiver accesses it. A coin at rest offers two ways of being
with messages communicated by visible light reflection. There is the time-honored
method at the start of football games, to access the message with uncertainty as to the
outcome. The referee has only to toss and rotate the coin, allowing it to land freely.

If the previous nitroaromatic was generated by collisions between NO,* and
4-ethyl-toluene

there would be two routes for the chemistry. The possible reaction products are com-
municated by the following diagrams:
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In the left-side case, the nitro group is ortho to the methyl group; in the right it
appears meta. This difference allows for abbreviation of the states and messages,
namely, ortho and meta, with the methyl group specified and understood as the point
of reference. Note that there would be abundant sources of uncertainty regarding
the reaction product. During the chemistry, the molecules rotate like coins, only
much faster and with more complicated trajectories. Regarding letter arrangements,
it is straightforward to program a computer to print the letter s followed by table
or vice versa. There is uncertainty in the outcome if a random number generator
governs the state choice. For instance, the program can examine the fractional
portion f of (;t+ u)’. Here u serves as a seed quantity with value <1, and 7 is the
transcendental number 3.1415926535... . For example, with u = 0.24589395105,
(;+ u)’ = 446.0545076918... and f= 0.0545076918 after truncation. The computer
can be programmed to print stable for f < 0.50000000 and tables otherwise. Note
the dichotomy. The outcome is dictated not by random events per se but rather the
mathematical details of (5t + u)5. But an outcome is unpredictable from the user’s
standpoint given arbitrary choices of # and the number of decimal places carried.
The computer provides what is essentially a coin flip by alternate means. Note that
the choice of the exponent in the random number generator is arbitrary and need not
even be an integer. The production of random numbers merits and accommodates
multiple strategies.

In summary, information in the quantitative sense requires a venue that poses a
finite number of states, each able to convey an unambiguous message. There must be
a mechanism for accessing the message with uncertainty beforehand. Let the chem-
ist flip a quarter and inspect the result. Let he or she arrange for 4-ethyl-toluene and
the electrophile NO,* to interact in solution, and then to assay the product via spec-
troscopy. Let the chemist seed and operate the random number generator and printer.
Let the chemist inspect the final results, which turn out to be:

T meta tables

He or she has thereby trapped—irreversibly acquired—information. But then the
question is how much.

Three different venues and states are being discussed—coins, molecules, and let-
ter arrangements. It is important that the states are all amenable to the same brand of
labeling using the digits 0 and 1 as spelled out in Table 2.1. The choice of which digit
pairs with which state is arbitrary. So too is the use of 0 and 1 as labels. A and B, o
and B, red and black, and so forth work just as well. The point is that the label for
a state fits and can reside indefinitely in a single slot. Flipping a coin is tantamount
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TABLE 2.1

Venues, Allowed States, and Digital Labels
Venue Allowed States Labels
Coin Flipping H, T 0,1
Reagent Collisions ortho, meta 0,1
Letter Arrangements stable, tables 0,1

to converting a slot initially devoid of a label to one that is permanently filled, for
example, [ | = [H]. Equivalent statements apply to all information venues irrespec-
tive of the label choices.

There are several points that follow, the first being that the absence of information
equates with uncertainty about which label will end up filling a slot. Experiments
offering results that are foregone conclusions may be attractive for one reason or
another, but they offer zero information in the quantitative sense. The second point
is that all—not merely some—of the possible states and labels must be known in
advance. Venues whereby only some of the states are acknowledged and in play
demand further groundwork for information to be quantified. Third, the amount of
information equals the number of slots needed to label the messages efficiently, that
is, with a minimum of leftovers. For each of the Table 2.1 venues, a single slot is
required; the process of registering a message results in a single binary digit of infor-
mation. In more compact terms, each venue offers 1 bit of information, the word bit
serving as an abbreviation for “binary digit.”

The fourth point is that venues and states can be combined. If the chemist flipped
a quarter on the lab bench while allowing 4-ethyl-toluene and NO,* to interact, the
combination exercise would offer 2 bits of information. The joining of all three ven-
ues of Table 2.1 yields 3 bits. Information is an additive quantity.

The fifth point is a nuanced one. If the chemist were to combine all three venues,
a possible state and binary label outcome would be:

H ortho tables

0 0 1
while another would be:

T ortho stable

1 0 0




A Quantitative Look at Information 17

It is straightforward to verify eight combination-states with the label sets as follows:

Coin Flip Aromatic Substitution Letter Arrangement
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Therein lies the point. Information in the quantitative sense does not refer to the
state message itself but rather to its length. Experiments that result in the 011 out-
come—or 010, 110, and so forth—yield the same amount of information, namely,
3 bits. It is easy and even tempting to overlook this property. Information in a facts
and data context is synonymous with message. People gather information from
newspapers, books, Web sites, and so on; pets receive information from cues of
their owners. In matters quantitative, however, the concept connects with the size
of a message. To go one step further, one observes that for the Table 2.1 venues,
whether single or combined, the number of possible state messages €2 is an integer
power of 2:

=2/ Q2.1

The exponent I equates with the binary digit slots required to label the state mes-
sage. Therefore,

log, =1 2.2)

which is the information measured in binary digits. Note that bits is not the only unit
that can attach, but it is the most frequent and popular. This is in spite of real-life
venues rarely posing 2 equal to an integer power of 2. But there arises a minor quan-
dary. Handheld calculators are lacking in log-base-2 buttons. How does the chemist
compute information in more general scenarios?

The answer is that information I always hinges on the number of possible states
Q. If one considers:

=e¥ =2/ 2.3)
it follows that,

log, =y=log,(2")=1"log,(2) 24
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In turn, / is quantified in bits—as opposed to other units—by the relations:

_ log, log,
log,(2)  0.693

2.5)

Thus for Q =5, 89, and 1012, I equates with approximately 2.32, 6.48, and 9.98 bits,
respectively. The major point is that information amounts always arrive via loga-
rithm functions. In the base-2 system, the relevant unit is bit. In base-e units, the unit
nit attaches while nat is an alternative. A perusal of any dictionary will show why nit
is not a pleasant-sounding term. Yet regardless of unit, the additivity of information
is consistent with the logarithm function. If the chemist conducts three independent
experiments, each with possible states €, €,, and €2, then the total combined num-
ber of possible states (£2,,,,) is:

total = 1727 3 (26)

The sum total information 7, is then,

L =108, 0 50 3)
=log, ,+log, ,+log, , 2.7
=1, +1,+1,

The total number of states is obtained via multiplication, whereas the total infor-
mation is the result of addition. Logarithm functions support state and information
properties in an elegant way.

2.2 THE INTERFACE OF INFORMATION WITH STATE LIKELIHOOD

The first section approached each state of a venue as equally likely; one message
was anticipated as much as another. This seemed reasonable for coin flipping and
using random number generators to determine the printing of stable versus tables.
The assumption of equal likelihood is not so justified in reactions of 4-ethyl-tol-
uene. After all, the two substituents pose different steric effects and activate the
aromatic ring electronically to different degrees. The frequency of nitration ortho
to the methyl group is anticipated to be different from the mera alternative. How
much different depends on factors such as temperature and solvent. The upshot is
that nature’s preference for one outcome over another means that there should be less
uncertainty about the reaction product. The reduced uncertainty about two possible
states means less information for the chemist—something less than 1 bit. But then,
how much less?

One intuits that if the state likelihoods were only slightly skewed, say, the ortho
product was 1.10 times more likely than meta, there would be only slightly less infor-
mation than 1 bit available. If instead, the ortho/meta likelihoods were dramatically
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skewed, say, by a factor of 10, the available information would be considerably less
than 1 bit. If, for any reason, the imbalance were a factor of 104, the information
would be reckoned as slightly above zero bits.

An imbalance factor F (= 1.10, 10, 10%) is readily converted to a pair of fractions,

f;)rrhu and fmem:

F
=—— 2.8
f;mhn F +1 ( )
fmeta = 1 - f;mho (29)

The results then approximate the fraction of times—the likelihood—the particular
state will be realized in experiments. For the aforementioned three cases, one has

F=1.10:f,, ~05455f ~0.4545 (2.10)
F=10:f,, ~09091f  ~0.0909 @.11)
F=10*:f  ~09999,f ~0.0001 2.12)

A more formal connection between the fractional likelihoods and probabilities is
reserved for Section 2.4. For now, it is sufficient to note that formulae analogous
to Equations (2.8) and (2.9) extend beyond aromatic substitution. The generality is
conveyed by labeling the likelihood fractions by subscripts 1 and 2: f; and f,. Then,
if one considers the fractions as logarithm arguments and multiplies the results by
—1, one arrives at:

-log, f; -—log, f,
_1 _ e ~ e
%= 0 2) T 0.693 @.13)

—log, f, -log, f,
—l = e ~ e
0%, /2 log, (2) 0.693 214

This leads to Table 2.2. Included is the case of the equal-likelihood venues of
Section 2.1 where f; = f, = 0.5000. The purpose of Table 2.2 is to demonstrate that
the two rightmost columns move in opposite directions. The term %Y%) jncreases
as f, inches toward zero; the term approaches zero as f; moves closer to 1.

One meets another important quantity along intuitive lines. Whereas information
scales with the uncertainty reduced by an experiment, the term ~°%Y) g tied to
the degree of surprise of an observation. Unlikely events, such as winning Illinois
powerball lotteries or nitration of o0, 0-trifluorotoluene to yield an ortho product,
have fractional likelihoods that border on zero. Such events predicate large surprises
in the very literal sense. Failing to win a lottery or observing nitration meta to the
CF, site have fractional likelihoods very close to one [1]. These outcomes generate
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TABLE 2.2
Fractional Likelihoods and Surprisals

_log, () __log ()
f, f, ' 0693 2 0.693
0.5000 0.5000 1.000 1.000
0.5455 0.4545 0.8745 1.137
0.9091 0.0909 0.1375 3.459
0.9999 0.0001 0.01442 13.29

virtually no surprise at all. One gathers that the surprisal quantity (S, allied with
state i having fractional occurrence (f) is established by:

-log, f.

S =08 /=7 603

2.15)

Now every possible state contributes to the information of an experiment. In fact,
the contribution is weighted by the state likelihood imbedded in the surprisal. One
intuits that,

_—filog, f,

—flog, f = 2.16
filogs fi= 4 603 (2.16)

is the contribution to the information by the ith state. It is a short step away to find
that the total information /, given N possible states, follows from a sum of weighted
surprisals, namely,

N
1=-Y flog, |

N
-1
0.693 Ef filog. . @17

By applying Equation (2.17) to the Table 2.2 scenarios, one obtains Table 2.3. The
latter shows how the fractional likelihoods together impact the information of an
experiment. A fractional likelihood by itself bears on the chemist’s uncertainty—or
lack of it—of observing a particular state: if f; = 0.980, the chemist is fairly certain
that the ith state will rear its head in the experiment; if f; = 0.485, the chemist is quite
uncertain about the state’s next manifestation. Information, by contrast, is founded
on the collective uncertainty that involves all the states 1, 2, i, ... , N— 1, N, likely
and not so likely.

Equation (2.17) and Table 2.3 make the case that the information available from
an experiment is a weighted average of the surprisal terms. In statistical terminology,
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TABLE 2.3
Fractional Likelihoods, Surprisals, and Summations

N=2

21 f, S
f f, £, f,S, 0.693
0.5000 0.5000 0.5000 0.5000 1.000
0.5455 0.4545 0.4770 0.5170 0.9940
0.9091 0.0909 0.1250 0.3145 0.4395
0.9999 0.0001 1.442 x 10 1.328 x 1073 1.472 x 107

information is the expectation of the surprisal. Note as well from Table 2.3 that the
information is greatest when the state likelihoods are equal. This is a truism that
extends beyond venues featuring only two states; the conditions that yield the most
information are ones where all the states manifest equal likelihood. Figure 2.1 illus-
trates this explicitly for binary venues where f, + f, = 1; f, = 1 — f}. Clearly the maxi-
mum information, namely, 1.00 bit, is evidenced when f, = 0.500. Just as important, the
information converges to zero as f; approaches 1 or 0. This statement echoes a point
made in Section 2.1: Venues posing only one possible outcome are not experimental
in the strict sense of the word because they offer zero information. By contrast, the
maximum information follows from situations where there is maximum uncertainty
about the outcome.

1.00

0.80

0.60

Information (bits)

0.40

0.20

0.00 I I I I
0.00 0.20 0.40 0.60 0.80 1.00

Fractional Likelihood f;

FIGURE 2.1 Information for a two-state venue as a function of fractional likelihood f;. The
information is maximum when states 1 and 2 occur with equal likelihood.
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Table 2.3 illustrates another property albeit implicitly. It is that experimental ven-
ues that pose information are affiliated with complete sets of fractional likelihoods.
A set can host a few or many members. The number is always dictated by the possible
states. The following are examples of viable and thus complete sets { f; }: {0.5000,
0.5000}, {0.9500, 0.0500}, {0.9500, 0.0300, 0.0200}. It is sometimes the case that
two or more f; are equal, for example, {0.8800, 0.0300, 0.0300, 0.0600}. What is
always the case is that the f; sum to 1, as introduced by f,,,,, and f,,.,, in Equations
(2.8) and (2.9). Information venues are grounded upon these sets—collections of
fractions that sum to 1. In turn, quantifying information begins with establishing a
complete set of fractions. Once the set is known, the information in bits, nits, or other
choice of units follows straightaway.

The preceding idea shows the applicability of information in chemistry, if not
scientific fields in general. If an experiment ascertains whether a molecule is a
D- or L-isomer, there is 1 bit of information acquired if each isomer is equally
likely in occurrence. If an assay establishes the first base unit of a DNA sample,
2 bits of information are typically obtained. If a thermometer registers whether
the temperature of a sample is below 273 K, 1 bit is trapped. Information in the
quantitative sense follows from interfacing an experiment with queries that admit
yes or no answers. The childhood game of twenty questions directs the inquir-
ing party toward a conclusion based on a maximum of 20 bits of information.
Information is the quantity in search of systems, inquiries, and experiments. One
notes the resemblance of Equation (2.17) to the entropy of mixing for an ideal
solution [2]:

S . =-n-R-log (X)-n, R-log,(X,)-
_ —R'Enj-loge(Xj)

Jj 1

2.18)

where R is the gas constant, and n; and X; are the respective mole amounts and frac-
tions for each component of a system hosting « total. Just as important to note is the
entropy of a system established by statistical mechanics [3]:

S =k, E prob(j)-log, (prob(,)) (2.19)

Here k; is Boltzmann’s constant and prob(j) is the probability of observing the jth
state of a system. The similarities of Equations (2.17) through (2.19) are not coinci-
dental. It is apparent that information and entropy are related if not alternate sides
of the same coin. The inaugural properties and applications of Equation (2.17) were
the brainchild of Claude Shannon and thus / is commonly referred to as the Shannon
information [4]. The term Shannon entropy is written almost as often on account
of the ties to Equations (2.18) and (2.19). The mixing entropy of Equation (2.18) is
visited several times in subsequent chapters.
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2.3 THE ROLE OF PROBABILITY

Real-life experiments—tossing coins, aromatic substitution, and so on—pose states
and fractional likelihoods (f;). The latter are usually established by weighing the
number of times (N,) the ith state is registered against the total number of observa-
tions (N,,,,):

fi=§ (2.20)

total

Yet f; encountered in Tuesday’s experiments will generally not match Wednesday’s.
Section 2.2 offered that f; are typically different for different states. In the same vein,
a given f; is subject to fluctuations. How do these issues square with information?

The short answer is that information, as illuminated by Shannon and others, is
formally based on probability. The latter is an idealized extension of f;; the probabil-
ity prob(i) associated with the ith state equates with f; in the limit of infinite trials or
observations, that is,

lim N.

l

N oo Q.21

total N total

prob(i) =

Infinite observations are impossible in the chemist’s lifetime; this is a first idealiza-
tion of prob(i). Querying states independently one at a time is also not always fea-
sible; this is a second source of idealization. Probability ideas reach far nonetheless.
One looks to Y3 dt for an example. This is interpreted in chemistry classes as the
probability of observing an atom’s 2s electron in an infinitesimal volume element
(dv), as dictated by a wave function (, ). Such a probability is not very accessible
to the chemist, experimentally at least. In spite of the observation complexities, how-
ever, probability concepts are applied widely. At the minimum, they point to critical
questions for the chemist to consider.

A rigorous discussion of probability begins with set theory. On simpler ground,
the tools of probability can be acquired by thinking exercises. The time-honored
ones appeal to balls drawn from urns, poker hands, thrown darts, and tossed coins
[5]. Yet the exercises need not be so macroscopic in character. Spin populations and
electron clouds have also been used to illustrate and thus reinforce probability con-
cepts [6,7]. The microscopic nature of such examples makes them easier to imagine
than to access by experiment.

This section will add to the list by considering peptides—molecules formed by
the covalent linking of amino acids. Their applicability derives in several respects.
A peptide’s primary structure is conferred by the amino acid sequence. The allowed
states are countable based (typically) on 20 building blocks. A peptide’s states are
easy to illustrate and label. Table 2.4 presents the names and abbreviations of the
standard amino acids along with formula weight data. Nature employs quite a few
more, but the standard 20 suffice for most purposes. Figure 2.2 illustrates a few
amino acids and a tripeptide in formula diagram terms; issues of stereochemistry
are completely ignored. Peptides are obtained from classical synthesis, robotic, and
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TABLE 2.4

Naturally Occurring Amino Acids

Amino Acid Abbreviations Formula Mass (grams/mole)
Alanine Ala, A 89.09
Arginine Arg, R 174.2
Asparagine Asn, N 132.12
Aspartic acid Asp, D 133.1
Cysteine Cys, C 121.16
Glutamine Gln, Q 146.14
Glutamic acid Glu, E 147.13
Glycine Gly, G 75.07
Histidine His, H 155.15
Isoleucine Ile, 1 131.17
Leucine Leu, L 131.17
Lysine Lys, K 146.19
Methionine Met, M 149.21
Phenylalanine Phe, F 165.19
Proline Pro, P 115.13
Serine Ser, S 105.09
Threonine Thr, T 119.12
Tryptophan Trp, W 204.23
Tyrosine Tyr, Y 181.19
Valine Val, V 117.15

cellular technologies [8]. The states are established using Edman-type sequencing,
chromatographic methods, and mass spectrometry [9]. The physical properties of
peptides are pursued along multiple lines such as molecular weight. There is more to
say on this subject in Section 2.4.

For now, we consider a set of tripeptides, one member of which was illustrated at the
bottom of Figure 2.2. The first of the thinking exercises calls for cellular machinery that
can generate the molecules in various amounts. Let the machinery confine the reagent
palette to glycine (G) and valine (V). The possible (and distinguishable) states are GGG,
GGV, GVG, GVYV, VGG, VGV, VVG, and VVV where the left-to-right sequences indi-
cate the N- to C-terminal direction. Let the production of molecules be in such high
numbers that the mole fractions perform double-duty as probability values. Naturally,
the state populations will depend on transcription and translation enzymes, G and V
availability in the cell, and genetic programming. These details are of no concern here.

Let the set of probabilities be those constructed arbitrarily and listed in Table 2.5.
The sum of the weighted surprisals (rightmost column) is 2.485. Then 2.485 bits is
the amount of information availed when the chemist randomly selects a tripeptide
from the cell and determines the primary structure. If the eight possibilities were
produced by the cell in equal numbers, then the information would be 3.000 bits.
The lesson of Table 2.5 is presented pictorially in Figure 2.3. The open squares
mark the weighted surprisals for the eight states. The plot emphasizes that however



A Quantitative Look at Information 25

NH,
0 0
HZN/\<
OH OH

Glycine=Gly=G Valine =Val =V

NH

H,N \< N,
OH

Arginine = Arg=R

NH,

(0]
O
N /\<
NH
Dannd
OH

Val-Gly-Val =VGV

FIGURE 2.2 Formula diagrams and abbreviations of sample amino acids and peptides.
Each amino acid and peptide offers three- and single-letter abbreviations.

scattered the surprisal values, the terms are all positive. In turn, their summation
only enhances and never detracts from the total information. This is gathered from
the heights increasing left to right for the filled squares. Note that this is the case
regardless of how the states VVV, VVG, and so forth are numbered and referred to
by the chemist. There is more than one way to apply the indices 1, 2, ..., 8.

The states also admit more than one type of investigation. Thus, one relevant set
of probabilities can beget others. Each offers its own information amount in careful
experiments. For example, a chemist could inquire about the probability of observing

TABLE 2.5

Tripeptide States, Probabilities, and Surprisals

Index i State prob (i) S; prob (i)-S;
1 GGG 0.3000 1.737 0.5211
2 GGV 0.0500 4322 0.2161
3 GVG 0.0800 3.644 0.2915
4 GVV 0.2000 2322 0.4644
5 VGG 0.0100 6.644 0.0664
6 VGV 0.2500 2.000 0.5000
7 VVG 0.0200 5.644 0.1129
8 VVV 0.0900 3.474 0.3127
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FIGURE 2.3 Weighted surprisals and summation. The plot is based on data of Table 2.5.

a peptide generated by the cell having at least one V: prob(z 1 V). Referring to
Table 2.5, such curiosity is followed up by summation and division:

sum of probabilities of states that have =1V
sum of probabilities of all states

prob(=1V) =

B 0.0500 + 0.0800 + 0.2000 + 0.0100 + 0.2500 + 0.0200 + 0.0900
~0.3000 + 0.0500 + 0.0800 + 0.2000 + 0.0100 + 0.2500 + 0.0200 + 0.0900

=0.7000 2.22)

Then the probability of observing a peptide lacking in V is simply 1 — 0.7000 =
0.3000. Information-wise, an experiment aimed at the question “Does the randomly
selected peptide contain at least 1 V?” offers Shannon information:

-1

I =
log, (2)

[0.700 - log, (0.7000) + 0.300- log, (0.3000)] = 0.881 bits  (2.23)

There are numerous questions in the same vein. What is the probability that
the peptide contains exactly one V? Pursuit of the answer is guided by a fraction
set {0.1400, 0.8600} and Shannon information 0.584 bits based on the question
“Does the peptide contain exactly one V?” In these simple examples, the prob-
ability set of Table 2.5 is used to generate others. Most important, they show the
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concept of state to be a fluid one, and that there can be numerous descendents of
a probability set.

Probabilities can have strings attached. For instance, what is the probability
that, given that a randomly isolated tripeptide contains V, there are also two Gs?
To address this, the chemist must examine the fraction of times that V occurs. The
chemist then compares that fraction to the fraction of times two Gs are included. One
computes the ratio

sum of probabilities of 2 Gs in peptides containing V

sum of probabilities of all states containing V

0.0500 + 0.0800 + 0.0100

- =0.2000 (2.24)
0.0500 + 0.0800 + 0.2000 + 0.0100 + 0.2500 + 0.0200 + 0.0900

Information-wise, experiments motivated along this dimension offer

I =
log,(2)

0.2000 - log, (0.2000) + 0.8000 - log, (0.8000) =~ 0.722 bits ~ (2.25)

The idea is that the chemist has somehow already determined that the peptide con-
tains V. His or her follow-up experiment then targets the question “Are there also two
Gs present?” A similar question would be “What is the probability that, given there
are two Vs anywhere in the peptide, there is also G present?” This probability is:

0.2000 + 0.2500 + 0.0200
0.2000 + 0.2500 + 0.0200 + 0.0900

=0.8100 (2.26)

The amount of information allied with the corresponding yes—no question and the
probability set {0.8100, 0.1900} follows immediately. The features to notice in the
last two examples are that they portray the workings of conditional probability.

A third type of query arrives by considering combination states. For peptides, such
states arise not only from the amino acid composition but also from the sequence,
usually interpreted left to right. For example, the molecules in Table 2.5 can each
be viewed as expressing two combination states, one marked by the N-terminal
(leftmost) unit and the other by the combination of the two rightmost units. The
resulting probabilities must then be distinguished via two indices, i and j, and joint
probability terms prob(i, j). The i index runs only from 1 to 2, referring to G or V,
respectively, as the N-terminal unit. The j index runs from 1 to 4 given the respec-
tive GG, GV, VG, and VV possibilities. Table 2.5 reports that GGG occurs with
probability 0.3000. In the joint probability view, this fraction would equate with
prob(i =1, j = 1). It is straightforward to compute other prob(i, j): prob(i =1, j=2)=
0.0500, prob(i = 2, j = 3) = 0.0200, and so forth. It is interesting to compare joint
probabilities assembled via Table 2.5 to ones that would apply in the absence of
bias exercised by the cell. If V appeared as often as G for the N-terminal unit,
then prob(i = 1) = 1/2 = 0.5000. If GG, GV, VG, and VV were all equally likely
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as the rightmost units then prob(j = 1, 2, 3, 4) = 1/4 = 0.2500. In the bias-free case,
prob (i, j) = prob(i) x prob(j) = (1/2) x (1/4) = 1/8 = 0.1250. Comparisons of joint
probability to values in bias-free scenarios offer the first clues about correlations. In
looking at Table 2.5 data, one sees that the presence of V in the middle slot of the
tripeptide enhances the chance of V occupying the C-terminal position.

2.4 INFORMATION AND EXPECTATION

The chemist does not labor without expectations. An experiment in which the state
probabilities manifest as anticipated is valuable for the currency granted to a particu-
lar theory. Results that demonstrate otherwise are still of service and perhaps even
more so. They motivate the search for a new theory or modification of the old one.

Information offers a method of weighing expected versus contrary results. The
method assigns a cost or penalty in bits for results that arrive in an unanticipated
fashion. There is zero penalty charged for outcomes that conform to expectations.
The penalties are substantial when the results fail wholesale to match expectations.
Matters work as follows.

Suppose that the chemist, by virtue of training and expertise, anticipated that
a certain state i/ would rear its head 40% of the time, that is, prob(i)= 0.4000. If
indeed such an occurrence frequency were realized experimentally, there would be
no penalty attached to the correct-in-advance expectations. The chemist foresaw the
state contributing —0.4000 log.(0.4000)/log.(2) ~ 0.529 bits to the weighted surprisal
sum, and that was indeed the case. As discussed in Section 2.1, it requires digital
code—0/1, A/B, red/black—to label states. Evidently the chemist was well prepared
with the correct number of code units purchased and ready to go.

If instead, the fractional occurrence (interpreted as probability) turned out to be
0.100, such a state would contribute only —0.1000 log.(0.1000)/1og.(2) = 0.332 bits to
the weighted surprisal sum. Under these circumstances, the chemist would have over-
estimated the bits needed for labeling the states. The chemist would have overpaid.

One considers the reverse case. If the chemist had anticipated the fractional occur-
rence as 0.1000 with weighted surprisal of approximately 0.332 bits, and instead had
observed 0.4000 and weighted surprisal 0.529 bits, a deficiency of code would have
been encountered. The chemist would have allotted insufficient bits for the results.

One arrives at a quantity referred to as the Kullback information (K7) [10]:

- rob (i)
KI = +Z prob(i)log, pq(i) i
v . prob(i)
" log @ O, Probtes, £ 8 @27)

N
+1 . prob(i)
L b(i)1
0.693 zp roblog, =
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TABLE 2.6

Peptide States and Fractional Occurrences, Observed and Anticipated

Index i State prob (i) q" q? q?
1 GGG 0.3000 0.1500 0.2500 0.0020
2 GGV 0.0500 0.1300 0.1000 0.3500
3 GVG 0.0800 0.0600 0.0300 0.4600
4 GVV 0.2000 0.1800 0.2050 0.0020
5 VGG 0.0100 0.1600 0.0050 0.1780
6 VGV 0.2500 0.1700 0.2300 0.0050
7 VVG 0.0200 0.0400 0.0700 0.0020
8 VvV 0.0900 0.1100 0.1100 0.0010

KI quantifies the assessment—nhere in bits—for anticipating a set of probabilities
{prob(i)}, erroneously or not, according to another probability set {g(i)}. There is
zero penalty (assessment) for correct anticipation: if prob(i) = g(i), then prob(i)/q(i)
= 1, and all the logarithm terms in the Equation (2.27) summation cancel to zero.
The positive sign emphasizes an important distinction between the formulae used for
computing I and KI.

Table 2.6 revisits the data of Table 2.5 along with three examples of anticipated
probabilities. Figure 2.4 then follows the lead of Figure 2.3 by presenting one of the
scenarios (regarding qfl)) in picture form. The message is that in arriving at KI, the
logarithm arguments prob(i)/q(i) necessarily exceed zero. However, the individual
terms in Equation (2.27) can be negative, zero, or positive as marked by the open

0.4 -
[l Kullback summation L
B
= [J Kullback terms
i 0.3m— -
g " .
= ]
g 0.2 —
wy
<
g o
w
g 01|
)
=
0.0 |—
e 5
o
_0.1 | | | | | |

State Index

FIGURE 2.4 Kullback terms and summation. The plot is based on anticipated and observed
probability data, ¢, and prob(i) of Table 2.6.
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squares of Figure 2.4. The sum of terms (filled squares) rises and falls but ultimately
proves positive or at least never less than zero. The equality with zero only applies
when {q(i)} perfectly matches {prob(i)}. Clearly, the bit penalties would be great-
est if the chemist anticipated the probability set according to the q,@ column in
Table 2.6. The chemist expected several states—GGG, VGV, VVG, and VVV—to
manifest much too infrequently. This led him or her to severely underpurchase the
code needed for the state labeling. Note as well that if the chemist had completely
missed the boat and expected a probability of zero for any particular state, the bit
penalty would have been infinite.

The Kullback information handily applies to situations involving joint probability.
The frequent applications entail the mutual information (MI) obtained via summations

Mi =+ prob(i,j)log, _probli.))
& prob(i) - prob(j)

+1 . prob(i, j)
= prob(i, j)log, ————————— 2.28
log,(2) 2 prob(i)- prob(j) ( )

-2 b plog, — LD
0.693 & prob(i) - prob(j)

MI has properties that parallel KI. It follows from a sum of weighted logarithm terms
that is ultimately positive or at least not less than zero. This is in spite of a mixture of
positive and negative terms in the summation. In the example that closed Section 2.3,
one considered the joint states formed by the N-terminal unit and the two rightmost
amino acids. In the absence of any bias exercised by the cell, prob(i, j) would always
equate with prob(i) x prob(j) = (1/2) x (1/4) = 1/8. One would gauge MI crudely via
Equation (2.28) using 1/8 as the denominator in the log arguments and joint prob-
abilities drawn from Table 2.5; in this way MI is estimated to be approximately 0.51
bits. A more involved calculation springs from testing for the independence of the i
and j states. In this case,

prob(i = 1) = 0.3000 + 0.05000 + 0.08000 + 0.2000 = 0.6300 (2.29)
corresponding to G being observed as the N-terminal unit. By contrast,

prob(j = 1) = 0.3000 + 0.01000 = 0.3100 (2.30)

corresponding to GG being the rightmost state. The remainder of the calculation is
left as an exercise. That MI exceeds zero means that N-terminal and rightmost units
are correlated, although for reasons the chemist would still need to explore. The
mutual information shows that the chemist, upon learning the identity of one state, is
provided knowledge about the other.
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2.5 CONNECTING PROBABILITY, INFORMATION,
AND PHYSICAL PROPERTIES

Sections 2.1 through 2.4 addressed states with digital labels attached: 010, 110,
VGG, GGV, and so forth. The states of a system, however, manifest abundant physi-
cal properties. It is usually through these that a state is identified and the correct
label affixed. Information is an unusual quantity because it derives from a weighted
average of probability-based terms. The chemist, however, has much more experi-
ence measuring molecular weights, densities, and so forth. This section examines
physical properties in relation to information.

To begin, any quantitative property tied to a probability set is said to be a random
variable. In the traditional notation, the type of property is distinguished from the pos-
sible numerical values by capital and small letters; X and x are the usual symbols of
choice. For example, X could represent the mass density of a sample; x = 0.784 grams
per cubic centimeter would then be one of the possible values. Unlike for variables in
algebraic and differential equations, there is no rule—at least one apparent to the chem-
ist—which pins down one realization of X over another, hence the designation random.
The probabilities allied with x nonetheless accommodate graphing and computational
techniques. In some situations, X is limited to a finite number of possibilities. Oddly, its
statistical nature is often approximated by a continuous function that specifies an infini-
tude of values. To set the stage, one needs to examine how random variables operate.

When the chemist views states solely in digital terms, the questions and answers
are straightforward. What is the probability of observing a tripeptide with sequence
VGV? The cell that synthesized the Table 2.5 molecules predicates an answer of
0.2500. When it comes to random variables, however, the questions require modifi-
cation. For example, the average mass of VGV is computed as 273.3 grams per mole;
the same holds for GVV and VGG. Yet it is incorrect for the chemist to inquire what
is the probability of observing a peptide manufactured by the cell with mass 273.3
grams per mole. This is because none of the VGV, GVV, and VGG possibilities dem-
onstrate precisely this mass. Such is the case given the isotope combinations of the
atoms that compose the molecules. It is instead accurate for the chemist to seek the
probability of observing a molecular mass over a specified range. For example, what
is the probability of observing a peptide with mass somewhere in a window bounded
by 270 and 276 grams per mole? Here a substantial portion of the VVG, VGV, and
GVV molecules fit quite nicely. If the window size is decreased, the portion dimin-
ishes. If the window is shut and reduced to zero, no member of the population is able
to squeeze through.

One arrives at the probability density function fy(x) for the random variable X
having possible values x:

fx(x) x = probability of observing x in the range bounded by x and x + x (2.31)

Key ideas follow straightaway. Probability values are dimensionless: 0.250, 0.075,
10-¢, and so forth. Thus the density function fy(x) must have units of 1/x, for example,
moles per gram. If X referred to the mass density of a sample, f,(x) would have units
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of cubic centimeters per gram or an equivalent. Second, probability values are zero,
fractional, or at most one. Thus,

fr(x) x=1 (2.32)

while the sum of all the probability values equals 1:

E Sy x=1 (2.33)

Just as important, since Ax equates with the window size, f,(x) x —=0as x—0.
A critical result obtains from partial summations of fy(x)Ax. These fall short of
one and introduce the probability distribution function Fy(x < y):

Fylx=y)= Exsy Sy(x) x (2.34)

F(x <y) measures the probability of observing the random variable X with any value
x so long as it is not larger than y. Fundamentals operate here as well. In the most
general case:

F,(x)=0 at x=-u (2.35)

More realistically, Equation (2.35) is geared to the physical nature of X: molecular
weight, density, temperature, and so on: Fy (x) =0 at x = 0. In all cases, however,
the distribution function increases, or at least stays constant, as y increases. The
maximum size of Fy(x) is clearly 1, the sum of all the normalized probability values.
In picture terms, a graph of Fy(x) versus x suggests a curve whose height increases,
or stays flat in certain portions, as the x values progress left to right. In some cases,
F,(x) has the appearance of a titration curve.

Jfx(0) and F(x) are the vehicles for understanding random variables. Both are acces-
sible in venues that pose finite or even an infinite number of possible x. As stated
already, data for fy(x) and Fy(x) can often be modeled by continuous functions, even
when the number of states is modest to large. When the chemist identifies which func-
tions apply to a situation, he or she shines light on the system and its statistical nature.

It is worthwhile to demonstrate how fx(x) and F(x) apply to molecular situations.
We engage in three thinking exercises involving polypeptides composed of valine
(V) and arginine (R) units (cf. Figure 2.2). Let a polypeptide’s state be investigated
using elementary biochemical and mass spectrometry techniques.

In the first exercise, one considers a 100-unit polypeptide that is 99% V. Let the
hypothetical cell place a single R unit randomly in the chain. The possible states are:

R1V2V3V4V5 VlOO
ViR, V3V Vs Vigg
V]V2R3V4V5 VIOO

ViVaViVVs | Rigo
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It is easy to quantify the information obtained by the chemist inquiring about the
system and ascertaining the peptide state. If the peptides are all equally likely,

prob(l) = prob(2) = = prob(100) = ﬁ (2.36)
It follows that
N 100
I=- E prob(i)-log, prob(i)
[
-1 1 1 1 1 1
=—1Ilog, — -—log, — - —-——log, ——
100 100 100 100 100 100 (2.37)

= +1-log,(100)

+1
~ "1 10g (100) ~ 6.64 bit
0.693 & 100) "

Yet the more critical question is how can a state be ascertained by a physi-
cal measurement of a property with attached units and, in turn, fy(x) and F(x)?
The exercise appeals to the chemical action of trypsin. This is a much-leveraged
enzyme that catalyzes peptide cleavage at the carboxyl side of R and K sites [11].
The exercise is one that randomly selects a peptide from a large population fol-
lowed by trypsin application and isolation of the R- and V-containing product.
For extra simplicity, the hypothetical cell never allows K (lysine) as a polypeptide
component.

Let X signify the molecular weight of the isolated product with possible x mea-
sured in grams per mole. R and V units in free form demonstrate average molecular
weights of 174.20 and 117.15 grams per mole, respectively (cf. Table 2.4). It can be
shown then that the possible R-containing molecules have approximate molecular
weights of:

R, 174 grams per mole
ViR, 273 grams per mole
V,V,R; 372 grams per mole

V,V,V.V, Vs .. Ryyy 9989 grams per mole

The assignment of a state of the parent randomly selected peptide is obtained by
probing the mass of the R-containing descendent over a range of approximately 174 —
10* grams per mole. The window size Ax needs to be just less than 100 grams per mole
in order to distinguish one molecule—and therefore one parent polypeptide—from
another. The window more than accommodates the masses allowed by the isotope
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combinations. If the chemist observed a fragment with mass ~1956 g/mole, he or she
knows at once the state of origin had to have been

VVVVVVVVVVVVVVVVVVRVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

For the above yields
VVVVVVVVVVVVVVVVVVR

as the R-containing fragment following the action of trypsin. Note that the chemist
is relying on a physical measurement at finite resolution to assign the correct digital
label. Matters of probability lie a short step away.

The chemist can well anticipate the statistical structure of the experiment. If the
cell randomly places a single R unit, the chemist reasons that

fx(x) x=0.0100 (2.38)

In turn, fy(x) = 10~* moles per gram over the entire sampling range using the win-
dow size Ax of just less than 100 grams per mole.

The probability structure is anticipated by intuition. Computer experiments rein-
force the thinking. It is straightforward to construct 100-unit peptides in virtual for-
mats that are 99% V. Likewise, it is simple to place an R unit randomly—using a
random number generator—and to compute the molecular weight of the fragment
that would be isolated following trypsin application. The R placement and com-
putation are not executed one time only. Rather a large population of peptides and
R-containing products must be prepared to realize the probability structure. It was
shown in Section 2.1 how the truncated, fractional portion of (7t + u)3 is virtually
unpredictable, given an arbitrary seed u < 1. To determine an R placement in a 100-
unit peptide, such a fraction can be multiplied by 100 and the result added to 1. The
integer portion then points to the site for which to place R. For example, for u =
0.48902471, one has

(7t + u)> = 630.81556648 (2.39)

Integer[100 x 0.81556648 + 1] = 82 (2.40)

which leads to the peptide

VVVVVVVVVVVVVVVVVVVVVVVVVRVVVVVVVVVVVVVVVVVV

There is no limit to the virtual molecules that can be prepared in this way. The R
placements are sufficiently unpredictable to flesh out the statistical character. Virtual
peptides are synthesized more readily by the chemist than real ones.

The upper panel of Figure 2.5 shows a plot of f,(x) obtained from the computer
experiment, whereas the lower panel contains Fy(x). The scatter in the data (open
squares) is due to the peculiarities of the random number generator and the finiteness
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FIGURE 2.5 Statistical structure of V,R peptides. Upper and lower panels show fy(x) and
Fy(x), respectively, corresponding to the uniform distribution. The open squares mark results
of the computer exercise described in text. The results of the chemist’s intuition have been
omitted in the upper panel as they simply follow the horizontal line at height approximately

10~* moles per gram.

of the sample population, in this case 10°. The linear behavior of fy(x) and Fy(x) is
clear nonetheless and illustrates the major points. Although the possibilities for x
were finite in number, their behavior is aptly modeled by the uniform density and

probability distribution functions:

fx(x) =

F =
(asx<y) p

1

b-a

(2.41)

(2.42)
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FIGURE 2.6 Sum of weighted surprisals for V,R peptides. The experiment central to the
previous figure offers approximately 6.64 bits of Shannon-type information upon establish-
ment of the peptide identity.

For the thinking exercise, best-fit a and b are 174 and 10,087 grams per mole,
respectively. Figure 2.5 includes plots (solid line) of the functions in Equations (2.41)
and (2.42). As for information, if the chemist labels the states i = 1, 2, 3, ... in order of
increasing molecular weight, he or she is a short step from computing the surprisals
and weighted summation. The results are shown in Figure 2.6. It is important that the
uniform density and probability distribution functions apply to situations where dis-
parate states manifest equal likelihood. Such functions assist in bridging the physical
nature of a system with digital labels and information in the quantitative sense.

The second exercise invokes the same cellular machinery, only slightly more error
prone. Let the cell produce 100-unit peptides that are almost entirely V. Let the R units
be placed randomly at, say, 4% of the sites on average. One of the possible states is

VVVVVVVVVRVVVVVVVVVVVVVVRVVVVVVVVVVVVVVVVVVVVVVVVRV-
VVVVVVVVVVVVVVVVVVRVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

Suppose that the chemist was concerned less about the structure of the molecule
as a whole but rather on the distribution of the R-containing sectors. Variations of the
previous peptide in which the R units are scattered would seem more likely than mol-
ecules in which the R units are bunched together, or are separated by equal numbers
of Vs, for example:

VVVVVVVVVVVVVVVVVVVVVVVVRRRRVVVVVVVVVVVVVVVVVVVVVVVVVVVV

RVVVVVVVVVVVVVVVVVVRVVVVVVVVVVVVVVVVVVVVRV -
VVVVVVVVVVVVVVVVVVVRVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
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As in the first exercise, trypsin action and measurements of the fragment masses
provide a handle on the states and information.

Application of trypsin to the first of the aforementioned peptides yields five
fragments:

VVVVVVVVVR

VVVVVVVVVVVVVVR
VVVVVVVVVVVVVVVVVVVVVVVVR
VVVVVVVVVVVVVVVVVVVR
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

If the chemist were to probe the R-containing compounds by mass spectrometry,
he or she could ascertain the structure of each. How much information is obtained
in the typical experiment? The chemist reasons that there is a 4 in 100 chance of any
peptide unit being R. There is then a 1 to 0.0400 chance of a unit being V. These
considerations link the fragment structure to molecular mass and the likelihood of
occurrence:

R 174 grams per mole (1-.04)"-0.0400 = 0.0400
VR 273 grams per mole (1-.04)"-0.0400 = 0.0384
VVR 372 grams per mole (1—.04)%-0.0400 = 0.0369

VVVR 471 grams per mole (1-.04)%-0.0400 ~ 0.0354

During the mass probes, the same size window Ax is appropriate as in the first exer-
cise. The chemist’s estimates for f,(x) follow from dividing the probabilities by 99
grams per mole. For example, f,(x = 372 grams/mole) = 0.0369/99 grams/mole =
3.72 x 10~ moles per gram. Clearly the probability density decreases with the frag-
ment size. Although the V units are assembled by the cell with much greater fre-
quency than R, long sequences of V are not so likely. A computer exercise illustrates
the statistical structure and reinforces the chemist’s intuition. Here the random num-
ber generator directs V at a site if the fractional part of (7t + u)° exceeds 0.0400 and
injects R otherwise. Upon virtual synthesis of a molecule, a subroutine ascertains
the results of trypsin action and computes the masses of the R-containing fragments.
When this experiment is carried out many times, say 103, the results deliver f(x) and
other probability quantities by an alternate route.

The chemist’s intuition-based fy(x) is plotted in the upper panel of Figure 2.7
using filled squares. The results of the computer experiment are included as open
squares, while the F'y(x) counterparts occupy the lower panel. Figure 2.8 completes
matters by showing the sum of weighted surprisals. The agreement between intu-
ition and computer experiment is very good. The consensus is that a query about an
R-containing fragment offers approximately 5.86 bits of information. This is less
than encountered in the first exercise on account of the reduced uncertainty. In the
first exercise, an R unit appeared as 1 of 100 units, whereas in the second it averages
1 in 25. The less the uncertainty, the less information obtained from an experiment.
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FIGURE 2.7 Statistical structure of more V,R peptides. The upper and lower panels show
fx(x) and Fy(x) corresponding to the exponential distribution. The open squares mark the
results of the computer exercise. The filled squares are placed in accordance with the chem-

ist’s intuition.
The functional behavior in Figure 2.7 is exponential. This reflects the

approximations

exp(-u)=1-u (2.43)
and
exp(-nu) = (1-u)" (2.44)
for 0 = u << 1. Accordingly, Figure 2.7 includes plots of the continuous functions

fi (%) = hexp(=Ax) (2.45)
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FIGURE 2.8 Sum of weighted surprisals for V,R peptides. The experiment central to the
previous figure offers slightly less than 6 bits of information. The open and filled squares are
placed, respectively, by the computer exercise and the chemist’s intuition.

y

Fy(x=y)= f dx - hexp(-hx) (2.46)
0

where A is a best-fit parameter. Equations (2.45) and (2.46) thereby introduce the
exponential distribution. It applies to circumstances that involve random sequences
of rare and independent events. The exercise involved the odd placement of an R in a
V-rich peptide. Analogous examples can be constructed involving crystalline impu-
rities, chemical side reactions, and radioactive decay.

A third exercise involves cellular chemistry that is unselective altogether. Let the
cell produce 100-unit peptides that are mixtures of V and R. Let the R and V units
be randomly placed with equal likelihood—the cell is indiscriminant of which unit
is placed where. A few of the many possible samples are:

VRVRRRVVRRRRRVRRRVRRVRVVRRVVVRVVVVVVVVVVRRVRVVRVRRVRV -
VVRRRRVRVRRVVVVVRVRVRVVVRRVRRVVVRVVRVVVRRVRRRRR

RVVVVVRRVRVRRRRRRRRRVRVRRVRRRVRRRVRVRRVRVVVVRV -
VVVVVVVVVVVVRRRVRVVVVVVRVVVVRRRRRVRRVRVRRRVRVRVVVVRRVV

VRRVRVRVRVVRRVRVRRVRVVRRVRRRRRRRRRRVRRRVVVRVVRVRV -
VVVVVVVVRVRVRVVVVVVRVVRRVRVVVRVVRVVVRRRRRVRRVRRRRRR

VVRRVRVRVVVVVRRRVRVVRVVVRVVVRRVVVRRRVVRRRRVRVRVVVVRVRV -
VRRRVRVVRRRRRRVVRRVRVRRRVRRRRVRRVVRRRVRVRRVRVR
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VRVRRVVRRRVVRVVRVRRVRRRVRRVRVRRVVVVVVRRVRRRVVRVVVRVR -
RRRVVVVVRRRVVVRVVRRRVRRVRVVVVVVVRVRRRRRVRRVRVRRV

The italics on many emphasize that there are indeed multiple allowed states:
2100~ 10°°. Let the chemist not worry about the primary structure details but only about
the number of V versus R units. The chemist can then dispense with the trypsin and
proceed directly to the mass spectrometry lab. The window size Ax must be reduced to
approximately 57 grams per mole, however. Given random mixtures of R and V in 100-
unit molecules, how much information is yielded if the V,R content is ascertained?

Intuition and computation work together again. There is only one configuration
each for (V),,, and (R),y, with respective molecular weights of 9,931 and 15,636
grams per mole. Although these are possible molecules made by the cell, they should
manifest with the near-vanishing likelihood of 1/2'% =~ 10-3°. By contrast, peptides
containing V and R in comparable numbers offer many more possibilities, all at
identical molecular weight. Observing these states should be far more likely. The
probabilities can be intuited by comparing the number of possible configurations
with the total number of allowed states. A polypeptide composed of N number of V
units contains (100 — N) R units. The probability prob(N) is quantified by

100!
NI (100-N)! 2.47)

for 0 < N < 100. The molecular weight of the corresponding peptide, while tedious to
compute, arrives by consideration of the V and R weights and linkages as in Figure 2.2.
More critical is that the factorial expressions become very large very fast: 6! = 720
while (2x6)! is 6.65x 103 times larger. Thus, for almost all the possible cases, the
probabilities must be established with the help of Stirling’s approximation [6,12]:

prob(N) =

n! = (2mn)">n" exp(-n) (2.48)

or in logarithm form
log,(n!) = (1/2) - log,(2nn) + nlog,(n) — n (2.49)

A computer exercise complements the calculations. Here the random number
generator directs V to a site if the fractional portion of (7 + u)® exceeds 0.50000
and R otherwise given arbitrary initial # < 1. Following virtual synthesis, a sub-
routine computes the molecular weight of the 100-unit peptide. This experiment
is carried out multiple times so as to establish the statistics. Results are illustrated
in Figure 2.9. The intuitive estimates based on Equations (2.47) through (2.49) are
included. The results for F(x) are shown in the lower panel. Figure 2.10 completes
the story by showing the sum of weighted surprisals. The information proves to be
approximately 4.37 bits. As anticipated, this value is the lowest of the three exercises.
This is because the molecular mass measurements do not say as much about the pep-
tide primary structure, only the number of V’s versus R’s. When the chemist seeks
less information, less information is the result. Note one subtle feature. If the chemist
is merely concerned about the number of V versus R—not their precise sequence—
then there are 100 possible states. Only 40 or so are visited in the typical computer
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FIGURE 2.9 Statistical structure of random V,R peptides. The upper and lower panels show
Jfx(x) and Fy(x) corresponding to the normal distribution. The open squares mark the results
of the computer exercise while the filled squares are placed by the chemist’s intuition. The

alignment is near perfect.

experiment; however, 60% of the states are so improbable that they contribute essen-

tially zero weight in the surprisal sum.
Figures 2.9 and 2.10 portray normal or Gaussian behavior. Figure 2.9 thus includes

plots of the functions

1 -(x-x,)?

fry(x) = Toor exXp ——— (2.50)

2
xX-x,)

I -
FX(XSY)=W'de'EXp ( 702 (2.51)
0
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FIGURE 2.10  Sum of weighted surprisals for random V,R peptides. The open squares mark
the computational results of the previous figure and the filled squares are placed by the chem-
ist’s intuition. The open squares are barely apparent because the alignment is near perfect for
the two approaches.

where x, and G are best-fit parameters—their formal significance is addressed in
one of the exercises. Note the near-perfect agreement between the continuous func-
tions, the chemist’s intuition, and the computational results. The normal distribu-
tion applies to multitudinous situations—the adjective normal is more than justified.
Loosely speaking, Equations (2.50) and (2.51) apply to venues in which a large num-
ber of seemingly unrelated variables determine the experimental outcome.

2.6 PROBABILITY DISTRIBUTION TOOLS

Probability functions provide full-length stories about states and likelihoods.
Moments and cumulants furnish thumbnail sketches. For a random variable X hav-
ing a finite number of possible x values, the moments are obtained by weighted
summations; the cumulants follow via slightly more complicated formulae. The nth
moment is given by:

X" = an f(x) x 2.52)

The first moment is then simply the average or expectation of x. Strictly speaking,
x need not be one of the members of the sample population. For example, golfers
shoot integer scores with noninteger averages.
The first cumulant K| also equates simply with X . The second K, is given by:

K,= x2 - x? (2.53)
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This quantity is tied to the spread of the probability distribution and is referred to
as the variance 6. The square root of the variance is encountered early and often in
science education and is named the standard deviation (G).

The third cumulant K; connects with the symmetry—or more typically the lack
of it—in a distribution:

Ky=x* -3 x-x* +2- x3 (2.54)

When continuous functions model the distributions, the moments arrive via integration:

X" =de'x”f(x) (2.55)

There is an integral to compute for each moment while N integrals are pieced together
to supply the Nth cumulant. It is important that the moments can arrive by another
route that entails a single integral and an intriguing function. This function can be
differentiated sequentially to obtain any moment; it is the moment generating func-
tion for the random variable X:

M, (1) = f dx -explix]- f(x) (2.56)

Comparison of Equations (2.55) and (2.56) shows M () to be the expectation of
exp[zx]. It is interesting to see how such a function is able to furnish all the moments
one by one. We first note the Taylor series of exp[tx] to be:

exp[x], , 0y xtexplx], i x2explx], , » x3expltx],
0! 1! 2! 3!

't3+

explx] =

)Cltl x2t2 x3t3

=l+—+—+—
1! 2! 3!

+ 2.57)

As a consequence, M,(f) equates with

x22 X33
TR TR

MX(t)=fdx 1+ xt+

=fdx-f(x)+t-fdx-;gf(x)+%-fdx-x2f(x)+;—3!-fdx-x3f(x)+

=1+t'fdx-)g‘(x)+t2—2'-fdx*xzf(x)+;—3‘-fdx-x3f(x)+

o, B
=1+t-x+2—!-x +§'x + (2.58)
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A Taylor series of any function g(f) around ¢ = O is obtained from successive
differentiation:

1 2

+ - -
0! 1! dt 21 dr? 3! dr

t 0 t 0 t 0

(0) . 40 2 3
gV 1 dg 1 od 1 dg o 2.59)

g =

Substituting M (7) for g(f) above just repeats the idea of Equation (2.58). The deriva-
tives, one by one, evaluated in the limit  — 0, form the moments x" .

The workings of M(¢) are readily demonstrated via the uniform distribution, Equations
(2.41) and (2.42). The recipe for the first moment using Equation (2.55) gives:

P ot
x = fdx-x= £
b-a b-a 2
a xa (2.60)
b+a

1
= x —x (b? -a?) =
b-a 2 ( )

To reach the same destination via moment generating, one assembles M (7) as follows:

b
M, (1) = bi—a : f dx -exp[ix]

= Dtexpteanr £ = fexplib) - explial

b-a t b-a t (2.61)

Then the first moment X will arrive from considering the first derivative:

dM (1) -1 _ 1 _

T hea e (exp[tb] exp[ta]) + ; (b exp[th] - a exp[ta])
B 1 - exp[tb] + explta] + bt exp[th] - at exp[ta] 2.62)
" b-a 1? ’

One will need to evaluate Equation (2.62) above in the limit  — 0 by applying the
rule of I’Hospital. So, both the numerator and denominator in brackets must be dif-
ferentiated. The operations yield:

1 —bexplth] + aexplta] + bexpl[th] + b*t exp[th] — a explta] - a’t exp|ta]
b-a 2t
_ 1 ) —bexplth] + aexplta] + bexp[tb] — a exp[ta]
b-a 2t

b? exp[tb] — a? explta]

2.63
5 (2.63)
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which, after cancellations, contribute:

dM, (1) _ 1 Db*explth] - a® explta]
dt b-a 2

(2.64)

Equation (2.64), evaluated in the limit # — 0, matches x given in Equation (2.60).
Using M,(t) to obtain the second moment of the uniform distribution is left as an
exercise.

The major points of this chapter are as follows.

1. Three types of information in the quantitative sense were illustrated:
Shannon, Kullback, and mutual. They are not the only ones, as information
was defined in the 1920s, first by R. A. Fisher [13] then a few years later by R.
V. L. Hartley [14]. The 1920s saw the birth of the information sciences due to
the technological advances in electronic communication. Applications of the
Fisher information lie beyond the scope of this book. The Shannon approach
is closely related to Hartley’s and is applied in subsequent chapters.

2. How information plays multiple roles was discussed. It equates with the
code amounts needed for labeling the states of a system. In turn, it con-
nects with the system’s diversity and complexity. A system that requires 160
bits for its state labeling offers far greater message possibilities—and thus
diversity—than one needing only 5 bits, for example:

01100011111011000101011111000010010110110111111011
11000111111010011011010101010011010001010010110100
10001101011010100010111101000001000101110010100010
0101101111

as opposed to

10011

By the same metric, a system capable of the 160 bit message is significantly
more complicated than one limited to 5 bit communication. If a system
expresses one state only, it offers zero information because the diversity and
complexity of the messages are absent.

It should also be apparent how information reflects a control capacity. Upon
coupling to the environment, a system transmitting a 160 bit message can
dictate—or at least influence—a greater number of decisions, compared
with a 5 bit counterpart. Decisions impacting the environment invariably
entail the transfer of work and heat. Thus, information venues present
energy considerations concerning cost and dispersal. The chemist was able
to trap information about the polypeptides only by paying a price of work
and dissipated heat. Information is physical and chemical; it does not arrive
free of charge or independent of work and heat.
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3. Links between information and properties such as molecular mass were
shown. In each case, the amount of information depends on the nature of
states queried and the measurement resolution. If the chemist had narrowed
the mass window Ax during the peptide experiments, more information would
have obtained due to isotope effects. If he or she applied a mass resolution
window of Ax = 20,000 grams/mole, then zero bits would have obtained.

2.7 SOURCES AND FURTHER READING

Information is thoroughly linked to the probability sciences. The author has found
several works most instructive over the years. The mathematical probability books
by Birnbaum [5], Uspensky [15], Karlin and Taylor [16], along with the Mark Kac
lectures are stellar [17]. The book Randomness by D. J. Bennett presents a fascinat-
ing and wholly accessible approach to probability ideas [18].

Concerning information theory per se, the texts by McEliece [19] and Ash [20]
are recommended. The books by Morowitz are especially enlightening and stimu-
lating for students of both chemistry and biology [21,22]. Science and Information
Theory by Brillouin is more advanced but is indispensible for applications rang-
ing from language to the physical sciences [23]. Wiener’s Cybernetics includes
extended discourse on information, its physical measure and significance [24]. In
recent years, the National Research Council has sponsored studies of probability,
information, and algorithms. Their report includes a chapter on the generation
and significance of random numbers [25]. It should also be mentioned that the
statistics of nitration—covered in second-semester organic chemistry—have been
thoroughly investigated. One looks to the Chemical Reviews article by Ferguson
for a complete presentation [26]. Last, the examples of this chapter featured poly-
peptides. These and their protein counterparts lie at the center of bioinformatics
and related fields. The reader will profit from the presentation by Jurisca and Wigle
[27]. Chapter 3 of their text, in particular, addresses the mass spectrometry aspects
of proteins.

2.8 SUGGESTED EXERCISES

The student should repeat several exercises illustrated in this chapter via the figures
and tables. Some computer programming skills and access to a spreadsheet will
assist greatly. The same statements apply to exercises of the remaining chapters.

2.1 Information can be reported using bits or nits as units, depending on
the logarithm base. There is a third option: the use of base-10 loga-
rithms leads to information measured in Hartleys. (a) How many bits
correspond to 8.50 Hartleys? (b) How many Hartleys correspond to
5.30 nits? (c) Invent a unit name for base-18 logarithms. What multi-
plication factors enable the conversion to bits, nits, and Hartleys?

2.2 (a) Using integral calculus, derive an expression for the second moment
of the uniform distribution. (b) Obtain the identical expression by dif-
ferentiation of M (7).
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2.3

24

2.5

2.6

27

2.8

29

2.10

(a) Using integral calculus, derive expressions for the first, second, and
third moments of the standard normal distribution. (b) Do likewise via
differentiation of M (7).

(a) How effective is Stirling’s approximation as presented in Equation
(2.48)? Construct a graph that shows N! versus N in exact terms and by
approximation. (b) A more complete version of Stirling’s approxima-
tion is given by:

1 ( ) 1 1 1
1 )= — -1 log(+/2 —
og,(n!) n+2 og,(n) n+log|v2m +6'2‘1xn 3043

1 1

X —+ X
nd 42-6:5 n

Do the extra terms improve matters? Please discuss. (¢c) Can Equation
(2.48) be simplified further for large N? Please discuss.

Repeat the computer exercise resulting in Figures 2.7 and 2.8. Do the
summations of weighted surprisals have to mirror the probability dis-
tribution functions? Please discuss.

The amino acids of Table 2.4 having nonpolar R groups are A, V, L,
I, P, F, W, and M. (a) How many 100-unit peptides restricted to these
building blocks are allowed? (b) How many bits of information are
obtained by the chemist upon learning the sequence of a 100-unit ran-
dom peptide confined to A, V, L, I, P, F, W, and M?

The amino acids with uncharged polar R groups are G, S, T, C, Y, N,
and Q. Let a large population of 100-unit peptides be prepared using
these components chosen at random. (a) Construct a plot of the prob-
ability density function based on the peptide molecular weight. (b) Do
likewise for the probability distribution function. Do the plots match
expectations formed prior to the exercise?

Repeat Exercise 2.7 without restrictions placed on the amino acids.

Let a robot synthesize a 100-unit peptide via random selection of the
standard 20 amino acids. If a chemist learns from experiment answers
to the following questions, how many bits of information are obtained?
(a) Is H (histidine) the N-terminal unit? (b) Is H the C-terminal unit?
(c) Does the peptide contain two H residues? (d) Does the peptide con-
tain three H residues? (e) Is H absent in the peptide? (f) Does the pep-
tide contain the sequence HVLGA?

An integer is either prime or composite. Obtain or construct a table of
prime integers less than 5000. (a) Let an integer no higher than 1000
be selected at random. How many bits of information are acquired if
the status—prime or composite—is determined? (b) Address the same
question for a random integer no higher than 5000. (c) Compare and
discuss the answers to (a) and (b).

47
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2.10 Look up the formula diagram for cholesterol. (a) How many optical
isomers are allowed by the chiral centers? (b) Are the isomers antici-
pated in nature with equal likelihood in nature? Please discuss.

2.11 Consider the sequence isomers of lysozyme molecule. This protein
has (N- to C-terminal) primary structure:

KVFERCELARTLKRLGMDGYRGISLANWMCLAKWESGYNTRAT -
NYNAGDRSTDYGIFQINSRYWCNDGKTPGAVNACHLSCSALLQD-
NIADAVACAKRVVRDPQGIRAWVAWRNRCQONRDVRQYVQGCGV

(a) How many sequence isomers are allowed? (b) Examine the pairs of
nearest-neighbor units: KV, VF, FE, ER, .... Given the occurrence fre-
quencies, how many bits of mutual information are expressed in the pair
states? Prior to the computation, should the chemist anticipate zero bits of
mutual information?

2.12 Let a robot synthesize variants of lysozyme by substituting amino
acids at individual sites. (a) Let a chemist know that a single-site sub-
stitution has been effected at random. The chemist inquires whether
(or not) the sequence is given by:

KVFERCELARTLKRLGMDGYRGISLAHWMCLAKWESGYNTRAT -
NYNAGDRSTDYGIFQINSRYWCNDGKTPGAVNACHLSCSALLQD-
NIADAVACAKRVVRDPQGIRAWVAWRNRCQONRDVRQYVQGCGV

How many bits of information are obtained upon learning the answer
to the yes—no question? The substitution has been indicated in boldface.
(b) In a different experiment, the chemist learns that two sites have been
substituted. He or she wonders whether the molecule corresponds to:

KVFERCELARTLKRLYMDGYRGISLANWMCLAKWESGYNTRAT -
NYNAGDRSTDYGIFQINSRYWCNDGKTPGAVNACHLSCSALLQD-
NIADAVACARRVVRDPQGIRAWVAWRNRCQONRDVRQYVQGCGV

How many bits of information are obtained by the answer to the yes—no
question? Again, the substitutions have been noted in boldface. Last, con-
sider the case of three random site substitutions. The chemist inquires
whether the formula is:

KVFERCELARHLKRLGMDGYRGISLANWMCLAKWESGYNTRAT -
NYNAGDASTDYGIFQINSRYWCNDGKTPGAVNACHLSCSALLQD-
NIAGAVACAKRVVRDPQGIRAWVAWRNRCQONRDVRQYVQGCGV

How much information attaches to the answer?
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3 Thermodynamic
Infrastructure, States,
and Fluctuations

An overview of thermodynamics for elementary systems is presented. We describe
the infrastructure for characterizing a system under the very special conditions of
equilibrium. It is shown how a maximum entropy state connects with others via
fluctuations. The information presented by a system hinges on the statistical struc-
ture of the fluctuations.

3.1 INFRASTRUCTURE

Thermodynamics offers numerous pairings:

e Systems versus Surroundings

e Work versus Heat

» Individual state points versus State point loci

e Adiabatic versus Diathermal walls

* Closed versus Open systems

* Intensive versus Extensive properties

e Equilibrium versus nonequilibrium conditions

* Finite-time versus Infinite-time transformations

There are many more: first- versus second-order phase transitions, state functions
versus path-dependent functions, and so forth. However interwoven, the subject can
be divided roughly into two parts as presented in Figure 3.1. One part concentrates
on the heat and work transferred between a system and its surroundings. The other
part attends to the relationships between a system’s state variables and functions.
There are quite a number of these beginning with temperature (7'), pressure (p), and
volume (V), as introduced in Chapter 1. If the chemist chooses a quantity such as
enthalpy (H), there is quite a story to tell about its relation to other system properties
such as compressibility, heat capacity, and so on. Suffice to say that the variables and
functions form the infrastructure for thermodynamics under the umbrella of physi-
cal laws.

In approaching the subject, one looks first to the state functions centered on poten-
tial energy. The most basic of these is the internal energy (U). The nineteenth century
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Surroundings

Heat

System

~—+— Work

Chemical potential

Heat capacity
e T Pressure
Compressibility e
.. Temperature
Expansivity
/ \, Entropy
Internal
energy / Moles of material
Joule /" Volume
coefficient ™. e
.~ Density

Enthalpy Free energy

FIGURE 3.1 The dual nature of thermodynamics. Half of the subject (upper panel) focuses
on heat and work exchanges between a system and its surroundings. The other half (lower
panel) attends to the relationships between state quantities. A property such as enthalpy is
related to temperature, heat capacity, and more. The equivalent statement can be made about
every quantity in the lower panel.

experiments of James Prescott Joule demonstrated that the energy changes internal
to buckets of water were governed by work and heat exchanges. The statement

du = dw,, +dQ,,, 3.1)

summarizes the first law of thermodynamics in differential form; dW,,. and dQ,,, are
infinitesimal amounts of work and heat received by a system during some process. In
Joule’s investigations, the bucket and contents composed the system of interest while
everything else acted as the surroundings. The subscripts are important in Equation
(3.1) because energy exchanges at once establish two directions. Any work and heat

rec
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received by a system are identical in magnitude, but opposite in sign, to work and
heat lost to the surroundings. One writes:

dWrec = _dwllast (32)
erec = _dQInxt (33)

The work lost by a system is more often described as the work performed or expended.
In the terminology used by Joule, the word duty is inserted in place of work. More
important are the landmark ideas of Equations (3.1) through (3.3). The first is that
thermodynamics distinguishes two types of energy transfer: work and heat. The for-
mer can loosely be described as energy transferred by some orderly arrangement
or mechanism. Work demonstrates several guises: mechanical, chemical, electrical,
and magnetic. By virtue of the orderliness, there are really no constraints—at least
in principle—of converting 10 joules of mechanical work to 10 joules of electrical or
vice versa. Hence energy exchanges via work offer innumerable combinations and
permutations, in addition to qualifiers. For example, work can be transferred by a
system at constant temperature or constant pressure. The infrastructure of thermo-
dynamics draws distinctions between the two situations.

By contrast, heat exchanges are loosely defined as disorderly transfers of energy.
Work comes in several flavors, whereas heat is heat whether the source is a Bunsen
burner, hotplate, or acid solution mixed with base. The fine print is important just as
in work exchanges. Thus, the heat received by a system at constant pressure is not the
same as heat received at constant volume.

The second point is that neither dW,,. nor dQ,,, are exact differentials. It is incor-
rect to write:

f aw, . =w,, (3.4)

ferec = Qrec (3-5)

because both types of energy transfer depend on the pathway or process details. If
one pushes a shopping cart 5 feet down the aisle, or instead directs the cart two laps
around the supermarket, back to the starting point, and then 5 feet away, different
amounts of work are expended. This is in spite of the same beginning and terminal
points. This characteristic of work and heat is often punctuated by combining symbols
dw,,. and dQ,,. with slash marks to yield dW,,. and dQ,,,. In some texts, the inexact-
ness is emphasized by using D in place of d: DW,,. and DQ,,.. Throughout this book,
the path dependence of work and heat will be taken as understood. Slash marks and
Ds will not grace the differentials. This does lead to a third point, however.
Although dW,,. and dQ,,, are inexact differentials, their sum is an exact differen-

ec rec

tial by way of dU. It is correct to write:

rec

f (aw,, +d0,.)= f U= U (3.6)
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or

final
du =U

initial

U (C))

final ~ “ initial

where the integration limits and subscripts reference particular states of a system.
Another important statement is:

f dU =0 (3.8)

The integral of Equation (3.8) is unusual in that the initial and final states are taken
to be identical. One says that U is a function of state; its changes depend only on
the initial and final conditions, not at all on the pathway details. Thermodynamics
presents numerous functions of state, and they are not confined to potential energy.
V, T, p, mass (m), number of moles (n), and density (p) share the list of state functions
along with others.

Applications often entail mechanical compression- and chemical-type work, for
example, in the operation of an automobile engine. Thus the differential statement
for the first law, applied to a one-component system, adopts the form:

dU = —pdV +TdS + dn (3.9)

where p, V, T, and n have their standard meaning. Entropy (S) and chemical potential
(w) share the stage in Equation (3.9). Note that the three terms to the right of the equal
sign correspond to two terms in Equation (3.1). This reflects that work can assert
more than one mode of energy transfer simultaneously: in Equation (3.9) via the first
and third terms. It is the middle term of Equation (3.9), which equates with dQ,,..
One should also note that although dV, dS, and dn are exact differentials, each term
on the right in Equation (3.9) is generally inexact. Table 3.1 offers a scorecard for
keeping track of the major players or building blocks in thermodynamics. Listed are
variables and functions, their extensive or intensive status, and SI units. The exten-
sion of Equation (3.9) to systems that host two components, for example, argon and
neon, is straightforward:

dU = -pdV +TdS + dn, + ,dn, (3.10)

The pattern is apparent: there is a Wdn, term for each ith component. For a system
hosting k¥ number of components:

dU = —pdV +TdS + E dn, 3.11)

[

Equation (3.11) states that multiple chemical work terms impact the energy exchanges
of multicomponent systems.
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TABLE 3.1

Building Blocks of Thermodynamics

Variable and Status Common Symbol SI (MKS) Unit

Temperature (Intensive) T Kelvin

Pressure (Intensive) )4 pascals

Number of moles (Extensive) n moles

Mass density (Intensive) p kilograms/meter?

Entropy (Extensive) S joules/Kelvin

Internal energy (Extensive) U joules

Volume (Extensive) \% meters’

Isothermal compressibility By pascals™!
(Intensive)

Isentropic Compressibility B pascals™!
(Intensive)

Thermal expansivity o, Kelvin™!
(Intensive)

Helmholtz free energy A joules
(Extensive)

Gibbs free energy (Extensive) G joules

Enthalpy (Extensive) H joules

Chemical potential (Intensive) n joules/mole

It is the second term on the right of Equation (3.9) that points to the second law of
thermodynamics. dS is an exact differential and originates from applying 1/T as an
integrating factor for dQ,,:

rec*

dS=—xdQ, (3.12)
TX Qre(.

In other words, dQ,,. becomes an exact differential when it is multiplied by inverse
absolute temperature. Note that Equation (3.12) holds strictly for reversible changes:
the system must never stray from the special condition of equilibrium. If irrevers-
ibilities are incurred, then regardless of their origin, 49.. provides only a lower limit
for dS. One writes: !

(3.13)

1
dS=—xd

T Ql‘é'L'
with equality restricted to equilibrium conditions. Equation (3.13) offers one of sev-
eral statements of the second law where energy transfer via heat plays a role. A
system can be surrounded by thermally insulating walls that preclude such transfer.
When such walls are rigid and in place, the conditions are referred to as adiabatic
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or isentropic. The vacuum jackets of Dewar vessels and thermos bottles offer good
approximations of adiabatic walls. For the contents of a Dewar vessel:

ds @0 (3.14)

whereby

dU=-pdV+0+ dn

o 3.15
~ d‘/‘/r(ezédzabatzc) ( )
Equation (3.15) can be interpreted as the differential statement of the first law under
atypical circumstances.
Because dU is an exact differential, it is an explicit function of V, S, and n. This
is another lesson of Equation (3.9). Moreover, these three variables all happen to be
extensive. For the single component system, one writes:

dU=dU(V,S,n)=-pdV +TdS + dn

3.16
Wy g, U, e19
% aS on

S.n V. V.S

For x-component systems, the extension of Equation (3.16) is cuambersome given the
subscript details:

dU =dU(V,S,n,n,,.. n)

3 3.17
v avs U dS+E v P
P% 9 i

Sy .. n, V. ny .0 i i
157 = Ty 157 seeesllyc il VoS o My g

Two features are nonetheless apparent. The first is that for a k¥ = 1 system, one has,
following Equation (3.16),

=-pV+TS+ n (3.18)

with obvious extension to multicomponent systems. Second is that long-familiar
quantities p and T have partial derivative identities:

__ W
P== "y (3.19)
S.n
U
T=+ —
* =S (3.20)

V.n
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So do less-everyday quantities:

v
n (3.21)

V.S

It is an attractive feature of thermodynamics that state variables admit differential
expressions; this was remarked upon in Chapter 1. In effect, each variable serves as
a reaction of the system to a slight perturbation. Note that the subscripts signal the
conditions that are held constant during the infinitesimal change of one variable and
the motion of another. The significance of Equations (3.19) and (3.20), and (3.21) by
extension, cannot be overstated. 7 and p are encountered daily via thermometers,
barometers, and weather reports. Their physical nature runs much deeper, however.
T connects with how a system’s energy behaves, given miniscule adjustments of the
entropy under leak-proof conditions. A parallel statement holds regarding system p.
Also notable is that variables related to one another by a derivative of U play con-
jugate roles. p and V are conjugate to each other; likewise for 7 and S, i and n. As
Figure 3.1 indicates, there is a story to tell about how each member of the extended
family is related to another.

Thermodynamics has no shortage of quantities that are differential in nature.
Several are stated as follows:

dQ EN
C = ——re =7 =
v dT T (3.22)

V. V.n

is the heat capacity for a one-component system at constant volume;

dQ a8
C = rec =T
»Toar aT (3:23)

pn pn

is the heat capacity at constant pressure;

o = 1w (3.24)
Lo AV '
p.n
is the thermal expansivity (expansion coefficient) at constant pressure; and
g oL v
TV . (3.25)
is the compressibility at constant temperature. Its counterpart
gL )
STV o (3.26)

applies to isentropic conditions. The negative signs in Equation (3.25) and Equation
(3.26) are not throwaway details. Their presence ensures that 3, and B, are positive
quantities for all stable systems.
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For the differentials of Equations (3.22) through (3.26), n is held constant. The
omission of n from the parentheses subscripts is a frequent practice. This is analo-
gous to the omission of carbon and hydrogen atom symbols from chemical formula
diagrams of the line-angle variety; the experienced viewer infers their presence. It
is important that Cy, C,, o, B, and B apply to closed systems. They are all positive
for stable systems—the type under the lens of this chapter.

Thermodynamic differentials are not restricted to the first order. Further, since
the order of differentiation is immaterial to the outcome, one has that

A N 1)
S 9V s ov aS v (3.27)
MV MoSn
It follows that
op oT
- — = — 3.28
oS Von aVv s ( )

Second derivative identities such as these are referred to as Maxwell identities.
Second derivatives that involve the chemical potential are equally valid although
encountered infrequently. One example is:

o U _ a0 U 520
on oV Sy vV on Vs s ’
whereby
ap d
- = (3.30)
on Vs oV S

A system’s internal energy depends on the component identity, mole amount, and
phase; for example, 2.00 moles of helium gas versus 1.00 mole of xenon gas versus
1.50 moles of liquid ammonia. Yet the dependence of U on V and on S is not entirely
case specific. One gathers this from the second derivatives linked to functions such
as in Equation (3.22). Differentiating U twice with respect to S leads to:

#u.o_ 9 U
ast @S as .
aT
_ T (3.31)
a8

T
C

1%
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Since heat capacity and absolute temperature are positive for equilibrium systems,
U is mandatorily a concave upward function of S. Plots of U versus S demonstrate a
signature shape with no exceptions. In the same vein,

eU- 0 U
v AV eV .
ap
=T v Ny (3.32)
1
" VB,

Compressibilities are positive because systems lose volume during compression. A
consequence is that U is also a concave upward function of V; plots of U versus
V have signature features, regardless of the component, phase, and mole amount.
Figure 3.2 accordingly illustrates the signature behavior of U. The point being made

Internal Energy U

Internal Energy U

Entropy S

Volume V

FIGURE 3.2 The signature dependence of U on volume and entropy. U versus V and U versus
S mandate concave-upward curves. The curves remain above any and all tangent lines that can
be drawn. The dotted curves are examples of functions strictly forbidden for stable systems.
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is that U applies to diverse chemical systems, the numerical details of which will
always be case specific. The stability of a system, however, places formidable restric-
tions on the dependence of U on V and S.

The internal energy is not the only potential. Others are obtained via Legendre
transformations of U, for example:

H-v- Y
v s,
=U+pV

(3.33)
=-pV+TS+ n+pV

=TS+ n
The function H obtained by the transformation depends explicitly on S and » held
constant, while the third variable is the “new” one manifest in the derivative. Thus H

= H(p,S,n) for a x =1 system and is referred to as the enthalpy. In a like way, other
useful potentials are obtained, for example:

U

A=U- — S=U-TS=AV,T,n)
aS V.
=-pV+TS+ n+pV-TS (3.34)
=-pV+ n

Legendre transformations are not limited to one variable. By differentiating and
multiplying twice, one obtains:
au au

G=U- V- -S=U+pV-TS=G(p,T,
Py, as p (p,T,n)

S.n V.
=-pV+TS+ n+pV-TS (3.35)
= 'n

A and G are referred to as the Helmholtz and Gibbs free energy, respectively. Note
that terms enthalpy and free energy allude to heat and work, respectively. The termi-
nology subscribes to the circumstances where the potentials are most often directed.
For instance:

dH(S, p,n)=TdS -Vdp+ dn (3.36)

for a single-component system. If the system is closed and the pressure held con-
stant, then

[dH],, = TdS =[dQ,1,,, (3.37)

pn
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For this reason, enthalpy H is a natural fit for situations that entail heat exchanges at
constant pressure. These exchanges transpire daily inside and outside chemistry labs,
such that H is encountered frequently in thermodynamics. Along similar lines,

dA(V,T,n) = -pdV - SdT + dn (3.38)

If the system is closed and its temperature held fixed, then

[dA]T,n = _pdv = [dWrec]T,n (339)

The free energy A is thus geared for systems in which work is transferred at con-
stant temperature. It should be noted that no single potential deserves more attention
than another. What is true is that some are better suited for certain conditions. For
example, G has special stature in chemistry via Equation (3.35). It follows that

dG = dn+nd (3.40)

G thereby connects with situations in which chemical work is paramount. The applica-
tions are without limit and are discussed in first-year chemistry courses and beyond.

U, H, A, and G form the short list, but not the whole list, of potential energy func-
tions. Potentials such as @ are equally valid and obtain by Legendre transformation
through n:

d=U- ﬂ n=U- n=®V,S, )
on Vs
=-pV+TS+ n- n (3.41)
=-pV+TS

However, they find sparse applications in chemistry. It is important to note the sym-
metry in the potentials and variables. Symmetry properties indeed underpin dia-
grams such as in Figure 3.3. The layout is referred to as the thermodynamic square
in most texts. The logistics are that each short-list potential is situated between the
variables upon which it depends explicitly. At the same time, the variables that con-
jugate to each other appear at opposite corners. The diagram omits reference to n as
this quantity is fixed in most applications.

The uses of the diagram are multiple and interesting. The diagram helps the
chemist to remember which variables are allied with which potential—it serves as
another scorecard so to speak. On what variables does A depend explicitly? A glance
at Figure 3.3 identifies V, T—and n by default—as the answer. Second, rectangles in
the mind’s eye help the chemist track how the potentials are related to one another:
the Legendre transforms are an imbedded feature. How are U and H related? The
chemist places his or her finger at the tail of an arrow and follows the route spelled
out inside the dotted rectangle, that

pV+U=H (3.42)
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FIGURE 3.3 The thermodynamic square and one application. A Legendre transformation
is implicit inside the dotted rectangle. The chemist starts at the tail of the arrow at lower right,
imagines the plus and equal signs, and assembles pV + U = H.

Equation (3.42) is a simple restatement of Equation (3.33). The chemist can use the
diagram to fill in the blanks featuring total differentials and variables, for example:

[dU], =?7dV +72dS (3.43)

The question marks refer to the variable multipliers and their signs. The arrows point
toward the multipliers as the conjugate variables. This clue yields:

[dU], =?pdV +?TdS (3.44)

Then which way an arrow points asserts the sign. If an arrow points away from the
multiplier, the sign is positive, and negative otherwise. One learns from Figure 3.3:

[dU], = -pdV + (+)TdS (3.45)

which is a variant of Equation (3.9).

Using the diagrams to construct first-derivative identities is straightforward. This
is shown via Figure 3.4. An imaginary pipe encloses the differentiation of a potential
with respect to one variable. The arrow along the stem of the pipe identifies the vari-
able on the opposite side of the equal sign. If the arrow points toward the conjugate
variable, the sign is positive and negative otherwise. One has to imagine smoke
wafting from the pipe barrel—the upward-pointing arrow in Figure 3.4. The recipi-
ent of the smoke is the variable held constant during differentiation while constant
n is implicit. For the artistically inclined, there are eight pipe drawings inspired by
the diagram.

Last, imaginary triangles access the Maxwell identities. The diagram is written
twice and triangles are drawn as in the lower half of Figure 3.4. The center identi-
fies the differentiation variables; the right and left corners host the variables held
constant. The arrows keep all the signs correct. When the arrows point in opposite
directions, there is a sign inversion. It is left to the reader to construct four sets of
triangles and affiliated Maxwell relations. There is one set for each 90-degree rota-
tion and side-by-side rendering of the diagram.
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VoA AT v
s H dp! ds H P

FIGURE 3.4 The thermodynamic square and two more applications. A first-derivative iden-
tity is implicit in the dotted pipe of the upper panel. The chemist imagines differential signs
in front of U and S. Immediately above U is V, which is held constant during differentiation.

The diagonal arrow points to 7 as in (%)v =T. In the lower panel, the side-by-side diagram
illustrates the second derivative, or Maxwell identity (gl) = % .
P /S n p.n

3.2 EQUATIONS OF STATE

Potentials, variables, and laws comprise the majority of the thermodynamic infra-
structure. The remainder is obtained via equations of state ranging from the rigorous
to empirical. The equations vary in their names, history, and familiarity. This section
will concentrate on the empirical category for its ease of application. The rigorous
category includes infinite series or virial-type equations. These describe systems
precisely, although at the cost of weighing an infinite number of terms. The empiri-
cal variety affords simplicity via economy.
The first equation of state is the most familiar, namely, for an ideal gas:

nRT
= Vv (3.46)

R is the well-known constant with units of entropy per mole. R first appeared in
Equation (2.18) for the entropy of mixing; it is a close relative of Boltzmann’s con-
stant, first appearing in Equation (2.19):

k (3.47)

_ R
g NAV

where N,, is the Avogadro number. Table 3.2 lists R and k, for three different unit
systems. Note that since

n=-—— (3.48)
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TABLE 3.2
Gas Constant (R), Boltzmann’s Constant (kg), and Units
MKS CGS Non-SI
joules 831x107 &8 liter — atmospheres
R S Sm— : 0.082] ——MMM——
mole - K mole K mole - K
k 138x10 16 S8 | 3g. g0 2 d0Ues a1 s liter atmospheres
B K K K

where N is the number of gas particles, an alternative to Equation (3.46) is:

v (3.49)

Although the stockroom supplies only real gases in tanks—argon, carbon dioxide,
and so forth—Equations (3.46) and (3.49) apply to every system in the limit of zero
density. The compactness of the ideal gas law is impressive as four variables of state
are related by simple multiplication and division. The equation wraps Boyle’s law,
Charles law, and the Avogadro hypothesis into a compact multivariable function.

A second empirical equation of state is named after Clausius:

_ nRT
p= V—nb (3.50)

This is the forerunner of the more famous van der Waals equation:

_ RT_an®
P=y v

(3.51)

Equations (3.50) and (3.51) introduce parameters a and b, which depend on the mate-
rial of interest. The parameters are taken to be independent of 7, V, p, and n. Equations
(3.50) and (3.51) can be viewed as modest extensions of the ideal gas law. The term
nb gauges the volume excluded by the gas atoms or molecules. It reflects that the
same space cannot be occupied, at least at the same time, by different parties. The
reason is clear in modern day; not so much in the era of Clausius and van der Waals.
Negative charges form the periphery of an atom or molecule and repel any neighbors
that approach too closely. The consequence is that the volume available to the atom
or molecule is always something less than that of an evacuated container. Figure 3.5
addresses matters schematically: the upper portion shows a box of gas molecules and
the lower presents a close-up view of a sector indicated by the inset square. Because
a real molecule excludes volume, it causes its neighbors to exert a pressure greater
than anticipated by the ideal gas law. In turn, this means that for a gas to be truly
ideal, its constituent atoms or molecules would have to claim zero space. Instead of
filled circles in the lower part of Figure 3.5, one would have to represent geometric
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FIGURE 3.5 Gases, excluded volume effects, and probability. The upper and lower dia-
grams illustrate N particles in volume V on disparate length scales. Two molecules such as
indicated by the arrows cannot occupy the same imaginary cells at the same time. The prob-
ability of molecules occupying neighboring cells scales in the manner of the second pressure
term of the van der Waals equation.

points of zero width. The ideal gas law is one of numerous idealizations in thermo-
dynamics; the adjective ideal is well justified.

In early days, b values offered first insights into the sizes of atoms and molecules.
One way b can be accessed experimentally is for the chemist to prepare a gas sample and
ascertain p, n, T, and V. The chemist follows up by measuring the differential quantity

p nRT

T V —nb (3.52)

V.

Equation (3.52) can be rearranged to isolate b. The approximation is better than not
if Ap and AT are kept as small as possible in the experiment. Table 3.3 lists van der
Waals a and b for several gases, as compiled in the Handbook of Chemistry and
Physics [1]. It is interesting to correlate a and b with the complexity and size of a
given atom or molecule.
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TABLE 3.3
Van der Waals Constants of Assorted Atoms and Molecules

o Mmeters® -pascals p Meters’

Atom/Molecule mole* mole

Acetic acid 1.776 1.068 x 10
Acetone 1.404 9.94 x 107
Argon 0.1358 3219 % 107
Ethane 0.5543 6.38 x 10
Helium 0.003446 237%10°
Hydrogen 0.02468 2.661 x 107
Hydrogen chloride 0.3703 4.081 % 1075
Hydrogen bromide 0.4495 4431 %1073
Mercury 0.8173 1.696 x 1075
Methane 0.2275 4278 x 107
Propane 0.8750 8.445 x 103
Propylene 0.8462 8.272x 107
Sulfur dioxide 0.6781 5.636 x 1075
Xenon 0.4235 5.105 x 107
Water 0.5519 3.049 x 105

Source: Data from Weast, R. C., ed. Handbook of Chemistry and Physics, Chemical
Rubber Co., Cleveland, OH, p. D146, 1972.

The second term on the right in the van der Waals equation arises from additional
forces operating in a gas. The negative charges of a molecule do more than repel the
neighbors. Rather, their density fluctuations switch on short-range attractive forces.
In contrast to excluded volume effects, the forces of attraction diminish the pressure
values anticipated by the ideal gas law. The second term on the right in Equation (3.51)
scales as the square of the number density (n/V). Importantly, the scaling connects
with probability ideas in the close-up view of Figure 3.5. The gas molecules have
been imagined as occupying cells of equal volume V ; one molecule fits into one cell
and, under low density conditions, has an exceedingly large number A from which to
choose: V = A-V. For a sample of N molecules, the probability of any particular cell
being occupied at a given instant is proportional to (N/A-V). The probability of any
given cell and a neighbor being occupied is proportional to (N/A-V) x (N/A-V); this
assumes more or less independent behavior of the gas particles. There are two points
being made here. First, the effects of both repulsive and attractive forces on the gas
pressure have a statistical nature and impact. Second, there is a natural bridge link-
ing even the most elementary of systems with probability ideas. One need only look
at the gas laws of first-year chemistry courses to see the bridge.

Note as well that the second term of the van der Waals equation scales as length=°.
The interaction energies of mutually induced dipoles scale in a like fashion. In the
limit of large V and high 7, Equations (3.50) and (3.51) operate more like the ideal
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gas law. This is consistent with experiments; nonideal behavior is accentuated under
high-density, low-temperature conditions. Adherence to the ideal gas law is the
trademark of high-temperature, low-density systems.

There are numerous equations of state of the empirical variety. There is the
Dieterici equation:

—-an
X eXp
V—-nb RTV

p= (3.53)

Like the van der Waals, Equation (3.53) weighs the competing effects of excluded vol-
ume and short-range attractive forces using two parameters. The Beatie—Bridgeman
equation appeals to three parameters:

= nRT-(l—s)'(V+nb)_afn2

V2 Ve (3.54)

The Bertholet equation of state is:

) {RT 1+%(§£)(%)(1— 6;;2) } (3.55)

p= %

and incorporates the effects of critical pressure and temperature, p, and 7. Other
equations of state include ones constructed by Redlich, Kwong, and Soave, and by
Peng and Robinson [2]. An equation designed by Benedict, Webb, and Rubin employs
no fewer than eight parameters [3].

Thermodynamics has logged numerous equations of state over the years of the
empirical variety. The common thread is their economy and intuition, where only a
few parameters are called upon to address a constellation of forces. As the equations
entail multivariable functions, they accommodate the tools of first-year calculus and,
in turn, the infrastructure presented in Section 3.1. In their most basic applications,
they enable conversions of independent variables into dependent ones. This is the
subject of Figure 3.6. The ideal gas and van der Waals equations are represented as
input—output devices. The devices accept n, T, V, measured for a gas such as argon
and generate p in return. At 200 K, 0.00150 meter?, 2.00 moles, the van der Waals
equation, with the help of Table 3.3 data, offers p = 2.07 x 106 pascals, while the ideal
gas law delivers p = 2.22 x 10°pascals. The values differ because the nonideality is
addressed, at least in part, by one device and not the other. The result is that the van
der Waals equation better approximates the location of what will be termed the state
point of the system: the placement of a point in a coordinate plane such as pT. The
state point placement is represented schematically in the lower half of Figure 3.6.

Point locations are a universal purpose of equations of state. Yet every application
arrives with some fine print that is not altogether obvious. The print indeed imposes
qualifiers that the chemist must always keep in mind. The first is that input—output
conversions as in Figure 3.6 apply only to systems that are truly at equilibrium. For
nonequilibrium venues, equations such as the van der Waals, Dieterici, and so on are
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FIGURE 3.6 Equations of state, input and output. The ideal gas and van der Waals equa-
tions are portrayed as devices that convert input variables into output. The lower portion
depicts the location of state points in the pT plane anticipated by the output.

really ineligible for locating state points. Of course, this raises the question of what
is meant by an equilibrium as opposed to nonequilibrium system.

The second qualifier is that when an equation of state converts input to output,
the latter should be viewed as an estimate of an average value. That is to say, the
probability issues raised in Figure 3.5 are not apparent in the equations taken at face
value. Yet their approximation nature extends beyond using only a few parameters to
address molecular-level forces and the physical uncertainties surrounding R. Unlike
functions encountered in calculus books, for example:

3
f(x,y,z)=—xy+4xy2 —-10xz+6 (3.56)
b4

the output of a thermodynamic equation of state does not correspond to a point that is
infinitely sharp. In other words, the width of each point in the pT plane of Figure 3.6
is not simply a graphing artifact. This subtle feature of chemical systems and equa-
tions of state is important and is given more attention in Section 3.3. For now, one
aims for a clearer picture of an equilibrium state—the type eligible for study using
the ideal gas law, van der Waals equation, and so on.

Equilibrium states have a number of characteristics. For a single-phase system,
they are the states devoid of sharp and persistent gradients in the intensive quantities:
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temperature, density, chemical potential, and so forth. Equilibrium states are the
ones associated with the maximum entropy allowed by the conditions. They are the
states that afford a chemist zero work for the taking, unless further constraints are
removed. They are the most probable states of a system, given the circumstances.
They are the states stable to fluctuations. Equilibrium states have a nature that is
interminably robust and restorative. The characteristics do not make a trivial list.

Chapter 2 introduced probability elements via thinking and computer exercises.
The nature of an equilibrium state can be grasped the same way. A few examples are
illustrated that rely on ideal gases for simplicity. The ideas are borne out just as well
using empirical equations of state such as van der Waals. The computations become
more involved, however.

Perhaps the optimum way for a chemist to comprehend equilibrium conditions is to
imagine a system away from equilibrium in a single idealized respect. One considers
the container shown in the top frame of Figure 3.7. Illustrated is a system of twin com-
partments in thermal contact with one another. Let the adjoining wall be composed of
heat conducting material, while the system as a whole is surrounded by a leak-proof
adiabatic wall. The compartments are identical in size and contents. Let each house
1.00 mole of neon in a volume of 1.00 meter’. The exercise begins with the left com-
partment at 300 K and the right at 400 K. Let there be no other temperature gradi-
ents, thus allowing application of the ideal gas equation to each compartment viewed
individually. In other words, let the contents of each compartment maintain a state of
local equilibrium; let a true and single-value temperature apply at all times to each.
The idealizations notwithstanding, it is clear what will happen. Because the dividing
wall is thermally conducting, heat will flow from right to left. The transfer is obtained
by collisions of the atoms with themselves and the walls, although these need not be
addressed in any detail. More important is the denouement of the story. The left-side
neon will warm to 350 K while the right will cool to the same temperature. When this
condition is in place, thermal equilibrium will apply to the system as a whole.

Let the neon be modeled by the ideal gas law. This is reasonable given the high-
temperature and low-density conditions. The internal energy U will then depend
only on the gas amounts and the temperature. The first law for a closed system (cf.
Equation 3.9) holds that

[dU], = -pdV +TdS 3.57)

Further, elementary kinetic theory contributes the relation:

U= % nRT (3.58)

for an ideal monatomic gas. By linking Equations (3.57) and (3.58) under constant
volume conditions, one obtains:

[dU),, = TdS = % nR-dT (3.59)
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FIGURE 3.7 Composite systems and thermal equilibrium. Illustrated are twin compart-
ments in thermal contact. Heat Q flows from right to left until equilibrium is established.
The lower frame shows the total entropy change as a function of the temperature difference
between the two sides. The change is maximum when the difference is zero.

whereupon

=C, = % nR (3.60)

The result is

[dU),, = TdS = C,,dT 3.61)

which applies to both left- and right-side neon. Any heat lost by the warmer gas is
absorbed by the cooler. Since the heat capacities of the compartments are identical, a
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diminution of 7 on the right is answered by an equal rise on the left. Concerning the
entropy changes, one has from Equation (3.61) that

1
das = ?'CvdT (3.62)
hence
Tj
dT
S_j - Sinitial = f CV 7
Tiitial (3.63)

J

=C, log,

initial

Equation (3.63) is a means for quantifying the entropy change in each compart-
ment as the equilibrium is approached through a succession of j-labeled states. Since
one side warms while the other cools, the entropy changes are positive on the left
and negative on the right. This offers a truism for equilibration processes. The total
entropy change is positive although the change need not be positive everywhere.

The lower panel of Figure 3.7 illustrates the total entropy change for the system as
a function of the temperature difference between the left and right sides. It is apparent
that the change is greatest when the difference is zero. This is the key result. Thermal
equilibrium is obtained not just when T is uniform in a material but also when the
entropy has been maximized. But note also the robustness. If too much heat is trans-
ferred from right to left, then the total entropy will not be at the maximum value. The
effects are fleeting, however, as a new temperature gradient is able to drive the back-
transfer of heat. Note further a subtle yet critical feature. The equilibrium state is not
singular in nature. Rather, it comprises a set of states in the vicinity of the maximum
entropy one. Moreover, when a system demonstrates the maximum possible entropy, a
minimum number of variables (e.g., a single temperature) suffice to describe it. When
and where the system strays from maximum entropy, more facts and data are needed
by the chemist to detail the thermodynamic conditions.

A follow-up exercise looks at the system of Figure 3.8. Featured are twin com-
partments, this time separated by a diathermal (heat conducting) wall that is free to
move on frictionless bearings. The compartments house different amounts of neon
gas: 1.00 and 2.00 moles for the left and right, respectively. Both sections are at 300
K with equal initial volumes of 1.00 meter®. Let no pressure gradients persist in each
compartment such that local equilibrium states are in effect—a single pressure value
applies to a compartment at any given instant. Clearly the force disparity of the two
sides will cause the wall to slide right to left. The initial pressure difference between
compartments arrives by the ideal gas law:

o= (ng —n, )RT
14 (3.64)
=~ 2.49 x 103 pascals



72 Chemical Thermodynamics and Information Theory with Applications

n; = 1 mole ng = 2 mole
Vy = 1 meter? Vi = 1 meter®
T; =300 K Tr=300K
—TVW
Q—

2.00

1.00 —

0.50 —

AS; + ASg (joules per Kelvin)

000 L | | | |
-2000 -1000 0 1000 2000

pr — Py, (pascals)

FIGURE 3.8 Composite systems and mechanical equilibrium. The barrier slides right to
left in the equilibration process. In turn, work W flows from right to left and heat Q flows
in the opposite direction. Heat and work flow until the pressures equalize. The lower frame
shows the total entropy change as a function of the pressure difference between the compart-
ments. The change is maximum when the difference is zero.

Just as apparent is that the right-side gas will expand, thereby transferring work to
the left. The wall will cease moving when the pressures of the two sides match. Since
the center wall is diathermal, any heat of compression felt on the left will flow toward
and be absorbed by the right. This ensures the 300 K conditions prevail.

To view matters quantitatively, one looks again at Equations (3.57) and (3.58):

[dU], = C,dT = —pdV +TdS (3.65)
The ideal gas law and kinetic theory enable two substitutions:

[dU], = C,dT = %nR-dT -- g-dv +TdS (3.66)
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Since the 300 K conditions maintain, U remains constant. Therefore,

dU =0 = -nRT

-dV +TdS (3.67)

Rearrangement and 7 cancellation lead to:

[dS],, = ﬁdv (3.68)
v
whereupon
Vj
av
Sj = Sl = f nR7
Vinitial (3.69)
=nR-log, —~

initial

Equation (3.69) offers a handle on the entropy change for each gas compartment as
the wall moves. The right-side gas expands, while the left is compressed. Therefore,
the entropy changes are positive and negative for the right and left, respectively.
Again, the entropy changes for a system need not be positive everywhere.

The lower panel of Figure 3.8 shows the total entropy change as a function of
the pressure difference between the gas compartments. Important is that the change
demonstrates a single maximum value when the pressure difference is zero. Thus,
mechanical equilibrium applies when the pressure is uniform throughout the system.
Attaining this brings the maximum entropy allowed by the circumstances. Note the
mechanical equilibrium to be as robust as thermal. If the wall slides too far acciden-
tally, then the entropy increase will not be the maximum possible. Not to worry. The
pressure gradient so generated will enable work to be transferred from left to right
and restore the entropy maximum along the way. The equilibrium state remains any-
thing but singular. It indeed encompasses the states in the vicinity of the maximum
entropy one.

One next considers Figure 3.9, which illustrates a third composite system. There are
two features to note. First is that the interior wall is porous and permits the exchange of
gas between left and right compartments. The second is the presence of two components:
1.00 mole of neon on the left initially and 1.00 mole of helium on the right. Let the tem-
perature and pressure be uniform and each compartment be of volume 1.00 meter?.

Figure 3.9 illustrates a case of nonzero chemical gradients. Taking the tempera-
ture to be 300 K, the initial pressure of neon on the left is:

nNe.L)
p(Ne,L) — _initial
initial
initia VL (370)

=~ 2.49 x 103pascals
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FIGURE 3.9 Composite systems and chemical equilibrium. The neon and helium mix until
the chemical potential of each is uniform throughout. The lower frame shows the total entropy
change as a function of the helium potential difference between the two sides. The change is
maximum when the difference is zero. An equivalent plot can be constructed regarding the
neon chemical potential.

This pressure is matched by the 300 K helium on the right side. Since the dividing
wall is leaky, the gases will mix over time. This will not affect 7" or p on account of
the gas ideality. Rather it will be the mole fractions and partial pressures that will
change and indeed converge toward equilibrium values.

One focuses not on the internal energy because it remains fixed for both compart-
ments. The key quantity is instead the free energy introduced by Equation (3.35).
For a one-component system, differentiation of Equation (3.35) and combining with
Equation (3.40) leads to:

dG =Vdp-8dT + dn= dn+nd (3.71)
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and then

v. S
—dp-—-dl =d (372
n n

after canceling terms and moving 7 to the opposite (left) side. For an ideal gas at
constant temperature, Equation (3.72) reduces to:

RT
d ], = T-dp (3.73)

whereupon

f— dp = f(T)+ RTlog,(p,) - RT log,(p,) + C,

(3.74)

- f(T)+RTlog, ©2 +c,
p

1

A(T) is a function of temperature only while C, is an integration constant. It is cus-
tomary to take C, to be zero and the lower integration limit p, as the unit pressure, for
example p, = 1.00 pascal; and to apply different notation for f(7T’). Thus the chemical
potential for an ideal gas component is traditionally stated as

.= (T,p)= f(T)+RTlog, 100
' 3.75)

= o(T)+RTlog,(p,)

where the subscripts refer to the component identity, and the logarithm argument
gives the appearance of having pressure units. The tacit agreement is that the unit
pressure at a particular temperature (7) has been assigned as a reference state, in this
case for the ith component. Note again that the first term of Equation (3.75) depends
on temperature only; it is referred to as the standard chemical potential for compo-
nent i. The term standard is denoted by the superscriptin (7).

Now there are four intensive potentials relevant to Figure 3.9:

HISA(T, p) = 4, (T)+ RT log, ( plét=+ (3.76A)

rzghr vzde(T p) - ane(T) + RT log (p;im ﬂde) (376B)
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YT, p)= 4, (T)+ RT log, =) (376C)
i (T p) = 4,(T) + RT log, | pr=4) (3.76D)

There are an equal number of entropy terms, each obtained from the relation

G n- ] d
s-- & __ ——p 2
JaT oT " oT (377)

p.n p.n p.n

Equation 3.77 applied to each potential yields:

s = ot L) gjgg (ptt-o) (378A)
righi=side _ _prigh-side % +R-log, ( p}r\ih"”’d") (3.78B)
Sl _ _ st % + R-log,  pif-) (3.78C)
Szih,,side _ _ndeht—side . % +R-log, ( pi"”’”“) (3.78D)

It is worth mentioning that the neon initially contributes zero pressure to the right
side. Its free energy and entropy contributions—extensive quantities—are thereby
zero. However, the chemical potential—an intensive quantity—of right-side neon is
not zero likewise, but rather negative infinity at the start. This is gathered from the
limit properties of exponentially related variables, that is:

x=ey—=>-oasx—>0 (3.79)

It follows that

{(T,p)= {(T)+RTlog,(p,) = - (3.80)

in the limit of p, = 0. The equivalent statement holds for the initial amount of
helium considered for the left-side compartment. The point is that the neon diffuses
toward the right where its chemical potential is lower; the helium mixes by moving
left where its potential is lower. The potential disparities are infinite at the start. They
become finite as the mixing progresses and the entropy increases.

Equations (3.78A) to (3.78D) enable computation of the entropy changes for
the helium and neon in each compartment. In the first two exercises, the entropy
decreased on one side and increased on the other. Mixing is quite a different process
in that the entropy changes are generally positive all around.



Thermodynamic Infrastructure, States, and Fluctuations 77

The lower portion of Figure 3.9 shows the total entropy as a function of the helium
left- and right-potential difference. The behavior is mirrored by the neon. It is evident
that the entropy is maximum when the chemical potential difference between the left
and right sides for a component is zero. The condition of chemical equilibrium is
obtained when the potential of each component becomes uniform throughout the
system. The smoothing of | gradients indeed steers all parties toward the maximum
entropy state. Note that | for one component need not equal [ of another. It is instead
the spatial uniformity of a component’s potential that is the signature of chemical
equilibrium. Note further that the chemical equilibrium cannot be obtained unless
the system is also in thermal and mechanical equilibrium; chemical equilibrium
is subsidiary to the latter two. Let us not overlook critical and subtle features. The
state of chemical equilibrium is not singular as it involves the states near the maxi-
mum entropy one. Further, when the conditions conform to the maximum entropy,
a minimum number of variables are able to describe the system. Any and all strays
from maximum entropy mandate additional information in the facts-and-data sense
in order to portray the system. Helium and neon are the most inert of gases. Even so,
the significance of this exercise will figure again in Chapter 7 concerning chemical
reactions. The deviations from maximum entropy are addressed further in the next
section.

3.3 SYSTEMS AND STATE POINT INFORMATION

Equations of state convert input variables to output. The latter anticipate properties
of a system that can be checked by experiment. The infrastructure of Sections 3.1
and 3.2 is famously applicable to systems and input—output conversions. The proviso
is that the conditions conform to equilibrium—the most probable states are mani-
fest, there is zero available work, and so forth.

The foregoing statements are correct up to a point. They require additional elabo-
ration because of the issues raised in Figure 3.6 and the equilibration exercises of the
previous section. In particular, if ever a system attains the maximum entropy state,
deviations remain possible and indeed transpire ever after. A maximum entropy sys-
tem is not static, but rather is pushed and pulled by nature repeatedly. This is the
case even if V, n, T, or other control variables are held fixed as best as possible by the
chemist. By themselves, thermodynamic variables provide vital facts and data infor-
mation; this was a point introduced in Chapter 1. Yet it is the pushing and pulling
due to momentary gradients that confer information in the statistical sense. But then,
how much information? This is addressed in a simple example.

Let the ideal gas equation be used to convert experimentally measured V, n, and T
into output; let the result be 5774 pascals. Upon the fourth measurement, the chemist
finds the pressure dial to read 5654 pascals—the ideal gas equation overestimated by
120 pascals. Then if p is measured subsequent times, the results should equate with
the ideal number minus a correction of 120 pascals. If the van der Waals equation
is used instead to anticipate p, a similar situation arises. The correction should be
smaller as account has been taken of the nonideality.

The preceding is not 100% accurate because it implies that repeated measure-
ments afford zero information. It implies that the probability of observing p = 5654
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pascals is exactly 1, given fixed V, n, and T. There is more to the story due to the
pushing and pulling about the maximum entropy state.

One considers the unusual system in Figure 3.10. A single neon atom has been
represented in highly magnified form in a double-chamber container. The exterior
wall is diathermal and enables the temperature to be held constant by a surrounding
bath. According to kinetic theory (cf. Equation 3.58), the atom demonstrates average

energy U of

U= é nRT
2
3.81
3.1 3R )
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FIGURE 3.10 Composite systems and thermodynamic uncertainty. The meter attached to
the left compartment registers a signal, depending on whether the neon atom is present or
absent. The atom is free to drift between the compartments. The lower panel shows an ideal-
ized probability density function. The effects of moving the piston right to left are considered
in Exercise 3.12 at the end of the chapter.
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Yet as in Figure 3.9, a porous wall enables the atom to drift between left and right. If
the compartments are of equal volume, the atom is just as likely to reside in one as
the other. A barometer attached to the left chamber will register the pressure of either
zero or something in the neighborhood of

p=-58 (3.82)
left

Figure 3.10 describes an idealized scenario of two possible states and where an
elementary measurement is preceded by uncertainty. An experiment, by definition,
aims at reducing uncertainty. Given the idealized probability density function (lower
panel) allied with the pressure, a single measurement by the chemist avails 1.00 bit
of Shannon-type information. The measurement addresses the question: Is the neon
atom in the left-side compartment? The information is less if the compartments dif-
fer in any respect: volume, wall stickiness, and so forth.

The case of multiple gas particles should then be addressed. Represented in
Figure 3.11 are systems that host N >> 1 neon atoms in double-chamber containers at
fixed temperature 7. As in Figure 3.10, thermal energy turns the placement of each
atom into a random variable. The probability of any particular atom residing at the
left or right is proportional to the volume set by the interior wall position. Two of
infinite possible situations are illustrated in Figure 3.11. For system 1, the probability
of a neon atom being in the right compartment is three times that of the left. For
system 2, the left and right probabilities are equal.

Probability and pressure are usually denoted by the same symbol. To avoid confu-
sion, the former will be represented by prob as in Chapter 2. Then for every atom in
Figure 3.11, the following statements hold true:

prob(lefy = — Ve .
‘/leﬁ + V”E’” ‘/lotal :
V. V.
prob(right) = . right — right
‘/leﬁ + ‘/right ‘/tr)ml (383B)

If N =1, there are two configurations possible: left (L) and right (R). For N = 2,
there are four configurations allowed: LL, LR, RL, and RR. The atoms are iden-
tical, ignoring isotope details. Thus, subscripts tracking individual atoms are not
appropriate—it is incorrect to write L,R,, L,R,, and so on. Accordingly for N = 3,
there are eight possible configurations: LLL, LLR, LRL, LRR, RLL, RLR, RRL, and
RRR, which can be written slightly more compactly as L3, L?R, L?R, LR?>, RL?, R’L,
R’L, and R3. While tedious, it is straightforward to identify the configurations for
higher N. The feature to notice is the large number of equivalent ones, especially as
N becomes large. The number of equivalent—and thus indistinguishable—configu-
rations can be very large indeed.

A measurement of the left-side pressure will hinge on the gas that can access the
barometer. To be sure, the maximum entropy state is where the left-side pressure
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FIGURE 3.11 Composite systems and thermodynamic uncertainty for multiparticle sys-
tems. For system 1, the probability of an atom being in the right compartment is triple that of
the left. For system 2, the left- and right-side probabilities are equal. The lower panel shows
the probability distribution function associated with left-side pressure measurements.

exactly matches the right; ditto for the chemical potentials. The holes in the middle
wall, however, allow deviations. There are many possible states in which p, u for one
compartment fail to match the intensive values for the other. The inequities never
persist as they occasion forces (via gradients) that push the system back in the direc-
tion of maximum entropy.

There are multiple configurations that correspond to a given pressure in the left
compartment. Unsurprisingly, some configurations are more plentiful and thus
more likely to manifest than others. It is the binomial distribution that quantifies
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the probability of observing a configuration having x atoms in the left compartment
and N — x in the right:

prob(x, N —x) = % prob(left)* - prob(right)N-*
(3.84)

!
= N W _ Y - prob(left)* - (1 - prob(left))N-*

The distribution is akin to that encountered in the third peptide thinking exercise of
Chapter 2—where the cell showed no selectivity in the placement of V and R. For the
situation at hand, let the neon behave as an ideal gas. Equation (3.84) then quantifies
the probability of recording a left-side pressure p of

B xk,T

VIe,ﬁ

(3.85)

Many values are possible: %, 03N " and so forth. The likelihood of each

depends on N and the compartment voluvmes relative to one another.

Calculations assisted by the Stirling approximation (cf. Equations 2.48 and 2.49)
illustrate the important points. The lower panel of Figure 3.11 shows the probability dis—
tribution for left-side pressure measurements. N has been arbitrarily set at 10* and Vour
used as the unit measure; V, =V, /prob(left) by Equation (3.83A). One observes that
the distribution is narrower when the left and rlght compartments are of equal volume;
contrarily the width is increased when V,, < V.., that is, prob(left) < prob(right).
That the widths are nonzero at all means that uncertainty will precede measurements
endeavored by the chemist. As in Figure 3.10, a thermodynamic measurement attaches
to Shannon information in a nontrivial way. Figure 3.12 then shows the contrasts in
the Figure 3.11 examples. If the chemist queries the left-side pressure at a resolution of
50k,T/V,,,, there are 20 or so states that will manifest frequently, and which he or she
can discriminate. The plot shows the sum of weighted surprisals as a function of state
index i—the lower p values correspond to lower i. There is about 30% more informa-
tion, approximately 3.8 bits, trapped via a system 1 measurement compared with system
2. Clearly, when an equation of state is used to anticipate a quantity such as pressure,
there are more issues at play than a correction term to add or subtract. To be precise, an
equation of state furnishes an estimate of an average of a physical quantity subject to
fluctuations.

There are additional quantitative details. The first moment of the Equation (3.84)
distribution can be shown to equal N - prob(left). Hence, repeated measurements of
the left-side pressure will lead to an average:

‘/leﬁ . kBT
+V V

right left

Piesi

<

left
(3.86)
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FIGURE 3.12 Weighted surprisal summation for left-side pressure states. The pressure
measurements directed at system 1 offer greater information compared with system 2 because
of the greater impact of fluctuations.

This is an important result. It shows that the left-side mean pressure equals that of
the maximum entropy state for the system as a whole. Yet because the neon is able
to diffuse freely between compartments, the left-side pressure—the right side, too—
fluctuates interminably about the average. Any rise on the left stems from a drop
on the right. This means that the value of every intensive property—, p, Bz, and
so forth—is constant for neither compartment, although the same averages will be
demonstrated by the two sides.

It is the width of the distribution that provides another critical element. The vari-
ance 62 of the distribution in Equation (3.84) can be shown to be

02 = N- prob(left)- (1 - prob(left)) (3.87)

where the square root G is the standard deviation (cf. Equation 2.55). In order to weigh
the significance of fluctuations, one examines the ratio A between G and the average:

- JN - prob(left) - (1- prob(left))
- N - prob(left)

_ 1 (1= prob(left))
JN\  prob(lefi)

Figure 3.13 thereby presents a plot of A x \/ﬁ as a function of prob(left). Recall that
prob(left) depends on the volume disparities of the compartments. The plot reflects that

(3.88)
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FIGURE 3.13 Ax \/ﬁ versus prob(left). The plot offers a reference for weighing the impact
of fluctuations in a system containing N total number of particles. A measures the ratio between
the standard deviation and the average, while prob(left) equates with the fraction of the system
volume.

if prob(left) ©0.25 asfor system 1, then A x \/ﬁ =~ 1.75. Similarly, if prob(left) ©0.50,
then )\ x /N =1.00 asin system 2. The plot serves as a reference for assessing all vol-
ume combinations. Along the way, it renders three important points. First is that A
changes nonlinearly with the volume disparity: A =1.75/\/N, 1.00/\/ﬁ for systems
1 and 2, respectively. Second is that the fluctuations wield greater impact the smaller
the volume. How do small systems differ from large ones besides the obvious? The
answers include the very disparate impact of fluctuations—their role generally looms
large in small systems and outsized in very small (e.g., nanometer scale) systems. Third,
the impact of fluctuations diminishes with increasing N. This tells us that thermody-
namic measurements yield nonzero Shannon-type information—there is uncertainty
to remove because a state point is not infinitely sharp. However, the amount falls as the
number of atoms or molecules that compose the system is increased.

Emphasis should be added to the last few sentences. Figures 3.11 and 3.12 addressed
the case of N = 10*. This is roughly the number of molecules in a cubic sample of room
air of volume (74 nanometers)*. Let us consider a more reasonable size sample, say, 10~
meter® (i.e., 1.00 liter) hosting Avogadro’s number of molecules at room temperature.
Taking the gas as ideal, the average pressure in any sector of the container will be:

N, kgT (6.02x10%)(1.38 x 10~ joules/K)(294 K)
P \% 0.00100 meter?

=~ 2.44 x 106 pascals

(3.89)
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If a sector of interest comprises, say, one-third of the total volume, a quick look at
Figure 3.13 informs one that

1 Q- prob)

JN prob
t 1
1
3

“Jeo2x102 |

A=
) " (3.90)
~1.82x10-12

~—

In turn,

0,=A" p =(1.82x1077)(2.44 x 10° pascals) = 4.44 x 10-® pascals  (3.91)

The pressure fluctuations of the sector are miniscule! In order to register them, the
chemist requires a barometer that is accurate to about one part in 10'>—the barom-
eter would have to register p to 12 significant figures or better. Deviations from aver-
age that exceed 30, occur in less than 0.5% of a sample population. If the chemist
had such high-precision instrumentation available, it would offer at most:

- (2) — = _[0.995-log, (0.995) + 0.005 - log, (0.005)] ~ 0.0454 bits ~ (3.92)
og,

per measurement. The values of thermodynamic state variables are vital facts and
data information. Their measurement typically offers only sparse information in the
statistical sense.

The major points of Chapter 3 are:

1. Thermodynamics is supported by an infrastructure of multivariable func-
tions and equations of state. These apply the tools of integral and differen-
tial calculus. Equations of state are restricted, however, to the very special
conditions of equilibrium.

2. Multivariable functions enable the state points of a system to be located in
different coordinate systems: pV, pT, VT, and so forth. Their application,
however, is not equivalent to that practiced in pure calculus and analytic
geometry. This is because fluctuations confer a certain wobble on the point
position; they enable one state to convert freely to others, depending on the
system size and composition. The equilibrium conditions are robust and
restorative, and by no means static.

3. Fluctuations impose uncertainty, which, in turn, confers nonzero informa-
tion in thermodynamic measurements. The amount is miniscule typically.
The exceptions arise for systems of small V and sparse N.
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3.4 SOURCES AND FURTHER READING

The infrastructure of thermodynamics has been thoroughly charted in texts too numer-
ous to mention. The author’s list of preferred books include ones by Kauzmann [4],
Desloge [5], Klotz [6], Fermi [7], Landsberg [8], Kitkwood and Oppenheim [9], Lewis
and Randall [10], Pitzer and Brewer [11], Callen [12], Zemansky [13], and Spanner [14].
Books by Stanley [15], Goodstein [16], and Hecht [17] do not focus on classical thermo-
dynamics per se. They include, however, excellent single-chapter encapsulations of the
subject. It was via Stanley’s text that the author was first introduced to Legendre trans-
forms and thermodynamic squares. These two subjects were reinforced by Desloge’s
book, and by presentations such as by Goldstein of classical mechanics [18]. Also to be
noted is the succinct presentation of classical thermodynamics by Dunning-Davies [19].

This chapter appealed to a few results from kinetic theory. The book by Hecht
lays thorough groundwork on this subject [17]. Regarding empirical equations of
state, the author has found chemical engineering texts most instructive regarding
history, applications, and limitations. Especially illuminating are the books by Kyle
[2] and Jones and Dugan [3].

This chapter has discussed fluctuations at an elementary level. The role of fluctua-
tions is presented at an advanced level in several places. Highly recommended are
the works by Kittel and Kroemer [20], Landau and Lifshitz [21], Lavenda [22], and
Berne and Pecora [23].

Calculus-based approaches to thermodynamics are not the only ones.
Thermodynamic states admit descriptions using the tools of differential geometry.
The reader is encouraged to consult the truly seminal (and challenging) work of
Gibbs [24], and the years-later contributions of Tisza [25], followed by Weinhold
[26]. It is not surprising that the mathematical structure of thermodynamics has been
the subject of several treatises, such as by Giles [27]. Taking an unusual approach,
Peusner has presented a large body of thermodynamics using the tools of network
analysis [28].

Last, if information inspires much discussion, so does entropy. Recommended
are the books by Dugdale [29], Serrin [30], and Denbigh and Denbigh [31]. The text
by Craig approaches chemical thermodynamics primarily through the entropy state
function [32].

3.5 SUGGESTED EXERCISES

3.1 Dimensions and units are important to all fields. (a) Show that (U/p)
and (G/V) have dimensions of volume and pressure, respectively. (b)
Show that (a/Rb) and (a/b?) have dimensions of temperature and pres-
sure, respectively, where a and b are the van der Waals constants, and
R is the gas constant.

3.2 Refer to Table 3.3 listing select van der Waals constants. (a) Derive
expressions that enable a and b to be converted to liter>-atmosphere/
mole? and liters/mole, respectively. (b) Does b/N,, equate with the vol-
ume occupied by a single gas molecule? Please discuss.
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3.3 Figure 3.9 pertained to 1.00 mole each of helium and neon. The exer-
cise focused on the mixing of gases and maximization of entropy. (a)
Show that the maximum total change in the entropy for the compos-
ite systemis S _ =2 molesx R xlog,(2). (b) The chemical potential

for an ideal gas includes a term that depends only on temperature. In
arriving at S what is the fate of the °(T) terms?

max

3.4 Revisit Chapter 2. Derive Equation (2.18) regarding the entropy of
mixing for ideal gases.

3.5 The binomial distribution was presented in Equation (3.84). (a) Show
that the first moment—the first cumulant—is N - prob(left) . (b)
Derive Equation (3.87) regarding the second cumulant.

3.6 Forax=1 system, H depends explicitly on p, S, and n. (a) Is H con-
cave upward or downward with respect to p? Let the same question
apply to S. (b) Establish the Maxwell identities based on H(p, S, n):

v _ar et 8 w0

aS o ap S on s aS o on s ap S

3.7 Examine the Legendre transform of H(p, S, n) with respect to p, S, and
n. For each case, establish the simplest form analogous to Equations
(3.33) and (3.34).

3.8  (a) Use the van der Waals equation to obtain a form for the isothermal
compressibility, Equation (3.25). Do likewise for the Dieterici equa-
tion. (b) Refer to the van der Waals constants for argon. Compute and
graph van der Waals [, as a function of temperature: Let n = 2.00
moles, V= 0.00100 meter?, and 200 K < 7 < 500 K. What portion of
the graph is best approximated by ideal gas [3,?

3.9 Use the van der Waals equation to obtain a form for the thermal
expansivity, Equation (3.24). Do likewise for the Dieterici equation.
(b) Refer to the van der Waals constants for xenon and plot o, as a
function of temperature. Let n = 2.00 moles, V = 0.00100 meter?,
and 200 K < 7< 500 K. What part of the graph is best approximated
by ideal gas a,?

3.10 For a x =1 system, compute:

w o, W o
A% aS on

S.n V. V.S

U

3.11 Consider the apparatus of Figure 3.7; only let the right compartment
contain 1.00 mole of nitrogen gas (N,(g)) initially at temperature 400
K. The left side contains 1.00 mole of neon at initial temperature 300
K. Construct a plot that shows the total change in the entropy as a
function of the temperature difference between the left and right com-
partments. Take the heat capacity of the nitrogen to equate with:

Vv

C, = % -1.00 mole x R
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3.12

3.13

3.14

3.15

The extra capacity, compared with neon, derives from the end-over-
end rotations of the molecules.

The flip of a coin leads to 1.00 bit of information trapped at the expense
of work and dissipated heat. Confining the neon atom of Figure 3.10
to the left compartment via an isothermal compression also purchases
1.00 bit. (a) Perform a thermomechanical experiment at home: Flip a
quarter and estimate the work transferred to the translational and rota-
tional degrees of freedom. Do likewise with a dime. (b) Compare the
work with that required for isothermal compression of the Figure 3.10
system, that is, moving the piston right to left and stopping at the cen-
ter wall. Which system—the quarter, dime, or neon—affords the most
expensive information? The least? Discuss the significance of these
results. Note in particular how the information is purchased only by
supplying work, dissipating heat, and lowering the system entropy.

Consider again the apparatus of Figure 3.11. Let the system consist of
5000 nitrogen molecules plus 5000 neon atoms at temperature 300 K.
(a) Construct and plot the probability distribution function for Cy of
the left-side container. (b) Nitrogen and neon have different specific
heats. Should the plot of part (a) be bimodal? Please discuss. (c) Let
the chemist measure left-side Cy with sufficient resolution to detect
0.10c deviations from average. How many bits of information are
trapped?

Consider an ideal gas sample of N = 10* molecules in a 1.00 meter?
container at 300 K. What size sectors correspond to A = 0.0500, 0.100,
and 1.00?

Consider 1.00 mole of argon in a 1.00 x 10~ meter? container at 200
K. (a) What is the average pressure estimated by the van der Waals
equation for a sector equal to one-tenth of the total gas volume? (b)
What is 6, estimated for the sector?
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4 Thermodynamic
Transformations
and Information

Fluctuations connect the states of a system by accident. By contrast, when variables
are fine-tuned and coordinated with heat and work exchanges, the states are linked
by design. We consider a special type of design, one that defines a locus of nearest-
neighbor state points. The sequence of points marks a pathway in the manner of a
computational program.

4.1 EQUILIBRIUM STATES, PATHWAYS, AND MEASUREMENTS

There were three themes of the previous chapter. First was the infrastructure for
describing systems via potentials, state variables, and differentials. Second was the
use of empirical equations to model systems at equilibrium. Third, was that fluctua-
tions impose a nonzero width on every state point. A point anticipated by the ideal
gas, van der Waals, or other equations of state is not infinitely sharp as in analytic
geometry. Rather, a system demonstrates a range of pressure, density, and other
properties. The fluctuations are as integral to the thermodynamic behavior as the
average values.

These themes enjoy a reprise in Figure 4.1. The upper portion depicts a gas of
volume V at equilibrium p, 7, and p. The infrastructure is bridged to empirical equa-
tions of state by differentials such as

P2y T v, :
V=+ 96 =+ oH “4.2)
ap T,n 6p S.n

There are many more examples. Because of energy exchanges, container shape
fluctuations, and so on, the state point in the lower part of Figure 4.1 demonstrates
a nonzero width. In turn, measurements of p and V at resolution windows Ap and
AV furnish the chemist with a range of values about the average. Under most cir-
cumstances, Ap and AV exceed the state point width (as in the figure). The fluctua-
tions are ever active but exert little impact when the systems are modest to large
in size.

89
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FIGURE 4.1 Reprise of Chapter 3 themes. The upper portion depicts a gas at equilibrium.
Because of energy exchanges and other fluctuations, the state point for the system demon-
strates a finite width as in the lower panel.

To introduce the next subject, another view of a state point must be considered.
One imagines having a very high-resolution apparatus to record the changes in the
Figure 4.1 system from one instant to the next. Let the point position be tracked by
a hypothetical p,V microscope and stopwatch. This is only a thinking exercise, but
the lesson is important and should be apparent. Properties such as p and V fluctuate
about average values. Yet in doing so, the system does not express island points as in
region A of Figure 4.2. Rather, the states (and their corresponding points in coordi-
nate planes) are linked one neighbor to the next. The order of states accessed via the
fluctuations offers a story as in region B. The pattern—more accurately, the lack of
one—shows the state point width to arise from a jagged pathway. The distance and
angle between each link depend on the relaxation of the system and coupling to the
environment. These topics fall outside the scope of this book. What is emphasized,
though, is that as the pathway is traced out, there occur zero changes in potentials U,
H, A, and G on average; likewise for p, V, 1, and so forth. There occur momentary
heat and work exchanges between the system and surroundings; these average to



Thermodynamic Transformations and Information 91

Pressure
w
>

]

.....................

AV

Volume

FIGURE 4.2 Pathway structure of a state point. A system does not demonstrate island
points as in region A. Rather, the states are linked one to another by equilibrium fluctua-
tions. A succession of points as in region B traces a pattern evocative of Brownian motion.
The pathway structure is ordinarily undetectable given the typical measurement resolution
window Ap and AV.

zero as well. The pathway structure is invisible to the chemist given everyday detec-
tion limits. As stated, this is strictly a thinking exercise.

Yet suppose the system was retrofitted in a way that enabled a special type of
state change. The apparatus in Figure 4.3 offers one possibility. Let a piston allow
mechanical work to be transferred between the system and surroundings. Let a heat
bath and conducting walls enable the two-way flow of heat. The apparatus includes
a thermometer and barometer for monitoring 7" and p. A position encoder on the
piston keeps track of all volume changes. There is substantial equipment not shown.
This includes clamp-on adiabatic walls that permit work-only exchanges. There is
a heat bath ready and waiting for every temperature accessed in a transformation.
The baths enable equilibrium to be maintained, both within the system and with the
surroundings.

In short, the equipment enables fine-tuning of the thermodynamic state. And
when the system is transformed reversibly, the state variables change in parallel, in
conjunction with the energy exchanges. The system remains at equilibrium through-
out the tuning process. It is traditional to represent transformations in a coordinate
plane such as pV. As in Figure 4.4, a transformation marks the relocation of the state
point from some initial to final position. The intervening coordinates mark a contin-
uous and structured pathway. Note that irreversible operations do not accommodate
the same luxury of graphing. These are complicated by gradients induced in one or
more intensive properties. A nonequilibrium state really does not correspond to any
location in the pV or other coordinate plane. A succession of states will not admit the
curve in Figure 4.4 if even a single point fails to meet the equilibrium criteria. How
is areversible transformation different from an irreversible one? The answers include
that the former is readily plotted; this cannot be said about the latter.
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FIGURE 4.3 Tuning the thermodynamic state. A heat bath and piston enable energy
exchanges and parallel tuning of the system variables.
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FIGURE 4.4 Reversible pathway in the pV plane. Each point of the path corresponds to an

equilibrium state of the system.
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FIGURE 4.5 Computational devices and states. Work and heat exchanges plus information
enable a device to transform a state such as 101011101101 to others along a programmed path-
way. The exchanges are two-way between the system and surroundings.

Figures 4.3 and 4.4 illustrate scenarios with contemporary parallels. Figure 4.5
represents an electronic computer in highly schematic terms. Such a device also
operates by work and heat exchanges. The transformations are coordinated as cur-
rent and voltage states are converted along select pathways. As with all thermody-
namic systems, computers do not exercise the transformations on their own. They
require the information (I) of programs to supervise the state transitions and energy
exchanges—heat (Q) and work (W). Computers are not equilibrium systems. Yet
each of their operations is as deliberate as the pV ones of Figure 4.4. The information
of a computer program is quantified in bits. It is important to consider the bits affili-
ated with pV and other thermodynamic transformations.

Computers operate along programmed pathways with information as the travel
currency. Chapter 4 examines thermodynamic pathways for elementary systems in
the same spotlight. They represent the most fundamental of system programs, long
predating the ones driving laptops and smart phones. To set the stage, the next sec-
tion describes the characteristics of reversible pathways.

4.2 A PRIMER ON REVERSIBLE TRANSFORMATIONS

Single-component (k = 1) systems require three variables to locate the state point. At
least one variable must be extensive such as V, n, §, and U. Leak-proof containers as
in Figure 4.3 have fixed n. Their transformations are well portrayed on planes pV, T'S,
VT, and more. This is the message of Figure 4.6 where the curve of Figure 4.4 has
been replotted as A in two and three dimensions (2D, 3D), taking n to be 1.00 mole.
A companion B has been added to demonstrate how more than one path can con-
nect an initial and final state. There are infinite possibilities as should be clear. All
programmable devices, computers included, place no limit on the number of routes
for taking one state to another.
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FIGURE 4.6 Reversible pathways in two and three dimensions. A corresponds to the
pathway of Figure 4.4. B marks a different route with the same initial and final states.

The lower panel of Figure 4.6 shows how transformations are better discerned in
2D, compared with 3D. Not all situations afford this luxury. If the apparatus includes
a needle valve or other mechanism for tuning r, it would fall upon 3D plots to tell
the story.

A pathway combined with an equation of state provides alternative representa-
tions. For example, taking the Figure 4.6 system to be 1.00 mole of a monatomic
ideal gas, the familiar equations apply:

P== @.3)

4.4
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Further, since the first law of thermodynamics mandates:

AU =-paV+Tds @.5)

it follows that

das=L-au+P.av
T T

4.6)

e T gV
T |4

after combining the results of Equations (4.3) through (4.5). Integration of Equation
(4.6) gives:

T. V.
S-S, ..=C,log, —'— +nR-log, —~ @7

i initial —
initial initial

Applying Equations (4.4) and (4.7) to A and B leads to Figure 4.7. The upper panel
portrays the system in the UV plane while the lower marks the TS structure. It is
important that for each pV coordinate there corresponds a single point in the UV
plane; likewise for 7'S. A one-to-one correspondence does not apply across the
board, however. For example, an isothermal pathway in the pV plane for an ideal gas
collapses to a single point in the UT plane. Different representations do not always
afford equivalent knowledge.

p, V, T, S, and U are all functions of state. Hence, the net change of each is the
same for A and B. This is not the case for W, and Q,,., which are tied to the pathway

rec

structures. These quantities are obtained from the integrals

rec?

final

W, =- f pdv 4.8)
initial
final

Q.=+ f Tds 4.9)
initial

W.,.. equates with the area underneath the pV curves of Figure 4.6. Q,,. quantifies
the area under the 7S curves of Figure 4.7. Note that Q,,. follows alternatively from

computing

rec

0.= U-W 4.10)

rec
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FIGURE 4.7 Reversible pathways in the UV and TS planes. The pathways correspond to A
and B of Figure 4.6. The system has been taken to be 1.00 mole of monatomic ideal gas.

in accordance with the first law. Figure 4.8 illustrates the results of work and heat
computations. Not surprisingly, B reflects greater work supplied by the surroundings
to the system—there is greater pV area under B. At the same time, there is greater
heat expelled (Q,,. < 0) as the system traverses B. W,. and Q,,. are not functions of
state in spite of their sum forming a state function.

There exist infinite programs for connecting state points. Some are special for
their simplicity. Two are shown in Figure 4.9 by way of isochoric and isobaric path-
ways, also known as isochores and isobars. An isochore is notable because it entails

rec
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FIGURE 4.8 W, and Q,,. for reversible pathways. The pathways correspond to A and B of

Figure 4.6. The system is 1.00 mole of monatomic ideal gas.

rec

zero work; at constant V, dV = 0 and W, is zero by Equation (4.8). To direct a
mechanical system to travel such a path requires locking the piston in place. Then
only heat can be exchanged whereby p rises with addition to the system and falls
with removal.

An isobaric pathway is no less special. In this case, heat is exchanged between
the system and surroundings in either direction. Concomitant with the exchanges
is the repositioning of the piston to maintain constant p. W,. equates with
a rectangle of area in the pV plane. Both W, and Q,,. scale linearly over the

transformation.

rec
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FIGURE 4.9 Special pathways: isochoric and isobaric.

In the pV plane, isochores and isobars appear as vertical and horizontal lines,
respectively. This is not the case in Figure 4.10, which illustrates three isothermal
paths in the upper panel. As always, the work and heat exchanges and variable tun-
ing must be perfectly coordinated. If the piston inches downward, then dW,,. > 0.
A compensating heat must be withdrawn (i.e., dQ,,. < 0) to preserve constant 7. If
the piston moves upward, heat injection is mandatory whereby dQ,,. > 0. The word
perfectly is apropos. To preserve the equilibrium conditions, no new entropy must be
created. The system must be describable by valid 7, p, and [ at all stages.

The isotherm structure depends on the nature of the system. For an ideal gas:
pV =nRT 4.11)

Thus p-V is a constant at all points. For isotherms described by the van der Waals
equation:

an?
Py (V —nb)=nRT “4.12)

Thus the invariant quantities are somewhat more complicated. As examples, the iso-
therms in Figure 4.10 apply to 1.00 mole each of ideal gas, xenon (Xe), and sulfur
dioxide (SO,). The data all pertain to the same temperature held at 200 K. The Xe
and SO, pathways have been plotted via Equation (4.12) and the van der Waals con-
stants of Table 3.3 of Chapter 3. It is apparent that the three examples become closely
aligned at higher V. As would be expected, the excluded volume and attractive forces
carry greater weight at lower V and higher p. This means that W, and Q,,. depend on

rec
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FIGURE 4.10 Special pathways: isothermal and adiabatic. The pathways for xenon and SO,
have been computed using the van der Waals equation. Each pathway pertains to 1.00 mole
of molecules.

the material in question. Of the three, SO, transfers the least work to the surround-
ings as its cohesive forces are strongest. For the ideal gas, it is simply that

W, .=-0. @.13)
For van der Waals systems, W,. and —0Q,,. are only approximately equal along
isotherms.

Figure 4.10 includes constant entropy or adiabatic pathways in the pV plane. The
lower panel transformations are more complicated as they call for extra attachments
not represented in Figure 4.3. For a system to be directed along an adiabatic path,
the heat reservoirs must be cast aside and the surrounding walls covered with insula-
tion. As with isotherms, if the piston compresses the gas, dW,,. > 0. Since the “new
energy” cannot leak out, the temperature rises sooner or later. If the piston moves
upward, then dW,,. < 0. In this case, thermal energy is depleted and the temperature
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falls. Adiabatic transformations are unusual because they affect 7, albeit with zero
heat exchanged. The temperature changes can be drastic as in supersonic expansions
and shock waves.

The mathematics of an adiabatic transformation is summarized as follows. For a
closed ideal system unable to exchange heat, Equation (4.6) reduces to:

C,dT + g -dV =0 “.14)
When T is repositioned, one obtains:
¢, T inr Y - 4.15)
T \%

Integration then arrives at a quantity that is invariant throughout the transforma-
tion, namely,

C,log,(T)+nR-log, (V)= A,
=log,(T) +log,(V"¥) (4.16)
=log (T -V"R)
It follows that
TS -V = exp[A,]= A, @.17)
where A, and A, are constants dictated by the initial conditions. Equations (4.14) to

(4.17) are restricted to ideal gases. Systems modeled by the van der Waals equation
do not stray far. It can be shown that

an?
v=c, -2
v v 4.18)
whereby
an?
[dU], = Cy -dT += 7--dV 4.19)
Since
C, = au (4.20)
oT
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such a function has the same form for both ideal and van der Waals systems.
Combining Equations (4.19) and (4.20) and the van der Waals equation leads
to:

c 4T g4V _g @.21)
YT (V - nb)

The operations that led to Equation (4.17) can be applied to Equation (4.21) to yield:

TS - (V —nb)y® = exp[A,]= A, 4.22)

Equation (4.22) can be viewed as an invariant signature of a van der Waals adiabat,
which stays constant for the system in spite of the pV tuning.

The adiabats in Figure 4.10 apply to 1.00 mole each of an ideal gas, and for van
der Waals Xe and SO,. The initial 7, p, and V have been taken to be the same as
for the isotherms. The pathway differences are not trivial. The greatest work is
delivered to the surroundings by the ideal gas; with expansion, there are neither
attractive nor repulsive forces in play. The least work is transferred by the xenon;
some of its thermal energy must be expended to overcome the attractive forces,
while the monatomic character obtains a low heat capacity. The expansion work
of SO, is less than that for the ideal gas because of attractive forces. There is
compensation, however, as the triatomic character means a larger heat capacity. In
particular, for SO,:

7
Cy= "R 4.23)

Note that the reductions in the SO, thermal energy content are not as sharp as for
Xe. For the latter,

3
Cy= 5 R 4.24)

To conclude this section, Figure 4.11 offers a sampling of cyclic pathways. These
are rich in diversity and applications. In each case, the system’s initial state is iden-
tical to the final. There are otherwise no limits placed on the intermediate states.
For cyclic pathways, all quantities p, V, U, A, S, T, and so forth incur zero change
ultimately, however convoluted the journey. In contrast to the examples of preceding
figures, cyclic pathways do not correspond to single-valued functions. Their represen-
tation is established piecewise using two or more functions. Alternatively, they can
be described by parametric equations in which the thermodynamic variables share
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FIGURE 4.11 A sampling of cyclic pathways. The circle and hairpin are revisited in two
subsequent figures.

a single-value dependence on M. For example, the hairpin pathway of Figure 4.11
conforms to:

V(n)=10‘3 meter? - 8 +0.6sin ZETT] +1.65sin 4% +1.4sin 6? 4.25A)

p(n)=105pascals- 5+0.9cos ZTET“ +2.2cos 6%

4.25B)

8mn

+1.5cos T + 0.8 cos loﬂ

where 0 =m=<3.

Cyclic transformations impact daily life via heat engines and refrigerators. If a
system is programmed for clockwise transit along any of the Figure 4.11 examples,
heat from a surrounding reservoir is incrementally converted to work. The conver-
sion efficiency is less than 100% by the second law of thermodynamics; there is
always the need for a cooler reservoir to receive heat ejected (and thus wasted) by
the system. Counterclockwise travel consumes work supplied by the surroundings.
The results include heat withdrawal from one or more reservoirs and deposition in
others. Refrigerators accomplish this night and day; the heat — work conversions
of remote power plants enable them to operate. Life would be poorer without cyclic
transformations and the programs that render them.
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4.3 REVERSIBLE TRANSFORMATIONS AND INFORMATION

It is apparent that reversible pathways are an idealization. For a piston to transfer
work, there must be a pressure gradient between the system and surroundings. Yet
such a gradient must be infinitesimal for the equilibrium to maintain—it cannot be
greater than ones generated by natural fluctuations. Likewise, for heat to flow sponta-
neously, there must be a temperature gradient. This also cannot exceed the gradients
due to fluctuations. Reversible transformations accommodate thermal, mechanical,
and chemical relaxation with every step. Given these stipulations, a reversible path-
way requires as much as infinite time for travel—where the work and heat exchanges
occur at Zero power.

Idealizations provide lessons nonetheless. Reversible pathways are instructive
because they offer ready approximations for real systems. Figure 4.8 presented Q,,.and
W.,.. along two pathways. The terminal values can be viewed as upper and lower lim-
its, respectively, for real-life processes. Under normal circumstances, gradients other
than via natural fluctuations create entropy. This “extra” entropy has to be expelled,
and additional work is needed to land the system in the designated final state. The
condition of reversibility provides a simple approach to complicated operations.

In a similar vein, reversible paths offer ready comparisons. For instance, the
clockwise travel of each cycle in Figure 4.11 results in heat — work conversion.
Which offers the greatest efficiency for 1.00 mole of gas? Taking each transfor-
mation as reversible and the gas as ideal would be a first step toward addressing
the question.

Section 4.2 described a number of pathway fundamentals. Section 4.3 considers
their information properties. A system does not initiate and trace a pathway on its
own. It requires parallel operations specified by algorithms. Algorithms are rules
and procedures for solving problems. They are wholly appropriate to thermody-
namic venues. In each case, the problem is how can the system be transformed from
a specified initial to final state along a demarcated path. The algorithm is imbedded
in the sequence of state points. It enables one state to be converted faithfully to
another without compromising the equilibrium. The algorithm calls for precisely
executed variable tuning and work and heat transfers. In computation, algorithms
are measured by their information content. How much information is expressed by
thermodynamic pathways?

But there lie twin cruxes. A reversible path marks a locus of nearest-neighbor
state points; there is virtually an infinite number in the general case. Information
in Chapter 2 was grounded on finite state collections—coin faces, peptides, and so
forth. By contrast, formulae such as Equations (4.25A) and (4.25B) specify infini-
tudes of pV states, and accordingly, fact and data information.

The second crux concerns probability. This was defined in Chapter 2 in terms of
infinite trials and measurements. Once in place, the probability distributions never
wavered for a system of interest.

Thermodynamic systems and pathways pose a very different situation. Assessing
a point locus for information in the statistical sense requires the chemist to view the
system in finite-resolution, objective terms. Information is quantified as a result of
logical predictions of answers to yes or no questions. The basis for a prediction is
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one of reasonable belief on the chemist’s part. This approach is subtly different from
ones grounded on trials that are potentially infinite in number—coin tosses, peptide
sampling, and the like.

Suppose that the chemist has superb knowledge of any of the pV pathways of this
chapter. He or she is then well aware of the state boundaries of p and V along with their
pairings. If, in addition, the chemist has knowledge of the equation of state, he or she
can construct alternative representations such as UV and 7' in Figure 4.7. With knowl-
edge of the pathway, the chemist is cognizant of Q,,. and W, and all the changes in
state functions. Pathway knowledge is a rich endowment of facts and data.

Yet by the condition of reversibility, the system must maintain equilibrium within
itself and with the surroundings at all stages. Equilibrium states are like coins that
lie flat on a table or like an isolated peptide to one critical extent: they offer zero tes-
timony about the history or future. Therefore, while the chemist has a firm grasp of
the collection of states, he or she is not spared the uncertainty that would precede any
and all measurements. The chemist is pathwaywise; he or she is 100% sure that that
measured p or V will lie somewhere within certain boundaries. But the chemist is
ignorant of the state arrival, dwell, and departure times. There is doubt consequently
attached to inquiries about the state at any instant.

Note how an individual state point and a pathway present contrasting scenarios. If
the chemist knows average p and V as in Figure 4.1, but can extend measurements at
resolution windows Ap and AV as illustrated, then all inquiries yield zero information
in the statistical sense—p and V registered by the apparatus never alter. Matters are
different for pathways such as in Figure 4.4 because the point relocations well exceed
typical Ap and AV. If the chemist inquires about a system subject to such program-
ming, and proceeds to address the question via a measurement, he or she reduces the
uncertainty. He or she acquires information in the statistical sense at a cost of work
dependent on the apparatus.

The examples of Figure 4.6 are plotted again in Figure 4.12. When the chemist
probes p at resolution Ap, he or she is submitting questions fair and just such as

e Does the system pressure lie somewhere between 2400 and 2600 pascals?
* Does the pressure lie between 1500 and 1700 pascals?

* Does the pressure exceed 1800 pascals?

e Is the pressure less than 1000 pascals?

There are countless more. The chemist knows not to waste time with queries
involving 10 or 10-® pascals. The states corresponding to these values lie outside
the domain prescribed by the algorithm. Prior to a measurement, the chemist
lacks reason to hold one state more significant than another. He or she is also
aware that reversible paths can be traveled in two directions—the term revers-
ible is not incidental. Thus, the chemist lacks grounds for taking the program
to be unidirectional in execution. Q,,. and W,,. plus the changes in U, S, p, and
so forth are the same whether the transformation proceeds monotonically or
in some back-and-forth fashion. All the chemist knows is that at some stage,
the system, operating in tandem with the surroundings, departs from the initial
state and eventually arrives at the final state. The program specifies which states



Thermodynamic Transformations and Information 105

3000

Final

[
[=]
(=]
o
I

1500 AV Ap

Pressure (pascals)

1000 |— A

500 — Initial

0 | | | | |
0 1 2 3 4 5 6

Volume (meter®)

FIGURE 4.12 Pathways and queries. A and B correspond to Figure 4.6. When the chemist
probes p at resolution window Ap, he or she is submitting questions such as: Is the system
pressure between 2400 and 2600 pascals? Is p between 1500 and 1700 pascals?

are accessed. It is opaque, however, regarding the precise order and duration of
accessing the states.

One hearkens to Figure 4.5. The states of a digital computer are dictated by a
source program. The conversion of one state to another entails operations conducted
in parallel—address queries, byte swaps, additions, and so on. Source programs
enable a state to be visited and converted without limit; they are devoid of timing
specifics, however. The upshot is that thermodynamic pathways are analogous to
computational sequences to an important degree. Whether the chemist queries the
state of a digital processor, or a gas programmed for heat and work exchanges, a sub-
jective form of probability must be weighed to quantify the information. This form
is a powerful tool in actuarial, financial, and disease-tracking research, among other
fields. In thermodynamics, it is grounded on two essential postulates:

1. All states of a system along a pathway of interest are equally likely in
occurrence.

2. The probability of observing, by objective measurement, a thermodynamic
quantity X with value x somewhere in x and x + Ax is proportional to the
number of pathway states in that range.

Note the postulates pay no attention to the intricacies of measurement using barom-
eters, thermometers, and so on. They further disregard the details of designing or
executing a program. For example, the mechanics of trading heat reservoirs, or
attaching or detaching adiabatic walls are immaterial.
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The appeal to reasonable belief bridges information with pathway structure.
For reversible A of Figure 4.12, the chemist regards the likelihood of observing p
between 2400 and 2600 pascals to be greater than for 1500 to 1700 pascals. The
rationale is that a more substantial fraction of the state points reside in the former
neighborhood. Matters are different for the B program. Here comparable fractions
manifest in the 1500 to 1700 and 2400 to 2600 pascal ranges. The chemist has
no cause for thinking that one neighborhood is favored over the other, so he or
she anticipates the system to express p states in the two ranges with about equal
likelihood.

Probability admits mathematical descriptions. Thus, for every pathway and state
variable of interest, there exist distribution functions denoted by Fy.,,(p), Fy (T),
Fy(V), and so forth. These are analogous to ones discussed in Chapter 2 for a
random variable X having probability distribution Fy(x). In thermodynamic venues,
a function such as F,, (p) quantifies the reasonable belief likelihood of observing a
system with pressure ” p. Unlike everyday distributions—uniform, normal, and so
on—Fy.,,(p), Fx 4(T), and so forth are case specific and depend intricately on the
pathway structure. There is really no limit to their diversity.

Information arrives via probability and surprisal values. It should be apparent
how these will be obtained for reversible transformations. To assess the likelihood
of observing p somewhere over a specified range, the chemist needs to tally the
number of states programmed over that range. He or she will then divide the number
by the total number of pathway states. The lessons of Chapter 2 will consequently
apply; the greater the probability, the lower the surprisal and vice versa. The greater
the uncertainty associated with a collection of states, the greater the information
attached to a measurement. These statements hold for all thermodynamic quantities:
V. T, p, L, U, and so on.

There are additional issues. First, given a pathway of interest, the probabilities
and surprisals do not follow at once. After all, the pathway structure depends on
choices made regarding physical units and Cartesian axes. The circle and square of
Figure 4.11 appear as an ellipse and rectangle if either axis, pressure or volume, is
stretched. The same holds true if the transformations are plotted in, say, a torr-liter
coordinate system. Second, probabilities and surprisals are not obtained, at least
directly, from continuous functions and graphs. Summing the points specified by a
function means evaluating a contour or line integral. A line integral for a p versus V
function—Tlacking further treatment—has the unusual dimensions and International
System of Units (SI units) of

\/ pr+V? = \/pascals2 + meters® (4.26)

Third, the pathway information established by the chemist is not singular but
instead depends on the query nature and measurement window. Queries and mea-
surements at resolution 1.00 pascal yield more information than at resolution 103
pascals. This also means that if a system was programmed for A or B of Figure 4.12,
and yet probed at Ap = 10* pascals, then zero information would be obtained—all
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the states fall in the range 0 to 10* pascals and the barometer cannot discriminate one
from another. The lesson is that information in the statistical sense must always be
reported with the query and measurement details included. This is not a unique situ-
ation in thermodynamics as other properties call for fine-print attachments. As will
be discussed in Chapter 7, an equilibrium constant must always be reported along
with the temperature at which it was measured, the reaction stoichiometry, and the
concentration or pressure units applied.

When quantifying pathway information, the procedure begins with the rescaling
of the control variables. If the program specifies the states using p and V coordinates,
then these govern all facets of the reversible pathway structure. They are the control
variables whose rescaling is achieved as follows:

p_pmin

p=L"Pun_ 4.27A)
pmax - pmin

V= % 4.27B)
4 ax Vmin

The subscripts label the values at the boundaries. Note that p,..., Pmaxs Vinins and
Vi.ax Deed not correspond to the initial and final states, although this is often the
case. The rescaling leads to dimensionless quantities that span O to 1. The rescaling
ensures that each control variable is weighted equally in placing the state points
and defining the pathway structure. It is important that p,V adopt the same values
independent of the source units—pascals, meter?, torr, liters, and so forth. When
applied to A and B of Figure 4.12, rescaling leads to the curves in the upper panel
of Figure 4.13.

Information is a by-product of probability distributions. To construct, say,
Fy_.;(p), one computes a contour length one of two ways. If P is a single-value
function of V', then dimensionless length A arrives by the integral

A=[av- |1+ 22
f v 4.28)

Equation (4.28) would be appropriate to isothermal or adiabatic pathways, to name two.
If, instead, the pathway is grounded on parametric equations as in Equations
(4.25A) and (4.25B), then the length is obtained via:

nfnal

dp
A= f dn dn @.29)

Ninitial

Equation (4.29) would apply to cyclic pathways and others where more than one p
is paired with a given V. Equations (4.28) and (4.29) reflect well-known formulae
from calculus. Note that while the reduced variables span O to 1, the length A can
well exceed 1. As with computer programs, different pathways offer an assortment
of lengths. [
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FIGURE 4.13  Probability distribution functions for reversible pathways. Shown are F.,,(p)
for A and B of Figure 4.6 and the previous figure.

The probability distributions are obtained as ratios of integrals. In each case, the
denominator is A while the numerator is the partial contour length. Where Equation

(4.28) applies, one computes:

idV-,f1+(? )2

4.30)

p=p

A
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When Equation (4.29) applies, one computes:

nﬂnal 2 2
(s dp
I dn (d ) +\%
n n
Ninitial

@.31)

Fyoy(p <p)= N
For both cases, the numerator is restricted to states p = p . The calculations are
nontrivial because several fragments of a pathway can contribute to the numerator.
In all cases, the minimum value of the distribution function is O while the maximum
is 1. Plots of Fy_ .(p) demonstrate a left to right increase that is governed entirely
by the pathway structure. It is straightforward to convert the dimensionless variables
back to physical ones for evaluation purposes; the lower panel of Figure 4.13 thereby
illustrates Fy,,,(p) specific to A and B. The distributions address a bounty of ques-
tions that the chemist can pose, for example:

1. How do average (and median) p for A and B compare? The answer follows
by noting p for which Fy,,(p) = 0.50. < p > is registered as 1559 and 1933
pascals, respectively, for A and B.

2. For A and B programs, what is the likelihood of observing system p < 1500
pascals? The answer depends on the pathway structure: Fy,,(p < 1500 pas-
cals) = 0.48 for A and 0.31 for B.

3. At what value p, is the likelihood of observing system p < p, the same for A
and B? The answer is p, ~ 2270 pascals where the Fy, ,, curves intersect.

Distribution functions are the vehicles for quantifying information, the amount
depending on the query and measurement resolution. As with the control variables,
the resolution window must be rescaled into a dimensionless form:

= p
p= 4.32
pmax_pmin ( 3)

Further, two or more pathways can only be compared—fairly that is—at identical
physical resolution, say, 20 pascals. This will translate into different values of p,
given the disparities of pathway lengths, minima, and maxima.

The reasonable-belief probability allied with a specified range of states follows
from a ratio such as

N final 2 2

A dp
[ dn (dn) +( dﬂ)
Ninitial

4.33)

prob(p=p <p+ p)=

where the numerator is restricted to states p: p< p <p+ p .Itis cumbersome
to refer to states in such terms. It is more convenient to index (label) them via
integers:
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State Index
Osp<p 1
psp <p+ p 2
P+ psp<p+2p 3
(-D- psp<j p /

Surprisals are then the by-product of the probabilities of Equation (4.33), as are the
weighted surprisals:

S, = - log,(prob(}))

-1 1 b 4.34)
_7loge(2) og, (prob(j))
and
N o _ —prob(j) .
prob(j) Sj = log (2) log, (prob(j)) 4.35)

The sum of weighted surprisals equates with the Shannon information for the vari-
able X in question, in this case pressure:

;o -l
X=r - log,(2)

Eprob(j)-loge(pmb(j» .36)
J

The results of evaluating Equation (4.36) are shown in Figure 4.14 for three res-
olution conditions. One finds A to demonstrate a slightly greater range of pressure
states; this means a greater number of terms to sum in Equation (4.36). B expresses
greater Iy, by a few percent, however. This is because the pressure states in B
are distributed in a less biased way. There is consequently greater uncertainty on
the chemist’s part prior to a measurement directed at a system programmed for B
travel. The bias in A is acute near the minimum and maximum p. These states hap-
pen to be in the same vicinity as the initial and terminal. A programming avails
less uncertainty prior to a measurement—and accordingly less information upon
completion.

Anticipating the probability attributes of A and B is fairly straightforward.
One inspects carefully the range of states and biases that have been programmed.
Qualitative assessments are not always forthcoming, however. Figure 4.11 included
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FIGURE 4.14 Information and pathways. Illustrated are the weighted surprisal sums for
pressure states at three different resolutions. The pathways correspond to A and B of previ-
ous figures. At each query resolution, B expresses greater Iy, on account of less bias in the
state distribution.

hairpin and circle transformations. These have been rendered again in Figure 4.15
with a few accents added to make a point. In both cases, the same range of pressure
states has been programmed. Which expresses greater Iy, The answer is less than
apparent. The circle reflects sizable state fractions in the accented neighborhoods
of 2x10% and 10 x 105 pascals. The hairpin meanwhile concentrates on states near
4.2x105 pascals. The answer appears in the lower panel via the sum of weighted
surprisals; both pathways have been evaluated at the same physical resolution. One
finds Iy, to be a dead heat—approximately 5.4 bits at resolution 1700 pascals. While
the information is enhanced at higher resolution, the dead-heat status does not alter.
The point is that thermodynamic programs do not have to be overly complex for the
information properties to become nonobvious.

Contour integration is a major part of evaluating pathways on information grounds.
Yet it should not surprise that the integrals can rarely be obtained by pencil-and-
paper calculations. Numerical approximation is almost always necessary such as in
the end-of-chapter exercises. This is not an obstacle with digital spreadsheets and
some programming expertise. Sometimes the functions for a pathway are unavail-
able such as in Exercise 4. This is not a deal breaker. If a path is available by graph, it
can be digitized readily. The rescaling steps can then be applied and the probability
distributions follow quickly.

Significantly, thermodynamic transformations offer a rich variety of distributions.
The constraints are that certain variables manifest only positive values: V, p, T, N,
0, Br. Bs, Cy» and C,,. By the same token, because there exist special pathways—iso-
thermal, isobaric, and so forth—as discussed in Section 4.2, there exist distributions
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FIGURE 4.15 Cyclic pathways, state distributions, and information. The hairpin and circle
of Figure 4.11 have been replotted with accents discussed in the text. The lower panel shows
the weighted surprisal summation. Iy, proves approximately equal for the two pathways.

that crop up frequently and are thus worthy of extra attention. These are discussed
in the next section.

4.4 THE INFORMATION PROPERTIES OF REVERSIBLE PATHWAYS

A pathway is realized by work and heat exchanges, and the tuning of state vari-
ables. The actions are programmed in parallel and coordinated with the sur-
roundings. Viewing pathway information as something separate is idealized.
The perspective is valuable nonetheless in the way that computational programs
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are weighed in bit terms, quite apart from the transistor and diode circuits that
materialize them. Information is always physical, as cited in Chapter 1. Yet it
accommodates an analysis that places the mechanical details to one side, and
focuses on the statistical structure of a state collection. It is the purpose of this
section to summarize the properties of pathway information. Several have been
apparent already.

The first is that individual states differ from pathways in that states offer almost
zero information in the statistical sense. For an equilibrium system of appreciable
size and particle number:

I

X<p =

I

Xov =

Iyop=Iy. ~ =0 4.37)
This is on account of the minor effects of fluctuations. By contrast, pathways offer
appreciable information in abundant variables.

The second property is that pathway information is independent of the travel
direction. A contour length does not alter if the integration limits are interchanged.
Thus Iy, ,, for A and B in Figure 4.12 does not alter if the initial and final states are
switched. By the same token, the information of cyclic pathways (Figure 4.11) does
not depend on whether the travel is clockwise or counterclockwise.

The third property is that different variables express different probability distri-
butions and, in turn, information. For a pathway of interest, the chemist has a firm
handle on several variables if he or she knows the equation of state. For example,
taking the system of Figure 4.12 to be 1.00 mole of a monatomic ideal gas, the tem-
perature is established at each point of A and B via:

___prv

~ 1.00 mole - R @38
Figure 4.16 illustrates F'y_;(T) for the A and B algorithms. The temperature bias is
greater for A while the range is 25% larger for B. B thereby leads A in the information
availed in temperature measurements by the chemist. Note the corollary: informa-
tion expressed by control variables such as p and V begets additional information.

The fourth property lies in the contrasts between ideal and nonideal gases. The
former demonstrate several properties beginning with the ideal gas law. An ideal
gas further expresses C, and C,independently of temperature. For an ideal gas, the
dependence of U and H is only on n and 7 and not at all on V. For an ideal gas, the
response functions have elementary forms: a =7-'and B, = p~!. A nonideal gas
requires equations such as the van der Waals or Dieterici for description. In so doing,
Cy, C,, 0, B, and other functions become quite a bit more complicated. In addition,
potentials such as U and H automatically depend on V.

This fourth property accordingly marks the differences between ideal and non-
ideal gases along information lines. An ideal gas offers zero I, and I, . overall
pathways, as long as n is constant. And for a gas to be ideal, zero [ your 1 Xpe > and
1 Xerat, must apply to all isotherms. An ideal gas likewise expresses zero [ Xeﬁrfor
isobars. Nonideal gases lack these characteristics, and their pathway information
is case specific as a result. Figure 4.10 presented isotherms for 1.00 mole each of
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FIGURE 4.16 F,_(T) for A and B of previous figures. The temperature bias is greater for
A while the range is approximately 25% larger for B. B presents the larger /y, , under all
resolution conditions.

monatomic ideal gas, xenon, and SO,. The pathways for the latter two were estab-
lished via the van der Waals equation and evaluated at 7= 200 K. Initial and final V
were identical for the three cases, while only the pressure domains differed.

The probability curves for the pressure states of these systems appear in
Figure 4.17. They convey that if the chemist queried each system at identical physi-
cal resolution, the ideal gas would present the greatest I, _, . The Xe and SO, gas
samples place second and third, respectively, regarding I, _, . Clearly, the infor-
mation in pressure and other quantities depends on the component identity. The
differences among gas samples are especially acute under low temperature, high
density conditions.

The fifth property concerns the term special. Chapter 2 made the point that a
handful of probability distributions are special because they apply so frequently in
nature: uniform, exponential, and normal to name three. In a parallel way, special
pathways are fixtures in thermodynamics as shown in Figures 4.9 and 4.10. The fifth
property is that the special pathways for a system, ideal and otherwise, offer zero
information in at least one state variable.

Isobars, isochores, isotherms, and isentropes express virtually zero Iy, Ix.y,
Iy, and Iy, respectively. The qualifier virtually is added to acknowledge the
effects of fluctuations—these always impose some uncertainty for a system.
Isochores further express Iy.y, =0 while for isentropes, Iy, = 0. Not-so-
special pathways such as A and B (Flgure 4.12) offer information in all these quan-
tities; they do not pose the information economy of special pathways. This does
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FIGURE 4.17 Fy,(p) for the isotherms of Figure 4.10. The ideal gas avails the greatest
Iy, The resolution window Ap corresponds to 0.50% of the range of the SO, pathway.

not mean that special pathways are lacking in probability attributes. Quite the
contrary: the sigmoidal and spike functions shown in Figure 4.18 apply to one or
more state variables. The applicability of these functions is interesting. Both spe-
cial and not-so-special pathways demonstrate state points in abundance. For the
former, however, information in the statistical sense for one or more variables does
not exceed that of a single point.

Special distributions carry extra weight in probability and statistics. Special path-
ways perform likewise in thermodynamics. By the fifth property, all the transforma-
tions of a closed system are special given that 7, = 0.

The sixth property is that a pathway offers more than one flavor of information.
The Kullback information (K7) in Chapter 2 followed from comparing two probabil-
ity distributions. In thermodynamic venues, the K7 quantifies the divergence of two
programs for variable X, one serving as a reference for the other. For an example, the
upper panel of Figure 4.19 illustrates two pV pathways sharing initial and final states.
Over any region of pressure states, the fraction of 1 is not matched by 2. The statisti-
cal structures of the two programs are accordingly different. If the chemist antici-
pated the pressure states threaded by 1 according to 2, he or she would be in error to a
degree measured by K1y, ,,. The calculation entails piecewise comparison of pathway
length fractions. The numerator and denominator of each logarithm argument equate
with probability values. Kly,,,arrives via the following weighted summation:

r
Kl = +E probl(ﬁl. + ﬁ)'log2

[

Pr0b1(17i+ D) @.39)
prob,(p, + p)
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FIGURE 4.18 Probability functions for special pathways. The upper and lower panels show
the probability density and distribution functions, respectively. A special pathway expresses
zero information in one or more thermodynamic state variables.

where p,+ p prescribe the widths and boundaries of each ith state. The number of
terms I is set by the range and resolution:

—_ . 1
r=pmax pmm=i (440)
p p

Note that each logarithm argument in Equation (4.39) can exceed or be less than 1,
and that we are considering only integer values for I The upshot is that the terms
in the weighted sum can be either positive or negative. Zero is also allowed if, by
coincidence, the length fractions match over certain regions. The lower panel of
Figure 4.19 shows the results of computing Equation (4.39) for I' = 100 states. K1y,

4
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FIGURE 4.19 Reversible pathways and Kullback information. The upper panel shows 1 and
2 having identical pressure ranges. The lower panel shows the summation of Equation (4.39)
for I' = 100 states. K1y, ,, is quantified at approximately 0.80 bits.

is quantified at just over 0.80 bits. The amount is greater at higher resolution, but the
qualitative features do not alter. Note that KTy,,, would be infinite if 2 failed outright
to anticipate any of the states manifest in 1; one or more logarithm arguments in
Equation (4.39) would diverge.

A pathway also expresses mutual information Mlyy. This quantifies the pairwise
correlation of two control variables, X and Y. One refers to Figure 4.20, which revisits
the circle and hairpin. Portions of a grid have been indicated using dotted lines. For
each pathway, the probability of observing p and V states in any particular dotted
square equates with the length fraction hosted by the square. Such a joint prob-
ability differs typically from individual state probabilities. Here, for example, the
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FIGURE 4.20 Reversible pathways and mutual information. The upper panel revisits the
circle and hairpin of Figure 4.11. For each pathway, the probability of observing p and V states
in any particular square equates with the length fraction contained in the square. The lower
panel shows the summation of Equation (4.41) for I = 100 states. MI xy--py for the circle is
about double that of the hairpin.

probability of observing V states over the AV region indicated is given by the sum
of two terms. The probability of observing p states over the Ap regions indicated is
given by the sum of two to several terms.

M1 XtespV arrives via the following weighted summation:
- = prob(p.+ p.V.+ V)
MI =+ E b(p.+ p.V.+ V)1 i it 7 .
e probibis pYx lon e p)-prob(V,+ V) @4D

1]
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where p, + p, V + V mark the state widths and boundaries. The number of
terms is dictated by both the p and V resolution. As with the Kullback information,

the logarithm argument for each term can exceed or be less than 1. Arguments
equal to 1 are incompatible with structured pathways. For isotherms and adiabats,
Mi,, . ,,> 0 since the compressibilities B,and B¢ necessarily exceed zero. The lower
panel of Figure 4.20 shows the results of applying Equation (4.41) toa 10 x 10 grid,

thatis, p= V=0.10. MI, xv--py fOI the circle proves to be almost twice that of the
hairpin. This reflects the greater correlation of the control variables. For a system
programmed for the circle route, a measurement of p tells the chemist more about
the V status, compared with hairpin programming.

The major points of Chapter 4 are as follows:

1. A reversible pathway portrays a thermodynamic program applied to a sys-
tem. The steps are carried out through parallel tuning of the state vari-
ables, and exchanges of heat and work coordinated with the surroundings.
In each step, a state is converted to a specified neighbor. A locus of states is
defined by a program; each state meets the equilibrium criteria described in
Chapter 3.

2. For an individual state, fluctuations confer little information in the statisti-
cal sense. The information is significantly augmented, however, when struc-
tured programs are applied to the system. Thus, their analysis in bit terms
offers added perspective of the energy exchanges and variable tuning. The
examples of this chapter concentrated on ideal gases and elementary pV
transformations. The lessons apply just as readily to more complicated sys-
tems, equations of state, and control variables. Information analysis bridges
thermodynamic transformations with the probability sciences.

3. More than one type of information is expressed by a program. A pathway
can be assessed not only for the Shannon information, but also Kullback
and mutual information.

4.5 SOURCES AND FURTHER READING

Transformations figure prominently in thermodynamic texts. Especially recom-
mended is the book by Fermi, which provides a succinct and clear treatment of clas-
sical transformations [1]. Adiabatic transformations have widespread applications
in science, engineering, and meteorology. The text by Hecht details the thermody-
namics of supersonic expansions [2]. Zemansky offers an engrossing account of the
high temperatures generated via shock waves. The book is equally instructive about
ultracold refrigeration methods [3].

Probability can be approached from multiple vantage points. Penrose offers a
penetrating discussion on subjective probability, its foundation, and applications [4].

This chapter addressed pathway length in dimensionless terms. The extensive lit-
erature surrounding thermodynamic length with dimensions equivalent to the square
root of energy is important; this quantity connects with the work available from a
system. The geometrical aspects of thermodynamics have been addressed in papers
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by Weinhold [5,6]. Berry, Salamon, and coworkers have established the ramifica-
tions of thermodynamic length beyond equilibrium systems [7-9]. Note that the idea
of length can be quantified in alternative statistical terms. The work of Wootters is
highly instructive on this account [10].

Length arguments figure in diverse thermodynamic applications. The treatise

on small systems by Hill features an application whereby length has dimensions of

Vv 41 [11]. The information properties of classical thermodynamic transformations
have been investigated by the author and student and described in two papers [12,13].
An experimental investigation of information and work costs in chromatographic
systems has also been carried out by the author and students [14].

Last, there is information theory and there is algorithmic information theory. The
reader is encouraged to consult the classic text by Chaitin [15]. Wilf also presents a
rigorous treatment of algorithms and information contexts [16]. Zurek has explored
the subject in detail as well [17,18].

4.6 SUGGESTED EXERCISES

4.1 (a) Let p and V serve as control variables for a thermodynamic path-
way of interest. What is the minimum length A? (b) Does the answer
change if the identical states are programmed using 7 and S as control
variables?

4.2 Let 1.00 mole of ideal monatomic gas be transformed along a reversible
pathway by tuning p and V. Let the initial temperature and volume be
400 K and 10-* meter?, respectively. Let the final volume equal eight
times the initial. Let the final pressure equal one-half of the initial while
the pathway manifests a straight line in the pV plane. (a) Calculate P
and © . (b) Calculate T and o, . (c) Let the chemist query the p
states at resolution equal to 0.50% of the total range. What is Iy, in
bits? (d) Let the chemist query the temperature states at a resolution
window equal to 0.50% of the total 7T-range. What is Iy, in bits? (e)
Let the window for measuring p and V both be 10% of their respective
ranges. What is Mly,,,,,in bits?

4.3 Pathways A and B appeared in several figures of this chapter. They are
detailed by the parametric equations:

V, 5(n) =1.00 meter? -[1+1.40m]

p,(n) =103 pascals- 2.49 0.623n+0.374sin 2m

pp(M) =10° pascals- 2.49 0.6231+ 0.374sin 1m

where 0=n=<3. (a) Calculate o, for each pathway. (b) The proba-
bility distribution functions regarding pressure appear in Figure 4.13.
Use these to sketch the probability density functions fy,,, for A and
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FIGURE 4.21 Reversible pathway in pictorial form only. The plot accompanies Exercise 4.10.

B. (c) Revisit the moment generating function of Chapter 2. For both
pathways, construct and sketch My, (). Use reduced units P for the
pressure.

4.4 A chemist faxes to a colleague a plot of an interesting pathway. The fax
includes the system identity, namely, 1.00 mole of neon gas. No other
data are included, however. The plot appears in Figure 4.21. (a) Digitize
the pathway as a set of p,V pairs, either by hand or using an optical
scanner. (b) Construct F,,, . (c) Estimate values for p and o, (d) In
pressure queries exercised at 2% resolution, what is Iy, in bits?

4.5 The hairpin pathway was illustrated in Figure 4.11. Let 1.00 mole of
ideal monatomic gas travel one circuit. (a) Estimate values for p and
o, (b) What is the maximum efficiency for heat — work conversion?

4.6 Refer to A of Figure 4.6. How many equal-length pathways expressing
I s = 0 bits can intersect the initial state? Let the same question be
directed at the final state. Please discuss in terms of the Carathéodory
statement of the second law of thermodynamics. Rigorous discus-
sions of the Carathéodory approach are presented in excellent texts by
Chandrasekhar and Reiss [19,20].

47 Refer to A in Exercise 3. Let a perturbed version be programmed hav-
ing the parametric form:

V,(m) = 1.00 meter3 -[1 +1.40m]

P, () = 10° pascals- 2.49 0.6231+0.374sin Z“T” +0.050sin 6%
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(a) Let the system consist of 1.00 mole of a monatomic ideal gas. Does
the perturbation impact AU, Ap, and AV evaluated for the initial and
final states? (b) Let the same question apply to /Iy, / and Iy . Isa
pathway’s information conserved upon perturbation?

Xepo

4.8 Two postulates linked reversible pathways to probability. By an alter-
nate approach, let the chemist imagine a collection of equilibrium sys-
tems; each state along a pathway of interest is replicated by one member
of the collection. Does this line of thought lead to a probability distribu-
tion for the pathway states? Does it lead to the same distribution based
on the postulates? Please discuss.

4.9 A chemist considers two cyclic transformations involving 1.00 mole of
a monatomic ideal gas. For both, the initial state corresponds to respec-
tive V and T of 10-3 meter® and 400 K. In the first case, an isotherm
increases the initial volume by a factor of six. The return steps back to
the initial state feature an isobar and an isochore. In the second case, an
adiabat increases the initial volume by a factor of six. The link to the ini-
tial state is then via an isobar and isochore in that order. (a) Which case
offers the better heat — work conversion efficiency? (b) Which offers
the greater work performed per bit of p state information? (c) Which
offers the greater work performed per bit of 7 state information?

4.10 A chemist considers a reversible pathway involving 1.00 mole of a mon-
atomic ideal gas. The pathway is described by the following parametric
equations:

p(n) = 10° pascals + 10* pascals - sin(1)
V(n) =10"meter?-(1+ 1)

where 0 =1 = 2. Let the p and V measurement window correspond
to 5% of their ranges. What is MIy, .  in bits?

4.11 Consider again the pathway of Exercise 4.10. Let a pathway defined
by:

p(n) =103 pascals + 10* pascals - cos(n)
V(1) =10-*meter? - (1 + 1)

serve as a reference. What is Ky, in bits? Let the measurement reso-
lution window equal 1% of the total pressure range.

4.12 Figure 4.10 included an isotherm for 1.00 mole of a monatomic ideal
gas. Consider this pathway and a straight-line path between the initial
and final states. (a) Which pathway expresses the larger MI xyerpy | (D)
Let the straight-line path serve as a reference for the isotherm at 1%

pressure resolution. What is K1y, ,,, in bits?

4.13 Refer to Figure 4.20. If the chemist knows the system volume to be in
the range marked by the vertical dotted lines, how many bits of infor-
mation are yielded by a pressure measurement? Consider this question
for both the circle and hairpin.
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5 State Transformations and
Information Economy

Thermodynamic pathways reflect programs that direct a system from one state to
another. There are always infinite choices for travel, but not all routes are created
equal. Programs offering an economy of length and information are important
to multiple fields. This chapter examines the economy issues surrounding revers-
ible pathways.

5.1 DIFFERENT THERMODYNAMIC PATHWAYS
WITH IDENTICAL ENDPOINTS

Figure 5.1 illustrates three pathways: A, B, and C. Let all pertain to 1.00 mole of
xenon subject to pressure and volume changes. The pathways share initial and final
states, and thus demonstrate equivalent changes in state functions: AU, AH, AS, and
more. The temperature happens to be the same for the initial and final states, namely,
296 K and thus AT = 0. As for all thermodynamic programs, system travel along A,
B, or C is driven by variable tuning and energy exchanges. These must be perfectly
coordinated to maintain the equilibrium conditions with each step.

The similarities of A, B, and C outnumber the differences. Even so, each presents
a unique locus of state points. Pathway A marks an isothermal path that conforms to
the van der Waals equation

nRT  an?

= - 6D

P V-nb V?

where a and b are specific to xenon:
6.

a = 04236 meter” - pascal (5.2A)

mole?

3
b=5.11x10-5 meer (5.2B)

mole

Pathways A and B are identical in the beginning and terminal regions. Pathway
B, however, stems from the Maxwell construction applied to A; the horizontal line
divides the loop region into equal areas i and ii. The result is that the gas pressure
does not alter over the region bounded approximately by 1 x 10~ and 4 x 10~* meter?.
Constant pressure manifests in spite of the volume tuning along B.
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FIGURE 5.1 Pathways with identical initial and final states. A, B, and C pertain to 1.00
mole of xenon subject to pressure and volume changes at fixed temperature.

Pathway C marks a straight-line path in the pV plane. Although the beginning and
terminal states share the same temperature, there is a unique 7 for every intermedi-
ate state.

The pathways can be viewed qualitatively. Pathway A is unusual given the loop
structure. Over the range 1 X 10~ — 4 X 10~* meter?, the pressure falls with decreasing
V. How can that be? For a system at equilibrium, the isothermal compressibility

(5.3)

_-lfav
br = Vkap)”

must never stray into negative territory. The answer is that Equation (5.1) describ-
ing pathway A accounts for some of the nonideality of xenon. The insights arrive,
however, with unphysical side effects. One is that 3, is negative for certain combina-
tions of p, V, n, and T. It is the Maxwell construction that serves as an antidote. The
horizontal segment of B enables the extraneous work received over one loop of A to
be canceled by another.

Pathway C offers the most direct pV route. However, for the xenon to travel C,
a large number of heat reservoirs must be switched, one for every temperature
state encountered. Regarding pathways A and B, some of the quirks are due to
the system undergoing a phase change. Equation (5.1) famously predicts critical
point values:

T - 8a
¢ 27Rb

(5.4A)
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a
p.= 7h? (5.4B)
V. =3nb (5.4C)
These follow from three conditions at the critical point:
L 5.5A
p.= ‘/C —nb ‘/Cz (5.5A)
(o ~0
L v - (5.5B)
nT T, vV,
2
(a,;) =0 (5.50)
aV nT T, vV,

The van der Waals model offers fair to decent predictions about gas — liquid tran-
sitions. In the case of xenon, the model predicts 7, = 297 K upon substitution in
Equation (5.4A). This compares with the experimental value of 290 K [1]. This cor-
respondence to the experiment is remarkable given the simplicity of Equation (5.1)—
only two parameters are used to account for a complicated mix of attractive and
repulsive interactions.

As the gas turns into liquid along B, the atoms pack more densely. There are sub-
sequently fewer atoms to collide with the container walls and, in turn, an attached
barometer. The volume can indeed be decreased over one portion of the isotherm
without effecting a pressure increase. It is only when all the xenon has converted to
liquid, at V= 10~* meter?, that the pressure starts to climb again.

Figure 5.1 conveys three programs—an infinite number is possible—that link
the designated initial and final states. Not surprisingly, pathways A, B, and C dem-
onstrate some information properties in common and deviate in others. All apply
to a closed system. Thus n is constant and zero I, rules the day. Uncertainty
would not precede repeated measurements by a chemist able to weigh or count
the atoms of the system. 7= 294 K is allied with all points of A and B; zero I,
applies to these pathways. A, B, and C offer nonzero information in multiple vari-
ables: p, V, U, S, W, and more. Energy exchanges and variable tuning underlie all
information in the statistical sense.

The methods introduced in Chapter 4 can be directed to A, B, and C to con-
struct probability distributions. Information is one attribute of each distribution of
interest. For example, Figure 5.2 shows the probability distributions allied with the
pressure states. The curves follow from (1) rescaling the p,V control variables into
dimensionless forms that span 0 and 1, (2) computing the contour length fractions
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FIGURE 5.2 Pressure state distributions. A, B, and C refer to pathways of Figure 5.1. The
Shannon information follows from pressure queries and measurements at resolution equal to
0.50% of the total range.

over each range of states, and (3) converting the reduced variables back into the
physical units of choice. It is apparent that all the pressure increments along C
manifest equal likelihood. The distribution is uniform as encountered in the first
peptide exercise of Chapter 2. If the system is programmed for C travel, and the
chemist extends queries such as the chemist anticipates affirmative answers with
equal likelihood.

e Does the pressure lie between 4.0 x 10° and 6.0 x 10° pascals?
e Does the pressure lie between 6.0 X 10¢ and 8.0 x 106 pascals?

The likelihood (probability) would be approximately 0.36 given that each of the
ranges are approximately 36% of the total pressure span:

(6.0 - 4.0) x 10%pascals
pmax - pmin

~0.36 (5.6A)

(8.0 -6.0) x 10°pascals
pmax - prm

~0.36 (5.6B)

The A and B distributions are skewed and, as a consequence, their pressure states
pose less uncertainty prior to measurement. This is reflected in Iy, . Taking Ap to be
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0.50% of the total range, that is, Ap = 2.8 x 10*pascals, /., for C becomes

200

Iy.., = _2 prob(j)-log, (prob()))
J

200

-1 . .
e 2 prob(j)-log,(prob(j))

i -ZOOXL-log (L
log, (2) 200 =1 200

(M)

_ +1
log,(2)

-log,(200) = 7.64 bits

Iy, for A and B follow from applying Equations (5.28) and (5.30) using identical Ap
(= 2.8 x 10* pascals), the results being 7.24 and 6.33 bits, respectively. One learns that
while C traces the most direct route in the pV plane, it is the most expensive of the three
in the code needed for labeling the pressure states. The van der Waals isotherm A
places second in code expenditures. Pathway B, which most accurately portrays xenon
in real life, proves the most economical in labeling costs. Not incidentally, in labeling
the temperature states, C’s price tag for code is infinitely greater than A’s or B’s.

Elementary pathways offer a reprise of Chapter 4 and introduce the next topic.
Figure 5.3 goes one step further. Given two states of a system, there are an unlimited
number of travel recipes ranging from the simplest and most direct to the compli-
cated and meandering. Different pathways express different amounts of information
and, in turn, labeling costs in query-and-measurement exercises. Whereas Chapter
4 focused on the methods of quantification, Chapter 5 looks at issues of economy. It
addresses the question: What are the most frugal programs in terms of length and
information that can link two states of interest? Figure 5.3 portrays points located by
generic state variables X and Y. What path should be programmed to join the initial
and final with the minimum code expenditures? Paths 1 and 2 both seem needlessly
lengthy and complicated. How should “?” be constructed for maximum economy? A
lesson of Figures 5.1 and 5.2 is that the shortest route does not necessarily offer the
information bargain.

The topic brings to mind applications beyond gases and pV tuning. This is because
the challenge of transforming something from one state to another, be it material
or abstract, is ubiquitous. Trains need to travel from here to there; crews seek and
construct the best track routes. Computational tasks—sorting, addition, and so
forth—convert one set of bytes to another. Programmers develop and code the best
algorithms. Chemists convert stockroom reagents into natural products. They design
and execute the best synthetic routes. Yet, terms like best route warrant further expo-
sition. This is provided in examples drawn from computation and chemistry.

Consider the process of integer factoring, which impacts modern computer secu-
rity. It is well appreciated that an integer N is either prime or composite. If prime, N



130 Chemical Thermodynamics and Information Theory with Applications

Initial

X

FIGURE 5.3 Pathways and economy. There are unlimited ways to connect initial and final
states by tuning the control variables X and Y. What are the most strategic pathways in length
and information?

can be divided without remainder only by itself and 1; 2, 3, 5, 7, 11, 13, ... constitute
the prime number series. If N is composite, it can be expressed as a unique product
of primes, for example:

4=2x2
6=2x3
100=2x2x5x%x5

There are an infinite number of composite integers and the same is true for primes.

Integers do not factor by themselves. Each requires stepwise conversion along a
specified path. The transistor circuits of computers execute the conversions in daily life.
The work and heat exchanges that drive them are controlled by factoring programs.

Clearly, some paths are more strategic than others. A prime factor of N cannot
exceed N'2. It makes little sense, however, to commence a factoring job by searching
for and testing primes near N2, This is because the density of primes scales as 1/
log.(N). For arbitrary N, it is more likely that low-valued integers have prime status
and prove to be viable factors. After all, 50% of integers have 2 as a prime factor.

N = 159,870,864,030 presents a modest challenge with prime factors 2, 3, 5, 547,
1229, and 7927. In arriving at these by trial and error, the steps needed for N'2-
downward travel far exceed those of a 2-upward path. Each step requires processing
32 bits or more in the typical laptop computer. Both top-down and bottom-up proce-
dures take 159,870,864,030 to the same final state: 2x3 x5 x 547 x1229 x 7927 or
equivalent. The economical route, however, navigates through the states of greatest
fractional occurrence—the low-value integers that are most likely to be prime num-
bers and factors of N.
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Pathway economy is no less important in chemistry. Peptides were used to illus-
trate the probability functions of Chapter 2. A different question is raised here: If a
chemist needed to prepare a polypeptide from scratch—and with no help from cel-
lular machinery—what strategy should he or she elect?

Here the initial state consists of the 20 amino acids kept in stockroom bottles:
A, V, G, and so on. The final state is an N-unit peptide such as GLVDAKNDVAR
... WHSV. As with factoring, there is more than one road to travel, some much less
appealing than others. For N = 256, a serial procedure would be ill-advised. Even
if each step transpired at 95% yield, the outcome would be withering given that
(0.95)%5 = 2.1 x 10-°. If the amino acids are transformed along this route, the chemist
ends up taking 1.00 mole of starting reagent G to 2 micromoles of GLVDAKNDVAR
... WHSV.

Convergent designs are superior by far. Matters are initiated by the prepara-
tion of dipeptides GL, VD, AK, ND, ... WH, SV—I128 total. The chemist links
these to make tetrapeptides GLVD, AKND, ..., WHSV. The tetrapeptides are then
transformed to octapeptides and so on. The N-unit peptide thereby requires log,(V)
stages of assembly. If the individual yields are 95%, the final yield is (0.95)® ®0.663.
The initial and final states are the same in both procedures: amino acids in bottles
and GLVDAKNDVAR ... WHSV. Yet the second route is favored yieldwise by five
orders of magnitude. The chemist makes frugal use of the reagents, solvents, chro-
matography supplies, and so forth.

Note the strategies practiced by factoring and peptide synthesis. Both process
rightly chosen building blocks. Factoring programs do not waste time and energy
with floating point variables: 547 is tested as a prime factor, not 547.0000000000.
Chemists do not try to steer ethane molecules toward GLVDAKNDVAR ... WHSV.
Both enterprises target the shortest pathways with no meandering. If a program veri-
fies 2, 3, 5, and 547 as prime factors, it does not stray by examining the sum 2 + 3
+ 5 + 547. When the chemist reaches the octapeptide stage, the molecules are not
subjected to unnecessary side reactions.

It is important that integer factoring and synthesis walk through the states of
greatest likelihood: the most likely prime candidates and the highest-yield (i.e., most
frequent) intermediates. Information underlying heat and work exchanges makes
both endeavors feasible. The reader is directed to the end-of-chapter references on
high-throughput synthesis, linear programming, and computational mathematics.
Identifying the optimum procedures is a never-ending challenge in these and com-
panion fields.

Pathway design is critical in thermodynamic applications. These include heat
engines, distillation, refrigeration, and petroleum cracking, to name a few. Regarding
the first, Sadi Carnot inquired about the pathways that best convert heat into work.
Cyclic pathways—the programs for heat engines—were featured in Figures 4.11,
4.15, and 4.20 in Chapter 4. For the discussion at hand, Figure 5.4 presents one exam-
ple of a Carnot pathway marked by the solid curves. The transformation processes
1.00 mole of a monatomic ideal gas over the temperature range 400 to 800 K. The
cycle has been illustrated in the pV plane for convenience, although other coordinate
planes are equally instructive. The feature to note is that the gas is transformed in
four stages: i, ii, iii, and iv label the endpoints of two isotherms (upper and lower)
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FIGURE 5.4 Carnot and alternative pathways. The solid curves trace two isotherms (800
and 400 K) and two adiabats for 1.00 mole of ideal gas. The dotted pathway marks one of
infinite cyclic transformations that share the same pV boundaries as the Carnot.

and two adiabats (left and right). Each segment is distinguished by its placement and
steepness in the pV plane. The 800 and 400 K isotherms have respective endpoints
to travel along the pathway, there are no restrictions on the initial state or number of
circuits. Thus, the initial state does not have to correspond to i, ii, iii, or iv; it can be
anywhere on any segment. What is vital is that the initial and final state be identical.
If the transit is clockwise, heat is injected from an external reservoir and converted
partially to work. For counterclockwise travel, heat is pumped from a cooler to hotter
reservoir at a cost of externally supplied work. A Carnot cycle provides the most
famous, if idealized, model for heat engines and refrigerators.

The dotted lines in Figure 5.4 trace one of infinite transformations that fall within
the Carnot pV boundaries. Four straight-line segments demonstrate the same end-
points as the isotherms and adiabats. The appearance is that of a bent diamond or
perhaps a boomerang. The question is raised: If the Carnot or diamond path is tra-
versed clockwise by 1.00 mole of ideal gas, which offers the more effective conver-
sion of heat into work?

Isothermal and adiabatic pathways were discussed in Section 4.2 of Chapter 4.
One learned that the following statements hold for the isotherms of Figure 5.4

pV =nRT = Constant (5.8)

AU =C, AT =0 (5.9)
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Relating Equation (5.9) to the first law of thermodynamics, it follows that

Qrec = _Wrec = +Wperformed (510)

for upper and lower isotherms. For each adiabat, the following statements apply:

pVY = Constant 5.11
where
% 5.12
Y= c, (6.12)
and
0, = f TdS =0 (5.13)

In connecting Equation (5.13) to the first law, one obtains

AU =+W.. (5.14)
for the left and right adiabats.
Equations (5.8) through (5.14) identify the signature features of a Carnot program
for an ideal gas. The finer points are noted as follows:

1. Work is exchanged between the gas and surroundings along each segment.
The heat exchanges are confined to the isotherms, however.

2. The work lost by the system along the {ii, iii} adiabat is restored along the
{i, iv} adiabat.

3. The overall (total) work performed with every circuit equates with the area
enclosed by the segments. Since

AU =0 (5.15)

regardless of where travel commences, then

W(tmal) - _Q(lotal)
rec

rec (5.16)
which reflects the first law impact yet again.
4. The Carnot efficiency € equates with the ratio:
T P
otal Work Performed 5.17)

€=
Heat Injected along Upper Isotherm
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In spite of the nontrivial structure of the pathway, € acquires a most compact form
for an ideal gas:

€ = max min

Tmax
(5.18)

=1- T oin

Tmax

Thus, for the Carnot cycle of Figure 5.4, € is computed as
400 K
=1- =0.500

€ 800 K (5.19)

Clearly, the efficiency would be higher if the reservoir temperatures were further
apart. Note importantly that € does not alter if the pV boundaries are changed (e.g., the
isotherms are lengthened or shortened), or if more or less gas composes the system.

It is instructive to compare the results for the diamond. Here W,,, O,,.., and AU
must be evaluated over each of the four stages. W, for a stage equates with the
area underneath each straight-line segment—a combination of triangle and rectan-
gle shapes. As with any cyclic path, total W, equals the total enclosed area. The
state conversions with positive Q,,. identify where heat is injected, whereas those
with negative W,,. quantify the output work. The heat — work efficiency follows by
dividing the total output work by the injected heat. The final expression for the effi-
ciency is not compact as with a Carnot cycle. The diamond efficiency can be shown
(Exercise 11) to be just under 30%. This is significantly less than that of Equation
(5.19) in spite of the wider temperature range: 400 to 1000 K. The efficiency of a
Carnot cycle would be 0.60 if afforded this range.

Carnot cycles are instructive because they illuminate the optimum programs for con-
verting heat into work. And not incidentally, such pathways are information-strategic
in temperature and entropy, not to mention moles of material. Every Carnot segment
of Figure 5.4 poses nonzero Iy, and Iy, ; likewise for the diamond. Yet, along each
isotherm and adiabat, I, and I, equate, respectively, with zero. In contrast, each
segment of the diamond expresses virtually maximum Iy, and Iy . This is because
unique 7, S pairings attach to every state point, the only exceptions appearing at the
endpoints. The temperature and entropy states along a straight-line segment manifest
equal likelihood because there is vanishing bias in their distribution. They pose near-
maximum uncertainty in measurements directed at the system.

The pathway differences receive further attention in Figure 5.5. Shown are the prob-
ability distributions constructed for the temperature states. The results reflect, unsurpris-
ingly, that the temperature distribution is considerably skewed for the Carnot process.
A system so programmed would pose less uncertainty in query-and-measurement
exercises. The bias is marked because 7 is at its minimum or maximum value for siz-
able portions of the cycle. By contrast, the diamond path reflects a greater range and
more even dispersion of temperature states. The information values in Figure 5.5 apply
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FIGURE 5.5 Probability distributions for temperature states. Distributions apply to the
Carnot and diamond pathways of Figure 5.4. The information values follow from query-and-
measurement exercises at resolution A7 =2 K.

to resolution A7 =2 K. It is notable that the diamond incurs approximately 50% greater
labeling costs concerning temperature states. The greater expenditure of code does not
purchase a more favorable heat — work conversion. Rather, the work returns on heat
investments depend critically on the pathway structure. As Carnot paths demonstrate,
the choices of information-strategic routes need not be at odds with thermodynamic
goals. The next section offers lessons about pathway economy.

5.2 PATHWAY PROGRAMMING AND ECONOMY

There are infinite pathways that can join two states. The first lesson about the programs
that determine pathway structure is that they are, in some ways, superfluous. This
is surprising. For a closed system to transit from a designated initial state to a final
one, the system and surroundings need only to exercise random energy exchanges.
Each transaction will reposition the state point. The location may be new or previously
visited. If the exchanges are random, there will be no bias shown toward one state or
another—they will be visited with equal opportunity. With sufficient exchanges, the
pathway will trace out a Brownian pattern whereupon the state point will sample all
possible positions, the final one included. Brownian pathways fill space in one and two
dimensions. This means that the energy exchanges can take a closed, k¥ = 1 system to
the final state, expressing myriad p and V along the way. Matters are different if the
system is open and 7 is no longer fixed. Here, not every state will be visited during
random exchanges. A structured program becomes mandatory.

An example is shown in Figure 5.6. One considers a single-component gas in a
leak-proof container with initial p and V near 50,000 pascals and 0.100 meter. For
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FIGURE 5.6 Straight-line and random pathways. A is the shortest pV route between the
initial and final states. B results from random energy exchanges between the system and
surroundings.

the system to reach the final state, the surroundings need to inject heat and extract
work incrementally. The straight-line path A will certainly do the job.

Random state sampling, however, offers alternatives such as B. Note that A and
B are identical in the net changes of all state functions. They contrast in Q,,., W,,.,
and information in all variables except n. The disparities are portrayed in Figure 5.7
showing the pressure—state probability curves. There is zero bias in the A distribu-
tion—the distribution is uniform. Not so for B: roughly 80% of the path accounts
for only 50% of the states. During measurements on the chemist’s part, the bias
diminishes the uncertainty surrounding the states along B. Yet compared with A,
the pressure range is greater for B by more than a factor of 2. In quantifying /..,
there are more weighted surprisal terms to sum for the B distribution. /., quoted
in Figure 5.6 follow from Ap set at 0.50% of the range for A: Ap = 0.865 pascals.
There are then 200 states for which to allocate code. The Shannon information for
A works out to be:

200

-1
(A)
L e ® Eprob(p log, (prob(j)
.-l 'ZOOXLxlog 1 (5.20)
log, (2) 200 7 200
B +log,(200)

~7.64 bits
log,(2)
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FIGURE 5.7 Probability distributions and pressure states. Distributions apply to the
straight-line and random paths of Figure 5.6. Iy, follow from measurements with Ap set at
0.50% of the range in A: Ap = 0.865 pascals.

At the same physical resolution, there are more than 500 states to accommodate
for B and Iy, works out to be just under 8 bits. Greater information applies in spite
of the heavy concentration of states near 49,800 pascals.

It should be apparent why B, while interesting, is a contrived example. With ran-
dom energy exchanges, there is no guarantee that the state point will relocate in the
desired way. It may take infinite steps to reach the wished-for state. A structured
program may be superfluous in some respects. However, the lack of one, barring
dumb luck, puts the labeling costs as high as infinite bits. This holds for all variables
except for n. Simply stated, the programs for structured pathways are vital because
they offer economy of both length and information.

A second lesson follows. Shorter pathways generally offer better economy than
longer ones. Figure 5.8 illustrates two cases where the initial and final states are
shared. Pathway 1 follows a wobbly route from the initial to final state; pathway 2
elects a smoother but longer path. It is not difficult to see which poses the greater
uncertainty in pressure state queries. The results of analysis appear in Figure 5.9.
The diversity of pressure states in 2 are reflected in the larger Iy, ,,: 8.56 bits versus
7.41 bits for pathway 1. For this calculation, Ap was taken to be 0.50% of the range
demonstrated by 1: Ap = 0.935 pascals.

But therein lies a third lesson: the shortest route is not necessarily the most eco-
nomical. Pathway 1 is wobbly. If the program had opted for a straight line, Iy, ,,
would have exceeded 7.41 bits. Since all states would then have expressed equal
likelihood, Iy, would have equated with the Equation (5.20) result. The wobbles in
pathway 1 increase the length. Yet they bring about a distribution bias that enhances
the information economy.
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FIGURE 5.8 Shorter and longer pathways. Pathway 1 follows a wobbly route from the ini-
tial to final state. Pathway 2 elects a smoother but longer path.

Note the qualifier “not necessarily.” Sometimes the most direct pathway is the most
economical. More to the point, the special pathways of Chapter 4 offer the maximum
economy in one or more state variables. For isobaric, isochoric, adiabatic, and iso-
thermal cases, Ix.,,, Iy Ixo,s> and Iy = 0, respectively; for every path of a closed
system, /.., = 0. Note that special pathways afford straight-line representations in
select planes, for example, isobaric and isochoric in pV, and adiabatic in the TS plane.
A Carnot cycle appears as a square or rectangle when drawn in the 7S plane.

Pathways embody programs for state transformations. The strategic designs aim
for the shortest and surest routes. This is the case for integer factoring, organic syn-
thesis, and hopefully railroad construction. Figure 5.10 offers several choices of pV
programs. Which offers the most favorable economy?

One considers the five pathways that begin and terminate identically. They vary
in length, whereby A marks the shortest route, and E is the longest. All except A
express bias in the pressure states. More than 10% of D, for instance, hovers near
50,175 pascals. As for E, a significant fraction threads pressure states identical to the
final state.

In query-and-measurement exercises by the chemist, B, C, D, and E afford less
uncertainty about the system pressure compared with A; ditto for the volume states.
The diminished uncertainty arrives, however, at the expense of programming longer
pathways—of having to specify and reckon with more extended collections of state
points. Clearly, the strategic designs aim at a favorable trade-off between length and
state bias. How should the chemist weigh one program against another on economy
grounds?
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FIGURE 5.9 Probability distributions and pressure states. 1 and 2 pertain to the pathways
of Figure 5.8. The diversity of states in pathway 2 are reflected in the larger Iy, 8.56 bits
versus 7.41 bits for pathway 1. Ap was taken to be 0.50% of the range demonstrated by path-
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FIGURE 5.10 Assorted pV programs connecting initial and final states. Which offers the
best economy in length and information?
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Heat engines are evaluated by their efficiency ¢€; refrigerators are evaluated by
their coefficient of performance. When discriminating pathways for length and
information economy, a merit parameter (), proves highly useful:

A I,
Q= AL, (5.21)

A is the reduced (i.e., dimensionless) length of the pathway under consideration (cf.
Equations 4.28 and 4.29). A, is the reduced length of the straight-line path connect-
ing initial and final states. I, is the Shannon information concerning state variable
X (<> p, V, T, etc.) queried at resolution window AX. [ X, is the information expressed
by X for the straight-line path queried at the same resolution.

The strategic routes are shorter than ill-designed ones. They are less diverse as
well, since the chemist requires fewer bits of code for state labeling. Accordingly,
the sought-after pathways demonstrate smaller Q, on account of length and
information. A path with Q, = 1.75 offers a better deal overall than one having
Q, = 2.75. Note, however, that a pathway with Q, > 1 is worse than a straight
line. It may offer lower information in the probability distribution, but the size
of the state point population (i.e., pathway length) that must be programmed
cancels any benefits over the simplest and most direct route. By the same token,
a pathway with Q, = 1 offers no substantial improvement over the shortest and
simplest route.

The optimum pathways offer minimum Q. Strategic programming looks for
ways to reduce . A pathway with the minimum €, marks the shortest and sur-
est route, the length and information weighted equally. It is apparent that random
or Brownian paths are undesirable at once on account of large A/A, ratios. B in
Figure 5.6, for example, turns out to have to have A = 31.3. Using the information
values of Figure 5.7, Q. ,, is obtained as

=013 789bits 4 (5.22)
r J2 7.64bits

Recall that this applies to a contrived case. Pathways governed by random energy
exchanges pose €y, ,, as high as infinity.

It is also apparent that isotherms, isobars, isochores, and adiabats should be
termed perfect. Each presents a thermodynamic variable X for which Iy = 0 and like-
wise for Q,. As would be expected, perfect pathways are admitted only by atypical
circumstances. Perfect pathways can take a system from initial to final states only
when these states happen to share identical X values.

For the typical circumstances, the most economical pathways for linking two
state points can be termed ideal ones. A and E of Figure 5.10 fall into this category;
the choice dependent on the measurement resolution employed by the chemist. E is
a dual-segment route that is longer than straight-line A. Statewise, however, it is the
more certain route because one variable, in addition to #, is held constant along each
segment. The computation of €2y, ,, for E illustrates matters.
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A and E of Figure 5.10 share initial and final states. Because of its straight-line
nature, A serves as the yardstick for evaluating E. The pressure and volume ranges
are identical for A and E. Toward computing Q. ,,, one rescales the control variables
of A and E:

p_pmin

p= P Prin_ (5.23A)
pmax - pmin

= V-V

V= min
Vv (5.23B)

The results range from 0 to 1 whereby rescaled A and E have been replotted in
Figure 5.11. The reduced length along each E segment is 1, hence, Ais 1 + 1 = 2.
The analysis applied to A gives A, = 2'2. Two of the slots in the expression for Q. .,
become filled immediately, namely,

A2
—_— === 2 = 141
, 5 v (5.24)

One then turns to the remaining slots. In query-and-measurement exercises, the
number of discernable states I'y,, is set by the resolution

p. =D 1
r _ Pmax T Pmin _ 1
oy = e = (5.25)

For simplicity of illustration, the resolution Ap has been taken to be one-fifth of the
pressure range of A and E. Thus I'y.,, =5, and the states have been indexed accord-
ingly in Figure 5.11.

Now suppose that the chemist tendered queries about a system programmed for
E travel. Valid questions would include: What is the likelihood that the pressure,
upon measurement, falls in the range defined and labeled as state 1, that is, close to
maximum p? It should be clear that half of the state points lies along the horizontal
segment affiliated with p,,,. One-half lies along the vertical as well, but only one-
fifth of these fall into the region designated as state 1. Thus, the chemist arrives at a
reasonable-belief probability of

1 1
prob(l) = E + 2%5 (5.26)

Just as valid a question is: What is the likelihood that the pressure corresponds to state
5?7 The chemist reasons that there is a 50% chance that the state point lies along the
vertical; 20% of the vertical points lie in the bottom fifth. Thus, the answer would be:

1

1
prob(5) = B X 5 5.27)
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FIGURE 5.11 Rescaled A and E of the previous figure. The reduced length Ais 1 + 1 =2 for
E; A =22 for A. The dotted grid marks the pressure and volume states discussed in the text.
The integers label the pressure and volume states whereby AV = Ap = 0.200.

Clearly, E demonstrates a marked bias; half of the pressure states are indeed pooled
at one value. The equivalent statement holds as well for the volume states. Note the
contrast with A. The answers to the same questions posed for a system programmed
for A travel would be equal at one-fifth. In effect, E offers less uncertainty about the
system pressure, but at the expense of greater program length. To decide matters of
economy, there are two more slots to fill for Qy. .

Realizing the denominator [ X p is straightforward; it is the pressure informa-
tion affiliated with A:

5
-1
(A _ . 7 - 7
L e ® Zprobm log, (prob(j)
= -1 ~5x1xlog 1 (5.28)
log,(2) 5 ©5
_*10e.O) 5 35 bits
log,(2)

Obtaining numerator I{?), = is more involved:

5
1® 1(2) 2 prob(j)-log,(prob(j))
J

X=r  log,
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-1 11 1

= o+ ——— log, —+ + b(j)-lo b(j
e 275 % 23 me (J)-log, (prob(j)
! (5.29)
= - l+ ! -log l+ ! +(-Dx ! ‘log 1
log,(2) 2 2x5 © 2 2x5 2x5 ¢ 2x5
One arrives at (y,,, by combining Equations (5.24), (5.28), and (5.29):
2 1.77 b1ts
(5.30)

¥=r =[5 232bits

Note the important result: E has proven less favorable than A. Economy of length has
trumped the economy of information! If an identical twin of A had been considered
(i.e., A referenced against itself), the results would have been €, ,,= 1. But at the
same time, note how matters change with the query resolution. If the chemist were
able to discern, say, 50 pressure states instead of 5, one obtains:

X<p

50
1B _ _712 prob(j)-log,(prob(j))
log,(2) Lt

i 1+# ‘log, l+ ! +(50-1)x ! ‘log, L
log,(2) 2 2x50 2 2x50 2x50 2x50
= 3.75 bits (5.31)
whereupon
oy = \/27 13.75 bits 0939 .
2 2 _log,(50) (32

log,(2)

Thus, at the higher query resolution, E offers distinct advantages over the shortest
programming route A. In particular, the bias in the state distribution more than com-
pensates for the greater length.

Importantly, Equation (5.31) can be generalized for I'y number of states; X can
represent any control variable V, 7, and so forth:

I, = loge (2) Eprobm log, (prob(j)

I VR U U U EE A SR (YOI E A O
log,(2) 2 2I, 2r 2r 2T,

2 X X

(5.33)
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FIGURE 5.12 The dependence of Q, on I'y. The plot shows that for I'y < 16, the straight-line
path A offers the more favorable economy. For I'y > 16, the dual-segment pathway E offers the
more favorable . The merit parameter levels off slowly with increasing T.

Figure 5.12 shows the dependence of €, on T. The plot illustrates that for Iy <
16, the straight-line path offers the greater programming economy. Things are oth-
erwise for I'y > 16 where a dual-segment pathway offers the more favorable Q.
At the higher resolution, the ideal pathway is simply a combination of two perfect
pathways. Figure 5.12 also shows that the merit parameter levels off—albeit slow-
ly—with increasing I'y. One can identify the lower bound for the ideal pathway by
approximating Qy at very large I'y:

_A T
¥ Ao IX

o

S R A (R S PR L B

N log,(2)
2 ) (5.34)
() ) () o ) o) o )
2 log,(T",)
2 _+{1oge(2)+(g)-1oge(rx)}
2 log, (T )
2 1 1
= —2 5=$z0.707
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The result shows that the ideal pathway has a merit parameter that exceeds zero and
is thereby less than perfect. Yet there is a limit to the ideality: Q, cannot drop below
0.707 given appreciable measurement resolution.

5.3 PROPERTIES OF PATHWAY LENGTH AND
INFORMATION ECONOMY

Chemical thermodynamics offers ways to categorize and model systems: ideal, non-
ideal, closed, open, and so forth. The subject does likewise for pathways along which
a system is transformed: reversible versus irreversible, isobaric, isochoric, cyclic,
and more. The focus of this chapter has been programming economy—the criteria
being pathway length and information. Section 5.2 pointed to four categories along
strategy lines. A reversible pathway falls into one of the following:

1. A pathway that is economically perfect in length and information terms
offers a control variable X such that Q, = 0. For a closed, single-component
system, X and n are fixed. The specification of only one other variable Y is
needed for locating every state point along the pathway.

2. A worst-case pathway is one absent of a thermodynamic algorithm. The
state point placements demonstrate a Brownian nature, whereby €, can be
as high as infinity on length and information accounts.

3. Anideal pathway is one where, for control variable X, 0.707 < Q, =< 1. Atypical
conditions enable transformations along perfect pathways. Typical conditions,
by contrast, always admit system programming via ideal pathways.

4. Pathways for which none of the above applies are less than ideal. For control
variable X, one has 1 < Q, << oo,

There are additional properties to note. First, the economy does not depend on the
direction of travel. Regardless of which category applies to a pathway, the classifica-
tion does not alter if the initial and final states are interchanged.

Second, ideal pathways offer choices regarding the control variables.
Figure 5.13 answers the question raised in Figure 5.3. The ideal pathways are
formed either via perfect pathways in tandem or by the most direct route. There
are otherwise no limits placed on the X, Y identities; different combinations of
p, V, T, S, and so forth are all suitable. Under conditions in which I', = I"}, then
Q, =Q, . Note as well that dual-segment pathways offer two choices, upper and
lower routes, with identical merit factors.

Chapter 4 discussed how a pathway expresses nonzero mutual information M1 ,.
It is interesting that exceptions appear in the perfect and worst-case categories.
Figure 5.14 shows an isobar with pressure and volume resolution indicated by the

dotted lines. In the general case, Ml,_, , is quantified by:

prob(p, + Ap.V, + AV

M prob(ﬁl. + Af))‘prob(vj + AV)

+E prob(f)l. + Ap, ‘7/ + A\7).log2

L]

XYepy =

(5.35)
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FIGURE 5.13 Answers to the question raised in Figure 5.3. The ideal pathways are formed
either via perfect pathways in tandem or by the most direct route. There are no limits placed on
the X, Y identities. If ', =T, then Q, = Q. The dual segment pathways offer two choices,
upper and lower, with identical merit factors.
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FIGURE 5.14 An isobar with pressure and volume resolution indicated via the dotted lines.
Ml reduces to zero by Equation (5.35).
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where p,+Ap and \71 + AV define the state widths and boundaries. But
prob(p, + Ap) =1 across the transformation—the pathway-knowledgeable chemist
obtains no information in the statistical sense from measurements using a barometer.
By contrast:

prob(ﬁi + Ap, ‘7} + AV) = prob(\7j + AV) = (5.36)

Y<V

Thus the logarithm argument in each term of Equation (5.35) reduces to 1, whereby
Miy, .., = 0 is the outcome. This makes sense. If the chemist were to measure the
system volume, no pressure information would be obtained as a fringe benefit. By
the same token, any measurement of the pressure offers nothing about the volume.

For worst-case pathways, the absence of an algorithm precludes the correlation of
state variables. Thus,

prob(ﬁl. + Ap, I7j + AV) = prob(ﬁ. + Aﬁ) X prob(\7j + AV) (5.37)

which makes the logarithm argument of every term in Equation (5.35) equal to 1 and
MIy, ., = 0. This also agrees with intuition. If the chemist were to measure either
p or V, no extra knowledge arrives. How are perfect and worst-case pathways alike,
besides sharing state variables X and Y? The answer is that both express M/, =0.

The mutual information properties of ideal pathways are just as interesting. Refer
again to Figure 5.11. There are five p,V segments that lie along A given the resolu-
tion indicated. The probability of the chemist observing the system in any one of

these is

1 1

r r

X<p YoV

1
5 (5.38)
When the system is programmed to travel the straight-line route, the same probabil-

ity value as Equation (5.38) applies to a p or V measurement made by itself. Thus, for
identical resolution of the control variables:

prob(p, + Ap.V, + AV ) = = prob(V, + AV )= . 1 (5.39)

X<p YoV

with the result that

MI T = log, [5] bits
5 (5.40)

= logz[I‘Xep] =log,[T’,.,, ] bits

1
5><g><log2 —

1

_ 5
Xropy = 1.
5 X
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This is important because it shows that for straight-line pathways, the mutual infor-
mation equates with the Shannon information for each control variable. It answers
the question: For what thermodynamic programs are the Shannon and mutual infor-
mation equal?

Regarding E of Figure 5.11, there are 10 p,V segments at the resolution shown. The
probability of observing the system somewhere in any of these is:

1 _ 1 1
2x5

2-T 2-T

X<p YoV

(5.41)

Different probability values, however, apply to any p and V measurements exercised
individually. This point was made via Equations (5.26) and (5.27). For the dual-
segment case, the mutual information can be shown to have the following form at
high resolution (and taking I'y , =T, ):

[ 1 )
2r,. -2 22Uy

M., =/7Xe” \xlog ! + ! x log L X ,;)
XY < pV 2 ) 2 1 2 2
I‘X<—>p —_ FX“’P (1 1 ]

2 or, ~+
- 2 2rx<_)p
(5.42)

Then for high-resolution queries, that is, large T’ and T’

X<p vy » Equation (5.42)
reduces approximately to:

Miy, ., =log,[2]+ ! x log, 2. 1 bit (5.43)

X<p X<p

Equation (5.43) reflects that for ideal pathways of the dual-segment variety, the con-
trol variables are correlated— MI,, > 0. But the correlations amount to only about
1 bit. Dual-segment pathways are combinations of perfect pathways; the control
variables of each are programmed to be as information-strategic and independent
as possible.

The major points of this chapter are as follows:

1. Thermodynamic pathways describe programs for taking a system from one
state to another. There is always an infinite number of choices, some more
attractive than others in their economy. This chapter discussed how to eval-
uate pathways for both length and information economy using merit factors.
The smaller Qy, the better the overall economy. 2, = 0 offers the maximum
economy, whereas Q, = ° describes the worst case.

2. Economy considerations led to four pathway categories: perfect, worst case,
ideal, and nonideal. Every reversible pathway falls into one of these.
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3. Pathways express more than one type of information. The perfect, ideal,
and worst-case categories offer unusual properties regarding the mutual
information.

5.4 SOURCES AND FURTHER READING

Best-practice programming is integral to multiple disciplines. The text by Vajda
describes linear programming strategies with applications primarily of the econom-
ics variety [2]. Prime factoring figures in modern computer security. The texts by
Ribenboim [3], and Crandall and Pomerance [4] are well worth time and attention. A
more qualitative book that includes prime factoring issues is by Derbyshire [5].

Regarding convergent syntheses, Fleming describes the challenges and strategies
of protein synthesis [6]. The strategies include the use of protecting groups in order
to obtain the correct stereochemistry for a protein. Fleming’s book is indispensable
for its presentation of best-practice syntheses of a variety of compounds across sev-
eral decades.

The Carnot cycle is treated in all thermodynamic texts. Fermi [7] and Desloge
[8] present succinct and illuminating discussions. One should not neglect Carnot’s
original article available in translation [9]. More contemporary discussions of the
Carnot cycle are presented by Finfgeld and Machlup [10], and by Raymond [11] and
Van den Broeck [12].

The entropic aspects of heat engines, reversible and otherwise, have been detailed
by Berry and coworkers [13].

Random pathways are the trademark of Brownian motion. This subject is treated
at length in numerous probability books. Especially recommended are the treatments
by Karlin and Taylor [14] and by Resnick [15]. Last, the phase transition behavior
described by the van der Waals model is discussed incisively by Stanley [16].

5.5 SUGGESTED EXERCISES

5.1 The prime factors of 159,870,864,030 were listed as 2, 3, 5, 547, 1229,
and 7927. How many information bits are obtained upon learning each
factor? Please discuss.

5.2 The convergent synthesis of a 256-unit peptide was described. Suppose
the chemist was less exacting and prepared a diverse set of peptides in
the first stage. For each, the unit number is at least 2 but no more than
6, the number chosen randomly. (a) If the yield of each reaction is 95%,
what is the average net yield of the 256-unit peptide? (b) What is the
standard deviation in the yield?

5.3 Derive the van der Waals results of Equations (5.4A), (5.4B), and (5.4C).

5.4  Consider the van der Waals isotherm of Figure 5.1 at a pressure reso-
lution window equal to 1% of the total range. (a) What is the value of
the merit factor Qy,,? (b) How does this result compare to Qy,,, for a
van der Waals isotherm computed at a temperature above the critical

value?
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5.5 Consider a system programmed to travel the upper portion of the
Figure 5.4 Carnot cycle. Let the initial and final states be i and iii, respec-
tively. (a) What is the value of the merit factor Q. ? Take the pressure
resolution to be 1% of the range. (b) What is the value of MI Xrepv in
bits? Take the pressure and volume resolution to be 10% of the respective
ranges.

5.6 Direct the previous question to the upper part of the diamond pathway
of Figure 5.4. (a) What is the value of the merit factor Qy,,, ? (b) What
is the value of Ml,_, , inbits? Take the resolution window to be the
same as in Exercise 5.5.

5.7 Consider an isotherm and adiabat for a monatomic ideal gas. In gen-

eral, which offers the more favorable €y.,, ? Please discuss.

5.8 Construct a Brownian path in the pV plane or 1.00 mole of ideal gas.
Let the initial state correspond to 10-3 meter® and 500 K. For each of
the 10* steps, let two coin tosses—Dbest carried out by computer—de-
cide which variable (p or V) to adjust, along with the direction (posi-
tive or negative). Let each relocation of the state point correspond to
0.01% of initial p and V. Plot the pathway and compute €2y, ,; take
the query resolution to be 1% of the total pressure range. (a) If the
exercise is carried out multiple times, what average and standard
deviation are observed for Qy,,,? (b) What statistical distribution is
formed by the different values of €y, ,,?

5.9 Consider again pathways A and E of Figure 5.11 for 1.00 mole of mon-
atomic ideal gas. (a) Which expresses the smaller Iy, ? (b) Using
the initial and final states specified in the figure, construct all the
ideal pathways in the 7'S plane. Which of these expresses the smallest

IX<—>U?
5.10 Derive Equation (5.43) regarding mutual information.

5.11 What is the heat — work conversion efficiency of the diamond path-
way in Figure 5.4?
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6 Thermodynamic
Information and
Molecules

The preceding chapters focused on thermodynamic state points, both individually
and in collections assembled by fluctuations and pathways. The present chapter
considers state points at the microscopic level. These points link with the statisti-
cal structure presented by molecules and their communication in thermal environ-
ments. It is this structure that determines information at the Angstrom scale.

6.1 INFORMATION AT THE MICROSCOPIC SCALE

Chemical thermodynamics concentrates on the states of a system, their description
variables, and all matters of work and heat. Information measures the amount of
code needed for efficient labeling of the states. The code amounts are important
because they tie to the diversity, complexity, and control capacity of the system.
These concepts were met qualitatively in Chapter 1, and then quantitatively in
Chapter 2 using for example, coins and peptides. Chapter 3 examined the Shannon
information associated with fluctuations and equilibrium conditions. Chapters 4
and 5 went on to address Iy, Kly.,,, My, and so forth for reversible pathways
programmed for a system. The quantitative examples of the past three chapters
have highlighted monatomic gases. SO, was the sole polyatomic encountered, and
then only briefly via the van der Waals model (cf. Figures 4.10 and 4.17 of Chapter
4). The result is that little attention has been given—not since Chapter 2—to the
microscopic level and to molecular structure in general. These, and how they inter-
sect with information, form the themes of the present chapter. To be sure, the
microscopic scale is the complicated domain of quantum mechanics and statistical
mechanics. The approach taken in this chapter is much simpler as it appeals to
idealized models.
To begin, one considers the reaction of Bunsen burners and kitchen stoves:

CH,(g) +20,(g) = CO,(g) + 2H,0(g)

153
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Standard tables of first-year chemistry texts make contact with the molecular scale
by listing standard free energies and enthalpies of formation, and molar entropies:

CH,(g)
G¢ =-50.7 kilojoules/mole
H¢ = -74.8 kilojoules/mole
S¢ = 0.1862 kilojoules/mole - Kelvin
0,(2)
G¢ = 0.00 kilojoules/mole
H¢ = 0.00 kilojoules/mole
S¢ = 0.2050 kilojoules/mole - Kelvin
CO,(2)
G¢ = -394.4 kilojoules/mole
H¢ = -393.5 kilojoules/mole
S¢ = 0.2136 kilojoules/mole - Kelvin
H,0(g)

G¢ = -228.6 kilojoules/mole
H¢ = -241.8 kilojoules/mole

S¢ = 0.1887 kilojoules/mole - Kelvin

For the reaction, one learns:

G? =[1 mole-(-394.4) + 2 mole - (-228.6) — 1 mole - (-50.7)

o ©6.1)
~2 mole - (0.00)]- TOUES _ 06 9 kilojoules
mole
H° =[1mole-(-393.5) + 2 mole - (-241.8) — 1 mole - (-74.8)
6.2)

Z2 mole - (0.00)] - HOIOUES _ 5 3 kilojoules

mole
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S° =[1mole-(0.2136) + 2 mole - (0.1887) — 1 mole - (0.1862)

-2 mole - (0.2050)] kilojoules _ —0.0052 kilojoules (6.3)

mole

o

K, =exp

=~ exp[323.8] =104 6.4)

These equations are restricted to so-called standard conditions—1.00 atmosphere
gases at 298 K. The calculations are nonetheless jumping-off points for approximat-
ing real-life energy and material processing. State functions and the properties of
equilibrium systems provide far-reaching tools. There will be more to say about the
equilibrium constant (K,) of Equation (6.4) in Chapter 7.

Molecules CH,, O,, and so forth are packages of electric charge. Quantum mechan-
ics and statistical mechanics describe them using Hamiltonians, wave functions, and
partition functions. At the same time, elementary models count on formula diagrams
to portray the Angstrom scale. The gains lie in immediacy and chemical intuition.
Hence, the compounds of Bunsen burners and stoves are represented in digital terms:

H

H—Cl—H :0=0: :0=C=0: SOl
| :0=0: :0=C=0: hON
H

The benefits include a second approach to the thermodynamics, the first resting on
the state functions responsible for Equations (6.1) through (6.4). This is because still
more tables of first-year chemistry texts provide the average dissociation energies
(D) of atom—bond—atom (ABA) components, for example:

Dy = 411 kilojoules/mole

Dc_o = 803 kilojoules/mole
Dg .y = 464 kilojoules/mole
Dg_o =498 kilojoules/mole

Using these, the enthalpy of methane combustion can be estimated:

E Di Jreact - Di ,prod
i

=[4 mole - (-411) + 2 mole - (—498) — 2 mole - (-803) — 4 mole - (+464)]- kﬂLolules
mole
= —-822 kilojoules
6.5)

in respectable agreement with Equation (6.2). Note the power and utility of the sec-
ond approach. In the first, the chemist is restricted by the number of listings. If the
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standard tables include G}’ , H 7, and S for, say, 1-octanol, the chemist can make
predictions about the molecule’s thermochemistry. If such data are absent, however,
the chemist will have to become curious about another molecule. Fortunately, there
is plan B.

In traveling the Equation (6.5) route (i.e., plan B), the chemist uses ABA-data to
piece together thermochemical properties. There is really no limit on the number of
systems the chemist can investigate this way. When electing plan B, the chemist is
cognizant of the assumptions and limitations. D is commonly listed as 411 kilo-
joules/mole. Yet C-H of methane is not identical to a C-H of propane, 1-octanol, or
any other compound. For that matter, there are bond variations of a given type within
a compound. For example, C-C adjacent to C=0 in cyclohexanone is not identical in
length and charge density to C-C opposite C=0. Thus, the dissociation energies of
C-C units only a few Angstroms apart are not precisely the same.

In an important way, D tables report averages that are grounded on representa-
tive experiments. The numbers vary somewhat from table to table, depending on
which data have been compiled. The second approach has currency nonetheless for
its simplicity and because of the local nature of most chemical bonds. D tables are
invaluable for approximating enthalpy contents, reaction energies, and more, typi-
cally within several percent of experimental values. As discussed in Chapter 1, dia-
grams composed of ABA units are really without peer in the ability to capture the
Angstrom scale in digital terms.

Regardless of approach, the chemist appreciates the importance of the molecular
scale. Combustion of 1.00 mole of methane yields approximately 800 kilojoules of
free energy. This should be compared to the work afforded by isothermal expansion
of 1.00 mole of ideal gas at 298 K:

Vﬁnal
W,.; =+nRT -log, ———
- ‘/initial

i Vv
1 _joules x 298 K x log, _final (6.6)

initial

=~1.00 mole x 8.3
mole - K

. Vﬁnal
~ 2476 joules x log, —~—

initial

Even with factor of 10 volume increases, the energy is less than 1% of that
offered by combustion of 1.00 mole of CH,. Clearly, molecules and their reac-
tions are stellar resources when it comes to work and heat. Further, standard
tables of GJO,, Hg, and S° (plan A) and bond dissociation energies (plan B)
provide state descriptors that burrow deeper than p, V, and other macroscopic
functions.

Plan B is without limit in the systems that can be addressed. At the same time,
it has a drawback, which is perhaps subtle but understood at once by example. The
structure of n-butane is represented by:
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H2
HiC T,
H2
Tables report D= 346 kilojoules/mole along with D ,; = 411 kilojoules/mole.

Thus the sum (D,,,,), average (< D >), and standard deviation (G,,) of the bond ener-
gies are:

D, =[3mole-(346) + 10 mole- (41 1)) “LUUIES _ 5148 kilojoules  (6.7)
[3 mole - (346) + 10 mole - (411)] Kilojoules ©6.8)
<D>= 4 mole  _ 396 kilojoules |
(D, -396)?
0, =4|-——=— Kkilojoules = 28.5 kilojoules 6.9

13-1

Equations (6.7) through (6.9) thereby connect with a sample of n-butane at the molec-
ular level but not uniquely. Via the ABA energies, one arrives at identical values of
D,,.., <D >, and o, for iso-butane having the formula diagram:

H
HiC—C—CHy
CH,

Many more examples can be constructed. To cite an extreme case, there are over 4 mil-
lion isomers allowed by the formula C;,H,. D,,,,,, <D >, and 6,, according to plan B
are identical for all. This is unfortunate, and the fallout is not restricted to alkanes. On
the one hand, plan B is without limit in providing descriptors for the molecular scale.
On the other hand, it does not afford the same discrimination as plan A.

This brings us to the central idea of Chapter 6, namely, the use of ABA units C-C,
C-H, and so forth, to describe states of a system at the microscopic level, in a way
that always distinguishes molecules by their electronic structure. The diagram for
any of the four million versions of C;,H,, offers the chemist unique facts and data
information, for example:

When information of the statistical type is incorporated, the diagram locates state
points for the molecule that are also unique. The equivalent statement holds for n-bu-
tane, iso-butane, 1-octanol, and so forth—any compound of interest to the chemist.
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The point locations arrive by an elementary view of molecular communication in
thermal environments.

It should be emphasized, however, that a system’s microscopic states are not as
straightforward as they might appear, even in the first-year arena of formula dia-
grams and reactant — product statements. This is true for compounds as small as
methane and everyday processes such as combustion. The reason is that virtually all
microscopic events are grounded upon the electronic messages carried by molecules,
and transmitted and registered via collisions. Thermal energy stored in molecular
translations and rotations provides the carrying, transmission, and reception power.
In a system as familiar as a Bunsen burner flame, there are no fewer than 14 mes-
sage-bearing components: N,, O,, CO,, Ar, Ne, Kr, Xe, H,, CH,, He,, H,O, ethane,
propane, and ethanethiol [1]. The reaction that liberates heat and enriches labs with
CO,, steam, and other products happens on account of binary collisions. Yet, with
K = 14 vehicles in play, there are quite a few two-party combinations, namely,

K-1
2(K—j)=14+13+ +1=105 (6.10)
J

Each combination provides its own brand of electronic data processing: N,-O,,
N,-CO,, N,-Ar, and so on. The message sending and receiving are frequent given
that the collision rate for each molecule ranges between 10° and 10" sec™'.

Consider a communication event portrayed in Figure 6.1. Shown are a generic
interaction potential ®(r), and CH, and N, (as in a Bunsen burner flame) at separa-
tion distance (r), poised for collision. At large r, the potential energy of interaction is
effectively zero as marked by the dotted horizontal line. As the molecules approach
each other, however, their electronic energy decreases due to forces of mutual attrac-
tion. As the encounter proceeds, energy is redistributed in the rotational and trans-
lational, and, to a minor extent, vibrational degrees of freedom. New sites of both
parties experience contact—attraction and repulsion—as part of a dynamic complex.
Since the union marks a local reduction of the system volume, there is a decrease
of entropy. The entropy diminution brings with it a trapping of information that is
unique to CH, and N,.

Under most conditions, chemical reactions occur rarely compared with thermal
collisions. This owes to the stability of molecules and their activation requirements—a
bond in CH, must be fractured in order to become amenable to oxidation or other
electronic conversion. Yet, given collision frequencies such as in a flame, momentary
fluctuations of the entropy (among other thermodynamic quantities) are the predomi-
nant events. The irreversibilities of combustion—heat, CO,, and steam production—
are scarce by comparison. For the majority of encounters, the charge packages end
up compressing one another slightly. This causes the interaction energy (as reflected
by @(r)) to increase dramatically above the null values applicable at large r. Quickly
the molecules separate, redistributing energy yet again in the translational and rota-
tional motion. Whatever information had been trapped via the entropy reduction
is lost in subsequent collisions. When it comes to the microscopic level, memories
within a system tend to be short-lived.
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FIGURE 6.1 Elements of communication among molecules. Shown are CH, and N, poised
for collision. The generic potential ®(r) describes the interaction of the molecules.

There is another point of Figure 6.1. CH, does not transfer an electronic mes-
sage to N, or any other molecule. Further, there is no recognition extended by N, or
other compound toward CH,. Rather, the colliding parties and their neighbors act
collectively as message sources, receivers, and broadcast channels. At the macro-
scopic level, the borders that separate the components of communication are distinct;
a gas transmits temperature data to a thermometer, pressure data to a barometer,
and so forth. The Angstrom scale is exceptional because the components are highly
integrated.

The molecular scale is further complicated in that a single ®(r) cannot tell the whole
story. Since CH, and N, make contact in a flame at different speeds, rotations, and
trajectories, there are inevitable variations of the Figure 6.1 potential. In particular, the
placement and steepness of the vertical portion of ®(r) are fluid as shown in Figure 6.2.
The identical statement holds for the well depth. The result is that the number of pos-
sible messages considerably exceeds the binary combinations noted in Equation (6.10).
Collisions between CH, and N, do not offer a single message, but rather an extended
set. There is a set of electronic messages for every combination of a system, irrespective
of the phase nature. This statement is equally valid for higher-order collisions (e.g., ter-
nary), although these will not be considered due to their rarity compared with binary.

Information is a featured commodity of all molecules. Compounds large and
small carry, communicate, and process it. The hypothetical cell of Chapter 2 was
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FIGURE 6.2 Molecular communication revisited. Colliding CH, and N, demonstrate mul-
tiple trajectories and interaction potentials.

only capable of synthesizing peptides because it hosted certain polynucleotides. The
peptide with formula:

VVRRVRVRRVVVRRRVRVVRRRVVRVRRRRVRRRVRVVRVVVVVVVVRRRRVR -
RRVRVVVVRRVRRVVRVVVVVRRVVVVVVVVVVRVVVVVVRVVVVVR

could have originated by the cell’s processing of the polynucleotide:

5’ GUAGUGCGUCGGGUGCGUGUCCGCCGCGUAGUUGUCCGCCGUCGGGUACGAGUU-
GUCCGCCGCCGCGUCGUUCGCGUCCGGCGCCGACGGGUUCGCCGGCGAGUACGCGU
AGUCCGCGUUGUAGUUGUAGUUGUCGUCGUGCGUCGACGCCGUGUGCGACGACGAG
UACGUGUCGUGGUCGUUCGCCGGGUCCGACGUGUCGUUCGGGUUGUAGUAGUCGUA
CGGCGGGUCGUUGUAGUAGUCGUCGUCGUAGUCGUACGUGUCGUAGUCGUGGUGGU -
CCGAGUUGUCGUAGUAGUACGG?’

or perhaps

5'GUCCGUCGCCGUGUGGUCGUUGUCCGGGUGGUACGUGUGGUCCGCGUUCGU-
GUGCGACGGGUAGUGCGUCGCGUCGUCGUUCGUGUUGUCGUUCGUCGAGUUGUGCG
ACGCCGUGUUCGCGUGGUGGUGCGUGUCGUGGUUCGAGUCCGGCGUGUU-
GUUCGCGUUGUAGUUCGUGUUCGCGUCCGCCGCGUCGUUCGACGUCGCCGGGUC-
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CGAGUGCGGCGUGUCGUCCGUGUUCGGGUCCGCCGGCGAGUCCGGCGCGUUCGGL -
GAGUGCGUGUCGUGGUGCGCCGACGCGUUGUACGG*'

There are a large number of possibilities given that the genetic code allots four
codons each for incorporating R and V into a protein [2]:

R: CGU, CGC, CGA, CGG
V: GUU, GUC, GUA, GUG

Thus, a 100-unit peptide restricted to V and R offers 2'°° = 10% possible information-
bearing precursors. The number of precursors of the polynucleotides is astronomi-
cally greater: 8'°°= 2 x 10%. Here A, G, U, and C are the respective abbreviations for
the base units of messenger RNA: adenine, guanine, uracil, and cytosine. The point
of this digression is that the messages of one molecule generally descend from the
information of others; in the cell’s case, proteins and polynucleotides. Further, infor-
mation processing need not involve molecules of different families. The origins of the
aforementioned poly(ribo)nucleotides are themselves poly(deoxyribo)nucleotides:

3'CATGCTGCCGCTCAGCACCATCAAGCGCATCATGCACAGCATGCGCAGGCG-
CACGCGGCCCAACACGCTGCCCATCATCAAGCACATCAGCAGGCTGCTCACCACGC
TGCTGCTCAGGCGCAACATCAGGCTCAGCACCAAGCGCAGGCTGCCCAGCATGCG-
CAGCAACAGGCCCAGGCACACGCGGCTCAGCATGCAGCCGCGGCCCAAGCG-
CAAGCCGCTCAGCACGCGCAAGCACATGCGGCCGCGCACGCGGCTCATGCTGC -
CCATGCCCACCATCAAGCCGCTGCGCACCACGCA®'

and

3" CAGGCAGCGGCACACCAGCAACAGGCCCACCATGCACACCAGGCGCAAGCA-
CACGCTGCCCATCACGCAGCGCAGCAGCAAGCACAACAGCAAGCAGCTCAACACGC
TGCGGCACAAGCGCACCACCACGCACAGCACCAAGCTCAGGCCGCACAACAAGCG-
CAACATCAAGCACAAGCGCAGGCGGCGCAGCAAGCTGCAGCGGCCCAGGCT -
CACGCCGCACAGCAGGCACAAGCCCAGGCGGCCGCTCAGGCCGCGCAAGCCGLT -
CACGCACAGCACCACGCGGCTGCGCAACATGCC®’

Such are the products of syntheses catalyzed by polymerase enzymes where T is
the abbreviation for thymine base units. Along similar lines, there are protein—pro-
tein interactions critical to enzyme regulation—information impacts information.
It is the field of bioinformatics that concentrates on polynucleotides and proteins,
their structure, function, and host organisms. The actions of these large compounds
encompass the full range of message writing, copying, editing, and deleting. One
refers to the end-of-chapter references for comprehensive treatments.

Concerning molecules more modest in size, the chemical fields are no less active.
This is because electronic states and information combine to make a wide-angle
lens. The research has ranged from graph topology analysis to the information of
density functionals. The advances have been motivated by the need to understand
energy dispersal among molecules, structure-activity relations, and data mining for
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pharmaceutical applications. Information of the statistical type sheds light where
there are states to enumerate and correlate.

To keep the focus on thermodynamics, one looks again at the ABA nature of
molecules—assemblies of C-C, C-H, and so on. One further keeps in mind the les-
sons of Figures 6.1 and 6.2, namely, that molecular communication occurs by ther-
mal collisions.

The following are elementary reaction statements:

Br
P~ + By — /\/
Br
Q o
+ d — é/d + Hcl

For each case, the reactants convert to products because of free energy losses. Yet
insofar as information is concerned, the critical events include the message transmis-
sion and reception that precede the losses. Reactions are rare compared with electronic
information processing. In a sample of Br, and I-butene, the halogen reacts at the
site of unsaturation. In a solution of Cl, and cyclopentanone and its enol tautomer, a
halogen is substituted for a hydrogen atom at the site alpha to the carbon-oxygen bond.
These statements describe the ultimate actions of the reagents. Yet all collision sites
of the molecules are sampled in thermal environments regardless of chemical activ-
ity. Chemical reactions happen because they increase the total entropy. Their selectiv-
ity, however, arises from the information expressed by the participant molecules. The
message processing is as complicated as indicated in Figure 6.2. Fortunately for the
chemist, formula diagrams provide digital reductions of facts and data. Further consid-
eration of communication mechanisms leads to information in the statistical sense.

C. H. Bennett examined molecular information processing at length in the
Thermodynamics of Computation [3]. His discussion looked to biopolymers DNA
and messenger RNA for showcase examples. Importantly, thermal energy governs
the state sampling. The result is that electronic messages are communicated by ran-
dom motion and collisions—erratic, bumpy random walks of the molecules. The
walks ensure that all the possible contact sites are sampled thoroughly in a heat-filled
environment. Bennett characterized the information processing as Brownian com-
putation. Molecules operate as Brownian computers because their state transitions
occur quite by thermodynamic accidents—Ilocal fluctuations enabled by translations,
rotations, and collisions.

As discussed in Chapter 2, information is the by-product of states, mechanisms
for communication, and uncertainty. Chapters 3 through 5 directed these concepts
to the macroscopic states of elementary systems. At the Angstrom level, one looks
to the collisions afforded by molecules—electronic contacts of ABA sites C-C, C-H,
C-0, and so forth—for states and mechanisms. It is the random nature that supplies
the uncertainty.
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FIGURE 6.3 Transmission and registration of electronic messages. 1-butene poses three
types of message-bearing sites: C-H, C=C, and C-C. An electronic message is transmitted
and registered upon collision with another party such as a helium atom represented by the
filled circle.

The communication and registration of an ABA unit is imagined as a low-energy
thermal contact between the molecule of interest and an atom such as helium. The
eventinvolves energy being redistributed and new sites becoming available for imme-
diate contact; a molecule does not suffer merely one collision at one discrete site but
rather an extended sequence. In keeping with idealizations of the macroscopic level,
all collision sites, and thus electronic messages, are viewed as equally accessible.
However, the probability of transmitting and registering a C-H, C-C, C=C, and so
on is taken as proportional to its occurrence in a random (i.e., thermal) walk over the
molecule. Figure 6.3 illustrates the essentials of the model. There are innumerable
messages afforded by a compound such as 1-butene. In the model, however, the
units that compose the messages are pooled into three distinctive sets having digital
labels C-H, C-C, and C=C. Along the same lines, there are three distinct message
units carried by cyclopentanone with labels C-H, C-C, and C=0. It is easy to count
sets and identify labels for a molecule by inspecting the formula diagram.

At the macroscopic level, a system’s nearest-neighbor states are accessed by
fluctuations and structured programs such as isotherms. There is a parallel at the
Angstrom scale. If one ABA site is registered by a thermal collision, the thermally
most probable site to be acted upon, and to affect the electronic message, subse-
quently will be a nearest neighbor. Since there is no reason to hold one site more
significant than another, all nearest neighbors should be viewed as equally probable
for thermal contact. This idea is illustrated in Figure 6.4. If the atom makes contact
with C-H, C=C, or C-C as in the upper, middle, and lower diagrams, respectively, the
most probable ensuing collision (interaction plus message transmission and registra-
tion) will involve nearest ABAs determined by the molecular structure.

Polynucleotides accommodate four different nucleobase sites or message
units. They offer enormous diversity by extended sequences, for example, ...
GUAGUGCGUCGG.... In a parallel way, molecules offer a richness of ABA-
contact sequences ... (C-C)(C-H)(C-H)(C-C)... and thus electronic messages. As
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FIGURE 6.4 Sequential transmission and registration of messages. A thermal collision can
occur at a site such as C-H in the uppermost diagram. Translation and rotation (indicated by
the arc symbols) of the molecule will then engage the message of the neighbor site such as
C=C or C-H. If the collision initiates at C=C as in the middle diagram, the succeeding event
involves C-H or C-C. If the collision occurs at C-C as in the lower-most diagram, the succeed-
ing event involves C-H or C-C.

with nucleobase sequences, the messages of a molecule can be specified using
the digital units that encode the formula diagram. A given sequence describes an
electronic message that is truly unique to the source, say, 1-butene as opposed to
cyclopentanone. The collection of possible sequences details the electronic message
space for the molecule. As with polynucleotides, there is overlap of the space for
one molecule to the next. This is because different molecules demonstrate ABAs in
common, for example, 1-butene, cyclopentanone, and ethane all host C-C and C-H
units. The uncommon units, however, along with their thermal walk particulars
confer uniqueness. As shown in the next section, it is straightforward to establish
the message space—the collection of possible messages—of everyday molecules
and to quantify the Shannon and mutual information. Polynucleotides are hard-
copy message tapes processed via polymerases and other cellular components. For
Brownian computers like 1-butene, the message tapes must be constructed and ana-
lyzed in virtual terms.

6.2 MOLECULAR MESSAGE TAPES: TECHNICAL CONSIDERATIONS

At the macroscopic level, information is quantified via multivariable functions,
line integrals, and probability distributions—the tools central to Chapters 3
through 5. The thermodynamic situations that admit analytical solutions are rare.
Approximations are necessary with the assistance of computer programming and
spreadsheets.

At the molecular scale, matters are different in certain respects while similar in
others. There are no multivariable functions or integrals to worry about. Yet pencil-
and-paper calculations range from the impractical to impossible. Examining a mol-
ecule as a Brownian computer requires construction of a random walk over the finite
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collection of ABA sites. A few essentials can be grasped via Figures 6.3 and 6.4. To
go further, one considers again a Bunsen burner flame that hosts ethane, propane,
and ethanethiol (among other compounds) in small amounts. Fragments of random
walks over these molecules can be represented in diagram terms as

Ethane:
H H H H H H
H—c|—i—H — H—g—l—H — H—c|—i—H
b b S
1
T T HoH H H
H_C|_T_H - H—(li—é—H -— H—(|Z—l—H
o H 7l
Propane:
H H H H H H T I-|| T
T R e et
bl b o
|
H H H H H H H H H
I T T
T T
Ethanethiol:

||4 H
|

H—Cw==C—S—H —>H—C|—C|—S—H —> H—C=C—S—H
H H

H H

I ] I 1]
H—c|—c|—s—H<— H—C|—C|—S—H -~ H—C|—C|—S—H
H H H H H H

The electronic site in contact with a hypothetical colliding element (not shown) has
been indicated using boldface. Each step accesses a nearest-neighbor ABA of the
formula diagram representing the molecule. In real Bunsen burners, the contacts
are made by thermal collisions. Neither the motion (translational and rotational) nor
interaction specifics are contained in the model. As a consequence, all the ABA
sites are treated in equal-likelihood terms, and their nature is unaltered during
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transmission and registration. This means that C-C never becomes more significant
than C-H or other units; C-C never starts to look like C-S and vice versa. Information
in the statistical sense requires systems whose states are robust and accommodating
of digital labels.

Diagrams capture the thermal walks pictorially. Quantitative representations are
obtained with the help of atom vectors and bond matrices. For an example, let each
atomic symbol in the diagram for ethane be indexed as follows:

3H HG
4H _C|1 _CZ_H7

sH  Hg

The corresponding atom vector and bond matrix become

e )
S OO = = = = O
—_——O OO O =
O O O O O O O -
S OO O O o o~
S O O O OO o -
[=NelNeololNeNeol =
S O O o O o~ O
S O O o O O = O

The vector components are the atomic numbers 6, 6, 1, ..., 1 corresponding to
letters of the formula diagram. The matrix, in turn, specifies all the linkages and
covalent bond orders. Since ethane is composed of eight atoms, the vector hosts
eight entries while the matrix dimensions are 8 x 8. There are notable character-
istics of the matrix. Clearly, the majority of components are zero, thus rendering
a certain sparseness. The diagonal elements are mandatorily zero since an atom
cannot bind to itself. The matrix is square symmetric with a determinant value
of zero.

The idealizations are apparent. All the atoms of a molecule interact electronically
with one another. But as with the formula diagram, the matrix portrays the covalent
interactions to be overriding. The diagram and matrix model the Angstrom-scale
electronics as short range and local in attraction and repulsion.

It is straightforward to construct atom vectors and bond matrices based on for-
mula diagrams. Additional examples are given as follows.

Acetone:
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Acetic acid:

Ethanethiol:

16
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The indexing of the atom symbols is arbitrary, although it is convenient to pair the major
atoms (i.e., all but H) with the uppermost vector and matrix slots. One can then apply a
computer subroutine to fill the hydrogen slots based on chemical valence rules.

To initiate a random walk—the transmission and registration of electronic messages
by thermal collision—one chooses an atom, say, 2, for ethane via a random number
generator (cf. Chapter 2). The corresponding entry is tagged in the vector—designated
by a wavy line in the following; the nonzero entries in the same row of the matrix are
then counted and labeled. The results of these operations can be represented as

—_ e = O O
cCoOOoO——~—~TO
—_—_—_o oo o~
cCoocoCcoOoO—
cCoococoOoO—
cCoocococoO
coocococowo
coocococomo
cooccooRo

The random number generator is then used to select one of the labeled entries of the
second row of the matrix, say, 3 corresponding to H unit 7. In so doing, an ABA site
of ethane has been established and needs to be labeled as such. In vector, and matrix
terms, one has

— === = = N N
SO~ PR=O
= ===
SO OO OoOOoO
SO OO OoODOoOO —
SO OO OoOOoOO
Sooocoo~O
SO oo OoOoOoO~—O
SO oo OoOoO— O

The initial entry logged on the message tape becomes C-H.

The next step selects a nearest-neighbor site at random. The present site of the
walker must be indicated by another tag, represented with an overhead curve in the
following. The eligible jump sites are then counted and labeled. In vector and matrix
terms, one has

)
(=)

—_—_— == = Oy O
SOO MR ~=""0
—_—_—_o o0 Oo R~
coocococoo R~
coocococoo R~
coocococoO R~
ScoococoCom

cCoococoOoO~O
coococoo
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A random number generator is then used to choose one of the superscript-labeled
entries, say, 1 corresponding to carbon unit 2. In so doing, a follow-up site of the
walker is established. In vector and matrix terms, one has

—_—_——0 0 O O =
coococo oo —
cCoocococo o —
coocoocooc oo —
cCoococoo~— o
coocoococo~ o
coococo o~ o

e e e e ) )
OO O = e e =m O

The message unit logged by the message tape becomes C-C. It should be apparent
that repeated tagging, counting, and random selection results in a Brownian walk
over the molecule. The tape tracks the sequence of collisions via nearest-neighbor
ABA-message units. Random walks were illustrated earlier for ethane, propane, and
ethanethiol in formula diagram terms. When vectors and matrices are used to encode
the walks, the results appear as

Ethane:

_ == = = = N Y
S O O = === O
_—_—_0 O O O -
SO OO OO oo~
S O OO oo o~
S O O O OO o
S O OO O o~ O
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SO O O O O o~ O
_—— e = = = Y Y
S OO = === O
_—— 0 0O O O =
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SO OO O O o =
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Propane:
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Ethanethiol:

16 0O 1 01 0 0 0 0 O 16 o1 01 0 0 0 0 O
6 1 01 01 1 0 0 O 6 1 0 1. 01 1 0 O O
6 0O 1 0 0 0 0 1 1 1 6 o1 0 0 0 0 1 1 1
1 1 0 0 000 0 0 O 1 1 0 0 00O OO0 0 O
1 o1 0 0 0 0 0O 0 0 — 1 0O 1 0 0 0 0 0 0 O
1 0O 1 0 0 0 0 0 0 O 1 0O 1 0 0 0 0 0 0 O
1 O 0 1 0 0 0 0 0 O 1 0O 0 1 0 0 0 0 0 O
1 O 0 1 0 0 0 0 0 O 1 o 0 1 0 0 0 0 0 O
1 0O 0 1 0 0 0 0 0 O 1 0O 0 1 0 0 0 0 0 O

C-C - C-H

Portions of message tapes assembled for the molecules read as
Ethane:

...(C-H)(C-H)(C-H)(C-C)(C-H)(C-C)(C-H)(C-H)(C-C)(C-H)(C-H)(C-C)
(C-H)(C-C)(C-H)(C-C)(C-H)(C-C)(C-H)(C-C)(C-H)(C-H)(C-C)(C-H)
(C-H)(C-H)(C-C)(C-H)(C-H)(C-H)(C-H)(C-H)(C-H)(C-H)(C-H)
(C-H)(C-C)(C-H)(C-H)(C-H)(C-C)(C-H)(C-C)(C-H)(C-H)(C-C)(C-H)
(C-H)(C-C)(C-H)(C-H)(C-C)(C-H)(C-H)(C-H)(C-H)(C-H)(C-C)(C-H)
(C-C(C-H)(C-H)(C-C)(C-H)(C-H)(C-H)(C-C)(C-H)(C-H)(C-C)(C-H)
(C-C)(C-H)(C-C)(C-H)(C-H)(C-C)(C-H)(C-H)(C-C)(C-H)(C-H)(C-H)
(C-H)(C-H)(C-C)(C-H)(C-H)(C-H)(C-H)(C-C)(C-H)(C-H)(C-C)(C-H)...

Propane:

...(C-H)(C-H)(C-C)(C-H)(C-H)(C-C)(C-H)(C-C)(C-H)(C-C)(C-H)(C-C)
(C-H)(C-H)(C-C)(C-H)(C-C)(C-C)(C-H)(C-C)(C-H)(C-H)(C-C)(C-H)
(C-H)(C-C)(C-H)(C-C)(C-C)(C-H)(C-H)(C-H)(C-H)(C-H)(C-C)(C-H)
(C-C)(C-H)(C-H)(C-H)(C-H)(C-C)(C-H)(C-C)(C-H)(C-C)(C-H)(C-C)
(C-H)(C-H)(C-H)(C-H)(C-C)(C-H)(C-C)(C-C)(C-H)(C-C)(C-H)(C-H)
(C-C)(C-H)(C-C)(C-H)(C-C)(C-H)(C-C)(C-H)(C-C)(C-H)(C-H)(C-C)
(C-H)(C-H)(C-C)(C-H)(C-H)(C-H)(C-C)(C-H)(C-H)(C-H)(C-H)(C-C)
(C-H)(C-H)(C-C)(C-H)(C-C)(C-H)(C-C)(C-C)(C-H)(C-H)(C-C)(C-H)....

Ethanethiol:

...(C-H)(C-C)(C-S)(C-H)(C-S)(S-H)(C-S)(C-C)(C-H)(C-C)(C-H)(C-H)
(C-O)(C-S)(S-H)(C-S)(C-H)(C-H)(C-C)(C-H)(C-C)(C-H)(C-H)(C-C)
(C-H)(C-H)(C-H)(C-H)(C-H)(C-H)(C-C)(C-H)(C-H)(C-S)(S-H)(C-S)
(C-H)(C-S)(C-C)(C-H)(C-H)(C-H)(C-C)(C-H)(C-C)(C-H)(C-H)(C-H)
(C-H)(C-C)(C-H)(C-H)(C-H)(C-C)(C-H)(C-H)(C-H)(C-H)(C-C)(C-H)
(C-S)(S-H)(C-S)(C-H)(C-S)(C-H)(C-H)(C-H)(C-S)(S-H)(C-S)(C-H)
(C-C)(C-H)(C-H)(C-C)(C-S)(S-H)(C-S)(C-H)(C-S)(S-H)(C-S)(C-H)
(C-C)(C-H)(C-H)(C-H)(C-H)(C-C)(C-H)(C-S)(S-H)(C-S)(S-H)(C-S)...

Each tape is unique due to the electronic composition and structure of the source.
Each tape is without limit, at least in principle, because there is no end to the
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collisions in a heat-filled environment. Practically speaking, it is straightforward
to compile tapes of several thousand ABA units or more. Appendix A of this book
presents a computer program that will perform such compilations. This program
can be adapted to a variety of small organic molecules to probe their information
properties. The lesson of Figure 6.2 must be kept in mind, however, that every site of
a molecule offers multiple interactions. Thus, each entry C-H, C-C, and so forth of
a record tape stands for a set of electronic messages. It is the sequence of units that
contains information in a manner that parallels polypeptides and polynucleotides:
...RVRRVRRV... and ...CUCGACGU.... As with biopolymers, the information for
small compounds can be quantified in bits at multiple orders: first, second, third, and
so forth. Each order corresponds to the number of message units transmitted and
registered in a Brownian process.

Ethane and propane are restricted to C-H and C-C units. The same units are car-
ried by ethanethiol, in addition to C-S and S-H. To quantify information in the first
order—the bits per single ABA encounter—one tabulates the occurrence frequen-
cies (f;) for each unit recorded on the tape. A given molecule poses N different units.
The first-order Shannon information (Z,) follows from the (now) familiar formula:

N
I== Jlog, ] (6.11)
Therefore for ethane and propane:

Iy ==fep 108, fe_y = foc 108, fee (6.12)

whereas for ethanethiol, one computes:

Iy ==fep 108, fooy = fooc 108y foc = foos 108, feos = fsop 108, fs_y (6.13)
The first-order information for acetone would follow from the three-term expression:
Ii=~fey 10 ey = Jec 108, fec = fe 07102 fe o (6.14)

It is straightforward to identify via the formula diagram the terms necessary for com-
puting 7, as is the subject of a few end-of-chapter exercises. It is not always so easy
to anticipate f; in advance of the message tape. For example, C-C constitutes one of
seven ABAs in ethane. However, its tape frequency is 0.250 on account of extended
collisions and nearest-neighbor effects. If a thermal contact transpires at C-H, there
is a one in four chance that the next (i.e., influential) message unit will be C-C.

For two-unit sequences, ethane manifests three possibilities: (C-H)(C-C), (C-C)
(C-H), and (C-H)(C-H). Thus Shannon information arrives in the second order via:

ethane _
12

f(c-H)(c-C) ‘log, f(C—H)(C—C) f(C—C)(C—m ‘log, f(C—C)(C—H) f(c-H)(c-H) ‘log, f(c_H)(c_H)

(6.15)
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Molecules such as propane, butane, pentane, and so forth offer the same pair com-
binations as ethane plus (C-C)(C-C). Ethanethiol poses the same pair sequences as
ethane along with (C-H)(C-S), (C-S)(C-H), (C-S)(S-H), (S-H)(C-S), (C-C)(C-S), and
(C-S)(C-C). Accordingly there are nine terms to address for [§haethiol Counting the
pair and triplet messages for acetic acid and acetone is the subject of an exercise.
Clearly the number of messages grows with the complexity of the molecule and the
order (length) of the contact sequence. It is straightforward to identify examples of
high-order messages by looking at the formula diagram and imagining the random
walk. For instance, ethanethiol offers the following in the sixth order:

...(S-H)(C-S)(C-H)(C-H)(C-H)(C-S)...
...(C-H)(C-C)(C-H)(C-H)(C-H)(C-H)....
...(C-H)(C-H)(C-H)(C-H)(C-C)(C-S)...

It is by no means easy to write all the possibilities by visual inspection. Rather the
possible thermal walks must be fleshed out with the help of computer programs and
then parsed for all multiorder messages.

Figure 6.5 illustrates the Shannon information allied with ethane, propane, and
ethanethiol as a function of sequence order n. Vertical error bars mark the averages
+1 standard deviation; the bars are barely perceptible given the symbol sizes. The
errors arise from the finiteness of the message tapes and drifts in the random number
generator.
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FIGURE 6.5 Shannon information for ethane, propane, and ethanethiol. Error bars mark
averages +1 standard deviation. Information values derive from the statistical structure of
the message sequences allowed by the formula diagrams. The abscissa marks the number of
message units.
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The results make several points. First, the more diverse the ABA composition, the
greater the Shannon information. At all orders for the three molecules:

I;;thanethiol > Inpmf”lm’ > I:ithane (616)

The data also convey that the information availed by a molecule increases with the
number of message units transmitted and registered. For any compound:

I <1 <I (6.17)

Figure 6.5 also shows the Shannon information to be linear with the sequence order.
This leads to a state descriptor for the microscopic scale based on the natural rise
of I, with n. In particular, linear regression analyses lead to a best-fit slope &; with
uncertainty G, each having units of bits per message unit. For the three Bunsen
burner molecules, one finds:

gy = 0.686, oge =5.9x10* bits/message unit

g7 = 0.846, ogf,"”“"e = 3.5 x 1073 bits/message unit

Eethanethiol 1 (02, 0%”}“""””“" = 2.2 x 102 bits/message unit

All systems pose more than one type of information. For molecules, the code
units manifest frequencies such as fi. ;; and f_ ¢ in thermal collision strings. A record
tape that logs the collisions also offers pair combinations, for example, C-H followed
immediately by C-C at frequency fcc.c)- It is the mutual information (MI) that
quantifies the correlations imbedded in these unit sequences. For instance, ethane
offers three message pairs. MI arrives in the second order of analysis via:

prob((C-CXC-H))
prob(C - C)- prob(C - H)

Ml ghare = +pr0b((C -O)(C - H))'Ing

prob((C - HYC-0))

(6.18)
prob(C — H) - prob(C - C)

+ prob((C - H)C - 0))-log,

prob((C - HXC - H))
prob(C — H)- prob(C — H)

+ prob((C - H)C - H))-log,

The computations for MI, for propane and ethanethiol feature four and nine terms,
respectively. The correlations within a message tape are not limited to pairs. Thus,
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the mutual information expressed by a tape can be quantified at multiple correlation
orders 3, 4, 5, .... For instance, one of the third-order terms for ethane is:

prob((C CXC HXC C))
prob(C C)- prob(C H)- prob(C C)

MIghae. o pye o =+prob(C C)C HXC C))-log,

(6.19)

and an example of a fourth-order term is:

MIghare o uye-cy = +Prob((C = CXC ~ HXC - H)(C - C))

prob((C-C)C-H)C-H)C-C))
prob(C - C)- prob(C — H)- prob(C — H)- prob(C - C)

(6.20)

x log,

Such would carry zero weight if the message units were logged independent of one
another on a record tape. MI quantities are illustrated in Figure 6.6 for ethane, pro-
pane, and ethanethiol. As with Shannon information, M1 increases with correlation
order n in a linear fashion. Striking is the contrast between the hydrocarbons and the
organosulfur compound. One thus obtains a second descriptor of the Angstrom-scale
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FIGURE 6.6 Mutual information for ethane, propane, and ethanethiol. Error bars mark
averages +1 standard deviation. Quantities are based on the statistical structure of the formula
diagrams subject to a nearest-neighbor random walk.
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state. Linear regression analyses of M1, versus n lead to:

g =0.125,  oghie = 6.5x 10~ bits/message unit

E " =0.0741, of " =3.6x 107 bits/message unit

Eepneniel = 0.677  oghmehel = 2.3 x 1072 bits/message unit

Earlier chapters showed that a system can be described macroscopically by energy
quantities such as U and H. The record tape for a molecule makes contact with the
Angstrom scale by reference to ABA energy tables. For example, ethanethiol hosts
four message units: C-H, C-C, C-S, and S-H. The average energy < D, > in the first
order obtained from computing is:

Dy =fep Doy Jooc Dec+Jeos De_s + fsy Ds_y 6.21)
The average energy in the second order follows from the expression:

D, = f(c-H)(c-C) “(De_y + Do)+ f(c-H)(c-H) “(De_y +De_yy)
(6.22)
+ f(C—C)(C—S) (D¢ +De_s) +

There are six additional terms to calculate and the expressions for < D; >, < D, >, and
so forth follow in like fashion.

Energy computations lead to Figure 6.7 based on the message tapes for ethane,
propane, and ethanethiol. Not surprisingly, <D,> increases linearly with order n,
although there is little contrast among the molecules. A third descriptor arrives:

Epre =397, ogape =5.5x 107 kilojoules/mole - message unit

B0 =391, of7" =3.5x 107 kilojoules/mole - message unit

Epmethiol = 366, oghptiol = 1.8 x 107 kilojoules/mole - message unit

These follow from linear regression analyses applied to <D,> versus n.

At the macroscopic level, a system offers energy dispersion quantities such as 6
and 6. Molecular message tapes do their part by furnishing 6, at multiple orders.
In a first-order analysis of ethanethiol tapes, one computes:

0(1;) =\/(fc w Doy DyV+(eeDee D V+(fes Doy D V+(fgyDgy D)

(6.23)

In the second order, one calculates:

oy = \/(fwfm(cfo ‘Dey+Dee) DV +icuyeny Pen+Dey) Dy )+

(6.24)
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FIGURE 6.7 ABA ecnergies allied with message tapes. Error bars mark averages +1 stan-
dard deviation. Quantities are based on the message tapes compiled via random walks and
reference to standard tables of dissociation energies.

Dispersion quantities have been plotted in Figure 6.8. The scaling is not as lin-
ear as in the three preceding figures. At the same time, there is greater contrast
among the molecules. A fourth descriptor of the microscopic state follows from lin-
ear regression analyses:

E:Zm =4.57, og'f'o“;" = (.18 kilojoules/mole - message unit

gz::’i""" = 5.81, 02’2”;“"‘ = (.28 kilojoules/mole - message unit

Eg:"""""”‘ =213, 0;’(’;‘;”""‘” = 1.0 kilojoules/mole - message unit

A sample of ethane, propane, or ethanethiol can be described macroscopically using
n, V, T. p, and other state variables. It is the & values that furnish elementary descrip-
tors of states at the microscopic level.

6.3 CHARACTERISTICS OF INFORMATION
AT THE MOLECULAR LEVEL

Chapter 3 demonstrated that thermodynamic systems afford substantive information
in the statistical sense when they are very small in size. This is echoed by molecules.
Substantive information manifests at the Angstrom level because a random pro-
cess—thermal motion plus collisions—is always in place for message transmission
and registration. Chapter 4 discussed how information is realized when a structured
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FIGURE 6.8 ABA dispersion energies allied with message tapes. Quantities are based on
the message tapes and standard tables of dissociation energies.

program is applied to a system—a program demarcates a state population that is
both extended and diverse. Molecules have programs built into them, so to speak, by
their element composition and covalent bond network. Thermal energy does the rest
in powering translations, rotations, and collisions.

The second characteristic concerns standard tables. These provide indispens-
able data for the chemist regarding molar entropies, enthalpies, free energies, and
ABA energies. Concerning information, the tables can be augmented by applying
the methods of the previous section. Table 6.1 lists §1’§W’§<D>’§°n for familiar
compounds. Clearly, the greatest variations are demonstrated by the correlation and
dispersion quantities &,, and EUD; with rare exception, the least variations are found
in E_p,_. It is challenging to anticipate & descriptors prior to message tape assembly
and analysis. The reason is that the ABA sequences depend intricately on the source
structures and random walk properties. This should not be surprising. It is difficult to
intuit the statistical structure of information-bearing molecules in general; proteins
and polynucleotides offer plenty of examples here.

The third characteristic concerns the bits per message unit encountered—it is
typically low for an organic molecule. The largest &, in Table 6.1 are allied with
2-chlorocyclopentanone and 1,2-dibromobutane at 1.16 bits per message unit. The
electronic programs of molecules demonstrate an economy of information.

Chapters 4 and 5 illustrated special transformations marked by zero information
in one or more state variables. Regarding the Angstrom level, the fourth charac-
teristic is the specialness of certain compounds. Table 6.1 reports §,,§MI,EOD for
CH,, N,, O,, CO,, and H,0 as zero. These charge packages are special because
they lack ABA diversity; elements packaged in nature as molecules—Cl,, F,, Br,,
and so forth—are special in this respect. Nonzero information for these systems is
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TABLE 6.1

Angstrom-Scale Descriptors of Various Molecules

Molecule 3 Ima Jep> 3o,
Arginine 1.12 1.53 368 26.6
1-Butene 1.07 0.324 421 27.8
2-Chloro-cyclopentanone 1.16 0.332 389 16.0
Cyclopentanone 1.04 0.185 393 15.4
1,2-Dibromobutane 1.16 0.275 369 16.3
Ethane 0.685 0.125 397 4.57
Ethanethiol 1.022 0.677 366 21.3
n-Butane 0.889 0.0683 388 6.58
n-Propane 0.846 0.0741 391 5.81
iso-Butane 0.886 0.0765 388 7.18
Valine 1.06 1.25 388 20.8
CoO, 0.00 0.00 802 0.00
0O, 0.00 0.00 498 0.00
CH, 0.00 0.00 414 0.00
H,O 0.00 0.00 464 0.00

Note: g and E,, are listed in units of bits per atom—bond-atom (ABA) unit. §_,,, and

EG are listed in kilojoules per mole per ABA unit.
D

registered only at lower levels, such as by taking into account the resonance and
atomic orbital structures. Electronic diversity in the molecules is not captured in
stand-alone digital reductions provided by ABA units.

The fifth characteristic recognizes that the mutual information is not zero at the
ABA level, the exceptions being the molecules of the preceding paragraph. This is on
account of the electronic structure correlations. If nature assembled molecules absent
valence and other structure rules, &,, would forever be pinned at zero. Among other
consequences, a collision at one site of a compound would afford no information about
a neighbor. Note that the €, of Table 6.1 span more than an order of magnitude. It is
the mutual information of a molecule’s messages that provide a signature attribute.

Additional characteristics are illustrated by transforming and replotting the
Table 6.1 data. Figures 6.9 through 6.11 follow from Table 6.1 entries using the data
for ethane as a baseline. Illustrated are reduced (dimensionless) descriptors, apply-
ing the identical scale to the horizontal and vertical axes. For example, the reduced
descriptor for the Shannon information is obtained from:

E 1-butene
1

Et;thune (625)

E}—but@ne =

Reduced forms of §,,,E_,, and §0D follow in the analogous way. The point allied
with each molecule has been labeled. The error bars are established by the o, and
O .p, from regression analyses.
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FIGURE 6.9 Reduced descriptors for two- and four-carbon systems. Plotted are é ; Versus
&, scaled via ethane data. The point for ethane molecule appears at 1,1. The error bars are
established by O, and O: s from regression analyses.

Figures 6.9 and 6.10 concentrate on two- and four-carbon systems and carry
important lessons. The purpose of a functional group is to activate a molecule in a
spatially selective way; the group lowers the chemical inertness at one or a few sites.
These second-year chemistry ideas are reinforced by the information characteristics.
Figure 6.9 shows how the Shannon information is enhanced by 50% by functional-
izing ethane using either a carboxyl or mercapto group. Note the vertical alignment
of the data. This tells us that the more prominent effect of functionalizing a mol-
ecule entails information, not energy density. Likewise approximately 40% of the
enhancements are demonstrated by converting n-butane into an alkene or dibromo-
derivative; the energy changes per ABA unit are incidental by contrast. A functional
group avails new electronic programs in a molecule for controlling the work and
heat transactions of chemical reactions. It does so by enhancing the carrier’s infor-
mation of the statistical variety. Figure 6.10 makes an analogous point regarding
energy dispersion. Here the effects of functional groups are even more pronounced,
for example, a mercapto group enhances E by nearly a factor of five. Note as well
that €  slightly discriminates normal- from iso-butane owing to the differences
in their electronic structure. The added point is that functional groups amplify the
energy diversity of the electronic message space.

Figure 6.11 illustrates state points in the g g plane for all but the special
molecules of Table 6.1. A sharp distinction is demonstrated again between activated
molecules and those lacking functional groups. It is the mutual information that is
indeed most sensitive to chemical modification. Activating ethane with a carboxyl
group increases the collision-based Shannon information by 50%; the enhancement
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is by nearly a factor of 10 concerning mutual information. The figure makes the
additional point that amino acids (cf. Figure 2.2 of Chapter 2) are especially endowed
with message space correlations. As is well appreciated, these compounds are prom-
inent in biochemical signaling and reaction control, as opposed to saturated hydro-
carbons. One looks to peptides and proteins for showcase examples.

The major points of this chapter are the following:

1. Systems express information not just at the macroscopic level. There are
robust states, mechanisms for communication and registration, and uncer-
tainty at the microscopic scale as well. This scale is the complicated domain
of quantum mechanics and statistical thermodynamics. Standard tables,
formula diagrams, and random walk models, however, provide more imme-
diate handles on information in the statistical sense.

2. The statistical structure of a molecule and message sequences render state
descriptors §,,&,,,E_,. and EOD as in Table 6.1. Of these, g, and EGD
are the most differentiated and indeed fingerprint-like for molecules.
Amino acids, alkaloids, and natural products demonstrate highestg g
whereas saturated hydrocarbons express the lowest. One is reminded how
information plays more than one role for a system and its environment. It
equates with the code amounts needed for labeling states or messages; it
connects with a system’s diversity, complexity, and capacity for control. It
is then no surprise that functionalized molecules such as acids and bases
express greater information on Shannon and mutual accounts compared
with alkanes. Molecules especially endowed with functional groups (e.g.,
amino acids) are able to control a greater number of chemical decisions, all
ultimately having to do with the transfer of work and heat.

6.4 SOURCES AND FURTHER READING

The intersection of the microscopic scale with information presents a vast literature.
To list a sampling most helpful to the author, one begins with the information theory
and statistical thermodynamics work of Jaynes [4], and the later text by Baierlein
on atoms and information [5]. At a less advanced but still highly illuminating level
are books by Morowitz [6,7]. Information casts a wide net in chemistry. Levine and
coworkers have long championed information theory applied to molecular processes
such as relaxation and internal energy redistribution [8,9]. Biopolymers plus infor-
mation yield the field of bioinformatics. Recommended is the text by Tramontano for
the landmark questions posed [10]. The research of Schneider has addressed in depth
the information attributes of biopolymers [11,12].

Regarding microscopic state descriptors, the stage was set in the late 1970s by the
work of Bonchev and Trinajstic on the branching processes of alkanes [13]. Included
in this reference are key sources regarding the information posed by vertex graphs,
the standard vehicles for portraying organic compounds. Along related lines, the
complexity of molecules via their structural information was formalized in the 1980s
by Bertz [14,15]. Several research groups have approached molecular information
by quantifying topological indices of an entropic nature [16—18]. Gonzalez-Diaz
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and coworkers have pioneered the application of Markov and entropic descriptors
of numerous molecular systems [19]. The molecular message tapes illustrated in this
chapter share many properties with Markov chains.

The information can be studied for individual molecules or libraries. Bajorath and
coworkers have established signature contrasts between natural and synthetic librar-
ies [20,21]. For several years, the author and his students have investigated molecular
information at the base formula and structure diagram levels. The Brownian com-
putation model described in Chapter 6 has been directed to individual molecules,
libraries, and enzymatic proteins [22-25].

There are three more notes to add. Bennett discussed more than just molecular
information processing; he considered as well the principles of mechanical computa-
tion [3]. The fundamentals have received further elaboration in the Feynman lectures
on computation [26]. Second, as indicated in Chapter 1, ABA units encode molecular
information at a high level. Information at a deeper level has been explored exten-
sively by the work of Parr and Yang [27] and Nalewajski [28]. Last, thermochemical
tables are indispensable to all branches of chemistry. Extensive compilations have
been presented by Cox and Pilcher [29].

6.5 SUGGESTED EXERCISES

The following require adapting the program listed in Appendix A to diverse
molecules. A variety of compounds can be compared and contrasted via infor-
mation descriptors.

6.1 Table 6.1 lists €,, for acetic acid as significantly greater than §,,
for ethane. Does esterification of the acid via ethyl alcohol enhance
or diminish §,, ? Please discuss in terms of information as a type of
control capacity.

6.2 How do E,, and EGD compare for cyclobutane (left) and cubane
(right)? Please discuss. Were the results anticipated correctly?

6.3 Howdo &, and EUD compare for cyclobutene (left) and Dewar ben-
zene (right)? Please discuss.

6.4 The Handbook of Chemistry and Physics lists five compounds with
formula C(H,,. Review the structures and posit which offers the
largest &,,. Do likewise regarding E(,D . Check the prediction by
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constructing and analyzing message tapes for the molecules. Were the
results anticipated correctly in advance?

6.5 Howdo &, and EUD compare for cyclohexane (left) and adaman-
tane (right)? Please discuss.

6.6 Howdo E,; and EGD compare for leucine and isoleucine? Please
discuss.

6.7 A famous experiment involved mixtures of methane, ammonia,
water, and hydrogen subject to electrical sparks. The reaction prod-
ucts included the amino acids glycine, aspartic acid, glutamic acid,
and B-alanine in mole ratios 63:0.4:0.6:15. How do the values of
&, &y E.p. and EOD correlate with these results? The chemistry is
discussed at length by Calvin [30].

6.8 In early days, camphor (right) was obtained via reactions commenc-
ing with o-pinene (left). In carrying out the synthesis, does the chemist
enhance or diminish the mutual information expressed by the starting

material?
~ (0]

6.9  Consider the thermal collision messages of molecules without the help
of computer programs. Identify all the first-, second-, and third-order
messages for acetone. Do likewise for acetic acid.
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7/ Thermodynamic
Information and
Chemical Reactions

The states of a system are modified by variable tuning and energy exchanges. In
chemically active venues, the states alter spontaneously and with purpose in col-
laboration with the surroundings. This chapter considers an unusual type of thermo-
dynamic transformation by way of chemical reactions.

7.1 OVERVIEW OF CHEMICAL REACTIONS

In Chapter 3, the states of a system were specified by p, V, and other variables.
It was shown that information in the statistical sense was low in most cases and
indeed bordered on zero. The reason is that fluctuations wield only tiny impacts
for large volume, multiparticle systems under equilibrium conditions. Matters are
different when structured programs are applied. All the programmed pathways
of Chapters 4 and 5 featured extended collections of states. For a given collec-
tion, there was appreciable information allied with the variables in query-and-
measurement exercises. The exceptions were n for closed systems, and p, T, S,
and so forth for isobaric, isothermal, and adiabatic—the special transformations
of thermodynamics.

Chapter 6 turned to the microscopic level. All molecules underpin probabil-
ity functions via their charge distributions. Thermal environments do their part
by imposing uncertainty on all electronic communication and registration. It was
shown that familiar compounds—ethane, propane, and ethanethiol, for example—
pose collision-based information. The atom—bond—atom (ABA) units of the mol-
ecules furnish a robust code for labeling the messages. The Shannon and mutual
information were quantified for the collision sequences allowed by the molecular
structure. This Brownian approach offered new descriptors of states by way of
§ Epy Eupr and €,

As the chemical enterprise demonstrates, molecules are valuable not only for
what they are, but also for what they can become. Molecule A can beget B and
vice versa in environments ranging from flames to cells to round-bottom flasks. The
transformations are described in the most succinct terms:

A=—B

Such transformations conserve mass, charge, energy, and atom identity. At the same
time, they represent a most unusual consequence of thermodynamic fluctuations
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and program applications. A discussion of this topic typically concentrates on stan-
dard state functions G¢, H9, and S° these were briefly visited for Bunsen burner
reactants and products of the previous chapter. We shall aim here, however, for a
more general and intuitive grasp. This arrives by examining a few cases of reaction
thermodynamics from complementary points of view. The major points echo ideas
discussed in Chapter 3 for composite systems.

To begin, a thumbnail sketch of why chemical reactions happen goes as follows. If
A offers any mechanism for entropy increases, then such increases will occur sooner
or later subject to the constraints in place. Left in the wake will be compound B with
a definitive structure of its own, and a solution mixture of A and B. The initiation
involves contact of A with its neighbors—other A molecules or activating sites—and
energy exchanges with the surroundings.

The longer story, of course, involves electronic messages, thermal collisions, and
adjustments of the system composition. This is the subject of Figure 7.1, which rep-
resents in schematic terms a gas coupled to heat and work reservoirs. For discussion
purposes, let the container be leak-proof and held at constant temperature and pres-
sure. Let the system be composed only of A initially as represented by the open circles.
Let one of the A molecules be poised for conversion to B, the latter represented by the
filled circle.

Now the ordinary events inside a gas sample surround collisions and energy redis-
tribution. The record of any single event is quickly lost as the colliding parties sepa-
rate and move toward neighbors. The system entropy is diminished slightly during
each contact, yet is restored via subsequent collisions. The average entropy remains
at some baseline value if no irreversibility occurs anywhere in the event chain.

But reactions are extraordinary events. When A converts to B and repositions the
system closer to equilibrium, there occurs a material entry in the record of messages

“To o O

Heat bath

FIGURE 7.1 A chemically reactive gas coupled to heat and work reservoirs. A molecules
are represented by the open circles. A single A is poised for conversion to B, the latter repre-
sented by the filled circle.
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transmitted and registered. The effects can only be nullified at a cost of work imported
from outside. The consequences include an increase in the total entropy; this is dis-
persed unevenly across the system and surroundings. Any restoration to the initial
value also carries a work price tag. It is often possible for the chemist to force B back
to A and thus lower the entropy. Yet the requisite work has to originate from a natural
(i.e., spontaneous) process, which itself can only be reversed via work drawn from
yet another source—on and on. The point is that when chemical reactions proceed
under nonequilibrium conditions, there is a definite irreversibility in their character.
The effects propagate well beyond the site where A converts to B.

Charge distributions underpin messages and communication mechanisms. They
also dictate the energy mismatches among molecules. It is typical that the energy—
both kinetic and potential—of A’s electrons and nuclei does not equate with B’s. By
the first law of thermodynamics, energy must be conserved in any process, revers-
ible and otherwise. In conversions of A to B, energy shortfalls must be covered by
whatever surrounds A and B. The first law requires:

Etran.rferred from surroundings + AT EB (71)

By the same token, energy windfalls must be absorbed. The first law also mandates:

EA = EB + Etransferred to surroundings (72)
The most common currency is heat propagated by collisions. In the system of
Figure 7.1, any transfer of heat forces an entropy change in the surroundings,
namely,

_ Qrec (7 3)

surroundings T

The negative sign is critical. For an endothermic process, heat is transferred from
the bath (heat reservoir) to A. The entropy of the reservoir is thereby diminished. For
an exothermic process, heat must diffuse outward toward the bath whereby its entropy
increases. Since the discussion restricts the heat exchanges to constant 7, p condi-
tions, they (i.e., Q,,. values) connect simply with changes in the system enthalpy.

The entropy effects are not confined to the bath. Even if the production of B is
highly local, such as at an activating or catalytic site, there will be eventual and
thorough mixing of the reactants and products. The chemist would have to expend
work should he or she need to separate A from B. Let the mixing entropy for n, and
ng moles of A and B be modeled as

Mo _ n,R-log, "

S, =-n,R-log, . "
ny,+ng ny+ng

mi

=-n,R-log,(X,)-n,R-log,(X,) (74
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Let Equation (7.4) approximate entropic effects over and above those due to heat
exchanges where ideal behavior is assumed for A and B. Let the entropy surrounding
microscopic degrees of freedom, such as electronic, rotational, and vibrational, be
encapsulated in the molar quantities S4 and S3.

An example illustrates the salient points. Let the molar enthalpies and entropies
of A and B be as follows:

H3 =8000 joules / mole, S§ =5.00 joules / mole - Kelvin (7.5A)

Hg = 6000 joules/mole, S = 6.00 joules/ mole - Kelvin (7.5B)

Let the Figure 7.1 container commence with 1.00 mole of pure A at volume 1.00
meter® and temperature 298 K. Then if x moles of B are formed locally, the entropy
is modified eventually in two places—system and surroundings—as described by
Equations (7.3) and (7.4), and  §¢,. The change for the surroundings is:

¢ _=Qu _~GHy-xHY) _ (Hj - xHp)
surroundings T 208 K 298 K

(7.6)

while §¢, equates with xS% — xS9. Figure 7.2 accordingly shows the dependence of
each contribution to the entropy change; the total is included as a function of moles
of B formed.

Several points follow. The reaction under consideration is exothermic because
the molar enthalpy of A exceeds that of B; the A population loses heat-generating
potential, so to speak, when members convert to B. In turn, the greatest entropy
change for the heat bath would occur if all the A converted to B. The mixing
ensures otherwise, however, by the maximum of S, at x=0.500 moles. The latter
forces the total entropy to express a maximum somewhere between x = 0.500 and
1.00 mole, in this case, x @0.714 moles. It is the extremum or apex of S, that
ultimately dictates the equilibrium. As A switches to B, the sum of entropy changes
increases until it can increase no more, regardless of mechanism. The extremum
nature of S, , retards the total conversion of A to B however skilled or wishful
the chemist may be, for example, if B is a marketable commodity. At the same
time, thermal environments are never devoid of fluctuations. Thus, in an equilib-
rium sample of A and B, accidental increases in one compound at the expense of the
other switch on forces that push all parties back toward the maximum entropy state.
It is not a coincidence that this behavior mirrors that of the helium—neon mixtures
discussed in Chapter 3.

The apex of the total entropy change also determines the maximum available
work—the free energy available from the system:

| Gl=|-T" S,/ =|-298 K-10.48 joules /K|~ 3123 joules (1.7)
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FIGURE 7.2 Entropy changes due to chemical reactions. The apex of S, . locates the

total
equilibrium condition.

There is really no limit to the possible initial conditions. If the system had featured
2.00 moles of pure A, then twice the work would have become available. If the
chemist initiates matters by injecting (separately) 0.30 moles of A and 0.70 moles of
B, then almost zero free energy would be offered. Note that the reaction switches
two ways. If the initial conditions corresponded to A and B samples of 0.10 and 0.90
moles, respectively, then free energy would be obtained at the expense of the B popu-
lation. For equilibrium conditions to exist and maintain, the reaction must be able to
operate in forward and reverse directions. It is for this reason that the terms reactant
and product are spoken largely for convenience. The reality is that B is the product
of reactant A; A is the product of reactant B.

The role of the upper reservoir in Figure 7.1 is to intercept the available free energy
somehow and relay it to where needed. If the reservoir-system coupling is faulty or
compromised, then the available work is squandered. The laws of thermodynamics
do not offer advice on how to reap the work of chemical reactions. The lessons are
best taught by oxidation-reduction venues such as batteries and biological systems.

There is a second way to view the chemistry as is the subject of Figure 7.3.
Shown is an A population distributed unevenly inside the container. The void near
the center is where the local pressure is zero. Over this region, the chemical poten-
tial of A is:

J(T.p)= 4(T)+RTlog,(p,)

= 4(T)+RT log,(0)
— (7.8)
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FIGURE 7.3 An alternate way to view chemically active systems. The exaggerated void
represents a region where the chemical potential of A is negative infinity. At all points of the
container, the chemical potential for B is negative infinity. The equilibration process is one
that eases the potential differences.

Although the free-volume region has been exaggerated, the point should be clear,
namely, that fluctuations cause p and L to stray locally from their average values.
The system responds by redistributing molecules and smoothing the gradients along
the way. This characteristic brings additional effects when the molecules are chemi-
cally active.

A system of pure A is one where B exerts zero pressure and assumes the lowest
possible chemical potential:

s(T.p)= 4(T)+RT-log,(py)

= 5(T)+RT"log,(0)

= -0 (7.9)

Under such conditions, the chemical potential of A is infinitely greater. The most
direct way to ease the chemical gradient is for B molecules to be born at the expense
of A; 1p must increase while jt, moves in the opposite direction.

Because of the second viewpoint, the lessons of Figure 7.2 can be extended. Let
the standard chemical potentials of A and B be as follows:

9 = 12,265 joules/ mole 2 =10,000 joules/ mole (7.10)

Let the initial conditions be identical to those responsible for Figure 7.2: n, = 1.00
mole, nz = 0.00 mole, V = 1.00 meter’, and T = 298 K. The starting pressures and
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chemical potentials become

gy 100 molex8.31%x2981<
= AT Imole - ~ 2480 pascals (7.11)
Pa \% 1.00 meter? P
AT,p)= 9(T)+RT-log,(p,) =12,265 joules / mole
+8.310°US 298 K x log, (2480)
mole -K
@31,620 joules/ mole (7.12)
o g 0.00molex8.31 Ii‘;;leles x 298 K
=B - : = 0.00 pascals 7.13
P \% 1.00 meter? P (713)

5(T,p)= %(T)+ RT -log,(pg)=10,000 joules/ mole

joules

+8.31 X 298 K xlog,(0.00)

mole -
- (7.14)

If x moles of B are formed anywhere in the system, then the chemical potentials
of both parties adjust accordingly:

(T.p)= (T)+RT -log, % (7.15)
L(T.p)= (T)+RT-log, % (7.16)

Plots of the potentials appear in Figure 7.4. When A converts to B, the chemi-
cal potentials travel in opposite directions—one falls while the other rises—only
to intersect at a single point. This intersection identifies the chemical equilibrium
condition on equal footing with the apex of S, . This second viewpoint is comple-
mentary and emphasizes the equilibrium to be devoid of persistent and sharp chemi-
cal gradients. Thermal fluctuations are ever present. Yet any and all strays from
maximum entropy only generate | disparities, which steer the system back again.

A vital quantity is unique to the point of intersection. Since , = , at maximum

entropy, it follows that

4(T)+RT -log,(ps) = §(T)+RT log,(ps) (7.17)
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FIGURE 7.4 Chemical potentials of reactive molecules. When A switches to B, the chemi-
cal potentials move in opposite directions and intersect at a single point. The intersection
marks the equilibrium condition in a manner complementary to S,

Equation (7.17) can be rearranged to give:

4= 50 o, P (7.18)
RT Pa

hence

2= 5T _py

ex
P RT Pa

=K, (1) (7.19)

K, is referred to as the mass action constant or simply the equilibrium constant. The
terminology is misleading since Equation (7.19) shows K, to be not a constant at all
but rather an exponential function of temperature. Ideally, K, does not depend on the
initial amounts of A and B or any container properties—texture, shape, and so forth.
In real-life cases, usually the best that the chemist can record is some value K;”“W’
due to the nonideality of reactants, products, and solvent. For the simple examples of
Figures 7.2 and 7.4, the chemist would identify the respective equilibrium amounts
of ny and n, to be 0.714 and (1 — 0.714) = 0.286 moles. Then

nyRT
Kk -V =0.714
P n,RT 0.286
|%

~2.50 (7.20)
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The chemist has a handle on K, by his or her ability to measure concentrations and
partial pressures. The fringe benefits include data regarding the difference between
reactant and product chemical potentials. The qualitative lesson of Equation (7.19) is
no less important. The greater the potential difference, the more skewed the reactant
and product amounts at equilibrium.

The ideal dependence of K, on temperature is not happenstance. The Gibbs—
Helmbholtz equation relates free energy G and enthalpy H as follows:

s @
T

-H (7.21)
aT T2

p.n

In turn, the standard potentials—molar free energies—of A and B connect with the
molar enthalpies as

9
r _~H; (1.22A)
or ., T?
a %
r _ —Hj (7.22B)
T 72

T -Hj + Hp (7.23)
aT T2

Yet, Equations (7.18) and (7.19) already establish the relation between the chemical
potential differences and temperature, namely,

A= 5T) oy P

T e
Pa (7.24)
= R-log, K ,(T)
One combines Equations (7.23) and (7.24) and arrives at the equality:
d(R-log, K (T _He + He
(R-log K,(T)  _ ~Hj +Hj .

oT T?

p.n
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FIGURE 7.5 The equilibrium constant as a function of temperature. The dependence is
exponential. Data pertain to A and B discussed in text.

Equation (7.25) is referred to as the van’t Hoff equation. It asserts that the depen-
dence of K, on temperature is tied to the enthalpies of A and B. The qualitative
aspects should not be overlooked. If Hg > Hj, K, necessarily increases with tem-
perature and vice versa. In highly atypical cases, Hg = HZ and K, is unaffected by
temperature changes.

The ideal quantitative behavior is illustrated in Figure 7.5. For finite changes in
the temperature AT, one has from Equation (7.25):

d(R-log, K ,(T)) R-log, K,(T+ T)-R-log,K,(T)

(7.26)
aT oo T o
Combining Equations (7.25) and (7.26), one has
R-log,K,(T+ T)= w+ R-log, K (T) (7.27)
and subsequently
KP(T + T)= exp _T-(Hi+Hp) +log, KP(T) (7.28)

RT?
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Equation (7.28) enables the construction of K,(T) plots over small to modest tem-
perature ranges. Figure 7.5 augments the lessons of Figure 7.2 and Figure 7.4
by showing a typical exponential dependence of K, on temperature. The crucial
matter to observe is that small changes in temperature effect substantive responses
by K, Note that Figure 7.5 has been constructed with the assumption that the
molar enthalpies of A and B are more or less constant. This assumption is gener-
ally valid over a few tens of degrees and modest deviations in the pressure from
standard states.

The discussion has been limited to a case with trivial stoichiometry—molecule A
begets a single B and vice versa. What if the number of molecules is not conserved?
Consider, for example:

A+ 2B —C

where three charge packages combine to produce one in a left-to-right transition; one
converts to three in the opposite direction.

The lessons of Figure 7.2 are not impacted qualitatively by stoichiometry. The
equilibrium is still governed by the maximum in AS,,, ;. There are details to point out,
however, regarding the chemical potentials and mechanisms by which the entropy is
tuned. These details make for complications quickly, even when the molecules are
viewed as ideal gases.

First, if the chemist injects A, B, and C individually into a container in arbitrary
amounts, there is an eventual entropic impact due to mixing. This can be modeled
by an extension of Equation (7.4):

Sy =-n,R-log, —— 4 _p,R-log, — B
Ny, +ng+ne Ny +ng+ne
~nR-log, — ¢ (7.29)

n, +ng+ne
=-nuR-log,(X,)-ngR-log,(Xz)-ncR-log,(Xc)

Again, the chemist would have to spend work to undo all or part of the scrambling of
the molecules. If instead, the system is left alone, chemical reactions will impact the
composition and entropy ejected to or imported from the surroundings. If the chem-
ist injects only A and B separately, and x moles of C are formed at the interface, then
the mixing effects can be modeled via:

=—(n, - x)R-log, —fazX (ng —2x)R-log, ny = 2

S b =
ny+ng—2x ny+ng—2x

mix

- xRlog, o (7.30)
ny+ng—2x
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FIGURE 7.6 Total entropy changes for chemically active molecules. Data pertain to A, B,
and C molecules and scenarios discussed in the text.

while the entropy of the heat bath alters as follows:

s =Oree  —(xHE - xH{ -2xHg) +(xHj + 2xHg - xH?)

. 731
surroundings = —p 298 K 208K 3D

Equation (7.31) basically parallels Equation (7.6), taking into account the stoichiom-
etry details.

One then notes a consequence of entropy being an extensive quantity. Although
conversions of A and 2B to C can enhance the mixing possibilities, they detract from
the total moles of particles. There is free energy available from reactant — prod-
uct conversions. Yet the spontaneous formation of C means less work available for
other potentially useful tasks such as container expansion. It is the general rule that
entropy scales with the number of particles times a factor of R: § « nR. The precise
scaling hinges on the electronic structure of the reactants and products, in addition
to the temperature and container volume. In the simplest approaches, these effects
are packaged as S, = x52 — x59 - 2x53, where x is the moles of C formed.

One considers the impact of stoichiometry under idealized circumstances.
Figure 7.6 charts four (of infinite possible) scenarios based on the following initial
conditions, all species injected separately by the chemist into the container:

Scenario I: ny = ng=n-=1.00 mole

Scenario II: n, = 2.00 mole; ng = 1.00 mole; n, = 0.00 mole
Scenario III: ny = ng = 1.00 mole; n-= 0.00 mole

Scenario IV: ny = 1.00 mole; ng = 2.00 mole; n-= 0.00 mole
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Let the molar enthalpies, entropies, and free energies of A and B be as before
(Equations 7.5 and 7.10). Let

HZ =14,000 joules/ mole, S2 =8.00 joules/ mole-Kelvin (7.32)

2 =71,008 joules/ mole (7.33)

and the container be (as before) 1.00 meter® in volume at constant temperature 298 K.

Figure 7.6 shows the dependence of the total entropy change for each case. Each
curve is obtained by summing the entropy changes due to mixing and heat exchanges
with the surroundings plus  §4,.. The lessons are several, beginning with the single
maximum demonstrated by each curve. Each maximum hinges on the interplay of
AS, s AS,rroundings» a0d 8450, in addition to choices made by the chemist. A single
maximum, in each case, offers a foundation for stability, regardless of initial condi-
tions. For every case, fluctuations will push the molecules on either side of the maxi-
mum entropy state yet will always turn on forces for restoration.

The chemist’s choices are always critical. Scenarios II and III show only mod-
est increases in AS,,,,, with the birth of C. Modest values of AS,,,,, predicate modest
free energy available. Thus, if the chemist needs work to be performed, clearly he
or she should seek conditions other than scenarios II and III; I and IV are the most
appealing in Figure 7.6. The largest entropy changes are offered in scenario I; these
transpire at the expense of the C population. By comparing the scenarios, one gath-
ers that the production of C is greatest when reactants A and B are combined in
stoichiometric amounts, that is, in a 1:2 mole ratio.

Equilibrium conditions hold when there is no additional free energy for the sys-
tem to lose:

mix>

Gt = Grever * O producrs = minimum possible value (7.34)

Thus, whenan A, B, C sample is at chemical equilibrium, and a fluctuation causes &x moles
of C to be born at, say, the reactants’ expense, the free energy responds accordingly:
oG —0x- ,+-0x-2- p+0x (7.35)

total = B

But this adjustment tends to zero by the stability of the maximum entropy state. By
moving the Equation (7.35) terms to one side and factoring dx, one obtains:

0=+8x-( o= ,=2 5 (7.36)
Fluctuations are ever present and render infinite possible values for dx. Equation
(7.36) can hold only if, for equilibrium conditions, the terms in parentheses equate

to zero:

c™ a~2 =0 (7.37)



200 Chemical Thermodynamics and Information Theory with Applications

This conveys that the chemical potentials are related to each other (at equilibrium) in
a manner governed by the reaction stoichiometry:

C =l (7.38)

Taking A, B, and C to behave as ideal gases, it is straightforward to substitute for
the chemical potentials (cf. Equations 7.17 through 7.19) and rearrange terms so as to
obtain the mass action constant under ideal conditions:

K,(T) = exp aM+2 (M- &) __Pc . (7.39)

RT P4 Ps
As before, K, is an exponential function of temperature that is determined by dif-
ferences in chemical potentials. And usually the chemist must settle for K;bm“ed in
an experiment, due to nonideality of the active parties and solvent. More important,
there is one inconsistency to note. The argument of the exponential, and thus K, is
dimensionless. Yet when K, is expressed in terms of equilibrium pressures raised to
powers set by the stoichiometry, obtained are (in this case) dimensions of pascals—.
This mismatch is an unfortunate side effect of writing chemical potentials with a
solitary pressure in the logarithm argument. The more exacting, if cumbersome, way
to express the potential for molecule A is:

D

T.,p)= 4(T)+RT -log —=—
TPy =50 & 1.00 pascal

(7.40)

with like attention to B and C. The extra labor does not really offer additional insights,
but it does lead to a consistent, dimensionless version of the mass action constant:

Pc
0 0 — o 1.00 pascal
K, (T) = exp aM+2 §(M)- ¢(T) _ p _(74D)
RT Pa Ps

1.00 pascal " 1.00 pascal

Plots of the chemical potentials are presented in Figure 7.7 as a function of the moles
of C formed. The conditions reflect scenario I'V of the preceding figure. The sum of the
A and B chemical potentials weighted by stoichiometric coefficients is shown along
with the potential of C. The lessons are clear. The C potential starts at its minimum,
impossible-to-plot value—negative infinity. As the system proceeds toward chemical
equilibrium, ,+2 pand . move in opposite directions and eventually intersect. It
is straightforward to construct links between K, and the molar enthalpies, in addition
to relations appropriate to other stoichiometric conditions. Where and when there is
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FIGURE 7.7 Chemical potentials of reactive molecules. Data pertain to molecules A, B,
and C discussed in text. The conditions correspond to IV of the preceding figure.

under- or overshoot, gradients in the chemical potentials direct the system back toward
the maximum entropy state, the point of , +2 , = intersection. This revisits an
important point made in Chapter 3, namely, that the equilibrium condition is not singu-
lar but rather comprises multiple states in the vicinity of maximum entropy. Regardless
of reaction mechanism and stoichiometry, when a system demonstrates the maximum
possible entropy, a minimum number of variables suffice to describe it. Whenever the
system strays from maximum entropy, more information is needed by the chemist to
detail the conditions.

7.2 CHEMICAL REACTIONS AND INFORMATION

Chemical reactions do not substantially alter information in the statistical sense at
the macroscopic scale. If sparse information is allied with p, V, and T when A owns
the container, the same applies after equilibrium has been established with B. There
is little uncertainty encountered by the chemist prior to measuring any number of
state quantities. The microscopic scale is another story, however.

Molecules are electric charge packages that communicate by thermal colli-
sions. A container of pure A offers only one type of message—ignoring structure
considerations for the moment. For a given A molecule, there is no uncertainty
imposed on the next binary collision—it will assuredly involve another A.
Matters are different when B shares the container, either injected by the chemist
or born via the demise of A. For an equilibrium mixture, the collisions fall into
three categories: AA, AB, and BB. Any effects of higher order contacts (e.g.,
ternary collisions), molecular speeds, and trajectories fall outside the scope of
the discussion.
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An electrical contact happens because two molecules move accidentally, and
more or less independently, toward the same territory. As the motion is thermally
powered—and thus random—the likelihood of a party vying for a particular spatial
region is proportional to its mole fraction. Thus for an A,B mixture, the probability
of each particular type of binary collision is proportional to the products of mole
fractions, namely,

prob(A,A) « X, - X, (742A)
prob(A,B) = prob(B,A) « X, - X, (7.42B)
prob(B,B) « X, X, (7.42C)
whereupon

prob(A, A) = XaXa (7.43A)

X, X, + X, Xp+ X5 X,
prob(A,B) = Xa Xy (7.43B)

X, X, + X, Xp+ X5 X,
prob(B,B) = Xy Xy (7.43C)

Xy Xpo+ X, Xp+Xp- Xy

Figure 7.2 illustrated the entropy properties of the A,B chemistry. The initial
conditions featured only one type of message event, namely, AA, while the equilib-
rium and intermediate states afforded three. Figure 7.5 showed that the mass action
constant changes with temperature. It is interesting to examine the Shannon infor-
mation /, , allied with the message events and their link to K. From Equation (7.20),
we have

nyRT ng
K =V =m=§ (7.44)
P n,RT n, X,

14 n,+ng

Asa consequence

X, =K, X, (7.45)
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and the message event probabilities can be rewritten in terms of K,:

X3

rob(A,A) =
prob( )x;,+xg-1<p+xg-1<;

1 (7.46A)

- 14K +K?
P P

X3 K,

rob(A,B) =
ProbA B = XK, + X3 K

(7.46B)
K

-
1+ K +K?
14 14

X%-K?
Xi+X;K,+X; K}

prob(B,B) =
= (7.460)
_ )4
1+K, +K>
The Shannon information is obtained in the usual way from summing weighted

logarithmic terms. There are three different message events and thus terms in the
summation. One has

3

Iyp= —2 prob(i)-log,(prob(i)) (7.47)

or, more specifically,

-1
log,(2)
+ prob(B, B) -log, prob(B, B)] (7.48)

X [prob(A,A) -log, prob(A, A) + prob(A, B) -log, prob(A, B)

IA,B

where the probability terms are specified by Equation (7.46A) through (7.46C).
Figure 7.8 shows I, ; versus K. A single maximum is observed where nature extends
no bias toward the reactant or product. Thus, the information maximum applies to
the conditions whereby K, equals 1.00. Figure 7.5 tells us that such conditions are
found when the temperature is set to approximately 336 K. Note the obvious. If A
had been chemically inert, then the number of message types would have remained
at 1; no information would have been purchased unless solvent molecules were added
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FIGURE 7.8 Information versus equilibrium constant. A single maximum is observed.

Data pertain to the A,B reactions discussed in the text.

to the system. By virtue of A’s capacity to convert to B, information is born sponta-
neously at a cost of free energy. Chemical activity is a means for nature to purchase

and utilize new information.

It is likewise important to consider the mutual information. A and B have been
viewed as ideal gases. This means a lack of preference shown by one party toward
colliding with another. The consequence is that a binary collision at one locale Y of

the system offers nothing about another locale Z. In turn,
prob[(A, A)y.(A,A), | = prob(A, A), x prob(A, A),
prob[ (A, A)y,(A,B), | = prob(A, A), x prob(A, B),
prob[(A, A)y (B, B), | = prob(A, A), x prob(B,B),
prob|(A,B)y,(B.B), | = prob(A, B), x prob(B,B),
prob| (B, B), (B, B), | = prob(B,B), x prob(B, B),

prob[(A, B)y.(A,B), | = prob(A, B)y x prob(A,B),

(7.49A)

(7.49B)

(7.49C)

(7.49D)

(7.49E)

(7.49F)
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There are six terms to consider regarding the mutual information. However, all have
logarithm arguments of 1, for example:

prob[(A,A)y J(A, B)z]
prob(A, A)y x prob(A,B),

(7.50)

prob[(A, A)y,(A,B), ] “log,

The result is that MI terms are uniformly zero for ideal gas behavior. It is only
when interactions between the molecules are turned on that MI will exceed zero. The
interactions impose clustering and excluded volume effects, as in the van der Waals
model. These confer a statistical spatial structure in the system.

7.3 REACTIONS, INFORMATION, AND MOLECULAR STRUCTURE

There is additional information to address at the Angstrom scale. It was stated that
several properties are conserved in a reaction: energy, mass, charge, and atom iden-
tity. Electronic structure is not one of them, fortunately. A reactant and product
accordingly express different facts and data information. We look briefly at how
information changes in the statistical sense.

The following are reaction examples of the A = B variety:

0] 0] OH 0

1

.

2

\ /

K
5

Reaction 1 describes a diketone-enol tautomerization, whereas 2 and 3 are
Cope rearrangements discussed in second-year chemistry courses and beyond.
It is important that information in the statistical sense differs for the left and
right sides because the atom—bond bond networks predicate different collision
sequence possibilities.

One appeals to the Chapter 6 methods that treat compounds as Brownian com-
puters. An organic molecule is composed of atom—bond—atom units C-H, C=C, and
so on, and communicates via collisions. A nearest-neighbor random (thermal) walk
over each formula graph identifies the possible electronic messages, for example, for
2.4-pentanedione

..(C-C)(C-C)(C-H)(C-O)(C=0)(C-C)(C=0)(C-C)(C-H)(C-H)(C-C)...
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as opposed to
...(C-H)(C-H)(C-C)(C=0C)(C-0)(O-H)(C-0)(C-C)(C-H)(C-C)(C-H)...

for the enol tautomer.

It was shown in Chapter 6 that the contrasts among molecules are most acute con-
cerning mutual information and energy dispersion. Following the same approach,
reduced descriptors for the states can be constructed using ethane data for a baseline,
for example:

~, 4 pdi 2 A4~ pdione
K ione _ S MI
" = (7.51)
MI
. 24~ pdione
2 4~ pdi
EOD pdione _ Z::T (7.52)
%p

This analysis of the three reactions leads to Figure 7.9. The state points for reactant
and products (left- and right-side compounds) have been distinguished by filled and
open symbols, respectively. The numbers correspond to the labels attached to the
equilibration symbols. Error bars have been included as established by the & uncer-
tainties in linear regression analyses.

+

Reduced §,
I
-

2
3T v
/3/ +
o
) | | l
3.00 4.00 5.00 6.00 7.00

Reduced &,

FIGURE 7.9 Reduced descriptors for chemical reactants and products. Plotted are é r VeI
sus & o scaled via ethane data. 1, 2, and 3 refer to the unimolecular reactions discussed in the
text. Filled symbols denote the state points for reactants; open symbols locate the state points
of products.
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The results are striking. In the diketone — enol transformation, the mutual
information of the collision sequence, and thus &, is enhanced by almost a factor
of 3. The correlations among the electronic messages are multiplied significantly
in spite of the formula invariance (i.e., CsHgO, — CsH30,) and skeletal similari-
ties. The changes derive from three message units of the diketone, C-H, C=0, and
C-C, increasing by two, C=C and O-H, as the enol is born. Reactions switch in two
directions. Thus, the message correlations are diminished significantly when an
enol converts to the diketone. R .

In the Cope rearrangements, the changes are minor in &,,, but substantive in EOD.
This is in spite of the left and right sides hosting identical ABA (and thus electronic
message) constituents. The dispersion energy is sensitive to changes in the collision
sequences allowed by the covalent bond networks. §  can be augmented in the
left-to-right direction of reaction 2 and diminished as in 3. It is important that for
all reactions the transformations are not smooth and continuous as in pressure and
volume tuning at the macroscopic scale. A chemical reaction rather marks a jump
relocation of the microscopic state point.

Reactants and products are notrestricted to single molecules. The following describe
combinations in the forward (left to right) direction, dissociations in reverse.

5*'k E
o o =

Reaction 4 is the famous Diels—Alder, whereas 5 was developed decades later by
Longley, Emerson, and Blardinelli [1]. Information analysis of the collision-based
message spaces leads to Figure 7.10. The same format is used as in the previous fig-
ure. Dotted lines are drawn to indicate the coupling of reactant states.

The feature to note is that the state point of the product compound is not placed
merely by adding the coordinates of the reactants. By the same token, the product
coordinate is not an average of the parents. This means that information in the sta-
tistical sense and dispersion energy are not conserved in typical reactions—there
is a nonzero distance between the state points of left- and right-side compounds.
Further, the jump relocations of the points do not simply land at mean (center of
mass) values.

There is a final lesson to note by revisiting reaction 1 concerning 2,4-pentanedione
and its enol tautomer. If a chemist prepared an equilibrium sample of the left- and
right-side molecules, he or she would obtain a system for which the following holds
true:

(0] O/

dl'ketone(T$ P) = enol (T’ P) (753)
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'S
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[
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Reduced &,

FIGURE 7.10 Reduced descriptors for reactants and products. Plotted are éM, versus éop
scaled via ethane data. 4 and 5 refer to bimolecular reactions discussed in the text. Filled
symbols denote the state points for reactants; open symbols refer to products.

Perhaps overlooked is the large number of molecules with chemical potential infi-
nitely lower than ,,and . For example, the following are structural isomers
of 2,4-pentanedione and the enol tautomer:

HO OH
oo

Both the 1,3-diol of cyclopentene and the carboxylic acid derivative of cyclobutane
have formula CsHgO,, yet there is no accessible mechanism for establishing chemical
equilibrium with the 2, 4-pentanedione or its enol tautomer. The chemical potentials
of both molecules would be fixed at negative infinity in the system. There are addi-
tional structural isomers for which the equivalent statement can be made.

The lesson follows from Figure 7.11. Shown are the state points for the reaction 1
compounds along with the g, , E, coordinates for the aforementioned diol of cyclo-
pentene and the acid derivative of cyclobutane. Reaction 1 represents a jump reloca-
tion of the state point as shown. The process need not couple with, or move smoothly,
through nearby states. Molecular information changes selectively, as programmed by
the electronic structure. It is the purview of synthetic chemistry to establish the selec-
tion rules by theory and experiment, and to optimize the programming strategies.
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FIGURE 7.11 _Reduced descriptors for tautomers and structural isomers of C;H,,0,. Plotted
are §,, versus g, scaled via ethane data. 1 refers to the tautomerization of 2,4-pentanedione.
The two other state points in the figure derive from structural isomers.

The consequences of reactions relocating state points spontaneously and selec-
tively are not trivial. If the chemist owns a bottle containing 2,4-pentanedione
but needs the 1,3-diol of cyclopentene, a conversion program would be in order.
Executing the program would entail a sequence of intermediate molecules, each with
a unique electronic message space and state point in the EGD plane. The chemist
would devise a program for sequential transformations that minimizes the distance
traveled across the plane. Alternatively, he or she would seek a starting material
other than 2,4-pentanedione, which affords a shorter program that terminates in the
desired state point.

The major points of this chapter are the following:

1. The sun is the ultimate source of atoms. Molecules, by and large, descend
from other molecules. The transformations occur by chemical reactions,
which increase the total entropy and yet modify information locally and
selectively.

2. Reactions alter the electronic messages of a molecule. The modifications
impact the information expressed via binary or higher order collisions. The
changes are internal to the molecules as well. These can be characterized
by formula diagrams and further modeled by Brownian computation.

3. At the microscopic level, every molecule offers a state point and width in
planes suchas g, g . A reaction relocates a state point in a jump-discon-
tinuous way. The diréction and extent of the j jump are determined by the
electronic information and correlations.
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7.4 SOURCES AND FURTHER READING

Thermodynamic texts devote one or more chapters to chemical reactions. The texts
by Desloge [2], Fermi [3], Lewis and Randall [4], Kirkwood and Oppenheim [5],
and Klotz [6] have particularly impacted the author’s thinking. Desloge and Fermi
offer exceptional presentations of so-called van’t Hoff boxes containing reactants
and products. These devices offer an especially insightful perspective of chemical
equilibrium. Regarding the microscopic scale, the author and students have applied
the Brownian computer model to a variety of chemical reactions, including diketone-
enol tautomerizations and Cope rearrangements [7]. These reactions are discussed
at length in classic texts by Wheland [8] and le Noble [9]. Goodstein’s first-chapter
summary of thermodynamics offers penetrating insights regarding the entropy of
ideal gases [10].

7.5 SUGGESTED EXERCISES

7.1  Molecule A reacts to form B and vice versa in the gas phase. A chem-
ist finds K, for the reaction to equal 1.20 at temperature 298 K. (a)
What is the value of ¢ % at 298 K? (b) The chemist adds 2.00
moles of B and 0.500 moles of A to a container of volume 1.50 meter?
at 298 K. How many bits of Shannon information are allied with each
binary collision at equilibrium?

72 A chemist finds that K, for the gas phase reaction 2A + 3B = 0.50C
+ 3D equals 0.150 at temperature 298 K, the partial pressures having
been measured in pascals. K, is found to double when the temperature
is raised to 303 K. (a) What is the valueof 2 9 +3 ¢ 0.50 ¢ 3 9
at 298 K? (b) What is the approximate value at 300 K?

7.3 There is more than one equation of the Gibbs—Helmholtz variety. (a)

Show that
A
d ? ) U
T v, T?
(b) Show that
[}
a J—
v
9 Y

V.s

where @ was encountered in Chapter 3 as a Legendre transform of U.

74  Consider A that reacts to form B and vice versa in the gas phase with
equilibrium constant K,. Let § 4 equal the molar free energy
change of an A,B-system coming to equilibrium at temperature
T, given initial (standard) conditions of p, = pp =1.00 pascal.
(a) For arbitrarily selected initial conditions at 7, show that
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75

7.6

1.7

78

79

s a= RTlog(K,)+RTlog, Poinital 1) How should the
Adnitial
equation of part (a) be interpreted if either A or B is ever at zero pres-
sure? Please discuss.

Chemical reactions can change the moles of mole-
cules in a system by amount An. Show that for ideal gases

S(n+ n)=S(n)- 1+—n -R n-
n

The application of the mixing entropy in this chapter is approximate at
best. (a) Discuss the conditions for the A = B chemistry that enhance
the applicability. (b) Do likewise for the A + 2B = C reaction. (c) When
can the mixing entropy be ignored for chemical equilibration pro-
cesses? Please discuss.

Consider the case where molecule A collides with a structural isomer
B and is able to convert to yet another B. A chemist finds K, = 1.20 at
298 K. He or she adds 2.45 and 1.40 moles of A and B, respectively,
to a 5.00 meter? container at 298 K. (a) Construct a plot of the bits
of information per binary collision versus moles of A converted. (b)
Construct a plot of the entropy of mixing versus moles of A converted.
(c) Construct a plot of the bits of information per binary collision ver-
sus joules of work lost by the system.

A chemist studies the reaction A + 2B = C with K, = 0.125 at tem-
perature 298 K. (a) In one experiment, the chemist adds 1.00 mole
each of A, B, and C to a 5.00 meter® container at 298 K. Construct
a plot of the bits of information per binary collision as a function of
moles of C converted. How many bits correspond to the equilibrium
state? (b) Consider the effects of higher order collisions: construct a
plot of the bits of information per ternary collision as a function of
moles of C converted. How many bits correspond to the equilibrium
state? (¢) How do the information amounts compare for binary and
ternary collisions? Please discuss.

2-4-pentanedione poses four tautomeric forms:

Use the Chapter 6 methods to locate the state point in the é ur éao
plane for each molecule. For which molecule is the state point closest
to that of 2-4-pentanedione? Farthest? Please discuss.

OH OH
OH (¢]

211
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7.10 A reacts to form B and vice versa; B reacts to form C and vice versa.
One version of this is as follows:

OH 7 Ho” N 0%

Use the Chapter 6 methods to locate the state point in the é ur éo
plane for each molecule. Which pair of points is closest in the state
space? Please discuss.

7.11 A chemist imagines a reaction A = B where ¢ = §, Hf =Hj, and
S5 = Sg. (a) What type of reaction is being contemplated? (b) What is
the value of K, regardless of temperature? (c) The chemist adds 0.385
and 1.40 moles of A and B, respectively, to a 5.00 meter?container at 298
K. Construct a plot of the bits of information per binary collision versus
moles of A converted. (d) Construct a plot of the entropy of mixing ver-
sus moles of A converted.
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8 Chemical
Thermodynamics,
Information, and Horizons

8.1 HORIZONS

When it comes to information and chemistry, there is no shortage of challenges.
Molecules carry information and communicate via collisions. If the chemist thor-
oughly understood the messages in amino acid sequences, he or she would be able
to design proteins from the ground up. Further, comprehension of axon and neuron
information at the molecular level would provide new insights into neurological ther-
apy. Further still, understanding how the information stored in a virus fluctuates over
replication cycles would reveal new defense strategies. These are but three areas that
are investigated internationally. The word information will be included in science
press releases on and over the horizon.

This text has examined terrain far removed from blockbusters. The result
has been a partial exploration of two mature domains and where they intersect.
Thermodynamics and information theory have supplied decades of fundamentals
and applications. Insights have arrived in both disciplines by their governing laws,
mathematical structure, and idealized models. Heat engines do not conform to
Carnot cycles. The states of a system are generally not 100% known in advance of
an experiment. Molecules are not formula diagrams written on paper. Yet the laws,
mathematics, and models surrounding engines, states, and molecules steer the inves-
tigator in the right direction. At the very least, they show what properties the chemist
should become more curious about.

Where does one travel next at the intersection? There were corners notably
untouched: third-law consequences, phase rule applications, and critical phenom-
ena, to name three. These justifiably warrant full-scale treatments. By the third law
of thermodynamics, the entropy and heat capacity of a crystalline system converge
to zero in the limit of zero absolute temperature. According to Boltzmann:

S =k, -log,(W) 3.1)

where W is the number of possible states for a system. Clearly, W converges to unity
as T moves toward zero. As witnessed on several occasions of the tour, systems that
pose only one state present no information in the statistical sense. Horizons-wise, the
properties of thermodynamic information at ultralow temperatures are well worth
exploring.

213
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Phase rule applications merit the same attention. According to Gibbs:

d+p=K+2 8.2)

where ¢ and x are the number of phases and components, respectively, for a sys-
tem at equilibrium. p represents the so-called freedom of a system—the number of
intensive variables that need to be set by the chemist to control all the intensive quan-
tities. For a system with ¢ =2 and k =2, the chemist must hold, say, pressure and
temperature constant to maintain the equilibrium. The chemist is certainly capable
of arbitrarily fixing a third intensive variable such as specific heat. But this would
mean the demise of one of the phases. As seen during the tour, information connects
with the control capacity of a system. The thermodynamic information surrounding
the equilibrium between phases is a second horizon to explore.

Phase-rule effects lie not far away from phase transitions. The latter invite atten-
tion because of the multiplication issues surrounding information. Information begets
information and sometimes a little can control a lot. In certain phase transitions, the
information expressed by a seed material, liquid or crystalline, poses a blueprint for
constructing a much larger version. The information stored in the seed is multiplied
many times over in a high-fidelity fashion. Many does not equate with infinite; one
would anticipate an upper bound for the number of multiplication cycles, depending
on the thermal circumstances. This is a third horizon to sail toward, again not far
removed from phase-rule effects.

Last, capital T received much attention during the tour via temperature, heat
capacity, and entropy. Small ¢ received virtually zero in the manner of time. This
was understandable given the intended level of the text and the spotlight on equilib-
rium conditions. Recall that these rarefied conditions offer no information about the
past or future. Thus, any incorporation of ¢ with heat, work, and information links to
nonequilibrium thermodynamics. This is a domain markedly different from that of
the present text in principles, models, and applications. It emphasizes the second half
of the word thermodynamics.

Clearly, ¢ needs to be explored as the fourth horizon. It needs to be integrated
with the core topics of fluctuations, state transformations, chemical message trans-
mission, and registration without sacrificing the accessibility. Time is unusual as
resources go because, as mentioned in Chapter 1, there is never really a source or
recipient. Time wields impact to the same degree as work, heat, and information.
No information is transmitted and registered, no energy is transferred, and no state
is transformed without some elapse of 7. Time acquires special meaning if a sys-
tem deviates from the equilibrium condition, whether slightly or drastically. The
pathway by which the system strives toward the maximum entropy hinges on time,
both the amount elapsed and available. Time issues are not critical just to chemi-
cal thermodynamics; they impact all disciplines because equilibrium systems are
themselves something of an idealization and met only infrequently (in the strictest
sense) in real life.

Time-variable-wise, the first problem to address is pretty clear. Chapter 3 used
composite systems to illustrate fluctuations about maximum entropy states. It was
shown that a pressure measurement is preceded by uncertainty on the chemist’s part.
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This determined the amount of information trapped by a barometer. Yet here is pre-
cisely where the time issues need to be drawn out. If the chemist endeavors a second
measurement, his or her uncertainty will depend on how much time has elapsed. If
the system is allowed insufficient time to explore the possible configurations, there
is less uncertainty and thus less information to purchase. If the second measurement
is performed after a long time, the system has had time to forget where it was. The
original information condition is restored.

In short, the thermodynamic information of a system, even at equilibrium, is nei-
ther static nor uniform. The principle to illuminate would be the time-dependence,
and the related effects of system size and composition. The results would be not
simply Iy, Ix .y, and MIyy, ., but rather Iy, (0), Iy ,,(®), and My, ,,, (7). To arrive at
these quantities, the transport properties of the system would have to be charted. As
is well appreciated, systems demonstrate relaxation times T that are characteristic of
the gradient of interest—pressure, temperature, and chemical. The chemist’s second
measurement of p, 7, C,, and so forth at ¢ < T affords less information than at ¢ > 1.
Along the same lines, all fluctuations are not alike. If a barometer registers p at 1 =0
as <p >+ 1.500,, the uncertainty at a later time will be different from the case where
pt=0) =<p>-2.500,.

Issues surrounding time impact more than just the system. A barometer must
establish equilibrium to communicate the correct number of pascals. A thermometer
must establish thermal equilibrium for high fidelity readings. If the allotted time is
too short in either case, then errors will plague the information purchase. Mechanical
and thermal waves do not propagate at the same rate and phase. Thus the errors
regarding temperature will differ from those of pressure. It must also be noted that a
measurement of 7" generally affects that of p and vice versa. The interference effects
determine the limits to which thermodynamic information of different variables can
be processed in parallel.

Chapters 4 and 5 examined transformations effected by variable tuning and
energy exchanges. Time was irrelevant throughout since the pathways were all taken
as reversible. Time issues require consideration here as well, however. If the time
allotted for program execution is insufficient, then irreversibilities will transpire in
the system as side effects. The state points will be relocated imperfectly since each
step will reflect the system history plus mechanical wear and tear. Variables such
as p, V, and n specify the entire state point locus for a reversible transformation.
Matters are much more complicated if # must be included. As stated at the beginning
of Chapter 1, the word information motivates much discussion.

8.2 SOURCES AND FURTHER READING

Equilibrium thermodynamics has been thoroughly charted over decades; so has non-
equilibrium thermodynamics. The author’s shelf includes excellent texts by Yourgrau,
van der Merwe, and Raw [1], Haase [2], and de Groot and Mazur [3]. Desloge’s book
addresses several nonequilibrium fundamentals [4]; the same is true for Callen’s
[5]. The books by Morowitz present significant insights about nonequilibrium
states [6,7]. Stanley’s text [8] and Denbigh’s [9] have educated the author regarding
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phase transitions and phase rule applications. The book by Berry, Kazakov, Tsirlin,
Sieniutycz, and Szwast is a must-read regarding thermodynamics with time included
as a variable [10]. There is much to learn from this source about the horizon and
beyond. The short paper by Schreiber notably impacted the author’s appreciation of
information, time, and their interface [11]. The same statement applies to Mackey’s
treatise on the arrow of time [12].

8.3 SUGGESTED EXERCISES

Chapter 1 introduced the topics of the book qualitatively. The succeeding chap-
ters examined them in quantitative terms. Hopefully, the reader’s perspective is
enhanced to some degree, having gone through the text. To consider the changes,
three of the Chapter 1 exercises are urged for repetition. Compare one’s answers
with those written the first time around.

8.1 Chapter 1 opened with the statement, “Information motivates much dis-
cussion.” Several declarations followed. Choose one and write a two- to
three-page response paper. The response should argue the merits and
deficiencies regarding information.

8.2 Chapter 1 presented the idea that information represents a system’s
capacity for controlling work and heat transactions. As in the first exer-
cise, compose a response paper that addresses the merits and deficien-
cies of the idea.

8.3 Describe two examples drawn from chemistry where probability plays
arole. Do likewise regarding conditional probability.
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Appendix A: Source
Program for Constructing
Molecular Message Tapes
and Computing Information

This program can be adapted readily to small organic compounds by changing the
atom vector and bond matrix components in subroutine 1000. As written, the program
addresses the information properties of the following alcohol derivative of cyclohexene:

-

Statements useful for verification and troubleshooting have been disengaged by
REM prefixes; these can be re-activated as needed. BASIC has been used as the
source code for simplicity along with the resident random number generator. The
algorithm is readily adapted to higher order analyses, longer record tapes, and to C,
C++, and Pascal codes.

1 REM REM SET UP FOR AN ALCOHOL DERIVATIVE OF CYCLOHEXENE
10 INPUT “R EQUALS????”, R: RANDOMIZE R: REM SEEDS
RANDOM NUMBER GENERATOR

20 DIM A% (17), B% (17, 17), M$(500), SUM(500)

30 D% = 17: M% = 7: REM MATRIX DIMENSION AND NUMBER OF
MAJOR ATOMS

40 GOSUB 1000: REM SET UP ATOM ARRAY AND BOND MATRIX
44 W3% = 45: REM SET INITIAL W3% TO ANY INTEGER >
MATRIX DIMENSION

45 FOR W5% = 1 TO 5000: REM SETS WALK SIZE

50 IF W5% = 1 THEN S% = INT(RND * M% + 1): REM SELECT
FIRST MAJOR ATOM

52 REM PRINT “S% EQUALS..... ", S%: REM INPUT
“CONTINUE????"”, ANS1
60 B = 0

70 FOR K% = 1 TO D%

80 IF B%(S%, K%) > 0 THEN B% = B% + 1: REM COUNT
COVALENT BOND LINKS

90 NEXT K%

100 B2% = INT(RND * B% + 1): REM PICK RANDOM LINK

217
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105 REM PRINT “B%, B2% EQUALS..... ", B%, B2%: REM INPUT
“CONTINUE????"”, ANS1

120 B3% = 0: REM GET READY TO COUNT AGAIN

125 W1% = S%: REM TAG ATOM 1

130 FOR K% = 1 TO D%

140 IF B%(S%, K%) > 0 THEN B3% = B3% + 1

145 IF B3% = B2% THEN W2% = K% ELSE 150

146 REM PRINT ,W2% EQUALS....”, W2%: REM INPUT
“CONTINUE????"”, ANS1

147 IF W2% = W3% THEN 100 ELSE 160

150 NEXT K%

160 REM WE HAVE A STATE, NOW CHECK

170 GOSUB 2000

180 IF W5% = 1 THEN S2$ = S$ ELSE S2$ = S2$ + S$
190 REM IF W5% MOD 200 = 0 THEN PRINT S2$: INPUT
“CONTINUE?????"”, ANS1

200 IF A% (W2%) = 6 OR A% (W2%) = 8 THEN S% = W2%: W3% = W1%
210 IF A% (W2%) = 1 THEN S% = W1l%: W3% = W2%

300 NEXT W5%

302 PRINT S2%

310 GOSUB 3000: REM PARSE RECORD TAPE

320 GOSUB 5000: REM FIGURE MI

900 END

1000 REM SUB TO SET UP ATOM ARRAY AND BOND MATRIX
1005 REM FIRST ZERO THINGS

1010 FOR J% = 1 TO D%
1020 A%(J%) = 0

1030 NEXT J%

1040 FOR J% = 1 TO D%

1050 FOR K% = 1 TO D%
1060 B%(J%, K%) =0
1070 NEXT K%

1080 NEXT J%

1100 FOR J% = 1 TO D%
1110 IF J% <= 6 THEN A
1112 IF J% = 7 THEN
1114 IF J% > 7 THEN
1120 NEXT J%

1200 B%(1, 2) =1
1210 B%(1, 6) =1
1220 B%(2, 3) = 2
1230 B%(3, 4) =1
1240 B%(4, 5) =1
1250 B%(5, 6) =1
1260 B%(6, 1) =1

~
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1262 B%(6, 7) =1

1270 REM NOW HELP COMPLETE BOND MATRIX

1280 FOR J% = 1 TO D%

1290 FOR K% = 1 TO D%

1300 IF B%(J%, K%) > 0 AND B% (K%, J%) = 0 THEN B% (K%,
J%) = B%(J%, K%)

1310 NEXT K%
1320 NEXT J%
1330 M2% = M%: REM MAJOR ATOMS

1400 FOR J% = 1 TO M%
1410 B% = 0
1420 FOR K% 1 TO M%

o I

1430 IF B%(J
1440 NEXT K%
1450 IF A% (J%) THEN V% = 4 - REM VALENCE RULE
1451 IF A% (J%) THEN V% = 2 - REM VALENCE RULE
1452 PRINT J%, B%, V%, M2%: REM INPUT “CONTINUE?????",
ANS1

1460 FOR K% = (M2% + 1) TO (M2% + V
1470 B%(J%, K%) = 1: B% (K%, J%)
1480 NEXT K%
1490 M2% = M2
1500 NEXT J%
1510 REM NOW READ BACK

1520 FOR J% = 1 TO D%

1530 FOR K% = 1 TO D%

1540 IF B%(J%, K%) > 0 THEN PRINT J%, K%, B%(J%, K%):
REM INPUT «CONTINUE????», ANSL

1550 NEXT K%

1560 NEXT J%

1900 RETURN

2000 REM SUB TO CHECK STATES

o\°

|
vs]
o\°

, K%) > 0 THEN B% = + B%(J%, K

o\°

)

1]
vs]
o° oP

w

°© o° o

o\°

)
1: REM H-BOND

o\°
+

<
o\°

2005 REM C-H = “A"; C-C = "B"”; C=C = "C"; C-O0 = "D"”; O-H
= “E”

2006 REM ADD STATES TO THIS SUBROUTINE AS NEEDED

2010 IF A% (W1l%) = 6 AND A% (W2%) = 1 THEN S$ = "A”: GOTO
2100

2020 IF A% (W1l%) = 6 AND A% (W2%) = 6 AND B% (W1l%, W2%) = 1
THEN S$ = ”“B”: GOTO 2100

2030 IF A% (W1l%) = 6 AND A% (W2%) = 6 AND B% (W1l%, W2%) = 2
THEN S$ = ”“C”: GOTO 2100

2032 IF A% (W1l%) = 6 AND A% (W2%) = 8 AND B% (W1l%, W2%) = 1
THEN S$ = ”“D”: GOTO 2100

2034 IF A% (W1l%) = 8 AND A% (W2%) = 6 AND B% (W1l%, W2%) = 1

THEN S$ = ”“D”: GOTO 2100
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2036 IF A% (W1l%) = 8 AND A% (W2%) = 1 AND B%(W1l%, W2%) = 1
THEN S$ = "E”: GOTO 2100

2100 RETURN

3000 REM SUB TO PARSE RECORD TAPE

3005 L% = LEN(S2s)

3006 FOR M% = 1 TO 4: REM ORDERS

3007 C% = 0: N = 0: HlL = 0: H2 = 0: REM INITIATE STATE
COUNTER

3008 FOR W2% = 1 TO 500: SUM(W2%) = 0: NEXT W2%: REM
ZERO STATE ARRAY

3009 H =0

3010 FOR J% = 1 TO L% - M% + 1

3012 A$ = MIDS(S2$, J%, M%)

3013 H =0

3014 FOR W2% = J% TO J% + M% 1

3016 BS = MIDS(S2S$S, W2%, 1): GOSUB 4000: REM GET ABA
ENERGY

3018 H = H + H5

3019 NEXT W2%
3020 FOR K%

3030 IF AS$S = MS(K%)
1: GOTO 3050:

3040
3042
3045
3046
3050
3055
3060

3070
3080
3090
3100
3110
3120
3130
INPUT

4005 REM ADD

AS NE
4010
4020
4030
4032

NEXT

K%

= 1 TO C%

REM WE HAVE NEW STATE

Cs =
MS (C%
H1 =
NEXT

C%
)

+ 1
= AS:

SUM(C%) =

1:

THEN SUM(K%) = SUM(K%) + 1: N = N +
REM OLD STATE

N=N+1

H1 + H: H2 = H2 + H * H

J%

REM NOW FIGURE SHANNON INFORMATION, ABA ENERGY
AND DISPERSION

INFO = O

FOR K% = 1 TO C%

INFO = INFO - (SUM(K%) / N) * LOG(SUM(K%) / N)

NEXT K%

PRINT "ORDER, INFO EQUALS..... ", M%, INFO / LOG(2)
H1 = H1 / N: H2 = (H2 / N) - H1 * H1

PRINT ”"ABA AVG ENERGY, SIG EQUAL....”, H1, SQR(H2):

"CONTINUE????"”, ANS1
3200 NEXT M%
4000 REM SUB

EDED
IF BS
IF BS
IF BS
IF BS

TO ASSIGN BOND ENERGIES
STATES AND ABA ENERGIES TO THIS SUBROUTINE

N
ngn
el
npn

THEN H5 =
THEN H5 =
THEN H5 =
THEN H5 =

414 :

347
612
351

REM kilojoules/mole
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4034 IF B$ = "E” THEN H5 = 464

4200 RETURN

5000 REM SUB TO FIGURE MI

5001 PRINT : PRINT “NOW FIGURING MUTUAL INFORMATION...."”
5006 FOR M% = 2 TO 4: REM ORDERS

5007 C% = 0: N = 0: REM INITIATE STATE COUNTER

5008 FOR W2% = 1 TO 500: SUM(W2%) = 0: NEXT W2%: REM
ZERO STATE ARRAY

5010 FOR J% = 1 TO L% - M
5012 AS$ = MIDS$S(S2%, J%, M
5020 FOR K% = 1 TO C%
5030 IF AS$ = M$(K%) THEN SUM(K%) = SUM(K
1l: GOTO 5050: REM OLD STATE

5040 NEXT K%

5042 REM WE HAVE NEW STATE

+ 1
)

o° oP

o\°

) + 1: N = N +

5045 C% = C% + 1
5046 MS$S(C%) = AS$: SUM(C%) = 1: N =N + 1
5050 REM

5055 NEXT J%

5060 REM NOW FIGURE MI

5070 MI = 0

5080 FOR K% = 1 TO C%

5081 APPLEl = SUM(K%) / N: APPLE2 = APPLEl

5082 FOR W1% = 1 TO M%

5084 BS MIDS (M$S (K%), W1%, 1)

5085 N5 = 0

5086 FOR W2% = 1 TO L%

5088 IF MIDS$ (S2$, W2%, 1) = B$ THEN N5 = N5 + 1
5090 NEXT W2%

5092 APPLE2 = APPLE2 / (N5 / L%)

5094 NEXT W1%

5096 MI = MI + APPLE1l * LOG (APPLE2)

5100 NEXT K%

5110 PRINT “ORDER, MI EQUALS..... ", M%, MI / LOG(2)
5200 NEXT M%

5500 RETURN






Appendix B: Answers to
Selected Exercises

CHAPTER 1

1.4 The sum of fractions along the ordinate scales as the square root of the
sum of fractions along the abscissa.
1.7 There are 80 allowed combinations.

CHAPTER 2

2.1 (a) 8.50 Hartleys = 28.2 bits (b) 5.30 nits = 2.30 Hartleys

2.5 The sum of weighted surprisals need not mirror the distribution function
since the indexing of states is arbitrary.

2.6 (a)c.10% peptides (b) 300 bits

2.9 (a) 0.286 bits (c) 0.406 bits (d) 0.583 bits (e) 0.0523 bits (f) 4.89 x 10~ bits

2.11 (a) c. 1093 isomers (b) 1.47 bits

2.12 (a) 5.14 x 1073 bits (b) 7.11 x 107 bits (c) 1.27 x 108 bits

CHAPTER 3

1 9oV V2 —nbV
38 @B =-- — =
‘ Vv dp . 3pV?>-2pnbV +an®-2nRT

BDiet=_i ﬂ = nb -V
T vV op - an -a
Ty R gy Y

3.10 The Legendre transform cancels to zero.

3.14 For A = 0.05, 0.10, and 1.00, the respective sector volumes are approxi-
mately 0.0379, 0.0100, and 10~*meters>.

315 (@ p =1.58x10°pascals (b) 0, = 6.12 x 10~ pascals
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CHAPTER 4

41 @ A, =1

42 (© I4..,=7.64bits d) I, =6.96 bits

43 (a) oV =683 pascals; 0! =563 pascals

4.4
4.5
4.6

(© p =6.9x105pascals, 0, =24x 103 pascals (d) Iy, =54bits
(@ p =5.4x10°pascals, 0,=23x 10° pascals (b) € =0.12
Only one adiabat can intersect a given state.

4.10 M1 =~ 2.93 bits

XY < pV

CHAPTER 5

52

5.5
57
5.8
59

The less exacting chemist is not overly disadvantaged. The average yield
is ¢. 0.60. The standard deviation is c¢. 0.0034.
@ y.,=118.

The isotherm offers a more favorable .

=05;0 o 11. The distribution is fairly uniform.
<P

(a) E expresses smaller I, .

X<p

CHAPTER 6
62 E5" =0.0971, 02" =3.9x 107 bits/message unit

6.3

Eaubane = (0.122, 0¢4 = 5.1x 107 bits/message unit

gadobur _ 5 40, o™ = 0.17 kilojoules/mole - message unit
Sp > TEop
Ecubune

o= 4.71, 0;"(’;7)"“ = (.15 kilojoules/mole - message unit

cyclobutene

o =0.336, 024" = 2.7 x 1072 bits/message unit

Dewar Benzene Dewar Benzene _ 2 .
o 1 = 0.358, Oc = 2.3 x 1072 bits/message unit

yelobi clob o .
goebuene ~18.6, 02;” et = 0.99 kilojoules/mole - message unit
D Op
EDewar Benzene _ 19 6 O_Dewar Benzene
°p T TEop

= 1.1 kilojoules/mole - message unit

CHAPTER 7

7.1
12

(a) 451 joules/mole (b) 1.57 bits
(a) —4700 joules/mole (b) —4040 joules/mole

7.11 Molecules that are optical isomers have identical standard chemical

potentials and molar enthalpies in the gas phase.
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