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PREFACE

Genomics is the comprehensive study of genetic information of a cell or or-
ganism including gene sequences in living organisms, the function of specific
genes, the interactions among different genes, and the control and regulation
of gene expression through activation and suppression of target genes. The hu-
man genome has been the biggest project undertaken to date but there are many
research projects around the world trying to map the gene sequences of other
organisms. Many diseases due to single gene defects have already been identi-
fied. New data obtained by human genome sequencing will help scientists better
understand multifactorial diseases such as asthma, diabetes, heart disease and
cancer. Genomic mapping enables us to develop new preventative and therapeu-
tic approaches to the treatment of disease and understand the mechanics of cell
biology. Genomics is generating a lot of excitement not only in the scientific re-
search institutes and pharmaceutical companies but also in the financial and in-
surance worlds. Proteomics is the large-scale study of proteins, particularly their
structures and functions. It describes the qualitative and quantitative comparison
of proteomes under different conditions to further unravel biological processes.

Genomics and proteomics are promising scientific fields of current society. In
this book, different gene products with a similar role in neuronal defense against
oxidative stress were discussed by Zhi-Gang Jiang and Hossein A. Ghanbari in
Chapter 1. Gene-gene and gene-environment interactions in genetic epidemi-
ology were discussed by Alison A. Motsinger and David M. Reif in Chapter
2. Jenny F. L. Chau and Baojie Li describe the elucidation of proto-oncogene
c-Abl function with the use of mouse models and the disease model of chronic
myeloid leukemia in Chapter 3. Francisco Prosdocimi overviewed theory on the
molecular nature of postzygotic reproductive isolation in Chapter 4. A. Foca, M.
C. Liberto and N. Marascio described next generation sequencing, microbiome
evaluation, molecular microbiology and its impact on human health in Chapter
5. Proteomics and prostate cancer was demonstrated by Jae-Kyung Myung and
Marianne D. Sadar in Chapter 6. Jayapal Manikandan and others have described
RNA interference therapeutics in Chapter 7. Molecular mechanisms of hepatitis
C virus entry were discussed by Mirjam B. Zeisel and Thomas F. Baumert in
Chapter 8. Molecular phylogenetics for elucidation of evolutionary processes
from biological data was discussed by Martina Talianova in Chapter 9. The
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role of protein prenylation and processing in plant development, phytohormone
signalling and secondary metabolism were discussed by Dring N. Crowell and
Devarajan Thangadurai in Chapter 10. In Chapter 11, Ralf G. Dietzgen and his
collaborators expound on the advantage of information systems like mangomics
to support advanced mango breeding. In Chapter 12, Jeyabalan Sangeetha and
her team overviewed the role of environmental genomics with special refer-
ence to understanding the impact of transgenic crops on soil quality, microbial
diversity, and plant-associated communities. Mirza Hasanuzzaman and his col-
leagues have discussed biotechnological and genomic approaches for abiotic
stress tolerance in crop plants in Chapter 13. Finally, molecular and genomic
approaches of microbial remediation of petroleum contaminated soils have been
discussed in Chapter 14.

The publication of this book was not solely the effort of only two of us. We
owe a great debt of gratitude to all those who have so kindly contributed and
deserves special credit for putting their valuable time and effort. In addition, we
gratefully acknowledge Sandy Jones Sickels, Vice President, and Ashish Kumar,
Publisher and President, at Apple Academic Press, Inc., for their keen interest
and effort in bringing out this publication. Collectively, we hope the work will
prove to be most useful in the understanding of past, present, and future scien-
tific and technological innovations in these genomic and proteomic era.

— Devarajan Thangadurai, PhD, and Jeyabalan Sangeetha, PhD
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2 Genomics and Proteomics: Principles, Technologies and Applications

1.1 INTRODUCTION

During lifespan, an organism receives oxidative stress from time to time. Wheth-
er cells can survive oxidative insult depends on the balance between the strength
of the oxidative stress and the protective efficacy of intracellular antioxidative
systems. Prevention of neuronal cell death from oxidative attack appears more
pivotal than that for any other proliferative cell types since neurons are a ter-
minally differentiated cell type and rarely regenerate. In addition, the brain is
significantly vulnerable to reactive oxygen species (ROS)-induced damage due
to its high rate of oxygen consumption and relative weakness of antioxidant sys-
tems (Coyle and Puttfarcken, 1993). There exists several different antioxidative
systems in neurons, for example, superoxide dismutase (SOD) that converts su-
peroxide anion radical (O,") to oxygen and hydrogen peroxide (H,0,), glutathi-
one reductase/peroxidase (GR/GP) that destroys hydrogen peroxide to form wa-
ter, and heme oxygenase (HO) that catalyzes heme to generate the antioxidative
product biliverdin (Halliwell, 2006). The microsomal HO system is the most ef-
fective mechanism for degradation of heme and generation of biliverdin, which
is further reduced to bilirubin (Barafiano and Snyder, 2001). Cellular depletion
of bilirubin by RNA interference markedly augments tissue levels of ROS and
causes apoptotic cell death (Barafiano et al., 2002). Heme as a substrate of HO
is present in neurons as well. It is at the core of numerous hemoproteins includ-
ing cytochrome P450 isoforms CYP3A11 and CYP3A13 (Hagemeyer et al.,
2003), cytochrome ¢ (Kuchar et al., 2004), nitric oxide synthases (Abu-Soud et
al., 1995), and neuroglobin (Burmester and Hankeln, 2004). Neuroglobin is a
recently discovered minomeric globin with high affinity for oxygen and prefer-
ential localization to vertebrate brain. Stress can release free-heme from hemo-
proteins (Srisook ef al., 2005). The existence of intracellular heme is essential
for antioxidant activity of HO (Foresti et al., 2001). To date, three catalytically
active isozymes HO-1, HO-2 and HO-3 have been identified. HO-1 and HO-2
proteins are different gene products and have little in common in primary struc-
ture, regulation, and tissue distribution (Cruse and Maines, 1988). The predicted
amino acid structure of HO-3 differs from both HO-1 and HO-2 although HO-3
shares a very high level of homology with HO-2 (approximately 90%). In ad-
dition, purified HO-3 protein does not cross react with polyclonal antibodies to
either rat HO-1 or HO-2 (Maines, 1997). The function of HO-3 is still unclear.
Although HO-1 and HO-2 are products of different genes, they show a similar
role in catalyzing heme to produce intracellular antioxidants with an essential
function for neurons to defend against oxidative stress.
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1.2  OXIDATIVE STRESS AND NEURODEGENERATIVE DISEASES

Intracellular ROS accumulation mediates pathogenesis of both acute (e.g.
stroke) and chronic [exampled by Alzheimer’s disease (AD)] neurodegenera-
tive diseases. Ischemic stroke is a fatal cerebrovascular disease. A stroke occurs
when a blood vessel that carries oxygen and nutrients to the brain is blocked,
such as by a thrombolic or embolic clot. Cerebral ischemia followed by reper-
fusion activates numerous intracellular toxic pathways that lead to cell death.
N-methyl-D-aspartate receptor (NMDATr) activation by excitatory amino acid
glutamate plays a primary role in this process. The activation of NMDAr causes
extracellular free calcium Ca®* influx into the cell (Zipfel ef al., 2000) and re-
sults in intracellular ROS accumulation (Chan, 2001). Excessive Ca2" accu-
mulated in mitochondria interrupts the electron transport chain and collapses
the mitochondrial membrane potential (Zhang et al., 1990; Rego et al., 2000).
Thus free electrons are accumulated in the mitochondria, react with oxygen that
is available following reperfusion, and result in the production of superoxide.
The superoxide is further processed to produce the hydroxyl radical by a Fenton
reaction (Won et al., 2002). An increase in intracellular nitric oxide following
the activation of NMDAr also occurs. The nitric oxide rapidly reacts with su-
peroxide to form peroxynitrite (Dawson et al., 1991; Kiedrowski et al., 1992).
Both intracellular free calcium ([Ca**]i) and ROS can induce the mitochondrial
permeability transition (MPT; Bernardi et al., 1992; Kowaltowski et al., 1996;
Halestrap et al., 2002; Gunter et al., 2004). As a consequence, there is mitochon-
drial failure culminating in either apoptotic or necrotic cell death. The major
role of ROS in medicating ischemic neurotoxicity is also evidenced by thera-
pies using antioxidants. The spin-trap alpha-phenyl-N-tert-butyl nitrone (PBN)
reduces infarct size and prevents a secondary mitochondrial dysfunction due to
reperfusion, probably scavenging free radicals at the blood-endothelial cell in-
terface (Kuroda and Siesjo, 1997). Other antioxidants such as a-lipoic acid and
vitamin E have also been shown to reduce infarct volume in cerebral ischemia
(Packer et al., 1997; van der Worp et al., 1998).

AD is usually a late-onset disease. Its early manifestations are memory defi-
cits and cognitive impairment, including temporal and geographic disorienta-
tion, impaired judgment and problem solving and reduced language capability
(Faber-Langendoen et al., 1988). In later stages of AD, behavioral and personal-
ity changes appear (Rubin ef al., 1987; Swearer ef al., 1988). Later symptoms
include motor dysfunction and dementia (Morris et al., 1989; Romanelli et al.,
1990; Forstl and Kurz, 1999). The average life expectancy of a patient is 8-10
years following diagnosis. The disease is pathologically hallmarked by brain at-
rophy, following gradual cell loss in the central nerve system (CNS). The patho-
logic findings characteristic of AD are formation of extracellular senile plaques
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(Dickson, 1997, Selkoe, 2001) containing amyloid 3, ., and B, (AB) peptides,
as well as bundles known as neurofibrillary tangles (NFT, Sisodia ef al., 1990;
Dowjat et al., 2001; Stoothoff and Johnson, 2005), consisting of paired helical
filaments of the hyperphosphorylated microtubule-associated protein tau. These
features are observed with increasing prevalence as the disease progresses. An-
other feature of AD, common to other neurodegenerative diseases, is oxidative
stress and the neurological damage associated with it (Markesbery and Carney,
1999; Smith et al., 2000). Oxidative stress has been shown to play an important
role in sporadic AD, which accounts for the vast majority of cases. ROS occur-
rence is the earliest event in the progress of AD (Perry et al., 2000; Nunomura
et al., 2001). An oxidized nucleoside derived from RNA, 8-hydroxyguanosine
(80OHG), and an oxidized amino acid, nitrotyrosine significantly increase in vul-
nerable neurons of AD patients. An investigation into the relationship between
neuronal 8OHG, nitrotyrosine, histological, and clinical variables including Af-
containing senile plaques and NFT, duration of dementia and apolipoprotein E
(ApoE) genotype revealed that oxidative damage is an early-stage event in the
process of neurodegeneration in AD. ROS-induced oxidative damage initiates
the development of cognitive disturbances and pathological features observed
in AD. Increased levels of oxidative damage and Mild Cognitive Impairment
(MCI), which is believed to be one of the earliest stages of AD, are coexisted
(Ding et al., 2007). A decline in protein synthesis capabilities occurs in the same
brain regions which exhibit increased levels of oxidative damage in AD subjects,
while protein synthesis may be one of the earliest cellular processes disrupted
by oxidative damage in AD. In contrast to sporadic AD, familial AD has been
linked to amyloid beta protein precursor (ABPP) and presenilin gene mutations.
Lines of evidence have demonstrated that AB formation promotes ROS produc-
tion. AP activates the prooxidative enzyme NADPH-dependent oxidase, leading
to the production of O, (Behl et al., 1994). H,O, is directly generated during the
process of AP aggregation (Bush et al., 2003). AP can convert molecular oxy-
gen into H O, by reducing divalent metal ions (Fe**, Cu*") (Lynch et al., 2000;
Behl and Moosmann, 2002). AP induces lipid peroxidation and subsequent pro-
duction of cytotoxic aldehyde 4-hydroxynonenal (4-HNE) (Mark et al., 1995),
which impairs membrane Ca** pumps and enhances influx through voltage-de-
pendent and ligand-gated calcium channels (Mattson and Chan, 2003). Thus A
formation may also worsen Ca*" homeostasis.

When the level of oxidative stress in a cell exceeds the normal capacity of
its protective mechanisms, oxidative stress can result in cell damages, includ-
ing lipid, DNA/RNA and protein oxidations (Sayre et al., 1997; Gabbita et al.,
1998; Nunomura et al., 1999; Smith et al., 2007). To remove excessive ROS
and avoid ROS-induced damage, as mentioned as above, neurons use intrinsic
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antioxidative mechanisms, including enzymatic systems of SOD, GR/GP, and
HO. The HO system is an interesting one in which different isoforms of HO
come from different genes and cooperates to play an important role in neuronal
defense.

1.3 MEMBERS OF THE HO ANTIOXIDATIVE SYSTEM

The HO system consists of three forms identified to date: the oxidative stress-
inducible protein HO-1 or heat shock protein 32 (HSP32), and the constitutive
isozymes HO-2 and HO-3. HO-1 is ubiquitous, and its mRNA and activity can
be increased several-fold by heme, other metalloporphyrins, transition metals,
and stimuli that induce cellular stress. Thus, HO-1 is recognized as a major heat
shock/stress-response protein. HO-1 has an apparent molecular weight of 30
kDa, loses 30 % of its activity when heated at 60°C for 10 min, and precipitates
in ammonium sulfate at 0-35 % saturation. In contrast, HO-2 has a molecular
weight of 36 kDa, loses 80 % of its activity when heated as above, and precipi-
tates in ammonium sulfate at 35-60 % saturation (Braggins et al., 1986; Maines
et al., 1986; Trakshel et al., 1986). Evidence that HO-1 and HO-2 are products
of different genes is also demonstrated by their primary amino acid composi-
tions. Three cysteine/cystine residues that appeared in HO-2 do not show in
HO-1 (Cruse and Maines, 1988). Although human HO-1 and HO-2 share 43 %
amino acid sequence identity (Yoshida ef al., 1988; Mc Coubrey et al., 1992;
Ishikawa et al., 1995), HO-1 is composed of 288 amino acids whereas HO-2
consists of 316 amino acids (Yoshida et al., 1988). HO-1 lacks a signal peptide,
but contains a hydrophobic segment of 22 amino acid residues at the carboxyl
terminus. In contrast, HO-2 contains two copies of the heme-binding site, a
dipeptide of cysteine and praline (CP motif) (Shibahara, 2003). In addition, hu-
man HO-1 and HO-2 genes are separately located at chromosome 22q12 and
16p13.3 (Kutty et al., 1994).

HO-3 is the product of a single transcript of approximately 2.4 kb and can
encode a protein of approximately 33 kDa. The HO-3 transcript is found in the
spleen, liver, thymus, prostate, heart, kidney, brain, and testis and is the product
of a single-copy gene. The predicted amino acid structure of HO-3 differs from
both HO-1 (HSP32) and HO-2 but is closely related to HO-2 (approximately
90%). Escherichia coli expressed and purified HO-3 protein does not cross react
with polyclonal antibodies to either rat HO-1 or HO-2, is a poor heme catalyst,
and displays hemoprotein spectral characteristics. The predicted protein has two
heme regulatory motifs that may be involved in heme binding (Mc Coubrey et
al., 1997). However, a separate study suggests that HO-3 is a processed pseudo-
gene product derived from HO-2 transcripts (Hayashi et al., 2004).
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1.4 DISTRIBUTION OF MEMBERS OF THE HO ANTIOXIDATIVE
SYSTEM IN THE CNS

The two isozymes HO-1 and HO-2 display significant differences in tissue dis-
tribution. HO-1 under normal conditions is present in the whole brain at the
limit of immunodetection and is localized in select neuronal populations. How-
ever, HO-1 1.8 kb transcript and protein (approximately 32 kDa) are increased
in response to stressful stimuli, primarily in nonneuronal cell populations (Ew-
ing and Maines, 1997). In contrast, HO-2 immunoreactive cells are only neu-
rons in the CNS (Yamanaka et al., 1996). In a separate study, HO-1 and HO-2
transcripts were found in both neurons and astrocytes while HO-3 transcript was
uniquely found in astrocytes of hippocampus, cerebellum, and cortex (Scapag-
nini et al., 2002).

1.5 FUNCTION OF THE HO ANTIOXIDATIVE SYSTEM

Both HO-1 and HO-2 catalyze oxidation of heme to biologically active mol-
ecules: iron, a gene regulator; biliverdin, an antioxidant; and carbon monoxide,
a heme ligand and a promising and potentially significant messenger molecule
(Figure 1.1; Maines, 1997). Products of the HO reaction have important effects:
carbon monoxide is a potent vasodilator, which is thought to play a key role in
the modulation of vascular tone, especially in the liver under physiological con-
ditions, and in many organs under ‘stressful’ conditions associated with HO-1
induction. The ‘free’ iron increases oxidative stress and regulates the expression
of many mRNAs (e.g., DCT-1, ferritin, and transferrin receptor) by affecting the
conformation of iron regulatory protein (IRP)-1 and its binding to iron regula-
tory elements (IREs) in the 5'- or 3'-UTRs of the mRNAs (Kietzmann et al.,
2003). Biliverdin and its product bilirubin, formed in most mammals, are potent
antioxidants. Bilirubin is neuroprotective at nanomolar concentrations (Doré et
al., 1999a) and protects cells from a 10,000-fold excess of H O, (Barafiano et
al., 2002). HO-2 seems to be more significant in antioxidation than HO-1. Al-
though the levels of oxidatively modified proteins of HO-1 and HO-2 cells in
response to t-BuOOH toxicity are identical, the level of oxidatively modified
proteins in HO-2 cells is less than that of HO-1 cells in response to H,O, toxic-
ity. Subcellular distribution shows that HO-2 and NADPH-cytochrome P, re-
ductase that are essential for HO activity in degradation of heme are colocalized
in the microsome, whereas HO-1 is partially present in the microsome. HO-2
transfected cells are more resistant than HO-1 transfected neurons to H,O, (Kim
et al., 2005). Under normal conditions, HO-2, but not HO-1, can be clearly de-
tected in the rat brain (Trakshel ef al., 1988).
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Heme
0, + NADPH
) heme oxygenase
H,0 + NADP*
Fe? 4 CO
Biliverdin ———— Antioxidant

NADPH + H*
biliverdin

NADP* reductase

Bilirubin ———» Potent antioxidant

FIGURE 1.1 The metabolic pathway of heme.

1.6 EXPRESSION AND ACTIVITY REGULATIONS OF THE HO
ANTIOXIDATIVE SYSTEM

There are several potential regulatory elements in the 5'-untranslated region
(UTR) of HO-1, including activator protein 1 (AP-1), metal responsive element
(MRE), oncogene c-myc/max heterodimer binding site (Myc/Max), antioxidant
response element (ARE), and GC box binding (Sp1) sites. HO-1 responds to a
myriad of other stress conditions, such as cytokines, hormones, volatile anes-
thetics, thiol-reactive substances, heavy metals, endotoxin, and UV radiation
(Ryter et al., 2006, 2007). HO-1 gene expression is also induced by various
oxidative stress stimuli including sodium arsenite. Using deletion-reporter gene
constructs, sites that mediate the arsenite-dependent induction of HO-1 were
mapped, and components of the extracellular signal-regulated kinase (ERK) and
p38 (a homolog of the yeast HOG1 kinase), but not c-Jun N-terminal kinase
(JNK), mitogen-activated protein kinase (MAPK) pathways were reported to
be involved in arsenite-dependent upregulation (Elbirt and Bonkovsky, 1999).
The role of arsenite for HO-1 gene regulation was also investigated in primary
rat hepatocytes. In this cell type, the JNK inhibitor SP600125 decreased sodium
arsenite-mediated induction of HO-1 mRNA expression. Over expressions of
INK, MAP kinase kinase (MKK) 3, and p38gamma up-regulated HO-1 expres-
sion, whereas p38alpha, beta, and delta decreased the production of HO-1. CRE/
AP-1 element (-668/-654) was shown as a binding site for c-Jun, a target of the
INK pathway, while E-box (-47/-42) manifested as a binding site for MKK3,
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p38 isoform and c-Max. Thus, the HO-1 CRE/AP-1 element mediates HO-1
gene induction via activation of JNK/c-Jun whereas p38 isoforms act through
a different mechanism via the E-box (Kietzmann et a/., 2003). Oxidative stress
greatly affects HO-1 expression. The expression profile of HO-1 seems to de-
pend on cell types and stress strength. Hydrogen peroxide at a concentration
of 0.14-0.7uM for 30 or 60 min increases content of immunoreactive HO-1 in
cultured rat forebrain astrocytes by sevenfold within 3 h after exposure. In con-
trast, the same concentration of H,O, fails to induce HO-1 expression in neurons
(Dwyer et al., 1995). When the concentration of H,O, reaches 25uM, HO-1
expression shows a time-dependent increase in neurons (Chun et al., 2001).
Furthermore, HO-1 is down-regulated under certain circumstances, such as
thermal-stressed human erythroblastic cell line YN-1-0-A, interferon y-treated
human gioblastoma cell line T989G, and hypoxia-insulted human endothelial
cells and astrocytes (Okinaga et al., 1996; Takahashi ef al., 1999; Nakayama et
al., 2000).

In contrast, HO-2 is present chiefly in the brain and testes and is generally
believed to be an uninducible or constitutive protein (Kietzmann et al., 2003).
However lines of evidences have demonstrated that the activity and expression
of this enzyme is changeable. In the past, the only known regulator of HO-2 is
adrenal glucocorticoids (Weber et al., 1994; Maines et al., 1996). Corticoste-
rone treatment (40 mg/kg, 20 days) increases the 1.3- and 1.9- kb HO-2 mRNA
(Weber et al., 1994). Then, studies revealed that HO-2 achieves enhanced cata-
lytic activity following phosphorylation by protein kinase C or treatment with
phorbol esters, and increased production of bilirubin under oxidative stress con-
ditions (Dor¢ et al., 1999a). Through a yeast two-hybrid screen, calmodulin was
identified as a potential regulator of HO-2 activity as well. Calmodulin binds
with nanomolar affinity to HO-2 in a calcium-dependent manner, resulting in a
threefold increase in catalytic activity.

Mutations within the binding site block calmodulin binding and calcium-depen-
dent stimulation of enzyme activity in vitro and in intake cells. The calcium mobiliz-
ing agents ionomycin and glutamate stimulate endogenous HO-2 activity in primary
cortical culture (Boehning et al., 2004). In experimental spinal cord injury (SCI),
HO-2 mRNA levels were elevated proximal (above) to the site of injury and more
prominently at 16 h post SCI while HO-1 mRNA levels were enhanced distal (below)
to the site of injury at both time points (Panahian and Maines, 2001). The protein pro-
files for HO-1 and HO-2 showed similar patterns as mRNA distributions. By com-
paring HO-2 mRNA levels in cognitively unimpaired and impaired adult and aged
rats, both young and aged cognitively impaired rats showed increased expressions
in hippocampi compared with aged cognitively unimpaired rats, while no difference
was found in cortices between all animal groups (Law ef al., 2000). Under certain
circumstances, HO-2 is also down-regulated. Real time PCR revealed low levels of
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HO-1 and HO-2 mRNA present in placenta and deciduas of early gestation CBA/J
mice exposed to stress or interleukin 12 (Zenclussen et al., 2002). HO-2 expres-
sion was also suppressed in human pathologic pregnancies (Zenclussen et al., 2003).
HO-2 protein level was determined in rat penile tissue of different ages and was
found to decrease during aging (Hu and Han, 2006). A 48-h hypoxic insult reduced
expression levels of HO-2 mRNA and protein in human cell lines by shortening the
half-life of HO-2 mRNA from 12 to 6 h (Zhang et al., 2006). A chronic restraint stress
decreased HO-2 protein levels in hippocampal neurons (Chen et al., 2005). Our re-
cent results demonstrated that HO-2 protein, but not mRNA, was dose-dependently
reduced following an increase in H,O, concentration when neurons were maintained
under a culture condition with a low level of antioxidant (unpublished data). A coor-
dination of HO-1 and HO-2 gene expressions has recently been reported where HO-2
may down-regulate the expression of HO-1 (Ding ef al., 2006). Down-regulation of
HO-2 expression with siRNA technique results in induction of HO-1 expression at
both mRNA and protein levels via activating the HO-1 gene promoter and prolongs
the half-life of HO-1 mRNA, whereas knockdown of HO-1 expression has no signifi-
cant effect on HO-2 expression. This study also demonstrates that HO-2 is a potent
heme metabolic enzyme since HO-2 knockdown causes heme accumulation when
exposed to exogenous hemin although HO-1 expression is up-regulated. HO-3 has
very low activity; its physiological function probably involves heme binding only
(Mc Coubrey ef al., 1997; Kietzmann et al., 2003).

1.7 HOs IN NEURODEGENERATIVE DISEASES

Both HO-1 and HO-2 expression decrease during aging. Age-related reductions
in HO, especially in HO-2, proteins are found in select brain regions including
the hippocampus and the substantia nigra, which are involved in the high order
cognitive processes of learning and memory (Ewing and Maines, 2006). Aged
animals also demonstrate decreased stress response to hypoxic/hyperthermia
stress in the HO, especially in HO-2, expressions.

HOs appear to be an important intrinsic neuroprotective factors in acute neu-
rodegeneration. HO-2 plays an important role in protecting ischemic neurode-
generation. HO-2 deletion (HO-27") leads to increased neurotoxicity in brain
culture and increased neural damage following transient cerebral ischemia in
intact mice. In contrast, stroke damage is not significantly altered in HO1(-/-)
mice (Doré et al., 1999a, b, 2000). Cerebral ischemia can also result in ROS
accumulation and apoptosis in cerebral vascular endothelial cells. In an in vitro
system using serum withdrawal to mimic in vivo ischemia, quiescent HO-2"
cells showed greater basal apoptosis than wild-type cells and reduced cell resis-
tance to serum withdrawal (Parfenova et al., 2006). Thus HO-2 appears to be
an essential endogenous antioxidative factor in the both neurons and cerebral
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vascular endothelial cells. Recently, a study demonstrated that HO-2 is also a
crucial neuroprotective enzyme against collagenase-induced intracerebral hem-
orrhage (Wang ef al., 2006). The roles of HO-1 and HO-2 in protecting neuro-
degeneration induced by traumatic brain injury were also reported (Chang et al.,
2003). HO-2 activity from injured HO-2 knockout mice was significantly less
than that of HO-2 wild types, despite the induction of HO-1 expression after the
traumatic brain injury.

In AD, AB is generated from ABPP. ABPP can bind to either HO-1 or HO-2
and further suppress HO bioactivity (Doré, 2002). ABPP with mutations linked
to familial AD provides substantially greater inhibition of HO activity than wild-
type ABPP. Cortical neurons from transgenic mice expressing Swedish mutant
APBPP greatly reduced bilirubin levels, establishing that mutant ABPP inhibits
HO activity in vivo. Furthermore, oxidative neurotoxicity is markedly greater
in cerebral cortical cultures from ABPP Swedish mutant transgenic mice than
wild-type culture (Takahashi et al., 2000).

1.8 THE HO ANTIOXIDATIVE SYSTEM AS A DRUG TARGET

Many antioxidants have been used in experimental and clinical treatment of
neurodegeneration. Those include vitamins, coenzyme Q10, melatonin, ebselen,
spin-trap scavenging agents, N-acetylcysteine, glutathione, metal ion chelators,
uric acid, creatine lazaroids, nicaraven, etc. (Gilgun-Sherki et al., 2002). Since
HO-1 expression is inducible, many efforts in suppressing oxidative stress-
induced damage have recently focused on inducing HO-1 expression. HO-1
expression can be induced with dietary antioxidants a-lipoic acid (in broccoli,
spinach, tomatoes), cafestol and kahweol (in coffee), carnosol (in rosemary),
curcumin (in turmeric), resveratrol (in grape), selenium (in cereals and fish), and
sulphoraphane (in broccoli and sprouts) (Ogborne et al., 2004). Pharmacologic
inducers of HO-1 were recently reviewed (Li et al., 2007). These inducers in-
clude simvastatin, lovastatin, NO donors, organic nitrates, NO, aspirin, 15-Epi-
lipoxin-A, analog, AZD 3582, probucol, adrenomedullin, atrial natriuretic pep-
tide, D-4F, curcumin, rosolic acid, caffeic acid phenethyl ester, sulforaphane,
carnosol, piceatannol paclitaxel, rapamycin, ethyl ferulate, 1,2,3,4,6-Penta-o-
galloyl-beta-D-glucose, insulin and isoproterenol.

Normal intracellular levels of HO-2 are important to cells for defense against
oxidative stress, and therefore preservation of basic levels of HO-2 is essential
for protecting against ROS-induced neurodegeneration. Our recent research
demonstrated that the neuroprotective compound PAN-811 (Jiang et al., 2006)
completely blocks oxidative stress-induced neurotoxicity while preserving
HO-2 protein to a normal level present in noninsulted control neurons (unpub-
lished data).
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1.9 CONCLUSION AND FUTURE PERSPECTIVES

HO-1 and HO-2 are derived from different genes but show a similar role in cata-
lyzing heme to produce the antioxidants biliverdin and bilirubin, and in protect-
ing oxidative stress-induced neurotoxicity. HO-1 and HO-2 mainly distribute in
astrocytes and neurons under normal condition respectively. HO-2 plays an im-
portant role in maintenance of heme and ROS homeostasis whereas HO-1 reacts
to environmental stress changes. A cooperation of them is shown by effects of
HO-2 on the gene expression of HO-1. The important role of HO-1 and HO-2 in
eliminating excessive intracellular ROS is evidenced by potent activity of their
catalyzing product bilirubin. Therefore, HOs are important intracellular targets
for neuroprotective drug development. One strategy is induction of HO—1 ex-
pression and other will be preserving HO-2 protein level. Due to the multifac-
eted mechanisms of neurodegenerative disease, blocking toxic pathways of oxi-
dative stress alone may not be sufficient for treatment. Thus co-administration
of an antioxidative drug with other neuroprotectant(s) with different targets (e.g.
NMDA receptor antagonist) would achieve superior efficacy in treatment of
neurodegenerative disease.
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2.1 INTRODUCTION

The search for susceptibility loci in the study of common, complex diseases is
a major challenge in the field of human genetics, and has been less successful
than for simple Mendelian disorders (Moore, 2003). It is likely that this is due to
many complicating factors such as an increased number of contributing loci and
susceptibility alleles, incomplete penetrance, and contributing environmental
effects (Templeton, 2000; Cordell, 2002; Culverhouse et al., 2002; Moore and
Williams, 2002; Moore, 2003; Sing et al., 2004; Thornton-Wells et al., 2004).
Additionally, gene-gene and gene-environment interaction, or epistasis, is an in-
creasingly assumed to play an important role in the underlying etiology of such
diseases (Templeton, 2000; Cordell, 2002; Culverhouse et al., 2002; Moore and
Williams, 2002; Moore, 2003; Sing et al., 2004; Thornton-Wells et al., 2004).
While there are several definitions of the word “epistasis”, in its simplest defini-
tion, epistasis occurs when the action of one gene is modified by one or more
other genetic and/or environmental factors. This phenomenon presents a chal-
lenge in the search for disease-risk variants, since if the effect of one locus is
altered or masked by effects at another locus, the power to detect the first locus
is likely to be reduced and elucidation of the joint effects at the two loci will be
hindered by their interaction, unless explicitly examined (Cordell, 2002).

The high dimensionality involved in the evaluation of combinations of many
such genetic and environmental variables quickly diminishes the usefulness of
traditional, parametric statistical methods, known as “the curse of dimensional-
ity” (Bellman, 1961). As the number of factors increases and the number of
possible interactions increases exponentially, many contingency table cells will
be left with very few, if any, data points. Due to the hierarchical model-building
process typically used by traditional methods for variable selection (Moore and
Williams, 2002), they are often limited in their ability to deal with many factors
and fail to characterize epistasis models in the absence of main effects. This
results in increased type 11 (false negative) errors and decreased power (Moore,
2004). These challenges are magnified by relatively small sample sizes. The
time and expense involved in sample collection can make effective studies cost
prohibitive with traditional analytical methods.

Additionally, rapid advances in genotyping technology have increased the
number of genetic variants included in genetic studies. Genome-wide associa-
tion studies including as many as one million single nucleotide polymorphisms
(SNPs) are now accessible. This results in an additional level of complexity
from an analytical perspective (Moore and Ritchie, 2004). An analytical ap-
proach must not only have statistical power to detect significant associations,
but must also search through thousands or million(s) of variables and iden-
tify those that best predict the outcome/disease of interest. Additionally, such
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a large number of variables amplify the problem of multiple comparisons. As
the number of statistical tests increases, it becomes increasingly likely that one
will observe data that satisfy the acceptance criterion (e.g. is significant at the
p<0.05 level) by chance alone. For example, with a genome-wide association
study with one million SNPs, you would expect 50,000 significant SNPs using
a p value cutoff of 0.05. Analytical methods must limit false positive results
without limiting power. These challenges have prompted the development of
novel methodologies to detect gene-gene and gene-environment interactions in
a variety of study designs.

In this chapter, we discuss the tools available to a genetic epidemiologist
to detect such epistatic interactions. We briefly define epistasis and review the
study designs and strategies that can be used for an interaction-oriented analysis
plan. Next, we discuss the traditional statistical tools available for epidemiologi-
cal research and how they can be applied to the detection of epistasis. We then
discuss a “data-mining” approach to analysis, highlighting novel computational
approaches that have been developed to detect epistasis. Finally, we stress the
importance of considering interactions in epidemiology by highlighting the in-
teractions that have been previously detected in statistical genetics studies of
human populations.

2.1.1 DEFINING EPISTASIS

Bateson in 1909 is credited with first coining the term “epistatic” to describe
an effect where a variant at one locus masks the manifestation of the effect of
another (Bateson, 1909). This was originally viewed as an extension of the con-
cept of genetic dominance for allelic variants at a single locus. Bateson’s defini-
tion of epistasis is often used by biologists or biochemists when investigating
biological interactions between proteins, however what is meant by biological
interaction is not always well defined (Cordell, 2002). It usually corresponds to
a situation in which the qualitative nature of the mechanism of action of a factor
is affected by the presence or absence of the other (Neuman and Rice, 1992).
As Bateson is credited with pioneering the term “epistasis”, Fisher in 1918
is credited with defining a separate statistical sense of the term (Fisher, 1918).
Fisher proposed a mathematical definition of epistasis as a deviation from ad-
ditivity in the effect of alleles at different loci with respect to their contribution
to a quantitative phenotype. Epistasis in this sense is closer to the usual concept
of statistical interaction (Norton and Pearson, 1976) as a departure from a spe-
cific linear model describing the relationship between predictive factors.While
the long-term goal of disease-risk mapping is to gain an understanding of func-
tional consequences of variants at the biological level that translate into clini-
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cal progress, at the population level epidemiological approaches must rely on
statistical methodologies to target genetic regions. So while there are semantic
and theoretical differences between these two definitions, they are certainly not
separate ideas. A complete discussion of these definitions is beyond the scope
of this chapter, but excellent discussions of this topic can be found in Cordell
(2002) and Moore and Williams (2005). For our purposes, we are less concerned
with a strict definition of the term and will focus on a practical approach to the
detection of epistasis in its broadest sense: the action of one gene is modified by
one or more other genetic and/or environmental factors.

2.1.2 APPROPRIATE STUDY DESIGNS

There are two broad types of study design that may be used to identify rela-
tionships between human genomic variants and phenotypes of interest: linkage
analysis and association analysis (Risch, 2000). Linkage analysis determines
whether a chromosomal region is preferentially inherited by offspring with the
trait of interest by using genotype and phenotype data from multiple biologi-
cally — related family members. Linkage analysis capitalizes on the fact that, as
a causative gene(s) segregates through a family kindred, other markers nearby
on the same chromosome tend to segregate together (are in linkage) with the
causative gene due to the lack of recombination in that region. Association anal-
ysis, on the other hand, describes the use of case-control, cohort, or even family
data to statistically relate genetic variations to a disease/phenotype. Because
association analysis directly examines the effect of a candidate locus, rather
than an effect that is diffused across large regions of chromosomes, its greatest
applicability is in fine localization and identification of causative loci (Daly and
Day, 2001).

Interactive effects can be assessed in any study design (Andrieu and Gold-
stein, 1998; Goldstein and Andrieu, 1999). Case-control, case-only, prospective
cohort, and family-based studies have all been successfully used to detect epi-
static interactions. Case-control studies are the most commonly used to search
for epistatic interactions, and most novel methods development has been fo-
cused on such a design. Case-only designs are more controversial for the study
of interactive effects. Case-only designs are extremely powerful for the detec-
tion of gene-environment interactions (Andrieu and Goldstein, 1998; Goldstein
and Andrieu, 1999), but their utility for the detection of gene-gene interactions
has been debated in the literature (Cordell, 2003; Vieland and Huang, 2003).
One commonly accepted approach for searching for gene-gene interactions
in a case-only design is the generation of “pseudo-controls™ prior to analysis
(Cordell et al., 2004; Cordell, 2004). Pseudocontrols are generated from the
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alleles not present in a case subject at each genetic marker. Case-control analyti-
cal methods can then be applied. Family-based study designs, involving sibling
pairs, affected sibling pairs, trios (parents and affected offspring), or extended
family designs, are also very powerful for the detection of epistasis (Goldstein
and Andieu, 1999).

Both association and linkage analyses have been used to investigate complex
genetic and environmental disease etiologies, and appropriate tools are available
for both strategies. Association analysis is by far the most commonly used ap-
proach, due to advantages in power and ease of sample collection (Risch, 2000),
and most computational methods have been designed for such studies. Because
of'this, the current review focuses on methodologies for association studies, but
it is important to keep in mind that linkage approaches can also be used to detect
interactive effects. For example, Ordered Subset Analysis (OSA) (Hauser ef al.,
2004) identifies genetically more homogeneous subsets of the overall data by
ordering families according to covariate trait values in ascending or descending
order.

2.2 PRELIMINARY ANALYSES
2.2.1 QUALITY CONTROL

Considering the quality of data is a crucial initial step in searching for epistasis,
as quality control issues may contribute to spurious patterns of multilocus asso-
ciation. Data should be thoroughly checked for problems such as batch or study-
center effects, or for unusual patterns of missing data. While “data cleaning” is
not the focus of this review, this is an important first step in a data analysis plan
investigating epistasis, and a few major issues are discussed below.

There are several standard approaches for evaluating the level of error in a
given dataset. In a family-based study design, Mendelian inconsistencies can be
evaluated to estimate a global/overall error rate. For example, if an allele seen in
a child is not found in either parent, an error has occurred in either the genotyp-
ing or in the assumed family structure. In a case-control design, however, this
error-checking method is not available. In all study designs, sex chromosome
markers can be used to test for gender errors, as another way of estimating your
global error. For example, if a male study subject has two copies of a nonpseu-
do-autosomal X-linked marker, an error is indicated. Genotyping efficiency can
also be used in any study design to evaluate potential error. Low genotyping
efficiency of either a single marker or a single individual may indicate a general
problem with the data/sample for either the individual or marker. This should be
evaluated prior to any statistical analysis.
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Traditionally, testing for Hardy — Weinberg equilibrium (HWE) is used to
detect errors in the data, but caution should be taken when considering this ap-
proach. There are several reasons for deviations from HWE, including inbreed-
ing, population stratification, selection, or genotyping error (Wigginton et al.,
2005; Cox and Kraft, 2006). Additionally, deviation could also indicate disease
association (especially if this deviation is seen in cases) (Wigginton et al., 2005;
Cox and Kraft, 2006), so eliminating SNPs from an analysis on this criterion
could potentially be self-defeating. Testing for HWE in controls may serve as a
better indicator of genotyping error than in the total population. Deviations can
also be seen in the presence of common deletion polymorphisms because of a
mutant polymerase chain reaction (PCR) primer binding site, miscalls during
genotyping (Bailey and Eichler, 2006; Conrad et al., 2006), or the presence of
a copy number variant (Wigginton et al., 2005; Cox and Kraft, 2006). Before
discarding loci based on HWE calculations, it is important to consider all these
possibilities. Testing for deviations from HWE is usually performed using a
Pearson goodness-of-fit test, based on the chi-square distribution because the
test statistic has approximately a chi-square null distribution. In the case of low
genotype counts, however, a Fisher exact test should be used instead since it
does not rely on the chi-square approximation (Guo and Thompson, 1992).

Missing data is another concern in any genetic analysis (Little and Rubin,
2002). When very little data (typically less than 5%) is missing, and there is
no pattern to this missing data, it is a negligible problem. However, increasing
amounts of missing data or irregular patterns present analytical challenges. Data
imputation is one proposed solution to this problem. Data imputation involves
replacing missing genotypes with predicted values based on the observed geno-
types at nearby SNPs. In the case of very tightly linked markers, this can be
reliable. There are several methods of imputation. First, maximum likelihood
estimation can be used to seek a “best” prediction of a missing genotype (a
single imputation). Alternatively, a genotype value can randomly be selected
from a probability distribution (multiple imputations). “Hot-deck™ approaches
(Little and Rubin, 2002) can also be used, where a missing genotype is copied
form another individual whose genotypes match at surrounding loci. Finally,
regression models may be used that are based on the genotypes of all individuals
at several neighboring loci (Souverein et al., 20006).

These imputation methods should be used with caution, especially with a
case-control study design. Many imputation strategies require two steps: an ini-
tial imputing phase (the information needed to determine the two haplotypes
underlying a multilocus genotype within a chromosomal segment) followed by
imputing missing values based on the initial phase. Additionally, these meth-
ods assume that missingness is independent of true genotype and of phenotype.
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These assumptions are not always met, leading to serious biases (Clayton et al.,
2005). These assumptions should be considered and tested before applying any
imputation procedures.

2.2.2 POPULATION STRATIFICATION

Population stratification is a well-documented confounding factor in genetic
association studies (Pritchard and Przeworski, 2001; Ardlie et al., 2002; Salis-
bury et al., 2003), and should be considered prior to any association testing
- including interaction analysis. This is of particular concern in a case-control
study design, since the realities of sample collection do not often allow for ho-
mogeneous samples and complete knowledge of subjects’ heritage is usually
unknown. Family-based studies are immune to this potential problem.

This confounding occurs when individuals are selected from two genetically
different populations in different proportions in cases and controls. Thus, the
cases and controls are not matched for their genetic background. This may cause
spurious associations, or it may mask true associations (Wang et al., 2006).
Most methods designed to deal with population stratification require a minimal
number (usually > 100) of widely spaced null SNPs that have been genotyped
in both cases and controls specifically for these analyses (Devlin and Roeder,
1999).

Genomic Control (Devlin and Roeder, 1999) is a commonly used approach
that computes the Armitage test statistic (A) at each null SNP. A is calculated as
the empirical median divided by its expectation under a chi-square distribution
with one degree of freedom. If A >1, A is then divided by A. AA>1 is likely to be
due to the effect of population stratification and dividing by A cancels this effect
for candidate SNPs. Genomic control is useful in a variety of scenarios but can
be conservative in extreme settings and anticonservative if too few null SNPs
are used (Marchini et al., 2004).

Structured association methods are also used to control for population strati-
fication (Pritchard et al., 2000; Satten et al., 2001; Hoggart et al., 2003). These
approaches are based on the idea of attributing the genomes of study individuals
to hypothetical subpopulations and testing for association that is conditional on
the specific allocations. This approach is computationally expensive, and the
number of subpopulations to use is unresolved. The true number of subpopula-
tions should ideally be used for analysis, but this number is often unknown.

Another approach to deal with this potential confounding factor is regression
analysis that includes population structure as a covariate (Setakis et al., 2006).
Null SNPs can mitigate the effects of population structure when included in a
regression model. This approach is very computationally efficient, and does not
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explicitly model the population structure as the structured association methods
do. In addition, it is more flexible than genomic control because epistatic and
covariate effects can be included.

There are several other methods being developed to diagnose population
structure when many null SNPs are available, including principle components
analysis (PCA) (Price et al., 2006) and mixed-model approaches (Yu et al.,
2006). As mentioned previously, these methods require that null SNPs be geno-
typed for the purpose of assessing any potential confounding population struc-
ture. If this was not included in the genotyping, stratified analyses (stratified on
population/ethnicity information) could be used to try to reduce and identify the
impact of population stratification.

2.3 TRADITIONAL STATISTICAL APPROACHES

Traditional statistical approaches to detect genetic associations have been suc-
cessful in identifying single-SNP associations and have had success in detecting
interactions when properly applied. In any genetic analysis plan, both single-
SNP and epistatic models should be considered. Below, we discuss some gen-
eral concerns of these methods. Then, we describe the traditional methods most
commonly used in genetic epidemiology and their application in the search for
epistatic interactions. Table 2.1 summarizes the traditional methods discussed
below.

There are several advantages to traditional statistical approaches that must
not be overlooked. First, they are easily computed, and most methods are readily
available in common statistical software packages. Additionally, the results are
easily interpreted since the mathematical implications of most parameters have
been extensively evaluated, and there is a long history of model interpretation.
Finally, these models are readily accepted in both the biological and statistical
communities.

However, there are several disadvantages to traditional methods that much
be considered. First, as mentioned above, the curse of dimensionality limits the
power of traditional methods to detect interactive effects. In regression analysis,
for example, this can result in increased type 1 errors and parameter estimates
with very large standard errors (Concato et al., 1993). Additionally, simulation
studies have demonstrated that 10 outcome events per independent variable are
required for each parameter estimate (Peduzzi ef al., 1996). As genome-wide
association studies become more common, this is an unrealistic sample size
requirement.

Variable selection is another concern with the use of traditional methods.
Most classical statistical tests were designed to test a specific, a priori hypoth-
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TABLE 2.1 Traditional statistical analytical methods.
. Outcome Input Parametric
Method Study designs variables variables Genetic __ Statistical
Pearson’s Chi-Square Case-control discrete discrete yes yes
.,  Fisher’s Exact Test Case-control discrete discrete yes no
8 Armitage Cochran Case-control binary discrete yes no
50 McNemar’s Chi-square Case-control binary discrete yes no
E TDT Trios binary discrete no yes
< Sib-TDT Dis-cordant sibling pairs binary discrete no yes
i 1I-TDT Proband+One parent binary discrete no yes
g  PDT Extended Ped-igrees binary discrete no yes
En FBAT Extended Ped-igrees binary discrete no yes
= GTDT Trios binary discrete no yes
S Tmhet Trios binary discrete no yes
© Mixed designs (Case-
ccTDT control and Family-based) binary discrete no yes
. . depends
. . Population-based, Cohort, . discrete or
Linear Regression . continuous . on yes
Family-based continuous .
encoding
. depends
L. . . discrete or
Logistic Regression Case-control binary . on yes
continuous .
encoding
E Cox Pro-portional . discrete or depends
S . Cohort binary . on yes
£  Hazards Regression continuous .
- encoding
g
= Poisson Regression Cohort binary dlsm;ete or  depends yes
2 continuous on
")75 encoding
2} . . . . depends
5 Restricted Cubic Splines Case-Control, Cohort, depends discrete or on o
O Regression Family-based ontypes  continuous .
encoding
. Population-based, Cohort, . discrete or depends
Kernel Regression . continuous . on no
Family-based continuous .
encoding
multiple
GLM Population-based; Family- \{anables; dlscFete or o o
based discrete or  continuous
continuous
T-Test Population-based; Family- oo discrete yes yes
based
MANOVA/MANCOVA Populatlonl;Z:es(eid; Family- continuous discrete no yes
t\z’;ld—Wolfownz runs Population-based continuous discrete no no
» Mann-Whitney U test Population-based continuous discrete no no
% Kolmo-gorov-Smimov Population-based continuous discrete no no
£ two-sample test
5 . .
< Kruskal-Wallis analysis Population-based continuous discrete no no
S ofranks
2 Median test Population-based continuous discrete no no
—2 Sign test Population-based; Family- continuous discrete no no
z based
Wilcoxon’s matched Population- continuous discrete o o
pairs test based; Family-based o
Friedman’s two-way Population-based; Family- continuous discrete o o
ANOVA based
s Population- . .
Cochran’s Q based; Family-based continuous discrete no no
QTDT Trios continuous discrete no yes
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esis: the association between a prespecified variable(s) and an outcome of inter-
est. They were not designed to identify which variables are the most important
in predicting that outcome. Variable selection approaches, such as stepwise se-
lection and best subset selection, are often applied as “wrappers” around tra-
ditional methods to try to address this challenge. These “wrappers” have been
most often applied in a regression framework (discussed below), where well-
known criteria like Mallows’ C_(Mallows, 1973), the Akaike information crite-
rion (AIC) (Akaike and Hirotugu, 1981) and the Bayesian information criterion
(BIC) (McQuarrie and Tsai, 1998) are often used to penalize the number of
nonzero parameters. Shrinkage estimation approaches have also been employed
to achieve better prediction and reduce the variances of estimators, such as ridge
regression (Frank and Friedman, 1993).

While these procedures can be extremely useful in certain situations, they
may not be appropriate for the detection of gene-gene and gene-environment in-
teractions. Step-wise regression, for example, is a well-known and widely used
form of variable selection within a regression framework (Mantel, 1970). There
are several important limitations with such an approach. Especially in the case
of small sample sizes, this approach can yield biased r-squared values (Copas,
1983; Derksen and Keselman, 1992), confidence intervals for effects and pre-
dicted values that are falsely narrow (Altman and Andersen 1989), p-values that
do not have proper meaning (Hurvich and Tsai, 1990), biased regression coef-
ficients that need shrinkage (Tibshirana, 1996). Further, it is based on methods
(i.e. F tests for nested models) that were intended to test prespecified hypotheses
(Hurvich and Tsai, 1990). Additionally, most of these methods rely on some cri-
teria for hierarchical model building. In a genetic context, this means that they
would be dependent on marginal main effects to even begin to build interactive
models.

Another important consideration with high-dimensional studies is the risk
of false discovery due to multiple testing, especially if traditional methods are
used to individually test loci or multilocus combinations. As the number of loci
increases so do the number of statistical tests typically performed. This problem
may become overwhelming as the field embraces genome-wide studies. For
example, Chi-square testing of a whole genome association dataset of 1,000,000
SNPs may yield 50,000 chance associations at p<0.05, and 100 at p<0.0001.
Traditional approaches such as the Bonferroni correction adjust for type I er-
ror, but are extremely conservative (Van et al., 2005) and thus may reject true
associations. For genomic studies, these correction procedures may demand un-
realistically small significance levels, and often ignore issues of between-test
dependence (Van et al., 2005) due to linkage between markers. It may be more
appropriate to correct for multiple testing with the false discovery rate method,
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which considers the expected number of false rejections divided by the total
number of rejections (Benjamini, 1995). The false discovery rate method is less
conservative than the Bonferroni correction (Benjamini, 1995), but still may
be too conservative for very large numbers of variables. Permutation testing is
also used to decrease the impact of multiple comparisons through empirical es-
timates of significance. Permutation testing is a commonly used nonparametric
statistical procedure. Rather than make specific distributional assumptions, a
permutation test randomly permutes the data many times to actually construct
the distribution of the test statistic under the null hypothesis. If the value of the
test statistic based on the original samples is extreme relative to this distribu-
tion (i.e. if it falls far into the tail of the distribution), then, the null hypothesis
is rejected (Good, 2000). The validity of a permutation test relies only on the
data maintaining the property of exchangeability under the null hypothesis - so
permutation testing makes no statistical or genetic assumptions and produces
an unbiased p-value (Good, 2000; Mukherjee et al., 2003; Neuhauser, 2005)
Permutation testing can partially control for multiple comparison by signifi-
cance testing only the best/final model as opposed to all individual tests. The
chief drawback of this method is that it is computationally expensive, and for
extremely large datasets, this limitation may make this type of significance test-
ing prohibitive.

2.3.1 CONTINGENCY TABLE ANALYSES

One of the simplest sets of methods for detecting associations in genetic epi-
demiological studies is contingency table analysis. For case-control data, this
includes the Pearson chi-square and Fisher’s exact test. It is important to con-
sider both genotypic and allelic versions of these analyses. The two degree of
freedom (df) Pearson and Fisher tests (with genotypic encodings) are generally
powerful, but in the case of an additive genetic model, an allelic encoding (with
one df for each test) is most powerful. While this encoding may be more power-
ful to detect an additive association, it is important to remember that these tests
assume HWE (Sasieni, 1997), which might not always hold true. The Armitage-
Cochran test (Armitage, 1955), which is similar to the allele-count test, may be
better suited. It tends to be conservative and does not assume HWE.
Contingency table analyses have been extended to family-based study de-
signs as well. Possibly the most commonly used example of this is the Trans-
mission Disequilibrium Test (TDT) (Terwilliger and Ott, 1992; Terwilliger et
al., 1992; Spielman et al., 1993). This test compares observed versus expected
transmitted alleles in trio data, and follows a Chi-square distribution. Addition-
ally, there are a number of versions of this test to extend it to additional study
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designs, including sib-TDT (for discordant sib pair data) (Spielman and Ewens,
1998), 1-TDT (for a proband and one parent designs) (Sun ef al., 1999), Pedi-
gree Disequilibrium Test (PDT) (Martin et al., 2000) and Family Based Asso-
ciation Test (FBAT) (Horvath ez al., 2001) (for extended pedigrees), generalized
TDT (GTDT) (Gordon et al., 2004) and Tmhet (Kaplan et al., 1997) (for mul-
tiallelic markers), and case-controlTDT (ccTDT) (Ruiz-Narvaez and Campos,
2004) (for combined case-control and family data). One additional important
extension - which is technically an analysis of variance method - is quantitative
TDT (QTDT) (Rabinowitz, 1997) for quantitative traits. These tests are most
powerful to detect single-locus associations, but can be extended to detect mul-
tilocus associations. For low-dimensional data with large numbers of samples
this approach can be successful, but the dimensionality of exploring interaction
effects quickly diminishes the usefulness of simple contingency table analyses.

2.3.2 GENERALIZED LINEAR MODELS

Generalized linear models (GLMs) are a broad class of methods that can be
thought of as an extended multivariate regression framework (Dobson, 2001).
The general purpose of multivariate regression is to quantify the relationship
between several independent variables and a single dependent variable. Gener-
alized linear models extend this concept to multiple dependent variables. Just as
in multivariate regression analysis, interactions between independent variables
can be modeled and tested.

The most familiar example of a GLM is regression analysis (Fox, 1997),
which remains the accepted standard for association studies in genetic epidemi-
ology. Regression analysis models the relationship between response variables
(dependent variables) and predictors (independent variables). Multivariate re-
gression describes models that include more than one predictor variable. This
allows the modeling of any genetic or environmental covariates and interactions
(discrete or continuous) (Mardia et al., 1979).

There are many types of regression analyses, making this approach appli-
cable to any study design. Linear regression models a continuous response vari-
able using a linear equation (for population-based studies). Logistic regression
models a binary response variable using the logit function (for a case-control
design). Cox Proportional Hazards regression is appropriate for cohort study
designs with survival data. Less often used forms of regression analysis include
Poisson regression, supervised learning, and unit-weighted regression. The
above mentioned forms of regression are all statistically parametric (Fox, 1997).
Nonparametric forms of regression analysis exist also (Fox, 2000), and include
kernel regression and restricted cubic splines. Regression analysis is also ap-
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propriate for family data, since inter- and intraclass correlations can be adjusted
for in the analysis.

In addition to limitations in variable selection and power, regression tech-
niques are also limited in their ability to deal with nonindependent predictor
variables (Hosmer and Lemeshow, 2000), which is very often the case in genetic
epidemiology as SNPs are often in linkage disequilibrium. Another important
consideration with regression methods is their limitations in dealing with situ-
ations of genetic heterogeneity. Regression approaches model the relation be-
tween predictors and risk of disease of all individuals in the data and do not
consider subgroups (Hosmer and Lemeshow, 2000).

The general linear model goes a step beyond the multivariate regression
model by allowing for linear transformations or linear combinations of multiple
dependent variables. This extension gives the general linear model important
advantages over the multiple and the multivariate regression models, both of
which are inherently univariate in regards to the number of outcome variables
evaluated. One advantage is that multivariate tests of significance can be em-
ployed when responses on multiple dependent variables are correlated. Sepa-
rate univariate tests of significance for correlated dependent variables are not
independent and may not be appropriate. Multivariate tests of significance of
independent linear combinations of multiple dependent variables also can give
insight into which dimensions of the response variables are, and are not, related
to the predictor variables. Another advantage is the ability to analyze effects
of repeated measure factors (which are normally analyzed using ANOVA tech-
niques). Linear combinations of responses reflecting a repeated measure effect
(for example, the difference of responses on a measure under differing condi-
tions) can be constructed and tested for significance using either the univariate
or multivariate approach to analyzing repeated measures in the general linear
model. A second important advantage of the general linear model is its abil-
ity to handle nonindependent predictor variables. This is of particular utility in
genetics, since genetic variants are often in linkage disequilibrium so they are
nonindependent (Dobson, 2001). The general linear model is frequently applied
to analyze any analysis of variance (discussed below) design with categorical or
continuous predictor variables, as well as any multiple or multivariate regres-
sion design with continuous predictor variables (Dobson, 2001).

2.3.3 ANALYSIS OF VARIANCE

Analysis of variance (ANOVA) methods are a popular family of methods for
association studies with continuous outcomes (Cobb, 1998). In general, the
purpose of analysis of variance (ANOVA) is to test for significant differences
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between group means. If only two means are compared, then ANOVA will give
the same results as the ¢ test for independent samples (if comparing two dif-
ferent groups of cases or observations) or the ¢ test for dependent samples (if
comparing two variables in one set of cases or observations). ANOVA analy-
ses are also applicable to numerous, and increasingly complex, study designs.
Between groups, repeated measures, and nested study designs can be analyzed
using ANOVA methods (Cobb, 1998). ANOVA methods have a distinct advan-
tage over a simple 7 test in that interaction effects can be evaluated. Multivari-
ate ANOVA (MANOVA) and multivariate analysis of covariance (MANCO-
VA) methods can evaluate more than one dependent variable and/or covariates
(Cobb, 1998).

The ANOVA methods mentioned above are all statistically parametric, but
there are nonparametric versions of the same tests if the statistical assump-
tions are not met. Differences in independent groups can be tested using the
Wald-Wolfowitz runs test, the Mann-Whitney U test, the Kolmogorov-Smirnov
two-sample test, the Kruskal-Wallis analysis of ranks, and the Median test.
For differences between dependent groups, the sign test, Wilcoxon’s matched-
pairs test, Friedman’s two-way analysis of variance, and Cochran’s Q test are
all appropriate (Cobb, 1998). ANOVA methods are most readily applicable to
population-based study designs, but can also handle family data. This family of
methods is very flexible as far as the hypothesis asked and very powerful for
detecting interactions.

2.4 NOVEL APPROACHES TO DETECT EPISTASIS

Because of the limitations of traditional methodologies, particularly the curse
of dimensionality and the variable selection problem, the development of novel
methods to detect epistasis is a booming subdiscipline of human genetics. Re-
cent methods have been developed for both association and linkage studies,
in both population-based and family-based datasets. In the current section, we
briefly discuss some of the basic tools and strategies used by these methods that
take a “data mining” approach to detecting and characterizing epistasis. While
the methods covered here do not represent a comprehensive list, the most com-
monly used methods are covered. Table 2.2 summarizes the methods discussed
below.
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TABLE 2.2 Data mining methods to detect epistasis.

Needs Parametric
Method Study design Outcome Input main . L
Y g P Genetic  Statistic
effect
Classification R
. . discrete or
and Regression Case-control binary continuous yes no no
Trees (CART)
'; Random Population-based; discrete or continuous discrete or os o o
& Forests (RF) Case-control continuous Y
S Mutivariate
2 . . .
A t . 1 t: 5 .
= dap 1ve Population-based; discre © Or continuous; discrete or
Regression multiple outcome - yes no no
H Case-control - continuous
Splines variables
(MARS)
Combinatorial
Partitioning Population-based continuous discrete no no no
Method (CPM)
Restricted
Partition Population-based continuous discrete no no no
Method (RPM)
Multifactor
Dimensionality . .
-Té Reduction Case-control binary discrete no no no
£ (MDR)
:,g MDR-PDT Family-based binary discrete no no no
g  Generalized Case-control or discrete or continuous discrete or o o o
S MDR population-based continuous
Patterning and
Recursive . . discrete or
o Case-control discrete or continuous - no no no
Partitioning continuous
(PRP)
Detection of
Informative . . discrete or
. Case-control discrete or continuous . yes yes no
Combined continuous
Effect (DICE)
Parameter .
. . discrete or
2 Decreasing Case-control binary continuous yes no no
5 Method (PDM)
2 Genetic .
5} . . discrete or
Z  Programming Case-control binary continuous no no no
'S NN(GPNN)
3 Grammatical discrete or
Z Evolution NN Case-control binary continuous no no no
(GENN)
- 1 . .
CLADHC Case control or binary discrete yes no yes or
Family-based no
on 2 ase-
g E HapMiner Case < ontrol or discrete or continuous discrete N/A no yes
5 S Family-based
Z & k-means Population-based or . discrete or
= & . . continuous . yes no no
O = clustering Family-based continuous
. Population-based or . discrete or
EM clustering . continuous . yes no no
Family-based continuous
Set Association Case-control binary discrete no no no
g Focused
&%  Interaction
g Testing Case-control binary discrete no no no
= Framework
(FITF)
Principl . .
rneiple . Population-based or . discrete or
Components analysis . continuous . yes no no
Family-based continuous

(PCA)
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2.4.1 DATA MINING METHODS

Data mining is an analytical process designed to explore large amounts of data
(like large-scale genetic studies) in search of consistent patterns and/or system-
atic relationships between variables, and then to validate the findings by apply-
ing the detected patterns to new subsets of data. Data mining is often consid-
ered “a blend of statistics, Al [artificial intelligence], and database research”
(Pregibon, 1997). Data mining has sometimes received a tepid reception from
traditionalists, even considered by some “a dirty word in Statistics” (Pregicon,
1997). However, as the practical importance and success of this approach is
increasingly recognized, and the scale of genetic studies exponentially expands,
this sort of approach is gaining acceptance.

The ultimate goal of any data mining approach is usually prediction - in
the case of genetic epidemiology this prediction is in the form of disease-risk
loci (Weiss and Indurkhya, 1997). As opposed to traditional hypothesis testing
designed to verify a priori hypotheses about relations between variables, data
mining typically falls under an exploratory data analysis framework. It is used
to identify relations between variables when there are no, or incomplete, a priori
expectations as to the nature of those relations.

There are three general stages to any data mining application (Witten and
Frank, 2000). First there is data exploration. In genetic epidemiology, this may
include simply the preliminary analysis discussed above, or a filter step in the
analysis, where a certain number of independent variables are selected based on
a criterion of choice. Filters that have been used in genetic applications include
ReliefF (Kira and Rendell, 1992), genetic algorithms (GA) (Crosby, 1973),
and genetic main effects as measured by Chi-square or regression (Evans et
al., 2006). The second step in any data mining process is model building and
internal validation. It is this step that differs greatly from method to method.
The third step is deployment, which involves using the model selected as best in
the previous stage and applying it to new data to estimate its predictive ability.
Many data mining approaches combine steps two and three by using a data resa-
mpling technique, such as bagging, boosting, cross-validation, jackknifing, or
bootstrapping to simultaneously build and test a model. An excellent discussion
of resampling and internal model validation techniques can be found in (Hastie
etal.,2001).

There are two general, broad categories of data mining methods: pattern
recognition (Theodoridis and Koutroumbas, 2006) and data reduction (Beving-
ton and Robinson, 1991). The pattern recognition family of methods considers
the full dimensionality of the data, and aims to classify based on information
extracted from the patterns. Tree- based methods, neural networks (NN), and
clustering algorithms are all included in this family of methods (Theodoridid
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and Koutroumbas, 2006). The term data reduction in the context of data mining
is usually applied to projects where the goal is to aggregate or amalgamate the
information contained in large datasets into manageable (smaller) information
nuggets. Data reduction methods can include simple tabulation, aggregation
(computing descriptive statistics), or more sophisticated techniques like princi-
pal components analysis, etc (Bevington and Robinson, 1991). The combinato-
rial approaches discussed below fall into this category.

2.4.2 TREE-BASED APPROACHES

Arguably the simplest group of data mining approaches used in genetic epide-
miology is tree-building algorithms. Also referred to as recursive partitioning
methods, this group of tools determines a set of if-then logical (split) conditions
that permit accurate prediction or classification of cases.

As with any analysis strategy, there are important advantages and disad-
vantages to any choice of algorithm. There are several important advantages to
the tree-based algorithms that make them particularly useful in the context of
genetic epidemiology. First, they can handle a large number of input variables,
which is important as the scale of genetic studies increases. Also, learning is fast
and computation time is modest even for very large datasets (Robnik-Sikonja,
2004). Additionally, tree methods are suited to dealing with certain types of ge-
netic heterogeneity (roughly, where different variants can lead to the same dis-
ease), since splits near the root node define separate model subsets in the data.
Also, trees-based algorithms produce an easily interpretable final model that is
essentially a set of if-then rules (an example of a “white box™ solution represen-
tation). Finally, these algorithms can uncover interactions among factors that
do not exhibit strong marginal effects, without demanding a prespecified model
(McKinney et al., 2006). One important limitation of these methods to consider
when looking for interactions is that they are dependent on slight marginal ef-
fects to model epistasis. If marginal main effects are not present, these methods
will likely fail to characterize the interaction.

A major issue that arises when applying tree-based methods is a decision to
stop splitting in the tree-building process. Model “over-fitting” is a concern with
this group of methods. For example, in a data set with 10 cases, with 9 splits
every single case could be perfectly classified. In general, with enough splits, a
model could be found that perfectly describes any given dataset. Unfortunately
this is not useful since such complex results most often fail to replicate in a sam-
ple of new observations. Therefore internal model validation approaches (Hastie
etal.,2001) are generally used with a resampling technique to avoid overfitting.
Once a tree-building algorithm has stopped, it is always useful to further evalu-
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ate the quality of the prediction of the current tree in samples of observations
that did not participate in the original computations. These methods are used
to “prune back” the tree, i.e., to eventually select a simpler tree than the one
obtained when the tree-building algorithm stopped, but one that is equally as ac-
curate for predicting or classifying ‘unseen’ observations (Brieman et al., 1984).

Classification and Regression Trees (CART) (Brieman et al., 1984) is a
highly successful analytic procedure for predicting the values of a continuous
response variable or categorical response variable from continuous or categori-
cal predictors. The technique is referred to as “Classification Trees” when the
dependent or response variable of interest is categorical in nature and as “Re-
gression Trees” when the response variable of interest is continuous in nature.
The goal of CART analysis is generally to find a tree where the terminal tree
nodes are relatively “pure”, i.e., contain observations that (almost) all belong to
the same category or class; for regression tree problems, node purity is usually
defined in terms of the sums-of-squares deviation within each node.

Another popular tree-building algorithm is Random Forests (RF) (Brieman,
2001). Random Forests (RF) builds a forest of classification trees (similar to
those built in CART) wherein each member of the forest is a tree is grown from
a bootstrap sample of the data, and the variable at each tree node is selected from
a random subset of all variables in the data (Brieman, 2001). Final classification
of an individual is determined by voting over all trees in the forest. The impor-
tance of particular variables is determined by randomly permuting the values of
that variable and testing whether these permutations adversely affect the predic-
tive ability of trees in unseen (out-of-bag) samples. If randomly permuting the
values of a particular variable drastically impairs the ability of trees to correctly
predict the class of out-of-bag samples, then the importance score of that vari-
able will be high. If randomly permuting values of a particular variable does
not affect the predictive ability of trees on out-of-bag samples, that variable is
assigned a low importance score. By running out-of-bag samples down entire
trees during the permutation procedure, interactions are taken into account when
calculating importance scores, since class is assigned in the context of other
variable nodes in the tree.

Another tree-based method for detecting genetic associations is Multivariate
Adaptive Regression Splines (MARS) (Hastie et al., 2001). MARS is a non-
parametric regression procedure that makes no assumption about the underly-
ing functional relationship between the dependent and independent variables.
Instead, MARS constructs this relation from a set of coefficients and basic func-
tions that are entirely “driven” from the regression data. In a sense, the method
can be thought to use a “divide and conquer” strategy, by partitioning the input
space into regions, each with its own regression equation. This strategy makes
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MARS particularly suitable for problems with higher dimensions. The step of
the MARS algorithm proceeds as follows. First, the simplest model involving
only the constant basis function is evaluated for each variable and for all possi-
ble spline knots, such that the space of basic functions is exhaustively searched.
The model is grown by adding variables that maximize a certain measure of
goodness of fit (minimized prediction error). The addition of variables to the de-
veloping model is recursively performed until a model of predetermined maxi-
mum complexity is derived. Finally, a pruning procedure is applied where the
variables and corresponding basis functions are removed that contribute least
to the overall goodness of fit. MARS can be thought of as a generalization of
regression trees, where the “hard” binary splits are replaced by “smooth” basis
functions. The MARS algorithm can be used with either discrete or continuous
outcome variables, and can analyze discrete or continuous predictor/input vari-
ables, making it a useful tool for detecting both gene-gene and gene-environ-
ment interactions in a wide range of study designs. Additionally, MARS can be
applied to multiple outcome variables of interest, similarly to generalized linear
models. The flexibility of this method makes it useful for detecting interactions
in a variety of study designs.

2.4.3 COMBINATORIAL APPROACHES

Another important group of methods used in genetic epidemiology are the
combinatorial approaches. The defining feature of these methods is that they
search over all possible variable combinations to find the combination(s) that
best predict the outcome of interest. This exhaustive search approach is ideal
for detecting interactions, including high-order interactions, since no marginal
main effects are needed for variable selection during the training/model-build-
ing stage. While this is an important theoretical advantage for these methods,
the computation time required grows exponentially with the number of markers
evaluated. Certainly for genome-wide association studies, and even for some
large-scale candidate gene studies, computational time may limit the ability to
explore high-order interactions with these methods.

Three closely related methods that fall under this category include: the Com-
binatorial Partitioning Method (CPM) (Nelson et al., 2001), Restricted Parti-
tion Method (RPM) (Culverhouse et al., 2004) and Multifactor Dimensionality
Reduction (MDR) (Ritchie et al., 2001). CPM and RPM are designed to detect
interactions in quantitative phenotypes of interest, while MDR was originally
designed for a binary outcome. Each of these methods uses cross-validation
to avoid overfitting and assess the predictive performance of each model as
discussed above in the context of tree-based methods. Patterning and Recursive
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Partitioning (PRP) (Bastone et al., 2004) combines a combinatorial approach
with a tree-building method. All four methods rely on a form of permutation
testing to ascribe statistical significance to a final model. Permutation testing
has the advantages of being an assumption-free approach to significance testing
but is a heavy computational burden, especially for these already computation-
heavy methods.

As mentioned above, CPM evaluates multifactor combinations that predict
quantitative phenotypes. In step one, the method searches the state space (the
fitness landscape) by first evaluating all possible loci combinations and then
evaluating the amount of phenotype variability explained by partitions of multi-
locus genotypes. These multilocus genotypes are divided into sets of genotypic
partitions. This first step is repeated, and those sets of genotypic partitions that
explain a significant amount of phenotypic variability are retained for use in
the second step. In step two, those genotypic partitions that are retained are
validated using ten-fold cross-validation. Cross-validation is used to assess the
predictive ability of each partition, so that step three involves the selection of
the “best” sets of partitions. This selection is based on two criteria—the propor-
tion of phenotypic variability explained by a set and the number of individuals
in each set. The predictive ability of these final sets is then compared to a null
distribution generated by permutation testing to ascribe statistical significance
to a final model (Nelson et al., 2001).

RPM was developed to improve computation time as compared to CPM.
Where CPM searches over all possible combinations, RPM restricts its search
to avoid fully evaluating genotype partitions that will not explain much of the
variation in the phenotype. This restriction is performed in three steps. First, us-
ing a multiple comparison test, the difference between mean values of genotype
groups (sets) is tested for significance. Second, from all nonsignificant pairs of
genotype groups, those with the smallest differences between their mean val-
ues are combined into a new group. This step reduces the number of genotype
groups to be evaluated. Finally, step two is repeated until all differences between
pairs of genotype groups are significantly different. This approach works since a
group consisting of genotypes for which the difference between their mean val-
ues is large (thus having a large within-group variance) will not explain much of
the total variance (Culverhouse et al., 2004). After this reduction in the number
of sets to evaluate, RPM proceeds with the steps described above for CPM.

As mentioned above, MDR was originally designed for studies with a binary
outcome variable and only discrete predictor variables. These predictor vari-
ables and their multifactor classes are divided in n-dimensional space. Then the
ratio of cases to controls is calculated within each multifactor class. Each multi-
factor cell class is then labeled “high risk” or “low risk” based on the ratio cal-
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culated, therefore reducing the n-dimensional space to one dimension with two
levels. The collection of these multifactor classes composes the MDR model for
a particular combination of factors. For each possible model size (one-locus,
two-locus, etc.) a single MDR model is chosen that has the lowest number of
misclassified individuals. To evaluate the predictive ability of the model, pre-
diction error is calculated on the testing sets (from cross-validation). The result
is a set of models, one for each model size considered. From these models, a
final model is chosen based on minimization of prediction error and maximiza-
tion of cross-validation consistency (number of times a particular set of factors
is identified across the cross-validation subsets) (Ritchie et al., 2001). MDR
was designed for case-control studies, but has also been applied to discordant
sibling pair data and trio data by generating pseudo-controls from untransmit-
ted alleles (Motsinger and Ritchie, 2006). Recently, the PDT statistic has been
incorporated into MDR (MDR-PDT) for application to extended pedigree data
(Martin et al., 2006). Other fitness functions are also being evaluated in the ap-
plication of the MDR approach, such as calculating an odds ratio instead of a
classification accuracy (Chung et al., 2007). Most recently, the MDR algorithm
has been extended to examine both continuous and discrete outcome variables
(Lou et al., 2007).

As mentioned above, the Patterning and Recursive Partitioning (PRP) (Bas-
tone et al., 2004) method combines a tree-based and combinatorial approach.
PRP is an extension of the CART method discussed previously. In the first step
of PRP, individuals within a dataset are assigned to genotype groups based on
their multilocus genotypes and the resulting classification is used as a predic-
tor variable in a recursive partitioning framework. This recursive partitioning
framework evaluates the impurity of a model using a decision tree approach
(Bastone et al., 2004). The PRP extends a decision tree approach to be able to
capture purely epistatic models by not limiting the split in the tree-building pro-
cess to a single variable at a time.

The Detection of Informative Combined Effect (DICE) (Tahri-Daizadeh et
al., 2003) is another example of a combinatorial approach. Briefly, the DICE al-
gorithm exhaustively explores all combinations of independent variables (either
discrete or continuous), first assuming an additive model and then assuming an
interactive model. Akaike’s information criterion (AIC) is used to evaluate the
fitness of each combination. Models of increasing complexity are successively
fitted to the data and the difference (A ) of the Akaike’s information criterion be-
tween models indicates whether the fit is substantially improved. That is, when
A, exceeds a predetermined threshold, a model is considered improved over
another. The algorithm stops when no model leads to a A_higher than the fixed
threshold (Tahri-Daizadeh et al., 2003). This model-building approach is more



40 Genomics and Proteomics: Principles, Technologies and Applications

similar to a traditional logistic regression framework than the other combina-
toric methods.

2.4.4 NEURAL NETWORKS

Unlike the data reduction approaches discussed above, Neural Networks (NN)
is a class of pattern recognition techniques. NN are modeled after the (hypoth-
esized) processes of learning in the cognitive system and the neurological func-
tions of the brain. They are capable of predicting new observations (on specific
variables) from other observations (on the same or other variables) after ex-
ecuting a process of so-called “learning” from existing data (Anderson, 1995).
Neural networks are a type of directed graph consisting of nodes that represent
the processing elements (or neurons), arcs that represent the connections of the
nodes (or synaptic connections), and directionality on the arcs that represent the
flow of information (Skapura, 1995). The nodes (processing elements) are ar-
ranged in layers such that the input layer receives the external pattern vector that
is to be processed by the network. Each node in the input layer is then connected
to one or more nodes in a hidden layer, and these are in turn connected to nodes
in additional hidden layers or to each output node. Each connection in the net-
work has a weight (a)), or coefficient, associated with it. The signal is conducted
from the input layer through the hidden layers to the output layer. The output
layer, which often consists of a single node, generates an output signal that is
then used to classify the input pattern. In the context of genetic epidemiology,
this output can be case/control status or a quantitative trait.

There are several features of NN that make them appealing for genetic epi-
demiology: they are able to handle large quantities of data, they are universal
function approximators and therefore should be able to approximate any genetic
penetrance function, and they are genetic model free, meaning that no assump-
tions of the genetic model need be made. Also, because of their parallel nature,
NNs are well suited to model interactions. Additionally, NN in general may
have an advantage in situations with intercorrelated variables over other statisti-
cal and machine-learning approaches. NNs are somewhat protected against the
problems caused by multicollinearity due to their parallel nature (Smith, 1996).
This is important since many genetic variables are correlated (are in linkage
disequilibrium). Also, unlike many traditional statistical methods, NN do not
assume independence of either individuals in the dataset or input variables. Ad-
justments of weights between network connections are assumed to correct for
variable intercorrelation (De Veaux and Ungar, 1994). This makes NN useful
tools for looking at family-based and population-based data.
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One important disadvantage of traditional NN approaches is that the selec-
tion of inputs, arrangement of nodes and connections (known as the architec-
ture of the NN), and weights are important decisions in a NN analysis that can
drastically alter the results. Because of this, several approaches for constructing
appropriate NN architecture have been developed. Most often a “trial and error”
approach is taken for choosing the architecture, and a back-propagation strategy
is used to optimize the weights. This approach has met with mixed success in
genetic epidemiology. Novel methods have been developed to incorporate vari-
able selection into a NN analysis, including the Parameter Decreasing Method
(PDM) (Tomita et al., 2004), Genetic Programming Neural Networks (GPNN)
(Ritchie et al., 2003), and most recently Grammatical Evolution Neural Net-
works (Motsinger et al., 2006). Each of these methods use cross-validation to
prevent overfitting, and permutation testing to ascribe statistical significance to
final models. All of these methods consider the full dimensionality of the data,
making them appropriate for finding gene-gene and gene-environment interac-
tions. Additionally, NN are flexible tools for combining both discrete and con-
tinuous predictor variables.

PDM was designed to perform variable selection while utilizing a user-spec-
ified NN architecture. In step one, one predictor variable is deleted from the
total number and a model containing all remaining variables is constructed. This
process is repeated for each variable such that in turn each variable is deleted
from the total number and a model is constructed with the remaining. From all
of the constructed models, the model with the lowest number of misclassified
subjects in both the training and evaluation set is selected (as mentioned above,
cross-validation is used to prevent overfitting). This process is repeated until
one variable remains. For each selected model, a measure of prediction accu-
racy is calculated by the sum of true predicted cases and controls divided by the
total number in the evaluation sample. The prediction accuracy is calculated
for each evaluation set created by multifold cross-validation and the sum of the
prediction accuracies divided by the number of evaluation sets gives the average
prediction accuracy (Tomita et al., 2004). This accuracy can be compared to a
permutation distribution to ascribe statistical significance.

While PDM does perform variable selection, the NN architecture must be
established a priori, and the proper set up may vary for each individual dataset.
To try to solve this problem, evolutionary computation algorithms have been
utilized to optimize the architecture of the NN while simultaneously performing
variable selection. GPNN (Ritchie et al., 2003) and GENN (Motsinger et al.,
20006) use different evolutionary computation algorithms to perform these tasks,
but the general steps of each method are the same.



42 Genomics and Proteomics: Principles, Technologies and Applications

First, GPNN/GENN has a set of parameters that must be initialized before
beginning the evolution of NN models. These parameters determine aspects of
the evolutionary process such as population size, mutation rate, and crossover
rate. Second, the data are divided for cross-validation. Third, model training
begins by generating an initial random population of potential solutions. Each
solution is a NN. Fourth, each potential solution (NN) is evaluated on the train-
ing set and its fitness (a classification error) recorded. Fifth, the best solutions
are selected for crossover and reproduction using a selection technique, where
lower classification error represents higher relative fitness in the population.
The more fit a solution, the more likely that NN is to be passed onto the next
generation. A predefined proportion of the best solutions will be directly copied
(reproduced) into the new generation. Another proportion of the solutions will
be used for crossover with other best solutions. The new generation, which is
equal in size to the original population, begins the cycle again. This continues
until some criterion is met at which point the evolutionary process stops. The
stopping criteria are a classification error of zero, or a prespecified number of
generations. Sixth, this best GPNN model is tested on the testing data to esti-
mate the prediction error of the model. Steps two through six are repeated for
each cross-validation interval. The results of a GPNN/GENN analysis include
10 models, one for each split of the data. A classification error and prediction
error is recorded for each of the models. A cross-validation consistency can be
measured to determine those variables that have a strong signal and should be
included in the final model. Cross-validation consistency is the number of times
a particular combination of variables are present in the ten cross-validation data
splits. Thus, a high cross-validation consistency would indicate a strong signal,
whereas a low cross-validation consistency would indicate a weak signal and
a potentially false positive result. The loci combination with the highest cross-
validation consistency is chosen as the final model. A prediction error is then
determined for the final model and compared to a permutation distribution.

2.4.5 CLUSTERING ALGORITHMS

Clustering algorithms are a subgroup of the pattern recognition family. Clus-
ter analysis aims to sort different objects into groups such that the degree of
association between two objects is maximal if they belong to the same group
and minimal otherwise. Given the above, cluster analysis can be used to dis-
cover structures in data without providing an explanation/interpretation. In other
words, cluster analysis simply discovers structures in data without explaining
why they exist. Clustering approaches have been previously applied in medicine
for clustering diseases, cures for diseases, or symptoms of diseases to generate
useful taxonomies. Their application to the identification of disease-suscepti-
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bility genes is more novel, and is often used in concert with more traditional
measures of association. This class of methods also considers the full dimen-
sionality of the data, so they are also able the cluster according to interactive
models. These methods are particularly appealing for cases of genetic heteroge-
neity, as they can detect “clusters” of individuals whose phenotype variation is
explained by different genetic models (Thornton-Wells et al., 2006). Recently
developed methods like HapMiner (Li and Jiang, 2005) and CLADHC (Bardel
et al., 2005) capitalize on these advantages. Clustering methods have also been
used in concert with other computational methodologies to better define phe-
notypes for analysis or pick-apart genetic heterogeneity (Thornton-Wells et al.,
20006). There are several broad classes of clustering techniques available to an
epidemiologist: joining (tree clustering), two-way joining, k-means (Hartigan,
1975), and expectation maximization (EM) clustering (Witten and Frank, 2000).

The joining or tree clustering method uses the dissimilarities (similarities)
or distances between objects when forming the clusters (Witten and Frank,
2000). Similarities are a set of rules that serve as criteria for grouping or sepa-
rating items. These distances (similarities) can be based on a single dimension
or multiple dimensions, with each dimension representing a rule or condition
for grouping objects. The most straightforward way of computing distances be-
tween objects in a multidimensional space is to compute Euclidean distances,
but other distance measures are also applicable, such as squared Euclidean,
City-block (Manhattan), Chebychev, power, and % disagreement distances
(Witten and Frank, 2000). In the first step of joining clustering, when each ob-
ject represents its own cluster, the distances between those objects are defined
by the chosen distance measure. Linkage or amalgamation rules are then used to
determine when two clusters are sufficiently similar to be linked together. Nu-
merous rules have been proposed including single linkage (nearest neighbor),
complete linkage (furthest neighbor), unweighted/weighted pair-group aver-
ages, and weighted/unweighted pair-group centroids. Two-way joining cluster-
ing approaches extend the concept of the joining approaches to simultaneously
cluster based on both predictor and outcome variables (Witten and Frank, 2000).
In genetic epidemiology, this sort of application could be used to dissect both
phenotypic and genetic heterogeneity (Thornton-Wells et al., 2006).

HapMiner (Li and Jiang, 2005) is one such joining clustering method de-
veloped for association testing. This method is designed to cluster haplotypes
(either phased or inferred) for family-based or case-control study designs. For
case-control data, the disease status of each individual is used to label both of its
haplotypes. For case-parent data, transmitted haplotypes can be labeled as case
haplotypes and untransmitted haplotypes as controls. The algorithm scans each
marker one by one. For each marker position, a haplotype segment with certain
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length centered at the position will be considered. The segment length is deter-
mined based on marker interval distances. Clusters are identified based on a
unique distance measure via a density-based clustering algorithm. The Pearson
phi? statistic or Z-score, based on a contingency table derived from the numbers
of case haplotypes and control haplotypes in a cluster can be used as an indicator
of the degree of association between the cluster and disease. Both measures can
then be used to test association. A significance threshold is chosen by the user
and all findings that exceed the threshold are reported. Currently, this algorithm
performs single-locus tests of association, but could theoretically be extended
for interactive effects (Li and Jiang, 2005).

CLADHC (Bardel et al., 2005) is a joining clustering method for case-con-
trol studies. This method uses haplotypes composed of a combination of SNPs,
where each haplotype is labeled either as case or control depending on the phe-
notype of the individual. After building a phylogenetic tree of these different
haplotypes, a series of nested homogeneity tests are performed to detect differ-
ences in the distribution of cases and controls in the different clades. Briefly, at
each level of the tree, homogeneity in the distribution of cases and controls is
tested among all the n clades defined at this level. If the test is significant, an
association is detected and the analysis ends. If the test is not significant, one
homogeneity test is performed between all the subclades descending from the
n clades. Once an association is detected, a new character is defined according
to the proportion of cases carrying a haplotype. Then, it is optimized on the tree
and the sites that significantly mutate with this new character (similar in concept
to correlation) are putative susceptibility sites for the disease of interest. This
method has not been directly tested on epistatic models, but it performs well on
noninteractive multifactorial models (Bardel ez al., 2005).

K-means clustering (Hartigan, 1975) is actually very different from the join-
ing clustering methods. In general, the k~-means method will produce exactly &
different clusters of greatest possible distinction. The best number of clusters &
leading to the greatest separation (distance) is not normally known a priori and
is often computed from the data. This method can be thought of as ANOVA “in
reverse”. The algorithm will start with £ random clusters, and then move objects
between those clusters with the goal to 1) minimize variability within clusters
and 2) maximize variability between clusters. The similarity rules will apply
maximally to the members of one cluster and minimally to members belonging
to the rest of the clusters. This is analogous to “ANOVA in reverse” in the sense
that the significance test in ANOVA evaluates the between group variability
against the within-group variability when computing the significance test for the
hypothesis that the means in the groups are different from each other. In &-means
clustering, the program tries to move individuals in and out of groups (clusters)
to get the most significant ANOVA results (Hartigan, 1975).
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The EM clustering algorithm (Witten and Frank, 2000) is an extension of
the k-means approach. There are two important differences that distinguish EM
clustering. First, instead of assigning individuals to clusters to maximize the dif-
ferences in means for continuous variables, the EM clustering algorithm com-
putes probabilities of cluster memberships based on one or more probability dis-
tributions. The goal of the clustering algorithm then is to maximize the overall
probability or likelihood of the data, given the (final) clusters. Second, unlike
the classic implementation of k-means clustering, the general EM algorithm can
be applied to both continuous and categorical variables (note that the classic
k-means algorithm can also be modified to accommodate categorical variables)
(Witten and Frank, 2000).

As mentioned above, the number of clusters that should be used in k-means
or EM clustering is not known a priori. Usually, this number is determined
using cross-validation. Most commonly, the v-fold cross-validation algorithm
is used. The general idea of this method is to divide the overall sample into a
number of v folds. The same type of analysis is then successively applied to
the observations belonging to the v-1 folds (training sample), and the results
of the analyses are applied to sample v (the sample or fold that was not used to
estimate the parameters, build the tree, determine the clusters, etc.; this is the
testing sample) to compute some index of predictive validity. The results for the
vreplications are aggregated (averaged) to yield a single measure of the stability
of the respective model, i.e., the validity of the model for predicting new obser-
vations (Witten and Frank, 2000).

2.4.6 TWO-STEP APPROACHES

Several novel methods have taken a two stage approach to detecting genetic
associations by first determining a small number of potentially interesting mark-
ers, and then modeling interactions between those potential predictors. Focusing
on gene-gene and gene-environment interactions, it is crucial that the first step
of these approaches considered not just single markers, but sets of markers that
could potentially interact. If only markers with strong main effects are consid-
ered in the first step, strictly epistatic models will be missed. This multistep ap-
proach is not unique to these methods, but is a defining feature. Set Association
(Hoh et al.,2001) and Focused Interaction Testing Framework (FITF) (Millstein
et al., 2006) are two popular methods designed specifically to detect interactions
with this framework. These methods can be considered data reduction methods
because they address the dimensionality problem by reducing the number of
variables examined, and try to estimate global levels of significance.

Set Association (Hoh et al., 2001) was designed for a binary outcome vari-
able (such as case/control status), and can examine both discrete and continuous
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predictor variables. This makes it especially useful in looking for gene-envi-
ronment interactions. In step one, a test statistic is calculated for each marker
separately. The test-statistic used is a product of two test statistics, where the
first measures the association of a marker with disease outcome and the second
measures deviation of a marker from the null-hypothesis of HWE. Any measure
of association can be used for the first statistic but a Chi-square statistic calcu-
lated from the contingency table of alleles (or genotypes) with disease status is
traditionally used. Chi-square values for deviations from HWE are calculated
in the cases only for the second statistic. Large deviations from HWE are as-
sumed to indicate an association between the marker and the disease. HWE is
also tested in controls to check and control for genotyping errors. The markers
are then ordered based on their value for the overall test-statistic. The marker
with the largest overall test statistic is selected and sum statistics are calculated
by sequentially adding the most important marker from the group of unselected
markers. Increasing sums of markers are formed and the number of markers
in the sums ranges from 1 to a predefined maximum number of M markers.
Permutation testing is used to assess the significance of each sum. The sum
with the lowest significance level (smallest p-value) is selected as the best set
of markers. This first p-value is then used as a test statistic and is evaluated by
a second permutation test testing the null-hypothesis of no association of the
selected markers with the disease outcome to give an overall p-value. The main
disadvantage of the set association approach is that genetic interactions are only
tested for the markers that are selected in the sum. Thus, important interactions
with weak main effects will be missed (Hoh ez al., 2001).

FITF (Millstein et al., 2006) is a modification of the Interaction Testing
Framework (ITF) method that prescreens all possible gene sets to focus on those
that potentially are the most informative. In the ITF method, a series of logistic
regression analyses is performed in incremental stages, where the highest-order
interaction parameter considered increases at each subsequent stage. In stage 1,
the main effect of each genetic variant is considered, in stage two, all pair-wise
combinations are tested, in stage three all three-way interactions are tested, etc.
If a variant or multilocus combination is declared significant in an earlier stage,
those variants are not retested in subsequent stages to avoid retesting the same
effects. This means that significant main effects are removed before testing for
potential interactive models. The overall type one error is controlled by divid-
ing the overall desired alpha level by the number of stages and allocating this
adjusted alpha level to each stage. Within each stage, the significance threshold
is adjusted by controlling the False Discovery Rate (FDR) (Benjamini, 1995).
This approach allows the method to detect interactions in the absence of any
marginal main effects. The FITF algorithm modifies the ITF approach to reduce
the overall number of variants tested with an initial filter process. A chi-square
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goodness-of-fit statistic that compares the observed with the expected Bayesian
distribution of multilocus genotype combinations in a combined case-control
population, referred to as the Chi-square subset (CSS), is used in a prescreening
initial stage (Millstein et al., 2006). All markers that pass the initial filter stage
enter the ITF process.

2.4.7 PRINCIPLE COMPONENTS ANALYSIS

Principal Components Analysis (PCA) (Pearson, 1901; Fukunaga and Keino-
suke, 1990) is a method that reduces data dimensionality by performing a cova-
riance analysis between factors. PCA uses eigen analysis to transform a number
of potentially correlated variables into a smaller number of uncorrelated vari-
ables called principle components. The first principle component accounts for
as much variability in the data as possible and then each succeeding component
amounts for as much of the remaining variation as possible. The main objectives
of this method are to reduce the dimensionality of the data set, and to identify
new meaningful underlying variables, such as interactive predictors (Pearson,
1901; Fukunaga and Keinosuke, 1990). Because of this, it is readily applied
to large-scale studies in human genetics. PCA has been used for microarray
analysis, population stratification analysis, and is appropriate for data mining
applications in genetics studies with continuous outcome variables.

2.4.8 METHODS TO INTERPRET EPISTATIC MODELS

As well as methods to detect interactive models, there are also bioinformatics
approaches designed to help interpret and understand epistatic models. Such
approaches combine aspects of expert knowledge, visualization, and reexamina-
tion of model solution content. Some novel tools will aid in literature searches
to help characterize the biological interactions of statistical methods. Chilibot
(Chen and Sharp, 2004) is a web-based text mining (using natural language pro-
cessing) application that extracts term-term relationships from MEDLINE ab-
stracts. The results of a Chilibot search are returned in a graphical format, where
connections between genetic or proteomic variables represent interactions, and
these connections are color-coded according to the type of interaction hypoth-
esized. A variety of tools for knowledge-based visualization of results, including
K-graph (Kelly et al., 2006), EVA (Reif et al., 2005), and the Onto-Tools suite
(Draghici et al., 2003), can help identify important patterns postanalysis. Other
tools designed to help interpret interactive models are based on information gain
and mutual information criteria, such as interaction dendrograms (Seo et al.,
2002). These tools can be extremely helpful in better understanding complex
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models. While this is in no way an exhaustive list of tools, we wanted to make
the reader aware of such methods in order to encourage their use, and further
development.

2.5 EXAMPLES OF EPISTASIS FOUND IN HUMANS

With a myriad of both traditional and novel tools available to a genetic epide-
miologist, it is important to get an empirical understanding of the importance of
using them in one’s own work. The field of human genetics has experienced a
paradigm shift as common diseases are now assumed to be due to the complex
interactions among numerous genetic and environmental factors (Moore, 2003).
Even diseases once thought to be exclusively Mendelian in etiology (like sickle
cell anemia and cystic fibrosis) are now known to much more complex that
previously assumed. Excellent reviews of modifier genes impacting the clinical
manifestation of these disorders can be found in (Steinberg and Adewoye, 2006)
and (Knowles, 2006) respectively. The dissection of the epistatic nature of the
Hirshsprung’s disease on both a statistical and functional level (Carrasquillo ez al.,
2002) also demonstrates this shift.

Possibly the most convincing argument for incorporating an exploration of
interactions in any analytical plan is the numerous interactions already found
in the study of human phenotypes using statistical/computational methods. In
a PubMed search performed in January 2007, over 250 examples of epistatic
interactions found in genetic epidemiological studies were found. While space
limitations prevent listing all examples found, some interesting patterns were
seen in this list. Of the interactions found, ~92% were found using an associa-
tion study approach, while only ~8% used a linkage strategy. Over 73% used
a population-based study design, while ~27% used a family-based approach. A
population-based case-control design is by far the most used study design, with
~53% of interactions detected in this design. Case-only designs were used in
less than 1% of studies, and a mixed (both population and family-based) design
was used in ~3%. This demonstrates the flexible nature of the analytical tools to
find interactions in any study design. More than 77% of interactions were dis-
covered with traditional methods (used in a straightforward, classical approach
or with stratification), while ~23% of studies used novel techniques.

Figure 2.1 shows the number of interactions discovered per year, starting in
1984. As the histogram illustrates, the number of interactions found per year is
growing exponentially as the field recognizes their importance and more readily
applies novel methodologies or extends traditional ones to account for interac-
tions. As the enthusiasm for this type of search grows, we are also starting to
see validated epistatic models. Studies in asthma provide a good example. An
interactive effect between the IL-13 and IL4Ralpha genes that predicted asthma
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was first seen by Howard et al. (2002) in a case-control study of Dutch indi-
viduals. In 2006, this interaction was replicated in a completely different human
population of Chinese cases and controls using both traditional and novel ana-
lytical methods (Chan et al., 2006). This is encouraging since epistasis has been
proposed as an explanation for lack of replication in studies of complex human
diseases. As investigators continue to explore interactions, we will surely see
more replication of epistatic interactions.

Number of Interactions Identified by Year
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FIGURE 2.1 Number of gene-gene and gene-environment interactions identified by year.

Unfortunately, as in any human population-based study, the risk of false-
positives is just as applicable in the search for epistatic interactions. While the
reported number of interactions is growing at an exciting pace, it is important
to remember that an unknown number of such reports represent false positive
findings. As with any linkage or association results, replication, and validation
are key to revealing true results.

2.6 DEVELOPING AN ANALYSIS PLAN

When developing an analysis plan, an investigator has broad options. Particu-
larly for large-scale or genome-wide studies, investigators may consider using a
combination of several of the tools discussed above. For example, the first stage
of analysis could involve a filter method, the second stage could involve a novel
tool that performs both variable selection and modeling (such as MDR), and
as a final step a traditional method like logistic regression could be used to put
the model in a more interpretable or familiar framework. Another option could
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involve a nonexhaustive combinatorial search to perform variable selection over
the entire dataset followed by knowledge-based interpretation of the results.
The combinations of choices are effectively infinite, and Table 2.1 and 2.2 are
presented as a launching point for identifying appropriate methods.

The choice comes down to the details of the particular study, and the in-
vestigator should carefully consider these details. Are there well-characterized
mechanisms or candidate genes in the literature? Is the etiology likely to involve
accumulation of minor epistatic effects or one large main effect with modifiers?
What is the scale of the study in the number of variables and sample size? Is a
validation cohort available?

Continued methods development with aid an investigator is making these
choices, and will hopefully encourage the search for interactions in even more
studies. Better curation of a web of knowledge about certain diseases, navigabil-
ity of knowledge databases, and standards for high-throughput data (genome-
wide studies, etc.) will all aid in this pursuit.
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3.1 IDENTIFICATION OF C-ABL AND BCR-ABL

In 1969, Abelson and Rabstein isolated a new tumor inducing variant of Mo-
loney Murine Leukemia Virus (M-MuLV), a virus known to induce thymomas
in mice (Abelson and Rabstein, 1969). In contrast to the parental strain, this
new strain is a lymphosarcoma-producing virus that is characterized by a rapid
development of solid lymphoid and massive meningeal tumors, without af-
fecting the thymus, in infected mice. While a polymorphonuclear leukemoid
reaction is observed in these mice, there is no lymphocytic invasion of their
organs (Abelson and Rabstein, 1970). This new virus variant was then named
the Abelson Murine Leukemia Virus (A-MuLV). A-MuLV was demonstrated
to have transformation ability. It can transform fibroblasts and myeloid cells in
vitro (Rabstein et al., 1971; Scher and Siegler, 1975). Later, Witte et al. (1978)
identified an A-MuLV encoded protein present in A-MuLV transformed cells.
This product contains a viral amino-terminal region derived from the Gag gene
of M-MuLV and a carboxyl-terminal region from a normal cellular gene. The
cellular gene is referred to as the ABL region. The Gag-Abl fusion protein was
later referred to as v-Abl. Comparison of the genome sequences of A-MuLV
and M-MuLV revealed a DNA fragment that is present only in A-MuLV. This
fragment was used to probe the human ¢cDNA library and to pull out a cellular
homolog, which was identified as c-Abl (Witte et al., 1978; Witte et al., 1979;
Goff et al., 1980).

About 10 years before the identification of A-MuLV, Nowell and Hungerford
performed cytogenetic studies on normal and leukemic leukocytes and revealed
the presence of a minute chromosome in most of the chronic myelogenous leu-
kemia (CML) cells (Nowell and Hungerford, 1960). This minute chromosome
was named the Philadelphia chromosome, and was later demonstrated by Row-
ley to be a result of a reciprocal translocation between chromosomes 9 and 22
(Rowley, 1973). The exchange of the chromosomal material generates a longer
chromosome 9 and a shorter chromosome 22, with the latter referred to as the
Philadelphia chromosome. de Klein and colleagues found that c-Abl, a gene
normally located on chromosome 9, is present on the Philadelphia chromosome
(de Klein et al., 1982), and that the Philadelphia chromosomal breakpoints are
clustered within a limited region, termed the “breakpoint cluster region” (BCR),
on chromosome 22 (Groffen et al., 1984). By using Abl cDNA as probes, cells
from CML patients were found to contain an abnormal Abl mRNA species, con-
sisting of a fusion of BCR sequences to the Abl sequence (Canaani et al., 1984;
Collins et al., 1984; Shtivelman et al., 1985). Due to the fusion of c-Abl with
different portions of the BCR gene, there are at least three isoforms of the chi-
merical BCR-ABL proteins: p180, p210, and p230. p210 BCR-ABL is present
in more than 90 % cases of CML. Fusion of c-Abl to BCR alters the c-Abl pro-
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tein structure and results in a constitutively active tyrosine kinase, which is the
leading cause of CML (Konopka et al., 1985).

3.2 STRUCTURE AND ACTIVATION

c-Abl is ubiquitously expressed. The c-Abl gene encodes two mRNA transcripts
as a result of alternative splicing of the first two exons. They are translated into
two ~ 140 kd isoforms, type la and type 1b in human, and type I and type IV
in mouse. Type 1b and IV differ from type la and I respectively by carrying a
C,, myristoyl fatty acid at the amino terminus. Adjacent to the myristoyl fatty
acid is the Cap region, which is present in all different splice variants but is less
conserved. This is followed by a SH3, a SH2, and a kinase domain, which are
shared by all the Src family members. This conserved region is then followed
by a carboxyl terminal, which is not found in other Src family members except
c-Abl’s homolog, Arg. The carboxyl terminus of c-Abl consists of three nuclear
localization signals (NLS) and one nuclear export signal (NES) (Van Etten et
al., 1989; Taagepera et al., 1998), which allows the shuttling of c-Abl between
the nucleus and the cytoplasm. The carboxyl terminus also carries a DNA bind-
ing domain (Kipreos and Wang, 1992), a RNA polymerase II binding site (Bas-
karan et al., 1996), and a filamentous and globular actin binding domain (Van
Etten et al., 1994). These various domains are important for c-Abl’s functions,
which include the DNA damage response, cell cycle control, cytoskeleton reor-
ganization, and cell spreading and cell mobility.

c-Abl’s localization to the cytoplasm, plasma membrane, nucleus, mito-
chondria, and endoplasmic reticulum depends on the cell type and cellular con-
ditions. The activity of c-Abl is tightly controlled and deregulation of c-Abl
kinase activity causes deleterious effects to the cell. c-Abl is mostly inactive in
unstimulated cells. In this inactive state, the protein is folded into a structure in
which the SH3 and SH2 domains face the distal side of the kinase domain. The
SH3 domain lies opposing to the N-terminal lobe while the SH2 domain is con-
nected to the C-terminal lobe of the kinase domain that contains an activation
loop with Y412 (Barila and Superti-Furga,1998; Nagar ef al., 2003). The SH3
and SH2 domains, with the help of the SH3-SH2 connector and the SH2-PTK
linker, clamp the kinase domain into an inactive state. The inactive state is fur-
ther enforced with the N-terminal Cap segment and the myristoyl group in type
Ib/VI c-Abl, as the Cap and the myristol group lock the SH3-SH2 domains onto
the distal surface of the kinase domain (Nagar et al., 2003; Nagar et al., 2006).
Based on the structures of ¢c-Abl and Src and numerous biochemical studies, it
has been proposed that there are three steps in the activation of c-Abl. Firstly,
the myristol group and the Cap segment need to be released from the C-lobe of
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the kinase domain. This is then followed by “unclamping”, which results from
the dissociation of the SH3-SH2 domains from the kinase domain and exposes
Y412 for phosphorylation. The third step is the phosphorylation of Y412, which
results in the activation of c-Abl. Phosphorylation of Y245, which is also packed
tightly in the inactive form of the kinase domain, further enhances the kinase
activity (Harrison, 2003; Li, 2006). While what triggers these changes is not
well understood, we do know that c-Abl can be activated by TGF, EGF, PDGF,
and DNA damage.

3.3 ACTIVATION BY GROWTH FACTORS

c-Abl can be activated by transforming growth factor  (TGFp), a growth fac-
tor that regulates cell proliferation and differentiation. TGFp binds to the TGFf
receptors and initiates a cascade of cellular signaling responses in a Smad-de-
pendent or Smad-independent manner. It is reported that c-Abl takes part in
TGFp induced, Smad-independent pathway. In mesenchymal stem cells, TGF[3
activated Akt and PAK2 though PI3K. While Akt had no effect on the activation
of c-Abl by TGFp, inhibition of PAK2 completely abolished the activation of
c-Abl by TGFB (Wilkes and Leof, 2006). It is proposed that activation of c-Abl
by TGF [ promotes cell proliferation.

c-Abl could also be activated by epidermal growth factor (EGF). EGF binds
to EGF receptors and stimulates the intrinsic protein tyrosine kinase activity of
the receptor to regulate cell proliferation. It was found that the EGF treatment
lead to the binding of Abl SH2 domain to EGF receptor (Zhu ef al., 1993).
Activation of EGF receptors also activate the Src kinase which mediates the
activation of c-Abl (Plattner et al., 1999). However, the consequences of c-Abl’s
activation by EGF are not clear. Another growth factor that has been shown to
activate c-Abl is the platelet-derived growth factor (PDGF). Similar to EGF,
PDGEF activates c-Abl through the receptor mediated activation of Src. c-Src
induces c-Abl activation through the phosphorylation of Y245 and Y412. The
activated c-Abl mediates the elevation of c-Myc expression. The activation of
c-Abl can mediate the chemotaxis toward PDGF (Plattner et al., 1999; Fur-
stoss et al., 2002). In addition, the membrane fraction of c-Abl can be activated
by phospholipase C-yl (PLC-y1), in addition to activation by Src, in response
to PDGF. Activated PDGF receptors phosphorylate PLC-y1, leading to the hy-
drolysis of phosphatidylinositol-4,5-bisphosphate (PIP2) to inositol-1,4,5-tri-
sphophate (IP3) and diacylglycerol (DAG). It has been demonstrated that PIP2
inhibits c-Abl. Hydrolysis of PIP2 by PLC-y1 decreases the level of PIP2 and
leads to activation of c-Abl. It is also shown that c-Abl can bind to PLC-y1 and
phosphorylates it at Y771 and Y 1003. This phosphorylation serves as a negative
feedback which leads to the inactivation of PLC-y1 (Plattner et al., 2003).
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3.4 ACTIVATION BY DNA DAMAGE

Upon DNA damage, cells undergo cell cycle arrest to allow themselves to have
more time to repair the damaged DNA. However, if the damage is overwhelm-
ing, cells will undergo apoptosis to prevent the passing of damaged DNA to the
daughter cells. c-Abl is activated by DNA damage caused by ionizing irradia-
tion (IR), cisplatin, mitomycin C, etoposide, doxorubicin, camptothecin, anti-
metabolite 1-beta-D-arabinofuranosylcytosine, but not by UV radiation (Wang,
2000). Following DNA damage, the PI3K related family members ATM (Atax-
ia Telangiectasia, mutated), ATR (ATM- and Rad3-Related), and DNA-PKcs
(DNA protein kinase catalytic subunit) initiate a cascade of signaling responses
(Shafman et al., 1997). c-Abl has been reported to be involved in the ATM and
DNA-PK initiated signaling pathways. DNA-PKcs is able to phosphorylate and
activate c-Abl, and this activation is defective in DNA-PK deficient cells. In
parallel, phosphorylation of DNA-PKcs is also dependent on c-Abl upon IR.
Thus, DNA-PKcs and c-Abl regulate each other in response to DNA damage
(Kharbanda et al., 1997). In addition, c-Abl binds constitutively to ATM, with
its SH3 domain interacting with the DPAPNPPHFP motif of ATM (Shafman
et al., 1997). Upon IR, c-Abl is phosphorylated at serine 465 by ATM. As the
activation of c-Abl by DNA damage is diminished in ATM deficient cells, this
suggests that ATM activates c-Abl upon DNA damage (Baskaran et al., 1997,
Shafman et al., 1997).

3.5 POTENTIAL SUBSTRATES FOR C-ABL

There are more than 500 putative protein kinases encoded by the human ge-
nome. About 90 of them encode protein tyrosine kinases (Manning et al., 2002),
and in which about 1/3 are nonreceptor tyrosine kinases. c-Abl is one of the
nonreceptor tyrosine kinases. Protein tyrosine kinases are enzymes that cata-
lyze the transfer of the y-phosphoryl group from ATP to tyrosine residues in
the substrates. Substrates for c-Abl include c-Crk (Ren et al., 1994), CrkL, c-
Cbl, Shc, RasGAP (Bose et al., 2006), Shb (Hagerkvist et al., 2007), p73 (Aga-
mi et al., 1999), Rad51 (Yuan et al., 1998a), Abi (Dai and Pendergast, 1995),
RNA polymerase Il (Baskaran et al., 1993), IkappaBalpha (Kawai et al., 2002),
SHPTP1 (Kharbanda et al., 1996), PKCd (Sun et al., 2000b), catalase (Cao et
al., 2003b), glutathione peroxidase 1 (Cao et al., 2003a), phospholipid scram-
blase 1 (PLSCR1) (Sun et al., 2001), Cables (Zukerberg et al., 2000), Dokl
(Woodring et al., 2004), PSTPIP1 (Cong ef al., 2000) and others. In response to
different stimuli, c-Abl phosphorylates various substrates to regulate cell death,
proliferation, differentiation, cell movement, and so on.
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3.6 ABL FUNCTION: CELL BIOLOGY APPROACH
3.6.1 THE ROLE OF C-ABL IN CELL DEATH

Apoptosis or programmed cell death, is an important process in the develop-
ment of multicellular organisms. It involves a series of biochemical events and
helps to eliminate the unwanted cells. Defects in apoptosis may be disastrous.
Excessive apoptosis may lead to organ hypotrophy while insufficient apoptosis
may lead to the accumulation of unwanted or damaged cells, resulting in uncon-
trolled cell proliferation and cancer. Cellular studies demonstrated that c-Abl
is mainly a pro-apoptotic protein. Overexpression of c-Abl results in apoptosis
whereas cells with inactive c-Abl show increased resistance to apoptosis (Yuan
et al., 1997a; Theis and Roemer, 1998).

3.6.2 OVEREXPRESSION INDUCED APOPTOSIS

Induction of apoptosis by c-Abl requires its NLS and can be mediated by
MAPKSs. c-Abl has been shown to regulate stress-activated protein kinases, in-
cluding those activators upstream of p38 and c-Jun N-terminal kinase (JNK).
c-Abl’s effect on JNK has been contradictory. While some studies show that
overexpressed c-Abl does have an effect on JNK, other reports show the op-
posite (Kharbanda et al., 1995). Thus, the involvement of JNK in c-Abl in-
duced apoptosis is still controversial. The activation of p38 and its upstream
activator mitogen-activated protein kinase kinase 6 (MKK6) by overexpressed
c-Abl leads to apoptosis (Cong and Goff, 1999). c-Abl-induced apoptosis can
be blocked by dominant negative MKK6, suggesting that MKK6 works down-
stream of c-Abl in this pathway. However, while it is known that c-Abl medi-
ated p38 activation acts through MKK6, inhibition of p38 fails to block c-Abl
induced apoptosis, suggesting that c-Abl induced apoptosis is independent of
p38 MAPK (Cong and Goff, 1999). One possible way that c-Abl can induce
apoptosis may be through p73, a proapoptotic protein and a p53 homolog. It has
been shown that inhibition of MKK6 and p38 abolished the accumulation of p73
and the threonine phosphorylation of p73 (adjacent to a proline residue) in the
presence of c-Abl overexpression. The presence of p38 can stabilize p73 and
is required for the transcriptional activation of p73 by c-Abl (Sanchez-Prieto
et al., 2002). Whether p38 is involved in apoptosis induced by c-Abl needs
further studies. Unexpectedly, p53 was reported not to play an essential role in
apoptosis induced by c-Abl overexpression as c-Abl can induce apoptosis in p53
deficient cells (Theis and Roemer, 1998).
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3.6.3 GENOTOXIC STRESS INDUCED APOPTOSIS

Cells deficient for c-Abl or expressing the kinase dead c-Abl are reported to re-
sist apoptosis induced by DNA damage reagents. Numerous studies suggest that
c-Abl might regulate DNA damage induced apoptosis through several distinct
mechanisms. These include ATM-p53-p73 pathway, translocation of c-Abl to
the nucleus, and regulation of caspases directly by c-Abl.

ATM can activate both p53 and p73. p53 is a well known tumor suppressor
and p53 loss-of-function is frequently linked to tumorigenesis. p53 has effects
on both apoptosis and cell proliferation. p73 belongs to the p53 family, and
shares almost an identical architecture. The DNA binding domain and trans-
activation domain are basically similar between p53 and p73, and as a result,
p73 can transactivate quite a number of p53 target genes. p73 is a substrate of
c-Abl, and is phosphorylated at Y99 by c-Abl. c-Abl stabilizes p73 in response
to DNA damage and enhances its apoptotic ability. This apoptotic activity is lost
under c-Abl deficient conditions, indicating that p73 induced apoptosis requires
a functional c-Abl protein (Agami et al., 1999; Gong et al., 1999; Yuan et al.,
1999). c-Abl stabilizes p73 through promoting the interaction between Pinl and
p73 (Mantovani ef al., 2004). p38 MAPK is likely to participate in this process
as well. p38 has been demonstrated to be essential for the transcriptional activa-
tion of p73 by c-Abl as overexpressed p38 stabilizes p73 and promotes its bind-
ing to Pinl (Sanchez-Prieto et al., 2002). Binding of Pin1 not only stabilizes p73
but also enhances its transcriptional activity, resulting in the up-regulation of
p73 target genes such as p21 and Bax (Mantovani et al., 2004). The elevation of
Bax may lead to apoptosis. Bax increases the permeability of the mitochondria
membrane, resulting in the release of cytochrome c, activation of caspase 9 and
the downstream caspases, and cell death.

Recently, it has been demonstrated that both Bax as well as Bak can be ac-
tivated by c-Abl through the c-Abl-PKCy-Racl-p38 MAPK pathway (Choi et
al., 2006). It has been demonstrated that IR activated c-Abl is responsible for
the binding, phosphorylation and activation of PKCy (Yuan ef al., 1998b; Choi
et al., 2006), which in turn activates p38 through Racl. The activation of p38 is
associated with the activation of Bak and Bax, leading to the dissipation of mi-
tochondrial membrane potential, release of cytochrome c, and finally cell death
(Choi et al., 2006). Indeed, c-Abl is also localized in the mitochondria and can
directly activate caspases. A portion of c-Abl colocalizes with PKCy and Bcl-xL
at the mitochondria.

c-Abl can also mediate apoptosis in a p73 independent manner, through the
cleavage of PARP in response to DNA damage (Lasfer ef al., 2006). Loss of
mitochondrial transmembrane potential was also demonstrated to be associated
with c-Abl, as c-Abl”- MEFs displayed an attenuated loss of mitochondrial trans-
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membrane potential compared with wild-type MEFs. Treatment with imatinib,
an inhibitor of c-Abl, attenuates ara-C-induced caspase-3 activation. Moreover,
c-Abl also associates with and phosphorylates caspase 9 at Y153, leading to the
activation of caspase 3 and apoptosis under genotoxic stress (Raina et al., 2005).
Furthermore, c-Abl can act downstream of caspases in genotoxic stress and TNF
induced apoptosis, as the caspase inhibitor suppresses c-Abl activation and the
onset of apoptosis (Dan et al., 1999). Caspases cleave c-Abl into fragments
with functional domains. This increases the kinase activity of c-Abl, promoting
apoptosis (Machuy et al., 2004).

c-Abl is also associated with Rad9 and phosphorylates Rad9 at Y28 in re-
sponse to genotoxic stress. This induces the binding of Rad9 and Bcl-xL in a
c-Abl depending manner, leading to apoptosis (Yoshida et al., 2002). c-Abl has
also been shown to interact and phosphorylate Shb. c-Abl augments the apop-
totic activity of Shb to various stress stimuli such as genotoxic stress, oxidative
stress and ER stress (Hagerkvist et al., 2007).

It is proposed that nuclear localization of c-Abl after DNA damage can lead
to apoptosis. The nucleus translocation of c-Abl can be prevented by binding
to 14-3-3 protein. This binding requires the phosphorylation of c-Abl at T735,
which is independent of DNA damage. Binding of 14-3-3 probably masks the
NLS and thus prevents it from importing to the nucleus (Yoshida and Miki,
2005; Yoshida ef al., 2005). Upon DNA damage, activated JNK phosphorylates
14-3-3, leading to the dissociation of 14-3-3 from c-Abl and allowing c-Abl to
transport into the nucleus. In addition, 14-3-3 also mediates the pro-apoptotic
activity of other proteins, such as Bax and Bad, by sequestering them in the cy-
toplasm (Zha et al., 1996; Tsuruta et al., 2004). Activated JNK can phosphory-
late 14-3-3 and release Bax, which then translocates to the mitochondria to in-
duce apoptosis (Tsuruta et al., 2004). Studies on oncoprotein MUCI1, however,
gave rise to inconsistent results. It was found that while MUC] attenuated the
phosphorylation of c-Abl at T735, and blocked the binding of c-Abl to 14-3-3,
it still sequesters c-Abl in the cytoplasm (Raina et al., 2006). More studies are
needed to understand these inconsistent results.

3.6.4 OXIDATIVE STRESS INDUCED CELL DEATH

It has been proposed that the nuclear c-Abl is activated by genotoxic stress,
while the cytosolic fraction responses to oxidative stress. Oxidants can be gen-
erated during normal cellular metabolisms such as oxidative phosphorylation
of the mitochondrial electron transport chain, peroxisomal fatty acid metabo-
lism, macrophage phagocytosis, and inflammation. The reactive oxygen species
(ROS) produced may then lead to cellular damage such as protein oxidation,
membrane lipid peroxidation, and DNA damage. Some of the ROS can react
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with chromatin associated proteins, pyrimidines and purines, leading to base
modification and genomic instability. Oxidative stress has been implicated in
atherosclerosis, tissue damages as a result of ischemia/reperfusion, aging, and
carcinogenesis.

H,O, treatment can induce the binding of cytosolic ¢-Abl and PKC3. This
interaction causes the phosphorylation (at Y512) and activation of PKC3. Ac-
tivated PKC39 is pro-apoptotic. Moreover, PKCS also phosphorylates and acti-
vates c-Abl as a feedback regulation (Sun et al., 2000b). In addition, it has been
shown that ROS induces the translocation of c-Abl to the mitochondria. This
process is dependent on the activation of PKC9, and is associated with ROS
induced loss of mitochondrial membrane potential (Kumar et al., 2001). Mi-
tochondrial cytochrome c is released in response to oxidative stress in a c-Abl
dependent manner (Sun et al., 2000a). Arg is also involved in oxidative stress
induced apoptosis and c-Abl forms heterodimers with Arg in response to ROS
(Cao et al., 2003c).

In addition, c-Abl also interacts with some of the antioxidative enzymes to
regulate apoptosis. c-Abl has been shown to interact with catalase. Catalase has
a crucial role in antioxidant enzymatic activity as it hydrolyzes H,O, to H,O and
O,. c-Abl can phosphorylate catalase at Y231 and Y386 under mild oxidative
stress, but not at high concentration of H O, (Cao et al., 2003b). It was shown
that the activity of catalase can be down-regulated by ubiquitination and finally
degraded by 26S proteosome. Y231 and Y386 phosphorylated by c-Abl and Arg
are required for its degradation. Thus, c-Abl mediate the degradation of catalase
and thus has a pro-apoptotic activity (Cao et al., 2003d).

c-Abl is also associated with glutathione peroxidase 1 and phosphorylates
it at Y96. Glutathione peroxidase converts H O, to the nonreactive H,O and O,
by oxidizing glutathione. It was found that c-Abl and Arg stimulate glutathione
peroxidase activity when cells are exposed to H,O, at a concentration lower than
0.5mM. However, the c-Abl and glutathione peroxidase 1 complex was dis-
rupted when cells are exposed to a high concentration of H O, (= 0.5mM) (Cao
et al., 2003a). While it is surprising to see that c-Abl, which has pro-apoptotic
activity, could bind and activate these antioxidative enzymes to protect the cell
from ROS-induced cell death, it is suggested by Cao et al. (2003a) that there
are dual roles for c-Abl and Arg in response to oxidative stress. c-Abl and Arg
could act as antiapoptotic or antiapoptotic proteins in response to different doses
of H,0,.

3.6.5 OTHERS
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c-Abl can also fulfill its pro-apoptotic role by negatively regulating survival
signals. The transcriptional factor, NFxB, appears to participate in the c-Abl
induced apoptotic pathway. NFxB is believed to be essential for cell survival. It
is mainly controlled by its inhibitor IkB that binds and prevents it from entering
the nucleus. IkBa, a member of the kB family, is a substrate of c-Abl. c-Abl
interacts with and phosphorylates IkBa at Y305, leading to the stabilization of
the protein and the nuclear accumulation of [kBa. The retention of IkBa in the
nucleus abolishes the transcription ability of NFkB for its target genes. As a
consequence, it sensitizes the cell to apoptosis (Kawai et al., 2002). Another sur-
vival pathway that is negatively regulated by c-Abl is the phosphatidylinositol-
3-kinase (PI3K) pathway. PI3K is mainly activated by growth factor receptor
stimulation and transduces survival signals in the cell (Kennedy ez al., 1997).
c-Abl binds to PI3K and causes the phosphorylation of the p85 subunit of PI3K,
inhibiting PI3K. This inhibition may affect the transduction of antiapoptotic sig-
nal to downstream targets in the cell (Yuan ef al., 1997b).

3.6.6 CELL PROLIFERATION

Overexpression of c-Abl inhibits cell growth and causes cell cycle arrest.
This growth suppression requires the kinase activity, nucleus localization
sequences, and the SH2 domain of c-Abl while deficiency of c-Abl disrupts
cell cycle control (Sawyers et al., 1994). c-Abl induced cell cycle arrest re-
quired p53. p53 is a pivotal component of cell response to stress and DNA
damage. p53 inhibits cell proliferation by mediating cell cycle arrest, senes-
cence, or apoptosis. While c-Abl contains a DNA binding domain, it does
not possess transactivation activity and it may cooperate with other tran-
scription factors such as p53 to regulate transcription. c-Abl was found to
bind to the C-terminal domain of p53 and to enhance the transcription of p53
target genes that are involved in cell cycle arrest (Goga et al., 1995; Nie et
al., 2000). c-Abl’s effect on p53-mediated transcription is highly selective.
As c-Abl stabilizes p53 tetrameric conformation, resulting in a more stable
p53-DNA complex (Nie et al., 2000), it assists the binding of p53 to the
promoter of p53 responsive genes containing a “perfect binding sequence”
with all four quarter binding site. As a consequence, p21, which contains
a “perfect binding sequence” for p53, is transcriptionally enhanced by the
more stable p53 tetramer, while Bax, which contains a less perfect p53 bind-
ing sequence, is not (Wei et al., 2005).

The level of p53 can be controlled by its negative regulators and positive
regulators, some of which are also under the regulation of c-Abl. The murine
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double minute (Mdm?2) or Hdm2 in human serves as an important negative
regulator of p53. Mdm?2 acts as an E3 ubiquitin ligase, targeting p53 for deg-
radation through the proteasome. On the contrary, pl14Arf serves as a positive
regulator of p53. p14Arf interacts with Mdm?2 and sequesters Mdm?2 in the nu-
cleus, leading to the inhibition of Mdm?2 nuclear export and a decrease in p53
turnover. It has been found that c-Abl interacts and phosphorylates Mdm?2 or
Hdm?2. Phosphorylation of Hdm2 at Y394 impairs its effect on p53 degradation,
while phosphorylation at Y276 stimulates its interactions with Arf, leading to
the nuclear retention of Hdm2 and thus an increase in p53 levels (Goldberg et
al.,2002; Dias et al., 2006). Thus, c-Abl could up-regulate p21 through stabiliz-
ing p53 (Wei et al., 2005). However, c-Abl mediated growth arrest can also be
independent of p21. c-Abl can down regulate the levels of Cdks in p21 deficient
cells, suggesting that c-Abl mediated growth arrest can be in a p21 independent
manner (Yuan et al., 1996).

There is also some evidence supporting that c-Abl might induce growth ar-
rest through retinoblastoma protein (Rb). Rb plays a crucial role in regulating
cell cycle progression. Rb, in its hypophosphorylated form, binds to E2F and
inhibits the transactivation of E2F target genes that are required for cell cycle
progression. Phosphorylation of Rb results in its release from E2F and allows
the activation of E2F target genes and the entry of cells into S phase. While
some studies have shown that c-Abl has strong cytostatic effects in normal cells,
but not in Rb deficient cells (Wen et al., 1996), other studies using fibroblasts
with dysfunctional p53 or Rb showed that c-Abl could mediate growth arrest
independent of Rb (Goga et al., 1995). This discrepancy cannot be currently
explained. To make the case more complicated, it has been shown that the ac-
tivity of c-Abl is also affected by Rb. A portion of c-Abl binds to Rb in a cell
cycle-dependent manner. Rb can bind to the ATP-binding lobe of c-Abl to in-
hibit the activation of c-Abl. Phosphorylation of Rb releases c-Abl and activates
c-Abl (Welch and Wang, 1993). In addition, another protein that can interact
with and inhibit the activity of c-Abl is the proliferation associated gene, PAG.
PAG encodes a protein with antioxidative properties that is implicated in cel-
lular response to oxidative stress as well as cellular proliferation and differentia-
tion. Overexpression of PAG can inhibit c-Abl’s autophosphorylation and phos-
phorylation of other substrates, as well as rescue the cytostatic effects induced
by c-Abl. It has been suggested that the inhibitory property of PAG on c-Abl is
not due to its antioxidative properties, as the truncation mutant of PAG that lacks
the portion for antioxidative function still retains its c-Abl inhibitory property
(Wen and Van Etten, 1997). Instead, PAG serves as a physiological inhibitor for
c-Abl at least in cell cycle regulation.
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c-Abl also regulates cell cycle progression through the ubiquitin-proteasome
pathway. c-Abl associates and phosphorylates proteosome PSMA (04) subunit
at Y153. As a consequence, proteolysis mediated by proteasome was attenuated.
In addition, this phosphorylation leads to cell cycle regulation. Cell expressing
mutant PSMA at the site of phosphorylation (Y 153F) displays G1/S cycle arrest
and impaired S/G2 progression (Liu et al., 2000).

3.6.7 CYTOSKELETON AND CELL MOVEMENT

c-Abl plays a very important role in the modulation of cytoskeleton organiza-
tion. Cytoskeleton is a network of protein fibers that are responsible for cell
morphology, cell movement, neurite elongation, endocytosis, phagocytosis,
exocytosis, and intracellular trafficking. These processes require the formation
of membrane ruffles, filopodia, lamellipodia, and focal adhesions, which are dy-
namic structures that rely on the ability of the cells to perform actin polymeriza-
tion and depolymerization. c-Abl consists of an actin binding domain. Together
with other associated proteins such as Paxillin, c-Abl could relay the extracel-
lular signals to regulate cytoskeleton reorganization.

Growth factors such as PDGF have been shown to regulate the cytoskeletal
reorganization. Membrane ruffling is observed after PDGF treatment. c-Abl is
greatly accumulated at the membrane ruffles upon PDGF stimulation (Ting et
al., 2001). The number of membrane ruffling is much less in c-Abl deficient
cells, suggesting that c-Abl is required for the reorganization of cytoskeleton af-
ter PDGF treatment (Plattner ef al., 1999). The underlying mechanisms are still
not very clear. It is likely that Abi and PAK?2 are involved as both of them can
interact with c-Abl and are localized in the membrane ruffles induced by PDGF.
It is also known that the interaction of Abi (Abl interacting protein) and PAK2
is required for membrane ruffle formation (Machuy et al., 2007). However, the
role of c-Abl in this pathway still requires further investigation. Lamellipodia,
filopodia and focal adhesions are cytoskeletal structures, which are required for
cell migration. Attachment of cells to fibronectin stimulates Abl activity and
transiently redistributes the nuclear Abl to the cytoplasm and focal adhesions
(Lewis et al., 1996). c-Abl deficient cells display fewer actin microspikes, the
precursors of filopodia, than normal cells when spread on fibronectin coated
surface (Woodring et al., 2002).

The filopodia of the neurite is also affected by c-Abl. The branching of the
cortical embryonic neurons is defected in the absence of c-Abl (Woodring et al.,
2002), and overexpressing c-Abl in primary neurons can increase the length of
the neurite (Zukerberg et al., 2000). One of the mechanisms by which c-Abl pro-
motes filopodia during cell spreading is probably due to the phosphorylation of
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the down-stream of kinase (Dok) family by c-Abl. c-Abl is able to phosphory-
late p62 docking protein (Dok1) at Y361 and Dok-R (Master et al., 2003). Phos-
phorylation of these Dok proteins promotes its association with Nck (Woodring
et al., 2004), which has been shown to trigger actin polymerization (Rivera et
al., 2004). Moreover, the association of Nck with some actin polymerization
proteins, such as N-Wasp (neural Wiskott-Aldrich syndrome protein) (Rivera
et al., 2004), WAVE1 (WASP-family verprolin homologous protein) (Eden et
al., 2002) and PAK (p21-activated kinase) (Zhou et al., 2003), may also medi-
ate this effect. Less filopodia were found in fibroblast lacking c-Abl, Dokl1, or
Nck (Woodring et al., 2004). The WASP and WAVE proteins play an essential
role in connecting the membrane to the cytoskeleton (Takenawa and Suetsugu,
2007). They mediate the upstream signals to the activation of the actin-related
protein-2/3 (ARP2/3) complex, which is essential for the nucleation of actin
polymerization. c-Abl interacts with some of the proteins in the pathways that
regulate cytoskeleton reorganization (Hirao et al., 2006; Stuart et al., 2006).
c-Abl can also be recruited to the WAVE2 macromolecular complex by Abi-1,
where it phosphorylates WAVE2 at Y150, leading to the activation of WAVE2
for actin polymerization (Leng et al., 2005; Hirao et al., 2006; Stuart et al.,
2000). It has also been shown that c-Abl is involved in the Rap1 guanine nucleo-
tide exchange factor (C3G) mediated cytoskeleton rearrangement and filopodia
formation. C3G is localized in the cytoplasm where it interacts with c-Abl and
localizes c-Abl to cytoplasm. Together with the activity of N-WASP, filopodia
formation is promoted (Radha et al., 2007).

c-Abl is able to mediate the activation of mammalian Ena/VASP family pro-
tein, Mena. It has been found that Abi-1 and Abi-2 interact with both c-Abl and
Mena to promote the phosphorylation of Mena by c-Abl at Y296 (Tani et al.,
2003; Hirao et al., 2006). Activated Mena then binds to the barbed end of actin
filaments to promote the elongation of the target filament (Bear et al., 2002).

However, it is interesting to find that c-Abl can also negatively regulate cell
migration, despite the fact that it can promote the formation of cytoskeleton
structure. c-Abl is able to phosphorylate Crk at Y221, disrupting the Crk-CAS
(Crk-associated substrate) complexes (Kain and Klemke, 2001). As the associa-
tion of Crk with CAS induces cell migration (Klemke et al., 1998), inhibition
of Crk-CAS coupling probably leads to prevention of cell migration. Another
proposed mechanism is that c-Abl prolongs the exploratory phase before cell
movement, resulting in slower cell migration (Woodring et al., 2003).

The action of c-Abl on actin cytoskeleton can also be negatively regulated
by actin. c-Abl can promote the formation of the actin cytoskeletal structure,
but the activity of c-Abl can be inhibited by F-actin. c-Abl can bind to F-actin
through its actin binding domain. Mutation of the F-actin binding domain re-
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lieves the inhibition (Woodring et al., 2002). c-Abl can be dephosphorylated
by a process mediated by an actin associated protein PSTPIP1 (proline, serine,
threonine phosphatase interacting protein). PSTPIP1 is a substrate of c-Abl, and
is primarily phosphorylated by c-Abl at Y344 (Cong et al., 2000). On the other
hand, PSTPIP1 is also a substrate of the PEST-type protein tyrosine phosphatas-
es (PTP) (Spencer et al., 1997). Thus, PSTPIP1 is able to associate PEST-type
PTP with c-Abl, leading to the dephosphorylation of c-Abl by PEST-type PTP
(Cong et al., 2000). Indeed cells deficient in PEST-type PTP displays signs of
increased c-Abl activity, increased tyrosine phosphorylation of PSTPIP, as well
defects in motility. Thus, PEST-type PTP may serve as a negative regulator to
mediate the effect of c-Abl on cytoskeletal modulation (Angers-Loustau et al.,
1999).

3.7 ABL FUNCTION: GENETIC APPROACH
3.7.1 GENERAL PHENOTYPES OF C-ABL KNOCKOUT MICE

The expression of c-Abl has been detected throughout mouse embryonic devel-
opment and in all the mouse tissues tested, with higher expression in the thymus
(Muller et al., 1982; Renshaw et al., 1988). In human tissues, higher expres-
sion is observed in the hyaline cartilages, adipocytes, and ciliated epithelium in
adults, while the strongest expression is observed at the sites of endochondral
ossification in fetuses (O’Neill et al., 1997). Two lines of c-Abl knockout mice
has been generated (Schwartzberg et al., 1989; Tybulewicz et al., 1991). One
line, c-Abl?, reported by Tybulewicz ef al. (1991) contains a deletion within the
N-terminal part of the tyrosine kinase domain, resulting in a deletion in the DNA
binding domain and the ATP binding site. No c-Abl or c-Abl kinase activity
could be detected in these mice. The other line, Abl™!, generated by Schwartz-
berg et al. (1991), expresses a C-terminal truncated c-Abl protein with DNA
binding and actin binding domains missing. This truncated c-Abl still has tyro-
sine kinase activity. The phenotypes of these two lines of mice were quite simi-
lar, suggesting that the carboxyl-terminal region is essential for c-Abl’s function
in vivo (Schwartzberg et al., 1991). The homozygous knockout mice showed a
higher rate of perinatal lethality, decreased fertility, runtedness, immunodefi-
ciency, spleen and thymus atrophy, and osteoporosis. The timing of eye opening
was also affected in the homozygous knockout mice that often develop cataracts
or permanent eye damage. Some of the homozygous mutant mice that survived
to 3 or 4 months developed megaesophagus and anal prolapse (Schwartzberg
et al., 1991; Tybulewicz et al., 1991; Li et al., 2000). The hepatocytes of the
knockout mice also displayed fatty vacuoles, and some of these cells showed
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signs of degeneration. To identify which c-Abl transcript and domains are re-
sponsible for the different phenotypes, a few lines of c-Abl transgenic mouse
were generated and mated with homozygous c-Abl knockout mice (Hardin et
al., 1996a). It was found that the presence of either type I or type IV isoform
could rescue the major phenotypes of the c-Abl knockout mice, suggesting that
these two isoforms have redundant functions. Yet the kinase defective c-Abl
transgene could not rescue the defects found in the homozygous knockout mice
(Hardin et al., 1996a). Further studies show that the actin binding domain and
NLS are required to rescue the phenotypes of the knockout mice while the DNA
binding domain is dispensable (Goff S.P., unpublished data, personal commu-
nication).

Mice deficient for both c-Abl and its sole paralog Arg are embryonic le-
thal at 11 dpc. These mice have defects in neurotube closure (Koleske et al.,
1998). Mice deficient for Arg are normal. Massive apoptosis and hemorrhage
were observed in the brains of the double knockout embryos (Koleske et al.,
1998). These data suggest that c-Abl and its paralog Arg are essential for early
embryonic development. More importantly, these results indicate a critical role
for c-Abl and Arg in brain development and neuron survival. Note that Arg is
solely localized in the cytoplasm and its C-terminal region is less conserved
with c-Abl. Therefore, the redundant function between c-Abl and Arg lies in the
cytoplasm.

3.7.2 OSTEOPOROSIS- THE FUNCTION OF C-ABL IN BMP
SIGNALING AND OSTEOBLAST FUNCTION

Bone remodeling is mainly contributed by two types of bone cells, the osteo-
blasts and the osteoclasts. Osteoblasts are responsible for bone formation, and
the increase in bone mass, while osteoclasts are involved in bone resorption.
Osteoporosis occurs if bone resorption is faster than bone formation when os-
teoclasts are overactive, osteoblasts are less active, or there are an insufficient
number of osteoblasts. The c-Abl knockout mice develop an osteoporotic phe-
notype. Their long bones display thinner cortical bone and reduced trabecular
bone volume and reduced bone formation rate. The mineralization of the bone
is also decreased in c-Abl knockout mice (Li et al., 2000). It is mainly due to
the delay of osteoblast maturation rather than osteoclast dysfunction. Altered
bone cell activity and mineral metabolism was observed in some of the pa-
tients who were treated with imatinib, a drug used to treat CML by inhibiting
BCR-ABL activity (Berman et al., 2006). Cell culture study showed that c-Abl
was up regulated during early stages of osteoblast differentiation. Cultured c-
ADbl™” osteoblast showed delayed maturation and decreased mineral deposition.
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Osteoblast maturation or differentiation is stimulated by cytokines and growth
factors, such as bone morphogenetic proteins (BMPs). c-Abl osteoblasts also
have a compromised response to the stimulation of BMP2. These data suggested
that c-Abl is important in osteoblast differentiation and it may participate in
the BMP triggered signaling pathway (Li et al., 2000). It has also been demon-
strated that the defective of differentiation in c-Abl" osteoblast could be cor-
rected by p53 deficiency, in which high bone mass and accelerated osteoblast
differentiation were found, suggesting that p53 is acting downstream of c-Abl
in osteoblast differentiation (Wang et al., 2006). In addition, c-Abl” osteoblast
was hypersensitive to oxidative stress (Li ef al., 2004). Under oxidative stress,
it was found that although the osteoblasts of c-Abl knockout mice displayed
elevated peroxiredoxin I, an antioxidant protein mediated by a basic leucine
zipper transcription factor Nrf2 through PKC9, an increase in the cell death rate
was observed. Thus, with such a hypersensitive nature, the c-Abl”- osteoblast
may experience more damage even under normal oxidative stress leading to cell
death and subsequently reduced number of osteoblasts. c-Abl hence protects the
osteoblasts against oxidative stress. Moreover, oxidative stress has been shown
to inhibit the differentiation of osteoblasts (Mody et al., 2001). It is likely that it
may also contribute to the defects in differentiation observed in c-Abl deficient
osteoblasts.

3.7.3 IMMUNODEFICIENCY-REVEALS THE FUNCTION OF
C-ABL IN THE IMMUNE SYSTEM

c-Abl knockout mice display a variety of immune system defects and they suf-
fer from a wide range of infections. The knockout mice also display spleen ab-
normality and thymus atrophy with deficiency in thymocytes. They show both
T-cell and B-cell lymphopenia (Schwartzberg et al., 1991; Tybulewicz et al.,
1991). Later studies also demonstrated that the c-Abl deficient mice experience
reduction in pre-B cells and pre-T cells in adult spleen, thymus, bone marrow,
and peripheral blood. Furthermore, the bone marrow cells show reduced re-
sponse to interleukin IL-7, and the spleen B-cell show compromised response
to lipopolysaccharide, a mitogen that can stimulate B-cells proliferation and
differentiation. Short-term B-cells lymphopoiesis culture showed a reduction of
pro-B-cells. Long-term lymphoid bone marrow cultures also demonstrated that
B-cell progenitors are more sensitive to apoptotic stimuli, such as glucocorti-
coid and IL-7 deprivation, in the absence of c-Abl.

The decrease in B-cell numbers is probably due to impaired B-cell develop-
ment as well as increased apoptosis of B-cell precursors. Moreover, the Ig heavy
chain rearrangement, V(D)J rearrangement, was also defective in c-Abl knock-
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out B-cell progenitors (Lam et al., 2007). The antigen activated B-cell expansion
and differentiation need to be tightly regulated. Binding of antigen stimulates
the B-cell-antigen receptor, which triggers a cascade of signaling responses to
initiate the proliferation and differentiation of B cells. The membrane-spanning
glycoprotein CD19 has been found to play a key role in this pathway. CD19 acts
as a costimulatory molecule to assist the activation of B-cell by B-cell-antigen
receptor. It was found that CD19 contains a c-Abl phosphorylation site and two
potential c-Abl SH2 binding sites, and that it serves as a substrate and binding
partner for c-Abl. The amount of c-Abl is increased upon B-cell-antigen recep-
tor signaling. The B cells isolated from c-Abl knockout mice are hyporesponsive
to the proliferative signal triggered by the B-cell-antigen receptor, probably due
to the insufficient activation of CD19 as a result of c-Abl deficiency. Thus, c-
Abl may regulate the proliferation of B cells through CD19 upon B-cell-antigen
receptor activation (Zipfel et al., 2000). On the other hand, B-cell Fc receptors
transmit inhibitory signals to regulate the antigen-driven activation and prolif-
eration of lymphocytes, so as to prevent the disastrous effects of antibody over-
production. When the antibody level in an organism reaches a certain level in
response to immune stimulation, it forms an immune complex with the antigen.
These immune complexes then bind to the Fe receptor to result in either inhibi-
tion of the B-cell-antigen receptor triggered signaling pathway, when coligated
to the B-cell-antigen receptor, or to trigger apoptosis, when the aggregation is
independent of the B-cell-antigen receptor (Pearse et al., 1999). It was found
that the Fc receptor can trigger apoptosis in a c-Abl dependent manner that is
independent of the B-cell-antigen receptor (Tzeng et al., 2005).

The peripheral blood of c-Abl deficient mice has reduced response to con-
canavalin A, a T-cell mitogen that can induce cell division and T-cell function
(Hardin ef al., 1995; Dorsch and Goff, 1996; Hardin et al., 1996b). More inter-
estingly, it has been reported that the Abl kinase participates in T-cell signal-
ing, and mediates T-cell activation possibly by phosphorylating ZAP70 and the
transmembrane adaptor linker for the activation of T-cell (LAT). Abl kinase also
plays a role in T-cell receptor signaling pathway in IL-2 production and T-cell
proliferation (Zipfel et al., 2004). In addition, c-Abl can also activate T cells by
stabilizing c-Jun. It has been reported that c-Abl binds to and phosphorylates c-
Jun at the tyrosine residue within the PPXY motif. This phosphorylation blocks
the ubiquitination of c-Jun by Itch, an E3 ubiquitin ligase, thus stabilizing c-Jun.
In c-Abl deficient T cells, c-Jun degradation is accelerated, leading to the sup-
pression of T-cell proliferation (Gao et al., 2006).

3.8 ABL FUNCTION: CML STUDIES
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Uncontrolled activation of c-Abl can cause deleterious effects. The fusion pro-
tein BCR-ABL is an oncoprotein. Expression of BCR-ABL is found in 95 % of
the CML patients, and in 5-10 % of the acute lymphoblastic leukemia patients.
CML is a clonal myeloproliferative disease, which is originated from an abnor-
mal pluripotent bone marrow stem cell. Disease progression in CML usually
occurs through three phases, a chronic, an accelerated, and a blast phase. In
BCR-ABL, much of the N-terminal Cap of c-Abl has been deleted during the
fusion. As mentioned earlier, the Cap helps to keep c-Abl in an inactive con-
formation. Loss of the Cap may weaken the inhibitory effect of the SH3-SH2
domains on the kinase domain. BCR is a serine/tyrosine kinase with multiple
domains, including a coiled-coil oligomerization domain, a GTPase exchange
factor domain, and a RacGAP domain. The coiled-coil domain of the BCR leads
to the oligomerization of the protein, facilitating the transphosphorylation of
Y412 and enhancing the activation of the ABL kinase (Harrison, 2003). BCR-
ABL is hence constitutively active. While c-Abl is localized in various subcellu-
lar compartments, BCR-ABL is localized exclusively in the cytoplasm (Dierov
et al., 2004).

The mechanisms by which BCR-ABL causes CML include promoting cell
proliferation, preventing apoptosis, and altering cell adhesion. BCR-ABL acti-
vates multiple signaling pathways to fulfill these functions, in which the Ras-
MAPK pathway and PI3K pathway are the prominent ones. Auto-phosphoryla-
tion of BCR at Y177 recruits the adaptor proteins Grb2 and Gab2, resulting in
the activation of Ras-MAPK and PI3K pathways (Million and Van Etten, 2000;
He et al., 2002). Activation of Ras-MAPK has been implicated in the down-
regulation of the pro-apoptotic factor Bim and the activation of the antiapop-
totic factor Mcl-1 in BCR-ABL positive CML cells (Aichberger et al., 2005a;
Aichberger et al., 2005b). Suppression of Ras and MAPK leads to the attenua-
tion of BCR-ABL mediated cell transformation (Peters et al., 2001). Activation
of PI3K-Akt-mTor pathway by BCR-ABL in CML cells is important for cell
survival, cell cycle progression and cell transformation (Skorski et al., 1997,
Mayerhofer et al., 2005). BCR-ABL also promotes leukemogensis through the
activation of GTPase Rapl, phosphorylation of Rb and enhanced activity of
Stat5. These signaling events lead to the up regulation of Id1, PIM1/2, and Bcl-
xL for invasion and survival (Gesbert and Griffin, 2000; Cho et al., 2005; Adam
et al., 2006; Nieborowska-Skorska et al., 2006; Nagano et al., 2000).

Cytoskeleton remodeling is a fundamental process that regulates cell shape,
cell adhesion and motility. Deregulation of this process is often associated with
cellular transformation and tumorigenesis (Rao and Li, 2004). BCR-ABL con-
sists of an actin binding domain, which enables it to interact with actin filaments
and associate with cytoskeleton remodeling proteins. BCR-ABL positive CML
cells exhibit abnormal cytoskeletal functions, including increased motility and
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altered adhesion. The underlying mechanism by which BCR-ABL leads to these
abnormalities is not very clear. It is proposed that abnormal regulation of Abil/
WAVE2, CRKL, and Rac by BCR-ABL may contribute to the altered cytoskel-
etal organization (Hemmeryckx et al., 2001; Sini et al., 2004; Li et al., 2007).

Conventionally, busulfan, hydroxyurea, radiation, bone marrow transplan-
tation, arsenic, IFN-alpha, and cytarabine are used for treatment of CML. Al-
though these therapies could delay the disease progression, the results are not
as satisfactory as the drug imatinib, an inhibitor for BCR-ABL. Imatinib is a
2-phenylaminopyrimidine derivative with a higher affinity to Abl than other
kinases. It binds to the kinase domain of BCR-ABL, through competitive in-
hibition at the ATP-binding site, and inhibits the tyrosine phosphorylation of
BCR-ABL substrates. Delayed disease progression is observed in CML patients
treated with imatinib and it also prolongs the overall survival of CML patients.
In early chronic phase CML patients, imatinib achieved 95 % complete hema-
tological response rate. 76 % of the patients achieved a complete cytogenetic
response rate and 97 % of the patients survived without progressing to the ac-
celerated or blast phase at 19 months (Baccarani et al., 2006).

Besides, its inhibitory effect on the oncogenic protein BCR-ABL, imatinib
can also inactivate c-Abl, PDGFR, c-Kit, Arg, and probably other unknown tar-
gets which play important roles in cellular functions (Buchdunger et al., 1996;
Heinrich et al., 2000; Okuda et al., 2001). These nonspecific targets of imatinib
may cause adverse effects on patients. Imatinib had been administrated to rats,
dogs, and monkeys to study its toxicity. Hematological problems were observed
in rats, dogs, and monkeys. Rats and dogs also developed lymphoid atrophy
and lymphoid depletion as a result of imatinib administration, suggesting that
their immune system may be affected. Renal toxicity was also encountered by
rats and monkeys, while dogs suffered from hepatic toxicity. Decreased sper-
matogenesis and enlarged hemorrhagic ovaries were also noted. Imatinib also
showed teratogenic effect in pregnant rats, with increased skeletal malforma-
tions and anomalies, suggesting that imatinib affect the development of the rat
particularly in the skeletal formation. Some of these defects are also observed
in the c-Abl deficient mice, such as immune system problems, reproductive de-
fects, skeletal abnormalities and other developmental problems (Schwartzberg
et al., 1991; Tybulewicz et al., 1991; Li et al., 2000). This suggests that the in-
hibitory effect on c-Abl by imatinib may contribute at least partially (if not all)
to these side effects (Cohen et al., 2002).

Clinically, the common side effects of imatinib were noted in humans in-
cluding nausea, vomiting, edema, dyspnea, diarrhea, elevated liver enzymes,
muscle cramps, musculoskeletal pain, rash and other skin problems, abdominal
pain, fatigue, joint pain, headache, neutropenia, thrombocytopenia, and anemia
(Cohen et al., 2002; Druker et al., 2006). Recently, adverse effects of imatinib
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were also observed in bone and heart (Berman ez al., 2006; Kerkela et al., 2006).
Serum levels of osteocalcin, a marker of bone formation, was low in patients
with either CML or gastrointestinal stromal tumors who were receiving ima-
tinib, suggesting that the drug may affect bone-cell activity and inhibit bone re-
modeling. Imatinib also leads to hypophosphatemia in a portion of the patients.
The bone deficits observed in patients treated with imatinib was probably due to
the inhibitory effect of imatinib in c-Abl, as c-Abl is important for skeletal de-
velopment in mouse (Li et al., 2000; Berman et al., 2006). The inhibitory effect
of imatinib on PDGFR may also contribute to this side effect, as PDGFR has
been claimed to play a role in skeletal development (Berman et al., 2006). The
cardiotoxicity of imatinib has been revealed recently. During the clinical trails,
although the cardiotoxicity was not directly examined, it has been observed that
some of the patients suffer from edema (~65 %) and dyspnea (~15 %), which are
signs of heart failure (Cohen et al., 2002). Druker et al. (2006) also reported a
case of congestive heart failure in their five-year follow up study that is related
to imatinib. Kerkela et al. (2006) reported 10 patients who have developed ad-
vanced heart failure in receiving imatinib (Druker et al., 2006). These patients
suffered from 50 % decrease in the pumping capacity of the heart due to left
ventricular dysfunction. Mice treated with imatinib also developed left ventricu-
lar contractile dysfunction. In both human and mice administrated with ima-
tinib, the cardiomyocytes showed signs of toxic myopathy, including mitochon-
drial abnormalities and accumulation of membrane whorls in the sarcoplasmic
reticulum. In cultured cardiomyocytes, imatinib activates the stress response in
ER through JNK. It was found that the mitochondrial membrane potential was
collapsed and cytochrome ¢ was released into cytosol, depleting the cell of ATP,
and causing cell death. The cardiotoxicity effect of imatinib is likely to be due
to the inactivation of cellular c-Abl as introduction of an imatinib resistant c-Abl
mutant prevented imatinib induced cell death (Kerkela et al., 2000).

Although imatinib has been proven as an effective therapy for CML, clinical
resistance has been observed while treating CML patients with imatinib. The
most common reason of acquired imatinib resistance is the reactivation of the
BCR-ABL activity. This may be achieved by BCR-ABL gene amplification and
the development of point mutations on BCR-ABL, leading to the loss of affinity
for imatinib. The incidence of BCR-ABL mutation is about 10 % within 4 years
of imatinib treatment, and more than 40 % with more than 4 years of drug treat-
ment (Branford et al., 2003). It is also proposed that imatinib potentially inhibits
the production of differentiated leukemic cells, but does not deplete leukemic
stem cells (Michor et al., 2005; Brendel et al., 2007), leading to the relapse of
the disease after termination of imatinib treatment. Moreover, the survived leu-
kemic stem cells may accumulate mutations during imatinib therapy, leading to
imatinib resistance and disease progression.
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New therapies are needed for patients who develop imatinib-resistance. Firstly,
increase in the dosage of imatinib may help to overcome imatinib resistance
due to BCR-ABL gene amplification and mutations in the BCR-ABL kinase
domain, which lead to inefficient binding of imatinib. This also overcomes drug
resistance due to up-regulation of a-acid glycoprotein, which binds imatinib,
and P-glycoprotein, which causes the efflux of imatinib from the cell. The use of
greater potency inhibitors, such as BMS354825, AMN107, and INNO406, may
also help in the treatment. Secondly, a combination of imatinib therapy with
conventional therapy can be used. It has been found to be more effective when
imatinib was co-administered with IFN-alpha, cytarabine, or arsenic trioxide
(Wong and Witte, 2004). Thirdly, the use of alternative BCR-ABL inhibitors,
such as PD180970, PD173955, ON012380, AMN107, BMS344825, PD166326,
AP23464, SK1606, INNO406, may help to battle the imatinib-sensitive-mutant
BCR-ABL. Fourthly, the downstream signaling molecules of BCR-ABL, for
example, Ras, PI3K, and Stat5 pathways can also be targeted to diminish BCR-
ABL signaling (Martinelli et al., 2005).

CML patients treated with imatinib are also more susceptible to Varicel-
la-Zoster virus infections, an infection that normally happens in immunosup-
pressed patients, possibly due to the decline of CD4 positive T-cells (Mattiuzzi
et al., 2003). This corresponds to lymphoid atrophy and lymphoid depletion in
rats and dogs which are treated with imatinib (Cohen et al., 2002). The cardio-
toxicity that has been observed in both patients and mice treated with imatinib is
speculated to be due to the inactivation of cellular c-Abl (Kerkela ef al., 2006).
While it is surprising that heart related problems have not been reported in the c-
Abl knockout mice, this may be due to the fact that the hearts of c-Abl knockout
mice have not received enough detailed study.

3.9 CONCLUSION

To date, the results on c-Abl’s role in cell death are inconsistent and controversial.
On one hand, the biochemical studies demonstrated that the overexpression of c-
Abl causes apoptosis, and that DNA damage induced apoptosis is compromised in
MEFs deficient for c-Abl, suggesting a pro-apoptotic role for c-Abl. On the other
hand, neuronal cells deficient for c-Abl and Arg show massive apoptosis during
early development. MEFs deficient in c-Abl and Arg show increased cell death in
response to oxidative stress, and osteoblasts deficient in c-Abl also show hyper-
sensitivity to oxidative stress. Similarly, pre-B and pro-B cells isolated form c-
Abl knockout mice are also hypersensitive to IL-7 deprivation induced apoptosis.
These results, together with the fact that BCR-ABL is highly antiapoptotic, sup-
port a pro-survival role for c-Abl under most of the conditions. This contradicts
with studies showing that c-Abl regulates proteins, e.g. caspases that are directly
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involved in apoptosis. It is possible that c-Abl’s role in cell death can be cell type
specific and stimuli specific. For example, DNA damage mainly activates nucle-
ar c-Abl, and overexpression of c-Abl leads to the accumulation of c-Abl in the
nucleus, resulting in apoptosis. On the contrary, activation of cytoplasmic c-Abl,
such as BCR-ABL, might help the cell to survive against stress.

A role for c-Abl in proliferation has always been an attractive concept since
c-Abl is a proto-oncogene. Activated Abl kinases, such as BCR-ABL and v-Abl,
are capable of promoting cell proliferation and transformation of cells. How-
ever, overexpression of c-Abl was found to repress cell growth and cells are ar-
rested at G1/GO phase. This requires that c-Abl could enter the nucleus. In con-
sistent with this, several studies show that c-Abl deficient MEFs show defects
in cell cycle checkpoint in response to double stranded DNA breaks. Another
possibility is that c-Abl plays an important role in stem cell renewal. BCR-ABL
can transform myeloid stem cells. In the absence of c-Abl, osteoblasts, pre-B
and pro-B cell numbers are reduced.

Although many c-Abl interacting proteins as well as substrates have been
identified, most of them have not been confirmed in vivo. Correlation of c-Abl
to these interacting partners or putative substrates in terms of cellular functions
is lacking. Moreover, no efforts have been made on comparing the phenotypes
of c-Abl knockout mice with those of the mice deficient for the putative sub-
strates or interacting proteins. Nevertheless, various studies suggest that c-Abl
plays an important role in DNA damage response, as well as in receptor me-
diated signaling pathways including, TGF, BMP, PDGF and TCR. In most of
the cases, c-Abl appears to act on the receptors or signaling molecules directly
downstream of the receptors (Figure 3.1). This function might be carried out by
the membrane attached type IV c-Abl that is attached to the plasma membrane
by myristoylation. However the molecular mechanisms by which c-Abl regu-
lates these signaling pathways are not clear.
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FIGURE 3.1 Participation of c-Abl in T cell receptor, receptor tyrosine kinase, and BMP/
TGFp signaling.

While the cytoplasmic c-Abl may regulate signaling pathways mediated by
the receptors, nuclear c-Abl appears to affect the signaling pathway triggered
by DNA damage, especially double stranded DNA breaks (Figure 3.2). Around
100 proteins are assembled at DSBs, forming a DNA repair center and a signal-
ing center. ATM is among the earliest signaling molecules that are activated
by DSBs. It then interacts with, phosphorylates, and activates c-Abl. Further
downstream of the signaling pathway are some of c-Abl substrates that are criti-
cal in DNA damage induced cell cycle checkpoint control, apoptosis, and DNA
repair. One of these proteins is p73, which is stabilized by activated c-Abl and
promotes apoptosis. Another protein is Arf, which interacts with Mdm?2 to regu-
late the protein stability of p53. Without c-Abl, DNA damage induced p53 ac-
cumulation is compromised. This might directly affect cell cycle progression
and apoptosis. Finally, the protein Rad51 can also be phoshorylated by c-Abl to
facilitate Rad51 mediated DNA repair.
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FIGURE 3.2 Participation of c-Abl in cell response to DNA damage.

3.10 FUTURE PERSPECTIVES

The problem facing the c-Abl research community is a lack of agreement be-
tween the in vitro studies and the in vivo studies. While great efforts have been
made on studying c-Abl’s role in the genotoxic/oxidative stress response, there
has been no in vivo evidence to back these in vitro results. This is partially be-
cause c-Abl knockout mice are hard to get, due to perinatal lethality. Another
problem is that it is difficult to find a common ground for c-Abl and BCR-
ABL. Overexpression of c-Abl did not reproduce the effects of expression of
BCR-ABL, and BCR-ABL’s expression did not reproduce phenotypes that are
opposite of c-Abl deficiency. This could be due to the complexity of c-Abl ac-
tivation and localization, and the fact that differentially localized c-Abl might
have distinct functions. However mouse genetic studies and CML patient stud-
ies have revealed that c-Abl deficiency and inhibition of c-Abl/BCR-ABL do
have something in common. These include alterations in bone remodeling, im-
mune function, and heart function. Future research should be directed at using
these common features to dissect the signaling pathways that are affected by
c-Abl deficiency or inhibition, and to integrate the biochemical studies with the
in vivo studies to understand the true function of c-Abl.
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4.1 INTRODUCTION

The molecular nature of reproductive isolation (RI) is classically studied in
hybrids of Drosophila species. Trying to understand the causes hybrid steril-
ity and/or inviability, researchers have evidenced specific molecular incompat-
ibilities between genes that avoid reproduction with fertile offspring between
hybrids of different fly species. The present paper presents a new model on
the origin and evolution of RI based on the evolution of Dobzhansky-Muller
heteromers. It is suggested that RI is achieved when alleles from genes form-
ing heteromeric protein complexes, mainly those acting during embryogenesis
or gametogenesis, accumulate mutations in such a way that some heteromeric
proteins become unable to interact with others in the multimeric complex. The
failure in the production of a functional heteromer interrupts the developmental
process and produces inviable or sterile offspring, even inside sexual-reproduc-
ing biological species. This is one of the most remarkable derivations of the
Dobzhansky-Muller allele evolution model presented here: RI is common even
inside populational interbreeding groups and so its molecular nature is suggest-
ed to be studied, from now on, also inside these groups. However, evidences of
intrapopulation RI are today scarce since it seems that no one has suggested this
hypothesis earlier and it is so that the data available are not formatted for the
ones considering it. Even though, humans living in a monogamous society have
shown to be a good source of data for the study of intrapopulation RI. Repro-
ductive medicine data about a so-called “impaired fecundity” fertility problem
in humans has shown to be a strong example of the theory here presented. At
last, the evolution of heteromeric Dobzhansky-Muller-like allele incompatibili-
ties may substance a gradual theory of speciation and provides a glimpse about
the molecular basis of mosaic evolution, outbreeding depression and sympatric
speciation.

4.1.1 INFERTILITY AND IMPAIRED FECUNDITY

In humans, a status of infertility is frequently characterized as a failure to achieve
pregnancy after 12 months or more of frequent and unprotected sexual inter-
course (CDC, 2005; Jose-Miller et al., 2007). According to the American Acad-
emy of Family Physicians, 10-15 % of couples in the United States are infertile
(AAFP, 2007). Consequently, after this unsuccessful reproductive year, physi-
cians diagnose the couple as infertile and suggest an evaluation of male and/or
female fertility in order to verify the specific causes of the problem. In the last
years, infertility has been extensively studied and many factors bringing to male
or female genetic infertility have been discovered. Studying spermatogenesis in
knockout mice, researchers have identified more than 300 genes necessary to
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the normal production of spermatozoids (Miki et al., 2004; Kumar, 2005; Kuo
et al.,2005; Escalier, 2006). Malfunction of these genes may cause azoospermia
or oligospermia in men. Moreover, deletions in three different spermatogenesis
loci in the Y chromosome—known as “azoospermia factors”: AZFa, b, and c—
cause severe testiculopathy, producing male infertility (Najmabadi et al., 1996;
Martinez et al., 2000; Maurer and Simoni, 2000; Foresta et a/., 2001). Consider-
ing women, infertility causes are mainly related to obstructions in the fallopian
tubes (Palagiano, 2005), endometriosis (Honore, 1997; Alpay et al., 2006) or
ovarian dysfunction (Hull et al., 1985; Jose-Miller et al., 2007). Moreover, gene
knockout studies in mice have also identified about 80 genes related to female
fertility. Alterations in these genes may influence many important processes,
such like ovarian function, oocyte fertilization, embryonic development, im-
plantation, and difficulties to delivery (Naz and Rajesh, 2005). Although dys-
functions in parents’ genes is clearly relevant when considering infertility, the
present work focus in the molecular aspects of a couple being able or not to pro-
duce babies due to a molecular (in)compatibility among parents. It also tries to
generalize the observations when considering other sexual-reproducing species.

A couple is considered fecund when both the woman and her husband (or
cohabiting partner) have no known barrier to having a child (CDC, 2005). It is
interesting to realize that many of these fecund couples may be diagnosed as
infertile, characterizing a fertility problem known as impaired fecundity (IF)
(Chandra and Stephen, 1998). An analysis of the US women population in 2002
have identified IF in 12 % of them (~7.3 million women according to CDC
(2005). Another interesting data reveals that IF levels are higher among mar-
ried women, representing about 15 % of all married ones (~4.3 million women)
(CDC, 2005), suggesting incompatibility between partners to achieve pregnan-
cy. The precise causes of IF are unknown and they are frequently though to be
a result of some woman specific physical barrier to getting pregnant or carry
a baby to term (CDC, 2005). But, an alternative hypothetical explanation that
takes on account of the molecular (in)compatibility among partners may also be
proposed to explain a number of IF cases.

4.2 THE HYPOTHESIS

The present work aims to propose a gradualistic evolutionary hypothesis to ex-
plain, at least in part, the partner incompatibility that characterizes IF, suggest-
ing a model to describe how reproductive isolation (RI) may be originated mo-
lecularly inside a population of sexual-reproducing organisms. So, the problem
stressed here is: which genomic modifications may turn two specific individu-
als within the same population molecularly incompatible in a way to avoid the



98 Genomics and Proteomics: Principles, Technologies and Applications

production of fertile offspring by them? Can these levels of RI (evidenced by
the existence of IF) rise in the population? Is there any chance that this growing
in RI levels may turn a great part of population incompatible? Can these levels
grow enough to achieve complete RI and, therefore, speciation? Basically, the
theory claims that RI is a common feature inside biological populations and
some degree of isolation resulting from molecular incompatibilities does exist
in any population.

In fact, evolving sexual-reproducing species must change their genomic
content in a coordinated fashion to achieve molecular compatibility. An in-
dividual from a sexual-reproducing species that has been target of a massive
modification in its genome presents a small chance to be molecular compatible
with other individuals in the same population and probably it will not be able to
reproduce. However, small random mutations such as nucleotide base changes
are always happening in the genome of organisms and just the individuals pre-
senting compatible mutations (when compared with others organisms inside the
same population) will be able to reproduce with fertile offspring. But which
kind of mutations may frequently turn individuals molecularly incompatible?

Once random mutations take place in genes whose proteins act as heterodi-
mers, they may produce incompatible versions of one and another protein mol-
ecules that interact to form these heterodimers. Thus, two individuals presenting
3D incompatible isoforms of protein molecules in certain heteromers may not
be able to produce either viable or fertile offspring. The interaction failure to
produce a functional heteromer may not allow embryogenesis or sexual-gonad
development processes to occur. Hence, it is not every male-female couple in
some sexual-reproducing dioecious species that will be able to reproduce with
fertile offspring. If this hypothesis is true, then a number of human couples
would be diagnosed as IF; and they are.

Independently, Dobzhansky (1937) and Muller (1940) have proposed a
similar model for the evolution of incompatibilities to explain RI among dif-
ferent species. Although this model was used as basis for the present work, it is
here suggested specific molecular mechanisms to achieve RI. Another differ-
ence between the present model and the classical one is: here, it is suggested
that some RI does exist inside biological species, avoiding the production of
fertile offspring by a pair of specific and molecular incompatible individuals.
Finally, a generalization is made from heterodimers to heteromers. Therefore,
this hypothesis suggests that IF is not necessarily a problem in the woman re-
productive apparatus, but it may be caused by evolutionary consequences of
DNA mutations into the genome of a constant evolving biological species; in
case, ourselves. Homo sapiens seems to be the best model organism to study the
origins of postzygotic RI, since reproductive medicine data is reasonably well-
described and abundant. Direct consequences on the present theory will also
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bring light into processes involved in speciation, mosaic evolution, outbreed-
ing depression and even the Dobzhansky-Mayr’s biological concept of species.
However, before going deep into this hypothesis, it is necessary to understand
the current status on the study of RI in natural species.

4.2.1 CURRENT STATUS ON THE STUDY OF MOLECULAR
MECHANISMS OF REPRODUCTIVE ISOLATION

The molecular basis of RI is barely known, although biologists have been think-
ing about it since a very long time. The effective understanding of RI process
is direct related to the concept of biological species since most of species’ con-
cepts used today still define species in regard of the capability to produce fertile
offspring indefinitely (Dobzhansky, 1937; May, 1963; Coyne and Orr, 2004; de
Queiroz, 2005). Once the paradigmatic belief consider that RI is only achieved
when species are already completely separated, contemporary researches in the
field are always trying to explain the molecular causes of inviability and/or ste-
rility in hybrids of Drosophila species (Coyne, 1986; Coyne and Charlesworth,
1986; Coyne, 1989; Coyne and Charlesworth, 1989; Coyne et al., 1991; Coyne
and Berry, 1994; Coyne, 1996; Coyne et al., 1998; Coyne et al., 2002; Coyne et
al., 2005; Llopart et al., 2005; Moehring et al., 2006).

As already mentioned, the molecular basis of postzygotic RI was firstly
proposed by Theodosius Dobzhansky, suggesting that hybrid failure could be
explained when considering a pair of genes whose proteins interact with each
other (forming a heterodimer) evolving along different paths after some popu-
lation split (Dobzhansky, 1937). Independently, the Nobel laureate Hermann
Joseph Muller proposes a very similar thesis (Muller, 1940) and the so-called
Dobzhansky-Muller (DM) model gained wide acceptance in the following years
(Pennisi, 2006). This model stated that RI would be achieved by the result of
incompatibilities between gene variants arising independently in populations,
and these variants would be deleterious in different genetic backgrounds, bring-
ing to inviability or sterility of hybrids. Since then, many studies have identified
genes that might be responsible for RI in species hybrids. At least three putative
pars of DM genes have shown evidences to be related to the process of RI in
Drosophila species (Orr, 2005). Firstly, a presumed transcription factor named
Odysseus-Homeobox gene (OdsH) was found after mapping a locus causing
sterility of D. simulans-D. mauritiana hybrid males (Coyne and Charlesworth,
1986; Perez et al., 1993). After a while, a gene responsible to regulate the traf-
ficking of RNA and proteins in and out of nucleus, Nucleoporin96 (Nup96),
have been revealed to cause inviability of D. melanogaster-D. simulans hybrids
(Presgraves et al., 2003). These genes were supposed to interact with genes
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from other unknown loci to produce sterility in Drosophila hybrids, in agree-
ment with DM model (Orr, 2005). However, the best known example discov-
ered for DM model of speciation was described last year (Brideau et al., 2006).
Hybrid male rescue (Hmr) gene was known to encode a transcriptional factor
putative related to the MYB family and it was initially found to cause inviabil-
ity in hybrids of Drosophila species (Hutter et al., 1990; Barbash et al., 2003).
In a wonderful work published by Brideau et al. (2006) have shown, for the
first time, the precise molecular interactions between heterodimers formed by
Hmpr and Lhr (Lethal hybrid rescue) gene alleles leading to RI in species from
the Drosophila genus. All genes related to RI already identified have shown to
evolve rapidly, probably driven by positive Darwinian selection (Presgraves et
al., 2003; Orr, 2005; Brideau et al., 2006).

Therefore, modern researches on Rl are done in order to explain why species
hybrids are inviable or infertile (Charlesworth et al., 1993; Orr, 1995; Orr et al.,
1997; Orr, 1999; Orr and Irving, 2000; Orr and Irving, 2001; Presgraves et al.,
2003; Masly et al., 2006). The present hypothesis, once taken seriously, opens a
new scientific research program (Lakatos, 1977) in the sense that it suggests the
study of RI shall be done inside biological populations. So, scientists trying to
discover why some fecund couples are infertile will be able to identify the series
of small steps producing molecular incompatibilities that will cause failure in
reproduction with fertile offspring. Moreover, the study of these small intra-
population molecular incompatibilities may help to understand how speciation
(both sympatric and allopatric) may arise in biological populations by gradual
modification processes.

Both Dobzhansky and Muller have published their models before the mo-
lecular nature of genes have been effectively discovered by Watson and Crick
(1953). Therefore, the present model tries to bring DM model into a molecular
evolutionary perspective in the light of current genomic research. In a very in-
fluential paper in the modern RI field, Coyne and Orr have suggested that ‘Curi-
ously, there have been few theoretical studies of the Dobzhansky-Muller model’
(Coyne and Orr, 1998). The present work may be seen as an initial tentative to
fill this theoretical gap.

4.3 EMBRYOGENESIS AND IMPAIRED FECUNDITY

In order to explain inviability cases characterizing IF, we shall suppose the ac-
tion of many heteromeric DM genes during embryogenesis. However, the study
of molecular mechanisms underlying the gene interaction networks during em-
bryo development is still incipient. In the last years, molecular developmental



Molecular Nature of Post-zygotic Reproductive Isolation 101

mechanisms have been extensively studied in the model organism Caenorhab-
ditis elegans (Chen and Meister, 2005; Gunsalus et al., 2005; Ge et al., 2006;
Updike and Mango, 2006). Although C. elegans seems to be the most used or-
ganism for developmental studies in the molecular level, some molecular de-
velopmental processes had been also studied in many other organisms (Zwijsen
et al., 2001; Ang and Constam, 2004), including humans (Breitwieser et al.,
1996; Vortkamp, 2001; McCarthy and Argraves, 2003; Olson, 2006). Therefore,
although it is still not possible to define precise candidate genes (producing
a database of genes for RI) on which proteins may fail to interact producing
inviable offspring and find single nucleotide polymorphisms (SNPs) in these
genes, it is clear that the precise interaction of many proteins is essential to de-
velopment. Once human gene networks acting in embryogenesis will be better
known, precise genotyping experiments will be able to be performed in order to
verify precisely which alleles from an infertile couple are, in fact, incompatible.
Further yeast two-hybrid experiments as well as other proteomic techniques to
verify protein interactions shall be performed to determine how the precise in-
teractions between alleles of DM protein-coding genes have been affected by
specific DNA mutations. Moreover, even if this chapter emphasizes the causes
of inviability characterizing IF problems in humans, it is clear that the fail on
the interaction of DM heteromers working to promote sexual maturation is also
involved in RI. This is why some hybrids (and any individual inside a given
population) may be viable, even if not fertile. Thus, the present theory may also
help to explain the molecular causes of some infertility cases and dysfunctions
in heteromers may cause a number of well-known phenotypes observed in in-
fertile individuals.

4.4 EVOLUTIONARY ORIGIN OF INCOMPATIBILITIES

Two models for the origin of molecular incompatibility on DM gene alleles
are presented here: a sympatric (Figure 4.1a) and an allopatric model (Figure
4.1b). These figures show how incompatible alleles may appear gradually in
populations and produce a complex pattern of allelic compatibility (Figure 4.2).
Both models in Figure 4.1 consider biological populations evolving along time
and accumulating mutations in heteromers that will turn some DM gene alleles
incompatible. The origin of allele incompatibility inside a sympatric population
may be explained using combined effects of well-known genetic mechanisms,
such as inbreeding and genetic drift. Instead of considering only two incompat-
ible DM gene alleles per locus, it is suggested a more likely and intricate pos-
sibility of allele combination (Figure 4.2) in order to promote a network of allele
compatibility and allow new alleles originated by mutations to interact with old
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wild ones. The dynamic of new allele formation in heteromers and the risen of
incompatibilities is clearly disposed in Figure 4.1, evidencing the coevolution of
DM gene alleles. It is precisely the coevolution of new DM gene alleles origi-
nated by random DNA mutations that will guide us into the understanding of the
origin of RI at the first moment; and speciation, at the second.
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FIGURE 4.1 Putative evolutionary scenarios producing RI. In both models, two
heterodimeric DM genes (a and b) evolving along time have been considered. The models
are independent and they explain, using different mechanisms, how genes initially presenting
fixed alleles (in the past, left side of figure) may undergo modification and mutations along
time to produce incompatible alleles (present, right side of figure). Alleles of @ and b genes
were identified by numbers and a schematic proposed conformation of the interaction site
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FIGURE 4.1 (Caption continued)

between proteins codified by them was also provided. Although intuitive, the allowed allele
interactions capable to produce a functional heterodimer in this model must be described.
They are: al-bl, al-b2, al-b3, a2-b2, a3-b3, and a4-b1. When a new allele is produced for
the first time in some population, it is identified by a “*”. In the allopatric model (a) alleles
inside boxes are polymorphic in populations. The initial parental population (P) presents
fixed alleles for @ and b, that is: a/ and bI. Other populations are named as shown at the
top-right side of the squares; squares are made of dashed lines since some individuals of a
population may sometimes reproduce with individuals living in any other population existing
at that time. All numbered lines represent divisions of populations and the populations at
the right side of lines represent new formed populations from the left-sided ancestral ones,
generated by migration. In all the splitting processes represented by lines, a number of genetic
processes are happening (migration, genetic drift, founder effect, and mutation). At the end
(present time), all different alleles originated in populations are brought together in human
populations by the effect of globalization. In the sympatric model (b) squares now represent
diploid individuals sampled from the population and containing the particular set of alleles
shown. The entire scheme represents a single and undivided population evolving along time.
At the very left side of the picture we can see an individual presenting the most common
genotype inside an initial considered population: a/alb1bi. Along time, mutations occur into
individuals, producing new alleles; and some of them become more frequent in population due
to inbreeding, natural selection, and genetic drift. Other alleles are probably being originated
and vanished without growing their frequencies by effects of genetic drift (these alleles are
not represented in the picture). Solid lines linking individuals represent a consider amount
of time on which individuals in population are intercrossing, and the alleles originated are
becoming more frequent, while mutations bringing to new alleles are also happening. Broken
lines at the right side of picture link some represented individuals to the alleles present in
their haploid gametes. Some of these gametes present incompatible alleles and these gametes
were identified by “X”s. When individuals presenting gametes with incompatible alleles try
to reproduce, they will only be successful in the production of offspring whether the gametes
of their partners are able to complement each other.

In both models described for the evolution of allele incompatibility (intra
and interpopulational), it is described the gradual emergence of incompatible
allele sets of a single pair of heteromeric DM genes: a and b. The emergence
of these incompatible pairs of DM genes acting on embryogenesis will pro-
duce offspring inviability inside biological populations. Although it is clear that
many heteromers may act in embryogenesis (including house-keeping genes),
a simplistic model on the emergence of incompatibility in a single pair of DM
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genes is presented (Figure 4.1). The model shall be generalized in the sense that
allele modifications are happening constantly at organisms’ genomes and the
coevolution of DM gene alleles will depend on the susceptibility to mutation of
each locus.

Both models are based in the fact that ancestral alleles of DM genes (a/ and
b1) will accumulate mutations over the time, producing new alleles that will be
able (or not) to interact in a heteromer. Whether they interact, a specific molecu-
lar modification will be produced in the cell bearing them; whether they do not
interact, the cell will not develop properly. Therefore, I suppose that this modi-
fication produced by the correct interaction of a and b alleles will be the trigger
of a cascade of other effects and it will allow the embryogenesis process to go
ahead. The absence of both a-b interaction and further cellular modification that
this interaction would produce (such like generation of a chemical intermediate
on a biochemical pathway, the transcription of a given RNA molecule, some
kind of polarization characteristic of developmental process, etc.) will culmi-
nate in an inviable offspring.

The schematic representation in the pictures (Figure 4.1 and 4.2) present
DM genes a and b followed by a number that represents each specific allele.
All alleles, when translated by cellular machinery will produce a protein with
a specific three-dimensional structure. In the diagrams, the active site where
DM gene pairs @ and b interact were represented in a way that will be some-
what intuitive to the reader to understand which alleles interact to each other
(Figure 4.2). Although clearly occurring, mutations in DM gene pairs that do
not alter the conformation of the site of protein interaction in the heteromer
will not be relevant for the model and they have not been considered. Finally,
three main processes are strikingly relevant to the model suggested and must
be kept in mind: (1) the origin of new alleles by random mutations; (2) the
growth in the percentage of new alleles in population due to genetic mecha-
nisms (such like migration, founder effect, genetic drift and inbreeding) and;
(3) the production of gametes containing an incompatible set of DM gene
alleles.
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FIGURE 4.2 Population genetics model in a scenario on which incompatible heterodimeric
DM alleles have evolved. The model consider the existence of 4 different polymorphic
alleles for each gene on the DM heterodimer with their respectively frequencies in a putative
population. Allowed interactions of @ and b protein isoforms (derived from different alleles)
that allow heterodimer molecular function process to occur are represented by lines linking
alleles. Genotypic frequencies are also shown. Using a population genetics model, there
were produced all possible genotypes allowed in this population and individuals presenting
molecular incompatibilities were shown in bold, underlined. In this example, unless
there is another redundant gene network to produce the function done by a-b interaction,
11.40% of gamete encounters will produce IF considering this heterodimer as necessary for
embryogenesis.

4.4.1 ALLOPATRIC OR INTERPOPULATIONAL MODEL

Allopatric or interpopulation model for the emergence of allele incompatibility
consider humans migrating in populations on which new alleles are produced
by random DNA mutations in groups geographically dispersed. In Figure 4.1a,
numbered lines shall be thought as human migrations and it is assumed that
migrations occur concomitantly with genetic drift, founder effect, inbreeding,
and the putative occurrence of mutations producing new alleles. This interpopu-
lational model shows the evolution of a single DM gene pair on which the al-
leles are coevolving over time after many migration events. It does not matter
whether mutations are adaptive or just neutral, although new alleles presenting
higher fitness will probably spread faster in population. At the very right side
of Figure 4.1a, we see that all gene alleles produced during evolution (some in-
compatible) are put together through the effect of globalization. In natural popu-
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lations, it would not be expected to occur as a general pattern, although particu-
lar populations from the same species may hybridize after a considered amount
of time separated from a common ancestral population. It has been shown that
some individuals of these populations are not capable to intercross properly
and this phenomenon particularly relevant for conservation biology purposes is
frequently called outbreeding depression (Storfer, 1999; Edmands, 2002). The
allele incompatibility model here exposed may also explain molecularly why
these reproductive problems happen.

4.4.2 SYMPATRIC OR INTRAPOPULATIONAL MODEL

Sympatric or intrapopulation hypothesis for allele incompatibility origin con-
sider humans (or any other diploid sexual-reproducing natural species) inter-
crossing inside a single small population on which new alleles have been pro-
duced by DNA mutations. It must be considered that DNA mutations are always
happening in populations and the allelic content of the individuals are continu-
ously changing along time (Kimura, 1969). Thus, these new alleles originated
increase their frequencies due to one or more of the following processes: genetic
drift, natural selection and inbreeding. Figure 4.1b evidences how gametes pre-
senting incompatible versions of DM gene pairs may be originated and gives
a first clue about how IF works molecularly and how some degree of RI may
arise sympatrically. In this figure, when we look into the gametes produced by
individuals 4 and 7 (the number of each individual is shown in the top-right
side of the squares), for example, we realize that they will not produce viable
offspring at 6.25 % of conceptions (25 % times 25 %), i.e., when a zygote is
formed by the gametes a3b1 (produced in 25 % of cases) from individual 4 and
gamete a4b5 (produced in 25 % of cases) from individual 7. This conception
failure happens because neither a3 is capable to interact with 67 or b5, nor a4
is capable to interact with b3 or b5 and, consequently, the DM heterodimer will
not function properly. Since we are supposing this heterodimer as necessary to
embryogenesis, there will not be produced a viable offspring. When considering
the evolution of RI, failure in the production of functional reproductive appa-
ratus will also be relevant and DM gene pairs involved in the offspring fertility
shall be taken on account. However, for all other interactions between gametes
from individuals 4 and 7 considering these loci, embryogenesis would occur
properly. Thus, in order to understand better how DM allele incompatibility
may produce a common IF phenotype (such as sympatric speciation, species
isolation mechanisms and the existence of mosaic evolution) we shall consider
a population genetics model.
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4.4.3 A POPULATION GENETICS MODEL TO UNDERSTAND
IMPAIRED FECUNDITY AND THE ORIGIN OF REPRODUCTIVE
ISOLATION

Although IF must consider the genotype of parents, a broad population genet-
ics model may help us to understand how a set of incompatible alleles may be
spread in a given population. Once incompatible alleles of DM genes pairs have
been originated in sympatry or allopatry (Figure 4.1), there will be the exis-
tence of an incompatible group of alleles inside a given population. In order to
understand how this process will produce inviable (or infertile) offspring, it is
necessary to introduce the concept of an incompatible gamete. An incompatible
gamete may be considered as a gamete presenting an incompatible set of gene
alleles. It must be kept in mind we are considering evolution in diploid spe-
cies and, in Figure 4.2, incompatible alleles can be observed when the gamete
present any cluster of incompatible alleles of DM genes a and b. Genotypes of
incompatible gametes in this example (Figure 4.2) are: alb4, a2bl, a2b3, a2b4,
a3bl, a3b2, a3b4, a4b2, a4b3 (compatibility was here defined by step-wised
evolutionary events shown in Figure 4.1). Whether two incompatible gametes
found each other to produce a zygote, two events may happen: (1) the gamete
coming from a parent may complement the incompatibility of the one com-
ing from the other parent, restoring the viability of the zygote (in the case of a
gamete with genotype a2b3 fecund another gamete a4b2 genotype, the a2-b2
interaction will be restored and the zygote will be viable); (2) the gametes may
not be allelic complementary and the zygote will not be viable (in case of a
gamete with genotype a2b4 fecund another gamete with a2b3 genotype, neither
a2-b3 nor a2-b4 interactions are compatible; and the precise protein interac-
tion will not be restored). It is suggested that a number of IF cases fall in this
category. Moreover, any encounter of a compatible gamete with other gametes
(compatible or incompatible) will allow viability (concerning the interaction of
the DM genes under consideration), unless dominance or imprinting have been
considered. So, the interaction of alleles in a compatible gamete is enough to
allow the molecular modifications produced by heterodimer function necessary
for embryogenesis. For example, a gamete a2b2 will produce viable offspring
no matter which other gamete it encounter to form a zygote, since the interac-
tions between a2 and b2 gene alleles are enough to produce viable offspring
(considering only the effect of this heterodimer).

Due to allele incompatibility in a single pair of heterodimeric DM genes,
Figure 4.2 suggests a general case on which 11.40 % of theoretical allele in-
teractions in a given population would not produce viable offspring. In actual
cases, however, two viable organisms trying to reproduce must present com-
patible alleles in their genomes and it is so that no organism shall present a
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genotype a2a3bib4, since otherwise it would be inviable. Thus, at least one out
four possible parental gametes for these two loci must be a viable compatible
gamete—the one that allow the parent being viable. If this was the only factor to
be considered, it would be expected that IF would never happen, since only 6.25
% (25 % times 25 %) of conceptions would not occur properly. However, if the
frequency of incompatible gametes encounter for one single heteromer may be
6.25 %, this percentage would heavily rise whether we consider the existence
of a number of independent heteromers acting in embryogenesis. Since it is
likely that a high number of heteromers acts to promote development, we shall
suppose that the frequency of compatible alleles in nature must be high to allow
the existence of sexual-reproducing organisms. Otherwise, we shall suppose the
existence of a high-level redundancy in gene function.

When thinking in a wide-range model of population genetics to deal with RI
in a species clade, it is possible to predict some factors that will clearly culmi-
nate in the production of inviable (or infertile) offspring based in the processes
already described. The main factors to be considered in order to produce repro-
ductive fitted offspring seems to be: (1) the number of heteromers necessary to
allow viability and reproductive fitness in a given species; (2) the number of
polymorphic incompatible alleles of these heteromers originated by events like
the ones described in Figure 4.1; (3) the compatibility relationship between the
alleles of each heteromer; (4) the frequency of the heteromeric alleles in the
population. Using (2), (3) and (4) rules, the scheme shown in the below part of
Figure 4.2 was produced, evidencing the theoretical number of incompatible
gamete matches in a population, given the data of a single heterodimeric DM
gene pair. Rule number (1), however, is presently unknown and we can only
speculate about it. When considering this population genetics model, it must be
kept in mind that the incompatibility status will depend on the parents’ genotype
and, therefore, this broad and theoretical model is just illustrative and must be
seen with caution.

4.4.4 REDUNDANCY IN GENE FUNCTION

It is clear that the interaction of many genes is responsible to allow embryo-
genesis (in the case of IF) and embryogenesis plus fertility (in the case of a
broader postzygotic RI molecular genetics model). Moreover, although the ex-
ample described in the bottom part of Figure 4.2 produces a number of ~12 %
of incompatible offspring (similar to the value truly observed in present human
population according to CDC), it is clear that a tremendously intricate network
of genes interacting is involved in the process of reproductive fitness and also
that there are many mechanisms of gene network redundancy to achieve a given
cellular phenotype. Once the mechanisms underlying embryogenesis, for ex-
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ample, have been more extensively understood, we will probably be able to
find viable living organisms presenting incompatible alleles of some heteromer.
These organisms may probably be viable due to gene redundancy mechanisms,
on which an alternative cellular pathway may complement the nonfunctional
status of another pathway that may be interrupted by allele incompatibility caus-
ing heteromer dysfunction. It will be interesting to evaluate how far it is going
to be the extension of these gene redundancy networks. Moreover, consistent
incompatibilities among parental alleles of redundant gene networks may be
able to explain why after a long time trying to have babies; a human couple may
finally be succeeded. It may be the result of a specific arrange of alleles for these
redundant gene networks randomly disposed in their gametes. In these cases,
a factor concerning only the random arrangement of gene alleles into parental
gametes may be enough to finally produce a viable and fertile offspring, without
the help of medical intervention.

Although we know about the existence of some redundancy in gene action,
i.e., two different genes or gene networks producing the same effect during
embryogenesis (Onda et al., 2004), we should not suppose that all molecular
processes will present redundancy. Moreover, these evolutionary processes de-
scribed here may happen in both redundant gene pathways together and, in fact,
the origin and coevolution of new gene alleles in DM gene pairs probably keeps
happening in many and different gene interaction pathways in biological organ-
isms. Considering this last observation, our problem may be observed upside
down and it might be difficult to explain how a high number of organisms al-
ways accumulating mutations, evolving, and modifying the allelic content of
their heteromers would be able to reproduce and maintain their species alive
for so long time. Here, it becomes clear the rule of natural selection in order to
keep stable the genetic pool of some species. As already noted, sexual-repro-
ducing organisms accumulating too much mutation in their genes will probably
be negative selected, since their gene pools will not fit the ones from other indi-
viduals in the same population. Once more, there would probably exist a more
stringent limit on the rate of DNA changing in sexual than asexual-reproducing
species since the evolution of individuals belonging to sexual-reproducing ones
depends on the evolution of others sharing the same gene pool. Moreover, in-
dividuals in asexual-reproducing species may activate some SOS system that
promotes high-level mutation rates to allow rapid adaptation to environmen-
tal conditions. Thus, sexual-reproducing species must change (it is a random
process, of course) their compatible DNA content along time in a coordinated
fashion. And it is so that sexual-reproducing species will be observed to evolve
in the direction of self~-homeostasis; maybe even more than evolving into envi-
ronmental adaptation.
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4.4.5 FROM INTRAPOPULATION RI TO SPECIATION

Whether this hypothesis about the evolution of allele incompatibility is not
false, the concept of reproduction with fertile offspring leaves to be a character-
istic shared by any organisms inside a given population or species and it turns
to be a characteristic of a pair of individuals sharing compatible genomes. This
clearly explains IF as a common case of intrapopulation RI and it may also
explain some cases of infertility in humans. The gradual origin of molecular
mechanisms producing RI in natural populations is still unknown. Wu presents
a putative scenario for the evolution of RI beginning with a population in the
Stage I of differentiation on which there would be no apparent RI (Wu, 2001).
The author advances RI stages until the Stage IV, passing from races to sub-
species until completely separated species, on which a complete RI between
individuals in two populations have been achieved (Wu and Ting, 2004). The
present hypothesis considers RI in any natural species such as Wu consider a
stage II of species separation and suggests that “not apparent” RI may not exist
in biological populations. A considerable amount of RI is intrinsic to the con-
tinuous process of DNA mutations happening in heteromeric alleles and it must
be kept in mind that 7.3 million American women have been diagnosed with IF
in 2002 (CDC, 2005). Although the pathway from intrapopulation RI to specia-
tion is long, it seems reasonable to understand it as an initial step to speciation.
In regard of human population, recent globalization processes have been sharing
human molecular biodiversity overall the planet. According to this observation,
recent analyses using SNP data have shown that human biodiversity is high
(Weir et al., 2005; Frazer et al., 2007) and it may be supposed that human het-
erozygosity has never been as high as nowadays. And it is so that human specia-
tion is very unlikely to occur.

4.5 CONSIDERATIONS ABOUT MOSAIC EVOLUTION

Additionally, many cases of reproductive isolated species morphologically in-
distinguishable (cryptic species) are well-known as well as other cases on which
highly differentiated morphological individuals are capable to reproduce with
fertile offspring (Sonneborn, 1975; Stebbins, 1983). Such cases of mosaic evo-
lution have been classically described and they suggest the well-known fact that
evolutionary rate is not homogeneous in nature. The present theory, however,
evidences that the question about mosaic evolution is not necessarily a ques-
tion about evolutionary rate. Even if two recently separated groups of individu-
als have been accumulating mutations at a slow rate, it may be supposed that
random mutational processes act exactly in some alleles of DM heteromers,
avoiding reproduction and, therefore, causing speciation. However, it is also
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clear that higher the rate of evolutionary change, higher the chance of alleles for
heteromers being affected and modified by mutations. Therefore, it is possible
to say that mosaic evolution is often associated with higher rates of evolutionary
changing, although sometimes it may not be the case.

It is interesting to consider some examples about the emergence of putative
mosaic evolution scenarios. Let us suppose a population (1) on which a2 and b2
alleles (Figure 4.2) have been fixed by events like natural selection, genetic drift
and inbreeding; and another population (2) on which a3 and b3 alleles are the
ones that have been fixed by any genetic processes. In this case, all individuals
from populations (1) and (2) will be completely reproductive isolated, even if
all alleles for all other genes have been present in each population in an identi-
cal percentage. This is an example of a phenomenon molecular explained that
produces cryptic but reproductive isolated species. On the other hand, it is also
possible to suppose a situation on which many alleles bringing to different phe-
notypes will present a high amount of variation between two populations, while
most alleles for heteromers relevant for RI will be compatible among the indi-
viduals from both populations. In this last example, there would be produced
highly differentiated organisms capable to reproduce with fertile offspring. Con-
sequences of this observation suggest that biodiversity may be better explained
looking into molecular variation among different individuals and it may happen
that a single reproductive continuous species present more molecular biodiver-
sity than a group of closely related species.

Thus, it is possible to conclude that the so-called “speciation genes” are, in
fact, DM genes forming heteromers. The different accumulation of mutations
in the alleles of these heteromers, avoiding protein interaction and function in
embryogenesis or sexual fitness causes RI (and further, speciation), despite of
the mutations happening in the rest of organisms genomes. Therefore, allele in-
compatibility processes are capable to explain clearly the relationship between
mosaic evolution and RI mechanisms.

4.5.1 A FOOTNOTE INTO THE BIOLOGICAL CONCEPT OF
SPECIES

At last, whether the evolution of allele incompatibility in DM genes producing
RI inside populations has been accepted by community, even the Biological
Concept of Species (BCS) will need to be slightly restructured. Therefore, the
present theory may help us to understand better the long-term debate in biology
about the species problem, i.e., the problem to define precisely a clear concept
for the term “species” (Burma and May, 1949; Haldane, 1956; Beaudry, 1960).
The BCS consider species as “groups of actually or potentially interbreeding



112 Genomics and Proteomics: Principles, Technologies and Applications

natural populations, which are reproductively isolated from other such groups”
(Mayr, 1963). However the present chapter suggests that the capability to inter-
breed (actually or potentially) is a characteristic of two specific individuals pre-
senting a precise combination of compatible DM gene alleles in their genomes
and it is not a characteristic of an entire natural population. In all populations,
there should be pairs of individuals presenting an incompatible set of hetero-
meric gene alleles that will not be able reproduce, although they will clearly
belong to what we are used to call a “natural species”. These pairs of impaired
fecund individuals will probably be able to produce fertile offspring with other
genomically compatible individuals in the same population. The question rises:
how does it affect the BCS?

A single modification in the BCS is enough to keep it valid once it has been
proven that RI is common inside a species’ group. The present theory agrees
with both BCS and the modern view of species in a sense that species must be
identified and understood as a function of RI (Orr, 1995; Coyne and Orr, 1998;
Mallet, 2005; Mallet, 2007). Opposite to the current view, it is suggested here
that organisms shall be considered as different species not if they are not able to
reproduce with fertile offspring, since Rl is frequent inside any biological popu-
lations. Therefore, two organisms must be considered from different species if
their genomes cannot be mixed in future generations by vertical ascendance. Or-
ganisms belonging to different species do not share a continuous gene flow or; if
organisms participate on the same gene flow (vertically speaking), they shall be
considered from the same biological species. Thus, different sexual-reproducing
species shall be understood as groups of individuals on which their gene flow
have been completely separated by vertical lineages so that the evolution of one
and another gene flow happens in separate.

4.6 CONCLUSION

In this chapter, a molecular evolutionary model to explain the unknown causes
of IF in humans is proposed. Although preliminary and speculative, this model
allows us to understand putative processes producing IF when considering the
presence of incompatible versions of gene alleles acting in heteromers that a
couple may contain in their genomes. Moreover, the coevolution of heteromeric
alleles is a clear generalization of DM speciation theory for molecular incom-
patibility. Although today speculative, this model may be incorporated by hard
science in a close future, since many research areas of interest are growing, such
as the molecular basis of RI, embryogenesis, and infertility. Moreover, future
population genomics studies as well as more extensive studies with SNPs will
probably be able to identify the overall variability of polymorphic gene alleles
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in human population. The interaction and compatibility relation of known hu-
man polymorphic alleles may also be investigated using yeast two-hybrids ex-
periments, protein arrays and other proteomic techniques.

It is also interesting to discuss briefly some epistemological aspects of the
present theory. Differently from other RI studies currently done in already dif-
ferentiated species, the present work question the paradigmatic belief (Kuhn,
1962) shared by biological community that all individuals inside a single popu-
lation (or species) can potentially interbreed originating fertile offspring. Here,
the break of this dogma is suggested due to a preliminary evidence of intrapopu-
lational RI based on medical statistical data about IF (CDC, 2005); a hypothesis
that shall be further confirmed by other methodological approaches. The sci-
entific crisis in speciation research field has been anticipated by some (Mallet,
2001) and well-known researchers on the field have attested for the absence
of new theoretical approaches in the study of molecular models of speciation
(Coyne and Orr, 1998). The present hypothesis takes gradualism and popula-
tion genetics in account to explain the origin of RI and speciation. Therefore
it fits better Darwinism than other speciation theories, avoiding mystical and
saltacionistic aspects sometimes related to this unknown process. Moreover, the
nature of the present theory is clearly scientific in the Popperian sense (Popper,
1959), since it is testable (falseable) and it may be proven false whether further
crucial experiments fail to verify the principle of intrapopulation incompatibili-
ties. Once a new theoretical basis of speciation is here explained, further studies
and experimental techniques may be developed in model organisms trying to
evaluate its pertinence in a broader context, evidencing a progressive research
program in evolutionary biology (Lakatos, 1977).

Although RI inside populations have recently been taken on account by
some researchers (Wu, 2001; Edmands, 2002; Wu and Ting, 2004), it seems that
the relationship between a gradualistic view of speciation and intrapopulational
RI have not been completely understood. This last observation is corroborated
by the fact that RI keeps being studied in species hybrids (Brideau et al., 2006;
Mallet, 2006; Masly et al., 2006; Mochring et al., 2006; Pennisi, 2006; Rog-
ers and Bernatchez, 2006; Russell and Magurran, 2006; Mallet, 2007) instead
of trying to investigate it intrapopulationally, such as studying the molecular
genetics of IF in humans. It seems that researchers avoid the usage of the term
“reproductive isolation” in humans since they might be afraid to be bad inter-
preted. However, it shall be better evaluated whether IF is actually a case of
intrapopulation RI, as it seems to be considering the rationale presented here.
Although ethical question will certainly arise, in the light of the present theory it
will be possible in future to test the sexual-compatibility of couple by genotyp-
ing a number of loci before the marriage.
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Additionally, new mathematical models in population genetics may be cre-
ated considering the knowledge about incompatible gene alleles to evaluate: (1)
the average chance of a sexual couple (male-female) chosen randomly present
IF inside a given biological population; this value may represent a chance of
speciation in the sense that higher the IF chance, higher the chance of the entire
groups suffer future speciation; (2) the chance of reproduction in organisms suf-
fering outbreeding (or inbreeding) depression, a relevant factor for conservation
biology purposes; if we are able to evaluate the compatible alleles of organisms,
we can choose only the compatible male-female pair to reproduce; (3) the puta-
tive existence of a maximum number of heteromers in a species to allow its vi-
ability; (4) the relationship between the number of heteromers in a given species
and its speciation rate (it may happen that cryptic species present higher number
of proteins interacting to perform biological functions), and many other ones.
Some other important variables may also affect these models: such like linkage
disequilibrium between genes participating in heteromers, putative occurrence
of meiotic drift (leading to nonequal production of alleles in gametes), genetic
imprinting and different compatibility network relationships between alleles of
two or more genes. Figure 4.1a and 4.1b have also helped us to understand
unsolved problems regarding the molecular basis of, respectively, outbreeding
depression and sympatric speciation.

This chapter evidences how academic issues are becoming each time more
significant in medicine, something already pointed out by some (Goldstein and
Chikhi, 2002), but it also shows the other way round. CDC medical statistics
have shown, in this chapter, its relevance to the study of academic issues in re-
spect to evolution of gene alleles and natural species (CDC, 2005). The present
theory was too much corroborated by the existence of published data about IF;
in fact, the absence of these data would make this theory much more speculative.
Moreover, although many cases of IF may happen due to the molecular causes
here delineated, a number of other unknown processes may be responsible for
a couple being unable to have babies. It also must be noted that IF data are
still difficult to obtain and, since researchers have not understood the molecular
causes of IF and directed their experimental methods to study it molecularly,
there is no much data available about this subject. This might also explain why
a theory like this one was never proposed before. Furthermore, when working
with animal behavior, the failure in producing fertile offspring is easily solved
by breeders changing the couples of animals to reproduce. In fact, probably
many breeders have not realized which specific animals are not capable to re-
produce with some other specific ones. Humans living in a monogamous society
have shown to be the very best substrates of study to allow us the understanding
of the molecular basis of RI. IF would be hardly identified in animals or even
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in humans living in a nonmonogamous society. Social variables, therefore, have
shown here their relevance for the development of scientific theories.

Finally, further studies in medical reproductive genetics may reveal whether
allopatric or sympatric mechanisms of allele differentiation have been more fre-
quent during the evolution of human populations. Tests still to be performed
may answer the question whether IF would be generally more frequent inside
some specific populations or among different populations of humans; or any
other natural species. The frequency of molecular incompatibility inside and
among natural populations may help in the debate about the frequency of al-
lopatric and sympatric models of speciation.
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5.1 INTRODUCTION

We live among millions of microorganisms, whose ubiquitous communities
have a profound impact on our health. A large variety of microbial populations
(microbiota) and their genetic apparatus (microbiome) playing a substantial
role in the maintenance of health and in the onset of disease. While the hu-
man genome is basically stable (Weinstock, 2011), the microbiome — the genetic
material pertaining to all the microbes that live within the human body and,
therefore, represents a sort of second human genome (according to Weinstock
GM) — undergoes significant changes, varying not only between individuals but
also within the same person. Viruses, bacteria, and eukaryotic microorganisms
coexist in complex communities, and can interact with the micro- and macro-
environments in which they live, influencing the development, metabolism, and
functions of higher organisms — namely us (Relman, 2011). At any one time, we
can play host to up to three types of microorganisms. The first type, considered
native or resident, comprises a population arising from the first colonization
after the beginning of extra-uterine life. We can also be colonized by transient
populations, which invade through a lumen without causing major changes to
the resident bacterial population, as well as contaminant or frankly pathogenic
microorganisms, which differ from the former by causing dismicrobism and the
onset of infectious disease. Each such microbial population thrives in differ-
ent “environmental” conditions (pH, temperature, etc.), and reacts differently to
the action of drugs and/or exogenous chemicals (antimicrobials, enzymes, etc.).
They also differ in terms of developmental changes to the genome, which affect
the so-called quasispecies as a whole, and must compete for their microbial and
nutritional needs, etc.

An individual host contains thousands of symbiotic species, of which an
estimated 90 % have not yet been cultivated in the laboratory. To expand our
knowledge, we also need to further investigate the role of individual compo-
nents of the microbiota in a large variety of physiological conditions and disease
states. To undertake such a monumental task, the sharing of protocols, methods,
understanding, and results are essential, particularly with regard to innovative
tools