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Preface
Chemistry majors receive thermodynamic instruction of one form or another during 
all four college years. Individuals who pursue graduate studies gain further exposure. 
The curriculum is layered and standard given decades of development. First-year stu-
dents learn the basics of work, heat, state functions, and reaction spontaneity. The 
advanced topics delve deeper into the thermodynamic laws, equations of state, and 
phase transitions. The fundamentals and applications are inseparable throughout. A 
student cannot understand how household refrigerators work without examining the 
properties that determine inversion temperatures.

Yet, thermodynamics and chemistry appear to be at a juncture. The intersection 
of subjects has enjoyed the maturity of years, and a rich combination of theory and 
applications. The backdrop, however, is no longer confined to classrooms and stand-
alone textbooks. This is because information has leaped to the forefront as a funda-
mental and, at the same time, practical resource. It carries the same significance as 
heat, work, and variables of state, being closely related to the entropy of a system. 
Information operates as a fuel for some processes while it is a distinct product of 
others. The advances in thermodynamics transpired largely during the industrial 
revolution. Much of chemistry today, however, is threaded by programming, com-
putation, and data analysis. The author believes that the thermodynamic curriculum 
should reflect this better by expanding the scope of fundamentals and the applica-
tion of elementary models. If energy is a system’s capacity for performing work and 
transferring heat, then information is the capacity for controlling how the work is 
performed and heat is exchanged.

This book is not the first to intertwine information and a physical science such as 
chemistry. The author was introduced to the fundamentals of information by well-
known texts, in particular ones by Morowitz and Brillouin. Further, the information 
aspects of biopolymers—proteins and polynucleotides—figure in several places, 
from high school classes to the popular press. Most recently, new roots of informa-
tion have been established in electronic structure theory, quantum computation, and 
drug discovery, to name a few areas.

This text nonetheless aims at a few new things while certainly not trying to 
address everything. The goal is to provide a fresh perspective of select topics, such 
as state transformations, heat and work exchanges, and chemical reactions. These 
processes do not occur by themselves for a system, but rather in cooperation with 
the surroundings and with information as the programming currency. The treatment 
is quantitative to the extent that it employs basic calculus, probability, and statistics. 
Wherever possible, however, the more intuitive elements of information and thermo-
dynamics have been emphasized. Further, the major ideas have been presented less 
via derivation and more by example. As a result, the material should be appropriate 
for intermediate students and beyond in special topics classes or for self-study. Just 
as important, it is hoped that new perspectives and exercises are provided for instruc-
tors who will relay them to their clientele.
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This book has a number of sources. They include (1) three shelves of treatises 
on thermodynamics, statistics, and computation—these have been purchased, 
borrowed, and inherited over the years; (2) regular teaching assignments in gen-
eral and physical chemistry; (3) enlightening consultations with colleagues and 
students; and (4) the author’s curiosity. Most important, the author is apprecia-
tive to his own teachers for intellectual foundations and inspiration, in particu-
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Suzanne Hudson, Tien-Sung Lin, Sam Weissman, Ron Lovett, Richard Clarke, 
and William R. Moore. The author is equally grateful to his Loyola University 
colleagues, especially Donald May, Bruno Jaselskis, Carl Moore, Sandra 
Helquist, Jacob Ciszek, and Gordon Ramsey who have contributed helpful com-
ments and criticism. Last, the author is appreciative of Lance Wobus, Kathryn 
Younce, and Linda Leggio of Taylor & Francis/CRC Press for their expertise, 
advice, and editorial assistance.
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1 A Qualitative Look 
at Information

Information is examined in qualitative terms. The examples are drawn from both the 
macroscopic and microscopic scale. These set the stage for quantitative aspects dis-
cussed in the chapters that follow. The suggested exercises address several contexts 
where information is central.

1.1  THE NET OF INFORMATION

The word information motivates much discussion. It prompts almost 3 billion Google 
hits. “Everything is information” in the view of the late John Archibald Wheeler [1]. 
“Information is physical” according to Rolf Landauer [2]. Information is power in 
the eyes of educators, politicians, and computer hackers. Information is removed 
from the universe by black holes as proposed by Stephen Hawking and disputed by 
Leonard Susskind [3,4]. Information changes the state of a recipient [4]. According 
to Carolyn Marvin, “information cannot be said to exist at all unless it has meaning, 
and meaning is only established in social relationships with cultural reference and 
value” [5]. Information is that which appears planned [6]. Information is anything 
that alters a probability distribution [7]. Merriam-Webster’s Unabridged Dictionary 
lists seven headings for information. The first definition is “an endowing with form” 
[8]. Other pronouncements can be cited. Gregory Bateson defines information as a 
“difference that makes a difference; if there is no difference, there is no information” 
[9]. “The transmission of information is impossible save for a transmission of alter-
natives,” according to Norbert Wiener [10]. Information of certain genres is decried 
in the song “Satisfaction” by The Rolling Stones [11]. The purpose of this paragraph 
is not to fuel controversy. It is to show that a familiar term casts a multicontextual, 
unusual net.

Nets have threads. One is that information is highly accommodating of digital 
representations. If one reads this paragraph, one internally generates a set of electri-
cal signals. If the reading is accompanied by speaking, one sparks the brain elec-
tricity plus a collection of air pressure waves. The electric and acoustic signals vary 
with the individual and environment. Yet, the kernel of information is captured quite 
effectively via symbols printed on the paper. The information can be communicated 
to equal effect using chalkboards and computer screens. In each venue, the represen-
tation is obtained by combinations of letters of a finite alphabet.
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Note the power of digitization. Every unit of the alphabet means the same thing 
no matter what font size or style is used. All of the following are representations of 
the letter c:

	 c  c  c  c  c  c  c  c

The symbols B, d, 1, ? and so forth can be used to make the point just as well, 
namely, that the units are themselves not tunable. Rather, a message derives from 
the capacity of the source to string units together and of the receiver to register the 
combinations. There are 51 [i.e., (1 × 26) + (26 × 1) – 1] two-letter combinations that 
contain letter c drawn from the English alphabet. The number increases to 53 if the 
space unit is included as an option. Clearly, the number of distinguishable combina-
tions grows exponentially with the cluster size and available symbols. There is no 
need to worry about exhausting the possibilities for license plates or the nuances that 
can be imbedded in alphanumeric messages.

A related thread is that information accommodates more than one representation. 
Beethoven imagined music in complex ways. Yet, he communicated his thoughts using 
the digital formats of black spots, horizontal and vertical lines, clef symbols, and so 
forth—the notation of Western music. And he always had more than one way to convey 
a message. The same musical note can be represented using any of the treble, bass, tenor, 
or alto clef systems. The assemblies of notes can be communicated to equal degree via 
different key signatures. It is apparent that one information format can be substituted for 
another. A vital property of information is that it is virtually always fungible.

The reliance on digital formats requires a structure dependence. Alphabet char-
acters can be strung in various combinations, but not any arrangement will do. The 
letters e, a, and t, linked one way refer to food consumption. Combined another 
way, they bring to mind a late afternoon beverage. Still another arrangement evokes 
food consumption in the past tense. Structure is critical to the message, and thus the 
content and impact of information. The receiver of messages from a source can only 
comprehend the messages if the structure rules are well established in advance.

Another property of information is that it admits reproduction. Printed texts and 
drawings can be hand- and photocopied. Their digital versions can also be burned 
on compact disks and copied to flash drives. The reproduction of information was 
limited in the Dark Ages due to the scarcity of paper and literate humans. Matters 
are quite the opposite in this electronic age. The typical American consumes about 
34 gigabytes of electronic information daily. This is an increase of about 350% over 
the past three decades [12]. Citizens do not live by food alone for there are the dietary 
requirements of information.

This points us to another property. Information is highly accommodating of trans-
formations. The texts and drawings that can be copied just as easily can be erased in 
parts and appended in others. Information is important for all the reasons mentioned 
so far. That it is mutable should occupy a prominent place on the list. Note that the 
transformations need not be planned or orderly. Many mutations indeed transpire by 
accident. The alterations of genetic material and computer files come to mind [13]. 
The learning of a new word, phrase, or concept on the part of an individual marks the 
transformation of neurological information, in most cases irreversibly.
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Transformations and irreversibility mean that there is an energy price tag attached 
to information, its production, and consumption. Beethoven was a source long ago. 
Today a reader of his scores must work to process the information. The same holds 
for a listener or a performer of the music. Information processing is not free of 
charge, even when dollars appear nowhere in the transaction.

Yet work is not the only currency. Heat also plays a role in all manners of infor-
mation processing. Beethoven transferred thermal energy from his hand to a pen as 
he applied notes to the paper. Heat was generated and dissipated by the pen at the 
point of contact. Heat is dissipated within the piano keys or violin strings by their 
contact with a performer. Heat is dispersed in the listener and score reader while 
they process the musical information. Information processing is not free of energy 
considerations because it entails the transfer of both work and heat.

A third currency is time, although along this dimension, there is neither a source 
nor a recipient. Information involves work and heat in its production, copying, and 
transformation. These activities do not take place instantaneously, but rather over a 
period of time. The amount of time is variable and depends on the machinery and 
circumstances. A performance of Beethoven’s Ninth Symphony takes about an hour. 
The software that encodes the performance required several years for the composer 
to develop. Copying the software to a computer hard drive requires a few seconds at 
most. Information processing is not free on account of work and heat requirements. 
That these resources are expended over finite time intervals is also a critical feature.

There is another thread in the net by way of statistics. Information accommodates 
digital representations. Each element of a message generally appears with a characteristic 
frequency. The elements are not independent of one another. The vowels a, e, and i, for 
instance, appear more often in printed text than the consonants w, x, and z. When the 
letter q appears, it is almost always followed by a u. Music offers a multitude of examples. 
When Beethoven wrote in the key of C-minor, he committed the note E-flat to paper 
more often than E-natural. When he included E-flat in a measure, he typically placed 
G-natural somewhere else in the measure. The characters assembled in digital formats 
pose natural frequencies and cluster patterns. Together these underpin the structure nec-
essary for transmitting, receiving, and making sense of musical information.

Information is statistical and thus possesses a facet that is probabilistic. A reader 
of English texts knows and thus anticipates many sentences to begin with T, and that 
the symbol will be followed by he. A performer of Beethoven’s music expects certain 
notes and sequences dependent on the key signature. In text and music, certain units 
demonstrate higher occurrence frequencies than others. Yet more than elementary 
probability weighs in on analysis and discussion. The concepts of conditional and 
joint probability are also brought to the table.

Examples from everyday life illustrate quite a few properties of information. 
Chemistry classrooms and labs contribute their share as well. Texts and music scores 
offer digital reductions of neurological signals and acoustic waves. Molecular struc-
ture diagrams serve an analogous purpose for conveying Angstrom-scale packages 
of electric charges. Cyclohexanone is one of several stable packages with the formula 
C6H10O. The real ketone in a laboratory flask is an assembly of 54 electrons, 54 
protons, and (typically) 44 neutrons. While the assembly details are nontrivial, the 
information can be represented in digital terms via:
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Information mutates on its own if given the chance. If the chemist mixes cyclo-
hexane, cyclohexene, and bromine in a dark room, a reaction occurs involving the 
latter two compounds. All the while, the cyclohexane molecules play the role of 
spectators. The reactions transpire simply because they can—free energy is lost by 
the solution and new entropy is generated. Yet a second critical reason is that there is 
discrimination shown during each thermal collision. Each package of electric charge 
bumps against another along myriad trajectories at a rate approaching 1012 sec–1. 
With every contact, there is an electronic interaction that depends on the atom/cova-
lent bond network of the different parties. The cyclohexene molecules possess a reac-
tive functional group; the cyclohexanes do not. The functional group predicates a 
different set of interactions during collisions, which can be communicated in digital 
code formats C-C, C=C, C-H, and so forth. The initiation and discrimination of all 
reaction pathways take place by the processing of Angstrom-scale information.

Information maintains a statistical thread throughout the atomic and molecular 
realm. The elements H, He, Li, and so forth are distributed on the planet with spatial 
frequencies dependent on the source, say, coal mined in West Virginia as opposed 
to water in Lake Michigan. The frequencies are by no means independent of one 
another. If an H atom appears in a molecule extracted from coal, odds are that C, O, 
or N units, and not Li, will be a spatially nearest neighbor.

Several basic properties of information are being illustrated in this chapter, includ-
ing ones that concern molecules. It is important that information links to chemical 
systems at the macroscopic scale as well. Let a chemist prepare liquid cyclohexanone 
in equilibrium with its vapor at temperature 294 K. Let the chemist then isolate 
the vapor portion. The resulting material will be ever changing at the microscopic 
level given the molecular translations, rotations, vibrations, and thermal collisions. 
Yet the macroscopic level affords surprisingly compact representations via essential 
information. With rare exception, the chemist needs only to measure and record 
three quantities such as pressure (p), volume (V), and temperature (T). These are 
the notebook entries that would enable a colleague to construct a system with iden-
tical macroscopic properties. In effect, the thermodynamic specifications in three 
areas are required for successful duplication; any more data would be superfluous 
for large-scale samples. The variables are tunable by the chemist transferring heat or 
work to the cyclohexanone molecules. Thus, the information affiliated with the sys-
tem is transformable virtually without limit. Since the measurements of p, V, and T 
transpire at finite resolution, each quantity can be represented in finite digital terms. 
Specifying the state variables such as p, V, and T provides software for replicating 
and transforming the real physical system.

The properties of information apply regardless of sample size and shape. Work 
and heat exchanges plus time are necessary for producing and processing the macro-
scopic information. To ascertain p—obtain information about it—the chemist must 
allow the cyclohexanone vapor to push down on the fluid of a barometer or vice versa. 
Alternatively, he or she can measure the electrical or thermal conductivity of the 
gas. Regardless of method, the chemist and apparatus must expend work in order to 
purchase information about the system. There are heat exchanges between the vapor 
and measuring devices if the material is not thermally equilibrated beforehand. Even 
with equilibration, there is friction internal to a barometer and heat dissipation in the 
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fluid motion. Transactions of work and heat are mandatory to obtaining the pressure 
information; the same holds true for other quantities of state such as the volume, 
temperature, and n number of moles of cyclohexanone.

Information at the macroscopic level accommodates transformations. If the chem-
ist compresses the vapor in a leak-proof container while holding the temperature 
constant, such would yield a new system with new information. As per usual, the 
costs of mutation are not zero in work, heat, and time. Further, digital methods per-
mit more than one representation. The macroscopic state can be described via p, V, 
and T expressed in the International System of Units (SI units). Other sets such as 
atmosphere, liter, and Rankine offer equivalent information, no more or less. They 
enable preparation of exact replicas of the system.

Yet the different representations extend beyond the unit choices. Cyclohexanone 
vapor at specified p, V, and T is described just as effectively by, for example, the 
variable sets

{pressure, volume, moles of molecules}
{temperature, volume, moles of molecules}
{pressure, volume, mass}

Every quantity is measurable at finite resolution and thus admitting of digital reduc-
tion. Clearly, there is more than one way to represent the system information—suf-
ficient to allow another chemist to construct a replica. There is a catch in that at 
least one of the variables must be extensive. The extensive variables hinge on the 
sample size and amount, whereas the intensive ones do not. This is not too imposing 
a restriction given that p and T are intensive; V, n moles, and m grams are extensive. 
How many ways are there to choose three from a finite list and have at least one be 
extensive? The answer is the objective of Exercise 1.7, at the end of the chapter.

Suffice to say that it is straightforward to assemble variable sets that meet the 
restriction. There are more variables on the palette such as internal energy (U) and 
entropy (S), both extensive; and density (ρ) and chemical potential (μ), both intensive. 
But one should note that not all system variables are easy to measure directly. The 
pressure of a vapor is obtained via a McCleod or other suitable gauge. The entropy 
of cyclohexanone vapor does not offer such an immediate handle.

It is important that even the variables themselves allow more than one represen-
tation. Symbol p stands for pressure and quantifies the force per unit area exerted 
by the vapor; T performs likewise for temperature and determines the direction of 
heat flow if the system is placed in contact with another. In an intriguing way, both 
quantities are equivalent to differential functions:

	

p
U

V
S n

= −
∂
∂

, 	
(1.1)

	

T
U

S
V n

= +
∂
∂

, 	
(1.2)
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The functions are themselves represented by alphabetic (nontunable) symbols. They 
are implied to be continuous although their laboratory measurement is limited to 
finite resolution.

The information expressed by macroscopic states is of a statistical nature as well. 
Fluctuations are a feature of every state, equilibrium and not so. Thus, when a chem-
ist specifies the state of cyclohexanone vapor via p, T, and V, he or she knows full well 
such values are not rock solid. When the molecules collide, they adhere momentarily 
to one another. The molecules adsorb to and desorb from the walls. Processes such 
as these cause the sample pressure to rise and fall rapidly and interminably. There 
are shape fluctuations and, as a result, volume changes of the glass container as 
well. If the walls are diathermal, there are heat exchanges between the vapor and 
the surrounding environment; adiabatic walls limit the exchanges to the work of 
shape changes. The message is that any of the p, T, and V values recorded for the sys-
tem occur with a certain frequency and fluctuate around averages. Moreover, values 
other than the averages can be anticipated with a certain probability. The vapor state 
variables are not independent of one another. If p rises or falls, it affects the density 
ρ. The information of any system is probabilistic in nature. It is also subject to cor-
relations and constraints. There will be much more to say about equilibrium states, 
fluctuations, and probability in subsequent chapters.

In the discussion so far, several threads of the information net have been men-
tioned, most of them fairly simple. One should not be lulled into thinking, however, 
that the threads are uniformly obvious and straightforward. As the first paragraph 
implied, a discussion of information becomes quickly complicated. One reason is 
that the value and action of information depend on the receiver. There is information 
in the score of a Beethoven symphony. And many individuals are capable of appreci-
ating the black dots, lines, and digits on the printed page. Yet the impact depends on 
whether the viewer is a conductor of an orchestra or of a passenger train. Equivalent 
statements can be made about the formula diagrams for molecules. The information 
can be processed if there is already certain information stored in the receiver—the 
system placed in contact with the source.

The complexities only begin there. Information costs work to produce, copy, and 
process. Yet, strangely it can function as a type of fuel itself—one capable of pro-
ducing, copying, and transforming additional information. One gathers this from: 
mcules crry info. Text such as this grants another system a capacity to write copy, 
and process the message in complete form. The same holds for formula diagrams. A 
chemist can make sense of this chapter’s portrayals of cyclohexanone. The chemist 
knows at once from each diagram that the atom constituency is C6H10O.

Information issues are equally complicated at the macroscopic scale. Chemist 
A can prepare a sample of cyclohexanone vapor, and convey the state to Chemist B 
using p, V, and T quantities. Such information empowers Chemist B to infer the mass 
of the gas. This is true, however, only if he or she has access to the equation of state. 
The multiplying of information is generally possible but requires information.

There is another complicating feature, namely, that information demonstrates 
what can be thought of as level properties. The letter C appears on a page because 
somewhere in the printing pipeline the ASC II code 01000011 was transmitted 
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by one computer and received by another. In the same vein, C can appear only if 
01000011 (more information than a single character) initiates a subroutine that acti-
vates a certain configuration of pixels (still more information than an eight-character 
word). Clearly, information is underpinned by greater information; it demonstrates 
layers in the manner of oil paint. The quantity of information invariably increases 
the lower the level.

As processors of information, chemists are fortunate to operate at compara-
tively high levels most of the time, and do not have to sweat the lower-level details. 
Formula diagrams offer a case in point. The examples of this chapter portray 
Angstrom-scale charge packages, but their information is definitely of the high-
level variety. The molecules can be represented at lower levels and with greater 
processing costs using molecular orbital, density functional, and other electronic 
structure formats. The level properties of information apply to macroscopic systems 
as well. Classical thermodynamics offers the chemist a comparatively high-level 
description of a system. Kinetic theory and statistical mechanics offer lower-level 
portrayals but at the cost of additional work. Note that the term lower-level does 
not necessarily equate with better; the appropriate level depends on the challenge 
at hand. The preparation of cyclohexanone from cyclohexanol starting material 
can be communicated using high-level diagrams. A description that includes elec-
tronic, vibrational, and rotational wave functions and partition functions may only 
obfuscate the methodology. At the macroscopic scale, an isothermal compression 
of a gas may be described at the level of classical thermodynamics. An appeal to 
kinetic theory and statistical distribution functions may not assist matters. The 
point is that the chemist is usually able to travel and make progress on the basis of 
high-level information. Information in simple diagrams enables the construction of 
exact replicas of molecules. Information in p, T, V and other variable sets enables 
reproduction of macroscopic systems.

This chapter touched upon threads of a complicated net. Let it conclude by reiter-
ating points that chart the direction of subsequent chapters.

	 1.	 Information is physical as Landauer declares. And the most accessible han-
dles are digital, statistical, and structure dependent in nature. These proper-
ties are critical to the quantification of information presented in Chapter 2.

	 2.	 Information production, copying, processing, and transformation entail 
transactions of work and heat. Information accordingly has a feature that is 
thermodynamic. If energy is a system’s capacity to perform work or transfer 
heat, then information represents a capacity for controlling the work and 
heat transactions. These issues are at center stage in Chapters 3 through 5 
in connection with the macroscopic scale.

	 3.	 Information is physical—and chemical. Molecules carry, transfer, and 
transform electronic information. The information processing effected by 
collisions in thermal environments makes chemistry possible. These sub-
jects propel Chapters 6 and 7.

	 4.	 Information casts a net approaching 3 billion Google hits. Not every aspect 
can or should be addressed in one book. Issues regarding time costs, trans-
fer fidelity, and parallel processing receive glancing remarks in Chapter 8.
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1.2  SOURCES AND FURTHER READING

The net of information has logged multitudinous books of much thought-pro-
voking variety. Several have been cited already. The author further recommends 
Lowenstein’s The Touchstone of Life: Molecular Information, Cell Communication, 
and the Foundations of Life [16] and Berlinski’s The Advent of the Algorithm: The 
Idea That Rules the World [17]. For insights into chemical information networks of 
early days, by all means read The Invention of Air by Johnson [18].

1.3  SUGGESTED EXERCISES

	 1.1	 The chapter opened with the statement “Information motivates much 
discussion.” Several declarations followed. Choose one and write a two- 
to three-page response paper. The response should argue the merits and 
deficiencies regarding information.

	 1.2	 This chapter presented the idea that information represents a system’s 
capacity for controlling work and heat transactions. As in the first exer-
cise, compose a response paper that addresses the merits and deficien-
cies of the idea.

	 1.3	 This chapter cited the combining of letters a, e, and t to form mes-
sages. Some of the messages are closely related in meaning such as 
eat and ate, whereas others are different, for example, tea. In a parallel 
way, atoms combine to form molecules, each carrying an electronic 
message.
	 For this exercise, identify the stable messages that can be assem-

bled using five carbon, eight hydrogen, and two oxygen atoms. These 
should include the structural and valence isomers of C5H8O2 as well 
as van der Waals dimers. Which combinations are closely related by 
chemical functionality?

	 1.4	 Each of the letters a, b, c, ... z composes 1/26 of the English alphabet. 
Each can function as the first character of a word: ate, bobcat, chemistry, 
and so forth. (a) Refer to an English language dictionary and identify 
the fraction of pages associated with each letter as a first character. (b) 
Arrange the fractions in ascending order, for example, 0.0565, 0.0684, 
0.135, and so on. (c) Form a summation based on the ascending frac-
tions: 0.0565, (0.0565 + 0.0684), (0.0565 + 0.0684 + 0.135), and so on. 
(d) Pair the summed terms, respectively, with 1/26, 2/26, 3/26, and so 
on. (e) Prepare to construct a plot: the fraction sums on the abscissa and 
1/26, 2/26, and so forth on the ordinate. (f) Write in advance the char-
acter (linear, exponential, etc.) anticipated for the plot. (g) Construct the 
plot by hand. Does the plot match expectations? Please discuss.

	 1.5	 The Handbook of Chemistry and Physics functions as an abridged 
molecular dictionary [14]. It includes a tabulation of entries for a given 
formula, for example, 10 entries correspond to C4H8Cl2. (a) Count the 
number of entries associated with a single carbon atom. Do likewise 
for entries for two-carbon, three-carbon, and so forth. (b) Prepare to 
plot the number of entries versus carbon atoms on the ordinate and 
abscissa, respectively. (c) Write in advance what the plot is anticipated 
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to look like. (d) Construct the plot. Does it match expectations? Please 
discuss.

	 1.6	 Describe two examples drawn from chemistry where probability plays 
a role. Do likewise regarding conditional probability.

	 1.7	 The macroscopic state of a one-component system can be specified via 
three variables as long as at least one is extensive. Consider a palette 
of the following: p, V, T, n moles, mass m, density ρ, internal energy U, 
molar volume V , and entropy S. How many valid combinations can be 
assembled?
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to converting a slot initially devoid of a label to one that is permanently filled, for 
example, [ ] → [H]. Equivalent statements apply to all information venues irrespec-
tive of the label choices.

There are several points that follow, the first being that the absence of information 
equates with uncertainty about which label will end up filling a slot. Experiments 
offering results that are foregone conclusions may be attractive for one reason or 
another, but they offer zero information in the quantitative sense. The second point 
is that all—not merely some—of the possible states and labels must be known in 
advance. Venues whereby only some of the states are acknowledged and in play 
demand further groundwork for information to be quantified. Third, the amount of 
information equals the number of slots needed to label the messages efficiently, that 
is, with a minimum of leftovers. For each of the Table 2.1 venues, a single slot is 
required; the process of registering a message results in a single binary digit of infor-
mation. In more compact terms, each venue offers 1 bit of information, the word bit 
serving as an abbreviation for “binary digit.”

The fourth point is that venues and states can be combined. If the chemist flipped 
a quarter on the lab bench while allowing 4-ethyl-toluene and NO2

+ to interact, the 
combination exercise would offer 2 bits of information. The joining of all three ven-
ues of Table 2.1 yields 3 bits. Information is an additive quantity.

The fifth point is a nuanced one. If the chemist were to combine all three venues, 
a possible state and binary label outcome would be:

H ortho tables 

0 0 1

while another would be:

T ortho stable

1 0 0

TABLE 2.1
Venues, Allowed States, and Digital Labels

Venue Allowed States Labels

Coin Flipping H, T 0, 1

Reagent Collisions ortho, meta 0, 1

Letter Arrangements stable, tables 0, 1
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It is straightforward to verify eight combination-states with the label sets as follows:

Coin Flip Aromatic Substitution Letter Arrangement
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Therein lies the point. Information in the quantitative sense does not refer to the 
state message itself but rather to its length. Experiments that result in the 011 out-
come—or 010, 110, and so forth—yield the same amount of information, namely, 
3 bits. It is easy and even tempting to overlook this property. Information in a facts 
and data context is synonymous with message. People gather information from 
newspapers, books, Web sites, and so on; pets receive information from cues of 
their owners. In matters quantitative, however, the concept connects with the size 
of a message. To go one step further, one observes that for the Table 2.1 venues, 
whether single or combined, the number of possible state messages Ω is an integer 
power of 2:

	 = 2I 	 (2.1)

The exponent I equates with the binary digit slots required to label the state mes-
sage. Therefore,

	 log2 = I 	 (2.2)

which is the information measured in binary digits. Note that bits is not the only unit 
that can attach, but it is the most frequent and popular. This is in spite of real-life 
venues rarely posing Ω equal to an integer power of 2. But there arises a minor quan-
dary. Handheld calculators are lacking in log-base-2 buttons. How does the chemist 
compute information in more general scenarios?

The answer is that information I always hinges on the number of possible states 
Ω. If one considers:

	 = =ey I2 	 (2.3)

it follows that,

	
log log ( ) log ( )e e

I
ey I= = = ⋅2 2

	 (2.4)
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In turn, I is quantified in bits—as opposed to other units—by the relations:

	
I e

e

e= ≈
log

log ( )

log

.2 0 693 	
(2.5)

Thus for Ω = 5, 89, and 1012, I equates with approximately 2.32, 6.48, and 9.98 bits, 
respectively. The major point is that information amounts always arrive via loga-
rithm functions. In the base-2 system, the relevant unit is bit. In base-e units, the unit 
nit attaches while nat is an alternative. A perusal of any dictionary will show why nit 
is not a pleasant-sounding term. Yet regardless of unit, the additivity of information 
is consistent with the logarithm function. If the chemist conducts three independent 
experiments, each with possible states Ω1, Ω2, and Ω3, then the total combined num-
ber of possible states (Ωtotal) is:

	 total = ⋅ ⋅1 2 3 	 (2.6)

The sum total information Itotal is then,

	

I

I I

total = ⋅ ⋅

= + +

= +

log ( )

log log log

2 1 2 3

2 1 2 2 2 3

1 22 3+ I 	

(2.7)

The total number of states is obtained via multiplication, whereas the total infor-
mation is the result of addition. Logarithm functions support state and information 
properties in an elegant way.

2.2  THE INTERFACE OF INFORMATION WITH STATE LIKELIHOOD

The first section approached each state of a venue as equally likely; one message 
was anticipated as much as another. This seemed reasonable for coin flipping and 
using random number generators to determine the printing of stable versus tables. 
The assumption of equal likelihood is not so justified in reactions of 4-ethyl-tol-
uene. After all, the two substituents pose different steric effects and activate the 
aromatic ring electronically to different degrees. The frequency of nitration ortho 
to the methyl group is anticipated to be different from the meta alternative. How 
much different depends on factors such as temperature and solvent. The upshot is 
that nature’s preference for one outcome over another means that there should be less 
uncertainty about the reaction product. The reduced uncertainty about two possible 
states means less information for the chemist—something less than 1 bit. But then, 
how much less?

One intuits that if the state likelihoods were only slightly skewed, say, the ortho 
product was 1.10 times more likely than meta, there would be only slightly less infor-
mation than 1 bit available. If instead, the ortho/meta likelihoods were dramatically 
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skewed, say, by a factor of 10, the available information would be considerably less 
than 1 bit. If, for any reason, the imbalance were a factor of 104, the information 
would be reckoned as slightly above zero bits.

An imbalance factor F (= 1.10, 10, 104) is readily converted to a pair of fractions, 
fortho and fmeta:

	
f

F

Fortho = +1 	
(2.8)

	
f fmeta ortho= −1

	 (2.9)

The results then approximate the fraction of times—the likelihood—the particular 
state will be realized in experiments. For the aforementioned three cases, one has

	
F f fortho meta= ≈ ≈1 10 0 5455 0 4545. : . , .

	 (2.10)

	
F f fortho meta= ≈ ≈10 0 9091 0 0909: . , .

	 (2.11)

	
F f fortho meta= ≈ ≈10 0 9999 0 00014 : . , .

	 (2.12)

A more formal connection between the fractional likelihoods and probabilities is 
reserved for Section 2.4. For now, it is sufficient to note that formulae analogous 
to Equations (2.8) and (2.9) extend beyond aromatic substitution. The generality is 
conveyed by labeling the likelihood fractions by subscripts 1 and 2: f1 and f2. Then, 
if one considers the fractions as logarithm arguments and multiplies the results by 
–1, one arrives at:

	
− =

−
≈
−

log
log

log ( )

log

.2 1
1 1

2 0 693
f

f fe

e

e

	
(2.13)

	
− =

−
≈
−

log
log

log ( )

log

.2 2
2 2

2 0 693
f

f fe

e

e

	
(2.14)

This leads to Table 2.2. Included is the case of the equal-likelihood venues of 
Section 2.1 where f1 = f2 = 0.5000. The purpose of Table 2.2 is to demonstrate that 
the two rightmost columns move in opposite directions. The term − log ( )

.
e if

0 693
 increases 

as fi inches toward zero; the term approaches zero as fi moves closer to 1.
One meets another important quantity along intuitive lines. Whereas information 

scales with the uncertainty reduced by an experiment, the term − log ( )

.
e if

0 693
 is tied to 

the degree of surprise of an observation. Unlikely events, such as winning Illinois 
powerball lotteries or nitration of α,α,α-trifluorotoluene to yield an ortho product, 
have fractional likelihoods that border on zero. Such events predicate large surprises 
in the very literal sense. Failing to win a lottery or observing nitration meta to the 
CF3 site have fractional likelihoods very close to one [1]. These outcomes generate 



20	 Chemical Thermodynamics and Information Theory with Applications

virtually no surprise at all. One gathers that the surprisal quantity (Si) allied with 
state i having fractional occurrence ( fi) is established by:

	
S f

f
i i

e i= − ≈
−

log
log

.2 0 693 	
(2.15)

Now every possible state contributes to the information of an experiment. In fact, 
the contribution is weighted by the state likelihood imbedded in the surprisal. One 
intuits that,

	
− ≈

−
f f

f f
i i

i e ilog
log

.2 0 693 	
(2.16)

is the contribution to the information by the ith state. It is a short step away to find 
that the total information I, given N possible states, follows from a sum of weighted 
surprisals, namely,

	

I f fi i

i

N

= −∑ log2

	

≈
−

×∑1
0 693.

logf fi e i

i

N

	
(2.17)

By applying Equation (2.17) to the Table 2.2 scenarios, one obtains Table 2.3. The 
latter shows how the fractional likelihoods together impact the information of an 
experiment. A fractional likelihood by itself bears on the chemist’s uncertainty—or 
lack of it—of observing a particular state: if fi = 0.980, the chemist is fairly certain 
that the ith state will rear its head in the experiment; if fi = 0.485, the chemist is quite 
uncertain about the state’s next manifestation. Information, by contrast, is founded 
on the collective uncertainty that involves all the states 1, 2, i, … , N – 1, N, likely 
and not so likely.

Equation (2.17) and Table 2.3 make the case that the information available from 
an experiment is a weighted average of the surprisal terms. In statistical terminology, 

TABLE 2.2
Fractional Likelihoods and Surprisals

f1 f2
S

fe
1

1

0 693
=

log ( )

.
S

fe
2

2

0 693
=

log ( )
.

0.5000 0.5000 1.000 1.000

0.5455 0.4545 0.8745 1.137

0.9091 0.0909 0.1375 3.459

0.9999 0.0001 0.01442 13.29
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information is the expectation of the surprisal. Note as well from Table 2.3 that the 
information is greatest when the state likelihoods are equal. This is a truism that 
extends beyond venues featuring only two states; the conditions that yield the most 
information are ones where all the states manifest equal likelihood. Figure 2.1 illus-
trates this explicitly for binary venues where f1 + f2 = 1; f2 = 1 – f1. Clearly the maxi-
mum information, namely, 1.00 bit, is evidenced when f1 = 0.500. Just as important, the 
information converges to zero as f1 approaches 1 or 0. This statement echoes a point 
made in Section 2.1: Venues posing only one possible outcome are not experimental 
in the strict sense of the word because they offer zero information. By contrast, the 
maximum information follows from situations where there is maximum uncertainty 
about the outcome.

0.00 0.20 0.40 0.60 0.80 1.00
Fractional Likelihood f1

0.00
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0.40

0.60

0.80

1.00
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FIGURE 2.1  Information for a two-state venue as a function of fractional likelihood f1. The 
information is maximum when states 1 and 2 occur with equal likelihood.

TABLE 2.3
Fractional Likelihoods, Surprisals, and Summations

f1 f2 f S1 1⋅ f S2 2⋅

∑ ⋅
=

=

i

N

i if S
1

2

0 693.

0.5000 0.5000 0.5000 0.5000 1.000

0.5455 0.4545 0.4770 0.5170 0.9940

0.9091 0.0909 0.1250 0.3145 0.4395

0.9999 0.0001 1.442 × 10−4 1.328 × 10−3 1.472 × 10−3
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Table 2.3 illustrates another property albeit implicitly. It is that experimental ven-
ues that pose information are affiliated with complete sets of fractional likelihoods. 
A set can host a few or many members. The number is always dictated by the possible 
states. The following are examples of viable and thus complete sets { fi }: {0.5000, 
0.5000}, {0.9500, 0.0500}, {0.9500, 0.0300, 0.0200}. It is sometimes the case that 
two or more fi are equal, for example, {0.8800, 0.0300, 0.0300, 0.0600}. What is 
always the case is that the fi sum to 1, as introduced by fortho and fmeta in Equations 
(2.8) and (2.9). Information venues are grounded upon these sets—collections of 
fractions that sum to 1. In turn, quantifying information begins with establishing a 
complete set of fractions. Once the set is known, the information in bits, nits, or other 
choice of units follows straightaway.

The preceding idea shows the applicability of information in chemistry, if not 
scientific fields in general. If an experiment ascertains whether a molecule is a 
D- or L-isomer, there is 1 bit of information acquired if each isomer is equally 
likely in occurrence. If an assay establishes the first base unit of a DNA sample, 
2 bits of information are typically obtained. If a thermometer registers whether 
the temperature of a sample is below 273 K, 1 bit is trapped. Information in the 
quantitative sense follows from interfacing an experiment with queries that admit 
yes or no answers. The childhood game of twenty questions directs the inquir-
ing party toward a conclusion based on a maximum of 20 bits of information. 
Information is the quantity in search of systems, inquiries, and experiments. One 
notes the resemblance of Equation (2.17) to the entropy of mixing for an ideal 
solution [2]:

	

S n R X n R X

R n

mix e e

j e

= − ⋅ ⋅ − ⋅ ⋅ −

= − ⋅ ⋅

1 1 2 2log ( ) log ( )

log (( )X j

j

∑
1

κ

	

(2.18)

where R is the gas constant, and nj and Xj are the respective mole amounts and frac-
tions for each component of a system hosting κ total. Just as important to note is the 
entropy of a system established by statistical mechanics [3]:

	

S k prob j prob jB e

j

= − ⋅ ⋅∑ ( ) log ( ( ))

	

(2.19)

Here kB is Boltzmann’s constant and prob(j) is the probability of observing the jth 
state of a system. The similarities of Equations (2.17) through (2.19) are not coinci-
dental. It is apparent that information and entropy are related if not alternate sides 
of the same coin. The inaugural properties and applications of Equation (2.17) were 
the brainchild of Claude Shannon and thus I is commonly referred to as the Shannon 
information [4]. The term Shannon entropy is written almost as often on account 
of the ties to Equations (2.18) and (2.19). The mixing entropy of Equation (2.18) is 
visited several times in subsequent chapters.
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2.3  THE ROLE OF PROBABILITY

Real-life experiments—tossing coins, aromatic substitution, and so on—pose states 
and fractional likelihoods ( fi ). The latter are usually established by weighing the 
number of times (Ni) the ith state is registered against the total number of observa-
tions (Ntotal):

	
f

N

Ni
i

total

=
	

(2.20)

Yet fi encountered in Tuesday’s experiments will generally not match Wednesday’s. 
Section 2.2 offered that fi are typically different for different states. In the same vein, 
a given fi is subject to fluctuations. How do these issues square with information?

The short answer is that information, as illuminated by Shannon and others, is 
formally based on probability. The latter is an idealized extension of fi; the probabil-
ity prob(i) associated with the ith state equates with fi in the limit of infinite trials or 
observations, that is,

	

prob i
N

N

Ntotal

i

total

( )
lim

=
→ ∞

	
(2.21)

Infinite observations are impossible in the chemist’s lifetime; this is a first idealiza-
tion of prob(i). Querying states independently one at a time is also not always fea-
sible; this is a second source of idealization. Probability ideas reach far nonetheless. 
One looks to ψ τ2

2
sd  for an example. This is interpreted in chemistry classes as the 

probability of observing an atom’s 2s electron in an infinitesimal volume element 
(dτ), as dictated by a wave function (ψ2s). Such a probability is not very accessible 
to the chemist, experimentally at least. In spite of the observation complexities, how-
ever, probability concepts are applied widely. At the minimum, they point to critical 
questions for the chemist to consider.

A rigorous discussion of probability begins with set theory. On simpler ground, 
the tools of probability can be acquired by thinking exercises. The time-honored 
ones appeal to balls drawn from urns, poker hands, thrown darts, and tossed coins 
[5]. Yet the exercises need not be so macroscopic in character. Spin populations and 
electron clouds have also been used to illustrate and thus reinforce probability con-
cepts [6,7]. The microscopic nature of such examples makes them easier to imagine 
than to access by experiment.

This section will add to the list by considering peptides—molecules formed by 
the covalent linking of amino acids. Their applicability derives in several respects. 
A peptide’s primary structure is conferred by the amino acid sequence. The allowed 
states are countable based (typically) on 20 building blocks. A peptide’s states are 
easy to illustrate and label. Table 2.4 presents the names and abbreviations of the 
standard amino acids along with formula weight data. Nature employs quite a few 
more, but the standard 20 suffice for most purposes. Figure  2.2 illustrates a few 
amino acids and a tripeptide in formula diagram terms; issues of stereochemistry 
are completely ignored. Peptides are obtained from classical synthesis, robotic, and 
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cellular technologies [8]. The states are established using Edman-type sequencing, 
chromatographic methods, and mass spectrometry [9]. The physical properties of 
peptides are pursued along multiple lines such as molecular weight. There is more to 
say on this subject in Section 2.4.

For now, we consider a set of tripeptides, one member of which was illustrated at the 
bottom of Figure 2.2. The first of the thinking exercises calls for cellular machinery that 
can generate the molecules in various amounts. Let the machinery confine the reagent 
palette to glycine (G) and valine (V). The possible (and distinguishable) states are GGG, 
GGV, GVG, GVV, VGG, VGV, VVG, and VVV where the left-to-right sequences indi-
cate the N- to C-terminal direction. Let the production of molecules be in such high 
numbers that the mole fractions perform double-duty as probability values. Naturally, 
the state populations will depend on transcription and translation enzymes, G and V 
availability in the cell, and genetic programming. These details are of no concern here.

Let the set of probabilities be those constructed arbitrarily and listed in Table 2.5. 
The sum of the weighted surprisals (rightmost column) is 2.485. Then 2.485 bits is 
the amount of information availed when the chemist randomly selects a tripeptide 
from the cell and determines the primary structure. If the eight possibilities were 
produced by the cell in equal numbers, then the information would be 3.000 bits. 
The lesson of Table  2.5 is presented pictorially in Figure  2.3. The open squares 
mark the weighted surprisals for the eight states. The plot emphasizes that however 

TABLE 2.4
Naturally Occurring Amino Acids

Amino Acid Abbreviations Formula Mass (grams/mole)

Alanine Ala, A 89.09

Arginine Arg, R 174.2

Asparagine Asn, N 132.12

Aspartic acid Asp, D 133.1

Cysteine Cys, C 121.16

Glutamine Gln, Q 146.14

Glutamic acid Glu, E 147.13

Glycine Gly, G 75.07

Histidine His, H 155.15

Isoleucine Ile, I 131.17

Leucine Leu, L 131.17

Lysine Lys, K 146.19

Methionine Met, M 149.21

Phenylalanine Phe, F 165.19

Proline Pro, P 115.13

Serine Ser, S 105.09

Threonine Thr, T 119.12

Tryptophan Trp, W 204.23

Tyrosine Tyr, Y 181.19

Valine Val, V 117.15
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concept of state to be a fluid one, and that there can be numerous descendents of 
a probability set.

Probabilities can have strings attached. For instance, what is the probability 
that, given that a randomly isolated tripeptide contains V, there are also two Gs? 
To address this, the chemist must examine the fraction of times that V occurs. The 
chemist then compares that fraction to the fraction of times two Gs are included. One 
computes the ratio

	

sum of probabilities of Gs in peptides containing V

sum

2

oof probabilities of all states containing V

=
+ +

+ + +
0 0500 0 0800 0 0100

0 0500 0 0800 0 2000 0 010
. . .

. . . . 00 0 2500 0 0200 0 0900
0 2000

+ + +
=

. . .
.

	
(2.24)

Information-wise, experiments motivated along this dimension offer

	
I

e
e e=

−
⋅ + ⋅

1
2

0 2000 0 2000 0 8000 0 80
log ( )

. log ( . ) . log ( . 000 0 722) .≈ bits
	

(2.25)

The idea is that the chemist has somehow already determined that the peptide con-
tains V. His or her follow-up experiment then targets the question “Are there also two 
Gs present?” A similar question would be “What is the probability that, given there 
are two Vs anywhere in the peptide, there is also G present?” This probability is:

	

0 2000 0 2500 0 0200
0 2000 0 2500 0 0200 0 0900

. . .
. . . .

+ +
+ + +

== 0 8100.
	

(2.26)

The amount of information allied with the corresponding yes–no question and the 
probability set {0.8100, 0.1900} follows immediately. The features to notice in the 
last two examples are that they portray the workings of conditional probability.

A third type of query arrives by considering combination states. For peptides, such 
states arise not only from the amino acid composition but also from the sequence, 
usually interpreted left to right. For example, the molecules in Table 2.5 can each 
be viewed as expressing two combination states, one marked by the N-terminal 
(leftmost) unit and the other by the combination of the two rightmost units. The 
resulting probabilities must then be distinguished via two indices, i and j, and joint 
probability terms prob i j( , ). The i index runs only from 1 to 2, referring to G or V, 
respectively, as the N-terminal unit. The j index runs from 1 to 4 given the respec-
tive GG, GV, VG, and VV possibilities. Table 2.5 reports that GGG occurs with 
probability 0.3000. In the joint probability view, this fraction would equate with 
prob(i = 1, j = 1). It is straightforward to compute other prob i j( , ): prob(i = 1, j = 2) = 
0.0500, prob(i = 2, j = 3) = 0.0200, and so forth. It is interesting to compare joint 
probabilities assembled via Table 2.5 to ones that would apply in the absence of 
bias exercised by the cell. If V appeared as often as G for the N-terminal unit, 
then prob(i = 1) = 1/2 = 0.5000. If GG, GV, VG, and VV were all equally likely 
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as the rightmost units then prob( j = 1, 2, 3, 4) = 1/4 = 0.2500. In the bias-free case, 
prob (i, j) = prob i prob j( ) ( )× = ( / ) ( / )1 2 1 4× =

 
1/8 = 0.1250. Comparisons of joint 

probability to values in bias-free scenarios offer the first clues about correlations. In 
looking at Table 2.5 data, one sees that the presence of V in the middle slot of the 
tripeptide enhances the chance of V occupying the C-terminal position.

2.4  INFORMATION AND EXPECTATION

The chemist does not labor without expectations. An experiment in which the state 
probabilities manifest as anticipated is valuable for the currency granted to a particu-
lar theory. Results that demonstrate otherwise are still of service and perhaps even 
more so. They motivate the search for a new theory or modification of the old one.

Information offers a method of weighing expected versus contrary results. The 
method assigns a cost or penalty in bits for results that arrive in an unanticipated 
fashion. There is zero penalty charged for outcomes that conform to expectations. 
The penalties are substantial when the results fail wholesale to match expectations. 
Matters work as follows.

Suppose that the chemist, by virtue of training and expertise, anticipated that 
a certain state i would rear its head 40% of the time, that is, prob(i)= 0.4000. If 
indeed such an occurrence frequency were realized experimentally, there would be 
no penalty attached to the correct-in-advance expectations. The chemist foresaw the 
state contributing –0.4000 loge(0.4000)/loge(2) ≈ 0.529 bits to the weighted surprisal 
sum, and that was indeed the case. As discussed in Section 2.1, it requires digital 
code—0/1, A/B, red/black—to label states. Evidently the chemist was well prepared 
with the correct number of code units purchased and ready to go.

If instead, the fractional occurrence (interpreted as probability) turned out to be 
0.100, such a state would contribute only –0.1000 loge(0.1000)/loge(2) ≈ 0.332 bits to 
the weighted surprisal sum. Under these circumstances, the chemist would have over-
estimated the bits needed for labeling the states. The chemist would have overpaid.

One considers the reverse case. If the chemist had anticipated the fractional occur-
rence as 0.1000 with weighted surprisal of approximately 0.332 bits, and instead had 
observed 0.4000 and weighted surprisal 0.529 bits, a deficiency of code would have 
been encountered. The chemist would have allotted insufficient bits for the results.

One arrives at a quantity referred to as the Kullback information (KI) [10]:
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squares of Figure 2.4. The sum of terms (filled squares) rises and falls but ultimately 
proves positive or at least never less than zero. The equality with zero only applies 
when {q(i)} perfectly matches {prob(i)}. Clearly, the bit penalties would be great-
est if the chemist anticipated the probability set according to the qi

( )3  column in 
Table 2.6. The chemist expected several states—GGG, VGV, VVG, and VVV—to 
manifest much too infrequently. This led him or her to severely underpurchase the 
code needed for the state labeling. Note as well that if the chemist had completely 
missed the boat and expected a probability of zero for any particular state, the bit 
penalty would have been infinite.

The Kullback information handily applies to situations involving joint probability. 
The frequent applications entail the mutual information (MI) obtained via summations
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MI has properties that parallel KI. It follows from a sum of weighted logarithm terms 
that is ultimately positive or at least not less than zero. This is in spite of a mixture of 
positive and negative terms in the summation. In the example that closed Section 2.3, 
one considered the joint states formed by the N-terminal unit and the two rightmost 
amino acids. In the absence of any bias exercised by the cell, prob i j( , )  would always 
equate with prob i prob j( ) ( )× = (1/2) × (1/4) = 1/8. One would gauge MI crudely via 
Equation (2.28) using 1/8 as the denominator in the log arguments and joint prob-
abilities drawn from Table 2.5; in this way MI is estimated to be approximately 0.51 
bits. A more involved calculation springs from testing for the independence of the i 
and j states. In this case,

	 prob i( ) . . . . .= = + + + =1 0 3000 0 05000 0 08000 0 2000 0 6300 	 (2.29)

corresponding to G being observed as the N-terminal unit. By contrast,

	 prob j( ) . . .= = + =1 0 3000 0 01000 0 3100 	 (2.30)

corresponding to GG being the rightmost state. The remainder of the calculation is 
left as an exercise. That MI exceeds zero means that N-terminal and rightmost units 
are correlated, although for reasons the chemist would still need to explore. The 
mutual information shows that the chemist, upon learning the identity of one state, is 
provided knowledge about the other.
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2.5  �CONNECTING PROBABILITY, INFORMATION, 
AND PHYSICAL PROPERTIES

Sections 2.1 through 2.4 addressed states with digital labels attached: 010, 110, 
VGG, GGV, and so forth. The states of a system, however, manifest abundant physi-
cal properties. It is usually through these that a state is identified and the correct 
label affixed. Information is an unusual quantity because it derives from a weighted 
average of probability-based terms. The chemist, however, has much more experi-
ence measuring molecular weights, densities, and so forth. This section examines 
physical properties in relation to information.

To begin, any quantitative property tied to a probability set is said to be a random 
variable. In the traditional notation, the type of property is distinguished from the pos-
sible numerical values by capital and small letters; X and x are the usual symbols of 
choice. For example, X could represent the mass density of a sample; x = 0.784 grams 
per cubic centimeter would then be one of the possible values. Unlike for variables in 
algebraic and differential equations, there is no rule—at least one apparent to the chem-
ist—which pins down one realization of X over another, hence the designation random. 
The probabilities allied with x nonetheless accommodate graphing and computational 
techniques. In some situations, X is limited to a finite number of possibilities. Oddly, its 
statistical nature is often approximated by a continuous function that specifies an infini-
tude of values. To set the stage, one needs to examine how random variables operate.

When the chemist views states solely in digital terms, the questions and answers 
are straightforward. What is the probability of observing a tripeptide with sequence 
VGV? The cell that synthesized the Table 2.5 molecules predicates an answer of 
0.2500. When it comes to random variables, however, the questions require modifi-
cation. For example, the average mass of VGV is computed as 273.3 grams per mole; 
the same holds for GVV and VGG. Yet it is incorrect for the chemist to inquire what 
is the probability of observing a peptide manufactured by the cell with mass 273.3 
grams per mole. This is because none of the VGV, GVV, and VGG possibilities dem-
onstrate precisely this mass. Such is the case given the isotope combinations of the 
atoms that compose the molecules. It is instead accurate for the chemist to seek the 
probability of observing a molecular mass over a specified range. For example, what 
is the probability of observing a peptide with mass somewhere in a window bounded 
by 270 and 276 grams per mole? Here a substantial portion of the VVG, VGV, and 
GVV molecules fit quite nicely. If the window size is decreased, the portion dimin-
ishes. If the window is shut and reduced to zero, no member of the population is able 
to squeeze through.

One arrives at the probability density function fX(x) for the random variable X 
having possible values x:

f x x probability of observing x in the range boundeX ( ) = dd by x and x x+ 	 (2.31)

Key ideas follow straightaway. Probability values are dimensionless: 0.250, 0.075, 
10–6, and so forth. Thus the density function fX(x) must have units of 1/x, for example, 
moles per gram. If X referred to the mass density of a sample, fX(x) would have units 
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of cubic centimeters per gram or an equivalent. Second, probability values are zero, 
fractional, or at most one. Thus,

	 f x xX ( ) ≤ 1 	 (2.32)

while the sum of all the probability values equals 1:

	
f x xX ( )∑ = 1

	
(2.33)

Just as important, since Δx equates with the window size, f x xX ( ) → 0 as x → 0.
A critical result obtains from partial summations of fX(x)Δx. These fall short of 

one and introduce the probability distribution function FX(x ≤ y):

	
F x y f x xX X

x y
( ) ( )≤ =

≤∑
	

(2.34)

FX(x ≤ y) measures the probability of observing the random variable X with any value 
x so long as it is not larger than y. Fundamentals operate here as well. In the most 
general case:

	 F xX ( ) = 0   at  x = −∞ 	 (2.35)

More realistically, Equation (2.35) is geared to the physical nature of X: molecular 
weight, density, temperature, and so on: F xX ( ) = 0  at x = 0 . In all cases, however, 
the distribution function increases, or at least stays constant, as y increases. The 
maximum size of FX(x) is clearly 1, the sum of all the normalized probability values. 
In picture terms, a graph of FX(x) versus x suggests a curve whose height increases, 
or stays flat in certain portions, as the x values progress left to right. In some cases, 
FX(x) has the appearance of a titration curve.

fX(x) and FX(x) are the vehicles for understanding random variables. Both are acces-
sible in venues that pose finite or even an infinite number of possible x. As stated 
already, data for fX(x) and FX(x) can often be modeled by continuous functions, even 
when the number of states is modest to large. When the chemist identifies which func-
tions apply to a situation, he or she shines light on the system and its statistical nature.

It is worthwhile to demonstrate how fX(x) and FX(x) apply to molecular situations. 
We engage in three thinking exercises involving polypeptides composed of valine 
(V) and arginine (R) units (cf. Figure 2.2). Let a polypeptide’s state be investigated 
using elementary biochemical and mass spectrometry techniques.

In the first exercise, one considers a 100-unit polypeptide that is 99% V. Let the 
hypothetical cell place a single R unit randomly in the chain. The possible states are:

	 R1V2V3V4V5 … V100

	 V1R2V3V4V5 … V100

	 V1V2R3V4V5 … V100

	 .

	 .

	 .

	 V1V2V3V4V5 … R100
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It is easy to quantify the information obtained by the chemist inquiring about the 
system and ascertaining the peptide state. If the peptides are all equally likely,

	
prob prob prob( ) ( ) ( )1 2 100

1
100

= = = =
	

(2.36)

It follows that
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Yet the more critical question is how can a state be ascertained by a physi-
cal measurement of a property with attached units and, in turn, fX(x) and FX(x)? 
The exercise appeals to the chemical action of trypsin. This is a much-leveraged 
enzyme that catalyzes peptide cleavage at the carboxyl side of R and K sites [11]. 
The exercise is one that randomly selects a peptide from a large population fol-
lowed by trypsin application and isolation of the R- and V-containing product. 
For extra simplicity, the hypothetical cell never allows K (lysine) as a polypeptide 
component.

Let X signify the molecular weight of the isolated product with possible x mea-
sured in grams per mole. R and V units in free form demonstrate average molecular 
weights of 174.20 and 117.15 grams per mole, respectively (cf. Table 2.4). It can be 
shown then that the possible R-containing molecules have approximate molecular 
weights of:

R1      174 grams per mole
V1R2    273 grams per mole
V1V2R3  372 grams per mole

	 .
	 .
	 .

V1V2V3V4V5 … R100  9989 grams per mole

The assignment of a state of the parent randomly selected peptide is obtained by 
probing the mass of the R-containing descendent over a range of approximately 174 – 
104 grams per mole. The window size Δx needs to be just less than 100 grams per mole 
in order to distinguish one molecule—and therefore one parent polypeptide—from 
another. The window more than accommodates the masses allowed by the isotope 
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combinations. If the chemist observed a fragment with mass ~1956 g/mole, he or she 
knows at once the state of origin had to have been

VVVVVVVVVVVVVVVVVVRVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

For the above yields

VVVVVVVVVVVVVVVVVVR

as the R-containing fragment following the action of trypsin. Note that the chemist 
is relying on a physical measurement at finite resolution to assign the correct digital 
label. Matters of probability lie a short step away.

The chemist can well anticipate the statistical structure of the experiment. If the 
cell randomly places a single R unit, the chemist reasons that

	 f x xX ( ) .≈ 0 0100 	 (2.38)

In turn, fX(x) ≈ 10–4 moles per gram over the entire sampling range using the win-
dow size Δx of just less than 100 grams per mole.

The probability structure is anticipated by intuition. Computer experiments rein-
force the thinking. It is straightforward to construct 100-unit peptides in virtual for-
mats that are 99% V. Likewise, it is simple to place an R unit randomly—using a 
random number generator—and to compute the molecular weight of the fragment 
that would be isolated following trypsin application. The R placement and com-
putation are not executed one time only. Rather a large population of peptides and 
R-containing products must be prepared to realize the probability structure. It was 
shown in Section 2.1 how the truncated, fractional portion of ( )π + u 5  is virtually 
unpredictable, given an arbitrary seed u < 1. To determine an R placement in a 100-
unit peptide, such a fraction can be multiplied by 100 and the result added to 1. The 
integer portion then points to the site for which to place R. For example, for u = 
0.48902471, one has

	 ( ) .π + =u 5 630 81556648 	 (2.39)

	 Integer[ . ]100 0 81556648 1 82× + = 	 (2.40)

which leads to the peptide

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
VVVVVVVVVVVVVVVVVVVVVVVVVRVVVVVVVVVVVVVVVVVV

There is no limit to the virtual molecules that can be prepared in this way. The R 
placements are sufficiently unpredictable to flesh out the statistical character. Virtual 
peptides are synthesized more readily by the chemist than real ones.

The upper panel of Figure 2.5 shows a plot of fX(x) obtained from the computer 
experiment, whereas the lower panel contains FX(x). The scatter in the data (open 
squares) is due to the peculiarities of the random number generator and the finiteness 
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For the thinking exercise, best-fit a and b are 174 and 10,087 grams per mole, 
respectively. Figure 2.5 includes plots (solid line) of the functions in Equations (2.41) 
and (2.42). As for information, if the chemist labels the states i = 1, 2, 3, ... in order of 
increasing molecular weight, he or she is a short step from computing the surprisals 
and weighted summation. The results are shown in Figure 2.6. It is important that the 
uniform density and probability distribution functions apply to situations where dis-
parate states manifest equal likelihood. Such functions assist in bridging the physical 
nature of a system with digital labels and information in the quantitative sense.

The second exercise invokes the same cellular machinery, only slightly more error 
prone. Let the cell produce 100-unit peptides that are almost entirely V. Let the R units 
be placed randomly at, say, 4% of the sites on average. One of the possible states is

VVVVVVVVVRVVVVVVVVVVVVVVRVVVVVVVVVVVVVVVVVVVVVVVVRV-
VVVVVVVVVVVVVVVVVVRVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

Suppose that the chemist was concerned less about the structure of the molecule 
as a whole but rather on the distribution of the R-containing sectors. Variations of the 
previous peptide in which the R units are scattered would seem more likely than mol-
ecules in which the R units are bunched together, or are separated by equal numbers 
of Vs, for example:

VVVVVVVVVVVVVVVVVVVVVVVVRRRRVVVVVVVVVVVVVVVVVVVVVVVVVVVV
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

RVVVVVVVVVVVVVVVVVVRVVVVVVVVVVVVVVVVVVVVRV-
VVVVVVVVVVVVVVVVVVVRVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
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FIGURE 2.6  Sum of weighted surprisals for V,R peptides. The experiment central to the 
previous figure offers approximately 6.64 bits of Shannon-type information upon establish-
ment of the peptide identity.
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As in the first exercise, trypsin action and measurements of the fragment masses 
provide a handle on the states and information.

Application of trypsin to the first of the aforementioned peptides yields five 
fragments:

VVVVVVVVVR
VVVVVVVVVVVVVVR
VVVVVVVVVVVVVVVVVVVVVVVVR
VVVVVVVVVVVVVVVVVVVR
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

If the chemist were to probe the R-containing compounds by mass spectrometry, 
he or she could ascertain the structure of each. How much information is obtained 
in the typical experiment? The chemist reasons that there is a 4 in 100 chance of any 
peptide unit being R. There is then a 1 to 0.0400 chance of a unit being V. These 
considerations link the fragment structure to molecular mass and the likelihood of 
occurrence:

          R         174 grams per mole    (1 – .04)0 ∙ 0.0400 = 0.0400
          VR          273 grams per mole    (1 – .04)1 ∙ 0.0400 ≈ 0.0384
          VVR       372 grams per mole    (1 – .04)2 ∙ 0.0400 ≈ 0.0369
          VVVR    471 grams per mole    (1 – .04)3 ∙ 0.0400 ≈ 0.0354

					           .
					           .
					           .

During the mass probes, the same size window Δx is appropriate as in the first exer-
cise. The chemist’s estimates for fX(x) follow from dividing the probabilities by 99 
grams per mole. For example, fX(x = 372 grams/mole) ≈ 0.0369/99 grams/mole ≈ 
3 72 10 4. × −  moles per gram. Clearly the probability density decreases with the frag-
ment size. Although the V units are assembled by the cell with much greater fre-
quency than R, long sequences of V are not so likely. A computer exercise illustrates 
the statistical structure and reinforces the chemist’s intuition. Here the random num-
ber generator directs V at a site if the fractional part of ( )π + u 5  exceeds 0.0400 and 
injects R otherwise. Upon virtual synthesis of a molecule, a subroutine ascertains 
the results of trypsin action and computes the masses of the R-containing fragments. 
When this experiment is carried out many times, say 105, the results deliver fX(x) and 
other probability quantities by an alternate route.

The chemist’s intuition-based fX(x) is plotted in the upper panel of Figure  2.7 
using filled squares. The results of the computer experiment are included as open 
squares, while the FX(x) counterparts occupy the lower panel. Figure 2.8 completes 
matters by showing the sum of weighted surprisals. The agreement between intu-
ition and computer experiment is very good. The consensus is that a query about an 
R-containing fragment offers approximately 5.86 bits of information. This is less 
than encountered in the first exercise on account of the reduced uncertainty. In the 
first exercise, an R unit appeared as 1 of 100 units, whereas in the second it averages 
1 in 25. The less the uncertainty, the less information obtained from an experiment.
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VRVRRVVRRRVVRVVRVRRVRRRVRRVRVRRVVVVVVRRVRRRVVRVVVRVR-
RRRVVVVVRRRVVVRVVRRRVRRVRVVVVVVVRVRRRRRVRRVRVRRV

The italics on many emphasize that there are indeed multiple allowed states: 
2100 ≈ 1030. Let the chemist not worry about the primary structure details but only about 
the number of V versus R units. The chemist can then dispense with the trypsin and 
proceed directly to the mass spectrometry lab. The window size Δx must be reduced to 
approximately 57 grams per mole, however. Given random mixtures of R and V in 100-
unit molecules, how much information is yielded if the V,R content is ascertained?

Intuition and computation work together again. There is only one configuration 
each for (V)100 and (R)100 with respective molecular weights of 9,931 and 15,636 
grams per mole. Although these are possible molecules made by the cell, they should 
manifest with the near-vanishing likelihood of 1/2100 ≈ 10–30. By contrast, peptides 
containing V and R in comparable numbers offer many more possibilities, all at 
identical molecular weight. Observing these states should be far more likely. The 
probabilities can be intuited by comparing the number of possible configurations 
with the total number of allowed states. A polypeptide composed of N number of V 
units contains (100 – N) R units. The probability prob(N) is quantified by

	
prob N

N N
( )

!
! ( )!

=
−

100
100

1002 	

(2.47)

for 0 ≤ N ≤ 100. The molecular weight of the corresponding peptide, while tedious to 
compute, arrives by consideration of the V and R weights and linkages as in Figure 2.2. 
More critical is that the factorial expressions become very large very fast: 6! = 720 
while ( ) !2 6×  is 6 65 105. ×  times larger. Thus, for almost all the possible cases, the 
probabilities must be established with the help of Stirling’s approximation [6,12]:

	 n n n nn! ( ) exp( )/≈ −2 1 2π 	 (2.48)

or in logarithm form

	 log ( !) ( / ) log ( ) log ( )e e en n n n n≈ ⋅ + −1 2 2π 	
(2.49)

A computer exercise complements the calculations. Here the random number 
generator directs V to a site if the fractional portion of ( )π + u 5 exceeds 0.50000 
and R otherwise given arbitrary initial u < 1. Following virtual synthesis, a sub-
routine computes the molecular weight of the 100-unit peptide. This experiment 
is carried out multiple times so as to establish the statistics. Results are illustrated 
in Figure 2.9. The intuitive estimates based on Equations (2.47) through (2.49) are 
included. The results for FX(x) are shown in the lower panel. Figure 2.10 completes 
the story by showing the sum of weighted surprisals. The information proves to be 
approximately 4.37 bits. As anticipated, this value is the lowest of the three exercises. 
This is because the molecular mass measurements do not say as much about the pep-
tide primary structure, only the number of V’s versus R’s. When the chemist seeks 
less information, less information is the result. Note one subtle feature. If the chemist 
is merely concerned about the number of V versus R—not their precise sequence—
then there are 100 possible states. Only 40 or so are visited in the typical computer 







A Quantitative Look at Information	 43

This quantity is tied to the spread of the probability distribution and is referred to 
as the variance σ2. The square root of the variance is encountered early and often in 
science education and is named the standard deviation (σ).

The third cumulant K3 connects with the symmetry—or more typically the lack 
of it—in a distribution:

	
K x x x x3

3 2 33 2= − ⋅ ⋅ + ⋅
	

(2.54)

When continuous functions model the distributions, the moments arrive via integration:

	
x dx x f xn n= ⋅∫ ( )

	
(2.55)

There is an integral to compute for each moment while N integrals are pieced together 
to supply the Nth cumulant. It is important that the moments can arrive by another 
route that entails a single integral and an intriguing function. This function can be 
differentiated sequentially to obtain any moment; it is the moment generating func-
tion for the random variable X:

	
M t dx tx f xX ( ) exp[ ] ( )= ⋅ ⋅∫ 	

(2.56)

Comparison of Equations (2.55) and (2.56) shows MX(t) to be the expectation of 
exp[tx]. It is interesting to see how such a function is able to furnish all the moments 
one by one. We first note the Taylor series of exp[tx] to be:
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As a consequence, MX(t) equates with
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A Taylor series of any function g(t) around t = 0 is obtained from successive 
differentiation:
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Substituting MX(t) for g(t) above just repeats the idea of Equation (2.58). The deriva-
tives, one by one, evaluated in the limit t → 0, form the moments xn .

The workings of MX(t) are readily demonstrated via the uniform distribution, Equations 
(2.41) and (2.42). The recipe for the first moment using Equation (2.55) gives:
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To reach the same destination via moment generating, one assembles MX(t) as follows:
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Then the first moment x will arrive from considering the first derivative:
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(2.62)

One will need to evaluate Equation (2.62) above in the limit t → 0 by applying the 
rule of l’Hospital. So, both the numerator and denominator in brackets must be dif-
ferentiated. The operations yield:
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which, after cancellations, contribute:

	

dM t

dt b a

b tb a taX ( ) exp[ ] exp[ ]
=

−
⋅

−1
2

2 2

	
(2.64)

Equation (2.64), evaluated in the limit t → 0, matches x  given in Equation (2.60). 
Using MX(t) to obtain the second moment of the uniform distribution is left as an 
exercise.

The major points of this chapter are as follows.

	 1.	Three types of information in the quantitative sense were illustrated: 
Shannon, Kullback, and mutual. They are not the only ones, as information 
was defined in the 1920s, first by R. A. Fisher [13] then a few years later by R. 
V. L. Hartley [14]. The 1920s saw the birth of the information sciences due to 
the technological advances in electronic communication. Applications of the 
Fisher information lie beyond the scope of this book. The Shannon approach 
is closely related to Hartley’s and is applied in subsequent chapters.

	 2.	How information plays multiple roles was discussed. It equates with the 
code amounts needed for labeling the states of a system. In turn, it con-
nects with the system’s diversity and complexity. A system that requires 160 
bits for its state labeling offers far greater message possibilities—and thus 
diversity—than one needing only 5 bits, for example:

01100011111011000101011111000010010110110111111011
11000111111010011011010101010011010001010010110100
10001101011010100010111101000001000101110010100010
0101101111

	 as opposed to

10011

	 By the same metric, a system capable of the 160 bit message is significantly 
more complicated than one limited to 5 bit communication. If a system 
expresses one state only, it offers zero information because the diversity and 
complexity of the messages are absent.

	 It should also be apparent how information reflects a control capacity. Upon 
coupling to the environment, a system transmitting a 160 bit message can 
dictate—or at least influence—a greater number of decisions, compared 
with a 5 bit counterpart. Decisions impacting the environment invariably 
entail the transfer of work and heat. Thus, information venues present 
energy considerations concerning cost and dispersal. The chemist was able 
to trap information about the polypeptides only by paying a price of work 
and dissipated heat. Information is physical and chemical; it does not arrive 
free of charge or independent of work and heat.
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	 3.	Links between information and properties such as molecular mass were 
shown. In each case, the amount of information depends on the nature of 
states queried and the measurement resolution. If the chemist had narrowed 
the mass window Δx during the peptide experiments, more information would 
have obtained due to isotope effects. If he or she applied a mass resolution 
window of Δx = 20,000 grams/mole, then zero bits would have obtained.

2.7  SOURCES AND FURTHER READING

Information is thoroughly linked to the probability sciences. The author has found 
several works most instructive over the years. The mathematical probability books 
by Birnbaum [5], Uspensky [15], Karlin and Taylor [16], along with the Mark Kac 
lectures are stellar [17]. The book Randomness by D. J. Bennett presents a fascinat-
ing and wholly accessible approach to probability ideas [18].

Concerning information theory per se, the texts by McEliece [19] and Ash [20] 
are recommended. The books by Morowitz are especially enlightening and stimu-
lating for students of both chemistry and biology [21,22]. Science and Information 
Theory by Brillouin is more advanced but is indispensible for applications rang-
ing from language to the physical sciences [23]. Wiener’s Cybernetics includes 
extended discourse on information, its physical measure and significance [24]. In 
recent years, the National Research Council has sponsored studies of probability, 
information, and algorithms. Their report includes a chapter on the generation 
and significance of random numbers [25]. It should also be mentioned that the 
statistics of nitration—covered in second-semester organic chemistry—have been 
thoroughly investigated. One looks to the Chemical Reviews article by Ferguson 
for a complete presentation [26]. Last, the examples of this chapter featured poly-
peptides. These and their protein counterparts lie at the center of bioinformatics 
and related fields. The reader will profit from the presentation by Jurisca and Wigle 
[27]. Chapter 3 of their text, in particular, addresses the mass spectrometry aspects 
of proteins.

2.8  SUGGESTED EXERCISES

The student should repeat several exercises illustrated in this chapter via the figures 
and tables. Some computer programming skills and access to a spreadsheet will 
assist greatly. The same statements apply to exercises of the remaining chapters.

	 2.1	 Information can be reported using bits or nits as units, depending on 
the logarithm base. There is a third option: the use of base-10 loga-
rithms leads to information measured in Hartleys. (a) How many bits 
correspond to 8.50 Hartleys? (b) How many Hartleys correspond to 
5.30 nits? (c) Invent a unit name for base-18 logarithms. What multi-
plication factors enable the conversion to bits, nits, and Hartleys?

	 2.2	 (a) Using integral calculus, derive an expression for the second moment 
of the uniform distribution. (b) Obtain the identical expression by dif-
ferentiation of MX(t).
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	 2.3	 (a) Using integral calculus, derive expressions for the first, second, and 
third moments of the standard normal distribution. (b) Do likewise via 
differentiation of MX(t).

	 2.4	 (a) How effective is Stirling’s approximation as presented in Equation 
(2.48)? Construct a graph that shows N! versus N in exact terms and by 
approximation. (b) A more complete version of Stirling’s approxima-
tion is given by:

log ( !) log ( ) loge en n n n
n

≈ + ⋅ + ( ) + ⋅ ⋅
×

1

2
2

1

6 2 1

1
π

⋅ ⋅

× +
⋅ ⋅

×

1

30 4 3

1 1

42 6 5

1
3 5n n

	 Do the extra terms improve matters? Please discuss. (c) Can Equation 
(2.48) be simplified further for large N? Please discuss.

	 2.5	 Repeat the computer exercise resulting in Figures 2.7 and 2.8. Do the 
summations of weighted surprisals have to mirror the probability dis-
tribution functions? Please discuss.

	 2.6	 The amino acids of Table 2.4 having nonpolar R groups are A, V, L, 
I, P, F, W, and M. (a) How many 100-unit peptides restricted to these 
building blocks are allowed? (b) How many bits of information are 
obtained by the chemist upon learning the sequence of a 100-unit ran-
dom peptide confined to A, V, L, I, P, F, W, and M?

	 2.7	 The amino acids with uncharged polar R groups are G, S, T, C, Y, N, 
and Q. Let a large population of 100-unit peptides be prepared using 
these components chosen at random. (a) Construct a plot of the prob-
ability density function based on the peptide molecular weight. (b) Do 
likewise for the probability distribution function. Do the plots match 
expectations formed prior to the exercise?

	 2.8	 Repeat Exercise 2.7 without restrictions placed on the amino acids.

	 2.9	 Let a robot synthesize a 100-unit peptide via random selection of the 
standard 20 amino acids. If a chemist learns from experiment answers 
to the following questions, how many bits of information are obtained? 
(a) Is H (histidine) the N-terminal unit? (b) Is H the C-terminal unit? 
(c) Does the peptide contain two H residues? (d) Does the peptide con-
tain three H residues? (e) Is H absent in the peptide? (f) Does the pep-
tide contain the sequence HVLGA?

	 2.10	 An integer is either prime or composite. Obtain or construct a table of 
prime integers less than 5000. (a) Let an integer no higher than 1000 
be selected at random. How many bits of information are acquired if 
the status—prime or composite—is determined? (b) Address the same 
question for a random integer no higher than 5000. (c) Compare and 
discuss the answers to (a) and (b).
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	 2.10	 Look up the formula diagram for cholesterol. (a) How many optical 
isomers are allowed by the chiral centers? (b) Are the isomers antici-
pated in nature with equal likelihood in nature? Please discuss.

	 2.11	 Consider the sequence isomers of lysozyme molecule. This protein 
has (N- to C-terminal) primary structure:

KVFERCELARTLKRLGMDGYRGISLANWMCLAKWESGYNTRAT-
NYNAGDRSTDYGIFQINSRYWCNDGKTPGAVNACHLSCSALLQD-
NIADAVACAKRVVRDPQGIRAWVAWRNRCQNRDVRQYVQGCGV

	 (a) How many sequence isomers are allowed? (b) Examine the pairs of 
nearest-neighbor units: KV, VF, FE, ER, …. Given the occurrence fre-
quencies, how many bits of mutual information are expressed in the pair 
states? Prior to the computation, should the chemist anticipate zero bits of 
mutual information?

	 2.12	 Let a robot synthesize variants of lysozyme by substituting amino 
acids at individual sites. (a) Let a chemist know that a single-site sub-
stitution has been effected at random. The chemist inquires whether 
(or not) the sequence is given by:

KVFERCELARTLKRLGMDGYRGISLAHWMCLAKWESGYNTRAT-
NYNAGDRSTDYGIFQINSRYWCNDGKTPGAVNACHLSCSALLQD-
NIADAVACAKRVVRDPQGIRAWVAWRNRCQNRDVRQYVQGCGV

	 How many bits of information are obtained upon learning the answer 
to the yes–no question? The substitution has been indicated in boldface. 
(b) In a different experiment, the chemist learns that two sites have been 
substituted. He or she wonders whether the molecule corresponds to:

KVFERCELARTLKRLYMDGYRGISLANWMCLAKWESGYNTRAT-
NYNAGDRSTDYGIFQINSRYWCNDGKTPGAVNACHLSCSALLQD-
NIADAVACARRVVRDPQGIRAWVAWRNRCQNRDVRQYVQGCGV

	 How many bits of information are obtained by the answer to the yes–no 
question? Again, the substitutions have been noted in boldface. Last, con-
sider the case of three random site substitutions. The chemist inquires 
whether the formula is:

KVFERCELARHLKRLGMDGYRGISLANWMCLAKWESGYNTRAT-
NYNAGDASTDYGIFQINSRYWCNDGKTPGAVNACHLSCSALLQD-
NIAGAVACAKRVVRDPQGIRAWVAWRNRCQNRDVRQYVQGCGV

	 How much information attaches to the answer? 
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3 Thermodynamic 
Infrastructure, States, 
and Fluctuations

An overview of thermodynamics for elementary systems is presented. We describe 
the infrastructure for characterizing a system under the very special conditions of 
equilibrium. It is shown how a maximum entropy state connects with others via 
fluctuations. The information presented by a system hinges on the statistical struc-
ture of the fluctuations.

3.1  INFRASTRUCTURE

Thermodynamics offers numerous pairings:

•	 Systems versus Surroundings
•	 Work versus Heat
•	 Individual state points versus State point loci
•	 Adiabatic versus Diathermal walls
•	 Closed versus Open systems
•	 Intensive versus Extensive properties
•	 Equilibrium versus nonequilibrium conditions
•	 Finite-time versus Infinite-time transformations

There are many more: first- versus second-order phase transitions, state functions 
versus path-dependent functions, and so forth. However interwoven, the subject can 
be divided roughly into two parts as presented in Figure 3.1. One part concentrates 
on the heat and work transferred between a system and its surroundings. The other 
part attends to the relationships between a system’s state variables and functions. 
There are quite a number of these beginning with temperature (T), pressure (p), and 
volume (V), as introduced in Chapter 1. If the chemist chooses a quantity such as 
enthalpy (H), there is quite a story to tell about its relation to other system properties 
such as compressibility, heat capacity, and so on. Suffice to say that the variables and 
functions form the infrastructure for thermodynamics under the umbrella of physi-
cal laws.

In approaching the subject, one looks first to the state functions centered on poten-
tial energy. The most basic of these is the internal energy (U). The nineteenth century 
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experiments of James Prescott Joule demonstrated that the energy changes internal 
to buckets of water were governed by work and heat exchanges. The statement

	
dU dW dQrec rec= +

	 (3.1)

summarizes the first law of thermodynamics in differential form; dWrec and dQrec are 
infinitesimal amounts of work and heat received by a system during some process. In 
Joule’s investigations, the bucket and contents composed the system of interest while 
everything else acted as the surroundings. The subscripts are important in Equation 
(3.1) because energy exchanges at once establish two directions. Any work and heat 

Surroundings

System

Heat

Work

Expansivity

Compressibility

Heat capacity

Internal
energy

Enthalpy

Chemical potential
Pressure

Temperature

Entropy

Moles of material

Volume

Density

Free energy

Joule
coefficient

FIGURE 3.1  The dual nature of thermodynamics. Half of the subject (upper panel) focuses 
on heat and work exchanges between a system and its surroundings. The other half (lower 
panel) attends to the relationships between state quantities. A property such as enthalpy is 
related to temperature, heat capacity, and more. The equivalent statement can be made about 
every quantity in the lower panel.
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received by a system are identical in magnitude, but opposite in sign, to work and 
heat lost to the surroundings. One writes:

	
dW dWrec lost= −

	 (3.2)

	
dQ dQrec lost= −

	 (3.3)

The work lost by a system is more often described as the work performed or expended. 
In the terminology used by Joule, the word duty is inserted in place of work. More 
important are the landmark ideas of Equations (3.1) through (3.3). The first is that 
thermodynamics distinguishes two types of energy transfer: work and heat. The for-
mer can loosely be described as energy transferred by some orderly arrangement 
or mechanism. Work demonstrates several guises: mechanical, chemical, electrical, 
and magnetic. By virtue of the orderliness, there are really no constraints—at least 
in principle—of converting 10 joules of mechanical work to 10 joules of electrical or 
vice versa. Hence energy exchanges via work offer innumerable combinations and 
permutations, in addition to qualifiers. For example, work can be transferred by a 
system at constant temperature or constant pressure. The infrastructure of thermo-
dynamics draws distinctions between the two situations.

By contrast, heat exchanges are loosely defined as disorderly transfers of energy. 
Work comes in several flavors, whereas heat is heat whether the source is a Bunsen 
burner, hotplate, or acid solution mixed with base. The fine print is important just as 
in work exchanges. Thus, the heat received by a system at constant pressure is not the 
same as heat received at constant volume.

The second point is that neither dWrec nor dQrec are exact differentials. It is incor-
rect to write:

	
dW Wrec rec=∫ 	

(3.4)

	
dQ Qrec rec=∫ 	

(3.5)

because both types of energy transfer depend on the pathway or process details. If 
one pushes a shopping cart 5 feet down the aisle, or instead directs the cart two laps 
around the supermarket, back to the starting point, and then 5 feet away, different 
amounts of work are expended. This is in spite of the same beginning and terminal 
points. This characteristic of work and heat is often punctuated by combining symbols 
dWrec and dQrec with slash marks to yield đWrec and đQrec. In some texts, the inexact-
ness is emphasized by using D in place of d: DWrec and DQrec. Throughout this book, 
the path dependence of work and heat will be taken as understood. Slash marks and 
Ds will not grace the differentials. This does lead to a third point, however.

Although dWrec and dQrec are inexact differentials, their sum is an exact differen-
tial by way of dU. It is correct to write:

	
dW dQ dU Urec rec+( ) = =∫∫ 	

(3.6)
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or

	

dU U Ufinal initial

initial

final

= −∫
	

(3.7)

where the integration limits and subscripts reference particular states of a system. 
Another important statement is:

	
dU =∫ 0

	
(3.8)

The integral of Equation (3.8) is unusual in that the initial and final states are taken 
to be identical. One says that U is a function of state; its changes depend only on 
the initial and final conditions, not at all on the pathway details. Thermodynamics 
presents numerous functions of state, and they are not confined to potential energy. 
V, T, p, mass (m), number of moles (n), and density (ρ) share the list of state functions 
along with others.

Applications often entail mechanical compression- and chemical-type work, for 
example, in the operation of an automobile engine. Thus the differential statement 
for the first law, applied to a one-component system, adopts the form:

	 dU pdV TdS dn= − + + 	 (3.9)

where p, V, T , and n have their standard meaning. Entropy (S) and chemical potential 
(μ) share the stage in Equation (3.9). Note that the three terms to the right of the equal 
sign correspond to two terms in Equation (3.1). This reflects that work can assert 
more than one mode of energy transfer simultaneously: in Equation (3.9) via the first 
and third terms. It is the middle term of Equation (3.9), which equates with dQrec. 
One should also note that although dV, dS, and dn are exact differentials, each term 
on the right in Equation (3.9) is generally inexact. Table 3.1 offers a scorecard for 
keeping track of the major players or building blocks in thermodynamics. Listed are 
variables and functions, their extensive or intensive status, and SI units. The exten-
sion of Equation (3.9) to systems that host two components, for example, argon and 
neon, is straightforward:

	 dU pdV TdS dn dn= − + + +1 1 2 2 	 (3.10)

The pattern is apparent: there is a μidni term for each ith component. For a system 
hosting κ number of components:

	

dU pdV TdS dni i

i

= − + +∑
κ

1 	

(3.11)

Equation (3.11) states that multiple chemical work terms impact the energy exchanges 
of multicomponent systems.
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It is the second term on the right of Equation (3.9) that points to the second law of 
thermodynamics. dS is an exact differential and originates from applying 1/T as an 
integrating factor for dQrec:

	
dS

T
dQrec= ×

1

	
(3.12)

In other words, dQrec becomes an exact differential when it is multiplied by inverse 
absolute temperature. Note that Equation (3.12) holds strictly for reversible changes: 
the system must never stray from the special condition of equilibrium. If irrevers-
ibilities are incurred, then regardless of their origin, dQ

T
rec  provides only a lower limit 

for dS. One writes:

	
dS

T
dQrec≥ ×

1

	
(3.13)

with equality restricted to equilibrium conditions. Equation (3.13) offers one of sev-
eral statements of the second law where energy transfer via heat plays a role. A 
system can be surrounded by thermally insulating walls that preclude such transfer. 
When such walls are rigid and in place, the conditions are referred to as adiabatic 

TABLE 3.1
Building Blocks of Thermodynamics

Variable and Status Common Symbol SI (MKS) Unit

Temperature (Intensive) T Kelvin

Pressure (Intensive) p pascals

Number of moles (Extensive) n moles

Mass density (Intensive) ρ kilograms/meter3

Entropy (Extensive) S joules/Kelvin

Internal energy (Extensive) U joules

Volume (Extensive) V meters3

Isothermal compressibility 
(Intensive)

βT pascals–1

Isentropic Compressibility 
(Intensive)

βS pascals–1

Thermal expansivity 
(Intensive)

αp Kelvin–1

Helmholtz free energy 
(Extensive)

A joules

Gibbs free energy (Extensive) G joules

Enthalpy (Extensive) H joules

Chemical potential (Intensive) μ joules/mole
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or isentropic. The vacuum jackets of Dewar vessels and thermos bottles offer good 
approximations of adiabatic walls. For the contents of a Dewar vessel:

	 dS ⊕0 	 (3.14)

whereby

	

dU pdV dn

dWrec
adiabatic

≈ − + +

≈

0

( )

	
 (3.15)

Equation (3.15) can be interpreted as the differential statement of the first law under 
atypical circumstances.

Because dU is an exact differential, it is an explicit function of V, S, and n. This 
is another lesson of Equation (3.9). Moreover, these three variables all happen to be 
extensive. For the single component system, one writes:

	

dU dU V S n pdV TdS dn

U
V

dV
U
S

S n

= = − + +

=
∂
∂

+
∂
∂

( , , )

,

+
∂
∂

V n V S

dS
U
n

dn
, , 	

(3.16)

For κ-component systems, the extension of Equation (3.16) is cumbersome given the 
subscript details:

	

dU dU V S n n n

U
V

dV
U

S n n n

=

=
∂
∂

+
∂

( , , , , )

, , ,

1 2

1 2

…

…

κ

κ
∂∂

+
∂
∂∑S

dS
U
n

V n n n ii V S n, , ,..., , ,1 2 1κ

κ

11 2, , ,n n n

i

j i

dn
… …≠ κ 	

(3.17)

Two features are nonetheless apparent. The first is that for a κ = 1 system, one has, 
following Equation (3.16),

	 U pV TS n= − + + 	 (3.18)

with obvious extension to multicomponent systems. Second is that long-familiar 
quantities p and T have partial derivative identities:

	

p
U

V
S n

= −
∂
∂

, 	
(3.19)

	

T
U

S
V n

= +
∂
∂

, 	
(3.20)
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So do less-everyday quantities:

	

= +
∂
∂
U

n
V S, 	

(3.21)

It is an attractive feature of thermodynamics that state variables admit differential 
expressions; this was remarked upon in Chapter 1. In effect, each variable serves as 
a reaction of the system to a slight perturbation. Note that the subscripts signal the 
conditions that are held constant during the infinitesimal change of one variable and 
the motion of another. The significance of Equations (3.19) and (3.20), and (3.21) by 
extension, cannot be overstated. T and p are encountered daily via thermometers, 
barometers, and weather reports. Their physical nature runs much deeper, however. 
T connects with how a system’s energy behaves, given miniscule adjustments of the 
entropy under leak-proof conditions. A parallel statement holds regarding system p. 
Also notable is that variables related to one another by a derivative of U play con-
jugate roles. p and V are conjugate to each other; likewise for T and S, μ and n. As 
Figure 3.1 indicates, there is a story to tell about how each member of the extended 
family is related to another.

Thermodynamics has no shortage of quantities that are differential in nature. 
Several are stated as follows:

	

C
dQ

dT
T

S

TV
rec

V n V n

= =
∂
∂

, , 	
(3.22)

is the heat capacity for a one-component system at constant volume;

	

C
dQ

dT
T

S

Tp
rec

p n p n

= =
∂
∂

, , 	
(3.23)

is the heat capacity at constant pressure;

	

α p
p n

V

V

T
=

∂
∂

1

, 	

(3.24)

is the thermal expansivity (expansion coefficient) at constant pressure; and
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is the compressibility at constant temperature. Its counterpart
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− ∂

∂
1

, 	
(3.26)

applies to isentropic conditions. The negative signs in Equation (3.25) and Equation 
(3.26) are not throwaway details. Their presence ensures that βT and βS are positive 
quantities for all stable systems.
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For the differentials of Equations (3.22) through (3.26), n is held constant. The 
omission of n from the parentheses subscripts is a frequent practice. This is analo-
gous to the omission of carbon and hydrogen atom symbols from chemical formula 
diagrams of the line-angle variety; the experienced viewer infers their presence. It 
is important that CV, Cp, αp, βT , and βS apply to closed systems. They are all positive 
for stable systems—the type under the lens of this chapter.

Thermodynamic differentials are not restricted to the first order. Further, since 
the order of differentiation is immaterial to the outcome, one has that

	

∂
∂

∂
∂

=
∂
∂

∂
∂S

U

V V

U

S
S n V n V n, , , S n, 	

(3.27)

It follows that
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Second derivative identities such as these are referred to as Maxwell identities. 
Second derivatives that involve the chemical potential are equally valid although 
encountered infrequently. One example is:
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whereby
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A system’s internal energy depends on the component identity, mole amount, and 
phase; for example, 2.00 moles of helium gas versus 1.00 mole of xenon gas versus 
1.50 moles of liquid ammonia. Yet the dependence of U on V and on S is not entirely 
case specific. One gathers this from the second derivatives linked to functions such 
as in Equation (3.22). Differentiating U twice with respect to S leads to:
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Since heat capacity and absolute temperature are positive for equilibrium systems, 
U is mandatorily a concave upward function of S. Plots of U versus S demonstrate a 
signature shape with no exceptions. In the same vein,
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(3.32)

Compressibilities are positive because systems lose volume during compression. A 
consequence is that U is also a concave upward function of V; plots of U versus 
V have signature features, regardless of the component, phase, and mole amount. 
Figure 3.2 accordingly illustrates the signature behavior of U. The point being made 
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FIGURE 3.2  The signature dependence of U on volume and entropy. U versus V and U versus 
S mandate concave-upward curves. The curves remain above any and all tangent lines that can 
be drawn. The dotted curves are examples of functions strictly forbidden for stable systems.
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is that U applies to diverse chemical systems, the numerical details of which will 
always be case specific. The stability of a system, however, places formidable restric-
tions on the dependence of U on V and S.

The internal energy is not the only potential. Others are obtained via Legendre 
transformations of U, for example:
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The function H obtained by the transformation depends explicitly on S and n held 
constant, while the third variable is the “new” one manifest in the derivative. Thus H 
= H(p,S,n) for a κ = 1 system and is referred to as the enthalpy. In a like way, other 
useful potentials are obtained, for example:
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Legendre transformations are not limited to one variable. By differentiating and 
multiplying twice, one obtains:
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(3.35)

A and G are referred to as the Helmholtz and Gibbs free energy, respectively. Note 
that terms enthalpy and free energy allude to heat and work, respectively. The termi-
nology subscribes to the circumstances where the potentials are most often directed. 
For instance:

	 dH S p n TdS Vdp dn( , , ) = − + 	 (3.36)

for a single-component system. If the system is closed and the pressure held con-
stant, then

	
[ ] [ ], ,dH TdS dQp n rec p n= =

	 (3.37)
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For this reason, enthalpy H is a natural fit for situations that entail heat exchanges at 
constant pressure. These exchanges transpire daily inside and outside chemistry labs, 
such that H is encountered frequently in thermodynamics. Along similar lines,

	 dA V T n pdV SdT dn( , , ) = − − + 	 (3.38)

If the system is closed and its temperature held fixed, then

	
[ ] [ ], ,dA pdV dWT n rec T n= − =

	 (3.39)

The free energy A is thus geared for systems in which work is transferred at con-
stant temperature. It should be noted that no single potential deserves more attention 
than another. What is true is that some are better suited for certain conditions. For 
example, G has special stature in chemistry via Equation (3.35). It follows that

	 dG dn nd= + 	 (3.40)

G thereby connects with situations in which chemical work is paramount. The applica-
tions are without limit and are discussed in first-year chemistry courses and beyond.

U, H, A, and G form the short list, but not the whole list, of potential energy func-
tions. Potentials such as Φ are equally valid and obtain by Legendre transformation 
through n:
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(3.41)

However, they find sparse applications in chemistry. It is important to note the sym-
metry in the potentials and variables. Symmetry properties indeed underpin dia-
grams such as in Figure 3.3. The layout is referred to as the thermodynamic square 
in most texts. The logistics are that each short-list potential is situated between the 
variables upon which it depends explicitly. At the same time, the variables that con-
jugate to each other appear at opposite corners. The diagram omits reference to n as 
this quantity is fixed in most applications.

The uses of the diagram are multiple and interesting. The diagram helps the 
chemist to remember which variables are allied with which potential—it serves as 
another scorecard so to speak. On what variables does A depend explicitly? A glance 
at Figure 3.3 identifies V, T—and n by default—as the answer. Second, rectangles in 
the mind’s eye help the chemist track how the potentials are related to one another: 
the Legendre transforms are an imbedded feature. How are U and H related? The 
chemist places his or her finger at the tail of an arrow and follows the route spelled 
out inside the dotted rectangle, that

	 pV U H+ = 	 (3.42)
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Equation (3.42) is a simple restatement of Equation (3.33). The chemist can use the 
diagram to fill in the blanks featuring total differentials and variables, for example:

	
[ ] ? ? ? ?dU dV dSn = +

	 (3.43)

The question marks refer to the variable multipliers and their signs. The arrows point 
toward the multipliers as the conjugate variables. This clue yields:

	
[ ] ? ?dU pdV TdSn = +

	 (3.44)

Then which way an arrow points asserts the sign. If an arrow points away from the 
multiplier, the sign is positive, and negative otherwise. One learns from Figure 3.3:

	
[ ] ( )dU pdV TdSn = − + +

	 (3.45)

which is a variant of Equation (3.9).
Using the diagrams to construct first-derivative identities is straightforward. This 

is shown via Figure 3.4. An imaginary pipe encloses the differentiation of a potential 
with respect to one variable. The arrow along the stem of the pipe identifies the vari-
able on the opposite side of the equal sign. If the arrow points toward the conjugate 
variable, the sign is positive and negative otherwise. One has to imagine smoke 
wafting from the pipe barrel—the upward-pointing arrow in Figure 3.4. The recipi-
ent of the smoke is the variable held constant during differentiation while constant 
n is implicit. For the artistically inclined, there are eight pipe drawings inspired by 
the diagram.

Last, imaginary triangles access the Maxwell identities. The diagram is written 
twice and triangles are drawn as in the lower half of Figure 3.4. The center identi-
fies the differentiation variables; the right and left corners host the variables held 
constant. The arrows keep all the signs correct. When the arrows point in opposite 
directions, there is a sign inversion. It is left to the reader to construct four sets of 
triangles and affiliated Maxwell relations. There is one set for each 90-degree rota-
tion and side-by-side rendering of the diagram.

+

V TA

U G

S H P

FIGURE 3.3  The thermodynamic square and one application. A Legendre transformation 
is implicit inside the dotted rectangle. The chemist starts at the tail of the arrow at lower right, 
imagines the plus and equal signs, and assembles pV + U = H.
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3.2  EQUATIONS OF STATE

Potentials, variables, and laws comprise the majority of the thermodynamic infra-
structure. The remainder is obtained via equations of state ranging from the rigorous 
to empirical. The equations vary in their names, history, and familiarity. This section 
will concentrate on the empirical category for its ease of application. The rigorous 
category includes infinite series or virial-type equations. These describe systems 
precisely, although at the cost of weighing an infinite number of terms. The empiri-
cal variety affords simplicity via economy.

The first equation of state is the most familiar, namely, for an ideal gas:

	
p

nRT
V

=
	

(3.46)

R is the well-known constant with units of entropy per mole. R first appeared in 
Equation (2.18) for the entropy of mixing; it is a close relative of Boltzmann’s con-
stant, first appearing in Equation (2.19):
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where NAv is the Avogadro number. Table 3.2 lists R and kB for three different unit 
systems. Note that since
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(3.48)
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FIGURE 3.4  The thermodynamic square and two more applications. A first-derivative iden-
tity is implicit in the dotted pipe of the upper panel. The chemist imagines differential signs 
in front of U and S. Immediately above U is V, which is held constant during differentiation. 
The diagonal arrow points to T as in ∂
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. In the lower panel, the side-by-side diagram 
illustrates the second derivative, or Maxwell identity ∂
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where N is the number of gas particles, an alternative to Equation (3.46) is:

	
p

Nk T

V
B=

	
(3.49)

Although the stockroom supplies only real gases in tanks—argon, carbon dioxide, 
and so forth—Equations (3.46) and (3.49) apply to every system in the limit of zero 
density. The compactness of the ideal gas law is impressive as four variables of state 
are related by simple multiplication and division. The equation wraps Boyle’s law, 
Charles law, and the Avogadro hypothesis into a compact multivariable function.	

A second empirical equation of state is named after Clausius:
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(3.50)

This is the forerunner of the more famous van der Waals equation:
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Equations (3.50) and (3.51) introduce parameters a and b, which depend on the mate-
rial of interest. The parameters are taken to be independent of T, V, p, and n. Equations 
(3.50) and (3.51) can be viewed as modest extensions of the ideal gas law. The term 
nb gauges the volume excluded by the gas atoms or molecules. It reflects that the 
same space cannot be occupied, at least at the same time, by different parties. The 
reason is clear in modern day; not so much in the era of Clausius and van der Waals. 
Negative charges form the periphery of an atom or molecule and repel any neighbors 
that approach too closely. The consequence is that the volume available to the atom 
or molecule is always something less than that of an evacuated container. Figure 3.5 
addresses matters schematically: the upper portion shows a box of gas molecules and 
the lower presents a close-up view of a sector indicated by the inset square. Because 
a real molecule excludes volume, it causes its neighbors to exert a pressure greater 
than anticipated by the ideal gas law. In turn, this means that for a gas to be truly 
ideal, its constituent atoms or molecules would have to claim zero space. Instead of 
filled circles in the lower part of Figure 3.5, one would have to represent geometric 

TABLE 3.2
Gas Constant (R), Boltzmann’s Constant (kB), and Units

MKS CGS Non-SI

R 8 31.
joules

mole K−
8 31 107. ×

ergs
mole K 0 0821.

liter
mole K
−

−
atmospheres

kB 1 38 10 16. ×
ergs
K  

1 38 10 23. ×
joules
K

1 36 10 25. ×
liter

K
atmospheres
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points of zero width. The ideal gas law is one of numerous idealizations in thermo-
dynamics; the adjective ideal is well justified.

In early days, b values offered first insights into the sizes of atoms and molecules. 
One way b can be accessed experimentally is for the chemist to prepare a gas sample and 
ascertain p, n, T, and V. The chemist follows up by measuring the differential quantity

	

p
T

nRT
V nb

V n

≈
−

, 	
(3.52)

Equation (3.52) can be rearranged to isolate b. The approximation is better than not 
if Δp and ΔT are kept as small as possible in the experiment. Table 3.3 lists van der 
Waals a and b for several gases, as compiled in the Handbook of Chemistry and 
Physics [1]. It is interesting to correlate a and b with the complexity and size of a 
given atom or molecule.

FIGURE 3.5  Gases, excluded volume effects, and probability. The upper and lower dia-
grams illustrate N particles in volume V on disparate length scales. Two molecules such as 
indicated by the arrows cannot occupy the same imaginary cells at the same time. The prob-
ability of molecules occupying neighboring cells scales in the manner of the second pressure 
term of the van der Waals equation.
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The second term on the right in the van der Waals equation arises from additional 
forces operating in a gas. The negative charges of a molecule do more than repel the 
neighbors. Rather, their density fluctuations switch on short-range attractive forces. 
In contrast to excluded volume effects, the forces of attraction diminish the pressure 
values anticipated by the ideal gas law. The second term on the right in Equation (3.51) 
scales as the square of the number density (n/V). Importantly, the scaling connects 
with probability ideas in the close-up view of Figure 3.5. The gas molecules have 
been imagined as occupying cells of equal volume V ; one molecule fits into one cell 
and, under low density conditions, has an exceedingly large number λ from which to 
choose: V V= ⋅λ . For a sample of N molecules, the probability of any particular cell 
being occupied at a given instant is proportional to ( / )N Vλ ⋅ . The probability of any 
given cell and a neighbor being occupied is proportional to ( / ) ( / )N V N Vλ λ⋅ × ⋅ ; this 
assumes more or less independent behavior of the gas particles. There are two points 
being made here. First, the effects of both repulsive and attractive forces on the gas 
pressure have a statistical nature and impact. Second, there is a natural bridge link-
ing even the most elementary of systems with probability ideas. One need only look 
at the gas laws of first-year chemistry courses to see the bridge.

Note as well that the second term of the van der Waals equation scales as length–6. 
The interaction energies of mutually induced dipoles scale in a like fashion. In the 
limit of large V and high T, Equations (3.50) and (3.51) operate more like the ideal 

TABLE 3.3
Van der Waals Constants of Assorted Atoms and Molecules

Atom/Molecule
a

meters pascals
mole

6

2

⋅
b

meters
mole

3

Acetic acid 1.776 1.068 × 10−4

Acetone 1.404 9.94 × 10−5

Argon 0.1358 3.219 × 10−5

Ethane 0.5543 6.38 × 10−5

Helium 0.003446 2.37 × 10−5

Hydrogen 0.02468 2.661 × 10−5

Hydrogen chloride 0.3703 4.081 × 10−5

Hydrogen bromide 0.4495 4.431 × 10−5

Mercury 0.8173 1.696 × 10−5

Methane 0.2275 4.278 × 10−5

Propane 0.8750 8.445 × 10−5

Propylene 0.8462 8.272 × 10−5

Sulfur dioxide 0.6781 5.636 × 10−5

Xenon 0.4235 5.105 × 10−5

Water 0.5519 3.049 × 10−5

Source:	 Data from Weast, R. C., ed. Handbook of Chemistry and Physics, Chemical 
Rubber Co., Cleveland, OH, p. D146, 1972.
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gas law. This is consistent with experiments; nonideal behavior is accentuated under 
high-density, low-temperature conditions. Adherence to the ideal gas law is the 
trademark of high-temperature, low-density systems.

There are numerous equations of state of the empirical variety. There is the 
Dieterici equation:

	
p

nRT
V nb

an
RTV

=
−

×
−

exp
	

(3.53)

Like the van der Waals, Equation (3.53) weighs the competing effects of excluded vol-
ume and short-range attractive forces using two parameters. The Beatie–Bridgeman 
equation appeals to three parameters:
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The Bertholet equation of state is:
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(3.55)

and incorporates the effects of critical pressure and temperature, pc and Tc. Other 
equations of state include ones constructed by Redlich, Kwong, and Soave, and by 
Peng and Robinson [2]. An equation designed by Benedict, Webb, and Rubin employs 
no fewer than eight parameters [3].

Thermodynamics has logged numerous equations of state over the years of the 
empirical variety. The common thread is their economy and intuition, where only a 
few parameters are called upon to address a constellation of forces. As the equations 
entail multivariable functions, they accommodate the tools of first-year calculus and, 
in turn, the infrastructure presented in Section 3.1. In their most basic applications, 
they enable conversions of independent variables into dependent ones. This is the 
subject of Figure 3.6. The ideal gas and van der Waals equations are represented as 
input–output devices. The devices accept n, T, V, measured for a gas such as argon 
and generate p in return. At 200 K, 0.00150 meter3, 2.00 moles, the van der Waals 
equation, with the help of Table 3.3 data, offers p = 2 07 106. × pascals, while the ideal 
gas law delivers p = ×2 22 106. pascals. The values differ because the nonideality is 
addressed, at least in part, by one device and not the other. The result is that the van 
der Waals equation better approximates the location of what will be termed the state 
point of the system: the placement of a point in a coordinate plane such as pT. The 
state point placement is represented schematically in the lower half of Figure 3.6.

Point locations are a universal purpose of equations of state. Yet every application 
arrives with some fine print that is not altogether obvious. The print indeed imposes 
qualifiers that the chemist must always keep in mind. The first is that input–output 
conversions as in Figure 3.6 apply only to systems that are truly at equilibrium. For 
nonequilibrium venues, equations such as the van der Waals, Dieterici, and so on are 
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really ineligible for locating state points. Of course, this raises the question of what 
is meant by an equilibrium as opposed to nonequilibrium system.

The second qualifier is that when an equation of state converts input to output, 
the latter should be viewed as an estimate of an average value. That is to say, the 
probability issues raised in Figure 3.5 are not apparent in the equations taken at face 
value. Yet their approximation nature extends beyond using only a few parameters to 
address molecular-level forces and the physical uncertainties surrounding R. Unlike 
functions encountered in calculus books, for example:

	
f x y z

xy
z

xy xz( , , ) = + − +
3

4 10 62

	
(3.56)

the output of a thermodynamic equation of state does not correspond to a point that is 
infinitely sharp. In other words, the width of each point in the pT plane of Figure 3.6 
is not simply a graphing artifact. This subtle feature of chemical systems and equa-
tions of state is important and is given more attention in Section 3.3. For now, one 
aims for a clearer picture of an equilibrium state—the type eligible for study using 
the ideal gas law, van der Waals equation, and so on.

Equilibrium states have a number of characteristics. For a single-phase system, 
they are the states devoid of sharp and persistent gradients in the intensive quantities: 

Temperature

Pr
es

su
re

van der Waals
equation 

Ideal gas output

van der Waals output

Ideal gas
equation 2.22 × 106 pascals

200 K
2.00 moles
0.00150 meter3

200 K
2.00 moles
0.00150 meter3

2.07 × 106 pascals

FIGURE 3.6  Equations of state, input and output. The ideal gas and van der Waals equa-
tions are portrayed as devices that convert input variables into output. The lower portion 
depicts the location of state points in the pT plane anticipated by the output.



Thermodynamic Infrastructure, States, and Fluctuations	 69

temperature, density, chemical potential, and so forth. Equilibrium states are the 
ones associated with the maximum entropy allowed by the conditions. They are the 
states that afford a chemist zero work for the taking, unless further constraints are 
removed. They are the most probable states of a system, given the circumstances. 
They are the states stable to fluctuations. Equilibrium states have a nature that is 
interminably robust and restorative. The characteristics do not make a trivial list.

Chapter 2 introduced probability elements via thinking and computer exercises. 
The nature of an equilibrium state can be grasped the same way. A few examples are 
illustrated that rely on ideal gases for simplicity. The ideas are borne out just as well 
using empirical equations of state such as van der Waals. The computations become 
more involved, however.

Perhaps the optimum way for a chemist to comprehend equilibrium conditions is to 
imagine a system away from equilibrium in a single idealized respect. One considers 
the container shown in the top frame of Figure 3.7. Illustrated is a system of twin com-
partments in thermal contact with one another. Let the adjoining wall be composed of 
heat conducting material, while the system as a whole is surrounded by a leak-proof 
adiabatic wall. The compartments are identical in size and contents. Let each house 
1.00 mole of neon in a volume of 1.00 meter3. The exercise begins with the left com-
partment at 300 K and the right at 400 K. Let there be no other temperature gradi-
ents, thus allowing application of the ideal gas equation to each compartment viewed 
individually. In other words, let the contents of each compartment maintain a state of 
local equilibrium; let a true and single-value temperature apply at all times to each. 
The idealizations notwithstanding, it is clear what will happen. Because the dividing 
wall is thermally conducting, heat will flow from right to left. The transfer is obtained 
by collisions of the atoms with themselves and the walls, although these need not be 
addressed in any detail. More important is the denouement of the story. The left-side 
neon will warm to 350 K while the right will cool to the same temperature. When this 
condition is in place, thermal equilibrium will apply to the system as a whole.

Let the neon be modeled by the ideal gas law. This is reasonable given the high- 
temperature and low-density conditions. The internal energy U will then depend 
only on the gas amounts and the temperature. The first law for a closed system (cf. 
Equation 3.9) holds that

	
[ ]dU pdV TdSn = − +

	
(3.57)

Further, elementary kinetic theory contributes the relation:

	
U nRT=

3
2 	

(3.58)

for an ideal monatomic gas. By linking Equations (3.57) and (3.58) under constant 
volume conditions, one obtains:

	
[ ] ,dU TdS nR dTV n = = ⋅

3
2 	

(3.59)
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whereupon
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The result is

	
[ ] ,dU TdS C dTV n V= =

	 (3.61)

which applies to both left- and right-side neon. Any heat lost by the warmer gas is 
absorbed by the cooler. Since the heat capacities of the compartments are identical, a 
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FIGURE 3.7  Composite systems and thermal equilibrium. Illustrated are twin compart-
ments in thermal contact. Heat Q flows from right to left until equilibrium is established. 
The lower frame shows the total entropy change as a function of the temperature difference 
between the two sides. The change is maximum when the difference is zero.
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diminution of T on the right is answered by an equal rise on the left. Concerning the 
entropy changes, one has from Equation (3.61) that
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1

	
(3.62)

hence
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Equation (3.63) is a means for quantifying the entropy change in each compart-
ment as the equilibrium is approached through a succession of j-labeled states. Since 
one side warms while the other cools, the entropy changes are positive on the left 
and negative on the right. This offers a truism for equilibration processes. The total 
entropy change is positive although the change need not be positive everywhere.

The lower panel of Figure 3.7 illustrates the total entropy change for the system as 
a function of the temperature difference between the left and right sides. It is apparent 
that the change is greatest when the difference is zero. This is the key result. Thermal 
equilibrium is obtained not just when T is uniform in a material but also when the 
entropy has been maximized. But note also the robustness. If too much heat is trans-
ferred from right to left, then the total entropy will not be at the maximum value. The 
effects are fleeting, however, as a new temperature gradient is able to drive the back-
transfer of heat. Note further a subtle yet critical feature. The equilibrium state is not 
singular in nature. Rather, it comprises a set of states in the vicinity of the maximum 
entropy one. Moreover, when a system demonstrates the maximum possible entropy, a 
minimum number of variables (e.g., a single temperature) suffice to describe it. When 
and where the system strays from maximum entropy, more facts and data are needed 
by the chemist to detail the thermodynamic conditions.

A follow-up exercise looks at the system of Figure 3.8. Featured are twin com-
partments, this time separated by a diathermal (heat conducting) wall that is free to 
move on frictionless bearings. The compartments house different amounts of neon 
gas: 1.00 and 2.00 moles for the left and right, respectively. Both sections are at 300 
K with equal initial volumes of 1.00 meter3. Let no pressure gradients persist in each 
compartment such that local equilibrium states are in effect—a single pressure value 
applies to a compartment at any given instant. Clearly the force disparity of the two 
sides will cause the wall to slide right to left. The initial pressure difference between 
compartments arrives by the ideal gas law:

	
p

n n RT

V
R L=
−( )

	 ≈ ×2 49 103. pascals 	

(3.64)
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Just as apparent is that the right-side gas will expand, thereby transferring work to 
the left. The wall will cease moving when the pressures of the two sides match. Since 
the center wall is diathermal, any heat of compression felt on the left will flow toward 
and be absorbed by the right. This ensures the 300 K conditions prevail.

To view matters quantitatively, one looks again at Equations (3.57) and (3.58):

	
[ ]dU C dT pdV TdSn V= = − +

	 (3.65)

The ideal gas law and kinetic theory enable two substitutions:

	
[ ]dU C dT nR dT
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(3.66)
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FIGURE 3.8  Composite systems and mechanical equilibrium. The barrier slides right to 
left in the equilibration process. In turn, work W flows from right to left and heat Q flows 
in the opposite direction. Heat and work flow until the pressures equalize. The lower frame 
shows the total entropy change as a function of the pressure difference between the compart-
ments. The change is maximum when the difference is zero.



Thermodynamic Infrastructure, States, and Fluctuations	 73

Since the 300 K conditions maintain, U remains constant. Therefore,

	
dU

nRT
V

dV TdS= =
−

⋅ +0
	

(3.67)

Rearrangement and T cancellation lead to:
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whereupon
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(3.69)

Equation (3.69) offers a handle on the entropy change for each gas compartment as 
the wall moves. The right-side gas expands, while the left is compressed. Therefore, 
the entropy changes are positive and negative for the right and left, respectively. 
Again, the entropy changes for a system need not be positive everywhere.

The lower panel of Figure 3.8 shows the total entropy change as a function of 
the pressure difference between the gas compartments. Important is that the change 
demonstrates a single maximum value when the pressure difference is zero. Thus, 
mechanical equilibrium applies when the pressure is uniform throughout the system. 
Attaining this brings the maximum entropy allowed by the circumstances. Note the 
mechanical equilibrium to be as robust as thermal. If the wall slides too far acciden-
tally, then the entropy increase will not be the maximum possible. Not to worry. The 
pressure gradient so generated will enable work to be transferred from left to right 
and restore the entropy maximum along the way. The equilibrium state remains any-
thing but singular. It indeed encompasses the states in the vicinity of the maximum 
entropy one.

 One next considers Figure 3.9, which illustrates a third composite system. There are 
two features to note. First is that the interior wall is porous and permits the exchange of 
gas between left and right compartments. The second is the presence of two components: 
1.00 mole of neon on the left initially and 1.00 mole of helium on the right. Let the tem-
perature and pressure be uniform and each compartment be of volume 1.00 meter3.

Figure 3.9 illustrates a case of nonzero chemical gradients. Taking the tempera-
ture to be 300 K, the initial pressure of neon on the left is:

	
p

n RT

Vinitial
Ne L initial

Ne L
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	 ≈ ×2 49 103. pascals 	

(3.70)
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This pressure is matched by the 300 K helium on the right side. Since the dividing 
wall is leaky, the gases will mix over time. This will not affect T or p on account of 
the gas ideality. Rather it will be the mole fractions and partial pressures that will 
change and indeed converge toward equilibrium values.

One focuses not on the internal energy because it remains fixed for both compart-
ments. The key quantity is instead the free energy introduced by Equation (3.35). 
For a one-component system, differentiation of Equation (3.35) and combining with 
Equation (3.40) leads to:

	 dG Vdp SdT dn dn nd= − + = + 	 (3.71)
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FIGURE 3.9  Composite systems and chemical equilibrium. The neon and helium mix until 
the chemical potential of each is uniform throughout. The lower frame shows the total entropy 
change as a function of the helium potential difference between the two sides. The change is 
maximum when the difference is zero. An equivalent plot can be constructed regarding the 
neon chemical potential.
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and then

	

V
n
dp

S
n
dT d⋅ − ⋅ =

	
 (3.72)

after canceling terms and moving n to the opposite (left) side. For an ideal gas at 
constant temperature, Equation (3.72) reduces to:
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(3.73)

whereupon
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(3.74)

f(T) is a function of temperature only while C1 is an integration constant. It is cus-
tomary to take C1 to be zero and the lower integration limit p1 as the unit pressure, for 
example p1 = 1.00 pascal; and to apply different notation for f(T). Thus the chemical 
potential for an ideal gas component is traditionally stated as

	
i i i e

iT p f T RT
p

= = +( , ) ( ) log
.1 00
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o
e iT RT p( ) log ( )

	

(3.75)

where the subscripts refer to the component identity, and the logarithm argument 
gives the appearance of having pressure units. The tacit agreement is that the unit 
pressure at a particular temperature (T) has been assigned as a reference state, in this 
case for the ith component. Note again that the first term of Equation (3.75) depends 
on temperature only; it is referred to as the standard chemical potential for compo-
nent i. The term standard is denoted by the superscript in i

o T( ).
Now there are four intensive potentials relevant to Figure 3.9:
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	 He
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(3.76D)

There are an equal number of entropy terms, each obtained from the relation
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Equation 3.77 applied to each potential yields:
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It is worth mentioning that the neon initially contributes zero pressure to the right 
side. Its free energy and entropy contributions—extensive quantities—are thereby 
zero. However, the chemical potential—an intensive quantity—of right-side neon is 
not zero likewise, but rather negative infinity at the start. This is gathered from the 
limit properties of exponentially related variables, that is:

	 x e y xy= → −∞ →: as 0  	 (3.79)

It follows that

	 i i
o

e iT p T RT p( , ) ( ) log ( )= + → −∞
	 (3.80)

in the limit of pi → 0. The equivalent statement holds for the initial amount of 
helium considered for the left-side compartment. The point is that the neon diffuses 
toward the right where its chemical potential is lower; the helium mixes by moving 
left where its potential is lower. The potential disparities are infinite at the start. They 
become finite as the mixing progresses and the entropy increases.

Equations (3.78A) to (3.78D) enable computation of the entropy changes for 
the helium and neon in each compartment. In the first two exercises, the entropy 
decreased on one side and increased on the other. Mixing is quite a different process 
in that the entropy changes are generally positive all around.
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The lower portion of Figure 3.9 shows the total entropy as a function of the helium 
left- and right-potential difference. The behavior is mirrored by the neon. It is evident 
that the entropy is maximum when the chemical potential difference between the left 
and right sides for a component is zero. The condition of chemical equilibrium is 
obtained when the potential of each component becomes uniform throughout the 
system. The smoothing of μ gradients indeed steers all parties toward the maximum 
entropy state. Note that μ for one component need not equal μ of another. It is instead 
the spatial uniformity of a component’s potential that is the signature of chemical 
equilibrium. Note further that the chemical equilibrium cannot be obtained unless 
the system is also in thermal and mechanical equilibrium; chemical equilibrium 
is subsidiary to the latter two. Let us not overlook critical and subtle features. The 
state of chemical equilibrium is not singular as it involves the states near the maxi-
mum entropy one. Further, when the conditions conform to the maximum entropy, 
a minimum number of variables are able to describe the system. Any and all strays 
from maximum entropy mandate additional information in the facts-and-data sense 
in order to portray the system. Helium and neon are the most inert of gases. Even so, 
the significance of this exercise will figure again in Chapter 7 concerning chemical 
reactions. The deviations from maximum entropy are addressed further in the next 
section.

3.3  SYSTEMS AND STATE POINT INFORMATION

Equations of state convert input variables to output. The latter anticipate properties 
of a system that can be checked by experiment. The infrastructure of Sections 3.1 
and 3.2 is famously applicable to systems and input–output conversions. The proviso 
is that the conditions conform to equilibrium—the most probable states are mani-
fest, there is zero available work, and so forth.

The foregoing statements are correct up to a point. They require additional elabo-
ration because of the issues raised in Figure 3.6 and the equilibration exercises of the 
previous section. In particular, if ever a system attains the maximum entropy state, 
deviations remain possible and indeed transpire ever after. A maximum entropy sys-
tem is not static, but rather is pushed and pulled by nature repeatedly. This is the 
case even if V, n, T, or other control variables are held fixed as best as possible by the 
chemist. By themselves, thermodynamic variables provide vital facts and data infor-
mation; this was a point introduced in Chapter 1. Yet it is the pushing and pulling 
due to momentary gradients that confer information in the statistical sense. But then, 
how much information? This is addressed in a simple example.

Let the ideal gas equation be used to convert experimentally measured V, n, and T 
into output; let the result be 5774 pascals. Upon the fourth measurement, the chemist 
finds the pressure dial to read 5654 pascals—the ideal gas equation overestimated by 
120 pascals. Then if p is measured subsequent times, the results should equate with 
the ideal number minus a correction of 120 pascals. If the van der Waals equation 
is used instead to anticipate p, a similar situation arises. The correction should be 
smaller as account has been taken of the nonideality.

The preceding is not 100% accurate because it implies that repeated measure-
ments afford zero information. It implies that the probability of observing p = 5654 



78	 Chemical Thermodynamics and Information Theory with Applications

pascals is exactly 1, given fixed V, n, and T. There is more to the story due to the 
pushing and pulling about the maximum entropy state.

One considers the unusual system in Figure 3.10. A single neon atom has been 
represented in highly magnified form in a double-chamber container. The exterior 
wall is diathermal and enables the temperature to be held constant by a surrounding 
bath. According to kinetic theory (cf. Equation 3.58), the atom demonstrates average 
energy U of
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FIGURE 3.10  Composite systems and thermodynamic uncertainty. The meter attached to 
the left compartment registers a signal, depending on whether the neon atom is present or 
absent. The atom is free to drift between the compartments. The lower panel shows an ideal-
ized probability density function. The effects of moving the piston right to left are considered 
in Exercise 3.12 at the end of the chapter.
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Yet as in Figure 3.9, a porous wall enables the atom to drift between left and right. If 
the compartments are of equal volume, the atom is just as likely to reside in one as 
the other. A barometer attached to the left chamber will register the pressure of either 
zero or something in the neighborhood of
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left
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(3.82)

Figure 3.10 describes an idealized scenario of two possible states and where an 
elementary measurement is preceded by uncertainty. An experiment, by definition, 
aims at reducing uncertainty. Given the idealized probability density function (lower 
panel) allied with the pressure, a single measurement by the chemist avails 1.00 bit 
of Shannon-type information. The measurement addresses the question: Is the neon 
atom in the left-side compartment? The information is less if the compartments dif-
fer in any respect: volume, wall stickiness, and so forth.

The case of multiple gas particles should then be addressed. Represented in 
Figure 3.11 are systems that host N >> 1 neon atoms in double-chamber containers at 
fixed temperature T. As in Figure 3.10, thermal energy turns the placement of each 
atom into a random variable. The probability of any particular atom residing at the 
left or right is proportional to the volume set by the interior wall position. Two of 
infinite possible situations are illustrated in Figure 3.11. For system 1, the probability 
of a neon atom being in the right compartment is three times that of the left. For 
system 2, the left and right probabilities are equal.

Probability and pressure are usually denoted by the same symbol. To avoid confu-
sion, the former will be represented by prob as in Chapter 2. Then for every atom in 
Figure 3.11, the following statements hold true:
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If N = 1, there are two configurations possible: left (L) and right (R). For N = 2, 
there are four configurations allowed: LL, LR, RL, and RR. The atoms are iden-
tical, ignoring isotope details. Thus, subscripts tracking individual atoms are not 
appropriate—it is incorrect to write L1R2, L2R1, and so on. Accordingly for N = 3, 
there are eight possible configurations: LLL, LLR, LRL, LRR, RLL, RLR, RRL, and 
RRR, which can be written slightly more compactly as L3, L2R, L2R, LR2, RL2, R2L, 
R2L, and R3. While tedious, it is straightforward to identify the configurations for 
higher N. The feature to notice is the large number of equivalent ones, especially as 
N becomes large. The number of equivalent—and thus indistinguishable—configu-
rations can be very large indeed.

A measurement of the left-side pressure will hinge on the gas that can access the 
barometer. To be sure, the maximum entropy state is where the left-side pressure 
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exactly matches the right; ditto for the chemical potentials. The holes in the middle 
wall, however, allow deviations. There are many possible states in which p, μ for one 
compartment fail to match the intensive values for the other. The inequities never 
persist as they occasion forces (via gradients) that push the system back in the direc-
tion of maximum entropy.

There are multiple configurations that correspond to a given pressure in the left 
compartment. Unsurprisingly, some configurations are more plentiful and thus 
more likely to manifest than others. It is the binomial distribution that quantifies 
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FIGURE  3.11  Composite systems and thermodynamic uncertainty for multiparticle sys-
tems. For system 1, the probability of an atom being in the right compartment is triple that of 
the left. For system 2, the left- and right-side probabilities are equal. The lower panel shows 
the probability distribution function associated with left-side pressure measurements.
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the probability of observing a configuration having x atoms in the left compartment 
and N – x in the right:
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The distribution is akin to that encountered in the third peptide thinking exercise of 
Chapter 2—where the cell showed no selectivity in the placement of V and R. For the 
situation at hand, let the neon behave as an ideal gas. Equation (3.84) then quantifies 
the probability of recording a left-side pressure p of
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Many values are possible: 0 21. ⋅ ⋅N k T
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, and so forth. The likelihood of each 

depends on N and the compartment volumes relative to one another.
Calculations assisted by the Stirling approximation (cf. Equations 2.48 and 2.49) 

illustrate the important points. The lower panel of Figure 3.11 shows the probability dis-
tribution for left-side pressure measurements. N has been arbitrarily set at 104 and 
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used as the unit measure; V V prob lefttotal left= / ( ) by Equation (3.83A). One observes that 
the distribution is narrower when the left and right compartments are of equal volume; 
contrarily the width is increased when Vleft < Vright, that is, prob left prob right( ) ( )< . 
That the widths are nonzero at all means that uncertainty will precede measurements 
endeavored by the chemist. As in Figure 3.10, a thermodynamic measurement attaches 
to Shannon information in a nontrivial way. Figure 3.12 then shows the contrasts in 
the Figure 3.11 examples. If the chemist queries the left-side pressure at a resolution of 
50k T VB total/ , there are 20 or so states that will manifest frequently, and which he or she 
can discriminate. The plot shows the sum of weighted surprisals as a function of state 
index i—the lower p values correspond to lower i. There is about 30% more informa-
tion, approximately 3.8 bits, trapped via a system 1 measurement compared with system 
2. Clearly, when an equation of state is used to anticipate a quantity such as pressure, 
there are more issues at play than a correction term to add or subtract. To be precise, an 
equation of state furnishes an estimate of an average of a physical quantity subject to 
fluctuations.

There are additional quantitative details. The first moment of the Equation (3.84) 
distribution can be shown to equal N prob left⋅ ( ). Hence, repeated measurements of 
the left-side pressure will lead to an average:
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if prob left( ) .⊕0 25  as for system 1, then λ × ≈N 1 75. . Similarly, if prob left( ) . ,⊕0 50
then λ × ≈N 1 00.  as in system 2. The plot serves as a reference for assessing all vol-
ume combinations. Along the way, it renders three important points. First is that λ 
changes nonlinearly with the volume disparity: λ ≈1 75. / N , 1 00. / N  for systems 
1 and 2, respectively. Second is that the fluctuations wield greater impact the smaller 
the volume. How do small systems differ from large ones besides the obvious? The 
answers include the very disparate impact of fluctuations—their role generally looms 
large in small systems and outsized in very small (e.g., nanometer scale) systems. Third, 
the impact of fluctuations diminishes with increasing N. This tells us that thermody-
namic measurements yield nonzero Shannon-type information—there is uncertainty 
to remove because a state point is not infinitely sharp. However, the amount falls as the 
number of atoms or molecules that compose the system is increased.

Emphasis should be added to the last few sentences. Figures 3.11 and 3.12 addressed 
the case of N = 104. This is roughly the number of molecules in a cubic sample of room 
air of volume (74 nanometers)3. Let us consider a more reasonable size sample, say, 10–3 
meter3 (i.e., 1.00 liter) hosting Avogadro’s number of molecules at room temperature. 
Taking the gas as ideal, the average pressure in any sector of the container will be:
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FIGURE 3.13  λ × N versus prob(left). The plot offers a reference for weighing the impact 
of fluctuations in a system containing N total number of particles. λ measures the ratio between 
the standard deviation and the average, while prob(left) equates with the fraction of the system 
volume.
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If a sector of interest comprises, say, one-third of the total volume, a quick look at 
Figure 3.13 informs one that
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In turn,

	
σ λp p= ⋅ ≈ × × ≈ ×− −( . )( . ) .1 82 10 2 44 10 4 44 1012 6 pascals 66 pascals

	
(3.91)

The pressure fluctuations of the sector are miniscule! In order to register them, the 
chemist requires a barometer that is accurate to about one part in 1012—the barom-
eter would have to register p to 12 significant figures or better. Deviations from aver-
age that exceed 3σ p occur in less than 0.5% of a sample population. If the chemist 
had such high-precision instrumentation available, it would offer at most:
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per measurement. The values of thermodynamic state variables are vital facts and 
data information. Their measurement typically offers only sparse information in the 
statistical sense.

The major points of Chapter 3 are:

	 1.	Thermodynamics is supported by an infrastructure of multivariable func-
tions and equations of state. These apply the tools of integral and differen-
tial calculus. Equations of state are restricted, however, to the very special 
conditions of equilibrium.

	 2.	Multivariable functions enable the state points of a system to be located in 
different coordinate systems: pV, pT, VT, and so forth. Their application, 
however, is not equivalent to that practiced in pure calculus and analytic 
geometry. This is because fluctuations confer a certain wobble on the point 
position; they enable one state to convert freely to others, depending on the 
system size and composition. The equilibrium conditions are robust and 
restorative, and by no means static.

	 3.	Fluctuations impose uncertainty, which, in turn, confers nonzero informa-
tion in thermodynamic measurements. The amount is miniscule typically. 
The exceptions arise for systems of small V and sparse N.
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3.4  SOURCES AND FURTHER READING

The infrastructure of thermodynamics has been thoroughly charted in texts too numer-
ous to mention. The author’s list of preferred books include ones by Kauzmann [4], 
Desloge [5], Klotz [6], Fermi [7], Landsberg [8], Kirkwood and Oppenheim [9], Lewis 
and Randall [10], Pitzer and Brewer [11], Callen [12], Zemansky [13], and Spanner [14]. 
Books by Stanley [15], Goodstein [16], and Hecht [17] do not focus on classical thermo-
dynamics per se. They include, however, excellent single-chapter encapsulations of the 
subject. It was via Stanley’s text that the author was first introduced to Legendre trans-
forms and thermodynamic squares. These two subjects were reinforced by Desloge’s 
book, and by presentations such as by Goldstein of classical mechanics [18]. Also to be 
noted is the succinct presentation of classical thermodynamics by Dunning-Davies [19].

This chapter appealed to a few results from kinetic theory. The book by Hecht 
lays thorough groundwork on this subject [17]. Regarding empirical equations of 
state, the author has found chemical engineering texts most instructive regarding 
history, applications, and limitations. Especially illuminating are the books by Kyle 
[2] and Jones and Dugan [3].

This chapter has discussed fluctuations at an elementary level. The role of fluctua-
tions is presented at an advanced level in several places. Highly recommended are 
the works by Kittel and Kroemer [20], Landau and Lifshitz [21], Lavenda [22], and 
Berne and Pecora [23].

Calculus-based approaches to thermodynamics are not the only ones. 
Thermodynamic states admit descriptions using the tools of differential geometry. 
The reader is encouraged to consult the truly seminal (and challenging) work of 
Gibbs [24], and the years-later contributions of Tisza [25], followed by Weinhold 
[26]. It is not surprising that the mathematical structure of thermodynamics has been 
the subject of several treatises, such as by Giles [27]. Taking an unusual approach, 
Peusner has presented a large body of thermodynamics using the tools of network 
analysis [28].

Last, if information inspires much discussion, so does entropy. Recommended 
are the books by Dugdale [29], Serrin [30], and Denbigh and Denbigh [31]. The text 
by Craig approaches chemical thermodynamics primarily through the entropy state 
function [32].

3.5  SUGGESTED EXERCISES

	 3.1	 Dimensions and units are important to all fields. (a) Show that (U/p) 
and (G/V) have dimensions of volume and pressure, respectively. (b) 
Show that (a/Rb) and (a/b2) have dimensions of temperature and pres-
sure, respectively, where a and b are the van der Waals constants, and 
R is the gas constant.

	 3.2	 Refer to Table 3.3 listing select van der Waals constants. (a) Derive 
expressions that enable a and b to be converted to liter2-atmosphere/
mole2 and liters/mole, respectively. (b) Does b/NAv equate with the vol-
ume occupied by a single gas molecule? Please discuss.
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	 3.3	 Figure 3.9 pertained to 1.00 mole each of helium and neon. The exer-
cise focused on the mixing of gases and maximization of entropy. (a) 
Show that the maximum total change in the entropy for the compos-
ite system is S R emax log ( )= × ×2 2moles . (b) The chemical potential 
for an ideal gas includes a term that depends only on temperature. In 
arriving at Smax , what is the fate of the o T( )  terms?

	 3.4	 Revisit Chapter 2. Derive Equation (2.18) regarding the entropy of 
mixing for ideal gases.

	 3.5	 The binomial distribution was presented in Equation (3.84). (a) Show 
that the first moment—the first cumulant—is N prob left⋅ ( ) . (b) 
Derive Equation (3.87) regarding the second cumulant.

	 3.6	 For a κ = 1 system, H depends explicitly on p, S, and n. (a) Is H con-
cave upward or downward with respect to p? Let the same question 
apply to S. (b) Establish the Maxwell identities based on H(p, S, n):

∂
∂

=
∂
∂

V
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T
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p n S n, ,  

∂
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=
∂
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n S

p S p n, ,  

∂
∂

=
∂
∂

V
n p

S p S n, ,

	 3.7	 Examine the Legendre transform of H(p, S, n) with respect to p, S, and 
n. For each case, establish the simplest form analogous to Equations 
(3.33) and (3.34).

	 3.8	 (a) Use the van der Waals equation to obtain a form for the isothermal 
compressibility, Equation (3.25). Do likewise for the Dieterici equa-
tion. (b) Refer to the van der Waals constants for argon. Compute and 
graph van der Waals βT as a function of temperature: Let n = 2.00 
moles, V = 0.00100 meter3, and 200 K ≤ T ≤ 500 K. What portion of 
the graph is best approximated by ideal gas βT?

	 3.9	 Use the van der Waals equation to obtain a form for the thermal 
expansivity, Equation (3.24). Do likewise for the Dieterici equation. 
(b) Refer to the van der Waals constants for xenon and plot αp as a 
function of temperature. Let n = 2.00 moles, V = 0.00100 meter3, 
and 200 K ≤ T ≤ 500 K. What part of the graph is best approximated 
by ideal gas αp?

	 3.10	 For a κ = 1 system, compute:
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	 3.11	 Consider the apparatus of Figure 3.7; only let the right compartment 
contain 1.00 mole of nitrogen gas (N2(g)) initially at temperature 400 
K. The left side contains 1.00 mole of neon at initial temperature 300 
K. Construct a plot that shows the total change in the entropy as a 
function of the temperature difference between the left and right com-
partments. Take the heat capacity of the nitrogen to equate with:

	

C RV = ⋅ ×
5
2

1 00. mole
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	 The extra capacity, compared with neon, derives from the end-over-
end rotations of the molecules.

	 3.12	 The flip of a coin leads to 1.00 bit of information trapped at the expense 
of work and dissipated heat. Confining the neon atom of Figure 3.10 
to the left compartment via an isothermal compression also purchases 
1.00 bit. (a) Perform a thermomechanical experiment at home: Flip a 
quarter and estimate the work transferred to the translational and rota-
tional degrees of freedom. Do likewise with a dime. (b) Compare the 
work with that required for isothermal compression of the Figure 3.10 
system, that is, moving the piston right to left and stopping at the cen-
ter wall. Which system—the quarter, dime, or neon—affords the most 
expensive information? The least? Discuss the significance of these 
results. Note in particular how the information is purchased only by 
supplying work, dissipating heat, and lowering the system entropy.

	 3.13	 Consider again the apparatus of Figure 3.11. Let the system consist of 
5000 nitrogen molecules plus 5000 neon atoms at temperature 300 K. 
(a) Construct and plot the probability distribution function for CV of 
the left-side container. (b) Nitrogen and neon have different specific 
heats. Should the plot of part (a) be bimodal? Please discuss. (c) Let 
the chemist measure left-side CV with sufficient resolution to detect 
0.10σ deviations from average. How many bits of information are 
trapped?

	 3.14	 Consider an ideal gas sample of N = 104 molecules in a 1.00 meter3 
container at 300 K. What size sectors correspond to λ = 0.0500, 0.100, 
and 1.00?

	 3.15	 Consider 1.00 mole of argon in a 1.00 × 10–3 meter3 container at 200 
K. (a) What is the average pressure estimated by the van der Waals 
equation for a sector equal to one-tenth of the total gas volume? (b) 
What is σp estimated for the sector?
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4 Thermodynamic 
Transformations 
and Information

Fluctuations connect the states of a system by accident. By contrast, when variables 
are fine-tuned and coordinated with heat and work exchanges, the states are linked 
by design. We consider a special type of design, one that defines a locus of nearest-
neighbor state points. The sequence of points marks a pathway in the manner of a 
computational program.

4.1  EQUILIBRIUM STATES, PATHWAYS, AND MEASUREMENTS

There were three themes of the previous chapter. First was the infrastructure for 
describing systems via potentials, state variables, and differentials. Second was the 
use of empirical equations to model systems at equilibrium. Third, was that fluctua-
tions impose a nonzero width on every state point. A point anticipated by the ideal 
gas, van der Waals, or other equations of state is not infinitely sharp as in analytic 
geometry. Rather, a system demonstrates a range of pressure, density, and other 
properties. The fluctuations are as integral to the thermodynamic behavior as the 
average values.

These themes enjoy a reprise in Figure 4.1. The upper portion depicts a gas of 
volume V at equilibrium p, T, and μ. The infrastructure is bridged to empirical equa-
tions of state by differentials such as
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There are many more examples. Because of energy exchanges, container shape 
fluctuations, and so on, the state point in the lower part of Figure 4.1 demonstrates 
a nonzero width. In turn, measurements of p and V at resolution windows Δp and 
ΔV furnish the chemist with a range of values about the average. Under most cir-
cumstances, Δp and ΔV exceed the state point width (as in the figure). The fluctua-
tions are ever active but exert little impact when the systems are modest to large 
in size.
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zero as well. The pathway structure is invisible to the chemist given everyday detec-
tion limits. As stated, this is strictly a thinking exercise.

Yet suppose the system was retrofitted in a way that enabled a special type of 
state change. The apparatus in Figure 4.3 offers one possibility. Let a piston allow 
mechanical work to be transferred between the system and surroundings. Let a heat 
bath and conducting walls enable the two-way flow of heat. The apparatus includes 
a thermometer and barometer for monitoring T and p. A position encoder on the 
piston keeps track of all volume changes. There is substantial equipment not shown. 
This includes clamp-on adiabatic walls that permit work-only exchanges. There is 
a heat bath ready and waiting for every temperature accessed in a transformation. 
The baths enable equilibrium to be maintained, both within the system and with the 
surroundings.

In short, the equipment enables fine-tuning of the thermodynamic state. And 
when the system is transformed reversibly, the state variables change in parallel, in 
conjunction with the energy exchanges. The system remains at equilibrium through-
out the tuning process. It is traditional to represent transformations in a coordinate 
plane such as pV. As in Figure 4.4, a transformation marks the relocation of the state 
point from some initial to final position. The intervening coordinates mark a contin-
uous and structured pathway. Note that irreversible operations do not accommodate 
the same luxury of graphing. These are complicated by gradients induced in one or 
more intensive properties. A nonequilibrium state really does not correspond to any 
location in the pV or other coordinate plane. A succession of states will not admit the 
curve in Figure 4.4 if even a single point fails to meet the equilibrium criteria. How 
is a reversible transformation different from an irreversible one? The answers include 
that the former is readily plotted; this cannot be said about the latter.
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FIGURE 4.2  Pathway structure of a state point. A system does not demonstrate island 
points as in region A. Rather, the states are linked one to another by equilibrium fluctua-
tions. A succession of points as in region B traces a pattern evocative of Brownian motion. 
The pathway structure is ordinarily undetectable given the typical measurement resolution 
window Δp and ΔV.
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FIGURE 4.4  Reversible pathway in the pV plane. Each point of the path corresponds to an 
equilibrium state of the system.
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FIGURE 4.3  Tuning the thermodynamic state. A heat bath and piston enable energy 
exchanges and parallel tuning of the system variables.
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Further, since the first law of thermodynamics mandates:

	
dU pdV TdS
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= − + 	 (4.5)

it follows that
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after combining the results of Equations (4.3) through (4.5). Integration of Equation 
(4.6) gives:
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Applying Equations (4.4) and (4.7) to A and B leads to Figure 4.7. The upper panel 
portrays the system in the UV plane while the lower marks the TS structure. It is 
important that for each pV coordinate there corresponds a single point in the UV 
plane; likewise for TS. A one-to-one correspondence does not apply across the 
board, however. For example, an isothermal pathway in the pV plane for an ideal gas 
collapses to a single point in the UT plane. Different representations do not always 
afford equivalent knowledge.

p, V, T, S, and U are all functions of state. Hence, the net change of each is the 
same for A and B. This is not the case for Wrec and Qrec, which are tied to the pathway 
structures. These quantities are obtained from the integrals

	

W pdVrec
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final

= − ∫ 	 (4.8)
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Wrec equates with the area underneath the pV curves of Figure  4.6. Qrec quantifies 
the area under the TS curves of Figure 4.7. Note that Qrec follows alternatively from 
computing

	 Q U Wrec rec= − 	 (4.10)
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in accordance with the first law. Figure 4.8 illustrates the results of work and heat 
computations. Not surprisingly, B reflects greater work supplied by the surroundings 
to the system—there is greater pV area under B. At the same time, there is greater 
heat expelled (Qrec < 0) as the system traverses B. Wrec and Qrec are not functions of 
state in spite of their sum forming a state function.

There exist infinite programs for connecting state points. Some are special for 
their simplicity. Two are shown in Figure 4.9 by way of isochoric and isobaric path-
ways, also known as isochores and isobars. An isochore is notable because it entails 
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FIGURE 4.7  Reversible pathways in the UV and TS planes. The pathways correspond to A 
and B of Figure 4.6. The system has been taken to be 1.00 mole of monatomic ideal gas.
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zero work; at constant V, dV = 0 and Wrec is zero by Equation (4.8). To direct a 
mechanical system to travel such a path requires locking the piston in place. Then 
only heat can be exchanged whereby p rises with addition to the system and falls 
with removal.

An isobaric pathway is no less special. In this case, heat is exchanged between 
the system and surroundings in either direction. Concomitant with the exchanges 
is the repositioning of the piston to maintain constant p. Wrec equates with 
a rectangle of area in the pV plane. Both Wrec and Qrec scale linearly over the 
transformation.
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FIGURE 4.8  Wrec and Qrec for reversible pathways. The pathways correspond to A and B of 
Figure 4.6. The system is 1.00 mole of monatomic ideal gas.
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In the pV plane, isochores and isobars appear as vertical and horizontal lines, 
respectively. This is not the case in Figure 4.10, which illustrates three isothermal 
paths in the upper panel. As always, the work and heat exchanges and variable tun-
ing must be perfectly coordinated. If the piston inches downward, then dWrec > 0. 
A compensating heat must be withdrawn (i.e., dQrec < 0) to preserve constant T. If 
the piston moves upward, heat injection is mandatory whereby dQrec > 0. The word 
perfectly is apropos. To preserve the equilibrium conditions, no new entropy must be 
created. The system must be describable by valid T, p, and μ at all stages.

The isotherm structure depends on the nature of the system. For an ideal gas:

	
p V nRT⋅ = 	 (4.11)

Thus p V⋅  is a constant at all points. For isotherms described by the van der Waals 
equation:
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Thus the invariant quantities are somewhat more complicated. As examples, the iso-
therms in Figure 4.10 apply to 1.00 mole each of ideal gas, xenon (Xe), and sulfur 
dioxide (SO2). The data all pertain to the same temperature held at 200 K. The Xe 
and SO2 pathways have been plotted via Equation (4.12) and the van der Waals con-
stants of Table 3.3 of Chapter 3. It is apparent that the three examples become closely 
aligned at higher V. As would be expected, the excluded volume and attractive forces 
carry greater weight at lower V and higher p. This means that Wrec and Qrec depend on 
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falls. Adiabatic transformations are unusual because they affect T, albeit with zero 
heat exchanged. The temperature changes can be drastic as in supersonic expansions 
and shock waves.

The mathematics of an adiabatic transformation is summarized as follows. For a 
closed ideal system unable to exchange heat, Equation (4.6) reduces to:

	
C dT

nRT
V

dVV + ⋅ = 0 	  (4.14)

When T is repositioned, one obtains:

	
C

dT
T

nR
dV
VV ⋅ + ⋅ = 0 	 (4.15)

Integration then arrives at a quantity that is invariant throughout the transforma-
tion, namely,
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It follows that

	 T VC nRV ⋅ = =exp[ ]Λ Λ1 2
	 (4.17)

where Λ1 and Λ2 are constants dictated by the initial conditions. Equations (4.14) to 
(4.17) are restricted to ideal gases. Systems modeled by the van der Waals equation 
do not stray far. It can be shown that
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whereby
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such a function has the same form for both ideal and van der Waals systems. 
Combining Equations (4.19) and (4.20) and the van der Waals equation leads 
to:
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The operations that led to Equation (4.17) can be applied to Equation (4.21) to yield:

	
T V nbC nRV ⋅ − = =( ) exp[ ]Λ Λ3 4

	 (4.22)

Equation (4.22) can be viewed as an invariant signature of a van der Waals adiabat, 
which stays constant for the system in spite of the pV tuning.

The adiabats in Figure 4.10 apply to 1.00 mole each of an ideal gas, and for van 
der Waals Xe and SO2. The initial T, p, and V have been taken to be the same as 
for the isotherms. The pathway differences are not trivial. The greatest work is 
delivered to the surroundings by the ideal gas; with expansion, there are neither 
attractive nor repulsive forces in play. The least work is transferred by the xenon; 
some of its thermal energy must be expended to overcome the attractive forces, 
while the monatomic character obtains a low heat capacity. The expansion work 
of SO2 is less than that for the ideal gas because of attractive forces. There is 
compensation, however, as the triatomic character means a larger heat capacity. In 
particular, for SO2:
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7
2

	 (4.23)

Note that the reductions in the SO2 thermal energy content are not as sharp as for 
Xe. For the latter,

	

C nRV ≈ ⋅
3
2
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To conclude this section, Figure 4.11 offers a sampling of cyclic pathways. These 
are rich in diversity and applications. In each case, the system’s initial state is iden-
tical to the final. There are otherwise no limits placed on the intermediate states. 
For cyclic pathways, all quantities p, V, U, A, S, T, and so forth incur zero change 
ultimately, however convoluted the journey. In contrast to the examples of preceding 
figures, cyclic pathways do not correspond to single-valued functions. Their represen-
tation is established piecewise using two or more functions. Alternatively, they can 
be described by parametric equations in which the thermodynamic variables share 
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a single-value dependence on η. For example, the hairpin pathway of Figure 4.11 
conforms to:
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where 0 3≤ ≤η .
Cyclic transformations impact daily life via heat engines and refrigerators. If a 

system is programmed for clockwise transit along any of the Figure 4.11 examples, 
heat from a surrounding reservoir is incrementally converted to work. The conver-
sion efficiency is less than 100% by the second law of thermodynamics; there is 
always the need for a cooler reservoir to receive heat ejected (and thus wasted) by 
the system. Counterclockwise travel consumes work supplied by the surroundings. 
The results include heat withdrawal from one or more reservoirs and deposition in 
others. Refrigerators accomplish this night and day; the heat → work conversions 
of remote power plants enable them to operate. Life would be poorer without cyclic 
transformations and the programs that render them.
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FIGURE 4.11  A sampling of cyclic pathways. The circle and hairpin are revisited in two 
subsequent figures.
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4.3  REVERSIBLE TRANSFORMATIONS AND INFORMATION

It is apparent that reversible pathways are an idealization. For a piston to transfer 
work, there must be a pressure gradient between the system and surroundings. Yet 
such a gradient must be infinitesimal for the equilibrium to maintain—it cannot be 
greater than ones generated by natural fluctuations. Likewise, for heat to flow sponta-
neously, there must be a temperature gradient. This also cannot exceed the gradients 
due to fluctuations. Reversible transformations accommodate thermal, mechanical, 
and chemical relaxation with every step. Given these stipulations, a reversible path-
way requires as much as infinite time for travel—where the work and heat exchanges 
occur at zero power.

Idealizations provide lessons nonetheless. Reversible pathways are instructive 
because they offer ready approximations for real systems. Figure 4.8 presented Qrec and 
Wrec along two pathways. The terminal values can be viewed as upper and lower lim-
its, respectively, for real-life processes. Under normal circumstances, gradients other 
than via natural fluctuations create entropy. This “extra” entropy has to be expelled, 
and additional work is needed to land the system in the designated final state. The 
condition of reversibility provides a simple approach to complicated operations.

In a similar vein, reversible paths offer ready comparisons. For instance, the 
clockwise travel of each cycle in Figure 4.11 results in heat → work conversion. 
Which offers the greatest efficiency for 1.00 mole of gas? Taking each transfor-
mation as reversible and the gas as ideal would be a first step toward addressing 
the question.

 Section 4.2 described a number of pathway fundamentals. Section 4.3 considers 
their information properties. A system does not initiate and trace a pathway on its 
own. It requires parallel operations specified by algorithms. Algorithms are rules 
and procedures for solving problems. They are wholly appropriate to thermody-
namic venues. In each case, the problem is how can the system be transformed from 
a specified initial to final state along a demarcated path. The algorithm is imbedded 
in the sequence of state points. It enables one state to be converted faithfully to 
another without compromising the equilibrium. The algorithm calls for precisely 
executed variable tuning and work and heat transfers. In computation, algorithms 
are measured by their information content. How much information is expressed by 
thermodynamic pathways?

But there lie twin cruxes. A reversible path marks a locus of nearest-neighbor 
state points; there is virtually an infinite number in the general case. Information 
in Chapter 2 was grounded on finite state collections—coin faces, peptides, and so 
forth. By contrast, formulae such as Equations (4.25A) and (4.25B) specify infini-
tudes of pV states, and accordingly, fact and data information.

The second crux concerns probability. This was defined in Chapter 2 in terms of 
infinite trials and measurements. Once in place, the probability distributions never 
wavered for a system of interest.

Thermodynamic systems and pathways pose a very different situation. Assessing 
a point locus for information in the statistical sense requires the chemist to view the 
system in finite-resolution, objective terms. Information is quantified as a result of 
logical predictions of answers to yes or no questions. The basis for a prediction is 
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one of reasonable belief on the chemist’s part. This approach is subtly different from 
ones grounded on trials that are potentially infinite in number—coin tosses, peptide 
sampling, and the like.

Suppose that the chemist has superb knowledge of any of the pV pathways of this 
chapter. He or she is then well aware of the state boundaries of p and V along with their 
pairings. If, in addition, the chemist has knowledge of the equation of state, he or she 
can construct alternative representations such as UV and TS in Figure 4.7. With knowl-
edge of the pathway, the chemist is cognizant of Qrec and Wrec and all the changes in 
state functions. Pathway knowledge is a rich endowment of facts and data.

Yet by the condition of reversibility, the system must maintain equilibrium within 
itself and with the surroundings at all stages. Equilibrium states are like coins that 
lie flat on a table or like an isolated peptide to one critical extent: they offer zero tes-
timony about the history or future. Therefore, while the chemist has a firm grasp of 
the collection of states, he or she is not spared the uncertainty that would precede any 
and all measurements. The chemist is pathwaywise; he or she is 100% sure that that 
measured p or V will lie somewhere within certain boundaries. But the chemist is 
ignorant of the state arrival, dwell, and departure times. There is doubt consequently 
attached to inquiries about the state at any instant.

Note how an individual state point and a pathway present contrasting scenarios. If 
the chemist knows average p and V as in Figure 4.1, but can extend measurements at 
resolution windows Δp and ΔV as illustrated, then all inquiries yield zero information 
in the statistical sense—p and V registered by the apparatus never alter. Matters are 
different for pathways such as in Figure 4.4 because the point relocations well exceed 
typical Δp and ΔV. If the chemist inquires about a system subject to such program-
ming, and proceeds to address the question via a measurement, he or she reduces the 
uncertainty. He or she acquires information in the statistical sense at a cost of work 
dependent on the apparatus.

The examples of Figure 4.6 are plotted again in Figure 4.12. When the chemist 
probes p at resolution Δp, he or she is submitting questions fair and just such as

•	 Does the system pressure lie somewhere between 2400 and 2600 pascals?
•	 Does the pressure lie between 1500 and 1700 pascals?
•	 Does the pressure exceed 1800 pascals?
•	 Is the pressure less than 1000 pascals?

There are countless more. The chemist knows not to waste time with queries 
involving 108 or 10–8 pascals. The states corresponding to these values lie outside 
the domain prescribed by the algorithm. Prior to a measurement, the chemist 
lacks reason to hold one state more significant than another. He or she is also 
aware that reversible paths can be traveled in two directions—the term revers-
ible is not incidental. Thus, the chemist lacks grounds for taking the program 
to be unidirectional in execution. Qrec and Wrec plus the changes in U, S, p, and 
so forth are the same whether the transformation proceeds monotonically or 
in some back-and-forth fashion. All the chemist knows is that at some stage, 
the system, operating in tandem with the surroundings, departs from the initial 
state and eventually arrives at the final state. The program specifies which states 
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The appeal to reasonable belief bridges information with pathway structure. 
For reversible A of Figure 4.12, the chemist regards the likelihood of observing p 
between 2400 and 2600 pascals to be greater than for 1500 to 1700 pascals. The 
rationale is that a more substantial fraction of the state points reside in the former 
neighborhood. Matters are different for the B program. Here comparable fractions 
manifest in the 1500 to 1700 and 2400 to 2600 pascal ranges. The chemist has 
no cause for thinking that one neighborhood is favored over the other, so he or 
she anticipates the system to express p states in the two ranges with about equal 
likelihood.

Probability admits mathematical descriptions. Thus, for every pathway and state 
variable of interest, there exist distribution functions denoted by FX↔p(p), FX↔T(T), 
FX↔V(V), and so forth. These are analogous to ones discussed in Chapter 2 for a 
random variable X having probability distribution FX(x). In thermodynamic venues, 
a function such as FX↔p(p) quantifies the reasonable belief likelihood of observing a 
system with pressure ʺ p. Unlike everyday distributions—uniform, normal, and so 
on—FX↔p(p), FX↔T(T), and so forth are case specific and depend intricately on the 
pathway structure. There is really no limit to their diversity.

Information arrives via probability and surprisal values. It should be apparent 
how these will be obtained for reversible transformations. To assess the likelihood 
of observing p somewhere over a specified range, the chemist needs to tally the 
number of states programmed over that range. He or she will then divide the number 
by the total number of pathway states. The lessons of Chapter 2 will consequently 
apply; the greater the probability, the lower the surprisal and vice versa. The greater 
the uncertainty associated with a collection of states, the greater the information 
attached to a measurement. These statements hold for all thermodynamic quantities: 
V, T, p, μ, U, and so on. 

There are additional issues. First, given a pathway of interest, the probabilities 
and surprisals do not follow at once. After all, the pathway structure depends on 
choices made regarding physical units and Cartesian axes. The circle and square of 
Figure 4.11 appear as an ellipse and rectangle if either axis, pressure or volume, is 
stretched. The same holds true if the transformations are plotted in, say, a torr–liter 
coordinate system. Second, probabilities and surprisals are not obtained, at least 
directly, from continuous functions and graphs. Summing the points specified by a 
function means evaluating a contour or line integral. A line integral for a p versus V 
function—lacking further treatment—has the unusual dimensions and International 
System of Units (SI units) of

	
p V2 2 2 6+ = +pascals meters 	 (4.26)

Third, the pathway information established by the chemist is not singular but 
instead depends on the query nature and measurement window. Queries and mea-
surements at resolution 1.00 pascal yield more information than at resolution 103 

pascals. This also means that if a system was programmed for A or B of Figure 4.12, 
and yet probed at Δp = 104 pascals, then zero information would be obtained—all 
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the states fall in the range 0 to 104 pascals and the barometer cannot discriminate one 
from another. The lesson is that information in the statistical sense must always be 
reported with the query and measurement details included. This is not a unique situ-
ation in thermodynamics as other properties call for fine-print attachments. As will 
be discussed in Chapter 7, an equilibrium constant must always be reported along 
with the temperature at which it was measured, the reaction stoichiometry, and the 
concentration or pressure units applied.

When quantifying pathway information, the procedure begins with the rescaling 
of the control variables. If the program specifies the states using p and V coordinates, 
then these govern all facets of the reversible pathway structure. They are the control 
variables whose rescaling is achieved as follows:

	
p

p p

p p
=

−
−

min

max min 	
(4.27A)

	
V

V V

V V
=

−
−

min

max min 	

(4.27B)

The subscripts label the values at the boundaries. Note that pmin, pmax, Vmin, and 
Vmax need not correspond to the initial and final states, although this is often the 
case. The rescaling leads to dimensionless quantities that span 0 to 1. The rescaling 
ensures that each control variable is weighted equally in placing the state points 
and defining the pathway structure. It is important that p V,  adopt the same values 
independent of the source units—pascals, meter3, torr, liters, and so forth. When 
applied to A and B of Figure 4.12, rescaling leads to the curves in the upper panel 
of Figure 4.13.

Information is a by-product of probability distributions. To construct, say, 
F pX p↔ ( ), one computes a contour length one of two ways. If p  is a single-value 
function of V , then dimensionless length Λ arrives by the integral

	

Λ = ⋅ +∫ dV
d p

dV
1

2

0

1

	
(4.28)

Equation (4.28) would be appropriate to isothermal or adiabatic pathways, to name two.
If, instead, the pathway is grounded on parametric equations as in Equations 

(4.25A) and (4.25B), then the length is obtained via:

	

Λ = ⋅ +∫ d
dV

d

d p

d
initial

final

η
η η

η

η 2 2

	

(4.29)

Equation (4.29) would apply to cyclic pathways and others where more than one p 
is paired with a given V. Equations (4.28) and (4.29) reflect well-known formulae 
from calculus. Note that while the reduced variables span 0 to 1, the length Λ can 
well exceed 1. As with computer programs, different pathways offer an assortment 
of lengths.
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The probability distributions are obtained as ratios of integrals. In each case, the 
denominator is Λ while the numerator is the partial contour length. Where Equation 
(4.28) applies, one computes:

	
F p p

dV

X p

dp
dV

p p
↔

≤≤ =

∫ ⋅ + ( )
( )

0

1 2
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Λ 	

(4.30)
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FIGURE 4.13  Probability distribution functions for reversible pathways. Shown are FX↔p(p) 
for A and B of Figure 4.6 and the previous figure.
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When Equation (4.29) applies, one computes:

	
F p p

d

X p

dV
d

dp
d
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final

↔ ≤ =

∫ ⋅ ( ) + ( )
( )

η

η

η ηη
2 2
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(4.31)

For both cases, the numerator is restricted to states ≤p p . The calculations are 
nontrivial because several fragments of a pathway can contribute to the numerator. 
In all cases, the minimum value of the distribution function is 0 while the maximum 
is 1. Plots of F pX p↔ ( ) demonstrate a left to right increase that is governed entirely 
by the pathway structure. It is straightforward to convert the dimensionless variables 
back to physical ones for evaluation purposes; the lower panel of Figure 4.13 thereby 
illustrates FX↔p(p) specific to A and B. The distributions address a bounty of ques-
tions that the chemist can pose, for example:

	 1.	How do average (and median) p for A and B compare? The answer follows 
by noting p for which FX↔p(p) = 0.50. < p > is registered as 1559 and 1933 
pascals, respectively, for A and B.

	 2.	For A and B programs, what is the likelihood of observing system p ≤ 1500 
pascals? The answer depends on the pathway structure: FX↔p(p ≤ 1500 pas-
cals) = 0.48 for A and 0.31 for B.

	 3.	At what value po is the likelihood of observing system p ≤ po the same for A 
and B? The answer is po ≈ 2270 pascals where the FX↔p curves intersect.

Distribution functions are the vehicles for quantifying information, the amount 
depending on the query and measurement resolution. As with the control variables, 
the resolution window must be rescaled into a dimensionless form:

	

p
p

p p
=

−max min 	
(4.32)

Further, two or more pathways can only be compared—fairly that is—at identical 
physical resolution, say, 20 pascals. This will translate into different values of p, 
given the disparities of pathway lengths, minima, and maxima.

The reasonable-belief probability allied with a specified range of states follows 
from a ratio such as

	
prob p p p p
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(4.33)

where the numerator is restricted to states p : p p p p≤ < + . It is cumbersome 
to refer to states in such terms. It is more convenient to index (label) them via 
integers:
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State Index

0 ≤ <p p 1

p p p p≤ < + 2

p p p p p+ ≤ < + 2 3

. .

. .

( ) .j p p j p− ⋅ ≤ < ⋅1 j

Surprisals are then the by-product of the probabilities of Equation (4.33), as are the 
weighted surprisals:
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and
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The sum of weighted surprisals equates with the Shannon information for the vari-
able X in question, in this case pressure:
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(4.36)

The results of evaluating Equation (4.36) are shown in Figure 4.14 for three res-
olution conditions. One finds A to demonstrate a slightly greater range of pressure 
states; this means a greater number of terms to sum in Equation (4.36). B expresses 
greater IX↔p by a few percent, however. This is because the pressure states in B 
are distributed in a less biased way. There is consequently greater uncertainty on 
the chemist’s part prior to a measurement directed at a system programmed for B 
travel. The bias in A is acute near the minimum and maximum p. These states hap-
pen to be in the same vicinity as the initial and terminal. A programming avails 
less uncertainty prior to a measurement—and accordingly less information upon 
completion.

Anticipating the probability attributes of A and B is fairly straightforward. 
One inspects carefully the range of states and biases that have been programmed. 
Qualitative assessments are not always forthcoming, however. Figure 4.11 included 
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are weighed in bit terms, quite apart from the transistor and diode circuits that 
materialize them. Information is always physical, as cited in Chapter 1. Yet it 
accommodates an analysis that places the mechanical details to one side, and 
focuses on the statistical structure of a state collection. It is the purpose of this 
section to summarize the properties of pathway information. Several have been 
apparent already.

The first is that individual states differ from pathways in that states offer almost 
zero information in the statistical sense. For an equilibrium system of appreciable 
size and particle number:

	
I I I IX p X V X T X↔ ↔ ↔ ↔≈ ≈ ≈ ≈ ≈ 0

	
(4.37)

This is on account of the minor effects of fluctuations. By contrast, pathways offer 
appreciable information in abundant variables.

The second property is that pathway information is independent of the travel 
direction. A contour length does not alter if the integration limits are interchanged. 
Thus IX↔p for A and B in Figure 4.12 does not alter if the initial and final states are 
switched. By the same token, the information of cyclic pathways (Figure 4.11) does 
not depend on whether the travel is clockwise or counterclockwise.

The third property is that different variables express different probability distri-
butions and, in turn, information. For a pathway of interest, the chemist has a firm 
handle on several variables if he or she knows the equation of state. For example, 
taking the system of Figure 4.12 to be 1.00 mole of a monatomic ideal gas, the tem-
perature is established at each point of A and B via:

	
T

p V
R

=
⋅

⋅1 00. mole 	
(4.38)

Figure 4.16 illustrates FX↔T(T) for the A and B algorithms. The temperature bias is 
greater for A while the range is 25% larger for B. B thereby leads A in the information 
availed in temperature measurements by the chemist. Note the corollary: informa-
tion expressed by control variables such as p and V begets additional information.

The fourth property lies in the contrasts between ideal and nonideal gases. The 
former demonstrate several properties beginning with the ideal gas law. An ideal 
gas further expresses CV and Cp independently of temperature. For an ideal gas, the 
dependence of U and H is only on n and T and not at all on V. For an ideal gas, the 
response functions have elementary forms: α p T= −1 and βT p= −1 . A nonideal gas 
requires equations such as the van der Waals or Dieterici for description. In so doing, 
CV, Cp, αp, βT, and other functions become quite a bit more complicated. In addition, 
potentials such as U and H automatically depend on V.

This fourth property accordingly marks the differences between ideal and non-
ideal gases along information lines. An ideal gas offers zero IX CV↔ and IX Cp↔ over all 
pathways, as long as n is constant. And for a gas to be ideal, zero IX U↔ , IX H↔ , and 
IX p↔α must apply to all isotherms. An ideal gas likewise expresses zero IX T↔β for 
isobars. Nonideal gases lack these characteristics, and their pathway information 
is case specific as a result. Figure 4.10 presented isotherms for 1.00 mole each of 
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monatomic ideal gas, xenon, and SO2. The pathways for the latter two were estab-
lished via the van der Waals equation and evaluated at T = 200 K. Initial and final V 
were identical for the three cases, while only the pressure domains differed.

The probability curves for the pressure states of these systems appear in 
Figure 4.17. They convey that if the chemist queried each system at identical physi-
cal resolution, the ideal gas would present the greatest IX p↔ . The Xe and SO2 gas 
samples place second and third, respectively, regarding IX p↔ . Clearly, the infor-
mation in pressure and other quantities depends on the component identity. The 
differences among gas samples are especially acute under low temperature, high 
density conditions.

The fifth property concerns the term special. Chapter 2 made the point that a 
handful of probability distributions are special because they apply so frequently in 
nature: uniform, exponential, and normal to name three. In a parallel way, special 
pathways are fixtures in thermodynamics as shown in Figures 4.9 and 4.10. The fifth 
property is that the special pathways for a system, ideal and otherwise, offer zero 
information in at least one state variable.

Isobars, isochores, isotherms, and isentropes express virtually zero IX↔p, IX↔V, 
IX↔T, and IX↔S, respectively. The qualifier virtually is added to acknowledge the 
effects of fluctuations—these always impose some uncertainty for a system. 
Isochores further express IX Wrec↔ ≈ 0 while for isentropes, IX Qrec↔ ≈ 0. Not-so-
special pathways such as A and B (Figure 4.12) offer information in all these quan-
tities; they do not pose the information economy of special pathways. This does 
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FIGURE 4.16  FX↔T(T) for A and B of previous figures. The temperature bias is greater for 
A while the range is approximately 25% larger for B. B presents the larger IX↔T under all 
resolution conditions.
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not mean that special pathways are lacking in probability attributes. Quite the 
contrary: the sigmoidal and spike functions shown in Figure 4.18 apply to one or 
more state variables. The applicability of these functions is interesting. Both spe-
cial and not-so-special pathways demonstrate state points in abundance. For the 
former, however, information in the statistical sense for one or more variables does 
not exceed that of a single point.

Special distributions carry extra weight in probability and statistics. Special path-
ways perform likewise in thermodynamics. By the fifth property, all the transforma-
tions of a closed system are special given that IX↔n = 0.

The sixth property is that a pathway offers more than one flavor of information. 
The Kullback information (KI) in Chapter 2 followed from comparing two probabil-
ity distributions. In thermodynamic venues, the KIX quantifies the divergence of two 
programs for variable X, one serving as a reference for the other. For an example, the 
upper panel of Figure 4.19 illustrates two pV pathways sharing initial and final states. 
Over any region of pressure states, the fraction of 1 is not matched by 2. The statisti-
cal structures of the two programs are accordingly different. If the chemist antici-
pated the pressure states threaded by 1 according to 2, he or she would be in error to a 
degree measured by KIX↔p. The calculation entails piecewise comparison of pathway 
length fractions. The numerator and denominator of each logarithm argument equate 
with probability values. KIX↔p arrives via the following weighted summation:
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FIGURE 4.17  FX↔p(p) for the isotherms of Figure 4.10. The ideal gas avails the greatest 
IX↔p. The resolution window Δp corresponds to 0.50% of the range of the SO2 pathway.
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where p pi +  prescribe the widths and boundaries of each ith state. The number of 
terms Γ is set by the range and resolution:

	
Γ =

−
=

p p

p p
max min 1

	
(4.40)

Note that each logarithm argument in Equation (4.39) can exceed or be less than 1, 
and that we are considering only integer values for Γ. The upshot is that the terms 
in the weighted sum can be either positive or negative. Zero is also allowed if, by 
coincidence, the length fractions match over certain regions. The lower panel of 
Figure 4.19 shows the results of computing Equation (4.39) for Γ = 100 states. KIX↔p 
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FIGURE 4.18  Probability functions for special pathways. The upper and lower panels show 
the probability density and distribution functions, respectively. A special pathway expresses 
zero information in one or more thermodynamic state variables.
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where p pi + , V Vi +  mark the state widths and boundaries. The number of 
terms is dictated by both the p and V resolution. As with the Kullback information, 
the logarithm argument for each term can exceed or be less than 1. Arguments 
equal to 1 are incompatible with structured pathways. For isotherms and adiabats, 
MIXY pV↔ > 0 since the compressibilities βT and βS necessarily exceed zero. The lower 
panel of Figure 4.20 shows the results of applying Equation (4.41) to a 10 10×  grid, 
that is, p V= = 0 10. . MIXY pV↔ for the circle proves to be almost twice that of the 
hairpin. This reflects the greater correlation of the control variables. For a system 
programmed for the circle route, a measurement of p tells the chemist more about 
the V status, compared with hairpin programming.

The major points of Chapter 4 are as follows:

	 1.	A reversible pathway portrays a thermodynamic program applied to a sys-
tem. The steps are carried out through parallel tuning of the state vari-
ables, and exchanges of heat and work coordinated with the surroundings. 
In each step, a state is converted to a specified neighbor. A locus of states is 
defined by a program; each state meets the equilibrium criteria described in 
Chapter 3.

	 2.	For an individual state, fluctuations confer little information in the statisti-
cal sense. The information is significantly augmented, however, when struc-
tured programs are applied to the system. Thus, their analysis in bit terms 
offers added perspective of the energy exchanges and variable tuning. The 
examples of this chapter concentrated on ideal gases and elementary pV 
transformations. The lessons apply just as readily to more complicated sys-
tems, equations of state, and control variables. Information analysis bridges 
thermodynamic transformations with the probability sciences.

	 3.	More than one type of information is expressed by a program. A pathway 
can be assessed not only for the Shannon information, but also Kullback 
and mutual information.

4.5  SOURCES AND FURTHER READING

Transformations figure prominently in thermodynamic texts. Especially recom-
mended is the book by Fermi, which provides a succinct and clear treatment of clas-
sical transformations [1]. Adiabatic transformations have widespread applications 
in science, engineering, and meteorology. The text by Hecht details the thermody-
namics of supersonic expansions [2]. Zemansky offers an engrossing account of the 
high temperatures generated via shock waves. The book is equally instructive about 
ultracold refrigeration methods [3].

Probability can be approached from multiple vantage points. Penrose offers a 
penetrating discussion on subjective probability, its foundation, and applications [4].

This chapter addressed pathway length in dimensionless terms. The extensive lit-
erature surrounding thermodynamic length with dimensions equivalent to the square 
root of energy is important; this quantity connects with the work available from a 
system. The geometrical aspects of thermodynamics have been addressed in papers 
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by Weinhold [5,6]. Berry, Salamon, and coworkers have established the ramifica-
tions of thermodynamic length beyond equilibrium systems [7–9]. Note that the idea 
of length can be quantified in alternative statistical terms. The work of Wootters is 
highly instructive on this account [10].

Length arguments figure in diverse thermodynamic applications. The treatise 
on small systems by Hill features an application whereby length has dimensions of 

V
n T+  [11]. The information properties of classical thermodynamic transformations 

have been investigated by the author and student and described in two papers [12,13]. 
An experimental investigation of information and work costs in chromatographic 
systems has also been carried out by the author and students [14].

Last, there is information theory and there is algorithmic information theory. The 
reader is encouraged to consult the classic text by Chaitin [15]. Wilf also presents a 
rigorous treatment of algorithms and information contexts [16]. Zurek has explored 
the subject in detail as well [17,18].

4.6  SUGGESTED EXERCISES

	 4.1	 (a) Let p and V serve as control variables for a thermodynamic path-
way of interest. What is the minimum length Λ? (b) Does the answer 
change if the identical states are programmed using T and S as control 
variables?

	 4.2	 Let 1.00 mole of ideal monatomic gas be transformed along a reversible 
pathway by tuning p and V. Let the initial temperature and volume be 
400 K and 10–3 meter3, respectively. Let the final volume equal eight 
times the initial. Let the final pressure equal one-half of the initial while 
the pathway manifests a straight line in the pV plane. (a) Calculate p

and σ p . (b) Calculate T  and σT . (c) Let the chemist query the p 
states at resolution equal to 0.50% of the total range. What is IX↔p in 
bits? (d) Let the chemist query the temperature states at a resolution 
window equal to 0.50% of the total T-range. What is IX↔T in bits? (e) 
Let the window for measuring p and V both be 10% of their respective 
ranges. What is MIXY↔pV in bits?

	 4.3	 Pathways A and B appeared in several figures of this chapter. They are 
detailed by the parametric equations:
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where 0 3≤ ≤η . (a) Calculate σ p  for each pathway. (b) The proba-
bility distribution functions regarding pressure appear in Figure 4.13. 
Use these to sketch the probability density functions fX↔p for A and 



Thermodynamic Transformations and Information	 121

B. (c) Revisit the moment generating function of Chapter 2. For both 
pathways, construct and sketch MX↔p(t). Use reduced units p for the 
pressure.

	 4.4	 A chemist faxes to a colleague a plot of an interesting pathway. The fax 
includes the system identity, namely, 1.00 mole of neon gas. No other 
data are included, however. The plot appears in Figure 4.21. (a) Digitize 
the pathway as a set of p,V pairs, either by hand or using an optical 
scanner. (b) Construct FX↔p . (c) Estimate values for p and σ p . (d) In 
pressure queries exercised at 2% resolution, what is IX↔p in bits?

	 4.5	 The hairpin pathway was illustrated in Figure 4.11. Let 1.00 mole of 
ideal monatomic gas travel one circuit. (a) Estimate values for p and 
σ p . (b) What is the maximum efficiency for heat → work conversion?

	 4.6	 Refer to A of Figure 4.6. How many equal-length pathways expressing 
IX↔S = 0 bits can intersect the initial state? Let the same question be 
directed at the final state. Please discuss in terms of the Carathéodory 
statement of the second law of thermodynamics. Rigorous discus-
sions of the Carathéodory approach are presented in excellent texts by 
Chandrasekhar and Reiss [19,20].

	 4.7	 Refer to A in Exercise 3. Let a perturbed version be programmed hav-
ing the parametric form:
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FIGURE 4.21  Reversible pathway in pictorial form only. The plot accompanies Exercise 4.10.
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(a) Let the system consist of 1.00 mole of a monatomic ideal gas. Does 
the perturbation impact ΔU, Δp, and ΔV evaluated for the initial and 
final states? (b) Let the same question apply to IX↔U, IX↔p, and IX↔V. Is a 
pathway’s information conserved upon perturbation?

	 4.8	 Two postulates linked reversible pathways to probability. By an alter-
nate approach, let the chemist imagine a collection of equilibrium sys-
tems; each state along a pathway of interest is replicated by one member 
of the collection. Does this line of thought lead to a probability distribu-
tion for the pathway states? Does it lead to the same distribution based 
on the postulates? Please discuss.

	 4.9	 A chemist considers two cyclic transformations involving 1.00 mole of 
a monatomic ideal gas. For both, the initial state corresponds to respec-
tive V and T of 10–3 meter3 and 400 K. In the first case, an isotherm 
increases the initial volume by a factor of six. The return steps back to 
the initial state feature an isobar and an isochore. In the second case, an 
adiabat increases the initial volume by a factor of six. The link to the ini-
tial state is then via an isobar and isochore in that order. (a) Which case 
offers the better heat → work conversion efficiency? (b) Which offers 
the greater work performed per bit of p state information? (c) Which 
offers the greater work performed per bit of T state information?

	 4.10	A chemist considers a reversible pathway involving 1.00 mole of a mon-
atomic ideal gas. The pathway is described by the following parametric 
equations:

	

p

V

( ) sin( )

( )

η η

η

= + ⋅

= −

10 10

10

5 4

3

pascals pascals

meter33 1⋅ +( )η

where 0 2≤ ≤η π . Let the p and V measurement window correspond 
to 5% of their ranges. What is MIXY pV↔ in bits?

	 4.11	Consider again the pathway of Exercise 4.10. Let a pathway defined 
by:
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serve as a reference. What is KIX↔p, in bits? Let the measurement reso-
lution window equal 1% of the total pressure range.

	 4.12	Figure 4.10 included an isotherm for 1.00 mole of a monatomic ideal 
gas. Consider this pathway and a straight-line path between the initial 
and final states. (a) Which pathway expresses the larger MIXY pV↔ ? (b) 
Let the straight-line path serve as a reference for the isotherm at 1% 
pressure resolution. What is KIX↔p, in bits?

	 4.13	Refer to Figure 4.20. If the chemist knows the system volume to be in 
the range marked by the vertical dotted lines, how many bits of infor-
mation are yielded by a pressure measurement? Consider this question 
for both the circle and hairpin.



Thermodynamic Transformations and Information	 123

REFERENCES

	 [1]	Fermi, E. 1956. Thermodynamics, Dover, New York.
	 [2]	Hecht, C. E. 1990. Statistical Thermodynamics and Kinetic Theory, W. H. Freeman, 

New York.
	 [3]	Zemansky, M. W. 1964. Temperatures Very Low and Very High, Dover, New York.
	 [4]	Penrose, O. 2005. Foundations of Statistical Mechanics, Dover, New York.
	 [5]	Weinhold, F. 1976. Geometric Representation of Equilibrium Thermodynamics, Acc. 

Chem. Res. 9, 232.
	 [6]	Weinhold, F. 1975. Metric Geometry of Equilibrium Thermodynamics, J. Chem. Phys. 

63, 2479, and papers that follow.
	 [7]	Salamon, P., Nulton, J. D. 1985. Length in Statistical Thermodynamics, J. Chem. Phys. 

82, 2433.
	 [8]	Salamon, P., Nulton, J., Ihrig, E. 1984. On the Relation between Entropy and Energy 

Versions of Thermodynamic Length, J. Chem. Phys. 80, 436.
	 [9]	Salamon, P., Berry, R. S. 1983. Thermodynamic Length and Dissipated Availability, 

Phys. Rev. Letts. 51, 1127.
	 [10]	Wootters, W. K. 1980. Statistical Distance and Hilbert Space, Phys. Rev. D 23, 357.
	 [11]	Hill, T. 1991. Thermodynamics of Small Systems, p. 124 (Part I), Dover, New York.
	 [12]	Graham, D. J. 2009. On the Spectral Entropy of Thermodynamic Paths for Elementary 

Systems, Entropy. DOI: 10.3390/e110x000x.
	 [13]	Graham, D. J., Kim, M. 2008. Information and Classical Thermodynamic 

Transformations, J. Phys. Chem. B 112, 10585.
	 [14]	Graham, D. J., Marlarkey, C., Sevchuk, W. 2008. Experimental Investigation of 

Information Processing Under Irreversible Brownian Conditions: Work/Time Analysis 
of Paper Chromatograms, J. Phys. Chem. 112, 10594. 

	 [15]	Chaitin, G. J. 1987. Algorithmic Information Theory, Cambridge University Press, New 
York.

	 [16]	Wilf, H. S. 1986. Algorithms and Complexity, Prentice-Hall, Englewood Cliffs, NJ.
	 [17]	Zurek, W. H. 1989. Algorithmic Randomness and Physical Entropy, Phys. Rev. A 40, 

4731.
	 [18]	Zurek, W. H. 1984. Reversibility and Stability of Information Processing Systems, Phys. 

Rev. Letts. 53, 391.
	 [19]	Chandrasekhar, S. 1967. An Introduction to the Study of Stellar Structure, chap. 1, 

Dover, New York.
	 [20]	Reiss, H. 1996. Methods of Thermodynamics, chap. 4, Dover, New York.





125

5 State Transformations and 
Information Economy

Thermodynamic pathways reflect programs that direct a system from one state to 
another. There are always infinite choices for travel, but not all routes are created 
equal. Programs offering an economy of length and information are important 
to multiple fields. This chapter examines the economy issues surrounding revers-
ible pathways.

5.1  �DIFFERENT THERMODYNAMIC PATHWAYS 
WITH IDENTICAL ENDPOINTS

Figure 5.1 illustrates three pathways: A, B, and C. Let all pertain to 1.00 mole of 
xenon subject to pressure and volume changes. The pathways share initial and final 
states, and thus demonstrate equivalent changes in state functions: ΔU, ΔH, ΔS, and 
more. The temperature happens to be the same for the initial and final states, namely, 
296 K and thus ΔT = 0. As for all thermodynamic programs, system travel along A, 
B, or C is driven by variable tuning and energy exchanges. These must be perfectly 
coordinated to maintain the equilibrium conditions with each step.

The similarities of A, B, and C outnumber the differences. Even so, each presents 
a unique locus of state points. Pathway A marks an isothermal path that conforms to 
the van der Waals equation
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	 (5.1)

where a and b are specific to xenon:
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Pathways A and B are identical in the beginning and terminal regions. Pathway 
B, however, stems from the Maxwell construction applied to A; the horizontal line 
divides the loop region into equal areas i and ii. The result is that the gas pressure 
does not alter over the region bounded approximately by 1 × 10−4 and 4 × 10−4 meter3. 
Constant pressure manifests in spite of the volume tuning along B.
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Pathway C marks a straight-line path in the pV plane. Although the beginning and 
terminal states share the same temperature, there is a unique T for every intermedi-
ate state.

The pathways can be viewed qualitatively. Pathway A is unusual given the loop 
structure. Over the range 1 × 10−4 − 4 × 10−4 meter3, the pressure falls with decreasing 
V. How can that be? For a system at equilibrium, the isothermal compressibility
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must never stray into negative territory. The answer is that Equation (5.1) describ-
ing pathway A accounts for some of the nonideality of xenon. The insights arrive, 
however, with unphysical side effects. One is that βT is negative for certain combina-
tions of p, V, n, and T. It is the Maxwell construction that serves as an antidote. The 
horizontal segment of B enables the extraneous work received over one loop of A to 
be canceled by another.

Pathway C offers the most direct pV route. However, for the xenon to travel C, 
a large number of heat reservoirs must be switched, one for every temperature 
state encountered. Regarding pathways A and B, some of the quirks are due to 
the system undergoing a phase change. Equation (5.1) famously predicts critical 
point values:
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FIGURE 5.1  Pathways with identical initial and final states. A, B, and C pertain to 1.00 
mole of xenon subject to pressure and volume changes at fixed temperature.
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p

a
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	 (5.4B)

	
V nbc = 3 	 (5.4C)

These follow from three conditions at the critical point:
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The van der Waals model offers fair to decent predictions about gas → liquid tran-
sitions. In the case of xenon, the model predicts Tc ≈ 297 K upon substitution in 
Equation (5.4A). This compares with the experimental value of 290 K [1]. This cor-
respondence to the experiment is remarkable given the simplicity of Equation (5.1)—
only two parameters are used to account for a complicated mix of attractive and 
repulsive interactions.

As the gas turns into liquid along B, the atoms pack more densely. There are sub-
sequently fewer atoms to collide with the container walls and, in turn, an attached 
barometer. The volume can indeed be decreased over one portion of the isotherm 
without effecting a pressure increase. It is only when all the xenon has converted to 
liquid, at V ≈ 10–4 meter3, that the pressure starts to climb again.

Figure 5.1 conveys three programs—an infinite number is possible—that link 
the designated initial and final states. Not surprisingly, pathways A, B, and C dem-
onstrate some information properties in common and deviate in others. All apply 
to a closed system. Thus n is constant and zero IX↔n rules the day. Uncertainty 
would not precede repeated measurements by a chemist able to weigh or count 
the atoms of the system. T = 294 K is allied with all points of A and B; zero IX↔T 
applies to these pathways. A, B, and C offer nonzero information in multiple vari-
ables: p, V, U, S, μ, and more. Energy exchanges and variable tuning underlie all 
information in the statistical sense.

The methods introduced in Chapter 4 can be directed to A, B, and C to con-
struct probability distributions. Information is one attribute of each distribution of 
interest. For example, Figure 5.2 shows the probability distributions allied with the 
pressure states. The curves follow from (1) rescaling the p,V control variables into 
dimensionless forms that span 0 and 1, (2) computing the contour length fractions 
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over each range of states, and (3) converting the reduced variables back into the 
physical units of choice. It is apparent that all the pressure increments along C 
manifest equal likelihood. The distribution is uniform as encountered in the first 
peptide exercise of Chapter 2. If the system is programmed for C travel, and the 
chemist extends queries such as the chemist anticipates affirmative answers with 
equal likelihood.

•	 Does the pressure lie between 4.0 × 106 and 6.0 × 106 pascals?
•	 Does the pressure lie between 6.0 × 106 and 8.0 × 106 pascals?

The likelihood (probability) would be approximately 0.36 given that each of the 
ranges are approximately 36% of the total pressure span:
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The A and B distributions are skewed and, as a consequence, their pressure states 
pose less uncertainty prior to measurement. This is reflected in IX↔p. Taking Δp to be 
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FIGURE 5.2  Pressure state distributions. A, B, and C refer to pathways of Figure 5.1. The 
Shannon information follows from pressure queries and measurements at resolution equal to 
0.50% of the total range.
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0.50% of the total range, that is, Δp ≈ ×2 8 104. pascals, IX↔p for C becomes
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IX↔p for A and B follow from applying Equations (5.28) and (5.30) using identical Δp 
(≈ 2.8 × 104 pascals), the results being 7.24 and 6.33 bits, respectively. One learns that 
while C traces the most direct route in the pV plane, it is the most expensive of the three 
in the code needed for labeling the pressure states. The van der Waals isotherm A 
places second in code expenditures. Pathway B, which most accurately portrays xenon 
in real life, proves the most economical in labeling costs. Not incidentally, in labeling 
the temperature states, C’s price tag for code is infinitely greater than A’s or B’s.

Elementary pathways offer a reprise of Chapter 4 and introduce the next topic. 
Figure 5.3 goes one step further. Given two states of a system, there are an unlimited 
number of travel recipes ranging from the simplest and most direct to the compli-
cated and meandering. Different pathways express different amounts of information 
and, in turn, labeling costs in query-and-measurement exercises. Whereas Chapter 
4 focused on the methods of quantification, Chapter 5 looks at issues of economy. It 
addresses the question: What are the most frugal programs in terms of length and 
information that can link two states of interest? Figure 5.3 portrays points located by 
generic state variables X and Y. What path should be programmed to join the initial 
and final with the minimum code expenditures? Paths 1 and 2 both seem needlessly 
lengthy and complicated. How should “?” be constructed for maximum economy? A 
lesson of Figures 5.1 and 5.2 is that the shortest route does not necessarily offer the 
information bargain.

The topic brings to mind applications beyond gases and pV tuning. This is because 
the challenge of transforming something from one state to another, be it material 
or abstract, is ubiquitous. Trains need to travel from here to there; crews seek and 
construct the best track routes. Computational tasks—sorting, addition, and so 
forth—convert one set of bytes to another. Programmers develop and code the best 
algorithms. Chemists convert stockroom reagents into natural products. They design 
and execute the best synthetic routes. Yet, terms like best route warrant further expo-
sition. This is provided in examples drawn from computation and chemistry.

Consider the process of integer factoring, which impacts modern computer secu-
rity. It is well appreciated that an integer N is either prime or composite. If prime, N 
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can be divided without remainder only by itself and 1; 2, 3, 5, 7, 11, 13, … constitute 
the prime number series. If N is composite, it can be expressed as a unique product 
of primes, for example:

	

4 2 2

6 2 3

100 2 2 5 5

= ×

= ×

= × × ×

There are an infinite number of composite integers and the same is true for primes.
Integers do not factor by themselves. Each requires stepwise conversion along a 

specified path. The transistor circuits of computers execute the conversions in daily life. 
The work and heat exchanges that drive them are controlled by factoring programs.

Clearly, some paths are more strategic than others. A prime factor of N cannot 
exceed N1/2. It makes little sense, however, to commence a factoring job by searching 
for and testing primes near N1/2. This is because the density of primes scales as 1/
loge(N). For arbitrary N, it is more likely that low-valued integers have prime status 
and prove to be viable factors. After all, 50% of integers have 2 as a prime factor.

N = 159,870,864,030 presents a modest challenge with prime factors 2, 3, 5, 547, 
1229, and 7927. In arriving at these by trial and error, the steps needed for N1/2-
downward travel far exceed those of a 2-upward path. Each step requires processing 
32 bits or more in the typical laptop computer. Both top-down and bottom-up proce-
dures take 159,870,864,030 to the same final state: 2 3 5 547 1229 7927× × × × ×  or 
equivalent. The economical route, however, navigates through the states of greatest 
fractional occurrence—the low-value integers that are most likely to be prime num-
bers and factors of N.

Initial
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?
1
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Y

FIGURE 5.3  Pathways and economy. There are unlimited ways to connect initial and final 
states by tuning the control variables X and Y. What are the most strategic pathways in length 
and information?
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Pathway economy is no less important in chemistry. Peptides were used to illus-
trate the probability functions of Chapter 2. A different question is raised here: If a 
chemist needed to prepare a polypeptide from scratch—and with no help from cel-
lular machinery—what strategy should he or she elect?

Here the initial state consists of the 20 amino acids kept in stockroom bottles: 
A, V, G, and so on. The final state is an N-unit peptide such as GLVDAKNDVAR 
… WHSV. As with factoring, there is more than one road to travel, some much less 
appealing than others. For N = 256, a serial procedure would be ill-advised. Even 
if each step transpired at 95% yield, the outcome would be withering given that 
( . ) .0 95 2 1 10255 6≈ × − . If the amino acids are transformed along this route, the chemist 
ends up taking 1.00 mole of starting reagent G to 2 micromoles of GLVDAKNDVAR 
… WHSV.

Convergent designs are superior by far. Matters are initiated by the prepara-
tion of dipeptides GL, VD, AK, ND, … WH, SV—128 total. The chemist links 
these to make tetrapeptides GLVD, AKND, …, WHSV. The tetrapeptides are then 
transformed to octapeptides and so on. The N-unit peptide thereby requires log2(N) 
stages of assembly. If the individual yields are 95%, the final yield is ( . ) .0 95 0 6638 ⊕ . 
The initial and final states are the same in both procedures: amino acids in bottles 
and GLVDAKNDVAR … WHSV. Yet the second route is favored yieldwise by five 
orders of magnitude. The chemist makes frugal use of the reagents, solvents, chro-
matography supplies, and so forth. 	

Note the strategies practiced by factoring and peptide synthesis. Both process 
rightly chosen building blocks. Factoring programs do not waste time and energy 
with floating point variables: 547 is tested as a prime factor, not 547.0000000000. 
Chemists do not try to steer ethane molecules toward GLVDAKNDVAR … WHSV. 
Both enterprises target the shortest pathways with no meandering. If a program veri-
fies 2, 3, 5, and 547 as prime factors, it does not stray by examining the sum 2 + 3 
+ 5 + 547. When the chemist reaches the octapeptide stage, the molecules are not 
subjected to unnecessary side reactions.

It is important that integer factoring and synthesis walk through the states of 
greatest likelihood: the most likely prime candidates and the highest-yield (i.e., most 
frequent) intermediates. Information underlying heat and work exchanges makes 
both endeavors feasible. The reader is directed to the end-of-chapter references on 
high-throughput synthesis, linear programming, and computational mathematics. 
Identifying the optimum procedures is a never-ending challenge in these and com-
panion fields.

Pathway design is critical in thermodynamic applications. These include heat 
engines, distillation, refrigeration, and petroleum cracking, to name a few. Regarding 
the first, Sadi Carnot inquired about the pathways that best convert heat into work. 
Cyclic pathways—the programs for heat engines—were featured in Figures  4.11, 
4.15, and 4.20 in Chapter 4. For the discussion at hand, Figure 5.4 presents one exam-
ple of a Carnot pathway marked by the solid curves. The transformation processes 
1.00 mole of a monatomic ideal gas over the temperature range 400 to 800 K. The 
cycle has been illustrated in the pV plane for convenience, although other coordinate 
planes are equally instructive. The feature to note is that the gas is transformed in 
four stages: i, ii, iii, and iv label the endpoints of two isotherms (upper and lower) 
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and two adiabats (left and right). Each segment is distinguished by its placement and 
steepness in the pV plane. The 800 and 400 K isotherms have respective endpoints 
of {i, ii} and {iii, iv}. The adiabats have endpoints {ii, iii} and {i, iv}. For the system 
to travel along the pathway, there are no restrictions on the initial state or number of 
circuits. Thus, the initial state does not have to correspond to i, ii, iii, or iv; it can be 
anywhere on any segment. What is vital is that the initial and final state be identical. 
If the transit is clockwise, heat is injected from an external reservoir and converted 
partially to work. For counterclockwise travel, heat is pumped from a cooler to hotter 
reservoir at a cost of externally supplied work. A Carnot cycle provides the most 
famous, if idealized, model for heat engines and refrigerators.

The dotted lines in Figure 5.4 trace one of infinite transformations that fall within 
the Carnot pV boundaries. Four straight-line segments demonstrate the same end-
points as the isotherms and adiabats. The appearance is that of a bent diamond or 
perhaps a boomerang. The question is raised: If the Carnot or diamond path is tra-
versed clockwise by 1.00 mole of ideal gas, which offers the more effective conver-
sion of heat into work?

Isothermal and adiabatic pathways were discussed in Section 4.2 of Chapter 4. 
One learned that the following statements hold for the isotherms of Figure 5.4:

	 p V nRT⋅ = =  Constant	 (5.8)

	
Δ ΔU C TV= ⋅ = 0 	 (5.9)
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FIGURE 5.4  Carnot and alternative pathways. The solid curves trace two isotherms (800 
and 400 K) and two adiabats for 1.00 mole of ideal gas. The dotted pathway marks one of 
infinite cyclic transformations that share the same pV boundaries as the Carnot.
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Relating Equation (5.9) to the first law of thermodynamics, it follows that

	
Q W Wrec rec performed= − = +

	 (5.10)

for upper and lower isotherms. For each adiabat, the following statements apply:

	 p V⋅ =γ  Constant	 (5.11)

where

	
γ =

C

C
p

V

	 (5.12)

and

	
Q T dSrec = =∫ 0 	 (5.13)

In connecting Equation (5.13) to the first law, one obtains

	
ΔU Wrec= +

	 (5.14)

for the left and right adiabats.
Equations (5.8) through (5.14) identify the signature features of a Carnot program 

for an ideal gas. The finer points are noted as follows:

	 1.	Work is exchanged between the gas and surroundings along each segment. 
The heat exchanges are confined to the isotherms, however.

	 2.	The work lost by the system along the {ii, iii} adiabat is restored along the 
{i, iv} adiabat.

	 3.	The overall (total) work performed with every circuit equates with the area 
enclosed by the segments. Since

	 ΔU = 0 	 (5.15)

regardless of where travel commences, then

	
W Qrec

total
rec
total( ) ( )= −

	 (5.16)

	 which reflects the first law impact yet again.
	 4.	The Carnot efficiency ε equates with the ratio:

	

ε =
Total Work Performed

Heat Injected alongUpper Isotheerm 	
(5.17)
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In spite of the nontrivial structure of the pathway, ε acquires a most compact form 
for an ideal gas:

	

ε =
−T T

T
max min

max

	

= −1
T

T
min

max 	

(5.18)

Thus, for the Carnot cycle of Figure 5.4, ε is computed as

	

ε = − =1
400
800

0 500
K
K

.
	

(5.19)

Clearly, the efficiency would be higher if the reservoir temperatures were further 
apart. Note importantly that ε does not alter if the pV boundaries are changed (e.g., the 
isotherms are lengthened or shortened), or if more or less gas composes the system.

It is instructive to compare the results for the diamond. Here Wrec, Qrec, and ΔU 
must be evaluated over each of the four stages. Wrec for a stage equates with the 
area underneath each straight-line segment—a combination of triangle and rectan-
gle shapes. As with any cyclic path, total Wperf equals the total enclosed area. The 
state conversions with positive Qrec identify where heat is injected, whereas those 
with negative Wrec quantify the output work. The heat → work efficiency follows by 
dividing the total output work by the injected heat. The final expression for the effi-
ciency is not compact as with a Carnot cycle. The diamond efficiency can be shown 
(Exercise 11) to be just under 30%. This is significantly less than that of Equation 
(5.19) in spite of the wider temperature range: 400 to 1000 K. The efficiency of a 
Carnot cycle would be 0.60 if afforded this range.

Carnot cycles are instructive because they illuminate the optimum programs for con-
verting heat into work. And not incidentally, such pathways are information-strategic 
in temperature and entropy, not to mention moles of material. Every Carnot segment 
of Figure 5.4 poses nonzero IX↔p and IX↔V; likewise for the diamond. Yet, along each 
isotherm and adiabat, IX↔T and IX↔S equate, respectively, with zero. In contrast, each 
segment of the diamond expresses virtually maximum IX↔T and IX↔S. This is because 
unique T, S pairings attach to every state point, the only exceptions appearing at the 
endpoints. The temperature and entropy states along a straight-line segment manifest 
equal likelihood because there is vanishing bias in their distribution. They pose near-
maximum uncertainty in measurements directed at the system.

The pathway differences receive further attention in Figure 5.5. Shown are the prob-
ability distributions constructed for the temperature states. The results reflect, unsurpris-
ingly, that the temperature distribution is considerably skewed for the Carnot process. 
A system so programmed would pose less uncertainty in query-and-measurement 
exercises. The bias is marked because T is at its minimum or maximum value for siz-
able portions of the cycle. By contrast, the diamond path reflects a greater range and 
more even dispersion of temperature states. The information values in Figure 5.5 apply 
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to resolution ΔT = 2 K. It is notable that the diamond incurs approximately 50% greater 
labeling costs concerning temperature states. The greater expenditure of code does not 
purchase a more favorable heat → work conversion. Rather, the work returns on heat 
investments depend critically on the pathway structure. As Carnot paths demonstrate, 
the choices of information-strategic routes need not be at odds with thermodynamic 
goals. The next section offers lessons about pathway economy.

5.2  �PATHWAY PROGRAMMING AND ECONOMY

There are infinite pathways that can join two states. The first lesson about the programs 
that determine pathway structure is that they are, in some ways, superfluous. This 
is surprising. For a closed system to transit from a designated initial state to a final 
one, the system and surroundings need only to exercise random energy exchanges. 
Each transaction will reposition the state point. The location may be new or previously 
visited. If the exchanges are random, there will be no bias shown toward one state or 
another—they will be visited with equal opportunity. With sufficient exchanges, the 
pathway will trace out a Brownian pattern whereupon the state point will sample all 
possible positions, the final one included. Brownian pathways fill space in one and two 
dimensions. This means that the energy exchanges can take a closed, κ = 1 system to 
the final state, expressing myriad p and V along the way. Matters are different if the 
system is open and n is no longer fixed. Here, not every state will be visited during 
random exchanges. A structured program becomes mandatory.

An example is shown in Figure 5.6. One considers a single-component gas in a 
leak-proof container with initial p and V near 50,000 pascals and 0.100 meter3. For 
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5.11 bits

FIGURE  5.5  Probability distributions for temperature states. Distributions apply to the 
Carnot and diamond pathways of Figure 5.4. The information values follow from query-and-
measurement exercises at resolution ΔT = 2 K.
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the system to reach the final state, the surroundings need to inject heat and extract 
work incrementally. The straight-line path A will certainly do the job.

Random state sampling, however, offers alternatives such as B. Note that A and 
B are identical in the net changes of all state functions. They contrast in Qrec, Wrec, 
and information in all variables except n. The disparities are portrayed in Figure 5.7 
showing the pressure–state probability curves. There is zero bias in the A distribu-
tion—the distribution is uniform. Not so for B: roughly 80% of the path accounts 
for only 50% of the states. During measurements on the chemist’s part, the bias 
diminishes the uncertainty surrounding the states along B. Yet compared with A, 
the pressure range is greater for B by more than a factor of 2. In quantifying IX↔p, 
there are more weighted surprisal terms to sum for the B distribution. IX↔p quoted 
in Figure 5.6 follow from Δp set at 0.50% of the range for A: Δp ≈ 0.865 pascals. 
There are then 200 states for which to allocate code. The Shannon information for 
A works out to be:
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(5.20)
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FIGURE 5.6  Straight-line and random pathways. A is the shortest pV route between the 
initial and final states. B results from random energy exchanges between the system and 
surroundings.
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At the same physical resolution, there are more than 500 states to accommodate 
for B and IX↔p works out to be just under 8 bits. Greater information applies in spite 
of the heavy concentration of states near 49,800 pascals.

It should be apparent why B, while interesting, is a contrived example. With ran-
dom energy exchanges, there is no guarantee that the state point will relocate in the 
desired way. It may take infinite steps to reach the wished-for state. A structured 
program may be superfluous in some respects. However, the lack of one, barring 
dumb luck, puts the labeling costs as high as infinite bits. This holds for all variables 
except for n. Simply stated, the programs for structured pathways are vital because 
they offer economy of both length and information.

A second lesson follows. Shorter pathways generally offer better economy than 
longer ones. Figure 5.8 illustrates two cases where the initial and final states are 
shared. Pathway 1 follows a wobbly route from the initial to final state; pathway 2 
elects a smoother but longer path. It is not difficult to see which poses the greater 
uncertainty in pressure state queries. The results of analysis appear in Figure 5.9. 
The diversity of pressure states in 2 are reflected in the larger IX↔p: 8.56 bits versus 
7.41 bits for pathway 1. For this calculation, Δp was taken to be 0.50% of the range 
demonstrated by 1: Δp ≈ 0.935 pascals.

But therein lies a third lesson: the shortest route is not necessarily the most eco-
nomical. Pathway 1 is wobbly. If the program had opted for a straight line, IX↔p 
would have exceeded 7.41 bits. Since all states would then have expressed equal 
likelihood, IX↔p would have equated with the Equation (5.20) result. The wobbles in 
pathway 1 increase the length. Yet they bring about a distribution bias that enhances 
the information economy.
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FIGURE  5.7  Probability distributions and pressure states. Distributions apply to the 
straight-line and random paths of Figure 5.6. IX↔p follow from measurements with Δp set at 
0.50% of the range in A: Δp ≈ 0.865 pascals.
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Note the qualifier “not necessarily.” Sometimes the most direct pathway is the most 
economical. More to the point, the special pathways of Chapter 4 offer the maximum 
economy in one or more state variables. For isobaric, isochoric, adiabatic, and iso-
thermal cases, IX↔p, IX↔V, IX↔S, and IX↔T ≈ 0, respectively; for every path of a closed 
system, IX↔n = 0. Note that special pathways afford straight-line representations in 
select planes, for example, isobaric and isochoric in pV, and adiabatic in the TS plane. 
A Carnot cycle appears as a square or rectangle when drawn in the TS plane.

Pathways embody programs for state transformations. The strategic designs aim 
for the shortest and surest routes. This is the case for integer factoring, organic syn-
thesis, and hopefully railroad construction. Figure 5.10 offers several choices of pV 
programs. Which offers the most favorable economy?

One considers the five pathways that begin and terminate identically. They vary 
in length, whereby A marks the shortest route, and E is the longest. All except A 
express bias in the pressure states. More than 10% of D, for instance, hovers near 
50,175 pascals. As for E, a significant fraction threads pressure states identical to the 
final state.

In query-and-measurement exercises by the chemist, B, C, D, and E afford less 
uncertainty about the system pressure compared with A; ditto for the volume states. 
The diminished uncertainty arrives, however, at the expense of programming longer 
pathways—of having to specify and reckon with more extended collections of state 
points. Clearly, the strategic designs aim at a favorable trade-off between length and 
state bias. How should the chemist weigh one program against another on economy 
grounds?
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FIGURE 5.8  Shorter and longer pathways. Pathway 1 follows a wobbly route from the ini-
tial to final state. Pathway 2 elects a smoother but longer path.
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FIGURE 5.9  Probability distributions and pressure states. 1 and 2 pertain to the pathways 
of Figure 5.8. The diversity of states in pathway 2 are reflected in the larger IX↔p: 8.56 bits 
versus 7.41 bits for pathway 1. Δp was taken to be 0.50% of the range demonstrated by path-
way 1: Δp ≈ 0.935 pascals.
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FIGURE 5.10  Assorted pV programs connecting initial and final states. Which offers the 
best economy in length and information?
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Heat engines are evaluated by their efficiency ε; refrigerators are evaluated by 
their coefficient of performance. When discriminating pathways for length and 
information economy, a merit parameter ΩX proves highly useful:

	

Ω
Λ
ΛX

o

X

X

I

I
o

= ⋅

	
(5.21)

Λ is the reduced (i.e., dimensionless) length of the pathway under consideration (cf. 
Equations 4.28 and 4.29). Λo is the reduced length of the straight-line path connect-
ing initial and final states. IX is the Shannon information concerning state variable 
X (↔ p, V, T, etc.) queried at resolution window ΔX. IXo

is the information expressed 
by X for the straight-line path queried at the same resolution.

The strategic routes are shorter than ill-designed ones. They are less diverse as 
well, since the chemist requires fewer bits of code for state labeling. Accordingly, 
the sought-after pathways demonstrate smaller ΩX on account of length and 
information. A path with ΩX = 1.75 offers a better deal overall than one having 
ΩX = 2.75. Note, however, that a pathway with ΩX > 1 is worse than a straight 
line. It may offer lower information in the probability distribution, but the size 
of the state point population (i.e., pathway length) that must be programmed 
cancels any benefits over the simplest and most direct route. By the same token, 
a pathway with ΩX ≈ 1 offers no substantial improvement over the shortest and 
simplest route.

The optimum pathways offer minimum ΩX. Strategic programming looks for 
ways to reduce ΩX. A pathway with the minimum ΩX marks the shortest and sur-
est route, the length and information weighted equally. It is apparent that random 
or Brownian paths are undesirable at once on account of large Λ/Λo ratios. B in 
Figure 5.6, for example, turns out to have to have Λ ≈ 31.3. Using the information 
values of Figure 5.7, ΩX↔p is obtained as
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31 3

2

7 89
7 64

22 1
. .

.
.

bits
bits 	

(5.22)

Recall that this applies to a contrived case. Pathways governed by random energy 
exchanges pose ΩX↔p as high as infinity.

It is also apparent that isotherms, isobars, isochores, and adiabats should be 
termed perfect. Each presents a thermodynamic variable X for which IX = 0 and like-
wise for ΩX. As would be expected, perfect pathways are admitted only by atypical 
circumstances. Perfect pathways can take a system from initial to final states only 
when these states happen to share identical X values.

For the typical circumstances, the most economical pathways for linking two 
state points can be termed ideal ones. A and E of Figure 5.10 fall into this category; 
the choice dependent on the measurement resolution employed by the chemist. E is 
a dual-segment route that is longer than straight-line A. Statewise, however, it is the 
more certain route because one variable, in addition to n, is held constant along each 
segment. The computation of ΩX↔p for E illustrates matters.
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A and E of Figure 5.10 share initial and final states. Because of its straight-line 
nature, A serves as the yardstick for evaluating E. The pressure and volume ranges 
are identical for A and E. Toward computing ΩX↔p, one rescales the control variables 
of A and E:

	

p
p p

p p
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max min 	
(5.23A)
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V V
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(5.23B)

The results range from 0 to 1 whereby rescaled A and E have been replotted in 
Figure 5.11. The reduced length along each E segment is 1, hence, Λ is 1 + 1 = 2. 
The analysis applied to A gives Λo = 21/2. Two of the slots in the expression for ΩX↔p 
become filled immediately, namely,
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One then turns to the remaining slots. In query-and-measurement exercises, the 
number of discernable states ΓX↔p is set by the resolution
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Δ ΔX p

p p

p p↔ =
−

=max min 1

	
(5.25)

For simplicity of illustration, the resolution Δp has been taken to be one-fifth of the 
pressure range of A and E. Thus ΓX↔p = 5, and the states have been indexed accord-
ingly in Figure 5.11.

Now suppose that the chemist tendered queries about a system programmed for 
E travel. Valid questions would include: What is the likelihood that the pressure, 
upon measurement, falls in the range defined and labeled as state 1, that is, close to 
maximum p? It should be clear that half of the state points lies along the horizontal 
segment affiliated with pmax. One-half lies along the vertical as well, but only one-
fifth of these fall into the region designated as state 1. Thus, the chemist arrives at a 
reasonable-belief probability of
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Just as valid a question is: What is the likelihood that the pressure corresponds to state 
5? The chemist reasons that there is a 50% chance that the state point lies along the 
vertical; 20% of the vertical points lie in the bottom fifth. Thus, the answer would be:

	

prob( )5
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(5.27)
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Clearly, E demonstrates a marked bias; half of the pressure states are indeed pooled 
at one value. The equivalent statement holds as well for the volume states. Note the 
contrast with A. The answers to the same questions posed for a system programmed 
for A travel would be equal at one-fifth. In effect, E offers less uncertainty about the 
system pressure, but at the expense of greater program length. To decide matters of 
economy, there are two more slots to fill for ΩX↔p .

Realizing the denominator IX po↔
 is straightforward; it is the pressure informa-

tion affiliated with A:
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Obtaining numerator IX p
E
↔

( )  is more involved:
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FIGURE 5.11  Rescaled A and E of the previous figure. The reduced length Λ is 1 + 1 = 2 for 
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State Transformations and Information Economy	 143

	

=
−

⋅ +
×

⋅ +
×

+
1
2

1
2

1
2 5

1
2

1
2 5log ( )

log
e

e prob(( ) log ( ( ))

log ( )

j prob je

j

e

⋅

=
−

⋅ +

∑
2

5

1
2

1
2

11
2 5

1
2

1
2 5

5 1
1

2 5×
⋅ +

×
+ − ×

×
⋅log ( )e lloge

1
2 5×

	

(5.29)

One arrives at ΩX↔p by combining Equations (5.24), (5.28), and (5.29):
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Note the important result: E has proven less favorable than A. Economy of length has 
trumped the economy of information! If an identical twin of A had been considered 
(i.e., A referenced against itself), the results would have been ΩX↔p = 1. But at the 
same time, note how matters change with the query resolution. If the chemist were 
able to discern, say, 50 pressure states instead of 5, one obtains:
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whereupon
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Thus, at the higher query resolution, E offers distinct advantages over the shortest 
programming route A. In particular, the bias in the state distribution more than com-
pensates for the greater length.

Importantly, Equation (5.31) can be generalized for ΓX number of states; X can 
represent any control variable V, T, and so forth:
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Figure  5.12 shows the dependence of ΩX on ΓX. The plot illustrates that for ΓX ≤ 
16, the straight-line path offers the greater programming economy. Things are oth-
erwise for ΓX > 16 where a dual-segment pathway offers the more favorable ΩX. 
At the higher resolution, the ideal pathway is simply a combination of two perfect 
pathways. Figure 5.12 also shows that the merit parameter levels off—albeit slow-
ly—with increasing ΓX. One can identify the lower bound for the ideal pathway by 
approximating ΩX at very large ΓX:
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FIGURE 5.12  The dependence of ΩX on ΓX. The plot shows that for ΓX ≤ 16, the straight-line 
path A offers the more favorable economy. For ΓX > 16, the dual-segment pathway E offers the 
more favorable ΩX. The merit parameter levels off slowly with increasing ΓX.
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The result shows that the ideal pathway has a merit parameter that exceeds zero and 
is thereby less than perfect. Yet there is a limit to the ideality: ΩX cannot drop below 
0.707 given appreciable measurement resolution.

5.3  �PROPERTIES OF PATHWAY LENGTH AND 
INFORMATION ECONOMY

Chemical thermodynamics offers ways to categorize and model systems: ideal, non-
ideal, closed, open, and so forth. The subject does likewise for pathways along which 
a system is transformed: reversible versus irreversible, isobaric, isochoric, cyclic, 
and more. The focus of this chapter has been programming economy—the criteria 
being pathway length and information. Section 5.2 pointed to four categories along 
strategy lines. A reversible pathway falls into one of the following:

	 1.	A pathway that is economically perfect in length and information terms 
offers a control variable X such that ΩX = 0. For a closed, single-component 
system, X and n are fixed. The specification of only one other variable Y is 
needed for locating every state point along the pathway.

	 2.	A worst-case pathway is one absent of a thermodynamic algorithm. The 
state point placements demonstrate a Brownian nature, whereby ΩX can be 
as high as infinity on length and information accounts.

	 3.	An ideal pathway is one where, for control variable X, 0 707 1. ≤ ≤ΩX . Atypical 
conditions enable transformations along perfect pathways. Typical conditions, 
by contrast, always admit system programming via ideal pathways.

	 4.	Pathways for which none of the above applies are less than ideal. For control 
variable X, one has 1 < << ∞ΩX .

There are additional properties to note. First, the economy does not depend on the 
direction of travel. Regardless of which category applies to a pathway, the classifica-
tion does not alter if the initial and final states are interchanged.

Second, ideal pathways offer choices regarding the control variables. 
Figure  5.13 answers the question raised in Figure  5.3. The ideal pathways are 
formed either via perfect pathways in tandem or by the most direct route. There 
are otherwise no limits placed on the X, Y identities; different combinations of 
p, V, T, S, and so forth are all suitable. Under conditions in which Γ ΓX Y= , then 
Ω ΩX Y= . Note as well that dual-segment pathways offer two choices, upper and 
lower routes, with identical merit factors.

Chapter 4 discussed how a pathway expresses nonzero mutual information MIXY. 
It is interesting that exceptions appear in the perfect and worst-case categories. 
Figure 5.14 shows an isobar with pressure and volume resolution indicated by the 
dotted lines. In the general case, MIXY pV↔  is quantified by:
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		  (5.35)
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FIGURE 5.13  Answers to the question raised in Figure 5.3. The ideal pathways are formed 
either via perfect pathways in tandem or by the most direct route. There are no limits placed on 
the X, Y identities. If Γ ΓX Y= , thenΩ ΩX Y= . The dual segment pathways offer two choices, 
upper and lower, with identical merit factors.
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FIGURE 5.14  An isobar with pressure and volume resolution indicated via the dotted lines. 
MIXY pV↔ reduces to zero by Equation (5.35).
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where p pi + Δ  and V Vi + Δ define the state widths and boundaries. But 
prob p pi( )+ =Δ 1 across the transformation—the pathway-knowledgeable chemist 
obtains no information in the statistical sense from measurements using a barometer. 
By contrast:

	
prob p p V V prob V Vi j j

Y V

+ +( ) = +( ) =
↔

Δ Δ Δ
Γ

,
1

	
(5.36)

Thus the logarithm argument in each term of Equation (5.35) reduces to 1, whereby 
MIXY pV↔ = 0  is the outcome. This makes sense. If the chemist were to measure the 
system volume, no pressure information would be obtained as a fringe benefit. By 
the same token, any measurement of the pressure offers nothing about the volume.

For worst-case pathways, the absence of an algorithm precludes the correlation of 
state variables. Thus,

	

prob p p V V prob p p prob V Vi j i j+ +( ) = +( ) × +( )Δ Δ Δ Δ,
	

(5.37)

which makes the logarithm argument of every term in Equation (5.35) equal to 1 and 
MIXY pV↔ = 0.  This also agrees with intuition. If the chemist were to measure either 
p or V, no extra knowledge arrives. How are perfect and worst-case pathways alike, 
besides sharing state variables X and Y? The answer is that both express MIXY = 0 .

The mutual information properties of ideal pathways are just as interesting. Refer 
again to Figure 5.11. There are five p,V segments that lie along A given the resolu-
tion indicated. The probability of the chemist observing the system in any one of 
these is

	

1 1 1
5Γ ΓX p Y V↔ ↔

= =
	

(5.38)

When the system is programmed to travel the straight-line route, the same probabil-
ity value as Equation (5.38) applies to a p or V measurement made by itself. Thus, for 
identical resolution of the control variables:
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(5.39)

with the result that
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This is important because it shows that for straight-line pathways, the mutual infor-
mation equates with the Shannon information for each control variable. It answers 
the question: For what thermodynamic programs are the Shannon and mutual infor-
mation equal?

Regarding E of Figure 5.11, there are 10 p,V segments at the resolution shown. The 
probability of observing the system somewhere in any of these is:
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2 5⋅

=
⋅

=
×↔ ↔Γ ΓX p Y V 	

(5.41)

Different probability values, however, apply to any p and V measurements exercised 
individually. This point was made via Equations (5.26) and (5.27). For the dual-
segment case, the mutual information can be shown to have the following form at 
high resolution (and taking Γ ΓX p Y V↔ ↔= ):
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Then for high-resolution queries, that is, large ΓX p↔  and ΓY V↔ , Equation (5.42) 
reduces approximately to:

	

MIXY pV
X p X p

↔
↔ ↔

≈ + × ≈log [ ] log2 22
1 2

1
Γ Γ

bit

	

(5.43)

Equation (5.43) reflects that for ideal pathways of the dual-segment variety, the con-
trol variables are correlated— MIXY > 0 . But the correlations amount to only about 
1 bit. Dual-segment pathways are combinations of perfect pathways; the control 
variables of each are programmed to be as information-strategic and independent 
as possible.

The major points of this chapter are as follows:

	 1.	Thermodynamic pathways describe programs for taking a system from one 
state to another. There is always an infinite number of choices, some more 
attractive than others in their economy. This chapter discussed how to eval-
uate pathways for both length and information economy using merit factors. 
The smaller ΩX, the better the overall economy. ΩX = 0 offers the maximum 
economy, whereas ΩX = °  describes the worst case.

	 2.	Economy considerations led to four pathway categories: perfect, worst case, 
ideal, and nonideal. Every reversible pathway falls into one of these.
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	 3.	Pathways express more than one type of information. The perfect, ideal, 
and worst-case categories offer unusual properties regarding the mutual 
information.

5.4  �SOURCES AND FURTHER READING

Best-practice programming is integral to multiple disciplines. The text by Vajda 
describes linear programming strategies with applications primarily of the econom-
ics variety [2]. Prime factoring figures in modern computer security. The texts by 
Ribenboim [3], and Crandall and Pomerance [4] are well worth time and attention. A 
more qualitative book that includes prime factoring issues is by Derbyshire [5].

Regarding convergent syntheses, Fleming describes the challenges and strategies 
of protein synthesis [6]. The strategies include the use of protecting groups in order 
to obtain the correct stereochemistry for a protein. Fleming’s book is indispensable 
for its presentation of best-practice syntheses of a variety of compounds across sev-
eral decades.

The Carnot cycle is treated in all thermodynamic texts. Fermi [7] and Desloge 
[8] present succinct and illuminating discussions. One should not neglect Carnot’s 
original article available in translation [9]. More contemporary discussions of the 
Carnot cycle are presented by Finfgeld and Machlup [10], and by Raymond [11] and 
Van den Broeck [12].

The entropic aspects of heat engines, reversible and otherwise, have been detailed 
by Berry and coworkers [13].

Random pathways are the trademark of Brownian motion. This subject is treated 
at length in numerous probability books. Especially recommended are the treatments 
by Karlin and Taylor [14] and by Resnick [15]. Last, the phase transition behavior 
described by the van der Waals model is discussed incisively by Stanley [16].

5.5  �SUGGESTED EXERCISES

	 5.1	 The prime factors of 159,870,864,030 were listed as 2, 3, 5, 547, 1229, 
and 7927. How many information bits are obtained upon learning each 
factor? Please discuss.

	 5.2	 The convergent synthesis of a 256-unit peptide was described. Suppose 
the chemist was less exacting and prepared a diverse set of peptides in 
the first stage. For each, the unit number is at least 2 but no more than 
6, the number chosen randomly. (a) If the yield of each reaction is 95%, 
what is the average net yield of the 256-unit peptide? (b) What is the 
standard deviation in the yield?

	 5.3	 Derive the van der Waals results of Equations (5.4A), (5.4B), and (5.4C).

	 5.4	 Consider the van der Waals isotherm of Figure 5.1 at a pressure reso-
lution window equal to 1% of the total range. (a) What is the value of 
the merit factor ΩX↔p? (b) How does this result compare to ΩX↔p for a 
van der Waals isotherm computed at a temperature above the critical 
value?
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	 5.5	 Consider a system programmed to travel the upper portion of the 
Figure 5.4 Carnot cycle. Let the initial and final states be i and iii, respec-
tively. (a) What is the value of the merit factor ΩX↔p? Take the pressure 
resolution to be 1% of the range. (b) What is the value of MIXY pV↔  in 
bits? Take the pressure and volume resolution to be 10% of the respective 
ranges.

	 5.6	 Direct the previous question to the upper part of the diamond pathway 
of Figure 5.4. (a) What is the value of the merit factor ΩX↔p ? (b) What 
is the value of MIXY pV↔  in bits? Take the resolution window to be the 
same as in Exercise 5.5.

	 5.7 	 Consider an isotherm and adiabat for a monatomic ideal gas. In gen-
eral, which offers the more favorable ΩX↔p ? Please discuss.

	 5.8	 Construct a Brownian path in the pV plane or 1.00 mole of ideal gas. 
Let the initial state correspond to 10–3 meter3 and 500 K. For each of 
the 104 steps, let two coin tosses—best carried out by computer—de-
cide which variable (p or V) to adjust, along with the direction (posi-
tive or negative). Let each relocation of the state point correspond to 
0.01% of initial p and V. Plot the pathway and compute ΩX↔p; take 
the query resolution to be 1% of the total pressure range. (a) If the 
exercise is carried out multiple times, what average and standard 
deviation are observed for ΩX↔p? (b) What statistical distribution is 
formed by the different values of ΩX↔p?

	 5.9 	 Consider again pathways A and E of Figure 5.11 for 1.00 mole of mon-
atomic ideal gas. (a) Which expresses the smaller IX↔U ? (b) Using 
the initial and final states specified in the figure, construct all the 
ideal pathways in the TS plane. Which of these expresses the smallest 
IX↔U?

	 5.10	 Derive Equation (5.43) regarding mutual information.

	 5.11	 What is the heat → work conversion efficiency of the diamond path-
way in Figure 5.4?
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6 Thermodynamic 
Information and 
Molecules

The preceding chapters focused on thermodynamic state points, both individually 
and in collections assembled by fluctuations and pathways. The present chapter 
considers state points at the microscopic level. These points link with the statisti-
cal structure presented by molecules and their communication in thermal environ-
ments. It is this structure that determines information at the Angstrom scale.

6.1  INFORMATION AT THE MICROSCOPIC SCALE

Chemical thermodynamics concentrates on the states of a system, their description 
variables, and all matters of work and heat. Information measures the amount of 
code needed for efficient labeling of the states. The code amounts are important 
because they tie to the diversity, complexity, and control capacity of the system. 
These concepts were met qualitatively in Chapter 1, and then quantitatively in 
Chapter 2 using for example, coins and peptides. Chapter 3 examined the Shannon 
information associated with fluctuations and equilibrium conditions. Chapters 4 
and 5 went on to address IX↔p, KIX↔p, MIXY↔pV, and so forth for reversible pathways 
programmed for a system. The quantitative examples of the past three chapters 
have highlighted monatomic gases. SO2 was the sole polyatomic encountered, and 
then only briefly via the van der Waals model (cf. Figures 4.10 and 4.17 of Chapter 
4). The result is that little attention has been given—not since Chapter 2—to the 
microscopic level and to molecular structure in general. These, and how they inter-
sect with information, form the themes of the present chapter. To be sure, the 
microscopic scale is the complicated domain of quantum mechanics and statistical 
mechanics. The approach taken in this chapter is much simpler as it appeals to 
idealized models.

To begin, one considers the reaction of Bunsen burners and kitchen stoves:

	 CH4(g) + 2O2(g) = CO2(g) + 2H2O(g)
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Standard tables of first-year chemistry texts make contact with the molecular scale 
by listing standard free energies and enthalpies of formation, and molar entropies:
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For the reaction, one learns:
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(6.2)
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So = ⋅ + ⋅ − ⋅[ ( . ) ( . ) ( .1 0 2136 2 0 1887 1 0 186mole mole mole 22

2 0 2050 0 0052

)

( . )] .− ⋅ ⋅
⋅

= −mole
kilojoules
mole K

kiloojoules
K 	

 (6.3)

	
K

G
RTp

o

=
−

≈ ≈exp exp[ . ]323 8 10141

	
(6.4)

These equations are restricted to so-called standard conditions—1.00 atmosphere 
gases at 298 K. The calculations are nonetheless jumping-off points for approximat-
ing real-life energy and material processing. State functions and the properties of 
equilibrium systems provide far-reaching tools. There will be more to say about the 
equilibrium constant (Kp) of Equation (6.4) in Chapter 7.

Molecules CH4, O2, and so forth are packages of electric charge. Quantum mechan-
ics and statistical mechanics describe them using Hamiltonians, wave functions, and 
partition functions. At the same time, elementary models count on formula diagrams 
to portray the Angstrom scale. The gains lie in immediacy and chemical intuition. 
Hence, the compounds of Bunsen burners and stoves are represented in digital terms:

C

H

H

H

H O O O C O O
HH:

:
:

:
: :

The benefits include a second approach to the thermodynamics, the first resting on 
the state functions responsible for Equations (6.1) through (6.4). This is because still 
more tables of first-year chemistry texts provide the average dissociation energies 
(D) of atom–bond–atom (ABA) components, for example:

DC-H = 411 kilojoules/mole
DC=O = 803 kilojoules/mole
DO-H = 464 kilojoules/mole
DO=O = 498 kilojoules/mole

Using these, the enthalpy of methane combustion can be estimated:
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in respectable agreement with Equation (6.2). Note the power and utility of the sec-
ond approach. In the first, the chemist is restricted by the number of listings. If the 
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standard tables include Gf
o , H f

o , and So  for, say, 1-octanol, the chemist can make 
predictions about the molecule’s thermochemistry. If such data are absent, however, 
the chemist will have to become curious about another molecule. Fortunately, there 
is plan B.

In traveling the Equation (6.5) route (i.e., plan B), the chemist uses ABA-data to 
piece together thermochemical properties. There is really no limit on the number of 
systems the chemist can investigate this way. When electing plan B, the chemist is 
cognizant of the assumptions and limitations. DC-H is commonly listed as 411 kilo-
joules/mole. Yet C-H of methane is not identical to a C-H of propane, 1-octanol, or 
any other compound. For that matter, there are bond variations of a given type within 
a compound. For example, C-C adjacent to C=O in cyclohexanone is not identical in 
length and charge density to C-C opposite C=O. Thus, the dissociation energies of 
C-C units only a few Angstroms apart are not precisely the same.

In an important way, D tables report averages that are grounded on representa-
tive experiments. The numbers vary somewhat from table to table, depending on 
which data have been compiled. The second approach has currency nonetheless for 
its simplicity and because of the local nature of most chemical bonds. D tables are 
invaluable for approximating enthalpy contents, reaction energies, and more, typi-
cally within several percent of experimental values. As discussed in Chapter 1, dia-
grams composed of ABA units are really without peer in the ability to capture the 
Angstrom scale in digital terms.

Regardless of approach, the chemist appreciates the importance of the molecular 
scale. Combustion of 1.00 mole of methane yields approximately 800 kilojoules of 
free energy. This should be compared to the work afforded by isothermal expansion 
of 1.00 mole of ideal gas at 298 K:
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(6.6)

Even with factor of 10 volume increases, the energy is less than 1% of that 
offered by combustion of 1.00 mole of CH4. Clearly, molecules and their reac-
tions are stellar resources when it comes to work and heat. Further, standard 
tables of Gf

o, H f
o , and So  (plan A) and bond dissociation energies (plan B) 

provide state descriptors that burrow deeper than p, V, and other macroscopic 
functions.

Plan B is without limit in the systems that can be addressed. At the same time, 
it has a drawback, which is perhaps subtle but understood at once by example. The 
structure of n-butane is represented by:
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H3C
C
H2

H2
C CH3

Tables report DC-C = 346 kilojoules/mole along with DC-H = 411 kilojoules/mole. 
Thus the sum (Dtotal), average (< D >), and standard deviation (σD) of the bond ener-
gies are:

	
Dtotal = ⋅ + ⋅ ⋅[ ( ) ( )]3 346 10 411mole mole

kilojoules
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(6.7)
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Equations (6.7) through (6.9) thereby connect with a sample of n-butane at the molec-
ular level but not uniquely. Via the ABA energies, one arrives at identical values of 
Dtotal, < D > , and σD for iso-butane having the formula diagram:

C

H

CH3

CH3

H3C

Many more examples can be constructed. To cite an extreme case, there are over 4 mil-
lion isomers allowed by the formula C30H62. Dtotal, < D > , and σD according to plan B 
are identical for all. This is unfortunate, and the fallout is not restricted to alkanes. On 
the one hand, plan B is without limit in providing descriptors for the molecular scale. 
On the other hand, it does not afford the same discrimination as plan A.

This brings us to the central idea of Chapter 6, namely, the use of ABA units C-C, 
C-H, and so forth, to describe states of a system at the microscopic level, in a way 
that always distinguishes molecules by their electronic structure. The diagram for 
any of the four million versions of C30H62 offers the chemist unique facts and data 
information, for example:

When information of the statistical type is incorporated, the diagram locates state 
points for the molecule that are also unique. The equivalent statement holds for n-bu-
tane, iso-butane, 1-octanol, and so forth—any compound of interest to the chemist. 
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The point locations arrive by an elementary view of molecular communication in 
thermal environments.

It should be emphasized, however, that a system’s microscopic states are not as 
straightforward as they might appear, even in the first-year arena of formula dia-
grams and reactant → product statements. This is true for compounds as small as 
methane and everyday processes such as combustion. The reason is that virtually all 
microscopic events are grounded upon the electronic messages carried by molecules, 
and transmitted and registered via collisions. Thermal energy stored in molecular 
translations and rotations provides the carrying, transmission, and reception power. 
In a system as familiar as a Bunsen burner flame, there are no fewer than 14 mes-
sage-bearing components: N2, O2, CO2, Ar, Ne, Kr, Xe, H2, CH4, He2, H2O, ethane, 
propane, and ethanethiol [1]. The reaction that liberates heat and enriches labs with 
CO2, steam, and other products happens on account of binary collisions. Yet, with 
κ = 14 vehicles in play, there are quite a few two-party combinations, namely,
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Each combination provides its own brand of electronic data processing: N2-O2, 
N2-CO2, N2-Ar, and so on. The message sending and receiving are frequent given 
that the collision rate for each molecule ranges between 109 and 1011 sec–1.

Consider a communication event portrayed in Figure 6.1. Shown are a generic 
interaction potential Φ(r), and CH4 and N2 (as in a Bunsen burner flame) at separa-
tion distance (r), poised for collision. At large r, the potential energy of interaction is 
effectively zero as marked by the dotted horizontal line. As the molecules approach 
each other, however, their electronic energy decreases due to forces of mutual attrac-
tion. As the encounter proceeds, energy is redistributed in the rotational and trans-
lational, and, to a minor extent, vibrational degrees of freedom. New sites of both 
parties experience contact—attraction and repulsion—as part of a dynamic complex. 
Since the union marks a local reduction of the system volume, there is a decrease 
of entropy. The entropy diminution brings with it a trapping of information that is 
unique to CH4 and N2.

Under most conditions, chemical reactions occur rarely compared with thermal 
collisions. This owes to the stability of molecules and their activation requirements—a 
bond in CH4 must be fractured in order to become amenable to oxidation or other 
electronic conversion. Yet, given collision frequencies such as in a flame, momentary 
fluctuations of the entropy (among other thermodynamic quantities) are the predomi-
nant events. The irreversibilities of combustion—heat, CO2, and steam production—
are scarce by comparison. For the majority of encounters, the charge packages end 
up compressing one another slightly. This causes the interaction energy (as reflected 
by Φ(r)) to increase dramatically above the null values applicable at large r. Quickly 
the molecules separate, redistributing energy yet again in the translational and rota-
tional motion. Whatever information had been trapped via the entropy reduction 
is lost in subsequent collisions. When it comes to the microscopic level, memories 
within a system tend to be short-lived.
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CGAGUGCGGCGUGUCGUCCGUGUUCGGGUCCGCCGGCGAGUCCGGCGCGUUCGGC-
GAGUGCGUGUCGUGGUGCGCCGACGCGUUGUACGG3’

There are a large number of possibilities given that the genetic code allots four 
codons each for incorporating R and V into a protein [2]:

R: CGU, CGC, CGA, CGG
V: GUU, GUC, GUA, GUG

Thus, a 100-unit peptide restricted to V and R offers 2100 ≈ 1030 possible information-
bearing precursors. The number of precursors of the polynucleotides is astronomi-
cally greater: 8100 ≈ 2 1090× . Here A, G, U, and C are the respective abbreviations for 
the base units of messenger RNA: adenine, guanine, uracil, and cytosine. The point 
of this digression is that the messages of one molecule generally descend from the 
information of others; in the cell’s case, proteins and polynucleotides. Further, infor-
mation processing need not involve molecules of different families. The origins of the 
aforementioned poly(ribo)nucleotides are themselves poly(deoxyribo)nucleotides:

3’CATGCTGCCGCTCAGCACCATCAAGCGCATCATGCACAGCATGCGCAGGCG-
CACGCGGCCCAACACGCTGCCCATCATCAAGCACATCAGCAGGCTGCTCACCACGC
TGCTGCTCAGGCGCAACATCAGGCTCAGCACCAAGCGCAGGCTGCCCAGCATGCG-
CAGCAACAGGCCCAGGCACACGCGGCTCAGCATGCAGCCGCGGCCCAAGCG-
CAAGCCGCTCAGCACGCGCAAGCACATGCGGCCGCGCACGCGGCTCATGCTGC-
CCATGCCCACCATCAAGCCGCTGCGCACCACGCA5’

and

3’CAGGCAGCGGCACACCAGCAACAGGCCCACCATGCACACCAGGCGCAAGCA-
CACGCTGCCCATCACGCAGCGCAGCAGCAAGCACAACAGCAAGCAGCTCAACACGC
TGCGGCACAAGCGCACCACCACGCACAGCACCAAGCTCAGGCCGCACAACAAGCG-
CAACATCAAGCACAAGCGCAGGCGGCGCAGCAAGCTGCAGCGGCCCAGGCT-
CACGCCGCACAGCAGGCACAAGCCCAGGCGGCCGCTCAGGCCGCGCAAGCCGCT-
CACGCACAGCACCACGCGGCTGCGCAACATGCC5’

Such are the products of syntheses catalyzed by polymerase enzymes where T is 
the abbreviation for thymine base units. Along similar lines, there are protein–pro-
tein interactions critical to enzyme regulation—information impacts information. 
It is the field of bioinformatics that concentrates on polynucleotides and proteins, 
their structure, function, and host organisms. The actions of these large compounds 
encompass the full range of message writing, copying, editing, and deleting. One 
refers to the end-of-chapter references for comprehensive treatments.

Concerning molecules more modest in size, the chemical fields are no less active. 
This is because electronic states and information combine to make a wide-angle 
lens. The research has ranged from graph topology analysis to the information of 
density functionals. The advances have been motivated by the need to understand 
energy dispersal among molecules, structure-activity relations, and data mining for 
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collection of ABA sites. A few essentials can be grasped via Figures 6.3 and 6.4. To 
go further, one considers again a Bunsen burner flame that hosts ethane, propane, 
and ethanethiol (among other compounds) in small amounts. Fragments of random 
walks over these molecules can be represented in diagram terms as

Ethane:

H

HH

H H

HH

H H

HH

H

H

HH

HH

HH

H

C C C C C C

C CC CC C

H

HH

H

H H H H H H

H HH HH H

Propane:

C C

H

CH

H

H H

H

H

H C C

H

CH

H

H H

H

H

HC C

H

CH

H

H H

H

H

H

C C

H

CH

H

H H

H

H

HC C

H

CH

H

H H

H

H

HC C

H

CH

H

H H

H

H

H

Ethanethiol:

C C

H

SH

H

H H

H C C

H

SH

H

H H

HC C

H

SH

H

H H

H

C C

H

SH

H

H H

HC C

H

SH

H

H H

HC C

H

SH

H

H H

H

The electronic site in contact with a hypothetical colliding element (not shown) has 
been indicated using boldface. Each step accesses a nearest-neighbor ABA of the 
formula diagram representing the molecule. In real Bunsen burners, the contacts 
are made by thermal collisions. Neither the motion (translational and rotational) nor 
interaction specifics are contained in the model. As a consequence, all the ABA 
sites are treated in equal-likelihood terms, and their nature is unaltered during 
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transmission and registration. This means that C-C never becomes more significant 
than C-H or other units; C-C never starts to look like C-S and vice versa. Information 
in the statistical sense requires systems whose states are robust and accommodating 
of digital labels.

Diagrams capture the thermal walks pictorially. Quantitative representations are 
obtained with the help of atom vectors and bond matrices. For an example, let each 
atomic symbol in the diagram for ethane be indexed as follows:

C1 C2

H8

H74H

5H

3H H6

The corresponding atom vector and bond matrix become

	

6
6
1
1
1
1
1
1

0 1 1 1 1 0 0 0
1 0 0 0 0 1 1 11
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 00 0 0

The vector components are the atomic numbers 6, 6, 1, …, 1 corresponding to 
letters of the formula diagram. The matrix, in turn, specifies all the linkages and 
covalent bond orders. Since ethane is composed of eight atoms, the vector hosts 
eight entries while the matrix dimensions are 8 8× . There are notable character-
istics of the matrix. Clearly, the majority of components are zero, thus rendering 
a certain sparseness. The diagonal elements are mandatorily zero since an atom 
cannot bind to itself. The matrix is square symmetric with a determinant value 
of zero.

The idealizations are apparent. All the atoms of a molecule interact electronically 
with one another. But as with the formula diagram, the matrix portrays the covalent 
interactions to be overriding. The diagram and matrix model the Angstrom-scale 
electronics as short range and local in attraction and repulsion.

It is straightforward to construct atom vectors and bond matrices based on for-
mula diagrams. Additional examples are given as follows.

Acetone:

C3 C C4
6H

H

H O

H

H

H92

5

7

8

10

1
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8
6
6
6
1
1
1
1
1
1

0 2 0 0 0 0 0 0 0 0
2 00 1 1 0 0 0 0 0 0
0 1 0 0 1 1 1 0 0 0
0 1 0 0 0 0 0 1 1 1
0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 00 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

Acetic acid:

C4 C O7H

H

H O

H5

1

23

6

8

	

8
8
6
6
1
1
1
1

0 0 2 0 0 0 0 0
0 0 1 0 1 0 0 0
2 11 0 1 0 0 0 0
0 0 1 0 0 1 1 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 00

Ethanethiol:

C3 C2

H

S8H

H

H H

H4

1

5

6

7

9

	

16
6
6
1
1
1
1
1
1

0 1 0 1 0 0 0 0 0
1 0 1 0 11 1 0 0 0
0 1 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 00 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
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The indexing of the atom symbols is arbitrary, although it is convenient to pair the major 
atoms (i.e., all but H) with the uppermost vector and matrix slots. One can then apply a 
computer subroutine to fill the hydrogen slots based on chemical valence rules.

To initiate a random walk—the transmission and registration of electronic messages 
by thermal collision—one chooses an atom, say, 2, for ethane via a random number 
generator (cf. Chapter 2). The corresponding entry is tagged in the vector—designated 
by a wavy line in the following; the nonzero entries in the same row of the matrix are 
then counted and labeled. The results of these operations can be represented as

	

6
6
1
1
1
1
1
1

0 1 1 1 1 0 0 0
1 0 0 0 0 1 11 2 3 11
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0

4

00 0 0 0

The random number generator is then used to select one of the labeled entries of the 
second row of the matrix, say, 3 corresponding to H unit 7. In so doing, an ABA site 
of ethane has been established and needs to be labeled as such. In vector, and matrix 
terms, one has

	

6
6
1
1
1
1
1
1

0 1 1 1 1 0 0 0
1 0 0 0 0 1 1 1
11 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 00 0 0

The initial entry logged on the message tape becomes C-H.
The next step selects a nearest-neighbor site at random. The present site of the 

walker must be indicated by another tag, represented with an overhead curve in the 
following. The eligible jump sites are then counted and labeled. In vector and matrix 
terms, one has

	

6
6
1
1
1
1
1
1

0 1 1 1 1 0 0 0
1 0 0 0 0 11 2 11 1
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1

3

00 0 0 0 0 0
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A random number generator is then used to choose one of the superscript-labeled 
entries, say, 1 corresponding to carbon unit 2. In so doing, a follow-up site of the 
walker is established. In vector and matrix terms, one has

	

6
6
1
1
1
1
1
1

0 1 1 1 1 0 0 0
1 0 0 00 0 1 1 1
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 11 0 0 0 0 0 0

The message unit logged by the message tape becomes C-C. It should be apparent 
that repeated tagging, counting, and random selection results in a Brownian walk 
over the molecule. The tape tracks the sequence of collisions via nearest-neighbor 
ABA-message units. Random walks were illustrated earlier for ethane, propane, and 
ethanethiol in formula diagram terms. When vectors and matrices are used to encode 
the walks, the results appear as

Ethane:

	

6

6
1

1

1

1

1

1

0 1 1 1 1 0 0 0

1 00 0 0 0 1 1 1
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 00
0 1 0 0 0 0 0 0

6

6
1

1

1

1
1

1

→

0 1 1 1 1 0 0 0

1 0 0 0 0 1 1 1
1 0 0 0 0 00 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0

→

6

6
1

1

1

1

1
1

0 1 1 1 1 0 0 0

1 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0

                   C-C                 →                   C-H               →                     C-H

Propane:

	

6

6

6
1
1
1
1
1
1
1
1

0 1 00 1 1 1 0 0 0 0 0

1 0 1 0 0 0 1 1 0 0 0

0 1 0 0 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0 0 0 0
1 0 00 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 00 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0

→

6
6

6
1
1
1
1
1

1
1
1

0 1 0 1 1 1 0 0 0 0 0
1 0 1 0 0 0 1 1 0 0 0

0 1 0 0 0 0 0 0 11 1 1
1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 00
0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0

                   C-C                                  →                                     C-H
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Ethanethiol:

	

16

6

6
1

1

1

1

1

1

0 1 0 1 0 0 0 00 0

1 0 1 0 1 1 0 0 0

0 1 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 00 0 0

0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

→

16

6
6

1

1
1

1

1

1

0 1 0 1 0 0 0 0 0

1 0 1 0 1 1 0 0 0
0 1 0 0 0 0 1 1 1

1 0 0 0 0 0 0 0 0

0 11 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

                     C-C                                →                                  C-H

Portions of message tapes assembled for the molecules read as

Ethane:

…(C-H)(C-H)(C-H)(C-C)(C-H)(C-C)(C-H)(C-H)(C-C)(C-H)(C-H)(C-C)
(C-H)(C-C)(C-H)(C-C)(C-H)(C-C)(C-H)(C-C)(C-H)(C-H)(C-C)(C-H)
(C-H)(C-H)(C-C)(C-H)(C-H)(C-H)(C-H)(C-H)(C-H)(C-H)(C-H)
(C-H)(C-C)(C-H)(C-H)(C-H)(C-C)(C-H)(C-C)(C-H)(C-H)(C-C)(C-H)
(C-H)(C-C)(C-H)(C-H)(C-C)(C-H)(C-H)(C-H)(C-H)(C-H)(C-C)(C-H)
(C-C(C-H)(C-H)(C-C)(C-H)(C-H)(C-H)(C-C)(C-H)(C-H)(C-C)(C-H)
(C-C)(C-H)(C-C)(C-H)(C-H)(C-C)(C-H)(C-H)(C-C)(C-H)(C-H)(C-H)
(C-H)(C-H)(C-C)(C-H)(C-H)(C-H)(C-H)(C-C)(C-H)(C-H)(C-C)(C-H)…

Propane:

...(C-H)(C-H)(C-C)(C-H)(C-H)(C-C)(C-H)(C-C)(C-H)(C-C)(C-H)(C-C)
(C-H)(C-H)(C-C)(C-H)(C-C)(C-C)(C-H)(C-C)(C-H)(C-H)(C-C)(C-H)
(C-H)(C-C)(C-H)(C-C)(C-C)(C-H)(C-H)(C-H)(C-H)(C-H)(C-C)(C-H)
(C-C)(C-H)(C-H)(C-H)(C-H)(C-C)(C-H)(C-C)(C-H)(C-C)(C-H)(C-C)
(C-H)(C-H)(C-H)(C-H)(C-C)(C-H)(C-C)(C-C)(C-H)(C-C)(C-H)(C-H)
(C-C)(C-H)(C-C)(C-H)(C-C)(C-H)(C-C)(C-H)(C-C)(C-H)(C-H)(C-C)
(C-H)(C-H)(C-C)(C-H)(C-H)(C-H)(C-C)(C-H)(C-H)(C-H)(C-H)(C-C)
(C-H)(C-H)(C-C)(C-H)(C-C)(C-H)(C-C)(C-C)(C-H)(C-H)(C-C)(C-H)…

Ethanethiol:

…(C-H)(C-C)(C-S)(C-H)(C-S)(S-H)(C-S)(C-C)(C-H)(C-C)(C-H)(C-H)
(C-C)(C-S)(S-H)(C-S)(C-H)(C-H)(C-C)(C-H)(C-C)(C-H)(C-H)(C-C)
(C-H)(C-H)(C-H)(C-H)(C-H)(C-H)(C-C)(C-H)(C-H)(C-S)(S-H)(C-S)
(C-H)(C-S)(C-C)(C-H)(C-H)(C-H)(C-C)(C-H)(C-C)(C-H)(C-H)(C-H)
(C-H)(C-C)(C-H)(C-H)(C-H)(C-C)(C-H)(C-H)(C-H)(C-H)(C-C)(C-H)
(C-S)(S-H)(C-S)(C-H)(C-S)(C-H)(C-H)(C-H)(C-S)(S-H)(C-S)(C-H)
(C-C)(C-H)(C-H)(C-C)(C-S)(S-H)(C-S)(C-H)(C-S)(S-H)(C-S)(C-H)
(C-C)(C-H)(C-H)(C-H)(C-H)(C-C)(C-H)(C-S)(S-H)(C-S)(S-H)(C-S)…

Each tape is unique due to the electronic composition and structure of the source. 
Each tape is without limit, at least in principle, because there is no end to the 
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collisions in a heat-filled environment. Practically speaking, it is straightforward 
to compile tapes of several thousand ABA units or more. Appendix A of this book 
presents a computer program that will perform such compilations. This program 
can be adapted to a variety of small organic molecules to probe their information 
properties. The lesson of Figure 6.2 must be kept in mind, however, that every site of 
a molecule offers multiple interactions. Thus, each entry C-H, C-C, and so forth of 
a record tape stands for a set of electronic messages. It is the sequence of units that 
contains information in a manner that parallels polypeptides and polynucleotides: 
…RVRRVRRV… and …CUCGACGU…. As with biopolymers, the information for 
small compounds can be quantified in bits at multiple orders: first, second, third, and 
so forth. Each order corresponds to the number of message units transmitted and 
registered in a Brownian process.

Ethane and propane are restricted to C-H and C-C units. The same units are car-
ried by ethanethiol, in addition to C-S and S-H. To quantify information in the first 
order—the bits per single ABA encounter—one tabulates the occurrence frequen-
cies ( fi) for each unit recorded on the tape. A given molecule poses N different units. 
The first-order Shannon information (I1) follows from the (now) familiar formula:

	

I f fi

i

N

i1 2= − ⋅∑ log

	
(6.11)

Therefore for ethane and propane:

	
I f f f fC H C H C C C C1 2 2= − ⋅ − ⋅− − − −log log

	 (6.12)

whereas for ethanethiol, one computes:

	
I f f f f f f fC H C H C C C C C S C S1 2 2 2= − ⋅ − ⋅ − ⋅ −− − − − − −log log log SS H S Hf− −⋅ log2 	(6.13)

The first-order information for acetone would follow from the three-term expression:

	
I f f f f f fC H C H C C C C C O C O1 2 2 2= − ⋅ − ⋅ − ⋅− − − −log log log

	 (6.14)

It is straightforward to identify via the formula diagram the terms necessary for com-
puting I1, as is the subject of a few end-of-chapter exercises. It is not always so easy 
to anticipate fi in advance of the message tape. For example, C-C constitutes one of 
seven ABAs in ethane. However, its tape frequency is 0.250 on account of extended 
collisions and nearest-neighbor effects. If a thermal contact transpires at C-H, there 
is a one in four chance that the next (i.e., influential) message unit will be C-C.

For two-unit sequences, ethane manifests three possibilities: (C-H)(C-C), (C-C)
(C-H), and (C-H)(C-H). Thus Shannon information arrives in the second order via:

	
I f f fethane

C H C C C H C C C C C2 2= ⋅− − − − − −( )( ) ( )( ) ( )(log HH C C C H C H C H C H C Hf f f) ( )( ) ( )( ) ( )( )log log⋅ ⋅− − − − − −2 2

		  (6.15)
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The results make several points. First, the more diverse the ABA composition, the 
greater the Shannon information. At all orders for the three molecules:

	
I I In
ethanethiol

n
propane

n
ethane> >

	 (6.16)

The data also convey that the information availed by a molecule increases with the 
number of message units transmitted and registered. For any compound:

	
I I In n n− +< <1 1 	 (6.17)

Figure 6.5 also shows the Shannon information to be linear with the sequence order. 
This leads to a state descriptor for the microscopic scale based on the natural rise 
of In with n. In particular, linear regression analyses lead to a best-fit slope ξI with 
uncertainty σξ, each having units of bits per message unit. For the three Bunsen 
burner molecules, one finds:

	

ξ σξI
ethane

I
ethane= = × −0 686 5 9 10 4. , . /, bits message unnit

bits meξ σξI
propane

I
propane= = × −0 846 3 5 10 3. , . /, sssage unit

ξ σξI
ethanethiol

I
ethanethiol= =1 02 2. , ., 22 10 2× − bits message unit/

 

All systems pose more than one type of information. For molecules, the code 
units manifest frequencies such as fC-H and fC-C in thermal collision strings. A record 
tape that logs the collisions also offers pair combinations, for example, C-H followed 
immediately by C-C at frequency f(C-H)(C-C). It is the mutual information (MI) that 
quantifies the correlations imbedded in these unit sequences. For instance, ethane 
offers three message pairs. MI arrives in the second order of analysis via:

	

MI prob C C C H
prob C C C H

ethane
2 2= + − −( ) ⋅ − −(

( )( ) log
( )( )))
− ⋅ −

+ − −( ) ⋅

prob C C prob C H

prob C H C C

( ) ( )

( )( ) logg
( )( )

( ) ( )2

prob C H C C

prob C H prob C C

pr

− −( )
− ⋅ −

+ oob C H C H
prob C H C H

prob C H p
( )( ) log

( )( )

( )
− −( ) ⋅ − −( )

− ⋅2 rrob C H( )−
	

(6.18)

The computations for MI2 for propane and ethanethiol feature four and nine terms, 
respectively. The correlations within a message tape are not limited to pairs. Thus, 
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state. Linear regression analyses of MIn versus n lead to:

	

ξ σξMI
ethane

MI
ethane= = × −0 125 6 5 10 4. , . /, bits messagee unit

biξ σξMI
propane

MI
propane= = × −0 0741 3 6 10 3. , ., tts message unit/

. ,ξ σξMI
ethanethiol

MI
ethanet= 0 677 hhiol = × −2 3 10 2. /bits message unit

 

Earlier chapters showed that a system can be described macroscopically by energy 
quantities such as U and H. The record tape for a molecule makes contact with the 
Angstrom scale by reference to ABA energy tables. For example, ethanethiol hosts 
four message units: C-H, C-C, C-S, and S-H. The average energy < D1 > in the first 
order obtained from computing is:

	
D f D f D f D f DC H C H C C C C C S C S S H S H1 = ⋅ + ⋅ + ⋅ + ⋅− − − − − − − − 	 (6.21)

The average energy in the second order follows from the expression:

	

D f D D f DC H C C C H C C C H C H C H2 = ⋅ + + ⋅ +− − − − − − −( )( ) ( )( )( ) ( DD

f D D

C H

C C C S C C C S

−

− − − −+ ⋅ + +

)

( )( )( )  	

(6.22)

There are six additional terms to calculate and the expressions for < D3 >, < D4 >, and 
so forth follow in like fashion.

Energy computations lead to Figure 6.7 based on the message tapes for ethane, 
propane, and ethanethiol. Not surprisingly, <Dn> increases linearly with order n, 
although there is little contrast among the molecules. A third descriptor arrives:

	

ξ σξ< > < >
−= = ×D

ethane
D

ethane397 5 5 10 4, . /, kilojoules mmole message unit⋅

= =< > < >ξ σξD
propane

D
propane391, , 33 5 10 3. /× ⋅−

< >

kilojoules mole message unit

ξ D
ethanethhiol

D
ethanethiol= = ×< >

−366 1 8 10 3, . /,σξ kilojoules mmole message unit⋅
 

These follow from linear regression analyses applied to <Dn> versus n.
At the macroscopic level, a system offers energy dispersion quantities such as σU 

and σH. Molecular message tapes do their part by furnishing σD at multiple orders. 
In a first-order analysis of ethanethiol tapes, one computes:

	
σD C H C H C C C C C Sf D D f D D f( ) ( ) ( ) (1

1
2

1
2= ⋅ + ⋅ + ⋅⋅ + ⋅D D f D DC S S H S H1

2
1

2) ( )
		

		  (6.23)

In the second order, one calculates:

	
σD C H C C C H C C C H Cf D D D f( )

( )( ) ( )(( ( ) ) (2
2

2= ⋅ + +− − − − − −− − −⋅ + +H C H C HD D D) ( ) )2
2

		
		  (6.24)
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registered only at lower levels, such as by taking into account the resonance and 
atomic orbital structures. Electronic diversity in the molecules is not captured in 
stand-alone digital reductions provided by ABA units.

The fifth characteristic recognizes that the mutual information is not zero at the 
ABA level, the exceptions being the molecules of the preceding paragraph. This is on 
account of the electronic structure correlations. If nature assembled molecules absent 
valence and other structure rules, ξMI  would forever be pinned at zero. Among other 
consequences, a collision at one site of a compound would afford no information about 
a neighbor. Note that the ξMI of Table 6.1 span more than an order of magnitude. It is 
the mutual information of a molecule’s messages that provide a signature attribute.

Additional characteristics are illustrated by transforming and replotting the 
Table 6.1 data. Figures 6.9 through 6.11 follow from Table 6.1 entries using the data 
for ethane as a baseline. Illustrated are reduced (dimensionless) descriptors, apply-
ing the identical scale to the horizontal and vertical axes. For example, the reduced 
descriptor for the Shannon information is obtained from:

	

ξ̂
ξ
ξI

butene I
butene

I
ethane

1
1

−
−

=
	

(6.25)

Reduced forms of ξ ξMI D, < > and ξσD
follow in the analogous way. The point allied 

with each molecule has been labeled. The error bars are established by the σξ,I and 
σξ,< >D from regression analyses.

TABLE 6.1
Angstrom-Scale Descriptors of Various Molecules

Molecule jI jMI j< >D
jσD

Arginine 1.12 1.53 368 26.6

1-Butene 1.07 0.324 421 27.8

2-Chloro-cyclopentanone 1.16 0.332 389 16.0

Cyclopentanone 1.04 0.185 393 15.4

1,2-Dibromobutane 1.16 0.275 369 16.3

Ethane 0.685 0.125 397 4.57

Ethanethiol 1.022 0.677 366 21.3

n-Butane 0.889 0.0683 388 6.58

n-Propane 0.846 0.0741 391 5.81

iso-Butane 0.886 0.0765 388 7.18

Valine 1.06 1.25 388 20.8

CO2 0.00 0.00 802 0.00

O2 0.00 0.00 498 0.00

CH4 0.00 0.00 414 0.00

H2O 0.00 0.00 464 0.00

Note:	 ξ I
and ξMI  are listed in units of bits per atom–bond–atom (ABA) unit. ξ< >D  and 

ξσD
are listed in kilojoules per mole per ABA unit.
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is by nearly a factor of 10 concerning mutual information. The figure makes the 
additional point that amino acids (cf. Figure 2.2 of Chapter 2) are especially endowed 
with message space correlations. As is well appreciated, these compounds are prom-
inent in biochemical signaling and reaction control, as opposed to saturated hydro-
carbons. One looks to peptides and proteins for showcase examples.

The major points of this chapter are the following:

	 1.	Systems express information not just at the macroscopic level. There are 
robust states, mechanisms for communication and registration, and uncer-
tainty at the microscopic scale as well. This scale is the complicated domain 
of quantum mechanics and statistical thermodynamics. Standard tables, 
formula diagrams, and random walk models, however, provide more imme-
diate handles on information in the statistical sense.

	 2.	The statistical structure of a molecule and message sequences render state 
descriptors ξ ξ ξI MI D, , < > and ξσD

as in Table 6.1. Of these, ξMI
 and ξσD

 
are the most differentiated and indeed fingerprint-like for molecules. 
Amino acids, alkaloids, and natural products demonstrate highest ξMI

, 
whereas saturated hydrocarbons express the lowest. One is reminded how 
information plays more than one role for a system and its environment. It 
equates with the code amounts needed for labeling states or messages; it 
connects with a system’s diversity, complexity, and capacity for control. It 
is then no surprise that functionalized molecules such as acids and bases 
express greater information on Shannon and mutual accounts compared 
with alkanes. Molecules especially endowed with functional groups (e.g., 
amino acids) are able to control a greater number of chemical decisions, all 
ultimately having to do with the transfer of work and heat.

6.4  SOURCES AND FURTHER READING

The intersection of the microscopic scale with information presents a vast literature. 
To list a sampling most helpful to the author, one begins with the information theory 
and statistical thermodynamics work of Jaynes [4], and the later text by Baierlein 
on atoms and information [5]. At a less advanced but still highly illuminating level 
are books by Morowitz [6,7]. Information casts a wide net in chemistry. Levine and 
coworkers have long championed information theory applied to molecular processes 
such as relaxation and internal energy redistribution [8,9]. Biopolymers plus infor-
mation yield the field of bioinformatics. Recommended is the text by Tramontano for 
the landmark questions posed [10]. The research of Schneider has addressed in depth 
the information attributes of biopolymers [11,12].

Regarding microscopic state descriptors, the stage was set in the late 1970s by the 
work of Bonchev and Trinajstic on the branching processes of alkanes [13]. Included 
in this reference are key sources regarding the information posed by vertex graphs, 
the standard vehicles for portraying organic compounds. Along related lines, the 
complexity of molecules via their structural information was formalized in the 1980s 
by Bertz [14,15]. Several research groups have approached molecular information 
by quantifying topological indices of an entropic nature [16–18]. González-Díaz 
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and coworkers have pioneered the application of Markov and entropic descriptors 
of numerous molecular systems [19]. The molecular message tapes illustrated in this 
chapter share many properties with Markov chains.

The information can be studied for individual molecules or libraries. Bajorath and 
coworkers have established signature contrasts between natural and synthetic librar-
ies [20,21]. For several years, the author and his students have investigated molecular 
information at the base formula and structure diagram levels. The Brownian com-
putation model described in Chapter 6 has been directed to individual molecules, 
libraries, and enzymatic proteins [22–25].

There are three more notes to add. Bennett discussed more than just molecular 
information processing; he considered as well the principles of mechanical computa-
tion [3]. The fundamentals have received further elaboration in the Feynman lectures 
on computation [26]. Second, as indicated in Chapter 1, ABA units encode molecular 
information at a high level. Information at a deeper level has been explored exten-
sively by the work of Parr and Yang [27] and Nalewajski [28]. Last, thermochemical 
tables are indispensable to all branches of chemistry. Extensive compilations have 
been presented by Cox and Pilcher [29].

6.5  SUGGESTED EXERCISES

The following require adapting the program listed in Appendix A to diverse 
molecules. A variety of compounds can be compared and contrasted via infor-
mation descriptors.

	 6.1	 Table  6.1 lists ξMI  for acetic acid as significantly greater than ξMI

for ethane. Does esterification of the acid via ethyl alcohol enhance 
or diminish ξMI ? Please discuss in terms of information as a type of 
control capacity.

	 6.2	 How do ξMI  and ξσD
 compare for cyclobutane (left) and cubane 

(right)? Please discuss. Were the results anticipated correctly?

	 6.3	 How do ξMI  and ξσD
compare for cyclobutene (left) and Dewar ben-

zene (right)? Please discuss.

	 6.4	 The Handbook of Chemistry and Physics lists five compounds with 
formula C6H14. Review the structures and posit which offers the 
largest ξMI . Do likewise regarding ξσD

. Check the prediction by 
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7 Thermodynamic 
Information and 
Chemical Reactions

The states of a system are modified by variable tuning and energy exchanges. In 
chemically active venues, the states alter spontaneously and with purpose in col-
laboration with the surroundings. This chapter considers an unusual type of thermo-
dynamic transformation by way of chemical reactions.

7.1  OVERVIEW OF CHEMICAL REACTIONS

In Chapter 3, the states of a system were specified by p, V, and other variables. 
It was shown that information in the statistical sense was low in most cases and 
indeed bordered on zero. The reason is that fluctuations wield only tiny impacts 
for large volume, multiparticle systems under equilibrium conditions. Matters are 
different when structured programs are applied. All the programmed pathways 
of Chapters 4 and 5 featured extended collections of states. For a given collec-
tion, there was appreciable information allied with the variables in query-and-
measurement exercises. The exceptions were n for closed systems, and p, T, S, 
and so forth for isobaric, isothermal, and adiabatic—the special transformations 
of thermodynamics.

Chapter 6 turned to the microscopic level. All molecules underpin probabil-
ity functions via their charge distributions. Thermal environments do their part 
by imposing uncertainty on all electronic communication and registration. It was 
shown that familiar compounds—ethane, propane, and ethanethiol, for example—
pose collision-based information. The atom–bond–atom (ABA) units of the mol-
ecules furnish a robust code for labeling the messages. The Shannon and mutual 
information were quantified for the collision sequences allowed by the molecular 
structure. This Brownian approach offered new descriptors of states by way of 
ξ ξ ξI MI D, , < >, and ξσD

.
As the chemical enterprise demonstrates, molecules are valuable not only for 

what they are, but also for what they can become. Molecule A can beget B and 
vice versa in environments ranging from flames to cells to round-bottom flasks. The 
transformations are described in the most succinct terms:

A B

Such transformations conserve mass, charge, energy, and atom identity. At the same 
time, they represent a most unusual consequence of thermodynamic fluctuations 
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transmitted and registered. The effects can only be nullified at a cost of work imported 
from outside. The consequences include an increase in the total entropy; this is dis-
persed unevenly across the system and surroundings. Any restoration to the initial 
value also carries a work price tag. It is often possible for the chemist to force B back 
to A and thus lower the entropy. Yet the requisite work has to originate from a natural 
(i.e., spontaneous) process, which itself can only be reversed via work drawn from 
yet another source—on and on. The point is that when chemical reactions proceed 
under nonequilibrium conditions, there is a definite irreversibility in their character. 
The effects propagate well beyond the site where A converts to B.

Charge distributions underpin messages and communication mechanisms. They 
also dictate the energy mismatches among molecules. It is typical that the energy—
both kinetic and potential—of A’s electrons and nuclei does not equate with B’s. By 
the first law of thermodynamics, energy must be conserved in any process, revers-
ible and otherwise. In conversions of A to B, energy shortfalls must be covered by 
whatever surrounds A and B. The first law requires:

	
E E Etransferred from surroundings A B+ = 	 (7.1)

By the same token, energy windfalls must be absorbed. The first law also mandates:

	
E E EA B transferred to surroundings= + 	 (7.2)

The most common currency is heat propagated by collisions. In the system of 
Figure  7.1, any transfer of heat forces an entropy change in the surroundings, 
namely,

	
S

Q

Tsurroundings
rec=

−
	 (7.3)

The negative sign is critical. For an endothermic process, heat is transferred from 
the bath (heat reservoir) to A. The entropy of the reservoir is thereby diminished. For 
an exothermic process, heat must diffuse outward toward the bath whereby its entropy 
increases. Since the discussion restricts the heat exchanges to constant T, p condi-
tions, they (i.e., Qrec values) connect simply with changes in the system enthalpy.

The entropy effects are not confined to the bath. Even if the production of B is 
highly local, such as at an activating or catalytic site, there will be eventual and 
thorough mixing of the reactants and products. The chemist would have to expend 
work should he or she need to separate A from B. Let the mixing entropy for nA and 
nB moles of A and B be modeled as

S n R
n

n n
n R

n

n nmix A e
A

A B
B e

B

A B

= − ⋅
+

− ⋅
+

log log

	
= − ⋅ − ⋅n R X n R XA e A B e Blog ( ) log ( ) 	 (7.4)
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Let Equation (7.4) approximate entropic effects over and above those due to heat 
exchanges where ideal behavior is assumed for A and B. Let the entropy surrounding 
microscopic degrees of freedom, such as electronic, rotational, and vibrational, be 
encapsulated in the molar quantities SA

o
 and SB

o.
An example illustrates the salient points. Let the molar enthalpies and entropies 

of A and B be as follows:

	
HA

o = 8000 joules mole/ , S KelvinA
o = ⋅5 00. /joules mole 	 (7.5A)

	
HB

o = 6000 joules mole/ , S KelvinB
o = ⋅6 00. /joules mole 	 (7.5B)

Let the Figure 7.1 container commence with 1.00 mole of pure A at volume 1.00 
meter3 and temperature 298 K. Then if x moles of B are formed locally, the entropy 
is modified eventually in two places—system and surroundings—as described by 
Equations (7.3) and (7.4), and SAB

o . The change for the surroundings is:

	

S
Q
T

xH xH xH xH
surroundings

rec B
o

A
o

A
o

=
−

=
− −

=
−( ) (

298 K
BB
o )

298 K 	 (7.6)

while SAB
o

 equates with xS xSB
o

A
o− . Figure 7.2 accordingly shows the dependence of 

each contribution to the entropy change; the total is included as a function of moles 
of B formed.

Several points follow. The reaction under consideration is exothermic because 
the molar enthalpy of A exceeds that of B; the A population loses heat-generating 
potential, so to speak, when members convert to B. In turn, the greatest entropy 
change for the heat bath would occur if all the A converted to B. The mixing 
ensures otherwise, however, by the maximum of Smix at x = 0.500 moles. The latter 
forces the total entropy to express a maximum somewhere between x = 0.500 and 
1.00 mole, in this case, x moles⊕0 714. . It is the extremum or apex of Stotal that 
ultimately dictates the equilibrium. As A switches to B, the sum of entropy changes 
increases until it can increase no more, regardless of mechanism. The extremum 
nature of Stotal retards the total conversion of A to B however skilled or wishful 
the chemist may be, for example, if B is a marketable commodity. At the same 
time, thermal environments are never devoid of fluctuations. Thus, in an equilib-
rium sample of A and B, accidental increases in one compound at the expense of the 
other switch on forces that push all parties back toward the maximum entropy state. 
It is not a coincidence that this behavior mirrors that of the helium–neon mixtures 
discussed in Chapter 3.

The apex of the total entropy change also determines the maximum available 
work—the free energy available from the system:

	
G T Stotal= − ⋅ ≈ − ⋅ ≈298 10 48 3123K joules K joules. / 	 (7.7)
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There is really no limit to the possible initial conditions. If the system had featured 
2.00 moles of pure A, then twice the work would have become available. If the 
chemist initiates matters by injecting (separately) 0.30 moles of A and 0.70 moles of 
B, then almost zero free energy would be offered. Note that the reaction switches 
two ways. If the initial conditions corresponded to A and B samples of 0.10 and 0.90 
moles, respectively, then free energy would be obtained at the expense of the B popu-
lation. For equilibrium conditions to exist and maintain, the reaction must be able to 
operate in forward and reverse directions. It is for this reason that the terms reactant 
and product are spoken largely for convenience. The reality is that B is the product 
of reactant A; A is the product of reactant B.

The role of the upper reservoir in Figure 7.1 is to intercept the available free energy 
somehow and relay it to where needed. If the reservoir-system coupling is faulty or 
compromised, then the available work is squandered. The laws of thermodynamics 
do not offer advice on how to reap the work of chemical reactions. The lessons are 
best taught by oxidation-reduction venues such as batteries and biological systems.

There is a second way to view the chemistry as is the subject of Figure  7.3. 
Shown is an A population distributed unevenly inside the container. The void near 
the center is where the local pressure is zero. Over this region, the chemical poten-
tial of A is:

A A
o

e AT p T RT p( , ) ( ) log ( )= + ⋅

	
= + ⋅A

o
eT RT( ) log ( )0

	 = −∞ 	 (7.8)
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FIGURE 7.2  Entropy changes due to chemical reactions. The apex of Stotal locates the 
equilibrium condition.
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chemical potentials become

	

p
n RT
VA
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If x moles of B are formed anywhere in the system, then the chemical potentials 
of both parties adjust accordingly:

	
A A

o
eT p T RT

x RT

V
( , ) ( ) log

( )
= + ⋅

− ⋅1 	 (7.15)

	
B B

o
eT p T RT
xRT

V
( , ) ( ) log= + ⋅ 	 (7.16)

Plots of the potentials appear in Figure 7.4. When A converts to B, the chemi-
cal potentials travel in opposite directions—one falls while the other rises—only 
to intersect at a single point. This intersection identifies the chemical equilibrium 
condition on equal footing with the apex of Stotal. This second viewpoint is comple-
mentary and emphasizes the equilibrium to be devoid of persistent and sharp chemi-
cal gradients. Thermal fluctuations are ever present. Yet any and all strays from 
maximum entropy only generate μ disparities, which steer the system back again.

A vital quantity is unique to the point of intersection. Since A B=  at maximum 
entropy, it follows that

	 A
o

e A B
o

e BT RT p T RT p( ) log ( ) ( ) log ( )+ ⋅ = + ⋅ 	 (7.17)
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Equation (7.17) can be rearranged to give:
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hence
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= = 	 (7.19)

Kp is referred to as the mass action constant or simply the equilibrium constant. The 
terminology is misleading since Equation (7.19) shows Kp to be not a constant at all 
but rather an exponential function of temperature. Ideally, Kp does not depend on the 
initial amounts of A and B or any container properties—texture, shape, and so forth. 
In real-life cases, usually the best that the chemist can record is some value Kp

observed 
due to the nonideality of reactants, products, and solvent. For the simple examples of 
Figures 7.2 and 7.4, the chemist would identify the respective equilibrium amounts 
of nB and nA to be 0.714 and (1 – 0.714) = 0.286 moles. Then
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FIGURE 7.4  Chemical potentials of reactive molecules. When A switches to B, the chemi-
cal potentials move in opposite directions and intersect at a single point. The intersection 
marks the equilibrium condition in a manner complementary to Stotal .
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The chemist has a handle on Kp by his or her ability to measure concentrations and 
partial pressures. The fringe benefits include data regarding the difference between 
reactant and product chemical potentials. The qualitative lesson of Equation (7.19) is 
no less important. The greater the potential difference, the more skewed the reactant 
and product amounts at equilibrium.

The ideal dependence of Kp on temperature is not happenstance. The Gibbs–
Helmholtz equation relates free energy G and enthalpy H as follows:

	

∂

∂
=
−

G
T
T

H
Tp n,

2
	 (7.21)

In turn, the standard potentials—molar free energies—of A and B connect with the  
molar enthalpies as
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These equations can be combined to give:
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Yet, Equations (7.18) and (7.19) already establish the relation between the chemical 
potential differences and temperature, namely,
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One combines Equations (7.23) and (7.24) and arrives at the equality:
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Equation (7.28) enables the construction of Kp(T) plots over small to modest tem-
perature ranges. Figure  7.5 augments the lessons of Figure  7.2 and Figure  7.4 
by showing a typical exponential dependence of Kp on temperature. The crucial 
matter to observe is that small changes in temperature effect substantive responses 
by Kp. Note that Figure  7.5 has been constructed with the assumption that the 
molar enthalpies of A and B are more or less constant. This assumption is gener-
ally valid over a few tens of degrees and modest deviations in the pressure from 
standard states.

The discussion has been limited to a case with trivial stoichiometry—molecule A 
begets a single B and vice versa. What if the number of molecules is not conserved? 
Consider, for example:

A    +    2B C

where three charge packages combine to produce one in a left-to-right transition; one 
converts to three in the opposite direction.

The lessons of Figure 7.2 are not impacted qualitatively by stoichiometry. The 
equilibrium is still governed by the maximum in ΔStotal. There are details to point out, 
however, regarding the chemical potentials and mechanisms by which the entropy is 
tuned. These details make for complications quickly, even when the molecules are 
viewed as ideal gases.

First, if the chemist injects A, B, and C individually into a container in arbitrary 
amounts, there is an eventual entropic impact due to mixing. This can be modeled 
by an extension of Equation (7.4):
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(7.29)

Again, the chemist would have to spend work to undo all or part of the scrambling of 
the molecules. If instead, the system is left alone, chemical reactions will impact the 
composition and entropy ejected to or imported from the surroundings. If the chem-
ist injects only A and B separately, and x moles of C are formed at the interface, then 
the mixing effects can be modeled via:
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(7.30)
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Let the molar enthalpies, entropies, and free energies of A and B be as before 
(Equations 7.5 and 7.10). Let

	
HC

o = 14 000, /joules mole,  SCo = ⋅8 00. /joules mole Kelvin 	 (7.32)

	 C
o = 71 008, /joules mole 	 (7.33)

and the container be (as before) 1.00 meter3 in volume at constant temperature 298 K.
Figure 7.6 shows the dependence of the total entropy change for each case. Each 

curve is obtained by summing the entropy changes due to mixing and heat exchanges 
with the surroundings plus SABC

o . The lessons are several, beginning with the single 
maximum demonstrated by each curve. Each maximum hinges on the interplay of 
ΔSmix, ΔSsurroundings, and SABC

o , in addition to choices made by the chemist. A single 
maximum, in each case, offers a foundation for stability, regardless of initial condi-
tions. For every case, fluctuations will push the molecules on either side of the maxi-
mum entropy state yet will always turn on forces for restoration.

The chemist’s choices are always critical. Scenarios II and III show only mod-
est increases in ΔStotal with the birth of C. Modest values of ΔStotal predicate modest 
free energy available. Thus, if the chemist needs work to be performed, clearly he 
or she should seek conditions other than scenarios II and III; I and IV are the most 
appealing in Figure 7.6. The largest entropy changes are offered in scenario I; these 
transpire at the expense of the C population. By comparing the scenarios, one gath-
ers that the production of C is greatest when reactants A and B are combined in 
stoichiometric amounts, that is, in a 1:2 mole ratio.

Equilibrium conditions hold when there is no additional free energy for the sys-
tem to lose:

	
G G Gtotal react products= + =  minimum possible value	 (7.34)

Thus, when an A, B, C sample is at chemical equilibrium, and a fluctuation causes δx moles 
of C to be born at, say, the reactants’ expense, the free energy responds accordingly:

	
δ δ δ δG x x xtotal A B C= − ⋅ + − ⋅ ⋅ + ⋅2 	 (7.35)

But this adjustment tends to zero by the stability of the maximum entropy state. By 
moving the Equation (7.35) terms to one side and factoring δx, one obtains:

	 0 2= + ⋅ − −δx C A B( ) 	 (7.36)

Fluctuations are ever present and render infinite possible values for δx. Equation 
(7.36) can hold only if, for equilibrium conditions, the terms in parentheses equate 
to zero:

	 C A B− − =2 0 	 (7.37)
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This conveys that the chemical potentials are related to each other (at equilibrium) in 
a manner governed by the reaction stoichiometry:

	 1 2 1⋅ + ⋅ = ⋅A B C 	 (7.38)

Taking A, B, and C to behave as ideal gases, it is straightforward to substitute for 
the chemical potentials (cf. Equations 7.17 through 7.19) and rearrange terms so as to 
obtain the mass action constant under ideal conditions:
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p pp
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	 (7.39)

As before, Kp is an exponential function of temperature that is determined by dif-
ferences in chemical potentials. And usually the chemist must settle for Kp

observed in 
an experiment, due to nonideality of the active parties and solvent. More important, 
there is one inconsistency to note. The argument of the exponential, and thus Kp, is 
dimensionless. Yet when Kp is expressed in terms of equilibrium pressures raised to 
powers set by the stoichiometry, obtained are (in this case) dimensions of pascals–2. 
This mismatch is an unfortunate side effect of writing chemical potentials with a 
solitary pressure in the logarithm argument. The more exacting, if cumbersome, way 
to express the potential for molecule A is:

	
A A

o
e

AT p T RT
p

( , ) ( ) log
.

= + ⋅
1 00 pascal

	 (7.40)

with like attention to B and C. The extra labor does not really offer additional insights, 
but it does lead to a consistent, dimensionless version of the mass action constant:
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(7.41)

Plots of the chemical potentials are presented in Figure 7.7 as a function of the moles 
of C formed. The conditions reflect scenario IV of the preceding figure. The sum of the 
A and B chemical potentials weighted by stoichiometric coefficients is shown along 
with the potential of C. The lessons are clear. The C potential starts at its minimum, 
impossible-to-plot value—negative infinity. As the system proceeds toward chemical 
equilibrium, A B+ 2  and C move in opposite directions and eventually intersect. It 
is straightforward to construct links between Kp and the molar enthalpies, in addition 
to relations appropriate to other stoichiometric conditions. Where and when there is 
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under- or overshoot, gradients in the chemical potentials direct the system back toward 
the maximum entropy state, the point of A B+ 2  = C intersection. This revisits an 
important point made in Chapter 3, namely, that the equilibrium condition is not singu-
lar but rather comprises multiple states in the vicinity of maximum entropy. Regardless 
of reaction mechanism and stoichiometry, when a system demonstrates the maximum 
possible entropy, a minimum number of variables suffice to describe it. Whenever the 
system strays from maximum entropy, more information is needed by the chemist to 
detail the conditions.

7.2  CHEMICAL REACTIONS AND INFORMATION

Chemical reactions do not substantially alter information in the statistical sense at 
the macroscopic scale. If sparse information is allied with p, V, and T when A owns 
the container, the same applies after equilibrium has been established with B. There 
is little uncertainty encountered by the chemist prior to measuring any number of 
state quantities. The microscopic scale is another story, however.

Molecules are electric charge packages that communicate by thermal colli-
sions. A container of pure A offers only one type of message—ignoring structure 
considerations for the moment. For a given A molecule, there is no uncertainty 
imposed on the next binary collision—it will assuredly involve another A. 
Matters are different when B shares the container, either injected by the chemist 
or born via the demise of A. For an equilibrium mixture, the collisions fall into 
three categories: AA, AB, and BB. Any effects of higher order contacts (e.g., 
ternary collisions), molecular speeds, and trajectories fall outside the scope of 
the discussion.
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FIGURE 7.7  Chemical potentials of reactive molecules. Data pertain to molecules A, B, 
and C discussed in text. The conditions correspond to IV of the preceding figure.
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An electrical contact happens because two molecules move accidentally, and 
more or less independently, toward the same territory. As the motion is thermally 
powered—and thus random—the likelihood of a party vying for a particular spatial 
region is proportional to its mole fraction. Thus for an A,B mixture, the probability 
of each particular type of binary collision is proportional to the products of mole 
fractions, namely,

	 prob A A X XA A( , ) ∝ ⋅ 	 (7.42A)

	 prob A B prob B A X XA B( , ) ( , )= ∝ ⋅ 	 (7.42B)

	 prob B B X XB B( , ) ∝ ⋅ 	 (7.42C)

whereupon
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X X X X X X

A A

A A A B B B

( , ) =
⋅

⋅ + ⋅ + ⋅
	 (7.43A)
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	 (7.43B)
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X X X X X X

B B

A A A B B B

( , ) =
⋅

⋅ + ⋅ + ⋅
	 (7.43C)

Figure  7.2 illustrated the entropy properties of the A,B chemistry. The initial 
conditions featured only one type of message event, namely, AA, while the equilib-
rium and intermediate states afforded three. Figure 7.5 showed that the mass action 
constant changes with temperature. It is interesting to examine the Shannon infor-
mation IA,B allied with the message events and their link to Kp. From Equation (7.20), 
we have

	 K
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n n
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= =
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= 	 (7.44)

As a consequence

	
X K XB p A= ⋅ 	 (7.45)
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and the message event probabilities can be rewritten in terms of Kp:
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(7.46C)

The Shannon information is obtained in the usual way from summing weighted 
logarithmic terms. There are three different message events and thus terms in the 
summation. One has

	

I prob i prob iA B
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	 (7.47)

or, more specifically,
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where the probability terms are specified by Equation (7.46A) through (7.46C). 
Figure 7.8 shows IA,B versus Kp. A single maximum is observed where nature extends 
no bias toward the reactant or product. Thus, the information maximum applies to 
the conditions whereby Kp equals 1.00. Figure 7.5 tells us that such conditions are 
found when the temperature is set to approximately 336 K. Note the obvious. If A 
had been chemically inert, then the number of message types would have remained 
at 1; no information would have been purchased unless solvent molecules were added 
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to the system. By virtue of A’s capacity to convert to B, information is born sponta-
neously at a cost of free energy. Chemical activity is a means for nature to purchase 
and utilize new information.

It is likewise important to consider the mutual information. A and B have been 
viewed as ideal gases. This means a lack of preference shown by one party toward 
colliding with another. The consequence is that a binary collision at one locale Y of 
the system offers nothing about another locale Z. In turn,

	
prob A A A A prob A A prob A AY Z Y Z( , ) , ( , ) ( , ) ( , )[ ] = × 	 (7.49A)

	
prob A A A B prob A A prob A BY Z Y Z( , ) , ( , ) ( , ) ( , )[ ] = × 	 (7.49B)

	
prob A A B B prob A A prob B BY Z Y Z( , ) , ( , ) ( , ) ( , )[ ] = × 	 (7.49C)

	
prob A B B B prob A B prob B BY Z Y Z( , ) , ( , ) ( , ) ( , )[ ] = × 	 (7.49D)

	
prob B B B B prob B B prob B BY Z Y Z( , ) , ( , ) ( , ) ( , )[ ] = × 	 (7.49E)

	
prob A B A B prob A B prob A BY Z Y Z( , ) , ( , ) ( , ) ( , )[ ] = × 	 (7.49F)
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FIGURE 7.8  Information versus equilibrium constant. A single maximum is observed. 
Data pertain to the A,B reactions discussed in the text.
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The consequences of reactions relocating state points spontaneously and selec-
tively are not trivial. If the chemist owns a bottle containing 2,4-pentanedione 
but needs the 1,3-diol of cyclopentene, a conversion program would be in order. 
Executing the program would entail a sequence of intermediate molecules, each with 
a unique electronic message space and state point in the ξ̂MI, ξ̂σD 

plane. The chemist 
would devise a program for sequential transformations that minimizes the distance 
traveled across the plane. Alternatively, he or she would seek a starting material 
other than 2,4-pentanedione, which affords a shorter program that terminates in the 
desired state point.

The major points of this chapter are the following:

	 1.	The sun is the ultimate source of atoms. Molecules, by and large, descend 
from other molecules. The transformations occur by chemical reactions, 
which increase the total entropy and yet modify information locally and 
selectively.

	 2.	Reactions alter the electronic messages of a molecule. The modifications 
impact the information expressed via binary or higher order collisions. The 
changes are internal to the molecules as well. These can be characterized 
by formula diagrams and further modeled by Brownian computation.

	 3.	At the microscopic level, every molecule offers a state point and width in 
planes such as ξ̂MI

, ξ̂σD
. A reaction relocates a state point in a jump-discon-

tinuous way. The direction and extent of the jump are determined by the 
electronic information and correlations.
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FIGURE 7.11  Reduced descriptors for tautomers and structural isomers of C5H10O2. Plotted 
are ξ̂MI versus ξ̂σD

 scaled via ethane data. 1 refers to the tautomerization of 2,4-pentanedione. 
The two other state points in the figure derive from structural isomers.
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7.4  SOURCES AND FURTHER READING

Thermodynamic texts devote one or more chapters to chemical reactions. The texts 
by Desloge [2], Fermi [3], Lewis and Randall [4], Kirkwood and Oppenheim [5], 
and Klotz [6] have particularly impacted the author’s thinking. Desloge and Fermi 
offer exceptional presentations of so-called van’t Hoff boxes containing reactants 
and products. These devices offer an especially insightful perspective of chemical 
equilibrium. Regarding the microscopic scale, the author and students have applied 
the Brownian computer model to a variety of chemical reactions, including diketone-
enol tautomerizations and Cope rearrangements [7]. These reactions are discussed 
at length in classic texts by Wheland [8] and le Noble [9]. Goodstein’s first-chapter 
summary of thermodynamics offers penetrating insights regarding the entropy of 
ideal gases [10].

7.5  SUGGESTED EXERCISES

	 7.1	 Molecule A reacts to form B and vice versa in the gas phase. A chem-
ist finds Kp for the reaction to equal 1.20 at temperature 298 K. (a) 
What is the value of A

o
B
o  at 298 K? (b) The chemist adds 2.00 

moles of B and 0.500 moles of A to a container of volume 1.50 meter3 
at 298 K. How many bits of Shannon information are allied with each 
binary collision at equilibrium?

	 7.2	 A chemist finds that Kp for the gas phase reaction 2A + 3B = 0.50C 
+ 3D equals 0.150 at temperature 298 K, the partial pressures having 
been measured in pascals. Kp is found to double when the temperature 
is raised to 303 K. (a) What is the value of 2 3 0 50 3A

o
B
o

C
o

D
o+ .  

at 298 K? (b) What is the approximate value at 300 K?

	 7.3	 There is more than one equation of the Gibbs–Helmholtz variety. (a) 
Show that

∂

∂
=

A

T
T

U

TV n,
2

 	 (b) Show that

∂

∂
=

Φ

V S

U

,
2

	 where Φ was encountered in Chapter 3 as a Legendre transform of U.

	 7.4	 Consider A that reacts to form B and vice versa in the gas phase with 
equilibrium constant Kp. Let B

o
A
o  equal the molar free energy 

change of an A,B-system coming to equilibrium at temperature 
T, given initial (standard) conditions of p pA B= = 1 00. .pascal  
(a) For arbitrarily selected initial conditions at T, show that
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8 Chemical 
Thermodynamics, 
Information, and Horizons

8.1  HORIZONS

When it comes to information and chemistry, there is no shortage of challenges. 
Molecules carry information and communicate via collisions. If the chemist thor-
oughly understood the messages in amino acid sequences, he or she would be able 
to design proteins from the ground up. Further, comprehension of axon and neuron 
information at the molecular level would provide new insights into neurological ther-
apy. Further still, understanding how the information stored in a virus fluctuates over 
replication cycles would reveal new defense strategies. These are but three areas that 
are investigated internationally. The word information will be included in science 
press releases on and over the horizon. 

This text has examined terrain far removed from blockbusters. The result 
has been a partial exploration of two mature domains and where they intersect. 
Thermodynamics and information theory have supplied decades of fundamentals 
and applications. Insights have arrived in both disciplines by their governing laws, 
mathematical structure, and idealized models. Heat engines do not conform to 
Carnot cycles. The states of a system are generally not 100% known in advance of 
an experiment. Molecules are not formula diagrams written on paper. Yet the laws, 
mathematics, and models surrounding engines, states, and molecules steer the inves-
tigator in the right direction. At the very least, they show what properties the chemist 
should become more curious about.

Where does one travel next at the intersection? There were corners notably 
untouched: third-law consequences, phase rule applications, and critical phenom-
ena, to name three. These justifiably warrant full-scale treatments. By the third law 
of thermodynamics, the entropy and heat capacity of a crystalline system converge 
to zero in the limit of zero absolute temperature. According to Boltzmann:

	
S k WB e= ⋅ log ( )

	 (8.1)

where W is the number of possible states for a system. Clearly, W converges to unity 
as T moves toward zero. As witnessed on several occasions of the tour, systems that 
pose only one state present no information in the statistical sense. Horizons-wise, the 
properties of thermodynamic information at ultralow temperatures are well worth 
exploring.
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Phase rule applications merit the same attention. According to Gibbs:

	
φ ρ κ+ = + 2 	 (8.2)

where φ and κ are the number of phases and components, respectively, for a sys-
tem at equilibrium. ρ  represents the so-called freedom of a system—the number of 
intensive variables that need to be set by the chemist to control all the intensive quan-
tities. For a system with φ = 2  and κ = 2 , the chemist must hold, say, pressure and 
temperature constant to maintain the equilibrium. The chemist is certainly capable 
of arbitrarily fixing a third intensive variable such as specific heat. But this would 
mean the demise of one of the phases. As seen during the tour, information connects 
with the control capacity of a system. The thermodynamic information surrounding 
the equilibrium between phases is a second horizon to explore.

Phase-rule effects lie not far away from phase transitions. The latter invite atten-
tion because of the multiplication issues surrounding information. Information begets 
information and sometimes a little can control a lot. In certain phase transitions, the 
information expressed by a seed material, liquid or crystalline, poses a blueprint for 
constructing a much larger version. The information stored in the seed is multiplied 
many times over in a high-fidelity fashion. Many does not equate with infinite; one 
would anticipate an upper bound for the number of multiplication cycles, depending 
on the thermal circumstances. This is a third horizon to sail toward, again not far 
removed from phase-rule effects.

Last, capital T received much attention during the tour via temperature, heat 
capacity, and entropy. Small t received virtually zero in the manner of time. This 
was understandable given the intended level of the text and the spotlight on equilib-
rium conditions. Recall that these rarefied conditions offer no information about the 
past or future. Thus, any incorporation of t with heat, work, and information links to 
nonequilibrium thermodynamics. This is a domain markedly different from that of 
the present text in principles, models, and applications. It emphasizes the second half 
of the word thermodynamics.

Clearly, t needs to be explored as the fourth horizon. It needs to be integrated 
with the core topics of fluctuations, state transformations, chemical message trans-
mission, and registration without sacrificing the accessibility. Time is unusual as 
resources go because, as mentioned in Chapter 1, there is never really a source or 
recipient. Time wields impact to the same degree as work, heat, and information. 
No information is transmitted and registered, no energy is transferred, and no state 
is transformed without some elapse of t. Time acquires special meaning if a sys-
tem deviates from the equilibrium condition, whether slightly or drastically. The 
pathway by which the system strives toward the maximum entropy hinges on time, 
both the amount elapsed and available. Time issues are not critical just to chemi-
cal thermodynamics; they impact all disciplines because equilibrium systems are 
themselves something of an idealization and met only infrequently (in the strictest 
sense) in real life.

Time-variable-wise, the first problem to address is pretty clear. Chapter 3 used 
composite systems to illustrate fluctuations about maximum entropy states. It was 
shown that a pressure measurement is preceded by uncertainty on the chemist’s part. 
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This determined the amount of information trapped by a barometer. Yet here is pre-
cisely where the time issues need to be drawn out. If the chemist endeavors a second 
measurement, his or her uncertainty will depend on how much time has elapsed. If 
the system is allowed insufficient time to explore the possible configurations, there 
is less uncertainty and thus less information to purchase. If the second measurement 
is performed after a long time, the system has had time to forget where it was. The 
original information condition is restored.

In short, the thermodynamic information of a system, even at equilibrium, is nei-
ther static nor uniform. The principle to illuminate would be the time-dependence, 
and the related effects of system size and composition. The results would be not 
simply IX↔p, IX↔V, and MIXY↔pV, but rather IX↔p(t), IX↔V(t), and MIXY↔pV (t). To arrive at 
these quantities, the transport properties of the system would have to be charted. As 
is well appreciated, systems demonstrate relaxation times τ that are characteristic of 
the gradient of interest—pressure, temperature, and chemical. The chemist’s second 
measurement of p, T, Cp, and so forth at t < τ affords less information than at t > τ. 
Along the same lines, all fluctuations are not alike. If a barometer registers p at t = 0 
as < p > + 1.50σp, the uncertainty at a later time will be different from the case where 
p(t=0) = < p > – 2.50σp.

Issues surrounding time impact more than just the system. A barometer must 
establish equilibrium to communicate the correct number of pascals. A thermometer 
must establish thermal equilibrium for high fidelity readings. If the allotted time is 
too short in either case, then errors will plague the information purchase. Mechanical 
and thermal waves do not propagate at the same rate and phase. Thus the errors 
regarding temperature will differ from those of pressure. It must also be noted that a 
measurement of T generally affects that of p and vice versa. The interference effects 
determine the limits to which thermodynamic information of different variables can 
be processed in parallel.

Chapters 4 and 5 examined transformations effected by variable tuning and 
energy exchanges. Time was irrelevant throughout since the pathways were all taken 
as reversible. Time issues require consideration here as well, however. If the time 
allotted for program execution is insufficient, then irreversibilities will transpire in 
the system as side effects. The state points will be relocated imperfectly since each 
step will reflect the system history plus mechanical wear and tear. Variables such 
as p, V, and n specify the entire state point locus for a reversible transformation. 
Matters are much more complicated if t must be included. As stated at the beginning 
of Chapter 1, the word information motivates much discussion.

8.2  SOURCES AND FURTHER READING

Equilibrium thermodynamics has been thoroughly charted over decades; so has non-
equilibrium thermodynamics. The author’s shelf includes excellent texts by Yourgrau, 
van der Merwe, and Raw [1], Haase [2], and de Groot and Mazur [3]. Desloge’s book 
addresses several nonequilibrium fundamentals [4]; the same is true for Callen’s 
[5]. The books by Morowitz present significant insights about nonequilibrium 
states [6,7]. Stanley’s text [8] and Denbigh’s [9] have educated the author regarding 
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phase transitions and phase rule applications. The book by Berry, Kazakov, Tsirlin, 
Sieniutycz, and Szwast is a must-read regarding thermodynamics with time included 
as a variable [10]. There is much to learn from this source about the horizon and 
beyond. The short paper by Schreiber notably impacted the author’s appreciation of 
information, time, and their interface [11]. The same statement applies to Mackey’s 
treatise on the arrow of time [12].

8.3  SUGGESTED EXERCISES

Chapter 1 introduced the topics of the book qualitatively. The succeeding chap-
ters examined them in quantitative terms. Hopefully, the reader’s perspective is 
enhanced to some degree, having gone through the text. To consider the changes, 
three of the Chapter 1 exercises are urged for repetition. Compare one’s answers 
with those written the first time around.

	 8.1	 Chapter 1 opened with the statement, “Information motivates much dis-
cussion.” Several declarations followed. Choose one and write a two- to 
three-page response paper. The response should argue the merits and 
deficiencies regarding information.

	 8.2	 Chapter 1 presented the idea that information represents a system’s 
capacity for controlling work and heat transactions. As in the first exer-
cise, compose a response paper that addresses the merits and deficien-
cies of the idea.

	 8.3	 Describe two examples drawn from chemistry where probability plays 
a role. Do likewise regarding conditional probability.
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Appendix A: Source 
Program for Constructing 
Molecular Message Tapes 
and Computing Information

This program can be adapted readily to small organic compounds by changing the 
atom vector and bond matrix components in subroutine 1000. As written, the program 
addresses the information properties of the following alcohol derivative of cyclohexene:

OH

Statements useful for verification and troubleshooting have been disengaged by 
REM prefixes; these can be re-activated as needed. BASIC has been used as the 
source code for simplicity along with the resident random number generator. The 
algorithm is readily adapted to higher order analyses, longer record tapes, and to C, 
C++, and Pascal codes.

1 REM REM SET UP FOR AN ALCOHOL DERIVATIVE OF CYCLOHEXENE
10 INPUT “R EQUALS????”, R: RANDOMIZE R: REM SEEDS 
RANDOM NUMBER GENERATOR
20 DIM A%(17), B%(17, 17), M$(500), SUM(500)
30 D% = 17: M% = 7: REM MATRIX DIMENSION AND NUMBER OF 
MAJOR ATOMS
40 GOSUB 1000: REM SET UP ATOM ARRAY AND BOND MATRIX
44 W3% = 45: REM SET INITIAL W3% TO ANY INTEGER > 
MATRIX DIMENSION
45 FOR W5% = 1 TO 5000: REM SETS WALK SIZE
50 IF W5% = 1 THEN S% = INT(RND * M% + 1): REM SELECT 
FIRST MAJOR ATOM
52 REM PRINT “S% EQUALS.....”, S%: REM INPUT 
“CONTINUE????”, ANS1
60 B% = 0
70 FOR K% = 1 TO D%
80 IF B%(S%, K%) > 0 THEN B% = B% + 1: REM COUNT 
COVALENT BOND LINKS
90 NEXT K%
100 B2% = INT(RND * B% + 1): REM PICK RANDOM LINK
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105 REM PRINT “B%, B2% EQUALS.....”, B%, B2%: REM INPUT 
“CONTINUE????”, ANS1
120 B3% = 0: REM GET READY TO COUNT AGAIN
125 W1% = S%: REM TAG ATOM 1
130 FOR K% = 1 TO D%
140 IF B%(S%, K%) > 0 THEN B3% = B3% + 1
145 IF B3% = B2% THEN W2% = K% ELSE 150
146 REM PRINT „W2% EQUALS....”, W2%: REM INPUT 
“CONTINUE????”, ANS1
147 IF W2% = W3% THEN 100 ELSE 160
150 NEXT K%
160 REM WE HAVE A STATE, NOW CHECK
170 GOSUB 2000
180 IF W5% = 1 THEN S2$ = S$ ELSE S2$ = S2$ + S$
190 REM IF W5% MOD 200 = 0 THEN PRINT S2$: INPUT 
“CONTINUE?????”, ANS1
200 IF A%(W2%) = 6 OR A%(W2%) = 8 THEN S% = W2%: W3% = W1%
210 IF A%(W2%) = 1 THEN S% = W1%: W3% = W2%
300 NEXT W5%
302 PRINT S2$
310 GOSUB 3000: REM PARSE RECORD TAPE
320 GOSUB 5000: REM FIGURE MI
900 END
1000 REM SUB TO SET UP ATOM ARRAY AND BOND MATRIX
1005 REM FIRST ZERO THINGS
1010 FOR J% = 1 TO D%
1020 A%(J%) = 0
1030 NEXT J%
1040 FOR J% = 1 TO D%
1050 FOR K% = 1 TO D%
1060 B%(J%, K%) = 0
1070 NEXT K%
1080 NEXT J%
1100 FOR J% = 1 TO D%
1110 IF J% <= 6 THEN A%(J%) = 6
1112 IF J% = 7 THEN A%(J%) = 8
1114 IF J% > 7 THEN A%(J%) = 1
1120 NEXT J%
1200 B%(1, 2) = 1
1210 B%(1, 6) = 1
1220 B%(2, 3) = 2
1230 B%(3, 4) = 1
1240 B%(4, 5) = 1
1250 B%(5, 6) = 1
1260 B%(6, 1) = 1
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1262 B%(6, 7) = 1
1270 REM NOW HELP COMPLETE BOND MATRIX
1280 FOR J% = 1 TO D%
1290 FOR K% = 1 TO D%
1300 IF B%(J%, K%) > 0 AND B%(K%, J%) = 0 THEN B%(K%, 
J%) = B%(J%, K%)
1310 NEXT K%
1320 NEXT J%
1330 M2% = M%: REM MAJOR ATOMS
1400 FOR J% = 1 TO M%
1410 B% = 0
1420 FOR K% = 1 TO M%
1430 IF B%(J%, K%) > 0 THEN B% = B% + B%(J%, K%)
1440 NEXT K%
1450 IF A%(J%) = 6 THEN V% = 4 - B%: REM VALENCE RULE
1451 IF A%(J%) = 8 THEN V% = 2 - B%: REM VALENCE RULE
1452 PRINT J%, B%, V%, M2%: REM INPUT “CONTINUE?????”, 
ANS1
1460 FOR K% = (M2% + 1) TO (M2% + V%)
1470 B%(J%, K%) = 1: B%(K%, J%) = 1: REM H-BOND
1480 NEXT K%
1490 M2% = M2% + V%
1500 NEXT J%
1510 REM NOW READ BACK
1520 FOR J% = 1 TO D%
1530 FOR K% = 1 TO D%
1540 IF B%(J%, K%) > 0 THEN PRINT J%, K%, B%(J%, K%): 
REM INPUT «CONTINUE????», ANS1
1550 NEXT K%
1560 NEXT J%
1900 RETURN
2000 REM SUB TO CHECK STATES
2005 REM C-H = “A”; C-C = ”B”; C=C = ”C”; C-O = ”D”; O-H 
= “E”
2006 REM ADD STATES TO THIS SUBROUTINE AS NEEDED
2010 IF A%(W1%) = 6 AND A%(W2%) = 1 THEN S$ = ”A”: GOTO 
2100
2020 IF A%(W1%) = 6 AND A%(W2%) = 6 AND B%(W1%, W2%) = 1 
THEN S$ = ”B”: GOTO 2100
2030 IF A%(W1%) = 6 AND A%(W2%) = 6 AND B%(W1%, W2%) = 2 
THEN S$ = ”C”: GOTO 2100
2032 IF A%(W1%) = 6 AND A%(W2%) = 8 AND B%(W1%, W2%) = 1 
THEN S$ = ”D”: GOTO 2100
2034 IF A%(W1%) = 8 AND A%(W2%) = 6 AND B%(W1%, W2%) = 1 
THEN S$ = ”D”: GOTO 2100
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2036 IF A%(W1%) = 8 AND A%(W2%) = 1 AND B%(W1%, W2%) = 1 
THEN S$ = ”E”: GOTO 2100
2100 RETURN
3000 REM SUB TO PARSE RECORD TAPE
3005 L% = LEN(S2$)
3006 FOR M% = 1 TO 4: REM ORDERS
3007 C% = 0: N = 0: H1 = 0: H2 = 0: REM INITIATE STATE 
COUNTER
3008 FOR W2% = 1 TO 500: SUM(W2%) = 0: NEXT W2%: REM 
ZERO STATE ARRAY
3009 H = 0
3010 FOR J% = 1 TO L% - M% + 1
3012 A$ = MID$(S2$, J%, M%)
3013 H = 0
3014 FOR W2% = J% TO J% + M% - 1
3016 B$ = MID$(S2$, W2%, 1): GOSUB 4000: REM GET ABA 
ENERGY
3018 H = H + H5
3019 NEXT W2%
3020 FOR K% = 1 TO C%
3030 IF A$ = M$(K%) THEN SUM(K%) = SUM(K%) + 1: N = N + 
1: GOTO 3050: REM OLD STATE
3040 NEXT K%
3042 REM WE HAVE NEW STATE
3045 C% = C% + 1
3046 M$(C%) = A$: SUM(C%) = 1: N = N + 1
3050 H1 = H1 + H: H2 = H2 + H * H
3055 NEXT J%
3060 REM NOW FIGURE SHANNON INFORMATION, ABA ENERGY 
AND DISPERSION
3070 INFO = 0
3080 FOR K% = 1 TO C%
3090 INFO = INFO - (SUM(K%) / N) * LOG(SUM(K%) / N)
3100 NEXT K%
3110 PRINT ”ORDER, INFO EQUALS.....”, M%, INFO / LOG(2)
3120 H1 = H1 / N: H2 = (H2 / N) - H1 * H1
3130 PRINT ”ABA AVG ENERGY, SIG EQUAL....”, H1, SQR(H2): 
INPUT ”CONTINUE????”, ANS1
3200 NEXT M%
4000 REM SUB TO ASSIGN BOND ENERGIES
4005 REM ADD STATES AND ABA ENERGIES TO THIS SUBROUTINE 
AS NEEDED
4010 IF B$ = ”A” THEN H5 = 414: REM kilojoules/mole
4020 IF B$ = ”B” THEN H5 = 347
4030 IF B$ = ”C” THEN H5 = 612
4032 IF B$ = ”D” THEN H5 = 351
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4034 IF B$ = ”E” THEN H5 = 464
4200 RETURN
5000 REM SUB TO FIGURE MI
5001 PRINT : PRINT ”NOW FIGURING MUTUAL INFORMATION....”
5006 FOR M% = 2 TO 4: REM ORDERS
5007 C% = 0: N = 0: REM INITIATE STATE COUNTER
5008 FOR W2% = 1 TO 500: SUM(W2%) = 0: NEXT W2%: REM 
ZERO STATE ARRAY
5010 FOR J% = 1 TO L% - M% + 1
5012 A$ = MID$(S2$, J%, M%)
5020 FOR K% = 1 TO C%
5030 IF A$ = M$(K%) THEN SUM(K%) = SUM(K%) + 1: N = N + 
1: GOTO 5050: REM OLD STATE
5040 NEXT K%
5042 REM WE HAVE NEW STATE
5045 C% = C% + 1
5046 M$(C%) = A$: SUM(C%) = 1: N = N + 1
5050 REM
5055 NEXT J%
5060 REM NOW FIGURE MI
5070 MI = 0
5080 FOR K% = 1 TO C%
5081 APPLE1 = SUM(K%) / N: APPLE2 = APPLE1
5082 FOR W1% = 1 TO M%
5084 B$ = MID$(M$(K%), W1%, 1)
5085 N5 = 0
5086 FOR W2% = 1 TO L%
5088 IF MID$(S2$, W2%, 1) = B$ THEN N5 = N5 + 1
5090 NEXT W2%
5092 APPLE2 = APPLE2 / (N5 / L%)
5094 NEXT W1%
5096 MI = MI + APPLE1 * LOG(APPLE2)
5100 NEXT K%
5110 PRINT “ORDER, MI EQUALS.....”, M%, MI / LOG(2)
5200 NEXT M%
5500 RETURN
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Appendix B: Answers to 
Selected Exercises

CHAPTER 1

	1.4	 The sum of fractions along the ordinate scales as the square root of the 
sum of fractions along the abscissa.

	1.7	 There are 80 allowed combinations.

CHAPTER 2

	2.1	 (a) 8.50 Hartleys = 28.2 bits (b) 5.30 nits = 2.30 Hartleys
	2.5	 The sum of weighted surprisals need not mirror the distribution function 

since the indexing of states is arbitrary.
	2.6	 (a) c. 1090

 peptides (b) 300 bits
	2.9	 (a) 0.286 bits (c) 0.406 bits (d) 0.583 bits (e) 0.0523 bits (f) 4 89 10 4. × − bits
	2.11	 (a) c. 10103 isomers (b) 1.47 bits
	2.12	 (a) 5 14 10 3. × − bits (b) 7 11 10 6. × − bits (c) 1 27 10 8. × − bits

CHAPTER 3

	3.8	 (a) βT
vdW
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=
−

⋅
−
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, exp − pV

	3.10	 The Legendre transform cancels to zero.
	3.14	 For λ = 0.05, 0.10, and 1.00, the respective sector volumes are approxi-

mately 0.0379, 0.0100, and 10 4 3− meters .
	3.15	 (a) p ≈ ×1 58 106. pascals (b) σ p ≈ × −6 12 10 6. pascals
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CHAPTER 4

	4.1	 (a) Λmin = 1
	4.2	 (c) IX p↔ ≈ 7 64. bits (d) IX T↔ ≈ 6 96. bits
	4.3	 (a) σ p

A( ) ≈ 683 pascals; σ p
B( ) ≈ 563 pascals

	4.4	 (c) p ≈ ×6 9 105. pascals, σ p ≈ ×2 4 105. pascals (d) IX p↔ ≈ 5 4. bits
	4.5	 (a) p ≈ ×5 4 105. pascals, σ p ≈ ×2 3 105. pascals (b) ε ≈ 0 12.
	4.6	 Only one adiabat can intersect a given state.
	4.10	 MIXY pV↔ ≈ 2 93. bits

CHAPTER 5

	5.2	 The less exacting chemist is not overly disadvantaged. The average yield 
is c. 0.60. The standard deviation is c. 0.0034.

	5.5	 (a) X p↔ ≈ 1 18. .
	5.7	 The isotherm offers a more favorable X p↔ .
	5.8	 X p↔ ≈ 65; σ

X p↔
≈ 11. The distribution is fairly uniform.

	5.9	 (a) E expresses smaller IX↔U .

CHAPTER 6

	6.2	 ξMI
cyclobut = 0 0971. , σξ, . /MI

cyclobut = × −3 9 10 3 bits message unit

	 ξMI
cubane = 0 122. , σξ, . /MI

cubane = × −5 1 10 4 bits message unit

	 ξσD
cyclobut = 5 40. , σξ σ, . /

D

cyclobut = ⋅0 17 kilojoules mole message unit

	 ξσD
cubane = 4 71. , σξ σ, . /

D

cubane = ⋅0 15 kilojoules mole message unit

	6.3	 ξMI
cyclobutene = 0 336. , σξ, . /MI

cyclobutene = × −2 7 10 2 bits message unit

	 ξMI
Dewar Benzene = 0 358. , σξ, . /MI

Dewar Benzene = × −2 3 10 2 bits message unit

	 ξσD
cyclobutene = 18 6. , σξ σ, . /

D

cyclobutene = ⋅0 99 kilojoules mole message unitt

	 ξσD
Dewar Benzene = 19 6. , σξ σ, . /

D

Dewar Benzene = ⋅1 1 kilojoules mole message unitt

CHAPTER 7

	7.1	 (a) 451 joules/mole (b) 1.57 bits
	7.2	 (a) –4700 joules/mole (b) –4040 joules/mole
	7.11	 Molecules that are optical isomers have identical standard chemical 

potentials and molar enthalpies in the gas phase.
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