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Series Foreword: MASS
and REU at Penn State
University

This book is part of a collection published jointly by the Amer-

ican Mathematical Society and the MASS (Mathematics Advanced

Study Semesters) program as a part of the Student Mathematical

Library series. The books in the collection are based on lecture

notes for advanced undergraduate topics courses taught at the MASS

and/or Penn State summer REU (Research Experiences for Under-

graduates). Each book presents a self-contained exposition of a non-

standard mathematical topic, often related to current research areas,

accessible to undergraduate students familiar with an equivalent of

two years of standard college mathematics and suitable as a text for

an upper division undergraduate course.

Started in 1996, MASS is a semester-long program for advanced

undergraduate students from across the USA. The program’s curricu-

lum amounts to sixteen credit hours. It includes three core courses

from the general areas of algebra/number theory, geometry/topology

and analysis/dynamical systems, custom designed every year; an in-

terdisciplinary seminar; and a special colloquium. In addition, ev-

ery participant completes three research projects, one for each core

course. The participants are fully immersed into mathematics, and

v



vi Series Foreword

this, as well as intensive interaction among the students, usually leads

to a dramatic increase in their mathematical enthusiasm and achieve-

ment. The program is unique for its kind in the United States.

The summer mathematical REU program is formally indepen-

dent of MASS, but there is a significant interaction between the two:

about half of the REU participants stay for the MASS semester in

the fall. This makes it possible to offer research projects that re-

quire more than seven weeks (the length of the REU program) for

completion. The summer program includes the MASS Fest, a two

to three day conference at the end of the REU at which the partici-

pants present their research and that also serves as a MASS alumni

reunion. A nonstandard feature of the Penn State REU is that, along

with research projects, the participants are taught one or two intense

topics courses.

Detailed information about the MASS and REU programs at

Penn State can be found on the website www.math.psu.edu/mass.
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Preface

Classical mechanics was developed by many of the greatest minds

of the past, including Archimedes, Galileo, Newton, Huygens, the

Bernoullis,1 Lagrange, Gauss, Jacobi, Hamilton, and Poincaré, among

others.

Their efforts made classical mechanics a multifaceted gem which

is beautiful whichever way one turns it.

From the practical side, a remarkable feature of mechanics is

its ability to predict things by pure thought, starting with almost

nothing. For example, knowing only the gravitational acceleration

g ≈ 10m/s2 near the Earth’s surface, and Newton’s laws, we can

predict the frequency of oscillations of a pendulum, or the speed of

precession of a spinning top, or the period of an orbiting satellite

knowing its distance to the Earth’s center, etc.

On the theoretical side, classical mechanics interlaces with al-

most every branch of mathematics: Euclidean geometry, differential

equations, dynamical systems, differential geometry, topology, alge-

bra, number theory.

1There was considerable rivalry between Johann and Jacob Bernoulli; ironically,
nowadays some people confuse the two brothers, or even think they were the same
person.
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xiv Preface

From yet another direction, mechanics actually explains and even

suggests some theorems of geometry and calculus (see [14] for more

details and references).

In such an old and fundamental subject it is difficult to say some-

thing that is simultaneously original (O), interesting (I) and correct

(C). When pressed, I tried to satisfy (I) and (C) at a minimum. On

occasion, (O) may have been satisfied, at least in a pedagogical sense.

Intended audience. This text is suitable for courses from junior

to beginning/intermediate graduate, on the topics in the title. Each

section corresponds roughly to one lecture, and it is not unreasonable

to expect to cover 2 to 4 chapters in a semester. This means that the

book contains enough material for more than one course. Many of the

180 problems (most with solutions or hints) can be used in lectures;

in fact, much of the pleasure in the subject is derived from problems.

I also hope that some ideas or problems may seem new not only to

students but to specialists as well — at least in a pedagogical sense.

Physical and mathematical background. I assume that the

reader has been exposed to beginning courses in physics, in vector

calculus, and in basic linear algebra. Nevertheless, I recall some of

the key concepts and facts as the need arises.

Some highlights of this book. 1. Ideas come before formulas.

As an example, some texts define kinetic energy as mv2/2, never

explaining what it really is (it is the work required to bring the mass

to speed v, see page 10 for details), and why, for instance, not mv2/3,

or mv3? The reason is hidden from the reader, who deserves to be

told why, and not only how. I tried to avoid such abuse throughout.

Chapter 8 is especially devoted to explaining the motivation be-

hind Hamiltonian mechanics so that nothing is pulled out of thin air.

2. Having kept in mind Einstein’s quote: “If you can’t explain it

to a six year old, you don’t understand it yourself”, I followed, as best

I could, his advice: “Everything must be made as simple as possible.

But not simpler.”
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3. I describe an equivalence between the dynamics of particles

and the statics of springs (page 45). This equivalence is fruitful in a

few ways: (i) it yields the Euler–Lagrange equation and Liouville’s

theorem with almost no work, at least in special cases; (ii) it gives a

surprisingly obvious physical interpretation to these abstract mathe-

matical statements, and (iii) it shows why Liouville’s theorem holds,

giving the bare essence of the reason for the result, not hidden by

many steps.

4. Chapter 8 explains some fundamental ideas of Hamiltonian

mechanics from one basic principle. Just as with the kinetic energy

example above, many of the concepts in that field are often “pulled

out of thin air”.2 Instead, I tried to show how one basic starting point

leads to all of the above concepts automatically.

5. The table on page 280 shows a revealing analogy between

Hamiltonian dynamics and statics of springs. In my mind, this anal-

ogy could be taken as an unspoken guiding principle of Hamiltonian

formalism. Hamiltonian mechanics turns out to be a kind of “spring

theory”.

6. Some miscellaneous items: (i) a new heuristic way to minimize

integrals
∫
F (y)ds (page 188), (ii) some fun problems, such as one on

finding the center of curvature using a bike, or on the hydrostatic

nature of the tension in hanging cables, or on an interesting property

of a mobile, etc., (iii) a remarkably short proof, due to Lagrange, of

the ellipticity of planetary motions.

7. I included a geometrical discussion of Pontryagin’s Maximum

Principle of optimal control. This topic really belongs to Hamilton-

ian mechanics/ray optics and so is a natural fit for this book. It is

remarkable that the Maximum Principle is, loosely speaking, a ver-

sion of Huygens’s principle. Optimal control is a standard topic in

engineering courses but is rarely taught to mathematicians and physi-

cists; I tried to bring this neglected child of Hamiltonian mechanics,

often abused in engineering literature, back home. Many engineering

2These concepts, which the reader is not expected to know at this stage, include
the Legendre transform, Hamilton–Jacobi equations, Liouville’s theorem, Poincaré in-
tegral invariants, Noether’s theorem.
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texts effectively hide the geometry of Pontryagin’s principle; I tried

to bring this simple geometry to the surface.3

Analogies in general.4 The use of analogies goes back to Arch-

imedes who interpreted geometrical objects mechanically and then

used mechanical intuition to discover new geometrical theorems.

Later examples include the so-called Kirchhoff’s kinetic analogy — ac-

tually, the equivalence — between the dynamics of a free rigid body on

the one hand and statics of elastic rods on the other, Poincaré’s anal-

ogy of phase flow of a Hamiltonian system to a fluid flow (see Arnold

[1] for more details), Riemann’s interpretation of analytic functions in

terms of fluid flow, and much, much more. Aubry’s discovery, simul-

taneously with Mather, of the Aubry–Mather theory (1982) — one

of the key advances of dynamical systems in the twentieth century

— was driven by a mechanical analogy. Analogy unifies our under-

standing by showing that seemingly unrelated things are, in certain

aspects, the same.

Analogies in this book. In that vein, the dynamics of a single

particle is analogous (in fact, equivalent) to the statics of a Hookean

spring (see the table on page 45). For a general mechanical system

(not just a single particle), there is also an analogy different from the

one just mentioned (see the table on page 280). Each of these analo-

gies opens a new view — they certainly did for me when I realized

them. Some things that are not obvious and abstract for one side of

the analogy are obvious and palpable for the other, as the table just

mentioned illustrates.

Outline of the book. The book consists of four parts: (I) Dynam-

ics (Chapters 1–3), (II) Variational Principles (Chapters 4–6), (III)

Optimal control (Chapter 7) and (IV) Foundations of Hamiltonian

mechanics (Chapter 8).

3The texts [15] and [2] give a very nice and a much more extensive presentation
of these topics than this book.

4The subtitle of a remarkable recent book “Surfaces and Essences: Analogy as the
Fuel and Fire of Thinking” by Hofstadter and Sander represents accurately, I think,
the pivotal role of analogy in all thinking, and in particular, in classical mechanics.
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Originally, I was planning Chapter 8 as a small book, but the

manuscript grew, thanks in part to Sergei Gelfand’s encouragement

and despite my attempts to keep it short. This main chapter ended

up being the last one in the book, which may seem an injustice. Here

is a slightly more detailed outline of the book.

Chapters 1–3: Dynamics. Chapter 1 deals with one-dimensional

motion, introducing many key ideas of mechanics with a minimum of

technicalities. Chapter 2 discusses several degrees of freedom, includ-

ing Kepler’s problem and vibrations. Discussion of free rigid body

motion (such as a tumbling asteroid, or a football, Chapter 3) com-

pletes the first part of the book.

Chapters 4–7: Calculus of Variations, Optimal Control. This

topic is presented in four parts: First, variational principles of me-

chanics (Chapter 4); second, some classical problems from calculus of

variations (Chapter 5); third, the Jacobi criterion for the minimum—

a kind of a second derivative test for a minimum (Chapter 6); and

fourth, Pontryagin’s Maximum Principle of optimal control (Chap-

ter 7). This principle turns out to be essentially a restatement of

Huygens’s principle.

Chapter 8: Hamiltonian approach motivated. This chapter

contains a heuristic view of Hamiltonian and Lagrangian mechanics.

Ever since having learned classical mechanics in school, I had a nag-

ging suspicion that many texts on mechanics leave something very

fundamental unspoken. Why, for example, does one introduce the

Hamiltonian, or the Legendre transform, or the momentum, or the

symplectic 1-form p dx?5 The best explanation I saw was that the

end — the beauty of the resulting theory — justifies the unmoti-

vated means. It turns out, however, that if we start the presentation

of Hamiltonian mechanics with the right question, then all the con-

cepts mentioned above fall into our laps automatically and unavoid-

ably; most of the theory begins to look simple and natural. This

presentation is given in the ten short sections of Chapter 8. Section

11 of this chapter gives a static analog of the preceding theory; with

5All of these concepts are introduced in the first chapter in a conventional way,
and then again in Chapter 8 in a way that shows the inevitability of these concepts.
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this analogy we realize that many of the seemingly abstract concepts

have an elementary physically palpable explanation. It is remarkable

that, in hindsight, much of the Hamiltonian theory would have been

obvious to Archimedes, if only it were restated in terms of a cer-

tain static mechanical model. Finally, the last section of Chapter 8

gives a quick description of the analogy of mechanics to optics. This

traditional analogy is explained beautifully in Gelfand and Fomin’s

Calculus of Variations [8] (Appendix 1); see also Arnold’s Mechanics

[1].

Classical mechanics as a branch of mathematics. Classical me-

chanics deals with idealized objects, such as “point masses”, “rigid

bodies”, “rods”. These objects are imaginary approximations of ac-

tual physical things. For example, in studying planetary motion, we

may treat the Earth as a point. In this respect classical mechanics is

a sister of geometry, which also deals with idealized objects; to the

geometer a “point” is not an ink dot on paper but an imaginary dot

of zero size. When applying classical mechanics in practice one must

of course remember that, for instance, the “rigid body” of classical

mechanics is not exactly rigid in reality.6 A “point mass” is a good

approximation unless we look at it too closely. Classical mechanics

serves very well except at microscopic scales (quantum mechanics)

or at macroscopic ones (relativity). We assume, for example, that

the position of a point mass can be precisely defined, that inertial

frames exist, and that the time is well defined throughout the refer-

ence frame. These statements are strictly true only in the idealized

world of classical mechanics.

The mystery of variational principles. (The reader who has not

seen variational principles should skip this paragraph, or else see page

167 first.) Newton’s laws (N) are equivalent to variational principles

(V), as proven in many texts on classical mechanics. Logically, there

is nothing to complain about: (N) is taken as axioms (suggested by

6An interesting mistake along these lines was made with the first Explorer satel-
lite. The orbiting satellite, shaped as an elongated cylinder, was given an original spin
around its long axis; unexpectedly, it developed wobbles and after several hours ended
up tumbling end-over-end, contrary to what the theory of rigid body dynamics predicts
(Chapter 4). It was soon realized that the satellite was not exactly rigid (it had flexible
antennas), so that the theory did not quite apply.
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experiments and by physical intuition, itself the result of experiments

we do as part of physical activity), (V) is proven; the picture seems

complete. But there is a mystery about (V): how can a mindless

projectile “know” to take the path of least action?7 After all, in

order to choose the path of least action, doesn’t one have to compare

the action of this path to the actions of other paths? That a brainless

projectile “knows” about nearby paths and chooses the “best” seems

so surprising that the logical proof (N)⇒ (V) looks a bit legalistic

and insufficient. One senses that something else must be going on.

Yet no book on classical mechanics that I know of mentions this

question.8 But it is precisely this question that stimulated Feynman

in his remarkable discovery of path integrals ([7], [6]). Variational

principles become much less mysterious through the idea of phase

cancellation, as explained briefly in the next paragraph.

Classical mechanics leading to quantum mechanics. In rela-

tion to the previous item, it is remarkable that the Maupertuis’ prin-

ciple (discovered by Leibnitz around 1707), or Hamilton’s principle

(δ
∫
Ldt = 0), can in retrospect be seen as a loud hint at the wave

nature of particles, available long before the first shoots of quan-

tum mechanics appeared. In optics, Fermat’s principle of least time

(δ
∫
dt = 0) is explained as follows: the waves travel between two

points A and B along all possible paths; but the waves traveling

along paths close to the path of least time arrive in sync, with nearly

equal phases, and hence add up; by contrast, the waves traveling

along noncritical paths arrive at B with disparate phases and thus

cancel with their neighbors, contributing almost nothing at B. In

other words, the light is not intelligent but rather omnipresent; some

people mistook phase cancellation for intelligence. Fermat’s principle

(δ
∫
dt = 0) is thus due to the wave nature of light, suggesting that

Maupertuis’ principle, or Hamilton’s principle, is analogously due to

wave nature of particles. The alternative would be to ascribe this

principle to the supernatural [6]. In light of this (with apologies for

the pun) it may seem striking that so much time passed from the

formulation of Hamilton’s principle (δ
∫
Ldt = 0) to the discovery of

7Loosely speaking, action is the integral of the difference between the kinetic and
the potential energies. A precise definition is given by (1.22), on page 19.

8Perhaps due to the long tradition because the subject is so, uh, classical.
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the wave nature of particles. Feynman’s derivation of the Schrödinger

equation using classical mechanics is given on page 286. The remark-

able feature of this derivation is that it uses almost nothing besides

classical mechanics and the analogy with electromagnetic optics to

arrive at the Schrödinger equation.
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anonymous referees; their few compliments made me feel better and

their numerous criticisms made the manuscript better. I gratefully

acknowledge partial support by NSF grant DMS-0605878.



Chapter 1

One Degree of Freedom

1. The setup

In this chapter we consider the simplest class of mechanical systems:

a point mass confined to a straight line or a curve; Figure 1 gives

three examples. Such systems are referred to as the systems with one

degree of freedom1.

Figure 1. One-degree-of-freedom systems.

One-degree-of-freedom systems are “building blocks” for a larger

class of more complex mechanical systems — the so-called completely

integrable systems. Such systems (Kepler’s problem is an example)

reduce to a collection of decoupled one-degree-of-freedom systems.

Many fundamental ideas and concepts in mechanics can be illustrated

already on one-degree-of-freedom systems, as we do in this chapter.

1More generally, the degree of freedom of a mechanical system is the number of
quantities which define the position of all the particles in the system. Other examples
of one-degree-of-freedom systems include a rigid body spinning on a given axis (with
the angle playing the role of coordinate), or a wheel rolling on a straight line without
sliding. Higher degree of freedom systems are discussed in the next chapter. Examples
of those include a particle in the plane (two coordinates define its position), a double
pendulum (two angles define the positions of the masses), or a particle constrained to
move on a surface in space.

1



2 1. One Degree of Freedom

2. Equations of motion

In this section I state Newton’s second law, and then derive the equa-

tions of motion for each of the examples in Figure 1. An alternative

way to derive the equations of motion, discovered by Lagrange and

used more commonly, is described in Section 7.

Newton’s second law for a point mass. Consider a particle of

mass m subject to net force F. By net force, also called the resultant

force, one means the vector sum of all forces acting on the particle.2

Newton’s law states that the vector acceleration a of the particle is

caused by the net force F and is proportional to that force:

(1.1) ma = F, or a =
1

m
F,

where the coefficient of proportionality m is referred to as the (iner-
tial) mass. In other words, the particle accelerates in the direction of
the net force and with intensity proportional to the force and inverse
proportional to the mass.

Exercise 1.1. A particle moves in space under the influence of a force F.
Must the particle’s velocity v point in the same direction as F?

Answer. No. For a flying projectile, for instance, F and v are not aligned

since one points straight down while the other is tangent to the trajectory.

Motion on the line under a frictionless force. We consider a

particle constrained to a straight line, which we take to be the x-axis.

We assume that the particle located at x is subject to a force F (x)

acting in the direction of the x-axis. Note that this force is assumed to

be independent of the velocity ẋ; the friction is thus excluded. Since

the particle’s acceleration is a = d2

dt2 x = ẍ, we can rewrite Newton’s

law as

(1.2) mẍ = F (x)

Here x = x(t) is a function of time, so that Newton’s law becomes

an ordinary differential equation for the unknown function x(t). We

now consider several important examples.

2One of the most common mistakes in mechanics is forgetting to include all of
the forces in Newton’s law.



2. Equations of motion 3

Figure 2. The harmonic oscillator. The picture shows a zero
length spring, i.e., 0 is the equilibrium.

1. The free fall. The simplest example F = const. was solved by

Galileo in his study of free fall. Actually, Galileo’s main discovery in

this area was not the solution of the differential equation ẍ = −g, but

rather his realization that m does not enter this equation.

2. The harmonic oscillator. The next simplest example, where

F = −kx (k = const. > 0), is referred to as the harmonic oscillator,

Figure 2. The minus sign indicates that the force is restoring. We

can think of F = −kx as the tension of a linear zero length spring,

i.e., of a spring whose relaxed length is zero or, if one prefers, as the

deflection from the relaxed length of a Hookean spring with nonzero

relaxed length.3 Equation (1.2) with F = −kx becomes

(1.3) ẍ+ ω2x = 0, where ω2 =
k

m
.

The general solution of this ordinary differential equation is of the

form x(t) = A cos(ωt−ϕ), where A (the amplitude) and ϕ (the phase)

are arbitrary constants which can be determined from the initial data.

3. A bead on a wire is an entire class of examples leading to (1.2).

Figure 3(A) shows a bead sliding without friction on a rigid wire in

the vertical plane under the influence of gravity. To write the equation

of motion, let us use the arc length parameter s, the distance along

the curve from some chosen point to the bead. Projecting Newton’s

law (1.1) onto the tangent to the wire we get the scalar equation

(1.4) ma = F,

where a = s̈ is the tangential acceleration of the bead, and where F

is the sum of projections of all the forces acting on the bead upon

the tangent to the wire. As the figure illustrates, of the two forces

acting on the bead the reaction N contributes zero (since there is

no friction). The only contributing force is the projection of gravity:

3Some springs come pre-stressed in such a way that F = −kx holds reasonably
well as long as the spring is actually stretched.
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Figure 3. The bead on a wire; the circular wire corresponds
to the pendulum.

−mg sin θ, where θ is the angle between the tangent and the vertical.

Note that θ = θ(s) is a function of s determined by the shape of the

wire. Summarizing, (1.4) becomes

(1.5) s̈ = −g sin θ(s)

This equation is of the same form as (1.2), except that s is a coordinate

along a curve. We now consider two shapes of the track: the circle

and the cycloid.

4. The pendulum. The circular wire in Figure 3(B) need not

be a physical wire: the bead can be constrained to the circle by a

weightless rod hinged at O, giving us a pendulum. We have s = Lθ

if both s and the angle θ are measured from the same point on the

circle, and where L is the length of the rod. Substituting this into

(1.5) we get the differential equation for the angle θ (more convenient

to use than s) of the pendulum:

(1.6) θ̈ = − g

R
sin θ.

5. Huygens’s pendulum. The usual pendulum, used as a clock,

has one shortcoming: its period depends on the amplitude. Huygens

discovered how to fix this problem — one of the nicest discoveries

in the history of calculus. First, Huygens showed that the cycloid

(see Figure 4) is that special curve for which the period of the bead’s

oscillations is independent of the amplitude (see Problem 1.18 for a

hint to a short proof). Second, Huygens showed how to make a mass

travel on a cycloid in a practical way, Figure 5: Consider the piece

ACB of the cycloid from Figure 4, where A and B are the lowest
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Figure 4. A circular wheel rolls on the line MN without

sliding. The cycloid is a curve described by a point P on the
rolling wheel. In our discussion MN is horizontal and the
wheel is below MN .

Figure 5. Hugyens’s pendulum: CA and CB are arcs of a
cycloid; the string attached at C has the same length as these
arcs. Then the free end of the string will trace a congruent
cycloid, and, moreover, the period of the resulting pendulum
will be in dependent of the amplitude.

points, and treat this piece as an obstacle impenetrable by a string

attached at C. The length of the string is chosen to be the same as

that of the semi-arcs CA and CB. If we hang a weight at the free end

of the string and let it swing, part of the string will hug the obstacle

arcs and part will be straight; we obtained a pendulum of variable

length. Huygens’s second discovery was that the path of the weight is

a congruent cycloid(!)

High quality grandfather clocks have special suspension mecha-

nisms based on Huygens’s discovery.

Remark 1.1. Note that the string in Figure 5 is normal to ADB and

tangent to CA or CB. In other words, the arc ACB is the envelope
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Figure 6. Potential energy for one-degree-of-freedom systems.

of the family of lines normal to ADB. Such an envelope of the family

of normal lines to a planar curve is called the evolute of this curve.

Huygens therefore showed that the evolute of a cycloid (ADB) is a

congruent cycloid (ACB).4

3. Potential energy

The setting. Figure 6 shows a point mass on the line in a force field

F (x): the particle whose position is x is subject to the force F (x). The

mass-spring system is a prime example; in that case, F (x) = −kx,

where x is the position of the particle relative to the equilibrium.

Intuitively, potential energy of the point mass at x is the work

that I must do against the force F (x) to bring the particle to the

location x from some given reference location x0. That is, I must

apply force −F (s) at s, in order to balance F (s), thus dragging the

particle from x0 to x. This suggests the formal definition.

Definition. Potential energy U(x) at x of a point mass in the force

field F (x) is defined as

(1.7) U(x) = −
∫ x

x0

F (s) ds

Remark 1.2. One might wonder whether the above motivation of

the definition is imprecise: when I apply force −F (s) to the mass,

the net force on the mass becomes −F (s) + F (s) = 0, so why would

it move at all? To answer this question, the mass will move, by

inertia, if given an arbitrarily small initial speed, since the net force

= 0 everywhere. So technically, to move the mass from x0 to x I

must spend work U(x) plus an arbitrarily small quantity. The formal

4See Problems 1.19 and 1.20 on page 55.
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definition (1.7) avoids this point, which is a plus, but does not seem

motivated on its own, which is a minus.

Remark 1.3. If F points from x0 to x, then the work done against

F is negative. For example, in moving a weight from the tabletop to

the floor I do negative work; that is, the work is done for me.

Potential energy and force. Differentiating both sides of the def-

inition (1.7) yields, by the Fundamental Theorem of Calculus5:

(1.8) F (x) = −U ′(x)

Thus the force can be recovered from the potential energy. Note that

large force is characterized by steep changes of energy.

Many potential energies. The potential energy depends on the

choice of the reference point x0. Choosing a different x0 amounts to

changing U by an additive constant. This constant does not affect

the force F (x) since the derivative in (1.8) kills the constant.

A geometrical interpretation of (1.8). Figure 7 shows that the

force acts “down the slope” of the graph of U(x). Imagine gravity

g = 1 pointing down in Figure 7. Then the tangential component

of this gravity upon a bead sliding on the graph of U is Ftang =

− sin tan−1 U ′(x) = −U ′(x) + o(U ′(x)). For small U ′(x) the force

−U ′(x) is close to the tangential component of gravity upon a bead

on the wire. For large slopes U ′(x) the approximation fails, although

it still does give the correct sign of the force.6

Potential energy is defined up to an arbitrary constant. In-

deed, with a different choice of the reference location x̃0 �= x0, the

corresponding potential energy Ũ(x) = −
∫ x

x̃0
F (s) ds differs from

U(x) by

U(x)− Ũ(x) =

∫ x0

x̃0

F (s) ds = const.,

a quantity independent of x. In fact, any of the anti-derivatives

U(x) = −
∫
F (x) (defined up to a constant) is a potential energy.

5A reminder: d
dx

∫ x
a

F (s) ds = F (x). Differentiation undoes the integration.
6See Problem 1.3 on page 51
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Figure 7. Force equals the negative slope of the potential
energy graph.

Particle constrained to a curve. Our definition of the potential

energy for a point mass on the straight line extends to a point mass

constrained to a curve (Figure 1); definition (1.7) still applies, where

x now stands for the arc length measured along the curve, and where

F (x) stands for the force in the tangential direction to the curve.

Examples of potential energy.

1. A Hookean spring. U(x) =
∫ x

0
(−F (s)) ds =

∫ x

0
(−(−ks)) ds =

1
2
kx2, where x is the amount by which the spring was stretched from

its relaxed length. Here is an elementary derivation of the result

avoiding integrals: when pulling the spring from x = 0 to x �= 0, I

must apply the average force 0+kx
2 = kx/2; the work equals this force

times the distance x, reproducing the above result.

2. Potential energy in a constant gravitational field. The par-

ticle is subject to the gravitational force F (z) = −mg in the direction

of the negative z-axis. The work required to move the particle from

z0 to z against F is U(z) = (mg) · (z − z0) = mgh, where h is the

height of z above z0.

3. Potential energy in the gravitational field of a star. Let

us place the origin at the center of the star, Figure 8. The star’s

gravitational pull on a point mass is F (x) = − k
x2 (k is a constant

whose value is not important here). We treat the star as a point

mass; otherwise we must take x > R, the radius of the star. Let us
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choose x0 = ∞ for the reference “point”. We have

(1.9) U(x) = −
∫ x

∞

(
− k

x2

)
dx = −

∫ ∞

x

k

x2
dx = −k

x
.

This agrees with intuition: the work we do when moving the mass

from infinity towards the star is negative, meaning that the gravi-

tational force is doing the work for us. Moving “downhill” requires

negative amount of work.

Figure 8. Gravitational potential energy U = −k/x. Gravi-
tational force F (x) = −U ′(x) = −k/x2.

4. For a bead on a curve as in Figure 3, the force F (s) =

−mg sin θ, where θ = θ(s) is the angle between the tangent and the

horizontal. Potential energy is U(s) = −
∫ s

s0
F (σ) dσ, giving

(1.10) U(s) =

∫ s

s0

mg sin θdσ︸ ︷︷ ︸
dh

= mg

∫ y

y0

dh = mg(y − y0).

We see that the potential energy depends only on the height and not

on the horizontal position.

5. The pendulum is a special case of the preceding item. According

to (1.10), the potential energy is mgy, where y is the height of the

mass above a reference point. We have y − y0 = L(1 − cos θ) =

L(1 − sin s
L ), where y0 is the y-coordinate of the lower equilibrium.

Using (1.10) we get

U(s) = mgL(1− cos θ) = mgL(1− cos
s

L
).
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4. Kinetic energy

Some texts define kinetic energy of a point mass m by the formula:

K =
mv2

2
,

where m is the mass and v is the speed. This definition is simple, but

it feels unmotivated, and in the end it serves to hide the idea.

Instead, let’s define the kinetic energy as the work required to

bring the mass from rest to speed v, and then prove the formula.

We will then see why the formula is like it is; for example, why is

v squared, and where does 1/2 come from? As an extra benefit, we

will understand why the total energy is conserved, with no further

calculations.

Figure 9. Kinetic energy for one-degree-of-freedom systems.

Proof of K = mv2/2. The work done by the force F is

(1.11)

∫
F dx =

∫ T

0

F (t)v(t)dt =

∫ T

0

mavdt = m

∫ T

0

d

dt

(
v2

2

)
dt.

Since v(0) = 0 and v(T ) = v, the fundamental theorem of calculus

shows that the integral is mv2/2, as claimed. Note that the work

does not depend on how the acceleration varies with time. This is

a piece of good luck, since otherwise kinetic energy as we defined it

would have depended on the way the particle was accelerated, and

thus would have been a meaningless concept. ♦

A calculus-free explanation of K = mv2/2. First, let us acceler-

ate our mass with a constant force F , from speed 0 to v. Let D be

the distance the mass travels during its speed-up, and let T be the

time of travel. The work done is

F ·D = ma ·D = m
v

�T
· vaverage�T = mv · v

2
=

mv2

2
,
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as claimed. Note that the size of F “washed out”: a larger F would

have meant a smaller D to gain the same speed v (as any driver

knows); the product FD would have remained the same. We now see

where 1/2 in mv2/2 came from (the averaging of the speed to find

D), and why v is squared (both F and D depend on v linearly). To

see without calculus why a time-varying force F produces the same

result mv2/2, let’s break up the travel time into many short intervals,

so that during each interval we can treat F as nearly constant. If the

speed changes from vk to vk+1 during the kth interval, the work done

during this interval is F is
mv2

k+1

2 − mv2
k

2 , as a calculation similar to

the one above shows. Thus the work done during acceleration from

rest to speed v is the telescoping sum(
mv21
2

− 02

2

)
+

(
mv22
2

− mv21
2

)
+ · · ·+

(
mv2

2
− mv2n−1

2

)
=

mv2

2
.

♦

Conservation of energy. Replacing t = 0 and t = T in (1.11) by

any two times t1 and t2 results in∫ x2

x1

F (x) dx =
mv22
2

− mv21
2

,

where x1, v1 and x2, v2 are the corresponding positions and velocities

of the particle. Substituting F (x) = −U ′(x) (see (1.8)) we get

U(x1)− U(x2) =
mv22
2

− mv21
2

;

potential energy lost equals kinetic energy gained. Or, we can rewrite

this as

mv21
2

+ U(x1) =
mv22
2

+ U(x2) :

the total energy of a particle moving in a force field F (x) does not

change with time. To summarize, the above physically meaningful

definition of K also yields energy conservation as a byproduct. In the

next section we give a more streamlined presentation of conservation

of energy.
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5. Conservation of total energy

Here is an alternative short statement and proof of the law of conser-

vation of energy.

In the same setting as before, we are considering a particle con-

fined to a straight line or a curve and subject to the tangential force

F (x), where x denotes the arc length position of the particle.

According to Newton’s second law we have

(1.12) mẍ = F (x).

It is important to note that the force is assumed to depend on the

position x only, and not on the velocity v = ẋ. This excludes from

discussion frictional forces which do depend on the velocity; for such

velocity-dependent forces the following theorem fails.

Theorem. The total energy is constant for any motion x = x(t)

governed by (1.12):

(1.13) K + U =
mẋ2

2
+ U(x) = const.

We are not claiming, of course, that different motions have the

same energy — only that each motion individually has its own energy

which does not change in time.

Proof. It suffices to show that d
dt
(K + U) = 0, where K and U are

evaluated along any solution of (1.12). Differentiating, we get:

(1.14)
d

dt

(
mẋ2

2
+U(x)

)
= mẍẋ+U ′(x)ẋ

(1.8)
= (mẍ−F (x))ẋ

(1.12)
= 0.

♦
Remark 1.4. It is instructive to read (1.14) backwards. That is, we

could have multiplied both sides of Newton’s law mẍ − F (x) = 0

by ẋ and then noticed that the left-hand side is just d
dt (K + U).

Incidentally, the idea of multiplying by ẋ is suggested by the fact

that F ẋ = Fv is the power expended by the force F applied to a

moving particle.7

7Indeed, Fv = F dx/dt; since Fdx is the work, F dx/dt is the work per unit time,
i.e., the power.
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Mechanics and ODEs. Newton’s law (1.12) is an ordinary differ-

ential equation (for the unknown function x = x(t)); in that sense

mechanics is a branch of the theory of ordinary differential equations.

A solution is completely specified by a pair x(0), ẋ(0) of initial data,

according to the theorem on uniqueness and existence for ODEs, pro-

vided F is “nice” (continuous differentiability, for instance, qualifies

as nice, see [3] for details). In the idealized world of classical mechan-

ics the future is completely determined by the present, provided the

forces are nice functions of the position.8

That mechanics is governed by second order differential equations

is an experimental fact. One could imagine a world in which particles’

motions were governed by, say, a third order differential equation, or

even by an integral equation which involves memory of the past. For

instance, we could imagine that a particle held perfectly still and

released will, in the absence of external forces, start moving sponta-

neously in memory to its earlier history, a bit like a raw egg spinning

on the table, when stopped momentarily and then released, would

start moving again. In fact, Newton’s law is only an approximation

of fuzzy quantum mechanical objects, and so the “second order” is

only an approximate fact and not as intrinsic as might seem, and is

probably devoid of deep philosophical meaning.9

Examples of energy conservation. In particular examples, con-

servation of energy (1.13) looks as follows.

1. For a free falling projectile governed by mz̈ = −mg:

mż2

2
+mgz = E.

8A surprising counterexample to this determinism is a bead on the wire whose

graph is y = −x4/3. The bead can stay at the equilibrium at x = 0 for all time. But
the bead can also leave this equilibrium at any time without violating Newton’s second
law. The same holds for the similar example of a particle in the repelling potential

U = −x4/3; see Problem 2.33 on page 136.
9This descent from the philosophical to technical — or ascent, depending on one’s

scale of values — happens in science quite often. Fermat’s principle is an example.
According to Fermat, light rays follow paths of least time. In the early days some
saw in this divine intervention. Later, however, a much more prosaic explanation was
found: Fermat’s principle is the result of phase cancellation or addition. In this case
philosophy turned out to be a sophisticated way of admitting, perhaps unknowingly,
that one doesn’t quite know what’s going on.
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2. For a mass-spring system governed by mẍ = −kx:

mẋ2

2
+

kx2

2
= E.

3. For the pendulum governed by ms̈ = −mgL sin(s/L):

mṡ2

2
+mgL(1− cos(s/L)) = E,

or, in terms of the angle θ = s/L:

θ̇2

2
+

g

L
(1− cos θ) = const.

4. For a particle of unit mass in a two-well potential U = −x2 + x4

(ẍ = −U ′(x)):
ẋ2

2
− x2 + x4 = E.

6. The phase plane

We continue to discuss Newton’s law,

mẍ = F (x),

for the motion of a particle on the line. We now describe a funda-

mental and beautiful way to think of this system geometrically.

Introducing the phase plane. Complete information on the par-

ticle’s future consists of two pieces of data (x, ẋ) at some t. It is

natural to visualize (x, ẋ) as a point in the plane, thus treating the

velocity as the second dimension. The point (x, ẋ) is referred to as

the phase point, since it contains full information about the “state”or

the “phase” of the system. Thus every point in the plane represents

a particle at x with velocity ẋ = y, and vice versa.

We could call the phase plane the “odometer–speedometer plane”,

since x is the odometer reading of the particle, and y = ẋ is its

speedometer reading; see Figure 10.

Seeing the acceleration. As any driver knows, acceleration of the

car ahead is much harder to see than its velocity. In the phase plane,

however, we can see the acceleration geometrically – namely, as the

y-component of phase velocity in the phase plane, Figure 11.
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Figure 10. Left: One point on the x-axis can have many
velocities as represented by points on the vertical line through
x. Right: different velocities for the same position are seen as
different y-coordinates in the phase plane.

Figure 11. Acceleration seen geometrically, as the vertical
component of the velocity vector in the phase plane: a = ẍ =
ẏ. A free particle is shown on the left; its acceleration is zero,
and so its velocity vector is horizontal; a particle with negative
acceleration is shown on the right.

Phase velocity field. Any mechanical system mẍ = F (x) is de-

scribed by a vector field in the plane, as explained in this paragraph.

Calling the velocity ẋ = y, we have ẏ = ẍ = F (x) according to

Newton’s law. Summarizing, we have

(1.15)

{
ẋ = y,

ẏ = F (x)/m

or, in vector form,

(1.16) ż = V(z), z = (x, y), V = (y, F (x)/m).

This is simply a restatement of Newton’s law; we traded one second

order equation mẍ = F (x) for two first order equations. But the
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advantage of the new vector form (1.15) is in this geometrical inter-

pretation: to every point (x, y) in the plane, our system (1.15) assigns

the velocity (ẋ, ẏ). Better said, the system (1.15) defines an imagi-

nary fluid flow in the plane, where the velocity of fluid at the point

z = (x, y) is V(z) = (y,m−1F (x)). Solving the equation amounts to

finding the position of any fluid particle at any time.10

Interpreting Newton’s law mẍ = F (x) as a fluid flow (1.16) opens

a new vista. For example, it becomes easy to view several motions of

a mechanical system simultaneously, and to see how they fit together

— something that is near-impossible to do by a direct physical ob-

servation. Furthermore, we can analyze geometrical features of the

flow: is it incompressible? does it stretch in some directions more

than in others?, and so on. These features of the “fluid” can then be

translated back to mechanics of the particle to give remarkable in-

sights which direct physical intuition does not give. Our goal now is

to show how to draw the pattern of the fluid flow given by (1.15). The

pattern of flow lines in the phase plane is called the phase portrait.

How to draw phase portraits. The key to constructing phase

portraits for (1.15) is to use the conservation of energy,

(1.17)
y2

2
+ U(x) = E = const. for all t,

where y = ẋ and where x = x(t) is any solution of ẍ = F (x). The

constant E here depends on the choice of initial data. Geometrically,

(1.17) states that the phase trajectories are level curves of the function

y2/2 + U(x), and the question reduces to understanding the pattern

of level curves of the energy function. Here are three examples.

1. The harmonic oscillator ẍ = −x corresponds to the system11{
ẋ = y,

ẏ = −x.

The trajectories are circles centered at the origin. Indeed, U = x2/2,

and the conservation of energy (1.17) gives ẏ2/2 + ẋ2/2 = c. The

10The solution exists and is unique.
11This is the dimensionless version of mẍ = −kx. The rescaling can be achieved

by choosing the new time τ = at in such a way that the period in new units becomes

2π, or 2π = a 2π
√

m/k, giving a =
√

k/m; see also Problem 1.23 on page 57.
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Figure 12. An harmonic oscillator (linear restoring force)
and a linear repelling force.

motion on the circles is clockwise, since ẋ = y > 0 in the upper

half-plane. Incidentally, to see that the motion is circular requires

no calculation: the velocity vector (y,−x) is perpendicular to the

position vector of (x, y) (since their slopes are negative reciprocal).

2. Linear repelling force: ẍ = x. The equivalent system is{
ẋ = y,

ẏ = x.

The trajectories are hyperbolas of the form y2 − x2 = c, Figure 12,

as follows from (1.17) or by direct computation:

d

dt
(y2 − x2) = 2(yẏ − xẋ) = 2(yx− xy) = 0.

3. The pendulum. The equation of the pendulum in a rescaled

form is ẍ+ sinx = 0; here x is the angle between the pendulum and

the downward vertical (see Problem 1.23 on page 57 for the details of

rescaling). Figure 13 shows the phase portrait; all possible motions

can be seen at a glance. Closed orbits correspond to oscillatory mo-

tions; unbounded orbits correspond to the pendulum rotating. The

regions of these two motions are separated by the so-called hetero-

clinic orbits which asymptotically approach the upside-down equilib-

rium as t → ∞ and also as t → −∞.
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Figure 13. Phase portrait of the pendulum: A – the hang-

ing equilibrium; B – the upside-down equilibrium (represented
by (π, 0) and its translates by 2π); C – an oscillatory motion;
D – clockwise tumbling motion; F and G – motions approach-
ing the unstable equilibrium as t → ±∞ (the so-called hete-
roclinic motions).

7. Lagrangian equations of motion

Lagrange’s equations were discovered roughly 100 years after New-

ton’s laws. Although Lagrange’s equations are equivalent to Newton’s

laws, they occupy a more central position in mechanics, as Figure 17

on page 287 illustrates. Lagrange’s equations also lead to quantum

mechanics (as explained on the same page). Since this chapter deals

with particles in one dimension, I will formulate Lagrange’s equation

for this case, postponing the almost identical statement for higher

degrees of freedom to Chapter 2.

Lagrange’s equation. Consider, as before, a particle moving along

the x-axis subject to the force F (x) acting in the direction of the line.

Consider the difference of the particle’s kinetic and potential en-

ergies:

(1.18) L(x, ẋ) =
mẋ2

2
− U(x);

this function of x, ẋ is called the Lagrangian.12 Let us first treat x, ẋ

as two independent variables (and not (yet) as functions of t), so at

this stage ẋ is an independent variable, and not the time-derivative

12I know of no dynamical interpretation of this difference. However, this differ-
ence does have a direct static meaning, at the price of reinterpreting t and x. This is
described in Section 19.
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of some function x(t). Differentiating L first by ẋ and then by x, we

discover:

(1.19) Lẋ = mẋ and Lx = −U ′(x),

where the subscripts denote partial derivatives: Lx = ∂L
∂x and Lẋ =

∂L
∂ẋ . In other words, both the momentummẋ and the force −U ′(x) are

partial derivatives of a single function L. Hence Newton’s equation

mẍ = −U ′(x) can be rewritten as

(1.20)
d

dt
Lẋ = Lx.

It should be emphasized that Lẋ, Lx denote partial derivatives when

x, ẋ are treated as independent variables; however, when taking the

derivative d
dt in (1.20), we treat x as the function of time. Equation

(1.20) is called the Euler–Lagrange equation. The recipe for gener-

ating equation of motion from the Lagrangian L applies verbatim in

cases much more general than the one just considered.

8. The variational meaning of the
Euler–Lagrange equation

Euler–Lagrange equation (1.20) has a remarkable hidden meaning.

Loosely speaking, any solution of this equation, i.e., any physical

motion, corresponds to the “shortest” path in the (t, x)-plane, in a

certain sense which we now make precise.

Functionals and critical functions. Let us fix two pointsA0(t0, x0)

and A1(t1, x1) in the (t, x)-plane. Take any differentiable function

x = x(t) whose graph connects connects A0 and A1:

(1.21) x(t0) = x0, x(t1) = x1,

(see Figure 14), and define the “length” of the graph, called the action,

as the integral of the difference of kinetic and potential energies:

(1.22) S[x] =
∫ t1

t0

(
mẋ2

2
− U(x)

)
dt =

∫ t1

t0

L(x, ẋ) dt.

This integral assigns a real number S[x] to any given (continuously

differentiable) function x = x(t) with fixed ends as in (1.21). Square
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Figure 14. The graph of the actual motion x = q(t) is the
“shortest” curve between points A0(t0, x0) and A1(t1, x1) in

the sense of the “distance”
∫ t1
t0

L dt.

brackets in S[x] remind us that x is a function. Such scalar-valued

functions of a function are called functionals.

The minimum, or more generally, a critical function of the func-

tional S is defined as follows. A function xc : [t0, t1] 	→ R is said to

be a critical function of the functional (1.21)–(1.22) if

(1.23)
d

dε
S[xc + εξ]

∣∣∣∣
ε=0

= 0

for any smooth function ξ with ξ(t0) = ξ(t1) = 0; see Figure 14.

Smoothness of ξ must be assumed for the derivative in (1.22) to exist.

According to the definition (1.23), the functional changes with zero

speed under any deformation of the critical curve.

Variational meaning of dynamical equations. Now we have the

most remarkable and fundamental fact in mechanics, which is a cul-

mination of several discoveries and known as Hamilton’s principle:

The function x = x(t) represents an actual motion, i.e., obeys (1.20)

if and only if

x(t) is a critical function of the action integral (1.22).

Superficially, this is just a mathematical theorem (restated and

proven as Theorem 1.1 on page 22). However, more is going on:

the fact that actual motions are the “shortest” curves in space-time

(t, x) reflects the fact that classical mechanics is the limiting case of

quantum mechanics (see pages xviii and 286 for further discussion).



9. Euler–Lagrange equations — general theory 21

Remark. If t1 − t0 is sufficiently small, then the actual motion min-

imizes the action (1.22). This is explained in Chapter 6.

Analogy between functionals and real functions of several

variables. To get more intuition on functionals and their critical

functions just defined, note that our functional S[x] is an analog of

a real function of many variables. Indeed, imagine discretizing x(t),

i.e., replacing it by a sampling of its values at n points in [t0, t1]. The

integral S would then be replaced by a function of these values — it

would become, in other words, a usual function of n variables. Recall

the calculus definition of the critical point of such a function (with the

goal of finding a familiar analog of (1.23)). A point xc ∈ R
n is said to

be a critical point of a function f(x) of n variables x = (x1, . . . , xn)

if the directional derivative at xc is zero in every direction, i.e.,

d

dε
f(xc + εξ)

∣∣∣∣
ε=0

= 0 ∀ξ ∈ R
n.

In other words, f changes with zero instantaneous speed at the crit-

ical point xc. This is precisely the analog of the definition (1.23)

of the stationary function. The left-hand side in (1.23) is simply a

directional derivative of S in the function space.

9. Euler–Lagrange equations — general theory

In the preceding section we defined a critical function of a functional

(1.24) S[x] =
∫ t1

t0

L(x, ẋ) dt, x(t0) = x0, x(t1) = x1,

with prescribed endpoints (t0, x0), (t1, x1). The definition did not

rely on the special form L = K −U and we abandon this assumption

here; we will only need L to have continuous partial derivatives with

respect to its arguments x, ẋ up to order two (with x, ẋ treated as

independent variables).

In this section we derive the “first derivative test” for S[x],
namely, a necessary condition for xc(t) to be a critical function.

Euler and Lagrange independently found the famous answer de-

scribed in the following theorem.



22 1. One Degree of Freedom

Theorem 1.1 (The Euler–Lagrange equation). Assume that L(x, ẋ)

has two continuous derivatives in its variables (at this stage ẋ is

treated as an independent variable, and not dx/dt.) If x = x(t) is

a critical function (we drop the subscript c from now on) of the func-

tional (1.24), and if x has two continuous derivatives, then x satisfies

the differential equation

(1.25)
d

dt
Lẋ − Lx = 0

where

Lx =
∂

∂x
L(x, ẋ), Lẋ =

∂

∂v
L(x, v)|v=ẋ .

Note that x and ẋ are treated as independent variables when taking

these partial derivatives; however, d
dt

in (1.25) treats both x and ẋ as

functions of t.

Example. For the harmonic oscillator, L = mẋ2/2− kx2/2 we have Lẋ =

mẋ, Lx = −kx; substituting these into (1.25), we get mẍ + kx = 0, as

expected.

Proof. Let x = x(t) be a critical function of S. By the definition, x

satisfies
d

dε

∫ t1

t0

L(x+ εξ, ẋ+ εξ̇)|ε=0 = 0

for all differentiable ξ vanishing at t0, t1. Differentiation by ε can be

applied to the integrand. Applying the chain rule and then setting

ε = 0 we get

(1.26)

∫ t1

t0

(Lxξ + Lẋξ̇)dt = 0,

where L = L(x, ẋ). Note that in applying the chain rule we had to

treat x and ẋ as independent variables in taking the partials Lx, Lẋ.

Let us now integrate by parts the second term in (1.26). Using ξ(t0) =

ξ(t1) = 0 to get rid of the boundary term we get

(1.27)

∫ t1

t0

(
Lx − d

dt
Lẋ

)
ξ dt = 0.

Note that d
dt must treat x and ẋ as functions of t.
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Now since the function ξ is arbitrary (apart from the assumptions

mentioned before), we expect the expression f(t) = Lx − d
dt
Lẋ to

be identically zero (as desired). Indeed, assume for a moment the

contrary: f(t) �= 0, say, f(t) > 0 for some t ∈ [t0, t1]. Since f is

continuous by our assumptions, we have f > 0 on a whole interval I

containing t. Let us then choose ξ > 0 on I and ξ = 0 elsewhere. But

then
∫ t1
t0

f(t)ξ(t) dt > 0, in contradiction with (1.27). This completes

the proof. ♦

Remark. As stated in the footnote to the theorem, it actually suffices to
assume that the critical function x(t) has just one continuous derivative;
the existence of the second derivative then follows. The idea of the proof
is very nice: instead of integrating by parts the second term in (1.26),
integrate the first! This gives∫ t1

t0

(
−
∫ t

t0

Lxdτ + Lẋ

)
ξ̇ dt = 0;

using arbitrariness of ξ, it is easy to show that

−
∫ t

t0

Lxdτ + Lẋ = const.

Since the first term is continuously differentiable (C1), so is Lẋ(x, ẋ). But

this implies that ẋ itself is continuously differentiable (I omit details which

involve using the implicit function theorem). In other words, x is twice

continuously differentiable, as claimed.

10. Noether’s theorem/Energy conservation

The following is actually a special case of Noether’s theorem — the

general case is described on pages 267 and 270 when we consider

higher degrees of freedom.

Theorem 1.2. For any solution x of the Euler–Lagrange equation

(1.25) we have

(1.28) ẋLẋ − L = const.
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Proof goes by differentiation: Using the chain rule and the Euler–

Lagrange equation, we get

d

dt
(ẋLẋ − L) =��ẍLẋ + ẋ

d

dt
Lẋ − Lxẋ−��Lẋẍ = ẋ

(
d

dt
Lẋ − Lx︸ ︷︷ ︸

=0 by (1.25)

)
= 0.

♦
Although this proof is short, it does not explain “what is going

on.” A more illuminating proof, which shows what is happening geo-

metrically, and works for the higher-degree-of-freedom case, is given

on page 270.

Example. For the special case: L = mẋ2

2
− U(x), Noether’s theorem re-

covers the conservation of energy:

ẋLẋ − L =
mẋ2

2
+ U(x) = const.,

as a direct substitution of this L into (1.28) shows. Note that ẋLẋ − L

turned out to be the total energy.

11. Hamiltonian equations of motion

We already saw one remarkable way to reformulate Newton’s law

mẍ = −U ′(x), as the Euler–Lagrange equation. There is yet an-

other reformulation which combines a beautiful symmetry with a yet

additional insight. At this point I describe only how to transform

Euler–Lagrange’s equation into a Hamiltonian system, leaving out

the motivation (which can be found in Chapter 8).

The momentum and the Hamiltonian. Let us define the mo-

mentum

(1.29) mẋ = p

and express the total energy H = mẋ2/2 + U in terms of p by sub-

stituting ẋ = p/m:

(1.30) H(x, p) =
p2

2m
+ U(x).
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The energy thus expressed in terms of position and momentum is

called the Hamiltonian of the system. It is instructive to take partial

derivatives of H with x, p treated as two independent variables:

Hx(x, p) = U ′(x) = −F (x), Hp(x, p) =
p

m
.

Using the first equation, Newton’s law mẍ = F (x) becomes ṗ = −Hx;

using the second equation, we can rewrite the definition of p as ẋ =

p/m = Hp. Summarizing, we have

(1.31)

{
ẋ = Hp(x, p),

ṗ = −Hx(x, p).

This system is equivalent to Newton’s equation. This elegant system

looks even more elegant in vector form,

(1.32) ż = J ∇H(z),

where

z =

(
x

p

)
, J =

(
0 1

−1 0

)
, ∇H =

(
Hx

Hp

)
.

Note that J rotates vectors by π/2 clockwise, and we arrive at a re-

markable connection between Hamiltonian and gradient systems: any

Hamiltonian vector field (1.31)–(1.32) is obtained from the gradient

vector field ż = ∇H(z) by the π/2 rotation clockwise, Figure 15.

Figure 15. Hamiltonian vector field is orthogonal to the gra-

dient vector field ∇H.
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Trajectories are level curves of H. Indeed, H is constant along

each solution of (1.31):

d

dt
H(z(t)) = Hxẋ+Hpṗ = HxHp +Hp(−Hx) = 0.

This can be seen geometrically from (1.32): ż ⊥ ∇H, and thus ż is

tangent to a level curve of H; this means that z(t) stays on the level

curve.

Time-dependent Hamiltonians. Consider the motion of a particle

in a potential which depends on time:

(1.33) ẍ = −Ux(x, t);

examples include a pendulum whose pivot undergoes vertical oscilla-

tions:

θ̈ = − 1

L
(g + a(t)) sin θ,

where a is the acceleration of the pivot, or a mass hanging on a spring

whose end is oscillating in the vertical direction, etc.

Exactly as before, Newton’s law (1.33) can be written as a Hamil-

tonian system:

(1.34)

{
ẋ = Hp(x, p, t),

ṗ = −Hx(x, p, t),
H =

p2

2m
+ U(x, t)

or, in vector form,

(1.35) ż = J∇H(z, t).

Exercise. Does H remain constant along solutions of (1.35)?

Answer. Denoting partial derivative by subscripts, we get, differentiating
H along a solution of the Hamiltonian system:

d

dt
H(x, p, t) = Hxẋ+Hpṗ+Ht = HxHp +Hp(−Hx) +Ht = Ht.

We conclude that if H depends on t, it does not remain constant.

12. The phase flow

In this and the next section we introduce two fundamental concepts

— the flow and the divergence, important in their own right, and used

in Liouville’s theorem stated in Section 16.
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Liouville’s theorem states that if a vector field has zero divergence

(see page 28 for the definition), then the flow generated by the vector

field is incompressible, or area-preserving: as a “blob” of initial data

is carried by the flow, the area of the blob remains unchanged.13

We assume throughout that the vector field v(x) in R
2 is smooth

on R
2, and that for any initial condition in R

2 the solution of the

ODE

(1.36) ẋ = v(x)

is defined for all t.

The phase flow. For any point x0 ∈ R
2 there is a unique solution

x = x(t) of (1.36) satisfying the initial condition x(0) = x0; this is the

statement of the existence/uniqueness theorem for ODEs, applicable

by the assumptions we made on v. The standard notation for this

solution is x(t) = ϕtx0. We can view ϕt as the map of R2 which sends

x0 to ϕtx0. Since t is arbitrary, we have a one-parameter family of

these maps, also referred to as the time t maps (of the phase space

to itself). This family of maps is called the flow (associated with the

ODE (1.36)); the term “flow” is suggested by thinking of ϕtx0 as the

position at time t of a particle of fluid.

Figure 16. Flows associated with some vector fields.

13We are speaking of flows in R
2; in R

3 the area must be replaced by volume, and
in R

n by n-volume.
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Theorem 1.3. The family of maps {ϕt : t ∈ R} associated with the

vector field v = v(z) satisfies the following properties:

(1) ϕt ◦ ϕτ = ϕt+τ , for any real t, τ .

(2) ϕ0 is an identity map: ϕ0x = x for all x ∈ R
n.

In other words, the family forms a group under composition.

This theorem is just a restatement of the existence and uniqueness

theorem for ordinary differential equations, coupled with the fact that

v is autonomous (i.e., does not depend on t). Without the latter

assumption property (1) would fail.

13. The divergence

The concept of divergence is the second prerequisite for the formula-

tion of Liouville’s theorem. We again limit discussion to R2, although

most ideas apply to any dimension almost verbatim.

The definition. The divergence of a vector field v in R
2 at a point

x is the outward flux per unit area through the boundary of a small

region as the region shrinks to the point x:

(1.37) div v(x) = lim
D→{x}

1

|D|

∫
∂D

v · n ds,

where D is a region enclosing x (Figure 17), |D| = area(D), ∂D is

the boundary of D, n is the unit outward normal vector and s is the

arc length.14

The limit (1.37) exists and does not depend on the particular

choice ofD, provided only that v is a smooth function of x, y, and that

D is bounded by a piecewise smooth curve without self-intersections.

14In dimension n > 2 the definition is the same, except that ds is the (n − 1)-
dimensional surface element of the n-dimensional region D.
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Figure 17. Definition of the divergence of a vector field.

The formula. By choosing D in the definition (1.37) to be a rectan-

gle, D = [x, x+ dx]× [y, y+ dy], one arrives at the standard formula,

(1.38) div v =
∂v1
∂x

+
∂v2
∂y

, where v = (v1, v2).

Intuitively, the formula makes perfect sense: ∂v1
∂x detects the depen-

dence of the x-component of the velocity on x; if ∂v1

∂x
is large, then

the horizontal velocity v1 is greater through the right side of the box

than through the left side, contributing to positive net flux out of the

box. More details on the topic can be found in [17].

Theorem 1.4 (The Divergence Theorem). If v is a continuously dif-

ferentiable vector field on a bounded domain D in R
2 with the piece-

wise smooth boundary, then

(1.39)

∫
D

div v dx =

∫
∂D

v · n ds,

where dx is the element of area, and ds is the element of arc length

of the boundary ∂D.

Remark 1.5. The theorem and the proof apply to the case R
n for

any n almost verbatim.

Proof. This theorem is almost obvious if one uses the definition

(1.37), rather than the computational formula (1.38). Indeed, let us

divide the domain D into subdomains of small diameters ≤ δ, as

shown in Figure 18, and denote a typical subdomain by Di. The first

step is to note that

(1.40)

∫
∂D

v · n ds =
∑
i

∫
∂Di

v · n ds;
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D

Figure 18. Proof of the divergence theorem. Right: fluxes
on shared boundaries cancel.

indeed, the integrals over the shared boundaries cancel, since the

outward normals on a shared boundary point in opposing directions;

see Figure 18. We now apply the definition of divergence to each Di:

picking a point xi ∈ Di for each i, we have by (1.37) that

div v(xi) =
1

|Di|

∫
∂Di

v · n ds+ ri,

where the remainder ri is small if diam (Di) ≤ δ is small. Actually,

the ri are uniformly small: for any ε there exists δ such that |ri| < ε

for all i, provided diam (Di) ≤ δ; I omit the details of the proof,

which uses continuous differentiability of v. Rewriting the above as

(1.41)

∫
Di

v · n dx = (div v(xi)− ri) |Di|,

and adding up, we get

(1.42)
∑
i

∫
∂Di

v · n ds︸ ︷︷ ︸∫
∂D

v·n ds by (1.40)

=
∑
i

div v(xi)|Di| −
∑
i

ri|Di|︸ ︷︷ ︸
<ε|D|

.

The second term is the Riemann sum for the first integral in (1.39).

In the limit ε → 0, (1.42) becomes (1.39). This proves the divergence

theorem. ♦
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Figure 19. Computing ΔA (Steps 1–4).

14. A lemma on moving domains

The divergence in R
2 admits a very nice interpretation: it is the

exponential rate of growth of an infinitesimal area15 carried by the

vector field. In other words, the divergence is the local logarithmic

rate of the area’s growth. Now to make this precise, we need to express

the rate of change of the volume of a moving domain; the lemma in

this section does it. Incidentally, this lemma is a generalization of

the fundamental theorem of calculus, as explained at the end of the

section. The extension to R
n is verbatim and involves no new ideas;

and since our goal is to learn ideas, we stick to R2.

Lemma 1.1. Let D ∈ R
2 be a region with a piecewise smooth bound-

ary; let v be a vector field in R2, with the associated flow ϕt, and let

A(t) = area(ϕtD). Then

(1.43) A′(t) =

∫
∂Dt

v · n ds.

A heuristic explanation of the lemma is supplied by Figure 19:

an arc ds moving with the flow for time Δt sweeps area approximately

v·n dsΔt (shown as a shaded parallelogram), and thus the area swept

by the entire boundary in time Δt is

ΔA =

∫
∂D

v · n ds Δt+ o(Δt).

15In R
n the n-volume should replace the area.
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Figure 20. Explaining (1.44) geometrically.

Dividing by Δt and taking Δt → 0 we get (1.43). Rather than mas-

saging this heuristic argument into a rigorous proof, I give an alter-

native one.

Proof of the lemma in R
2. Let us parametrize ∂D by x = r(u), 0 ≤

u ≤ 1, r(0) = r(1). The curve ∂(ϕtD) is then also parametrized by

u: r(u, t) = ϕtr(u). The area of ϕtD is then given by

(1.44) A(t) = area(ϕtD) =
1

2

∫ 1

0

r× ru du

(see Figure 20); here r × ru = det(r ru) is the signed area of the

parallelogram generated by the pair of vectors (also called the scalar

cross product). Differentiating by t and integrating the second term

by parts, we get:

A′(t) =
1

2

∫ 1

0

(rt × ru + rt × rut) du =
1

2

∫ 1

0

(rt × ru − ru × rt) du.

Since ru × rt = −rt × ru, this reduces to

A′(t) =

∫ 1

0

rt × ru du.

But rt =
d
dt
r(u, t) = d

dt
ϕtr(u, t) = v(r(u, t)), and rudu = T ds, where

T is the unit tangent vector to ∂ϕtD. We therefore have

A′(t) =

∫
∂(ϕtD)

v ×Tds =

∫
∂(ϕtD)

v · n ds;

the identity v × T = v · n holds because the angles ∠(v,T) and

∠(v,n) are complementary. ♦
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Proof of the lemma in R
n. The above proof can be extended to

R
n, by replacing (1.44) with

V (t) =
1

n

∫
det(r, ru1

, . . . , run−1
) du1 . . . dun−1,

the subscripts denoting partial derivatives.

Here is yet another dimension-independent proof of the Lemma in R
n;

the judgment on which proof is better is left to the reader. Using the
change of variables x = ϕty we get:

A(t) =

∫
ϕt(D)

dx =

∫
D

det Φ(t,y)dy,

where

(1.45) Φ(t,y) =
∂ϕty

∂y

is the Jacobian derivative matrix of the map ϕt. Differentiating by t, we
get

(1.46) A′(t) =

∫
D

d

dt
detΦ dy,

and our goal now is to relate the integrand to the vector field v. This
relation can only come from the definition of ϕt, according to which

d

dt
ϕty = v(ϕty),

for all y ∈ D. Differentiating by the initial condition y and exchanging the
order of differentiation we obtain

(1.47)
d

dt
Φ =

∂v(ϕty)

∂y
Φ.

This implies, by Abel’s theorem:

(1.48)
d

dt
detΦ = tr

∂v(ϕty)

∂y
detΦ.

But

tr
∂v(ϕty)

∂y
= div v,

and (1.48) becomes

d

dt
detΦ = div v(ϕty) det Φ.

Substituting this into (1.46) gives

A′(t) =

∫
D0

div v(ϕty) detΦ dy.
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Returning to the old variables x = ϕty we arrive at the desired statement:

A′(t) =

∫
Dt

div v(x) dx =

∫
∂Dt

v(x) · n ds,

where the last step uses the divergence theorem. ♦

Remark 1.6. The fundamental theorem of calculus (FTC) is a spe-

cial case of the lemma on moving boundaries: indeed, FTC deals with

the rate of change of the area
∫ t

a
f(x) dx under the curve y = f(x),

with a ≤ x ≤ t, where only one piece of the boundary is moving,

namely, the “right wall” x = t. The speed of this wall is v = dt
dt

= 1,

and its length L = f(t). The boundary integral of the normal speed

is therefore Lv = f(t) · 1 = f(t), so that our lemma gives

d

dt

∫ t

a

f(x) dx = f(t),

showing that FTC is indeed a special case.

15. Divergence as a measure of expansion

This section explains that the divergence in R
2 is the rate of growth

of an infinitesimal area per unit area (in R
n the same statement holds

if the area is replaced by n-volume). Here is a precise statement.

Theorem 1.5. Let A(t) = area(ϕtD) denote the area of a domain

D moving with the flow ϕt of the vector field v. We then have:

(1.49) div v(x) = lim
D→{x}

A′(0)

A(0)
.

Proof. By the lemma on moving domains

A′(0) =

∫
Dt

v · n ds,

as follows from (1.43) by setting t = 0. Substituting this into the

definition of divergence (1.37), we obtain (1.49). ♦
Equation (1.49) confirms the earlier statement that div v(x) mea-

sures the instantaneous rate of change of the area of a small region

surrounding x, per unit area, as the area shrinks to x. In other words,

div v(x) is the exponential rate of growth of area in a small neighbor-

hood of x, also referred to as the logarithmic derivative of the small

area.
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Incidentally, the interest rate in continuous compounding in fi-

nance is an example of divergence in R
1. Indeed, the interest rate k

is defined by

k = 100 A′(t)/A(t),

where A(t) is the amount of money in the account at time t, the one-

dimensional version of (1.49). The vector field v in compounding is

given by v(x) = kx, since the money grows according to Ȧ = kA.

We would have used the very intuitive expression (1.49) as the

definition of the divergence were it not for the fact that (1.49) requires

the mention of the time and of the flow ϕt, which our definition (1.37)

does not. The advantage of (1.49), however, is that it better reflects

the term “divergence”, since it indeed measures the expansion of area.

Another advantage of (1.49) is that it suggests that if divv(x) = 0

for all x, then the flow is area-preserving. This is indeed the content

of Liouville’s theorem, which is discussed next.

To summarize, (1.37) and (1.49) reflect two views of the diver-

gence: one by fixing the domain and watching the particles go by, and

the other by following a moving domain. The first of these is referred

to as the Eulerian approach, the second as the Lagrangian.

16. Liouville’s theorem

As before, ϕt is the flow of a smooth vector field v in R
2 and we

assume, as always, that ϕt is well defined for all t ∈ R.

Theorem 1.6 (Liouville). If div v = 0, then the flow ϕt of v is area-

preserving, that is, for any planar region D bounded by a piecewise

smooth curve without self-intersections

(1.50) A(t) = area(ϕtD) = const.

Proof.

(1.51) A′(t)
(1.43))
=

∫
∂(ϕtD)

v · n ds
(1.39)
=

∫
ϕtD

div v dx = 0.

♦

Remark 1.7 (On nonautonomous vector fields). Liouville’s theorem

holds even for the time-dependent vector fields v = v(x, t). None of
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the statements or arguments in this section are affected by introducing

the time-dependence. It suffices to assume that v is continuous (or

even merely summable) in t, see [3].

Remark 1.8. To summarize its gist, Liouville’s theorem amounts to

little more than redefining divergence dynamically, as (1.49). In fact,

this alternative definition of divergence is an infinitesimal version of

Liouville’s theorem. When viewed in this way, Liouville’s theorem is

completely transparent.

Exercise 1.2. Show that a divergence-free vector field v(x) in R
2 is locally

Hamiltonian: that is, if div v = 0 in a neighborhood of a point, then there
exists a real-valued function H such that v = (Hy,−Hx). Such H is called
a Hamiltonian.

Hint: Define H(z) as the flux of v through a curve connecting z with
some chosen point. Show that H does not depend on the choice of the
curve (using div v = 0).

Exercise 1.3. Show that the preceding statement is only true locally, i.e.,
give an example of a divergence-free vector field for which a single–valued
Hamiltonian function does not exist.

Answer. v(z) = 1
|z|2 z is a divergence-free flow in the punctured plane (the

flow due to a point source at the origin). H = arg z satisfies v = (Hy,−Hx)

but H is not single-valued. Any other Hamiltonian of v differs from H by

a constant, hence there is no single-valued Hamiltonian of v.

17. The “uncertainty principle” of classical
mechanics

In this section we consider time-dependent Hamiltonian systems:{
ẋ = Hp(x, p, t),

ṗ = −Hx(x, p, t).

Liouville’s theorem still applies, since

div(Hp,−Hx) = Hpx + (−Hxp) = 0.

We conclude that the flow ϕt of this system is area-preserving: for

any domain D ⊂ R
2 with a piecewise smooth boundary we have

area(ϕtD) = const. This implies that if, for some t, the image ϕtD

is squeezed in, say, the x-direction, then it must be stretched in the
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Figure 21. The uncertainty principle in classical mechanics.

p-direction. In other words, the more we know x, the less we know p

— a kind of uncertainty principle in classical mechanics.

To get some practical conclusion, let D be a rectangle, as shown

in Figure 21; as the figure illustrates, ΔX, ΔP are the horizontal

and vertical widths of ϕtD for some later time t. Since area(D) =

area(ϕtD), we have

(1.52) ΔxΔp ≤ ΔXΔP.

To suggest the analogy with quantum mechanics, denote area(D) =

ΔxΔp = h (recall �, the Planck constant); (1.52) becomes

ΔXΔP ≥ h.

An example with particles. The motion of particles in a potential

U(x, t) on the line is governed by ẍ = −Ux(x, t); the potential may

depend on t arbitrarily. The rectangle D in Figure 21 corresponds

to a “cloud” of initial data with the range Δx of positions and with

the range Δp of velocities; the view in the (t, x)-plane is shown in

Figure 22. Now assume that ΔX < Δx/100; that is, assume that all

the particles from the initial cloud gathered up into a narrower inter-

val. Squeezing in the x-direction means expansion in the p-direction,

according to (1.52):

ΔP ≥ Δx

ΔX
Δp > 100Δp.

This is a remarkable conclusion: the more the particles bunch up

together, the more disparate their velocities become.
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Figure 22. Classical mechanical uncertainty principle ap-

plied to trajectories or rays.

The uncertainty principle explaining how telescopes work.

The discussion of the preceding paragraph has an optical interpreta-

tion. Figure 22 shows the set of solutions of ẍ+Ux(t, x) = 0. Accord-

ing to the preceding paragraph, if these solutions “squeeze” through

a narrow gap ΔX at some t, then ΔP (the range of their slopes at

that time t) is large. Now a very similar “uncertainty principle” holds

not just for the solutions of ẍ+Ux(t, x) = 0, but also for rays passing

through a binocular, or a telescope. A remarkable consequence is this:

the mere fact that the telescope converts a parallel beam of rays into

a narrower parallel beam implies that the telescope magnifies distant

objects. A loose explanation is the following. Because the widths of

parallel beams decrease in passing through the telescope, the angles

between any two beams increase — Liouville’s theorem has its optical

counterpart. But this means that distant objects are magnified, since

we perceive the size of an object, say the Moon, by the angles between

the nearly parallel beams emitted by different parts of the object as

these beams enter our eyes. Indeed, a parallel beam focuses on a dot

on the retina, and the greater is the angle between the beams, the

greater is the distance between two illuminated dots on the retina,

and the greater is the perceived distance between the sources of the

two beams.

More details on this, including an optical counterpart of Liou-

ville’s theorem, can be found in [14], page 129.
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18. Can one hear the shape of the potential?

The famous (among mathematicians) question of Mark Kac: “can

you hear the shape of the drum?” refers to the problem of recovering

the shape of a vibrating membrane from the knowledge of all of the

frequencies, or overtones, of its vibrational modes. A much simpler

analog of this problem deals with one-dimensional oscillations of a

classical particle governed by ẍ = −U ′(x).

Question. Can one recover the shape of the potential U(x) given

the period T (E) of oscillation of a particle as a function of its energy

(or the amplitude)?16

The remarkable answer, due to Abel, is “yes”, under mild sym-

metry assumptions. Let the potential U be as in Figure 23; more

precisely, assume that U(−x) = U(x), with U(0) = U ′(0) = 0, and

that U is monotone increasing for x > 0. Our goal is to produce a

formula for U(x) given the period as a function of energy. This goal

is reached in three steps.

Step 1 is to derive the formula for the period, given the energy:

(1.53) T (E) = 2
√
2

∫ xmax

0

dx√
E − U(x)

, xmax = U−1(E) > 0.

To derive (1.53), we observe first that the particle oscillates back and

forth between two endpoints ±xmax; these are the points at which the

particle is instantaneously at rest, so all of its energy is potential:

U(xmax) = U(−xmax) = E.

The period of the oscillation is twice the time between −xmax and

xmax:

T (E) = 2

∫ xmax

−xmax

dt = 2

∫ xmax

−xmax

dx

|ẋ|
Now, |ẋ| is found from

(1.54)
ẋ2

2
+ U(x) = E

16Note that T is the reciprocal of the frequency; in this sense this problem is a
classical mechanical analog, in one dimension, of the quantum “drum” problem of the
preceding paragraph.
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Figure 23. The unknown potential.

as |ẋ| =
√
2(E − U(x)). Substituting this into the last integral gives

(1.53), after we replace
∫ −xmax

−xmax
by 2

∫ −xmax

0
. We completed the first

step.

Step 2: Changing the variable of integration. Our goal is to find

U from (1.53); unfortunately, U enters this expression in a nonlinear

way. We now eliminate this nonlinearity by choosing U(x) = u as the

new variable of integration. Now x becomes a function of u, namely,

the inverse of the function u = U(x). We have dx = x′(u)du, and our

integral equation (1.53) becomes

(1.55) T (E) = 2
√
2

∫ E

0

x′(u)√
E − u

du,

where now the unknown is the inverse of U : x(u) = U−1(u).

Step 3: Solving (1.55) for the unknown function x = x(u). Let

F ≥ E be a parameter. Let us multiply both sides of (1.55) by

1/
√
F − E and integrate by E from 0 to F (this is done to extract

x(u) from the right-hand side, as will soon become clear):

(1.56)

∫ F

0

T (E)√
F − E

dE = 2
√
2

∫ F

0

∫ E

0

x′(u)√
F − E

√
E − u

du dE.

Let us change the order of integration on the right, with the idea of

taking x′(u) outside one of the integrals; see Figure 24. This integral

on the right simplifies to πx(F ) (and this is the key):∫ F

0

x′(u)

(∫ F

u

1√
F − E

√
E − u

dE

)
︸ ︷︷ ︸

=π, see (1.58) below

du = π

∫ F

0

x′(v) du = π x(F ).
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Figure 24. Solving (1.55).

Substituting this into the right-hand side of (1.56) gives

(1.57) x(F ) =
1

2
√
2 π

∫ F

0

T (E)√
F − E

dE

We found an explicit expression x(F ) = U−1(F ) for the inverse func-

tion of U . This describes U(x) completely, and solves the problem.

Proof of the identity

(1.58)

∫ F

u

dE√
(F − E)(E − u)

= π :

a linear substitution reduces the integral to
∫ 1

−1
dx√
1−x2

= sin−1 1 −
sin−1(−1) = π.

Exercise 1.4. A quadratic potential U = 1
2
x2 is isochronous in the sense

that all the motions have the same period, namely 2π. Show that the
solution (1.57) implies the converse: if a potential is isochronous of period
2π then it is of the form U = 1

2
x2 (assuming, as we did above, that U(0) =

U ′(0) = 0 and that U is even and convex up).
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Figure 25. The statics-dynamics equivalence illustrated:

hanging spring is mathematically identical to the falling pro-
jectile if we reverse the direction of gravity for the projectile.

19. A dynamics-statics equivalence

A simple and yet remarkable fact is that the entire Newtonian dy-

namics described by mẍ = −U ′(x) is mathematically equivalent to

statics of Hookean springs. Figure 25 illustrates this equivalence on

a simple example. On the left, a “slinky” — a heavy Hookean spring

(defined precisely in the next paragraph) — hangs motionless by one

end; we choose the origin x = 0 to be at the free end of the spring.

On the right, the picture of a falling particle is drawn upside-down;

the mass begins to fall from x = 0 starting from rest. These two sys-

tems are not just analogous but are in fact mathematically equivalent,

as explained in this section and as summarized by the dictionary on

page 45.

The spring. Figure 26 shows an idealized Hookean spring, viewed

as a one-dimensional object laid out on the x-axis (the spirals are

only drawn to show the nonuniform stretching and not to suggest

any thickness). It is natural to parametrize the particles of the spring

by the mass t counted from one of the spring’s ends; let x(t) denote

the position of the corresponding particle of the spring. At this point
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Figure 26. Position x(t) of each particle on the spring is
parametrized by the mass t between the particle and the at-
tachment point.

in discussion, x(t) is an arbitrary function, i.e., each particle is held

forcibly in its own prescribed position. We can call x a “configuration

function” of the spring. The spring is assumed to satisfy Hooke’s law;

furthermore, the relaxed length of the spring is assumed to be zero.17

Theorem 1.7. Consider a Hookean zero length spring on the x-axis,

with a configuration function x(t), 0 ≤ t ≤ T , as described in the

preceding paragraph. Denote Hooke’s constant of a unit mass of a

spring by k1 = m. Let V (x) be a potential on the line (that is, V (x)

is the potential energy of a unit mass at x). Then the total potential

energy of the spring is

(1.59) Etotal =

∫ T

0

(
mẋ

2
+ V (x)

)
dt.

Proof. Consider a piece of the spring of mass dt. Hooke’s constant

of this piece is kdt = k1/dt = m/dt (a shorter spring is stiffer, see

Problem 1.1 on page 50). Therefore, the potential energy stored in

stretching this piece is

dEinternal =
1

2
kdt(Δx)2 =

mẋ2

2
dt,

ignoring higher order terms. This proves (1.59) once we also observe

that V (x) dt is the potential energy of mass dt, since V was defined

as the potential energy of a unit mass. ♦

17Zero length should not be a concern since this is only a thought experiment;
however, a real slinky is not too far from this idealization: its relaxed length is very
short compared to its “operating” length.
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Figure 27. Equal times between positions of the particle in

potential U and equal masses for the spring in potential −U .
The equilibrium state of the spring captures the whole time
history of the moving particle.

Figure 28. Equivalence between a particle in motion and a
spring in equilibrium.

Now the expression (1.59) coincides with∫ T

0

(
mẋ2

2
− U(x)

)
dt,

the action of a particle, provided we choose V = −U . The two prob-

lems are therefore equivalent: the particle moving in the potential U

and the spring resting in equilibrium in the potential V = −U . The

equivalence means that the same critical function x(t) describes the

motion of a particle in the potential U and the static equilibrium of

the spring in the potential −U .

Example. Figure 27 illustrates the equivalence. Note how the

stretching of the spring is related to the speed of the particle. Actu-

ally, both the spring and the particle are confined to the x-axis rather

than to the graphs of the potentials, as represented by the more ac-

curate (but less intuitive) Figure 28. The following table summarizes
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the equivalence between the particle and the spring; a more detailed

explanation is given after the table.

Dynamics of a particle

t – time

m – mass

x(t) – position of the particle at time
t

ẋ – velocity

mẋ – momentum

mẋ2

2
– kinetic energy

U(x) – potential energy

K + U = const.

Action
∫
(K − U)

δ
∫
(K − U) = 0: x(t) is a solution

δ
∫
(K − U) = 0 ⇔ ẍ = −U ′(x) via

Euler–Lagrange’s argument

Liouville’s theorem A(0) = A(T ),
i.e.,

∫
ϕT γ

p dx =
∫
γ
p dx for a closed

curve γ

Statics of a spring

t – mass

m – Hooke’s constant

x(t) – position of the particle corre-
sponding to mass parameter t

ẋ = (dt/dx)−1 = (density)−1

mẋ – tension

mẋ2

2
dt “internal”, or stretching po-

tential energy of a mass element dt

V (x) = −U(x) potential energy of a
unit mass

K − V = const.

Potential energy
∫
(K + V )

δ
∫
(K + V ) = 0: x(t) is an equil-

brium

δ
∫
(K + V ) = 0 ⇔ ẍ = V ′(x) by

an elementary equilibrium argument
(1.60)

Work done on moving spring’s
ends in a cyclic fashion is zero:
−
∫
p0dx0 +

∫
pT dxT = 0

The use of this equivalence is two-fold. First, we get two physical

systems analyzed for the price of one, or, putting it differently, we re-

alize that two different physical systems are mathematically identical;

and second, this equivalence gives new insights including elementary

derivations of the Euler–Lagrange equation and of Liouville’s theo-

rem, as described in the next two paragraphs.
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An elementary derivation of the Euler–Lagrange equation

as a static equilibrium condition. Earlier we established the

equivalence

δ

∫
(K − U) = 0 ⇔ mẍ = −U ′(x),

by showing that the right-hand side is the Euler–Lagrange equation

for the functional on the left. The result is nonobvious intuitively as it

relies on a formal calculation. But our analogy makes this equivalence

obvious, without appealing to the Euler–Lagrange equation. Indeed,

let us interpret the action
∫
(K −U) dt for a particle as the potential

energy
∫
(K + (−U)) dt of a spring in the potential V = −U . Then

critical action for the particle motion means critical potential energy

for the spring. That is, the spring is in equilibrium, and so the sum

of all forces on each mass element dt is zero:

(1.60) mẋ(t+ dt) + (−mẋ(t)) + (−V ′dt) = 0.

Dividing by dt and taking dt → 0 gives ẍ = V ′(x) = −U ′(x). We

rederived the Euler–Lagrange equation by naive means, in the special

case of the Lagrangian L = K − U .

A quick proof of Liouville’s theorem. The theorem can be re-

stated as

(1.61)

∮
γ0

pdx =

∮
γT

pdx,

where γ0 is a closed curve of initial data (x,mẋ = p)t=0 and γT is

the curve formed by (x,mẋ = p)t=T where x = x(t) is a solution of

mẍ = −U ′(x). Let us interpret the two integrals in (1.61) in terms

of the spring. With the endpoints of the spring held at x0, xT , the

external forces applied to the ends are equal to the tensions at these

locations: F0 = −p0 = −mẋ(0) and FT = pT = mẋ(T ), Figure 29.

Let us now move the ends of the spring in a cyclic fashion (slowly, so as

not to cause oscillations), bringing them back to the initial location.

The net work we do in that case is zero:∮
F0dx0 +

∮
FT dxT = 0,

and since F0 = −p0, FT = pT , we get (1.61)! This hand-waving

argument takes almost no work (with apologies for two puns) and

converts into a rigorous proof; see page 271.
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Figure 29. A hand-waving proof of Liouville’s theorem: the
hands execute a cyclic motion along the line, doing zero work
on the spring. In addition to the two forces F0 and FT , there
is a distributed force on the spring due to the potential V .

Remark 1.9. For any spring in equilibrium in a potential, such as

in Figure 25, the difference K − V = const. along the spring. This

is surprising and nonobvious, but we know it is true because it is

equivalent toK+U = const., the conservation of energy for a particle!

In particular, for the hanging spring example in Figure 25, since V =

K = 0 at the free end, we have K = V : the potential energy density,

i.e., the energy per unit mass due to stretching equals the potential

energy density of elevation!

Exercise 1.5. Consider a Hookean zero length spring described on page
42 in equilibrium, with the points corresponding to t0, t1 held fixed at x0,
x1. Let S(x0, x1, t0, t1) =

∫ t1
t0

(K + V ) dt be the potential energy of the

spring; here the equilibrium function x(t) is substituted into the integrand.
Find the partial derivatives St0 , Sx0 , St1 , Sx1 and determine their physical
interpretation.

Solution. Sx1 = mẋ(t1) is the tension;

(1.62) St1 = −(K − V )t=t1

is the difference between the internal and the external potential energy
densities; similarly, Sx0 = −mẋ(t0) and St0 = +(K − V )t=t0 . For the
proof, see Theorem 8.1 on page 260; alternatively, here is a naive physical
justification. Let x(t) be the equilibrium function with x(t0) = x0, x(t1) =
x1, Figure 30. Let us find St1 . With the ends of the spring fixed as
described, let us grab the spring at the point A = x(t1 − τ) near the right
end, Figure 30, and pull this point to the right end x(t1) and hold it there.
In the process the segment of the spring corresponding to [x1 − τ, x1] gets
collapsed to a point, while the rest of the spring stretches a little. The new
potential energy of the spring is

Pnew = S(x0, x1, t0, t1 − τ) + V (x1)τ,

the second term being the potential energy of the short segment of the
spring which has collapsed to a point. On the other hand, the work we did
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Figure 30. As we pull the point A = x(t1 − τ) to the end
x = x1, the force F changes linearly with distance, from F = 0
to F = mẋ(t1) +O(τ).

to move the end of the spring is

W = Favg(x(t1)− x(t1 − τ)) =
1

2
mẋ(t1)

2τ +O(τ 2).

But
Pnew = Pold +W,

i.e.,

S(x0, x1, t0, t1 − τ) + V (x1)τ = S(x0, x1, t0, t1) +
1

2
mẋ(t1)

2τ +O(τ2).

Separating the terms with S from the rest, dividing by τ and sending τ → 0

gives (1.62).18 ♦

Remark 1.10. The same equivalence between dynamics and statics

holds in higher dimension. Figure 31 shows the familiar projectile

trajectory side-by-side with a hanging spring; note, however, that

the gravity is in the opposite direction for the two cases. The two

problems are again equivalent, with the exact same list of analogies

as in the table above.

20. Chapter summary

Here are the main points of this chapter.

(1) Newton’s equation: mẍ = F (x).

(2) Potential energy and kinetic energy, defined.

(3) Conservation of energy: K + U = 1
2mẋ2 + U(x) = const.

18(1.62) is the Hamilton-Jacobi equation (discussed in Chapter 8).
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Figure 31. Equivalence between a dynamical problem and a
static one in two space dimensions, illustrated on the projectile

motion.

(4) The phase plane.

(5) Lagrange’s equation: d
dtLẋ − Lx = 0, L = K − U .

(6) Variational origin of Lagrange’s equations: d
dt
Lẋ − Lx =

0 ⇔ δ
∫ t1
t0

L dt = 0.

(7) Recovering the shape of potential from the periods of oscil-

lations.

(8) Hamilton’s equations, derived from Lagrange’s equation.

(9) Liouville’s theorem.

(10) A classical mechanical uncertainty principle.

(11) A statics-dynamics equivalence.

(12) Two application of the statics-dynamics equivalence: (i)

δ
∫
(K − U) = 0 ⇔ mẍ = −U ′(x) and (ii) Liouville’s

theorem.
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21. Problems

Hookean Springs.

1.1. Find Hooke’s constant of the combination of two Hooke’s springs (a)
in parallel; (b) in series, given Hooke’s constants k1 and k2 of the two
springs.

Figure 32. What is the effective Hooke’s constant for springs
in series and in parallel?

Solution. We show that

(1.63) kparallel = k1 + k2;
1

kseries
=

1

k1
+

1

k2
.

In parallel: The key observation is

(1.64) F = F1 + F2,

where F is the force with which the combined spring was stretched, while
Fi is the force with which the ith spring is stretched. By the definition of
Hooke’s constant, we have F = kparallelL, F1 = k1L and F2 = k2L; note
that the elongation L of both springs is the same, the second key point.
Substituting this into (1.64) we obtain the first equation in (1.63).

In series: In this case, the elongation is the sum of elongations of the two
springs:

(1.65) L = L1 + L2,

Since each spring is stretched by the same force F (the second main point),
we have F = kiLi, i = 1, 2. Thus Li = ki/F , and also L = kseries/F .
Substituting these into (1.65) and cancelling F we arrive at the second
formula in (1.63). ♦
A heuristic explanation of 1

kseries
= 1

k1
+ 1

k2
: Hooke’s constant k mea-

sures the stiffness: large k, for example, means stiff spring, since k simply
measures the force needed to elongate the spring by one unit of length. The
reciprocal k−1 therefore measures the spring’s looseness. Two springs in
series makes for a looser spring; the “loosenesses” in fact add, as we proved.
By contrast, for the springs are connected in parallel, “stiffnesses” add.
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1.2. Produce an equivalence table between the following objects from me-
chanics on one hand and electricity on the other. Mechanics: Hooke’s
constant, elongation, force (k = F/x). Electricity: Resistance, voltage,
current (R = V/I) and capacitance, charge, voltage (C = q/V ). What are
the electrical analogues of the formulas (1.63)? Mere substitution of the
electric analogs into proofs of (1.63) yields the formulas for resistances and
for capacitances connected in parallel and in series:

R−1
parallel = R−1

1 +R−1
2 , Rseries = R1 +R2;

Cparallel = C1 + C2, C−1
series = C−1

1 + C−1
2 .

A bead on a wire.

1.3. Consider the motion of a particle in a potential: ẍ = −U ′(x). Can
this equation also describe the arclength parameter of a bead sliding under
gravity on an appropriately shaped wire? That is, find the curve y = V (x)
such that the arc length parameter s of a bead sliding on this curve under
gravity (g = const. pointing down the y-axis) satisfies the same equation:
s̈ = −U ′(s), and state under what conditions on U this is possible. Find
V in the following two cases: (i) U = 1

2
x2 and (ii) U = − cosx.

Answer. The graph of V is a cycloid in case (i) and a circle in case (ii).

1.4. Figure 33 shows a bead is sliding on a wire given by y = f(x) in
the vertical plane subject to gravity pointing down the y-axis. Write the
equation of motion for the bead in terms of its x-coordinate, using three
different methods:

(1) Using Newton’s law s̈ = −g sin θ(s) for the arc length s =∫ x

0

√
1 + f ′(u)2du.

(2) Using Lagrange’s method (i.e., write the Euler–Lagrange equa-
tion).

(3) Directly from Newton’s second law in R
2. (Hint: for this method,

we must consider centripetal acceleration, which has a component
in the x-direction.)

1.5. A point mass is glued to the surface of a weightless cylinder which rolls
without slipping on the horizontal plane. The point mass is thus traveling
in a cycloid. Letting s denote the distance of the particle from the top of its
trajectory, measured along the trajectory, show that s̈ = g

D
s: the motion

is the same as for a particle with a linear repelling force. Is this equation
valid for all time?

Hint. Regarding the last question, the evolution after the particle hits the
floor becomes ambiguous.
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Figure 33. Deriving the equation of motion for a bead on

wire with gravity.

1.6. Referring to the bead on the wire in Figure 3(A), page 4, is it true or
false that the normal reaction force N = mg cos θ? That is, does N cancel
the normal component of the gravity?

1.7. Consider a bead sliding frictionlessly on the curve z = f(x), in the
vertical (x, z)-plane with gravitational field g pointing down in the direction
of the negative z-axis. Is it true that the x-coordinate satisfies ẍ = −gf ′(x)?

1.8. Consider a curve y = f(x) with f ′(0) = 0. Let s be the distance along
the curve from the point with (0, f(0)), and let θ(s) be the angle between
the x-axis and the tangent to the curve. Show that

sin θ(s) = ks+ o(s),

where k = f ′′(0) is the curvature of the curve at x = 0.19

Modeling, hanging chains.

1.9. A heavy homogeneous chain is hanging in equilibrium supported at
two ends, Figure 34. Write the differential equation obeyed by the shape
y = f(x) of the chain. The chain is to be treated as a perfectly thin, per-
fectly flexible unstretchable curve with a uniform mass distribution along
its length.

1.10. Verify the following remarkable fact: Regardless of how the chain is
suspended (Figure 34), its tension T = T0+ρgh, where T0 is the tension at
the bottom of the chain, and h is the height of the point above the bottom.
Prove that the same holds even if the chain is not freely hanging but rather
is resting on a perfectly slippery surface.

1.11. Referring to the preceding problem, can you explain why the ex-
pression T = T0 + ρgh is so similar to the expression p = p0 + ρgh for the

19Here o(s) denotes a quantity which is small compared to s in the sense that
lims→0 o(s)/s = 0.
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Figure 34. Tension in a hanging chain behaves like hydro-
static pressure: it varies linearly with height!

hydrostatic pressure? (The meaning of ρ in the two expression is different
but similar.) Can this similarity be used to solve the preceding problem?

Solution – an outline. Imagine that the chain is a hose filled with
water. The hose is perfectly flexible, weightless, unstretchable and very
thin, essentially one-dimensional. The hydrostatic pressure of the water in
the hose is p = p0+ρwgh, where ρw is the density of water. Now the tension
of the hose caused by p is T = pA, where A is the cross-sectional area of
the hose. Thus the tension of the water-filled hose (which in essence is the
hanging chain) is T = T0 + ρgh, where ρ = ρwA, i.e., the linear density of
the hose with water.

1.12. Solve Problem 1.10 by using conservation of energy instead of New-
ton’s first law.

Solution. Focus on a segment AB of the chain; imagine taking up the
length ds of the chain at B and feeding in the same length at A. The work
done by taking up, i.e., pulling, is TB ds; the work involved in feeding in,
i.e., in being pulled, is −TA ds. The net result is that the mass dm = ρgds
is lifted by height h from A to B, so that

TB ds− TA ds = ρg ds h,

proving that TB − TA = ρgh.

1.13. A thin-walled straight hose of radius r is filled with pressurized gas
at pressure p. (i) Find the surface tension of the skin of the hose in the
axial direction (i.e., the force required to hold closed a longitudinal slit,
per unit length of the slit). (ii) Find the surface tension of the skin in the
perpendicular direction.
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Solution. Longitudinal tension turns out to be twice the tension across.
Indeed, if we cut the hose with a plane perpendicular to the axis, the force
required to hold the cut together is πr2p. Dividing by the circumference
2πr, we get the transversal surface tension σ1 = πr2p/2πr = rp/2. To
find the longitudinal tension, let us cut a length L of the hose by a plane
containing the axis; the force (2r) · L · p required to hold the cut together;
divided by the length 2L of the cut, this yields the surface tension rp/2,
half that of the longitudinal tension. This explains why frozen pipes, and
boiled sausages, always burst lengthwise.

1.14. Explain the mechanism by which wringing a towel expels water.
Estimate the pressure created inside the towel, making some reasonable
assumptions (and, in particular, explain what exactly could one mean by
pressure in this problem). How does the pitch of a certain helix affect the
squeezing efficiency? Why is it harder to squeeze out a thicker roll than a
thinner one? Why is wringing much better than squeezing?

1.15. Show that the cable supporting the vertical cables in a suspension
bridge is parabolic, assuming the vertical cables are very closely and equally
spaced and are under equal tensions, and that the entire weight is contained
in the horizontal walkway.

1.16. A long cylindrical hose with perfectly flexible walls is filled with
water and is placed on the horizontal surface. Write down a differential
equation that describes the shape of the (non-flat) part of the cross-section
of the hose.

1.17. A chain hanging in equilibrium is shaped as the graph of a function
y = f(x). For any segment of this chain, the horizontal components of
tensions on the two ends of the segment are in balance. Express this balance
as an equality involving f(x). (The resulting equation is a first integral of
the second order differential equation of the catenary.)

Figure 35. Suspension cable is a parabola.
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Huygens’s pendulum, evolutes and bike tracks.

1.18. Show that the cycloid is a tautochrone, as follows. Consider a bead
sliding without friction under the influence of gravity g on a cycloid gener-
ated by a circle of diameter D, as in Figure 4, page 5. Show that s̈ = −ks,
where s is the arc length measured from the lowest point of the cycloid.

Proof (an outline). Referring to Figure 36, we show that da = −k ds,
where a is the tangential acceleration of the bead. But ds = D sin θdθ, as
the figure shows, and a = g cos θ, so that da = −g sin θdθ. We conclude
that da = − g

D
ds, implying that a = −ks + const. But a = 0 when s = 0,

which shows that a = −ks, i.e., s̈ = −ks. The period of s therefore does
not depend on the amplitude, and in fact is equal to 2π/

√
k = 2π

√
D/g.

Figure 36. Brachistochrone is a tautochrone: the proof.

1.19. Consider Huygens’s pendulum, or, more generally, a string fixed at
point C (Figure 5, page 5), and wrapped partly around an obstacle. The
free end P of the string is moved so as to keep the string taut. Prove that
the velocity of P is perpendicular to the string. This would then show that
the obstacle is the evolute (i.e., the envelope of the family of normals) of
the trajectory of P .

1.20. Prove that the evolute of a curve (defined as the envelope of the
family of normals to the given curve) is also the locus of the centers of
curvature of the curve; see Figure 37.

Hint. Here is a kinematic argument which can be converted into a formal
proof, for a small fee. If a point travels in a circle with speed v, then the
radius of the circle is

(1.66) R = v/ω,

where v is the speed of P and where ω is the angular velocity of the normal
to the trajectory. Now the same definition applies verbatim if the trajectory
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Figure 37. Proving that every point on the evolute is a center

of curvature of the evolvent.

is an arbitrary curve. Now what is the angular velocity of the moving
segment OP? Velocity of O aligns with OP , i.e., it has zero component
normal to OP . Therefore, the motion of O contributes nothing to the
angular velocity of OP , and we can treat O as fixed to find ω = v/OP , or
OP = v/ω. Comparison with (1.66) shows that R = OP .

1.21 (Finding center of curvature using a bike). Referring to Figure 38,
show that the center of curvature of the bike’s rear track is at the intersec-
tion of the lines of the axles, i.e., of the two normals to the tracks. The bike
is idealized: it is a segment RF (for “rear” and “front”, the points where
the wheels are in contact with the ground); assume that the segment RF
moves in the plane so that the length |RF | = const., and that the velocity
of R is aligned with RF .

Figure 38. Proving that the point of intersection of the bike’s
axles is the center of curvature of the rear track.
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Vibrations.

1.22. 1. Derive the equations of motion for a point mass m in Figure 39.
The spring satisfies Hooke’s law: the tension is k(L−L0), where L0 is the
relaxed length.

2. How many equilibria can the particle have, depending on the relationship
between D and L0?

3. Find the frequency of small vibrations near a stable equilibrium. Assume
the amplitude of oscillations to be very small.

4. Show that for the zero length spring (the one for which the relaxed
length L0 = 0) the oscillations are harmonic.

Figure 39. The mass m is constrained to the line, with no friction.

1.23. Consider the equation governing the angle θ of the pendulum:

d2θ

dt2
+

G

L
sin θ = 0.

Show that the introduction of the rescaled time

(1.67) τ =

√
g

L
t,

i.e., setting ϕ(τ) = θ(t) = θ(
√

g
L
τ) turns this equation into

(1.68)
d2ϕ

dτ2
+ sinϕ = 0.

Note that T = 2π
√

L
g
is the period of linearized oscillations near the equi-

librium, and thus our rescaling (1.67) amounts to measuring time in the
more natural units of the period.

1.24. (Based on a Bond movie I saw.) Figure 40 shows idealized James
Bond attached by a long rope to the top of the cliff. A villain pushes Bond
off the top. Once the rope becomes taut it acts as a spring, softening what
would otherwise have been a fatal jerk. Bond survives the maximal tension
of the rope (see his strained position at the bottom) and resumes climbing.
Show that the maximal tension in the rope does not depend on L0, the
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Figure 40. The maximal tension does not depend on the
rope’s length.

length of the unstretched rope, assuming that the rope satisfies Hooke’s
law: F = k(L− L0) for L > L0, where k > 0 is a constant. Ignore the air
resistance and other possible complications (such as hitting the ground too
early, or the villain cutting the rope).

Hint. L0 affects both the maximal speed of fall and Hooke’s constant k.
Show that the two effects cancel out.

An inverse problem.

1.25. Given

T (E) =

∫ E1/4

0

dx√
E − x4

,

write T ′(E) as an integral. (Note: there is a complication when differenti-
ating with respect to the upper limit of the integral.)

1.26. Find the derivative T ′(E) of the period

T =

∫ xmax

−xmax

dx√
2(E − U(x))

, xmax = U−1(E).

Assume that U(0) = U ′(0) = 0, U ′′ > 0 and that U is even. Note: direct
differentiation will not work since the integrand is infinite at the endpoints.
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1.27. Show that any tautochrone symmetric with respect to a vertical axis
is a cycloid. (Recall that the tautochrone is a curve in the vertical plane
such that a bead sliding on this curve without friction has the period of
oscillations independent of the amplitude.)

Hint. Let s be the arc length measured from the lowest point of the curve.
Use Exercise 1.4 (page 41) to conclude that for a particle sliding on a
tautochrone one has s̈ = −ks (for some k = const.). Then show that the
latter relation implies that the curve is a cycloid.

Hamiltonian systems.

1.28. Show that the Hamiltonian of a planar Hamiltonian system has the
following interpretation: for any two points A and B in the plane, H(B)−
H(A) is the flux of the Hamiltonian vector field across any curve connecting
A and B.

1.29. Let v(z) be a smooth vector field defined in the entire plane R
2.

Prove that if div v = 0 then v is a Hamiltonian vector field.

Hint. Written backwards: .melborp suoiverp eht esU

1.30. Find the Hamiltonians of these systems:

(1.69) (1) :

{
ẋ = x

x2+y2 ,

ẏ = y
x2+y2 ,

(2) :

{
ẋ = y

x2+y2 ,

ẏ = −x
x2+y2

One of these Hamiltonians is multiple-valued. Can you explain this using
the interpretation of H as flux given by Problem 1.28?

Answer. (1) H = arg(x + iy) is multiple-valued; the flow corresponds
to a point source at the origin. Geometrically, the flux through a curve
connecting two points A and B picks up 2π each time the curve winds
around the origin. (2) corresponds to a point vortex; H = ln |z| is single-
valued.

1.31. Show that any planar vector field can be converted into a Hamilton-
ian vector field by adjusting the speeds, but keeping the directions at every
point. In other words, show that any ODE ẋ = f(x) in R

2 can be con-
verted into a Hamiltonian system ẋ = ρ(x)f(x) by an appropriate choice
of ρ : R2 → R.

1.32 (Cows and Hamiltonian systems). Consider a herd of grazing cows
on a hill; we will treat this herd as a collection of particles on a surface
z = H(x, y). Assume that each cow avoids going up the hill — too much
work — or down the hill — too hard on the front legs and too hard to graze
at an angle to the horizontal (intelligence can be mistaken for laziness). In
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short, our cows abhor gradients. This leaves the cow with only one option:
to follow a level curve on the topographic map. Assume also that the cows
dislike gradients in one more way: they walk faster where the hill is steep —
specifically, with speed equal to the slope of the hill at the cow’s location.

(1) Show that under these assumption the (x, y)-position of each cow
on the topographic map satisfies the Hamiltonian system where
the Hamiltonian is the heightH(x, y) of the hill at (x, y). Assume
that H is smooth.

(2) How does the herd’s density change with time? The density is
measured by the proportion of the total number of cows per unit
area in the (x, y)-plane (rather than per unit surface area of the
hill).

Answer. Each cow follows a trajectory of the Hamiltonian system ẋ =
Hy(x, y), ẏ = −Hx(x, y), and the density remains constant along the
trajectories, i.e., each cow feels equally crowded at all times: if ρ(x, t) is
the herd’s density function at time t, then d

dt
ρ(x(t), t) = ∇ρ · ẋ+ ρt = 0.

1.33. Sketch the phase portrait for the particle in the potentials: (i) U(x) =

x− x3

3
, (ii) U(x) = x4/4− x2/2, (iii) U(x) = −x4/4 + x2/2.

Can a particle have a variable mass without exchanging matter with
the outside world? The following problem gives a way to realize such a
particle.

1.34. Figure 41 shows a dumbbell, free to slide along a given rigid curve.
The sleeve around the curve keeps the dumbbell always perpendicular to
the curve, and slides without friction. Write down the differential equation
for the arclength parameter s of the sleeve. All the mass is concentrated
in the two balls, each of mass m/2, and the length of each arm is taken to
be 1 (one can always achieve this by a choice of units of length).

Solution. The velocities of the two balls are v± kv, where v is the speed
of the sleeve and where k = k(s) is the curvature of the track. The kinetic
energy of the system is therefore

m/2(v + kv)2)

2
+

m/2(v − kv)2)

2
=

m(1 + k2)v2

2
.

The interesting conclusion is that the apparent mass of the sleeve is variable:
M = m(1+k2(s)), i.e., it depends on the location s! Since the kinetic energy
is constant (there are no external forces acting on our system):

m(1 + k2)v2

2
= E = const.,
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Figure 41. This dumbbell behaves as if the sleeve were a

particle with variable mass! In addition, it behaves as if
it were subject to a potential force, despite the absence of
external forces.

we obtain v = v(s) as a function of position s:

(1.70) v =

√
2E√

1 + k2
=

v0√
1 + k2

, where v0 =
√
2E.

Note that v0 is the speed the sleeve would have on the straight section of
the track. Since v changes along the track, it appears as if a tangential
force were acting on the sleeve. What is the magnitude of this force? Here
are the answers: differentiating v by time we obtain the acceleration

(1.71) s̈ = v̇ =
d

dt

v0√
1 + k2

= −v0
kk′ṡ

(1 + k2)3/2
(1.70)
= −v20

kk′

(1 + k2)2
;

by substituting v0 = v
√
1 + k2 in the last term we finally get

(1.72) a = v̇ = −v2kk′.

Can this apparent force reverse the direction of motion of the sleeve? No,
since v �= 0, according to (1.70). Interestingly, kv2 in (1.72) is the cen-
tripetal acceleration. We conclude: the sleeve’s tangential acceleration
equals its centripetal acceleration times k′.

Equilibrium; stability.

1.35. Find the tensions of each segment of the cable in Figure 42, given
the angles α and β.
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Figure 42. Find the tension of the cable.

1.36. Figure 43 shows an asymmetric dumbbell whose masses m1 and m2

rest on the legs of the right triangle. Find the tension of the rod and the
angle α, given m1,m2 and θ. There is no friction; the rod is weightless.

Figure 43. Towards Problem 1.36

Figure 44. What size cube will be in stable balance?

1.37. Figure 44 shows a cube with side of length a resting on the top of
a sphere so that the base of the cube is horizontal. There is no sliding
between the cube and the sphere. Under what condition on a and d is the
equilibrium stable?
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Figure 45. Towards the solution of Problem 1.37.

Solution. I present two methods: one very quick, the other general.

1. A quick method. Imagine rolling the cube past the top equilibrium
as in Figure 45. Both the center of mass and the contact point move;
stability will happen if the contact moves faster than the center of mass at
the moment when the contact point is on top of the cylinder. Let ω be
the angular velocity of the cube at that moment. Since the cube rotates
instantaneously around the contact point, the center of mass moves with
speed ω a

2
(when the cube is on top). The contact point, on the other hand,

moves with the speed ω d
2
, since the radius of the contact point rotates with

the same angular velocity ω as the cube. So the contact point moves faster
iff (i.e., if and only if) ω d

2
> ω a

2
, i.e., iff

d > a.

This is a beautiful answer: The cube is stable if and only if it does not
overhang the sphere.

2. A general method. Let us roll the cube through an angle θ, Figure 45,
and find the resulting potential energy U(θ) of the cube. The equilibrium
corresponding to θ = 0 is stable if U(0) is a local minimum of U , i.e., if
U ′′(0) > 0 .As the figure shows, the potential energy of the cube is, with
the center of the cylinder chosen as ground level,

U(θ) = mg(a+ b+ c) = mg(r cos θ + rθ sin θ + h cos θ),

where r = d/2, h = a/2. Simple algebra shows that U ′′(0) > 0 iff d > a. ♦
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Small vibrations.

1.38. A dumbbell balances on the cylinder in the horizontal position; see
Figure 46. Find the frequency of small oscillations of the dumbbell, given
the length L of the dumbbell and the radius R of the cylinder. The contact
is nonsliding.

Figure 46. What is the frequency of small oscillations? Prob-
lems 1.38 and 1.39.

1.39. A dumbbell balances on a convex object, not necessarily circular,
as in Figure 46, in the horizontal position. Find the frequency of small
oscillations near the equilibrium, given the curvature k of the object at the
topmost point and the length L of the dumbbell.

1.40. Figure 47 shows a rod with a point mass m at the end of it, attached
to the cylinder; the cylinder rolls without slipping on the horizontal plane.
The radius of the cylinder is R, its mass is M , and the length of the rod is
L.

(1) Write the Lagrangian in terms of the angle θ.

(2) Find the period of small oscillations when R �= L. Describe small
oscillations in the case of R = L. Is this a realistic problem?

Hint. Here is a nice shortcut: the system is undergoing instantaneous
rotation around C; this should allow for a quick expression of the kinetic
energy.

Figure 47. A rolling pendulum, Problem 1.40.
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Figure 48. What is the relationship between m, M , L and
α? (Problem 1.42).

1.41. Find the approximate period of small-amplitude oscillations of the
pendulum (1.6), page 4.

Solution. For small θ, we have sin θ = θ + O(θ3), and we replace sin θ

with θ, obtaining an approximating equation θ̈+(g/R)θ = 0. All solutions

of this equation have period 2π
√

R/g.

1.42. A dumbbell in Figure 48 with masses m and M is resting in the
hemispherical bowl as shown: the smaller mass is at the height of the rim,
and the dumbbell forms angle α with the horizontal. (i) Find the rela-
tionship between m, M , L and α. (ii) Find the period of small vibrations
near an equilibrium (assuming the bowl continues a little above the smaller
mass).

Momentum, Energy.

1.43. A string of bullets strikes a box of sand resting on a frictionless
horizontal plane, Figure 49. Each bullet stays buried in the sand. Find the
velocity of the block after the nth impact. All the bullets have the same
masses m and the same velocities v. The mass of the box is M .

Figure 49. For Problem 1.43.

1.44. A bullet strikes a bag of sand hanging on a rope, causing the bag
to swing. The bag deflects by maximal angle θ. Find the bullet’s velocity,
given that the masses of the bullet and of the bag are m, M , respectively,
and that the length of the rope is L.
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1.45. A wheeled platform of mass m is rolling without friction. Heavy rain
is coming vertically down, with water constantly spilling over the edge of
the platform. Does the speed of the platform change, and if so, how does
it depend on time? The area of the platform is A; the intensity of the rain
ρ (mass of water falling per second on a square meter of surface) is given.

Hint. The platform slows down exponentially since every second it sheds
a fixed proportion of its linear momentum through the water that pours
off of the platform.

1.46. A car driving in the rain gives kinetic energy to raindrops it hits.
Estimate the extra power a car must expend due to this effect, given the
area A of the car’s frontal profile, the car’s speed v, and the fact that rain
is coming down at 1cm per hour.

1.47. A piece of bird dropping splatters against the windshield of a fast–
moving car. As the result, some energy goes into heat, and some goes into
the kinetic energy of the motion relative to the ground (there is also energy
going into sound, etc., but let us ignore it). What is the ratio of these two
energies?

Answer. The ratio equals 1 (under the simplifying assumptions stated in
the problem).

1.48. A chain is lying in a pile on the ground; I am pulling one end of
the chain up with a constant speed v. Would it take any force to maintain
this speed if there was no gravity? In other words, does Newton’s first law
(“zero acceleration requires zero force”) apply — why or why not? If not,
what is this force? Linear density (mass per unit length) of the chain is ρ.

The preceding problem hides an interesting paradox which the next
problem is asking to resolve.

1.49. Explain the following paradox. Consider the problem of the force
required to pull the end of the chain lying on the floor with constant speed
v, as described in Problem 1.48. Gravity is to be ignored. On the one
hand, an element of mass Δm of the chain accelerates from rest to speed v
in time Δt; its average acceleration is thus a = v/Δt. The average force is
then F = Δma = Δmv/Δt = ρv, according to Newton’s second law. On
the other hand, the energy I am giving to the chain in time t is mv2/2,
where m = ρvt is the mass of the leaving the floor in time t. The power I
am expending is the work I do per unit time:

P =
mv2/2

t
= ρv3/2.

Thus the force I am applying is F = P/v = ρv2/2. This is half of the
preceding answer. Which argument hides a mistake? What is the physical
significance of the difference between the two results?



21. Problems 67

Answer. Both answers are wrong. The first answer makes a false pre-
sumption that all energy is spent on lifting; in fact, some energy ends up in
the form of waves in the chain, for instance. The second answer overlooks
a (surprising) possibility that the chain, when pulled up, may push against
the floor. Indeed, consider, for instance, the chain made of rods linked by
hinges. Consider one such rod/link lying on the ground (gravity plays no
role). As we start pulling one end up, the other end will press down on the
floor! The true answer to the problem lies somewhere between the given
extremes, and depends on the specifics of the problem.

The following problem may seem like a fluid dynamics problem, and
although technically it is, it is essentially a one-dimensional mechanics prob-
lem.

1.50. I am ejecting water from a syringe, moving the piston at a constant
speed v. Water is perfectly nonviscous, and the piston is perfectly friction-
less. What force, if any, must I apply to the piston? Does Newton’s first
law imply that this force is zero? If not, find that force, given the ratio of
the diameters of the piston and of the exit hole.

The next problem shows an interesting fact: To launch a satellite to
infinity takes exactly twice the amount of work of lifting it from the center
of the planet to the surface, assuming that the planet has a constant density.
Recall that the gravitational force inside such a homogeneous ball is a linear
function of the distance to the center, Figure 50.

Figure 50. How much work does it take to lift a mass from
the center of the asteroid to infinity? The work equals the
area under the graph.

1.51. An asteroid is a perfectly round solid homogeneous sphere, Figure 50.
A tunnel is drilled to the center of the asteroid, and a sample is lifted from
the center first to the surface and then from the surface to infinity. What
is the ratio of energies spent on the two stages? In other words, how much
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more (or less) work does it take to lift from the surface to infinity than
from the center to the surface?

Answer. Interestingly, the second stage takes twice the work of the first.
Does a similar result hold for nonconstant densities?

Miscellaneous Problems.

1.52. Consider a potential V (x) ≥ 0 on the line R, Figure 51, with V (x) →
0 as x → ∞, and with a maximum V (xmax) = H > 0.

(1) What speeds at x = −∞ would enable the particle to pass over
the hill?

(2) One particle x1(t) moves freely: x1(t) = vt; the other parti-
cle x2(t) moves in the potential V . Find the lag suffered by
the second particle x2(t), i.e., find limt→∞(x1(t) − x2(t)), given
that the two have the same initial data at t = −∞, i.e., that
limt→−∞(vt− x2(t)) = limt→−∞(v − ẋ2(t)) = 0.

(3) Can one recover the shape of V by shooting the particle at dif-
ferent speeds and measuring the travel time?

Figure 51. By how much distance does the hump delay par-
ticles? (refer to Problem 1.52).

1.53. A 4th degree polynomial U(x) = x4 + ax3 + bx2 + cx + d has two
distinct minima. Prove that the periods of any two oscillations of a particle
in this potential with the same energy are equal, Figure 52.

Hint. (This solution assumes some knowledge of the theory of functions of
complex variables.) Consider two oscillations in the different wells with the
same energy E, so that U(x) < E on two intervals (x1, x2) and (x3, x4), and
U(xi) = E for i = 1, 2, 3, 4, Figure 52. Kinetic energy K(x) = E − U(x) is
also a polynomial of 4th degree, with the roots at xi. The problem amounts
to proving that

(1.73)

∫ x2

x1

dx√
K(x)

=

∫ x4

x3

dx√
K(x)

,
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Figure 52. In a quartic potential, equality of energies implies

equality of periods.

+ + + + +
+ + + + + + + - - - - -
- - - - - - -

Figure 53. Signs of the chosen branch of
√

K(z) on the slits’ edges.

where

K(x) = (x− x1)(x− x2)(x− x3)(x− x4).

To prove (1.73), let us allow x to be complex, denoting it now by z = x+iy,

and consider
√

K(z) for complex values of z. Now K is a multiple-valued
function because of the square root: Indeed, if z executes a loop around
one root, say, x1, then arg K changes by 2π, so that arg

√
K changes by

π, i.e.
√
K changes sign. But if the loop encloses two roots then

√
K does

not change as z executes a round trip around the loop. So we cut the slits

as in Figure 53 and forbid z to cross them. We thus turn
√

K(z) into a
single-valued function, provided we choose a particular value of the root
at some fixed point and then extend to the entire plane minus the slits by
continuity. In other words,

√
K(z) has a single-valued branch in the plane

with slits removed. Let us choose the positive sign on the upper edge of
the slit [x3, x4] as in Figure 53; the signs of our branch of

√
K on the other

edges of slits are determined automatically and are shown in Figure 53.

Consider now two loops A and B as in Figure 54. Loop A can be
deformed into loop B by going through infinity (note that z = ∞ is a
regular point of 1√

K(z)
). This can be seen by mapping the plane to the

sphere by stereographic projection and then deforming the loops on the
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  deform
in g  A in

to
 B

Figure 54. In a quartic potential, equal energies mean equal periods.

sphere as shown in Figure 54. The integral does not change as the contour
of integration is deformed, and we conclude that∫

A

dx√
K(x)

=

∫
B

dx√
K(x)

.

But this already proves our claim (1.73), since∫
A

dx√
K(x)

= 2

∫ x2

x1

dx√
K(x)

,

∫
B

dx√
K(x)

= 2

∫ x4

x3

dx√
K(x)

,

as is clear from the sign patterns in Figure 53.

The following is a generalization of the preceding problem:

1.54. What is the analogous statement for the cubic potential with a well?
What is the relationship between periods of oscillations with the same
energy in a polynomial potential of degree n > 4?

1.55. Consider the motion of a particle of mass m in a potential U(x)
in the presence of linear drag force directly proportional to the particle’s
speed. Write down the ODE governing the motion of the particle.

Solution. The resultant force on the particle is F = Fdrag + Fpotential =
−kẋ− U ′(x). Newton’s law then gives

(1.74) mẍ+ kẋ+ U ′(x) = 0.

1.56. Prove that no periodic motions exist for the system with drag gov-
erned by (1.74) with k �= 0.

Solution. Method 1. Assume the contrary: There exists a nonconstant
periodic solution, i.e., a solution for which (x(T ), ẋ(T )) = (x(0), ẋ(0)) with

some T > 0. By showing that the energy E(t) = ẋ2

2
+ U(x) decreases:

E(T ) < E(0), we will arrive at a contradiction. We have

d

dt
E(t) =

d

dt

(
mẋ2

2
+ U(x)

)
= ẋ(mẍ+ U ′(x))

(1.74)
= −kẋ2.
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Figure 55. Area enclosed by a periodic orbit must remain
constant as it flows; negative divergence implies that this area
must decrease, leading to a contradiction.

Now ẋ �= 0, with possible exception of isolated values of t, since x is a
nonequilibrium solution. Therefore, E(T ) < E(0). ♦

Method 2. Assume the contrary: For some T > 0 we have x(t) = x(t+ T )
for all t, Figure 55. Then the phase point (x(t), ẋ(t)) describes a closed
curve C in the (x, ẋ)-plane, Figure 55. Now on the one hand, the region
enclosed by the trajectory is invariant under the flow, Figure 55. But on
the other hand, the area of the region must decrease when carried by the
flow since the divergence of the vector field is negative. Indeed, we have
for the area A enclosed by C (see (1.51) on page 35)),

A′(t) =

∫
D

div f dx,

where D is the region enclosed by C. But this is a contradiction with
A = const., since

div f = div(y,−ky − U ′(x)) = −k < 0.

The following problem deals with a time-dependent potential.

1.57. Consider a conservative time-dependent (also called nonautonomous)
system

(1.75) ẍ+ Ux(x, t) = 0, Ux ≡ ∂

∂x
U(t, x).

There is no frictional force here. Is the energy conserved?

1.58. The pivot of the pendulum of length L is oscillating in the vertical
direction with acceleration a(t). Explain why the ODE for the angle θ with

the downward vertical is Lθ̈ + (g + a(t)) sin θ = 0.

Does the energy conservation go hand-in-hand with the area preserva-
tion? The following problem illustrates the answer.
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1.59. Consider the motion of a particle in a time-dependent potential:
ẍ + Ux(t, x) = 0 (the pendulum in the preceding problem is an example).
Consider the energy E(x, ẋ) = 1

2
ẋ2 + U(t, x).

(1) Is the energy conserved during the particle’s motion?

(2) Is the phase flow associated with the vector field

(1.76)

{
ẋ = y,

ẏ = −Ux(t, x).

area-preserving? In other words, does Liouville’s theorem apply
to time-dependent ODEs?

1.60. What are the accelerations of the mass M in Figure 56 (the pulleys
are massless)? One of the answers may surprise you.

Figure 56. Some pulley problems.

1.61. 1. What force is required to hold the rope in Figure 57(A)? The
shaded pulley’s mass is M ; the other pulleys are massless.

2. What force is required to hold the rope in Figure 57(B)?

1.62. Given that the system in Figure 57(C) is in equilibrium, what is the
ratio of masses M/m?
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Figure 57. More pulley problems.

1.63. Figure 58 shows two identical monkeys on the rope thrown over a
perfectly frictionless pulley. Initially, the two animals are at rest. Then
the right one starts climbing. Describe the relative position of the two
monkeys. Suddenly, one of the monkeys lets go of the rope. What happens
to their relative position then?

Answer. (Written backwards: .thgieh emas eht ta niamer yehT)

Figure 58. The right monkey is climbing; the left one is just
holding on. What will happen?
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The dynamics-statics equivalence.

1.64. Consider a heavy Hookean spring hanging by one end in equilibrium;
see Figure 25 on page 42. Consider the energy density (per unit mass) of
stretching Es and the gravitational energy Eg per unit mass. Show that
Es = Eg + const. along the spring. In particular, if the lower end of the
spring is on the ground level, then Es = Eg! Does this effect depend on
the linearity of Hooke’s law?

In the next three problems we consider a zero length Hookean spring
of mass M and Hooke’s constant k. The spring is to be thought of as a
negligibly thin line. Each particle of the spring is labeled by the mass t
between the particle and one end of the spring. The spring is laid out
along the x-axis and is kept longitudinally deformed so that the particle t is
located at x(t), where x(·) is a given smooth function. Each particle of the
spring is thus forcibly held by some external force at a prescribed location.
In addition, a force field with potential U(x) is defined on the line; that is,
a unit mass located at x has potential energy U(x), and is therefore subject
to the force F (x) = −U ′(x).

1.65. Given that Hooke’s constant of a homogeneous linear spring is k,
what is Hooke’s constant of a piece of this spring, given that the mass of
the piece forms a proportion p < 1 of the total mass of the spring?

1.66. Referring to the setting just described, do the following.

1. Write the total energy E[x] of the spring in terms of the “configuration
function” x = x(t).

2. Write the Euler–Lagrange equation for the critical function of E[x].

3. Assume that the external force holding the spring is removed, and that
the spring is in equilibrium. That is, each infinitesimal element of the spring
has zero net force acting on it in the direction of the x-axis. Express this
equilibrium condition as a differential equation for x(t), thereby rederiving
the Euler–Lagrange equation from item 2 above.

4. Consider a unit mass moving on the x-axis in the force of the potential
energy −U(x), i.e., F (x) = +U ′(x). Write down the action integral A[x] =∫
(kinetic− potential) dt in terms of x(t), the position of a particle at time

t, to show that A[x] = E[x] for any function x(t), and observe that the
equilibrium condition of the spring is the same as Newton’s second law for
the particle.

1.67. A linear spring of mass M and of Hooke’s constant k is hanging
on its end in the gravitational field. By how much will this spring stretch
under the influence of gravity? Assume the relaxed length of the spring to
be zero. Note that the stretching is not uniform: the higher up the spring
you go, the more it is stretched, as it carries more weight.



Chapter 2

More Degrees of
Freedom

In this chapter we consider systems of n particles which interact with

each other and which may also be subject to external forces. Figure 1

shows some examples: planets (viewed as point masses) moving in

the gravitational field of a star; a multiple pendulum (sketched in the

middle of Figure 1); point masses coupled by springs.

Figure 1. Some systems with n > 1 degrees of freedom.

1. Newton’s laws

Unless stated otherwise, the reference frames used in this chapter are

inertial, i.e., nonaccelerating and nonrotating. Unfortunately, this

definition is meaningless since it does not specify with respect to

75
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what the acceleration and rotation are measured. One way to define

an inertial frame is to say that it is the one in which Newton’s laws

hold. Since we have not yet stated these laws, we can instead think of

frames attached to the ground or moving on a nonaccelerating train

(if the Earth’s rotation can be safely ignored) or as reference frames in

outer space far from any gravitational bodies and not rotating relative

to the stars.

The rotating frames will be discussed in connection with the Cori-

olis force and the centrifugal force.

Newton’s second law, the foundation of classical mechanics, states

that the acceleration of a particle of massm is decided by the resultant

force F, i.e., by the sum of all forces acting upon the particle:

ma = F.

To analyze the motion of systems of several interacting particles this

law does not suffice; one needs also Newton’s third law:

Newton’s third law: When two particles interact, the forces they

exert on each other are equal in magnitude and opposite in direction;

furthermore, the forces lie along the line connecting the particles.

Thanks to this law, all the internal forces in a body cancel each

other, and, moreover, produce zero torque1; this suggests that without

external forces the center of mass (defined in the next section) cannot

accelerate. For example, the center of mass of the dumbbell with a

variable-length bar in Figure 2 will not start moving spontaneously, no

matter how its bar is elongated/shortened. Similarly, the dumbbell

cannot start rotating, no matter how it changes its length, in the

absence of external forces, thanks to the fact that the action/reaction

forces act along the connecting bar. All these statements will be made

precise on pages 79 and 81.

Figure 2. Newton’s third law: FAB = −FBA and F12 is
parallel to AB.

1For the definition of the torque, see page 81.
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2. Center of mass

Center of mass of a collection of n masses mi in R
3, with position

vectors ri, i = 1, . . . , n, is defined as the weighted average of the

position vectors, each vector weighted according to the mass. More

precisely, we have the following.

Definition. The center of mass rc of the system of particles is the

weighted average of their positions, with weights given by the parti-

cles’ masses:

(2.1) rc
def
=

n∑
i=1

mi

m
ri =

1

m

n∑
i=1

miri, m =
∑

mi.

Figure 3. A collection of particles in space.

The following theorem connects this definition to the one we are

used to since childhood, and also gives another interpretation of the

center of mass.

Theorem 2.1. The center of mass has the following properties.

(1) The center of mass of a rigid body made of finitely many

particles is also the point of balance: the body suspended

by its center of mass in a uniform gravitational field is in

equilibrium in any orientation.

(2) The function

I(r) =
n∑

i=1

mi(r− ri)
2

achieves its minimum at the center of mass r = rc of the

system of particles with masses mi located at ri.
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Proof. Part 1. (This proof uses the concept of torque introduced

later, on page 81. The reader may skip this proof without dire con-

sequences.) It suffices to show that the sum of gravitational torques

around the center of mass of the body is zero, regardless of the ori-

entation of the body. The torque of the gravitational force Fi = mig

relative to the center of mass rc is

Ti = (ri − rc)× Fi = mi(ri − rc)× g,

where ri is the position vector of the particle. The sum of torques∑
Ti =

∑
mi(ri − rc)× g =

(∑
mi(ri − rc)︸ ︷︷ ︸

=0 by (2.1)

)
×g = 0,

as claimed.

Part 2. Let us express I(r) in terms of the displacement x = r− rc,

aiming to show that that x = 0 minimizes I. Substituting r = x+rc,

we write

I(r) = I(x+ rc) =
∑

mi(x+ (rc − ri))
2

=
∑

mi(x
2 + 2x · (rc − ri) + (rc − ri)

2).

In the last sum the middle terms add up to zero by the definition of

the center of mass (2.1), and what remains is

(2.2) I(r) =

(∑
mi

)
x2 +

∑
mi(rc − ri)

2.

This is minimized precisely by x = 0, i.e., by r = rc, as claimed. ♦

A digression: applications of the center of mass to geometry. The
concept of the center of mass has some beautiful applications to geometrical
problems, for instance, the following.

(1) Medians in a triangle are concurrent (i.e., all three of them in-
tersect at one point). This theorem from geometry amounts to
stating that the triangle made of three equal masses at vertices
has a center of mass.

(2) Ceva’s theorem: Consider three segments in a triangle ΔABC,
each segment connecting a vertex with the opposite side, and
dividing each side into segments of lengths a, a′, b, b′, c, c′ (listed
in the same order as the vertices). Then the three segments are
concurrent if and only if abc = a′b′c′.
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(3) Let S be a convex surface in R
3, and let Tmin be a tetrahedron (a

triangular pyramid) of least possible volume containing S inside.
Then all faces of Tmin are tangent to S at their centroids, i.e., at
the points of intersection of their medians.

Further details and references can be found in [14].

3. Newton’s second law for multi-particle
systems

Theorem 2.2. The center of mass of any system of particles behaves

as a single particle, in the sense that

(2.3) mac = Fext,

where ac = r̈c is the acceleration of the center of mass, m is the total

mass of all the particles in the system, and Fext is the sum of all

external forces acting on the system. Equivalently, the total linear

momentum p =
∑

pi =
∑

mivi of the system satisfies

(2.4) ṗ = Fext.

Proof. Let Fij be the force the ith particle feels from the jth particle,

and let Fi be the vector sum of all external forces on the ith particle.

Newton’s second law applied to the ith particle gives:

(2.5) mir̈i =
∑
j �=i

Fij + Fi, i = 1, . . . , n.

Since Fij = −Fji (Newton’s third “action-reaction” law), the internal

forces cancel upon summation of (2.5) over all i, and we get

(2.6)
∑

mir̈i =
∑

Fi︸ ︷︷ ︸
Fext

.

Dividing and multiplying by the total mass m on the left-hand side,

we recognize the center of mass,

m
d2

dt2

∑ mi

m
ri︸ ︷︷ ︸

rc

= Fext,

thus proving (2.3). Finally, (2.4) follows from (2.6) at once. ♦
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4. Angular momentum, torque

To state the rotational version of Newton’s second law F = ma = ṗ,

which is the goal of the next section, we must define the rotational

analogues of p and F. These analogs are the angular momentum and

the torque.

Figure 4. Definitions of the angular momentum (left) and of
the torque (right).

Definition 2.1. The angular momentum of a point mass relative to

a fixed point O in an inertial frame is the cross product

(2.7) L = r×mv = r× p,

where r is the position vector relative to O and v is the velocity,

Figure 4.

Note that the angular momentum depends on the choice of O.

For the example of a comet orbiting the Sun, the angular momentum

vector relative to the Sun’s center is perpendicular to the orbit’s plane

(called the ecliptic), since L ⊥ r and L ⊥ v, while r and v lie in the

plane of the orbit. According to (2.7), the magnitude L = |L| is given
by

L = mv⊥r = p⊥r,

where the subscript ⊥ denotes the component of a vector in the di-

rection perpendicular to r in the plane of r, v.

Definition 2.2. The angular momentum of a system of particles is

the sum of the angular momenta of all the particles in the system:

(2.8) L =

n∑
i=1

ri ×mivi.
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Definition 2.3. Consider a force F applied at a point A, Figure 4.

The torque of F relative to the point O is the cross product

(2.9) T = r× F, where r =
#    »

OA.

The intuitive concept of the “intensity of rotation” is captured

by this definition perfectly. Indeed, if we think of r as the handle of

a wrench attached to the nut at O, then T = rF sin θ (here T = |T|,
r = |r|, etc.) is the product of the lever r and the perpendicular com-

ponent F sin θ is responsible for trying to rotate the wrench. More-

over, the vector T points along the bolt on which the nut is seated;

finally, the direction of T along the line of the bolt tells which way

the nut moves along the bolt with right-handed thread when turned

according to F.

5. Rotational version of Newton’s second law;
conservation of the angular momentum

Theorem 2.3. Consider a system of ineracting particles subject to

external forces. The total angular momentum L (with respect to a

fixed point O in our inertial frame) of such a system changes according

to

(2.10)
d

dt
L = T,

where T is the sum of external torques (i.e., the torques due to forces

which come from outside the system) relative to O:

T =
∑

Text
i .

Proof. Differentiating L =
∑

Li and using ṙ × ṙ = 0 in step (A)

below, we get

(2.11)
d

dt
L =

d

dt

∑
ri ×miṙi

(A)
=

∑
ri ×mir̈i =

∑
ri × Fi,

where Fi is the sum of all forces, including internal ones, acting upon

the ith particle. To complete the proof it remains to show that Fi can

be replaced with Fext
i in (2.11), i.e., that the internal torques cancel.

Let us therefore separate out the external forces:

Fi =
∑
j �=i

Fij + Fext
i .
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Substituting into (2.11) we get

(2.12)
d

dt
L =

∑
i

ri ×
(∑

j �=i

Fij + Fext
i

)
=

∑
j �=i

ri × Fij︸ ︷︷ ︸
Tint

ij

+
∑
i

ri × Fext
i︸ ︷︷ ︸

Text
i

.

It remains to show that the sum
∑

Tint
ij = 0. Let us group the terms

in that sum into pairs, coupling the terms containing Tij and Tji,

Figure 5; the figure suggests that each couple vanishes. Indeed,

(2.13) Fij = −Fji,

(Newton’s third law) and

(2.14) (ri − rj) ‖ Fij ,

so that

ri × Fij + rj × Fji
(2.13)
= (ri − rj)× Fij

(2.14)
= 0,

as claimed. Only the last term remains in (2.12); the proof is com-

plete. ♦

Figure 5. Forces Fij and Fji share the same lever and are
equal in magnitude. Hence their torques cancel each other.

An immediate important corollary of (2.10) is the following.

Theorem 2.4 (Conservation of the angular momentum). If the sum

of external torques upon a system of masses is zero, then the angular

momentum of the system remains constant.

Proof. d
dtL

(2.10)
= T = 0. ♦
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Some examples. 1. If we treat the solar system as a collection of

point masses interacting with each other via gravitational forces, and

ignore the external forces, e.g., the ones from the stars, then the total

angular momentum of the system is conserved.

2. The total angular momentum of Earth + Moon is constant, if

we ignore the effect of other celestial bodies. Incidentally, the Earth’s

axial spin is gradually slowing down over millions of years due to tidal

effect of the Moon, so that the Earth is losing its angular momentum.

Hence the Moon is gaining angular momentum. As the result, the

Moon is increasing its distance to the Earth, since the orbital radius

is an increasing function of the angular momentum.

Exercise 2.1. If a gymnast is hanging on the bar at rest, wearing perfectly
slippery gloves, then the frictional torque around the bar is zero. Does this
mean that the gymnast’s angular momentum around the bar will remain
zero regardless of how the she flexes her body?

Hint. The sum of external torques upon the gymnast need not remain
zero — there is gravity.

Exercise 2.2. Is it true that the combined gravitational torque in a con-
stant gravitational field upon a system of particles is the same as the torque
upon a single particle of combined mass, placed at the center of mass of
the system?

Answer. Yes, since the sum of torques

T =
∑

ri × (mig) =

(∑
miri

)
×g =

(∑ mi

m
ri

)
×mg = rc ×mg.

For nonconstant gravitational fields the result fails.

Here is another important corollary of Newton’s laws for transla-

tional motion (2.3) and for rotational motion (2.10).

Theorem 2.5 (An equilibrium condition). If a rigid body — that is,

a collection of point masses all joined pairwise by weightless rods — is

in equilibrium, then the sum of external forces is zero and the sum of

external torques upon the body is zero. Conversely, if a rigid body is

initially at rest and both the sums of forces and torques vanish, then

the body will remain at rest.
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Proof. For a body in equilibrium the center of mass has zero accel-

eration: ac = 0. Hence the sum of external forces F
(2.3)
= mac = 0.

Furthermore, for a body in equilibrium, L = 0 so that the sum of

external torques T
(2.10)
= L̇ = 0. Conversely, if F = 0, then ac = 0;

the center of mass must be at rest since it is at rest initially; and

L̇ = T = 0 implies L = const., and since L(0) = 0 we conclude that

L(t) = 0 for all t, which implies that the body does not rotate.2

6. Circular motion: angular position, velocity,
acceleration

In this and in the next two sections we consider a very special case

of a particle constrained to a circle, Figure 6, so that we are really

dealing with one-dimensional motions in this section. Since we just

introduced the concept of torque, it is more convenient to discuss the

topic here rather than in Chapter 1. The results of this section are

summarized in the table on page 87.

Figure 6. Introducing the moment of inertia I = T/α = mr2.

Angular position, velocity, accleration. Position of a particle on

a circle is specified by the angle θ with a fixed direction, Figure 6.

The angular velocity ω and the angular acceleration α are defined via

(2.15) ω = θ̇, α = ω̇ = θ̈.

2Strictly speaking, the last implication requires a bit more justification. This
justification relies on the concepts of angular velocity ω and of the moment of inertia
I described in Chapter 3; here it is: L = Iω = 0 implies ω = 0 (provided I is
nongenegerate), so that the body does not rotate. Now if I is degenerate, then the
body is either confined to a line or is a point, and we leave the consideration of these
cases to the reader.
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We have s = θr for the length s corresponding to the angle θ, ac-

cording to the definition of the radian measure of the angle, Figure 6.

Differentiating this identity by t and using (2.15) gives

v = ωr, a = αr,

where a = v̇ is the tangential acceleration.

The moment of inertia is a rotational analog of mass. A precise

definition comes first, followed by the reason for such a definition.

Definition 2.4. The moment of inertia of a point mass m in the

plane relative to a point O is defined as

(2.16) I = mr2,

where r is the distance from the point mass to O. For a system of n

particles in the plane, the moment of inertia relative to O is defined

as the sum of moments of inertia of individual particles,

(2.17) I =
∑
i

mir
2
i ,

where ri is the distance from O to the ith particle.

To explain the definition (2.16) we note that the analog of the

mass m = F
a is the “rotational mass”

(2.18) I =
T

α
;

see the table on page 87. Intuitively, we expect that I does not depend

on the choice of the torque T — presumably, changing the torque T

also changes the angular acceleration α by the same factor, causing

cancellation in (2.18). Indeed, substitute T = rF into (2.18) and then

use F = ma and a = αr:

I =
T

α
=

rF

α
=

rma

α
=

rm(αr)

α
= mr2.

This completes the explanation of (2.16).

7. Energy and angular momentum of rotation

The expressions p = mv and K = mv2/2 have rotational counter-

parts which we now derive, for a planar rigid body consisting of n
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masses mi, i = 1, . . . , n forming a rigid arrangement and rotating in

the plane around a point O with angular velocity ω. The more gen-

eral case of spatial rotation of a rigid body is described in the next

chapter.

Theorem 2.6. Consider a planar rigid body rotating around a point

O with angular velocity ω. The kinetic energy and the angular mo-

mentum relative to O are given by

(2.19) K =
Iω2

2

and

(2.20) L = Iω,

where I is the moment of inertia relative to O.

Proof. An individual particle has kinetic energy

Ki =
miv

2
i

2
=

mi(ωri)
2

2
=

(mir
2
i )ω

2

2
=

Ii ω
2

2
.

Adding up Ki gives the result (2.19), since I =
∑

Ii by the definition.

Similarly, the angular momentum of an individual particle is

Li = miviri = mi(ωri)ri = (mir
2
i )ω = Ii ω;

summation over i gives (2.20). ♦

Exercise 2.3. Consider a collection of particles in space. Prove that the
kinetic energy of this set equals the kinetic energy of its center of mass
(i.e., the kinetic energy of the particle of mass

∑
mi tracking the position

of C.M.) plus the sum of kinetic energies of all the particles in the reference
frame of the center of mass.

Exercise 2.4. Obtain a mechanical proof of the Pythagorean Theorem
using the preceding exercise, as follows. Consider two identical masses
m, Figure 7, whose center of mass moves with velocity a and which fly
away from each other with velocity b in the direction perpendicular to a,
Figure 7. Thus the speed c of each particle is the hypotenuse of the right
triangle of velocities with legs a and b. Write the kinetic energy in two
different ways: one, as 2mc2/2, and the other, as the energy of the center
of mass plus the sum of energies of each mass relative to C.M.3

3Further details, as well as many other mechanical proofs, can be found in [14].
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Figure 7. A kinetic energy proof of the Pythagorean theorem.

8. The rotational – translational analogy

Here is a summary of the analogy between the linear motion and the

circular motion.

Linear motion

x – position

v = ẋ

a = v̇ = ẍ – acceleration

F – force

m – mass (measure of inertia)

F = ma = mv̇

p = mv – linear momentum

F = ṗ

K = mv2

2
– kinetic energy

Circular motion

θ – angle

ω = θ̇ – angular velocity

α = ω̇ = θ̈ – angular acceleration

T = rF – torque

I = mr2 – moment of inertia

T = Iα = Iω̇

M = Iω – angular momentum

T = Ṁ

K = Iω2

2 – kinetic energy

9. Potential force fields

We now return to a particle in R
n, subject to force F = F(r).
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Potential energy. Speaking a bit loosely, the potential energy of a

particle at a point A ∈ R
n is the work that I have to do to bring the

particle from a reference position O to A against the force F; formally,

(2.21) U(A)
def
= −

∫
OA

F · dr

where OA is any curve connecting O and A. The minus sign is due to

the fact that I must apply the force −F against the field, in order to

move the particle (see the Remark 1.2 on page 6). This definition re-

quires implicitly that the integral (2.21) be independent of the choice

of path between O and A; otherwise, (2.21) is ambiguous. Potential

energy is therefore defined only for special force fields, in which the

integral (2.21) is path-independent.

Definition 2.5. A vector field F is said to be conservative if for any

pair of points O and A, the integral (2.21) does not depend on the

choice of path between O and A.

Gravitational and electrostatic fields are conservative. Had they

been otherwise, we could build a perpetual motion machine. Indeed,

imagine for a moment that the integral (2.21) were path-dependent:

the work along one path OmA in Figure 8 is (say) less than along

another path OnA. If I carry the particle along the closed path

OmAnO, I get more energy descending AnO than I spend ascend-

ing OmA, thereby getting energy out of nothing. The conservative

nature of gravitational and electrostatic fields is a physicist’s way of

saying that there is no free lunch.

The infinitesimal version of (2.21). Assume that F is a conser-

vative field, so that the potential U is well defined by (2.21). Then

we obtain

(2.22) F(r) = −∇U(r),

recovering the force from the potential. For the proof, we compute

the directional derivative of U in some direction v:

DvU(r)= lim
ε→0

[
U(r+εv)−U(r)

]
/ε = −1

ε
lim
ε→0

∫ r+εv

r

F·dx = −F(r)·v.
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Figure 8. Definition of potential energy.

But DvU(r) = ∇U · v by the definition of ∇U . We conclude that

∇U · v = −F(r) · v. Since v is arbitrary, we arrive at (2.22). ♦
Exercise 2.5. Consider a linear force field: F(r) = Ar, where A is a
(square) matrix. Show that F is conservative if and only if the matrix A is
symmetric, and that the potential energy is then U(r) = 1

2
(Ar, r), where

(·, ·) denotes the dot product.

Hint. Verify that
∮
[eiej ]

F · dr = 1
2
(Aij − Aji), where [ei, ej ] is the unit

square generated by the vectors ei, ej .

Exercise 2.6. Consider a unit circle centered at the origin in the plane of
two unit coordinate vectors ei, ej . Show that Aij −Aji is proportional to
the torque of the force Ar on the circle around its origin, or more precisely,
to the average tangential component of the force Ar around the circle.

Examples of conservative vector fields F = −∇U .

1. Gravitational field of a point mass at the origin in R
3:

(2.23) F(r) = − r

r3
, U = −1

r
,

where r = |r| and where we chose units so that the coefficient in front

of the right-hand side in (2.23) is 1. The same scaling to achieve k = 1

applies to the next example.
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2. Gravitational field of a point mass in R
2, or equivalently, the

electrostatic field of a wire with a uniform negative charge distribu-

tion, in the plane perpendicular to the wire:

(2.24) F = − r

r2
, U(r) = ln r.

3. Linear central force field:

(2.25) F = −kr, U(r) =
1

2
kr2.

4. Linear force field F(r) = Ar is conservative if and only if the

real square matrix A is symmetric: AT = A (see Exercise 2.5 above).

The corresponding potential is

(2.26) U(r) = −1

2
(Ar, r),

where (u,v) denotes the dot product of vectors u, v.

10. Some physical remarks

This section contains three miscellaneous observations: first, an in-

terpretation of potential energy as hydrostatic pressure; second, an

interpretation of conservativeness in terms of fluids, and third, an in-

terpretation of the 2D curl in terms of angular accleleration. We omit

some details to keep the discussion short.

Potential and the hydrostatic pressure. Imagine fluid of density

ρ = 1 in a vessel, in a force field with potential U(x); the field need

not be constant. Let p = p(r) be the resulting pressure in the fluid.

Remarkably,

(2.27) p(r) = −U(r),

apart from an additive constant. As an example, the pressure in a

pool at depth z is p = ρgz = gz (we took ρ = 1), while the potential of

the same gravitational field is U = −mgz = −gz, in agreement with

(2.27). The same interpretation holds for an arbitrary conservative

force field, not just the constant one.

Recall that the potential energy was defined as a certain line

integral; we can therefore use the fluid and a pressure gauge as an

analog computer to compute this integral via (2.27).
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Figure 9. Curl gives the angular acceleration.

Conservative fields create no motion in fluids. An alternative

characterization of a conservative vector field is the following. Imagine

again fluid of constant density enclosed in a vessel and subject to a

force field F. The vector field F is conservative if and only if it does

not excite motion in a resting fluid. We omit the proof.

Curl and the angular acceleration. We consider a vector field

F in R2; F need not be conservative in this discussion. Recall that

the 2D curl of F = 〈P,Q〉 is a scalar: curlF = Qx − Py. Figure 9

illustrates a dynamical interpretation of the curl, as follows.4 A rigid

cross has four equal masses at the tips, as shown. The force field

is acting on these masses, causing some angular acceleration α (in

addition to linear acceleration F). Interestingly, α equals the curl of

F in the limit of a small cross:

curlF = lim
r→0

α.

11. Conservation of energy

Consider a point mass in a conservative force field F = −∇U . The

particle’s position vector r obeys Newton’s second law:

(2.28) mr̈ = −∇U(r).

Just as in the one-degree-of-freedom case, let us define the kinetic

energy of a particle as the work required to bring the particle from

rest to speed v. I claim that this definition implies

(2.29) K =
mv2

2
,

4Interpreted kinematically, the curl is twice the average angular velocity of the
imaginary fluid with velocity F at (x, y).
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where v2 = (v,v) is the dot product, i.e., the square of the magnitude

of v. Indeed, let F(t) be the force causing the acceleration from zero

to v, during the time 0 ≤ t ≤ T . The work done by F(t) is

K =

∫ r(T )

r(0)

F · dr =

∫ T

0

mr̈ · ṙdt = mṙ2

2

∣∣∣∣T
0

=
mv2

2
,

as claimed.

Theorem 2.7. The total energy E = K + U of a particle moving

according to (2.28) remains constant throughout the motion

(2.30)
dE

dt
=

d

dt

(
mṙ2

2
+ U(r)

)
= 0.

Proof. Differentiating and using the chain rule on each summand in

(2.30), we obtain:

dE

dt
= mr̈ · ṙ+∇U · r = (mr̈+∇U︸ ︷︷ ︸

=0 by (2.28)

) · r = 0.

For nonconservative fields it makes no sense to speak of potential

energy, but kinetic energy is still defined. Since nonconservative fields

do work on a particle executing a closed path, we expect kinetic energy

of a particle to change if the particle returns to its starting point.

Problem 2.13 (page 129) gives an example where the energy picked

up equals the area enclosed by the particle’s path.

12. Central force fields; conservation of angular
momentum

Definition 2.6. A vector field which points along radial rays through

the origin (“the center”) and which has a constant magnitude on

each sphere r = const. is called central; see Figure 10(A). Formally, a

central force field is defined by

(2.31) F(r) = λ(r)r,

where λ : Rn → R is any scalar function of r.

Examples of central force fields include (2.23), (2.24) and (2.25),

but not (2.26), unless A = λI is a multiple of an identity matrix.



12. Central fields and angular momentum 93

Figure 10. Force fields: (A) central, (B) nonconservative
with rotational symmetry, and (C) pointing at the center but
not central.

Conservativeness and rotational symmetry. Central fields have

two special properties: they are conservative, and rotationally sym-

metric, meaning that RF(r) = F(Rr) for any rotation matrix R and

for any r. The converse is also true: Any rotationally symmetric

field which is conservative is a central field. A geometrical proof

is explained by Figure 10(B): a field which is not central satisfies∫
γ
F · T ds �= 0, and thus is not conservative. Figure 10(C) is a

cautionary reminder that pointing at the center is not enough to be

central: centrality also requires |F (r)| = const. for |r| = const. In-

deed, if this condition fails: F1 > F2, then there is a contour γ (see

Figure 10(C)) for which
∮
γ
Fdr > 0, showing that F is nonconserva-

tive.

Conservation of the angular momentum.

Theorem 2.8. Angular momentum of a particle moving in a central

field, i.e., satisfying

mr̈ = λ(r)r, r = |r|

remains constant throughout the motion,

(2.32) L = mr× ṙ = const.

Proof. The rotational version of Newton’s law (2.10) gives

d

dt
L = T = r× (λ(r)r) = 0 ♦



94 2. More Degrees of Freedom

Figure 11. Kepler’s law of areas is equivalent to conservation
of angular momentum.

Conservation of the angular momentum has the following geo-

metrical interpretation.

Kepler’s law of equal areas: The radius vector r of a particle mov-

ing in a central field sweeps the area at a constant rate. Equivalently,

r sweeps equal areas in equal times, Figure 11.

Proof. Kepler’s law of equal areas is a consequence of |L| = const.

To see why, let us compute an infinitesimal area ΔS of a sliver swept

by r during the time interval [t, t+ dt], Figure 11. The sliver consists

of the triangle OAB plus the tiny area ε of the “lens” between the

chord AB and the curve (see Figure 11) so that

ΔS =
1

2
|r(t)× (r(t+ dt)− r(t))︸ ︷︷ ︸

ṙ(t)dt+o(dt)

|+ ε =
1

2
|r× ṙ|dt+ o(dt) + ε;

here o(dt) denotes a quantity small with respect to dt in the sense

that limdt→0
o(dt)
dt = 0. Note also that ε/dt → 0 as dt → 0. Dividing

the above by dt and taking dt → 0 we then obtain

dS

dt
=

1

2
|r× ṙ| (2.32)=

1

2m
|L| = const.,

as claimed. ♦

13. Kepler’s problem

Kepler’s problem asks to describe the motion of two masses subject to

mutual gravitational attraction. This section reduces the problem to a
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simple-looking equation (2.35) below; the reader willing to believe this

reduction may wish to skip to the following section, for a remarkably

short proof that Kepler’s orbits are conic sections: ellipses, parabolas,

or hyperbolas.

Reducing two masses to one. Consider two point masses m1,

m2 (a planet and a star, Figure 12), subject to mutual gravitational

attraction, and with no other forces. Let us choose our inertial frame

with the origin at the center of mass, so that

(2.33) m1r1 +m2r2 = 0, or r2 = −m1

m2
r1,

where r1 and r2 are positions of the two masses in our frame. Such a

frame is inertial since no external forces act on our system. Newton’s

second law for m1 gives

(2.34) m1r̈1 = −Gm1m2
r1 − r2

|r1 − r2|3
.

By (2.33), we have r1 − r2 = m1+m2

m2
r1. Substituting in (2.34), we

get, after a brief simplification,

r̈1 = −k
r1
r31

, k =
Gm3

2

(m1 +m2)2
.

It is convenient to eliminate k by setting r1 = k1/3r; the rescaled

vector satisfies

(2.35) r̈ = − r

r3
,

where r = |r|. We thus reduced the two-body problem to one of a

single particle in the central field with inverse square force.

The gist of Kepler’s problem is therefore in the simple-looking

equation (2.35). This equation is analyzed in the next section.

Figure 12. Reducing the two-body problem to the single par-
ticle in a central field.



96 2. More Degrees of Freedom

14. Kepler’s trajectories are conics: a short
proof

The main point of this section is to give a strikingly quick and easy

proof, due to Lagrange,5 of the most famous theorem of Newton:6

Theorem 2.9. Kepler’s orbits, i.e., the trajectories of (2.35), are

conics, i.e., ellipses, parabolas or hyperbolas, with the foci at the ori-

gin.

Proof. As a preparation, let us fix any solution r(t) of (2.35) for the

rest of this proof; assume only that the angular momentum L �= 0,

since otherwise the motion is confined to a straight line through the

origin and is not as interesting. The orbit of our solution lies in the

plane normal to L and passing through the origin. Indeed, by the

conservation of angular momentum (which holds since the field in

(2.35) is central), we have

r× ṙ = L = const.,

which proves that r ⊥ L, as claimed. Let (x, y) be Cartesian coor-

dinates in the plane of our orbit, with the origin at the center, so

that

(2.36) ẍ = −a(t)x, ÿ = −a(t)y,

where

a =
1

r3
, r =

√
x2(t) + y2(t).

Since we have fixed the solution, a = a(t) is a fixed function of time

(rather than a function of coordinates x, y). Summarizing, both

coordinates x(t) and y(t) satisfy the same differential equation

(2.37) ü = −a(t)u.

Now it turns out that the modified distance w
def
= r − L2 satisfies

(2.37) as well:

(2.38) ẅ = −a(t)w;

5I am grateful to Alain Chenciner for pointing out this reference to me.
6To be more precise, Newton proved the converse, namely, that if the trajectories

of a particle in a central force field are conics with the foci at the origin, then the force
varies as the inverse square of the distance to the origin.
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Figure 13. Showing that (2.39) describes a conic section. Ec-

centricity of the projected section is e = tanα =
√
a2 + b2.

The projection is an ellipse if e < 1 (as in the figure), a
parabola if e = 1, and a hyperbola otherwise.

the proof is given shortly. But any solution of (2.37) is a linear com-

bination of two linearly independent solutions (for the background on

this, see page 99)). Now x and y are independent since y/x �= const.,

and thus

w = αx+ βy

for some constants α, β and for all t. Substituting w = r − L2 gives

(2.39) r = αx+ βy + L2,

the equation of our trajectory! That (2.39) is a conic section is imme-

diate from Figure 13: (2.39) is the (x, y)-projection of the intersection

of the cone z = r =
√

x2 + y2 and the plane z = αx+ βy + L2; and

the projection of a conic section is a conic section. We now show that

one of the foci of (2.39) lies at the origin, i.e., at the vertex of the

cone in Figure 13. Dividing (2.39) by e =
√
α2 + β2 results in

(2.40)
r

e
=

αx+ βy + L2√
α2 + β2

def
= d.

But d is the distance from (x, y) to the line αx + βy + L2 = 0 (here

(x, y) denotes a point on the line), Figure 14. Now it is well known

that r/d = e describes a conic with the focus at the origin, with

eccentricity e (see Problem 2.16 on page 130). ♦

Proof of (2.38). Let us place ourselves in a rotating frame with the

origin at the attracting center, and with one axis passing through the
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Figure 14. A conic with a focus at the origin.

planet. In the radial direction, the planet feels the force of gravita-

tional attraction −1/r2, as well as the centrifugal force ω2r (where ω

is the instantaneous angular velocity of the radius vector):

(2.41) r̈ = − 1

r2
+ ω2r.

But the angular momentum of the planet L = rv⊥ = r(ωr) = ωr2,

and thus

ω =
L

r2
.

Substituting this into (2.41) proves (2.38):

r̈︸︷︷︸
=ẅ

= − 1

r2
+

(
L

r2

)2

r = − 1

r2
+

L2

r3
= − 1

r3
(r − L2︸ ︷︷ ︸

w

).

♦
The above proof has a gap: I should have explained why the Coriolis

force does not appear (the answer: because this force has zero component

in the r-direction due to the choice of the frame), and how to deal with

the fact that ω �= const.) (the fictitious force is again perpendicular to the

r-direction). The reader can fill in the gap, or refer to a more formal proof

given next.

An alternative proof of (2.38). This proof is more self-contained than
the previous one, but is also longer and less intuitive. The magnitude of
the angular momentum is given by (recall that m = 1 in (2.35)):

L = rv⊥,
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where v⊥ is the component of velocity perpendicular to the radius-vector,
so that

(2.42) v⊥ =
L

r
.

The sum of kinetic and potential energies is

E = K + P =
1

2
(ṙ2 + v2

⊥)−
1

r

(2.42)
=

1

2

(
ṙ2 +

L2

r2

)
−1

r
.

Differentiating E = const., we get(
r̈ − L2

r3
+

1

r2

)
ṙ = 0;

since ṙ �= 0 (otherwise the orbit is a circle, which is a trivial case), we get

r̈ − L2

r3
+

1

r2
= 0,

so that

r̈ − L2

r3
+

1

r2
= 0,

or

d2

dt2
(r − L2) = − 1

r3
(r − L2),

thus proving (2.38). ♦

Remark 2.1. Figure 13 reveals a geometrical significance of the ec-

centricity e — namely,

e = tanα.

Note that e refers to the eccentricity of the projection (and not of the

section itself).

For an even simpler geometrical interpretation of the eccentricity

in the elliptical case see Problem 2.16 on page 130 and the caption of

Figure 40.

Background on linear ODEs. In the above proof we used the

following basic fact.

Theorem 2.10. Consider a second order linear differential equation

(2.43) ẅ + a(t)w = 0,
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where a(t) is a given function of time. If x(t) and y(t) are two lin-

early independent solutions7 of (2.43), then any other solution z(t) of

(2.43) is a linear combination of these: there exist constants α and β

(depending on the choice of solution z) such that

(2.44) z(t) = αx(t) + βy(t) for all t.

In other words, the space of solutions (2.43) is a two-dimensional

linear subspace in the space of twice differentiable functions on R.

Proof. Let z = z(t) be an arbitrary solution of (2.43), and let x(t)

and y(t) be two linearly independent solutions. For the proof, it

suffices to find α and β such that

(2.45) z(0) = αx(0) + βy(0), ż(0) = αẋ(0) + βẏ(0);

indeed, (2.45) states that the two solutions z(t) and αx(t) + βy(t)

share the same initial condition, and thus (2.44) must hold by the

uniqueness theorem. Now (2.45) is a linear algebraic system for the

unknowns α, β; the determinant of this system is the (signed) area

formed by the vectors (x(0), ẋ(0)) and (y(0), ẏ(0)). Since these vectors

are not parallel by the assumption, the determinant is nonzero and

thus the system has a unique solution (α, β). ♦

15. Motion in linear central fields

Having described the motion in Newtonian gravitational fields we now

consider another important class of motions: those in linear central

fields

F(r) = −kr;

we took the minus sign because in the most interesting examples the

force is restoring, rather than repelling. Newton’s equation for a point

mass in such a field reads mr̈ = −kr, or

(2.46) r̈ = −ω2r,

where ω2 = k/m. This equation arises as a model of the spherical

pendulum in a small neighborhood of its equilibrium; in that case

7By linear independence of two solutions we mean that the vectors (x, ẋ) and
(y, ẏ) are not parallel for some t. Note that by linearity two solution vectors in the
phase plane which are not parallel for some t are not parallel for all t. In particular,
the two vectors are not parallel at t = 0; this fact will be used shortly.
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r = (x, y) is the projection of the bob onto the horizontal (x, y)-

plane, and ω2 = g/L, where L is the length of the string. Despite its

simplicity, (2.46) hides a couple of surprises.

Theorem 2.11. Trajectories of (2.46) are ellipses centered at the

origin, Figure 15. Moreover, any motion under (2.46) is a sum of

two circular motions with angular velocities ω and −ω, Figure 16(A).

Finally, when viewed in a rotating frame with angular velocity ω, any

motion of (2.46) is in a circle, with constant speed, Figure 16(B).

Figure 15. Trajectories of a particle in a linear central field
(2.46) are ellipses centered at the origin. A collapsed ellipse is
also shown.

Figure 16. (A): Every motion under (2.46) is the sum of two
counter-rotating circular motions. (B): In a rotating frame,
the motion is circular, with constant speed, and with angular
velocity 2ω. The center of the circle can be anywhere.

Proof.

1: ellipticity of the orbits. Equation (2.46) breaks up into two

decoupled harmonic oscillators:

ẍ+ ω2x = 0, ÿ + ω2y = 0,
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with solutions

(2.47) x = a1 cosωt+ b1 sinωt, y = a2 cosωt+ b2 sinωt.

One way to prove ellipticity is to rewrite this solution in vector form:[
x

y

]
=

[
a1 b1
a2 b2

] [
cosωt

sinωt

]
;

this shows that the trajectory is a linear image of the unit circle,

and hence an ellipse. An alternative, less geometric approach, is to

solve (2.47) for cosωt and sinωt; then cos2 +sin2 = 1 turns into a

quadratic equation in x, y. Such an equation describes a conic which

in fact must be an ellipse (possibly collapsed to a segment or a point)

since the curve is bounded.

2: Sum of circular motions. Using complex notation, we write

r = (x, y) = x+ iy; now we can solve (2.46) in exactly the same exact

way as the real counterpart ẍ = −ω2x in a standard ODE course,

by seeking solutions as exponentials. That is, we substitute the guess

r = eλt into (2.46); this leads to the characteristic equation λ2 = −ω2,

or λ = ±iω, and consequently e±iωt are solutions of (2.46). Thus any

linear combination

(2.48) r = Aeiωt +Be−iωt,

is a solution, which proves that any motion is a sum of two circular

motions. By writing A = aeiα and B = aeiβ (with real a, α, b, β),

we can recast (2.48) as

(2.49) r = aei(ωt+α) + be−i(ωt−β).

3: In the rotating frame. If the observer himself is rotating with

the angular velocity −ω, then the last term in (2.48) will appear con-

stant, while the rotation Aeiωt will appear to add ω to its angular

velocity. To make this more precise, consider the (X,Y )-frame rotat-

ing with angular velocity −ω, i.e., clockwise, Figure 17. Any vector

R in the rotating frame will appear to the ground observer as rotated

by −ωt due to the frame’s rotation. Therefore, the ground observer

will see

(2.50) r = e−iωtR.
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Figure 17. An inertial frame and a rotating frame.

Figure 18. A particle on a rotating carousel viewed by a
ground observer appears to be rotated through −ωt (the angle
of the carousel’s turn) as compared to the carousel observer,

hence (2.50).

Substituting this into (2.48) and multiplying both sides by eiωt gives

R = Ae2iωt +B,

and proves the claim. ♦

Exercise 2.7. A unit point mass is subject to the a linear restoring force
directed at the origin, with Hooke’s constant k = ω2. Assume that the
initial conditions are such that the particle oscillates along a straight line,
as in Figure 15. Describe the motion of this particle as it appears to an
observer sitting in a reference frame sharing the origin with the stationary
frame and rotating counterclockwise with the angular velocity ω.
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Answer. The apparent orbit is a circle of radius A/2 passing through the

origin, where A is the amplitude of the solution in the stationary frame.

The motion along this circle has constant angular velocity 2ω clockwise.

16. Linear vibrations: derivation of the
equations

Linear systems of the previous section belong to a more general class:

(2.51) M ẍ = −Kx, x ∈ R
n,

where M and K are positive definite n × n matrices.8 This section

explains the reason for considering systems (2.51); their analysis is

given in the next section. Note that (2.51) reminds us of the mass-

spring system equation mẍ = −kx, and partly for that reason M

is referred to as the mass matrix, and K as the stiffness matrix.

Equation (2.51) describes small vibrations near an equilibrium, as

explained in the next paragraph. The notation x in this section is used

instead of r in the preceding sections, since in most applications x is

not the position of one particle, but rather a collection of (generalized)

coordinates of several particles. For the same reason we no longer

restrict to the case n = 2 as we did in the preceding sections.

To explain how (2.51) arises, consider a mechanical system with

the Lagrangian

(2.52) L(q, q̇) = 1

2
(M(q)q̇, q̇)− P(q),

where M is a positive definite matrix whose entries may depend on

q.9 Let q = q0 be an equilibrium solution of the Euler–Lagrange

equation, or equivalently, that ∇P(q0) = 0.

Let q(t) be a near-equilibrium solution of Euler–Lagrange equa-

tion, and let x be its deflection from the equilibrium:

q = q0 + x.

8Recall that a positive definite matrix A is, by the definition, a symmetric matrix
for which the dot product (Ax,x) > 0 for all x �= 0. Equivalently, it is a symmetric
matrix all of whose eigenvalues are positive.

9Kinetic energy of any mechanical system must be of such form; see Problem 2.30
on page 135 for the proof.
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We now show that the motions with both x, ẋ small satisfy (2.51),

where the matrices M and K are given by

(2.53) M = M(q0) and K = P ′′(q0),

where P ′′ is the Hessian matrix of P. To express the energies in terms

of x, we substitute q = q0 + x:

M(q) = M(q0)︸ ︷︷ ︸
M

+O(|x|), P (q) = P (q0) +
1

2
(P ′′(q0)︸ ︷︷ ︸

K

x,x) +O(|x|3).

Substituting into (2.52), we get

L =
1

2
(M ẋ, ẋ)− 1

2
(Kx,x) + P(q0)︸ ︷︷ ︸

constant

+O3,

where O3 = O(|x|3 + |ẋ|3). Now the constant term P(q0) does not

contribute to the Euler–Lagrange equations; discarding it, as well as

the cubic terms, we obtain the quadratic Lagrangian

L(x, ẋ) =
1

2
(M ẋ, ẋ)− 1

2
(Kx,x).

Now (2.51) is the Euler–Lagrange equation of this Lagrangian.10

Summarizing, we proved the following.

Theorem 2.12. Linearization of the Euler–Lagrange equations with

the Lagrangian (2.52) around an equilibrium solution q(t) = q0 is

given by (2.51), where M = M(q0) and K = P ′′(q0) is the Hessian

matrix of U .

17. A nonholonomic system

In this section I make a small digression. All of the systems discussed

so far involve no constraints on velocities besides those imposed by

constraints on positions. For instance, a particle constrained to a

curve has no constraint on the velocity besides the condition of tan-

gency to the curve. Such systems are referred to as holonomic. There

exist, however, systems where the constraints on the velocities are

not derivable from the constraints on the coordinates. An example of

such a system is a wheel rolling on the plane without sliding: indeed,

10This requires the identity ∇x(Ax,x) = 2Ax; see Problem 2.31 on page 135 for
the proof.
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Figure 19. Chaplygin’s sleigh: a skate S with a mass M

attached by a weightless rod. The mass slides on ice without
friction. The skate can only slide in the direction of the rod.

the no-slip condition slaves the angular velocity to the translational

speed, i.e., imposes a constraint on the generalized velocity. On the

other hand, there is no constraint on the position of the wheel: it

can be rolled so as to touch any point of the plane with any point of

the wheel, and with any orientation.11 An even simpler example of a

nonholonomic system is the so-called Chaplygin’s sleigh described in

this section.

The Chaplygin sleigh consists of a point mass M attached to the

massless skate S by a rod, lying on a horizontal sheet of ice; Figure 19

shows the top view.12 The skate S can only move in the direction

SM , but not sideways. The mass M can slide in any direction; there

is no friction. Note that there is no constraint on the position of

the segment, but there is a constraint on its velocity. To express

this constraint, let (x, y) be the position of S and let θ be the angle

between SM and the x-axis in the plane. The configuration space of

our system consists of all triples (x, y, θ mod 2π). The nonskidding

constraint is (ẋ, ẏ) ‖ (cos θ, sin θ), i.e.,

(2.54) − sin θ dx+ cos θ dy = 0.

This is a constraint on the velocity (ẋ, ẏ, θ̇) which therefore has 2

independent variables. One could say that the Chaplygin sleigh has

2.5 degrees of freedom, since there are three independent coordinates

but only two independent velocities.

11Proving that this is so is left as a challenge.
12Presumably, “sleigh” is meant to suggest a horse M attached to a sleigh S; in

the present problem the “horse” simply slides in a straight line.



17. A nonholonomic system 107

Geometrically, the velocity constraint (2.54) defines a tangent

plane — that is, the plane of allowed infinitesimal displacements —

at every point (x, y, θ) in R3, Figure 20. Such a field of planes is called

a distribution of planes.

Figure 20. (A) The distribution of planes (2.54), and (B) a
close-up near a vertical line.

Definition 2.7. A distribution is said to be nonintegrable if there is

no surface all of whose tangent planes belong to the distribution.

Exercise 2.8. Show that the distribution of planes given by (2.54) is
nonintegrable.

Solution. Assume for a moment that there exists an integral surface S in
the (x, y, θ)-space, and let P0 = (x0, y0, θ0) ∈ S. The set of all P (x, y, θ)
reachable from P0 by paths respecting the distribution is therefore two-
dimensional. But one can slide the sleigh from (x0, y0, θ0) to any (x, y, θ),
as is easy to check directly; this is a contradiction.

An alternative proof of the nonintegrability is sketched in Figure 21:
Assume, for a moment, that there exists an integral surface S through a; the
normal to this surface is shown in the figure. But there exists a path abcde
tangent to the distribution which can reach a point e �= a on the normal,
as the figure illustrates. Now the path abcde can be made arbitrarily small.
Hence the normal to S at a intersects S at another point arbitrarily close
to a — a contradiction. For a more extensive treatment of the subject,
including Frobenius’s criterion of nonintegrability using differential forms,
see, e.g., [1].

Exercise 2.9. Can exponential decay occur in a frictionless mechanical
system for any initial condition?

Hint. The angle θ of the Chaplygin sleigh approaches a constant exponen-

tially, both in the future time and in the past.
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Figure 21. Proving the nonintegrability of the distribution (6.23).

18. The modal decomposition of vibrations

We now return to small vibrations M ẍ = −Kx introduced in the

section before last. Let us start with the special case of M = I:

(2.55) ẍ = −Kx.

The case of general M > 0 reduces to this one and is discussed later.

We assume throughout that K is a symmetric positive definite ma-

trix or equivalently, that K has an orthogonal basis of eigenvectors

with positive eigenvalues. A quick intuitive picture of the problem,

described in the next paragraph, leads to the formal solution in the

paragraph that follows.

An intuitive picture. It helps to think of (2.55) as Newton’s second

law for the mass m = 1 in the force field F(x) = −Kx. Such a force

field is sketched in Figure 22 in the planar case, but the idea applies

to any dimension with obvious changes.

The key is to focus on the special directions v, Figure 22, where

the force points directly into the origin: Kv ‖ v, i.e.,

(2.56) Kv = λv for some λ ∈ R.

We thus were led to the eigenvectors (v) and the eigenvalues λ of

K. Note that (2.56) looks like Hooke’s law, with λ playing the role

of Hooke’s constant. The familiar scalar mass-spring systems along

the eigendirections are embedded in our problem! These give rise

to harmonic (i.e., sinusoidal) oscillations along the eigendirections as

special motions, called the normal modes of vibration; the general
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Figure 22. Equation (2.55) describes a particle in the force
field F = −Kx. The ellipse is an equipotential line Ux) =
1
2
(Ax,x) = const.; the forces are normal to it.

solution will be shown to be the sum of normal modes, due to the

superposition principle13. In the next paragraph all this is made

formal.

A formal solution of (2.55). According to the preceding paragraph

we first seek special solutions of the form

(2.57) x(t) = a(t)v,

where v satisfies (2.56) and a(t) is a scalar function to be found (we

expect something sinusoidal). To find a(t), substitute (2.57) into

(2.55):

ä(t)v = −K(a(t)v)
(2.56)
= −λa(t)v.

This holds iff

ä = −λa,

i.e.,

a(t) = A cosωt+B sinωt, ω =
√
λ,

where A and B are arbitrary constants. Note that ω is real, since

λ > 0 thanks to the assumption K > 0. Summarizing,

(2.58) x(t) = (A cosωt+B sinωt)v

is a solution of (2.55) if ω2 = λ and v is an eigenvalue-eigenvector

pair of K. Solutions (2.58) are called the normal modes.

13According to which any linear combination of solutions is a solution. This
principle applies since our ODE (2.55) is linear.
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Theorem 2.13. Any solution of (2.55) with K > 0 is the sum of

normal modes:

(2.59)
n∑

k=1

(Ak cosωkt+Bk sinωkt)vk,

with some constants Ak, Bk; here {vk}nk=1 is an eigenvector basis of

K and ω2
k =

√
λk is the eigenvalue corresponding to vk, Figure 23.

Figure 23. The planar case (n = 2): any trajectory of ẍ =
−Kx is a combination of two harmonic oscillations along L1

and L2.

Proof. We already showed that the summands in (2.59) are solutions,

and so the sum (2.59) is also a solution by the superposition principle

(which applies since our system is linear). It remains to show that

no other solutions exist, i.e., that an arbitrary solution x(t) of (2.55)

can be written as (2.59) with a proper choice of Ak, Bk. If we can

choose these constants so as to match the initial data, i.e., so that

(2.60)
x(0) =

∑n
k=1 Akvk,

ẋ(0) =
∑n

k=1 ωkBkvk,

then we can conclude that (2.59) holds by the uniqueness theorem

for ODEs, thus completing the proof. It thus remains to show that

Ak, Bk in (2.60) exist for any choice of x(0), ẋ(0). Now any vector

is a linear combination of the vectors vk since these form a basis of

R
n. In particular, x(0) and ẋ(0) are linear combinations of vk. This

completes the proof. ♦
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Exercise 2.10. Find the coefficients Ak, Bk explicitly.

Hint. Take the dot product of both sides in (2.60) with vk and use orthog-

onality of the basis. If vk are unit vectors, then Ak is the projection of the

initial position onto vk, and ωkBk is the projection onto vk of the initial

velocity.

19. Lissajous’ figures and Chebyshev’s
polynomials

Having solved (2.55) analytically, we now describe the solutions ge-

ometrically, in the planar case: x ∈ R2. The trajectories (2.59) are

referred to as the Lissajous figures. Figure 24 shows examples for

various rational frequency ratios ρ = ω2/ω1. Figure 25 illustrates

that for an irrational ρ Lissajous’ figure fills a rectangle densely, i.e.,

it eventually passes through an arbitrarily small neighborhood of any

point in the rectangle.

Figure 24. Lissauous figures (2.59) for different rational ra-
tios ρ = ω2/ω1. The top four curves (corresponding to
B1 = B2 = 0) are the graphs of Chebyshev’s polynomials
of degrees 2, 3, 4, 5.

Let us choose the eigenvectors of K as the coordinate axes; the

solution then is of the form

(2.61) x = A1 cosω1t+B1 sinω1t, y = A2 cosω2t+B2 sinω2t.

How to turn a straight line into a Lissajous figure. Interest-

ingly, any Lissajous figure comes from a straight line subjected to two
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Figure 25. A Lissauous figure (2.59) for ρ =
√
3.2, 0 ≤ t ≤ 50.

“roll and project” operations which I now describe. We start with an

arbitrary straight line drawn on a sheet of transparency.

(1) Roll the transparency into a cylinder; the line becomes a

helix.

(2) Project the cylinder onto the flat sheet parallel to the cylin-

der’s axis; the helix projects onto a sinusoid.

(3) Roll up the flat sheet into a cylinder, rolling in the direction

of the sinusoid’s axis so that this axis becomes an equator

of the cylinder.

(4) Project the new cylinder onto the sheet parallel to the cylin-

der’s axis; the sinusoid’s projection is a Lissajous figure!

In short, two “roll and project” operations convert a straight line into

a Lissajous figure. During its metamorphosis, the straight line first

becomes a helix, then a sinusoid and finally a Lissajous figure.

Remark. Compare the curves in any of the columns in Figure 24;

you may notice that both curves come from a sinusoid on a cylin-

der by projection on the plane of the paper. Moreover, one curve

changes into the other if the cylinder is turned around on its axis by

an appropriate angle.

Chebyshev’s polynomials. Consider a special case of Lissajous fig-

ures:

(2.62) x = cos t, y = cosmt,
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where m is an integer. Any solution of the equation ẍ = −Kx in

R
2 with ẋ = 0 reduces to this form under rescaling, provided the

frequency ratio ρ = m is an integer.

It turns out that (2.62) defines y as a polynomial function of

x: y = Tm(x), called the Chebyshev polynomial.14 Figure 24 shows

graphs of Tm(x) for m = 2, 3, 4, 5.

Theorem 2.14. y = cosmt is a polynomial in x = cos t of degree m

(with coefficients independent of t), Figure 24.

Proof. By Euler’s formula eiθ = cos θ + i sin θ we have

(2.63) y = cosmt = Re(eimt) = Re((eit)m).

Since t = cos−1 x, we have

eit = cos(cos−1 x) + i sin(cos−1 x) = x+ i
√

1− x2.

Substituting this into (2.63) gives

y = Re (x+ i
√

1− x2)m = Re
m∑

k=0

(
m

k

)
xm−k(i

√
1− x2)k.

But only even k contribute to the real part, and these real terms are

polynomial thanks to the evenness of k. This completes the proof. ♦

Exercise 2.11. Find Tm(x) for m = 0, 1, 2, 3, 4.

Answer. T0 = 1, T1 = x, T2 = 2x2−1, T3 = 4x3−3x, T4 = 8x4−8x2 +1.

For a general recurrence relation for Chebyshev’s polynomials, see Problem

2.32 on page 136.

20. Invariant 2-tori in R
4

In studying a simple harmonic oscillator ẍ = −ω2x it was very fruitful

to consider its phase space R2; we saw that the phase space is foliated

by (topological) circles, namely the energy ellipses ẋ2+ω2x2 = const.

What is the corresponding picture for (2.55) with x ∈ R
2? Phase

14The French and German spelling “Tchebysheff” explains the use of T in Tm.
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Figure 26. Two angles θ1, θ2 define a point on the 2-torus (2.66).

space for this system is R
4, since (2.55) is equivalent to a system of

first order ODEs in R
4:

(2.64)

{
ẋ = y,

ẏ = −Kx,
x, y ∈ R

2.

Assume that K is diagonal; no generality is lost since the assump-

tion amounts to choosing the coordinate axes in the x-plane along

the eigenvectors of K. The system (2.55) then decouples into two

harmonic oscillators:

(2.65)

{
ẍ1 = −ω2

1x1,

ẍ2 = −ω2
2x2.

For each of these, the energy is conserved:

(2.66) y21 + ω2
1x

2
1 = 2E1, y22 + ω2

2x
2
2 = 2E2,

where yi = ẋi and where E1, E2 are constants depending on the initial

condition, Figure 26. For a fixed pair E1, E2, both nonzero, (2.66)

defines a 2-torus in R
4 = {(x1, ẋ1, x2, ẋ2)}. Indeed, referring to Fig-

ure 26, two angular variables θ1, θ2 specify the point (x1, ẋ1, x2, ẋ2)

in (2.66) uniquely; these angular variables can be thought of as the
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coordinates on the 2-torus, as Figure 26 illustrates. Now in the ex-

ceptional cases E1 = 0, E2 > 0 or E1 > 0, E2 = 0 the torus collapses

to a circle, and in the totally degenerate case E1 = E2 = 0 the energy

set (2.66) is an equilibrium point. We conclude: The entire space R4

is the union of 2-tori (corresponding to parameters E1 > 0, E2 > 0),

two families of circles and one point. Because of the conservation of

energies (2.66), the tori are invariant under the flow of the system

(2.64).

The invariant tori in the 3-sphere. Let us now fix the total en-

ergy: E1 + E2 = E > 0, i.e., consider all solutions of (2.55) with

y21 + ω2
1x

2
1 + y22 + ω2

2x
2
2 = E.

This set is, topologically speaking, a 3-sphere S3 ∈ R
4; and, as we

saw, this sphere is a union of 2-tori (2.66) with E1,2 > 0 and of two

circles corresponding to (E1, E2) = (E, 0) or (0, E), as illustrated in

Figure 27. In this figure the sphere S
3 is identified with R

3 ∪ {∞}.
In particular, the vertical line C2 in the figure corresponds to an

invariant circle. The circles C1 and C2 in Figure 27 correspond to the

normal modes, where all the energy is concentrated in one mode.

Figure 27. Invariant tori on the energy sphere S3 (repre-
sented in the figure as R3 with the point at infinity). The two
circles C1, C2 correspond to the two normal modes.
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The Hopf fibration. Continuing from the preceding paragraph,

consider now the special case of equal frequencies ω1 = ω2 = 1 in

(2.65); that is, we have the system of two identical decoupled har-

monic oscillators. Let us fix the total energy 2E = 1; all solutions

with such energy lie on the sphere

S
3 = {x2

1 + y21 + x2
2 + y22 = 1}.

Since all solutions are periodic, we conclude that S
3 is a union of

circles, parametrized by the time t:

(2.67) x1 + iy1 = reit, x2 + iy2 =
√
1− r2ei(t−ϕ), 0 ≤ r ≤ 1,

where r and ϕ are constants. One such circle is sketched in Fig-

ure 28(a); if we keep r fixed and change ϕ, the circle will move around

the torus, as shown in Figure 28(b); as ϕ changes by 2π, this circle

sweeps the entire torus. We see that each torus in Figure 27 is a union

of circles. The entire S
3 is thus a union of circles; this union is called

the Hopf fibration.

Figure 28. Each torus in Figure 27 is a union of circles. The
degenerate tori — namely, the circles C1 and C2 from Fig-
ure 27 — map to the poles of S2.

Theorem 2.15. There exists a continuous map p : S3 → S
2 (onto)

which maps each Hopf circle (2.67) to a point on S
2. Moreover, dif-

ferent circles map to different points.

Nevertheless, S
3 is not a direct product of S

2 and S
1; that is,

there does not exist a continuous one-to-one correspondence between

points in S
3 on the one hand and the pairs of points from S

2 and S
1

on the other. There is some interesting topology behind the simple

mechanical system of two harmonic oscillators.
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Proof of the theorem. Any point on S
3 can be represented by

(2.67); the map

p := (reit,
√

1− r2ei(t−ϕ)) 	→ (R cosϕ,R sinϕ, r), R =
√

r(1− r)

indeed satisfies the conditions of the theorem. Although this com-

pletes the proof, I would like to give the motivation for this choice of

p. A typical torus from Figure 27, given by

z1 = reiθ1 , z2 =
√

1− r2eiθ2 , 0 < r < 1

(where θ1, θ2 are the parameters and r defines the torus), is shown

in Figure 28(a). This torus, which we denote by T2
r, is foliated by

circles (2.67), each represented by its own value of ϕmod2π. Each

Hopf circle is therefore represented by a point on the meridian of T2
r,

as shown in Figure 28(a), (b). In short, we have a mapping from

T
2
r to the meridian circle S

1
r, and this map collapses Hopf circles to

points. Now for each r we have such a circle S
1
r; stacked on top of

each other, with r as their height, they form a sphere (Figure 28(c)),

once we note that r = 0 and r = 1 each corresponds to a point, one

giving the south pole and the other giving the north pole. ♦

21. Rayleigh’s quotient and a physical
interpretation

The eigenvalues and eigenvectors play the key role in understanding

the dynamics of ẍ = −Kx. In this section I give a variational descrip-

tion of the eigenvalues and the eigenvectors. In fact, this description

can be explained physically to the mutual benefit of linear algebra

and mechanics.

Theorem 2.16. For any symmetric n×n matrix K with real entries,

the critical points of the quadratic form (Kx,x) restricted to the unit

sphere |x| = 1 are the eigenvectors of K, and the critical values are

the corresponding eigenvalues. In particular,

(2.68) λmin = min
|x|=1

(Kx,x), λmax = max
|x|=1

(Kx,x)

and

(2.69) Axmin = λminxmin, Axmax = λmaxxmax.
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Relations (2.68) can equivalently be written as

(2.70) λmin = min
y �=0

(Ky,y)

(y,y)
, λmax = max

y �=0

(Ky,y)

(y,y)
.

Figure 29. Level curves of Rayleigh’s quotient R =
(Kx,x), |x| = 1. Critical values of R are the eigenvalues

and critical points are the eigenvectors of K.

Proof. Recall the method of Lagrange multipliers: If v is a critical

point of a function f : Rn → R subject to a constraint g(x) = const.,

then the gradients are parallel at x = v, i.e.,

(2.71) ∇f(v) = λ∇g(v)

for some λ ∈ R; the converse holds as well. We conclude: v is a critical

point of f(x) = (Kx,x) subject to the constraint g(x) = (x,x) = 1

iff for some λ

∇(Kx,x) = λ∇(x,x) at x = v,

i.e., Kv = λv. Moreover, the corresponding critical value (Kv,v) =

(λv,v) = λ(v,v) = λ. ♦

A physical interpretation of Theorem 2.16. Consider a point

mass constrained to the unit sphere and subject to the force field

F(x) = −Kx, Figure 30. The potential energy of this particle is

(2.72) U(x) =
1

2
(Kx,x),
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as explained in the next paragraph; critical points of the restriction

of U to |x| = 1 are the equilibria of our point mass. At such an

equilibrium the sum of forces on the particle vanishes:

−Kv + λv = 0;

here the second term is the normal reaction force of the constraint.

We conclude that critical points of the restriction of U to |x| = 1 are

the eigenvectors of K, precisely as Rayleigh’s criterion states.

To justify (2.72) let us drag the particle from 0 to x along a

straight line; this takes average force Favg = 1
2(0+Kx) = 1

2Kx. The

work done is the dot product (Favg,x) =
1
2 (Kx,x).

Figure 30. A physical explanation of Rayleigh’s principle.

22. The Coriolis and the centrifugal forces

In this section we place ourselves in a rotating frame.15 Newton’s sec-

ond law is not invariant under the change from inertial to noninertial

frame. In other words, when expressing Newton’s second law in the

coordinates of a noninertial frame, extra terms appear in addition

to F. For a rotating frame these extra forces are the Coriolis and

the centrifugal forces. To an observer sitting in a rotating frame and

unaware of the frame’s rotation these terms are perceived as actual

forces. These fictitious forces are also referred to as inertial forces,

since they are manifestations of inertia. To find the expressions for

these forces we must relate the coordinates of the rotating frame to

those of the inertial frame.

15I consider only the frames in two dimensions, rotating with a constant angular
velocity, and omit the discussion of angular or linear acceleration of the frame. A more
complete discussion of these topics is available in many texts, e.g., in [9].
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Transformation to a rotating frame. Figure 31 shows a plat-

form rotating counterclockwise with a constant angular velocity ω.

A coordinate system (X,Y ) drawn on the platform coincides with a

stationary coordinate system (x, y) at t = 0. Given a point in the

Figure 31. An explanation of (2.73).

plane, denote its coordinates in the two frames by Z = (X,Y ) and

z = (x, y). I claim that

(2.73) z = eiωtZ,

where complex notation is used: Z = (X,Y ) ≡ X + iY , z = x+ iy.16

Indeed, as the last two sketches in Figure 31 explain, the inertial

observer sees the particle rotated through the angle ωt, as compared

to the rotating observer.

Using (2.73) we will now rewrite Newton’s law

(2.74) mz̈ = F

for a point mass subject to force F in the rotating frame, thus dis-

covering the Coriolis and the centrifugal forces.

Before substituting z = eiωtZ into (2.74), we differentiate twice

and collect terms:

z̈ = eiωt(Z̈ + 2iωŻ − ω2Z).

16Recall that there is nothing “imaginary” about the complex number x + iy: it
is just the point (x, y) in the plane. The imaginary unit i, in particular, is just the

point (0, 1) on the y-axis. Recall also that multiplication of a vector by eiθ rotates the
vector by θ around the origin.
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Now (2.74) turns (no pun intended) into

(2.75) mZ̈ = e−iωtF︸ ︷︷ ︸
actual

−2imωŻ︸ ︷︷ ︸
Coriolis

+ mω2Z︸ ︷︷ ︸
centrifugal

.

Note that if F depends on the position, then in the last formula it

must be expressed in terms of Z.

Figure 32. The Coriolis and the centrifugal forces acting on
a moving particle in a counterclockwise rotating frame (ω>0).

To illustrate this result, a free particle (F = 0) in a rotating frame

satisfies

mZ̈ = −2iωŻ︸ ︷︷ ︸
Coriolis

+ ω2Z︸︷︷︸
centrifugal

after dividing both sides by m. An observer in this frame will have

an illusion of two forces acting on the particle.

Remark 2.2. As Figure 32 illustrates, the Coriolis force is perpendic-

ular to the velocity of the particle, in the same way as magnetic force

on a charge is perpendicular to the charge’s velocity. The Coriolis

force, just as the magnetic force, does zero work since it is perpendic-

ular to the velocity.

Remark 2.3. The centrifugal force points away from the center,

Figure 32. In fact, “centrifugal” means “fleeing from the center”,

from Latin “effugere” (to flee), similar to “fugitive”.

Exercise 2.12. Write the governing equation for the particle subject to a
linear restoring force: z̈ = −ω2z (let us take m = 1) in the frame rotating
with angular velocity ω.
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Solution. Equation (2.75) gives the answer once we note that the term
e−iωtF = e−iωt(−ω2z) = −ω2Z cancels the centrifugal term in (2.75); the
Coriolis term remains:

Z̈ = −2iωŻ.

The motion of Z is circular, with constant angular velocity −2ω, as ex-
plained on page 102, and as is easy to see directly, since the general solution
is given by

Z = A+Be−2iωt,

where A and B are arbitrary complex numbers. A is then the center of the

circular orbit and |B| is the radius.

23. Miscellaneous examples

This section describes three observations that I found interesting or

amusing.

1. Channels through a planet. Imagine various channels drilled

through a planet, as in Figure 33 (we assume that the planet is a solid

ball of constant density, and that it does not rotate). Particles can

slide inside each channel without friction. We place a particle in each

of the channels at A, and release them. The particles will oscillate

back and forth along each channel.

Suprisingly, all the periods of oscillations are the same. Moreover,

even if a particle is released at an interior point E on any chord, then

the period of oscillation will still be the same, Figure 33. In addition,

a satellite skimming the surface of the planet has the same period of

revolution.17

Proof/explanation. Gravitational field inside a homogeneous ball

with constant density is a linear central field given by −kr (with a

constant k depending on the density); proof of this statement uses

the result of Problem 2.39, according to which a spherical shell cre-

ates zero gravitational field inside; the details are left to the reader.

17Under some idealizing assumptions including the absence of friction with the
air and the perfect sphericity of the planet.
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Figure 33. Periods of oscillations in the channels TAB =
TAC = TAD = TEE′ . Moreover, these periods are equal to
the orbiting period of a satellite skimming the planet’s surface!

We conclude that the particle constrained to the chord is subject to

gravity and the reaction from the constraint:

F = −kr+N.

Let us project this force onto the unit direction vector e of the chord

by taking the dot product with e:

Fchord = F · e = (−kr+N) · e = −λr · e = −kx;

here x = r · e is the distance to the midpoint of the chord. By

Newton’s second law we havemẍ = −kx, a harmonic oscillator, whose

period 2π
√
m/k depends neither on the choice of the chord nor on

the amplitude. It remains to explain why the satellite’s period of

revolution is the same. To that end, note that the force on the satellite

F = −kr is still given by the same formula, since we assume that r is

negligibly close to the surface of the planet. Therefore for the satellite

we have mr̈ = −kr and the period of motion is the same as for the

particles in channels. ♦

2. Gravitational force = visible size. According to the next

theorem, the gravitational pull at O from a mass distribution on a

spherical cap in Figure 34 depends on the visible (from O) size of the

cap, but not on the cap’s actual size! More precisely, we have the

following.

Theorem 2.17. Consider two concentric spherical caps subtending

the same cone with the vertex at the shared center O of the spheres,
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Figure 34. Each cap carries a uniform mass distribution of the same

area density (i.e., of the same mass per unit area in both caps). Under

these conditions, the caps exert the same gravitational pull upon a

particle at O.

Proof. Consider two patches subtending the same small solid angle,

Figure 34. Let r, R be the radii of the two caps, and let dm, dM be

the masses of the patches. Denoting by df , dF the gravitational pulls

exerted by these patches upon a unit mass at O, we obtain, treating

the patches as point masses:

dF = G
dM

R2
df = G

dm

r2
.

But dM/dm = (R/r)2, i.e., dM/R2 = dm/r2. We conclude that

dF = df , which implies that F = f . ♦

Figure 34. The force of attraction by a spherical cap of fixed
thickness depends only on the solid angle at which it is seen.

3. A pendulum on a Hookean spring. The reader may have

seen this toy: a heavy rubber ball the size of a ping-pong is attached

to a long, lax rubber band. My son could swing the ball back and

forth in a horizontal path with swing of about 15–20 feet, as shown in

Figure 35. The ball skimmed above the floor, never touching it, in a

path that appeared nearly straight, and almost touching the opposite

walls of a large room. Let us show that if the spring is a zero length

Hookean spring then in fact a straight horizontal path is possible

(assuming no friction, etc.).
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Figure 35. Mass suspended on a linear spring can oscillate
in a horizontal straight line!

Consider a mass suspended by a spring whose force of tension is

in direct proportion to its length: T = kL; note that such a spring

has zero length when relaxed.18 Restoring force of the spring is thus

−kr, provided we choose the origin r = 0 at the suspension point,

Figure 35. According to Newton’s second law,

mr̈ = −kr+mg,

where g is the vector of gravitational acceleration.

Dividing by m and abbreviating k/m = λ, we get

r̈ = −λ

(
r− k−1mg

)
.

Introducing x = r+ k−1mg, we get

ẍ = −λx;

note that x is the displacement from the equilibrium −k−1mg.

All trajectories of this system are ellipses, as we proved earlier; see

page 100. Among these ellipses are the collapsed ones, i.e., segments,

as in Figure 35. One of these segments approximates the trajectory

of the ball in Eric’s toy.

Remark 2.4. Although the assumption of zero relaxed length of

a spring may seem unrealistic, it works reasonably well for a pre-

stressed spring; such a spring satisfies T = kL reasonably well, as

long as L > L0, where L0 is the shortest length. Many springs, e.g.,

18Such an idealized spring is not too bad an approximation of the rubber band
in Eric’s toy, since the relaxed length of the band was small compared to its operating
length.
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the ones for garage doors, are manufactured in a pre-stressed state so

that they are approximately linear for a range of L.

24. Problems

Center of mass.

2.1. Find the center of mass of a cubical box with the top removed. The
box is made of uniform thin material.

Human dynamics.

The following five problems help us learn mechanics from our bodies.

2.2. A person walking on a beam, when losing balance, will bend the body
so as to lean into the direction of the fall. Why?

2.3. A person standing on a rail and facing the direction perpendicular to
the railroad track begins to fall forward, and, wishing to recover balance,
begins to rotate his arms. Which way, and why?

2.4. Sometimes when a person stumbles, he begins to run forward, in some
priceless cases running for 15 feet or more before either recovering, or falling
(this can be quite embarrassing or entertaining, depending on who runs).
Can you explain the reason for running?

2.5. A person slips on ice, with the feet going forward. How and why does
he bend the body to minimize the impact?

2.6. A biker, going fast in a straight line, wishes to make a quick right
to follow the sudden turn of the road. Describe what he does with the
handlebars to accomplish this.

Answer. Written backwards: ...thgir ekib eht nael ot tfel leehw eht nrut
ylfeirB

Minimization; equilibria.

2.7. Several springs are tied together at a point A(x, y), Figure 36; the
other ends of springs are attached to given points Ai(xi, yi), i = 1, . . . , n
in the plane.

1. Consider the potential energy U(x, y) of the system. Prove that an
equilibrium position A(xe, ye) is a critical point of U(x, y), whether or not
the springs are linear.

2. Assume now that each spring is a linear zero length spring with
Hooke’s constant ki for the ith spring. Prove that the equilibrium position
(xe, ye) of A coincides with the center of mass of the collection of particles
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Figure 36. Zero length springs tied together at A.

placed at the points Ai, i = 1, . . . , n and endowed with masses mi = ki,
i = 1, . . . , n. Is the equilibrium position unique?

3. Let I(x, y) be the sum of moments of inertia relative to the point
(x, y) of the collection of masses mi = ki positioned at the points Ai. Con-
sider also the potential energy U(x, y) of the system of springs in Figure 36,
as defined above. Show that

(2.76) I(x, y) = 2U(x, y).

In other words, the moment of inertia can be interpreted as the potential
energy of a set of linear zero length springs.

2.8. The parallel axes theorem states: Let IA denote the moment of inertia
of a collection of masses relative to point A. Then

(2.77) IA = m(AcA)2 + IAc ,

where Ac is the center of mass of the collection of masses. Interpret the par-
allel axes theorem as a statement on potential energy of the set of springs.

Solution (and an alternative proof of (2.77)). Note two facts: (i) the
equilibrium Ac of A (Figure 36) coincides with the center of mass of the
collection of masses mi = ki, and (ii) the effective Hooke’s constant of the
collection of springs is k =

∑
ki =

∑
mi. Thus, the work it takes to move

the point (x, y) from the equilibrium Ac to A equals 1
2
k(AcA)2. This work

goes into the increase of potential energy of the system:

1

2
k(AcA)2 = U(A)− U(Ac).

But this is exactly our claim (2.77), due to (2.76)!

2.9. Figure 37 shows a mass connected by Hookean springs with zero re-
laxed lengths to fixed points A1, A2. There is no gravity. If pulled to the
left and released, the mass will execute oscillations in the line A1A2. If
pulled straight up instead, the mass will oscillate up–down. Which oscilla-
tion will have the higher frequency?
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Figure 37. These are zero length springs : tension T = kL,
where L is the spring’s length. Which of the two oscillations
has higher frequency?

Answer. The two frequencies are the same. Indeed, the force F upon the
mass located at x ∈ R

2 from the ith spring is −ki(x− xi), where xi is the
position vector of the point of attachment Ai. The total force is

F(x) = −
∑

ki(x− xi) = −k(x− x0),

where k = Σki and x0 = k−1 ∑(kixi) (the equilibrium position). We
conclude: The resultant force F is of the same form as the force created
by a single linear spring attached at the equlibrium x0. The proof applies
verbatim to any number of springs. In short, any collection of linear springs
is equivalent to a single spring whose Hooke’s constant is equal to the sum
of Hooke’s constants.

Vector fields.

2.10. Consider a linear vector field F(r) = Ar, where A is an n× n anti-
symmetric matrix: AT = −A. Show that

(1) F(r) ⊥ r, i.e., the force always acts at the right angle to the
radius-vector.

(2) If n = 2, show that the work done by F around a closed path is
in direct linear proportion to the area of the path.

(3) If n = 3, show that the work done by F around a closed path in
R

3 is in direct linear proportion to the area of the projection of
the path onto the plane perpendicular to the zero eigenvalue of
A.

2.11. Consider the motion of a particle in the central field with the force
F (r) = 1

ra
. Are there values of a for which a particle with a nonzero angular

momentum can collide with the center in finite time, executing infinitely
many turns around the center in the process?

2.12. Find the expression for the force F (r) of the central force field with
the following strange property: all circular orbits have the same angular
momentum.
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Answer. F (r) = k
r3
.

2.13. Consider the motion of a unit point mass in the plane in the force
field F = −∇U(r) + (y,−x):

(2.78)

{
ẍ = y − Ux(x, y),

ÿ = −x− Uy(x, y),

where U(x, y) is a smooth function. Show that every periodic trajectory of
(2.78) encloses zero area, where the area A enclosed by C is counted with
a sign in the sense of Figure 38, i.e., A =

∮
C
xdy.

Figure 38. Area enclosed by the trajectory is counted with
a sign, as shown. Any periodic trajectory of (2.78) encloses
zero area.

Celestial mechanics.

2.14. Two gravitational masses m1 and m2 revolve around the common
center of mass in circles. Show that the period of their revolution (“the
year”) depends only on the total mass m1 +m2 and the distance.

2.15. An asteroid comes from infinity as shown in Figure 39 with speed
v∞ far away from Earth. What is the smallest safe size of the distance d?
The radius of Earth is R, and the gravitational acceleration on the surface
of Earth is g. Nothing else is given.

Solution. To find the distance rc of closest approach to the center of the
Earth, we first note that at the point of closest approach (assuming the
comet misses the surface) the angular momentum is the same as it was
initially:

(2.79) rcvc = dv∞.

The energy at the closest approach is the same as it was at infinity:

v2c
2

− k

rc
=

v2∞
2

, k = gR2,

where we divided by the mass of the asteroid. Solving for vc and substi-
tuting into (2.79) we obtain

d = R

√
1 +

2k

rcv2∞
= R

√
1 +

2gR2

rcv2∞
.
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v

d

mR

Figure 39. Will the asteroid hit the Earth?

The smallest safe value of d is the one for which the asteroid just grazes
the surface of the Earth: rc = R. Substituting this into the expression for
d we get

dcritical = R

√
1 +

2gR

v2∞
.

Here is an interesting note: the term inside the square root:

2gR

v2∞
=

gR
v2
∞
2

=
P.E.

K.E.
,

where P.E. is the potential energy of a unit mass on the Earth’s surface
(the work required to remove it to infinity), while of K.E. is the kinetic
energy of the mass at infinity!

The following two problems add to our discussion of Kepler’s problem.

2.16. Let r and d be the distances from a point P (x, y) to a given point
F and a given line, as shown in Figure 14. Show that the set of all points
P satisfying

(2.80) r/d = e,

where e is a given constant is a conic with a focus at F . The given line is
called the directrix of the conic.

Proof for the case of 0 < e < 1 is outlined in Figure 40. Let us position
the plane of the alleged ellipse as shown in Figure 40; namely, with the
directrix lying in the horizontal plane and at the angle θ to the horizontal,
where sin θ = e.

From amongst all spheres tangent to the tilted plane at F choose the
one whose equator lies in the horizontal plane. Now construct the verti-
cal cylinder sharing the equator with this sphere. The intersection of the
slanted plane with the cylinder is an ellipse.19 Now for any P on this ellipse
(2.80) holds, as the figure explains (note that PF = PQ as two tangent

19Although we take this fact for granted, it is easy to prove geometrically by
adding another sphere inside the cylinder, tangent to the tilted plane; the tangency
point F1 is another focus of the ellipse. I omit the details.
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segments from a point P tangent to the sphere); if we move P off of the
ellipse, then (2.80) fails (proof is left as an exercise). This shows that (2.80)
defines an ellipse.

Figure 40. Proof of the facts that (i) section of a cylinder by
a plane is an ellipse and (ii) equation of the ellipse is given by
r/d = e, where e = sin θ.

Rotation.

2.17. A regulator shown in Figure 41(A) is rotating with a prescribed
angular velocity ω. (1) Find the angle θ. (2) Assume that, instead of
rotating with a prescribed ω, the regulator rotates without friction around
the vertical axis. Given the angular momentum L (instead of ω), find θ.

2.18. A pipe bent as shown in Figure 41(B) is rotating with a prescribed
angular velocity ω. Find the distance of the mass m from the bend. Also,
find this distance if the angular momentum L is prescribed instead of ω.
The masses are assumed to be in equilibrium in the rotating frame.

2.19. A mass on a perfectly slippery table is launched so as to travel in
a circle, as shown in Figure 41(C). Find the radius of the circle, given the
angular velocity of the mass. Also, write the differential equation for this
distance for an arbitrary initial condition.

The following two problems offer small surprises.
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Figure 41. Towards Problems 2.17, 2.18 and 2.19.

Figure 42. (A): What are all the equilibrium shapes of
the rhombus? (B): What shape of the rotating rhombus is
preferred?

2.20. A rhombus in Figure 42(A) is made out of four weightless sticks
connected by frictionless hinges. The opposite vertices are connected by
linear springs (that is, the tension of the spring varies as its length) of equal
Hooke’s constants. What are the equilibrium shapes of this mechanical
system?

2.21. A rhombus in Figure 42(B) is made of weightless sticks connected
by frictionless hinges, with four equal masses placed at each vertex. The
rhombus is then spun in its plane around its center. Find all the shapes
which will remain unchanged while rotating. Clearly, the square is such
a shape, as well as the rhombus collapsed to a segment. Are there any
others?

The following problem answers the question: Can one build a harmonic
oscillator without springs, using only rods and hinges?

2.22. Describe all possible motions of the rhombus in Figure 42(B). As-
sume that the diagonally opposite masses can pass through each other or,
essentially equivalently, undergo perfectly elastic collisions.

Solution. The length x of a diagonal behaves as a harmonic oscillator:
ẍ = −k, as we now show. We have x2 + y2 = L2, where x and y are half-
diagonals of the rhombus and where L is the length of each rod. Moreover,
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ẋ2 + ẏ2 = const.
def
= v2 (if the rhombus is not rotating this is just conser-

vation of energy. If it is rotating, angular momentum conservation must
be used, but we leave the proof as an exercise.). Now let’s interpret x and
y instead as the coordinates of a point in the plane. The first relationship
says that (x, y) lies on a circle; the second relationship says that (x, y)
moves with constant speed v! Hence, up to a shift in time, x = L cosωt,
y = L sinωt, where ω = v/L. Both masses execute harmonic oscillation —
without any springs!

2.23. Two identical coins spin in weightlessness with the same angular
velocity, one around its diameter and the other in its own plane. What is
the ratio of kinetic energies of these coins?

2.24. Figure 43 shows a cone rolling on the horizontal plane without slid-
ing. What is the greatest angular velocity of the contact line OC for which
the vertex of the cone will not try to lift off the plane? The cone’s center
of mass is at the distance D from the vertex; The cone’s altitude is H and
the radius of its base is R.

Figure 43. How fast can the cone roll without lifting off?

2.25. Resolve the following paradox. A free particle is at rest in the ground
frame. When viewed in the inertial frame, the particle is subject to the
centrifugal force. Why doesn’t the particle then fly away from the origin?

Solution. One should not overlook the Coriolis force. To a rotating ob-
server, the particle travels in a circle, and the centrifugal force is precisely
balanced with the Coriolis force.

2.26. Find the trajectory of a free particle launched with speed v from the
origin of a rotating frame, from the point of view of an observer in that
frame. The angular velocity of the frame ω = const.

2.27. Find the magnitude of the Coriolis force acting on a passenger in an
airliner flying over the North Pole. The airliner speed is 250m/s, and the
passenger’s mass is 70kg. The answer might surprise you.
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Answer. Written backwards: .retaw fo ssalg a flah tuoba fo thgiew etT

2.28. The weight of the airplane resting on the ground on the equator is
300 tons. The plane takes off and heads east along the equator, at the
speed of 250m/s. By how much does the plane’s weight change due to its
motion? The answer may surprise you.

.sregnessap 02 tuoba fo ro onihr a fo thgiew ehT

Modeling.

2.29. Show that the mass-spring system in Figure 44 is described by (2.51)
with

(2.81) M =

(
m1 0
0 m2

)
, K =

(
k1 + k2 −k2
−k2 k2 + k3

)
,

where x =

(
x1

x2

)
is the vector of displacements from the equilibrium.

Figure 44. The masses are constrained to a line; the springs
satisfy the linear Hooke’s law; there is no friction. x1 and x2

are the displacements from the equilibrium.

Solution. Let us displace the two masses from the equilibrium by amounts
x1, x2, as shown. As the result, the springs change lengths as follows:

ΔL1 = x1, ΔL2 = −x1 + x2, ΔL3 = −x2.

Therefore, the force upon the mass m1 changes from zero at equilibrium to

F1 = −k1ΔL1 − k2ΔL2 = −(k1 + k2)x1 + k2x2

in the displaced state. Similarly, the force uponm2 caused by displacements
x1, x2 is

F2 = −k2ΔL2 − k3ΔL3 = k2x1 − (k2 + k3)x2.

Newton’s law miẍi = Fi (i = 1, 2) then reads{
m1ẍ1 = −(k1 + k2) x1 + k2x2,

m2ẍ2 = k2x1 − (k2 + k3)x2.
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2.30. Show that the kinetic energy of any mechanical system is quadratic in
generalized velocities, and that the matrix of the quadratic form is positive
definite.

Solution. The kinetic energy is the sum of kinetic energies miq̇
2
i /2 of the

constituent particles, where qi is the position vector of the particle in R
n.

Since each qi is a function of generalized coordinates x, i.e., qi = fi(x), we
obtain

q̇i = f ′i(x)ẋ,

where f ′i is the Jacobi matrix of fi.
20 We conclude that q̇2

i is a quadratic
form in terms of ẋj , and the same therefore holds for the total kinetic
energy. But any quadratic form in ẋi can be written as

K =
1

2
(M(x)ẋ, ẋ),

where M(x) is a square matrix depending on x. Positive definiteness of
M(x) follows from the fact that K > 0 if anything moves, i.e. if ẋ �= 0. ♦

To write the Euler–Lagrange equation for the Lagrangian

1

2
(M ẋ,x)− 1

2
(Kx,x),

we had to take gradients of quadratic forms. The following problem ad-
dresses this question.

2.31. Show that if A is a symmetric matrix, then ∇x(Ax,x) = 2Ax.

Figure 45. Gradient of the quadratic form 1
2
(Ax,x) defines

the vector field Ax. Matrix A is positive iff |θ| < π/2.

Solution. Recall that the gradient ∇f(x) of a function f : Rn → R is
defined as the vector which satisfies

(2.82)
d

ds
f(x+ su)s=0 = (∇f(x),u), ∀u ∈ R

n, u �= 0.

20As a brief reminder, if f(x) =

⎛
⎜⎜⎝

f1
.
.
.
fn

⎞
⎟⎟⎠, then fx(x) =

⎛
⎜⎜⎜⎝

∂f1
∂x1

· · · ∂f1
∂xn

.

.

.
.
.
.

.

.

.
∂fn
∂x1

· · · ∂fn
∂xn

⎞
⎟⎟⎟⎠;

note that the row vectors are the gradients of fk.
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Substituting f(x) = (Ax,x) into the left-hand side of this definition gives

d

ds
(A(x+ su), (x+ su))s=0 = (Au,x) + (Ax,u),

and since (Au,x) = (u, ATx) = (u, Ax), this simplifies to 2(Ax,u). Com-
parison with the right-hand side of the definition (2.82) gives

2(Ax,u) = (∇f(x),u),

which proves the claim since u is arbitrary. ♦

2.32. Prove that the Chebyshev polynomials are related by the recursion
relation Tm+1 = 2xTm − Tm−1.

Miscellaneous.

The following problem shows that Newtonian mechanics is not deter-
ministic (full information about the present does not determine the future).

2.33. Consider the particle on the line subject to the force with the po-
tential U(x) = −x4/3. Show that the equilibrium solution x(t) ≡ 0 is not
unique, in the sense that the particle in such a potential can sit at x = 0,
and then start moving spontaneously at an arbitrarily prescribed time. In
other words, the Newtonian world is not deterministic if the force field is
not sufficiently smooth (note that F ′(0) = −U ′′(0) is undefined).

2.34. A bead slides on a straight line which passes through the origin and
rotates in the plane with a constant angular velocity ω. There is no friction
between the bead and the line, and no forces other than the constraint force
from the line act on the bead. Derive the equation of motion of the bead
in terms of s, the bead’s distance to the origin.

2.35. A bead slides without friction on the surface of a bowl, subject to
gravity acting in the direction of the negative the z-axis. The bowl is a
smooth surface of revolution z = f(x2 + y2).

1. Write the differential equation for the coordinates (x, y) of the bead.

2. Does there exist a smooth surface of revolution such that the bead
starting with initial conditions x(0) = ẏ(0) = 1, ẋ(0) = y(0) = 0 will cross
the z-axis? (See Figure 46.)

2.36. Prove the following remarkable fact: If a pendulum rotates with a
given angular velocity around the vertical, Figure 47, then the pendulum’s
height does not depend on the length L of the string (as long as L is greater
than a certain critical value). In other words, referring to the figure, H does
not depend on L.
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Figure 46. A bead sliding in a bowl without friction.

ω

Figure 47. With a given ω, all these masses are at the same height!

Gravitational fields.

2.37. According to the law of gravitational attraction (F = −k r
r3
, r =

|r|), if r → 0, then F = |F| → ∞. When our feet touch the ground, the
distance is near-zero. Why then don’t we get stuck to the ground?

2.38. Let F(r) be a vector field created by a continuous mass distribution,
with a continuous mass density ρ = ρ(r). Show that divF(r) = kρ(r),
where k is a constant.

2.39. Show that the gravitational field inside a homogeneous spherical shell
is zero (Newton).

Proof #1. Consider a concentric sphere S inside the shell, Figure 48.
Divergence theorem applied in S gives:∫ ∫

S

F · n dA =

∫ ∫ ∫
B

div F dV = 0,

where B is the ball bounded by the sphere S. Here we used the fact
that divF = 0 in a vacuum. By symmetry, F must be radial, and thus
F · n = |F| = F . Thus the integral is just 4πr2F = 0, and thus F = 0. ♦
Proof #2, not using the divergence theorem. Let P be any point inside
the sphere, Figure 49. A narrow cone through P cuts out two small patches
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Figure 48. Proving that the field vanishes inside a hollow
sphere. Gravitational field is nonzero outside the shell and is
zero inside.

Figure 49. Newton’s proof of the vanishing of gravitational
field inside a hollow sphere.

ds and dS on the surface of the sphere. We will prove that the gravitational
attractions from the two patches cancel each other. Since we can divide
the sphere into such pairs of infinitesimal patches, it would follow that the
total force upon P is zero. The patches dS and ds have masses proportional
to their areas, since the sphere is homogeneous. The gravitational forces
exerted upon P by these masses are therefore

(2.83) F = k
dS

D2
+ o(dS) and f = k

ds

d2
+ o(ds).

The two forces act in opposite directions, and it only remains to show that
they are equal. Indeed, by a similarity argument

dS

D2
=

ds

d2
;

we leave a geometrical proof of this as an exercise. In view of (2.83) this
shows that F = f + o(ds), as claimed. We showed that the forces upon
P cancel, up to a small percentage error. By taking finer and finer subdi-
visions of the sphere we conclude that this error is arbitrarily small, and
hence must be zero. ♦

2.40. Show that the gravitational field inside a solid ball of uniform density
is linear in the distance to the center of the ball: F(x) = −kx, where k is
the coefficient depending on the density ρ.
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Figure 50. Gravitational force at A is due entirely to the ball
of radius r; the spherical shell contributes nothing.

Solution. The force at A in Figure 50 is due only to the ball of radius r,
since the shell outside that ball creates zero force inside by Problem 2.39.
Now this force is in direct proportion to the mass of the ball, i.e., to r3, and
in inverse proportion to r2; this explains the linear dependence claimed in
the theorem. More explicitly, the gravitational force at A in Figure 50 is

caused only by the ball of radius r of mass Mr = ρ 3πr3

4
, so that the force

at A is

F =
GMr

r2
=

3πρG

4︸ ︷︷ ︸
k

r3

r2
= kr,

as claimed.





Chapter 3

Rigid Body Motion

If you have ever watched in slow motion a football wobbling in its

flight, or a tennis racket tossed up, you may have noticed that these

objects do not simply rotate around some fixed axis, like a wheel;

a certain wobbling motion is also present. A dramatic example of

tumbling motion in weightlesness can be seen on YouTube: https:

//www.youtube.com/watch?v=L2o9eBl_Gzw: A rigid bracket spins

around a certain axis in space, punctuating these spins by abrupt

tumbles by 180◦ at regular intervals. A tennis racket tossed up and

given an appropriate spin shows the same behavior. More such videos

can be found by Googling “Dzhanibekov Effect”. A popular science

TV program explains the tumbling thus: “...obviously, there is a zone

in space where forces act on the body causing it to tumble.” An

explanation which does not rely on the mythical forces is given on

page 151.

This chapter describes the theory of free motion of rigid bodies.

This elegant theory, started by Euler, culminates with a beautiful and

simple picture due to Poinsot. Among other items in this chapter is an

explanation of the tennis racket paradox (same as the Dzhanibekov

effect mentioned in the last paragraph), as well as an observation

that the problem is described by a Hamiltonian flow on the sphere.

The remaining three sections of the chapter describe the gyroscopic

141
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effect, precession of a spinning wheel, and the gyrocompass which

uses Earth’s rotation to find north.

The highlights of this chapter:

1. How is the angular momentum related to the angular

velocity via the tensor of inertia.

2. The kinetic energy is a quadratic form in the angular mo-

mentum.

3. The phase portrait of the free rigid body motion.

4. Poinsot’s description of the free rigid body motion.

5. Euler’s equations of the rigid body motion.

6. Hamiltonian character of Euler’s equations.

7. The tennis racket puzzle and its explanation.

8. Gyroscopic effect explained heuristically.

9. Sperry’s gyrocompass.

1. Reference frames, angular velocity

A rigid body is a collection of point masses with all mutual distances

fixed, or a limit of such discrete bodies producing a continuous mass

distribution.

We will use two reference frames: an inertial one, referred to as

the space frame, and a noninertial frame affixed to the rigid body.

The body appears stationary in the body frame, which is the reason

for using this frame. Vectors expressed in the space frame will be

labeled by the lower case letters (�, r, ω), while the vectors expressed

in the body frame will be denoted by capitals (L, R, Ω); Figure 1

illustrates two representations of one vector. Two representations x,

X of any vector are related via an orthogonal transformation T ,

(3.1) x = TX, TTT = id,

where id is the identity matrix (for the proof, see Problem 3.8 on page

162).
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Figure 1. The same vector expressed in the body frame: � =
(l1, l2, l3) and in the space frame: L = (L1, L2, L3).

Exercise 3.1. Find the mistake in the following reasoning: “Since the
body appears to be at rest to the observer in the body frame, the body’s
angular momentum L in the body frame must be zero.”

Answer. L is merely expressed in the body frame (in the sense of Figure 1),

but it is computed based on the motion of the body relative to the inertial

space.

In the next section we define the angular velocity and state its

connection with the angular momentum.

2. The tensor of inertia

Recall that the angular velocity of a rigid body is, by definition, the

vector ω parallel to the instantaneous axis of rotation, directed ac-

cording to the right-hand rule, and whose magnitude is the instanta-

neous angular speed of rotation around the axis. This verbal defini-

tion implies the formula for the velocity v of a particle r of the body

(see Figure 2):

(3.2) v = ω × r

for every point r of the body. The key result of this section is the

following.
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Figure 2. Angular velocity of a rigid body.

Theorem 3.1. The angular momentum � of a rigid body is a linear

function of its angular velocity ω:

(3.3) � = Isω

where Is is a symmetric nonnegative definite matrix given by

(3.4) Is =

∫
Bs

⎛⎝ r22 + r23 −r1r2 −r1r3
−r2r1 r21 + r23 −r2r3
−r3r1 −r3r2 r21 + r22

⎞⎠ dm.

Here all the vectors are expressed in the space frame: dm =

ρ(r) dr1dr2dr3 is the mass element of the body, and Bs is the region

occupied by the body. The matrix Is is called the tensor of inertia.

The same result holds in the body frame

(3.5) L = IbΩ

where Ib is given by

(3.6) Ib =

∫
B

⎛⎝ R2
2 +R2

3 −R1R2 −R1R3

−R2R1 R2
1 +R2

3 −R2R3

−R3R1 −R3R2 R2
1 + R2

2

⎞⎠ dm,

where dm = ρ(R) dR1dR2dR3. Since the body is fixed relative to the

body frame, Ib is a constant matrix.

Remark 3.1. The relationship (3.3) shows that ω and � need not

be aligned — unless ω is an eigenvector of Is. Figure 3 explains

this misalignment for the rigid body consisting of a single particle
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connected to the origin by a massless rod. The alignment of ω and

� happens for planar rotations, when both vectors are orthogonal to

the plane.

Figure 3. Even for a single particle, � and ω need not line up.

Proof of Theorem 3.1. Consider first a single particle; its angular

momentum is

(3.7) d� = r× dmv = dm r× (ω × r).

This shows that the output d� is a linear function of the input ω;

note that r is fixed. We denote this linear function by dIs, so that

d� = dIsω; we must characterize dIs. According to (3.7), this function

consists of two consecutive applications of cross product with r. But

crossing a vector with r amounts to multiplication by a matrix r̂

determined by r, namely

(3.8) ω × r = r̂ω, where r̂ =

⎛⎝ 0 −r3 r2
r3 0 −r1
−r2 r1 0

⎞⎠ ,

as can be verified by direct multiplication. We then have for x ∈ R
3:

r× x = −x× r = −r̂ x = r̂T x.

Thus (3.7) becomes

(3.9) d� = dm r̂T r̂︸ ︷︷ ︸
dIs

ω.
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Now r̂T r̂ is symmetric and nonnegative, since for any x ∈ R
3 the dot

product

(r̂T r̂x,x) = (r̂x, r̂x) ≥ 0.

A direct multiplication shows that r̂T r̂ is indeed of the form given

in (3.4). We proved (3.4), and thus the theorem, for a single-particle

body. The general case follows by integration of (3.9):

� =

∫
B

d� =

∫
B

r̂T r̂ω dm =

(∫
B

r̂T r̂ dm

)
ω.

Note that ω factors out of the integral. This proof, which we carried

out in the space frame, applies to the body frame verbatim. ♦

Remark 3.2. For a point mass m the tensor of inertia is I = m r̂T r̂,

according to (3.9). This is the generalization of the scalar formula

I = mr2 for the moment of inertia of the point mass; see (2.16)

on page 85. Recall that in fact we had defined the scalar moment of

inertia as the coefficient of proportionality between the scalar angular

velocity and the scalar angular momentum. Similarly, tensor of inertia

is the “matrix of proportionality” between � and ω.

Principal moments of inertia. The eigenvalues Ik (k = 1, 2, 3) of

the tensor of inertia Ib are called the principal moments of inertia;

these do not depend on the choice of the frame, according to (3.11),

and therefore are invariants of the mass distribution in the body. To

see that the term “moment of inertia” agrees with the scalar defini-

tion, we let Ωk (k = 1, 2 or 3) be an eigenvector of Ib:

IbΩk = IkΩk.

In other words, the angular velocity aligns with the angular momen-

tum, and Ik is the coefficient of proportionality between the two.

This indeed fits precisely with the earlier definition of the moment of

inertia for planar rotations (see page 86).

Dependence of Ib on the frame; principal axes of inertia.

Consider the second body frame, with the same origin as the first

frame. Vectors expressed in the two frames are related via

(3.10) L = UL′, Ω = UΩ′,
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where U is an orthogonal matrix: U−1 = UT , and where the primes

refer to the vectors expressed in the new frame. Substituting this into

L = IbΩ, we get

L′ = I ′bΩ
′,

where

(3.11) I ′b = U−1IbU.

In other words, the tensor of inertia undergoes a similarity transfor-

mation under the change of the frame. It is convenient to choose U

so as to make the new matrix I ′ diagonal: I ′b = diag(I ′1, I
′
2, I

′
3). This

choice amounts to orienting the coordinate axes of the second frame

along the eigendirections of the tensor of inertia Ib. These eigendi-

rections are called the principal axes of inertia of the body.

3. The kinetic energy

In addition to the expression for the angular momentum, we need

one for the kinetic energy. This expression is a generalization of the

familiar formula K = 1
2Iω

2 discussed earlier for planar rotations.

Theorem 3.2. Consider a rigid body whose one point is fixed at the

origin. The kinetic energy of the body is the dot product

(3.12) K =
1

2
(�,ω)

(3.3)
=

1

2
(Isω,ω),

where ω is the angular velocity, � is the angular momentum relative

to the origin, and Is is the tensor of inertia, all expressed in the space

frame. A similar formula holds in the body frame:

(3.13) K =
1

2
(L,Ω) =

1

2
(IbΩ,Ω).

Proof. For a point mass dm positioned at r we have v = ω×r = r̂ω,

so that

dK =
1

2
dmv2 =

dm

2
(r̂ω, r̂ω) =

1

2
(dm r̂T r̂ω,ω)

(3.9)
=

1

2
(d�,ω).

For a rigid body consisting of many particles, (3.12) follows by sum-

mation (or by integration for continuous mass distributions). The

particular choice of frame never entered the proof, and therefore the

statement of the theorem holds for a body frame as well. ♦
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The ellipsoid of inertia. We showed that kinetic energy is a qua-

dratic form in terms of the angular velocity. Associated with this

quadratic form is an ellipsoid, called the ellipsoid of inertia, defined

as follows:

(3.14) Es = {x : (Isx,x) = 1}

in the space frame or

(3.15) Eb = {X : (IbX,X) = 1}

in the body frame.

According to (3.14) or (3.15), the ellipsoid of inertia consists of

the angular velocity vectors ω corresponding to a fixed value of kinetic

energy K (namely, K = 1
2 ). In other words, E is an “equikinetic”

surface in the space of angular velocities. The ellipsoid of inertia is

rigidly attached to the body.

The ellipsoid of inertia mimics the shape of the body in the

sense that both the body and the ellipsoid tend to be elongated or

flattened in the same direction. To be more precise, take the body

frame in which Ib is diagonal; the ellipsoid is then given by

I1x
2
1 + I2x

2
2 + I3x

2
3 = 1,

and the semi-axes are 1/
√
Ik, k = 1, 2, 3. This shows that the largest

Ik corresponds to the shortest axis. For a thin rod, such as a pencil,

the two largest moments of inertia Ik are in the directions perpendic-

ular to the pencil. These are therefore the directions of the shortest

axes, and thus the ellipsoid is indeed elongated along the pencil. In a

similar way, for a rectangular plate, the the ellipsoid’s axes reflect the

shape of the plate. For future reference, note that the intermediate

axis of the ellipsoid is parallel to the shorter sides of the rectangle.

4. Dynamics in the body frame

The angular momentum �, although fixed in the space frame, appears

to be moving to an observer sitting in the body frame. If we can

describe this motion, we will gain a crucial insight into the dynamics

of the body since we will then know how a line fixed in space moves
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relative to the body. Let us consider all possible motions with a given

|�| = λ = const. For all such motions

(3.16) |L(t)| = λ,

and our goal is to describe the time evolution of L as the body moves

without external forces. The set of L with a fixed value |L| = λ is

called the momentum sphere. In this section we will show that the

tip of L moves as shown by arrows in Figure 4, and will derive Euler’s

equations of motions for L in the next section.

For any free motion of the body, the kinetic energy is conserved:

(3.17)
1

2
(L, I−1

b L) = const.,

where we used (3.13) and L = IbΩ to express kinetic energy in terms

of L. The trajectories therefore stay on the ellipsoid (3.17). Sum-

marizing, every path L(t) stays on the intersection of the momentum

sphere (3.16) and some ellipsoid (3.17); these intersections, i.e., the

trajectories of L, are shown in Figure 4.

Figure 4. Phase flow on the momentum sphere. The tra-
jectories are the level curves of the energy 〈L, I−1L〉 on the
momentum sphere |L| = λ.
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Exercise 3.2. What motions of the rigid body, as viewed from the space
frame, correspond to the rest points in Figure 4?

Answer. The motions with L = const. correspond to steady rotations

around the principal axes of inertia.

5. Euler’s equations of motion

So far we managed to understand the qualitative behavior of L with-

out using differential equations. If, however, we want to know more

than the shape of trajectories, but also the value of L at any time, we

need differential equations governing L. These equations were derived

by Euler.

Theorem 3.3. The evolution of the angular momentum of a free

rigid body in the body frame is governed by

(3.18) L̇ = L× (I−1
b L)

Since L = IΩ, the angular velocity obeys

(3.19) IΩ̇ = IbΩ×Ω

or in coordinates, assuming Ib = diag(I1, I2, I3):

(3.20)

Ω̇1 = I2−I3
I1

Ω2Ω3

Ω̇2 = I3−I1
I2

Ω3Ω1

Ω̇3 = I1−I2
I3

Ω1Ω2

The proof of Euler’s equations is remarkably simple via a creative

application of the formula v = ω × r.

To an observer sitting in the body frame, the surrounding uni-

verse can be thought of as a huge rigid body which rotates with

angular velocity −Ω (all vectors are expressed in the body frame).

Every particle of the surrounding space has velocity V = (−Ω)×R,

where R is the particle’s position (in the body frame). But the tip

of the angular momentum vector is also fixed in space; its position is

R = L. Thus,

L̇ = (−Ω)× L,

which proves (3.18) once we use Ω = I−1
b L. ♦
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6. The tennis racket paradox

The paradox. Some time ago, when tossing up a tennis racket and

catching it, I noticed a strange effect. During one head-over-handle

tumble the racket also made a flip around its long axis; surprisingly,

this flip was indistinguishable from 180◦ in almost all tosses; when

launched with its plane horizontal, the racket’s plane was again hori-

zontal when caught. Figure 5 shows the same effect for a book tossed

with a spin around the left-right axis1. Only in one of these 20 tosses

the head was not horizontal when I caught the racket. By further ex-

perimentation with different heights of tossing, one observes that the

flip may be another integer multiple of 180◦. Below is an explanation

of the surprising appearance of a half-integer turn.

Figure 5. The book is tossed up with a spin around � and
makes a 360◦ flip as shown. Surprisingly, in mid-flight, the
book makes an additional unexpected and rather abrupt half-
flip around another axis (a), thus landing face down rather
than up. The explanation is provided by the motion of the
angular momentum L in Figure 4.

An explanation. The tennis racket is launched with the initial an-

gular momentum L(0) nearly aligned with the intermediate axis of

inertia, Figure 6. Since the flow is slow in the vicinity of the saddle

points, L spends most of its time nearly aligned with the saddles, and

only a small proportion of time in transition, see the equally timed

1Enclosing the book in a rubber band is a good idea. A long narrow book works
better than a squarish one.
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positions of L in the figure. Therefore, if we sample L(t) at a random

time, we are likely to find L near one of the saddles. Thus the body’s

intermediate axis of inertia (nearly) lines up with the direction of the

angular momentum most of the time, and so most of the time during

its flight the book will be in one of the two orientations relative to �

as shown in Figure 5. This explains the tennis racket paradox.

Figure 6. An explanation of the tennis racket paradox. The
dots show snapshots of L(t) at equally spaced time intervals.
Since L(t) spends most of its time near the saddles, the inter-
mediate axis of inertia of the racket aligns with the angular
momentum vector most of the time.

7. Poinsot’s description of free rigid body
motion

The evolution of the angular momentum L in the body frame

(Figure 4) does not yet give us the full picture of the motion of the

body in the space frame. Such a picture is given by the beautiful

result of Poinsot, stated and proven next.

Theorem 3.4. The free rigid body, viewed in the inertial frame of

its center of mass, moves so that its ellipsoid of inertia rolls without

sliding on the fixed plane P perpendicular to the angular momentum
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� and lying at the distance 2
√
E

|�| from the body’s center of mass, Fig-

ure 7.

Figure 7. The Poinsot description of the free body motion.

This theorem gives a virtually complete description of the motion;

only the speed is not specified, but that can be easily recovered.

Proof of Poinsot’s theorem. Instead of the inertia ellipsoid

(Isx,x) = 1 (everything in the proof refers to the space frame) we

first consider its scaled version

(3.21) {x :
1

2
(Isx,x) = E},

referred to as the energy ellipsoid. We will show that this ellipsoid,

which is also rigidly attached to the body, rolls on the fixed plane

(�,x) = 2E without sliding. The statement about the ellipsoid of

inertia (3.14) then follows by scaling y = x/
√
2E, designed to dilate

the energy ellipsoid (3.21) into the ellipsoid of inertia.

Proof of the theorem amounts to showing that

(i) the ellipsoid (3.21) and the plane (�,x) = 2E intersect at ω (the

tip of the space angular velocity vector),

(ii) ω is a tangency point and

(iii) there is no sliding, i.e., that the material point on the ellipsoid

has zero velocity at the point of contact. By “material point” I mean

a point which moves with the rigid body, i.e., is fixed in the body

frame. The proof of (i)–(iii) is very short:
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(i) Since (�,ω) = (Isω,ω) = 2E, we conclude that the tip of the

vector ω belongs to the plane (�,x) = 2E and to the ellipsoid (3.21).

(ii) Normal to the ellipsoid (3.21) is given by∇(Isω,ω) = 2Isω = 2�;

since � is also normal to the plane (�,x) = 2E, we conclude that the

ellipsoid and the plane are indeed tangent to each other.

(iii) The velocity of any material point x of the body is v = ω ×ω.

The material point x of the space frame which is in contact with

the plane at the moment in question has velocity v = ω × x =

ω×ω = 0. (This is the well-familiar fact: the points on the instanta-

neous axis of rotation have zero velocity.) The contact is nonslipping;

this completes the proof of Poinsot’s theorem. ♦

8. The gyroscopic effect — an intuitive
explanation

For the rest of this chapter we consider the body which is no longer

free but is subject to external torques.

How do we explain the counterintuitive ability of the spinning top

to defy gravity? A simple qualitative answer is given in this section.

In the next section this answer is quantified: we compute the torque

required to reorient a gyroscope. This answer is also used to compute

the speed of precession of a spinning wheel in the section that follows.

Finally, the last section of the chapter describes Sperry’s gyrocompass

and explains how it uses Earth’s rotation to find north.

The gyroscopic effect and its explanation. Figure 8 sketches

a bike wheel held by its axle. The wheel is spinning (towards the

observer). You are holding the axle, reorienting its axle steadily as

shown by the arrows. Surprisingly, such reorientation requires that

you apply the forces (F and −F) perpendicular to the motion of

your hands, as shown in the figure. The next figure explains this

counterintuitive effect.

Consider the path 1−2−3 of a particle of the rim near the top of

the wheel in Figure 9. This path is curved due to the axle’s precession.

Since the particle wants to go by inertia as straight as possible, it

“protests” with centrifugal force shown in the figure. Similarly, the

antipodal particles apply equal and opposite centrifugal forces. These
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Figure 8. The forces required to reorient a spinning wheel
must be perpendicular to the direction of motion of the axle’s
ends!

Figure 9. An explanation of the gyroscopic effect: (i) the
axle precesses, (ii) causing a particle of the rim to travel in a
curved path 1 − 2− 3; (iii) the particle exerts the centrifugal
force (iv) which must be compensated by the forces F, −F of
your hands.

forces exert torque which tries to tip the wheel; we must therefore

apply the forces F and −F to counteract this tipping, to keep the axle

in the horizontal plane (of course, F must compensate the combined

effect of all the particles, not just the ones near the top and bottom.)

This completes our heuristic explanation of the gyroscopic effect.

Remark 3.3. One can actually find the magnitude of torque exerted

by the couple F, −F by integrating the torques of all centrifugal

forces over the rigid body. This is left as a not-so-easy challenge to

the reader. A simpler way to find the gyroscopic torque is discussed

in Section 9.
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Energy considerations. The fact that F ⊥ v in Figure 9, i.e., that

the axle reacts with a force perpendicular to imposed motion, can be

explained by conservation of energy, as follows. If you move the ends

of axle with constant speed, keeping the axle in the same plane, as

in Figure 9, then you do not change the gyroscope’s kinetic energy2.

Therefore, you do zero work, and hence the forces F, −F must be

perpendicular to the velocity vectors v, −v.

9. The gyroscopic torque

The arguments of the preceding paragraph, while predicting that F ⊥
v, do not give the magnitude of F; in this section we find F, or rather,

the torque T of the couple F, −F.

Assume that the axle is being reoriented, as in Figure 9, at a

constant angular velocity ωprec around the vertical axis (we will refer

to this motion as the precession). In addition, the wheel is spinning

around its axis with a given angular velocity ωax.

The required torque T is given by the rotational version of New-

ton’s second law which, we recall, says that the torque T applied to

a system is responsible for the change of its angular momentum L:

T =
d

dt
L;

this was derived on page 81. Now the angular momentum is the sum

of the precessional and the axial parts:

L = Lprec + Lax,

(Figure 10), of which the first one is constant.

Differentiating L, we get

(3.22) T =
d

dt
(Lprec + Lax) =

d

dt
Lax.

But the tip of the vector Lax moves in a circle (Figure 10) of radius

(3.23) r = |Lax| = Iaxωax,

where Iax is the moment of inertia of the wheel around its axis, and

the angular velocity of this circular motion is ωprec. By the formula

2Assuming that the wheel is perfectly balanced.
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Figure 10. Torque T applied to the wheel causes the change

of the angular momentum.

v = ωr we get the speed of the tip of Lax:

|L̇ax| = ωprecr
(3.23)
= ωprecIaxωax.

Substituting this into (3.22) and taking the magnitude of both sides,

we finally get

(3.24) T = ωprecIaxωax

10. Speed of precession

The setting. Let us suspend a rapidly spinning bike wheel on a very

long string attached to one end of an axle, Figure 11. With the other

end of the axle unsupported, the axle may remain horizontal while

precessing around the vertical — we explained this using Figure 9.

The goal now is to find the speed of this precession. Let us assume

that the string is very long, so that it can be treated as vertical at all

times; therefore, no horizontal forces act on the wheel and we assume

that its center of mass remains fixed.

The desired precession rate ωprec is given by (3.24). The wheel

in Figure 11 is subject to the torque T = mgd exerted by the gravity

and by the string. Since the center of mass is at rest, our reference

frame is inertial, and equation (3.24) applies, giving

ωprec =
T

Iaxωax
=

mgd

Iaxωax
.
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Figure 11. Precessing bike wheel.

Let us now treat the bike wheel as a thin ring of radius r with all

its mass m concentrated in the rim. In that case, Iax = mr2, and

substitution in the above gives

ωprec =
gd

r2ωax
.

This formula confirms the intuitive sense that, to get slow pre-

cession, it helps to have large ωax and large r, and/or small d and

small g. A 29 inch diameter bike wheel is about 12% larger than the

standard 26 inch wheel, but it will precess about 24% slower, thanks

to the fact that r is squared. Doubling the wheel’s radius will slow

its precession by the factor of 4.

How does a spinning top stay up. Before answering this question,

let us restate the problem in a more convenient form. Let’s build the

spinning top by affixing one end of a wheel’s axle to the ground by

a ball joint, Figure 12. As we established, any time I move the free

end P with velocity v in an arc of great circle on the sphere, the

axle applies force F ⊥ v to my hand. Thus I can forget the spinning

top and think instead of a particle P constrained to the sphere and
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Figure 12. The “magnetic” force F ⊥ v (left) and a typical
path of P (right).

subject to the “magnetic” force F ⊥ v whose magnitude varies as

the magnitude of v, in addition to the gravitational potential force.

The particle P avoids falling down, not because it resists gravity, but

by deflection created by the gyroscopic force on P . The constant

action of this deflecting force results in a path of the kind illustrated

in Figure 12. One could call this mechanism “stability by deflection”.

11. The gyrocompass

Let us place the gyroscope, its axis mounted horizontally, on a floating

platform; see Figure 13. Surprisingly, the floating platform will slowly

turn so that the gyroscope’s axis will point exactly along the meridian!

And the north is distinguished from the south by the right-hand rule:

if the axis were a screw, it would turn so as to advance north. In

summary, the gyroscope tries to align itself with the Earth’s rotation as

much as the constraint on its axis allows. The last sentence suggests

an even better alternative than floating on a platform: the gyroscope

should be given full freedom to reorient itself; this can be done either

by immersion in fluid, or by mounting it on a set of gimbals. Such

a gyroscope will gradually align itself with the Earth’s axis! As an

added benefit, the angle of the gyro’s axis with the horizontal axis

will give the latitude.
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Figure 13. The gyrocompass: a gyroscope on a floating platform.

How does the gyrocompass work. For simplicity, let us place

the mechanism on the equator, and align its axis with the equator,

Figure 14.

The gyroscope spins as shown by arrow (A). Due to Earth’s ro-

tation, the platform turns (arrows (B)) around the north–south line;

one end of the axis is being pushed up, the other down. The gyro-

scope, just like the bike’s wheel in Figure 11, responds by reorienting

itself in the direction of arrows (C): the axle starts turning north.

Eventually, the axis of the floating gyro orients itself along the merid-

ian. Now if we are not on the equator, the gyroscope still tries to

align itself with Earth’s axis and comes as close to this alignment as

the floating constraint allows, straining against the constraint.

The gyrocompass has at least two advantages over the magnetic

compass: it is immune to magnetic anomalies (unavoidable in steel

ships) and it finds the geographic, rather than the magnetic, north.

Exercise 3.3. A gyroscope is suspended in fluid and is neutrally buoyant;
its axis is free to orient in any direction. Using the idea of Figure 13,
describe qualitatively the path of the gyroscope’s axis on its way to aligning
with the Earth’s axis.
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Figure 14. How does the gyrocompass work.

12. Problems

3.1. Compute the tensor of inertia I for a single particle of mass m at
R = (r1, r2, r3).

Answer. Using (3.8), we get

I = −mR̂2 = −m

⎛
⎝ 0 −r3 r2

r3 0 −r1
−r2 r1 0

⎞
⎠

2

=m

⎛
⎝ r22 + r23 −r1r2 −r1r3

−r2r1 r21 + r23 −r2r3
−r3r1 −r3r2 r21 + r22

⎞
⎠ .

In particular, for a point mass on the r3-axis with r3 = r we have

I = diag (mr2,mr2, 0).

3.2. Find the principal inertial axes and the principal moments of inertia
for a planar disk of mass m and of radius r.

3.3. Show that for any plate, i.e., for any flat body lying in the (x, y)-plane
we have Ix + Iy = Iz where the subscript denotes the moments of inertia
with respect to the coordinate axes.

3.4. A plate lies in the (x, y)-plane, and is symmetric with respect to the
x-axis. Show that the tensor of inertia is then diagonal: I = diag(Ix, Iy, Iz)
and, moreover, that Iz = Ix + Iy.

3.5. Prove that the principal moments of inertia Ix, Iy, Iz satisfy the
triangle inequality: none of them exceeds the sum of the other two.

3.6. Consider a homogeneous solid cube centered at the origin and with the
faces parallel to the coordinate axes. Which moment of inertia is greater:
the one around the x-axis, or the one around one of the diagonals of the
cube? Can you get the answer without calculation?



162 3. Rigid Body Motion

3.7. Prove that if a rigid body with one point fixed in space is reoriented in
any way, then some points on this body end up in their starting positions
[Euler’s theorem].

Hint. The change of the body’s orientation is given by an orthogonal 3×3
matrix with determinant +1. The problem then reduces to showing that
any such matrix has an eigenvalue 1.

3.8. Show that if x and X are two expressions of the same vector in the
space and in the body reference frames, then there exists an orthogonal
matrix T with det T = +1 such that

x = TX.

In particular, the column vectors of T are the unit vectors of the body
reference frame, expressed in the space frame.

Hint. Show that the map x �→ X is linear and that it preserves the dot
product.

3.9. Consider the rigid body consisting of a point mass affixed to the origin
by a rigid rod. (i) What is the set of all angular velocities Ω which produce
a given angular momentum L? (ii) Find all Ω producing L = 0. (iii) Let
us treat L = L(Ω) as a vector field in the space of Ω, i.e., let us attach the
arrow L to the tip of Ω. Describe this vector field geometrically.

Answers, referring to Figure 15. (i) Every vector Ω with the tip on the
line AB parallel to R produces the same L. (ii) Every vector Ω along
the line A0B0 gives L = 0. In other words, the line A0B0 is the kernel
of the map Ω �→ L. (iii) Vector field L is perpendicular to the cylinders
with the axis aligned with R; the magnitude of L is directly proportional
to the cylinder’s radius, with the coefficient of proportionality mR2, where
R = |R|.

Figure 15. The map Ω 
→ L for the single particle (Problem 3.9).
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3.10. (a) Show directly that the flow of (3.18) conserves the energy and
the momentum. In particluar, every sphere |L| = λ is invariant under the
flow of this equation. (b) Prove that (3.18) defines an area-preserving flow
on the sphere (and thus is a Hamiltonian flow on the sphere).

3.11. Find the Hamiltonian form of Euler’s equation (3.18) for L.

Answer. L̇ = JL∇H(L) where JL is the π
2
-rotation of the tangent plane

to the sphere at L.

3.12. Consider the scalar function V defined in R
3 as V (x) = (Ax,x)

(x,x)
with

A = diag(a, b, c). Here (x,y) denotes the dot product of two vectors. In

other words, V (x1, x2, x3) =
ax2

1+bx2
2+cx2

3

x2
1+x2

2+x2
3

. Assume that a < b < c.

a. Show that the gradient vector field f(x) = ∇V (x) is tangent to any
sphere |x| = const.

b. Find all critical points of V (x) restricted to the unit sphere |x| = 1
and determine their type (max, min, saddle).

c. Sketch the phase portrait of the gradient flow on the unit sphere.

3.13. For a free rigid body, find the range of all possible values of energy
E given the magnitude of the angular momentum.

3.14. Consider a flat disk with no external forces. For a prescribed value
of the angular momentum, around which axis should the disk be spinning if
its kinetic energy is least possible? Largest possible? What is the answer to
the same question for an arbitrary rigid body with the principal moments
of inertia I1 < I2 < I3?

Figure 16. What is the ratio of the final speed to the initial speed?

3.15. I throw a wheel forward with initial forward speed v0 and with zero
spin. The wheel will bounce, skid, and eventually will begin to roll without
sliding. Some energy will be lost to heat in skidding and bouncing. Assume
that no energy is lost in flying or rolling. What is the eventual speed of
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the wheel? What proportion of the wheel’s kinetic energy will be lost to
heat? No information about the sliding friction is given. Only the radius
R of the wheel, its mass m, and its moment of inertia I are known.

Solution. The remarkable fact is that the answer does not depend on
the nature of friction, or on on the nature of bouncing (e.g., how elastic it
is). It doesn’t even matter whether I threw the wheel horizontally or not;
only the horizontal component v0 of the initial velocity matters. After the
skidding stopped, the wheel will roll with speed

vend
v0

=
1

1 + r
,

where r = I/mR2. As an example, for the hoop I = mR2, and thus
vend = v0/2. If, on the other hand, all the mass of the wheel is concentrated
in its axle, i.e., if I = 0, then the formula gives vend = v0, as expected.

Here is an intuitive idea of the solution; the next paragraph gives full
details. As the wheel is rubbing against the ground, its center slows down,
but its spin grows. Now both of these effects are directly caused by the same
force F of sliding friction, and thus Δvcenter = −kΔvspin (Figure 16) for
some constant k (determined in the next paragraph). This proportionality
implies that the two speeds meet at a certain value independent of how
each velocity changed over time. The moment these speeds become equal,
the sliding stops and the pure rolling begins.

To make the preceding paragraph more specific, Newton’s second law
gives

(3.25) mv̇center = −F ; Iω̇ = FR,

where ω is the wheel’s angular velocity. Wishing to refer to vcenter through-
out instead of ω, substitute ω = vcenter/R into (3.25), so that the equations
become

v̇center = − 1

m
F, v̇spin =

R2

I
F.

Integration gives us the speeds at any time t:

vcenter(t) = v0 −
1

m

∫ t

0

F (s) ds, vspin(t) =
R2

I

∫ t

0

F (s) ds.

At some time T the sliding stops and the rolling begins; we then have
vcenter(T ) = vspin(T ) or

v0 −
1

m

∫ T

0

F (s) ds =
R2

I

∫ T

0

F (s) ds.
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Figure 17. Speeds of the wheel’s center and of the wheel’s
rim (relative to the center). Skidding on ice takes longer to
settle into rolling, but the final speed is still the same.

3.16. A cylinder is resting on a sheet of paper on the table; see Figure 18.
The paper is yanked away in the horizontal direction from under the cylin-
der to the right, as shown in the figure. As the result, the cylinder starts
spinning counterclockwise and also moving to the right, thus sliding rela-
tive to the table. Show that the center of the cylinder stops moving the
moment the sliding stops, i.e., that the cylinder comes to rest, i.e., that
the cylinder cannot end up rolling. Just as in the preceding problem, the
nature of sliding friction is irrelevant.

Figure 18. After the sheet is pulled from under the cylinder,
the rolling and sliding will stop simultaneously.

Much more on this and related problems can be found in T. Tokieda’s
American Mathematical Monthly article [19].

3.17 (An automatic regulator). Two equal point masses m are connected
by a linear zero length spring. The system is launched in weightlessness
with each mass given its own arbitrary initial velocity; the angular mo-
mentum of the pair relative to its center of mass is nonzero. Assume that
the spring is slightly viscous, i.e., that Hooke’s law for the spring’s tension
has an additional term: F = −kx − εẋ with a small constant ε. Show
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that the dumbbell will approach angular velocity ω =
√

2k/m as t → ∞,
independent of the initial conditions(!)

Figure 19. The ellipse is the trajectory in the spring is un-
damped. Actual trajectories spiral towards the dashed circle.
The limiting angular velocity is independent of initial data.

Does the same hold if the masses m1, m2 are different, and if so, what is
the limiting angular velocity?

Answer. Yes, ω =

√
k

(
1

m1
+ 1

m2

)
.



Chapter 4

Variational Principles of
Mechanics

Lagrange published his equations of mechanics in 1788, 101 years

after Newton’s Principia came out. Although Lagrange’s equations

are equivalent to Newton’s laws, they were a major step along the

way that led to quantum mechanics. The advantages of Lagrange’s

formulation, and of the related Hamilton’s principle are listed on page

173.

1. The setting

In this section we formulate Lagrange’s equations for systems with

several degrees of freedom, extending what was done for the one-

degree-of-freedom systems on page 18. The first step is to specify the

class of systems for which Lagrange’s formulation applies.

We consider a collection of particles whose configuration, i.e.,

the position of each particle of the system, is defined by an n-tuple

of numbers x = (x1, . . . , xn). The components xk are called the

generalized coordinates of the system. Here are some examples of the

generalized coordinates:

(1) For a particle in space, the triple of Cartesian coordinates:

x = (x, y, z).

167
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(2) For the same particle, the triple of its spherical coordinates:

x = (ϕ, θ, r).

(3) For the double pendulum in Figure 1, the angles x = (θ1, θ2).

(4) For a rigid body in space, x = (x1, x2, x3, ϕ, θ, ψ), where

x1, x2, x3 are the coordinates of the center of mass and where

ϕ, ψ, θ are the three Euler angles (these are the angles which

specify the body’s orientation; see [10]).

Figure 1. The double pendulum.

In all of the examples above, there are no constraints on infin-

itesimal displacements of x. In the double pendulum, for instance,

any infinitesimal change of θi is allowed (although the system does

involve constraints: the lengths of the rods are fixed). Such systems

are called holonomic. By contrast, Chaplygin’s sleigh (page 106) has

generalized coordinates x, y, θ, with no constraints on themselves,

but with a constraint on their velocities; these constraints come from

the fact that the skate cannot be displaced “sideways”. Systems with

constraints on velocity not derivable from constraints on positions are

referred to as nonholonomic, or nonintegrable; other examples include

rolling balls, pebbles, or coins. In addtion to our brief discussion on

page 106, more on nonholonomic systems can be found in the book

[13]. All systems considered in this book are holonomic, with the one

exception of Chaplygin’s sleigh.

2. Lagrange’s equations

Consider a mechanical system whose potential energy U is a function

of generalized coordinates U = U(x), while its kinetic energy K =
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K(x, ẋ). Just as in the one-degree-of-freedom case (see page 18), the

Lagrangian of the system is defined as the difference:

(4.1) L(x, ẋ) = K(x, ẋ)− U(x).

The equations of motion of the system are then given by the vector

system of Lagrange’s equations

(4.2)
d

dt
Lẋ(x, ẋ)− Lx(x, ẋ) = 0

where

Lẋ = ∇ẋL = (Lẋ1
, · · · , Lẋn

)

denotes the gradient of L with respect to the generalized velocity ẋ;

subscripts stand for partial derivatives. As in the one-dimensional

case, when Lẋi
is computed, ẋi is treated as an independent variable.

3. Examples

1. Two degrees of freedom. Let us write (4.2) more explicitly for

a two-degree-of-freedom system. Recall that the kinetic energy of any

mechanical system is a quadratic form in the generalized velocities:

K =
1

2
〈M(x)ẋ, ẋ〉,

where M is an n× n positive definite matrix, possibly dependent on

x; see Problem 2.30 on page 135 for the proof. With this expression

for K we have

Lẋ = M(x)ẋ, Lxi
= (Mxi

ẋ, ẋ), i = 1, 2,

so that the Euler–Lagrange equations (4.2) become{
d
dt(M11ẋ1 +M12ẋ2)− (Mx1 ẋ, ẋ) + Ux1

= 0,
d
dt
(M12ẋ1 +M22ẋ2)− (Mx2 ẋ, ẋ) + Ux2

= 0,

where Mij is the ijth element of M and Mxk
is the derivative of M

with respect to xk. In particular, if M(x) = M is a constant matrix,

then the middle term vanishes and the system becomes{
M11ẍ1 +M12ẍ2 + Ux1

= 0,

M12ẍ1 +M22ẍ2 + Ux2
= 0,
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Figure 2. The double pendulum viewed as a point con-

strained to a 2-torus in R4. The configurations A,B,C,D
are represented by points A,B,C,D on the torus.

or more elegantly,

(4.3) M ẍ = −∇U(x).

Exercise 4.1. Write down Lagrange’s equations for the double pendulum
(Figure 1) in the small angle approximation, i.e., by using approximation
sin θ = θ +O(θ3) and cos θ = 1− θ2/2 +O(θ4).

Solution (an outline). It is convenient to use the complex notation: For
the position z1 of the first mass we have z1 = x1 + iy1 = r1e

iθ1 ; similarly,
z2 = r1e

iθ1+r2e
iθ2 . The resulting linearized equation (that is, the equation

obtained by deleting higher order terms in θi) is of the form Mθ̈ = −Aθ
with constant matrices

M =

(
(m1 +m2)r

2
1 m2r1r2

m2r1r2 m2r
2
2

)
, A =

(
(m1 +m2)gr1 0

0 m2gr2

)
.

Such linear systems were studied in Section 18, page 108.

2. Geodesics on a surface. Let q = (q1, . . . , qN ) be the list of

all Cartesian coordinates of all the particles in a system. The con-

straints on q, if any, define a submanifold S ⊂ R
N . Thus the system

of particles can be thought of as a single particle constrained to a

submanifold in R
N ; generalized coordinates parametrize S. For an

example of the double pendulum, q = (x1, y1, x2, y2) ∈ R
4 is the list

of coordinates of the two masses, and the submanifold S is a 2-torus

in R
4, parametrized by the generalized coordinates (θ1, θ2); see Fig-

ure 2. It turns out that any motion of the particle is a geodesic curve,

i.e., a locally shortest curve on S, if “shortest” is defined in an ap-

propriate way; this fact is referred to as the Maupertuis’ principle, a
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special case of which is stated in Section 9. In this sense, mechanics

is a branch of differential geometry.

4. Hamilton’s principle

The setting is the same as in the previous section: a mechanical

system with the Lagrangian L(x, ẋ) is given. Hamilton’s principle is

a variational restatement of the Euler–Lagrange equations, and is a

central principle of classical mechanics.

Figure 3. The action is stationary under variations of space-
time curves with ends kept fixed.

Hamilton’s principle states that the motions of holonomic mechan-

ical systems are critical functions of the action (just as stated for the

scalar case on page 20). More precisely, if x = x(t) is a critical func-

tion of the action functional

(4.4) S[y] =
∫ t1

t0

L(y, ẏ) dt, y(t0) = x0, y(t1) = x1

with fixed ends x(t0) = x0 and x(t1) = x1, then x(t) satisfies La-

grange’s equation

(4.5)
d

dt
Lẋ(x, ẋ)− Lx(x, ẋ) = 0

and, conversely, any solution x of (4.5) with x(t0) = x0, x(t1) = x1 is

a critical function of the action (4.4). We assume throughout that L

has continuous partial derivatives in its variables. In brief, Hamilton’s

principle states:

δS[x] = 0 ⇔ d

dt
Lẋ(x, ẋ)− Lx(x, ẋ) = 0.

The proof of Hamilton’s principle, i.e., of the above equivalence, is

the the same as in the scalar case, and is given in the next section.
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5. Hamilton’s principle ⇔ Euler–Lagrange
equations

The proof of the equivalence follows the proof of the scalar version of

this result (page 22) almost verbatim; here are the details. Assume

that x(t) is a critical function of S, meaning that

d

dε |ε=0

∫ t1

t0

L(x(t) + εξ(t), ẋ(t) + εξ̇(t)) dt = 0

for any differentiable perturbation function ξ : [t0, t1] → R
n satisfying

ξ(t0) = 0, ξ(t1) = 0 (so as to keep the ends of the perturbed path

fixed). Now the d/dε can be applied to the integrand directly, and

we obtain, using the chain rule1:∫ t1

t0

(Lx · ξ + Lẋ · ξ̇) dt = 0,

where the subscript denotes the gradient with respect to the variable

in the subscript, and “·” denotes the dot product in R
n. Integrating

the second term by parts results in∫ t1

t0

(Lx − d

dt
Lẋ) · ξ dt = 0;

the boundary terms vanish since ξ = 0 at t = t0, t1. Using the

arbitrariness of ξ, just as we did on page 22, we conclude that Lx −
d
dtLẋ = 0. The proof of the converse goes by retracing the steps in

the above proof. ♦

Invariance under a change of variables. Euler–Lagrange equa-

tions are invariant under coordinate transformations. To decipher

the last sentence, let l(x, ẋ) be a Lagrangian, and let f be a smooth

change of variables: x = f(X). To define the Lagrangian in the new

variables X, note that

ẋ = f ′(X)Ẋ,

where f ′(X) is the Jacobi derivative matrix (see footnote on page 135

for the definition of the Jacobi derivative matrix of f). Substituting

this into the old Lagrangian l we get the Lagrangian in terms of X:

l(x, ẋ) = l(f(X), f ′(X)Ẋ)
def
= L(X, Ẋ).

1which states: d
dt f(x1(t), x2(t), . . . , xN (t)) = ∂f

∂x1

dx1
dt + · · ·+ ∂f

∂xN

dxN
dt = ∇f · ẋ.
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By the invariance of the Euler–Lagrange equation with respect to the

change x = f(X) we mean that

d

dt
lẋ − lx = 0 is equivalent to

d

dt
LẊ − LX = 0.

An immediate proof of this equivalence amounts to the observation

that a critical function of a functional remains critical under smooth

changes of variables. As a plodding alternative, one can substitute

x = f(X) into the Euler–Lagrange equation for x and massage the

resulting equation into the desired form. This exercise is still useful,

however, and is left to the reader.

6. Advantages of Hamilton’s principle

Although Hamilton’s principle is equivalent to Newton’s laws (in the

case of holonomic conservative systems), it offers major advantages

over Newton’s formulation. On the practical side, Hamilton’s princi-

ple, in the form of Euler–Lagrange equations, makes it much easier

in practice to write the equations of motion in most cases — a huge

advantage for engineers; see Problem 4.6 for an example. On the the-

oretical side, Hamilton’s principle has the following advantages over

Newton’s equations:

(1) Hamilton’s principle (HP) leads naturally to Hamilton’s

equations (see Chapter 8).

(2) HP explains why the phase volume is conserved — a prop-

erty which seems like a miraculous coincidence if explained

via Newton’s laws (see Chapter 8).

(3) HP makes Noether’s theorem obvious (see Chapter 8).

(4) HP leads to the Schrödinger equation of quantum mechanics

via Feynman’s approach (see Chapter 8).

(5) HP makes it clear why the Euler–Lagrange equations are

invariant under changes of coordinates (as was explained at

the end of the last section).

(6) HP makes the Poincaré integral invariants obvious (see

Chapter 8).
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7. Maupertuis’ principle — some history

Well over a century before Hamilton’s principle was introduced, its

special case was discovered. This case is of independent interest, and

is described in this section.

Some history. The so-called Maupertuis principle, while being a

consequence of Hamilton’s principle, historically precedes it. Leibnitz

knew Maupetuis’ principle in 1707 (when Maupertuis was 9 years

old), although Leibnitz’s discovery remained largely unknown. Euler

published the principle in 1744, in a beautifully written paper. In the

same year Maupertuis’ paper came out.2 Maupertuis’ paper is also

very clear, but, unlike Euler’s, it seems (to me, at least) to contain

a crucial mistake, misstating Fermat’s principle by misplacing the

speed of light from the denominator into the numerator in the action

integral.

Having read these two papers I was drawn to the conclusion that

the credit for the least action principle belongs to Euler. Subsequently

I learned that Caratheodory arrived at the same conclusion much ear-

lier, after considerable research.3 It is in fact unclear why the principle

took on Maupertuis’ name, since the main original part in Mauper-

tuis’ 1744 paper seems to be the mistake mentioned above; perhaps

references to (perceived) philosophical/theological significance of the

least action principle played a role in exciting general interest.

Seven years after Maupertuis’ publication, in 1751, Samuel König,

a mathematician in the employ of King Frederick of Prussia, claimed

that Leibnitz discovered this principle in 1707, showing a copy of the

letter from Leibnitz; the original seems to have been lost. In the

ensuing controversy, the King of Prussia and Euler took Maupertuis’

side, while Voltaire defended König. Some accused König of forgery.

Some 150 years later Leibnitz’s letters confirming König’s claim were

2“Accord between different laws of Nature that seemed incompatible”; it can be
found on Wikipedia. According to Maupertuis, “Nature is thrifty in all its actions.”

3As pointed out by H. H. Goldstine in A History of the Calculus of Variations
from the 17th Through the 19th Century, Springer-Verlag, New York, Heidelberg,
Berlin, 1980. For a discussion of the same topic, see also W. Yourgrau and S. Man-
delstam, Variational Principles in Dynamics and Quantum Theory, 3rd Ed., Dover,
New York, 1968, as well as

http://en.wikipedia.org/wiki/Principle of least action#cite note-mau44-1.
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discovered in Bernoulli’s archive. More details can be found in the

references mentioned in the footnote.

Before giving a general statement of Maupertuis’ principle, let us

consider an example.

8. Maupertuis’ principle on an example

The setting. Figure 4 shows the path AB of a projectile in the

gravitational field with constant gravitational acceleration −g along

the y-axis. The following is crucial: We limit our attention to motions

with a fixed value of total energy: mv2/2 +mgy = E. With E fixed

once and for all, the speed v =
√
2(E/m− gy) becomes a function

of position.4 Given any curve γ in the allowed region y ≤ E/mg, we

consider the “weighted length” of γ, namely

(4.6) A[γ] =

∫
γ

v ds,

where v = v(y) =
√

2(E/m− gy) and where ds is an element of

arc length. We will call this integral the action. Note that v is well

defined, since γ is in the allowed region.

Figure 4. Two trajectories with the same energy connecting
A and B. The action is minimal along AmB and of saddle
type along AnB.

Maupertuis’ principle (in this example) states: Any projectile tra-

jectory connecting points A and B and having a fixed energy E is a

4Note that v is defined only if the height y ≤ E/mg; the region above y = E/mg
is forbidden lest the expression under the square root becomes negative. Physically,
fixing E puts a limit on how high a projectile can climb.
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critical curve of the action (4.6), and conversely, any critical curve

of (4.6) with fixed endpoints is a projectile trajectory with energy E.

Figure 4 shows two possible trajectories AmB and AnB with the

same prescribed energy (these are the only possible trajectories with

these data). Both paths are critical curves of the action, but only

AmB is the minimizer. The Hessian of the action along AnB has one

negative eigenvalue; in other words, the Morse index of AnB is 1.

9. Maupertuis’ principle — a more general
statement

The setting. We consider the motion of a point mass in a potential

U(x) in R
n. From now on, we fix a value E of energy,

mẋ2

2
+ U(x) = E,

which slaves the speed to the position via

v = |ẋ| =
√
2(E − U(x))/m;

note that this does not restrict the direction of ẋ. Just as in the

example with the projectile, for any curve γ connecting two given

points A and B in R
n (this curve need not be a trajectory) we define

the action

(4.7) A[γ] =

∫
γ

v ds.

For the action to be well defined we must assume in addition that v

is well defined, i.e., that γ lies in the allowed set {x : U(x) ≤ E} (this

set is referred to as Hill’s region).

Theorem 4.1 (Maupertuis’ principle). Critical curves of the action

(4.7) defined for smooth curves γ with prescribed ends A, B are trajec-

tories of the Newtonian particle obeying mẍ = −∇U(x) with energy

E, and vice versa.

Proof. Let x = x(t) be a parametrization of γ by a parameter t,

arbitrary so far but later to be specified as the time. Using ds = |ẋ|dt
we get ∫ t1

t0

√
2(E − U(x)) |ẋ| dt, x(t0) = A, x(t1) = B.
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Now if γ is a critical curve, then x satisfies the Euler–Lagrange equa-

tion. To write this equation we must differentiate the above integrand

by ẋ; using the identity ∂
∂v

|v| = v/|v| for v ∈ R
n, we get

(4.8)
d

dt

(√
2(E − U(x))

ẋ

|ẋ|

)
− ∂

∂x

(√
2(E − U(x)) |ẋ|

)
= 0.

So far t has been arbitrary; now we specify t so that as to satisfy the

energy condition ẋ2/2 + U(x) = E, i.e.,

(4.9) |ẋ| =
√
2(E − U(x).

With this choice, there is cancellation in the first term in (4.8); this

term becomes simply ẍ. In the second term in (4.8), we take the

gradient ∂
∂x and then substitute (4.9). Cancellation happens again

and the term simplifies to ∇U(x). In summary, (4.8) reduces to

ẍ+∇U(x) = 0, so that x(t) is a trajectory. Furthermore, the energy

of this trajectory is E, according to (4.9). This completes the proof.

♦

10. Discussion of the Maupertuis principle

How do trajectories “know” to minimize action? One answer

would be to refer to the proof of Theorem 4.1. Still, doesn’t the

ability to choose the shortest path imply some knowledge of other

paths? How can a trajectory “know” other paths? It is this kind of

question that led Feynman to some of his discoveries; see page xix for

a brief discussion.

How to tell whether the action is minimal or merely critical.

This question is answered here for the example of a projectile; a

general answer is given in Chapter 7. Figure 5 shows a set of projectile

trajectories launched from A with the same speed. The envelope of

the family is a curve to which each trajectory is tangent.5 The point

C of tangency of a trajectory with the envelope is said to be conjugate

to A. The beautiful criterion of minimality is simply this: an arc AX

minimizes the action if and only if this arc does not contain a point

5One can show that the envelope of this family is the parabola y = a − bx2 with
a = v2

0/2g and b = g/2v2
0 .
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conjugate to A. For example, the arc AB in Figure 5 minimizes the

action, while the arc ACD does not. In fact, more can be said: The

number of negative eigenvalues of the Hessian of A defined on an arc

AX equals the number of points conjugate to A on the arc. This

number is called the Morse index; see [12]. The beautiful theory of

the Morse index of critical functions is described in Chapter 7.

Figure 5. AB minimizes the action, since the point C conju-
gate to A does not lie on AB. Arc ABCD is not minimal since
C lies on it. Arc AED is minimal. The Morse index of ABCD

is 1 since this trajectory contains one point (C) conjugate to A.

Concavity of trajectories. Maupertuis’ principle “explains” why

the trajectory of a projectile is bent in an arc. Indeed, at greater

heights the speed v is less since the total energy is fixed. Therefore,

to minimize
∫
v ds it pays to bend the path in the direction of lesser v,

i.e., upwards. To be a little more precise, let us see why the curve AqB

in Figure 6 is “better” than the straight line ApB. The bending of

the straight line ApB has two competing effects on the action
∫
v ds.

On the one hand, the bent curve AqB is longer; on the other hand,

v along AqB is smaller. Which effect wins? The length increases by

O(ε2) (the proof is left to the reader), but v decreases by O(ε) on the

average; the decrease wins and thus A(AqB) < A(ApB).

Hamilton and Maupertuis principles juxtaposed. Hamilton’s

principle fixes both ends of the curve in space-time: the arrival and

departure times and locations are prescribed. Maupertuis’ princi-

ple, by contrast, fixes the energy and the endpoints in space, but

not the times (the travel time can be found afterwards by computing

the speed v from the known energy and by integrating dt = ds/v).
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Figure 6. Minimization of
∫
v ds “explains” why the trajec-

tories are bent upwards.

Hamilton’s principle gives the path in space-time; Maupertuis’ prin-

ciple gives only the projection of this path onto the space. This is

a bit like prescribing the path of the train, but not the times of ar-

rival/departure (unfortunately, what Amtrak often does in practice).

11. Problems

4.1. Consider a conservative force field F(x) = −∇U(x) in R
2 whose

equipotential lines are straight. Consider motions of a particle in this field,
with a fixed value of total energy. Prove that along any trajectory one has
v sin θ = const., where θ is the angle between the normal to the equipoten-
tial and the trajectory and v = |ẋ|. Does v sin θ = const. still hold if the
equipotential lines are curved?

4.2. Maupertuis principle follows from Newton’s law, but not the other
way around. Where in the derivation of the former from the latter does
one lose information?

4.3. Find the function y = f(x) defined on [0, 1] with f(0) = f(1) = 0
which minimizes the integral

(4.10)

∫ 1

0

√
H − f(x)

√
1 + f ′(x)2dx.

Can you do this without appealing to the Euler–Lagrange equation?

Hint. This integral represents
∫
v ds for a projectile in a constant gravi-

tational field.

4.4. What does the Maupertuis’ principle (MP) say about a particle mov-
ing on a line?

Answer. Nothing. MP is useful only in dimensions n ≥ 2. By contrast,
Hamilton’s principle will give full information on the motion x = x(t).
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4.5. Write down the equations of motion for a bead sliding on the surface
z = f(x, y) in R

3 under the influence of gravity pointing down the z-axis.
To better appreciate the labor-saving advantage of Lagrange’s equations,
try doing this also using Newton’s laws.

4.6. Write the equations of motion for the double pendulum in Figure 1 us-
ing the Lagrangian approach. Reproduce the result using Newton’s second
and third laws.

4.7. Show that the configuration space of the double pendulum is the two-
dimensional torus T

2. In other words, show that there exists a continuous
one-to-one correspondence between the shapes of the double pendulum and
the points on T

2.

4.8. Write down the Lagrangian of a particle confined to the surface of
revolution x2 + y2 = R2(z) where R(z) is a positive function.

Hint. Should be read backwards: .setanidrooc dezilareneg elbatius esoohC

4.9. Consider a particle constrained to the unit sphere centered at the
origin, with no other forces, including gravity, applied to the particle. Write
down the Lagrangian of this particle using (i) spherical coordinates, and
(ii) the (x, y)-coordinates, assuming in the latter case that the particle is
in the upper hemisphere.

4.10. A weightless wheel with a point mass m attached to its rim is placed
on the table (with the wheel’s plane vertical). The wheel rolls without
sliding. Write down the equations of motion of the wheel assuming that
the wheel does not lose contact with the table and that the wheel has a
nonzero moment of inertia.

4.11. In the situation of Problem 4.10, assume that the contact with the
table is perfectly frictionless, i.e., that the table is perfectly slippery. Write
the equation of motion of the wheel.

4.12. Figure 7 is a schematic rear view of a biker traveling away from the
observer. The bike+rider can be treated as a rigid rod with a homogeneous
mass distribution. If the surface is perfectly slippery, then the wheels begin
to slide sideways. Write the differential equation governing the change of
angle θ valid for as long as the tires are in contact with the ice. Find the
angle at which the wheels lose contact with the ice, assuming that the rod
started in a nearly vertical position, nearly at rest, and that the contact is
frictionless.

4.13. A pendulum of length � and of mass m is mounted on the cart of
mass M . The cart rolls on the table without friction. Write the equations
of motion of the system. Verify that in the limit of large M/m the equation
of the simple pendulum emerges.
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Figure 7. A biker on ice.

For the next problem, consider a smooth curve γ on a smooth surface S
in R

3. Geodesic curvature of γ at a point p ∈ γ is defined as the curvature at
p of the planar curve obtained by projecting γ onto the plane tangent to S
at p. Intuitively, geodesic curvature is what the two-dimensional inhabitant
of the surface who thinks the surface is flat perceives as a planar curvature.

4.14. Show that the shortest curve on S connecting two given points A,B ∈
S has zero geodesic curvature. This means that a car driving on S along a
geodesic must point its wheels straight, without turning left or right.

4.15. (a) Prove that the shortest paths between two points on the sphere
are arcs of great circles. (b) Prove that the shortest path between two
points on a cylinder is a helix.

4.16. Find all shortest paths along the surface of a cube between two
diagonally opposite vertices.





Chapter 5

Classical Problems of
Calculus of Variations

1. Introduction and an overview

Calculus of variations deals with the problem of minimizing scalar-

valued functions of curves, or of functions. Hamilton’s principle is a

prime example where this problem comes up — we recall from the

last chapter that, according to Hamilton’s principle, the motion x(t)

of a particle makes the integral

∫ t1

t0

L(x(t), ẋ(t)) dt

critical; here L = mẋ2

2
− U(x) is the Lagrangian of the particle. In

other words, the nature is an analog computer which can find a min-

imum, or at least a critical function, of the above integral. Here are

some particular examples of such problems:

1. The brachistochrone problem: Find the shape of the curve

connecting two points A and B in the vertical plane such that a bead

released from A and sliding along the curve will reach B in least time.

2. The catenary: For a chain with fixed endpoints, find the shape

which minimizes potential energy (this is the equilibrium shape).

183
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3. The soap film: Of all the surfaces with a given boundary, find

the one with the least area.

4. The beehive problem: How to build the walls in a beehive with

a minimum of wax.1

The first three of these problems, among others, are described in

this chapter.

Calculus of variations is one of the richest and most fascinating

mathematical subjects. One reason for this may be the fact that

many fundamental physical laws — not only in mechanics, as we

saw, but also in electromagnetism (Maxwell’s equations), can be for-

mulated as variational principles. Physical principles play a central

role in physics, and therefore in mathematics, and in particular, in or-

dinary and partial differential equations and in differential geometry.

The theory of optimal control is a more recently developed branch of

calculus of variations, and is important in engineering applications.

Just to give an example, here is a simple (but still nontrivial) ques-

tion: How do we stop a harmonic oscillator in shortest time using a

force which cannot exceed a prescribed value? This problem is solved

in the next chapter on page 246.

2. Dido’s problem — a historical note

Although much of classical mechanics is built on Hamilton’s varia-

tional principle, historical origins of calculus of variations lie not in

dynamics but in geometry, in a problem that is over 2,800 years old.

The famous Dido’s problem asks us to find the curve of given length

which encloses maximum area of land adjacent to the shore, Figure 1.

A more modern equivalent problem is to find the path of an air-

plane bounding maximal possible area of land, given the plane’s speed

and the time of flight.

1This problem was considered by Pappus of Alexandria, who remarks in his work
that bees know only as much geometry as they need. In the words of Lord Kelvin,
Pappus then “proceeds to apply what he calls his own superior human intelligence to
investigation of useless knowledge”.
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Figure 1. Dido’s problem. The point A is prescribed; B, C

and D are free.

Some history. Queen Dido of Tyre — a city in the present day

Lebanon — fled her home after her husband, who was simultaneously

her uncle, was murdered for fiscal reasons at the instigation of Dido’s

brother Pygmalion. Fleeing her dysfunctional and dangerous family,

Dido arrived on the coast on North Africa circa 825 BC in the com-

pany of her servants and in possession of her wealth. Dido obtained

a grant from the local Berber chief to a piece of land along the coast

— a piece as large as she could enclose by an ox hide. Dido had a

hide cut into an extremely long thin strip which was used to bound

a piece of land; on this land she built Carthage (presently a suburb

of Tunis).

The area-maximizing shape of the rope is a circular arc (Fig-

ure 1), whether the ends of the rope are prescribed or free. At a

free end the arc must be perpendicular to the shore, as in Figure 1.

Incidentally, almost all calculus students go through a baby version

of Dido’s problem — that of finding the proportions of a rectangular

lot of maximal area bounded by a (straight) river on one side and by

a fence of prescribed length on the remaining three sides.

3. A special class of Lagrangians

All the problems discussed in this chapter lead to functionals of a

special form:

(5.1)

∫ b

a

F (y)

√
1 + y′2 dx =

∫ b

a

F (y) ds.
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Note that ds is the element of arc length of the curve y = y(x), since√
1 + y′2 dx =

√
1 +

(
dy

dx

)2

dx =
√
dx2 + dy2 = ds.

The main result of this section is the following.

Theorem 5.1. If y = y(x) minimizes (5.1) subject to fixed end con-

ditions

(5.2) y(a) = A, y(b) = B,

then y satisfies

(5.3)
F (y)√
1 + y′2

= const.,

or its equivalent version

(5.4) F (y) sin θ = const.,

where the meaning of θ is explained by Figure 2.

Figure 2. θ is the angle between the tangent and the y-axis.

Remark 5.1. The integral (5.1) is the weighted sum of Euclidean

lengths ds with weights F (y), and is referred to as the length of γ in

the metric F (y) ds = dρ. The metric is said to be conformal because

an infinitesimal circle in the sense of the metric ρ is also a Euclidean

circle. This is so because F does not depend on the direction of the

curve.2

2This is so even if F depends on x as well: F = F (x, y), and so this more general
case is also conformal.
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Proof. Since the integrand in (5.1) does not depend on x, Noether’s

theorem (page 23) applies, and thus the minimizer satisfies

y′Ly′ − L = c = const.

With L = F (y)
√

1 + y′2 this gives (5.3), after a short simplification.

To obtain (5.4), note that y′ = cot θ; substituting into (5.3) and

simplifying gives (5.4). ♦
This proof is short, but it lacks an “aha!” moment. The elemen-

tary solution given in the next section does have such a moment. This

solution is based on a mechanical analogy, in the spirit of Archimedes.

Boundary conditions. (5.3) is a first order differential equation for

the unknown function y = y(x); the solution depends on one constant

of integration, for a total of two arbitrary constants (the other one

being the right-hand side). Varying these two parameters should

allow us to satisfy the two boundary conditions – provided they can

be satisfied.

4. The shortest way to the smallest integral

Here is a remarkably short shortcut to (5.4), bypassing the Euler–

Lagrange equation and Noether’s theorem. This method is based on

endowing (5.1) with the mechanical interpretation as the potential

energy of a system of springs (see Figure 3); the solution (5.4) simply

expresses an equilibrium condition. Here are the details.

Step 1: discretization. Let us divide the (x, y)-plane into many

thin strips yk ≤ y < yk+1, approximate F (y) by the step function

with the constant value Fk = F (yk) in each strip, and replace the

curve γ by a broken line. The integral (5.1) then is approximated by

the sum

(5.5)
∑

FkΔsk,

where Δsk is the length of the kth segment in Figure 3. Note that

the weights Fk are fixed, and that we can vary sk by sliding the break

points of the broken line along the lines y = yk. The goal is to slide

these points to their optimal positions, the ones that minimize (5.5).

A mechanical analogy will tell us how to do this.
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Figure 3. Minimizing
∫
F (y) ds by a mechanical “analog computer”.

Step 2: an “analog computer”. As a thought experiment sketched

in Figure 3, let frictionless rings slide without friction along the fixed

rods y = yk; connect each pair of neighboring rings by a constant ten-

sion spring3 with tension Fk. The end rings A and B are held fixed.

Now (5.5) is the potential energy of our a system; indeed, potential

energy of the kth spring is the work required to stretch it from zero

length to its current length Δsk, i.e. FkΔsk.

Figure 4. Two ways to construct a constant tension “spring”.
The potential energy of each “spring” is xF .

Step 3: the conclusion. If the potential energy (5.5) is minimal,

then each ring is in equilibrium and so the forces in the x-direction

are in balance:

Fn sin θn = Fn+1 sin θn+1,

or

Fk sin θk = const.;

in the continuous limit this becomes (5.4). ♦
3Such a spring can be realized by hanging a weight as in Figure 4, or as a piston

in a cylinder with vacuum in the same figure.
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The following exercise gives a nice interpretation of the momen-
tum and the Hamiltonian for the Lagrangian in (5.1).

Exercise 5.1. Using Figure 3, find a mechanical interpretation of the
momentum p = Ly′ and of the Hamiltonian H = y′Ly′ −L associated with

the Lagrangian L = 2πy
√

1 + y′2 in (5.1).

Answer. The Hamiltonian H = F sin θ is the horizontal component of

the spring’s tension; p = F cos θ is the vertical component of the spring’s

tension. Remarkably, H and p are simply the coordinates of the vector of

tension: F = (H, p)!

In the following few sections we will apply (5.4) to three classical

problems.

5. The brachistochrone problem

This problem was proposed by Johann Bernoulli in June of 1696:

Find the shape of a trough connecting two points A and B in the

vertical plane (Figure 5) such that a particle released from rest at

A and sliding down this trough without friction will reach B in least

time.

Of course, the height of B must not exceed that of A for the

solution to exist.

Some intuition. Figure 5 illustrates some crude guesses. Straight

line 4 may seem like a good answer until one realizes that 3 is probably

better: it pays to gain speed as early as possible. This suggests that

the tangent to the solution at A should be vertical, and that the

solution must be a concave curve. Beyond that, it is difficult to say

more without further analysis, which is given next.

The descent time. Let us introduce the coordinate axes as shown

in Figure 5, with the y-axis pointing straight down. We will show that

the time of travel along the curve AB is given by the line integral

(5.6) T = k

∫
AB

ds
√
y
, where k =

1√
2g

.
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Figure 5. Which path takes least time?

Indeed,

(5.7) T =

∫
AB

dt =

∫
AB

ds

v
,

where the speed v = v(y) is determined by the height from the energy

conservation:
v2

2
−mgy = E = const;

the minus is due to the fact that the y-axis points down. Now E = 0

since v = 0 at y = 0 — the bead is released from rest. Solving for v

and substituting in (5.7) proves (5.6).

Theorem 5.2. Assume that yA ≥ yB. The brachistochrone (i.e., the

critical function of (5.6)) is an arc AB of a cycloid generated by the

point on a circle rolling without sliding on the horizontal line through

A, Figure 6.

Figure 6. The brachistochrone is an arc of the cycloid with
a cusp at A and passing through B.



5. The brachistochrone problem 191

Remark 5.2. Figure 7 illustrates different possibilities depending on

the relative positions of the starting and ending points. The brachis-

tochrone dips below B if and only if the line AB has slope |s| < 2/π.

Figure 7. Quickest paths from A to various points in the
vertical plane. Note that the quickest path may dip below the
destination point.

Proof of the theorem. Our integral (5.6) is of special form
∫
F (y) ds,

where F = 1/
√
y. As we showed before, minimizing curves satisfiy

F (y) sin θ = const., or

(5.8)
sin θ
√
y

= c = const.,

where θ is the angle between the tangent to the curve and the vertical.

Figure 8. Proving that the cycloid satisfies (5.8).

Figure 8 encapsulates the proof that (5.8) describes a cycloid.

Consider a circle rolling on the “ceiling” (the horizontal line through

A) without sliding; a point P on the rolling circle traces out a cycloid.
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Let A be the initial position of P on the “ceiling”. Now the chord

PC ′ where C ′ is the diametric opposite of the contact point C, is

tangent to the cycloid (a quick proof is in the next paragraph). But

then θ = ∠PCK = ∠PC ′C, so that

y
def
= PK = PC sin θ = D sin2 θ,

which can be written in the form (5.10):

sin θ
√
y

= D−1/2.

We also see how k defines the diameter of the circle: k = D−1/2.

It remains to prove that PC′ is tangent to the cycloid. Now

the velocity of P , i.e., tangent to the cycloid, is perpendicular to the

position vector CP since C is the instantaneous center of rotation

and since the wheel is a rigid body. But also PC ′ ⊥ CP since ∠CC ′

is a diameter. This proves that PC ′ is indeed tangent to the cycloid.

We showed that cycloids satisfy the ODE (5.8). Since any initial

condition can be satisfied by a properly chosen cycloid, we conclude

from the uniqueness theorem that no solutions other than cycloids

exist. ♦

Remark 5.3. Note that we only proved that the cycloid is a critical

function; however, by using the Jacobi criterion of Chapter 6 one can

show that it is indeed a minimizer.

6. Johann Bernoulli’s solution of the
brachistochrone problem

In section 4 we used a mechanical analogy to show that curve min-

imizing
∫
γ
F (y) ds satisfies F (y) sin θ = const. Bernoulli’s beautiful

idea leads to the same result, but via an optical analogy. I reproduce

Bernoulli’s solution because of its historical interest, although the so-

lution on page 187 is shorter and more self-contained, since it does

not appeal to Fermat’s principle or Snell’s law.

Before describing Bernoulli’s solution, let us recall Snell’s law.

Consider an optical medium in the (x, y)-plane with speed of light

c(y) depending on y only. Snell’s law states that for each ray the sine
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Figure 9. Johann Bernoulli’s solution of the brachistochrone problem.

of the angle θ with the y-direction (Figure 9) varies as the speed of

light:

(5.9)
sin θ

c
= const.

This can be derived from Snell’s law

sin θn
cn

=
sin θn+1

cn+1

for a layered medium in Figure 9, with constant speed cn in the nth

layer.

Bernoulli’s idea for finding the brachistochrone was the following. As

a thought experiment, superimpose an optical medium over Figure 5,

choosing the speed of light c = v =
√
2gy, the same as the speed of

the sliding bead. By Fermat’s principle, the shape of the ray between

A and B minimizes the time of travel∫
ds

c
,

which is also the time of travel of the bead because of our choice c = v.

Therefore the ray “finds” the shape of the brachistochrone, and since

the ray satisfies Snell’s law (5.9), so does the brachistochrone:

(5.10)
sin θ√
2gy

= const.

This essentially solves the problem by reducing it to a differential

equation which we already discussed in the preceding section.
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7. Geodesics in Poincaré’s metric

By the Poincaré’s length of a planar curve γ one simply means the

modified “length”

L[γ] =

∫
γ

ds

y
,

where ds =
√
dx2 + dy2. For the integral to be well defined and

positive we restrict attention to curves in the upper half-plane. The

modified length dρ = ds/y is called the Poincaré metric. As an exam-

ple, all the horizontal segments in Figure 11 have the same Poincaré

lengths.

Figure 10. All these horizontal segments have the same
length in Poincaré’s metric.

A geodesic in the Poincaré metric is, by definition, a curve which

makes the above integral stationary for variations of the curve with

ends fixed. Since the above integral is of the conformal type
∫
F (y) ds

discussed in sections 3 and 4, geodesics satisfy F (y) sin θ = c (see

(5.4)), with F (y) = 1/y, or

(5.11)
sin θ

y
= const.

Theorem 5.3. Every geodesic of Poincaré’s metric is a semicircle in

y > 0 with the center on the x-axis or, as a limiting case, a vertical

ray x = c, y > 0. Conversely, every such semicircle or ray is a

geodesic in Poincaré’s metric.
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Figure 11. Geodesics in Poincaré’s metric are semicircles or

vertical rays.

Proof. Referring to Figure 11, consider a semicircle with the center

O on the x-axis. Since

θ ≡ ∠CAN = ∠BOA,

we conclude from ΔBOA that

sin θ =
y

r
,

showing that (5.11) holds for such semicircles. Vertical rays satisfiy

(5.11) with θ ≡ 0 and the zero constant. This proves the first half of

the theorem. To prove the converse, let us show that any solution of

(5.11) is a semicircle with the center on the x-axis, or else a vertical

ray. Indeed, (5.11) is a first order ODE . Given a point A and a slope

y′ at A, there is a unique solution with these initial data. But the

semicircle in Figure 11 already satisfies this ODE (as we showed), and

hence there is no other solution by the uniqueness theorem. It remains

to consider the case when the initial slope is infinite. But in that case

the geodesic must be a vertical ray. Indeed, otherwise there is a point

on the geodesic where the slope is finite, but we already showed that

such a geodesic is a semicircle whose slope is finite everywhere. The

contradiction shows that the geodesic whose slope is vertical at one

point is indeed a vertical ray. ♦
The Poincaré metric is the simplest imaginable non-Euclidean

metric in the sense explained by the following exercise.

Exercise 5.2. Assume that the speed of light in an optical medium in the
upper half-plane varies linearly with y, namely, c(y) = y. Using Fermat’s
principle, show that the rays are the Poincaré geodesics, i.e., semicircles
perpendicular to the x-axis.
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Solution. According to Fermat’s principle, rays minimize (or make criti-
cal) the travel time ∫ B

A

ds

c
=

∫ B

A

ds/y. ♦

8. The soap film, or the minimal surface of
revolution

This classical problem asks us to find the the surface of least possi-

ble area spanning two parallel circular hoops sharing a common axis,

Figure 12. Physically, such a minimal surface is realized by a soap

film spanning two hoops.4 Soap film is an “analog computer” which

finds the minimal surface. In fact, one can derive the differential

equation for the desired shape as the equilibrium condition. Instead,

we solve the problem directly by minimizing the area. To that end,

we formulate the problem analytically.

Figure 12. Surface of revolution spanning two hoops.

Analytic formulation. Figure 12 shows the axial cross-section of

the surface of revolution spanning the two hoops at x = ±a of radius

b. Revolving the graph of y = f(x) around the x-axis yields the

surface area

(5.12) A[f ] = 2π

∫ a

−a

y
√

1 + (y′)2 dx = 2π

∫
y ds;

4If we ignore gravity and other relatively small effects, such as the variation of
surface tension with temperature, etc.
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here f satisfies the boundary conditions

(5.13) f(−a) = f(a) = b.

The soap film “finds” f which minimizes the above integral subject

to (5.13), and our goal is to do the same.

Finding the minimizing f . The integral (5.12) is again of the con-

formal type
∫
F (y) ds (see (5.1), page 185), and thus the minimizers

satisfy F (y) sin θ = const., or

(5.14)
y√

1 + (y′)2
= const.

(this equation has a simple physical interpretation, see Exercise 5.3

on page 199). The general solution of (5.14) is

(5.15) y =
1

c
cosh c(x− c1),

where c and c1 are constants, as can be checked by substitution.

Hyperbolic cosine has a nice incarnation as the shape of a soap

film stretched on two hoops!

It still remains to satisfy the boundary conditions (5.13) (using

the freedom of choice of c, c1). Intuition suggests that this is not

always possible: if we spread the hoops sufficiently far apart, the

soap film will snap and form two disjoint flat disks. Let us find the

critical distance a, or rather the critical ratio b/a which separates

existence from nonexistence.

Note first that c1 = 0, as expected by symmetry; this is con-

firmed by substituting (5.15) into (5.13) resulting in cosh(−a− c1) =

cosh(a − c1), which implies the claim. The critical function of our

area functional, if it exists, is even:

(5.16) y =
1

c
cosh(cx),

and it remains to find for which a, b can we satisfy the boundary

condition

(5.17)
1

c
cosh(ca) = b

by a choice of c.
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For which (a, b) can (5.17) be satisfied? All the graphs of (5.16)

are dilations of one another; see Figure 13.5 As we change c from 0

Figure 13. For b/a > s = 1.1996... there are two equilibrium
shapes of the soap film. For b/a < s no solutions satisfying
y(±a) = b exist.

to ∞, these dilations fill out the sector y ≥ s|x|, where s is the slope

of the tangent to y = coshx passing through the origin:

s = min
x>0

cosh x

x
= 1.1996....

We conclude that the soap film connecting the two hoops snaps if

b/a gets close to the critical value s ≈ 1.2. Figure 13 shows three

possibilities: (i) if b/a < s then two curves from the family (5.16)

connect (−a, b) with (a, b); (ii) when b/a = s, there is precisely one

curve connecting the pair, and (iii) if b/a > s then no curves from

the family connect the pair.

A minimality criterion. Figure 14(b) shows two solutions for the

same boundary conditions. Which of these solutions (if any) mini-

mizes the area? This quesiton is physically significant since the area-

minimizing solution is also energy-minimizing and thus stable, i.e.,

physically observable. To answer this question, we need the concept

of conjugate points. Fix a critical function of a functional (the thick

curve in Figure 14(a)), and consider a narrow fan of other solutions

of the Euler–Lagrange equation passing through C0.

Two points C0 and C1 on the graph of the chosen function are said

to be conjugate of one another if, loosely speaking, this fan refocuses

5This should be clear at the outset, with no calculation, since any dilation of a
minimal surface is a minimal surface.
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Figure 14. (a): Conjugate points C0 and C1. (b): Segment
A0mA1 is a minimizer since it does not contain a conjugate
pair. Segment A0nA1 is not a minimizer since it contains a
conjugate pair.

at he point C1 (for a rigorous definition, see Section 1, page 212).

Figure 14 suggests that the tangency points C0 and C1 are conjugate

to each other; this is a reasonable suggestion since two infinitesimally

close curves crossing each other near C0 recross again near C1. This

idea can be turned into a rigorous proof. Now the general minimality

criterion states: a critical function of (5.12) is a minimizer if and

only if the graph of the function does not contain pairs of conjugate

points.6

Which solutions are minimizers? The arc A0mA1 in Figure 14 is

a minimizer, since it does not contain a conjugate pair. On the other

hand, the arc A0nA1 is not a minimizer, since it contains a conjugate

pair C0, C1. We conclude from this that the soap film corresponding

to A0mA1 is stable, since its area, and hence potential energy of sur-

face tension, is minimal. On the other hand, the shape corresponding

to A0nA1 is an equilibrium, i.e., is theoretically possible, but will

never be realized in practice since it is unstable.

Exercise 5.3. What is a physical interpretation of (5.14)?

Answer. Equation (5.14) states that the x-component H(x) of the surface
tension7 at any cutting plane x = const. does not depend on x. Indeed,

6Full details on this are given in Chapter 6.
7We denote the tension by H as a reminder that is it the Hamiltonian associated

with the Lagrangian in (5.12).
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note that

H(x) = (2πy) · cos θ =
2πy√
1 + y′

and consider the tube lying between the planes x = x0 and x = x1. This
tube is under the action of external tensions −H(x0) and H(x1) from the
remaining part of the film, and the equilibrium condition−H(x0)+H(x1) =
0 implies that H(x) = const. since x0, x1 are arbitrary.

Exercise 5.4. (See the closely related Exercise 5.1 on page 189.) Find a
mechanical interpretation of the momentum p = Ly′ associated with the
minimal surface Lagrangian in (5.12), and of the HamiltonianH = y′Ly′−L
associated with this Lagrangian.

Answer. The momentum p = Ly′ is the integral of the radial component

of the surface tension at a fixed circle x = const. The hamiltonian H is

the integral of the x-component of the surface tension at a fixed circle

x = const., as discussed in the preceding exercise.

9. The catenary: formulating the problem

The equilibrium shape of a chain suspended by both ends is referred

to as the catenary, Figure 15 (Catena in Latin means “chain”). Our

idealized chain is a perfectly flexible and unstretchable curve with

zero thickness but possessing mass, equidistributed over the chain’s

length. Our goal is to find the shape of the chain which gives it the

least potential energy; this shape corresponds to an equilibrium.

Figure 15. The catenary problem.
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Why does minimal potential energy correspond to an equilib-

rium. Assume that the chain is in the shape of least potential energy and

is initially at rest; I claim that it will remain at rest, i.e., that it is in

equilibrium. Assume the contrary, i.e., that the chain stars moving spon-

taneously. Then its kinetic energy becomes positive; the potential energy,

on the other hand, does not decrease, and hence the total energy increases

from the initial state, which is a contradiction with energy conservation.

For full disclosure, we proved conservation of energy only for finite systems

of particles, and not for continua, such as our chain, so that the argument

in this paragraph has a gap in rigor.

The catenary functional. Consider the chain whose shape is given

by y = f(x); so far f is arbitrary. The potential energy of an infinitesi-

mal element of the chain is dmgy = ρ ds gy = ρgf(x)
√
1 + f ′(x)2 dx,

where ρ is the linear density (mass per unit length); the total potential

energy is the integral:

(5.18) U [f ] = ρg

∫ x1

x0

f(x)
√
1 + f ′(x)2 dx.

Let us fix the ends of the chain at (x0, y0) and (x1, y1), thus imposing

the boundary conditions on f :

(5.19) f(x0) = y0, f(x1) = y1;

and since the length L of the chain is prescribed, we further restrict

attention to the functions satisfying the length constraint

(5.20)

∫ x1

x0

√
1 + (y′)2 dx = L.

The problem is to minimize the energy functional (5.18) subject to

the boundary conditions (5.19) and to the length constraint (5.20).

To that end we review Lagrange’s method of dealing with constraints.

10. Minimizing with constraints — Lagrange
multipliers

The catenary problem is an example of the general problem of mini-

mizing a functional

(5.21) F [x] =

∫ t1

t0

F (x, ẋ)dt, x(t0) = x0, x(t1) = x1
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Figure 16. A geometrical interpretation of the method of
Lagrange multipliers .

subject to a constraint

(5.22) G[x] =
∫ t1

t0

G(x, ẋ)dt = c.

Theorem 5.4. If x = x(t) is a critical function of the functional

(5.21) subject to the constraint (5.22), then there exists a constant

λ such that x satisfies the Euler–Lagrange equation corresponding to

the integrand L = F − λG:

(5.23)
d

dt
((F − λG)ẋ))− (F − λG)x = 0.

Before proving the theorem, let us review its finite-dimensional

analog. One seeks to minimize f(x) subject to g(x) = 0, where

x ∈ R
n, and where f and g take values in R. Figure 16 explains that

if x is a minimium of f subject to g = 0, then the level surfaces of

f and of g passing through x are tangent at x. Thus ∇f ‖ ∇g, i.e.,

∇(f − λg) = 0 for some λ. To make this argument rigorous, let us

consider a curve r = r(s) lying on the surface g = 0, with r(0) = x;

differentiating the identity g(r(s)) = 0 by s at s = 0 we get, using the

chain rule:

(5.24)
d

ds
g(r(s)) = ∇g(x) · ṙ(0) = ∇g(x) · v = 0;
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and since x is a critical point, we have

(5.25)
d

ds
f(r(s))s=0 = ∇f(r(0)) · r′(0) = ∇f(x) · v = 0.

Summarizing, we showed that if v⊥∇g(x), then v⊥∇f(x). This im-

plies that ∇f(x)‖∇g(x), and thus ∇f(x) = λ∇g(x) (see Problem 5.1

on page 205 for rigorous details).

Proof of Theorem 5.4 is the infinite-dimensional version of the

above proof and follows it verbatim if we replace x ∈ R
n by x ∈

C2[t0, t1] (the space of twice continuously differentiable functions on

[t0, t1]; f by F ; ∇f by ∇F = d
dt
Fẋ − Fx, and the dot product x · y

by x · y =
∫ t1
t0

x(t)y(t) dt; the orthogonal decomposition of a function

(∇F) is to be understood in the sense of orthogonality with respect

to this dot product. ♦

11. Catenary — the solution

In this section we apply the method of Lagrange multipliers (Theorem

5.4) to solve the catenary problem. As dictated by the theorem, we

form the difference

L(y, y′) = y
√

1 + (y′)2 − λ
√
1 + (y′)2 = (y − λ)

√
1 + (y′)2;

note that we can drop the factor ρg. Now rather than solving the

Euler–Lagrange equation (5.23), we use Noether’s theorem, which ap-

plies since L does not contain x explicitly. According to this theorem,

any solution of the Euler–Lagrange equation satisfies

(5.26) y′Ly′ − L = (y − λ)
1√

1 + (y′)2
= k = const.

The general solution of this first order ODE is

(5.27) y = λ+ k cosh
x− x0

k
,

as can be checked by direct substitution (or discovered by separation

of variables). This solution depends on three parameters: λ, k and

x0, matching the number of conditions to be satisfied: two for the

boundary plus one for the length constraint.
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Figure 17. Deriving the equation of the catenary.

12. An elementary solution for the catenary

In this section I present an elementary solution of the problem which

uses no theory beyond basic calculus. In fact, this elementary solution

provides an alternative derivation of the Euler–Lagrange equation for

the present example, based on a physical idea.

Deriving the ODE for the catenary. The key idea is that the

minimum of the functional is an equilibrium; and an equilibrium con-

dition — Newton’s first law — is a differential equation in disguise.

This differential equation, which we will now produce, is the same as

the Euler–Lagrange equation given by the general theorem, but ob-

tained by elementary means. We must write the equilibrium condition

for an infinitesimal arc of the chain, Figure 17. The arc is subject to

three forces: the tensions on each end and the gravity dmg. The

balance of forces in the x- and y-directions gives, in the notations of

the figure:

(5.28)
T (x) cos θ(x) = T (x+ ds) cos θ(x+ dx),

T (x+ ds) sin θ(x+ dx)− T (x) sin θ(x) = dmg.

By the first of these equations, T (x) cos θ(x) = T0 = const. Dividing

the second line in (5.28) term-by-term by T (x + ds) cos θ(x + dx) =

T (x) cos θ(x) = T0, we get

tan θ(x+ dx)− tan θ(x) =
g

T0
dm.
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Since tan θ(x) = f ′(x) and dm = ρds = ρ
√
1 + (f ′(x))2dx, we have

f ′(x+ dx)− f ′(x)

dx
=

g

T0

√
1 + (f ′)2.

In the limit of dx → 0 we obtain (writing y = f(x)):

y′′ = k
√

1 + (y′)2, k =
g

T0
,

the differential equation for a catenary.

The general solution of this equation is exactly the hyperbolic

cosine (5.27). In fact, there are two solutions (assuming the distance

between the endpoints is less than the chain’s length); one of these is

an inverted arc of the hyperbolic cosine, like Gateway to the West of

St. Louis, Missouri.8 This second solution corresponds to k = g/T0 <

0; negative T0 means that the chain is under compression rather than

tension. Such a chain would crumple under compression, and the

mathematical solution cannot be realized physically (unless the chain

is prevented from crumpling; but this would alter the mathematical

model).

Remark 5.4. Note that T0 is simply the tension of the chain at its

lowest point where the tangent is horizontal.

Remark 5.5. The tension T of a hanging chain is a linear function

of the height: for any two points on the chain, T2 −T1 = ρg(y2 − y1),

see Problem 1.10 on page 52.

13. Problems

5.1. Let a and b (b �= 0) be two vectors in R
n such that if b · v = 0 then

a · v = 0. Prove: a ‖ b, i.e., a = λb for some λ ∈ R.

Solution. Consider the orthogonal decomposition of a in the part parallel
to b and a part perpendicular to b:

a = λb+ r, λ ∈ R, r ⊥ b.

Now since b · r = 0, we have a · r = 0 (by assumption, anything orthogonal
to b is also orthogonal to a). Taking the dot product of the above decom-
position with r gives a · r = λb · r + r · r. Thus r · r = 0, implying that
a = λb. ♦

8The analogy is not quite perfect because the thickness of that arc is variable.
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5.2. Recall the method of Lagrange multipliers : if the function f : Rn → R

constrained to a surface g(x) = 0 has a critical point x on the surface, then
the gradients are parallel at x:

(5.29) ∇f(x) = λ∇g(x)

Find a mechanical interpretation of this statement.

Answer. In a nutshell, Lagrange’s theorem (5.29) amounts to the state-
ment that a particle in a force field constrained frictionlessly to a surface
is in equilibrium iff the force field is perpendicular to the surface. Here
are the details. Interpret f as the potential energy of a particle in a force
field F = −∇f in R

n. The particle is constrained to the surface g = 0. If
the potential energy f restricted to g = 0 is minimal at x, then x is an
equilibrium, i.e., the field force −∇f is balanced by reaction force R of the
constraint. And since R is normal to the surface, we have R = λ∇g for
some λ ∈ R. This explains (5.29).

The following problem requires some background on Snell’s law and
on Fermat’s principle; these are described in the present paragraph. When
a ray of light crosses an interface between two media, e.g., air and water,
it refracts, i.e. changes the direction, according to Snell’s law:

(5.30)
sin θ1
c1

=
sin θ2
c2

,

where θ1, θ2 are the angles between the ray and the normal to the interface,
and c1, c2 are the speeds of light in the media; see Figure 18. Fermat’s
principle, on the other hand, states that the ray between two points chooses
the path of minimal (or rather critical) time.

5.3. Consider a ray of light traveling from a point A in the air to a point B
in the water. Prove that Snell’s law (5.30) follows from Fermat’s principle.

5.4. Find a geometrical interpretation of the ratio sin θ/c in Snell’s law
(5.30).

Solution. Figure 18 shows two fronts at times t and t+h. Let us find the
speed of the break point At in the front as it slides along the horizontal
line (the water surface). In time h the point moves the distance AtAt+h.
But AtAt+h is a shared hypotenuse of two right triangles in the figure, and
so

AtAt+h =
c1h

sin θ1
=

c2h

sin θ2
.

Dividing by h, we get the speed of At:

v =
AtAt+h

h
=

c1
sin θ1

=
c2

sin θ2
.
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Figure 18. A kinematic interpretation of sin θ/c as the speed
at which the break point of the front (the fat dot) slides along
the interface.

5.5. Find the continuous analog of Snell’s law in the case when c = c(x, y)
depends on both coordinates.

Answer. Let x = x(s) be the ray parametrized by arc length s. Then

(nx′)′ = ∇n,

where ′ = d
ds
. Note that p = nx′ is referred to as the vector of normal

slowness since, as it turns out, p is normal to the front, and since |p| = 1/c
is indeed the slowness, c being the speed of light.

5.6. Figure 6 shows the family of trajectories of a projectile shot in different
directions in the vertical plane with a given speed v. (i) Find the envelope
of the family. (ii) Show that if the point B lies below this envelope, then
there are precisely two trajectories reaching B. One of these is a minimum
of the Maupertuis integral, while the other is a critical function of Morse
index 1.

5.7. Consider a chain suspended at points x0 and x1 in R
3, Figure 19. Let

p0 be the force with which the chain pulls on the support at x0, and let p1

be the force with which the support at x1 pulls on the chain. Assuming that
the pair (x0,p0) defines uniquely the pair (x1,p1) (provided |x1−x0| < L,
the length of the chain), prove that the mapping

ϕ = (x0,p0) �→ (x1,p1)

preserves the integral invariant of Poincaré:

(5.31)

∮
γ

p dx =

∮
ϕ(γ)

p dx

for any closed smooth curve γ in R
6.
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Figure 19. A symplectic mapping ϕ : R6 
→ R6 given by
ϕ(x0,p0) = (x1,p1) associated with a hanging chain.

Hint. Let U(x0,x1) be the potential energy of the chain hanging in equilib-
rium between two points x0, x1, and note that Ux0 = −p0, Ux1 = p1. The
map ϕ satisfying (5.31) is called symplectic; U(x0,x1) is called a generating
function of ϕ.

5.8. Find all locally shortest paths9 on the cylinder x2+y2 = 1 connecting
the points A(1, 0, 0) and B(1, 0,H) (do this in two different ways: (1)
geometrically, by unrolling the cylinder and (2) analytically, by writing
down the length functional in cylindrical coordinates.

5.9 (Clairault integral). Let S be a surface of revolution x2+y2 = R2(z) in
R

3. Let γ be a geodesic connecting two given points A, B on S (a geodesic
γ is a curve on S for which the length functional

∫
γ
ds is critical for the

class of smooth curves connecting A and B.) Write down the functional for
the length of a curve on S. The associated Euler–Lagrange equation has a
conserved quantity due to rotational symmetry of the problem. Show that
this quantity, called the Clairault integral, is given by r sin θ, where r is the
distance to the symmetry axis and θ is the angle between the geodesic and
the meridian.

5.10. Referring to the preceding problem, a geodesic can be realized by
mechanical means, as an equilibrium shape of a constant tension spring
confined to the surface S and with ends held fixed (we assume that the
constraint to the surface is frictionless). (i) Explain why this is so, and (ii)
show that the Clairault integral equals the torque around the symmetry
axis applied to the ends of the spring to hold it in place. Explain the
preservation of the Clairault integral by the torque balance.

5.11. Instead of a constant tension spring as in the preceding problem,
consider a zero length Hookean spring constrained frictionlessly to the sur-
face x2 + y2 = R2(z), with two ends of the spring held fixed. No external
forces act upon the spring. Write the expression for the potential energy

9A path is said to be locally shortest, or locally minimal if it is shorter than any
nearby path with the same ends.
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of such a spring, and show that this expression is the same as the integral
of the Lagrangian of a point mass constrained to the surface. Explore the
dynamics-statics analogy from page 45 in this case.

5.12. Show that the Clairault integral can be interpreted as the angular
momentum of a particle sliding on the surface of revolution without friction.





Chapter 6

The Conditions of
Legendre and Jacobi for
a Minimum

In the 1750s Euler and Lagrange showed that their equation is a

necessary condition for a function to be a minimizer of the functional

(6.1) S[x] =
∫ t1

t0

L(x(t), ẋ(t)) dt

with fixed ends

(6.2) x(t0) = x0, x(t1) = x1.

In his 1786 paper Legendre showed that for a critical function to

be a minimizer it is necessary that Lẋẋ(x, ẋ) ≥ 0 be satisfied for the

critical function (subscripts denote partial differentiation). Legendre

also claimed, erroneously, that a strict inequality Lẋẋ > 0, now called

the Legendre condition, is sufficient for a minimizer. It took another

50 years until a sufficient condition was published by Jacobi in 1836.

In retrospect it may seem surprising that it took so long, since the

simplest nontrivial example of L = ẋ2−x2 (corresponding to the har-

monic oscillator!) shows that the Legendre condition is not sufficient,

also suggesting the sufficient one. An intuitive explanation is given

below (starting on page 226).

211
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This chapter consists of three parts. Sufficient conditions for a

minimum are given in the first part (Sections 1–4). Necessary condi-

tions for a minimum are contained in the second part (Sections 5 and

6). And an intuitive discussion of some of the main ideas concludes

the chapter.

1. Conjugate points

An informal definition. Let xc(t) be a critical function of (6.1)–

(6.2). Imagine varying the initial slope of xc as shown in Figure 1,

creating a “fan” of curves, each satisfying the Euler–Lagrange equa-

tion. A point C(t∗, xc(t
∗)) on the graph of xc is said to be conjugate

to the initial point O(t0, x(t0)) with respect to the functional (6.1) if

C is a “focal point” of this fan. That is, as we vary the initial slope

s, the height x(t∗, s) at t = t∗ changes with zero speed. Here is a

precise definition.

Figure 1. Definition of the conjugate point.

Definition 6.1. Referring to Figure 1, consider a one-parameter fam-

ily x(t; s) of solutions of the Euler–Lagrange equation parametrized

by the initial slope s:

(6.3) x(t0, s) = x0 and ẋ(t0, s) = s,

for all s in a small neighborhood of s0
def
= ẋc(t0). The point (t

∗, xc(t
∗))

on the graph of xc of a critical function of (6.1)–(6.2) is said to be

conjugate to (t0, x0) with respect to the Lagrangian L if

(6.4) ∂sx(t
∗; s0) = 0;

here ∂s denotes the partial derivative with respect to s.
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Figure 2. Definition of the conjugate point.

An equivalent definition of conjugate points. Figure 2 shows

infinitesimal deviations x(t; s)−xc(t) between two solutions from Fig-

ure 1, to the leading order in Δs = s − s0. More precisely, consider

the scaled deviation

(6.5) y(t) = lim
s→s0

x(t; s)− xc(t)

s− s0
=

∂

∂s
x(t; s0).

Since x(t; s) satisfies the Euler–Lagrange equation

d

dt
Lẋ(x(t; s), ẋ(t; s))− Lx(x(t; s), ẋ(t; s)) = 0

for an interval of s-values, i.e., is an identity in s, we can differentiate

by s. Using the chain rule, substituting s = s0, using (6.5) and

simplifying, we end up with the so-called linearized equation for y:

(6.6) (P ẏ)· +Qy = 0

where

(6.7) P = P (t) = Lẋẋ, Q = Q(t) =
d

dt
Lxẋ − Lxx,

and where the subscripts denote partial derivatives, all evaluated at

(xc(t), ẋc(t)). Note also that y(t0) = 0 and ẏ(t0) = 1, as follows from

(6.5) and (6.3). All solutions of (6.6) vanishing at t0 are multiples of

y(t); these solutions are illustrated in Figure 2, for the simple example

of constant P and Q (both positive).

Now the conjugate point on the graph of xc corresponds to the

first root of the solution to the linearized equation, as the following

theorem states.

Theorem 6.1 (An equivalent definition of a conjugate point). Con-

sider the linearization (6.6) of the Euler–Lagrange equation around

a critical function xc(t) of the functional (6.1), and let y(t) be a so-

lution of (6.6) satisfying y(t0) = 0, ẏ(t0) �= 0. If y(t∗) = 0 for

some t∗ �= t0, then (t∗, xc(t
∗)) is a point conjugate to (t0, xc(t0)) with
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respect to L. The converse is also true: If (t∗, xc(t
∗)) is a point con-

jugate to (t0, xc(t0)), then any solution y of the linearized equation

satisfying y(t0) = 0 vanishes at t = t∗.

Proof. The definition (6.4) and the statement y(t∗) = 0 are equiva-

lent by the definition of the linearized solution y, see (6.5). ♦

Corollary 6.1. The conjugacy is a reflexive relation: If C∗ =

(t∗, xc(t
∗)) is a point conjugate to C0(t0, xc(t0)), then, vice versa,

C0 is a point conjugate to C∗.

Proof. By the preceding theorem, two points on the graph of xc are

conjugates of one another iff the corresponding t-values are zeros of

a nontrivial solution of the linearized equation. This condition treats

the two points symmetrically. ♦

Conjugate points for quadratic functionals. Especially impor-

tant is the special case of the Lagrangian quadratic in both variables

x, ẋ:

(6.8) Q[x] =

∫ t1

t0

(P (t)ẋ2 +Q(t)x2) dt,

with zero boundary values:

(6.9) x(t0) = x(t1) = 0;

here P and Q are given (sufficiently smooth) functions of t. For any

critical function xc(t) of this functional, the conjugate points of (t0, 0),

must lie on the t-axis. This is so because the Euler–Lagrange equation

for quadratic functional is linear and coincides with its linearization

(6.6). But the solution y of (6.6) with y(t0) = 0 vanishes at the

conjugate time: y(t∗) = 0 by the last theorem, and we conclude that

xc(t
∗) = 0 as well.

Since xc(t
∗) = 0 is automatic for quadratic functionals, we will

simply say that t∗ is conjugate to t0 with respect to (6.8), without

mentioning the x-coordinates of the two conjugate points.
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Reducing (6.8) to a simpler form. If P > 0 on [t0, t1] and is continuous,
then the functional (6.8) can be reduced to a simpler form∫ T

0

(y′)2 + q(τ)y2 dτ, y(0) = y(T ) = 0,

via a change of variables dτ = dt/P (t), y(τ) = x(t), q(τ) = P (t)Q(t). For

more details and for related questions, see Problem 6.1 on page 229. Had

we assumed that P > 0 throughout this section, we could have discussed

this simpler functional all along, without loss of generality.

2. The Legendre and the Jacobi conditions

The Legendre condition.

Definition 6.2. A Lagrangian L is said to satisfy the Legendre con-

dition at a point (x, v) if

(6.10) Lẋẋ(x, v) > 0.

If the inequality in (6.10) is not strict, one refers to the weak Legendre

condition.

For the special case of the quadratic functional (6.8)–(6.9), we

have Lẋẋ = P (t), and the Legendre condition amounts to

P (t) > 0, t ∈ [t0, t1],

and does not depend on (x, v).

The Legendre condition will be referred to in the strong sense

from now on, unless stated otherwise.

The Legendre condition as a triangle inequality. Figure 3

shows a “triangle” APB; the “sides” of this triangle are the graphs

of functions which minimize
∫
L dt among all curves in the (t, x)-

plane connecting the endpoints. Define the “length” of the side AB

as |AB| =
∫ B

A
L dt, where the integration takes place along the mini-

mizer of the integral connecting A and B. If the Legendre condition



216 6. The Conditions of Legendre and Jacobi

Figure 3. Legendre condition as a triangle inequality.

Lẋẋ > 0 is satisfied along the side AB, then we have the triangle

inequality

(6.11) |AB| ≤ |AP |+ |PB|,

provided that A, B are sufficiently close to each other, and that the

slopes of AP and PB are close to the slope of AB. For the proof, see

Problem 6.3.

Besides giving a geometrical significance to the Legendre condi-

tion, (6.11) also explains why the minimizers cannot have corners if

the Legendre condition is satisfied. For more details, see Problem 6.2

on page 230.

Having defined the Legendre condition, we now state the Jacobi

condition.

Definition 6.3. A critical function xc = xc(t) of the functional (6.1)–

(6.2) is said to satisfy the Jacobi condition if the graph of xc contains

no points conjugate to (t0, x0) with respect to this functional, on the

interval [t0, t1].

Note that, unlike the Legendre condition, the Jacobi condition is

not local.

In the special case of the quadratic functional (6.8)– (6.9) the

Jacobi condition amounts to the nonvanishing of the solution of the

linearized Euler–Lagrange equation (6.6) with y(t0) = 0, ẏ(t0) �= 0

on (t0, t1].
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3. Quadratic functionals: the fundamental
theorem

The main problem of this chapter is to determine whether a critical

function of a rather general functional (6.1)–(6.2) is a minimizer. This

problem quickly reduces to determining positivity of quadratic func-

tionals (via an infinite-dimensional version of the second derivative

test, as we shall see later on page 220). Let us therefore first con-

sider quadratic functionals (6.8)–(6.9); the substance of the problem

is there.

Theorem 6.2. If the functional (6.8)–(6.9) satisfies the Jacobi con-

dition, as well as the Legendre condition : P > 0 on [t0, t1], then the

functional is strictly positive: Q[x] > 0 for any admissible x(t) not

identically zero.1 In particular, then Q is minimal for x ≡ 0.

Outline of the proof. A beautiful proof of this lemma was invented

by Legendre and is described in Gelfand–Fomin [8]. However, since

this proof is algebraic rather than visual, I give a sketch (but not full

details) of a more geometric proof.2

Step 1. Reduction to the proof of positivity of the eigenval-

ues of the operator

Dx = −(P ẋ)· +Qx, x(t0) = x(t1) = 0.

To prove that Q is positive it suffices to show that it has a positive

minimum over the unit sphere in the function space:

(6.12) min
(x,x)=1

Q[x] > 0, x(t0) = x(t1) = 0,

where (x, y) is defined by

(6.13) (x, y) =

∫ t1

t0

x(t)y(t)dt,

1Admissible means twice continuously differentiable and satisfying the boundary
conditions (6.9).

2As mentioned before, Legendre (seems to have) believed that Lẋẋ > 0 is sufficient
for the minimum, and tried to use his method without further assumptions. His method
relied on the solvability on the entire interval [t0, t1] of a certain Ricatti equation;
presumably, Legendre assumed that this solvability is not really necessary. We now
know that this solvability amounts exactly to the absence of conjugate points on the
interval.
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and where minimization is taken over all continuously differentiable

functions not identically zero. The minimizing function xm exists

and is twice continuously differentiable.3 Note that this minimization

problem is an infinite-dimensional analog of Rayleigh’s quotient; see

page 117. Indeed, integrating the derivative term in Q(x) by parts,

we get

Q[x] =

∫ t1

t0

(P ẋ2 +Qx2) dt =

∫ t1

t0

(−P ẋ)̇ +Qx)x dt = (Dx, x),

where D was defined above; this is the form analogous to the finite-

dimensional quadratic form (Kx,x), andD is the analog of the matrix

K. By the verbatim repetition of the proof of Rayleigh’s criterion

(Theorem 2.16), treating (Dx, x) as we treated (Kx,x), we conclude

that the minimizer xm is an eigenfunction of D:

(6.14) −(P ẋm)· +Qxm = λmxm, xm(t0) = xm(t1) = 0,

and that the eigenvalue λm is the value of the minimum (6.12).

Therefore, it suffices to prove that all eigenvalues of D are posi-

tive.

Step 2 (Sturm’s theorem). The idea of the rest of the proof is simple:

the Jacobi condition tells us that the solution of

(6.15) Dx = 0, x(t0) = 0, ẋ(t0) = 1

has no zeros in (t0, t1) (note that only the left boundary condition in

(6.15) is prescribed, as opposed to (6.14)). If we now change (6.15)

to

(6.16) Dx = λx

(with the same boundary condition), and start decreasing λ starting

from the value λ = 0, then no roots of x can appear in (t0, t1] by

Sturm’s theorem (discussed next), Figure 4; this shows that λm in

(6.14) cannot be negative (thus completing the proof), since xm does

have a root at t1. ♦

To state Sturm’s theorem used in the preceding paragraph, let

x(t;λ) denote the solution of (6.16), Figure 4. Sturm’s theorem states

that the roots of x(t;λ) are decreasing functions of λ, as illustrated in

3This is where P > 0 is used. For details, see Evans [4] or Mikhlin [11].
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Figure 4. Solutions x(t;λ) of (6.16) for different values of λ.

the figure. I omit a rigorous proof which can be found, for instance,

in [3]. Physically, Sturm’s theorem says that making the spring in

a mass-spring system stiffer decreases the return time to the origin.

A rigorous geometrical proof goes by writing (6.16) as a system in

the phase plane, considering the angular velocity ω = θ̇ of the phase

vector z = (x, P ẋ) and observing that ω is a monotone function of λ:

the greater is λ, the faster the phase vectors turn. Now the root of

x(t;λ) corresponds to the moment of z crossing the line x = 0 in the

phase plane; and since a greater λ corresponds to faster turning, the

next moment of crossing x = 0 comes sooner if λ is increased.

4. Sufficient conditions for a minimum for a
general functional

In the previous section we found sufficient conditions for minimality

for quadratic functionals. In this section we extend the result to

general functionals, but first we need to define the minimum precisely.

Definition 6.4. A function xc = xc(t) is said to be a weak minimizer

of the functional (6.1) if there exists ε > 0 such that

(6.17) S[x] ≥ S[xc]

for any differentiable function x on [t0, t1] close to xc with its deriva-

tive:

(6.18) |x(t)− xc(t)| < ε, |ẋ(t)− ẋc(t)| < ε,

and satisfying the same boundary conditions as xc.
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From now on, let us refer to the weak minimizer simply as a

minimizer. We can now state the main theorem.

Theorem 6.3. If the graph of a critical function xc of (6.1)–(6.9)

satisfies the Jacobi condition (that is, there are no conjugate points to

O(t0, x0) on the graph), and if the Legendre condition Lẋẋ(xc(t), ẋc(t))

> 0 holds for all t ∈ [t0, t1], then xc is a local minimizer.

This theorem is the analog of the second derivative test in vector

calculus, where one shows that if the quadratic part of a function at

the critical point is positive, then the function has a minimum.

Outline of the proof.

Step 1. Wishing to prove (6.17), consider a perturbation x = xc +

εξ, where ξ : [t0, t1] → R satisfies ξ(t0) = ξ(t1) = 0 and |ξ(t)| ≤
1, |ξ̇(t)| ≤ 1 for all t ∈ [t0, t1].

Recall Taylor’s formula with the remainder in Lagrange’s form.

This formula, written to the second order, states that

f(ε) = f(0) + f ′(0)ε+
1

2
f ′′(θε)ε2,

for some θ ∈ [0, 1]. Applying this to the function f(ε) = S[xc + εξ]

we get

S[xc + εξ] = S[xc] +
d

dλ

∣∣∣∣
λ=0

S[xc + λξ]︸ ︷︷ ︸
=0

+
1

2

d2

dλ2
S[xc + λξ]λ=θε,

for some 0 ≤ θ ≤ 1 (note that θ may depend on the function ξ, but

not on t). The middle term on the right vanishes because xc is a

critical function. To prove that the last term in the last expression is

positive it suffices to show that

(6.19)
d2

dλ2
S[xc + λξ] > 0

for all sufficiently small ε and for all ξ with |ξ(t)| ≤ 1, |ξ̇(t)| ≤ 1 on

[t0, t1].
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Step 2. Computing the derivative (6.19) and using the chain rule we

get:

d2

dε2
S[xc + εξ] =

∫ t1

t0

(Lẋẋξ̇
2 + 2Lxẋξξ̇ + Lxxξ

2) dt,

where the bar indicates that the evaluation takes place at x = xc +

εξ, ẋ = ẋc + εξ̇. Integrating the middle term by parts and using the

boundary condition ξ(t0) = ξ(t1) = 0, we get

(6.20)
d2

dε2
S[xc + εξ] =

∫ t1

t0

(P ξ̇2 +Qξ2) dt,

where

(6.21) P = P (t) = Lẋẋ, Q = Q(t) =
d

dt
Lxẋ − Lxx.

Note that these expressions coincide with the coefficients of the lin-

earized equation (6.7) on page 213.4

Step 3. By the assumption of the theorem, the linearized

system around xc:

(P ẏ)· +Qy = 0

has no points on [t0, t1] conjugate to t = t0. Provided ε is small

enough, the same holds for

(P ẏ)· +Qy = 0,

since |ξ| ≤ 1, |ξ̇| ≤ 1 (the proof is left as an exercise)5. By the main

theorem (6.2) on quadratic functionals, (6.20) is nonnegative. This

concludes the proof of Theorem 6.3. ♦

Remark 6.1. The quadratic functional

Q[ξ] =
d2

dε2

∣∣∣∣
ε=0

S[xc + εξ] =

∫ t1

t0

(Lẋẋξ̇
2 + 2Lxẋξξ̇ + Lxxξ

2) dt

is called the second variation of the functional S at xc (here the

integrand is evaluated along xc), and is often denoted by Q = δ2S.

4This is not surprising: indeed, dS/dε contains the Euler–Lagrange expression
(call it (EL)) inside the integral — this is how (EL) arose in the first place; taking
d/dε again amounts to differentiating (EL). But the linearized equation is also obtained
by the differentiation of (EL)= 0 with respect to the parameter!

5The proof follows from the argument of Sturm’s theorem, outlined briefly on
page 218.



222 6. The Conditions of Legendre and Jacobi

5. Necessity of the Legendre condition for a
minimum

In this section we show that without the Legendre condition mini-

mality is impossible. In fact, this result should be expected since the

Legendre condition is an analog of the triangle inequality, page 216.

Theorem 6.4. Let xc be a critical function of (6.1)–(6.2), where L

is a smooth Lagrangian. If the Legendre condition fails, i.e., if

(6.22) P (t) = Lẋẋ(xc(t), ẋc(t)) < 0

for some t ∈ [t0, t1], then xc is not a minimizer.

Proof. Consider the second variation of S:

(6.23) Q[ξ] =

∫ t1

t0

(P ξ̇2 +Qξ2) dt,

ξ(t0) = ξ(t1) = 0, and show that Q[ξ] < 0 for some ξ. Now (6.22)

implies, by continuity, that

P (t) ≤ −α

for some α > 0 and for all t on some interval [a, b] ⊂ [t0, t1]. We will

choose ξ as in Figure 5 to make Q[ξ] < 0. The “crinkled” nature

of ξ will make
∫ b

a
P ξ̇2 large negative (since P is negative), causing

this integral to dominate
∫ b

a Qξ2 which stays bounded no matter how

crinkled ξ is. To be specific, let

ξ(t) = f(t) sinωt,

where ω is large and where f is as shown in Figure 5, namely, (i) f

is smooth; (ii) f(t) = 0 outside [a, b]; (iii) 0 ≤ f(t) ≤ 1 inside (a, b),

and (iv) f(t) = 1 on some subinterval (a′, b′) of (a, b). Now

Q[ξ] =

∫ b

a

P ξ̇2(t) dt︸ ︷︷ ︸
A

+

∫ b

a

Qξ2(t) dt︸ ︷︷ ︸
B

.
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Figure 5. A choice of ξω(t) for which Q[ξω ] → −∞ as ω →
∞, in case P < 0 on (a, b).

We show now that limω→∞ A = −∞, and that B stays bounded as

ω → ∞. That B is bounded is seen from the boundedness of each

term in its integrand. To see that A → −∞ we write

A =

∫ b

a

P ξ̇2 dt
(i)
<

∫ b′

a′
P ξ̇2 dt

(ii)
< −α

∫ b′

a′
ξ̇2 dt

(iii)
= −αω2

∫ b′

a′
cos2 ωt dt,

where (i) follows from P ξ̇2 ≤ 0 in [a, b], (ii) follows from P < −α on

[a′, b′], and (iii) follows from ξ = f(t) sinωt = sinωt on [a′, b′] since

f = 1 on [a′, b′]. We showed that Q[ξ] < 0, which completes the

proof. ♦

6. Necessity of the Jacobi condition for a
minimum

Having shown that the Legendre condition Lẋẋ > 0 is necessary for

a minimum, we show now that the Jacobi condition is necessary as

well: any minimizer is free of conjugate points. More precisely, we

have the following.
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Figure 6. Solutions of the linearized equation vanish at t = t∗.

Theorem 6.5. If xc is a minimizer of (6.1)–(6.2), then the graph of

xc contains no points conjugate to (t0, xc(t0)) in the interval [t0, t1);

that is, the Jacobi condition holds.

Proof. Assume that a conjugate point with t∗ ∈ [t0, t1) exists on

the graph of the minimizer xc; it suffices to produce a function ξ−
for which Q[ξ−] < 0, where Q is the second variation (6.23) of (6.1)

along xc. By the definition of the conjugate point, the solution of the

linearized equation

(6.24) (P ξ̇)· −Qξ = 0, ξ(t0) = 0, ξ̇(t0) �= 0.

vanishes at t = t∗.6 We then define a concatenated function ξ̂ (the

thick line in Figure 6):

(6.25) ξ̂(t) =

{
ξ(t), t ∈ [t0, t

∗],

0, t ∈ [t∗, t1],

where ξ is a nonzero solution of (6.24).7 The the rest of the proof is

shown in Figure 7: First, we will show that Q[ξ̂] = 0, and second,

that by straightening the corner in the graph we decrease Q, thus

making it negative and completing the proof. Here are the details.

Observation 1. All the the graphs in Figure 7(i) have the same

“length”:

(6.26)

∫ t∗

t0

(P ξ̇2 +Qξ2) dt = 0

6Since any two solutions of (6.24) differ by a constant factor, it doesn’t matter
which solution of (6.24) we speak of.

7The symbol ̂ suggests a corner in the graph.
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Figure 7. An outline of the proof of Theorem 6.5: Q[ξ−] < 0.

where ξ is any solution of (6.24). Indeed, every such ξ is a critical

function of the functional on [t0, t
∗] with zero boundary conditions:

Q∗[ξ] =

∫ t∗

t0

(Pξ2 +Qξ2) dt, ξ(t0) = ξ(t∗) = 0.

Moreover, these critical functions form a continuous family, since sξ

is a solution for of (6.24) for any s ∈ R. Now it is a general fact that

if critical points form a one-parameter family, then the functional is

constant along this family. Indeed, the directional derivative at a

critical point vanishes in any direction, in particular in the direction

along the family of critical points.

This proves (6.26). Now since ξ̂(t) = 0 for t∗ ≤ t ≤ t1,

(6.27) Q[ξ̂] =

∫ t1

t0

(P
˙̂
ξ
2

+Qξ̂2) dt = 0,

as also noted in Figure 7, second line.

Observation 2. We show that straightening the corner of the graph

of ξ̂ on a short interval Iε = [t∗ − ε, t∗ + ε] as in Figure 7(ii) and

Figure 8 (leaving ξ̂ unchanged elsewhere) decreases Q:

(6.28) Q[ξ−] < Q[ξ̂] = 0

(this is where the Legendre condition will be used). This would com-

plete the proof, except that ξ− is not differentiable. But by smoothing

ξ− in a small neighborhood of each corner A and C (Figure 8) we can

change Q[ξ−] arbitrarily little so as to preserve its negativity. It thus
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Figure 8. Straightening a corner decreases the quadratic functional.

remains to prove (6.28), which amounts to

(6.29)

∫ t∗+ε

t∗−ε

P ˙ξ−
2
+Qξ2− <

∫ t∗

t∗−ε

P
˙̂
ξ
2

+Qξ̂2,

since ξ̂ has been altered only on Iε, and since ξ̂ = 0 for t ≥ t∗. Since

ξ̂(t) = O(ε) and
˙̂
ξ(t) = ξ̇(t∗) + O(ε) for t∗ − ε ≤ t < t∗, substitution

into the right-hand side of (6.29) gives∫ t∗

t∗−ε

P
˙̂
ξ
2

+Qξ̂2 = εP (t∗)ξ̇(t∗)2 +O(ε3).

Note that ξ̇− = 1
2 ξ̇(t

∗) +O(ε) on [t∗ − ε, t∗ + ε]; substitution into the

left-hand side of (6.29) shows that∫ t∗+ε

t∗−ε

P ˙ξ−
2
+Qξ2− = 2ε·

(
1

2
ξ̇2(t∗)

)
+O(ε3) =

1

2
εP (t∗)ξ̇(t∗)2+O(ε3).

Comparing this with the last equation and using P (t∗) > 0 proves

the validity of (6.29) (and hence of (6.28)) for sufficiently small ε. ♦

7. Some intuition on positivity of functionals

This subsection discusses some intuitive insights into the question of

positivity of quadratic functionals.

A simple example. Let us consider the simplest interesting example

(6.30) Q[x] =

∫ T

0

(ẋ2 − x2)dt
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with boundary conditions x(0) = x(T ) = 0. Because of the minus

sign, there is a competition between ẋ2 and x2, and it is not clear

a priori whether Q[x] is nonnegative. Although the general theory

described earlier tells us whether Q is positive (namely, for T < π,8

the following few remarks may help one’s intuition.

Remark 6.2. Every quadratic functional (6.23) satisfying the Le-

gendre condition P > 0 (smoothness of P is assumed throughout)

can be reduced to the simpler form∫ T

0

(ẋ2 + q(t)x2)dt,

see Problem 6.1 on page 229. Our example (6.30) corresponds to the

choice of q = −1.

A preliminary look at (6.30). Figure 9 illustrates the role of T in

determining positivity of Q. Let x(t) be a piecewise linear function

as in Figure 9 (we can smooth x in a tiny neighborhood of the corner

so as to satisfy the differentiability requirement). For T large, ẋ2 is

small, while the average of x2 is not, so that Q[x] < 0. For T small,

on the other hand, we have Q[x] > 0 since ẋ2 is large, while x2 ≤ 1.

This suggests, but does not prove, that Q is a positive functional.

Figure 9. For T small
∫
ẋ2 “dominates”

∫
x2 and Q =∫ T

0 (ẋ2 − x2) dt has a minimum at x ≡ 0. For large T this
is no longer the case.

A Fourier series proof of positivity. The crude idea of the last

paragraph actually turns into a rigorous proof if instead of a “hat”

function in Figure 9 we use the Fourier harmonics of x. Expanding

x(t) in the Fourier series in sines (which can be done thanks to the

8Since t∗ = π is the first root of the solutions of the Euler–Lagrange equation
ẍ + x = 0 satisfying x(0) = 0
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Figure 10. For small T the position x(t) ≡ 0 is stable; for
large T it is not.

zero boundary conditions), we get

x(t) =

∞∑
n=1

xn sin
πn

T
t, ẋ(t) =

π

T

∞∑
n=1

nxn cos
πn

T
t.

After substituting x and ẋ into Q, multiplying out the series and

integrating, we are left with

2

T
Q[x] =

∞∑
n=1

((
π

T

)2

n2 − 1

)
x2
n.

This expression is positive for any x iff the smallest coefficient is

positive: (
π

T

)2

−1 > 0,

i.e., iff

T < π,

in agreement with the Jacobi criterion.

A mechanical interpretation of the Jacobi condition. The

functional Q[x] =
∫ T

0
(ẋ2 − x2) dt can be interpreted as the potential

energy of an Eulerian string in the (t, x)-plane9 with the ends fixed at

(0, 0) and (0, T ) and subject to the potential U = −x2 which repels

the string from the t-axis; Figure 10 illustrates this situation loosely:

the repelling potential can be realized by placing the string on the

inverted slippery trough.

9Euler’s model of the string assumes that the displacements are purely in the
x-direction and that the x-component of the tension varies as ẋ.
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A string deflected as shown in Figure 10 wants to snap back to

the the ridge x ≡ 0 due to the tension but is repelled from the ridge

due to the gravity; the figure shows a principal vibrational mode of

two strings with the same average deflection. Now for a long string,

the gravity wins over the restoring effect of tension (this is so because

the curvature for the same deflection is less in a long string; and the

curvature determines the resultant tension in the x-direction per unit

length of the string).

We conclude that for a critical length T = T ∗ the straight string

will be neutrally stable, and thus (since the functional is quadratic)

there is a family of neutrally stable equilibria, meaning that t = 0 and

t = T ∗ are conjugate times. At the same time, the loss of stability

means that the potential energy lost its minimality! This explains why

appearance of conjugate points accompanies the loss of minimality,

illustrating the main point of this chapter.

8. Problems

6.1. Assume that P (t) �= 0 for all t ∈ [t0, t1] and is continuous.

(1) Show that the quadratic functional Q can be reduced to a simpler
form:∫ t1

t0

(P (t)ẋ2 +Q(t)x2) dt =

∫ T

0

((y′)2 + q(τ)y2)dτ,

where τ, y(τ) are related to t, x(t) via

τ =

∫ t

t0

ds

P (s)
, y(τ) = x(t), q(τ) = P (t)Q(t).

(2) Where in the above reduction is the condition P �= 0 used?

(3) Show how the transformation in (1) also converts (Pẋ)·+Qx = 0
into y′′ + q(τ)y = 0, provided that P is continuously differen-
tiable.

(4) Assume that P < 0 on the entire interval, and take Q = 0.
According to (1),∫ t1

t0

Pẋ2 dt =

∫ T

0

(y′)2 dτ.

But the two integrands have opposite signs; is there a mistake?
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Remark. The above transformation can be found by rescaling the time:
dτ = α(t)dt and by seeking α so as to simplify the coefficient in front of
the derivative inside the integral.

In preparation for the next problem, Figure 11 shows two nearby points
A = (a, xa) and A1 = (b, xb), a < b in the (t, x)-plane with b− a small. We
fix a < t̄ < b and consider the point P = (t̄, x) where x is variable. Let
L = L(x, ẋ) be a Lagrangian, and consider

(6.31) S(x) = min

∫ t̄

a

L dt︸ ︷︷ ︸
Sa(x)

+min

∫ b

t̄

L dt︸ ︷︷ ︸
Sb(x)

.

Minimization is taken with A, B and t̄ fixed. Since x is the only variable,
S is a function of x alone.

6.2. Assume that Lẋẋ �= 0. Show that if the sum S defined by (6.31) has
a critical point x = xc, then the slopes of the critical graphs AP and PB
match at P = (t̄, xc), Figure 11.

Hint. Let Xa(t;x) be a critical function of the first integral in (6.31), and
similarly, let Xb(t; x) be a critical funciton of the second integral. One can
show that

(6.32) S′
a(x) = Lẋ(x, Ẋa(t̄, x)) and S′

b(x) = −Lẋ(x, Ẋb(t̄, x)).

(see (8.6), page 260). Then S′(xc) = S′
a(xc) + S′

b(xc) = 0 shows that the
values of Lẋ at P match from the left and from the right; and since Lẋ is a
monotone function of ẋ by the assumption Lẋẋ �= 0, we conclude that the
slopes match as well, proving the claim.

Figure 11. Illustrating problems 6.2 and 6.3.
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6.3 (Another geometrical interpretation of Legendre’s condition). Show
that the Legendre condition Lẋẋ > 0 (for all x, ẋ) implies that the action
S(x) defined in (6.31) is convex at the critical point x = xc: S′′(xc) > 0,
provided b− a is small enough. Since S′(xc) = 0, this shows that S(xc) is
a minimum.

Solution (an outline). Differentiating (6.32) by x gives

S′′
a (x) = Lxẋ + Lẋẋ ∂xẊa(t̄, x),

where L is evaluated along Xa, and

S′′
b (x) = −Lxẋ − Lẋẋ ∂xẊb(t̄, x),

where L is evaluated along Xb. Upon the addition of these two equations,
the Lxẋ terms cancel since Ẋa(t̄, xc) = Ẋa(t̄, xc) (according to the preceding
problem), and we obtain

S′′(xc) = Lẋẋ (∂xẊa(t̄, xc)− ∂xẊa(t̄, xc)).

But ∂xẊa(t̄, xc) > 0 and ∂xẊa(t̄, xc)) < 0 if b− a is sufficiently small (this
follows from the assumption that Lẋẋ �= 0 which allows us to rewrite the
Euler–Lagrange equation in the form ẍ = f(x, ẋ)), and we conclude that
S′′(xc) > 0 since Lẋẋ > 0.

6.4. Give a mechanical interpretation of the Legendre condition P > 0 for
the quadratic functional Q.

Hint. P can be interpreted as the tension of an Eulerian string in the

(t, x)-plane (Figure 10) subject to the potential 1
2
Q(t)x2. Recall that in

Euler’s model the particles are constrained to move in the x-direction only,

so that the string’s tension P (t) can be prescribed as a function of the

coordinate t.10 Then Q = 1
2

∫
(Pẋ2 + Qx2) dt is the potential energy of

such a string. It it intuitively obvious that the positive tension P > 0

causes the string to want to avoid corners (see (6.11) on page 216), while

the negative tension favors crinkling — just as we proved in Section 5.

10The string can be constructed as suggested by Figure 3 on page 188.





Chapter 7

Optimal Control

This chapter contains a simple heuristic derivation of Pontryagin’s

Maximum Principle, for the particular problem of time-optimal con-

trol.

The Maximum Principle in a nutshell. This principle is a com-

bination of two main ideas, one of which is essentially Huygens’s prin-

ciple, and amounts to the following: “To be the first in a crowd of

runners to reach the goal, one must stay on the front/boundary of

the crowd, and to that end one must maximize one’s velocity in the

direction of the normal to the front.” The second idea answers the

question on how to keep track of the normal to the front mentioned

in the preceding sentence. To be more precise and honest, the front

may be nonsmooth, and thus the normal vector may be undefined.

Instead, the front (or rather a part of it generated “small” perturba-

tions of the optimal control) has a supporting vector. All this is made

more precise after the statement of the Maximum Principle.

1. Formulation of the problem

Optimal control theory deals with finding the “best” way to drive a

system from one state to another. Many such problems are modeled

by systems of ordinary differential equations with a parameter:

(7.1) ẋ = f(x,u), x ∈ R
n;

233
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the parameter u ∈ U ⊂ R
m, called the control, may be either vector

or scalar.

The time-optimal control problem is to find a control function

u = v(t) in (7.1) such that the solution of the resulting system passes

from x0 to x1 in shortest possible time.

Example 1. A river flows with speed V (x) depending on the location x.
A boat can travel with any speed up to vmax (measured relative to water).
The goal is to get from point x0 to point x1 in shortest possible time. The
equation of motion for the boat is of the form (7.1) with

f(x,u) = V(x) + u;

the range of u is the disk U = {|u| ≤ vmax}. An optimal control may not
exist. For instance, getting from x0 to x1 may be impossible unless the
flow satisfies certain conditions.

Figure 1. A boat in the river: an optimal control problem.

Example 2. A particle on the line is subject to force u of magnitude
|u| ≤ 1. Given the initial position and velocity, find the control u = v(t)
which brings the particle to rest at the origin in least time. This problem
falls in the general framework just described. Indeed, Newton’s law ẍ = u
can be written in vector form (7.1) with

x =

(
x
y

)
, f =

(
y
u

)
;

the initial point is x0 =

(
x0

v0

)
, and the destination point x1 =

(
0
0

)
is the origin in the phase plane. The control parameter u = u is scalar in
this example.
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Example 3. A basic airplane has five controls: the throttle and four angles

of control surfaces (two for the ailerons, one for the stabilizers, and one for

the rudder). The range of each control uk, k = 1, . . . , 5 is an interval,

so that the set U ⊂ R
5 is a closed cube. Newton’s law for the airplane’s

motion can be written, with some simplifying assumptions, as a first order

system (7.1) in R
12, provided we use local coordinates (say, Euler’s angles)

for the airplane’s orientation.

Further examples of the above problems include: (i) guiding

a rocket into a prescribed orbit with a minimal expenditure of fuel,

or (ii) in least time; (iii) reorienting a satellite, i.e., a rigid body in

weightlessness, using internal gyroscopes in least time, etc.

A more general problem is to find, amongst all controls which

take the solution of (7.1) from x0 to x1, the one which minimizes the

integral

(7.2) F (u(·), x0,x1) =

∫ T

0

g(x(τ )u(τ ))dτ,

where T is the time of travel from x0 to x1, not given but depending

on the choice of u = u(t). In the special case of g ≡ 1 this prob-

lem reduces to the time-optimal control, since for g = 1 we have

F (u(·), x0,x1) = T . Since the main idea can be illustrated on the

problem of time-optimization, we limit our attention to that problem,

referring the reader to [15] for more a much more extensive treatment.

2. The Maximum Principle

I will only formulate the Maximum Principle for the time-optimal

controls since it captures all the main ideas of the more general case

(7.2).

The Maximum Principle is a necessary (but not sufficient) con-

dition for the control to be optimal. Here is a precise statement.

Theorem 7.1. Let v(t), 0 ≤ t ≤ T be a time-optimal control of

the control system (7.1), and let x(t) be the corresponding optimal

trajectory, with x(0) = x0, x(T ) = x1. Consider an auxiliary linear
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system,

(7.3) ṗ = −A(t)Tp with A(t) = fx(x(t),v(t)),

where fx is the Jacobi derivative matrix1 of f . There exists a nonzero

solution p(t) of (7.3) such that for all t ∈ [0, T ] the optimal control

maximizes the dot product f · p:

(7.4) f(x,v) · p = max
u∈U

f(x,u) · p

and, moreover,

(7.5) f(x,v) · p ≥ 0 at t = T,

see Figure 2.

Figure 2. A geometrical significance of p(t): it is a support-
ing vector to the shaded set of points reachable in time ≤ t by
certain small perturbations of v.

Remark 7.1. The pair of equations consisting of (7.1)–(7.3) with

u = v(t) is a Hamiltonian system with the Hamiltonian

H(x,p, t) = f(x,v(t)) · p.

Proof. Hp = f = ẋ, −Hx = −fTx p = ṗ. ♦

A heuristic outline of the proof of the Maximum Principle is given

in the next section; a full proof, consisting of many pages, can be

found in [2] or [15]. It is hoped, however, that the discussion here

gives a clear intuitive insight into the Maximum Principle and is suf-

ficiently convincing.

1Defined in the footnote on page 135.
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Remark 7.2. Note that the setting of the time-optimal control prob-

lem is almost identical to that of geometrical optics. In anisotropic

optical media, such as some crystals, the speed of light depends both

on the point x and on the direction u of the ray, where u ranges over

the sphere of directions U = S
3. Our control system (7.1) can be inter-

preted as giving possible velocities of light, in terms of the directions

u. The light rays traveling between two points make a time-optimal

choice of u, according to Fermat’s principle. In other words, the na-

ture is an analog computer which solves the time-optimal problem in

the optical case. The difference between the optical setting and ours

here is that the control set U here need not be a “smooth” set.

Remark 7.3. Maximizing f · p (see (7.4)) is closely related to Huy-

gens’s principle, according to which the rays maximize their normal

velocity to the front (the latter statement is proven on page 250).

3. A geometrical explanation of the Maximum
Principle

A pictorial preview.

Definition 7.1. A reachable set Rt(x0) associated with the control

system (7.1) is the set of points in the phase space {x} reachable

by solutions of ẋ = f(x,u(t)) with x(0) = x0 in time ≤ t via all

admissible choices of u = u(t).2

Figure 2 shows two examples of reachable sets. To separate the

difficulties, we will consider a smooth boundary at first, but next we

will deal with corners since they are typical even in simplest problems

such as the one mentioned earlier on stopping a harmonic oscillator

with a bounded force.

The figure also shows optimal trajectories, along with shaded

patches which consist of points reachable by “sub-optimal” controls,

2Here “admissible” means that u(t) is piecewise continuous with the range in U .
With such u(t), f(x,u(t)) is still smooth in x, by assumption, but only piecewise
continuous as a function of t. Fortunately, the theorem of existence, uniqueness, and
smooth dependence on initial data applies under such conditions (in fact, measurable
t-dependence suffices), see, e.g., [3].
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i.e., by small variations of the optimal control v(t); the meaning of

“small” is explained later; see Figure 7. Note that the patches lie on

one side of the front: small variations of an optimal control cause the

trajectories to lag behind the front.

Figure 3. Reachable sets for different values of t; sets reach-
able by special small step variations are shaded.

The next two paragraphs give a quick nonrigorous explanation of

the Maximum Principle for the special case of smooth fronts. This is

then followed by an explanation with no special assumptions.

Explaining (7.4) for smooth fronts. If the boundary of Rt(x0) is

smooth for all t ∈ (0, T ],3 then we can speak of the outward normal

vector p(t) at x(t) for each t. Figure 4 illustrates the key point: the

time-optimal trajectory, in order to be the first to reach the goal x1,

must stay on the front for all time, and to that end the component

of its velocity in the outward normal direction to the front must be

maximal possible; this is precisely (7.4) of the Maximum Principle. It

now remains to explain the origin of the ODE (7.3) for p(t).

Explaining (7.3) for smooth fronts. Consider a time-dependent

vector function ξ evolving according to the linearized system ξ̇ =

A(t)ξ, A = fx(x,v). If ξ is tangent to the front at some time t,

then it remains tangent to the front.4 This is expected because a

tangent vector can be viewed as an infinitesimal difference between

two nearby solutions, and such a difference evolves according to the

3This assumption often fails; see Figure 2(b)
4A quick discussion of linearized equations is given on page 252.
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Figure 4. The geometrical meaning of (7.4): the optimal
control v maximizes the normal velocity to the front. In
this example, the “indicatrix”, i.e., the set of velocities
{f(x,u) |u ∈ U} is a smooth curve; the optimal choice of con-
trol v maximizes the component of the velocity f(x,u) in the
direction p normal to the front.

linearized equation. Having established that the tangent vectors to

the front evolve according to the linearized equation, we now show

that normal vectors evolve according to the adjoint equation.

Indeed, let p(t) satisfy the adjoint equation ṗ = −AT (t)p; then

ξ ·p = const., as one can check by differentiation (see Theorem 7.3 on

page 253). We conclude: If p(t) evolves as stated, it remains orthog-

onal to the front for all times if it is orthogonal at some time. This

explains the choice of the adjoint equation for p(t) in the statement

of the Maximum Principle, and completes the explanation for smooth

fronts.

We now proceed to explain the Maximum Principle for fronts

with corners; the explanation consists of three steps. In a nutshell,

we will show that the part of Rt reached by small perturbations of v

is (approximately) a convex cone (shaded in Figure 5) which is not the

entire space, i.e., which lies to one side of a hyperplane; a supporting

vector of this cone will adopt the role of the normal vector to the

front.

Step 1: The displacement formula. We will compute infinites-

imal displacements of the endpoint x(T ) of the optimal trajectory

caused by small perturbations of v, Figure 5; the result will be the

displacement formula (7.6).
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Figure 5. Infinitesimal reachable cones.

Step 2. Infinitesimal displacements computed in Step 1 form a con-

vex cone KT with the vertex at x(T ), Figure 5. If x(t) is optimal,

then the cone KT does not coincide with the whole space (as we shall

see) and hence possesses a supporting vector pT , Figure 6.

Step 3. We will define p(t) as the solution of the adjoint linearized

equation (7.3) with p(T ) = pT and will prove that (7.4) and (7.5)

hold.

Figure 6. A supporting vector p of the cone K: η ·p ≤ 0 for
any η ∈ K .

We now carry out Steps 1–3.

Step 1. Let us perturb v(t) by replacing it by constants ck ∈ U on a

finite number N of (short) intervals [τk, τk + ε], Figure 7.5 Let x∗(t)

denote the solution corresponding to the perturbed control, with the

same initial condition x∗(0) = x0 as x(t). We assume throughout that

v is continuous at t = T , that all τk are in the interior of [0, T ] and

5The variations of v(t) we are considering are therefore small in the sense that
they give rise to small displacements of the trajectory. This is in the spirit of the
classical calculus of variations, where we considered only small perturbations.
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are distinct and that each τk is a point of continuity of v (although

v may have jumps, we insist that τk avoids them).

Figure 7. Variations of v consist of finitely many constant “bumps”.

Theorem 7.2. When the control is perturbed as described in the

preceding paragraph, and the travel time is perturbed as well, then the

endpoint of the trajectory displaces by

(7.6) x∗(T −Δt)− x(T ) = −f Δt+
∑

εkξk(T )︸ ︷︷ ︸
linear part

+o(ε+Δt)

where Δt ≥ 0, ε =
∑

εk, f = f(x(T ),v(T )), and where each ξk(t) is

a solution of the linearized equation

(7.7) ξ̇ = fx(x,v)ξ for t �= τk, t ∈ [0, T ],

with the zero initial condition

(7.8) ξ(0) = 0

and with a jump at t = τ :

(7.9) ξ(τ + 0)− ξ(τ − 0) = f(x, ck)− f(x,v(τ )).

Proof of the displacement formula — an outline. Consider at first
the perturbation of v with one bump. Since the perturbed control v∗(t) =
v(t) for t outside [τ, τ + ε], x∗(t) satisfies the same ODE as does x(t) – this
is the main reason for using localized perturbations. Subtracting the two
ODEs, we get

d

dt
(x∗ − x) = f(x∗,v)− f(x,v) = fx(x,v)(x

∗ − x) + o(ε),

where o(ε)/ε → 0 as ε → 0, and where t �∈ [τ, τ + ε]. Dividing by ε and
denoting the limit

(7.10) lim
ε→0

(x∗(t)− x(t))/ε = ξ(t),
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we conclude that ξ satisfies the linearized ODE (7.7). Since x∗(t) = x(t)
for t < τ , ξ(0) = 0 is immediate. The jump condition (7.9) follows by
integrating

1

ε
(ẋ∗ − ẋ) =

1

ε
f(x(τ), c)− f(x(τ),v(τ))

over [τ, τ + ε] and by using the continuity of v at τ .

Now (7.10) implies that

(7.11) x∗(t) = x(t) + εξ(t) + o(ε),

and this essentially proves the displacement formula for the case of one
bump.

When v(t) is perturbed on N disjoint intervals [τk, τk + εk] (k =
1, . . . , N), the effects of these perturbations add to the leading order in
ε = max(ε1, . . . , εN ):

(7.12) x∗(T ) = x(T ) +
∑

εkξk(T ) + o(ε);

as before, each ξk(t) satisfies (7.7)–(7.9) with τ = τk.

It remains to consider the variation of T . Observe that our perturba-
tions leave v(t) unchanged near t = T if εk are small enough. Then the
velocity

ẋ∗(T ) = f(x∗(T ),v(T )) = f(x(T ),v(T )) + o(ε),

so that the position

x∗(T −Δt) = x∗(T )− f(x,v)t=TΔt+ o(ε+Δt).

Substituting this into (7.12) gives the displacement formula (7.6).

Step 2. The infinitesimal reachable cone. Linear parts of dis-

placements (7.6) form a cone

(7.13) KT
def
=

{
−fΔt+

∑
εkξk(T )

∣∣∣Δt ≥ 0, εk ≥ 0
}
,

where f = f(x(T ),v(T )). Near its vertex, this cone is a good approx-

imation to set reachable by small perturbations of v. It is not hard to

show that KT is convex cone (a detailed proof can be found in [2]).

A key property of KT : If v(t) is time-optimal, then KT does not

coincide with the whole space.6 This is very plausible intuitively, since

the contrary (KT = R
n) would suggest that an open neighborhood

of x1 is reachable by perturbations of v(t) and of T (with ΔT ≤ 0);

such perturbations would allow us to “overshoot” x1 in time ≤ T ,

6This is a formal expression of the loose principle given earlier: “To be the first,
one has to be on the front.”
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Figure 8. If KT = Rn, then v(t) x1 can be reached before t = T .

suggesting that we can reach x1 in time t < T , contradicting the

optimality.

Here is an outline of the rigorous proof. Assume the contrary: KT =
R

n. Then for any real α we have α f(x1,v(T )) ∈ KT ; but any vector in
KT approximates an infinitesimal displacement x∗(T − Δt) − x1, and we
conclude that

(7.14) x∗(T −Δt)− x1 = αf + o(ε+ΔT ),

where f = f(x1,v(T )), provided α is small enough. Figure 8 illustrates
(7.14): the solution “overshoots” the destination x1 before T ; this suggests
that we can reach x1 at an earlier time T −Δt. Indeed, (7.14) gives

x∗(T −Δt−Δt1) = x1 + (α−Δt1)f + o(ε+ΔT ),

and for Δt1 = α we have

x∗(T − 2Δt) = x1,

up to an error o(ε + ΔT ); an implicit function argument (see [2]) shows

that this error can be reduced to zero by a proper adjustment of the per-

turbation.

Step 3. Defining p(t) and the conclusion. Since the cone KT is

convex and is not the whole space, it possesses a supporting vector

pT , Figure 6, i.e., a vector such that

(7.15) δ · pT ≤ 0

for all infinitesimal displacements

δ = −fΔt+
∑

εkξk(T ).

In particular, for the simplest perturbations δ = ξ(T ) (7.15) gives

(7.16) ξ(T ) · pT ≤ 0
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where ξ(t) is the solution of the linearized equation ξ̇ = fx ξ on [τ, T ]

with

(7.17) ξ(τ ) = f(x(τ ),uc)− f(x(τ ),v(τ )),

and where τ ∈ (0, T ) is arbitrary; see (7.8) and (7.9). Now the appear-

ance of ξ(T ) · pT suggests, in light of the remark on adjoint systems

(Theorem 7.3, page 252) that we define p(t) as the solution of the

adjoint linearized system

ṗ = −fTx p

with the initial (or rather terminal) condition p(T ) = pT . Since

ξ(t) · p(t) = const., we conclude that

ξ(T ) · pT = ξ(τ ) · p(τ ) = (f(x(τ ), c)− f(x(τ ),v(τ ))) · p(τ )
(7.16)

≤ 0.

This amounts to (7.4). Finally, setting all εk = 0, (7.15) gives

(7.18) f · pT ≥ 0, where f = f(x(T ),v(T ));

this explains the second statement (7.5) of the Maximum Principle

and completes the discussion.

4. Example 1: a smooth landing

In this section we analyze an example mentioned earlier: Given a

bounded control force, bring the particle moving on line with no ad-

ditional forces to rest at the origin in least time. The motion of the

particle is given by

(7.19) ẍ = u, |u| ≤ 1,

and we are seeking a recipe for choosing an optimal control u = v(t)

for getting to the origin in the phase plane in shortest time from any

state (x, ẋ = y).

“Smooth landing” in the title of this section refers to the re-

quirement of zero arrival speed; we want to get to the origin without

crashing into it.

Figure 9(a) shows the final answer: a certain “switching” curve

separates the phase plane into two regions; the optimal control takes

values u = −1 or u = 1 depending on which side of the switching

curve the phase point (x, ẋ) lies. Figure 9(b) shows two optimal
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Figure 9. C− is the trajectory leading into the origin with
u = −1; similarly, C+ leads into 0 with u = 1.

trajectories starting on the different sides of the switching curve; the

optimal control switches once, either from 1 to −1, or from −1 to 1,

depending on the initial condition. Just like in these two examples,

every optimal trajectory makes only one switch, as we will see shortly.

To derive the solution just described, we rewrite (7.19) as a system:

d

dt

[
x

y

]
=

[
y

u

]
, or ẋ = f(x, u), with f(x) =

[
y

u

]
.

According to the Maximum Principle, the optimal control v(t) max-

imizes

f(x, u) · p =

[
y

u

]
·
[

p1
p2

]
= y(t)p1(t) + up2(t),

for some solution p of the adjoint linearized system. Now this expres-

sion is maximized by u = +1 if p2(t) > 0 and by u = −1 if p2(t) < 0;

in short, the optimal control is v(t) = sign p2(t). To compute p2 we

must solve ṗ = −fTx p, where

fx =

(
0 1

0 0

)
, so that − fTx =

(
0 −1

0 0

)
;

the equation for p is therefore

d

dt

[
p1
p2

]
=

[
0

−p1

]
.
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All solutions are of the form p1 = c1 = const., p2(t) = −c1t + c2, so

that v(t) = sign p2(t) changes sign at most once.

Summarizing, the optimal control takes values v(t) = ±1 and v

switches sign at most once.

This is all we need to come up with Figure 9. Indeed, let us trace

any optimal trajectory backwards in time from its destination x1 = 0.

Traced backward, the trajectory must come out of the origin either

with v = −1 or with v = +1 (as we have established); this is shown

in Figure 9: either we follow first along C− and then along one of

the parabolas with u = +1, or first along C+ and then along one of

the parabolas with u = −1. Any point in R
2 can be reached by such

motion, which shows that we can reach the destination x1 = 0 from

any starting point x0 in R
2.

Note that our choice of control at every moment depends only

on the current position (x, y); we do not need to know where we

started. To make this important point explicit, define the function

V by setting V (x, y) = −1 for (x, y) to the left of the switching

curve C− ∪ C+ in Figure 9(a), and V (x, y) = 1 to the right of this

curve. Now let the control u be a function of (x, y), via u = V (x, y);

our control system becomes an ordinary differential equation ẋ =

f(x, V (x)). The solutions of this ODE are optimal trajectories. This

function V is an example of an optimal feedback control, also called

a synthesis function. The term “feedback” refers to the fact that we

“feed” the state (x, y) of the system back into the equation by setting

u = V (x, y).

Remark 7.4. Maximum Principle is a necessary, but not a sufficient

condition for an optimal control. In particular, we did not prove that

such a control actually exists.

5. Example 2: stopping a harmonic oscillator

We now consider a harmonic oscillator with applied force:

(7.20) ẍ+ x = u, |u| ≤ 1,

and answer the earlier question of how to bring the oscillator to rest

at the origin in shortest time.
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The answer is summarized by Figure 5: the switching curve C

consists of concatenated arcs of unit semicircles; the optimal control

is obtained by choosing u = −1 for the points (x, ẋ) above C and

u = 1 for the points below C. With such a choice, the motion in the

phase plane consists of circular arcs, the last arc terminating at the

origin.

Figure 10. Stopping the harmonic oscillator in least time.
The switching curve separates the plane into the region with
u = 1 and u = −1. Time between two switches is π.

To justify the answer given in the last paragraph, we write the

system in vector form:

ẋ1 = x2

ẋ2 = −x1 + u,
(7.21)

along with the linearized adjoint system

ṗ1 = p2

ṗ2 = −p1.
(7.22)

The optimal control maximizes

(7.23) f(x, u) · p = x2p1 + (−x1 + u)p2 = −u p2 + . . . ,

where . . . denotes terms independent of u; we do not care about these

since they do not contain u over which we must maximize. As in

the previous example, the maximum is achieved by choosing v(t) =

−sign p2. Now p2 = A cos(t− c) according to (7.22), and we conclude
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that v(t) is a step function with steps of length π (Figure 11), taking

values u = −1 and u = 1.

Figure 11. Optimal control v(t) for (7.20).

Figure 12 shows that the trajectories of (7.21) with u = ±1 are

circles centered at (1, 0) and at (−1, 0), traversed clockwise with angu-

lar velocity 1: in time t each solution turns around the center through

the angle −t.

Figure 12. Trajectories for u = ±1 are circles centered at
(±1, 0). Angular velocity of motion is −1.

The information we gathered in Figures 11 and 12 now suffices to

solve the problem. Just as we did in the first example, let us trace a

typical optimal trajectory backwards from the origin. If u = −1 near

the end of its trip t = T then the trajectory, traced backwards in time,

follows the left circle in Figure 13, since this is the only trajectory

entering the origin with u = −1. Now it takes time π to travel one

semicircle, and since the jumps in v(t) occur at intervals π apart, we

conclude that the jump preceding t = T happens at some point A on

the upper semicircle, Figure 14. We now trace A backwards for time

π along the flow with u = +1, arriving at the point A−π, Figure 14.

The point A−π is obtained by rotating A counterclockwise through

angle π around (1, 0). Since A is an arbitrary point on the upper
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Figure 13. Travel time along each semicircle equals π. It
takes time > π to reach the origin starting on the dotted parts.

Figure 14. Travel time along each semicircle equals π. When
starting on the dotted parts, it takes time > π to reach the

origin.

semicircle, we can rotate the whole semicircle P−1O obtaining the

semicircle P1P2. We conclude that u must jump when an optimal

trajectory crosses P1P2.

The construction now repeats in Figure 15: tracing the semi-

circle P1P2 backwards for duration π, we obtain the next semicircle

P−3P−2. When our optimal trajectories cross this semicircle, the

control switches from −1 to +1 (traveling backwards in time). This

construction is continued ad infinitum. We established that any op-

timal trajectory entering the origin with u = −1 must switch control

when crossing any of these semicircles. In exactly the same way we

can build up switching semicircles for those trajectories which enter

the origin along the right semicircle with u = +1; see Figure 13.

These semicircles fill in the gaps in Figure 15, and the union of all

switching semicircles, together with the semicircles in Figure 15. The

result is a scalloped curve in Figure 16. For (x, y) above this curve

the optimal control is u = −1, while for (x, y) below u = 1. In other
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Figure 15. Building up the switching curve from the original
“seed” O by tracing this seed backwards at time intervals π
along flows with alternating values of u = ±1.

words, the function V (x, y) taking values ±1 as shown in Figure 16

is the optimal control feedback for our problem.

This completes our discussion.

Figure 16. The feedback control V jumps from 1 to −1 as
we cross the switching curve from below to above.

6. Huygens’s principle vs. Maximum Principle

Recall that one half of Pontryagin’s Maximum Principle states that

the time-optimal trajectories maximize their normal velocity to the

front (see (7.4)); this maximization amounts to Huygens’s principle,

as we point out in this section. Namely, we will show that Huygens’s

principle implies that optical rays maximize their normal velocity to

the front.
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To state Huygens’s principle, consider an optical medium with

speed of light possibly depending on the direction.7 Figure 17 depicts

an indicatrix at x, i.e., the set of tips of velocity vectors at x. The set

wΔt(x) denotes the wave front at time Δt resulting from an initial

disturbance at x. For small Δt, this front is approximated by a

dilation of the indicatrix by the factor Δt, Figure 17.

Figure 17. The indicatrix in an optical medium is the set of
tips of velocity vectors of light rays at a point.

Consider now a wave front Wt propagating in such a medium, Fig-

ure 18. Huygens’s principle states that the new front Wt+Δt is the

envelope of infinitesimal fronts wΔt(x) with x ∈ Wt generated by dis-

turbances at the points of the old front (we assume that all the fronts

in question are smooth so that we can speak of tangency).

Figure 18. Huygens’s principle and its implication: rays
maximize their normal velocity to the front.

We now state the main claim of this section: Huygens’s principle

implies that the propagating rays in optical media maximize their ve-

locity in the direction of the normal to the front. We will prove this

7Some crystals, e.g., calcite, as well as some plastics under stress, are optically
anisotropic.
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claim under the (unnecessarily restrictive) assumption that wΔt(x) is

smooth and convex.

By Huygens’s principle wΔt(x) and Wt+Δt are tangent at some y,

and thus share the same normal vector p; and since wΔt(x) is convex,

we have (y′ − y) · p ≤ 0, Figure 18, or

(7.24) ((y′ − x)− (y− x) · p ≤ 0.

But y′ − x = vxy′Δt + o(Δt) and y − x = vxyΔt + o(Δt), where

vxy is the velocity of the ray in the direction xy. Substituting these

expressions into (7.24), dividing by Δt and setting Δt → 0 results in

vxy · p ≥ vxy′ · p.

This shows that light rays maximize their speed in the direction of

the normal to the front. ♦

7. Background on linearized and adjoint
equations

The ideas of this section were used in the earlier explanation of the

Maximum Principle. We first give a quick explanation of how lin-

earized equations arise, and then state a geometric relationship be-

tween a linear equation and its adjoint.

Linearized equation. To give a formal definition, let x(t) be a so-

lution of a system

ẋ = f(x)

in R
n. The linearization of this system around x(t) is, by the defini-

tion, the linear system

(7.25) ξ̇ = A(t)ξ,

where A(t) = fx(x(t)) is the Jacobi derivative matrix of the vector

function f .

The linearized system is of interest because it describes the infin-

itesimal difference ξ between two nearby solutions, see Figure 19. In

another interpretation, linearized equation describes the propagation
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of an error in initial condition. To see why, let y(t) is a solution of

our system near x(t); subtracting and using Taylor’s formula we get

d

dt
(y − x) = f(y)− f(x) = fx(x)(y− x) + o(|y − x|).

By dropping the last term and renaming y− x = ξ, we get (7.25). It

should be pointed out that since (7.25) is linear, any scalar multiple

cξ is a solution, and therefore ξ need not be thought of as small,

Figure 19.

Formally, we can obtain (7.25) by considering a one-parameter

family x = x(t; ε) of solutions. Differentiation of the identity ẋ = f(x)

with respect to ε then yields (7.25), where ξ = ∂
∂εx(t; ε).

This completes our introduction of the linearized equation, and

we now proceed to discuss the adjoint systems.

Figure 19. Linearized equation governs the evolution of in-
finitesimal difference between nearby solutions.

Adjoint equation. Given a linear ODE (7.25), its adjoint system

is defined as

(7.26) ṗ = −AT (t)p;

here AT is the transpose of the matrix A. The adjoint system is

interesting for the following reason.

Theorem 7.3. For any solution ξ a linear system (7.25) and for any

solution p of the adjoint system (7.26), the dot product is constant:

(7.27) ξ · p = const.
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Proof. Differentiating the dot product we get

d

dt
ξ · p = (Aξ) · p+ ξ · (−ATp) = (Aξ) · p− (Aξ) · p = 0. ♦

Corollary 7.1. In the notations of the last theorem, if ξ(t) ⊥ p(t)

holds for some t, then it holds for all t.

Remark 7.5. The system and its adjoint, viewed as a pair:

(7.28)

{
ξ̇ = A(t)ξ,

ṗ = −A(t)Tp

is a Hamiltonian system in R
2n with the Hamiltonian functionH(ξ,p)

= (Aξ) · p. This shows that any linear system is a subsystem of a

Hamiltonian system. Actually, more is true: any system ẋ = f(x)

can be extended to a Hamiltonian system by doubling the dimension

of the phase space; see Problem 7.7.

8. Problems

Optimal Control.

7.1. Sketch some reachable sets for the free particle with a bounded control
force: ẍ = u, |u| ≤ 1 (Example 1 on page 244).

Answer. See Figure 2(b).

7.2. For the system ẍ = u, |u| ≤ 1 considered in the preceding problem,
show directly that the linearized equation along an optimal trajectory x(t)
governs the evolution of tangent vectors to the front, as long as the front
is smooth.

Hint. See Figure 20.

7.3. The set RT in Figure 2(b) on page 236 consists of all points obtained
by flowing from the origin with ẋ = y, ẏ = u with u = ±1 for the total
time t ≤ T , where only one jump of u(t) is allowed. Prove directly (without
appealing to the Maximum Principle) that the set RT thus constructed is
indeed the reachable set, i.e., that one cannot get outside RT in time ≤ T
by any other control u(t) with |u(t)| ≤ 1.

7.4. Find the time-optimal feedback function for reaching the origin ac-
cording to the following system:{

ẋ = y + u1,

ẏ = −x+ u2

with |u1| ≤ 1, |u2| ≤ 1.
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Figure 20. Illustrating Problem 7.2.

Miscellaneous

The following calculus problem from Putnam Competition can be best
solved using the idea of reachable set.

7.5. Find the straight line segment connecting a given point A to a point
on a given circle C in the vertical plane such that the bead released from
A at rest and sliding along the segment will reach C in least time.

Hint. The “brute force” solution would be to write the time as a function
of the point on C; this leads into an algebraic morass. A more enlightening
approach is to consider all lines through A and to release beads from A,
one bead per line, simultaneously, Figure 21. The beads form a “front” Wt

which at some time t = T touches the circle C. The point P of first contact
is the one we are looking for. It turns out that Wt is a circle (of diameter
gt2/2) (proving this is subject of the next problem). The geometric recipe
for finding P just obtained solves the problem.

7.6. Prove that the sets Wt in Figure 21 (defined in Problem 7.5) are
indeed circles.

7.7. Show that any system ẋ = f(x) in R
n can be extended to a Hamil-

tonian system in R
2n.

Hint. Consider the Hamiltonian H(x,p) = f(x) · p.
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Figure 21. A toy example of the wave front.



Chapter 8

Heuristic Foundations of
Hamiltonian Mechanics

1. Some fundamental questions

This chapter answers some questions on heuristic motivation I had

while in school (and even after), but was not able to find answers to

in books. By an “answer” I don’t mean a formal proof but rather

a mental picture which makes the fact intuitively obvious from first

principles. Here are some of these questions:

1. Why does a symmetry of the Lagrangian imply the existence of

conserved quantities (Noether’s theorem)? Is there a simple way to

understand this without calculation (unlike the derivation in [1] which

uses Euler–Lagrange equations)? (See pages 276 and 267).

2. Why are Poincaré integral invariants
∮
γ
p dq conserved? What is

an intuitive reason for this conservation? (See Sections 6, 7, 11).

3. What is a physical interpretation of the symplectic form? (See

page 277).

4. Why is the phase volume preserved in a Hamiltonian system

(Liouville’s theorem)? Our proof relied on the divergence-free nature

of Hamiltonian vector fields which was proven by a (very simple) com-

putation. But is there something deeper and simpler than a formal

257
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calculation, and do we really need Hamilton’s equations to explain

Liouville’s theorem?

5. What motivates the Hamilton–Jacobi equation? What is its geo-

metrical meaning? (see page 266).

6. What is a geometrical meaning of the Legendre condition Lẋẋ > 0?

(see page 216 in Chapter 6).

7. Why is the Hamiltonian defined via the Legendre transformH(x, p)

= ẋLẋ − L, with ẋ defined from Lẋ = p? (explanation is in the

heuristic derivation of the main theorem, page 260).

Answers to these questions almost fall into our laps from a single

picture and a single idea captured in the main theorem on page 260;

a simple heuristic derivation of this theorem is on page 260.

To this list one can add one more question:

8. How to discover the Schrödinger equation from Hamilton’s princi-

ple? (See page 286).

My goal in this chapter is to sketch the answers to these questions.

The next section contains a brief overview of this brief chapter.

2. The main idea

Our starting point is Hamilton’s principle which states that any mo-

tion x = x(t) of a system with a Lagrangian L is a critical function

of the functional
∫ t1
t0

L(y, ẏ) dt, in the space of functions with fixed

ends. The value of this functional evaluated at this critical function

will be denoted by

(8.1) S(A0, A1) = S(t0, x0; t1, x1) =

∫ t1

t0

L(x, ẋ) dt

where

(8.2) x(t0) = x0, x(t1) = x1

and called the action. We assume throughout that the critical func-

tion

(8.3) x(t) = X(t; t0, x0, t1, x1)
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depends on the ends smoothly, so that S is a smooth function of its

arguments as well.1

If I were allowed only one statement to make on the foundations

of mechanics beyond Hamilton’s principle, it would be this:

“Treat the action S(A0, A1) as an analog of the potential energy

of a heavy spring in the (t, x)-space, subject to some potential force,

hanging in equilibrium, with the ends held at A0, A1; consider the

counterparts of forces required to hold the ends of the spring in place.”

This principle leads easily and automatically to all the concepts

of Hamiltonian mechanics, as shown in this chapter. For instance, the

Hamiltonian and the momentum turn out to be verbatim analogs of

the forces holding the end of the spring. The table on page 280 gives

a “dictionary” between Hamiltonian dynamics and statics of springs.

In this sense, Hamiltonian dynamics could be referred to as a kind of

“spring theory”.

In the main theorem stated next we will compute the gradients of

S(A0, A1) with respect to each end; Figure 1 shows the gradient with

respect to A1 with fixed A0. The coordinates of this gradient turn out

to be the Hamiltonian and the momentum, as the figure anticipates.

Figure 1. The gradient ∇S is taken with respect to A1.

1For this smoothness assumption to hold it suffices for L to satisfy the Legendre
condition, and for the points A0 and A1 not to be conjugate to each other.
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Theorem 8.1 (Main theorem). Assume that S(A0, A1) is a smooth

function of the endpoints A0(t0, x0) and A1(t1, x1). Then

(8.4) ∇A1
S(A0, A1) ≡ 〈St1 , Sx1

〉 = 〈L− ẋLẋ , Lẋ〉t=t1

where x(t) is the critical function (8.3) in the definition of S and

where the subscripts denote partial differentiation. Similarly, at the

left end the result is the same, modulo a sign:

(8.5) ∇A0
S(A0, A1) ≡ 〈St0 , Sx0

〉 = −〈L− ẋLẋ , Lẋ〉t=t0 .

Componentwise, this amounts to the expressions for partial deriva-

tives

(8.6) St1 = L− ẋLẋ|t=t1 , Sx1
= Lẋ|t=t1 ,

and similarly for St0, Sx0
, up to a sign.

All of the above applies to the higher dimensional case of x0, x1 ∈
R

n if we replace partial derivatives Sx by the gradients Sx = ∇xS.

Figure 2. Illustration of the main theorem. Shaded is the
set {A′ : S(A0, A′) ≤ S(A0, A1)} with A0 fixed. Gradient is
taken with respect to A1.

A heuristic derivation of (8.4) is very simple if we observe that for

any point A′
0 lying on the graph of the critical function connecting

A0 and A1 (see Figure 3), one has

(8.7) ∇A1
S(A0, A1) = ∇A1

S(A′
0, A1).
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Figure 3. Independence of the gradient on the starting point.

Thanks to this relation (proven after Problem 8.3 on page 288), we

can choose A′
0 = (a, b) arbitrarily close to A1, so that the integral is

approximated by an algebraic expression (this is the key idea):

(8.8) S(A′
0, A1)) = L

(
a,

x1 − b

t1 − a

)
(t1 − a) + . . . ,

where . . . stands for higher order terms in t1 − a. Differentiating by

t1 gives

(8.9) St1 = L− Lẋ
x1 − b

t1 − a
+ . . . = L− ẋLẋ|t=t1 + . . . ,

since x1−b
t1−a

→ ẋ(t1) as a → t1; the terms denoted by . . . are small

when a is close to t1. Taking a → t1 in the (8.9) yields the first part

of (8.6). The second part of (8.6) is justified identically.

To prove (8.5) for the left endpoint A0(t0, x0), we apply the pre-

vious result by treating A0 as the right endpoint of another interval.

To that end let us extend the critical curve A0A1 to the left to some

point A−(t−, x−) where t− < t0, and form a function

(8.10) F (Z) = S(A−, Z) + S(Z,A1),

where A− and A1 are fixed and Z is variable. Since A0 lies on the

critical curve A−A1, we have

∇ZF (Z)|Z=A0
= 0.

In view of (8.10) this gives

∇ZS(Z,A1)|Z=A0
= −∇ZS(A−, Z)

(8.4)
= −〈L− ẋLẋ, Lẋ〉|t=t0 .
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Note that A0 is the right end of the curve A−A0, so that (8.4) is

applicable to A0. The heuristic “proof” of the main theorem (8.1) is

complete. ♦

Remark 8.1. (8.7) has the following analog in optics. Let (t, x)-plane

be an optical medium and let S(A0, A1) be the optical distance, i.e.

the time it takes the ray to travel from A0 to A1. Then ∇A1
S(A0, A1)

gives the vector of normal slowness to the front created by the dis-

turbance at A0, (see Problem 8.13 on page 292). In this optical

interpretation, (8.7) simply says that if two fronts passing through A1

originate from two points (A0 and A0
′) on the same ray, then the

fronts are tangent to each other and move with the same speed at A1;

see Figure 3. As a side remark, the last statement can be derived this

from Huygens’s principle.

Rather than turning the above heuristic argument into a proof,

we use an alternative approach.

A formal proof of Theorem 8.1. To prove (8.4), we can fix the left

endpoint (t0, x0) and drop it from the notation until further notice,

so that the critical function (8.3) x(t) = X(t; t1, x1) and

(8.11) S(t1, x1) =

∫ t1

t0

L(X,Xt) dt,

where X = X(t; t1, x1) and Xt =
∂X
∂t

. Differentiating by x1 yields

(8.12) Sx1
=

∫ t1

t0

(LxXx1
+ LẋXtx1

) dt,

with subscripts denoting partial differentiation. Integrating the sec-

ond term by parts results in

Sx1
=

∫ t1

t0

(
Lx − d

dt
(Lẋ)

)
︸ ︷︷ ︸

0

Xx1
dt+ LẋXx1

|t=t1
t=t0

.

The integral vanishes since X satisfies the Euler–Lagrange equation.

To show that the last term gives thedesired expression, note that
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Xx1
(t1; t1, x1) = 1 andXx1

(t0; t1, x1) = 0, as follows by taking the x1-

derivative of the boundary conditions X(t1; t1, x1) = x1 and X(t0; t1,

x1) = x0. We proved that Sx1
= Lẋ|t=t1 , one part of the claim

(8.6). To prove the remaining claim for St1 in (8.6) we could re-

peat the above argument, but give a shortcut instead. Differentiating∫ t

t0
L(x(τ ), ẋ(τ ) dt by t gives

(8.13)
d

dt
S (t, x(t)) = L(x(t), ẋ(t));

here (t0, x0) is fixed and suppressed as before. But d
dtS (t, x(t)) =

St + Sxẋ; solving for St gives St = L− ẋSx = L = ẋLẋ, as claimed.

3. The Legendre transform, the Hamiltonian,
the momentum

The main theorem (8.4) leads at once to the three concepts listed in

the title of this section.

Note that the gradient

(8.14) ∇(t1,x1)S(t0, x0; t1, x1) = 〈L− ẋLẋ, Lẋ〉|t=t1

is determined by the slope ẋ = ẋ(t1). A glance at (8.14) makes it

clear that Lẋ is a more convenient parameter than ẋ. Guided by this

idea, we use

(8.15) Lẋ(x, ẋ)
def
= p,

rather than ẋ, to parametrize ∇S. Assume that (8.15) can be solved

for v = ẋ (the slope of the critical function) as a function of p: v =

v(x, p), with x playing the role of a parameter. Substituting ẋ =

v(x, p) into (8.5) we turn ∇S into a function of x and p; the first

coordinate St is denoted by −H:

(8.16) L− vL
def
= −H(x, p), v = v(x, p),

where the minus sign is dictated by the tradition. H is called the

Hamiltonian associated with the Lagrangian L.
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We were quickly led to three fundamental concepts: the momen-

tum (8.15) and the Hamiltonian (8.16), and to the Legendre trans-

form, i.e. to the passage from v, L(x, v) to p,H(x, p) via (8.15) –

(8.16). The precise definition and properties of the Legendre trans-

form are given in the next section.

To conclude, the Hamiltonian, the momentum, and the Legendre

transform fell into our lap automatically once we asked “what is

∇S?”; we did not have to pull any of these concepts “out of thin

air”.

Remark 8.2. We are considering the scalar case: x ∈ R in most of

this chapter; for the higher dimension of x ∈ Rn all discussions carry

over almost verbatim.

Exercise 8.1. Let L = mẋ2/2 − U(x). Show that (8.15) and (8.16) give
the momentum mẋ and the energy mẋ2/2 + U . It is remarkable that the
palpable physical quantities arise also as geometrical objects – namely, as
coordinates of the gradient of the action.

4. Properties of the Legendre transform

In the preceding section the Legendre transform fell into our laps.

In this section we digress from the main story to describe some in-

teresting properties of this transform, whose definition we first state

precisely.

Assume that a function L : R → R is such that the derivative

function L′(v) is invertible, i.e., L′(v) = p has a unique solution v for

any p ∈ R, Figure 42. Then the function

(8.17) H(p) = vp− L(v) where L′(v) = p

is called the Legendre transform of L.3 Figure 4 gives two geometrical

interpretations of the Legendre transform.

2In the preceding section L depended on a parameter x, but here this is not
relevant; we concentrate on the “true” variables v and p.

3All this extends to the case of v, p ∈ R
n verbatim; in that case, vp = v · p is to

be understood as the dot product.
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Figure 4. Two geometrical interpretations of the Legendre transform.

Two geometrical interpretations. Referring to Figure 4(a),

−H(p) is the vertical intercept of the tangent line of slope p to the

graph of L(v) in the (v, L)-plane. Alternatively, according to Fig-

ure 4(b), H(p) is the critical vertical distance between the graph of

L(v) and the line of slope p passing through the origin. All of these

interpretations make it clear that for the Legendre transform to be

well defined the graph of L must be convex.

The symmetric form of the relation L(v) + H(p) = vp suggests

the following theorem.

Theorem 8.2. The Legendre transform is involutive: If H is a Le-

gendre transform of L, then L is the Legendre transform of H. In

particular, treating v as the independent variable, we have

(8.18) L(v) = v · p(v)−H(p) where H ′(p) = v.

Proof. Differentiating (8.17) by p gives

H ′(p) = v +
�
�v′pp−�

��L′v′p = v.

Now p in (8.18) is an independent variable, but since the correspon-

dence v ↔ p is one-to-one, we can treat v as an independent variable;

this now proves the second statement in (8.18), and the first part of

(8.18) follows at once from (8.17) with v treated as an independent

variable. ♦
The above proof relies on a short calculation; the following inte-

gral interpretation relies on a picture instead.
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An integral interpretation of the Legendre transform. Refer-

ring to Figure 5, let us interpret L(v) as the area in the (v, p)-plane

under a curve, over the interval [0, v]. This curve is therefore given

by p = L′(v). Assume that this curve passes through the origin, for

the purposes of this discussion. Let H(p) be the complementary area

shown in the figure, so that the two areas make up a rectangle of area

L(v)+H(p) = vp. The relations H ′(p) = v, L′(v) = p are simply the

statements of the fundamental theorem of calculus. These relations

make the involutive character of the Legendre transform obvious.

Figure 5. One more geometrical interpretation of the Le-
gendre transform.

5. The Hamilton–Jacobi equation

The fact that S was defined in terms of L suggests that S must be

special in some way. That special property is the fact that S satisfies

the Hamilton–Jacobi equation, as this short section explains.

Let us fix the left point (t0, x0) in S(t0, x0; t1, x1), treating S as

the function of the right point (t1, x1) only; dropping the subscripts,

we study S = S(t, x). The fact that S came from L is captured by

the following characteristic property of S.

Theorem 8.3. If S(t, x) is the action associated with the Lagrangian

L (see the preceding paragraph), then S satisfies the Hamilton–Jacobi

equation

(8.19) St +H(x, Sx) = 0,

where H is the Legendre transform of L and where the subscripts

denote partial derivatives.
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Proof. From the main theorem (8.4) and the definition of H we get

St(t, x) = −H(x, p) and Sx = p. ♦

The eikonal equation as the analog of the Hamilton–Jacobi

equation. Consider an optical medium in the plane, with the speed

of light c = c(x) depending on the point x. Define T (x) as the time

it takes for a ray starting at (say) the origin to reach x ∈ R
2. One

can show that T must satisfy

(8.20) |∇T | = c(x)−1;

this equation, called the eikonal equation, simply restates the fact

that the speed of light at x is c(x); see Problem 8.13 on page 292.4

(8.20) makes perfect intuitive sense: Large |∇T | suggests that that

the times between nearby points are long, i.e., that the speed is slow.

Just like the eikonal equation, the Hamilton–Jacobi equation re-

stricts the gradient of the “cost function” S to a curve.

6. Noether’s theorem

Noether’s theorem is a fundamentally important consequence of the

main theorem — and an almost obvious one. The theorem relates the

symmetry of the Lagrangian with the existence of conserved quanti-

ties. To state the theorem, we must first define the symmetry. For

Noether’s theorem to be really meaningful we must consider several

degrees of freedom: x ∈ R
n, n ≥ 2, and so we now depart from the

scalar case.

Let hs : R
n → R

n be a one-parameter family of transforma-

tions of the configuration space R
n. We assume throughout that

hs(x) depends smoothly on both s and x and that h0x = x for all

x ∈ Rn. Common examples of hs in R
3 arising in mechanics include

translations hsx = x+ es in R
n in the direction of a given unit vec-

tor e by distance s, rotations hsx = Re(s)x in R
3 around the line

through the origin defined by the unit vector e, and corkscrew mo-

tions hsx = aes+Re(s)x (a = const.) consisting of a combination of

the preceding two transformations.

4The term eikonal comes from the Greek εικων (image), sharing this origin with
the words icon and iconic.
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Definition 8.1. A Lagrangian L(x, ẋ) is said to be invariant under

the action of a family hs of transformations of Rn if L(x, ẋ) does not

change when x(t) is replaced by hsx(t), i.e., if for any function x(t)

we have

(8.21) L(hsx(t),
d

dt
hsx(t)) = L(x(t), ẋ(t)).

The definition (8.21) is equivalent to the requirement that

(8.22) L(hsx, (dhs)ẋ) = L(x, ẋ)

for all x, ẋ ∈ R
n; here dhs = dhs(x) is the Jacobi derivative matrix

of hs at x (for the definition, see page 135).

Theorem 8.4 (Noether’s theorem). If the Lagrangian L is invariant

under the action of a one-parameter family of diffeomorphisms hs,

then the quantity

(8.23) I(x, ẋ)
def
= Lẋ · d

ds

∣∣∣∣
s=0

hsx

is constant along any solution x = x(t) of the Euler–Lagrange equa-

tion d
dtLẋ − Lx = 0. Such a constant quantity is called an integral of

motion.

Proof. Let us fix any solution x = x(t) of the Euler–Lagrange equa-

tion, and consider the action S(t0,x0; t1,x1) between two points on

the graph of x. By the assumption,

(8.24) S(t0, h
sx0; t1, h

sx1) = S(t0,x0; t1,x1) for all s,

Figure 6. Differentiating by s at s = 0 gives

Sx0
· d

ds

∣∣∣∣
s=0

hsx0 + Sx1

d

ds

∣∣∣∣
s=0

hsx1 = 0.

By the Theorem 8.4, Sx1
= Lẋ(x, ẋ)|t=t1 and Sx0

= −Lẋ(x, ẋ)|t=t0 .

Since the time t1 can be chosen arbitrarily, this proves that (8.23) is

indeed constant along the solution x(t). ♦

Remark 8.3. As the proof shows, Noether’s integral (8.23) is simply

the directional derivative of the action S in the direction of motion

under hs, i.e., in the direction d
dsh

s(x) .

Remark 8.4. The above proof explains where I(x, ẋ) came from.
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Figure 6. Proof of Noether’s theorem.

Examples (see Problem 8.8).

1. If hs is a translation in some direction e ∈ R
n, then the integral

(8.23) is the component of the linear momentum in the direction e.

2. If x ∈ R3, and if hs is a rotation around the line of unit vec-

tor e through angle s, then (8.23) is the component of the angular

momentum in the direction e.

Figure 7. The torques applied to the ends A0 and A1 of a
spring held in equilibrium in a rotationally symmetric poten-
tial are equal and opposite. This is a verbatim analog of the
conservation of the angular momentum for a particle in a cen-
trally symmetric potential; see Section 11.

Remark 8.5. Conservation of the angular momentum of a point

mass in a rotationally symmetric potential in R
2 has a static analog:

it is the torque applied to the ends of the spring in Figure 7. For more
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on this analogy with statics, see Section 11. Mathematical expressions

for the angular momentum of a particle and for the torque on the

spring’s end are identical.

7. Conservation of energy

Conservation of energy is another immediate consequence of the main

theorem; the proof is the same as for Noether’s theorem, except that

translation is in time rather than in space.

Theorem 8.5. If the Lagrangian L = L(x, ẋ) has no explicit time

dependence (as has been the case in all of our discussions so far),

then

(8.25)
d

dt
(ẋLẋ − L) = 0

along any solution x = x(t) of the Euler–Lagrange equation.

Figure 8. Noether’s theorem for the time-invariant L.

Proof. Let A0(t0,x0) and A1(t1,x1) be two points on the graph of a

solution x(t) of the Euler–Lagrange equation. Since L has no explicit

dependence on t, the action is invariant under t-translations of both

ends (see Figure 8):

S(t0 + s,x0; t1 + s,x1) = S(t0,x0; t1,x1)

for any s. Differentiating by s and setting s = 0 gives

St0 + St1 = 0,
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which by (8.4) and (8.5) amounts to

−(L− ẋLẋ)|t=t0 + (L− ẋLẋ)|t=t1 = 0,

proving that L− ẋLẋ is constant along the solution x. ♦

Remark 8.6. The energy conservation is a verbatim analog of New-

ton’s first law for springs (see the table on page 280, second to the

last line, and the preceding explanations.).

8. Poincaré’s integral invariants

Here is another immediate consequence of the main theorem.

Theorem 8.6. Let x(t; s) be a one-parameter family of solutions of

the Euler–Lagrange equation depending on the parameter s ∈ [0, 1]

cyclically:

x(t; 0) = x(t; 1);

for any fixed t consider the closed curve γt(s) = (x(t; s),p(t; s)) ∈
R2n, where s is the parameter along the curve, and where p = Lẋ.

Then

(8.26)

∫
γt

p dx =

∫
γ0

p dx,

where p dx =
∑

pkdxk denotes the dot (scalar) product.

As we will show in the next section, (x(t),p(t)) evolves according

to Hamilton’s equations (8.29) (page 273), and with that advance

notice the theorem can be reformulated as follows:

Theorem 8.7. The flow ϕt of Hamilton’s equations (8.29) preserves

the integral
∫
γ
p dx for any smooth closed curve γ in R

2n = {(x,p)}:

(8.27)

∫
γ

p dx =

∫
ϕtγ

p dx.

Proof of (8.26)-(8.27). Consider the action S(0,x(0, s); t,x(t, s))

between two points on the graph of the solution x(t; s). Since S is

cyclic in s, we have

0 =

∫ 1

0

d

ds
S ds =

∫ 1

0

(S1 · xs(0; s) + S2 · xs(t, s)) ds,
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where S1, S2 are the gradients of S with respect to the two spatial

variables. But S1 = −p(0, s) and S2 = p(t, s) according to the main

theorem, and the above turns into∫ 1

0

p(0, s) · xs(0; s) ds =

∫ 1

0

p(t, s) · xs(t, s)) ds,

which amounts to (8.26) or (8.27). ♦

Remark 8.7. Although the theorem mentions Hamilton’s equations,

the proof does not use them, but rather comes from the main the-

orem, almost immediately. The point here is that using Hamilton’s

equations to prove (8.27) (as is sometimes done) obscures the “real”

reason for Poincaré’s integral invariance.

Remark 8.8. Geometrically,
∫
γ
p dx =

∑∫
γ
pk dxk is the sum of

signed areas5 of the projections of γ onto the n two-dimensional planes

(xk, pk), k = 1, . . . , n. For n= 1 this integral is just the signed area

enclosed by γ, and we recover Liouville’s theorem for Hamiltonian

systems. As opposed to the proof presented in Chapter 2, the pre-

ceding proof shows the “real” reason why Liouville’s theorem holds.

Poincaré’s integral invariance is thus intimately related to the

nonexistence of a perpetual motion machine.6 For details, see Fig-

ures 9 and 12 and the surrounding discussion.

Remark 8.9. Poincaré’s integral invariants and Noether’s theorem

are really just two aspects of the same idea: “S does not change”.

For the Poincaré invariants, S does not change under a cyclic change

of x0,x1 (this is, of course, true automatically, as long as S is single-

valued). For Noether’s theorem, the key is that S does not change,

by the assumption, under simultaneous transformations of x0 and x1.

5The sign of the area is negative if the region’s boundary is traced in the coun-
terclockwise direction.

6The nonexistence of the perpetual motion machine can be used to deduce the
Pythagorean Theorem and many other theorems from Euclidean geometry (see [14]),
where one can also find a discussion of the legitimate question: How can a physical
principle lead to a rigorous mathematical proof?
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9. The generating function

In this section we consider the action with the times t0, t1 fixed.

Dropping these times from the notation, we will write S(t0,x0; t1,x1)

= S(x0,x1). By the main theorem we have

(8.28)

{
S1(x0,x1) = −p0,

S2(x0,x1) = p1,

where S1 stands for the gradient with respect to the first variable x0,

with a similar meaning for S2. If S satisfies certain conditions (e.g.,

det S12 �= 0), then the equations (8.28) define a map

ϕ := (x0,p0) 	→ (x1,p1),

at least locally. In this case S is called the generating function of ϕ.

We already showed that (8.28) implies that ϕ is a symplectic map,

i.e., that (8.27) holds. It should be noted that not every symplectic

map can be given by a generating function via (8.28); for more details

on this see, e.g., Arnold’s Mechanics [1].

10. Hamilton’s equations

We have not introduced Hamilton’s equations so far; this was de-

liberate, since too early an introduction would make the path from

Hamilton’s principle to the results obtained so far too circuitous.

Theorem 8.8. If x(t) is a critical function of
∫
Ldt then the vector

(x(t),p(t)), where p = Lẋ(x, ẋ), satisfies Hamilton’s equations

(8.29)

{
ẋ = Hp(x,p),

ṗ = −Hx(x,p),

where H is the Legendre trasform of L and where Hx, Hp are the

gradients with respect to x and p.

Proof. We already showed that ẋ = v = Hp, see (8.18); the first

of Hamilton’s equations is therefore simply a restatement of the def-

inition p = Lẋ. For the second equation, let S(t,x) be the action

associated with a central family of critical functions7 of which x(t)

7That is, a family of critical functions satisfying x(t0) = x0.
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is a member. By the fundamental theorem (8.4), p = Sx(t,x(t)).

Differentiating this identity by t we get

(8.30) ṗ = Stx + Sxxẋ = Stx + SxxHp,

where we substituted ẋ = Hp. But the right-hand side of (8.30) is

simply −Hx, as seen by differentiating the Hamilton–Jacobi equation

St +H(x, Sx) = 0 by x:

Stx +Hx + SxxHp = 0, or Stx + SxxHp = −Hx.

Substituting this into (8.30) gives ṗ = −Hx. ♦

11. Hamiltonian mechanics as the “spring
theory”

In this section I describe a static analog of the main dynamical con-

cepts discussed so far in this chapter; the table on page 280 sum-

marizes this analogy. This analogy gives a palpable interpretation of

most of the ideas of the preceding sections.

It should be noted that the analogy described here is different

from the dynamics-statics equivalence from page 42 in that the time t

here will be a geometrical coordinate, whereas in the earlier discussion

the time was mathematically equivalent to mass.

Figure 9 shows a heavy elastic band, or a spring, in gravitational

field, held in equilibrium by two external forces F0, F1 applied to

the ends. Note that the two spatial coordinates (in the plane of the

spring) are denoted by t, x. The precise properties of the spring do not

matter in this discussion; we only assume that the potential energy

U of the spring (consisting of the gravitational and the stretching

energies) is a function of the endpoints: U = U(A0, A1).

Let us denote the two components of the forces as shown in

Figure 10:

(8.31) F1 = 〈−H1, p1〉, −F0 = 〈−H0, p0〉;

we wrote −F0 rather than F0 so as to have the vectors −F0, F1 point
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in the same direction along the spring. I chose the notations to make

the analogy with Hamiltonian mechanics verbatim, as we shall see

shortly. Our choice of −H instead of H in 〈−H, p〉 is the price to pay

for the traditional definition of the Hamiltonian.

Figure 9. An illustrative problem: forces F0, F1 hold the

spring in equilibrium.

Figure 10. The two components of the spring’s tension are
the analogs of of H and of p. Noether’s theorem, the symplec-
tic 1-form p dx, and the Poincaré integral invariant have their
analogs as well, as explained in the text and summarized in
the table on page 280.
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“The generating function”. From the definition of the potential

energy as the work required to bring the spring from some initial

equilibrium state to the current one, we have

(8.32) F0 = ∇A0
U and F1 = ∇A1

U ;

the subscripts A0, A1 indicate the variables with respect to which the

gradients are taken.8 Reading off the x-components of (8.32) and

recalling the notation (8.31) we get

(8.33)
p0 = −Ux0

(x0, x1),

p1 = Ux1
(x0, x1).

These equations look the same as (8.28) on page 273. Therefore, just

as in the case of (8.28), our equations (8.33) define the symplectic

map ϕ = (x0, p0) 	→ (x1, p1); here the generating function is U .9 It

is remarkable that the hanging spring gives rise to a symplectic map.

And the generating function of this map is the spring’s potential

energy.

Exercise 8.2. Find the map ϕ corresponding to a Hookean spring held by
two ends A0 = (0, x0) and A1(1, x1), with no external forces applied to it
besides the ones at the two ends.

Solution. The potential energy U = 1
2
k(length)2, or

U(x0, x1) =
k

2
((x1 − x0)

2 + 1).

Substituting this U into (8.33) and solving for x1, p1 gives the solution,
written here in vector form:(

x1

p1

)
=

(
1 k−1

0 1

)(
x0

p0

)
.

Thus ϕ is the shear of strength k−1 in the x-direction.

“Energy conservation”. Since the spring is in equilibrium, the

horizontal components of external forces are in balance: projtF0 =

−projtF1, or

(8.34) H0 = H1.

8See (2.22) on page 88 for the discussion of the potential energy for a single
particle; we leave the extension of the concept for the spring as an exercise.

9For ϕ to be well defined, it suffices to assume that the first equation in (8.33)
determines x1 uniquely.
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Although this is clear from Newton’s first law, a formal proof of (8.34)

would lead us to a verbatim repetition of the proof of Noether’s the-

orem on page 267. So we can think of Noether’s theorem as a twin

sister of Newton’s first law.

“The symplectic 1-form”. If hand A1 in Figure 9 moves by dr1 =

(dt1, dx1), then it does work

(8.35) dW1 = F1 · dr1 = p1 dx1 −H1dt1.

Similarly, when hand A0 moves by r0 = (dt0, dx0), it does work

dW0 = F0 · dr0 = −p0 dx0 + H0dt0. This is an interpretation of

the 1-form p dx − H dt as the infinitesimal work.10 In particular,

p1 dx1 is the infinitesimal work required to displace the right end of

the spring in the x-direction by dx1.

“Poincaré’s integral invariants”. Speaking somewhat loosely, by

moving both ends A0 and A1 in Figure 9 arbitrarily and returning

them to the beginning state I do zero work on the spring:11
∮
F0dr0+∮

F1dr1 = 0. Equivalently,

(8.36) −
∮
γ0

p dx−Hdt+

∮
γ1

p dx−H dt = 0,

where γ0, γ1 are closed curves traced out by the cyclically varying

points (t0, x0, p0) and (t1, x1, p1). In the special case, when t0 and

t1 remain fixed, i.e., when A0, A1 move only in the x-direction, the

Hdt-terms drop out, and we get∮
p0dx0 =

∮
p1dx1.

Formalizing this intuitively plausible discussion gives a verbatim rep-

etition of the earlier proof of Poincaré’s integral invariance; see page

271.

10This form is called Poincaré’s 1-form; one can find more on it in [1].
11Assuming that the motion is quasi-static: no oscillations are excited and the

spring acquires no kinetic energy.
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Exercise 8.3. If hands A0 and A1 move in a cyclic fashion, must each
hand individually do zero work?

Answer. No. For details, see Problem 8.6 on page 289.

Area-preservation. Consider the special case of the cyclic motion of

the preceding paragraph where both t0 and t1 remain fixed, i.e., where

the motion happens in the x-direction only. Assume that (x0, p0) de-

termines (x1, p1), so that we have a mapping ϕ := (x0, p0) 	→ (x1, p1).

During the cyclic motion the point and its image describe closed

curves C0, C1 with C1 = ϕ(C0). From (8.36) we get

(8.37) area(C0) = area(C1),

thus showing that ϕ is area-preserving.

We thus repeated the proof of Liouville’s theorem in R
2, essen-

tially the same proof as already given on page 271. This time, how-

ever, we discover a simple mechanical interpretation: the work done

during a cyclic motion of the ends A0, A1 is zero.

Figure 11. A geometrical interpretation of the fact that zero
work done in a (vertical) cyclic motion of the ends A0 and A1.

Poincaré’s integral invariant in higher dimension. All of the

above extends to higher dimensions of x,p ∈ R
n for n > 1 as well;12

Figure 12 illustrates the case of n = 2. When moving the ends of

12One says that p lies in the cotangent space to R
n (which is then identified with

R
n). The reason for such language is the fact that the gradient ∇vL = p is defined as

an operator on R
n, via d

dεL(v+εw)
def
= ∇vL·w. Thus ∇vL indeed operates on tangent

vectors w ∈ R
n, assigning to each w the directional derivative in the direction w.
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Figure 12. Analog of Poincaré integral invariant for x ∈ R
2.

the hanging spring around two closed paths I return the spring to the

original state and thus do zero net work:

(8.38)

∮
(−p0)dx0 +

∮
p1dx1 = 0,

where the minus sign is due to the fact that the left-hand applies force

−p0. Here the p dx denotes the dot product in R
2.

Lagrangian manifolds. Let us fix the left end x0 in Figure 12

(so that we are still speaking of x ∈ R
2). For every x1 we have

an associated force vector p1 = Ux1
(x1). In other words, vectors

(x1,p1) = (x1, Ux1
(x1)) ∈ R

4 form a two-dimensional manifold in R
4

(the manifold is parametrized by x1 ∈ R
2). This is an example of the

Lagrangian manifold. The characteristic property of such a manifold

is that
∮
C
p dx = 0 for any closed path C on the manifold. Physically,

this means that the work done over the path is zero. A more detailed

discussion of Lagrangian manifolds can be found in [1].

The following table summarizes some of the discussion of this

section. In this table t0, t1 are fixed, as they are in most of this

section.
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Hamiltonian dynamics

S(A0, A1) – action

∇A0
S, ∇A1

S

p – momentum

H – Hamiltonian

p dx symplectic 1-form

S is a generating function of the

map ϕ = (x0, p0) 	→ (x1, p1) via

p0 = −Sx0
, p1 = Sx1∫

ϕ(γ)
p dx =

∫
γ
p dx, that is, ϕ is

symplectic

Energy conservation H0 = H1

Conservation of angular momen-

tum

Statics of a spring

U(A0, A1) – potential energy

∇A0
U = F0, ∇A1

U = F1

p – force in the x-direction

H – force in the (−t)-direction

p1 dx1 infinitesimal work done in

displacing A1

U is a generating function of the

map ϕ = (x0, p0) 	→ (x1, p1) via

p0 = −Ux0
, p1 = Ux1∫

ϕ(γ)
p dx=

∫
γ
p dx, i.e.,

∮
p1dx1+∮

(−p0)dx0 = 0 — work done on

the spring in a cyclic motion is

zero

Newton’s first law: H0 = H1

Torque balance (Figure 7)

12. The optical-mechanical analogy

The dynamics-statics analogy of the preceding section seems to be

very recent, apparently pedagogically original. Historically, it was

another analogy — the one with optics — that illuminated the path

for mechanics since the times of Leibnitz, Euler and Maupertuis. Op-

tical analogy motivated at least two developments: the Maupertuis

principle and Hamilton’s theory. That the optical-mechanical anal-

ogy exists in the first place is not surprising in the hindsight, since

classical mechanics is the limiting case of wave mechanics just like

geometrical optics is the limiting case of wave optics. Before summa-

rizing the optical analogy (on page 283) let us describe the setting.
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Optical objects. Figure 13(a) shows an optical medium side-by-side

with space-time. Let T (x) be the time it takes a ray to reach point

x from the origin A0. The wave front, defined as the set of points

x with T (x) = t = const., Figure 13(a), gives the location of the

optical disturbance at time t which originated at A0, and ∇T (x) is

the normal vector to the front.13

Figure 13. Analogy between optics (a) and mechanics (b).

Analogs of optics in mechanics. Mechanical space-time (t, x) is

the analog of an optical medium. Optical distance, i.e., the time T (x),

is the counterpart of the action

(8.39) S(t, x) =

∫ A1

A0

L dτ,

where the integrand involves the critical function with boundary con-

ditions A0 = (t0, x0) and A1 = (t, x); we fix A0 in this discussion,

13∇T is called the vector of normal slowness, since |∇T | is the reciprocal of the
speed of light; see Problem 8.13 on page 292.
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although in general it should be allowed to vary. In order for S to be

smooth we assume that the critical function depends smoothly on the

endpoint (t, x). This critical function in the (t, x)-plane is the analog

of the optical ray.

Exercise 8.4. Show that for the free particle Lagrangian L = ẋ2/2, and

for A0 = (0, 0) the action (8.39) takes the form S(t, x) = x2

t
.

Solution. The minimizer of the action is a linear function y(τ) = x
t
τ ,

Figure 13(b).14 Thus y′(τ) = x/t, and

S(t, x) =

∫ t

0

1

2

(
x

t

)2

dτ =
x2

t
,

as claimed. Level curves of S(t, x) are parabolas in Figure 14(b); note that

they all pass through A0; in this respect optics is different: the wave fronts

move away from A0 as T increases.15 The picture in Figure 13(b) near A0

is typical not just for our simple example, but for a general Lagrangian, as

long as the Legendre condition Lẋẋ > 0 is satisfied.

Figure 14. Propagating fronts in optics and in mechanics.
Here c1 < c2 < c3.

14We use τ, y for the coordinates along the trajectory since t and x have been
reserved for the endpoint.

15Strictly speaking, A0 does not belong to any of the fronts in the figure, so that
the front is really a parabola with A0 deleted.
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Optics

x – space

rays

T (x) – travel time from A to x

T (x) = const. – wave front

∇T (x) – normal to the front

∇T = c−1 (eikonal equation)

Mechanics

(t, x) – space-time

critical functions of
∫
Ldt

S(t, x) – action

S(t, x) = const.

∇S(t, x)

St +H(x, Sx) = 0

(Hamilton–Jacobi equation)

The last line in the table was explained on page 267.

Huygens’s principle in space-time. As an instructive side re-

mark, let us see what Huygens’s principle looks like in mechanics;

Figure 15 shows the similarities and the differences between the tra-

ditional optical picture and the nontraditional mechanical one. In

both cases the new front is an envelope of fronts created by distur-

bances at the points on the old one. For instance, the new front

S = c+ε is the envelope of the fronts S(B,X) = ε “emanating” from

points B on the old front S = c.

Interestingly, Huygens’s principle suggests the following simple

geometrical observation.

Exercise 8.5. Consider the family of parabolas obtained by moving the
parabola y = ax2, with a > 1, parallel to itself so that its vertex traces out
another parabola y = bx2, where b �= a, and where a, b have the same sign.
Prove that the envelope of the family of these translates is also a parabola
of the form y = cx2.

Solution. Although we can verify this by a direct computation, Huygens’s

principle explains this fact with no computation besides the one we already

did in Exercise 8.4 on page 282. Moreover, Huygens’s principle even lets

us find c without further computation!
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Figure 15. Huygens’s principle in optics (a) and in space-
time (b).

13. Hamilton–Jacobi equation leading to the
Schrödinger equation

The analogy between Hamiltonian mechanics and geometrical optics

guided the development of the former. As it became clear in the 20th

century, this old analogy is a symptom of a deeper connection, the one

between wave mechanics and wave optics. This connection explains

why Hamiltonian mechanics turned out to be a key tool in quantum

mechanics.

This section describes one small aspect of this relationship, by

showing how to guess the Schrödinger equation. The key idea, due

to Feynman, is this: the Hamilton–Jacobi equation relates to the

Schrödinger equation like the eikonal equation relates to Maxwell’s

equation; see Figure 17, last two rows.

Consider a classical particle — an idealized point mass m — in a

potential V (x) on the line. For very light particles it does not make

sense to speak of the precise position x(t), since it is in principle

unknowable: identical experiments give different measurements of x.

In other words, all experimental evidence gives us no option but to

conclude that precise knowledge of x(t) is impossible in principle.

The one remaining option then is to speak of the probability

density, i.e., of the function p(t, x) ≥ 0 which gives the probability of

finding the particle in the interval [x, x+dx] at time t as p(t, x) dx. In

Newtonian mechanics, p is the delta function centered at the position

x(t) of the particle, but in quantum mechanics p is smeared around

the Newtonian position x(t).
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Figure 16. Trajectories of classical particles are the “rays”
corresponding to the quantum mechanical wave ψ.

Now there are physical reasons (namely, the interference in ex-

periments) which lead one to write p in the form p = |ψ|2, where ψ

is a complex function, called complex probability amplitude, a more

basic object than p. As described in [5], ψ satisfies the principle of

quantum superposition (while p doesn’t), and this makes it analogous

to the electromagnetic field for which the principle of superposition

holds. This suggests treating ψ as an analog of the electric field in

wave optics, the case we briefly consider before returning to ψ.

Let us take the simplest case: a standing high frequency electro-

magnetic wave whose electric field E is perpendicular to the (x, y)-

plane. The highly oscillatory nature of E can be expressed by

(8.40) E(x, y) = a(x, y) cos
T (x, y)

ω
= Re aei

T (x)
ω ,

where ω >> 1, where T (x, y) is the time it takes the light rays to

reach (x, y) from some initial wave front and where Re denotes the

real part. Now guided by (8.40) we seek ψ in the form

(8.41) ψ(t, x) = a(t, x)e
i
�
S(t,x),

where � is very small, and where S(t, x) = S(t0, x0; t, x) with (t0, x0)

fixed. We placed S in the exponent since S is the analog of T , as was
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mentioned earlier and as summarized in the table on page 283. But

S satisfies the Hamilton–Jacobi equation St + H(x, Sx) = 0. Since

H = p2/2m+ V , we conclude that S satisfies

(8.42) St +
S2
x

2m
+ V = 0.

Now S and ψ are related via (8.41); what does the statement (8.42)

on S say about ψ? To find out, differentiate (8.41) and keep the

leading terms only:

ψt =
i

�
ψSt + . . . , ψxx =

(
i

�

)2

ψS2
x + . . . ,

where . . . denote the higher order terms, i.e., the ones small compared

to the ones written. The reason we differentiated by x twice is to get

S2
x which appears in (8.42). It is only a matter of simple algebra to

express St and S2
x from the last equations and plug them into (8.42)

to get the Schrödinger equation. Here are the details. We have

St =
�

i
ψ−1ψt, Sxx =

(
�

i

)2

ψ−1ψxx,

where the lower order terms were deleted; substituting into (8.42)

gives

�

i
ψ−1ψt +

1

2m

(
�

i

)2

ψ−1ψxx + V = 0.

Multiplying by ψ gives the Schrödinger equation

i�ψt = − �
2

2m
ψxx + V ψ

Figure 17 summarizes the parallel history of two subjects, leading

to Maxwell’s equation and to the Schrödinger equation.
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Figure 17. When read down, this diagram shows the histor-
ical development. Solid arrows stand for theorems. Dashed
arrows indicate either an inspired guess or that one statement
is the limiting case of the other.

14. Examples and Problems

Action.

8.1. Find the action S(t, x) ≡ S(0, 0; t, x) for each of the following:

1. The free particle Lagrangian L = mẋ2/2.

2. The harmonic oscillator: L = ẋ2/2− x2/2.

3. A particle in a repelling linear potential: L = ẋ2/2 + x2/2.

Answer for (1): S(t, x) = mx2

2t
. The level sets of S are shown in Figure 14,

page 282.

The following problem is the same as the one before except that the left
end is allowed to be free.
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Figure 18. Proving (8.43).

8.2. Find the action S(t0, x0; t1, x1) for the free particle of mass m moving
on the x-axis.

Solution. The motion is given by y(t) = x0 + vt, where

v =
x1 − x0

t1 − t0
,

Substituting into (1.22) gives the answer:

S(t0, x0; t1, x1) = m
(x1 − x0)

2

2(t1 − t0)
.

8.3. Consider three points A0, A′
0, A1 on the graph of a critical function

corresponding to the Lagrangian L, Figure 3, page 261. Prove that

(8.43) ∇A1S(A0, A1) = ∇A1S(A
′
0, A1),

where S(A,B) is the integral of L along the critical function whose graph
connects A and B in the (t, x)-plane. Assume that the critical function
depends smoothly on the endpoints.

Solution. Let us displace A1 by a small distance ε to a new position A′
1,

Figure 18. Since the critical function depends smoothly on the endpoints,
A′

0 is O(ε)-close to the new critical graph A0A
′
1; and since A0A

′
1 is a critical

curve, we have

(8.44) c = (a+ d) +O(ε2),

where a, b, c, d stand for the actions as labeled in the figure. Subtracting
a+ b = S(A0, A1) from both sides, we get

c− (a+ b)︸ ︷︷ ︸
∇A1

S(A0A1)·ΔA1+O(ε2)

= d− b︸ ︷︷ ︸
∇A1

S(A′
0A1)·ΔA1+O(ε2)

+O(ε2),

where the definition of the gradient was used. This proves (8.43). ♦
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The classical mechanical uncertainty principle.

8.4. Extend the “uncertainty principle” of classical mechanics (see page
36) for the case of a particle in R

3.

8.5. What is the analog of the “uncertainty principle” of classical mechan-
ics for the light rays passing through an optical device such as a telescope
or a microscope? (The answer can be found in [14]).

Poincaré’s integral invariant

8.6. This problem uses notations of Section 11, page 274. Let the spring’s
ends A0, A1 in Figure 9 (page 275) execute a cyclic motion; assume for
simplicity that the motion is in the x-direction only. Show by an example
that, although

∫
p0 dx0 +

∫
p1 dx1 = 0, the individual summands need not

vanish; that is, although the total work done by both “hands” in moving
the ends of the spring in the x-direction is zero, each hand may do nonzero
work.

Solution. 1-by calculation. Take the simplest case of a Hookean spring
without gravity, with Hooke’s constant k = 1; potential energy of such a
spring is U = 1

2
length2, and since t0, t1 are fixed, we have U = 1

2
(x1 −

x0)
2+c, where c = 1

2
(t1−t0)

2 = const. Define the cyclic change x0 = sin s,
x1 = cos s, where 0 ≤ s ≤ 2π (the idea is that the “hands” move out of
phase). From p0 = −Ux0 , p1 = Ux1 we get p0 = p1 = x1 − x0, and thus∮

p0 dx0 =

∫ 2π

0

(cos s− sin s) cos s ds = π �= 0.

2-without calculation. Figure 19 shows the same spring, with the ends
A0, A1 moving in four stages (in a way different from the one described
above). Whenever the right hand moves it does positive work, since p1 dx1 >
0 as p1 and dx1 have the same sign. Similarly, whenever the left hand moves
it does negative work, since p0 and dx0 have opposite signs. This shows
that

∮
p0 dx0 < 0 <

∮
p1 dx1.

The next problem refers to the concept of brake orbits for a particle in
the potential U :

ẍ = −∇U(x).

A nonconstant solution x(t) is said to be a brake orbit if there exist times
t1 < t2 such that ẋ(t1) = ẋ(t2) = 0. A normal mode of a linear system
ẍ = −Ax (where A is a positive definite matrix) is an example of a brake
orbit.

8.7. Consider a centrally symmetric potential U0 : R2 → R monotonically
increasing with the distance from the origin, with ∇U0(x) �= 0 for x �= 0.
Let E > minU0. Show that if U is sufficiently close (with two derivatives)
to U0, then the system ẍ = −∇U(x) has a brake orbit with energy E.



290 8. Heuristic Foundations of Hamiltonian Mechanics

Figure 19. Although
∫
p0 dx0 +

∫
p1 dx1 = 0 when the ends

A0, A1 execute a cyclic motion, the individual integrals need
not vanish. Each time A1 moves, positive work is done. Each
time A0 moves, negative work is done. In short, “hand A1

transfers energy to hand A0”.

Hint. Use the Poincaré’s integral invariant for the curve of initial data
which start on the zero velocity curve {x : U(x) = E}.

Noether’s theorem

8.8. (Noether’s theorem – applications). For each of the following families
of transformations, find the explicit form of the conserved quantity given
by Noether’s theorem.

1. Space translation in the direction of a vector e: hsx = x+ se.

2. Rotation through angle s around the vector e ∈ R
3: hsx = Re(s)x.

3. Helical symmetry hsx = Re(s) + ase, where a = const.

8.9. Find a conserved quantity for a particle in a rotating potential in R
2:

ẍ = −∇U(Rωtx),

where Rs is the counterclockwise rotation through angle s around the ori-
gin.
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Figure 20. Problem 8.11.

Hint. Extend Noether’s theorem to translations of space-time given by
(t,x) �→ (t + s,Rωsx). Alternatively, consider the system in a rotating
frame.

8.10. (Conserved quantity for charged particles in magnetic fields). Con-
sider the motion of a charged particle in the magnetic field B(x, y) perpen-
dicular to the plane:

z̈ + iB(z)ż +∇V (z) = 0.

Here the complex notation is used: z = (x, y) = x + iy, and B and V are
real-valued smooth functions.

1. Show that the total energy ż2 + V (z) of the particle is conserved.

2. Find another conserved quantity (besides the energy), given that B
and V are rotationally symmetric, i.e., if both depend only on r = |z|.

3. Find the conserved quantity (besides the energy) given that B and
V are invariant under translations.

Hint. Find the Lagrangian and use Noether’s theorem.

4. In the special case of B = const. and V rotationally symmetric, give
a physical interpretation of this conserved quantity.

Hint (written backwards to discourage peeking):
.emarf gnitator a ni mutnemom ralugnA

Wave fronts

8.11. Show that if the optical medium in R
2 is isotropic (meaning that the

speed of light c(x) does not depend on the direction of the ray), then the
rays are normal to the wavefronts.

Solution. Consider two infinitesimally close fronts, as in Figure 20.
Huygens’s principle says in effect that the direction of the normal n to
the front is conjugate to the direction v of the ray in the sense of the Fig-
ure 20. More precisely, n is normal to the indicatrix at x (the point of
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tangency between the indicatrix and the new front), while v is the radius-
vector of the point x. But in an isotropic medium the indicatrices are
spherical (unlike those in the Figure 20), and thus n and v are parallel. ♦

8.12. Show that the infinitesimal distance between two nearby level sets
f(x) = h and f(y) = h+ ε of a smooth function f : Rn → R (take of n = 2
without the loss of generality) is approximately ε/|∇f |. More precisely,
consider a smooth curve perpendicular to every level curve f = const., and
let x and y be the points of intersection of this curve with the two surfaces.
Prove that the arc length |xy| = ε/|∇f(x)|+ o(ε).

Hint. Use the definition of the gradient

f(x+Δx)− f(x) = ∇f(x) ·Δx+ o(Δx).

8.13. Consider an isotropic optical medium with speed of light c(x). Show
that the optical distance T (x), i.e., the time it takes the ray to reach x
from a given point A0, satisfies the eikonal equation |∇T | = c(x)−1.

Remark. The vector ∇T is called the normal slowness of the front —
a very reasonable name, given that |∇T | is the reciprocal c(x)−1 of the
speed.

Solution. Consider two infinitesimally close wave fronts T = T0 and T =
T0+ε, and a ray normal to these, Figure 21. Since the medium is isotropic,
the rays which carry the fronts are perpendicular to these fronts (according
to Problem 8.11), and thus the length of the arc xy gives, to the leading
order, the distance between the two curves. According to the preceding
problem this distance is

|xy| = ε

|∇T (x)| ,

where the terms of higher order in ε have been dropped. On the other hand,
the distance traveled is the product of the average speed = c(x)+O(ε) and
the time:

|xy| = c(x)ε+O(ε2).

Comparing the two expressions and taking ε → 0 gives |∇T | = c−1.

8.14. Consider a wave front formed by a pencil of optical rays emanating
from a point in R

2. Given that the speed of light at x satisfies a quadratic
relation 〈A(x)ẋ, ẋ〉 = 1 (the set of such velocities is called the indicatrix at
x), where A(x) is a symmetric matrix, find the relationship between the
normal n to the front and the tangent to the ray.

Hint. Use Huygens’s principle, observing two facts: (i) the normal to the
front is also normal to the indicatrix (the infinitesimal front), and (ii) the
ray goes from the center of the indicatrix to the tangency point of the
indicatrix with the advanced position of the front.
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Figure 21. Derivation of the eikonal equation (8.20).

Answer. n = Aẋ.

8.15. In the setting of the preceding problem, replace the indicatrix
〈Aẋ, ẋ〉 = 1 by a more general curve f(ẋ) = 0. Find the relationship
between the normal n to the front and the direction of the ray.

Answer. n = ∇f(ẋ).
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It is hard to imagine a more original and insightful approach to classical mechanics. Most 

physicists would regard this as a well-worn and settled subject. But Mark Levi’s treatment 

sparkles with freshness in the many examples he treats and his unexpected analogies, as well 

as the new approach he brings to the principles. This is inspired pedagogy at the highest level.

—Michael Berry, Bristol University, UK

How do you write a textbook on classical mechanics that is fun to learn from? Mark Levi 

shows us the way with his new book: “Classical Mechanics with Calculus of Variations and 

Optimal Control: An Intuitive Introduction.” The combination of his unique point of view 

with his physical and geometrical insights and numerous instructive examples, fi gures and problem sets make it a pleasure 

to work through.

—Paul Rabinowitz, University of Wisconsin

This is a refreshingly low key, down-to-earth account of the basic ideas in Euler-Lagrange and Hamilton-Jacobi theory 

and of the basic mathematical tools that relate these two theories. By emphasizing the ideas involved and relegating to the 

margins complicated computations and messy formulas, he has written a textbook on an ostensibly graduate level subject 

that second and third year undergraduates will fi nd tremendously inspiring.

—Victor Guillemin, MIT

This is an intuitively motivated presentation of many topics in classical mechanics and related 

areas of control theory and calculus of variations. All topics throughout the book are treated 

with zero tolerance for unrevealing defi nitions and for proofs which leave the reader in the dark.

Some areas of particular interest are: an extremely short derivation of the ellipticity of planetary 

orbits; a statement and an explanation of the “tennis racket paradox”; a heuristic explana-

tion (and a rigorous treatment) of the gyroscopic effect; a revealing equivalence between the 

dynamics of a particle and statics of a spring; a short geometrical explanation of Pontryagin’s 

Maximum Principle, and more.

In the last chapter, aimed at more advanced readers, the Hamiltonian and the momentum are 

compared to forces in a certain static problem. This gives a palpable physical meaning to some 

seemingly abstract concepts and theorems.

With minimal prerequisites consisting of basic calculus and basic undergraduate physics, this 

book is suitable for courses from an undergraduate to a beginning graduate level, and for a 

mixed audience of mathematics, physics and engineering students. Much of the enjoyment of 

the subject lies in solving almost 200 problems in this book.
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