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Preface

There is a long tradition regarding mathematical modeling of biological phenomena,
which dates back to the very beginning of modern science. However, there has
been a revival in the last decade and a half, in which much effort has been made
to elucidate the dynamic behavior of intracellular processes. This has been due in
part to the development of impressive novel experimental techniques that permit
precise measurements at the single cell, and even at the single molecule levels. But
also thanks to the availability of low-cost and highly efficient computational power,
which permits to numerically explore the dynamics of quite complex systems.
One particular problem that has generated big interest is the stochasticity of gene
expression.

Over the last years it has become clear that the dynamics of most biological
phenomena can be studied via the techniques of either nonlinear dynamics or
stochastic processes. In either case, the biological system is usually visualized as
a set of interdependent chemical reactions and the model equations are derived out
of this picture. Deterministic, nonlinear dynamic models rely on chemical kinetics,
while stochastic models are developed from the chemical master equation. Recent
publications have demonstrated that deterministic models are nothing but an average
description of the behavior of unicellular stochastic models. In that sense, the
most detailed modeling approach is that of stochastic processes. However, both the
deterministic and the stochastic approaches are complementary. The vast amount of
available techniques to analytically explore the behavior of deterministic, nonlinear
dynamical models is almost completely inexistent for their stochastic counterparts.
On the other hand, the only way to investigate biochemical noise is via stochastic
processes.

It is my impression that the excitement of developing a new science (that has
been termed systems biology) has made people unaware of a large amount of
related discoveries performed in the late nineteenth and early twentieth centuries
by people like Planck, Nernst, de Groot, Prigogine, etc., which we have classified
as physical chemistry and irreversible thermodynamics. Moreover, although not
as extensive a dismissal, there is no general acknowledgment on the part of
systems biologists of the common mathematical grounds shared by biochemical
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viii Preface

and electrophysiological models; the latter ones are usually classified in the realm of
biophysics. One of the objectives of the present book is to show that the approaches
of deterministic nonlinear dynamics, stochastic chemical master equation, and
irreversible thermodynamical chemistry are all complementary, and that their proper
combination allows a deeper understanding of the dynamic behavior of a large
variety of biological systems. In particular, we tackle in this book gene expression
and ion transport across membranes.

There are many great books on nonlinear dynamics, stochastic processes, irre-
versible thermodynamics, physical chemistry, and biochemistry. Nonetheless, to
the best of my knowledge, there is none that brings all of these theories together,
in an introductory but formal and comprehensive manner, for people interested in
modeling biological phenomena. The present book is aimed at filling, at least in part,
this gap. In order to achieve this goal I decided to follow a hands-on constructivist
approach. The theory is developed stepwise, starting from the simplest concepts,
and building upon them to derive, one step at a time, a more general framework.
But instead of first developing the theory and later studying its possible applications
to biological systems, the examples are introduced right away. On the one hand,
each theoretical development is motivated by specific biological examples. But also,
every new mathematical derivation is immediately applied to one or more biological
systems.

The target audience of this book are mainly last year undergraduate and graduate
students with a solid mathematical background (physicists, mathematicians, and
engineers), as well as with basic notions of biochemistry and cellular biology, who
are interested in learning the previously described techniques to model biological
phenomena. The book can also be useful to students with a biological background,
who are interested in mathematical modeling, and have a working knowledge of
calculus, differential equations, and basic notions of probability theory.

The book is organized as follows. Chapters 1 and 2 are introductory and in them
some basic notions of chemical kinetics and thermodynamics are, respectively, pre-
sented. The readers already familiar with this material can jump directly to Chap. 3.
However, I encourage everyone to at least take a look at Chaps. 1 and 2, because the
material there introduced is widely employed in the rest of the book. In Chap. 3, the
so-called telegraph stochastic process is analyzed from all the three perspectives
discussed above, and the results are employed to discuss some aspects of ion
channel gating, promoter repression and activation, and protein phosphorylation and
dephosphorylation. In Chap. 4 the following stochastic processes are introduced and
analyzed in connection with the production and degradation of biological molecules:
Poisson process, exponential decay, and birth–death process. In Chap. 5, birth–death
processes are generalized to account for enzyme kinetics. The concept of quasi-
stationary approximation for stochastic processes is also introduced in Chap. 5.
Chapter 6 is advocated to studying a generalization of the telegraph process in
the context of the chemical interaction between one receptor and several ligands.
Chapter 7 further generalized the results in Chap. 6 to account for cooperativity. In
Chap. 8, all the results and developments introduced in the previous chapters are
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applied to the study of gene expression. Finally, in Chap. 9, the developed theory is
applied to studying ion transport across membranes.

Like all long-term processes, the writing of the present book involved numerous
people and institutions. In particular, I am in debt with my working place, the Centro
de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, for
granting me a sabbatical leave in which I found the necessary time to write. I also
thank the Department of Physiology of McGill University and the International
Centre for Theoretical Physics for their hospitality and for providing me with the
most adequate environment to carry out this project. Finally, of all the people who
were involved, one way or another, in the process of writing the present book, I wish
to emphasize Michael C. Mackey, Emanuel Salazar-Cabazos, Román U. Zapuién-
Campos, and Luis U. Aguilera-de-Lira. I am deeply grateful with all the persons
who contributed to the present book, but the support and advice of the above-
mentioned people were so important that, in strict sense, made this book possible. In
spite of several reviews it is possible that some mistakes are found along the book.
I, and no one else, am the only responsible for all of them.

Apodaca, Mexico Moisés Santillán
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Chapter 1
Brief Introduction to Chemical Kinetics

Abstract In this chapter we present a brief introduction to chemical kinetics.
Key concepts like: reversibility of chemical reactions, reaction rate, reaction
rate constant, and chemical equilibrium, are introduced and discussed. The most
important of the results here derived is the so-called law of mass action; which
we discuss from the perspective of chemical kinetics. In this chapter we follow a
heuristic rather than a formal approach. We start by analyzing a few simple chemical
reactions to gain insight into the chemical kinetics basic concepts. After that, we
heuristically derive and discuss the corresponding results for the most general case.
The interested reader can consult any of the many available books on the subject.
We particularly recommend the book by Houston (Chemical kinetics and reaction
dynamics. McGraw-Hill, New York, 2001).

1.1 The Nature of Chemical Reactions

From a macroscopic perspective, a chemical reaction consists of a vast amount of
sequential, individual, chemical steps. Each step takes place when one or more
molecules of one or more chemical species (the reactants) interact via collisions
and transform their chemical nature to give rise to a different set of molecules of
distinct chemical species (the products). Strictly speaking, all chemical reactions
are reversible because it is possible that the product molecules collide in such a way
that they react and give rise to the reactant molecules. The usual way to represent
these processes is as follows:

˛1A1 C ˛2A2 C � � � • ˇ1B1 C ˇ2B2 � � � : (1.1)

The above expression denotes a reaction in which the reactants are chemical species
A1, A2, etc. while the products are chemical species B1, B2, etc. Furthermore, in
each forward step, ˛1 molecules of species A1, ˛2 molecules of species A2, etc.
react and disappear, giving rise to ˇ1 molecules of species B1, ˇ2 molecules of

M. Santillán, Chemical Kinetics, Stochastic Processes, and Irreversible
Thermodynamics, Lecture Notes on Mathematical Modelling in the Life Sciences,
DOI 10.1007/978-3-319-06689-9__1, © Springer International Publishing Switzerland 2014
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2 1 Brief Introduction to Chemical Kinetics

species B2, etc. As previously mentioned, this chemical reaction is reversible and
so the individual steps can take place in both directions. The right-up and left-down
harpoons denote the chemical reaction reversibility.

1.2 Reaction Rate: A Very Simple Example

Consider the following chemical reaction

AC B • C: (1.2)

The reaction rate v is defined as the net number of forward steps (forward steps
minus backward steps) taking place per unit time, per unit volume. In this particular
example, v equals the rate per unit volume at which C molecules appear, or
equivalently, the rate per unit volume at which A or B molecules disappear. If we
take into consideration the fact that the reaction is reversible, one can define forward
and backward reaction rates, vC and v�, as respectively the number of forward and
backward individual steps taking place per unit time, per unit volume. In terms of
vC and v�, the net reaction rate (also known as speed) is

v D vC � v�:

Consider for now the forward reaction. In order for one A molecule and one
B molecule to react, they need to collide. Thus, the forward reaction rate is
proportional to the number of such collisions. All the molecules in a chemical
reactor follow Brownian random trajectories due to thermal agitation. In particular,
the higher the temperature, the larger the average velocity of all molecules, and
so the higher the collision probability and the reaction rate. The chemical reaction
rate is also affected by other factors. For instance, as the number of A molecules
increases, the probability that one of them collides with a B molecule augments.
In fact, it can be shown that the forward reaction velocity is proportional to nA: the
Amolecule count. Using the same reasoning, we can argue that the forward reaction
rate is also proportional to the B molecule count: nB . Finally, the reactor volume,
V , also plays an important role. In a larger volume it is less probable that any of the
existing B molecules collide with a given A molecule; and vice versa. By means of
collision theory (Houston 2001) it is possible to demonstrate that

vC D kC nA
V

nB

V
; (1.3)

where kC is a function of the temperature. However, under isothermal conditions, it
can be regarded as a constant. Constant kC is called forward-reaction rate constant.
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Let us assume that the volume of the reservoir in which the reaction takes
place (the reactor) is constant, and define the forward-reaction molecular velocity
(or simply the velocity), V C, as the net number of forward individual steps taking
place per unit time: V C D vCV . With this, Eq. (1.3) can be rewritten as

V C D �CnAnB; (1.4)

with �C D kC=V .
Molecules C can be destabilized by collisions with any other molecule, and split

into molecules A and B . Therefore, one can argue that the backward reaction rate is
given by

v� D k� nC
V
; (1.5)

with k� the backward-reaction rate constant. From Eq. (1.5), the corresponding
backward molecular velocity is

V � D ��nC ; (1.6)

In which �� D k�=V .
From Eqs. (1.3) and (1.5), the global reaction rate is

v D vC � v� D kCcAcB � k�cC ; (1.7)

Where cA D nA=V , cB D nB=V , and cC D nC=V are the concentrations of
molecules A, B , and C , respectively. Similarly, the global molecular velocity can
be written from (1.4) and (1.6) as

V D V C � V � D �CnanB � ��nC : (1.8)

1.3 Dynamic Equations

Let us regard for a moment the general chemical equation in Eq. (1.1), and assume
that it takes place at rate v. Recall that the reaction rate is the net number of forward
individual steps taking place per unit time, per unit volume. Then, if we consider
that each time a forward chemical step takes place ˛i molecules of species Ai
disappear, while ˇi molecules of species Bi appear, then the rate of change for
the concentrations of all the chemical species involved in the reaction in (1.1) is as
follows:

dcAi
dt

D �˛iv; dcBi
dt

D �ˇiv: (1.9)
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Thus, in the case of reaction (1.2), the rates of change for the concentrations of all
the involved chemical species are—see Eq. (1.7):

� dcA

dt
D �dcB

dt
D dcC

dt
D v D kCcAcB � k�cC : (1.10)

We can also write an equivalent equation for the rates of change of the molecular
counts as follows

� dnA

dt
D �dnB

dt
D dnC

dt
D V D �CnAnB � ��nC : (1.11)

1.4 Chemical Equilibrium

Chemical equilibrium is a key concept in chemical kinetics. It is achieved when the
concentrations or the molecular counts of all the species involved in the chemical
reaction reach a stationary value. According to (1.9), the reaction in (1.2) reaches
chemical equilibrium when

k�

kC D cAcB

cC
; (1.12)

where cA, cB , and cC respectively denote theA,B , andC stationary concentrations.
This equation does not suffice to determine the stationary concentration values
(for that, more information is necessary). However, it establishes a fundamental
relationship that has to be satisfied by the steady concentrations of all the reaction
chemical species, independently of their initial values. This relationship is called the
law of mass action.

The reader is invited to prove that, in terms of molecular counts, the law of mass
action for the reaction in (1.2) takes the following form

��

�C D nAnB

nC
; (1.13)

where nA, nB , and nC respectively denote the A, B , and C stationary molecule
counts.

1.5 Second Order Chemical Kinetics

The kinetics of the reaction in Eq. (1.2) are first order in all the chemical species’
concentrations. The reason for this is that all the concentrations appear to the power
one in the forward and backward reaction rates. The reader would have already
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guessed that not all reactions are like that. For instance, consider the following
example:

2A • C: (1.14)

To derive the expressions for the corresponding forward and backward reaction rates
simply consider that chemical species A takes the place of B in the reaction in (1.2).
From this, it is straightforward to obtain the following:

vC D kCc2A; v� D k�cC : (1.15)

Notice that the exponent of cA and cC are nothing but the stoichiometric coefficients
of the corresponding chemical species in (1.2).

By following the reasoning leading to Eq. (1.9), the differential equations gov-
erning the dynamical evolution of cA and cC result to be

� 1

2

dcA

dt
D dCc

dt
D vC � v� D kCc2A � k�cC : (1.16)

Furthermore, the law of mass action in this case takes the following form:

k�

kC D c2a
cc
: (1.17)

By comparing Eqs. (1.17) and (1.12) we note that the ratio of the backward to the
forward reaction-rate constants appears on the left-hand side of both equations.
Moreover, on the right-hand side we find a fraction whose numerator has the
reactant concentrations to the corresponding stoichiometric coefficient, and whose
denominator has the concentration of the reaction product. In the following section
we shall see that, indeed, the law of mass action has this form in general.

All the results in this section can also be written in terms of molecule counts,
rather than concentrations. The readers are invited to do so.

1.6 The General Case

Let us now analyze the most general chemical reaction presented in Eq. (1.1).
We can generalize the particular cases discussed in the previous sections as follows.
The forward and backward reaction rates for the reaction in (1.1) are

vC D kCc˛1A1c
˛2
A2

� � � ; v� D k�cˇ1B1c
ˇ2
B2

� � � : (1.18)

In the equation above kC and kC denote the corresponding rate constants. Notice
that Eqs. (1.3), (1.5), and (1.15) are particular cases of Eq. (1.18). Moreover, the
differential equations governing the dynamics of cAi and cBi are:
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� 1

˛i

dcAi
dt

D 1

ˇi

dcBi
dt

D vC � v� D kC Y

i

c
˛i
Ai

� k� Y

i

c
ˇi
Bi
: (1.19)

From this, the condition for chemical equilibrium results to be

KD D k�

kC D
Q
i c

˛i
AiQ

i c
ˇi
Bi

: (1.20)

This is the most general form of the law of mass action. The fraction k�=kC is
known as the reaction dissociation constant. In the following chapter we shall see
that the law of mass action not only has a kinetic significance, as we have just
studied, but also a thermodynamic one. However, the reader will have to keep on
reading the book in order to gain a deeper understanding about this connection.

1.7 Summary

This chapter is meant as a brief introduction to chemical kinetics. Some central con-
cepts, like reaction rate and chemical equilibrium, have been introduced and their
meaning has been reviewed. We have further seen how to employ those concepts to
write a system of ordinary differential equations to model the time evolution of the
concentrations of all the chemical species in the system. The resulting equations can
then be numerically or analytically solved, or studied by means of the techniques
of nonlinear dynamics. A particularly interesting result obtained in this chapter was
the law of mass action, which dictates a condition to be satisfied for the equilibrium
concentrations of all the chemical species involved in a reaction, regardless of their
initial values. In the forthcoming chapters we shall use this result to connect different
approaches like chemical kinetics, thermodynamics, etc.



Chapter 2
Brief Introduction to Thermodynamics

Abstract This chapter is devoted to introducing the basic concepts of
thermodynamics, specially as applied to chemistry. The reader must be aware
that the material in this chapter is rather technical and succinct. Therefore, it is
quite possible that some of the results are not clear, even after carefully reading the
chapter material more than once. Of course, people interested in this field can go to
the specialized literature. However, one of the mayor goals of the present book is to
help make these things clear through some examples. So, if things seem a bit blurry
after finishing this chapter, please do not despair and keep reading. It will soon get
better, promise.

2.1 The First and Second Laws of Thermodynamics

Let us start by briefly reviewing some of the most important concepts in
thermodynamics, beginning with the first law. The readers interested in reading
about this subject with more detail are referred to the following books: (Planck
1945; Ben-Naim 2007; Beard and Qian 2008).

Denote by E the energy of the system under study. According to the first law
of thermodynamics, E can change because energy in the form of heat enters
the system, because mechanical work is performed on the system, or because
the molecular counts of the various chemical species composing the system change
(chemical work). In particular, if the system is a compressible fluid, the first law of
thermodynamics can be written as (Planck 1945):

dE D μQ � PdV C
X

i

�idNi : (2.1)

M. Santillán, Chemical Kinetics, Stochastic Processes, and Irreversible
Thermodynamics, Lecture Notes on Mathematical Modelling in the Life Sciences,
DOI 10.1007/978-3-319-06689-9__2, © Springer International Publishing Switzerland 2014
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In the above equation μQ denotes the amount of heat entering the system (the sym-
bol μ represents an inexact differential), �PdV is the amount of mechanical work
performed on the system (P is the hydrostatic pressure and V is the system volume),
and �dN is the so-called chemical work performed on the system (�i and Ni are
respectively the chemical potential and the molecular count of the i th chemical
species).

The second law of thermodynamics introduces a new variable called the entropy,
usually denoted by S , which satisfies the following relation (Planck 1945):

TdS � μQ: (2.2)

That is, the entropy increment of a system along a given process is always larger,
or at least equal, than the influx of heat along such process, divided by the
temperature T . The equality is satisfied when the system undergoes a reversible
process.

In the particular case in which μQ D 0 (i.e. when the system suffers an adiabatic
process) the second law takes the form:

dS � 0:

Meaning that the entropy of an isolated system never decreases. If we further
consider that any isolated system evolves to a thermodynamic equilibrium state
through an irreversible process, the above result implies that the equilibrium
state is characterized by having the maximum possible entropy compatible with
the constrains of constant internal energy, volume, and particle counts. This last
result is known as the maximum entropy principle.

It is also possible to express the second law of thermodynamics as optimality
principles in some other particular cases. For instance, by combining Eqs. (2.1) and
(2.2) we obtain

dE � TdS � PdV C
X

i

�idNi : (2.3)

Hence, if S , V , and Ni are kept constant, then

dE � 0:

This means that the energy of a system kept at constant entropy, volume, and particle
count can only decrease. Or equivalently, that the equilibrium state of a system
subject to these constrains possesses the minimum possible energy compatible with
them.

Yet another instance of second law of thermodynamics can be derived by
introducing a new thermodynamic quantity, called the Gibbs free energy (Planck
1945):
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G D E � TS � PV: (2.4)

By differentiating Eq. (2.4) and substituting Eq. (2.3) we get

dG � �Sdt C VdP C
X

i

�idNi : (2.5)

Hence, the Gibbs free energy of a system that is kept at constant T , P , and Ni can
only decrease, and so the corresponding equilibrium state is characterized by having
the minimum possible G value.

Under the assumption that the system undergoes a reversible process Eq. (2.5)
becomes

dG D SdT C VdP C
X

i

�idNi :

Furthermore, since most biochemical processes take place at constant pressure and
temperature, the last expression reduces under such conditions to

dG D
X

i

�idNi : (2.6)

Keep this last result in mind because we will extensively use it in the rest of the
book.

2.2 Thermodynamics of Chemical Reactions

Assume that the molecular counts of all the chemical species change because of
chemical reactions taking place within the system. Thus (de Groot and Mazur 2013):

dNi D
X

�

ıi�d��;

in which the sum is carried out over all the chemical reactions, ıi� is an stoichio-
metric coefficient that gives the change in the number of molecules of chemical
species i when an individual event of the �th reaction occurs, and �� is the degree
of advance of the �th reaction (it measures the number of individual events that have
taken place since the beginning of the experiment). If the reactions are coupled, then
all of them advance at the same rate (�� D � for all �), and

dNi D
X

�

ıi�d�; (2.7)
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Substitution of (2.7) into (2.6) leads to

�G D dG

d�
D

X

�

X

i

ıi��i : (2.8)

The newly defined quantity �G is the so-called total free energy change of the
system due to the undergoing chemical reactions. A free energy change can be
defined for each reaction:

�G� D
X

i

ıi��i :

And so

�G D
X

�

�G�:

For simplicity, consider in what follows a chemical system in which only
one chemical reaction is taking place. Stoichiometric coefficients can be positive
(if the corresponding chemical species is a product of the reaction) or negative (if the
chemical species is a reactant). Let us denote by �˛i all the negative stoichiometric
coefficients, and by ˇi all the positive ones. With this, Eq. (2.8) can be rewritten as

�G D
X

i

ˇi�i �
X

j

˛j�j : (2.9)

In the above equation we have omitted the sum over � because of the assumption
that only one chemical reaction occurs. Moreover, subindexes i and j respectively
denote the reaction products and reactants.

In the following section we derive an expression for the chemical potential in
terms of the system state variables. But for now let us just take the final result:

� D �O C kBT ln
c

cO
; (2.10)

where c D N=V is the molecule concentration of the corresponding chemical
species (N is the molecule count and V is the volume), cO and �O are respectively
the molecule concentration and the chemical potential under reference conditions,
and kB is Boltzmann’s constant. Thus, if we assume without loss of generality
that the reference conditions are chosen in such a way that cOV D 1, Eq. (2.10)
transforms into

� D �O C kBT lnN: (2.11)
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Substitution of Eq. (2.11) into (2.9) leads to

�G D kBT
X

i

ˇi ln
�
Nie

�Oi =kBT
�

� kBT
X

j

˛j ln
�
Nj e

�Oj =kBT
�
:

We have seen that thermodynamic equilibrium implies that dG D 0. Then, it
follows from (2.8) that a chemical reaction reaches equilibrium when �G D 0, and
so when

Q
i N

˛i
i

Q
j N

ˇi
j

D e
P
i ˇi�

O
i =kBT

e
P
j ˛j �

O
j =kBT

; (2.12)

where N i denotes the equilibrium molecule count of the corresponding chemical
species. Observe that this equation is strikingly similar to Eq. (1.20), suggesting that

KD D e
P
i ˇi�

O
i =kBT

e
P
j ˛j �

O
j =kBT

: (2.13)

In the following chapters we shall prove that Eqs. (2.12) and (1.20) are identical and
indeed Eq. (2.13) is true.

2.3 Understanding the Chemical Potential Concept

Consider a system that has a countable number of available states and suppose that
we know the probability (pi ) associated with each one of them. The system entropy
can then be computed as (Ben-Naim 2007):

S D �kB
X

i

pi lnpi ; (2.14)

The problem with this approach is that one usually does not know the probability
distribution pi , but only the constraints the system is subject to. In order to solve
this dilemma, one can make use of the second law of thermodynamics in one of its
following versions (Planck 1945):

• Under conditions of constant energy (E), volume (V ), and number of particles
(N ), the equilibrium state maximizes the system entropy (S ).

• Under conditions of constant temperature (T ), volume, and number of parti-
cles, the equilibrium state minimizes the Helmholtz free energy defined as:
F D E � TS .

• Under conditions of constant temperature (T ), pressure (P ), and number of
particles, the equilibrium state minimizes the Gibbs free energy defined as:
G D E � TS � PV .
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Let us focus in the second case. The system average energy can be computed in
terms of the probability distribution as:

E D
X

i

�ipi ; (2.15)

in which �i is the energy associated with the i th state. Then, by combining
Eqs. (2.14) and (2.15) we obtain the following expression for the Helmholtz free
energy in terms of the probability distribution:

F D
X

i

pi .�i C kBT lnpi /: (2.16)

With this, we can figure out what the equilibrium probability distribution is when
the system temperature, volume, and number of particles are constrained. All we
need to do is to find the probability distribution that minimizes Eq. (2.16), subject to
the normalization condition:

X

i

pi D 1:

This a classical problem of calculus that can be solved using the technique of
Lagrange multipliers. We leave for the reader to prove that the solution is the
renowned Boltzmann distribution:

P
eq
i D e��i =kBT

Z
; (2.17)

where

Z D
X

i

e��i =kBT (2.18)

is known as the partition function. Substitution of Eq. (2.17) into Eq. (2.16) finally
leads to the following expression for F :

F D �kBT lnZ: (2.19)

A molecule in solution can be seen as a system complying with constant T ,
V , and N . Let Z.1/ denote its partition function. Having the partition function
a probabilistic interpretation, the partition function of a composite system equals
the product of the components’ partition functions, unless they are identical
and indistinguishable. Consider for instance a system composed of N identical,
indistinguishable molecules in solution. In this case, the system partition function is:

Z D Z.1/N

N Š
: (2.20)
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NŠ is the number of ways in which the N molecules can be permuted. By
introducing the factor NŠ we have taken into account the fact that, due to the
indistinguishability of molecules, all of the permutations account for the same state.
In other words, by dividing by NŠ one avoids to count the same state multiple times
while computing the system free energy—see Eq. (2.19).

By substituting Eq. (2.20) into Eq. (2.19) we obtain for Helmholtz free energy the
following expression:

F D kBT .N lnN �N �N lnZ.1//: (2.21)

In the derivation of Eq. (2.21) we have made use of Stirling’s approximation:
lnNŠ � N lnN �N .

If we differentiate F D E � TS and take into consideration Gibbs fundamental
relation (dE D TdS � PdV C P

i �idNi ) we get

dF D SdT � PdV C �dN:

Hence

� D
�
@F

@N

�

T;V

: (2.22)

Finally, substitution of (2.21) into (2.22) leads to

� D kBT lnN � kBT lnZ.1/:

By introducing a few extra factors, without altering the equality, this equation can
be rewritten as

� D �O C kBT ln
c

cO
; (2.23)

in which c D N=V is the molecule concentration, cO is the concentration at some
standard conditions, and

�O D �kBT ln
Z.1/

VcO

is the system chemical potential when c D cO , which depends only on the
molecules’ chemical nature. Equation (2.23) is the standard formula for the
chemical potential found in textbooks (Beard and Qian 2008).
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2.4 Summary

This chapter was devoted to introducing the thermodynamic concepts and formalism
essential to understand chemical reactions. Thus, we reviewed the first and second
laws of thermodynamics, introduced the concept of thermodynamic equilibrium,
defined the free energy change, and used it to prove that thermodynamic and
chemical equilibrium are equivalent concepts. Interestingly, we were able to obtain
the las of mass action from purely thermodynamic considerations, suggesting that
the thermodynamic and the chemical kinetics approaches are closely related. This
connection is explored in detail in the next chapter. Finally, the last section of the
chapter was dedicated to understanding the concept of chemical potential from the
perspective of statistical mechanics. In later chapters we tackle this same question
from different angles.



Chapter 3
Different Approaches to Analyzing a Simple
Chemical Reaction

Abstract In this chapter, the dynamics of the chemical reaction A • B are
analyzed from the perspectives of macroscopic chemical kinetics, thermodynamics,
and stochastic processes. The main objective is to show that all these approaches are
not exclusive but complementary, and that properly combining them through a
fourth unifying approach (the one I call the energy landscape approach) allows
a deeper understanding of the system dynamic behavior. After finishing this
chapter not only the reader shall understand the different approaches to analyzing
the dynamics of a chemical reaction, but will also obtain some basic notions
of stochastic processes. Namely, the chemical master equation and Gillespie’s
algorithm.

3.1 The Chemical Kinetics Approach

Let us begin by introducing a simple chemical reaction (perhaps the simplest
possible one):

A • B: (3.1)

As we discussed in Chap. 1, this reaction (like all other ones) is reversible. Therefore
(3.1) denotes two complementary chemical reactions. The first one, in which a
molecule of the chemical species A turns into a molecule of the species B , is
represented by the right harpoon. The second reaction, corresponding to a molecule
of speciesB turning into a molecule of speciesA, is represented by the left harpoon.
Despite its simplicity, this reversible reaction-set is actually a good model for some
essential biochemical processes like: the gating of an ion channel between the close
and open states, a protein flipping between two different conformational states, and
the switching of a promoter between the active and repressed states.

Although the following assertions are valid for all the chemical reactions that
can be depicted by Eq. (3.1), I believe it is easier if one has an specific example

M. Santillán, Chemical Kinetics, Stochastic Processes, and Irreversible
Thermodynamics, Lecture Notes on Mathematical Modelling in the Life Sciences,
DOI 10.1007/978-3-319-06689-9__3, © Springer International Publishing Switzerland 2014
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in mind. Hence, without loss of generality, consider a molecule that switches back
and forth between conformational states A and B . As discussed in Chap. 1, what
makes a molecule switch between its two available states are the constant, numerous
collisions with the molecules in the surrounding medium (a phenomenon known as
thermal agitation or noise). Regard now several identical such molecules, all of them
subject to the same environmental conditions. Then, from the results in Chap. 1, the
forward and backward reaction rates are:

vAB D �ABnA; vBA D �BAnB: (3.2)

In the above equation vXY denotes the rate of the X to Y reaction, nX corresponds
to the number of molecules in state X , and the proportionality constants �XY are
called the reaction rate constants.

If we assume a constant total number of molecules

nA.t/C nB.t/ D nT ; (3.3)

it follows from Eq. (3.2) that the time evolution of nA is governed by:

dnA

dt
D �vAB C vBA D �BAnT � .�AB C �BA/nA: (3.4)

We leave for the reader to prove that the solution to Eq. (3.4) is:

nA.t/ D �BA

kAB C �BA
nT C

�
nOA � �BA

�AB C �BA
nT

�
e�.�ABC�BA/ t ; (3.5)

in which nOA represents the initial count of A molecules. Equations (3.3) and (3.5)
further imply that

nB.t/ D �AB

�AB C �BA
nT C

�
nOB � �AB

�AB C �BA
nT

�
e�.�ABC�BA/ t ; (3.6)

where nOB D nT � nOA is the initial number of B molecules.
Observe from Eqs. (3.5) and (3.6) that both nA.t/ and nB.t/ respectively converge

in an exponential fashion to

nA D kBA

kAB C kBA
nT ; (3.7)

nB D kAB

kAB C kBA
nT ; (3.8)

as t ! 1. In other words, the dynamical system given by (3.3) has a unique,
globally stable steady state given by Eq. (3.7)—recall that the dynamics of nB.t/
are completely determined by those of nA.t/. Finally, the speed of convergence is
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given by the sum of the reaction rate constants: the larger they are, the faster the
systems converges to its stationary state.

We have from Eqs. (3.7) and (3.8) that

nA

nB
D kBA

kAB
D KD: (3.9)

The above equation is the law of mass action as applied to reaction (3.1). Recall
that constant KD is called the dissociation constant, while its inverse KA D K�1

D is
called the association constant (Houston 2001).

In conclusion, the chemical kinetics formalism is capable of predicting the time
evolution of the number of molecules in each state. However, its validity rests upon
the assumption that the number of molecules in statesA and B is very large. In what
follows we shall analyze the reasons behind this assertion.

3.2 Chemical Master Equation

Consider once more a single molecule flipping back and forth between states A
and B . Since this is an stochastic process, it is impossible to predict in which state
the molecule is going to be at any given time. Therefore, a probabilistic description
is necessary. Let PA.t/ be the probability that the molecule is in state A at time t .
The probability that it is in state B at time t is then PB.t/ D 1 � PA.t/. Assume
that the probabilities per unit time that the molecules shifts from state A to sate B ,
and vice versa, are constant and respectively denoted by ˛AB and ˛BA. This means
that, if the molecule is in state A, the probability that it shifts to state B in a time
interval of length � is ˛AB� . Similarly, the probability that the system flips from B

to A in the same interval is ˛BA� . The probabilities per unit time ˛AB and ˛BA are
usually called propensities (Gillespie 1977; Van Kampen 1992). Having the above
discussion in mind, we can derive the equation governing the dynamics of PA.t/ as
follows. Assume that � is short enough so that, at most, the system flips once from
one state to the other. Then

PA.t C �/ D PA.t/.1 � ˛AB�/C .1 � PA.t//˛BA�:

That is, we can find the system in state A at time t C � if it was already there at time
t and did not shift to state B during the period Œt; tC�	, or if it was in state B at time
t and flipped to state A during the same period. It follows after a little algebra that

PA.t C �/ � PA.t/
�

D �PA.t/˛AB C .1 � PA.t//˛BA:

Then, by taking the limit � ! 0 we obtain
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dPA.t/

dt
D �PA.t/˛AB C .1 � PA.t//˛BA: (3.10)

Equation (3.10) is called the master equation for PA.t/ (Gillespie 1977; Van Kam-
pen 1992). Notice that this is the same differential equation as that in (3.4). Hence,
its solution is

PA.t/ D ˛BA

˛AB C ˛BA
C

�
PO
A � ˛BA

˛AB C ˛BA

�
e�.˛ABC˛BA/ t ; (3.11)

in which PO
A is the initial condition for PA.t/. Finally, the fact that PA.t/C PB.t/

D 1 further implies that

PB.t/ D ˛AB

˛AB C ˛BA
C

�
PO
B � ˛AB

˛AB C ˛BA

�
e�.˛ABC˛BA/ t ; (3.12)

where PO
B D 1 � PO

A is the initial condition for PB.t/. Interestingly, we have from
Eqs. (3.11) and (3.12) that PA.t/ and PB.t/ respectively converge to

PA D ˛BA

˛AB C ˛BA
; (3.13)

PB D ˛AB

˛AB C ˛BA
: (3.14)

This means that, regardless of the initial condition, the probabilities of finding the
channel in its two available states reach constant values, fully determined by the
propensities ˛AB and ˛BA.

The similarity between Eqs. (3.5)–(3.8) and Eqs. (3.11)–(3.14) suggests a relation
between the propensities ˛AB and ˛BA, on the one hand, and the reaction rate
constants �AB and �BA, on the other. This relation indeed exists and is not mere
coincidence. In order to better understand it let us consider a system consisting of nT
independent, identical molecules like those just analyzed. Given their independence,
the probability of finding n such molecules in stateA (and the rest, nT�n, in stateB)
obeys a binomial distribution (Evans et al. 2000):

PA.n; t/ D nT Š

nŠ.nT � n/ŠPA.t/
n.1 � PA.t//nT �n: (3.15)

This result further implies that PA.n; t/ converges to a stationary probability
distribution:

PA.n/ D lim
t!1 PA.n; t/ D nT Š

nŠ.nT � n/ŠP
n

A.1 � PA/
nT �n: (3.16)



3.2 Chemical Master Equation 19

Finally, the probability of having n molecules in state B at time can be
straightforwardly calculated as PB.n; t/ D PA.nT � n; t/.

Another way to get the results in (3.15) and (3.16) is to write the master equation
for PA.n; t/ and solve it. The reader is invited to demonstrate that such master
equation is:

dPA.n; t/

dt
D PA.n � 1; t/.nT � nC 1/˛BA

�PA.n; t/.nT � n/˛BA
CPA.nC 1; t/.nC 1/˛AB

�PA.n; t/n.˛BA C ˛AB/; (3.17)

and that the expressions in (3.15) and (3.16) are respectively its general and its
stationary solutions.

With the probability distributions PA.n; t/ and PB.n; t/ it is possible to com-
pute the average number of molecules in each state at all times, NA.t/ and NB.t/.
Actually, it is not hard to prove from the properties of the binomial distribution
(Evans et al. 2000) that

NA.t/ D nT PA.t/; (3.18)

NB.t/ D nT PB.t/: (3.19)

After substituting Eqs. (3.11) and (3.12) into Eqs. (3.18) and (3.19) we recover
Eqs. (3.5) and (3.6), provided that nOA D nT P

O
A , nOB D nT P

O
B , kAB D ˛AB , and

kBA D ˛BA. This confirms that, as we suspected, the reaction rate constants of the
chemical-kinetics description correspond to the propensities of the chemical-master-
equation description. Moreover, the differential equations of the model derived in
terms of chemical kinetics are those governing the time evolution of the mean
number of molecules in each state. But, when is this a good description? To answer
this question we need to calculate the standard deviations corresponding to NA.t/
and NB.t/. Once more, it is straightforward to see, from the properties of the
binomial distribution (Evans et al. 2000), that they are given by


A.t/ D 
B.t/ D
p
nT PA.t/PB.t/: (3.20)

The coefficient of variation, defined as the ratio of the standard deviation to
the mean, measures how much the realizations of a random variable deviate
from the mean value. It follows from Eqs. (3.18)–(3.20) that the coefficient of
variation for the number of molecules in both states is inversely proportional
to

p
nT . Therefore, the larger the total number of molecules, the more accurate

the description in terms of chemical kinetics. When the number of molecules is of
the order of Avogadro’s number, the coefficient of variation is negligible (�10�11).
However, when the number of molecules is of the order of tens of thousands, the
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coefficient of variation is about �10�2; and when the molecular count is of the order
of a few hundreds, the coefficient of variation is around �10�1. Thus, a description
in terms of the chemical master equation becomes mandatory for low molecular
counts. But still, the law-of-mass-action deterministic description is capable of
providing some valuable information on the average values.

3.3 Gillespie Algorithm

Given the simplicity of the current system, it was possible to analytically solve the
resulting chemical master equation. However, this is not always the case and one
is limited to simulating individual realizations of the stochastic process in order
to reconstruct the probability distributions out from several simulations. Below,
we introduce the celebrated Gillespie algorithm (Gillespie 1977) to simulate the
stochastic evolution of continuous-time discrete-state stochastic processes, like the
one analyzed in the present chapter.

Let us start with a single molecule flipping back and forth between statesA andB .
Assume that it arrived in state A at time t D 0, and let us compute the probability
that the molecule shifts back to state B in the interval Œ�; � C dt	. This probability
can be written as:

pA.�/dt D poA.�/˛ABdt; (3.21)

in which poA.�/ is the probability that the molecule remains in state A during the
interval Œ0; �	.

To derive an expression for poA.t/ consider that the fact that the molecule remains
in state A means that it does not flip to state B . Hence, it obeys the following
relation:

poA.t C�t/ D poA.t/.1 � ˛AB�t/:

After a little algebra this equation transforms into

poA.t C�t/ � poA.t/
�t

D �˛ABpOA .t/:

By taking the limit �t ! 0 we finally get

dpoA.t/

dt
D �˛ABpoA.t/; (3.22)

whose solution is

poA.�/ D e�˛AB� : (3.23)
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By plugging Eq. (3.23) into Eq. (3.21) we finally obtain the probability
distribution for the waiting times of one molecule flipping from A to B:

pA.�/dt D ˛ABe
�˛AB�dt; (3.24)

which is nothing else but an exponential distribution with mean value �AB D ˛�1
AB .

Therefore, the time the molecule remains in state A is a random variable obeying
an exponential distribution. The average time the molecule remains in state A each
time it gets there is ˛�1

AB .
By following an analogous procedure we can show that the waiting-time proba-

bility distribution for state B is:

pB.�/dt D ˛BAe
�˛BA�dt: (3.25)

The average waiting time in state B is �BA D ˛�1
BA.

Interestingly, from the average waiting times, we can compute the fraction of time
that the system spends in states A and B as follows:

�A D �AB

�AB C �BA
D ˛BA

˛AB C ˛BA
;

�B D �BA

�AB C �BA
D ˛AB

˛AB C ˛BA
:

These last results are in complete agreement with the previously calculated sta-
tionary probabilities of finding the molecule in states A and B—see Eqs. (3.13)
and (3.14).

Knowing the probability distributions for the waiting times allows us to simulate
the system stochastic evolution as follows:

1. Set the system initial state, A or B .
2. Set the initial time, t D t0.
3. Compute the waiting time as a random number � from an exponential distribution

with mean value ˛�1
XY , with X denoting the system current state.

4. Update the system state: if it is A change it to B , and vice versa.
5. Update the simulation time: t D t C � .
6. Iterate from step 3.

The above algorithm is an instance of the celebrated Gillespie algorithm. In the
original paper (Gillespie 1977), the author proved that this algorithm renders exact
stochastic simulations of the stochastic process described by its corresponding
master equation—Eq. (3.10) in the present case. We implemented the previously
described algorithm in Python and plotted the results of one of the simulations we
carried out in Fig. 3.1. For such simulation we employed the following parameter
values: ˛AB D 1 and ˛BA D 2.

Observe how the systems flips between the two states remaining a different time
in each state every time it gets there. Nonetheless, despite this variability one can
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Fig. 3.1 Simulation of the random switching of a molecule between two states: A (0) and B (1)

appreciate that the molecule spends more time in state A than in state B . If the
simulation is carried out for a very long time as compared with the average waiting
times and one measures the total times the system spends in both states, one can
verify that the molecule spends 2/3 of the total time in state A and one third in
state B .

Consider now a system formed by N identical molecules flipping between states
A and B . Let ˛AB and ˛BA be the propensities respectively associated with the
switching of one molecule (if it were the only one in the system) from A to B and
from B to A. The system state is determined by the number of molecules in A (nA)
and in B (nB ). From the above assertions, the propensity for the flipping of one
of the nA molecules in A to B is  AB D nA˛AB . Conversely, the propensity for
the flipping of one of the nB molecules in B to A is  BA D nB˛BA. Finally the
propensity for the switching of one of theN molecules in the system to the opposite
state is  D  AB C  BA.

From the considerations in the previous paragraph, and following a procedure
analogous to the one leading to Eq. (3.24), one can demonstrate that the waiting
time for the next switching (from whichever state) after the last one has taken place
is a random variable obeying the following exponential distribution:

p.�/dt D  e� �dt: (3.26)

Hence, the average waiting time between two consecutive switchings is

� D 1

 
D 1

nA˛AB C nB˛BA
:

Interestingly, the waiting-time probability distribution, and hence the corresponding
mean value, depend on the current state of the system.
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Following Gillespie (1977) and taking into account the waiting time and the
propensities computed above, the stochastic evolution of a system of N identical
molecules flipping between states A and B can be simulated by means of the
following algorithm:

1. Set the system initial state: nA D nOA and nB D nOB .
2. Set the initial time, t D t0.
3. Compute the propensities  AB D nA˛AB ,  BA D nB˛BA, and  D  AB C BA.
4. Randomly compute the waiting time � from an exponential distribution with

mean value  �1.
5. Randomly choose whether one molecule flips from A to B or from B to A,

considering that the first option has a probability equal to  AB= , while the
probability of the second choice is  BA= .

6. Update the system state by modifying nA and nB according to the result of the
previous step.

7. Update the simulation time: t D t C � .
8. Iterate from step 3.

We implemented the previously described algorithm in Python and carried out
simulations with N D 10; 100; 1;000 molecules (the values of ˛AB and ˛BA are
the same as those employed in the simulation of Fig. 3.1). The result is plotted in
Fig. 3.2. Observe that, as expected the amount of noise decreases as the total number
of molecules, N , increases. As a matter of fact, the stochastic simulations better
approach the curves in Eqs. (3.5) and (3.6) as N gets larger. After a transient of less
than 5 min, a stationary behavior is reached in which nA and nB fluctuate around the
values given by Eqs. (3.7) and (3.8). Finally, as predicted by Eqs. (3.5) and (3.6), the
time it takes the system to reach the stationary state is independent of the total
molecule count.

3.4 Thermodynamics

Let us now analyze the chemical reaction from the perspective of thermodynamics.
We have seen in Chap. 2 the so-called free energy change is the most informative
thermodynamic quantity regarding chemical reactions. In particular,�G D 0 when
chemical equilibrium is concomitant with thermodynamic equilibrium.

According to Eq. (2.5), the free energy change for the reaction in (3.1) is

�G D ��A C �B: (3.27)

If we further take into consideration that

�A D �OA C kBT lnNA; �B D �OB C kBT lnNB;
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Fig. 3.2 Random simulation of the switching of N molecules between two states: A and B . The
number of molecules in state A is plotted with blue, and the number of molecules in B is plotted
with red. The plots in panels (a), (b), and (c) correspond to N D 10; 100; 1;000 respectively
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It follows that the equilibrium assumption implies that

N �
A

N �
B

D e�
O
B =kBT

e�
O
A =kBT

; (3.28)

where N �
A and N �

B denote the equilibrium molecule counts for species A and B ,
respectively. Observe that we have recovered the law of mass action. Moreover,
a comparison with Eq. (3.9) suggests that e�

O
A / kAB and e�

O
B / kBA. In the

following section I shall informally prove the validity of this assertion, and the
close relation between the three formerly analyzed approaches will become apparent
along the proof.

3.5 The Fourth Musketeer, Linking Approaches

Consider once more a molecule that flips back and forth between states A and B .
For example, think of a protein that shifts between two different conformational
states. Strictly speaking this does not mean that A and B are the only states
available for the protein. What it means is that, of the vast number of possible
conformational states, only A and B are stable. The stability of a given state is
determined by its energy, which in principle can be computed by adding up the
interaction energies among all the molecule atoms. However, for the purpose of the
present book we do not need a detailed picture of the resulting energy landscape,
but only a rough sketch. In general, the energy landscape is a hyper-surface, which
can be mathematically represented by a function of the form E D f .r/, where r
accounts for the position in the conformational space and E is the corresponding
energy. In the present case, the fact that only two stable states exist, means that
the energy landscape has two local minima—each local minima corresponding to
one stable state (E and Vanden-Eijnden 2010)—divided by a separatrix. Then, if we
lump together the conformational-state coordinates, the energy landscape for the
reaction studied in the present chapter should look as sketched in Fig. 3.3.

In the absence of thermal agitation, the molecule state would evolve toward
either one of the available stable states, and remain there indefinitely. However,
at temperatures different from zero, the solvent molecules are constantly colliding
with the molecule, perturbing it. Thus we can picture the molecule state as following
a forced random walk in the conformational space: the interactions among the
molecule atoms tend to make its state evolve toward a local minimum of the energy
landscape, while the thermal perturbations tend to take it away from the local
minima in a diffusive way.

Regard the energy landscape pictured in Fig. 3.3 and suppose that the protein
is initially trapped in the basin of attraction surrounding state A. According
to Kramers’ theory (Van Kampen 1992; Risken 1996), the protein state will
eventually escape from this basin due to thermal perturbations, and the escape rate
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Fig. 3.3 Schematic representation of the energy landscape for a protein with two stable confor-
mational states, A and B

(the probability per unit time that the protein state leaves the basin) is inversely
proportional to the exponential of the energy-barrier height separating this basin
from that of state B , divided by kBT (kB being Boltzmann’s constant). A similar
argument applies in case that the molecule state is initially trapped in the basin
surrounding state B . Let EA, EB , and EC denote the energies of states A, B , and the
separatrix between them (the saddle point separating the two basins of attractions).
Assume without loss of generality that EA < EB < EC D 0. According to the
discussion above, the escape rates from A to B , and vice versa, are:

˛AB D ˇeEA=kBT ; (3.29)

˛BA D ˇeEB=kBT ; (3.30)

with ˇ a proportionality constant. In strict sense, the proportionality constant should
be different for kAB and kBA. However no big error is introduced if we assume in a
first approximation that they are equal.

With the aid of Eqs. (3.29) and (3.30), the relation between Eqs. (3.9) and (3.28)
becomes clear. The chemical potential �O is nothing but the energy of a single
molecule in solution located at the minimum of the basing of attraction surrounding
the corresponding stable conformational state.

Let NA and NB denote the number of molecules whose states are in the
basins surrounding states A and B , respectively. The probability per unit time
(or propensity) that a molecule escapes from the basin surrounding A into that
surrounding B is proportional to bothNA and e�

O
A =kBT . Since the chemical potential

lumps these two variables into a single quantity, see Eq. (2.11), the propensity for
the shift of a single molecule from A to B results to be proportional to e�A=kBT .
Similarly, the propensity for the shift of a single molecule from B to A happens to
be proportional to e�B=kBT . In other words, the chemical potential can be understood
as minus the height of the effective energy barrier separating one given basin from
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the other. This effective barrier accounts for the number of molecules in each
basin; the larger the molecule count, the smaller the effective barrier. The previous
discussion further explains why the stationary state is reached when the chemical
potential in both basins equilibrate (the effective energy barriers are the same for
both states, and so the net fluxes from A to B and from B to A balance each other),
and why the deeper the basin of a given state, the larger the number of molecules it
has in the equilibrium.

As we have seen, the energy landscape approach is a common ground that links
the three previously studied approaches: chemical kinetics, chemical master equa-
tion, and thermodynamics. Furthermore, the introduction of the energy landscape
concept facilitates the realization that the three original approaches are nothing but
different ways of modeling the same phenomenon. In that sense, every approach
has particular advantages, but also disadvantages. What is then the most useful one?
That depends on the kind of data we have and on the questions we are asking. In
some cases, using more than one approach would be advisable. In any case, it is my
claim that having a working knowledge of all the approaches is quite useful (and
perhaps necessary). In that way we can choose the most suitable one according to
the circumstances.

3.6 Sketching the Energy Landscape

Although conceptually very informative, in practice is quite difficult to have an
accurate picture of the energy landscape. To do so, one would ought to compute
the interaction energy of all the possible conformational states of the reacting
molecules. Even if we had all the necessary information to perform such calculations
(and we do not have it), the computational task would be impossible in most cases,
even for the most powerful available computers. However, it is feasible to get a
schematic representation of the energy landscape, which nonetheless has enough
information for the present book purpose.

As stated above, in general, the energy landscape is a hyper-surface that can be
mathematically represented by a function of the form E D f .r/, where r accounts
for the position in the conformational space and E is the corresponding energy.

For a given chemical reaction set, the energy landscape has as many local
minima as the number of combinations of reactants and products participating in
the reactions, and the height of each minima is determined by the sum of energies
of the corresponding molecules. Consider for instance the reaction set

AC 2B • C;

AC C • D:

We see that chemical species D does not participate in the first reaction, while
species B does not appear in the second one. However, they can be included without
altering the nature of the chemical reactions as follows.
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AC 2B CD • C CD;

AC B C C • B CD:

Then, we can assert that the energy surface has four local minima corresponding
to AC 2B CD, C CD, ACB CC , and B CD, while the corresponding heights
are EA C 2EB C ED , EC C ED , EA C EB C EC , and EB C ED , in which EX
denotes the energy of a molecule X in solution.

In the energy landscape, the minima are separated by separatrices whose height
is given by the corresponding reaction-rate constants. The higher the separatrix
between two minima, the smaller the reaction-rate constant of the connecting
reaction. A non-existent reaction connecting two minima would then be represented
by a separatrix of infinite height.

The principles summarized above are all that is needed to sketch the energy
landscape of any reaction set, and were the ones employed to draw the energy
landscape in Fig. 3.3. In the forthcoming chapters we shall invoke the same
principles to schematically represent more energy landscapes in some particular
cases. The process should become clearer as more examples are given.

3.7 Summary

In this chapter we introduced a third approach (besides chemical kinetics and ther-
modynamics) to study chemical reactions. This is a stochastic dynamics approach
based on the chemical master equation. We also introduced the celebrated Gillespie
algorithm to simulate the random evolution of a chemical reaction system. Rather
than working with the most general reaction set, we used a very simple chemical
reaction as an introductory example. With this example we were able to prove that
the chemical kinetics approach is a particular case of the chemical master equation
one. Moreover, by introducing the concept of energy landscape, we could see that
the thermodynamics and the master equation approaches share a common ground.
Thus, we could verify that the different approaches to studying a chemical reaction
dynamics are nothing but different sides of a single dice. Each one has its own
peculiarities and usefulness, but the underlying physics is the same for all of them.
A detailed discussion about how to sketch the energy landscape for a particular
reaction is given at the end of the chapter.



Chapter 4
Molecule Synthesis and Degradation

Abstract The present chapter is advocated to analyzing the dynamics of a simple
birth–death process from the perspectives of chemical kinetics, stochastic processes,
and thermodynamics. This process is important because, under certain conditions,
it constitutes a good model for the numerous biomolecule production/degradation
processes taking place within cells. To facilitate the achievement of the above stated
goal, a couple of simple stochastic processes are previously introduced and analyzed
in detail: the Poisson process and a simple pure death process. The objectives of the
present chapter are twofold. On the one hand, we will gain deeper insight into the
previous chapter methods, results, and conclusions, by tackling more elaborated
examples. But also, the examples here introduced shall serve as building blocks for
more realistic cellular-process models to be introduced thereafter. As a bonus, we
also introduce and discuss some basic concepts of irreversible thermodynamics in
the context of chemical kinetics.

4.1 Poisson Process

In every single living cell, the concentrations of all molecules remain more or
less constant in time. As a matter of fact, this is a quintessential condition for
homeostasis, which is a central concept in biology (Cannon 1929). These constant
concentrations are achieved not because the whole system is static and no molecules
are either produced or destroyed, but because the production and degradation rates
are finely balanced. In the present chapter we shall study in detail the dynamics and
thermodynamics of the simplest possible model accounting for molecule synthesis
and degradation. But before going to the point, it is convenient to study the
production and decay processes separately. Not only to get acquainted with them
and thus facilitate the understanding of the combined process, but also to introduce
some useful concepts.

M. Santillán, Chemical Kinetics, Stochastic Processes, and Irreversible
Thermodynamics, Lecture Notes on Mathematical Modelling in the Life Sciences,
DOI 10.1007/978-3-319-06689-9__4, © Springer International Publishing Switzerland 2014
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Consider a process consisting of a succession of independent events, each one
having the same, constant, probability of occurrence per unit time, �. In other words,
the probability that one event happens in the interval Œt; t C �t	 is ��t , assuming
that �t is small enough so that none or at most one event takes place during such
interval. Let P.n; t/ be the probability that n events have taken place up to time t .
Then,

P.n; t C�t/ D P.n; t/.1 � ��t/C P.n � 1; t/��t:

This equation accounts for the fact that there are only two possible ways in which n
events occur up to time t C �t : either the n events have already taken place up to
time t and nothing happens in the interval Œt; tC�t	, or n�1 events have occurred up
to time t and one more takes place during the interval Œt; t C�t	. After performing
some algebra and taking the limit �t ! 0, we obtain from the equation above that
P.n; t/ obeys the following master equation

dP.n; t/

dt
D � .P.n � 1; t/ � P.n; t// : (4.1)

The interested reader can verify without much trouble that the solution of Eq. (4.1) is

P.n; t/ D .�t/ne��t

nŠ
; (4.2)

which is nothing but a Poisson distribution with parameter �t (Evans et al. 2000).
We have from the properties of the Poisson distribution the mean number of events
occurring up to time t is

N.t/ D �t;

while the corresponding standard deviation is


N .t/ D
p
�t:

From the above equations, the coefficient of variation for the event count is

CVN .t/ D 
N .t/

N.t/
D 1p

�t
:

Observe that the coefficient of variation is a decreasing function of t . This means,
that at very long times the Poisson process can be regarded as deterministic. We shall
come back to this point later.

Another interesting property of the formerly defined stochastic process is the
distribution of waiting times between consecutive events. Let p.�/d� be the
probability that the next event takes place in the infinitesimal interval Œ�; � C d�	,
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given that the previous one occurred at time � D 0. To compute this probability
distribution take into consideration that p.�/d� is the probability that no event
takes place in the interval Œ0; �	, and that exactly one event occurs in the interval
Œ�; � C d�	. That is,

p.�/d� D P.0; �/P.1; d�/ D �e���d�: (4.3)

Hence, the waiting times obey an exponential distribution with mean ��1 (Evans
et al. 2000).

The stochastic process previously analyzed is known as the Poisson process (Ross
1983). As we have seen, it can be defined in three different, but equivalent, ways:

1. At most one event can occur in an infinitesimal time interval dt . This happens
with probability �dt , independently of what happened in previous intervals.

2. The number of events n occurring in a finite interval of length t obeys the Poisson
distribution given by Eq. (4.2).

3. The waiting times are independent and obey the exponential distribution in
Eq. (4.3).

In agreement with the above definitions, the Poisson-process parameter, �,
deserves three different interpretations:

1. It is the probability per unit time that a single event occurs.
2. It measures the average number of events taking place per unit time; the rate of

the process.
3. The average waiting time between consecutive events is ��1.

4.2 Biomolecule Synthesis as a Poisson Process

Under some conditions, a Poisson process is a good model for the synthesis of
biomolecules. Think for instance of ATP or some other metabolite. If all the
necessary substrates and enzymes are present at constant concentrations, then the
metabolite synthesis rate is constant, and the production of individual molecules
approaches a Poisson process. In a different example, transcription and translation
are usually modeled as single-step processes (Shahrezaei and Swain 2008; Zeron
and Santillán 2010). In particular, if transcription is not regulated—as for example
in a constitutive promoter—then a Poisson process is a good model for the
occurrence of successive transcriptional events.

Having a picture always helps to better understand a concept. With this purpose
in mind, let us device an algorithm to simulate individual realizations of a Poisson
process. The key for this algorithm is the waiting times between consecutive events;
recall that the set of waiting times in a given realization of a Poisson process can be
viewed as realizations of a random variable that obeys an exponential distribution
with mean ��1. Once we have understood this, it is straightforward to device the
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Fig. 4.1 Different realizations of a Poisson process, viewed at different time scales

following algorithm. Let n be an integer variable counting the number of events that
have occurred, and t be a real variable accounting for the occurrence time of each
individual event. The algorithm proceeds as follows:

1. Set n D 0 and t D 0.
2. Randomly compute the waiting time � from an exponential distribution with

mean ��1. One way of doing it is generating a uniform random number in the
interval Œ0; 1	, r , and then calculating � D � log r=�.

3. Update n D nC 1 and t D t C � .
4. Iterate from step 2.

The results of computing different realizations of a Poisson process, using the
algorithm above with � D 1, are plotted in Fig. 4.1. Observe that when they are
viewed at a time scale comparable to that of the mean waiting time, different
realizations have quite different outcomes. However, when the observation time-
scale is several orders of magnitude larger than ��1, then all the realizations are
almost identical, and each of them approaches a continuous process taking place at
constant rate. This is in agreement with the previous section assertion that a Poisson
process can be regarded as deterministic at very large time scales, as compared
with ��1. Finally, it is straightforward to prove that the average event count N.t/
obeys the following differential equation:
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dN.t/

dt
D �;

which is what one gets for a deterministic process occurring at the constant rate �.
Let us consider again a Poisson process as a model for transcription (gene

expression). This process is known to take place at rates ranging in the order of
a few to a few dozens per minute (McClure 1985). This implies that the average
waiting time between consecutive transcriptional events is of the order of 1–10 s.
Therefore, the deterministic approximation gives an accurate description when one
counts the numbers of transcriptional events that take place in intervals of 20 min or
more, for fast promoters, or in intervals of 3 h or more, for slow promoters. These
intervals are relevant if we consider that the doubling times for the bacteria E. coli
and the yeast S. cerevisiae are of the order of 30 min and 2 h, respectively. In other
words, transcription can hardly be regarded in general as a deterministic process
in the time life of unicellular organisms, and thus its stochastic nature cannot be
ignored.

4.3 Exponential Decay

Consider a population of n molecules at time t and assume that the probability that
each one of them decays in the interval Œt; t C �t	 is ��t . Under the assumption
that all molecules decay independently from each other, the probability that one
of the n molecules decays in the interval Œt; t C �t	 is n��t , provided that �t is
small enough so that at most one molecule decays in such interval. Let P.n; t/ be
the probability of having n molecules at time t . From the previous considerations,
P.n; t/ obeys the following equation

P.n; t C�t/ D P.nC 1; t/.nC 1/��t C P.n; t/.1 � n��t/:
To construct this equation we took into consideration that there are only to ways in
which one can have n molecules at time t C �t : either we had nC 1 molecules at
time t and one decayed in the interval Œt; tC�t	, or we had nmolecules at time t and
none decayed during the interval Œt; t C �t	. After performing a little algebra and
taking the limit �t ! 0 we obtain the following master equation for the dynamics
of P.n; t/ is

dP.n; t/

dt
D �.nC 1/P.nC 1; t/ � �nP.n; t/: (4.4)

The interested readers are invited to demonstrate that the general solution to this
equation is

P.n; t/ D 
.t/ne�
.t/

nŠ
; (4.5)
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with


.t/ D N0e
�� t ; (4.6)

and N0 denoting the initial average molecular count. We can see from Eq. (4.6) that
the probability distribution describing this phenomenon is, once more, a Poisson
distribution. However, in this case, the parameter of the distribution evolves as
dictated by Eq. (4.6). We know from the properties of the Poisson distribution
(Evans et al. 2000) that the mean and the variance are precisely 
.t/. Let N.t/ and

N .t/ denote the average molecule count and the corresponding standard deviation.
Then, from Eq. (4.6):

N.t/ D 
2N .t/ D N0e
�� t : (4.7)

The stochastic process just analyzed is a special case of the so-called death
processes (Ross 1983). We call it exponential decay due to the fact that the average
molecule count decreases exponentially and asymptotically goes to zero as t ! 1.

Several interesting conclusions can be obtained from Eq. (4.7). First, the decay
rate for N.t/ equals the probability of decay per unit time of individual molecules.
Furthermore, the coefficient of variation evolves as

CV D 
N .t/

N.t/
D 1p

N0e�� t :

Notice that CV is a function of both N0 and time. Indeed, CV D 1=
p
N0 at

t D 0, and it increases monotonically and without limit as time passes. Assume
that N0 � 1. This means that CV 	 1 for small times, t . ��1, and so the
deterministic approximation N.t/ D N0e

�� t provides an accurate description in
the early stages of the decaying process. However, for times much larger than ��1
the deterministic description is no longer good enough, and in consequence we are
obliged to take into account the process stochastic nature.

Another way of corroborating the assertions in the previous paragraph is to look
at the waiting times. Suppose that a decaying event occurred at time t and our system
is left with n molecules. We are interested in the probability p.�/d� that the next
decaying event takes place in the interval Œt C �; t C � C d�	. That is, no molecule
must decay in the interval Œt; tC�	, and one molecule should decay in ŒtC�; tC�C
d�	. This means that p.�/ obeys the following equation (recall that the probability
that one of the nmolecules decays in an infinitesimal interval of length d� is �nd� ):

p.�/ D
�
1 �

Z �

0

p.� 0/d� 0
�
�n:

By differentiating we obtain the following differential equation for p.�/:

dp.�/

d�
D ��np.�/:
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The general solution of this differential equation is

p.�/ D Ae��n� ;

with A is an unknown constant whose value can be determined by imposing the
normalization condition:

R 1
0
p.�/d� D 1. After performing all the necessary

calculations we get:

p.�/ D �ne��n� : (4.8)

We see from Eq. (4.8) that the waiting times obey an exponential probability
distribution with parameter �n. Interestingly, this parameter not only depends on
the decay-probability per unit time of individual molecules (� ), but also on the state
of the system, which in this case is given by the number of existing molecules (n).
We know from the properties of the exponential distribution (Evans et al. 2000)
that the average waiting time and the corresponding standard deviation are both
equal and given by 1=�n. This means that both the length and the variability of
the waiting times increase as the number of molecules decrease, confirming that the
description in terms of the meanN.t/ is only accurate when the system is composed
of a considerably large number of molecules. Finally, it is straightforward to prove
from Eq. (4.7) that N.t/ obeys the following differential equation

dN.t/

dt
D ��N.t/; (4.9)

which corresponds to the well-known deterministic differential equation employed
to model exponential decay.

Knowing the distribution of waiting times allows us to simulate individual
realizations of the decaying process by means of the Gillespie algorithm (Gillespie
1977). Let n be an integer variable representing the number of molecules in the
system, and t be a real variable accounting for the occurrence time of individual
degradation events. The algorithm goes as follows:

1. Set n D n0 and t D 0.
2. Randomly compute the waiting time � from an exponential distribution with

mean .�n/�1. One way of doing it is generating a uniform random number in
the interval Œ0; 1	, r , and then computing � D � log r=�n.

3. Update n D n � 1 and t D t C � .
4. Iterate from step 2.

Three different simulations of decaying processes, carried out with the algorithm
just described and � D 1, are shown in Fig. 4.2. Notice that, as expected, all three
of them are very much alike when the molecular count is large. As a matter of fact,
the system evolution at large n values is well approximated by the deterministic
description in terms of the average molecule count. However, this approximation
is not good enough for low molecule counts. One fact worth of consideration is
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Fig. 4.2 Different realizations of an exponential decay process, all of them computed with � D 1,
together with the time evolution of the average molecule count (black solid line). (a) the whole
processes. (b) zoom of the processes’ last part

that the deterministic description predicts that the population never extinguishes
completely, as the exponential function is never equal to zero. On the contrary, the
stochastic simulations do predict a complete population extinction at a finite time.
Nonetheless, the exact time of extinction is unpredictable (every simulation predicts
a different extinction time, with a huge variability among them).

4.4 A Simple Birth–Death Process

Let us combine the two previous processes to develop a model for the dynamics of
some biological molecules. Think for instance of ATP (or some other metabolite).
Assume that all the substrates and enzymes involved in its synthesis are present
at constant concentrations. This guaranties that molecule production takes place
according to a Poisson process. On the other hand, ATP molecules are constantly
hydrolyzed to deliver their energy cargo. If the probability per unit time that a
molecule decays is constant along time (for instance, if the concentration of the
hydrolyzing enzymes and of the products of hydrolysis are kept constant), then
the decay process would be an exponential one. This model, is a special case of



4.4 A Simple Birth–Death Process 37

the so-called birth–death processes (Ross 1983). Although it comprises the two
previously studies processes (Poissonian production and exponential decay), they
cannot be studied separately because they are interlinked. To analyze the whole
process we need to know the master equation for the probability of finding n

molecules in the system at time t .
Let � denote the probability per unit time that a new molecule is synthesized, and

� be the probability per unit time that a specific molecule decays. In other words,
the probability that a new molecule is synthesized in an interval of length�t is ��t ,
while the probability that one of the existing molecules decays in the same interval
is �n�t (where n is the current molecule count). From these considerations P.n; t/
obeys the following relationship

P.n; t C�t/ D P.n � 1; t/��t.1 � .n � 1/��t/
CP.nC 1; t/.1 � ��t/.nC 1/��t

CP.n; t/.1 � n��t/.1 � ��t/:

The equation above accounts for the fact that ways through which we can have n
molecules at time t C�t are as follows

1. There were n�1molecules at time t , one was synthesized in the interval�t and
none was degraded in the same interval.

2. There were nC 1 molecules at time t , no molecule was synthesized and one was
degraded in the interval �t .

3. There were n molecules at time t and neither a new molecule was produced nor
one of the existing ones was degraded during the �t period.

By doing some algebra and taking the limit �t ! 0 the equation above transforms
into:

dP.n; t/

dt
D�P.n � 1; t/��P.n; t/C �.nC 1/P.nC 1; t/� �nP.n; t/: (4.10)

Before presenting the solution to Eq. (4.10) let us find the differential equation
governing the dynamics of the mean value N.t/. By definition

N.t/ D
1X

nD0
nP.n; t/:

The readers are invited to prove that, by differentiating the equation above,
substituting Eq. (4.10), and using the normalization condition of the probability
distribution P.n; t/ one gets

dN.t/

dt
D � � �N.t/: (4.11)
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To solve this differential equation let us make the following change of variable:
x.t/ D N.t/ � �=� . In terms of variable x the differential equation in (4.11)
becomes

dx.t/

dt
D ��x.t/:

The general solution to this last equation is

x.t/ D x0e
�� t :

In the equation above x0 is the initial value of x.t/. Revert now the change of
variable to obtain

N.t/ D �

�
C

�
N0 � �

�

�
e�� t ; (4.12)

with N0 the initial value of N.t/. Observe from Eq. (4.12) that, regardless of
the initial condition, N.t/ always converges to �=� as t ! 1, and it does so
exponentially. Moreover, although both � and � determine the stationary-state value
ofN , only � influences the convergence velocity. The larger the value of � , the faster
N.t/ converges to �=� .

In the Poisson and the exponential decay processes the solution of the corre-
sponding master equation was a Poisson distribution (with an adequate parameter),
so it would not be a surprise if the solution to Eq. (4.10) is a Poisson distribution as
well. Indeed, the readers won’t have major problems to demonstrate by substitution
that such solution is

P.n; t/ D N.t/ne�N.t/

nŠ
; (4.13)

withN.t/ as given by Eq. (4.12). In other words, the solution to the master equation
in Eq. (4.10) is a Poisson distribution that evolves in time following the mean value
given by Eq. (4.12). Equation (4.13) further predicts the existence of a stationary
solution:

P s.n/ D .�=�/n e��=�

nŠ
:

Interestingly, the value of the ratio �=� determines completely the shape and all
other properties of the stationary distribution, but only � influences the speed with
which the master equation solution converges to it. Once more, the larger the value
of � the faster the convergence.
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4.5 Gillespie Algorithm

We need an algorithm to simulate realizations of the production-decay process
described in the previous section. As before, let us start by computing the distri-
bution of waiting times. Assume that the system has n molecules at time t and
let p.�/d� be the probability that the next event (either the synthesis of a new
molecule of the degradation of one of the existing ones) takes place in the interval
Œt C �; t C � C d�	. To compute this probability distribution we need to take into
consideration that not only p.�/d� is the probability that one event occurs in the
interval Œt C �; t C � C d�	, but also that none of them happens in the interval
Œt; t C �	. That is

p.�/ D
�
1 �

Z �

0

p.� 0/d� 0
�
.�C �n/ :

Recall that �d� and �nd� are respectively the probabilities that a new molecule is
synthesized and the one of the existing one is degraded in an interval of length d� .
After differentiation, the last equation transforms into

dp.�/

dt
D �.�C �n/p.�/:

The general solution of the above differential equation is

p.�/ D Ae�.�C�n/� ;

with A a constant to be determined from the normalization condition for p.�/. After
doing the corresponding calculations we obtain

p.�/ D .�C �n/e�.�C�n/� : (4.14)

Therefore, the waiting times always obey an exponential distribution, but the
corresponding parameter (and so the distribution properties) depends on the system
state. Intriguingly, the parameter of the exponential distribution results to be the
addition of the propensities (probabilities of occurrence per unit time) of the two
possible reactions: molecule synthesis and degradation. Hence, we can define a
state-dependent total propensity, aT , equal to the sum of the individual propensities,
ai , and this total propensity determines the waiting-time distribution, given the
system current state.

We have now all the necessary ingredients to develop an algorithm to simulate
individual realizations of the production-decay process. Let n denote the number
of molecules in the system and t a variable that records the time at which every
individual chemical event takes place. Let us introduce as well new parameters �i
accounting for the stoichiometry of the reactions taking place in the system (in our
case, �1 D 1 for the molecule synthesis reaction, and �2 D �1 for the degradation
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reaction). Finally, let a1 D � and a2 D �n be the corresponding propensities. With
the previous definitions, we can follow Gillespie (1977) to device the following
algorithm:

1. Set n D n0 (the initial molecule count), and t D 0.
2. Compute all ai ’s according to the system state, as well as aT D P

i ai .
3. Calculate the waiting time by generating a random number from an exponential

distribution with mean a�1
T . For instance, this can be done by generating a

uniform random number in the interval Œ0; 1	, r , and then computing � D
� log r=aT .

4. Randomly choose which one of the two possible reaction takes place by assuming
that the probability that reaction i happens is ai=aT . Suppose that we obtain as a
result that reaction j is the one that will occur after the waiting time.

5. Update the system state according to the formerly computed waiting time and
the chosen reaction: t D t C � , n D nC �j .

6. Iterate from step 2.

The results of different simulations using this algorithm are presented in Fig. 4.3.
In each simulation different values of � and � were employed, but they were chosen
in such a way that the average molecular count is the same in all cases. Observe that,
as expected, the molecular count fluctuates around the same average value (�=� D
100molecules) in all three simulations. Furthermore, the fluctuation amplitude is
about the same in all cases. This was also expected because the coefficient of
variation is always the same CV D 1=

p
�=� D 0:1. What changes are the

fluctuation excursion times. The larger the value of � , the faster the fluctuations
disappear. This is in agreement with our previous finding that � is the parameter
that determines how fast the deterministic system evolves to the steady state, and
how fast the probability distribution of the stochastic description (the solution of the
master equation) converges to the stationary distribution.

4.6 Thermodynamic Interlude

Let us open a parenthesis to study the following set of chemical reactions from the
perspective of chemical kinetics:

X

NXkXA

•
NAkAX

A

NAkAY

•
NY kYA

Y; (4.15)

assuming a constant total number of molecules NX C NA C NY D NT . Given this
last assumption, the present system bears no relation to the formerly introduced
production-decay stochastic process. However, it will allow us to derive some
important results which will be useful later on.
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Fig. 4.3 Simulations of the production-decay process using the Gillespie algorithm and different
values of the molecule synthesis and degradation rates

The set of differential equations governing the dynamics of the reactions in
(4.15) is

dNX

dt
D �kXANX C kAXNA;

dNA

dt
D kXANX � kAXNA � kAY NA C kYA.NT �NX �NA/:

A third equation, accounting for the dynamics ofNY is not necessary becauseNY D
NT �NA�NX . For the time being we are not interested in the solution of this system
of differential dynamics, but only in the steady-state behavior. In that regard, it is not
hard to prove that the system has only one stable fixed point, and that it is given by

NA D 1

Q
NT ; NX D 1

Q

kAX

kXA
NT ; N Y D 1

Q

kAY

kYA
NT ;
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with

Q D 1C kAX

kXA
C kAY

kYA
:

In particular, the above equations imply that

NXkXA D NAkAX; NXkXB D NBkBX: (4.16)

Let us sketch now the energy landscape for the chemical reactions in Eq. (4.15),
following the principles delineated in Chap. 3. The result is presented in Fig. 4.4.
From the results in Chap. 3 we know that

kXA D ˇe�
O
X=kBT ;

kAX D ˇe�
O
A =kBT ;

kAY D ˇe.�
O
A�"/=kBT ; (4.17)

kYA D ˇe.�
O
Y �"/=kBT :

Substitution of these results into Eq. (4.16) leads to

NXe
�OX=kBT D NAe

�OA =kBT D NY e
�OY =kBT :

Finally, by taking the logarithm and multiplying by kBT we obtain

�OX C kBT lnNX D �OA C kBT lnNA D �OY C kBT lnNY D �eq: (4.18)

In other words, under the present conditions, the system steady state is reached when
the chemical potential in all three states is the same—see Eq. (2.11). In the context
of thermodynamics this situation corresponds to the so-called thermodynamic
equilibrium (Lehninger et al. 2005).
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Let me introduce a couple of additional closing remarks for the present section.
The fact that all the chemical potentials reach the same value in the equilibrium,
�eq , further implies that—see Eq. (4.18):

NX D A e��OX=kBT ; NA D A e��OA =kBT ; N Y D A e��Oy =kBT ;

with A D e�eq=kBT . This result is concomitant with the celebrated Boltzmann dis-
tribution for the system here studied. The second remark requires more calculations
to be derived. From the results in Chap. 3, we can choose the Gibbs-free-energy zero
level so that the free energy of a system held at constant pressure and temperature
(like the present one) is

G D
X

i

Ni�i :

In our case i D X;A; Y . After differentiating the above equation we get

dG D
X

i

.�i C kBT / dNi ;

recall that �i D �Oi C kBT lnNi . If we take into account that in the steady state
�i D �eq for all i , and that

P
i Ni D NT , withNT constant, it follows from the last

equation that

dGjeq D .�eq C kBT /
X

i

dNi D 0: (4.19)

In other words, the system Gibbs free energy is optimized in the equilibrium state.
I leave for the reader to prove that, as a matter of fact, the Gibbs free energy
is minimized in the equilibrium. This last result is a consequence of the second
law of thermodynamics, which states that the Gibbs free energy minimizes in the
equilibrium for systems held at constant pressure and temperature (Planck 1945).

4.7 Thermodynamic Interpretation
of the Production-Decay Process

Consider once more the chemical-reaction system in (4.15) but assume that NX and
NY are constant. With this assumption, this system is equivalent to the previously
studied production-decay process: molecules A are produced at a rate NXkXA C
NY kYA and they are degraded at a rateNA.kAX CkAY /. Thus, the chemical-kinetics
differential equation governing the dynamics of NA is
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dNA.t/

dt
D � � �NA.t/;

with � D NXkXA CNY kYA and � D kAX CkAY . Not surprisingly this last equation
is identical to that in Eq. (4.11), and so its solution is given by (4.12). In particular,
there exists one globally stable steady state:

NA D �

�
D NXkXA CNY kYA

kAX C kAY
: (4.20)

From the results in Chap. 1, the rates of the reactions in (4.15) are as follows:

JXA D NXkXA; JAX D NAkAX; JAY D NAkAY ; JYA D NY kYA: (4.21)

We see from this and Eq. (4.16) that the net fluxes between states X and A, and
between states A and Y annihilate in the steady state of the system studied in the
previous section. In contrast, if we substitute Eq. (4.20) into (4.21) we note that

JXA ¤ JAX and JAY ¤ JYA

in general, but

J D JXA � JAX D JAY � JYA D kXAkAY NX � kAXkYANY
kAX C kAY

: (4.22)

That is, there exists a nonzero net particle flux in the steady state of the present
section system. However, the molecule count of state A remains constant because
the influx equals the outflux. What happens then with the chemical potentials?
To answer this question suppose again that the energy landscape determining the
reaction rates is as in Fig. 4.4, and so that the reaction rates are given by Eq. (4.17).
Thus, after substitution into Eq. (4.20) we get:

e�A=kBT D e�X=kBT C e�"=kBT e�Y =kBT

1C e�"=kBT : (4.23)

Hence, in the present case the chemical potentials do not equate in the steady state,
as they did in the previous-section example. This is in agreement with the existence
of a net molecule flow because no flux could exist without a chemical-potential
unbalance. Moreover, substitution of Eq. (4.17) into Eq. (4.22) allows us to compute
the net molecule flux in terms of chemical potentials:

J D ˇ
e�"=kBT

1C e�"=kBT
�
e�X=kBT � e�Y =kBT �

: (4.24)
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We see that the net molecule flux strongly depends on the chemical potentials of
states X and Y , and is modulated by the difference of the energy landscape local
maxima, �". Indeed,

lim
�!�1

e�"=kBT

1C e�"=kBT D 1;

while

lim
�!1

e�"=kBT

1C e�"=kBT D 0:

Finally, as the readers can easily verify, the Gibbs free energy does reach a
constant value, but it does not minimize in the steady state. The reason being that
the steady state does not correspond to chemical equilibrium in the present system.
In agreement with this last assertion, one can define a stationary free energy flux
given by

� D J.�X � �Y /: (4.25)

This flux accounts, on the one hand, for the net free energy flux entering the system
due to molecules constantly being at state X and removed from state Y , to maintain
the corresponding counts constant. On the other hand, � also stands for the heat
dissipated by the continuous molecule transition from a high energy state X to a
low energy state Y (with an intermediate stop in A). In the long term, the system
total free energy remains constant because the unbalance caused by the constant
addition of high energy molecules and the removal at the same rate of low energy
ones is compensated in the form of heat dissipation.

To conclude, we can assert that despite having a globally stable steady state,
the birth–death process is a non-equilibrium phenomenon (thermodynamically
speaking) because, in the steady state:

• There is a constant flow of molecules through the system.
• The stationary chemical potentials of the source, the intermediate, and the sink

states are not equal.
• There is a constant input of free energy into the system associated with the

molecule flow, and this energy input is balanced by heat dissipation.

Of course, these are not independent phenomena, but just different manifestations
of the second law of thermodynamics (Beard and Qian 2008).
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4.8 The General Form of the Chemical Master Equation
and Gillespie Algorithm

In this and the last chapter we have derived the chemical Master equation, as well as
Gillespie algorithm, for a few particular examples. Along the book we are going to
employ both of them even more. Therefore, rather than deriving the particular forms
each time, it is convenient to have a general derivation.

Consider a system that contains N different chemical species and in which
M different chemical reactions are taking place. The state of such system can
be denoted by a N -dimensional vector x such that its nth entry is a natural
number equal to the number of molecules of the corresponding chemical species.
Furthermore, each of the chemical reactions can be represented as

x
ak.x/�! x C �k; (4.26)

where ak.x/ corresponds to the propensity of the kth reaction, while �k is a
N -dimensional vector containing the stoichiometric coefficients of the kth chemical
reaction. That is, the nth entry of vector �k determines how many molecules are
created (or destroyed if it is a negative number) when an individual event of the kth
chemical reaction takes place.

Let P.x; t / be the probability that the system is in state x at time t . Then, if we
assume that�t is small enough so at most one chemical event occurs, the probability
that the system is in state x at time t C�t is given by:

P.x; t C�t/ D
MX

kD1
P.x � �k; t/ak.x � �k/�t

Y

k0¤k
Œ1 � ak0.x � �k/�t	

CP.x; t /
Y

k

Œ1 � ak.x/�t	 : (4.27)

The first term on the right-hand side of Eq. (4.27) accounts for all the ways in which
the system can evolve from a different state into state x through a single chemical
event, while the second term takes into consideration the probability that the system
remains in state x because no reaction takes place. By expanding the products and
neglecting all the terms involving powers of �t larger or equal than 2, Eq. (4.27)
can be rewritten as

P.x; t C�t/ � P.x; t /C
MX

kD1
P.x � �k; t/ak.x � �k/�t

�
MX

kD1
P.x; t /ak.x/�t:
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Finally, by rearranging terms and taking the limit �t ! 0 we obtain

dP.x; t /
dt

D lim
�t!0

P.x; t C�t/ � P.x; t /
�t

D
MX

kD1
P.x � �k; t/ak.x � �k/ �

MX

kD1
P.x; t /ak.x/: (4.28)

Equation (4.28) is the chemical master equation for the general chemical-reaction
system in Eq. (4.26). As a matter of fact, Eq. (4.28) does not represent single
equation but a system of equations; one equation for every available state. Given
that in most cases the available-state count is very large (in no rare occasion it is
indeed infinite), solving the chemical master equation system is extremely difficult,
if not impossible. That is why having a way to numerically solve this equation is
necessary. Perhaps the most popular algorithm to do so is the so-called Gillespie
algorithm. Below we derive it.

Recall that a propensity is nothing but the probability per unit time than a given
event occurs. Hence, if the propensity of the kth reaction when the system is in state
x is ak.x/, then the probability that one of the M different reactions takes place in
an infinitesimal interval dt is

MX

kD1
ak.x/dt:

In other words, we can define a global propensity

a.x/ D
MX

kD1
ak.x/; (4.29)

which can be interpreted as the probability per unit time that a single chemical step
of one of the M possible reactions occurs. With this in mind, one can compute the
probability distribution for the waiting times between two consecutive reactions as
follows. Let x be the system state at time t , and let p.�/d� denote the probability
that the next reaction occurs in the interval Œt C �; t C � C d�	. From its definition,
p.�/d� is the probability that no reaction happens in the interval Œt; t C �	, and one
of them occurs in the interval Œt C �; t C � C d�	. This assertion can be put into a
mathematical equation as follows,

p.x; �/ D
�
1 �

Z �

0

p.x; � 0/d� 0
�
a.x/:
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By differentiating, this equation can be rewritten as

dp.x; �/
dt

D �a.x/p.�/;

which is a differential equation whose general solution is

p.x; �/ D Ae�a.x/� ;

where A is a constant to be determined from the normalization condition for p.�/.
After performing the corresponding computations we obtain A D a.x/. Therefore,
the probability distribution for the waiting time between consecutive chemical
events comes out to be

p.�/ D a.x/e�a.x/� ; (4.30)

which is an exponential distribution whose parameter depends on the system state.
Once we know the probability distribution for the waiting times we can follow

Gillespie (1977) to device the following algorithm to simulate the random evolution
of chemical-reaction system in (4.26):

1. Set the initial time, t D 0, and the system initial state x D x0.
2. Compute all the reaction propensities ak.x/ given the current state, x, and

compute as well the global propensity a.x/ D P
k ak.x/.

3. Calculate the waiting time until the next reaction by generating a random number
from an exponential distribution with mean a.x/�1. For instance, this can be
done by generating a uniform random number in the interval Œ0; 1	, r , and then
computing � D � log r=a.x/.

4. Randomly choose which one of the possible reaction takes place by assuming
that the probability that reaction k happens is ak.x/=a.x/. Assume that the
chosen reaction is denoted by index j .

5. Update the system state according to the formerly computed waiting time and
chosen reaction: t D t C � , x D x C �j .

6. Iterate from step 2.

The above derived general forms of the chemical master equation and of Gillespie
algorithm will be invoked in the following chapters to study some specific examples.

4.9 Summary

The main goal of the present chapter was to study the synthesis and degradation of
molecules by means of the formerly reviewed approaches. To do so it was necessary
to introduce and analyze (via the chemical master equation, as well as Gillespie
algorithm) three novel stochastic processes: the Poisson process, the exponential
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decay process, and a very simple birth–death process. With the aid of these
stochastic processes we were able to study the dynamic and thermodynamic aspects
of molecule synthesis and degradation. Notably, we showed that when the synthesis
and degradation rates equilibrate (with none of them being zero), a stationary state
is reached, but it is not concomitant with thermodynamic equilibrium. This means
that entropy is constantly being produced and heat is constantly being dissipated,
despite the molecule count is constant in time. A side effect of our efforts to
understand the above described phenomena was a deeper understanding of the
chemical potential concept, which played a central role in this chapter. Finally, in the
chapter’s last section we derived the general forms of the chemical master equation,
as well as Gillespie algorithm, for further reference.



Chapter 5
Enzymatic Reactions

Abstract In this chapter we generalize the birth–death process analyzed in the
previous chapter to account for enzymatic molecule synthesis, rather than simple
Poissonian production. To facilitate the analysis we assume a time-scale separation
in the enzymatic reactions, and use it to reduce the complexity of the complete
system. With this simplification the generalized birth–death process can be sepa-
rated into two different subsystems that can be studied separately, and correspond
to the systems studied in Chaps. 3 and 4. The simplification procedure, introduced
in Sect. 5.1, is a very useful mathematical tool way beyond the scope of the present
chapter.

5.1 Separation of Time Scales

Most biochemical reactions are catalyzed by enzymes. Therefore, although quite
instructive, the model for the birth–death process studied in the previous chapter
is not good enough an approximation in many instances. Typically, an enzymatic
process consists of a series of chemical reactions that occur at different rates, and
in some occasions it is possible to identify two well-separated time scales. When
this occurs, the time-scale separation can be exploited to simplify the analysis of the
whole system. Below we introduce a methodology to perform such simplification.

Consider a system in which molecules of N different chemical species are
involved in M chemical reactions. The state of such a system is determined by
the set of all the chemical-species molecule counts fn1; n2 : : : nN g. Regardless of
the value of N and the maximum values of n1; n2 : : : nN , the set of all the possible
system states is discrete, and in consequence the states can be enumerated. Thus, let
us assume that x D 1; 2 : : : labels of all the available states.

When an individual chemical event takes place, the molecule counts of some of
the chemical species change, and so does the system state. Taking this into account,

M. Santillán, Chemical Kinetics, Stochastic Processes, and Irreversible
Thermodynamics, Lecture Notes on Mathematical Modelling in the Life Sciences,
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one can think of a general chemical master equation governing the system dynamics
as follows:

dP.xI t /
dt

D
X

x0

k.x0I x/P.x0I t / � k.xI x0/P.xI t /; (5.1)

where P.xI t / stands for the probability of finding the system in state x at time t ,
while k.xI x0/ is the probability per unit time (also known as the propensity) that the
system shifts from state x to state x0. Since the summation in Eq. (5.1) carried over
all the possible values of x0, we have implicitly assumed in its derivation that every
pair of states x and x0 are linked back and forth by chemical reactions. We know for
a fact that this does not necessarily happen. But such supposition is not a problem
because when the individual reaction that is supposed to link two given states does
not exist, we simply take the corresponding propensity equal to zero.

Assume that a separation of time scales exists among the reactions taking place
in the system. To account for it, let us suppose that the system states are labeled by
means of a couple on integer variables .x; y/ in such a way that the state transitions
involving changes in y but not in x are orders of magnitude faster than all the others.
The master equation for this system is a straightforward generalization of Eq. (5.1):

dP.x; yI t /
dt

D
X

x0;y0

k.x0; y0I x; y/P.x0; y0I t / � k.x; yI x0; y0/P.x; yI t /: (5.2)

In the equation above, the probabilities, P , and the propensities, k, have equivalent
meanings as those in Eq. (5.1).

Let us rewrite Eq. (5.1) as

dP.x; yI t /
dt

D
X

x0;y0

k.x; y0I x; y/P.x; y0I t / � k.x; yI x; y0/P.x; yI t /

C
X

x0¤x;y0

k.x0; y0I x; y/P.x0; y0I t / � k.x; yI x0; y0/P.x; yI t /:

Note that the first summation on the right-hand side of the above equation cancels
because all the terms in it are added and subtracted once. Furthermore, if we sum
over all y0 values, taking into consideration that P.xI t / D P

y P.x; yI t /, and that
P.x; yI t / D P.xI t /P.yjxI t /, we obtain

dP.xI t /
dt

D
X

x0

�.x0I x; t/P.x0I t / � �.xI x0; t /P.xI t /; (5.3)

with

�.x0I x; t/ D
X

y;y0

k.x0; y0I x; y/P.y0jx0I t /:
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Since the effective propensities �.xI x0; t / are in terms of P.y0jx0I t /, we need
to know the dynamic behavior of these conditional probabilities. We have from the
definition of conditional probability that

dP.yjxI t /
dt

D 1

P.xI t /
dP.x; yI t /

dt
� dP.xI t /

dt

P.x; yI t /
P.xI t / :

After substituting Eqs. (5.2) and (5.3) into the last equation we obtain an expression
in terms of the propensities k.x0; y0I x; y/ and �.xI x0; t /. However, due to the
assumed separation of time scales, most of these propensities are negligible as
compared with the ones accounting for changes in y but not in x (Santillán and
Qian 2011). Hence, by only taking into account the terms containing k.x; y0I x; y/
and considering that p.yjxI t / D p.x; yI t /=p.xI t / we get

dP.yjxI t /
dt

�
X

y0

k.x; y0I x; y/P.y0jxI t / � k.x; yI x; y0/P.yjxI t /:

The time-scale separation can be invoked once more to make a quasi-stationary
approximation consisting in the assumption that P.yjxI t / instantaneously evolves
to the stationary distribution, P s.yjxI t /, given the current value of x. Therefore,
from all the above considerations, the master equation that governs the dynamics of
P.xI t / results to be as follows:

dP.xI t /
dt

D
X

x0

�.x0I x/P.x0I t / � �.xI x0/P.xI t /; (5.4)

with

�.x0I x/ D
X

y;y0

k.x0; y0I x; y/P s.y0jx0/; (5.5)

while P s.y0jx0/ is the solution of

X

y0

k.x; y0I x; y/P s.y0jx/ � k.x; yI x; y0/P s.yjx/ D 0: (5.6)

In other words, we have a master equation that explicitly accounts for the dynamics
of the slow variables, while the fast-variable dynamics is implicitly accounted for in
the effective propensities �.x0I x/.
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5.2 Enzymatic Production and Linear Degradation

Let us analyze the stochastic dynamics of a system in which A molecules are
produced, via an enzymatic reaction, out of the substrate X , and are directly
degraded into molecules Y . These processes can be summarized in the following
set of chemical reactions (Lehninger et al. 2005; Houston 2001):

X CE

kXE � nX � nE
•

kEX � nEX
EX; (5.7)

EX

kEA � nEX
•

kAE � nE � nA
E C A; (5.8)

A

kAY � nA
•

kYA � nY
Y: (5.9)

In the above chemical reactions E stands for free enzyme; EX is the enzyme–
substrate complex; nX , nE , nEX , nA, and nY respectively represent the X , E, EX ,
A, and Y molecule counts; and parameters kij denote reaction rates.

Under the assumptions that nX and nY are constant, and that nE C nEX D nT ,
with nT constant, the system state is fully determined by the .nEX ; nA/ values. Let
P.nEX; nAI t / be the probability of having nEX molecules EX and nA molecules
A at time t . To study the system stochastic dynamics one could write the master
equation for P.nEX; nAI t / and analyze it. However, the analysis can be simplified
if we previously make a quasi-stationary approximation. Is it usually acknowledged
that the reaction in (5.7) is much faster than those in (5.8) and (5.9). Since the
reaction in (5.7) modifies the value of nEX but not of nA, we can directly apply the
formalism developed in the Sect. 5.1.

Let P.nAI t / D P1
nEXD0 P.nEX; nAI t / be the probability of having nA

molecules A at time t . From Eq. (5.4) its dynamics are governed by

dP.nAI t /
dt

D �XA.nX ; nA � 1/P.nA � 1I t / � �XA.nX ; nA/P.nAI t /
C �AX.nX ; nA C 1/P.nA C 1I t / � �AX.nX ; nA/P.nAI t /
C kAY .nA C 1/P.nA C 1I t / � kAY nAP.nAI t /
C kYAnY P.nA � 1I t / � kYAnY P.nAI t /; (5.10)
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in which, according to Eq. (5.5), �XA.nY ; nA/ and �AK.nY ; nA/ are given by

�XA.nX ; nA/ D
X

nEX

kEAnEXP
s.nEX jnA/ D kEANEX; (5.11)

�AX.nX ; nA/ D
X

nEX

kAE.1 � nEX/nA D kAE
�
1 �NEX

�
nA; (5.12)

with

NEX D
X

nEX

nEXP
s.nEX jnA/: (5.13)

Regarding P s.nEX jnA/, according to Eq. (5.6) it is the stationary solution of the
following master equation:

dP.nEX jnAI t /
dt

D kXEnX.nT � nEX C 1/P.nEX � 1jnAI t /
� kXEnX.nT � nEX/P.nEX jnAI t /
C kEX.nEX C 1/P.nEX C 1jnAI t /
� kEXnEXP.nEX jnAI t /: (5.14)

A comparison of Eqs. (5.14) and (3.17) reveals that they are equivalent, and so
that the process modeled by Eq. (5.14) is that of nT molecules flipping between
states E and EX , with constant transition rates for individual molecules. Thus,
from the results in Chap. 3—Eqs. (3.13), (3.14), (3.18), and (3.19)—the stationary
distribution P s.nEX jnA/ happens to be a binomial distribution with parameters
n D nT and p D kXEnX=.kXEnX C kEX/. Moreover, the average number of
molecules in the states EX and E are given by

NEX D nT
kXEnX

kXEnX C kEX
D nT

nX

nX CKE

; (5.15)

NE D nT �NEX D nT
KE

nX CKE

; (5.16)

with KE D kEX=kXE . Finally, after substituting back into Eq. (5.10) we obtain the
following master equation for P.nA; t/:

dP.nAI t /
dt

D kEANEXP.nA � 1I t / � kEANEXP.nAI t /

C kAENE.nA C 1/P.nA C 1I t / � kAENEnAP.nAI t /
C kAY .nA C 1/P.nA C 1I t / � kAY nAP.nAI t /
C kYAnY P.nA � 1I t / � kYAnY P.nAI t /; (5.17)

where NEX and NE are given by Eqs. (5.15) and (5.16).
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Notice that Eq. (5.17) is the same as Eq. (4.10). Hence, the quasi-stationary
approximation, allowed us to reduce the system of chemical reactions in (5.1) to
a birth–death process in which the effective production and degradation rates are:

� D kEANEX C kYA; (5.18)

� D kAENE C kAY : (5.19)

This further implies that P.nA; t/ obeys a Poisson distribution whose parameter
converges exponentially (with rate � ) to the stationary value �=� .

To investigate the dynamics of the average number of A molecules define
NA.t/ D P1

nAD0 nAP.AI t /. By following the procedure leading to Eq. (4.11), we
get the following differential equation:

dNA.t/

dt
D

�
kEAnT

nX

nX CKE

C kYA

�
�

�
kAE

KE

nX CKE

C kAY

�
NA.t/: (5.20)

The enzymatic and the degradation reactions are usually regarded as irreversible.
Although this is not strictly possible because all chemical reactions are reversible
(Lehninger et al. 2005), it might happen that the backward reactions occur with rates
so small that they can be consider as negligible from the standpoint of chemical
kinetics. If this is the case then kAE; kYA � 0, and

dNA.t/

dt
� kEAnT

nX

nX CKE

� kAY NA.t/: (5.21)

Interestingly, Eq. (5.21) is the differential equation commonly employed in the
context of chemical kinetics to model the dynamics of a chemical species that
is produced via a catalytic reaction and degraded linearly (Houston 2001). In
particular, the first term on the right-hand side of Eq. (5.21) corresponds to
Michaelis–Menten equation, which is commonly used to model the velocity of
enzymatic reactions (Houston 2001; Lehninger et al. 2005). Let us close this section
by stating that knowing how Eq. (5.21) can be deduced from a stochastic chemical
dynamics approach, allows us to better understand its range of validity and its
connection with the relevant quantities of the stochastic-description.

5.3 Thermodynamics of Enzymatic Reactions

The quasi-stationary approximation studied in the previous section allowed us to
break the system of chemical reactions in (5.7)–(5.9) into a couple of subsystems
that can be analyzed separately:

1. The interaction of the enzyme E with the substrate X to form the complex EX .
2. The synthesis of molecules A from EX , and their degradation into molecules Y .
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0

Fig. 5.1 Schematic
representation of the energy
landscape for the reaction
E CX • EX

If we view the whole system from a slow dynamics perspective (that of A
molecules), we can think of subsystem 1 as having so fast dynamics that it
equilibrates instantaneously with the slow changing variables. At the same time, a
second subsystem (labeled 2), in which the effects of the fast subsystem are averaged
over the fast time scale, becomes apparent. Subsystem 2 corresponds to the synthesis
and degradation of A molecules.

The forthcoming discussion relies upon the assumption that the system is
observed at a slow time scale. From this perspective, subsystem 1 corresponds
to the chemical reaction analyzed in Chap. 3. That is, nT enzyme molecules flip
between states E and EX . The rate with which individual molecules shift to state
EX is kXEnX . This rate is constant because we have assumed a constant nX . On the
other hand, the rate with which an individual enzyme in state EX flips to state E
is kEX . Note that the reaction EX • E C A is not taken into account. The reason
being that in the fast time scale it barely takes place. Finally, from the slow dynamics
perspective, subsystem 1 can always be considered to be in a stationary state given
the current nX value.

From the discussion in the previous paragraph and the results in Chap. 3 we can
assert that the probability distribution of having nEX of the nT enzymes in state EX
is a binomial distribution in which the success probability—the probability that a
single enzyme is in state EX—is nX=.nX CKE/.

From the point of view of thermodynamics, the stationary distribution of enzyme
molecules between states E and EX is concomitant with thermodynamic equilib-
rium. To understand this, let us assume that the average energies of a free enzyme,
a free molecule X , and the complex EX are EE , EX , and EEX , respectively. Further
assume that, in order for an enzyme and a molecule X to bind, their combined
energies need to surpass an energy threshold Eth > EE;EX;EEX , which can be
assumed zero without loss of generality. Thus, the energy landscape for this reaction
will look like the one sketched in Fig. 5.1, while the scape rates from E CX to EX
and vice versa are

kXE D ˇe.EECEX /=kBT ; kEX D ˇeEEX=kBT : (5.22)
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On the other hand, we can see from (5.15) and (5.16) that the condition for the
stationary state is

kXEnXNE D kEXNEX: (5.23)

Henceforth, by substituting (5.22) into (5.23) we obtain

eEE=kBT NEe
EX=kBT nX D eEEX=kBT NEX:

Finally, by taking the logarithm and multiplying by kBT on both sides, the above
equation becomes

�E C �X D �EX; (5.24)

where �i D �Oi C kBT lnni and �Oi D Ei (i D E;X;EX ). In other words,
the sum of the chemical potentials of the substances on both sides of the reaction
E C X • EX is the same, implying thermodynamic equilibrium (Lehninger et al.
2005).

Regarding subsystem 2, it is equivalent to the birth–death process studied in
Chap. 4. A molecules are synthesized out of the complex EX and are degraded
into Y molecules. We have seen that the EX molecule count is not constant but
fluctuating, and that the fluctuations obey a binomial distribution. However, from
the standpoint of A-molecule dynamics, only the average NEX value matters and
the fluctuations can be disregarded. The reason for this is the assumed separation
of time scales: what is “instantaneous” in the slow dynamics perspective (that
of A molecules) involves a “long” time period in the time scale of the reaction
E C X • EX . This means that while one A molecule is produced or degraded,
nEX fluctuates several times. However, from the point of view of A molecules, it is
impossible to follow individual fluctuations and only the average effect is felt.

Since the production and decay events of A molecules are stochastic, nA
fluctuates around the average value NA.t/ and these fluctuations obey a Poisson
distribution. On the other hand, NA.t/ evolves with time according to Eq. (4.12).
This further means that NA.t/ exponentially converges to

NA D �

�
;

with � and � as given by Eqs. (5.18) and (5.19). We can finally assert from the
results in Chap. 4 that, once the system has reached the stationary state, the average
duration of individual fluctuations is determined by the value of � solely: the larger
the � the shorter the fluctuations.

In the stationary state, the average production and decay rates of Amolecules are
constant and equal, so NA remains unchanged. If we assume that the production
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Fig. 5.2 Schematic
representation of the energy
landscape for the slow
subsystem of the reaction
scheme (5.7)–(5.9)

and degradation of A molecules are irreversible reactions, the value of both rates is
given by—see Eq. (4.22):

J D kEANEX D kAY NA D kEAnT
nX

nX CKE

: (5.25)

Following with the comparison with the birth–death process of Chap. 4, we can
think of an energy landscape for subsystem 2 as depicted in Fig. 5.2. As in the
birth–death process of Chap. 4, the system does evolve to a stationary state, but
such stationary state does not correspond to chemical equilibrium. This happens
because the stationary molecular counts do not eliminate the original chemical-
potential unbalance, and so �EX ¤ �A ¤ �Y in general. Concomitantly, there
exists a constant influx of energy (originated by the input of high energy molecules
and the output of low energy molecules), which in turn is dissipated as heat. Under
the supposition that the production and degradation of A molecules are irreversible
reactions, the stationary energy influx and heat dissipation rates are—see Eq. (4.25):

� D J.�EX � �Y / D kEAnT
nX

nX CKE

.�EX � �Y /: (5.26)

We see from Eq. (5.25) that we could either increase the amount of enzymes
of augment the number of substrate molecules (nX ) to accelerate the enzymatic
reaction. However, this also increases the heat dissipation rate (5.25). As a matter
of fact, the only way to stop heat dissipation (and so making the enzymatic reaction
thermodynamically reversible) is to make the reaction velocity equal to zero.

5.4 Summary

This chapter generalizes the results in Chap. 4. Here we study molecule synthesis
and degradation one more time, but take into consideration the case in which the
synthesis process is catalyzed by an enzyme. To simplify the chemical master
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equation that models the stochastic evolution of this system we introduced a
very useful technique that makes use of a naturally existing separation of time
scales. With this, we could split the system into a couple of nested subsystems
which correspond to the processes studied in Chaps. 3 and 5. Thus the conclusions
obtained there can be extrapolated to the system here studied. In particular, we could
understand how enzymes accelerate chemical reactions without altering the system
thermodynamic behavior.



Chapter 6
Receptor–Ligand Interaction

Abstract In this chapter we study the dynamic and thermodynamic behavior of a
ubiquitous biochemical process: the interaction of a receptor molecule with multiple
ligands. As before, we study it from the perspectives of chemical kinetics, stochastic
processes, and thermodynamics. In essence we do not introduce any new tools,
but make use of the ones introduced in the previous chapters. However, as the
readers will be aware by the end of the chapter, the obtained conclusions allow a
deeper understanding not only of this particular system but also of the dynamic and
thermodynamic behavior of biochemical systems in general. It is our goal that, by
gradually increasing the complexity of the studied systems, while building up upon
previous examples, the reader will develop a more profound notion of the way the
different approaches are inter-related. In particular, the present chapter includes a
thorough discussion about the thermodynamic behavior of the studied system and
how it compares with the ones in previous chapters.

6.1 Ligand–Receptor Interaction

So far we have studied three different sets of chemical reaction schemes. We started
in Chap. 3 with a system in which the stationary state corresponds to thermodynamic
equilibrium, followed by two systems (Chaps. 4 and 5) that never reach thermo-
dynamic equilibrium, even in the steady state. Interestingly, in the system studied
in Chap. 3, a constant number of molecules (no molecules are either produced or
degraded) switches between two different states, while in the systems of Chaps. 4
and 5, an average molecule count is maintained because molecule production and
degradation balance each other. We can think of the systems in Chaps. 4 and 5 as
involving a constant flux of molecules that are synthesized out of a source and are
degraded into a sink. This suggests that: as long as there is a null flux of molecules
in a chemical reaction system, its stationary state is compatible with thermodynamic
equilibrium. In the present chapter we introduce another system that complies with
this generalization. In it, a receptor molecule R is bound in two different sites by

M. Santillán, Chemical Kinetics, Stochastic Processes, and Irreversible
Thermodynamics, Lecture Notes on Mathematical Modelling in the Life Sciences,
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Fig. 6.1 Schematic
representation of the reactions
undergone by a receptor that
can be bound by two different
ligands in two different
binding sites

ligand molecules X and Y , as schematically represented in Fig. 6.1. This system is
representative of many processes taking place within living cells. To quote a few
examples: a DNA promoter that needs to be bound by various transcription factors
and an RNA polymerase in order to start transcription, an ion channel whose gating
is regulated by the binding of two or more regulatory molecules, and an enzyme
that is inhibited when it is bound by multiple ligands at different sites. Although
the present chapter is limited to studying the case in which a receptor is bound by
two ligands, it is straightforward to extend the analysis to the binding of an arbitrary
number of ligands.

6.2 Stochastic Kinetic Analysis of a Single Receptor Molecule

Consider a molecule (called the receptor and denoted by R) that has two binding
sites, one specific for X molecules and the other specific for Y molecules.
The processes through which the binding sites are occupied and unoccupied are
schematically represented in Fig. 6.1. Let us assume for the moment that the binding
of a molecule X to its corresponding binding site is not influenced by the state of
the Y binding site, and vice versa. Under this assumption, the processes illustrated
in Fig. 6.1 can be conceptualized in terms of the following set of chemical reactions:

RCX

kC
X nRnX

•
k�
XnRX

RX; (6.1)

RC Y

kC
Y nRnY

•
k�
Y nRY

RY ; (6.2)
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RX C Y

kC
Y nRXnY

•
k�
Y nRXY

RXY ; (6.3)

RY CX

kC
X nRY nX

•
k�
XnRXY

RXY : (6.4)

In the reactions above, kC
X and k�

X , respectively, represent the propensities (prob-
ability per unit time) for the binding and unbinding of a molecule X to its
corresponding site; kC

Y and k�
Y are the corresponding propensities (also known as

reaction rate constants) for the binding and unbinding of a molecule Y ; nX and nY
are, respectively, the molecule counts of ligands X and Y ; and nR, nRX , nRY , and
nRXY correspond to the number of receptor molecules that are free, bound by a
ligand X , bound by a ligand Y , and bound by both ligands, respectively.

Let us consider one single receptor molecule, which when bound and unbound
by ligands X and Y flips among states .0; 0/, .X; 0/, .0; Y /, and .X; Y /. If nX and
nY are assumed constant, the master equation (actually the master-equation family)
describing the dynamics of the probability distribution for this system is

dP00.t/

dt
D k�

XPX0.t/ � kC
X nXP00.t/C k�

Y P0Y .t/ � kC
Y nY P00.t/; (6.5)

dPX0.t/

dt
D kC

X nXP00.t/ � k�
XPX0.t/C k�

Y PXY .t/ � kC
Y nY PX0.t/; (6.6)

dP0Y .t/

dt
D kC

Y nXP00.t/ � k�
Y P0Y .t/C k�

XPXY .t/ � kC
X nY P0Y .t/; (6.7)

dPXY .t/

dt
D kC

Y nY PX0.t/ � k�
Y =kCPXY .t/C kC

X nXP0Y .t/ � k�
XPXY .t/; (6.8)

in which Pij .t/ stands for the probability that the receptor molecule is in state .i; j /
at time t .

Although it is possible to directly solve Eqs. (6.5)–(6.8), it is easier if we take
advantage of the independence of the X and Y binding sites to split this system of
coupled differential equations into two simpler independent master equations. Let
PX.t/ (PY .t/) denote the probability that the X (Y ) binding site is bound by the
corresponding ligand at time t , regardless of the state of the other binding site. Since
both sites are independent, the master equations for PX.t/ and PY .t/ should be

dPX.t/

dt
D kC

X nX.1 � PX.t// � k�
XPX.t/; (6.9)

dPY .t/

dt
D kC

Y nY .1 � PY .t// � k�
Y PY .t/: (6.10)
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We also expect from the independency of both binding sites that the probabilities
Pij .t/ are given in terms of PX.t/ and PY .t/ as follows:

P00.t/ D .1 � PX.t//.1 � PY .t//; (6.11)

PX0.t/ D PX.t/.1 � PY .t//; (6.12)

P0Y .t/ D .1 � PX.t//PY .t/; (6.13)

PXY .t/ D PX.t/PY .t/: (6.14)

To prove that these assumptions are correct, differentiate Eqs. (6.11)–(6.14) and
substitute Eqs. (6.9) and (6.10) to recover Eqs. (6.5)–(6.8).

Equations (6.9) and (6.10) are not new to us since we encountered them in
Chap. 3. The readers are encouraged to demonstrate that their general solutions are:

PX.t/ D nX

KX C nX
C

�
PO
X � nX

KX C nX

�
e�.kC

X nXCk�

X /t ; (6.15)

PY .t/ D nY

KY C nY
C

�
PO
Y � nY

KY C nY

�
e�.kC

Y nY Ck�

Y /t ; (6.16)

with PO
X and PO

Y the initial values for PX.t/ and PY .t/, KX D k�
X=k

C
X , and KX D

k�
X=k

C
X . Equations (6.15) and (6.16) further imply that

lim
t!1PX.t/ D nX

KX C nX
; lim

t!1PY .t/ D nY

KY C nY
; (6.17)

and that the rates of convergence are, respectively, determined by kC
X nX C k�

X and
kC
Y nY C k�

Y .
The expressions forPij .t/ can be computed by substituting Eqs. (6.15) and (6.16)

into Eqs. (6.11)–(6.14), but the resulting formulas are too long to be informative. Let
us, instead, calculate the Pij .t/ stationary values from Eqs. (6.17):

P 00 D 1�
1C nX

KX

� �
1C nY

KY

� ; (6.18)

PX0 D
nX
KX�

1C nX
KX

� �
1C nY

KY

� ; (6.19)

P 0Y D
nY
KY�

1C nX
KX

� �
1C nY

KY

� ; (6.20)

PXY D
nX
KX

nY
KY�

1C nX
KX

� �
1C nY

KY

� : (6.21)
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Given that the rate of convergence to the steady state of a complex system
composed of two or more coupled subsystems is determined by the slowest
subsystem (Strogatz 1994), the speed with which the probabilities Pij .t/ converge
to their stationary values is determined by the minimum value of kC

X nX C k�
X and

kC
Y nY C k�

Y . When either nX or nY are equal to zero, Eqs. (6.18)–(6.21) reduce to
the well-known Michaelis–Menten equation that we found in Chap. 5 while studying
the enzyme–substrate interaction.

6.3 Multiple Receptor Molecules

Let us now generalize our analysis to the case of nT identical receptors. Assume
that each receptor molecule has two specific binding sites for ligands X and Y ,
and that nX and nY are kept constant. As before, the first step is to write down the
corresponding master equation. Let P.nR; nRX ; nRY I t / denote the probability that,
at time t , there are nR free receptor molecules, nRX receptor molecules bound by a
ligand X , and nRY receptor molecules bound by a ligand Y . Since we are assuming
a constant total number of receptors, the count of receptor molecules whose both
binding sites are occupied is given by nRXY D nT � nR � nRX � nRY . This is all
the information we need to derive the master equation governing the dynamics of
P.nR; nRX ; nRY I t /. Although quite long, it is worthwhile writing this equation in
full for the sake of clarity:

dP.nR; nRX ; nRY I t /
dt

D kC
X .nR C 1/nXP.nR C 1; nRX � 1; nRY I t /

� kC
X nRnXP.nR; nRX ; nRY I t /

C k�
X.nRX C 1/P.nR � 1; nRX C 1; nRY I t /

� k�
XnRXP.nR; nRX ; nRY I t /

C kC
Y .nR C 1/nY P.nR C 1; nRX ; nRY � 1I t /

� kC
Y nRnY P.nR; nRX ; nRY I t /

C k�
Y .nRY C 1/P.nR � 1; nRX ; nRY C 1I t /

� k�
Y nRY P.nR; nRX ; nRY I t /

C kC
Y .nRX C 1/nY P.nR; nRX C 1; nRY I t /

� kC
Y nRXnY P.nR; nRX ; nRY I t /

C k�
Y .nRXY C 1/P.nR; nRX � 1; nRY I t /

� k�
Y nRXY P.nR; nRX ; nRY I t /

C kC
X .nRY C 1/nXP.nR; nRX ; nRY C 1I t /
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� kC
X nRY nXP.nR; nRX ; nRY I t /

C k�
X.nRXY C 1/P.nR; nRX ; nRY � 1I t /

� k�
XnRXY P.nR; nRX ; nRY I t / (6.22)

To understand Eq. (6.22) take a look at the reactions in Eqs. (6.1)–(6.4). The first
two terms on the right-hand side of Eq. (6.22) correspond to the forward reaction in
(6.1); the first term accounts for the case in which one of such reactions takes the
system into the state .nR; nRX ; nRY /, while the second term considers the reactions
that take the system out of this state. In a similar way, the third and fourth terms on
the right-hand side of Eq. (6.22) correspond to the backward reaction in (6.1), the
fifth and sixth terms correspond to the forward reaction in (6.2), and so forth for the
rest of the reactions.

The reader can imagine how difficult it is to solve Eq. (6.22) directly. However,
one can construct its solution from Eqs. (6.11)–(6.14)—with PX.t/ and PY .t/ as
given by Eqs. (6.15) and (6.16)—and from the supposition that all the nT receptor
molecules are independent from each other. In summary, given that we know
the probability distribution for all the states of a single molecule, the probability
distribution for the nT molecules is nothing but a multinomial distribution:

P.nR; nRX ; nRY I t / D nT Š

nRŠnRXŠnRXŠnRXY Š
P
nR
00 .t/P

nRX
X0 .t/P

nRY
0Y .t/P

nRXY
XY .t/;

(6.23)

with nRXY D nT�nR�nRX�nRY . The first term on the right-hand side of Eq. (6.23)
accounts for the number of ways in which the nT molecules can be arranged such
that nR of them are free, nRX are bound by a ligandX , nRY are bound by a ligand Y ,
and the rest are bound by both ligands. The rest of the terms on the right-hand side
of Eq. (6.23) stands for the probability of each one of such configurations. Verifying
that (6.23) is a solution to (6.22) is simple but tedious. However, the readers are
encouraged to perform the demonstration because it is a very instructive exercise.

With the probability distribution it is possible to calculate the average number of
molecules in each state:

Ni.t/ D
X

ni ;nRX ;nRY

niP.nR; nRX ; nRY /; i D R;RX;RY: (6.24)

At this point we make use of the multinomial distribution properties (Evans et al.
2000) to obtain

NR.t/ D nT P00.t/; (6.25)

NRX.t/ D nT PX0.t/; (6.26)

NRY .t/ D nT P0Y .t/; (6.27)

NRXX.t/ D nT PXY .t/; (6.28)
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Finally, since the probabilities Pij .t/ converge to the steady-state values given by
(6.18)–(6.21) as t ! 1, the average receptor counts in every state reach the
following stationary values as time tends to infinity:

NR D nT
1�

1C nX
KX

� �
1C nY

KY

� ; (6.29)

NRX D nT

nX
KX�

1C nX
KX

� �
1C nY

KY

� ; (6.30)

NRY D nT

nY
KY�

1C nX
KX

� �
1C nY

KY

� ; (6.31)

NRXX D nT

nX
KX

nY
KY�

1C nX
KX

� �
1C nY

KY

� : (6.32)

Observe the similarity between Eqs. (6.18)–(6.21) and (6.29)–(6.32). In fact, what
we have obtained are results that agree with the common notion of probability
(Jaynes 2003): the average number of receptors found in a given state is given by
the probability of such state, times the total number of receptors.

6.4 Deterministic Kinetic Analysis

To analyze the dynamics of the mean molecular counts, Ni.t/, differentiate
Eq. (6.24) for all the i values and substitute Eq. (6.22) to obtain

dNR.t/

dt
D k�

XNRX.t/C k�
Y NRY .t/ � .kC

X nX C kC
Y nY /NR.t/; (6.33)

dNRX.t/

dt
D kC

X nXNR.t/C k�
Y NRXY .t/ � .k�

X C kC
Y nY /NRX.t/; (6.34)

dNRY .t/

dt
D kC

Y nY NR.t/C k�
XNRXY .t/ � .k�

Y C kC
X nX/NRY .t/; (6.35)

with NRXY .t/ D nT �NR.t/ �NRX.t/ �NRY .t/ �NRXY .t/.
By solving the algebraic equations resulting from setting dNi=dt D 0, one can

compute the stationary states available for the system. The readers are encouraged
to do it either manually or with the aid of a computer algebra system like
Mathematica or Maple, and prove that the only existing stationary state is given
by Eqs. (6.29)–(6.32), in agreement with the analysis in the previous section.

The system of differential equations (6.33)–(6.35) can also be solved without
much trouble. To do it define
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x D NRX �NRX; y D NRY �NRY ; z D NR �NR; (6.36)

calculate the derivatives, and substitute Eqs. (6.33)–(6.35) to get

dx

dt
D �.k�

X C kC
Y nY C k�

Y /x � k�
Y y C .kC

X nX � k�
Y /z: (6.37)

dy

dt
D �k�

Xx � .k�
Y C kC

X nX C k�
X/y C .kC

Y nY � k�
X/z; (6.38)

d z

dt
D k�

Xx C k�
Y y � .kC

X nX C kC
Y nY /z; (6.39)

This is a linear system that can be written in vectorial form as Px D Ax, with x D
.x; y; z/T , and

A D
2

4
�.k�

X C kC
Y nY C k�

Y / �k�
Y .kC

X nX � k�
Y /

�k�
X �.k�

Y C kC
X nX C k�

X/ .kC
Y nY � k�

X/

k�
X k�

Y �.kC
X nX C kC

Y nY /

3

5 :

The general solution of the differential-equation system (6.37)–(6.39) is (Zill 2008):

x.t/ D
3X

iD1
Civi e�i t ; (6.40)

with v1; v2; v3 the eigenvectors of matrix A and �1; �2; �3 the corresponding
eigenvalues. After performing the corresponding calculations, the eigenvector of
A are:

v1 D
0

@
�1

kC
Y =k

�
Y

1

1

A ; v2 D
0

@
kC
X =k

�
X

�1
1

1

A ; v3 D
0

@
�1
�1
1

1

A ; (6.41)

while the corresponding eigenvalues are

�1 D � .kC
X C k�

X/; �2 D � .kC
Y C k�

Y /; �3 D � .kC
X C k�

X C kC
Y C k�

Y /: (6.42)

Assume that following initial conditions: x.0/ D x0, y.0/ D x0, and y.0/ D y0.
It then follows from Eq. (6.40) that

.x0; y0; z0/
T D C1v1 C C2v2 C C3v3:

After substituting Eq. (6.41) we get

x0 D � C1 CC2=KX �C3; y0 DC1=KY �C2 �C3; z0 DC1 CC2 CC3; (6.43)
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with KX D k�
X=k

C
X and KY D k�

Y =k
C
Y . By solving for C1, C2, and C3 from the

equation system in (6.43), we obtain the following expressions for these originally
undetermined constants in terms of the initial condition X.0/ D x0:

C1 D .y0 C y0/
KY

1CKY

; (6.44)

C2 D .x0 C y0/
KX

1CKX

; (6.45)

C3 D z0
1 �KXKY

.1CKX/.1CKY /
� x0 KX

1CKX

� y0 KY

1CKY

: (6.46)

From the above results, the solutions to the differential-equation system (6.37)–
(6.39) are

x.t/ D �C1e�1t C C2

KX

e�2t � C3e�3t ;

y.t/ D C1

KY

e�1t � C2e�2t � C3e�3t ;

z.t/ D C1e
�1t C C2e

�2t C C3e
�3t ;

with C1, C2, and C3 as given in Eqs. (6.44)–(6.46).
Finally, if we revert the change of variables in Eq. (6.36), the solutions to the

system of ordinary differential equations in (6.33)–(6.35) result to be

NRX.t/ D NRX � C1e�1t C C2

KX

e�2t � C3e�3t ; (6.47)

NRY .t/ D NRY C C1

KY

e�1t � C2e�2t � C3e�3t ; (6.48)

NR.t/ D NR C C1e
�1t C C2e

�2t C C3e
�3t ; (6.49)

where C1, C2, and C3 are given by Eqs. (6.44)–(6.46), while �1, �2, and �3 are as
in Eq. (6.47). Notice that in the calculation of the constants Ci we have to make the
substitution

x0 D N0
RX �NRX; y0 D N0

RY �NRY ; z0 D N0
R �NR;

where N0
RX D NRX.0/, N0

RY D NRY .0/, and N0
R D NR.0/.

Two important conclusions follow from Eqs. (6.47)–(6.49):

• Since all the system eigenvalues are negative (6.47),NRX.t/,NRY .t/, andNR.t/
converge to their respective stationary values as t ! 1.
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• The rate of convergence is determined by the eigenvalue with the smallest
absolute value (Strogatz 1994). In this case, it has to be either j�1j D kC

X C k�
X

or j�2j D kC
Y C k�

Y , because j�3j D j�1j C j�2j. In other words, the rate
of convergence to the stationary state is determined by the slowest binding–
unbinding reaction set.

To end this section it is important to recall that Eqs. (6.47)–(6.49) describe
the temporal behavior of the average molecular counts for nRX , nRY , and nR.
So, the question arises of how good a description of these equations are for a
single experiment or a single simulation carried out using Gillespie’s algorithm.
We expect that the temporal evolution of an individual stochastic simulation will
present fluctuations around the corresponding average values. Moreover, the results
in the previous section predict that if we run several simulations, count at a given
time the number of molecules in each state, and calculate the histograms, they
will correspond to the distributions derived from the multinomial distribution in
(6.23). I leave for the readers the exercise of calculating the probability distributions
P.nRX/, P.nRY /, and P.nR/ out of Eq. (6.23), as well as the corresponding mean
values and standard deviations. The results of these calculations shall show that,
in all cases, the coefficients of variation are proportional to 1=

p
nT . Therefore, the

larger the total number of receptors, the better the deterministic description given
by Eqs. (6.47)–(6.49). This also means that, at least for one of the cases of interest
given at the beginning of the chapter (gene regulation), the deterministic description
is not good enough because the number of gene copies within one cell is generally
one or two.

6.5 Thermodynamic Analysis

As in previous examples, we will make use of an energy landscape to analyze the
reaction scheme in (6.1)–(6.4) from a thermodynamic perspective and make the
connection with the system dynamics. Since there are two possible paths to go from
R C X C Y to RXY , the complete energy landscape is three dimensional; and this
makes it difficult to visualize. Fortunately, we do not need the complete picture.
It is enough to know how the energy changes along the two possible trajectories:
those corresponding to reactions (6.1) and (6.3), and to reactions (6.2) and (6.4).
A schematic representation of such profiles is presented in Fig. 6.2.

From Kramer’s theory (Van Kampen 1992) and following the same argumen-
tation that lead to Eqs. (3.29) and (3.30), the reaction rates in (6.1)–(6.4) can be
written in terms of the various energy levels in the energy profiles of Fig. 6.2 as

kC
X D ˇe�

O
R=kBT e�

O
X=kBT e�

O
Y =kBT e�
1=kBT (6.50)

D ˇe�
O
RY =kBT e�

O
X=kBT e��2=kBT ; (6.51)
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Fig. 6.2 Top: schematic
representation of the energy
profile along the reactions
(6.1) and (6.3). Top:
schematic representation of
the energy profile along the
reactions (6.2) and (6.4)

k�
X D ˇe�

O
RX=kBT e�

O
Y =kBT e�
1=kBT (6.52)

D ˇe�
O
RXY =kBT e��2=kBT ; (6.53)

kC
Y D ˇe�

O
R=kBT e�

O
X=kBT e�

O
Y =kBT e�
2=kBT (6.54)

D ˇe�
O
RX=kBT e�

O
Y =kBT e��1=kBT ; (6.55)

k�
Y D ˇe�

O
RY =kBT e�

O
X=kBT e�
1=kBT (6.56)

D ˇe�
O
RXY =kBT e��2=kBT : (6.57)

Take the logarithm in Eqs. (6.50) and (6.51), multiply by kBT , and solve for

1 � �2. Do the same with Eqs. (6.52) and (6.53), equate with the result of the
previous operations, and solve for �ORXY to obtain

�ORXY D �ORX C �ORY � �OR : (6.58)

Let us save this result for the time being. Later on it will be useful and we shall
interpret it. Just have in mind that it comes from the fact that the forward and
backward rates of reactions (6.1) and (6.4) are equal. The same result can be
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obtained by making the equivalent algebraic operations with Eqs. (6.4)–(6.7). I leave
the proof of this assertion as an exercise for the readers.

Observe that both energy profiles look like the ones previously studied in
Chap. 4 (see Fig. 4.4). In Sect. 4.4 we saw that when there is a constant number
of molecules jumping between the states corresponding to the three minima of the
energy landscape, the stationary state corresponds to thermodynamic equilibrium.
Moreover, thermodynamic equilibrium is characterized by equal chemical potentials
in all three states. In the present case we have a similar situation: a constant
number of receptors are switching between different binding states. Thus, when
the stationary condition is imposed to both reaction pathways we get

�R C�X C�Y D �RX C�Y D �RXY ; �R C�X C�Y D �RY C�X D �RXY :

Or simply:

�R C �X C �Y D �RX C �Y D �RY C �X D �RXY : (6.59)

Recall that �i D �Oi C kBT lnN i . Hence, by substituting into Eq. (6.59) we obtain

NRe
�OR=kBT nXe

�OX=kBT nY e
�OY =kBT D NRXe

�ORX=kBT nY e
�OY =kBT

D NRY e
�ORY =kBT nXe

�OX=kBT

D NRXY e
�ORXY =kBT : (6.60)

Furthermore, by solving for NRX , NRY , and NRXY in terms of NR we get

NRX D NR

nX

e.�
O
RX��OR��OX /=kBT

; (6.61)

NRY D NR

nY

e.�
O
RY ��OR��OY /=kBT

; (6.62)

NRXY D NR

nXnY

e.�
O
RXY ��OR��OX��OY /=kBT

; (6.63)

Notice that the term �ORX � �OR � �OX in the exponential of the right-hand side of
Eq. (6.60) corresponds to the energy difference between states R C X C Y and
RX C Y . Similarly, the term �ORY � �OR � �OY in Eq. (6.60) is the energy difference
between statesRCXCY and RY CX , while �ORXY ��OR ��OX ��OY is the energy
difference between statesRXY andRCXCY . However, if we substitute Eq. (6.58),
we obtain

�ORXY � �OR � �OX � �OY D .�ORX � �OR � �OX/C .�ORY � �OR � �OY /: (6.64)
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That is, the energy difference between states RXY and R C X C Y is equal to
the sum of the energy differences between states RX C Y and R C X C Y , and
between states RY C X and R C X C Y . Furthermore, given that Eq. (6.58) is
a direct consequence of the assumption that the two different binding sites in the
receptor molecule are independent, we have that this independence is equivalent to
the additivity of the energy differences. We shall return to this point later.

Substitute Eq. (6.64) into Eq. (6.63) to obtain

NRXY D NR

nX

e.�
O
RX��OR��OX /=kBT

nY

e.�
O
RY ��OR��OY /=kBT

(6.65)

From Eqs. (6.61), (6.62), and (6.65), plus the assumption that the total number of
receptors is constant:

nT D NR CNRX CNRY CNRXY

we get the following expressions for NR, NRX ,NRY , and NRXY :

NR D nT
1�

1C nXe
�.�ORX��OR��OX /=kBT

� �
1C nY e

�.�ORY ��OR��OY /=kBT
� ; (6.66)

NRX D nT
nXe

�.�ORX��OR��OX /=kBT
�
1C nXe

�.�ORX��OR��OX /=kBT
� �
1C nY e

�.�ORY ��OR��OY /=kBT
� ; (6.67)

NRY D nT
nY e

�.�ORY ��OR��OY /=kBT
�
1C nXe

�.�ORX��OR��OX /=kBT
� �
1C nY e

�.�ORY ��OR��OY /=kBT
� ; (6.68)

NRXY D nT
nXe

�.�ORX��OR��OX /=kBT nY e�.�ORY ��OR��OY /=kBT
�
1C nXe

�.�ORX��OR��OX /=kBT
� �
1C nY e

�.�ORY ��OR��OY /=kBT
� : (6.69)

Let us make a pause at this point to introduce some useful thermodynamic
concepts to further analyze the results expressed in Eqs. (6.66)–(6.69). We know
from Eq. (2.6) that, except for an additive constant, the Gibbs free energy of a
chemical system kept at constant pressure and temperature can be expressed as

G D
X

i

�iN i :

If we substitute �i D �Oi C kBT lnN i the above equation transforms into

G D
X

i

.�Oi C kBT lnN i/N i D GO C kBT
X

i

N i lnN i ;
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where

GO D
X

i

�Oi N i :

Assume that there is a chemical reaction taking place in the system. We can define
the free energy change of this chemical reaction as usual (de Groot and Mazur
2013):

�G D dG

d

D dGO

d

C d

d


X

i

N i lnN i D �GO C d

d


X

i

N i lnN i ;

in which

�GO D
X

i

�Oi
dN i

d


is called the standard free energy change (or the free energy change under standard
conditions). Variable 
 is usually called the degree of advance of the reaction,
and measures the net number of forward individual chemical reactions that have
occurred from the start of the experiment. Let us now focus on the terms dN i=d
 .
They can be interpreted as the amount of change of the molecular count of species
i per unitary increment of the reaction degree of advancement. In other words, they
measure how many new molecules appear (of disappear if the derivative is negative)
per unitary forward reaction. For this reason they are called the stoichiometric
coefficients. Let us denote them as �i D dN i=d
 . Hence

�GO D
X

i

�Oi �i : (6.70)

Upon applying the definition in (6.70) we obtain

�GO
X D �ORX � �OR � �OX; (6.71)

�GO
Y D �ORY � �OR � �OY : (6.72)

If the binding of the two ligands to a single receptor is viewed as a single global
reaction (rather than two sequential reactions), we can also define

�GO
XY D �ORXY � �OR � �OX � �OY : (6.73)

The result in (6.64) guaranties that

�GO
XY D �GO

X C�GO
Y :
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One way to interpret this last result is to choose the zero energy level in the
energy landscape of Fig. 6.2 in such a way that �OR C �OX C �0Y D 0. With
this, �GO

X ;�G
O
Y ;�G

O
XY < 0 can be understood as the binding energies of states

RX C Y , RY C X , and RXY , respectively. Thus, when the two ligands are bound
to the receptor, the binding energy of the complex results to be the addition of the
individual binding energies associated with each ligand. It is important to remark
that this additivity property is a consequence of the independency of the X and Y
binding sites.

To continue with our analysis substitute Eqs. (6.71) and (6.72) into
Eqs. (6.66)–(6.69) to obtain:

NR D nT
1�

1C nXe
��GOX =kBT

� �
1C nY e

��GOY =kBT
� ; (6.74)

NRX D nT
nXe

��GOX =kBT
�
1C nXe

��GOX =kBT
� �
1C nY e

��GOY =kBT
� ; (6.75)

NRY D nT
nY e

��GOY =kBT
�
1C nXe

��GOX =kBT
� �
1C nY e

��GOY =kBT
� ; (6.76)

NRXY D nT
nXe

��GOX =kBT nY e��GOY =kBT
�
1C nXe

��GOX =kBT
� �
1C nY e

��GOY =kBT
� : (6.77)

It is not difficult to prove that Eqs. (6.50)–(6.57), together with Eqs. (6.71)–(6.72)
imply that

e��GOX =kBT D kC
X =k

�
X D 1=KX; e��GOY =kBT D kC

Y =k
�
Y D 1=Ky; (6.78)

in which KX and KY are known as the dissociation constants of their respective
reactions. Finally, by substitution (6.78) into Eqs. (6.74)–(6.77) we get

NR D nT
1�

1C nX
KX

� �
1C nY

KY

� ;

NRX D nT

nX
KX�

1C nX
KX

� �
1C nY

KY

� ;

NRY D nT

nY
KY�

1C nX
KX

� �
1C nY

KY

� ;

NRXX D nT

nX
KX

nY
KY�

1C nX
KX

� �
1C nY

KY

� :
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That is, we have recovered Eqs. (6.29)–(6.32). Recall that we previously obtained
these equations from the stochastic (master equation) and deterministic (chemical
kinetics) approaches, confirming once more the unity of the different existing
formulations to studying the dynamics of chemical-reaction systems.

6.6 Summary

In the present chapter we analyzed the dynamical and thermodynamical behavior
of a ubiquitous process in biology: the binding of one or more ligands to one
receptor. We studied in detail the case when a single receptor molecule is present,
as well as when there are several receptors. Not only we were able to prove once
more the unity of the various approaches previously introduced, but also derived
some interesting conclusions. For instance, we confirmed that the chemical kinetics
equations govern the evolutions of the average molecular counts, as computed
from the master equation approach. We also proved that, in the present system,
the stationary state is compatible with chemical and thermodynamic equilibria, and
showed that the stationary state is unique and stable.



Chapter 7
Cooperativity

Abstract In the present chapter we generalize the results in the previous chapter
to study one of the most fascinating biochemical phenomena: the cooperative
interaction between two or more ligands that bind a single receptor (or simply
cooperativity). Once more, we make use of our previous knowledge to carefully
analyze the dynamic and thermodynamic characteristics of this phenomenon.

7.1 The Importance of Cooperativity

Cooperativity is a phenomenon displayed by enzymes or receptors that have
multiple binding sites whose affinity for a ligand is increased, positive cooper-
ativity, or decreased, negative cooperativity, upon the binding of a ligand to a
neighboring binding site. One of the most striking examples of cooperativity occurs
in hemoglobin. The affinity of this molecule’s four binding sites for oxygen is
increased above that of the unbound hemoglobin when the first oxygen molecule
binds. This behavior is essential to explain the efficiency of this molecule to
transport and exchange oxygen and carbon dioxide. Furthermore, as we shall see,
cooperativity is a very good example of how the dynamical and thermodynamical
perspectives nicely complement each other. By putting them together we can get a
better and more profound understanding of this biochemical phenomenon.

7.2 One Receptor-Two Ligands, Stochastic Kinetic Analysis

Consider once more a single receptor molecule with two binding sites, one specific
for X ligands and the other specific for Y ligands. We assume that the processes
through which the receptor’s binding sites are occupied and unoccupied are as
depicted in Fig. 6.1. However, contrarily to the analysis in Chap. 6, we do not assume
in here that the binding-unbinding processes in one site are independent from those
in the other. Instead, we suppose that the probability that a ligand binds to its specific

M. Santillán, Chemical Kinetics, Stochastic Processes, and Irreversible
Thermodynamics, Lecture Notes on Mathematical Modelling in the Life Sciences,
DOI 10.1007/978-3-319-06689-9__7, © Springer International Publishing Switzerland 2014
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site is independent of the other site state. However, the probability that a given
ligand detaches from its binding site decreases when the other site is occupied. In
other words, once the two ligands are bound, they interact in such a way that the
whole complex stability is increased. As previously discussed, this phenomenon
is an instance of cooperativity. The above discussion can be summarized in the
following reaction scheme

RCX

kC
X nRnX

•
k�
XnRX

RX; (7.1)

RC Y

kC
Y nRnY

•
k�
Y nRY

RY ; (7.2)

RX C Y

kC
Y nRXnY

•
k�
Y nRXY =kC

RXY ; (7.3)

RY CX

kC
X nRY nX

•
k�
XnRXY =kC

RXY : (7.4)

As before, kC
X and k�

X respectively represent the propensities (probability per unit
time) for the binding and unbinding (when site Y is empty) of a molecule X to its
corresponding site; kC

Y and k�
Y are the corresponding propensities for the binding

and unbinding (when siteX is empty) of a molecule Y ; nX and nY are the molecular
counts of ligandsX and Y , respectively; while nR, nRX , nRY , and nRXY correspond
to the number of receptor molecules that are free, bound by a ligand X , bound by a
ligand Y , and bound by both ligands, respectively. Parameter kC is a constant whose
value measures how strong cooperativity is. kC > 1 means positive cooperativity.
On the contrary, kC < 1 denotes negative cooperativity, meaning that the stability
of the RXY complex decreases due to the interaction between the X and Y ligands.

If we consider a single receptor molecule that, due to the binding and unbinding
of ligands X and Y , switches between its four available states: .0; 0/, .X; 0/, .0; Y /,
and .X; Y /, the master-equation family governing its dynamics is:

dP00.t/

dt
D k�

XPX0.t/ � kC
X nXP00.t/C k�

Y P0Y .t/ � kC
Y nY P00.t/; (7.5)

dPX0.t/

dt
D kC

X nXP00.t/ � k�
XPX0.t/C k�

Y =kCPXY .t/ � kC
Y nY PX0.t/; (7.6)

dP0Y .t/

dt
D kC

Y nXP00.t/ � k�
Y P0Y .t/C k�

X=kCPXY .t/ � kC
X nY P0Y .t/; (7.7)

dPXY .t/

dt
D kC

Y nY PX0.t/�k�
Y =kCPXY .t/CkC

X nXP0Y .t/�k�
X=kCPXY .t/; (7.8)
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where Pij .t/ is the probability that the receptor molecule is in state .i; j / at
time t , while nX and nY correspond to the X and Y molecule counts. Solving
the differential equations in (7.5)–(7.8) is not as easy as it was when both binding
sites were independent. However, in many cases the stationary solutions are highly
informative. The reader won’t find much difficulty to demonstrate that

P 00 D 1

1C nX
KX

C nY
KY

C kC
nX
KX

nY
KY

; (7.9)

PX0 D
nX
KX

1C nX
KX

C nY
KY

C kC
nX
KX

nY
KY

; (7.10)

P 0Y D
nY
KY

1C nX
KX

C nY
KY

C kC
nX
KX

nY
KY

; (7.11)

PXY D kC
nX
KX

nY
KY

1C nX
KX

C nY
KY

C kC
nX
KX

nY
KY

; (7.12)

constitute a stationary solution for the equation system (7.5)–(7.8).
A comparison between Eqs. (7.9)–(7.12) and Eqs. (6.18)–(6.21) reveals that

cooperativity changes the relative probability of state .X; Y /. Positive cooperativity
(kC > 1) increases the stationary probability of state .X; Y /. This agrees with the
fact that the propensity for the detachment of a ligand (either X or Y ) decreases in
proportion to the value of kC . Conversely, the relative probability of state .X; Y /
decreases in case of negative cooperativity (kC < 1).

Consider now the case in which nT independent receptor molecules interact with
a constant number nX of X ligands, and a constant number nY of Y ligands.
Following the procedure leading to Eq. (6.22) it is straightforward to derive the
following master equation for such a system:

dP.nR; nRX ; nRY I t /
dt

D kC
X .nR C 1/nXP.nR C 1; nRX � 1; nRY I t /

� kC
X nRnXP.nR; nRX ; nRY I t /

C k�
X.nRX C 1/P.nR � 1; nRX C 1; nRY I t /

� k�
XnRXP.nR; nRX ; nRY I t /

C kC
Y .nR C 1/nY P.nR C 1; nRX ; nRY � 1I t /

� kC
Y nRnY P.nR; nRX ; nRY I t /

C k�
Y .nRY C 1/P.nR � 1; nRX ; nRY C 1I t /

� k�
Y nRY P.nR; nRX ; nRY I t /

C kC
Y .nRX C 1/nY P.nR; nRX C 1; nRY I t /
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� kC
Y nRXnY P.nR; nRX ; nRY I t /

C k�
Y =kC � .nRXY C 1/P.nR; nRX � 1; nRY I t /

� k�
Y =kC � nRXY P.nR; nRX ; nRY I t /

C kC
X .nRY C 1/nXP.nR; nRX ; nRY C 1I t /

� kC
X nRY nXP.nR; nRX ; nRY I t /

C k�
X=kC � .nRXY C 1/P.nR; nRX ; nRY � 1I t /

� k�
X=kC � nRXY P.nR; nRX ; nRY I t / (7.13)

Thanks to the independence of the nT receptor molecules, the solution to
Eq. (7.13) can be constructed from the solutions to Eqs. (7.9)–(7.12). If P00.t/,
PX0.t/, P0Y .t/, and PXY .t/ are the solutions to Eqs. (7.9)–(7.12), then the solution
P.nR; nRX ; nRY I t / to Eq. (7.13) is

P.nR; nRX ; nRY I t / D nT Š

nRŠnRXŠnRY ŠnRXY Š
P
nR
00 .t/P

nRX
X0 .t/P

nRY
0Y .t/P

nRXY
XY .t/:

(7.14)

This can be tested by differentiating Eq. (7.14), substituting Eqs. (7.9)–(7.12), and
proving that the obtained result is equal to the one obtained after substituting
Eq. (7.14) into the right-hand side of Eq. (7.13).

Equation (7.14) further implies that the master equation in (7.13) has a stationary
solution given by the multinomial probability distribution:

P .nR; nRX ; nRY / D nT Š

nRŠnRXŠnRY ŠnRXY Š
P
nR
00 P

nRX
X0 P

nRY
0Y P

nRXY
XY ; (7.15)

with P 00, PX0, P 0Y , and PXY as given by Eqs. (7.9)–(7.12). From the properties of
the multinomial distribution (Evans et al. 2000), it is possible to compute the means
and the standard deviations for nR.t/, nRX.t/, nRY .t/, and nRXY .t/ as follows

NR.t/ D nT P00.t/; (7.16)

NRX.t/ D nT PX0.t/; (7.17)

NRY .t/ D nT P0Y .t/; (7.18)

NRXY .t/ D nT PXY .t/: (7.19)

and


R.t/ D
p
nT P00.t/Œ1 � P00.t/	; (7.20)


RX.t/ D
p
nT PX0.t/Œ1 � PX0.t/	; (7.21)
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RY .t/ D
p
nT P0Y .t/Œ1 � P0Y .t/	; (7.22)


RXY .t/ D
p
nT PXY .t/Œ1 � PXY .t/	: (7.23)

In particular, the average molecular counts have the following stationary values:

NR D nT P 00 D nT
1

1C nX
KX

C nY
KY

C kC
nX
KX

nY
KY

; (7.24)

NRX D nT PX0 D nT

nX
KX

1C nX
KX

C nY
KY

C kC
nX
KX

nY
KY

; (7.25)

NRY D nT P 0Y D nT

nY
KY

1C nX
KX

C nY
KY

C kC
nX
KX

nY
KY

; (7.26)

NRXY D nT PXY D nT
kC

nX
KX

nY
KY

1C nX
KX

C nY
KY

C kC
nX
KX

nY
KY

: (7.27)

A comparison with Eqs. (6.29)–(6.32) reveals that cooperativity affects the average
relative abundance of receptor molecules in the .X; Y / state. With positive coopera-
tivity (kC > 1), the proportion of molecules in this state increases as compared with
the no cooperativity case, while for negative cooperativity (kC < 1), the proportion
of molecules in the .X; Y / state decreases. Regarding the standard deviations,
they also converge to stationary values that can be computed by substituting
Eqs. (7.9)–(7.12) into Eqs. (7.20)–(7.23). The coefficient of variation can further be
calculated from its definition CV D 
=N :

CV R D 1p
nT

s
1 � P 00

P 00

D 1p
nT

�
nX

KX

C nY

KY

C kC
nX

KX

nY

KY

�
; (7.28)

CV RX D 1p
nT

s
1 � PX0

PX0

D 1p
nT

1C nY
KY

C kC
nX
KX

nY
KY

nX
KX

; (7.29)

CV RY D 1p
nT

s
1 � P 0Y

P 0Y

D 1p
nT

1C nX
KX

C kC
nX
KX

nY
KY

nY
KY

; (7.30)

CV RXY D 1p
nT

s
1 � PXY

PXY

D 1p
nT

1C nX
KX

C nY
KY

kC
nX
KX

nY
KY

: (7.31)

Observe that in all the cases, the coefficients of variation are proportional to 1=
p
nT .

Therefore, the description in terms of the average molecular counts is accurate as
long as nT is large enough so that the coefficients of variation are negligible.
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7.3 Deterministic Description

The average molecular counts NR.t/, NRX.t/, and NRY .t/ are defined as

NR.t/ D
X

nR;nRX ;nRY

nRP.nR; nRX ; nRY I t /; (7.32)

NRX.t/ D
X

nR;nRX ;nRY

nRXP.nR; nRX ; nRY I t /; (7.33)

NRY .t/ D
X

nR;nRX ;nRY

nRY P.nR; nRX ; nRY I t /: (7.34)

Moreover, from the conservation of receptor molecules, NRXY is given by

NRXY .t/ D nT �NR.t/ �NRX.t/ �NRY .t/: (7.35)

By differentiating (7.32)–(7.34) and substituting (7.13) we can derive the differ-
ential equations that govern the dynamics of NR.t/, NRX.t/, and NRY .t/. After
carrying out all of the involved calculations we obtain

dNR.t/

dt
D �kC

X nXNR.t/C k�
XNRX.t/ � kC

Y nY NR.t/C k�
Y NRY .t/; (7.36)

dNRX.t/

dt
D kC

X nXNR.t/�k�
XNRX.t/�kC

Y nY NRX.t/C
k�
Y

kC
NRXY .t/; (7.37)

dNRY .t/

dt
D kC

Y nY NR.t/�k�
Y NRY .t/�kC

X nXNRY .t/C
k�
X

kC
k�
XNRXY .t/; (7.38)

with nRXY as given by Eq. (7.35). Equations (7.36)–(7.38) form a complete set of
differential equations. Nonetheless, from Eq. (7.35) and the differential equations
above, we can also write a redundant differential equation for NRXY .t/:

dNRXY .t/

dt
D kC

Y nY NRX.t/�
k�
Y

kC
NRXY .t/CkC

X nXNRY .t/�
k�
X

kC
NRXY .t/: (7.39)

To analyze the above dynamical system we need to find its stationary solutions.
It is not hard to prove that the system of differential equations (7.36)–(7.38) has a
unique fixed point given by Eqs. (7.24)–(7.28). The stationary value for NRXY .t/
can then be computed from Eqs. (7.24)–(7.28) and Eq. (7.35), resulting in the
expression in Eq. (7.29).

It is possible to linearize the differentiate equation system (7.36)–(7.38) by
making the following change of variables:

x.t/ D NRX.t/ �NRX; y.t/ D NRY .t/ �NRY ; z.t/ D NR.t/ �NR:
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The differential-equation system governing the dynamics of these new variables can
then be written as

dx
dt

D Ax; (7.40)

with x D .x; y; z/T and

A D

2

664

�
�
k�
X C kC

Y nY C k�

Y

kC

�
� k�

Y

kC

�
kC
X nX � k�

Y

kC

�

� k�

X

kC
�

�
k�
Y C kC

X nX C k�

X

kC

� �
kC
Y nY � k�

X

kC

�

k�
X k�

Y �.kC
X nX C kC

Y nY /

3

775 :

(7.41)

From the theory of differential equations (Zill 2008), the general solution for
(7.40) is

x.t/ D
3X

iD1
Civi e�i t ;

where vi and �i are the eigenvectors and eigenvalues of matrix A in (7.41).
The computation of the eigenvalues and eigenvectors of matrix A does not

result in short and closed algebraic expressions, as in the cooperativity-less case of
Chap. 6. For that reason we do not include them here. Nevertheless, the readers are
invited to verify via numerical examples that all the eigenvalues of matrix A are real
and negative. This implies that the system stationary state is locally stable. If we
recall that the eigenvalue with the lowest absolute value is inversely proportional
to minus the system relaxation time, it is also possible to demonstrate that the
existence of positive cooperativity generally increases the system relaxation time,
while negative cooperativity generally decreases it.

7.4 Two Different Binding Sites, a Single Ligand

Consider the case of a receptor R with two different binding sites for the same
ligand X . This system is a particular instance of the one previously studied.
Consider that Y molecules are the same as X molecules, and that states .X; 0/
and .0; Y / are equal. From the above discussion, the present system can be
summarized by means of the following chemical reactions:

RCX

2kC
X nRnX

•
k�
XnRX

RX; (7.42)
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RX CX

kC
X nRXnX

•
2k�

XnRXX=kC

RXX: (7.43)

The reaction in (7.42) results from lumping together the reactions in (7.1) and (7.2).
The factor 2 in the forward reaction rate accounts for the fact that, when the receptor
molecule is empty, each ligand molecule has two binding sites available. Similarly,
the reaction in (7.43) results from lumping together the reactions in (7.3) and (7.4),
while the factor 2 in the backward reaction rate takes into account that there two
possible ways in which a fully occupied receptor can turn into a molecule with only
one occupied site.

Under the supposition that the system consists of nT receptor molecules that
are bound and unbound by a constant number nX of X ligands, its state can be
determined by the counts of free and bound-by-one-ligand receptors: .nR; nRX/.
The number of completely occupied receptors can be calculated as:

nRXX D nT � nR � nRX: (7.44)

Let P.nR; nRX I t / be the probability that, at time t , the system state is .nR; nRX/.
Then, the master equation governing its dynamics is:

dP.nR; nRX I t /
dt

D 2kC
X nX.nR C 1/P.nR C 1; nRX � 1I t /

� 2kC
X nXnRP.nR; nRX I t /

C k�
X.nRX C 1/P.nR � 1; nRX C 1I t /

� k�
X.nRX C 1/P.nR; nRX I t /

C kC
X nX.nRX C 1/P.nR; nRX C 1I t /

� kC
X nXnRXP.nR; nRX I t /

C 2k�
X.nRXX C 1/P.nR; nRX � 1I t /

� 2k�
XnRXXP.nR; nRX I t /; (7.45)

with nRXX as given by Eq. (7.44). It is straightforward to prove by substitution that
the stationary solution to this master equation is

P .nR; nRX/ D nT Š

nRŠnRXŠnRXXŠ
P
nR
R P

nRX
RX P

nRXX
RXX ; (7.46)
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in which nRXX is as defined in (7.44), while

PR D 1

1C 2 nX
KX

C kC

�
nX
KX

�2 ; (7.47)

PRX D 2 nX
KX

1C 2 nX
KX

C kC

�
nX
KX

�2 ; (7.48)

PRXX D
kC

�
nX
KX

�2

1C 2 nX
KX

C kC

�
nX
KX

�2 : (7.49)

Finally, from the properties of the multinomial distribution (Evans et al. 2000), the
average numbers of molecules in every state are:

NR D nT
1

1C 2 nX
KX

C kC

�
nX
KX

�2 ; (7.50)

NRX D nT
2 nX
KX

1C 2 nX
KX

C kC

�
nX
KX

�2 ; (7.51)

NRXX D nT

kC

�
nX
KX

�2

1C 2 nX
KX

C kC

�
nX
KX

�2 : (7.52)

Let us analyze the behavior of Eqs. (7.50)–(7.52) in a few particular cases of kC
values. When there is no cooperativity, kC D 1, we have

NR D nT
1

�
1C nX

KX

�2 ;

NRX D nT
2 nX
KX�

1C nX
KX

�2 ;

NRXX D nT

�
nX
KX

�2

�
1C nX

KX

�2 :

Hence, NR, NRX , and NRXX behave as follows:

• NR is a monotonic decreasing function of nX : NR D nT when nX D 0, NR D
nT =2 when nX D .

p
2 � 1/KX , and NR ! 0 when nX ! 1.



86 7 Cooperativity

• NRX is a concave function of nX : NRX D 0 at nX D 0, the maximum value
NRX D nT =2 occurs when nX D KX , and NRX ! 0 when nX ! 1.

• NRX is a monotonic increasing function of nX : NRX D 0 when nX D 0, NR D
nT =2 when nX D KX=.

p
2 � 1/, and NR ! nT when nX ! 1.

Other cases of interest are when kC is either very small or very large. To analyze
them it is convenient to perform the following variable change

x D nX

KX

p
kC :

In terms of this new variable, Eqs. (7.50)–(7.52) become

NR D nT
1

1C 2p
kC
x C x2

; (7.53)

NRX D nT

2p
kC
x

1C 2p
kC
x C x2

; (7.54)

NRXX D nT
x2

1C 2p
kC
x C x2

: (7.55)

Thus, if kC � 0 the quadratic term is negligible with respect to the linear one and so

NR � nT
1

1C 2 nX
KX

;

NRX � nT
2 nX
KX

1C 2 nX
KX

;

NRXX � 0:

We see from the above equations that

• NR is a monotonic decreasing function of nX : NR D nT when nX D 0, NR D
nT =2 when nX D KX=2, and NR ! 0 as nX ! 1.

• NRX is a monotonic increasing function of nX :NRX D 0when nX D 0,NRX D
nT =2 when nX D KX=2, and NRX ! nT as nX ! 1.

• In other words, negative cooperativity is so intense that it effectively prevents
the simultaneous binding of ligands to a single receptor. The reader is invited
to demonstrate that the same expressions for NR and NRX are obtained for the
case in which a receptor molecule has only one binding site for X ligands, with
a dissociation constant KX=2. The factor 1=2 originates from the fact that the
effective association rate in a receptor with two binding sites is 2kC

X .
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Let us now study the case in which kC � 1. When this happens, the linear
term in Eqs. (7.53)–(7.55) is negligible as compared with the quadratic one, and so
Eqs. (7.50)–(7.52) can be approximated as

NR � nT
1

1C kC

�
nX
KX

�2 ;

NRX � 0;

NRXX � nT

kC

�
nX
KX

�2

1C kC

�
nX
KX

�2 :

These equations lead to the following conclusions:

• NR is a sigmoidal decreasing function of nX :NR D nT at nX D 0,NR D nT =2

when nX D KX=
p
kC , and NR ! 0 as nX ! 1.

• NRXX is a sigmoidal increasing function of nX : NRXX D 0 at nX D 0, NR D
nT =2 when nX D KX=

p
kC , and NR ! nT as nX ! 1.

• In this case, positive cooperativity is so strong that most of the time the two
binding receptor sites are either occupied or unoccupied. The equations above
are a particular example of the celebrated Hill equations (Santillán 2008).

7.5 Thermodynamic Analysis

To carry out the thermodynamic analysis, refer to Fig. 6.2 in particular, and to
Sect. 6.5 in general. By making use of Kramer’s theory (Van Kampen 1992), one
can write the various reaction rates in (7.1)–(7.4) in terms of the corresponding
energy levels in the energy profiles of Fig. 6.2:

kC
X D ˇe�

O
R=kBT e�

O
X=kBT e�

O
Y =kBT e�
1=kBT (7.56)

D ˇe�
O
RY =kBT e�

O
X=kBT e��2=kBT ; (7.57)

k�
X D ˇe�

O
RX=kBT e�

O
Y =kBT e�
1=kBT (7.58)

D ˇkC e
�ORXY =kBT e��2=kBT ; (7.59)

kC
Y D ˇe�

O
R=kBT e�

O
X=kBT e�

O
Y =kBT e�
2=kBT (7.60)

D ˇe�
O
RX=kBT e�

O
Y =kBT e��1=kBT ; (7.61)

k�
Y D ˇe�

O
RY =kBT e�

O
X=kBT e�
1=kBT (7.62)

D ˇkC e
�ORXY =kBT e��2=kBT : (7.63)
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If we solve for 
1��2 from Eqs. (7.56)–(7.57), do the same from Eqs. (7.58)–(7.59),
equate the results and then solve for �ORXY , we obtain:

�ORXY D �ORX C �ORY � �OR � kBT ln kC : (7.64)

The same result can be gotten by manipulating Eqs. (7.60)–(7.63).
In the present system, as in the one analyzed in the previous chapter, there

is a constant number of receptor molecules (no production and no degradation),
switching between the available binding states. Therefore, the system stationary
state should correspond to chemical equilibrium, and so:

�R C �X C �Y D �RX C �Y D �RY C �X D �RXY : (7.65)

Since �i D �Oi C kBT lnN i , the above equation further implies that

NRe
�OR=kBT nXe

�OX=kBT nY e
�OY =kBT

D NRXe
�ORX=kBT nY e

�OY =kBT

D NRY e
�ORY =kBT nXe

�OX=kBT

D NRXY e
�ORXY =kBT : (7.66)

Finally, by solving for NRX , NRY , and NRXY , in terms of NR one gets:

NRX D NR

nX

e.�
O
RX��OR��OX /=kBT

; (7.67)

NRY D NR

nY

e.�
O
RY ��OR��OY /=kBT

; (7.68)

NRXY D NR

nXnY

e.�
O
RXY ��OR��OX��OY /=kBT

; (7.69)

We have from Eq. (7.65) that

�ORXY ��OR ��OX ��OY D .�ORX ��OR ��OX/C .�ORY ��OR ��OY /� kBT ln kC :

(7.70)

That is, the energy difference between states RXY and R C X C Y is equal to the
sum of the energy differences between states RX C Y and R C X C Y , plus the
energy difference between states RY CX and RCX C Y , plus an additional term
proportional to � ln kC . In other words, cooperativity can also be interpreted from
an energetic point of view: positive cooperativity increases the depth of the energy
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minimum corresponding to state RXY , while negative cooperativity decreases it.
As a matter of fact, one can define from Eq. (6.70)

�GO
X D �ORX � �OR � �OX;

�GO
Y D �ORY � �OR � �OY ; (7.71)

�GO
XY D �ORXY � �OR � �OX � �OY :

Then, from Eq. (7.70):

�GO
XY D �GO

X C�GO
Y C�GC ; (7.72)

with

�GC D �kBT ln kC : (7.73)

Let us choose the zero energy level in the energy landscape of Fig. 6.2 in such
a way that �OR C �OX C �0Y D 0. With this, �GO

X ;�G
O
Y ;�G

0
XY < 0 can be

interpreted as the binding energies of statesRXCY ,RY CX , andRXY , respectively.
Furthermore, Eq. (7.72) means that when the two ligands are bound to the receptor,
to the total energy of the complex is the sum of the binding energies associated with
each ligand, plus an extra term (�GC ) associated with the cooperative interaction
between ligands.

By manipulating Eqs. (7.67)–(7.69), (7.70), and (7.71), and taking into
account that

nT D NR CNRX CNRY CNRXY

one can finally obtain

NR D nT
1

1C nXe
��GOX

kBT C nY e
��GOY

kBT C nXnY e
��GOX C�GOY C�GC

kBT

; (7.74)

NRX D nT
nXe

��GOX
kBT

1C nXe
��GOX

kBT C nY e
��GOY

kBT C nXnY e
��GOX C�GOY C�GC

kBT

; (7.75)

NRY D nT
nY e

��GOY
kBT

1C nXe
��GOX

kBT C nY e
��GOY

kBT C nXnY e
��GOX C�GOY C�GC

kBT

; (7.76)

NRXY D nT
nXnY e

��GOX C�GY C�GC
kBT

1C nXe
��GOX

kBT C nY e
��GOY

kBT C nXnY e
��GOX C�GOY C�GC

kBT

: (7.77)

We can see in the above equations that when kC > 1 (positive cooperativity),
�GC < 0 and so the binding energy of the complex RXY is more negative than the
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sum of individual binding energies, hereby increasing its stability and the proportion
of NRXY complexes. On the contrary, kC < 1 (negative cooperativity) implies that
the binding energy of RXY is less negative than the sum of the individual binding
energies, and predicts a decrement in the proportion of NRXY complexes.

Let us rewrite Eq. (6.78):

e��GOX =kBT D kC
X =k

�
X D 1=KX; e��GOY =kBT D kC

Y =k
�
Y D 1=Ky:

This last expression, together with Eq. (7.73), allows to recast Eqs. (7.74)–(7.77) as

NR D nT
1

1C nX
KX

C nY
KY

C kC
nX
KX

nY
KY

;

NRX D nT

nX
KX

1C nX
KX

C nY
KY

C kC
nX
KX

nY
KY

;

NRY D nT

nY
KY

1C nX
KX

C nY
KY

C kC
nX
KX

nY
KY

;

NRXY D nT
kC

nX
KX

nY
KY

1C nX
KX

C nY
KY

C kC
nX
KX

nY
KY

;

which are nothing but Eqs. (7.25)–(7.27). This proves the equivalence between the
dynamic and thermodynamic approaches, and allows to build connections between
thermodynamic and chemical kinetics concepts like free energies, reaction rates,
and dissociation constants.

The results in Sect. 7.4 can be restated as follows from a thermodynamic
perspective. Assume that the receptor molecules have two binding sites for the
same ligand, and that the ligands interact cooperatively as described above. Let us
consider the following extreme cases for the cooperativity constant: kC � 0 and
kC � 1. Notice from Eq. (7.73) that kC � 0 implies that�GC � 0. Therefore, the
binding energy of the state RXX (which in this case is dominated by �GC ) will be
much larger than that of the other states, making it extremely unstable and unlikely.
Contrarily, kC � 1 implies that �GC 	 0. This means that state RXX has an
energy which is much lower than that of state RX , and consequently the number of
molecules in state RX is very small as compared to that in RXX .

7.6 Summary

This chapter generalizes the results in Chap. 6 by considering cooperativity. In here
make use of all the previously introduced concepts and techniques (both mathemat-
ical and physical). In my opinion, the results here presented speak by themselves.
I only wish to emphasize that they are a very nice example of how combining the
thermodynamics and dynamics approaches can greatly help to better understand a
subtle concept, like cooperativity.



Chapter 8
Gene Expression and Regulation

Abstract In this chapter we make use of all the material studied so far to
construct a few (simple but informative) models for gene expression. As before,
we are interested in obtaining useful information regarding both the dynamical and
thermodynamical aspects of this phenomenon.

8.1 A Model for Constitutive Gene Transcription

Transcription initiates when a polymerase molecule specifically binds to a small
DNA region preceding the gene (the promoter) forming the so-called closed com-
plex. Then, the polymerase opens the DNA double helix forming the open complex,
and starts moving in the 5’-3’ direction, assembling the RNA molecule comple-
mentary to the gene-coding DNA segment. The processes involving formation
of the open complex, elongation of the nascent RNA molecule, and termination
of transcription are usually lumped as a single irreversible chemical event from
the standpoint of mathematical modeling (Shahrezaei and Swain 2008; Zeron and
Santillán 2010). With this in mind, the processes underlying transcription can be
represented in terms of chemical reactions as follows:

D C P

k
C

P nDnP

•
k�

P nDP

DP ; (8.1)

DP C S
kMnDP nS

*
D C P CM: (8.2)

In the above reactions D represents an empty promoter, DP denotes a promoter
bound by a polymerase (open complex), S corresponds to the substrates out
of which the RNA molecule is made, and M is the resulting RNA molecule.

M. Santillán, Chemical Kinetics, Stochastic Processes, and Irreversible
Thermodynamics, Lecture Notes on Mathematical Modelling in the Life Sciences,
DOI 10.1007/978-3-319-06689-9__8, © Springer International Publishing Switzerland 2014
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Furthermore, nD , nP , nDP , and nM stand for the free promoters, polymerase,
polymerase-promoter closed complex, and RNA molecule counts.

The closed complex is quite unstable as compared with the open one (McClure
1985): a polymerase binds and unbinds several times to the promoter before forming
the open complex. This means that the rates corresponding to the chemical reaction
in (8.1) are much larger than those corresponding to the reaction in (8.2): kM 	
kC
P ; k

�
P .

If we further include the reaction accounting for RNA degradation (which is also
generally regarded as irreversible):

M
�MnM

*
Y; (8.3)

and assume that the RNA degradation rate is such that �M 	 kC
P ; k

�
P , then the

chemical-reaction system (8.1)–(8.3) happens to be identical to the one studied
in Chap. 5—See Eqs. (5.7)–(5.9). In this case, the promoter takes the place of the
enzyme, polymerase moleculesP take the place of the global reaction substrate, and
M is the product of the enzymatic reaction. Henceforth, all the obtained conclusions
regarding the dynamic and thermodynamic behavior of the system in (5.7)–(5.9) can
be mapped as follows:

• The assumed inequalities �M ; kM 	 kC
P ; k

�
P allow a quasi-stationary approx-

imation that consists in splitting the whole system into a fast subsystem (the
promoter flipping back and forth between the free and the closed complex
states), nested into a slow subsystem (RNA production and degradation). In this
approximation, the fast subsystem equilibrates instantaneously with the slow one,
which dictates the temporal evolution of the whole system.

• In the stationary state, the probability that the promoter is bound by a poly-
merase is

nP

nP CKP

; (8.4)

with KP D k�
P =k

C
P .

• Regarding the RNA molecule count, the corresponding stationary probability
distribution is a Poisson distribution with mean value equal to

NM D kM

�M

nP

nP CKP

: (8.5)

Recall that the variance in a Poisson distribution equals the mean value.
• The relaxation time of the fast subsystem is proportional to .kC

P C k�
P /

�1, while
the relaxation time of the slow subsystem is proportional to ��1

M . Thus, the
inequality �M 	 kC

P ; k
�
P guaranties a clear separation of scales in the relaxation

times.
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• The fast subsystem stationary state complies with chemical equilibrium, which
is characterized by statesD andDP having equal chemical potentials. Concomi-
tantly, there is no net flux of chemical energy associated with the fast subsystem.

• The stationary state of the slow subsystem does not comply with chemical
equilibrium. Consequently the chemical potentials of states DP C S and D C
P CM obey the following inequality

�DP C �S > �D C �P C �M : (8.6)

However, since �DP D �D C �P , it follows from the above inequality that

�S > �M : (8.7)

That is, the substrates out of which RNA molecules are made have a higher
chemical potential than RNA molecules themselves. Thanks to this difference
there exists a nonzero rate of conversion of S molecules into RNAs given by

keff
M D kMnS

nP

nP CKP

: (8.8)

There exists also a chemical difference between state M and state Y (which
represents the products of RNA degradation): �M > �Y . Furthermore, the RNA
degradation rate equals the rate of production of this molecule in the stationary
state. From all these considerations, the rate of heat dissipation in this system is

˚ D keff
M .�S � �M/C keff

M .�M � �Y / D keff
M .�S � �Y /: (8.9)

In accordance to the first law of thermodynamics, energy has to be supplied to
the system at the same rate to keep it constant. This occurs through the constant
addition of S molecules and the constant removal of Y molecules.

• The differential equation governing the dynamics of the mean RNA count is

dNM.t/

dt
D kM

nP

nP CKP

� �MNM.t/: (8.10)

8.2 A Fast-Regulation Model for Transcription

Often times, gene expression is regulated at the transcriptional level. The first
discovered transcriptional regulatory mechanism was repression, and although
many more regulatory mechanisms have been discovered since then, repression
remains one of the most common ones. In this mechanism, a molecule known as the
repressor binds the promoter in a specific site and prevents transcription initiation,
even if a polymerase is bound to its corresponding site. The following reactions
account for this regulatory process:
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D C P

k
C

P nDnP

•
k�

P nDP

DP ; (8.11)

D CR

k
C

R nDnR

•
k�

R nDR

DR; (8.12)

DR C P

k
C

P nDRnP

•
k�

P nDPR

DPR; (8.13)

DP CR

k
C

R nDP nR

•
k�

R nDPR

DPR; (8.14)

DP C S
kMnDP nS

*
D C P CM; (8.15)

M
�MnM

*
Y: (8.16)

The newly introduced variables are: R, which represents a repressor molecule;
DR, that stands for the promoter–repressor complex; DPR, which corresponds
to the promoter–polymerase–repressor complex; nR, nDR, nDPR, representing the
corresponding molecular counts; and kC

R and k�
R , the association and dissociation

rate constants for the binding and unbinding of the repressor to its corresponding
site on the promoter.

Under the assumption that the binding and unbinding of repressor and polymerase
from the promoter are much faster processes than the synthesis and degradation
of RNA, one can make a quasi-stationary approximation similar to the one we
made in the previous section. According to this approximation we can split the
system into fast and slow subsystems. The fast subsystem comprises the binding and
unbinding of repressor and polymerase molecules to the promoter, while the slow
subsystem accounts for the synthesis and degradation of RNA. Moreover, from the
slow subsystem perspective, the fast subsystem reaches stationarity instantaneously.

The fast subsystem is identical to that studied in Chap. 6. Hence, the stationary
state of the fast subsystem complies with chemical equilibrium and so the states
D C R C P , DR C P , DP C R, and DRP have all the same chemical potential.
Furthermore, the stationary probability of finding the promoter bound by a poly-
merase and free from any repressor is

nP =KP

.1C nP =KP /.1C nR=KR/
D kR

nR CKR

nP

nP CKP

; (8.17)
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with KR D k�
R=k

C
R . Since the promoter state DP is the only one out of which

transcription can start, Eq. (8.17) is directly comparable with Eq. (8.4). We see
that the presence of the repressor modulates the probability that the promoter is
in the transcriptionally active state. The more repressor molecules are present, the
smaller this probability. The dissociation constant KR determines the number of
repressor molecules at which the probability that the promoter is in the transcrip-
tionally active state decrease 50 %.

Regarding RNA, its dynamics are quite similar to those of the constitutive
transcription. RNA molecules are synthesized via a Poisson process with rate

keff
M D kM

KR

nR CKR

nP

nP CKP

; (8.18)

and are degraded linearly. In consequence, the stationary probability distribution for
the RNA molecular count is a Poisson distribution with mean

NM D kM

�M

KR

nR CKR

nP

nP CKP

: (8.19)

The synthesis and degradation of RNA molecules is a process which, even in the
stationary state, is out of equilibrium. The reason is the unbalance of chemical
potentials between the substrates out of which RNA is synthesized and the pool of
RNA molecules, and between the RNA pool and the products of RNA degradation.
These unbalances further implies the existence of a heat dissipation rate given by

˚ D keff
M .�S � �Y /; (8.20)

with keff
M as given by Eq. (8.18).

Finally, it is not hard to prove that the differential equation governing the
dynamics of the average count of RNA molecules, N.t/ is:

dNM.t/

dt
D kM

kR

nR CKR

nP

nP CKP

� �MNM.t/: (8.21)

A comparison of the above results with those of the previous section reveals
that the sole effect of adding repressors is decreasing the effective rate for RNA
synthesis. Other than that, the models for constitutive transcription and for regulated
transcription with rapid repressor–promoter interaction behave in the same way.

8.3 A Slow-Regulation Model for Transcription

In the above section we studied a model that could nicely explain how the expression
of a gene can be controlled by modifying the number of regulatory molecules:
repressors. The problem with this model is that it relies upon an assumption that
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kR
-

M
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RNA
kM

eff

Rep. Promoter

kR
+ nR

Fig. 8.1 Schematic
representation of a reduced
model for gene expression
with slow interaction between
repressor molecules and DNA
promoter

has been proven invalid by recent experimental results (Golding et al. 2005). As a
matter of fact repressor binding and unbinding is the slowest process in the reaction
scheme in (8.11)–(8.16). Thus, there exist three different time scales. The fastest
one corresponds to the closed complex formation and dissociation processes, in a
slower scale we have the RNA synthesis and degradation processes, and finally, the
slowest time scale is that of repressor binding and unbinding.

Being promoter binding and unbinding by a polymerase the fastest processes
of gene expression, we can make a quasi-stationary approximation similar the
ones we have done in the previous sections. As a result we get a reduced
system schematically represented in Fig. 8.1. The chemical reactions governing the
dynamics of this system are then as follows:

D CR

k
C

R nRnD

•
k�

R nDR

DR (8.22)

S
keff
M nD

*
M (8.23)

M
�MnM

*
Y; (8.24)

with keff
M D kMnP =.nP C kP /. The master equation corresponding to these

reactions, with the assumption that only one promoter exists (nD C nDR D 1), is

dP.nD; nM I t /
dt

D k�
RnDP.1 � nD; nM I t / � k�

R.1 � nD/P.nD; nM I t /

C kC
R .1 � nD/nRP.1 � nD; nM I t / � kC

R nDnRP.nD; nM I t /
C keff

M nDP.nD; nM � 1I t / � keff
M nDP.nD; nM I t /

C �MnMP.nD; nM C 1I t / � �MnMP.nD; nM I t / (8.25)

The characteristic times of the RNA synthesis and degradation processes range
from a few seconds to a few minutes, while the characteristic times for promoter
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activation and deactivation are of the order of tens of minutes. In other words, there
is a separation of time scales of one order of magnitude (Zeron and Santillán 2010).
Typically, this is not enough to support a quasi-stationary approximation. However,
for the sake of simplicity we shall make this approximation in the understanding
that the obtained conclusions should be taken cautiously. Observe in (8.25) that
the terms corresponding to promoter activation and repression (first row on the
right-hand side) do not involve the number of RNA molecules (nM ). Conversely, the
terms corresponding to the synthesis of RNA molecules (second row on the right-
hand side) do depend on the number of active promoters. Therefore, in this case
the slow processes take place independently of the fast ones. The slow processes
(promoter activation and repression) are equivalent to the system studied in Chap. 3.
This allows us to derive the following conclusions:

• The promoter flips back and forth between the repressed and the active states
with the following repression and activation rates: kC

R nR and k�
R .

• The probability distribution for the times during which the promoter remains
repressed is an exponential distribution with mean .k�

R/
�1.

• The probability that the promoter is repressed at any given time is nR=.nRCKR/.
• The probability distribution for the times during which the promoter remains

active is an exponential distribution with mean .kC
R nR/

�1. We see that, in this
case, the effect of increasing the number of repressors is to decrease the promoter
average active time.

• The probability that the promoter is active at any given time is KR=.nR CKR/.
In agreement with the above assertion, increasing the number of repressors
decreases the probability that the promoter is active.

Regarding RNA dynamics, given that it has the fastest time scale, it follows
the dynamics of promoter activation and repression instantaneously. Under the
assumption that a quasi-stationary approximation is valid, one can assert that
the population of RNA molecules almost immediately extinguishes when the
promoter becomes repressed, and that it rapidly evolves to a stationary population
with a Poisson distribution when the promoter is active. More specifically, the
RNA population jumps from no molecules when the promoter is repressed, to a
fluctuating population obeying a Poisson distribution with mean � D keff

M =�M when
the promoter is active. Given that the probability that the promoter is active at
any given time is KR=.nR C KR/, the stationary probability of finding nM RNA
molecules at time t is:

P.nM / D nR

nR CKR

ınM0 C KR

nR CKR

�nM e��

nM Š
; (8.26)

with ınM 0 Kroneker’s delta. This result can be derived from Eq. (8.25) by taking
into account that P.nM I t / D P1

nDD0 P.nD; nM I t /, imposing the quasi-stationary
approximation, and assuming that the whole system is in a stationary state. When
compared with the Poisson distribution obtained for the system studied in the last
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section, the distribution in (8.26) is wider and in some instances can be bimodal.
Interestingly, the mean value for this probability distribution is

NM D
1X

nD0
nMP.nM / D kM

�M

KR

nR CKR

nP

nP CKP

;

which is identical to the expression in (8.19). This means that, although the
stochastic dynamics are quite different, the mean stationary average number of
RNA molecules obtained from the models with fast and slow promoter repression-
activation dynamics are the same.

By definition, the average number of active promoters and of RNA molecules are

ND.t/ D
X

nD;nM

nDP.nD; nM I t /

NM .t/ D
X

nD;nM

nMP.nD; nM I t /

By differentiating these expressions and substituting the master equation in (8.25)
we obtain the following differential equations

dND.t/

dt
D k�

R .1 �ND.t// � kC
R nRND.t/; (8.27)

dNM.t/

dt
D kM

nP

nP CKP

ND.t/ � �MNM.t/: (8.28)

When we compare with Eq. (8.21) we see that the average counts of the system
with slow promoter repression-activation kinetics follow quite a different dynamics,
contrasted with the system with fast repressor kinetics. However, after a little algebra
we get the following stationary values

ND D KR

nR CKR

; (8.29)

NM D kM

�M

KR

nR CKR

nP

nP CKP

; (8.30)

which are completely compatible with the results of the fast repressor system—see
Eq. (8.19).

What about the thermodynamic considerations? As we have seen, processes that
involve the transition of a fixed number of molecules between different states are
compatible with thermodynamic equilibrium in the steady state, because all the
states have the same chemical potential. The contrary happens with processes in
which molecules are constantly produced and degraded. The synthesis and degrada-
tion of molecules implies the conversion of high energy substrates into low energy
products, as well as the dissipation as heat of the energy difference. Furthermore,
in order to maintain the system stationary state, new substrate molecules have to be
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added to the system, while product molecules ought to be removed. This matter flux
also conveys an influx of energy into the system that compensates heat dissipation.
We can conclude from the above considerations that the promoter flipping between
the active and inactive states does not entail any energy flux. However, there is an
energy flux (heat dissipation rate) associated with RNA synthesis and degradation
given by

˚ D v.�S � �Y /;

with v the RNA synthesis rate, which is zero when the promoter in repressed,
and equals kMnP =.nP C KP / when the promoter is active. That is, the cell
(assuming it has a single promoter) fluctuates between no-energy-flux and high
energy dissipation states. Since the promoter remains in the active state a fraction
of the time equal to KR=.nR CKR/, the average energy dissipation rate in the long
run is

˚ D kM
KR

nR CKR

nP

nP CKP

.�S � �Y /:

The same as in the fast repressor dynamics model, see Eq. (8.20).

8.4 Gene Expression (Transcription and Translation):
Stochastic Description

Gene expression in many cases involves not only transcription but also translation,
which means the synthesis of protein molecules by using RNA molecules as
blueprints. Translation is carried out by ribosomes, which bind the RNA at specific
site, and then start traveling along this molecule, reading the genetic information in
it, and assembling a protein molecule accordingly. In many senses, polymerases
and ribosomes play equivalent rules. Both bind and unbind several times from
their binding sites and, once in a while, they initiate their respective process
(transcription or translation). Under the supposition that the binding and unbinding
of polymerases and ribosomes are much faster as compared with transcription
and translation initiation, gene expression in a constitutive promoter, which is
schematically represented in Fig. 8.2, can be summarized by means of the following
chemical reactions:

SM
kM

*
M; (8.31)

M
�MnM

*
YM ; (8.32)
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representation of the
transcription and translation
processes in a constitutive
gene

SP
kP

*
P; (8.33)

P
�P nP

*
YP : (8.34)

In the reactions above M and P respectively denote messenger RNA and protein,
while nM and nP are the corresponding molecular counts; SM and SP are the
substrates out of which RNA and protein molecules are made of, YM and YP
correspond to the products into which RNA and proteins are degraded, kM and kP
are the RNA and protein effective synthesis rates (accounting for the abundance of
substrate molecules as well as of polymerases or ribosomes), and finally �M and �P
are the RNA and protein degradation rates.

The master equation corresponding to the reactions in (8.31)–(8.34) is

dP.nM ; nP I t /
dt

D kMP.nM � 1; nP I t / � kMP.nM ; nP I t /
C �M .nM C 1/P.nM C 1; nP I t / � �MnMP.nM ; nP I t /
C kP nMP.nM ; nP � 1I t / � kP nMP.nM ; nP I t /
C �P .nPC1/P.nM ; nPC1I t /��P nPP.nM ; nP I t /; (8.35)

with P.nM ; nP I t / the probability of having nM RNA and nP protein molecules at
time t .

If we assume that the RNA dynamics (production and degradation) are much
faster than the protein dynamics, then we can make a quasi-stationary approximation
as in Chap. 5. After doing it, we obtain two separated master equations, one for the
RNA and the other for the protein dynamics:

dP.nM I t /
dt

D kMP.nM � 1I t / � kMP.nM I t /
C �M .nM C 1/P.nM C 1I t / � �MnMP.nM I t /; (8.36)

dP.nP I t /
dt

D kPNMP.nP � 1I t / � kPNMP.nM I t /
C �P .nP C 1/P.nP C 1I t / � �P nPP.nP I t /: (8.37)
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In the above equations P.nM I t / D P
nP
P.nM ; nP I t / is the probability of having

nM RNA molecules at time t , P.nP I t / D P
nM
P.nM ; nP I t / is the probability

of having nP protein molecules at time t , and NM is the mean number of RNA
molecules predicted by the stationary solution of Eq. (8.36), which is the following
Poisson distribution

P .nM / D N
nM
M e�NM

nM Š
; (8.38)

with

NM D kM

�M
: (8.39)

From this, the stationary solution of Eq. (8.37) is

P .nP / D N
nP
P e

�NP

nP Š
; (8.40)

in which the stationary average protein count, NP is given by

NP D kPNM

�P
D kMkP

�M�P
: (8.41)

Despite its elegance and simplicity, the above analyzed approximation is incorrect
because it relays on a wrong assumption. Although the protein decaying process is
indeed much slower than RNA synthesis and decay, protein synthesis is as fast, if
not faster, than the RNA-related processes. In what follows we shall construct a
better approximation, but in order to do so it is useful to analyze Eqs. (8.36) and
(8.37) in a more detailed way. In the model in (8.31)–(8.34) the RNA production
and degradation processes are completely independent of the protein count, thus we
expect the master equation for P.nM I t / to remains the same in the improved model
as in Eq. (8.36). Regarding Eq. (8.37), in order to interpret it, it is more convenient
to write it as

dP.nP I t /
dt

D kM
kP

�M
P.nP � 1I t / � kM kP

�M
P.nM I t /

C �P .nP C 1/P.nP C 1I t / � �P nPP.nP I t /:

Let us focus on the factor kM .kP =�M /, appearing in the first row. This factor,
which accounts for the rate of protein synthesis, can be split as the rate of RNA
production, kM , times the probability that a single RNA is translated once during
its life time, kP =�M . To understand this last assertion, notice that translation and
degradation are carried out by two different molecules that compete for the RNA:
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the polymerase and the degradosome. Thus, the probability that a polymerase binds
the RNA molecule before a degradosome and starts translation is

kP

kP C �M
:

Furthermore, the probability that the RNA is translated r times before being
degraded is

P.r/ D
�

kP

kP C �M

�r �
1 � kP

kP C �M

�
: (8.42)

Finally, under the supposition that kP 	 �M , we have that P.1/ � kP =�M , and
P.r/ � 0 for all r > 1. In other words, assuming kP 	 �M is equivalent as
supposing that the RNA degradation is so fast that this molecule is translated at
most once during its lifetime.

What happens if the condition kP 	 �M is not fulfilled? With the aid of
Eq. (8.42) the master equation for P.nP I t / can be generalized as follows

dP.nP I t /
dt

D kM

nPX

rD1
P.r/P.nP � r I t / � kM

1X

rD1
P.r/P.nP I t /

C �P .nP C 1/P.nP C 1I t / � �P nPP.nP I t /: (8.43)

The first sum on the right-hand side of the previous equation goes from r D 1

to r D nP because the corresponding term accounts for all the translation events
that take the system into the state with nP proteins. Hence, since no negative
protein count exists, the maximum possible number of translations is nP . The master
equation in Eq. (8.43) has been studied elsewhere (Shahrezaei and Swain 2008) and
its stationary solution has been proven to be

P .nP / D � .˛ C nP /

� .nP C 1/� .˛/

�
kP

kP C �M

�nP �
1 � kP

kP C �M

�˛
; (8.44)

in which ˛ D kM=�P and � .x/ is the gamma function. The distribution in (8.44) is
a negative binomial distribution. It is immediate to obtain from the properties of this
distribution (Evans et al. 2000) the following expression for the average nP value:

NP D
nPD0X

1
nPP .nP / D kMkP

�M�P
; (8.45)

which is the same as in Eq. (8.41). That is, assuming a fast translation initiation does
note change the expected average protein count. However, when we compare the
distribution probabilities in Eqs. (8.41) and (8.45), it results that the later presents a
larger dispersion around the mean value.
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Another interested example that we shall not address here due to the complexity
of the mathematics involved is that in which the promoter is regulated. However, the
interested readers can study it in the specialized literature.

8.5 Gene Expression: Deterministic Description

The average number of RNA and protein molecules can be computed from the
respective probability distributions as follows:

NM.t/ D
1X

nMD0
nMP.nM I t /; NP .t/ D

1X

nPD0
nPP.nP I t /:

From these definitions we can derive the differential equations governing the
dynamics of NM.t/ and NP .t/ as

dNM.t/

dt
D

1X

nMD0
nM

dP.nM I t /
dt

;
dNP .t/

dt
D

1X

nPD0
nP
dP.nP I t /

dt
: (8.46)

Given that the master equation for P.nM I t / is the same for the two models studied
in the previous section, substitution of Eq. (8.36) into the expression for dNM.t/=dt
gives

dNM.t/

dt
D kM � �MNM.t/; (8.47)

which has the stationary solution

NM D kM

�M
;

in agreement with (8.39). Regarding the dynamics of NP .t/, we have two models
and so two different expressions for dP.nP I t /=dt : Eqs. (8.37) and (8.43). Substi-
tution of Eq. (8.37) into the definition of NP .t/ leads to:

dNP .t/

dt
D kMkP

�M
� �PNP .t/: (8.48)

However, we know that Eq. (8.37) is not the best approximation because it relies on
an assumption not supported by experimental evidence. To avoid this problem let us
consider Eq. (8.43) instead. However, before doing so it is convenient to rewrite this
equation as
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dP.nP I t /
dt

D kM

�
1 � kP

kP C �M

� nPX

rD0

�
kP

kP C �M

�r
P.nP � r I t / � kMP.nP I t /

C �P .nP C 1/P.nP C 1I t / � �P nPP.nP I t /: (8.49)

In the derivation of this last equation we have added and subtracted the term

�
1 � kP

kP C �M

�
P.nP I t /

and made use of the equality

1X

nD0
an D 1

1C a
; if jaj < 1: (8.50)

By substituting (8.49) into (8.46) we get

dNP .t/

dt
D kM

�
1� kP

kPC�M
� nPX

rD0

�
kP

kPC�M
�r 1X

nPD0
nPP.nP�r I t /�kMNP .t/

C �P

1X

nPD0
nP .nP C 1/P.nP C 1I t / � �PNP .t/2:

If we make the index substitution n D nP � 1 in the summation over nP appearing
in the first row of the equation above, and the substitution n D nP C 1 in the
summation over nP appearing in the second row, we get:

dNP .t/

dt
D kM

�
1 � kP

kP C �M

� nPX

rD0

�
kP

kP C �M

�r
.NP .t/C r/ � kMNP .t/

C �PNP .t/.NP .t/ � 1/ � �PNP .t/2:

Finally, by simplifying, making use of the equality in (8.50), and taking into
account that

1X

nD0
nan D a

.a � 1/2 ; if jaj < 1;

we obtain

dNP .t/

dt
D kMkP

�M
� �PNP .t/;
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which is the same result as Eq. (8.48). In other words, the deterministic description
is the same no matter whether one makes the incorrect assumption that the protein
synthesis rate is much slower that the RNA production and degradation rates or not.

8.6 Gene Expression: Thermodynamic Interpretation

As we have previously seen, the only processes that contribute to net energy flux and
heat dissipation are those in which molecules are produced and degraded, and the
net chemical potential of the substrates is higher than that of the end products. On
the other hand, the energy fluxes depend on the average rate of molecule synthesis or
degradation (in the stationary state, the production and degradation rates are equal).
Hence, given that the deterministic descriptions for the two studied models are
identical, the computed heat dissipation rates are the same in both cases. The net
heat rate consists of a part associated with RNA synthesis and degradation:

˚M D kM .�SM � �YM /;

plus another part associated with protein synthesis and degradation:

˚P D kM
kP

�M
.�SP � �YP /:

In the equations above �SM and �SP respectively represent the chemical potentials
of the substrates out of which RNA and proteins are made. On the other hand,
�YM and �YP are the chemical potentials of the final products into which RNA
and proteins are degraded.

Although we did not study the dynamics of gene regulation when the promoter
is regulated, we do can compute the heat dissipation rate. The reason is that, as we
have seen, promoter regulation is a process that complies with chemical equilibrium,
and so does not contribute to the heat dissipation rate. Therefore, we only need to
take into account the effect of repressors on transcription to obtain:

˚M D kM
KR

nR CKR

.�SM � �YM /;

and

˚P D kM
KR

nR CKR

kP

�M
.�SP � �YP /;

in which nR is the number of repressor molecules, while KR is the dissociation
constant of the repressor–promoter complex.
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8.7 Summary

Here we employed all previous techniques and results to analyze different models
for gene expression. We started with very simple toy models, but soon tackled more
realistic and more complex models. By progressively increasing the complexity
of the models we could understand the consequence of each newly incorporated
feature, and learn how to deal with the resulting mathematical complexity. After
finishing this chapter the reader is expected to have a more than superficial
understanding of the dynamics and thermodynamics of gene expression. But also,
he/she is expected to be able to use the results in this chapter as an example of how
to use the concepts and results introduced in previous chapter to study all kinds of
biochemical systems.



Chapter 9
Ion Channel Dynamics and Ion Transport
Across Membranes

Abstract In previous chapters we have employed the formalism and techniques
introduced in the book to study different biological systems by conceptualizing
them as chemical reactions. In all cases this conceptualization was more or less
evident. However, the formalism is more versatile as it can be applied to systems
that apparently have nothing to do with chemical reactions. In the present chapter
we tackle a few of those systems, all of which are related to diffusion. Not only
we exemplify in this chapter how to employ the formalism here introduced to study
systems with no obvious connection with chemical reactions, but we also derive
some classical results regarding ion transport across membranes. As in previous
chapters we start with a very simple example, and gradually make it more complex
to end with a more realistic model.

9.1 One Molecule Flipping Between Two
Compartment Model

Consider two adjacent compartments I and E, that are connected through a small
orifice of area a (let us call it the channel), and whose volumes are respectively
VI and VE—see Fig. 9.1. Take a single molecule following a Brownian movement
across both compartments. In the long run, this molecule shall visit all the locations
in both compartments with equal probability (Berg 1993). Therefore, the probability
of finding the molecule in compartment I (E) a long time after the experiment
started is proportional to VI (VE), regardless of the molecule initial position. In other
words,

P I D VI

VI C VE
; and PE D VE

VI C VE
: (9.1)

M. Santillán, Chemical Kinetics, Stochastic Processes, and Irreversible
Thermodynamics, Lecture Notes on Mathematical Modelling in the Life Sciences,
DOI 10.1007/978-3-319-06689-9__9, © Springer International Publishing Switzerland 2014
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I E

Fig. 9.1 Two reservoirs of
different volumes connected
through a small orifice

Another way of tackling this problem is to regard all the molecule positions
within compartment I as single lumped state, and to do the same for compart-
ment E. With this, the molecule can be seen as randomly flipping back and forth
between states I and E. Assume that the transition probabilities from I to E (�IE),
and from E to I (�EI ), are constant. Then, the master equation governing the
molecule stochastic dynamics is

dPI .t/

dt
D �EI .1 � PI .t// � �IEPI .t/; (9.2)

with PI .t/ the probability that the molecule is in state I at time t . The probability
that the molecule is in state E at time t is simply given by PE.t/ D 1�PI .t/. Note
that the present system is identical to the one studied in Chap. 3 and so the solution
to Eq. (9.2) is

PI .t/ D �EI

�IE C �EI
C

�
PO
I � �EI

�IE C �EI

�
e�.�IEC�EI / t ; (9.3)

where PO
I is the initial PI .t/ value. Moreover, as t ! 1, PI .t/ converges to

P I .t/ D �EI

�IE C �EI
; (9.4)

while PE.t/ converges to the following stationary value

PE.t/ D �IE

�IE C �EI
: (9.5)

Consider the transition rates �IE and �EI . Intuitively, one expects that both rates
are proportional to the channel area. On the other hand, it seems reasonable to
assume that the larger a container is, the longer the molecule takes to scape from it.
A very simple way to account for these two suppositions into account is to take

�IE D ˛

VI
; and �EI D ˛

VE
; (9.6)
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with ˛ directly proportional to the channel area. Interestingly, if we substitute
Eq. (9.6) into Eqs. (9.4) and (9.5), we recover the results in Eq. (9.1), thus confirming
the equivalence of both approaches. Equation (9.6) further suggests to interpret ˛
as the channel conductivity, which is a property of the channel itself and not of the
reservoirs it connects.

9.2 N Molecules Flipping Between Two Compartments

Consider now a constant numberN of molecules, identical to the one in the previous
section, which switch independently between compartments I and E. Given
molecule independence, the probability of finding nI molecules in compartment
I at time t obeys the following master equation

dP.nI ; t/

dt
D ˛

VE
.nE C 1/P.nI � 1; t/ � ˛

VE
nEP.nI ; t/

C ˛

VI
.nI C 1/P.nI C 1; t/ � ˛

VI
nIP.nI ; t/; (9.7)

in which nE D N � nI is the molecule count of compartment E. From the results
in Chap. 3, the solution of Eq. (9.7) is

P.nI ; t/ D NŠ

nI Š.N � nI /ŠPI .t/
nI .1 � PI .t//1�nI ; (9.8)

with PI .t/ as given by Eq. (9.3). From this, the probability of finding nE molecules
in E can be computed as

P.nE; t/ D P.nI D N �nE; t/ D NŠ

nEŠ.N � nE/ŠPE.t/
nE .1�PE.t//1�nE ; (9.9)

where PE.t/ D 1 � PI .t/. Notice that P.nI ; t/ and P.nE; t/ are complimentary
binomial probability distributions.

The mean molecule count in compartment I can be calculated from the corre-
sponding probability distribution as NI .t/ D P

nI
nIP.nI ; t/. By differentiating

this expression and substituting Eq. (9.7) we obtain that

dNI .t/

dt
D ˛

NE

VE
� ˛NI

VI
; (9.10)

in whichNE.t/ D N�NI .t/ is the average number of molecules in compartmentE.
It is straightforward to prove from the above results that NE.t/ obeys the following
differential equation:



110 9 Ion Channel Dynamics

dNE.t/

dt
D �dNI .t/

dt
D ˛

NI

VI
� ˛NE

VE
: (9.11)

From Eqs. (9.10) and (9.11), the average net molecule current from compartment E
to compartment I (i.e. the average number of molecules crossing from E to I per
unit time) results to be

JEI .t/ D ˛.cE.t/ � cI .t//; (9.12)

where cI D NI=VI and cE D NE=VE respectively denote the molecule
concentrations in compartments I and E. A quick look at Eq. (9.12) reveals
that we have recovered a special case of the well known Fick’s law of diffusion
in one dimension (Fick 1855): the molecule flow across the channel is directly
proportional to the molecule concentration difference. Finally, from Eq. (9.12), the
differential Eqs. (9.10) and (9.11) can be rewritten in terms of the flow JEI as
dNI .t/=dt D �dNE.t/=dt D JEI .t/

The readers are encouraged to demonstrate that the solutions to Eqs. (9.10) and
(9.11) are:

NI .t/ D NI C �
NO
I �NI

�
e�.�IEC�EI / t ; (9.13)

NE.t/ D NE C �
NO
E �NE

�
e�.�IEC�EI / t ; (9.14)

in which

NI D N
�EI

�IE C �EI
D VI

VI C VE
; (9.15)

NE D N
�IE

�IE C �EI
D VE

VI C VE
; (9.16)

are the NI .t/ and NE.t/ stationary values, while NO
I and NO

E denote the
corresponding initial conditions. Interestingly, the same results can be obtained
by directly computing NI .t/ and NE.t/ from Eqs. (9.8) and (9.9).

We see from Eqs. (9.15) and (9.16) that

NI

VI
D NE

VE
: (9.17)

That is, the stationary state is characterized by equal molecule concentrations on
both compartments.

To give a thermodynamic interpretation to the result in Eq. (9.17), recall the
expression for the chemical potential derived in Chap. 2—Eq. (2.11):

� D �O C kBT ln
c

cO
; (9.18)
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in which c is the concentration of the chemical species of interest, cO is an arbitrary
standard concentration, and �O is the energy of a single molecule in solution at
concentration cO . Since the same molecule type is found in compartments I and
E, we expect that �OI D �OE D �O . Then, having equal concentrations in both
compartments (cI D cE) implies that the chemical potentials are the same:

�I D �E:

In other words, the stationary state is achieved when the chemical potential in both
compartments is leveled. This further suggests that the stationary state in this case is
concomitant with chemical equilibrium. To corroborate this last assertion consider
the Gibbs free energy rate of change—Eq. (3.29):

dG.t/

dt
D �I .t/

dNI .t/

dt
C �E.t/

dNE.t/

dt
:

Upon substitution of Eqs. (9.10) and (9.11) the above equation becomes

dG.t/

dt
D ˛.cE.t/ � cI .t//.�I .t/ � �E.t//

D �kBT˛.cE.t/ � cI .t// ln
cE.t/

cI .t/
: (9.19)

In the derivation of the last equality we made use of Eq. (9.18). If we consider now
the following well-known result:

.x � y/ ln.x=y/

�
< 0; if x; y > 0 and x ¤ y;

D 0; if x; y > 0 andx D y

it follows from Eq. (9.19) that

dG

dt
� 0 (9.20)

when cI ¤ cE , and that dG=dt D 0 when cI D cE . This means that whenever
there is a molecule concentration unbalance between both compartments, the system
free energy tends to decrease until reaching its minimum value at the stationary
state (when both concentrations are equal). Since we know that, under conditions of
constant pressure, temperature, and molecule count, the thermodynamic equilibrium
state is that which minimizes Gibbs free energy, the above result confirms that the
system stationary state complies with chemical equilibrium.
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9.3 Constant Concentration Gradient Across the Wall
Separating Both Compartments

We have seen that when there is a constant number of molecules randomly
flipping back and forth between two compartments, the stationary state is reached
when the molecule concentrations in both compartments are leveled. Furthermore,
this situation corresponds to thermodynamic equilibrium because the net average
molecule flux between compartments vanishes, and because the system free energy
reaches a constant minimum value.

In this section we analyze a different situation: that in which the molecule
concentrations in both compartments are kept constant along time. Let cI and cE
respectively denote the molecule concentrations in compartments I and E, and
assume without loss of generality that cE > cI . Hence, according to Eq. (9.12),
there exists a constant net average molecule current from compartment E into
compartment I :

JEI D ˛.cE � cI /; (9.21)

which emerges as a result of the constancy of cI and cE . To compensate this
constant molecule flow, new molecules need to be continually added to the higher
concentration compartment, and removed from the lower concentration one.

From a thermodynamic perspective, each time a molecule goes from the high to
the low concentration compartments, its free energy decreases (recall that chemical
potential can be understood as free energy per molecule in a given compartment).
The free energy reduction per transported molecule is

�� D kBT ln
cE

cI
: (9.22)

This energy reduction is ultimately dissipated as heat. If we consider the molecule
current from E to I by Eq. (9.21), we can deduce the following expression for the
heat dissipation rate:

� D kBT˛.cE � cI / ln
cE

cI
> 0: (9.23)

In spite of heat being continuously dissipated, the system is in a stationary state both
dynamically and thermodynamically. From a thermodynamical point of view, the
stationary state is maintained because by energy constantly pumped into the system
by adding new molecules into the high concentration compartment and removing
them from the low concentration one. Finally, due to the constant molecule flow
and heat dissipation, the achieved stationary state is not compatible with chemical
equilibrium.
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9.4 Two Compartments Connected by a Channel
with a Driving Force

Consider once more the system pictured in Fig. 9.1. Further assume now that the
channel connecting both compartments has length l , and that a constant conservative
force of magnitude F , pointing to direction E to I , is exerted upon all molecules
within the channel. Given the conservativeness of F , each time a molecule crosses
the channel from E to I , its potential energy decreases by an amount V D F l ,
regardless of its trajectory. Similarly, each time a molecule crosses the channel from
I toE, its potential energy is increased by the same amount. If we choose the zeroth
level of potential energy at the channel midpoint, the potential energy per molecule
in the I and E compartments is �V=2 and V=2, respectively. On the other hand,
recall that in the absence of the extra driving force F , the energy per molecule is
�O in both compartments. Hence, when the force F is included, the total energy of
each molecule in compartment I is�O�V=2, while every molecule in compartment
E has energy �O CV=2. From these considerations, the chemical potentials in both
compartments result to be:

�I .t/ D �O � V

2
C kBT lnNI .t/; (9.24)

�E.t/ D �O C V

2
C kBT lnNE.t/: (9.25)

Intuitively, the driving force F is expected to increase molecule concentration
in compartment I , and to decrease it in E. However, as soon as it appears, this
concentration unbalance makes molecules flow in the opposite direction (I to
E). Hence, a stationary situation should be reached in which the molecule flows
caused by force F and by the concentration unbalance cancel each other. Moreover,
given that once the stationary state is reached, no net molecule flow exists in
either direction, the steady state should be compatible with chemical equilibrium
and so the chemical potentials on both compartments must be equal. This further
implies that

cI D cEe
V=kBT : (9.26)

This equation can be more clearly appreciated if we rewrite it as

kBT .ln cI � ln cE/ D V:

We can see now how the potential energy difference V is compensated by an
entropic concentration unbalance.

The same problem can be tackled from a dynamical, rather than a thermodynam-
ical, perspective. To this end recall that, in the absence of force F , the propensities
with which one molecule switches from I to E, and from E to I , are those given
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by Eq. (9.6). On the other hand, because of force F the energy of each molecule
in E is increased by an additive term V=2, while the energy of every molecule in
I decreases by the same amount. This in turn increases the propensity of E to I
transitions because the energy barrier a molecule needs to surpass is now lower, and
decreases the propensity of I to E transitions because the corresponding energy
barrier is now larger. Given the relation between energy barriers and propensities—
Eqs. (3.29) and (3.30), the above discussed facts imply that the propensities in the
presence of force F are now given by

�0
IE D ˛

VI
e�V=2kBT ; and �0

EI D ˛

VE
eV=2kBT : (9.27)

By repeating the analysis leading to Eq. (9.11) with the propensities in Eq. (9.27)
we obtain the following differential equations for the dynamics of the average
molecular counts in I and E:

dNE.t/

dt
D �dNI .t/

dt
D �0

IENI � �0
EINE: (9.28)

The solutions of these differential equations are

NI .t/ D NI C �
NO
I �NI

�
e�.�0

IEC�0

EI / t ; (9.29)

NE.t/ D NE C �
NO
E �NE

�
e�.�0

IEC�0

EI / t ; (9.30)

in which

NI D N
�0
EI

�0
IE C �0

EI

; (9.31)

NE D N
�0
IE

�0
IE C �0

EI

; (9.32)

are the NI .t/ and NE.t/ stationary values, while NO
I and NO

E represent the
corresponding initial conditions. By simple substitution it is straightforward to prove
that Eqs (9.31) and (9.32) are in complete agreement with Eq. (9.26), confirming that
the stationary state complies with thermodynamic equilibrium.

9.5 A Randomly Gating Channel

Consider again the picture in Fig. 9.1. Assume without loss of generality that the
molecule concentrations on both compartments are constant and obey cE > cI .
Finally, suppose that the channel can be either open or closed, and that it randomly
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Fig. 9.2 Gillespie simulation
of the current through a
randomly gating channel with
transition propensities
kco D 1 and koc D 2

flips between its open and closed states; the propensities of the closed-to-open and
the open-to-closed transitions respectively being kco and koc . Under these con-
siderations, the channel corresponds to the system studied in Chap. 3. Hence, the
stationary probabilities of finding a channel in the open and closed states are
respectively given by:

Po D kco

kco C koc
; (9.33)

Pc D koc

kco C koc
: (9.34)

Furthermore, the times the channel remains open or closed are both stochastic
variables which obey exponential distributions with average values

�o D 1

koc
; (9.35)

�c D 1

kco
: (9.36)

Finally, each time the channel opens, a constant current

JEI D ˛.cE � cI /

in the E to I direction appears, while when the channel is closed the current is zero.
Therefore, a way to experimentally investigate the channel dynamics would be to
record the current. A Gillespie simulation of the current in one of such experiments
is shown in Fig. 9.2.
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9.6 N Randomly Gating Channels

Let us now consider the dynamics of N channels identical to the one studied in
the previous section. Let no and nc D N � no respectively denote the number of
open and close channels, and P.no; t/ the probability of having no open channels
at time t . Following Chap. 3, the master equation governing the dynamics of
P.no; t/ is

dP.no; t/

dt
D koc.no C 1/P.no C 1; t/ � kocnoP.no; t/

C kco.N � no C 1/P.no � 1; t/ � kco.N � no/P.no; t/: (9.37)

From the results in Chap. 3, the stationary solution to this equation is the following
binomial distribution:

P .no/ D NŠ

nŠ.N � no/ŠP
n
o .1 � Po/N�no ; (9.38)

with Po as given by Eq. (9.33). The average number of open channels resulting
from this distribution is NPo, while the corresponding standard deviation isp
NPo.1 � Po/. Hence, the coefficient of variation is

CV D
s
1 � Po
Po

1p
N
:

We see that the coefficient of variation is inversely proportional to
p
N . Thus, for

very large N , the average no value is a good descriptor of the system dynamics.
By definition, the average no value is given by

No.t/ D
X

no

noPo.no; t/:

Then,

dNo.t/

dt
D

X

no

no
dP.no; t/

dt
:

Substitution of Eq. (9.37) into the above equation leads to the following differential
equation for the dynamics of No.t/:

dNo.t/

dt
D kco.N �No.t// � kocNo.t/: (9.39)
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The solution to the above equation is:

No.t/ D kco

koc C kco
N C

�
No.0/ � kco

koc C kco
N

�
e�.kocCkco/t : (9.40)

We see from Eq. (9.40) that no matter what the initial condition is, No.t/ exponen-
tially converges to the stationary state

No D kco

koc C kco
N;

with rate koc C kco.
Recall that the current fromE to I through each open channel is ˛.cE �cI /, with

cE and cI the corresponding molecule concentrations. Hence, if at any given time
the number of open channels is no, the total current from E to I is ˛no.cE � cI /.
Since the channels are randomly opening and closing, the number of open ones
is a random variable whose value fluctuates in time. However, when the number
of channels is very large, the average number of open channels becomes a good
descriptor of the system dynamics because the size of fluctuations is negligible
as compared with the mean value. In that scenario, the total current will slightly
fluctuate around the following average value:

JEI .t/ D kco

koc C kco
Jmax
EI C

�
JEI .0/ � kco

koc C kco
Jmax
EI

�
e�.kocCkco/t ; (9.41)

where

Jmax
EI D ˛N.cE � cI /

is the maximal possible current (which takes place when all channels are open).
The product ˛N can be interpreted as the maximal system conductance, obtained as
the product of each channel conductivity times the channel count. Equation (9.41)
further implies that the average current is modulated by the probability that a given
channel is open at a given time

Po D kco

koc C kco
;

which in turn is a function of the transition rates. Therefore, if one could manipulate
the transition rates between the open and close states it would be possible to increase
or decrease the current JEI . We shall come back to this point in the next section.

To close this section, let us briefly analyze the problem from the perspective of
thermodynamics. The whole system can be seen as composed of two subsystems.
On the one hand we have the channels, which randomly gate between the open and
closes states, and on the other hand we have the net flow of molecules from the high
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concentration and into the low concentration compartments. The first subsystem
complies with thermodynamic equilibrium in the stationary state (the chemical
potential of open and closed channels is identical), and so there is no heat dissipation
associated with channel gating. Regarding the flow of molecules, recall that the
system free energy is

G D �ENE C �INI ;

where NE and NI are the molecule counts in E and I , while �E and �I are the
corresponding chemical potentials. Then, each time a molecule goes from E to I ,
the system free energy changes by the following amount

�G D �.�E � �I /:

The first law of thermodynamics implies that this energy decrease is dissipated as
heat into the environment. Finally, given that the current JEI measures the net
number of molecules shifting from E to I per unit time, the heat dissipation rate
associated with this phenomenon is

�.t/ D �JEI .t/�G:

In particular, the stationary heat dissipation rate is given by

� D ˛N
kco

koc C kco
.cE � cI /.�E � �I /: (9.42)

If we further take into consideration that �E D �O C kBT lnNE and �I D �O C
kBT lnNI , Eq. (9.42) can be rewritten as

� D kBT˛N
kco

koc C kco
.cE � cI / ln

cE

cI
� 0: (9.43)

Interestingly, the heat dissipation rate is always positive when cE ¤ cI , regardless
of which concentration is larger. Furthermore, in order to maintain the stationary
state, new molecules need to be continuously added to the high concentration
compartment and removed from the low concentration one. By doing this, one also
compensates for the dissipated energy because high energy molecules are constantly
incorporated into the system and low energy ones are removed.

9.7 Ion Channel Regulation

We have seen in the previous sections how a totally random process like the gating of
an ion channel between the open and the closed states can give rise to a deterministic
phenomenon at the macroscopical level: the flow of molecules from E to I , when
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Nl k+k- Nl k+k-

K kco

kco

koc

koc

Fig. 9.3 Schematic representation of the available states, and the transitions between them, for a
channel that can be either open (O) or closed (C ), and that in each state can be either unbound (u)
or bound (b) by a regulatory molecule. Nl denotes the regulatory molecule count

there are numerous channels connecting the two compartments. Interestingly, the
magnitude of the molecule flow depends not only on the total number of channels,
on their conductivity, and on the molecule gradient across the channels, but also on
the channel transition rates between the open and closed states. Hence, in order
to control the flow of molecules through the channels one could modify either
one of the above-mentioned characteristics. Let us analyze each one of them. The
conductivity is a property of the channels themselves and so it is not possible to
change it without modifying the channel chemical nature. Since modifying the
number of channels involves producing or degrading membrane proteins, this is not
something that could be done in the time scale of seconds or less, as it is sometimes
required. Finally, in some occasions changing the concentrations of the transported
molecule is not an option. Thus, the only remaining characteristics are the transition
rates between the channel open and closed states. Is it possible to modify them? As
a matter of fact it is and nature has found several ways to do it. In what follows we
shall study a simple instance of one of the most common mechanisms in that respect:
the binding of small molecules to the channels to modify their open probability.

Consider a channel that can be either open (O) or closed (C ), and that in each
state it can be either unbound (u) or bound (b) by a regulatory molecule. The four
available state for this channel, as well as the transitions between them, are pictured
in Fig. 9.3. The four states accessible to the channel are: open and bound by the
regulatory molecule (Ob), open and unbound by the regulatory molecule (Ou),
closed and bound by the regulatory molecule (Cb), and closed and unbound by
the regulatory molecule (Cu). Assume that the propensity of the transition from
bound to unbound is proportional to the number of regulatory molecules (Nl ), but
independent of whether the channel is open or closed; let kC be the proportionality
constant. Assume also that the propensity of the bound to unbound transition (k�)
is independent on the channel (open or closed) state. Further suppose that the
propensity of the open to closed transition koc is the same for bound and unbound
channels. Finally, if kco represents the propensity of the closed to open transition
for an unbound channel, assume that the propensity for the corresponding transition
in a bound channel is Kkco, with K > 1. That is, the binding of the regulatory
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molecule facilitates the transition of the channel to the open state. With the above
considerations, the master equations governing the dynamics of the probabilities of
finding the channel in each of its four available states are:

dP.Ob; t/

dt
D KkcoP.Cb; t/ � kocP.Ob; t/

C kCNlP.Ou; t / � k�P.Ob; t/; (9.44)

dP.Cb; t/

dt
D kocP.Ob; t/ �KkcoP.Cb; t/

C kCNlP.Cu; t / � k�P.Cb; t/; (9.45)

dP.Ou; t /

dt
D kcoP.Cu; t / � kocP.Ou; t /

C k�P.Ob; t/ � kCNlP.Ou; t /; (9.46)

dP.Cu; t /

dt
D kocP.Ou; t / � kcoP.Cu; t /

C k�P.Cb; t/ � kCNlP.Cu; t /: (9.47)

Interestingly, the above is a redundant system of differential equations because

P.Cu; t / D 1 � P.Ob; t/ � P.Cb; t/ � P.Ou; t /:

Therefore

dP.Cu; t /

dt
D �dP.Ob; t/

dt
� dP.Cb; t/

dt
� dP.Ou; t /

dt
:

As a result of the above, we have to deal with a 3-dimensional system, rather
than with a 4-dimensional one. Nonetheless, this system is still too complex to be
analytically studied. One way to simplify the system is to suppose that the unbound-
to-bound transitions are much faster than those between the open and closed states,
and use the quasi-stationary approximation introduced in Chap. 5. Let us define the
probabilities that the channel is open and closed (regardless of their being bound or
unbound by the regulatory molecule) as follows:

P.O; t/ D P.Ob; t/C P.Ou; t /; P.C; t/ D P.Cb; t/C P.Cu; t /: (9.48)

According to the methodology introduced in Chap. 5, after taking advantage of
the separation of time scales to reduce the complexity of a system, the equation
governing the dynamics of P.O; t/ results to be

dP.O; t/

dt
D �coP.C; t/ � �ocP.O; t/; (9.49)
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In which

�oc D koc.P .ObjO/C P .OujO// D koc (9.50)

and

�co D kco.KP .CbjC/C P .CujC//

D kco

�
K

kCNl
kCNl C k� C k�

kCNl C k�

�
: (9.51)

We can see from the above equation that �co is a growing function of the regulatory-
molecule count. The lower and upper limits, reached at Nl D 0 and limNl !
1, are:

kco � �co � Kkco: (9.52)

Regarding the probability that the channel is open at time t , it is given by

P.C; t/ D 1 � P.O; t/: (9.53)

Thus

dP.C; t/

dt
D �dP.O; t/

dt
: (9.54)

From Eq. (9.49), the stationary open probability distribution is given by

P .O/ D �co

�co C �oc
: (9.55)

Notice that, through �co, P .O/ is a growing function of Nl . Moreover, the lower
and upper bounds for P .O/ are:

kco

kco C koc
� P .O/ � kcoK

kcoK C koc
(9.56)

If we consider N identical channels and we repeat the procedure leading
to Eq. (9.39), we obtain the following expression for the differential equation
governing the dynamics of the average number of open channels (NO.t/):

dNO.t/

dt
D �co.N �NO.t// � �ocNO.t/: (9.57)
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It is straightforward to prove from the above equation that the NO stationary value
is given by

NO D NP.O/ D N
�co

�co C �oc
: (9.58)

Since �co is a growing function of the ligand count Nl , the average number of open
channels can be increased by augmenting Nl . Furthermore, from (9.58), the lower
and upper limits for NO (reached at Nl D 0 and limNl ! 1, respectively) are

N
kco

kco C koc
� NO � N

kcoK

kcoK C koc
(9.59)

Finally, since NO determines the molecule flow from E to I , it follows that the
current JEI can be controlled by changing the number of regulatory molecules Nl .
As a matter of fact, a larger number of regulatory molecules imply a larger current
JEI , which has the following lower and upper bounds:

˛N.cE � cI / kco

kco C koc
� J � ˛N.cE � cI / kcoK

kcoK C koc
(9.60)

9.8 Summary

The results and concepts introduced in the first chapters of this book can be directly
applied to the study of any biological system that can be conceptualized as a
system of chemical reactions. This is more or less straightforward in many cases, as
illustrated in Chap. 8. However, there are some other cases where the connection
is not evident, yet the approaches we have been using here can be extremely
helpful. In this chapter we illustrate that by carefully studying ion transport across
membranes and ion channel regulation. Although the chapter was not meant as a
treatise on electro-physiology, it exemplifies how by combining chemical kinetics,
irreversible thermodynamics, and stochastic processes, one can recover some of the
most important results in that science.
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