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Preface

Books on classical mechanics can roughly be divided into two classes. Books of
the first class present the subject using differential calculus and analysis, whereas
books of the second class discuss the subject by resorting to the advanced language
of differential geometry. The former books, though more accessible to readers
with a standard background in calculus, do not allow for a deep understanding of
the geometric structures underlying modern mathematical modeling of mechanical
phenomena. On the other hand, books of the second class, requiring a wide
knowledge of differential geometry, are accessible to readers who are already
acquainted with the many aspects of mechanics but wish to understand the most
modern developments in the subject. The present book aims to bridge the gap
between these two classes.

Before discussing the contents of the book in detail, I wish to clarify why I
decided to follow a historical approach to presenting mechanics. Over the long
period (35 years) during which I taught mechanics to students in physics at the
University of Naples Federico II, I saw that students could grasp the fundamentals
of the subject if they could understand the historical process that led to the
comprehension of mechanical phenomena. This process is like a staircase: as you
climb the stairs, each successive step gives you an increasingly broader perspective.
To take in a wider horizon, you must go up to the next step. Then, I believe, students
needed to remain on a given step until they reached the limit of their perspective
and felt the urge to climb to the next step. Clearly, students would achieve the
broadest possible view if they started on the last step. However, this approach would
allow for, at most, a technical comprehension of the subject without a profound
understanding of the roots out of which grew the great tree of classical mechanics.

In the history of science, mechanics was the first to resort to mathematical models
in an attempt to describe the reality around us. Already Leonardo da Vinci (1452—
1519), conscious of this feature of mechanics, stated that mechanics was heaven
for mathematics. Later, Galileo Galilei (1564—1642), having discovered many of
the fundamental principles of mechanical theory, stated that Nature was written
in the language of geometry. The first almost complete picture of the mechanical
world is due to Isaac Newton (1642—-1727), heir to Galileo and Johannes Kepler
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(1571-1630). He expressed his gratitude to these two great minds stating: “If 1
have seen farther it is by standing on the shoulders of giants.” In proposing his
fundamental laws of dynamics, Newton understood that the mathematics of his
time was not up to the task of solving the problems posed by his description of
the mechanical world. To make explicit some of the consequences of his laws, he
laid down, together with Gottfried Wilhelm Leibniz (1646—-1716), the foundations
of infinitesimal analysis. However, believing that this new approach was too difficult
for his contemporaries to understand, he adopted the language of geometry in
writing his magnum opus, Philosophiae Naturalis Principia Mathematica.

Although Newton’s laws, in principle, describe the physical behavior of any
mechanical system, the description appears in such an implicit form that drawing it
out is a very difficult task. We could say that the history of mechanics from Newton
to our day is the history of the process of making explicit a part of the hidden content
of Newton’s laws. In this process of making things explicit, powerful mathematical
descriptions of mechanical systems have been discovered that can be applied to
many other branches of physics.

The first step in this process was made by Leonhard Euler (1707-1783), who
introduced many notations and definitions still in use today. After formulating the
fundamental balance equations of mechanics, he proposed a model of rigid bodies.
This model introduced an extension to Newton’s model, which was essentially
conceived with respect to material points, in particular for the solar system.
Further, Euler formulated the balance equations of perfect fluids, i.e., of particular
deformable and extended bodies, laying down the foundations of fluidodynamics.

The systematic treatment of a system S of rigid bodies subject to smooth
constraints is due to Joseph-Louis Lagrange (1736-1813), who in his famous
treatise Mécanique analytique reduced the analysis of the dynamical behavior of
such a system to determining a curve of " whose parametric equations ¢”(¢)
are solutions of the famous Lagrange equations. These second-order differential
equations possess the following advantages:

e They contain the lowest number of parameters needed to determine the position
of S, the so-called Lagrangian coordinates of S.

* They allow one to determine the motion of S without knowing the reactive forces
due to the presence of constraints.

With Lagrange, mechanics resolutely opted for the language of analysis.

William Rowan Hamilton (1805-1865) and Carl Gustav Jacob Jacobi (1804—
1851) proposed a new description of the dynamics of a system S of rigid bodies
with smooth constraints and acted upon by conservative forces. This description
is obtained by the Legendre map, which transforms the solutions of the Lagrange
equations into curves belonging to the phase space and satisfying Hamilton’s equa-
tions. Adopting this formalism, it is possible to determine some general properties
of any mechanical system. Finally, the Hamiltonian formalism is fundamental in
geometric optics, statistical mechanics, and quantum mechanics.

In the early twentieth century, the Hamiltonian formulation of mechanics
underwent a profound change brought about by a new geometric interpretation of its
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structures. This new point of view gave rise to symplectic mechanics, which, using
the powerful instruments of differential geometry, shed new light on many aspects
of mechanics and allowed for the solution of some open problems. Today mechanics
is again written in the language of (differential) geometry.

This book surveys all the aforementioned models showing their field of appli-
cation and their limitations. It is divided into two parts. The first part contains an
introduction to linear algebra and differential geometry. In presenting this subject,
I preferred to put forward as evidence the concrete meaning of geometric concepts,
often sacrificing the formal aspects. Chapter 1 contains a brief introduction to vector
spaces and linear mappings. Chapters 2 and 3 deal with tensor and exterior algebras.
Euclidean and symplectic spaces are discussed in Chaps. 4 and 5. Chapters 6-9 con-
tain some fundamental concepts of differential geometry: manifolds, tensor fields,
one-parameter groups of diffeomorphisms, exterior differentiation and integration,
and affine connections. Finally, Chap. 10 presents some elements of dynamical
systems. Chapters 1, 2, 4, and 10 are sufficient for understanding Chaps. 11-16. The
remaining chapters of the first part are necessary for understanding the Lagrangian
and Hamiltonian formalisms (Chaps. 17-22) of the second part.

The second part, starting with Chap. 11, is devoted to mechanics. More precisely,
the kinematics of a material point and a rigid body are presented, respectively,
in Chaps. 11 and 12. Newton’s laws and some general theorems of dynamics are
discussed in Chap. 13, whereas the applications of these laws to a single material
point or to systems of material points are considered in Chap. 14. Further, Chaps. 15
and 16 are devoted to the dynamics of a rigid body and its applications. Lagrange’s
coordinate formalism on a configuration manifold is introduced in Chap. 17, which
also includes a geometric formulation of Maupertuis’ (Pierre-Louis Moreau de
Maupertuis, 1698—1759) principle, an analysis of the principal oscillations of a
mechanical system about a stable equilibrium position, and a transcription of the
Lagrange equations in the velocity space.

Some fundamental aspects of Hamiltonian mechanics are treated in Chap. 18.
First, it is shown that Legendre’s (Adrien-Marie Legendre, 1752—-1833) transforma-
tion maps a phase portrait of the solutions of the Lagrange equations into a phase
portrait of the solutions of Hamilton’s equations. When the dynamics is independent
of time, the existence on the phase state of a symplectic structure characterizing the
canonical or symplectic coordinates is demonstrated. Then, the Hamilton—Jacobi
theory about these coordinates is presented in Chap. 19. A description of the
behavior of completely integrable Hamiltonian systems can be found in Chap. 20.
This chapter also contains an introduction to Hamiltonian perturbation theory whose
purpose is to determine the approximate behavior of mechanical systems that are
almost completely integrable systems. In particular, this theory shows that small
perturbations may generate large effects and that chaos lurks in the corner of many
mechanical systems.

An elementary introduction to Maxwell’s (James Clerk Maxwell, 1831-1879)
kinetic theory of perfect gases and to Gibbs’s (Josiah Willard Gibbs, 1839-1903)
formulation of the statistical mechanics of equilibrium can be found in Chap. 21.
In Chap. 22, the balance equations and the Lagrange equations are extended to
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impulsive dynamics. Chapter 23 contains the basic elements of the dynamics of a
perfect fluid. This chapter appears in the book simply to show how we must modify
the axioms of mechanics of rigid bodies to take into account the deformability of
real bodies when they are acted upon by forces. Finally, an introduction to special
relativity and its four-dimensional formulation can be found in Chap. 24.

The book contains approximately 200 exercises. Further, it provides the names
of many notebooks, written using Mathematica, that are relevant to several of the
book’s chapters. These notebooks have the twofold aim of showing the possibilities
of this software and of helping the reader to manage some difficult problems of
dynamics.

The notebooks referring to the first part are Geometry.nb, Weierstrass.nb,
Phase2D.nb, and LinStab.nb. The other notebooks relate to the second part.
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Part I
Introduction to Linear Algebra and
Differential Geometry






Chapter 1
Vector Space and Linear Maps

Vectors are usually introduced with a comment that many physical quantities
(e.g., displacements, velocities, accelerations, forces, and torques) are conveniently
described by oriented segments characterized by intensity, direction, and versus.
Then, a vector space E is defined as the set of the oriented segments starting from
a given point O. Algebraic operations are introduced in the set E as the addition
X + y of two vectors X,y € E, the multiplication ax of a real number a by a vector
X, the scalar product x - y, and the cross or vector product X X y.

In this chapter, in agreement with the spirit of modern mathematics, vectors will
be defined as algebraic objects, i.e., as quantities that are not characterized by their
nature but by the algebraic operations that are defined on them. This approach,
which is followed in many fields of mathematics (for instance, in the theory of
numbers), leads us to attribute a more general meaning to a vector.!

1.1 Definition of Vector Space

Let N be the field of real numbers whose elements we denote by lowercase Latin

letters a, b, ..., and let E be an arbitrary set whose elements we denote by bold
Latin letters X, y,.... In the set £ we assign an internal composition operation,
called addition, denoted by +,
x,y) e EXE >x+y€eE, (1.1)
and satisfying the following properties:
x+(y+z)=x+y) +z, (1.2)
X+y=y+Xx, (1.3)

IThe topics contained in the Chapters 1-9 can also be found in [2,5,7-9,11,13,14,16-18,21,52].

A. Romano, Classical Mechanics with Mathematica®, Modeling and Simulation 3
in Science, Engineering and Technology, DOI 10.1007/978-0-8176-8352-8_1,
© Springer Science+Business Media New York 2012
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e FE:x+0=x, (1.4)
Vxe E,A(—x) € E :x+ (—x) =0, (1.5)

Vx,y,z€ E.
Besides the addition, we suppose that another composition law is defined by

(a,x) e E > ax e E, (1.6)

which associates to any pair (a,x), witha € % and x € E, a new element ax € E
in such a way that the following properties are satisfied:

(ab)x = a(bx), 1.7
a(x+y) =ax+ay, (1.8)
(a + b)x = ax + bx, (1.9)

Ix = x, (1.10)

Va,b € R and Vx,y € E.

Definition 1.1. The set E, equipped with the above operations, is said to be a real
vector space or a vector space on . The elements of £ and N are respectively
called vectors and scalars. The vector x + y is the sum of the vectors x and y; the
vector ax is the product of the scalar a by the vector x. Finally, the vector 0 is said
to be the zero vector and —x is the opposite vector of x.

Henceforth, the sum x + (—y) will be denoted by x —y.
Proposition 1.1. The zero vector is unique.

Proof. If there are two zero vectors 0 and 0, then the result is
x+0=x, VxeFE,
so that, in particular, it is 0’ + 0 = 0’. On the other hand, from the relation
x+0 =x, Vxe E,
it follows that 0 + 0’ = 0. From (1.3) we conclude that 0/ = 0. O

Proposition 1.2. The opposite vector —x of any x € E is uniquely determined.

Proof. If x" and x” are two opposite vectors of x, then it is
X +x=x"4+x=0.
On the other hand, in view of (1.2), we have that
X +x)+x" =x + x+x),

ie, x =x". O
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In a similar way, it is possible to prove the following propositions.

Proposition 1.3. Vx € E anda € N, itis

0x=0, a0=0, (—a)x=—(ax).

Proposition 1.4. Vx,,...,x, € E and a € R, which yields

ax; +---+x,) =ax; + -+ X,.

1.2 Dimension of a Vector Space

Definition 1.2. Let £ be a vector space and let xy,...,X, be vectors of E. The
vectors X, ...,X, are said to be linearly dependent if there exist nonzero real
numbers a', ..., a" such that

a'x; +---+a"x, = 0. (1.11)

In contrast, if (1.11) implies a' = ... = a" = 0, then we say that xj,...,x, are
linearly independent or, equivalently, that they form a free system of order n.

It is evident that the vector 0 does not belong to a free system.

Definition 1.3. The vector space E is said to have a finite dimension n > 0
on N if

1. There exists at least a free system of vectors of order n;
2. Every system of vectors of order n 4 1 is linearly dependent.

If E contains free systems of vectors of any order, then E is said to have infinite
dimension.
Throughout the book we only consider vector spaces with finite dimension.

Definition 1.4. Let E, be a vector space with finite dimension n. Any free vector
system {ey, ..., e,} of order n is a basis of E,,.

Remark 1.1. Henceforth, we denote by (e;) the vector set {ey,...,e,}; further, we
adopt the Einstein convention according to which a summation is understood over
a pair of upper and lower indices denoted by the same symbol. For instance, the
relation a'x; + --- + a"x, will be written in the compact form a'x;. The index i,
which is summed over, is called a dummy index. In a computation, such an index
can be denoted by any Latin letter.

Theorem 1.1. A vector system (e;) is a basis of the vector space E, if and only if
forany x € E, it yields

x=x'e;, (1.12)

where the coefficients x' are uniquely determined.
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Proof. If (e;) is a basis, then the system (X, (e;)) is linearly dependent so thatn + 1
scalars (a, a’) exist such that

ax+a'e; = 0. (1.13)

But a # 0 since, otherwise, we would have a'e; = 0, with some scalars ¢’ different
from zero, against the hypothesis that (e;) is a basis. Dividing (1.13) by a, we
obtain (1.12). To prove that the coefficients x’ in (1.12) are uniquely determined,
we suppose that, besides the decomposition (1.12), we also have

=1

X=X€;.

Subtracting this decomposition from (1.12), we obtain the relation 0 = (x/ — x )e;,
which implies x’ = X', since (e;) is a basis.
If (1.12) is supposed to hold Vx € E,,, then, for x = 0, we obtain

0:x’ei.

Since the quantities x’ are uniquely determined, this relation implies that x! = --. =
x" = 0 and the vector system (e; ) is free. To prove that (e;) is a basis, we must verify
that any vector system (uy, ..., u,,x) of order n + 1 is linearly dependent. That is
true if (u;) is linearly dependent. By contrast, if (u;) is free, then from (1.12) we
derive the relation )
u = a’e,-,

in which at least one of the scalars a’ does not vanish since u; # 0. Supposing that
a; # 0, the preceding relation leads us to

n
1 1 l,
01:—1111——1 E a e;.
a a —

In view of this result and (1.12), we can state that any vector x € E, can be
represented as a linear combination of the vectors (uj, e,,...,e,). Consequently,
we can say that

w =b'u + b’ +---+be,,

where at least one of the scalars b2, ...,b" does not vanish. If fact, if all these
coefficients were equal to zero, then we would have u, = b'u;, and the vector
system (uy, ..., u,) would be linearly dependent. If b # 0, we can write that

1 2 3
e =cu +cu+ce+---+e,.

In view of (1.12), this relation implies that any vector x € E,, is a linear combination
of (uj,uy,es,...,e,). Iterating the procedure, we conclude that (1.12) and the
hypothesis that (u;) is free imply the relation x = x’u;, i.e., x—xu; = 0. Then, the
vector system (uy, ..., u,,X) is linearly dependent and the theorem is proved. [
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1.3 Basis Changes

Definition 1.5. The unique coefficients expressing any vector X as a linear combi-
nation of the basis (e;) are called the contravariant components of x in the basis
(e;) or relative to the basis (e;).

Let (e;) and (e}) be two bases of the n-dimensional vector space E,. Then, x
admits the two representations

x=x'e; =x"e. (1.14)

Further, since (e;) and (e}) are bases of E,, any vector of the basis (e/) can be
expressed as a linear combination of the vectors belonging to the basis (e;), i.e.,

T I L —1\J o/
e, = Ale;, e =(4A i€, (1.15)

where ((A_l){) is the inverse matrix of (A’]) Introducing (1.15) into (1.14), we
obtain the condition

) VAN —1N\J igf
x=x"€; = (A7) x'e},

which, given the uniqueness of the representation of a vector with respect to a basis,
implies the equations

X = (AT X (1.16)

relating the contravariant components of the same vector evaluated in two different
bases. It is evident that the inverse formulae of (1.16) are

X = A}x’f'. (1.17)

Notice that the contravariant components of the vector x are transformed with
the inverse matrix of the basis change (1.14).

1.4 Vector Subspaces

Definition 1.6. A subset IV C E, is a vector subspace of E,, if

Vx,ye V,Va,b e N = ax+ by e V. (1.18)
It is evident that V' is a vector space.
Let (ef,...,e,), m < n, be a free vector system of E,. It is plain to verify that

the totality V' of the vectors

x=x'e;+---+x"ep, (1.19)
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obtained on varying the coefficients x’ in 9, represents a vector subspace of E,,.
Such a subspace is said to be the subspace generated or spanned by the system
(e1,...,ey,). In particular, any vector space E, is generated by any basis of it.

Definition 1.7. Let U, and V; be two vector subspaces of E,, having dimensions
pandgq, p+q < n,respectively, and such that U, N V, = {0}. Then, we denote by

wW=U,®V, (1.20)
the direct sum of the subspaces U, and V,, that is, the vector set formed by all the
vectorsu + v, whereu € U, and v € V.

Theorem 1.2. The direct sum W = U, ® V, of the vector subspaces U, and V, is
a vector subspace of dimensionm = p + q.

Proof. Let (uy,...,u,) and (vq,...,v,) be bases of U, and V,, respectively. By
Definition 1.7, we can state that none of these vectors belongs to both bases.
Moreover, any w € W can be written in the form w = u + v, where u and v
are unique vectors belonging to U, and V,, respectively. Therefore, we have that

P q
w= E u'a; + E Vv,
i=1 i=1

where the contravariant components ' and V' are uniquely determined. In conclu-
sion, the vectors (uy, ... ,Wp, Vi,...,V,) form a basis of W. O

1.5 Algebras

Definition 1.8. Let £ be a vector space. Let us assign an internal mapping (X,y) €
E x E — xy € E, called a product, that for any choice of the scalars a and b and
any choice of the vectors X, y, and z verifies the following properties:

a(xy) = (ax)y = x(ay),
(ax + by)z = a(xz) + b(yz),
x(ay + bz) = a(xy) + b(xz). (1.21)

The vector space E equipped with a product is an example of an algebra on E.
This algebra is commutative if
Xy = yX. (1.22)

A vector e is the unit vector of the product if
Xe = ex = X. (1.23)

It is simple to prove that (1.23) implies that e is unique.
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Definition 1.9. We say that the preceding algebra is a Lie algebra if the product

Is skew-symmetric, i.e.,
Xy = —yX; (1.24)
Verifies Jacobi’s identity

x(yz) + z(xy) + y(zx) = 0. (1.25)

1.6 Examples

In this section we present some interesting examples of vector spaces and algebras.

The vector space of oriented segments. Let &3 be a three-dimensional Euclidean

space. We denote by A B an oriented segment starting from the point A € & and
ending at the point B € &;. In the set of all oriented segments of &3 we introduce
the following equivalence relation R: two oriented segments are equivalent if
they are equipollent. Then we consider the set £ = &;/R and denote by x =

— —
[A B] the equivalence class of an arbitrary oriented segment A B. Since all these
equivalence classes are in one-to-one correspondence with the oriented segments

starting from a fixed point O € &, we can introduce the notation x = [ﬁ] If

y = [E;’], then we introduce the following operations in E:

ax = [aOA], (1.26)
—  —>
x+y=[0A+ OB, (1.27)

where in (1.27) the oriented segment ﬁ + E;’ is the diagonal of a parallelogram

with sides ﬁ and Ea’ It is plain to verify that the foregoing operations equip
E with the structure of a three-dimensional vector space since three unit vectors,
which are orthogonal to each other, form a basis of E.

It is also easy to verify that if we introduce into E the cross product x X y of
two vectors, the vector space E becomes a Lie algebra.
The vector space of polynomials of degree < n. Denote by E the set of
polynomials P (x) of degree r, where 0 < r < n. Any polynomial can be written
as P(x) = po+ pix +---+ p,x", where some of its coefficients p; may vanish.
If, for any a € N, we define

aP(x) =a(po+ p1x +---+ pux") = apo +apx +--- + ap,x",
Px)+ O(x) =(po+ prx + -+ pux") + (g0 + q1x + -+ + gux")
= (po+qo) + (p1 +q)x + -+ (pu + qu)x",
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then E becomes a vector space on i. Moreover, the n 4+ 1 polynomials
Ph=1,...,P, =x" (1.28)
are linearly independent since, from the linear combination
AoPo(x) + -+ A, Py(x) =0

and the fundamental theorem of algebra, it follows that all the real numbers
Ao, ..., A, vanish. On the other hand, any polynomial of degree n can be
expressed as a linear combination of the n 4+ 1 polynomials (1.28). We can
conclude that E is an (n + 1)-dimensional vector space.

The vector space of continuous functions on the interval [a,b]. Denote by
C[a, b] the set of continuous functions on the closed and bounded interval
[a, b]. With the ordinary operations of multiplication of a function by a number
and the addition of two functions, C°[a, b] becomes a vector space. Since the
polynomials of any degree are continuous functions, the vector space of the
polynomial of degree n, where n is an arbitrary integer, is a vector subspace
of C[a, b]. Consequently, E has infinite dimension since it contains free vector
systems of any order.

The vector space of n x n matrices. Let E be the set of the n x n matrices
A = (a;j). The operations

aA = (aai;), A+DB = (a; + bjj) (1.29)

equip E with the structure of a vector space. It is a very simple exercise to verify
that the n? matrices

1 0---0 00--0
0 00O 0001

form a basis of E that is an n’-dimensional vector space. If we add to the
operations (1.29), consisting in the multiplication of rows by columns the two
matrices n X n

AB = (a;ibyj), (1.30)
then E becomes a noncommutative algebra since
AB # BA. (1.31)
Finally, with the operation
[A,B] = AB — BA, (1.32)

E is a Lie algebra. In fact, operation (1.32) is skew-symmetric, and it is a simple
exercise to prove Jacobi’s identity (1.25) (Exercise 1).
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1.7 Linear Maps

Definition 1.10. Let E, and G,, be two vector spaces on i with dimensions n and
m, respectively. We say that the map

F:E,— Gy (1.33)
is a linear map or a morphism if
F(ax + by) = aF(x) + bF(y), (1.34)
Va,b € R, and Vx,y € E,.
Henceforth, we denote by Lin(E,, G,,) the set of all linear maps of E, into G,.

Theorem 1.3. A linear map F € Lin(E,, G,) is determined by the vectors F(e;) €
G, corresponding to the vectors of a basis (e;) of E,.

Proof. In fact, Vx € E, we have that
y = F(x) = F(x'e;) = x' F(e;). (1.35)

|

Since the vectors F(x) belong to G, they can be represented as a linear
combination of the vectors of a basis (g;) of G, i.e.,

F(e;) = Fl'g, (1.36)

where, for any fixed i, the scalars Fih denote the components of the vector F(e;)
relative to the basis (g;). Considering the upper index of Fih as a row index and the
lower index as a column index, the numbers Fih become the elements of an m x n
matrix F with m rows and n columns. When the bases (e;) in E, and (gy) in G,, are
chosen, such a matrix uniquely determines the linear map F since (1.35) and (1.36)
imply that

y=F(x) = F/'x'g). (1.37)

For this reason, F = (Fih) is called the matrix of the linear map F relative to the
bases (e;) and (gy,). Adopting the matrix notation, (1.37) becomes

Y = FX, (1.38)

where Y is the m x 1 matrix formed with the components of y and X is the n x 1
matrix formed with the components of x.

Definition 1.11. VF € Lin(E,, G,,) the subset

Im(F) ={ye Gu|Ixc E, :y = F(x)} (1.39)
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is called the image of F, whereas the subset
ker(F) = {x € E,|F(x) =0} (1.40)
is the kernel of F.

A linear map (1.33) is an epimorphism if Im(F) C G; further, F is called a
monomorphism if no two different elements of E are sent by F into the same
element of G. In particular, an epimorphism F : E, — E, is called endomorphism
and the set of all endomorphisms is denoted by Lin(E),). The linear map (1.33) is an
isomorphism if it is a monomorphism and F(E,) = G,,. In this case, there exists
the inverse linear map F -1.G, > E,. Finally, an isomorphism F : E, — E, is
said to be an automorphism.

Theorem 1.4. Im(F') and ker(F) are vector subspaces of G, and E,, respectively.
Moreover, F is a monomorphism if and only if ker(F) = {0}.

Proof. If yi, y» € Im(F), then there are x;, X, € E, such thaty; = F(x;) and
y2 = F(x3). Then, Ya, b € % the linearity of F implies that

ayy, + by, = aF(x1) + bF(x) = F(ax; + bxy)

and ay; + by, € Im(F). Similarly, if x;, x, € ker(F), then it follows that F(x;) =
F(x3) = 0, so that

0 =aF(x)) +DF(x2) = F(ax; + bxy),

and we conclude that ax; + bx, € ker(F).

It remains to prove the second part of the theorem. Since F'(0) = 0, if the inverse
map F —1 of F exists, then the subspace F _1(0) reduces to the vector 0, that is,
ker(F) = 0. In contrast, supposing that this last condition is satisfied, if it is possible
to find two vectors X’ and X” € E, such that F(x’) = F(x”), then it is also true that
F(x’ —x") = 0. But this condition implies that

X —x"=0= x'—x" e Ker(F) = x' =x’,
and the theorem is proved. O

In particular, from the preceding theorem it follows that

F is an isomorphism < Im(F) = Gy, ker(F) = 0. (1.41)

Theorem 1.5. Let (e;) be a basis of the vector space E, and let (g) be a basis
of the vector space G,. For any F € Lin(E,, Gy,), the following statements are
equivalent:

(a) F is an isomorphism;

(b) m = n and the vectors F(e;) form a basis of G,

(c) m = n and the matrix F of F relative to the pair of bases (e;) and (gy) is not
singular.
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Proof. (a)=> (b). The condition A' F(e;) = F(A'e;) = 0 and (1.41) imply that
Ale; = 0. Since (e;) is a basis of E,, we have that A’ = 0,i = 1,...,n, and
the vectors (F(e;)) are independent. Moreover, if F is an isomorphism, Vy €
G, there exists one and only one x € G, such thaty = F(x) = x' F(e;).
Consequently, the vectors F'(e;) form a basis of G, and m = n.

(b)= (c). In view of (1.37), the relation A’ F(e;) = 0 becomes A’ Fihg/1 = 0. But
(b) implies that the linear system A’ Fih = 0 has only the solution A’ = 0,
i =1,...,n.Consequently, m = n and the matrix F is not singular.

(c)= (a). Equation (1.38) is the matrix form of the mapping F with respect to the
bases (e;) and (gy). For any choice of the vectory € G,,, (1.38) is a linear system
on n equations in the n unknown x’. Owing to (c), this system admits one and
only one solution so that F is an isomorphism. O

We conclude this section with the following remark. Consider a basis change
g, = Gig. € =Ele (1.42)

in the two vector spaces E, and G,,. Then, the matrix FF relative to the bases (e;,) and
(g1) and the matrix [’ relative to the bases (e),) and (g;,) are related by the following
equation:

F = G~ 'FE (1.43)

(Exercise 4).

1.8 Exercises

1. In the vector space E,» of the n x n matrices, prove that Jacobi’s identity is
verified.
We start by noting that
[A,[B.C]] = AB, C] - [B, C]A
= A(BC - CB) — (BC — CB)A
= ABC — ACB — BCA + CBA.
Jacobi’s identity is proved applying the foregoing identity to the three terms of
the expression [A, [B, C]] + [C, [A, B]] + [B, [C, A]] .
2. Let
€] = cosge; + sin ge,,

¢, = —singpe; + cos pe, (1.44)
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Fig. 1.1 Two bases in a plane

be a basis change in the vector space E; (Fig. 1.1). Evaluate the components
(x") in the basis (/) of the vector that has the components (1,2) in the
basis (e;).

Hint: It is sufficient to verify that the inverse matrix of the basis change is

(A_l); _ (cos<p —s1n<p)

sing cosg@

and then to apply (1.16).

. Let (e;), i = 1,2, be a basis of the two-dimensional vector space E, and let
(grn), h = 1,2,3, be a basis of the three-dimensional vector space G3. Verify
that the ker and the Im of the linear mapping F : E, — Gj3, whose matrix
relative to the bases (e;) and (gj) is

12
01], aed,
oo

are given by the following subspaces:
ker(F) = {0}, Im(F) ={yeG;:y= (" y%a(y' +))}

where (") are the contravariant components of any vector y € Gs.
. Prove formula (1.43).

Let (e;), (gx) be a pair of bases in the vector space E, and denote by (e}),
(g),) a pair of bases in the vector spaces G,,. We have that, for any x € E,,
the vectory = F(x) € G,, can be written [see (1.36), (1.37)] in the following
forms:

y='gn = F'x'g,
y — y/hg;l — F'i/hxig;l'
From the foregoing representations of y we have that

1 of

F'ihxigh — Fvi/hx gh-
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10.

Exercises 15
Taking into account the basis changes (1.42), this condition becomes
FvihElix/l (G_l)ﬁg;( — I;l/kx/lg;{.

From the arbitrariness of x there follows (1.43).

. Determine the image and the kernel of the following linear mapping:

y! 10-1 x!
y 2]=1210 x?
y3 la-2 x3

. Determine the vectors (a, b, ¢) of the vector space V' generated by the vectors

u=(2,1,0),v=(1,-1,2),and w = (0, 3, —4).
Hint: We must find the real numbers x, y, and z such that

(a,b,c) =x(2,1,0)+y(1,-1,2)+2(0,3,—4) = 2x+y, x—y+3z,2y—4z),
i.e., we must solve the linear system

2x +y =a,
3y —6z = b,
0 =2a—4b—3c.

Analyze this system.

. Verity if the vectors (a, b, ¢) generate a subspace W when they satisfy one of

the following conditions:

e q=2b;
e ab =0;
e a=b=c;
o aqa=bh2

Prove that the polynomials (1 — x)3, (1 — x)?, and (1 — x) generate the vector
space of polynomials of the third degree.

Let U be the subspace of 03 generated by the vectors (a, b, 0), with a and
b arbitrary real numbers. Further, let W be the subspace of %3 generated
by the two vectors (1,2,3) and (1, —1, 1). Determine vectors generating the
intersection U (| W.

Determine the image and the kernel of the following linear map:

(x,9,2) €RN’n — (x +2y —z,y +z,x +y —27) € R,






Chapter 2
Tensor Algebra

This chapter contains an introduction to tensor algebra. After defining covectors and
dual bases, the space of covariant two-tensor is introduced. Then, the results derived
for this space are extended to the general space of the (r, s)-tensors.

2.1 Linear Forms and Dual Vector Space

Definition 2.1. Let E be a vector space on ). The map
w:E—>N 2.1
is said to be a linear form, a 1-form, or a covector on E if
w(ax + by) = aw (x) + bw (y), (2.2)
VYa,b € R and Vx,y € E.!

The set E* of all linear forms on E becomes a vector space on it when we define
the sum of two linear forms @, ¢ € E* and the product of the scalar a € i with the
linear form w in the following way

(w+0)Xx) =w(Xx) +0(x), (@w)x)=aw(x), VXEE. (2.3)

Theorem 2.1. Let E, be a vector space with finite dimension n. Then, E* has the
same dimension n. Moreover, if (€;) is a basis of E,, then the n covectors such that

6'(e;) = 82 (2.4)

'For the contents of Chaps. 2-9, see [7,8,10,11, 13, 14].
’Here 8;- is the Kronecker symbol

o 00 E )
J 1,i = j.
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define a basis of E*.

Proof. First, we remark that, owing to (2.4), the linear forms 0' are defined over the
whole space E, since, VX = x'e; € E,, we have that

0’ (x) = 0i(xjej) = iji(ej) =x' 2.5)

To show that E,; is n-dimensional, it is sufficient to verify that any element of E;
can be written as a unique linear combination of the covectors (8'). Owing to the
linearity of any @ € E,’, we have that

w(x) = x'w(e) = x ;. 2.6)
where we have introduced the notation
w = w(e). 2.7
On the other hand, (2.5) allows us to write (2.6) in the following form:
w(X) = w0 (x), (2.8)
from which, owing to the arbitrariness of x € E,,, it follows that
w=wb'" (2.9)

To prove the theorem, it remains to verify that the quantities w; in (2.9) are uniquely
determined. If another representation @ = /@' existed, then we would have 0 =
(w; —w])0', ie.,

(W — )8 (x) =0, VxeE,.
Finally, from (2.4) it follows that w = w;. O

Remark 2.1. Note that (2.6) gives the value of the linear map @ when it is applied
to the vector x, whereas (2.9) supplies the linear map @ as a linear combination of
the 7 linear maps 0.

By (2.4), the dual basis 0" of EX is associated with the basis (e;) of E,.
Consequently, to a basis change (e;) — (¢}) in E, expressed by (1.15) corresponds
a basis change (#') — (8") in E*. To determine this basis change, since it is

0" (x) =x", 0'(x)=x', (2.10)
and (1.16) holds, we have that
0" (x) = (A7) x/ = (471,07 (x).

In view of the arbitrariness of the vector x € E,, from the preceding relation we
obtain the desired transformation formulae of the dual bases:

T —1\i j i _ i /
0" = (47" 07, 9" =Al0". 2.11)



2.2 Biduality 19

The transformation formulae of the components w’ of the linear form w
corresponding to the basis change (2.11) are obtained recalling that, since @ is a
vector of E, its components are transformed with the inverse matrix of the dual-
basis change. Therefore, it is

o = Alwj. o =AN]w]. 2.12)

Remark 2.2. Bearing in mind the foregoing results, we can state that the com-
ponents of a covector relative to a dual basis are transformed according to the
covariance law (i.e., as the bases of the vector space E,). By contrast, the dual
bases are transformed according to the contravariance law (i.e., as the components
of avectorx € E,,).

Remark 2.3. Since the vector spaces E, and E, have the same dimension, it is
possible to build an isomorphism between them. In fact, choosing a basis (e;) of
E, and a basis (8') of EY, an isomorphism between E, and E is obtained by
associating the covector @ = Zi x'@" with the vector x = x'e; € E,. However,
owing to the different transformation character of the components of a vector and
a covector, the preceding isomorphism depends on the choice of the bases (e;)
and (0i). Later we will show that, when E, is a Euclidean vector space, it is
possible to define an isomorphism between E, and E that does not depend on
the aforementioned choice, i.e., it is intrinsic.

2.2 Biduality

We have already proved that E¥ is itself a vector space. Consequently, it is possible
to consider its dual vector space E,* containing all the linear maps G : E; — .
Moreover, to any basis (8') € E* we can associate the dual basis (f;) € E**
defined by the conditions [see (2.4)]

£,(07) =4, (2.13)
so that any F € E* admits a unique representation in this basis:
F = F'f;. (2.14)

At this point we can consider the idea of generating “ad libitum” vector spaces by
the duality definition. But this cannot happen since E, and E,;* are isomorphic, i.e.,
they can be identified. In fact, let us consider the linear map

x€E, >FyeE”

such that
Fi(w) =w(x), VYo € E). (2.15)
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To verify that (2.15) is an isomorphism, denote by (e;) a basis of E,, () its dual
basis in £, and f; the dual basis of (6;) in E;*. In these bases, (2.15) assumes
the form

Flo; = x'w;, (2.16)
which, owing to the arbitrariness of @, implies that
Fi=x', i=1,...,n. (2.17)

The correspondence (2.17) refers to the bases (e;), (6;), and (f;). To prove that
the isomorphism (2.17) does not depend on the basis, it is sufficient to note that the
basis change (1.15) in E, determines the basis change (2.11) in E¥. But (f;) is the
dual basis of (6,;), so that it is transformed according to the formulae

f; =4/t

Consequently, the components x' of x € E, and the components F’ of F € E**
are transformed in the same way under a basis change.
We conclude by remarking that the foregoing considerations allow us to look at
a vector as a linear map on E,". In other words, we can write (2.15) in the following
way:
X(@) = o (x). (2.18)

2.3 Covariant 2-Tensors

Definition 2.2. A bilinear map
T:E,xE, >N

is called a covariant 2-tensor or a (0, 2)-tensor.
With the following standard definitions of addition of two covariant 2-tensors
and multiplication of a real number @ by a covariant 2-tensor
(Ti + Ty)(x.y) = Tix.y) + T2 (x.y).
(@T)(x.y) = aT(x.y).

the set 7>(E,) of all covariant 2-tensors on E, becomes a vector space.

Definition 2.3. The tensor product ® ® o of w,0 € E is a covariant 2-tensor
such that

®wQ®o(x,y) =wXx)o(y), Vx,ye€E,. (2.19)
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Theorem 2.2. Let (e;) be a basis of E, and let (0") be the dual basis in EY. Then
(0" ® 07) is a basis of T»(E,), which is a n’>-dimensional vector space.

Proof. Since T € T,(E,) is bilinear, we have that
T(x,y) = T(xiei,yjej) = xiij(e,-,ej).
Introducing the components of the covariant 2-tensor T in the basis (8" ® 6/)
T;; =T(e;e;), (2.20)
the foregoing relation becomes
T(x,y) = T;;x'y/. (2.21)
On the other hand, in view of (2.19) and (2.5), it also holds that
0 ®0/(x,y)=x"y/, (2.22)
and (2.21) assumes the form
T(x,y) = T,-j0i ® 07/ (x,y).

Since this identity holds for any x,y € E,, we conclude that the set (8’ ® 6/)
generates the whole vector space 7>(E),):

T="T;0 ®6/. (2.23)
Then, the covariant 2-tensors (#’ ® /) form a basis of T>(E,) if they are linearly

independent. To prove this statement, it is sufficient to note that from the arbitrary
linear combination

aijOi (4 0j =0
we obtain
aijoi ® 0j(eh, ek) = al/S}lS/i =0,
so that ajx = 0 for any choice of the indices 4 and k. O

The basis change (1.15) in E, determines the basis change (2.11) in E and a
basis change

0" ®0"7 = (A4 H]0"®0° 0 @6/ =4,40"20%  (224)
in 7> (E,). On the other hand, it also holds that

T=T;0'®60 =T/0" 0", (2.25)
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and taking into account (2.24) we obtain the following transformation formulae of
the components of a covariant 2-tensor T € 7,(E,) under a basis change (2.24):

T/, = A} ATy (2.26)

Remark 2.4. If T = (T;;) is a matrix whose elements are the components of T, and
A= (A;) is a matrix of the basis change (1.15), then the matrix form of (2.26) is

T = ATTA. (2.27)
Definition 2.4. A contravariant 2-tensor or a (2, 0)-tensor is a bilinear map
T=E;xE;— 9. (2.28)

It is evident that the set T2(E,) of all contravariant 2-tensors becomes a vector
space by the introduction of the standard operations of addition of two contravariant
2-tensors and the product of a 2-tensor by a real number.

Definition 2.5. The tensor product of two vectors x,y € E, is the contravariant
2-tensor

x®yw,0) =w(x)o(y), Vw,0c<€E. (2.29)

Theorem 2.3. Let (e;) be a basis of the vector space E,. Then (e; @ e;) is a basis
of T*(E,), which is an n>-dimensional vector space.

Proof. Yw,0 € E,
T(w,0) = T(w,-()i,(fj()j) = w,-ojT(Oi, 07).

By introducing the components of the contravariant 2-tensor T relative to the basis
(e ®e))

TV =T(6",67), (2.30)
we can write
T(w,0) = Tijwi(fj. (2.31)
Since
e Re;(w,0) =wo0;, (2.32)

and @, o in (2.31) are arbitrary, we obtain the result
T=T"e ®e;, (2.33)

which shows that (¢; ® e;) generates the whole vector space 7%(E,). Further, it is
a basis of T2(E,) since, in view of (2.32), any linear combination

aijei®ej =0

implies that @’/ = 0 for all the indices i, j = 1,...,n. O
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The basis change (1.15) in E,, determines the basis change
e e, =Alde @ e (2.34)
in T%(E,). The contravariant 2-tensor T can be represented in both bases by
T=T"¢,®@¢, =T"e;, Qe, (2.35)

so that, taking into account (2.34), we derive the following transformation formulae
for the components of T:

T = (A7), (A7 T, (2.36)
Exercise 2.1. Verify that the matrix form of (2.36) is [see (2.27)]
T = (A"HTAHT, (2.37)
Definition 2.6. A mixed 2-tensor or a (1, 1)-tensor is a bilinear map
T:EfxE, —> N (2.38)

Once again, the set Tl1 (E,) of all mixed 2-tensors becomes a vector space by the
introduction of the standard operations of addition of two mixed 2-tensors and the
product of a mixed 2-tensor by a real number.

Definition 2.7. The tensor product of a vector x and a covector ¢ € E is the
mixed 2-tensor

XQw(0o,y) =x(0)w(y) =0c(X)w(y), Vo.,y€E,. (2.39)

Theorem 2.4. Let (e;) be a basis of the vector space E, and let (0") be the dual
basis in E. Then (¢; ® 07 ) is a basis of T (E,), which is an n*-dimensional vector
space.

In view of this theorem we can write
T="Te®80, (2.40)
where the components of the mixed 2-tensor are
T =T e)). (2.41)
Moreover, in the basis change (¢; ® 07) — (e ® 0'7) given by
e ®0/ = A4 e, ® 0%, (2.42)
the components of T are transformed according to the formulae

T/ = (A", Ak T (2.43)
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Exercise 2.2. Verify that the matrix form of (2.43) is [see (2.27)]

T = (A™HTA. (2.44)

2.4 (r,s)-Tensors

Definition 2.8. An (r, s)-tensor is a multilinear map
T:E' xE, >N (2.45)
It is quite clear how to transform the set 7, (£,) of all (r, s)-tensors (2.45) in a real

vector space.
Definition 2.9. LetT € T/ (E,) bean (r, s)-tensor and let L. € T,/ (E,) be a (p, q)-
tensor. Then the tensor product of these two tensors is the (r + p,s + g)-tensor
+ .
TRL e T;HP(EH) given by
T®L(0’1,...,0'r+p,X1,...,X5+q)
=T(01,....00X1,...,X)L(O 41,0, Orgp, Xpg 1,00 Xspg). (2.46)
By imposing that the associative property holds, the tensor product can be
extended to any number of factors. Then we introduce the following definition of
the tensor product of vectors and covectors:
XI® - ®X% Q0 ® Q0 (0,....0,,1uy,...,0) =
x1(01) X (0 )@ () -+ - @ (uy). (2.47)
With the procedure revealed in the previous section it is possible to prove the
following theorem.

Theorem 2.5. The dimension of the vector space T, (E,) of the (r + s)-tensors on
E,isn™™*S and

6, R -Re;, R0 ®---®0" (2.48)

is a basis of it.

In (2.48), (e;) is a basis of E, and (/) the dual basis in EY. Instead of
Egs. (2.40)—(2.43), we now obtain

T=T]!"e® Q¢ ®0'® @0, (2.49)

T js:T(ofl,...,0jS,ei1,...,ei,), (2.50)

il
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elfl ®"'®e;, RONR-..R 0
= Al AT AT (AT e, ® @, ®01 @@ 0%, (251)

i N —INiy gk kg rhi-hy
iji},,j’s =(4 1)5111 (4 l)lhrAjll AT (2.52)

2.5 Tensor Algebra

In the previous sections we defined the addition of tensors belonging to the same
tensor space. On the other hand, the tensor product of two tensors that might
belong to different tensor spaces defines a new tensor that belongs to another tensor
space. In conclusion, the tensor product is not an internal operation. However,
it is possible to introduce a suitable set that, equipped with the aforementioned
operations, becomes an algebra.

Let us consider the infinite direct sum (Sect. 1.4)

TEn = @r.sENTSrEn (253)

whose elements are finite sequences {a,x,»,T,L,K, ...}, wherea € N, x € E,,
weENTe T02(E,,), K e TZO(En), L e Tl1 (E,), etc. With the introduction of
this set, the multiplication by a scalar, the addition, and the tensor product become
internal operations and the set TE,,, equipped with them, is called a tensor algebra.

2.6 Contraction and Contracted Multiplication

In the tensor algebra TE, we can introduce two other internal operations: the
contraction and the contracted product.

Theorem 2.6. Denote by (e;) a basis of the vector space E, and by (8") the dual
basis in E). Then, for any pair of integers 1 < h,k < n, the linear map

Cri : T=T e, @ ®e, @01 @ ® 07 €T/ (E,)

— Cru(D) =TI ey, @€y, @€, @ ®€,®

0'® - @0 R ®-..® 07 e T (E,), (2.54)

which is called a contraction, to any tensor T € T](E,) associates a tensor
Cni(T) € T'Z\(E,), which is obtained by equating the contravariant index h and
the covariant index k and summing over these indices.

Proof. To simplify the notations, we prove the theorem for a (2, 1)-tensor T =
T/eiQe; ® 0" . For this tensor Cy ;(T) = Thh’ e;, and it will be sufficient to prove
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that, under a basis change, the quantities Thhj are transformed as vector components.
Since in a basis change we have that

Ty = (AL AL T

it also holds that
hj - —1\J m —1\J m
T = (AT AT, AT = (AT T
and the theorem is proved. O

The preceding theorem makes it possible to give the following definition.

Definition 2.10. A contracted multiplication is a map

(T.L) € T (E,) x T/ (E,) = Cie(T® L) € T/ [P N(E,). (2.55)
For instance, if T = T,fje,- ®e; ® 0" and L = Lfnel ® 0", then C; ,,(T® L) =
ThLle; ®e.

Theorem 2.7. The n"** quantities

Tiir (2.56)

JiJs

are the components of an (r +s)-tensor T if and only if any contracted multiplication
of these quantities by the components of a (p, q)-tensor L, p <'s, q¢ < r generates
an (r —q,s — p)-tensor.

Proof. The definition of contracted multiplication implies that the condition is
necessary. For the sake of simplicity, we prove that the condition is sufficient
considering the quantities T}i] and a (0, 1)-tensor L. In other words, we suppose

that the quantities T,i] L; are transformed as the components of a (1, 1)-tensor. Then
we have that

TOL = (A AT L,
Since Ly = (A_l);L;, the theorem is proved. |

Remark 2.5. LetT :x € E, — y € E, be alinear map and denote by (e;) a basis
of E, and by (T} ) the matrix of T relative to the basis (e;). In terms of components,
the map T becomes

v =T;x/, (2.57)

where y’ are the components of the vector y = T(x) in the basis (e;). Owing to the
previous theorem, the quantities (T} ) are the components of a (1, 1)-tensor relative
to the basis (e; ® 67). It is easy to verify that any (1, 1)-tensor T determines a linear
mapT: E, - E,.
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2.7 Exercises

1. Determine all the linear maps that can be associated with an (r, s)-tensor, where
r+s <3.

2. Let (e;) be a basis of a vector space E,, and let (8") be the dual basis. Verify
that a tensor that has the components (8}) in the basis (¢; ® /) has the same
components in any other basis.

3. Let (e;) be a basis of a two-dimensional vector space E», and denote by (6") the
dual basis. Determine the value of the covariant 2-tensor ' ®0%—0>®6 ' when
it is applied to the pairs of vectors (ej, e;), (e, €;), and (X,y) and recognize
geometric meaning of each result.

4. The components of a (1, 1)-tensor T of the vector space E; relative to a basis
(e; ® /) are given by the matrix

121
212
121

Determine the vector corresponding to x = (1,0, 1) by the linear endomor-
phism determined by T.

5. Inthe basis (e;) of the vector space E3, two vectors X and y have the components
(1,0,1) and (2, 1, 0), respectively. Determine the components of x ® y relative
to the basis (e} ® €/), where

€] = e +e;,
e, = 2e; — ey,

’
e; = e + e+ e;3.

6. Given the (0, 2)-tensor T,-j0i ® 0/ of T,(E,), where

(Ty) = (1 g)

determine if there exists a new basis in which its components become

(11
m=(5,):

7. For which (1, 1)-tensor (7)) of T}'(E3) does the linear map F defined by the
matrix (T]’.) satisfy the condition F(x) = ax, Vx € E3 and Va € )?

8. Given the (1, 1)-tensor T}e; ® 6/ of T»(E»), verify that T\ + T, and det(T})
are invariant with respect to a change of basis.
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9. Prove that if the components of a (0, 2)-tensor T satisfy either of the conditions
Ty =T, T;=-Tj

in a given basis, then they satisfy the same conditions in any other basis.
10. Given (0, 2)-tensors that in the basis (e;), i = 1,2, 3, have the components

1 0 -1
T, =| 0 -1 2 |,
-1 2 1
0 1 -1
T,=1-10 2 |,
1 =20

determine the covector w, depending on u such that
®y(v) =Ti(u,v),

wu(v) = Tz(ll, V)

Vv. Further, find the vectors u such that

Ti(u,v) =0, Ty(u,v)=0, Vv.



Chapter 3
Skew-Symmetric Tensors and Exterior Algebra

3.1 Skew-Symmetric (0, 2)-Tensors

Definition 3.1. A tensor T € T,(E,) is skew-symmetric or alternating if

T(X’ y) = —T(y,X), (31)

Vx,y € E,. In particular, (3.1) implies T(x, x) = 0.

Denoteby x = x'e; and y = y'e; respectively the representations of x and y relative
to a basis (e;) of E,. If (9") is the dual basis of (¢;) and T = 7};0' ® 6, then (3.1)
becomes

T,-jxiyj = —Tjixiyj.

This equality is identically satisfied Vx,y € E), if and only if the components T;; of
T verify the conditions

Ty=-Tj, i#j Ti=0. (3.2)
Exercise 3.1. Prove that if conditions (3.2) hold in a basis, then they hold in any

basis.

If we denote by T the matrix of the components of T, then conditions (3.2)
assume the following matrix form:

T =-T7. (3.3)

Definition 3.2. The exterior product of the covectors w,o € E; is the (0,2)-
tensor such that

WA =0Q®R0—0QRQw. (3.4)
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Theorem 3.1. The exterior product (3.4) has the following properties:

* ® A0 is a skew-symmetric tensor;
* WANO =—0N®,
e Ifo =aw,a €N, thenw Ao = 0.

Proof. From (3.4), Vx,y € E,, we have that

WAT(XY) =0 R0(XYy) -0 Qw(XYy)
= 0((x)a(y) —o(X)e(y)
= —w A0 (y,X), (3.5)
and the skew symmetry of @ A o is proved. Starting from (3.5) it is simple to verify
the other two properties. O

The set A,(E,) of the skew-symmetric (0, 2)-tensors is a subspace of the vector
space T>(E,). The dimension and the bases of A,(E,) are determined by the
following theorem.

Theorem 3.2. Let (e;) be a basis of E, and denote by (8') its dual basis in E}.
The dimension of A>(E,) is (; ), and the vectors

@ A7), i <]

form a basis of A, (E,).
Proof. Forany T € A,(E,) we have that

T=T;0'®0/ =) T,00060/ +) T,00 26/

i<j i>j
— ZTijaf ® 07 +ZTji0f R0
i<j Jj>i
=) T;0'®6/ - T;0 6"
i<j i<j
Therefore, we can write
T= T(ij)0i NS (3.6)
where
Tij =Ty, i <. (3.7)

Relation (3.6) shows that the set of the (0, 2)-tensors (8° A 87) € A,(E,) generates
the whole subspace A,(E,). Consequently, to verify that they form a basis of
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A, (Ey), it is sufficient to verify their linear independence. Now, from any linear
combination

a0’ A0 =0,i<j,
we have the condition
aij0' A 07 (en.er) =0,
which, in view of (3.5) and (2.4), implies a(;;) = 0, and the proof is complete. [

Definition 3.3. The quantitjes Tij), i < J, are called strict components of T
relative to the basis (0" A 67).

To determine the transformation formulae of the strict components, we recall that
they are components of a (0, 2)-tensor. Consequently, in view of (2.26), we can write

1 qh 4k
Tiijy = AGAG) Tk

=D AGAS Tk + Y AGA Tk

h<k h>k
= D _(AG A5 — AG A7) To.
h<k

and the transformation formulae of the strict components of T € A,(E),) are

T(hk)- (3.8)

Starting from the inverse formula of (2.26) we also have

(A7Hy (A7D]

T(ij) = (A—l)k (A—l)k
i j

Tye- (3.9)

The transformation formulae of the bases ' A 8/ of A,(E,) can be obtained by
noting that

T =T};0" A0 = Tp6" A0~ (3.10)

Introducing (3.8) and (3.9) into (3.10) we obtain

. . A—l)i (A—l)i ) ]
07 npi = |4 k1" A0k i< j h<k, (3.11)
(A7h; (A™Y]
0 NG = ‘A;z A§. 0" AO%, i< j h<k. (3.12)
Ah Ak




32 3 Skew-Symmetric Tensors and Exterior Algebra

Example 3.1. Let E; be a two-dimensional vector space and denote by (e, e;) and
(01, 02) a basis of E, and the dual basis of EJ, respectively. The dimension of
the vector space T>(E>) is 4, whereas the subspace A,(E>) of the skew-symmetric
(0, 2)-tensors is one-dimensional. Consequently, any (0, 2)-tensor of A,(E>) can be
written as follows:

T="T,0"16>

The skew-symmetric basis #' A 82 has a remarkable geometric meaning. In fact,
Vx,y € E,,

0' A0 (xy) =0'®0°(x,y)— 0> ®0'(x.y)
xl x2

, (3.13)
yhy?

= (x'y?=xyh) =

and we can state that @' A 0%(x,y) measures the area of the parallelogram
determined by the vectors x and y. In particular, from (3.13) we obtain

0' A 62%(erer) =1,

and the parallelogram determined by the vectors e; and e, has a unit area. We note
that the area of the parallelogram formed by the vectors (e}, €}) of another basis of
E», where

/ 1 2
e, = Ae; + Ajey,

/ 1 2
e, = A,e; + Ases,

has the value
Ay A7

=det A.
Atz ="

01A02(e/1,e/2):‘

In conclusion, choosing a basis (e;,e;) of E, and the corresponding skew-
symmetric (0, 2)-tensor 0' A 02, we introduce a criterion to evaluate the areas of
parallelograms without resorting to a metric. This criterion does not depend on the
basis, provided that the basis changes satisfy the condition det A = 1.

Exercise 3.2. Verify that in a vector space E3, related to the basis (e;), a skew-
symmetric (0, 2)-tensor T has the following form:
T=Tn0" A0+ Ti30' A0+ T030” A 6°,
where (@) is the dual basis in E} of (e;). Prove that the skew-symmetric
(0, 2)-tensor
T=0'A0>+0"70°+0>r0°
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associates to any pair of vectors X, y of E3 the sum of the areas of the projections
of the parallelogram formed by the vectors x, y onto the subspaces generated by
(el k) ez)’ (el ) e3)7 (627 e3)7 reSpeCtiVely.

In the next section, the content of this section will be extended to (0, r)-tensors.

3.2 Skew-Symmetric (0, r)-Tensors

Definition 3.4. Let S, = {1,2,...,r} be the set of the first  integer numbers. A
permutation of S, is any one-to-one map

7.8, — S,

We denote by {7 (1), 7(2),...,7(r)} the set formed by the same numbers of S,
placed in a different order. It is well known that the set I, of all the permutations
of S, contains r! one-to-one maps. This set can be equipped with the structure of a
group by the usual composition of maps

o,nme€ll, >0o0om eIl,.

The identity of this group is a map that does not modify the position of the numbers
of S,. Finally, the opposite of x is the inverse map 77! Leti, j, i < J,betwo
numbers of S,. We say that the permutation 7z contains an inversion with respect to
S, if

w(i) > m(j).

A permutation 7 is said to be even or odd according to whether the total number
of inversions contained in S, is even or odd. In the sequel, we denote by m () the
total inversions of .

Definition 3.5. Atensor T € T,(E,), r > 2, is skew-symmetric or alternating if
T(Xp,....%) = (=) T 1y, - - Xn(r) (3.14)

Vxi,...,X, € E, and V& € II,.

The preceding definition implies that the value of T vanishes every time T is
evaluated on a set of vectors containing two equal vectors. In fact, it is sufficient
to consider a permutation that exchanges the position of these two vectors without
modifying the position of the others and then to apply (3.14). From this remark it

easily follows that the value of T vanishes if the vectors {Xi,...,X,} are linearly
dependent.
If the r vectors {xy,...,X,} belong to a basis (e;), then, in view of (2.50), we

express the skew symmetry of T in terms of its components:

Tiyiy, = (1) Toi1yeniy)- (3.15)
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In particular, this condition implies that all the components of T in which two
indices have the same value vanish. It is quite obvious that the set of all the skew-
symmetric tensors form a subspace A, (E,) of T, (E,).

Remark 3.1. Since r vectors, when r > n, cannot be linearly independent, we can
state that

A(Ey) =10}, n<r.

1

Definition 3.6. The exterior product of r covectors ", . . ., ®, is the (0, r)-tensor

W' AN = Z (=)™ @ ... @@ "), (3.16)

well,

The tensor (3.16) is skew-symmetric since, in view of (2.47), we have that

@' A A © (X1,..., %) = Z (_l)m(n)wn(l)(xl) e ® wn(r)(xr)
well,
0'(x)) - 0'(x,)
e (3.17)
@' (x1) -+ 0" (X,)
A permutation 7 of the vectors X, ...,X, corresponds to a permutation of the

columns of the determinant in (3.17). This operation changes or does not change
the sign of the determinant according to whether the permutation is odd or even.
But this is just the property expressed by (3.14). Again recalling the properties of a
determinant, we can easily prove the following properties of the exterior product of
r covectors:

e Itisa (0, r)-skew-symmetric tensor.
e It vanishes if one vector linearly depends on the others.

Now we extend Theorem 3.2 to skew-symmetric (0, r)-tensors.
Theorem 3.3. Let (e;) be a basis of the vector space E, and denote by (0") the
dual basis in E). Then, if r < n, then (n) is the dimension of the vector space
r

A, (Ey) of the skew-symmetric (0, r)-tensors. Further, the skew-symmetric tensors
NN L (3.18)

where i} < --- < i, is an arbitrary r-tuple of integer numbers chosen in the set of
indices {1, ...,n}, form a basis of A,(E,).

Proof. First, whenr <n,any T € A,(E,) can be written as follows:

T = lejrojl ® "'® ojr'
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The summation on the right-hand side contains only terms in which all the indices
are different from each other since T is skew-symmetric. This circumstance makes
it possible to group all the terms as follows: first, we consider the terms obtained by
extracting arbitrarily r different indices i < --- < i, from the set {1,...,n}. We

recall that there are (’: ) different possible choices of these indices. Then, for each

choice, which is characterized by the indices i} < --- < i,, we consider all the terms
obtained by permutating in all the possible ways the indices i} < -+ < i,. In view
of (3.15) and (3.16), we can write

T= Z Z Trtiyyr(iy 0™ ® - ® §70r)

i1 <-<i, m€ll,

= Z 7-'i]"-ir Z (_l)m(n)on(ll) R R 0”(ir)

i <<y m€ll,
= > T8 A AT
i1 <w<ip
that is,
T = T(iyoipy0" Ao A O (3.19)

This result shows that the skew-symmetric (0, r)-tensors {870 A---A @7 i] < -0}
generate the whole vector space A, (E,). We can easily verify that they are linearly
independent, so that they form a basis of A, (E)). |

The transformation formulae of the strict components T7;,...;,) of a skew-symmetric
tensor [see (3.8)—(3.12)] can be found by noting that

/ _ h] hr
Ty = Ai) o Ay Ty,

Z Z (_1)m(ﬂ)A;Tl(]l) . Az(h)Tﬂ(jl)'"ﬂ(jr)v

Ji<e<jr w€ll,

where the indices j; < --- < j, are chosen in the set 1, ..., n in all possible ways.
Finally, we have that

Ty = | v e | T (3.20)

We can easily verify that the transformation formula of the bases of A,(E,) [see
3.11)]1is

(A7) A,
0" A nBT = e ' EANESN 2 (3.21)

—1\ir ir
(A7) e A
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In particular, if T € A, (E,), then (3.20) and (3.21) give

7., = det ATy, (3.22)
1
H’IA---AQ’”:mélA---/\Q", (3.23)

where A = det(A’).

3.3 Exterior Algebra

Definition 3.7. We define the exterior product of the skew-symmetric tensors
T = T(i)0" A~ AO" € A (E,)
and
L =L(jj..jh0" A=A 0 € Ay(Ey),
as the skew-symmetric tensor of A,4;(E,) given by

TAL = Z Z (_l)m(n)Tn(hl)mn(hr)Ln(h,+1)~~~n(h,+l\,)0hl ARRRIVAN 0’““ s

hy <"'<hr+.\' ﬂEH,+S
(3.24)

where 7 is any permutation of the indices &; < -+ < h, 4, in which 7w (h;) <
- < ww(hy), w(hy41) < -+ < w(hy45), and m (o) is the number of inversions of
w(hy), ..., w(hrys).

Example 3.2. The external product of the two skew-symmetric tensors

T="Tp0"A0%+ T30 A0> + T30% A 0° € Ay(E3),
60101 +w202 +w303 e A (E3)

®
is the skew-symmetric tensor of A3(E3) given by
TA® = (Thw; — Tizw;, + Tozw))0' A 0% A 60°.

Exercise 3.3. Prove that the exterior product of T € A,(Es5) and L € A,(E5) has
the component

Ti2Las — TigLos + TisLoa + ToaLis — TasLis + TasLio

along the basis vector 8' A 2 A 0% A 0°.
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It is not difficult to verify that T AL is skew-symmetric and independent of the basis.
It can also be proved that

TAL=(-1)"LAT. (3.25)

We can define the exterior algebra as we did for the tensor algebra. First, we
introduce the notations

Ao(E,) =R, A(E,) =E;.
Then we consider the set
A(E,) = @ren A (En), (3.26)

whose elements are formed by finite sequences (a¢,®,T,...), wherea € N, ® €
EY, T € Ay(E,), etc., and we recall that A,(E,) = {0} for r > n. This set,
equipped with multiplication by a scalar, addition, and an exterior product, is the
exterior algebra over E,,.

It is evident that what we have proved for the skew-symmetric tensors TY can be
repeated for the skew-symmetric tensors T(. In this way, we can define the exterior
algebra A" (E),).

3.4 Oriented Vector Spaces

Let B be the set of the bases of a vector space E,,, and let
e =Ae (3.27)
be a basis change. Introduce in B the relation R such that
(€)R(e;) & A >0, (3.28)
where A = det(Ai») # 0.

Theorem 3.4. R is an equivalence relation partitioning B into two equivalence
classes.

Proof. From the evident conditions ¢; = Sij e, det((Sij ) = 1> 0, it follows that any
basis is in the relation R with itself and $R is reflexive. If (3.28) holds, then we have

e = (A7h]e,,
where det((A_l)ij ) = 1/A > 0. Therefore, (e;) is in the relation 9t with (e}) and

R is symmetric. It remains to prove that R is transitive. To this end, we consider a
third basis (e]') such that

¢ = B]e,. (3.29)
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where det(B;{ ) > 0. Then we also have

: Dk
e = B,fe’j = B,{Ajek = Cje. (3.30)
Since det(C/l‘) = det(B,{ ) det(A’;) > 0, R is an equivalence relation. To verify
that $R partitions B into two equivalence classes, we first note that these equivalence
classes are at least two since the two bases (e;) and (e}), such that

10 ---0
¢ =Cle,, chy=| 91 O‘ , det(Cl) = —1,
0O 0 -.---1

are not equivalent. If (¢/') is another arbitrary basis of E,, then
e/ = Ale, = A/ Cle.

so that the basis (e}’) is equivalent either to (e}) or to (e;). O

Definition 3.8. A vector space E, is said to be oriented if one of the two
equivalence classes of R is chosen. In this case, the bases belonging to this class
are called positive, whereas the bases belonging to the other class are said to be
negative.

Let (e;) be a positive basis of the vector space E,, and denote by (") its dual

basis. If x; = xi’ej, i =1,...,n, are n vectors of E,, from (3.17) and (2.5) we
obtain that
Xj e X,
O' A A0 (X1,... . Xy) =det]| coeeenen . (3.31)
B

In particular, we have that
O 'A--ABO"(er,....e,) =1. (3.32)

Further, if (e}) is another basis of E,, related to (e;) by (3.27), then in view of (3.31),
we have that

0 A AB"(E, ... ¢)) = detA. (3.33)

In conclusion, we have proved that (Example 3.1)

Theorem 3.5. The (0,n)-covector 8' A --- A 8" of the vector space A,(E,)
associates to any n-tuple of vectors Xi,...,X, the volume of the parallelepiped
having these vectors as wedges.



3.5 Exercises 39

3.5 Exercises

1. Given the 1-forms

a=0"'-6%
B=0'—0>+0°
=03

the 2-form

and the 3-form

calculate the exterior products
aAB, aABAO, aAny oA,

2. Evaluate the components of the forms of the preceding exercise under the basis
change

0" =0'—-26°
07 =0'+6°,
0” =6°.

3. Let (e;) be a basis of the vector space E3 and denote by (") the dual basis. Given
the skew-symmetric tensors
T="Tn0"A0%+ T30 A0° + T30 A 6°,
L=Txn0'70>r0°

and the basis change
el =e —e;,
e, = e + 2ey,
e, =e —e;,
determine the components of the preceding tensors in the corresponding new
basis of A;(E3) and A3(E3).
4. Determine the ratio between the volumes of the parallelepipeds formed by the

two foregoing bases.
5. Write arbitrary skew-symmetric tensors of A(E4) and A,(Es).
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6. Multiply a skew-symmetric tensor of A,(E4) by a skew-symmetric tensor of
A3(Ey).

7. Given the volume form @' A 8% A 63 in a three-dimensional space E3, determine
the volume of a parallelepiped whose edges are the vectors (1,0,2), (—1,2,1),
and (1, 1, 0).

8. Evaluate the volume of the parallelepiped of the previous exercise adopting the
volume form 8" A 8> A 073, where

0" =6'+26°,
0/2 — 02 + 03’
0” =6'-20°.



Chapter 4
Euclidean and Symplectic Vector Spaces

4.1 Representation Theorems for Symmetric
and Skew-Symmetric (0, 2)-Tensors

In the preceding chapters we analyzed some properties of a finite-dimensional vector
space E,. In this chapter we introduce into E, two other operations: the scalar
product and the antiscalar product. A vector space equipped with the first operation
is called a Euclidean vector space, whereas when it is equipped with the second
operation, it is said to be a symplectic vector space. These operations allow us to
introduce into E, many other geometric and algebraic concepts.

Definition 4.1. Let E, be an n-dimensional vector space. A tensor T € T>(E)) is
said to be symmetric if
T(x,y) = T(y,x), Vx,y € E,. 4.1
It is easy to prove that (4.1) is equivalent to the condition

T; =Tji, 4.2)

where T;; = T(e;, e;) are the components of T in an arbitrary base (e;) of E,,.

Theorem 4.1. If T € T,(E,) is symmetric, then there exists a basis (€;) of E, in
which the components of T are given by the matrix

]Ir ©rs @rp
Oy, =I5 Oy, |- 4.3)
@Pr @PS @PP

In (4.3), I, and I are unit matrices of order r and s, respectively, where r + s < n.
Finally, p =n — (r +s) and O;; isani x j zero matrix.
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Proof. f T = 0 or n = 1, then the theorem is trivial. In that case we suppose
T # 0andn > 1. If T # 0, then there exists a pair (x*,y*) of vectors such that
T(x*,y*) # 0. Now we prove the existence of at least one vector x; for which
T(x;,x1) # 0. To this end it is sufficient to prove the existence of at least a real
value A such that T(Ax* + y*, Ax* 4+ y*) # 0. In view of the symmetry of T we
obtain that

TAX* 4+ y*, Ax* +y*) = A>T(x*, x*) + 2AT(x*, y*) + T(y*,y")
=al\? 4+ 2b\ +c, 4.4)

where a, b, and ¢ are given real numbers. Now the trinomial in (4.4) vanishes
identically for any A if and only if ¢ = b = ¢ = 0. Since b = T(x*,y*) # 0, we
have proved the existence of at least one vector x; for which T(x;, x;) # 0. Putting
u = xl/\/m, where « = T(x,x;), it follows that T(u;,u;) = =£1, where the
sign is chosen according to the sign of . We denote by U! the one-dimensional
subspace of E, generated by u; and by V! the following subspace of E,,:

Vi={veE,:T(y,v) =0\
Itis E, = U' & V. In fact, Vx € E, the vector

X T(ul,X)u
Tu.u)

verifies the condition

T(uy,
T(uy,v) = T(u;,x) — ﬁ“ul,ul) =0,

so that v € V!, Introducing the notation a = T(u;,x)/T(u;, u;), we have that
x=v+au;, veV! au eU". 4.5)

The decomposition (4.5) is unique. In fact, if there is another decomposition x =
v + buy, v € V!, then we have v — v € V! since V! is a vector subspace of E,.
Further,vV  —v = (¢ —b)u; and v/ — v € U'nV! Asa consequence, we have that

TV —v,uy) = (a —b)T@u,u) = (a — b)a.

Since o # 0, the preceding condition implies @ = b and v/ = v. Now we consider
the restriction T' of T over V!, which is a bilinear symmetric map. If T' = 0
or n' = dim(V') = n — 1 = 1, then the theorem is proved. If neither of these
conditions is verified, then we can again apply the foregoing procedure to T!, T2, . . .
until one of the conditions T? = 0 or n’ = 1 is verified. In this way we determine a
set {uy,...,u,} of independent vectors for which the following result is obtained:

T(u,w) =£1, T(w,u;)=0,i#j
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By a convenient arrangement of these vectors, we obtain a basis (€;) in which the
representative matrix of T has the form of (4.3). O

The basis (€;) is called a canonical basis of E,. If (Ei) is the dual basis of (e;),
then the symmetric tensor T assumes the following canonical form:

r . . r+s . .
T=)0®0 - > 0c0. (4.6)
i=1 i=r+1

Theorem 4.2. If T € T,(E,) is skew-symmetric, then there exists a basis (€;) of E,,
in which the components of T are given by the matrix

@rr ]Ir ©rp
-1, 0,, O, |- 4.7
©rp @rr ©rp

In (4.7), I, is an r x r unit matrix, 2r < n, p = n —2r and Q;; isani X j zero
matrix.

Proof. The theorem is obvious if T = Qorn = 1.If T # 0 and n # 1, then
there are at least two independent vectors u; and u, for which T(u;,u;) # 0. In
fact, if up = au,, then it follows that T(u;,u;) = aT(u;,u;) = 0, in view of the
skew symmetry of T. Let U'! denote the two-dimensional space generated by the
independent vectors u; and u,. From the foregoing considerations it follows that, in
this basis, the matrix representing the restriction of T onto U! has the form

01
-10)°
Now we prove that E,, = U' @ V!, where
Vi={veE, T(v,u)=0,Yue U}

is a subspace of E,,. First, Vx € E, we introduce the two vectors

u = T(x,w)u; — T(x,u)uy,
vV=x—u
Sinceu € U! and x = u + v, it remains to prove that v € V! and the vectors u, v
are uniquely determined. But fori = 1,2 itis
T(v,u;) =T(x—u,u;) = T(x,u;) — T(u, u;)
=T(x,u;) — T(T(x,up)u; — T(x,u;)uy, u;)
=Tx,w)— T w)T,w) + T(x,u;)T(w,u;) =0,
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so that v € V1. Further, if there is another decompositionx = u’ + v/, u’ € U', and
v eV! wehavew —u =V —v.Butv —v e V!, and then

TV —v,u;)) =T —u,u;) = 0.

Since w’ —u € U, there are two real numbers ¢ and b such that u' —u = aqu; + bu,.
Consequently, from the foregoing result we obtain the condition

aT(u;,w;) + bT(uz,u;) = 0,

which implies a = b = 0 since T(u;,u;) # 0 and T(u;,u;) = 0. The restriction
T' of T onto V! is still a skew-symmetric tensor. Then, if n = 1 or T! = 0, the
theorem is proved; otherwise we can repeat for T' the foregoing reasoning. Iterating
the procedure, we determine a basis (u;) of E, in which T is represented by the
matrix

0 1 0 «ovvevnnn 0
10 0 ----
......... 0 1 «ovvee
“1 0 ------
0 0 - 0
In the new basis,
e =uy_y, [ =1,...,r
Er+i:ll21‘, i=1,....,r,
€, = U, k=2r+1,...,n,
the representative matrix of T becomes (4.7), and the theorem is proved. O

The basis (€;) is called a canonical basis of E,,. Let (yi) be the dual basis of (€;).
Then the foregoing theorem supplies the following canonical form of the skew-

symmetric tensor T in the basis (F ® 51) of TL(E,):
T= 08" -0 20 (4.8)
i=1
4.2 Degenerate and Nondegenerate (0, 2)-Tensors

For any T € T,(E,) we consider the vector subspace of E,

Ey={xe E,,T(x,x) =0,Vy € E,}.
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Definition 4.2. The tensor T € T>(E,) is said to be nondegenerate if E, = {0},
degenerate if dim(Ey) = k > 1.

In components, the condition T(x,x) = 0, Vx € E,, is expressed by the system
Tyx'=0, j=1,...,n, (4.9)

of n linear equations in n unknowns (x'). It is well known that, denoting by T the
representative matrix of T in the basis (e;) of E,,, system (4.9) admits a zero solution
when the rank p of T is equal to n, and infinite solutions, which belong to a vector
subspace of E,, when p < n. Consequently, dim(Ey) = n — p.

For a symmetric tensor T € T>(E,), resorting to its canonical representation, we
can state that the rank p coincides with the number r + s of the elements of the
principal diagonal of matrix (4.3) that assume the values +1, whereas dim(Ey) is
equal to the number of zeros contained into the principal diagonal. For a symmetric
nondegenerate (0, 2)-tensor T there is no zero in the principal diagonal of (4.3).
Starting from (4.7), we conclude that for a skew-symmetric (0, 2)-tensor T, it results
that the rank (T) = 2r and T is nondegenerate if and only if 2r = n. In particular,
if n is odd, there is no nondegenerate tensor.

Theorem 4.3. The numbers r and s appearing in the canonical representation (4.6)
of a symmetric tensor T € T,(E,) do not depend on the canonical basis of E,.

Proof. Let (€;) be the canonical basis in which T is represented by the matrix
(4.3). The vector subspaces ET and E~ of E, generated by (€;,...,€,) and
(€+1,---,€45), respectively, satisfy the condition

E,=E*®E” & E,. (4.10)
Moreover, for any choice of

.
X = Zfiéi cET,

i=1

r+s
y= ) Ve&ckE,
i=r+l
we have that
r ‘ r+s ‘
Txx) =) (@)P’>0. Ty.y=- ) () <0 @I
i=1 i=r+1

In another canonical basis (€.) of E,, the representative matrix T of T has again
the form (4.3), with r’ positive numbers and s’ negative numbers in the principal
diagonal such that 7’ + 5" = r + s = p. Denoting by E'" and E’~ the vector
subspaces of E, generated, respectively, by (€},....€,) and (€., ..., €., ),
again we have the decomposition

E,=ET®E~®E,,
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and (4.11) gives

r/ r/_,’_s/
Texx) =) ) >0, Tyy=- Y O)<o.
i=l1 i=r'+1

We can easily prove that the intersection ET N (E'~ @ Ep) = {0}.Infact,ifx € ET
and x # 0, then (4.11), is satisfied; further, any y € E*,y # 0, verifies (4.11),.
Consequently, the subspace £ *® E'~ @ E, has adimensionr +n —r’ < n, so
that » < r’. Applying this reasoning to E'* @ E~ @ Eo, we obtain r = r’. O

Definition 4.3. The integer number r is called an index of T, whereas the difference
r — s is the signature of T.

Definition 4.4. Let T belong to 75(E,). The map g : E,, — 9 such that

q(x) = T(x,x)

is said to be the quadratic form associated with T. Since g (x) vanishes identically
when T is skew-symmetric, throughout the following sections we refer only to
symmetric tensors.

Definition 4.5. A symmetric tensor T € T,(E,) is said to be positive semidefinite
if Vx € E, the following results are obtained:

q(x) =T(x,x) > 0. (4.12)

If (4.12) assumes a zero value if and only if x = 0, then T is positive definite.

By adopting a canonical basis in E, and resorting to Theorem 4.3, we conclude
that s = 0 when T is positive semidefinite. Further, T is positive definite if and only
if r = n. The character of positive definiteness of T does not depend on the basis
(e;) of E,. In fact, in any basis (4.12) can be written as

Ti;x'x) >0, V(x')eR". (4.13)
It is well known that quadratic forms are positive semidefinite (positive definite) if
and only if all the principal minors 7%, i = 1,...,n, of the representative matrix
T = (Tij) of T with respect to the basis (e;) satisty the following conditions:

T'>0, (T'">0), i=1,...,n. (4.14)

Theorem 4.4. Let T € T,(E,) be a symmetric and positive semidefinite (0,2)-
tensor. Then, YX,y € E, Schwarz’s inequality

IT(x,y)| = VT(x.x)vV/T(y.y (4.15)
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and Minkowski’s inequality

VI +y,x+y) < VT(xx) + VT(y,y) (4.16)

hold.
Proof. Note that Va € N and Vx,y € E, the following results are obtained:
T(ax +y.ax +y) = a’T(x,x) + 2aT(x,y) + T(y,y) > 0. (4.17)

Since the left-hand side of preceding inequality is a second-degree polynomial in
the variable a, we can state that its discriminant is not positive, that is,

IT(x.y)|* = T(x,x)T(y.y) <0, (4.18)
and (4.15) is proved. To prove (4.16), we start from the inequality
T(x +y,x+y) = T(x,x) + 2T(x,y) + T(y,y)
= T(x.x) + 2|T(x,y)| + T(y.y).
which in view of (4.15) implies
T(x+y.x+y) < T(x.%) + 2y/Tx. ) T(y.y) + T(y.y)
= [VT(x.x) + yT(x. 0P,

and (4.16) is proved. O

4.3 Pseudo-Euclidean Vector Spaces

Definition 4.6. A pair (E,, g) of a vector space E, and a symmetric nondegenerate
(0, 2)-tensor is called a pseudo-Euclidean vector space.

In such a space the tensor g introduces the scalar product x -y of two arbitrary
vectors X,y € E,, which is a mapping

xX,y) € E, xXE, >x-yeN,
where
x-y = g(x.y). (4.19)
The scalar product has the following properties:
X-y=Y-X
X-(y+z)=x"y+x-z,
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a(x-y) = (ax)-y,
x-y=0,Vye E, = x=0, (4.20)
Vx,y,z € E,. In fact, the first property follows from the symmetry of g; since g
is bilinear, the second and third properties hold; finally, the fourth property follows

from the positive-definite character of g.
A vector X is said to be a unit vector if

Xx-x==*£1. 4.21)

Two vectors are orthogonal if
x-y=0. (4.22)

In a basis (e;) of E, the scalar product determines a symmetric nonsingular
matrix G = (g;;) whose coefficients are

8ij =€ -¢€;. (423)

In contrast, if a symmetric nonsingular matrix G = (g;;) is given, then a scalar
product can be defined by the relation

Xy =gyx'yl (4.24)

in any basis (e;) of E,. Theorem 4.1 guarantees the existence of canonical bases (€;)
in which the representative matrix G of the scalar product has the diagonal form

~ (I O
G= ( o —115) , (4.25)

where r + s = n. In these bases, which are called generalized orthonormal bases,
the scalar product assumes the following form:

r r+s
xy=>y ¥y - ) ¥y (4.26)
i=l1 i=r+1

4.4 Euclidean Vector Spaces

Definition 4.7. A Euclidean vector space is a pair (E,, g), where E, is a vector
space and g is a symmetric positive-definite (0, 2)-tensor.

In a Euclidean vector space the scalar product verifies the further condition

X-x <0, Vx € E,, 4.27)
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where the equality to zero holds if and only if x = 0. Property (4.27) makes it
possible to define the length or modulus of a vector as follows:

x| = VX X. (4.28)

Also, in a Euclidean space the Schwarz and Minkowski inequalities (4.15) and
(4.16) hold. With the new notations, they assume the following form:

[x-y| < x|yl (4.29)
[x +yl < [x| + [yl (4.30)

Noting that (4.29) is equivalent to the condition

Xy
Ix[ly]

_15

=1 (4.31)

we can define the angle ¢ between two vectors x and y by the position

X-y
Ixllyl

0sp = (4.32)

It is easy to verify that the vectors belonging to an orthonormal system are
independent; moreover, they form a basis if their number is equal to the dimension
of E,. In any basis (e;) of E,, the length of x € E, and the angle between two
vectors x and y assume the form

x| = \/gijx'x/, (4.33)

gijx'y/
V&X' xI\/gijyyI

cosp = (4.34)

Definition 4.8. Let (e;) be a basis of the Euclidean vector space E,. We call
covariant components of the vector x relative to the basis (e;) the quantities

X =X-€ = g,-jxj‘ (4.35)

When a basis (e;) is given, there is a one-to-one map between vectors and their
contravariant components. The same property holds for the covariant components.
In fact, it is sufficient to note that det(g;;) # 0 and refer to linear relations (4.35).

All the preceding formulae assume their simplest form relative to an orthonormal
basis (€;). In fact, since in such a basis

&8 =6y (4.36)
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we obtain also

(4.37)

(4.38)

(4.39)

After checking the advantage of the orthonormal bases, we understand the
importance of Schmidt’s orthonormalization procedure, which allows us to obtain
an orthonormal basis (u;) starting from any other basis (e;). First, we set

u; = e€;. (4.40)
Then, we search for a vector u, such that

u = a%ul + ey, (4.41)
u-up = 0. (442)

Introducing (4.42) into (4.43), we obtain the condition
a%ul -u; +u;-e; =0.

Since u; # 0, the preceding condition allows us to determine aé and the vector u,
is not zero owing to the linear independence of e; and e,. Then, we search for a
vector u3 such that
_ 1 2
U3 = aszu; + a;u; + us
u-u3 = 0,

up -u3 = 0.

These relations imply the linear system
aju;-u; +u-e3 =0,
a%llz-llz +u-3; =0,

which determines the unknowns a% and a% since the vectors u; and u, do not vanish.
Finally, the system (u;, uy, u3) is orthogonal. After n steps, an orthogonal system
(uy,...,u,) is determined. Dividing each vector of this system by its length, we
obtain an orthonormal system.
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Definition 4.9. Let V' be a vector subspace of E,,. Then, the set
Vi={x€eE,x-y=0VyeV}, (4.43)

containing all the vectors that are orthogonal to any vector of V, is said to be the
orthogonal complement of V.

Theorem 4.5. If E, is a Euclidean vector space and V any vector subspace of E,,
then V| is a vector subspace of E,; in addition, the following results are obtained:

E,=VaV,. (4.44)
Proof. Ifx1,x, € V1 ,a;,a; € N, andy € V, then we have that

(a1X1 +axx2) -y =a1X; -y + arx -y =0,

and a;x; 4+ axx, € V. Further, we note that if (e, . .., e,,) is a basis of V, then any
vector that is orthogonal to all the vectors of this basis is an element of V| . In fact,
whenx-e; =0,7i =1,...,n,foranyy € V we obtain that

m

X-y:X°Zm:yiei :Zin'ei :O,

i=1 i=1

and then x € V. Now, Vx € E,, we set

X = (x-e)el + - (X-ey)en,

X' =x—X.

Since the vector x” € V, the decomposition x = x’ 4+ x” is such that x’ € V and
x” € V. To prove that this decomposition is unique, we suppose that there is an-
other decompositiony’ +y”. Then, it must be that (y' —x’) + (y”—x") = 0, where the
vector inside the first parentheses belongs to V', whereas the vector inside the other
parentheses belongs to V . Finally, in a Euclidean space the sum of two orthogonal

vectors vanishes if and only if each of them vanishes and the theorem is proved.
O

4.5 Eigenvectors of Euclidean 2-Tensors

Definition 4.10. Let T be a (1, 1)-tensor of a Euclidean vector space E,. We say
that the number A € N and the vector x # 0 are, respectively, an eigenvalue of T
and an eigenvector of T belonging to A if A and x satisfy the eigenvalue equation

T(x) = Ax. (4.45)
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The property that T is linear implies that the set V, of all the eigenvectors
belonging to the same eigenvalue A form a vector subspace of E,. In fact, ifa, b € N
and x, y € V}, then we have that

T(ax 4+ by) = aT(x) + bT(y) = A(ax + by),

so that ax + by € V.

Definition 4.11. The dimension of the vector subspace associated with the eigen-
value A is called a geometric multiplicity of the eigenvalue A; in particular, an
eigenvalue with multiplicity 1 is also said to be simple. The set of all the eigenvalues
of T is called the spectrum of T. Finally, the eigenvalue problem relative to T
consists in determining the whole spectrum of T.

To find the eigenvalues of T, we start out by noting that in a basis (e;) of E,, (4.45)
is written as

(T;.' —,wj.)xf —0,i=1,....n. (4.46)

This is a homogeneous linear system of n equations in n unknowns x',...,x",

which admits a solution different from zero if and only if
P,(A) = det(T] — A8}) = 0. (4.47)

Now we show a fundamental property of the preceding equation: although the
components 7! of tensor T depend on the choice of the basis (e;), the coefficients
of (4.47) do not depend on it. In fact, in the basis change

e =Ale;,
with the usual meaning of the symbols, we have that

P!(X) = det(T" — AI') = [det A™'(T — A)A]
= detA"'detAP,(}),

and then
P,: L) = P,(1). (4.48)

Since the polynomial P,(A) does not depend on the basis (e;), it is called a
characteristic polynomial of T. Denoting by I; the coefficient of the power A"~
and noting that Iy = (—1)", we can write P, (A) as follows:

Pi(A) = (=1)"A" + LA e (4.49)
Remark 4.1. 1t is possible to verify that

I =)J,i=1,...,n, (4.50)
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where J; is the sum of the all determinants of the principal minors of order i of
matrix T. In particular, /| = Tll +---+T"and I, = detT.

In conclusion, we have proved what follows.

Theorem 4.6. The eigenvalues of a (1,1)-tensor T are the real roots of the
characteristic polynomial

PoA) = (—1)"A" + A" o4 1, = 0. (4.51)

Definition 4.12. Equation (4.51) is the characteristic equation of the tensor T.
Further, the multiplicity of a root A of (4.51) is called the algebraic multiplicity
of the eigenvalue A.

Let A be any real roots of (4.51), i.e., an eigenvalue of the spectrum of T.
Introducing A into (4.46), we obtain a linear homogeneous system whose solutions
form a subspace V) of eigenvectors. The dimension of V) is equal to k = n — p,
where p is the rank of the matrix T — AL In other words, we can find k independent
eigenvectors uy, ..., u,, belonging to V), that form a basis of Vj. In particular, if
there exists a basis of E, formed by eigenvectors of T belonging to the eigenvalues
Als..., Ay, then the corresponding matrix T representative of T assumes the
following diagonal form:

Te|ooeonn ... , (4.52)

The following theorem, whose proof we omit, is very useful in applications.

Theorem 4.7. Let T be a symmetric tensor of a Euclidean vector space E,. Then,
all the eigenvalues of T are real and the dimension of the subspace V) associated
with the eigenvalue A is equal to the multiplicity of A. Further, eigenvectors
belonging to different eigenvalues are orthogonal to each other, and there exists
at least a basis of eigenvectors of T relative to which the matrix T, representative of
T, is diagonal.

4.6 Orthogonal Transformations

Definition 4.13. Let E, be a Euclidean n-dimensional vector space. An endomor-
phism Q : E, — E, is an orthogonal transformation if

Q(x)-Q(y) =x-y, Vxy € E,. (4.53)

If the basis (e;) is orthonormal, then the n vectors Q(e;) are independent and
consequently form a basis of E,. Therefore, Q is an isomorphism and the matrix
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Q, representative of Q in any basis (e; ), is not singular. The condition (4.53) can be
written in one of the following forms:

& 0F 0 = gy, (4.54)
Q'GQ =G. (4.55)

In particular, relative to the orthonormal basis (e;), in which G = I, the foregoing
relations can be written as follows:

QTQ=I«Q' =Q.. (4.56)

A matrix satisfying one of conditions (4.56) is said to be orthogonal.

Since the composite of two orthogonal transformations is still orthogonal, and
such are the identity transformation and the inverse transformation, the set of all
orthogonal transformations is a group O(n), which is called an orthogonal group.
In view of (4.56) it follows that

detQ = *1. (4.57)

The orthogonal transformations of a three-dimensional Euclidean space E3 are
also called rotations; in particular, the rotations for which detQ = 1 are called
proper rotations. A group of rotations is denoted by O(3), whereas the subgroup of
proper rotations is denoted by SO(3). Finally, the orthogonal transformation —I is
called the central inversion.

The following theorem is fundamental.

Theorem 4.8 (Euler). A rotation Q # I of the three-dimensional vector space E3
always has the simple eigenvalue . = 1 whose corresponding eigenspace Vi is
one-dimensional and invariant under Q. Further; if the restriction Q1 of Q to the
orthogonal complementary space V| is different from the identity, then A = 1 is the
only eigenvalue of Q.

Proof. Relative to an orthonormal basis (e;) of E3 the eigenvalue equation of Q is
(0 —A8i)x/ =0,

where Q = (Q ’j) is an orthogonal matrix. On the other hand, the characteristic
equation is

Ps(A) =2+ LA+ LA+ 1;=0,

with [see (4.50)]
I =0+ 03+ 03, (4.58)
_ Q%Q%) (Qi Q%) (Qi Qi)
L =— — — , 4.59
’ (Q% 01) \oio01) \oi0: (439

Iy = detQ = 1. (4.60)
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In view of (4.60), the characteristic equation can also be written as
A+ LA+ LA+ 1=0.

Denoting by A'; the cofactor of Q;, we have that

i

—1Ni Aj
(© )/ ~ detQ’

and recalling that Q is orthogonal, the preceding equation gives
(@7 =4} =" =0/ (4.61)
This result shows that I, = —1; and the characteristic equation becomes
A+ LA =LA +1=0,

so that A = 1 is a solution of the characteristic equation. This eigenvalue can have a
multiplicity of 3 — p, where p is the rank of the matrix Q —I. A priori p can assume
the values 0, 1, 2. The value 0 must be excluded since it implies Q = I, against the
hypothesis of the theorem. If p = 1, then all the minors of order two vanish; in
particular, the following minors vanish:

(8 o2& )= a-ot-0i+1-0

0} 03-1
1_ 1

(%" o) = s-oi-ate =
2 2

In view of (4.60), the preceding equations imply O} = Q3 = Q3 = 1. Taking into
account this result and the orthogonality conditions

(@D + (@D + (@) =1,

(227 +(03) +(23)° =1,

(037 + (09 +(2)° =1,

we obtain Q; = 0,7 # Jj, and again we have that Q = I, against the hypothesis.
Consequently, p = 2 and the eigenvalue A = 1 is simple.

Let V; be the eigenspace belonging to the eigenvalue A = 1, and denote by
V, the two-dimensional vector space of all the vectors that are orthogonal to V.
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The vectors (u;, u, u3), where (u;, u,) is an orthonormal basis of V| and u3 a unit
vector of Vi, form a basis of E3. Since Q is orthogonal, Q(v) € V,, Vv e V. In
particular, we have that

Q) = 0)(w) + 0;(w),

—1 —2
Quy) = 0, (u;) + 0, (w2),
Qu3) = us,
and the representative matrix of Q relative to the basis (u;, uy, uz) gives
—1 —1
_ (2,930
Q=10 00|
0 01

whereas the orthogonality conditions become

@)+ (@) =1,
Q)2+ (0 =1,
(00 + (003 = 1.

These relations imply the existence of an angle ¢ € (0.27) such that

cos¢ sing 0
Q=1 sing cosp 0 |. O
0 0 1

4.7 Symplectic Vector Spaces

Definition 4.14. A symplectic vector space is a pair (E5,, ), where E,, is a vector
space with even dimension and £ a skew-symmetric nondegenerate (0, 2)-tensor.

Remark 4.2. Tt is fundamental to require that the dimension of the vector space be
odd. In fact, owing to Theorem 4.2, in a vector space with even dimension, any
skew-symmetric (0, 2)-tensor is always degenerate.

Definition 4.15. In the symplectic vector space (E,,, ), the antiscalar product is
the map (x,y) € E», X Ezy, — [X,y] € N such that

[x,y] = (x,y). (4.62)
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An antiscalar product has the following properties:

[x.y] = -y, x], (4.63)
[x.y+z] =[x y]+xz (4.64)
alx,y] = [ax,y], (4.65)
[x,y] =0,Vy € Ey, = x=0. (4.66)

In fact, the first property follows from the skew symmetry of €. The second and
third properties follow from the bilinearity of €. Finally, the fourth property is due
to the fact that £ is nondegenerate.

We say that the vectors x and y are antiorthogonal if

[x,y] = 0. (4.67)

In view of (4.66), we can state that the only vector that is antiorthogonal to any other
vector is 0. Further, any vector is antiorthogonal to itself. In any basis (e;) of E»,,
the representative matrix of € is skew-symmetric and the antiscalar product can be
written as

[x,y] = Qix'y/, (4.68)

where x' and y' are, respectively, the components of x and x relative to (e;). In a
canonical basis (u;) (Sect. 4.1), which is also called a symplectic basis, R is given

by the matrix
(O
Q= 4.
(—]I (O)) ’ (4.69)

where O is a zero n x n matrix and I is a unit # X n matrix. Moreover, in a symplectic
basis, in view of (4.68) and (4.69), we obtain

[lli,llj] = [un+i7un+j]7 (4.70)
[l.l,',lln+j] = 8,‘]', (471)
[x.y] =) @y —x*y. (4.72)

i=1

An automorphism S : E;, — Ej, of a symplectic vector space Ej, is a
symplectic transformation if the antiscalar product does not change, that is,

[S(Xv y)] = [Xv Y] , VX, ye Ep. (473)

The symplectic transformations correspond to the orthogonal transformations of a
Euclidean space. If we denote by S = (S ,?) the matrix representative of S in any
basis (e;), then condition (4.73) assumes the form

Qi S!Sk = Q). (4.74)
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In matrix form this condition can be written as
sTQs = Q. (4.75)

In a symplectic basis, when we adopt the notation

AB
S= (CD), (4.76)

condition (4.75) can explicitly be written as

(&5)(50)(25) = (S0)

In conclusion, a transformation S is symplectic if and only if

ATB—-CTA =0, 4.77)
ATD-CTCc =1, (4.78)
B'B-D'A = 0, (4.79)
B'D-D'C = L. (4.80)

The set Sp(E,,,R) of the symplectic transformations of Ej, is called a
symplectic transformation group of E,,. To verify that Sp(E,,, ) is a group,
we start out by noting that, VS, S, € Sp(E»,, R),

[S1(S2(x)), S1(S2(y)] = [S2(x), S2(y)] = [x.¥]
and S;S, € Sp(E,,). Further, from (4.75), since det 2 = 1, it follows that
(detS)> =1,
and there is the inverse automorphism S™'. Finally,
[x.y] = [ST'Sx).8T' )] = [ST'®).S7'W)].

and S™!' € Sp(E»,).

4.8 Exercises

1. Let V be a subspace of the Euclidean vector space i* generated by the vectors
(1,0,1,3) and (0, 1, 1,2). Determine the subspace V) of the vectors that are
orthogonal to V.
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2. Let E be the four-dimensional vector space of the 2 x 2 matrices with real
coefficients. If A and B are two arbitrary matrices of E, show that

A-B =tr(BTA)

is a scalar product and that

10 01 00 00
00/’\00/’\10/)’\01
is an orthonormal basis of E.

. Find an orthogonal 2 x 2 matrix whose first row is either (1/+/5,2/+/5) or (1,2).
4. Let E, be a vector space, and denote by u a given vector of E,,. Prove that

(O8]

Y={ve E)Ju-v=0}

is an (n — 1)-dimensional subspace of E,;

E, =260,

where ® = {v = au,a € N};
* The orthogonal projection Px(v) of v € E, onto X is given by

Ps(v) =v—(v-u)u

5. Let E, be the n-dimensional vector space E, of the polynomials P(x) of
degree n in the interval (0, 1) (Sect. 1.6). Prove that

1
P()- O(x) = /0 P()O()dx. P(x). 0() € E,

defines a Euclidean scalar product in E,,.






Chapter 5
Duality and Euclidean Tensors

5.1 Duality

In this section, we show that when E, is a Euclidean vector space, there is an
isomorphism among the tensor spaces 7, (E,) for which r 4 s has a given value.
In other words, we show the existence of an isomorphism between E, and E, of
isomorphisms between TOZ, Tll, and TZO, and so on.

Theorem 5.1. Let (E,,g) be a Euclidean vector space. Then, the map t : X €
E, — wx € E, such that

@x(y) = g(x,y) = x-y, (5.1
defines an isomorphism that is called a duality.

Proof. First, (5.1) defines a covector since g is linear with respect to y. Moreover,
the linearity of g with respect to x implies that the mapping t is linear. Finally,
kert = {x € E,, 1(X) = wx = 0} contains the vectors X such that

wx(y) = g(x,y) =x-y=0, Vye€kE,.

But g is a nondegenerate 2-tensor and the preceding condition implies that x = 0.
Therefore, ker t = {0}, and 7 is an isomorphism.

Remark 5.1. Let (e;) be a basis of E, and let (8") be its dual basis. The basis (6,)
of E; corresponding to (e;) in the isomorphism t is not equal to (). In fact, it is
such that

0, (y) = ge;,y) = glei.e;)y’ =gy’ = gi;07(y).

ie.,
0ei :gij0f. (52)
O
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In the bases (e;) and ("), isomorphism (5.1) has the following representation:
w;i = gijx?, (5.3)

whereas the inverse map is

x'=g"w;. (5.4)
In other words, isomorphism (5.1) associates with any vector X a covector whose
components in the dual basis are equal to the covariant components of X in the basis

(e;). We can also state that (5.1) allows us to identify the vectors of E, and the
covectors of EF.

Definition 5.1. Any pair (X, ®x) in which @y is given by (5.1) is said to be
a Euclidean vector. Further, the real numbers x' and w; satisfying (5.3) are
respectively called contravariant components and covariant components of the
Euclidean vector X.

Henceforth a Euclidean vector will be denoted by the first element of a pair
(Xa wx)‘

5.2 Euclidean Tensors

The isomorphism (5.1) can be extended to the tensor spaces 77 (E,) and T, (E,),
for which r+s = p+q. For the sake of simplicity, we prove the preceding statement
for the spaces TZ(E,), T (E,), and T (E,).

Consider the maps

T e T)(E,) - T € TNE,) — T € THE,)

such that
T(x,y) = T'(x,0y) = T (wx, @y), VX,y € E,. (5.5)

These linear maps are isomorphisms since, adopting a basis in E,, and its dual basis
in E, they have the following coordinate representations:

T]{i — gihThj, T//ij — gihgjkThk- (56)

Definition 5.2. The triad (T, T’, T”) is called a Euclidean double tensor. Further,
the components 7;; of T in the basis (0" ® 07), the components Tj’f of T/ in the
basis (e; ® #”/), and the components T/ of T” in the basis (e; ® e ;) are respectively
called covariant, mixed, and contravariant components of the Euclidean tensor
(T, T, T").

Henceforth we will denote a Euclidean tensor by the first element of a triad. It is
evident how to extend the preceding considerations to any tensor space 7, (E,).
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In view of the foregoing results, we conclude that the tensor spaces 7" (E,) and
T.(E,) are isomorphic. We now verify that their subspaces A" E, and A, E, are
also isomorphic, and we determine the form of this isomorphism. For the sake of
simplicity, we refer to the case r = 2. If T € A" E,,, we have that

Tuj) = Z ZgihgjkThk + Z ZgihgjkThk

i<j h<k i<j h>k
hk kh
=YD g T + > gmngikT
i<j h<k i<j h<k

= (gingk — gikgin)T".

In conclusion, we have
Tij) = det(gih 8ik ) T k) (5.7)
8jih 8jk

More generally, we could prove that

iy =det| e e e T0n-hr) (5.8)
girhl T girhr

In particular, when r = n, (5.8) gives

Ti.., = det(g)T"". (5.9)

5.3 The Levi-Civita Tensor

Definition 5.3. Let E, be a vector space. A (0,k)- pseudotensor density of
weight p is a multilinear map T : EX — 9\ such that under a basis change

e’j = A;ei (5.10)
of E,, the components of T are transformed according to the law

!
le-..jk

= sgn(A)|A[P A} - ALT, 4, (5.11)

where
A = det(4') (5.12)

and p is a nonnegative rational number. In particular, if p = 0, then T is said to be
a pseudotensor.

Starting from the formula

gl = Al A e
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and introducing the notations

g' = det(g)). g = det(gy), (5.13)
we obtain
g =A% g = Azl
so that

Vgl = £4Vgl, (5.14)

where we take the + sign when A > 0 and the — sign when A < 0. This formula
shows that /|g| is a pseudoscalar density of weight 1.
Introduce the skew-symmetric Levi—Civita symbol

0,
€y = 1, (5.15)
-1,
where the value 0 corresponds to a permutation iy, . .., i, with two or more indices
equal, the value 1 to an even permutation iy, ...,I,, and the value —1 to an odd
permutation iy, ..., i,. Before proceeding, we recall the following formula relative
to the development of a determinant A:
i in
Aejy g, = €, A AT (5.16)

Let E, be a Euclidean vector space. We prove that the multilinear map », which
in a basis (e;) of E, has the following components:

Nitevin = /&Eiy..in> (5.17)

is a (0, n)-pseudotensor. In fact, in view of (5.14) and (5.16), under the basis change
(5.10), we have that

Wi = VIEl€G5 = £AVgleji..,
J— i in . .
- :l:Ajll o 'Ajn«/gﬁl...:,,

= :|:Aljll e Al]'; Niy.iys (5 18)
and our statement is proved. In conclusion, 5 is a skew-symmetric tensor only under
congruent basis changes.

The skew-symmetric tensor » is an element of A, (E,). Since this space has
dimension 1 (Chap. 3), we can write

n:\/molA.../\ﬂ”’ (5.19)
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where (') is a basis of the dual vector space E . Taking into account what we have

just proved about the n-form » and recalling the results of Sect. 3.4, we can state

that » is a volume form that is invariant with respect to congruent basis changes.
We conclude this section with the following definition.

Definition 5.4. The Hodge star operator is a linear mapping
* 1 Ak(En) = Au—i(En) (5.20)

such that
* T(il"'i(n—k)) = NMiy-iu—kyj1-Jk TU, (5.21)

The skew-symmetric tensor T is called the adjoint or the dual form of T.

5.4 Exercises

1. Verify that in an arbitrary base (e;) of the Euclidean vector space E,, the
eigenvalue equation (4.47) relative to the Euclidean tensor T assumes the form

(Tij — Ag,-j)uj = O, (522)
where g;; = ¢; -e;.
2. Show that the components of the cross-product u x v of the vectors u and v of
the three-dimensional Euclidean space E3 are

(ll X V)i = mjkujvk. (523)

3. Using the Levi—Civita pseudotensor, evaluate the components of the following
vectors of the Euclidean space Es:

ux (vxw), (uxv)-(wxx).






Chapter 6
Differentiable Manifolds

6.1 Differentiable Manifolds

Let U be an open set of i". The real-valued function f : U — N is said to be of

class C¥(U) ora C* function in U, where k > 0, if it is continuous with its partial

derivatives up to the order k. In particular, a C° function in U is a continuous one.
A map

faGh o xMeU— (..., y") e R
is of class C* if any ith projection pri o f
yi=prio f(xh ... x") =y (xl, . x")

is a C* function.

A homeomorphism [ : U — V, where V is an open set of %", is a continuous
map with its inverse. Finally, the map f is a diffeomorphism of class C* if both
f and f~! are C¥ maps. A diffeomorphism is represented by an invertible system
of functions y'(x',...,x"), (x',...,x") e U,i = 1,...,n, of class C* together
with the inverse functions. It is well known that the condition

ay'
det ( o )0 #0
at the point (xé, ...,x() € U is a sufficient condition for the invertibility of these
functions in a neighborhood of the point (xé, co X()-

A differentiable manifold can roughly be defined as an n-dimensional surface
embedded in "™, n < m. This approach to the analysis of differentiable manifolds
is more intuitive but not convenient for the following reasons. First, determining the
lowest-dimension # of the space )" in which we can embed the manifold is not an

easy task. For instance, the plane curves can be embedded in R?, whereas the skew
curves can be embedded in 013, Further, in this approach the geometric objects on the
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o(U)

Fig. 6.1 n-dimensional manifold

manifold are defined starting from the space iR” in which they are embedded. It is
much more interesting to build the geometry of a manifold in an intrinsic way. This
approach makes it possible to answer questions like the following ones: Is it possible
to recognize if a manifold is a sphere staying on it? Is it possible to recognize the
geometric structure of the three-dimensional space in which we live by measures
that are necessarily internal to our space?

Definition 6.1. Let 1 be a positive integer number and denote by X a Hausdorff!
paracompact topological space.” X is said to be an n-dimensional manifold if, Vx €
X, there exist an open neighborhood U of x and a homeomorphism ¢ : U —
o(U) € R". The pair (U, ¢) is called a chart of domain U and coordinate map ¢.
Finally, the n numbers

(x',....x") = p(x) € (U)
are the coordinates in the chart (U, ¢) (Fig. 6.1).

Definition 6.2. An atlas of class C¥ on an n-dimensional manifold X is a
collection « of charts on X satisfying the following conditions:

* The collection of the domains of the charts of « is an open covering of X;
s Y(U.p).(V.¥) € a the map

Vop lipUNV)—y(UNYV) 6.1

isaCk diffeomorphism, called a coordinate transformation.

(See Fig. 6.2.)

'A topological space X is a Hausdorff space if, Vx,y € X, x # y, there are neighborhoods U,
V of x, y, respectively, such that U (| V = @.

2 A Hausdorff space is paracompact if every open covering contains a subcovering that is locally
finite.
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n

!

o VY [0} X
y(U) ! o(U)
veo!

Fig. 6.2 Coordinate transformation

A chart (V, V) is compatible with the atlas « if, V(U,¢p) € o, map (6.1) is
of class C*¥. We call the collection of all the charts that are compatible with « a
maximal atlas o of X .

Definition 6.3. The pair V,, = (X, «) is called an n-dimensional differentiable
manifold of class C*.

A difficult theorem of Whitney proves that any C K manifold V., k <1, becomes
an analytic manifold (i.e., the coordinate transformations between charts of an
atlas are analytic diffeomorphisms) by discarding a suitable collection of C* charts
belonging to the original maximal atlas. It is even more difficult to show that a C°
manifold may fail to become a C'' manifold.

Now we show how to obtain differentiable manifolds.

o Let U C 0" be an open set, and denote by (u',...,u") a point of U. Let S be

the locus of the points (x', ..., x’) € W', n < [, given by the set of C' functions
xl — xl(ul7 ,M"),
............................. (6.2)
xl — xl(ul7 , M"),

whose Jacobian matrix

dx!
J=|—],
(5¢)
i =1,....0,a = 1,...,n, has rank n at any point of U. In other words, S is
a regular n-dimensional surface of i/ defined by the parametric equations (6.2).
In particular, for / = 3 and n = 1,2, we obtain regular curves and surfaces

of M3, respectively. We sketch the proof that all these regular surfaces are
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n-dimensional differentiable manifolds. First, S becomes a topological space
when it is equipped with the topology induced by R’. It is well known that the
open sets of this topology are obtained by intersecting the open sets of )i/ with
S'. Further, suppose that at the point xo € S, which is the image of (ué, S ug),
the determinant of the minor
ax!
()

i =1,....,n,a = 1,...,n, does not vanish. Then, the first n equations (6.2)
define a homeomorphism ¢ between a neighborhood U of x( and a neighborhood
@(U) of (u),...,ul). We do not prove that all the coordinate transformations
among these charts are of class C¥. Some examples of manifolds obtained by
this procedure are given in the exercises at the end of this chapter.

Differentiable manifolds can also be obtained by the implicit representation of
C* n-dimensional surfaces of %’. Let S be such a surface implicitly defined by
the following system:

fl(-x17 7-x[)_05
fux' o X =0, (6.3)
where m < [, the functions f,, @ = 1,...,m, are of class C*, and the Jacobian
matrix
a
J= (ﬁ) (6.4)
ax!
i = 1,...,1, has rank equal to m. Again, S becomes a topological space with

the topology induced by %!. Further, let xo = (x3,-..,x) be a point of S,
and suppose that the determinant of the minor formed with the first m rows and
m columns of (6.4) does not vanish at xo. Then, the m equations (6.3) can be
written as

x!l = xl(xm+1 ,XI),
X" = xm(xm+1 xl)
in a neighborhood V. C %", n = [ —m, of (x{, ..., x2). The preceding equations

define a homeomorphism between V' and the neighborhood

U= {(xl(x"”'l,...,xl),...,xm(xm+l,...,x[),xm“,...,xl),

[((x" T xhy e vy (6.5)

on S (see exercises at the end of the chapter).
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* A manifold can be obtained by the topological product of two manifolds. Let V,
be a C* n-dimensional manifold, and let W,, be a C* m-dimensional manifold.
First, we equip V,, x W,, with the product topology. If & = {(U;, ¢;)}ies isa C¥
atlas of V, and B = {(V;,¥;)}jesisa Ck atlas of W,,, then it is easy to verify
that {U; x V;, (¢;, V) }i.j)erxs is a C* atlas of V,, x W,,, which becomes a C*
(n + m)-dimensional manifold (see exercises at the end of the chapter).

* A manifold can be defined by a collection (U;);e; of an open set of " and a set
of diffeomorphisms among their parts (see exercises at the end of the chapter).

6.2 Differentiable Functions and Curves on Manifolds

Definition 6.4. Let 1, be an n-dimensional differentiable manifold, and denote by
o an atlas on V. We say that the real-valued function f : V,, — R is a C* function
on V, if the function

foglipU)— N (6.6)
is a C* function V(U, ¢) € a.

Definition 6.5. A C" curve y on the C* manifold V;,, h < k,isamapy : [a,b] C
N — V, such that, V(U, ¢) € a, where « is a C* atlas of V,, the map

poy:la,b] >N (6.7)
is a C map (Fig. 6.3). The real-valued functions
X() =pr'ogoy(t). te€la.bl,

are the parametric equations of y in the chart (U, ¢). The curve y is closed if
(@) = y(b).

Let (x) be the coordinates defined by the chart (U, ¢). If xo = (x}) € U is a
point of U, the ith coordinate curve at xy is a curve with the following parametric
equations:

a b

Fig. 6.3 Curve on a manifold
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x' = xg,
x =1,
x" = x;. (6.8)

Definition 6.6. Let V, be an n-dimensional manifold with a C¥ atlas «, and let W,
be an m-dimensional manifold with a C* atlas B. The map

F:V,—> W,
is of class C* if
YoFop lipU)C R — y(V)CR", (6.9)

is Ck, V(U, ¢) € @ and V(V, ¥) € B (Fig. 6.4).

If (xi), i = 1,...,n, are the coordinates relative to the chart (U, ¢) and (y%),
a = 1,...,m, the coordinates relative to (V, ¥), then map (6.9) is equivalent to a
system of m C* functions of n real variables:

ye = y4(x', X", a=1,...,m. (6.10)

6.3 Tangent Vector Space

We denote by y : [a,b] — V,, a C* curve on a differentiable manifold V,, and by
F(x) the R-vector space of the C* functions in a neighborhood of a point x = y(¢).
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Definition 6.7. The tangent vector to the curve y at x is the map

Xy F(x) =R (6.11)
such that

d
X =(50ero) . (612
dt ,
In other words, a tangent vector is defined as an operator that associates to any
C* function about the point x of the curve y the directional derivative along y(¢) at

the point x. In the coordinates (x') relative to the chart (U, ¢) on V,,, we have that

foy@)=foplopoyt)=fop  (x'(1).....x" (1)),

where (x!(¢), ..., x"(t)) are the parametric equations of y in the chart (U, ¢). Then,
(6.12) gives
dx?

(B ry dx
Xxf—(g(f 0 ))M - 6.13)

To better understand the preceding definition, we consider a curve y(t) =
(x'(¢), x2(t), x3()) in the Euclidean three-dimensional space &3. The directional
derivative of a C! function f(x', x2, x?) along y(¢) is given by

;—t(f (x'(0), x* (@), X (1) = (t- V) f =X, f, (6.14)

where t = (dx’(¢)/dt) is the tangent vector to y at the point x = (x’(¢)). In other
words, by (6.14), a derivation operator corresponds to any vector t. It is evident
that, if the directional derivatives of three independent functions are given at x, then
(6.14) leads to a unique vector t. We note that our definition of tangent vector as
derivative operator does not requires an environment containing the manifold V,.

Consider the set 7, V), of all the maps (6.12) obtained upon varying the curve
y(t) at the point x € V,. This set, equipped with the operations

(Xx +Yx)f = Xxf +Yxﬁ
(aXx)f = aXva

becomes an Ji-vector space that is called the fangent vector space to the manifold
V, at point x.

Theorem 6.1. Let (x') be a coordinate system relative to the chart (U, @) of the
manifold V,. Then, the relations

9 (0
(W)xof—(g(f 0 )) (6.15)

@(x0)

define n independent vectors tangent to the coordinate curves.
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Proof. Denoting by y(t) the ith coordinate curve crossing xo, that is, the curve
with the following parametric equations,

the directional derivative along ' (¢) is

d i — i ogp! ﬂ
(E(fo)/ (t)))to = (axj (fop ))w(m)( ar )

i ot ) 5! = (i 0! )
(axj (o) o =(5U00)

and relations (6.15) define n vectors tangent to the coordinate curves. Their linear
independence is proved applying the linear combination

A/ i =0
(50).

to the coordinate function x’ = pri o ¢ and recalling (6.15). In fact, we obtain

A — x'=A§ =1 =0. O
ax/ /., J

From this result and (6.13) comes the following theorem.

Theorem 6.2. The tangent space T.V, is an n-dimensional R-vector space, and
the vectors (0/9x") form a basis of Ty V,, which is called a holonomic basis or
natural basis relative to the coordinates (x'). Therefore, VX, € TV, the following

result is obtained:
(0
X, =X (—) , (6.16)
oxt ),

where the real numbers X' are the components of X, relative to the natural basis.

It is fundamental to determine the transformation formulae of the natural bases
and the components of a tangent vector for a change (x') — (x'/) of the local
coordinates. From (6.15) we obtain that

d ox/ d . d
| == |—) =4/ (=) , 6.17
(ax”)x o (axf)x ' (axf)x 17

) axli
X' =
ox/

and, consequently,

X/ = (AT, X, (6.18)
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6.4 Cotangent Vector Space

Definition 6.8. The dual vector space of TV, (Sect. 2.1) is called the cotangent
vector space T V.

If TV, is referred to as the natural basis (9/ dx"), relative to the coordinates (x'),
the dual basis (') is characterized by the conditions

0" (X)) = X', (6.19)

where X' are the components of X, relative to the basis (3/9x")s.

Definition 6.9. If ' € F(x), the differential (df), of f at the point x € V, is the
linear map

df)y: TV — N, (6.20)

such that
df) X, =X/, X;eTV,. (6.21)

In a natural basis relative to the coordinates (x*) of the chart (U, ¢) of V;, (6.21)
gives

df).X, = a; XL, (6.22)

where
d

a; = (E)f (6.23)

In particular, for the differentials of the coordinate functions we obtain

(dx") Xy = Xox' = Xi’ (W) X' = X!:S;, = X;. (6.24)

Comparing (6.24) and (6.20), we can state the following theorem.

Theorem 6.3. The differentials (dx'), of the coordinate functions form the dual
basis of the cotangent space T\'V,,. Consequently, any covector w € T}V, can be
written as

w, = w;(dx'),, (6.25)

d
W, = ®y ((W)x) . (6.26)

where
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Owing to the results of Sect. 2.2, we can state that under the coordinate change
(x") — (x'), the following transformation formulae of the dual bases and the
components of a covector hold [see (6.17)]:

. ox’t . . .
(dx")y = —(dx/), = (A7) (dx/)s, (6.27)
ax/ .
ol = %w, = Al w;. (6.28)

Starting from 7V, and TV, it is possible to build the whole tensor algebra
(T])xV, as well as the exterior algebra (Ay),V;, at any point x € V}, (Chap. 2). In
particular, the transformation formulae under a change of local coordinates (x') —
(x") of the components T:'""" of any (r, s)-tensor belonging to (T7), V,,

oy
T = i 9 ® - ® J Qdx! @ ® dx’s (6.29)
— Jiels axil axil ’ ’
are
i OXT X gk ks
= axh xh e x: g (6.30)
s xM axhr ox’in gx'is R

The preceding definitions can be extended to the whole manifold. A C* vector
field is a map

X:xeV, =X, eT,V,. (6.31)
In local coordinates (x’), map (6.31) assumes the form

0

X=X x")—,
ox!

(6.32)

which differs from (6.16) since the components X' are C k functions of the
coordinates.
Similarly, a C¥ tensor field is a map

T:xeV,— T e (Ty)V,. (6.33)

In local coordinates (x'), map (6.33) assumes the form

i ad 0 . .
T=T; 7 (x X)) @ —— Qdx ® - ® dx”, (6.34)
s oxi ox'r
where the components Tj'l‘;’x (x',...,x") are C k functions of the coordinates. In

particular, a p-form is a map

R:xeV,— Qe (Ny)sVa, (6.35)
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which locally has the coordinate form
Q=Qj.;(x', . xMdx A Adx (6.36)

We conclude this section by introducing the Lie algebra of the vector field on a
manifold V,,.

Let V,, be a C* n-dimensional manifold and denote by F*°V, the N-vector
space of the C* functions on V; and by y*V,, the Yi-vector space of the C*®
vector fields on V. Then, to any C*° vector field

X:xeV, =X, eT,V,

we can associate the linear map

X: feF®V,>XfeF>®V (6.37)
such that
Xf)x) =X f (6.38)
It can be easily proved that map (6.37) verifies the following derivation property:
X(f8) =gXf + [Xg. V[ geFTV,. (6.39)

Definition 6.10. Let X,Y € y*°V, be two C* vector fields. The bracket of X and
Y is the C > vector field [X, Y] such that

X, Y]f =XY-YX)f, VfeFV,. (6.40)
From (6.38) and (6.32) we obtain the following coordinate form of (6.40):

[X,Y] = Xja_Yi_Yjaii i (6.41)
T ax/ dx/ ) oxt’ )

It is not difficult to prove the following theorem.
Theorem 6.4. The bracket operation verifies the following properties:
X, Y] = —[Y.X]
alX,Y] = [aX,Y] = [X,aY],
X Y+7Z] =X Y]+ [X.Z],
X,[Y,Z]] + [Y,[Z,X]] + [Z, X, Y]] = O, (6.42)

Va € W and VX, Y,Z € 1>V,

This theorem proves that y*°V,, equipped with the addition of vector fields, the
product of a real number by a vector field, and the bracket operation, is a Lie algebra.
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6.5 Differential and Codifferential of a Map

Definition 6.11. Let V,, and W,, be two C* manifolds with dimensions n and m,
respectively, and let y(¢) be an arbitrary curve on V,, containing the point x € V,
(Fig. 6.5). The differential at the point x € V, of the C* map

F:V,—-W,

is the linear map
Foo X, €TV, > YF(x) € TF(x)Wm (6.43)

such that the image of the tangent vector X, at x to the curve y(¢) is the tangent
vector to the curve F(y(t)) at the point F(x). Formally,

d
Yrnmg = 48° Foy(t), Vge F(F(x)). (6.44)

To find the coordinate representation of (6.44), we introduce a chart (U, ¢) with

coordinates (x’),i = 1,...,n,in a neighborhood of x € V, and a chart (V, ¥),
with coordinates (y*), @ = 1,...,m, in neighborhood V of F(x). We denote by
y¥ = y%(x',..., x") the coordinate form of the map F and by x’ (¢) the parametric

equations of the curve y(¢) in the coordinates (x’). Then, (6.44) can be written as
follows:

_dx' 9y® 9 _ yi ay* 9

D
Y4B (x1)) — - - , VY F(x).
0P 528 = 50 3y 8 oxt ya® f e FF(x)

In conclusion, the coordinate form of (6.43) is

(0
F*X:XX:X’(_i) GTan—>
0 X

a B
- X' ( ) € TriyWn. (6.45)
X F(x)

ay”

Starting from linear map (6.43), we can give the following definition.

Fig. 6.5 Differential of a map F
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Definition 6.12. The linear map

Froy i 0Fx) € TroyWn — @ € TV, (6.46)
between the dual spaces T;( X)Wm and 7}V, defined by the condition

0:(Xy) = 0p)(FixXy), VXy € TiV, (6.47)
is called codifferential of F : V,, — W, at F(x).

Adopting the coordinates (x') on V;, and (y®) on W,,, we can write (6.47) as follows:

wi X' =0,—X",

ox?

and, taking into account the arbitrariness of X, we obtain

ay*
i = Oq =~ 6.48
, o o ( )
In conclusion, the coordinate form of (6.46) is
Ff. :oudy® € T} W, D axi e T, 6.49
F(x) | Oady” € Ty ’"_”“axf x'eTV,. (6.49)

Now we consider the extension of the differential Fy of F that is the new linear
map, denoted by the same symbol,

Fux : T € (T)x Ve = Treey € (T9) ey Win (6.50)

such that
Fi X1 ®...0X,) = F.x X1 ® ... ® Fi X, (6.51)

VX1, ..., X, € T\ V,. It can be easily verified that map (6.50) transforms the (r, 0)-
tensor

0 d
T=T""—®... -
axh ©...@ ax'r
into the (r, 0)-tensor
A ay* ay* ... 0 d
T=—"—...=—T"" . 6.52
axh ax'r dy« ©...@ ayr ( )

Similarly, we can extend (6.46) by the linear map

Ff  Tre € (T peoyWn — T € (T)). Vi (6.53)
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such that
F;(x)(0'1®"'®0's):F;(X)O'1®"'®F;(X)0'S (654)

Voi,...,0, € T . Itis evident that F;(X) maps the (0, s)-tensor

(x)*
T="Tyody” ® - @dy* € (T°)r(x)Wn

into the (0, s)-tensor

T= ?}i (:: ---%Tal..mdxi‘ ® - @dx" € (T0), V. (6.55)
Finally, we can define the linear map
Fr Qi € (M)W — R € (A Vy (6.56)
such that
F;(X)(al A-rAOg) = F;(X)al Ao A F;(X)as (6.57)
Yoi,...,05 € T;(X).

Again it is simple to verify that (6.56) maps
R = Qayapdy™ A AdY™ € (As)pio Wan

into

A a(yalv""yas) i i

Q= mﬂ(m...%)dx PAAdx € (Ag)xl/n (658)
Remark 6.1. 1t is important to note that, in general, none of the preceding linear
maps can be extended over the entire manifolds V, or W, because F : V,, — W,
can be neither one-to-one nor onto. For instance, the vector field X : x € V,, —
F,X, is defined on F(V},), and it could assume more values at the same point if F

were not one-to-one.

ItrF :V, — W,is a diffeomorphism, then » = m, and we can define an
isomorphism

Fux 1 (T))x Vi = (T)) ry Wa (6.59)
such that

FaaXi® 03X, 0 ® Qe = Fu X ® - ® Flw,. (6.60)

Once again, it is simple to verify that the linearity of (6.59) implies that (6.59) maps
the tensor

0 0 . .
T — T]’ll;, a_l ® .. ® a_ ® dle ® e ® dx].v c (Tgr)x Vn
B xl xlr b
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into the tensor

dy® 9y dx/i dx s iy 0

X Oxli oxir Bylgl ayﬂs J1Js Byal ®

e ®

By © Ay’ ® - @ dyPr € (T)) oy Wi (6.61)

In conclusion, if F : V, — W, is a diffeomorphism, then n = m, and the
tensor and exterior algebras on V;, and W, at the points x € V, and F(x) € W,
are isomorphic. Further, upon varying x € V,;, Fi, maps (r, s)-tensorial fields of V,,
onto (7, s)-tensorial fields of W,,.

6.6 Tangent and Cotangent Fiber Bundles

Given the C¥ manifold V,,, consider the set
TV, ={(x,Xy),x € V;,, X, € T Vy,}. (6.62)

The map
7:(x,Xy)eTV,—>xeV, (6.63)

is called a projection map, and the counterimage 7' (x) = x x T, V, is called a
fiber on x.

If (U, @) is a chart on V,,, then any x € U is determined by its coordinates (x').
Further, any vector X, € 7\V,, where x € U, is determined by its components
X' relative to the natural basis (9/dx"),. In this way, we have defined a one-to-one
correspondence

¢:U—pU) xR,
where
U={xXy),xeUX,eT V,} STV,.

TV, becomes a Hausdorff topological space when we equip it with a topology
whose open sets have the form U x [, with U an open set of V,, and /" an open set
of NM". It is not difficult to verify that the map ¢ is a homeomorphism so that 7'V,
is a topological manifold and (U x R", ¢) a chart of T'V,. Collecting the domains
U of the charts of an atlas of V,,, we define an atlas of 7'V,,, which becomes a 2n-
dimensional topological manifold. We do not prove that, if V,, is a C* manifold,
then 7'V, is a C*¥ manifold.

Definition 6.13. The 2n-dimensional manifold 7'V, is called a tangent fiber bun-
dle of V,,, and the preceding coordinates (xi D¢ ) are called the natural coordinates
of TV,.
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For instance, the tangent fiber bundle 7S of a circumference S is the collection
of all pairs (x, X,), where x € S! and X, is a tangent vector to S at point x. The
fiber at x is the tangent straight line to S! at x. It is evident that T'S " is diffeomorphic
to a cylinder S x 9.

All that has been said about 7'V, can be repeated starting from the set

TV, ={(x,wy),x € V0, € TV,}. (6.64)

The corresponding C* 2n-dimensional manifold is called the cotangent fiber
bundle of V,. Natural coordinates in the open set U x R", where U is an open
set of a chart of an atlas of V,,, are given by (x, w;), with (x') the coordinates of a
point x € U and (w;) the components of a covector w, € TV, in the dual basis
(dx?).

6.7 Riemannian Manifolds

Before giving the definition of a Riemannian manifold, we consider two examples.
First, let S? be the unit sphere embedded in the three-dimensional Euclidean space
&; referred to Cartesian coordinates (x) (Fig. 6.6). The parametric equations of S2
are

x = sinf cosg,

x? = sin6 sin @,
x* = cosb.
A X3

Fig. 6.6 Sphere in &;
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We have already said that any regular surface in Euclidean space is a differen-
tiable manifold. Now we wish to equip a sphere with the metrics induced by the
metrics of £. This means that the square distance ds? between two points (x') and
(x’ + dx') of §? is assumed to be equal to the Pythagorean distance in &;

3
ds? =) “(dx'), (6.65)

i=1

but expressed in terms of the coordinates (¢, §) on S2. To this end, we differentiate
the parametric equations of the surface and obtain

ds? = sin® @ dp? + dA?, (6.66)

where ¢ € [0,27] and 6 € [0, ].
As a second example we consider the ellipsoid X? in & with parametric
equations

x = sinf cosg,

X~ = sin@ sin g,

x> = acosb,

with axes 2, 2, and 2a. Again adopting the foregoing viewpoint, the square distance
between two points (x') and (x’ + dx’) of £? becomes

ds? = sin? dg? + (cos? § + a sin” 0)d6>. (6.67)

The sphere S? and the ellipsoid ¥ are diffeomorphic so that they are essentially
the same manifold. In particular, the variables ¢ and 0 are local coordinates for both
surfaces. These two manifolds become different from each other when we introduce
a metric structure by the square distance ds? (Fig. 6.7).

Definition 6.14. A C*-differentiable n-dimensional manifold V,, is a Riemannian
manifold when on V,, a metric tensor, thatis, a C k (0, 2)-symmetric, nondegenerate
tensor field g, is given.

Owing to the properties of g, we can introduce into any tangent space 7y V, a
scalar product of two arbitrary tangent vectors X, and Y,

Xx : Yx = gx(XXv YX)s (668)

and T, V, becomes a pseudo-Euclidean vector space. In other words, the whole
tensor algebra at any point of a Riemannian manifold becomes a pseudo-Euclidean
tensor algebra.
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Fig. 6.7 Ellipsoid in &

In local coordinates (x?) relative to a chart (U, ¢) of V,,, the tensor g assumes the
following representation:

g=gydx' ®@dx/, gy = gji. (6.69)
where det(g;;) # 0, and the scalar product (6.68) becomes
X, Y, =g; XY/ (6.70)

In view of the results of Chap. 4 regarding the symmetric (0, 2)-tensors, it is
always possible to find, about any point x € V},, a coordinate system such that at x

d d
G = o m = 2B (6.71)
The set {1,...,1,—1,...,—1} is called the signature of the metric tensor and is

independent of the coordinates.
Finally, we define as the square distance ds> between two points (x') and (x’ +
dx") the quantity
ds? = g;;dx’'dx/. (6.72)

6.8 Geodesics of a Riemannian Manifold

Definition 6.15. Let V}, be a Riemannian manifold and suppose that the tensor gy
is positive definite at any point x € V,. The length of a C! curve y(¢) : [a,b] C
N — V, is the real number
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I(y) = / ds. (6.73)
Y

Denote by x/(¢), t € [a,b], the parametric equations of y(¢) in an arbitrary
system of coordinates (x’) whose domain contains the curve y(¢). Then the length
[(y) of y(t) assumes the form

b
l()/) = / ,/gij(xh))'c")'c/dt. (6.74)

It is evident that /(y) depends neither on the choice of the coordinates nor on the
parameterization of the curve.

Let (x}) = (x'(a)) and (x}) = (x' (b)) be the initial and final points of y(r), and
consider the one-parameter family I" of curves

fi(s,t) 1 (—€,€) x [a,b] = V,, (6.75)

e Including y(¢) for s = 0:
f10,1) = X' (0); (6.76)

« In addition, they are such that any curve starts from (x’) and ends at (xl’;), ie.,

fi(s,a) = xé, fi(s,b) = x};, Vs € (—¢,¢€). (6.77)

It is evident that the length of any curve of I is given by the integral

b . .
160 = [ Ve (s fra 6.78)

Definition 6.16. The curve y(f) between the points (x!) and (xl’;) is a geodesic of
the metric g if the function /(s) is stationary for s = 0 for any family T" of curves
satisfying (6.76) and (6.77).

To determine the parametric equations of the geodesic between the points (x!)
and (xl’;), we start by analyzing the stationarity condition

d/
—(0) =0. (6.79)
ds

Introducing the position

L(f" "y = g f1 19, (6.80)

and taking into account (6.78), we obtain that

dl baL afh 9L af"
(s) = 2= =
s / (afh as as) !
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oL 8fh 8 L of" B 8 af’h
afh as afh ds afh ds
we have that

ar . (broL 9 9L\ of" AL af"
a(s)—/a (m—gm) ——(0,1) Z+|:3fh s i|a. (6.81)

Since

From this formula, when we recall (6.76) and (6.77), we deduce that the condition
d7/ds(0) = 0 is equivalent to requiring that the equation

b
/( iy LIL (i i ))—(Ot)dt_o (6.82)

axh dr 0x"

be satisfied for any choice of the functions " /ds(0,¢), h = 1,...,n. Itis possible
to prove that this happens if and only if the parametric equations x’ (¢) of the curve
y(t) satisfy the Euler—Lagrange equations

d JL

JL _
W(x]’x) 0% h(xf )=0, h=1,....,n, (6.83)
and the boundary conditions
xh(a)zxf}, xh(b)zxf)’, h=1,...,n. (6.84)

Remark 6.2. In the Cauchy problem relative to (6.83), we must assign the initial
conditions x"(0) = x/ and X"(0) = X", h = 1,...,n. Itis well known that, under
general hypotheses on the function L(x’, x"), there is only one solution satisfying
the Euler-Lagrange equations and the initial data, that is, there is only one geodesic
starting from the point (x/) and having at this point the tangent vector (X'). In
contrast, there is no general theorem about the boundary problem (6.83), (6.84), so
perhaps there is one and only one geodesic between the points (x”) and (x}’j), no
geodesic or infinite geodesics. In this last case we say that (x) and (xl’j) are focal
points.

Remark 6.3. A curve y(t) has been defined as amap y : ¢t € [a,b] — V.
Consequently, a change in the parameter into the parametric equations x” (¢) leads
to a different curve, although the locus of points is the same. On the other hand,
the presence of the square root under integral (6.74) implies that the value of the
length /(y) is not modified by a change in the parameter #; in other words, /(y) has
the same value for all curves determining the same set of points of V},. This remark
implies that (6.83) cannot be independent. To show that only n—1 of these equations
are independent, it is sufficient to note that from the identity
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0L
L= XF (6.85)
i=1 X
it follows that
oL " L
—— = v —— , 6.86
o = 2 T (6.86)

i=1

(6.87)

AL AL ., OPL
o = oo+ LY g

and then

" 92L
X! ——— = 0. 6.88
D K e (6.88)

i=1

From the foregoing conditions there follows the identity
X”: L d oL
po oxi  dr ox’

niazL o . 0L h
Z W__ axiaxh —;x ik

i=1 i=l1

which, in view of (6.86) and (6.87), becomes
(9L d oL

— ———|]=0. 6.89
> (5 ~ae) ©9

This relation shows that if the parametric equations x”(¢) satisfy the first n — 1
Euler-Lagrange equations, then they satisfy the last one.

We use the arbitrariness of the parameter 7 to obtain a new form of the equations
of a geodesic. Setting

L= /g, (6.90)
we can give (6.83) the following form:
1 0 d 1 0
% _ S % N_0 h=1.....n (6.91)
2./¢ oxh 2. /¢ ox"

If we choose a parameter s for which the tangent vector (x”) to the geodesic has
unit length, i.e., a parameter s such that

h
p dx

p=gx'x/ =1, "= o (6.92)
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then the Euler—Lagrange equations assume the form

1y L d
290 &) — ey i) =0 h=1...n. (6.93)

6.9 Exercises

1. Find an atlas for the sphere S? in three-dimensional Euclidean space starting
from the parametric equations

x! = sin 6 cos 0,

x% = sin @ sin 0,
x> = cos b,
where 0 < ¢ < 27 is the longitude and 0 < 6 < 7 the colatitude.

2. Find an atlas for the cylinder in three-dimensional Euclidean space starting
from its parametric equations

1

X = cosg,

x* = sin ¢,
3

X’ =z,

where 0 < ¢ < 27 is the longitude and z € ) is the ordinate along the axis of
the cylinder.
3. Find an atlas for the torus 72 in three-dimensional Euclidean space starting
from its parametric equations
x! = sin 6 cos 0,
x2 = sin 0 sin 0,
x> = cos b,
where 0 < ¢ <27 and 0 < 6 < 27 are shown in Fig. 6.8.
4. Find an atlas for the Moebius strip with parametric equations

1
x! = (1 + Eu sin %) cos ¢,

1
x? = (1 + Eu sin %) sin ¢,

3 .9
x° = usin —,
2

where 0 < ¢ < 2m and u € [—1, 1] are shown in Fig. 6.9.
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Fig. 6.8 Torus 72 in &

43

Fig. 6.9 Moebius strip

5. Find an atlas for a Klein bottle with parametric equations

1
x!' = 6cosu(l + sinu) +4(1 — Ecosu),

1
x? = (1 + Eu sin %) sin ¢,

x> = usin f,
2
where 0 < ¢ <27 and 0 < 6 < 2z (Fig. 6.10).

6. Let & be the three-dimensional space referred to Cartesian coordinates
(x',x2,x3). Find an atlas for the sphere and the cylinder starting from their
implicit equations

x4+ () + () —1=0,

@2+ (xHr=1=0.
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V=

Fig. 6.11 Atlas of a cylinder

7. The diffeomorphism
0:(xLxH)e(d=A1Dx0,1) - @' =x'+Ax?=x2) e (14+A,1)x(0,1)

overlaps the open subset (1 — A, 1) x (0, 1) of the square U = (0,1) x (0, 1)
and the open subset (1 + A, 1) x (0, 1) of the square V' = (1,2) x (0, 1) in the
plane Ox'x?. Further, the diffeomorphism

V(xx?) e (0,A)x(0,1) > (X =24x"—A,x? =x}) e 2—A,2)x(0,1)

overlaps the open subsets (0, A) x (0,1) and (2 — A,2) x (0, 1) of the same
squares (Fig. 6.11).

Show that U, V and ¢, ¥ are an atlas for the cylinder S 1% (0,1). Essentially,
a cylinder is obtained from a rectangle by identifying the points of two opposite
sides.
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8.

10.
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Fig. 6.12 Stereographic projection

The diffeomorphism
e (xLxHed-A1Dx0,1) > @ =x'+Ax?=x2) e (14+A,1)x(0, 1)

overlaps the open subset (1 — A, 1) x (0, 1) of the square U = (0,1) x (0, 1)
and the open subset (1 + A, 1) x (0, 1) of the square V = (1,2) x (0, 1) in the
plane Ox'x2. Further, the diffeomorphism

v (x' x?) € (0, A)x(0,1) » (x"" =24x'—A, x? = 1-x2) € 2—A,2)x(0,1)

overlaps the open subsets (0, A) x (0,1) and (2 — A,2) x (0, 1) of the same
squares (Fig. 6.11). Show that U, V' and ¢, ¥ are an atlas for the Moebius strip.
Essentially, this surface is obtained by identifying the points of two opposite
sides after a torsion of 180°.

Determine an atlas with four coordinate domains and the relative coordinate
transformations to obtain a torus. Show that the torus is obtained from a
rectangle by identifying the points of the two pairs of opposite sides.

This exercise shows how we can obtain a geographic chart using a map between
two manifolds. Let S> — N be the unit sphere minus the North Pole. The
diffeomorphism F, which is called a stereographic projection, between S> — N
and the tangent plane 7 at the South Pole S, is shown in Fig. 6.12. F maps the
point x € S — N into the point x’ € m corresponding to the intersection of
the straight line N x with 7. If we adopt spherical coordinates (¢, @) on S? and
polar coordinates (¢, ) with its center at the South Pole on 7, the map F has
the following coordinate form (Fig. 6.13):

=¢@,r = 2tan ﬂ—i-e
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Fig. 6.13 Section of stereographic projection

< | //

Fig. 6.14 Central projection

Determine how F transforms the coordinate curves, the tangent vectors, and
the covectors on S2. Analyze how it transforms the distances and the angles
between tangent vectors.

11. As another example of a geographic chart, we consider the diffeomorphism
between F : S? — {S,N} — C, where C is the cylinder in Fig. 6.14 and F
maps x € S? into the point of C belonging to the straight line Ox. Adopting
spherical coordinates (¢, 8) on S? and cylindrical coordinates (¢, z) on C, the
map F assumes the following coordinate form:

¢ =¢, z=tanb.

Determine how F transforms the coordinate curves, the tangent vectors, the
covectors, the distances, and the angles between tangent vectors.
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12. We conclude the examples of geographic charts with Mercator’s projection

13.

(1569). This representation is obtained considering a one-to-one map between
S2 —{S, N} and a cylinder C that, adopting the same coordinates of Fig. 6.14,
has the form
_ _ T 0
Y =9, Z—lntan(z+§).
Determine how F' transforms the coordinate curves, the tangent vectors, the
covectors, the distances, and the angles between tangent vectors.

Determine the Riemannian metrics on a sphere, a cylinder, and a torus and find
the relative equations of geodesics.






Chapter 7
One-Parameter Groups of Diffeomorphisms

7.1 Global and Local One-Parameter Groups

Definition 7.1. A one-parameter global group of diffeomorphisms G on a mani-
fold V, of class C*, k > 0, is a C*¥ map

¢:(t,x)eRNxV, = ¢(x) eV, (7.1
such that

1. VieOthemap g, :x €V, - ¢(x) € V,isa Cck diffeomorphism of V,;;
2. Vi, s € RVx € Vy, yas(X) = by 0 h(x).

In particular, from the second property we have ¢, (x) = ¢o+:(x) = ¢o o ¢ (x),
so that

do(x) =x, VxeV,. (7.2)

Similarly, from x = ¢y(x) = ¢;(x) o $—;(x) we obtain that
¢ (x) = ()" (x), Vx eV, (7.3)

Definition 7.2. Vx, € V,, the C¥ curve ¢ (x0) : N — V, on V, is called the orbit
of G determined by xy. In view of (7.2), the orbit contains x.

Theorem 7.1. Any point xy € V,, belongs to one and only one orbit, i.e., the orbits
determine a partition of V,,.

Proof. First, we show that if x, € ¢, (x1), then the orbit determined by x; coincides
with ¢, (x1) up to a change of the parameter. In other words, an orbit is determined
by any of its points. In fact, if x, € ¢;(x1), then there exists a value #, of ¢ such
that x, = ¢, (x1). In view of property (7.3), x; = ¢—;, (x2). Consequently, the orbit
¢ (x1) can also be written in the form ¢, (x2), which, up to the change t — t — 1,
of the parameter, gives the orbit determined by x,. Now it remains to prove that if

A. Romano, Classical Mechanics with Mathematica®, Modeling and Simulation 95
in Science, Engineering and Technology, DOI 10.1007/978-0-8176-8352-8_7,
© Springer Science+Business Media New York 2012
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X does not belong to ¢, (x}), then the orbits ¢, (x1) and ¢, (x;) do not intersect each
other. In fact, if there is a point x( belonging to both orbits, then there exist two
values 11, € N such that

X0 = ¢y (x1), X0 = ¢y, (x2).

In view of (7.3), x» = ¢—,(x0), and then

X2 = @ty (%0) = Pty (¢1, (x1)) = Pr,—1, (x1).
In conclusion, x; belongs to the orbit determined by x|, against the hypothesis. [

Theorem 7.2. Let X, be the tangent vector to the orbit ¢,(x) at point x. The map
x €V, = X, € T«(V,) defines a C*~" vector field X over V,,.

Proof. Let (U, x") be a chart of V;, and denote by ¢/ (¢, x',...,n") the representa-
tion of the group in these coordinates. Then, Vx € U,

¢’ ad
Xx: . R
( ot )t=0 dx!

and the theorem is proved. |

Definition 7.3. The vector field X is called the infinitesimal generator of the group
of diffeomorphisms.

Example 7.1. Let &, be the Euclidean plane. It is easy to verify that the differential
map
P NxE =&

such that
x'=¢/(x) = x + tu,

where u is a constant vector in &, is a one-parameter global group of diffeomor-
phisms of &,, called the group of translations. Further, the orbit determined by the
point xg is X’ = xo + tu. Finally, the constant vector field u = ¢, (x)/dt is the
infinitesimal generator of the one-parameter group.

Example 7.2. Let & be the Euclidean three-dimensional space referred to the
cylindrical coordinates r, o, and z. Then, the family of diffeomorphisms

r=r,
o =a+t,
/

7=z

is a one-parameter group of diffeomorphisms, called the group of rotations about the
Ocz-axis of the cylindrical coordinates. The orbits of the group are circumferences
having the center on the Oz-axis, and the infinitesimal generator is the vector field
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ad
X=_—.
do
Definition 7.4. Let U be an open region of V. A one-parameter local group of
diffeomorphisms is a differential map

¢:(—€,€)xU =V, (7.4)
where € > 0, such that

1. Vt € (—€,€), ¢, : x € U = ¢;(x) € ¢,(U) is a diffeomorphism;
2. Ift, s, t + 5 € (—¢,¢€), then ¢ +5(x) = ¢ (Ps(x)).

Theorem 7.3. Let X be a differentiable vector field on V,. For any x € V,, there
exist an open region U C V,, a real number € > 0, and a one-parameter local
group of diffeomorphisms ¢ : (—e, €) x U — V,, whose infinitesimal generator is X.

Proof. Consider the system of ordinary differential equations (ODEs)

d’ il n :

m =X'(x',....,x"), i=1,...,n.

If the vector field is differentiable, from known theorems of analysis, VX € V,, there
exist a neighborhood U of X and an interval (—e¢, €) such that one and only one
solution x' = ¢(t,x0), t € (—e,¢€), of the preceding system exists satisfying the
initial data ¢ (0, xo) = xo, Yxo € U. For the uniqueness theorem, x' = ¢(t, x¢) is
a diffeomorphism V¢ € (—e¢, €). We omit the proof of the property ¢ (¢ + s, x0) =
P(t. 9 (s, x0)). u

Definition 7.5. The vector field X is said to be complete if it is an infinitesimal
generator of a global one-parameter group of diffeomorphisms.

Theorem 7.4. On a compact manifoldV,, every differential vector field is complete.

Proof. The preceding theorem allows one to state that, Vx € V,, a map ¢ :
(—e(x),€e(x)) x Uy — V, exists verifying conditions 1 and 2 of Definition 7.4.
Since V), is compact, the covering (U, ) ey, admits a finite subcovering (Uy, )i=1...s.
Setting by € = min {€(x;), ..., €(xs)}, the map ¢ is defined on (—¢, €) x V. a

7.2 Lie’s Derivative

In Chap. 6, we proved that if the differentiable map F : V, — V, is a
diffeomorphism, then its differential (Fx)y : TV, — Tr(x)V, is an isomorphism
that can be extended to the tensorial algebra and the exterior algebra at the point
x € V,. Inthis section, we show that this result, which holds for any diffeomorphism
¢; of a one-parameter transformation group, makes it possible to introduce a
meaningful derivation operator on the manifold V,.
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Fig. 7.1 Lie’s derivative of a vector field

We denote by X a differentiable vector field on V,,, by F(V,) the vector space
of the differentiable functions f : V,, — N, and by ¢, the one-parameter (local or
global) transformation group generated by X.

Definition 7.6. The Lie derivative of the function f with respect to the vector field
X is the map
Lx : F(Vy) = F(Va)

such that

S () = f(x) _ (
t

d
(Lx f)x = tl_iglo Ef(@(x)) . (7.5)

=0

Since X is tangent to the orbits of ¢, the Lie derivative of f at x is the directional
derivative of f along the vector Xy, that is,

Lxf =X/, (7.6)
Henceforth, we denote by y, x*, and y% the F(V,) modules of C *°-vector fields,
1-forms, and (r, s)-tensor fields of V,, respectively.

Definition 7.7. The Lie derivative on y with respect to the vector field X is the map
(Fig. 7.1)
LX:YG)(—>LxY€)(

such that, Vx € V,,,

1
(LxY)s = lim ~[(§-)x (¢ () Y = Y. .7

Definition 7.8. The Lie derivative on y* with respect to the vector field X is the
map (Fig. 7.2)

Lx:w € y* — Lxw € x*



7.2 Lie’s Derivative 99

Fig. 7.2 Lie’s derivative of a 1-form

such that, Vx € 1,

(wa)\' = hm [(¢I) (x)wq&,(x) - wx]- (78)

It is evident how Lie’s derivative can be extended to the tensor fields of 7.

To find the coordinate expression of Lie’s derivative, we introduce a chart (U, xi)
on V, and denote by y' = ¢!(x!,...,x") the coordinate expression of the one-
parameter group of the diffeomorphisms ¢, (x) and by X' the components of the
infinitesimal generator of the group X. Then, the maps ¢, (x) and ¢_(x) in a
neighborhood of x are given by the expressions

yo=x"+ X' (x)t + 0(), (7.9)
x=y =X ()t + 0), (7.10)

respectively. The coordinate expressions of the codifferential of (7.9) and of the
differential of (7.10) are given by

; ay ; X!

(@)™ = (a 1) =8 + (W)xt + 00, (7.11)
; x'\ 0X'

((¢-1)+)} (a j) =8 - (W)yt + 0(1). (7.12)

From the preceding relations we have that

: : ox! Y/
(- Yo0) = [3_(§) ][Yf(x>+( o) K]+ ow.

(7.13)
In view of (7.13), Lie’s derivative (7.7) assumes the following coordinate form:

Y! %)
0 Y/ a_} 9 (7.14)

LxY =X/ — — | —.
X [ ax/ axJ | dx?
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By comparing (7.14) and (6.41), we derive the important result
LxY = [X,Y]. (7.15)

Starting from (7.9), we derive the coordinate form of the codifferential (¢, (x))*

(@) 0py )i = [5{ + (aX—J) z} |:a)j(x) + (a&) Xh(x)t}—kO(t), (7.16)

ax axh ) .
so that (7.8) becomes

o XTI
Lxow = [X]ij + ij:| dx'. (7.17)

It is not a difficult task to prove that for an arbitrary tensor T € !, Lie’s
derivative is expressed by the following formula:

I ) ¢
_ h IR plg—1 Rl
LxT = [X ol Lo —;Th---h Fr

S ax" | 9 9
iy
+ Z le"'jk—lhijrl"'jsg))C_jh] 9xit ®:® oxir
k=1

Rdx’/' ® -+ ® dx’. (7.18)

In particular, for an s-form €2, the preceding formula gives

ad ax"
Ix® =} [X " Qi)+ R

. . B.Xh )ijl
11 <-<lIg
ox" . .
+ Q(jl"'jsl)hm} dx/' A-e A dxs. (7.19)

From the definition of Lie’s derivative there follows that Ly is linear with respect
to X, and the derivation property with respect to the tensorial product and the
exterior product

Lx(T®S) = LxT®S + T ® LxS, (7.20)
Lx(TAS) = LxT AS + T A LxS. (7.21)

Definition 7.9. A tensor field T € x}V, is invariant under a one-parameter group
¢, (x) of diffeomorphisms if

T¢t(x) = (d)t*T)rﬁt(x)s (7.22)
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where (¢;)« denotes the extension of the differential (¢, ) of the diffeomorphisms
of the group to the tensor algebra (Chap. 6).

In particular, a vector field Y and a 1-form @ are invariant under the group

¢ (x) if
Yo, 0) = (@) (x) Y. (7.23)
Wy (x) = (P—1)"@x. (7.24)
We omit the proof of the following theorem.

Theorem 7.5. The tensor field T € x.V, is invariant under the one-parameter
group ¢, (x) of diffeomorphisms if and only if

LxT =0, (7.25)
where X is the infinitesimal generator of ¢;(x).
Definition 7.10. Let (U, x’) be a chart of V},, and let
O = W3y igydXT A e dx’

be the coordinate representation of an s-form w in the chart (U, x'). The interior
product of w € y,V, by the vector field X is the s — 1-form ixw, which in the chart
(U, x") of V, has the following representation:

ix® = X" wpgyiydx A - dxhs, (7.26)

Starting from (7.26), it is easy to prove the following theorem.
Theorem 7.6. The interior product has the following properties:

1. It is N-linear with respect to X;
2. Ifw e y,Vyando € y,V,, then

ix(@AG)=ixe Ao + (—1)'® Aixo; (7.27)

3. Ifw € y*V,, then

ixw = w(X).

7.3 Exercises

1. Determine the one-parameter global group acting on ? whose infinitesimal
generator in the coordinates x, y is
d d

X=x— —.
xax +y8y
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Hint: The parametric equations of the group’s orbits are solutions of the system
of ODEs
dx dy

a Y w7

The solutions are

t t
X =Xp€, Y =)oc,

and it is evident that ¢, (xo, yo)=(xo0e’, yoe') is the global group generated by X.
2. Determine the one-parameter local group acting on %? whose infinitesimal
generator in the coordinates x, y is

X=—+e"—.
ax dy
Hint: The parametric equations of the group’s orbits are solutions of the system
of ODEs
dx 1 dy

— , =e .
dr dr

Consequently, the parametric equations of the orbits are
x(t) = X0 + 1, y(t) :log(t+ey0)v

where t>—e”®. The family of diffeomorphisms ¢;(x¢, yo)=(xo+t, log(t+e’°))
defines a local group generated by X.

3. Determine the one-parameter global group acting on %? whose infinitesimal
generator in the coordinates x, y is

X ad N ad
=—y— +x—.
yax dy

Hint: The parametric equations of the group’s orbits are solutions of the system
of ODEs
dx dy
a=7 W T

)

i.e., they are given by the functions
x(t) = xgcost — ypsint, y(t) = xosint + ygcost.
This family of diffeomorphisms of 9i? is the global group generated by X.

4. Using the theory of linear differential equations, verify that the global group of
M2 generated by the vector field
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ad ad
XZ(X—}’)a‘f‘(x‘i‘J’)@

is
x(t) =e'(xgcost — ypsint), y(t) =e'(ygcost + xqsint).

Verify the result using the built-in function DSolve of Mathematica.
5. Given the one-parameter global group ¢, (x) of %H?

xX'=x4at, y =y+ Bt

where x and y are Cartesian coordinates, determine the vector fields that are
invariant under the action of the group.

Hint: The infinitesimal generator of the group ¢, (x) is the vector field X =
(o, B). The differential (¢, ) of the diffeomorphisms ¢, (x) is represented by the
unit matrix. Further, in view of Theorem 7.5, we can determine the invariant
fields Y either by (7.23) or by (7.25). The last condition gives

ay! vt ar!

R — —:—:O’
“ax +'38y dr
L g

dx dy  dr

whereas the former gives

Y'(x +at.y+ 1) =Y'(x.y).

Yi(x +at,y + Bt) = Y2(x,y).
Both the results show that the components of Y must be constant along the
group’s orbits.

6. On the unit sphere S referred to the spherical coordinates (¢, 6), consider the
one-parameter group G of diffeomorphisms

o =¢+at, 0 =0+ pBt,

where o and 8 are constant. Determine the orbits of G and the vector fields that
are invariant under the action of G.






Chapter 8
Exterior Derivative and Integration

8.1 Exterior Derivative

We denote by AV, the set of differential r-forms on the manifold V,,. It is evident
that A, V}, is both an N-vector space and an FV, module. In the sequel, we use the
notation AgV, = FV,.

Definition 8.1. The exterior derivative is an R-linear map
d: AV = ANsit Ve, (r=0,1,....n) 8.1)
such that

1. Vf € AoV, the exterior derivative of f is the differential of f;
2. Vo € AV, Yo € AgV,, the map d is an antiderivation, i.e.,

dwAno)=dw Ao + (—1) w Ado; (8.2)
3.d>=0.

When the manifold V, is paracompact (Chap. 6), it is possible to prove the
existence and uniqueness of the map d. Here, we limit ourselves to proving its local
existence in a chart (U, x') of V,.

In the domain U of the chart, any r-differential form can be written as

® = w(il,...,ir)dx"‘ Ao Adx"
If the exterior derivative exists, then, applying properties 2 and 3, we have that
do = dwg, . ;)dx" Ao Adx.

Finally, taking into account property 1, we obtain the coordinate form of the exterior
derivative
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a i i H
IOC i) g b A dxt Ao A dix (8.3)
oxh

It is plain to verify that (8.3) defines an exterior derivative in region U.
Before proceeding, we show that the preceding definition leads to familiar
concepts in a Euclidean space &;. In fact, if f € F&;, then (8.3) gives

df = %dx’. (8.4)

do =

It is evident that the components of this differential form are covariant with respect
to a coordinate change. Denoting by (e;) the fields of the natural bases relative to
the coordinates (x') and by g;; the components of the scalar product, we can say
that the vector field

i of
Vf = g a ; €; (8-5)
defines the gradient of f.
Applying (8.3) to the differential form @ = w;dx’ € A&z, we obtain
do = a—dx’ Adx' = Za—dxf Adx’ + Z—dx’ Adyx'
ax/ ax/
J<i Jj>i
The preceding relation can be written in the form
aW,‘ 8wj . .
— 2 J i
do = Z (8x/ e ) dx/ Adx', (8.6)
j<i
and the quantities
ow;  Ow;
e @7

define the covariant components of a skew-symmetric tensor. The adjoint (Chap. 5)
of this tensor is the pseudovector r whose contravariant components are

1
Nk = ——=€"*rp, (8.8)

that is,

bl bl 8-9
ox2  ox370x3  Ox!Tox!  0x2 (8.9)

In other words, the components of dw are proportional to the components of V x v,
where v is a vector field whose covariant components v; are equal to w;.
Finally, the exterior derivative of the 2-differential form

Q = Qpdx' Adx? + Qp3dx! A dx® + Qy3dx? A dxP
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is

Q2 02 02
e = ( T Tt ;z)dxl Adx? Adx’ (8.10)
x x x
Introducing the pseudovector adjoint of €2
i U ik
u' = 5 |g|6 Q. (8.11)
i.e., a pseudovector vector with components
1 1 1
' = —— Qo = —Qay, = —Q (8.12)

23, 31 125
Vgl Vgl Vgl

and defining the divergence of the vector field u (Chap. 9)

1 9 »
u=——(~/|glu), (8.13)
Vgl X’

relation (8.10) becomes
d2 =V .uy/|gldx' Adx? Adx?, (8.14)

where
Vl]gldx' A dx? A dx? (8.15)

is the volume differential 3-form of &5 (Chap. 5).

We can summarize the preceding results as follows. In the three-dimensional
Euclidean space &3, we consider a function f : & — 9, a differential form @ =
w;dx’, and a 2-form . Further, we introduce the vector field v whose covariant
components v; are equal to the components w; of w, and the pseudovector field u,
which is the adjoint of the skew-symmetric tensor . Then, the following results
hold:

df =0 <& Vf=v, (8.16)
do = <& Vxv=u, (8.17)
d2 =0 < V-.-u=0. (8.18)

8.2 Closed and Exact Differential Forms

Definition 8.2. A differential r-form & € A, V), is exact if a differential (r — 1)-
form w € A,_;V, exists such that

do = Q. (8.19)
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Definition 8.3. A differential r-form & € A, 'V, is closed if

de = 0. (8.20)

It is evident that the exact differential r-forms belong to the vector subspace
[see (1.39)]

E, = d(Ar—1V,) = Im(@), (8.21)

where d : A1V, = A, V,. In contrast, the closed differential r-forms belong to
the vector subspace [see (1.40)]

C, = ker(d). (8.22)

where d : AV, — Ar41Vy. In view of the third property of Definition 8.1, any
exact differential r-form is closed, and we have that

E, C C, C AV, (8.23)

Definition 8.4. We call a cohomology relation the following equivalence relation
in the vector subspace C, C A, V,:

VR, Q' cC,, @~ ifR—-Q cE,. (8.24)

This equivalence relation generates a partition of C, into equivalence classes that
are called cohomology classes of order r. If the differential r-form 2 belongs to
the cohomology class [2], then to [2] belong all the differential r-forms 2 + dw,
where w € A,—1 V. Two closed differential r-forms belonging to the same class are
said to be cohomologs. In particular, [0] = E,.

The set C,/E, of these equivalence classes becomes a vector space when it is
equipped with the following operations:

(2] + [R2] = [ + 2], «a[] =[af],

VR,,2, € C, and Va € .

Definition 8.5. The vector space H, = C,/E, is called the cohomology space
of order r. If we only refer to an addition, C, / E, becomes the cohomology group of
order r. The integer number

b, = dim(H,) (8.25)

is the rth-Betti number of V). It is evident that b, = 0 if and only if H, reduces to

the cohomology class [0]. In such a case, any closed form is also exact.

Definition 8.6. A subset W of a Euclidean space &, is said to be star-shaped if
there exists a point xo € W such that, Vx € W, the points of the segment x + mt,
t € [0, 1], belong to W.
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An open set U C V,, is smoothly contractible if there exists a point xo € U and
a differential map ¢ : [0, 1] x U — U such that

¢(1,x) =x, ¢$(0,x) =x9, VxeU.

For instance, a sphere of &; is star-shaped and smoothly contractible to any point
of it. A region contained between two spheres with the same center and different
radii is not smoothly contractible.

We omit the proof of the following theorem.

Theorem 8.1 (Poincaré’s Lemma). If A is a star-shaped subset W of a Euclidean
space &, or an open subset U of a manifold V,,, then

b, = dim(A4) =0,

that is, any closed form is exact.

8.3 Properties of Exterior Derivative

In this section, we prove some relations existing among the exterior derivative, the
differential of a map, the Lie derivative, and the inner product of a differential r-
form by a vector field.

In this regard the following theorem holds.

Theorem 8.2. Fora € AV, f € FV,, andX € yV,,

irxee = fixe, (8.26)
ixdf = Lx f, (8.27)
Lxa = ixda + d(ixe), (8.28)
Lyxo = fLxa +df Aixa, (8.29)
Lx(da) = d(Lxa). (8.30)

Further if F : V, - Wy isa C! map and o € Ay (Wy,), B € As(Wy,), then

F*(@ A B) = F*(a) A F*(B), (8.31)
F*(da) = d(F*(a)). (8.32)

Proof. Equation (8.26) follows at once from (7.26). Further, ixd f = X"9f/dx",
and, taking into account (7.6), the identity (8.27) is proved. To verify (8.28), we start
supposing that & is a 1-form. Then, in view of (7.19), (7.26), (8.3), and (8.6), we
have
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- da; ox/ )
ontz(X/i,+oz )dx’,

ox/ I ox
(o oo ; .
ixdoe = X/ | — — —L ) dx’,
Ix e (8x1 ax’) o
A ax/ s
d(ixe) = d(X o)) = o; S dx' + X7 S gyl |
ax! dx!

and (8.28) is proved for 1-forms. Since any r-form « is a linear combination of
exterior products of 1-forms, and Lx, ix, and d are linear maps, to prove the
theorem, it is sufficient to verify that (8.28) is satisfied for the exterior product
a; A oy of two 1-forms. Now, owing to (7.2) and recalling that (8.28) has been
proved for 1-forms, we have that

Lx(o; Aay) = Lxoay Aoy + oy A Lxan
= (ixda; + d(ixa)) Aoy + o A (ixder + d(ixes))
= (ixdoi) Aoy +d(ixer) Ao
+ a; A (ixdos) + o A d(ixas).
Similarly, in view of (8.2) and (7.27), we have also
ixd(a; A o) = ix(day Aoy — oy Aday)
= ixdoy Aoy + doeq Adxor —ixoep Adoy 4+ oy Aixdos;
d(ix(arar)) = d(ixe; Aoy — oy Aixas)
= d(ixe;) Aoy +ixeep Adoy —doy Adxen + o A d(ixes),

and (8.28) is proved. In the same way, we can prove (8.29) and (8.30). We omit the
proof of (8.31) and (8.32). O

8.4 An Introduction to the Integration of r-Forms

In Sect. 3.4, we showed that one of the two possible orientations of )" is determined
by choosing a basis (e;). Denote by dx! A --- A dx” the volume r-form of )’

Definition 8.7. The integral of the r-form
®w = w(il...ir)dxi‘ VANKERIVAN dxif

on the compact set U C R” is the number

/wszwmm%dﬂ. (8.33)
U U
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Let U’ be another compact region of R, and denote by x’ = x/(x!,...,x") a
diffeomorphism of U onto U’. From well-known analytical results we have that

[ Jw(il...i,)dxl"'dxr :/ a)zilmir)dxll'“dx/r’ (8.34)
U

where

axli
J =det - ). 8.35
(557 (8.35)
Henceforth, we identify the compact set U with the r-cube defined as follows:
U:{(xl,...,xr)ei)?’,aifxi§ai+c'i}. (8.36)

We call faces of the r-cube U the (r — 1)-cubes Uje,i = 1,...,r —1,¢ = 0,1,
defined by the conditions

Uy = {al <x'<a'+c', .. . X =d +ed,. . . d"<x"<d —i—c"}. (8.37)
Starting from the (r — 1)-cubes we can define the (r — 2)-cubes, which are the faces
of the (r—1)-cubes, and so on. For instance, if » = 2, then the 2-cubes are rectangles
and the 1-cubes are the sides of the rectangles. Further, if r = 3, then a 3-cube is a
parallelepiped, the 2-cubes are its faces, and the 1-cubes are its edges.

Now we consider the vectors n;.,i = 1,...,r, € = 0, 1, which in the basis (e;),

chosen to determine an orientation of )", have the components

J J
n;o= _81‘ €, N = 81‘ €;. (838)
In particular, if » = 2, then
nj = —€;, N = €1, g = —€, M = €.

It is evident that the vectors n;. are normal to the faces of the r-cube U and outward
oriented (Fig. 8.1 is relevant to the case r = 2).
On any face U, of the r-cube U, we consider a vector set X;c = (N, V

2_1)), where the vectors v VD

vl( ic -,V ~ areindependent vectors belonging to U,
chosen in such a way that the bases X;. are congruent with the basis (e;). When U
is equipped with these bases on its faces, we say that U is an oriented cube of )"

and we write (U, o), where o is the orientation determined by (e;).

o

i€

Definition 8.8. We define an oriented r-cube on a differentiable manifold V,, a
tern C = (U, 0, F), where (U, 0) is an oriented r-cube of K" and F : U — V, is a
differentiable map.

Example 8.1. Given the 2-cube of ii? defined by the inequalities

0<r<l1, 0<6<2m,
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Fig. 8.2 An oriented 2-cube of &,

consider the map F : (r,0) € U — (x',x?) € &, where & is two-dimensional
Euclidean space such that (Fig. 8.2)

x!'=rcosf, x%*=rsin.

Example 8.2. Given the 2-cube of %? defined by the inequalities
0<¢<2m 0<6<mn/2,

consider the map F : (p,0) € U — (x',x%,x%) € &, where &; is three-
dimensional Euclidean space such that (Fig. 8.3)

1

x!' =rcos@sing, x2

3

=rsinfsing, x° =cosh.

Definition 8.9. An r-chain C on a manifold V), is a formal summation X;a; C; of
oriented r-cubes C;, where a; are relative integer numbers. Denoting by dC; the
union of the faces of U;, we call cochain dC of the chain C the formal summation
E,-a,-ac,-.
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Fig. 8.3 An oriented 2-cube of &

Definition 8.10. Let @ € A,V, be an r-form on a differentiable manifold V;,.
Denote by C = Xa;C; a chain of oriented r-cubes C; = (U;, 0;, F;). Then, the
integral of w on the chain is given by

/szzi:ai/aw:zi:ai/ml: (w). (8.39)

Example 8.3. In three-dimensional Euclidean space &, referred to the Cartesian
coordinates (x!, x?, x?), consider the oriented 1-cube C = ([a,b], 0, F), where
[a,b] CR, F 1t € [a,b] — (x'(¢), x%*(1),x*(t)) € &.If @ = w;dx’ is a 1-form
of &, then

and

b .
dl

/w:/ wiidt
c p dt

is the ordinary curvilinear integral of @ along the curve y with parametric equations
xi(1).

If 5 is the curvilinear abscissa along y and we denote by t = (dx'/ds) the unit
tangent to y and by v a vector whose covariant components v; are equal to w;, then
the preceding integral assumes the familiar form

/w = /V'tds. (8.40)
c y

Example 8.4. In three-dimensional Euclidean space &, referred to the Cartesian
coordinates (x!, x2, x3), consider the oriented 2-cube C = (U, g, F), where U is
a rectangle of W2, F : (u',u?) € U — (x'(u',u?), x>(u', u?), x*(u', u?)) € &;.
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Ifo = wpdx! Adx? + o3dx! Adx? + wr3dx? A dx? is a 2-form of &, then [see
(6.58)]

A(x', x?) N a(x!, x%) N A(x2, x3)

Fro = opo22*) ,
@ TORGW ) TR T PR, )

a(x!, xz) A(x!, x?) a(x2, x%)
/ / (a)lz . + w13 3 D) + wnm) du'du®  (8.41)

is the integral of @ on the surface S with parametric equations x’ (u', u?).
In arbitrary curvilinear coordinates (x', x2, x*) of &, we consider the adjoint
vector

1
u=—(wxne + wse; + wpes),

NG

where (e}, e, e3) is the natural basis relative to the coordinates (x', x2, x?). In our
analysis it is proved that the Jacobian minors appearing in (8.40) coincide with the
components of the unit normal n to the surface S. Finally, the elementary area do of
S is equal to \/§du1du2, and (8.41) gives the flux of u across the oriented surface S

/w =/u-nda. (8.42)
c s

We conclude this section stating without the difficult proof the following
generalized Stokes theorem:

Theorem 8.3. If C is an oriented r-chain of the differentiable manifold V,, and 0C
its cochain, then, Vo € A,_1V,, we obtain

/dw =/ ®. (8.43)
c ac

8.5 Exercises

1. Prove the equivalence between (8.3) and the following formula:

aa)ﬂl (1 i
do= 3 3 (ORI AL (8.44)

i< <ipyy w€ll, 4

where TI(r + 1) is the set of all permutations of the indices i} < i, < -+ <
iy+1, for which i, < --- < i,41, and m(sr) is the number of inversions in the
permutation {m(i1), 7 (i2), ..., w(ir41)}-
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2. Evaluate by (8.44) the exterior derivative dS2 of the 2-form
Q = Qpdx' Adx? + Quzdx! Adx® + Qo3dx? Adx?

on a manifold V3.

Hint: Since n = 3, the only choice i} < i, < i3is 1,2, 3. On the other hand, the
possible permutations 7 (1), 7(2), 7(3) of these indices for which 7(2) < 7(3)
are {1, 2,3}, {2, 1,3}, {3, 1, 2}. Therefore, (8.44) gives

0Qy3  0Q13  0Q12
Q=
d ( ox! dx? ox?

- + )dxl/\dxz/\dx3,

and we again obtain (8.10).
3. On a manifold V4, apply (8.3) and (8.44) to the 2-form

Q = Qpdx! Adx? + Qzdx! Adx? + Qpadx! A dx?
Qo3dx? Adx® + Qoudx? A dx* + Qaudx® A dx?,

and verify that they give the same result.
4. Adopting the volume form

/gdpdo

[see (8.16)] evaluate the area of the triangle and the parallelogram of Figs. 9.1
and 9.2, on the unit sphere referred to the spherical coordinates ¢, 6.
5. Integrate on the unit sphere the 1-form

xdx +dy +dz

of the three-dimensional Euclidean space &;.






Chapter 9
Absolute Differential Calculus

9.1 Preliminary Considerations

In this chapter, we address the fundamental problem of extending the differential
calculus to manifolds. To understand the problem we are faced with, consider a C!
vector field Y(¢) assigned along the curve x(¢) on the manifold V,,. We recall that
on an arbitrary manifold the components Y (¢) of Y(¢) are evaluated with respect to
the local natural bases of local charts (U, x'), U C V,,. Consequently, when we try
to define the derivative of Y along x (), we must compare the vector Y(t + At) €
Tx¢+anVa, referred to the local basis e; (f + At), with the vector Y (1) € Ty Vi,
referred to the local basis e; (¢). Since we do not know how to relate the basis e; (¢ +
At) to the basis e; (¢), we are not in a position to compare the two preceding vectors;
consequently, we cannot assign a meaning to the derivative of the vector field Y(¢)
along the curve x(¢) of V.

To give a reasonable solution to the preceding problem, we start with some
elementary considerations in a Euclidean space &, before giving an abstract
definition of an affine connection on a manifold. In a Euclidean space &, it is always
possible to find rectilinear coordinates (y’). We denote by (u;) the constant unit
vectors along the axes y’ axes. Then we introduce an arbitrary local chart (U, x*) in
&, and denote by (x, ;) the natural bases relative to the curvilinear coordinates x' .
If X(x) = X'(x)e; isa C! vector field in region U, then the family I of the integral
curves of X is given by curves whose parametric equations x’ (¢) in the chart (U, x")
are a solution of the first-order differential system

dxi—X"(l n, i=1 ©.1)
P x,...x", i=1,...,n. .

It is evident that X(x' (¢)) is the tangent vector to the curve x’ () at any point. When
apoint xo(x}) € U is given, there is one and only one (local) integral curve of X(x)
containing point xo. We denote by x’ (¢, xo) the general integral of (9.1).
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Let Y(x) = Yi(x)e; be another C' vector field on region U. Then, the
directional derivative of Y (x) along the integral curves I" of the vector field X(x) is

dy dee +Yidei
dr ~ dr dr
aY! de, \ dxk
=—4+yv"=)=. 9.2
(8xk + 8xk) dr ©2)

To attribute a meaning to the derivatives de; /dx* that express the variation of the
basis vectors on varying the coordinates, we start by noting that if the functions

yi=yixt X"
define the coordinate transformation (x’) — (»'), then we also have that

ay™
e = ——u,.
ax!

Since the vectors u; are constant, the derivation in rectilinear coordinates is possible.
Then, from the preceding relations we have that

de; _ 82ym u
ox/  oxioxs "
azym axk

o dx) gym K

and introducing the notations

azym axk
k _ pk _—
Fij - 1—‘ji T ooxioxi aym’ ©-3)
we obtain
oe;
77 = Tl e, (9.4)
and we can give (9.2) the form
dY y! :
5= (W + r];hY”) XFe;. (9.5)

This formula is not satisfactory since the quantities F};h are given in terms of the
rectilinear coordinates (y'), as is shown by (9.3), not in terms of the coordinates
(x"). But this further problem can be solved easily because we are operating in a
Euclidean space. In fact, a scalar product

X-Y=g; XY/
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between two arbitrary vectors X and Y of the same tangent space to &, is defined.
In particular, e; - ¢; = g;;. Consequently, we have that

aei ' - aej _ 8g,-j
oxk &I TR T ok

In view of (9.4), the preceding relation becomes

gi;
T/ gnj + T4 gni = Wi (9.6)
Cyclically permuting the indices, we obtain
n n agjk
I gk + Tiigny = e 9.7)
ry I gy = 288 9.8
kj 8ni + ji8nk = W (9.8)

Adding (9.6) and (9.7) and subtracting (9.8), we express the quantities I'/; in terms
of the metric coefficients g;; and their first derivatives in the coordinates (x'):

1 dgn;  0g;i 0gin
= _g(=L 4 22020 9.9
=8 (3x’ + axh  9xJ ©9)

It is an easy exercise to verify that the map

dY
VX:Y—> —_—,
dr

where dY/dt is given by (9.5), has the following properties:

Vixtey = fVx + gVx, (9.10)
Vx(fY) = (X/)Y + fVxY, (9.11)

for any choice of C! real functions f and g and the C'' vector fields X and Y on &,,.

We conclude this section by noting that the expression (9.5) of the derivative of
Y(t) along the curve x(¢), where the quantities are given by (9.9), was obtained
under the following two conditions:

e There exists a rectilinear system of coordinates.
* In any tangent space to the manifold V,,, there is a scalar product.

In the following sections, we show how to extend the results of this section to
arbitrary manifolds.
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9.2 Affine Connection on Manifolds

Let V, be a C*° n-dimensional manifold, and denote by F (V) the vector space of
the real C*° functions on V,,. Then, the set y(V},) of the C* vector fields on V}, is a
F (V) module.

Definition 9.1. An affine connection on V), is a map

Vx : x (V) = x(Va) 9.12)

such that
Vix+ey = fVx + gVx, (9.13)
Vx(fY) = Xf)Y + fVxY, (9.14)

VfgeFV,)and X, Y € y(V,) [see (9.10) and (9.11)].

To find the coordinate representation of the map (9.12), we introduce a local chart
(U, x") on V,, and consider two C* vector fields

X =Xe, Y=1VYe, 9.15)

where (e;) are the vector fields defining a natural basis of the tangent space at any
point of the open set U. From the properties (9.13) and (9.14) there follows

. Y .
VxY = Vyi, (Yie) = (a_ke’ 1YV, (ei)) Xk (9.16)
X

Introducing the connection coefficients I‘]i’i by the relations
Ve, () = T e, (9.17)
(9.16) becomes

1

VxY = (% + F]ihyh) X¥e; = Vi Y X¥e,. (9.18)
Although (9.18) and (9.15) are formally identical, in (9.18) the n® C* functions F,i i
are arbitrary. In particular, they could not verify the symmetry conditions I';, =
I} - In any case, if we give an affine connection on V;,, then its coefficients I';,
are determined in every coordinate domain. Conversely, a connection is defined in
every coordinate domain U by giving the coefficients l"]i , in U If we introduce a
new chart (V,x") such that U (|V # 0, then the connection coefficients in the
new chart cannot be arbitrarily assigned. In fact, in the coordinate transformation
(x') = (x'), the natural bases are transformed according to the rule

e = ¢ = Ai.ei, 9.19)
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Consequently, introducing the notation df/dx’ = f£.;, we have that
VxY = (Y +T5, Y Xre = (Y., +T0, Y™ X "™e]
= [A}, (A ) a +T, (AT Y (AT X P Afe,
= [ AT A AT Y Al (AT AT AT Y

+ (A7 AT (AT Yh] X7e,.

p - mn
k —1\m _ ¢k . .
But A4;,(A7") b= 1) > and then the preceding formula gives
VxY = [V} +(A5 (AT, + (AT AAYTE Y] XEe.

Finally, we obtain the following transformation formulae for the connection coeffi-
cients:

Tl = Al(A YA, + A(A™ D (9.20)

whose inverse formulae are
T = (A7) AL AR, 4 (A7) Ak - ©.21)

These formulae show that the connection coefficients are not transformed like the
components of a (1, 2)-tensor unless the coordinate transformation is linear since,
in this case, 4} x = 0.

We do not prove that an affine connection can be assigned on any paracompact
manifold.

9.3 Parallel Transport and Autoparallel Curves

Let (U, x") be a chart on a manifold V;,, equipped with an affine connection, and let
(x%(1)) be the parametric equations of a curve y contained in region U . Finally, we
denote by

dx’

the tangent vector to y evaluated in the natural bases (e;) along y.

Definition 9.2. The vector Y () is said to be parallel along vy if

dyY
— =VxY =0. 9.23
5 X (9.23)
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In view of (9.18), the coordinate form of (9.23) is

dyi o dxk ,
o T =0 =1 (9.24)

This is a first-order differential system in the unknowns Y'(¢). If the functions
l"]i " Ve % are differentiable along y and the initial vector Y(x (to)) is given by the
initial data Y'(x(#9)) = Y|, then one and only one solution Y (z, #y, Y;) exists of
system (9.24). It is fundamental to remark that the vector Y(x’(¢)), obtained by a
parallel transport of Y(x (¢y)) along y, depends on y.

Definition 9.3. A vector field Y on a manifold V, equipped with an affine
connection is uniform if

VxY =0 (9.25)
for any vector field X.

In view of (9.18), condition (9.25) can be expressed in the following coordinate
form:

VY =Y 4+TLY" =0, ik=1,...,n, (9.26)

in any domain U of a local chart (U, x"). When the connection is given, the
connection coefficients F,i ,» are known functions of the coordinates in region U.
Therefore, finding a uniform field Y in U requires the integration of system (9.25)
with respect to the unknowns Y/ (x/). In other words, we must solve a system of
n? equations in n unknowns. It is well known that this is possible if and only
if suitable integrability conditions are satisfied. We analyze these conditions in
a subsequent section. In conclusion, on an arbitrary manifold V, with an affine
connection uniform vector fields could not exist.

Definition 9.4. A curve y(s) on the manifold V,,, equipped with an affine connec-
tion, is said to be autoparallel if its tangent vector X(s) satisfies the condition

VxX = 0, (9.27)

that is, if it is parallel along y (s).

In any chart (U, x'), we have that X’ (s) = dx’/ds, and (9.27) can be written as
follows:

d?x’ - dx® dx”

—+ 10, ——F—=0, i=1,...,n. 9.28

ds? khds  ds ! " ©:28)
This is a second-order differential system in the unknowns x’(s). Consequently, if
a point xo € V,, is fixed together with a vector (X' (0)) € Ty, V,, then one and only
one autoparallel curve exists that contains x, and is tangent to (X’ (0)) at xo.

Remark 9.1. We recall that a curve y of V}, is definedasa C' map y : s € [a,b] —
y(s) € V,. This means that by changing the parameter, we obtain another curve,
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even if the locus of its points does not change. As a consequence, we have that, if
y(s) is an autoparallel curve, y(s(¢)) = w(¢) could not be an autoparallel curve. To
identify the parameter changes that do not modify the autoparallelism of a curve,
we start by noting that

dxf dxkar
s drods’
dxkddxk a2k odr)? | dxkdx
F‘&K‘F(&) dr ds?’

Consequently, under the parameter change s = s(¢), system (9.28) becomes

d2xi - dxk dxh ds\? d% dx’
= — (9.29)

—_— v — J— —_—
eI T dr ) ds? dr -

This result allows us to state that the autoparallel character of the curve y(s) is not
modified by the parameter change s = s(t) if and only if

t =as+b, (9.30)

where a and b are arbitrary constants. Parameters that do not modify the autoparal-
lelism of a curve are called canonical parameters.

9.4 Covariant Differential of Tensor Fields

We denote by x (V) the set of (r, s)-tensor fields of class C°° on the manifold V;,
equipped with an affine connection. In particular, we denote by y(V,) = xi(Vs)
the set of C*° vector fields on V,. We remark that y’(V},) is also a F(V;) module.
Finally, we denote by F the set of all the maps x. (V) = x5 (Vy).

Theorem 9.1. On the manifold V,, there is only one R-linear map
V:XeyV,)—>VxeF (9.31)

with the following properties:

1. Vxf =X£V[f e F(Vu);

2. VxY = VxY, VY € x(V,);

3. Vx(CT) = CVXT, where C is the contraction operator (Sect. 2.6) and T €
1 (Va);

4. It verifies the derivation property

Vx(T®S) = (VxT) ® S + T ® (VxS). (9.32)
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Proof. We prove the local existence of the preceding map in the domain of a chart
(U, x"). We denote by (e;) the fields of the natural bases in U and by (dx') the
differential forms of the dual bases. If @ € x!(V,) and Y € x(V}), then C(w ® Y)
is a function. From property 1 we obtain

Vx(C@ ®Y) = X(C(w ®Y).
On the other hand, in view of properties 2—4, we also have that
Vx(C@ ®Y)) = C(Vxo ® Y + @ ® VxY).
Expressing the preceding results in components, we can write that
XK@Y )= (Vxo) Y + o, (Y, +T0, Y XK. (9.33)
Expanding the left-hand side of (9.33), simplifying the obtained relation and
recalling that it must hold for any vector field Y, we obtain the coordinate expression
of the covariant derivative of a 1-form:
(Vx@); = (0. —Thap) X*. (9.34)
Starting from the coordinate expression of an arbitrary (r, s)-tensor T
T=T]"¢ ®  ®€ @d/ @ ®dx”

and applying properties 14, it is easy to verify that the coordinate expression of the
covariant differential of T is

S itiy _ vk iy i1 pheiy i piteh _ h iyeiy b iy
(VXT)jl-"is =X I:le...,'s sk +Fkh le"'is + Fkh le"'is ijl Th~~~ix ijs Tj1~~~h :I .

(9.35)

|

Henceforth, we use the symbol Vx instead of @X.

9.5 Torsion and Curvature Tensors

Let f(x') be a C! function in the chart (U, x). Then, owing to Schwarz’s theorem,

fij = fiji-
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However, the n? quantities f,; ; do not represent the components of a (0, 2)-tensor. In
contrast, the quantities V; f,; can be regarded as the components of a (0, 2)-tensor,
but we cannot change the derivation order since, in view of (9.34), we have that

Vifj =V fi= @} =T/ far. (9.36)

The left-hand side gives the components of a (0, 2)-tensor and f;; are the compo-
nents of a covector; consequently, owing to the criteria given in Sect. 2.6, we can
state that the quantities

S]’!’. = 1“5?1. — F,]} (9.37)

are the components of a (1, 2)-tensor, which is called the forsion tensor of the affine
connection of V,,. This tensor field vanishes if and only if the connection coefficients
are symmetric with respect to the lower indices.

Consider a vector field X, which in the chart (U, x! ) on the manifold V;, has
the coordinate representation X = X'e;, where (e;) is the natural basis of the
coordinates x’. Then, with simple calculations, it is possible to verify that

V;ViX*—v;v;x* = Rj;, X' — S}, Vi X", (9.38)
where
Rfji = Tit; = T + Tl = T (939)

is the Riemann curvature tensor.
Now, we prove the following fundamental theorem.

Theorem 9.2. Let V,, be a manifold equipped with an affine connection. Then the
following statements are equivalent:

(a) There exists an atlas B on V,, in each chart of which the connection coefficients
vanish;

(b) The torsion vanishes and, Yx,y € V,, the parallel transport along any curve
connecting x and y does not depend on the curve;

(c) The torsion vanishes and there are n vector fields uy, ... ,u, that are indepen-
dent and uniform;

(d) The curvature and the torsion vanish.

Proof. (a)= (b). If (U,x"),(U,X') € B, then in the intersection U (U of the
domains, we obtain the results F]i = T;{h = 0. Consequently, in view of (9.20),
the coefficients A; of transformation matrix (9.19) verify the conditions

HA™,k =0,

that is,
(AT AA™Y =AY =0,
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and we conclude that the elements Aﬁl of the transformation matrix are constant
and the coordinate transformation x’ — X' is linear. Further, the parallel
transport (9.24) along any curve contained in a domain of a chart of the atlas
B reduces to dX'/dt = 0. Let x, y be two arbitrary points of V,,. If both points
belong to the same domain U of a chart of S, then the parallel transport of a
vector Y, = Y'e;(x) along a curve y(f) C U, connecting x and y, is obtained
integrating the equation dY’/d¢ = 0 along y(¢), and it is independent of y(¢).
Suppose that x belongs to the chart (U, x) of B and y belongs to another chart
(U.x"), with U (MU # @. Let y1(t) and y,(¢) be two curves going from x to y.
The parallel transport of Y, along y;(¢) up to a point p; = y(t;) € U (U gives
the vector Y/e;(p1), whereas the parallel transport of the same vector along y»(7)
up to a point py = y(t) € U (U gives the vector Y!e;(p2) since this transport
for both the curves is expressed by the equation dY' /d¢ = 0. Now we regard p;
and p5 as points belonging to U .. In the coordinates (X' ), the vectors Yie;(p1)and
Y/ei(p2) have, respectively, the representations A’ Y/ (p1) and A’ Y{ @ (p)
since the quantities A} are constant all over U ﬂU. To prove condition (b) we
must verify that the parallel transport of A; Y/® (p)) along y;(t) from p; to y
and of the vector A; Y/ € (p>) along y,(t) from p, to y leads us to the same

vector Y. But this is evident since we must integrate the equations ay’ /dt =0
of the parallel transport along y;(¢) and y,(¢) with the same initial conditions.

(b)= (c). LetYy,..., Y, n be independent vectors at the arbitrary point x € V.
Since condition (b) holds, by a parallel transport of these vectors to any other
point of V,, we obtain n vector fields uy, ..., u, whose values at a point do not
depend on the curve along which the vectors are transported; in other words, they
verify the condition

VAlli =0

for any vector field A tangent to the curve along which w; is transported. From
the arbitrariness of the curve, i.e., of A, it follows that the fields u; are uniform.
It remains to prove that they are independent at any point. In this regard, it is
sufficient to note that the parallel transport, when it is independent on the curves,
defines an isomorphism ¢ : Ty(V,) — T,(V,) between the tangent spaces
corresponding to points x and y owing to the linearity of the parallel transport
equations and the existence and uniqueness theorems.
(c)=(d). Since the torsion tensor vanishes, condition (9.38) becomes
ViViY*k —viv;Y* = Rj;, Y
Now we consider the vector field Y = a’u;, where the quantities a', ..., a"
are arbitrary constants and uy, ..., u, are uniform vector fields existing owing to
property (c). For any field Y the preceding relation gives

kol _
Rja° =0,

and the arbitrariness of the quantities a’ implies R;‘ji = 0.
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(d)=(a). We must prove that, for any x € V,, there exists a chart (U, x")
such that in these coordinates the connection coefficients vanish. Let (V, x) be
another chart containing x. Then, in view of (9.21), we must find a coordinate
transformation (x’) — (x’) such that

D = (AP AT AT, 4+ (A7) AS =0,
where (A4%) = (dx'/3x"/) and the connection coefficients I';;, are symmetric

with respect to m and n since the torsion tensor vanishes. Multiplying the
preceding equation by A[p, we obtain the system

Ay =T, AT A}, (9.40)
ox!
o = AL (9.41)

To find the n? +n unknowns A’j (x) and x" (x) of the preceding n>+n?> equations,
the integrability conditions

bl o4l o)
dx'J xT Ox/ dx') '
3%x! 3%x!
— = —— (9.43)
axlj x/ ax/lej

must be satisfied. We write these conditions in the more compact form
A =0, x'y=Ap; =0, (9.44)
where we have used the notation fj;;; = f;; — fji. The integrability conditions

(9.44), are satisfied since, from (9.40) and the hypothesis that the torsion tensor
vanishes, we obtain

Aj =T, ATA} + T, A A"

i m qn i noqm n gmypl
Tl ATAY + T} ATAT = A7ATT, = 0.

Again for (9.40), the integrability conditions of (9.44); can be written as follows:

9 d
I ! — (!
Anpin = ~ 37 (Fm"A?AZ) * gr (DAl 43)
3Fl m oan m 4n m aqn
= =g A7 A~ T AT Aj = Ty AT A

l

T
oA B T AT AL+ T AT A
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When we note that 9/0x"/ = A’]‘- 9/0xk, take into account (9.40), and recall the
already proven result Afl.. 1=0, the preceding equations become

Aﬁz,[ji] = _ATAZA]; (Frlnn,k — T + F/iprrﬁn - Frlnprlfn)
or, in equivalent form,
Ay = —APAGASR], =0, (9.45)
and the theorem is proved. |

9.6 Riemannian Connection

Theorem 9.3. A Riemannian manifold V,, admits one and only one affine connec-
tion V such that

o The torsion tensor vanishes and
e The scalar product is invariant under a parallel transport.

Proof. Let (U, x") be a chart on V,,, and denote by I‘]i ,, the connection coefficients
whose existence we must prove. If y(¢) is any curve connecting two arbitrary points
x,y € U and X, Y two vector fields that are parallel along y (¢), then we have

dxi o dxh
— 4T, Xk =0, 9.46
a ey (9.46)
dy! o dx!
— 4T YF=— =, 9.47
a Tt g ©.47)

where x"(¢) are the parametric equations of y(¢) in the chart (U, x). The torsion
tensor vanishes if and only if the connection coefficients are symmetric with respect
to the lower indices. Further, the scalar product is invariant under the parallel
transport if and only if the condition

d L
a(gin’Y/) =0 (9.48)

is satisfied for any pair of vector fields X, Y that verify solutions of Eqs. (9.46) and
(9.47). Expanding (9.48) and taking into account (9.46) and (9.47), we obtain

dgij / dxh i dxh ivi
(W_gljrih?—gilrjh? X'Y’) =0.
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Owing to the arbitrariness of X and Y and the curve x"(¢), the following conditions
must be verified:

gijn = 8Tl + gulh. (9.49)

Cyclically permutating the indices, we obtain the other two equations

gjni = g/hF][»,- + g1}, (9.50)
gnij = guly; + auTy. 9.51)

Adding (9.49) and (9.50) and subtracting (9.51), we are led to the equations

1 L
gl = 5 (@nij + gjni = gija) = [k ] (9.52)

Finally, Egs. (9.52) supply the following expressions of the connection coefficients:

m

1 .
I = Eghm(ghi,j + gni — gijn) = g™ jh.i). (9.53)

It is a simple exercise to verify that the connection defined by the preceding
coefficients is without torsion and leaves invariant the scalar product under a parallel
transport. O

Definition 9.5. The Riemannian connection is the connection whose coefficients
are given by (9.53).

Theorem 9.4 (Bianchi’s theorem). The metric tensor g is uniform, that is, its
covariant derivative vanishes:

th,'j =0. (954)

Proof. Tt is sufficient to refer to (9.49) and recall the expression of the covariant
differential of a (0, 2)-tensor. |

Theorem 9.5. In a neighborhood of any point xo of a Riemannian manifold, it is
possible to define a local chart (U,X') whose domain contains xo such that

gij(x0) = €8ij. 8y =0, (9.55)
where € = *£1 according to the signature of V, (Sect. 6.9).

Proof. Let (U,x") be a chart in a neighborhood of xo, and denote by (x}) the
coordinates of x in this chart. If I'; , (x;) are the Riemannian connection coefficients
evaluated at xg, then the functions

P B
X =x'—xy— EFI’Ch(x(’))(xk —xby(x" = x (9.56)



130 9 Absolute Differential Calculus

define a coordinate transformation in a neighborhood of x since (3% /dx/ (xo)) =
(8;;). Further, it is
ax' ;
W(}Co) = _Fkh(‘x())' (957)
From the transformation formulae (9.21), when we take into account that A; (x0)
8; and recall (9.57), we obtain

T (x0) = T, (x0) — Tl (x0) = 0.

Since the connection is Riemannian, (9.50) holds, 'and then we have g;;;(xo) =
0. Finally, by a linear transformation (X') — (X"), which does not modify the
preceding results, we can reduce the metric coefficients at x; to the form (9.55). O

The Riemannian manifold V, is said to be locally Euclidean if in the neighbor-
hood of any point there is a system of coordinates (U, x’) in which g;; = €8/,
Vx eU.

9.7 Differential Operators on a Riemannian Manifold

Let f be a C! real function on the Riemannian manifold V,,. We call gradient of f
the vector field V f whose covariant components in a chart (U, x') are

V= fr- (9.58)
Consequently, in the natural basis (e;), relative to the chart (U, x), we can write
Vi=g"f;e. (9.59)
Let X be a vector field on V),. The skew-symmetric 2-tensor
(VxX); =V, Xi =V, X; =X, — X, (9.60)
is called a curl tensor. From (9.59) and (9.60) it follows that
VxVf=0. (9.61)
Finally, we call the function
V.-X=VX' (9.62)

the divergence of the vector field X.
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To determine a useful form of (9.62), we start by noting that
VX=X, +T,Xx" (9.63)
On the other hand, in view of (9.49), we have that
8" gijn— T}y — T4, =0,
so that we can write

. 1 ..
in = Egl]gij,h- (9.64)

On the other hand, if we set g = det(g;;), it is well known that g., = gg" gij.
Consequently, (9.64) becomes

S 1
T = —gn=—=/IgDx (9.65)
28 Vgl

and (9.63) assumes the final form

1 .
V-X= m(\/HX'),,-. (9.66)

NI

The Laplace operator of the C? real function f is
Af=V-Vf (9.67)

In local coordinates (x'), in view of (9.67) and (9.59), we can write the Laplace
operator in the form

iy . 1 .
Af =V fj)=8¢"(fiy =Tk fik) = —=(VIglg” f;)i.  (9.68

Any function f on V,, verifying the Laplace equation
Af=0 (9.69)

is called a harmonic function. A system of coordinates (U, x') is harmonic in the
metric g;; if the coordinate functions x',i = 1,...,n, are harmonic. Taking into
account (9.68), we can state that the coordinates x’ are harmonic if they satisfy the
equations

F'=-Ax' = gh*T], = 0. (9.70)
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Fig. 9.1 Geodesic triangle

Fig. 9.2 Parallelogram on a sphere

9.8 Exercises

1. Let C be a cylinder in which we introduce the cylindrical coordinates ¢, z.
Determine the geodesics of the metrics on C and compare the parallel transport
of the vector (1,0) along the curve z = ¢, 0 < ¢ < m/4, and along the curve
unionof 0 < ¢ <n/4,z=0,andp = /4,0 <z < /4.

2. Let S be a unit sphere in which we introduce the spherical coordinates ¢, 6. The
equator y of S has parametric equations (¢,0), 0 < ¢ < 2m. Show that the
equator is a geodesic, and evaluate the parallel transport along y of the tangent
vector (0, 1).
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3. On the unit sphere S consider the triangle ABC (Fig. 9.1) in which AC and BC
are arcs of meridians, AB an arc of the equator, and B a pole. Let « be the angle
at the vertex C. Show that the three sides of the triangle are arcs of geodesics and
evaluate the parallel transport of the vector (1,0) along the sides of ABC from
Ato A.

4. Using the notations of the preceding exercise, evaluate the parallel transport of
the vector (1, 0) from A to A along the curve ABCA in Fig. 9.2,

where AD and BC are arcs of meridians and A B and C D are arcs of parallels.






Chapter 10
An Overview of Dynamical Systems

10.1 Modeling and Dynamical Systems

In previous chapters, some fundamental concepts of algebra and differential geom-
etry were presented. This chapter is devoted to an overview of dynamical systems
that play a fundamental role in building mathematical models of reality.'

Several interesting behaviors of physical, biological, economical, and chemical
systems can be described by ordinary differential equations (ODEs). Applied
scientists are interested in mathematical problems of models stated by ODEs.
The explicit form of their solutions can be found when the ODEs are linear, but
often nonlinearity represents an inner unavoidable feature of the model, and in
this case we cannot exhibit the explicit solutions. Mathematical methods must be
developed to tackle these difficulties. We usually resort to qualitative analysis, which
supplies important aspects of solutions such as their asymptotic behavior, stability
properties, the existence of limit cycles, and the possibility of bifurcation on varying
a parameter contained in the equations. When the applications require a quantitative
description of solutions, we can use known procedures that supply the approximate
time evolution of the dependent variable obtained by numerical integration, power
series, or expansion in one or more parameters.

In attempting to describe reality, people resort to models representing simplified
but useful mathematical descriptions of phenomena we are interested in. It is not
a simple task to identify the main characteristics of a phenomenon, describe it in
terms of mathematical variables, recognize the mathematical relations among these,
and finally verify if the expectations of the model agree with observation. Solving
these difficult problems is the main goal of the mathematical modeling of nature.

In this difficult process, the transcription of an aspect of reality is often
represented by a mathematical object called a (scalar or vector) ODE. To understand

IThe topics contained in this chapter can also be found in [5, 6,9, 25,28,29, 35,40, 55].
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why modeling leads us to this object, and what kinds of problems one finds at the
end of this process, we start with a very simple example containing the fundamental
ingredients of the problems we face.

Suppose that one wishes to describe the evolution of a population consisting of
people, animals, bacteria, radioactive atoms, etc. The importance of this problem is
clear: its resolution could allow decisive forecasts on the destiny of the examined
population. For example, the growth velocity of a population of infectious bacteria
in an organism could suggest the appropriate dosage of antibiotic. Similarly, if the
growth law of a population is known, the right amount of food for its survival can
be evaluated.

To formulate a growth model for a population, the factors that positively or
negatively influence the aforementioned process must first be identified and a
mathematical relation supplying the number N (¢) of living individuals at instant
t as a function of those factors must be formulated. Proceeding from the simplest
situation, all external influences on growth are neglected and the food source is
assumed unlimited. In this situation, it is quite reasonable to suppose that the
variation AN (t) of the number N (¢) in the time interval (¢,7 + At) is proportional
both to N(¢) and At

AN(t) = aN(t)At,

where o is a coefficient depending on the kind of population. Of course, this
coefficient is positive if the population increases and negative in the opposite case.
In the limit At — 0, the number N () satisfies the equation

dN(1)
T aN(1),

in which N(¢) is the unknown appearing in the equation with its first derivative.
Such a mathematical object is just an ODE of the first order in the unknown N(¢).
We underline that the hypotheses leading us to the previous equation are very
spontaneous, but this is not the case when forecasting the form of its solution?

N(t) = Ce",

where C is an arbitrary positive constant. Now the main reason why differential
equations frequently appear in modeling natural phenomena can be recognized: It is
much easier to formulate a reasonable relation between the unknown of a given
problem and its variations than to imagine the form of the function itself. The same
kind of population admits infinite evolutions depending on the initial datum or
condition N(0) that assigns a value to C.

The previous model, where o > 0, implies that the number of individuals goes
to infinity with time, and this is absurd. To improve the model, the habitat in which

2This solution is obtainable at once by the method of variable separation. However, the reader can
easily verify that it is really a solution for any C.
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the population lives is not supposed to support a population level greater than M ;
this means that when N(¢) reaches this value, the growth rate becomes zero. The
limit M is called the carrying capacity. To take into account this constraint, the
coefficient o appearing in the preceding equation is assumed depending on the
quantity (M — N(t))/ M. The simplest dependency on this variable is the direct

proportionality
N(@)
=B8l1-—2),
“=F ( M)

where > 0 is constant, and we arrive at the relation

80 =p (1- 57 Vo

which is called the logistic equation. This nonlinear equation gives a more accurate
description of the evolution of a population since it introduces an upper bound
to its growth. Further, it represents the starting point of many models describing
the competition among species living in the same habitat or the modified prey—
predator model of Lotka—Volterra (see, for instance, [28,29]). When the variables
are separated, the family of solutions

NGt)= —
@) 14+ CeFt

is easily obtained, where C is an arbitrary constant determined by assigning the
initial value N(0). It is a very lucky circumstance that the solution of the logistic
equation can be exhibited. However, more frequently, one must resort to other
procedures if information about the unknown solutions is needed.’

Before we continue, some consequences of the previous considerations must be
underlined: (1) it is much easier to model by a differential equation than directly
finding the finite relation between the involved variables; (2) when solutions exist,
they are infinite in number, but one of them is assigned by giving the value of the
unknown at a certain instant; and (3) it might be impossible to find the closed form
of these solutions.

In all the examined cases, we were led to an ordinary first-order differential
equation, i.e., to an equation containing an unknown function and its first derivative.
In many other cases, we could be compelled to model our phenomenon by a system
of two or more higher-order ODEs with two or more unknowns. This means that we
are faced with a system of equations containing more unknowns and their higher-
order derivatives. In the chapters devoted to dynamics, we shall see that describing
the evolution of mechanical systems almost always leads to a system of differential
equations. In this regard, here we only recall that Galileo and Newton proved that the

3For the application of differential equations to economy, see, for instance, [55].
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wide variety of possible motions of material bodies confirm the three fundamental
principles of dynamics (Chap. 13). It is an everyday experience that a body may
fall in many different ways under the influence of its weight. Similarly, the planets
describe different orbits around the Sun and traverse them at different velocities.
Galileo and Newton discovered that a very simple relation of proportionality relates
the acceleration a of a material point P to the acting force F

ma=F,

where m is the mass of the body. If (x(¢),y(¢),z(t)) are the coordinates in a
frame of reference Oxyz of the moving point P as a function of time, then the
components of the acceleration vector are (X(¢), y(¢),Z(¢)). On the other hand, the
force depends on the position of P (that is, on (x(¢), y(¢), z(¢))) as well as on its
velocity (x(¢), y(t), z(t)). Consequently, the fundamental equation of dynamics is
essentially a system of three ordinary second-order differential equations in the
unknowns (x (), y(t),z(t)). By the auxiliary variables (u,v,w) = (%, y,%), this
reduces to a system of six first-order differential equations.

10.2 General Definitions and Cauchy’s Problem

Let 9" be the vector space of the ordered n-tuples of real numbers x = (xi, ..., x;)
and ||x|| the Euclidean norm in R". Moreover, let f : Q@ — NR” be a map defined
on the open subset 2 of R". We call a autonomous first-order (vector) differential
equation in the normal form the following equation

x = f(x). (10.1)
Essentially, (10.1) is an abbreviation of the system of differential equations
Xi = filx1,...,xy), i=12,...,n.

The vector space i”, to which x belongs, is said to be the state space.
A smooth function x : / —> NR", where [ is a nonempty interval of N, is a
solution of (10.1) if

x(1) € Q, x(t) = f(x(t)) Vit e I.

The set x(¢), Vt € I is called an orbit, and it represents a curve in the state space.
The initial-value problem or Cauchy problem for (10.1) consists in searching
for the solution x(z, fy, Xo) of (10.1) that satisfies the following initial condition or
initial datum:
Xo) = X(Z()), X € Q2. (10.2)
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It is possible to prove that the solution of an autonomous equation depends on ¢ —t.
For this reason, henceforth we denote by x(¢, X¢) the solution of the Cauchy problem
(10.1) and (10.2). In a geometric language we search for a curve x(z, X¢) containing
xo fort = 1.

A solution x(¢) : I — " of (10.1) is a maximal solution if there is no other
solution y(¢) : J — ", where I C J such that x(¢#) = y(¢), V¢ € I.Itis possible
to prove that the interval in which a maximal solution is defined is always open.

The function f(x) is a Lipschitz function in 2 if it satisfies a Lipschitz condition
in  with respect to X, i.e., if a positive constant K exists such that

[ fx) —f(y) = K [ x—y | (10.3)

Vx,y € Q. Moreover, we say that f(x) satisfies a local Lipschitz condition in Q
with respect to x if each point of Q2 has a neighborhood A such that the restriction
of fto A N 2 is a Lipschitz function with respect to x. The fundamental theorem of
ODE:s is as follows, which ensures the existence and uniqueness of the solution to
the Cauchy problem locally in time.*

Theorem 10.1 (Piccard-Lindel’of). Let f: Q—> R be a continuous and locally
Lipschitz function with respect to X. For any (ty,Xo) € N X 2, one and only one
maximal solution of (10.1) exists x(t) : 1(ty, Xo) —> R" such that ty € 1(ty, Xo) and
X0 = X(t). Moreover, if the notation

A= {(I, lo,Xo) : (lo,Xo) eNxQ, te I(to,Xo)}
is introduced, the maximal solution x(t,Xo) : A —> N" of (10.1) is continuous.
The following examples explain Theorem 10.1.

Example 10.1. The right-hand side of the equation X = /x does not satisfy a
Lipschitz condition in any interval [0, a],a > 0. It is easy to verify that the Cauchy
problem obtained by associating to the equation the initial datum x (0) = 0 admits
the infinite solutions

2
x={gt-aa=t Va € %.

Example 10.2. The right-hand side of the equation

.1
X =—
x

4For a proof, see, for instance, [40].
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does not satisfy a Lipschitz condition in the interval (0, 1]. However, the solution

X = v/ xo? + 21,

corresponding to the initial condition x( > 0, is unique.

Another very important concept is that of the general integral of (10.1). This
is a function x(z,c), ¢ € N" (1) that is a solution of (10.1) for any choice of ¢
and (2) where for any initial datum (%o, X¢) only a choice ¢ of ¢ exists for which
X9 = X(f, ¢9). We conclude this section by recalling that a first integral of (10.1) is
a smooth real function g(x), (x) € € that is constant along any solution of (10.1).
Formally,

g(x(¢)) = const, Vt € I, (10.4)

for any x(¢) : I — " such that x = f(x(¢)).

In geometrical language, we can say that a function g(x) in the state space is a
first integral when an orbit starting from a point of the surface g(x) = const of )"
lies completely on it. We can introduce the vector field X(x) = f(x). From (10.1),
the orbits at any point x are tangent to the field X(x) or, equivalently, the orbits
are the integral curves of the field X(x). This geometric interpretation will be used
throughout this chapter.

Finally, we call the phase portrait the family of the orbits of (10.1). The notebook
Phase2D supplies the phase portrait of (10.1) when n = 2 and Cartesian coordinates
are adopted in the plane. The notebook PolarPlot draws the phase portrait when
polar coordinates are used.

10.3 Preliminary Considerations About Stability

Let a real system S be modeled by an equation like (10.1). A particular evolution
x(t,x9) of S is completely determined by assigning the Cauchy datum (#, Xo).
However, this datum is obtained by an experimental procedure and is therefore
affected by an error. If a “small” difference in the initial data leads to a new solution
that is “close” to the previous one, then x(¢,X() is said to be stable in the sense
of Lyapunov (see, e.g., [9, 25, 28, 35]). To make precise the notion of Lyapunov
stability, one must attribute a meaning to terms like small and close. By considering
that x is a point of )", the Euclidean norm for evaluating the difference between
two solutions or two initial data can be used. In particular, the stability property
can always be expressed for an equilibrium solution. In fact, by introducing the
new unknown x — x(¢,X(), the analysis of stability of any solution can always
be reduced to an analysis of the equilibrium stability of the origin of a system,
which, in general, becomes nonautonomous. An equilibrium position that is not
stable is called unstable. In such a case, near the equilibrium there are initial data
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whose corresponding solutions go definitively away from the equilibrium. Finally,
the equilibrium is asymptotically stable if it is stable, and the solutions associated
to the initial data in a neighborhood of the equilibrium tend to the equilibrium
position when the independent variable goes to infinity. In this section, we refer
to the stability of the origin of an autonomous system.

Although the concrete meaning and the importance of the stability theory
are plain, at first sight one might think that, to check the equilibrium stability,
knowledge of all solutions whose initial data are close to equilibrium is required. If
this were true, it would be almost impossible to recognize this property because of
the difficulty of obtaining the closed form of solutions. In this chapter, the Lyapunov
direct method is described; it overcomes this difficulty by introducing a suitable
function (called a Lyapunov function) that verifies the solutions. To understand this
idea, we consider the system

X =y,

y=-x,
whose solutions are curves (x(¢), y(¢)) of the plane x, y. It is very easy to verify
that the function

1
V= E(xz +5%)

is a first integral of the preceding system because along all the solutions it is V = 0.
The level curves V(x, y) = const are circles, so that the solutions starting near the
origin remain near it because they must belong to the circle to which the initial
datum belongs. This, in turn, means that the origin is stable; this property was
deduced without solving the system itself.

We conclude by remarking that the stability concept is much richer because it
includes many other aspects. For example, what happens to the solutions of (10.1)
if the function on the right-hand side is slightly changed? This is a very important
problem because the function f is a mathematical transcription of the system we
are describing. Further, f includes parameters that are the results of measures and
therefore are again affected by errors. The analysis of the behavior of the solution
on varying the form of f or of the parameters it includes is carried out by the fotal
stability and bifurcation theory (see, for instance, [6, 28, 29, 35]). However, this
subject will not be considered in this chapter.

10.4 Definitions of Stability

We suppose that the function f : D C " — 9" of the autonomous system
(10.1) satisfies all the conditions that ensure the existence and uniqueness of
maximal solutions, namely, the vector function f satisfies a local Lipschitz condition
(Theorem 10.1). In the sequel, x = x(¢,X¢), ¢ € I, denotes the maximal solution of
(10.1) corresponding to the initial datum Xo.
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Any constant function x(¢) = x* that is a solution of (10.1) is called an
equilibrium solution. Equivalently, x* is a root of the equation f(x) = 0. By a
suitable axis translation, it is always possible to reduce any equilibrium solution at
the origin. For this reason, in the sequel it is assumed that f(0) = 0. Moreover, y
will denote the distance between the origin x = 0 and the boundary dD of D.

The origin is a stable equilibrium solution if a positive real number y exists such
that Ve €]0, y[, 36(¢) €]0, €[ for which

I %o ||< 8(€) = || x(t,%0) ||< e, V> 0. (10.5)

It is evident that §(¢) < €; otherwise, condition (10.5) should not be verified at
the initial instant. It is important to note the following. First, the stability property
is equivalent to the continuity of solutions of (10.1) with respect to the initial
datum x¢ uniformly in the unbounded time interval [0, oo]. If (10.1) is interpreted
as a mathematical model of a real system S, its solutions represent the possible
evolutions of the variable x describing the state of S. To have S at the equilibrium
state x(r) = 0,5 must initially be put at 0. But this operation is physically
impossible because it is necessarily realized by procedures that introduce measure
errors, however accurate they may be. This means that the system is put at an initial
state Xo next to 0, and the corresponding solution could lead the state of the system
definitively far from the equilibrium. If this happened for some initial data, the
equilibrium state itself would not be physically observable. In contrast, if 0 is stable,
this situation is not confirmed. In fact, if the notation Us = {x € RN" :|| x ||< §} is
used, the stability notion can be formulated in the following terms. If any region
U. C D is fixed around the origin, it is possible to find a whole neighborhood Us C
U. of initial conditions whose corresponding solutions are fully contained in U..

The equilibrium solution x = 0 is as follows:

1. Attractive if
(a) x(t,xp) exists V>0

36 €]0, x[: Vxp € Us =
() Ve>0,3T(e) :|| x(¢,%0) [|< €, Vt = T(e);

(10.6)
2. Asymptotically stable if it is stable and
lim x(z,x0) = 0; (10.7)
—>00
3. Unstable if it is not stable, i.e., if
Je €]0, y[: V6 €]0,€],3xp € Us, t* > 0 ;| x(t*,x0) ||> €. (10.8)

The set 2 of initial data xo for which (10.6) is satisfied is called the domain
of attraction. In particular, if Qy = D, x = 0 is globally asymptotically
stable. Figures 10.1-10.3 supply a rough representation of an attractive origin,
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asymptotically stable origin, and unstable origin, respectively. In Fig. 10.1, the
origin is stable since there are two neighborhoods Us and U, of the origin, where
Us C U, of the origin such that the orbits starting from any point in Us are
always contained in U,. In Fig. 10.2, the origin is attractive since the solutions
corresponding to the initial data belonging to €2 are contained in a neighborhood
of the origin after a suitable value of time. In Fig. 10.3, the origin is asymptotically
stable because the solutions corresponding to the initial data belonging to Us are
contained in Us and, moreover, tend to the origin when the variable ¢ goes to
infinity. Finally, in Fig. 10.4, the origin is unstable because there are initial data
whose corresponding solutions go definitively away from the origin.

10.5 Analysis of Stability: The Direct Method

The previous stability definitions could generate the wrong idea that all solutions
of (10.1), corresponding to initial data in a neighborhood of 0, must be known
in order to recognize the stability of the equilibrium position. It is evident that
the solutions of (10.1) can be exhibited in only a few elementary cases (linear or
special systems) so that an alternative method is needed to check the stability of
the origin. In this section, it is shown that it is possible to recognize the stability
of the origin by analyzing the right-hand side of (10.1). This is realized in the
direct method of Lyapunov, which reduces the stability problem to that of the
existence of suitable functions (Lyapunov functions) having, with their derivatives,
determined the properties on the solutions of (10.5). This method is called direct
because, under the hypothesis that these functions are of class C ! the corresponding
derivatives on the solutions of (10.1) can be directly expressed by the right-hand
side of (10.1) without knowing the solutions themselves. The determination of a
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Lyapunov function, in turn, is not easy. Therefore, the original idea was developed
in different directions to make easier the application of the method itself.

In this section, some stability or instability criteria related to the direct method
are discussed.

We extensively use the notation

V(x) = f(x) - VV(x), (10.9)

together with the remark that along the solutions of (10.1) V(x) coincides with the
total derivative of V(x(t, x¢)) because

V(x(t, X)) = x(¢t,x0) - VV(x(t,%¢)) = f(x(¢, %)) - VV(x(¢, %0)). (10.10)

This remark implies that the sign of V(x(z,xXo)) along the solutions can be
established without their preliminary knowledge if the sign of V (x) around the
origin is known.

Definition 10.1. Let V : U+ —> 9 be a continuous function such that V(0) = 0.
V is said to be positive (negative) definite on U~ if V(x) > 0 (V(x) < 0) forx # 0
or positive (negative) semidefinite if V(x) > 0 (V(x) <0).

Theorem 10.2. Let V : Usx —> R be a class C' function that is positive definite
in a neighborhood Uzx of the origin. If V (x) is negative semidefinite in U.x, then
the origin is stable. Moreover, if V (x) is negative definite in U.x, then the origin is
asymptotically stable.

Proof. Ye € (0,€*] we denote a sphere with its center at the origin and radius
€. Since U, C U and in U — {0} the function V(x) is positive definite and
continuous, there exists a positive minimum of the restriction of V(x) on dU;:

0 <V, = min V(x).
x€dU,

Again for the continuity of V(x) at the origin, there is a positive real quantity § < €
such that
x| <8 =0<V(x)<V..

Now we prove that any solution x(z, Xo) of (10.1), for which |xo| < &, remains for
any ¢t > 0 in the sphere S.. In fact, if this statement were false, there should be an
instant ¢ * in which the orbit x(z, x¢) should cross dS.. But initially it is V(xo) < V,
so that we should have V(xo) < Ve < V(x(t*,X¢)) against the condition V<0
along the orbit x(z, X¢). |

The proof of the following theorem is omitted.

Theorem 10.3. Let V : U —> R be a class C' function in a neighborhood U
of the origin such that (1) V(0) = 0 and (2) for any neighborhood U, C U+ a point
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Fig. 10.5 Asymptotically stable origin

x € U, exists at which V(x) > 0. If V(x) is positive definite in U=, then the origin
is unstable.

It is possible to recognize the role of the hypotheses contained in Theorems (10.2)
and (10.3) by a simple geometric description.

In fact, let ¢ be a trajectory starting from a point X, of a level curve y of the
Lyapunov function. At this point, ¢ has a tangent vector x = f(x¢) that points
toward the internal region of y, and the angle between VV and x is greater than
7. Consequently, ¢ meets the more internal level curves under the same conditions.
In this way, ¢ approaches the origin (Fig. 10.5).

Similar considerations, applied to the case V < 0, allow us to conclude that the
trajectory does not leave the internal region to the level curve of V' containing x.
However, the condition V' < 0 does not exclude the possibility that the trajectory
will remain on a level curve so that it cannot approach the origin.

In particular, when V=0 along the solutions, one has the situation illustrated in
Fig. 10.6.

Before stating the next theorem of Barbashin—Krasovskii, a simple physical
example will be discussed. Let P be a harmonic oscillator of unit mass moving
on the O x-axis subject to an elastic force —kx, k > 0, and to a linear friction —hx,
h > 0. Its motion x(¢) is given by the linear system

X =v,
v=—kx — hv.

It is quite evident from a physical point of view that the origin is an asymp-
totically stable equilibrium position. To verify this property of the origin, the total
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energy V(x,v) is chosen as a Lyapunov function because it is positive definite and
decreases along any motion for the dissipation. In fact, from the total energy

1
V(x,v) = E(v2 + kx?)

we have )
Vix,v) = —n?.

However, V(x, v) vanishes not only at the origin but also along the x-axis. From
the previous theorems we can only conclude that the origin is stable. The following
theorems allow us to establish that the origin is asymptotically stable by using the
same Lyapunov function.

Theorem 10.4. (Barbashin-Krasovskii) Let V : P, —> R be a class C' function
that is positive definite in a neighborhood P, of the origin. If V(x) is negative
semidefinite in P, and if x = 0 is the only solution of (10.1) for which V (x) = 0,
then the origin is asymptotically stable.

Theorem 10.5. (Krasovskii) Let V : P, —> R be a class C ! function such that

1. Vne(0,y),Ix € P, : V(x) > 0;

2. V(x) <0,Vx € Py;and

3. x = 0 is the only solution of (5.1) for which V (x) = 0.

Then the origin is unstable.

Returning to the preceding example, we remark that the equation V = —hv? = 0
implies v = 0 along the solutions. On the other hand, from the differential system it
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follows that x = v = 0; then the hypotheses of Theorem 10.4 are satisfied and the
origin is asymptotically stable.

The preceding theorems make possible the analysis of the stability properties
of the equilibrium solution x = 0 given a Lyapunov function possessing suitable
property. We have already remarked that a first integral of (10.1) can be used as a
Lyapunov function. In some cases, polynomial Lyapunov functions can be easily
found (see exercises at end of chapter). However, in general, it is not an easy task to
determine a Lyapunov function. In this regard, the following theorem, which allows
us to state the stability of the equilibrium solution x = 0 by an analysis of the linear
part of (10.1) around 0, could be useful.’

More precisely, since f(0) = 0, (10.1) can be written as follows:

X = Ax + ®(x), (10.11)

where A = (Vf)x=¢ is an n x n constant matrix and ®(x) = o(|| x ||) when x — 0.
Then, it is possible to prove the following theorem.

Theorem 10.6. If all the eigenvalues of matrix A have negative real part, then
the solution x = 0 of (10.1) is asymptotically stable. If among the eigenvalues
of matrix A there is at least one whose real part is positive, the solution x = 0 of
(10.1) is unstable.

The notebook LinStab is based on this theorem.

10.6 Poincare’s Perturbation Method

In this section, we search for approximate solutions of (10.1). It should be possible
to search for such a solution as a Taylor expansion. This approach supplies a
polynomial of a fixed degree r, approximating the solution of (10.1) at least in
a neighborhood of the initial value Xy. A better approximation is obtained by
increasing the value r, that is, by considering more terms of the power expansion,
or values of the independent variable 7 closer to the initial value # = 0. In contrast,
Poincaré’s method tries to give an approximate solution in an extended interval
of the variable ¢, possibly for any z. On this logic, one is ready to accept a less
accurate solution, provided that it approximates the solution uniformly with respect
to ¢. In effect, Poincaré’s approach does not always give a solution with this
characteristic; more frequently, it gives an approximate solution whose degree of
accuracy is not uniform with respect to time. This is due, as we shall see in this
chapter, to the presence in Poincaré’s expansion of so-called secular terms that go
to infinity with ¢. This behavior of the approximate solution is not acceptable when

SReaders will find in [35] many programs, written using Mathematica, that allow for the analysis
of many stability problems.
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the solution we are searching for is periodic. However, in this case, by applying
another procedure (Lindstedt, Poincaré), a uniform expansion with respect to ¢ can
be derived (see, for instance, [28,29, 35]).

Poincaré’s method is applicable to a differential equation, which can be written
in the form

x = £(x) + €F(x), (10.12)

where € is a suitable “small” dimensionless parameter related to the physical system
modeled by the preceding differential equation.
The method can be developed, provided that the solution of the equation

x = f(x) +g(1).

where g(¢) is a known function belonging to a suitable class, can be computed for
a given initial condition and if the perturbation term F is analytic in its argument.
When both conditions are fulfilled, it is possible to look for the solution in powers
of €. More precisely, it can be proved that the solution of (10.12), under suitable
hypotheses on the functions f and F, can be written as a power series of the
parameter €,

(1) = Xo(r) + ex1(t) + €%, (1) + -+ .

that converges to the solution of (10.12) uniformly with respect to € but usually not
with respect to . The general term x,,(¢) of the preceding expansion is the solution
of the equation

X, = f(x,) + 8. (1),

where the function g,(¢) is completely determined by the previous terms x;(¢),
e ,Xn_l(t).

The meaning of the attribute small applied to € requires an explanation. The
parameter € is small if ¢ < 1 and the terms x, f(x), and F(x) are all comparable
with unity. However, it is not possible to verify this property because usually there
is no knowledge of the solution. To overcome this difficulty, we can resort to a
dimensionless analysis of the problem modeled by (10.12), provided that we have
a sufficient knowledge of the phenomenon we are analyzing. We make clear this
procedure with some examples.

We analyze in more detail the case where the function f in (10.12) depends
linearly on X, i.e., we consider the following Cauchy problem:

x = Ax + €F(x, €),

- (10.13)

where A is an n x n matrix with constant coefficients.

Poincaré proved that if F(x, €) is an analytic function of its variables, then the
solution x(¢,€) of (10.13) is analytic with respect to €; consequently, it can be
expressed by an expansion

x(t,€) = Xo(t) + x1(t)e + X2 (1) + -+ - (10.14)
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uniformly convergent with respect to € in a neighborhood of the origin. It is evident
that the functions x; (#) must verify the initial data

Xo(to) = X,
x1(to) = 0,

10.15
x2(fo) = 0, ( )

To find the terms of the expansion (10.14), we expand F(x, €) with respect to
€ and then introduce (10.14) into (10.13);. In this way, the following sequence of
Cauchy problems is derived, which determine x¢ (), X;(¢), X»(¢), and so on:

f(() = AX(),
10.16
% xo(to) = X, ( )
x; = Ax; + F(x¢(?),0),
10.17
oy 1o
{ XZ = AX2 + (FE)(XO(I)7 O) + Xl([) - (VXF)(XO([)’ 0)’ (1018)
X2(%) =0,

where (F¢)(x0(?), ¢, 0) is the derivative of F with respect to € evaluated at (xy(t), 0)
and (VxF)(x¢(¢),0) denotes the gradient of F with respect to the variable x at
(x0(7), 0).

It is very important to note that the problems (10.16), (10.17), ... refer to the
same linear differential equation, which is homogeneous at the first step and nonho-
mogeneous at the next steps. However, the terms appearing at the 7 th step are known
when the previous Cauchy problems have been solved. Although the simplification
reached in solving the original Cauchy problem is clear, the calculations to write
and solve the different systems are very heavy and cumbersome. For these reasons,
the reader can use the notebook Poincare.

It is also very important to recall that expansion (10.14) is usually not uniform
with respect to time. As we shall see, in the series (10.14) some secular terms
€"t" sinnt, €"t" cosnt can appear. When this happens, one is compelled to accept
into (10.14) time values verifying the inequality ¢ < a/be, where a and b denote
the maximum values of the coefficients of, respectively, X¢(¢) and the secular terms
in x;(¢), to be sure that the second term of the expansion (10.14) is small with
respect to the first one for time values ¢ < a/be.
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10.7 Introducing the Small Parameter

To establish a model describing a certain system (e.g., physical, economical), we
must first identify a set of variables x = (xy, ..., x,) depending on an independent
variable ¢ that should describe, in the framework of the mathematical model, the
physical state of the system we are dealing with.

Generally, independent and dependent variables of a model have dimensional
values related to the physical system. This may cause problems in comparing small
and large deviations of the variables. This problem can be overcome by putting all
the variables in a suitable dimensionless form, relating them to convenient reference
quantities. The criterion to choose these quantities must be such that the derived
dimensionless quantities have values close to one. Only after this analysis it is
possible to check whether the system has the form (10.13) and Poincaré’s method is
applicable.

This first step is a necessary step to apply Poincaré’s method and, in particular,
to verify whether (10.13) satisfies all the required conditions. Two mechanical
examples will be considered to explain this procedure in detail. Two other examples
will be considered in Chap. 14.

Example 10.3. 1If P is a material point of mass m subject to a nonlinear elastic force
—hx — kx* and constrained to move on a straight line Ox, the Newtonian equation
governing its motion yields

mi¥ = —hx —kx>. (10.19)

To put (10.19) in a dimensionless form, two reference quantities L and T are
introduced with, respectively, the dimensions of length and time

[m
L=xy, T= w (10.20)

where x denotes the abscissa of the initial position of P and 7 is equal to 27 times
the period of the oscillations one has when only the linear part —hx of the elastic
force is acting. Defining the dimensionless quantities

t
X* = % "= (10.21)
and remarking that
. Ldx* L . . L d>x* L .
= — = —x*7 X = ——= __x*,
T dr* T T2 dr*? T2
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(10.19), in view of (10.20), (10.21), and the last relations, yields

kx2
* * 0 ,.*3
X' ==x" = —
h
Since this equation is equivalent to the first-order system
X_* — y*’
kx2
* * 0 %3
=yt D03
Y h
the dimensionless parameter
2
_ kxg
h

can be identified with the small parameter of Poincaré’s method, provided
that e<<1.

Example 10.4. Now we take another mechanical example into account: a moving
point P under the action of its weight and a friction. The motion equation
is written as

v =g—hvv, (10.22)

where g is the gravity acceleration, v = |v|, and 4 is a positive constant depending
on the medium in which P is moving as well as on its form. Refer the previous
vector equation to a frame Oxy whose origin O is at the initial position of P and
whose Ox-axis and Oy-axis are taken to be horizontal and vertical, respectively,
and such that the (vertical) plane Oxy contains the initial velocity of P. Since the
motion is planar, the whole trajectory is contained in the plane Oxy. To identify the
small parameter, we note that when friction is absent, the motion equation

v=g
admits the solutions
V(1) = vocosa, (10.23)
vy(t) = vosina + gt, (10.24)
where vo = |v(0)| and « is the angle between the initial velocity v(0) and the

horizontal Ox-axis. Since the quantities v, (#) and v, (¢), in the presence of friction,
are of the same order of magnitude as the previous ones, the height L at which a
heavy body arrives, before inverting its motion, and the time 7 to reach the soil
again can be taken as reference quantities of length and time, respectively. It is easy
to deduce from (10.23) and (10.24) the formulae
I = v_(z) ZV()
2g° g
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so that
L _¢g
T8
With the introduction of these reference quantities, (10.22) assumes the following
dimensionless form:

v=—8k—hLvv, (10.25)

where k is the unit vector along the Oy-axis. If the factor
€ = hL<<8,

then we have an equation to which the perturbation method is applicable. It is well
known that in the presence of nonlinear friction, the velocity of a heavy point tends
to a limit value. It has already been pointed out that Poincaré’s method cannot supply
correct results if the approximate solution is used in an extended time interval. This
implies that the method does not result in a behavior that exhibits a limit velocity. It
approximates the effective solution only if the motion lasts a sufficiently short time.

10.8 Weierstrass’ Qualitative Analysis

In this section, we consider the second-order scalar differential equation
= f(x) (10.26)

in the unknown x (¢) since we will encounter it in many mechanical applications.
First, we notice that (10.26) is equivalent to the following first-order system:
X =, (10.27)
v = f(x), (10.28)
in the unknowns x (¢), v(¢). This pair of functions defines a curve y in the state space
T" whose structure depends on the meaning of the variable x. For instance, if x is the

angle ¢ varying on a circumference, then I' is a cylinder. The equilibrium positions
of (10.27), (10.28) are the solutions of the system

f(x)=0, v=0. (10.29)
The purpose of Weierstrass’s analysis consists in determining the qualitative

behavior of the phase portrait of (10.27), (10.28).
To localize the orbits of (10.27), (10.28), we note that

V(x,v) = %vz + U(x), (10.30)
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where

Ux) = —/f(x)dx (10.31)

is a first integral of (10.27), (10.28) since
V =i+ U (x)% =v— f(x)%

vanishes along the solution of (10.27), (10.28).

Theorem 10.7 (Dirichlet). If U(x) is a C! function with a minimum at the point
x*, then (x*,0) is a stable equilibrium position of the system (10.27), (10.28).

Proof. If U is of class C! and has a minimum at x*, then we have U’(x*) =
f(x*) = 0 and (x*,0) is an equilibrium position. Moreover, since U is defined
to within a constant, we can always suppose that U(x*) = 0. Consequently, we
have that V(x*,0) = 0. Further, since U(x) has a minimum at x*, there exists a
neighborhood of x* in which V(x,v) = v?/2 4+ U(x) > 0. Finally, we have already
proved that V=0 along the solutions of (10.27), (10.28). In other words, V(x, v)
is a Lyapunov function that satisfies the hypotheses of Theorem 10.2. O

We omit the proof of the following theorem, which supplies an instability criterion.

Theorem 10.8 (Chetaiev). If the point x* is not a minimum of U(x) and the
absence of the minimum can be determined by the derivatives U (x*) of U(x)

at x*, where k is a finite integer number, then (x*,0) is an unstable equilibrium
position of the system (10.27), (10.28).

Now we show that (10.26) and (10.30) allow us to discover the behavior of the
solutions and the structure of the phase portrait applying a procedure proposed by
Weierstrass. In fact, from (10.30) we deduce that

v = F2(E — Ux)). (10.32)

This relation (recall that v = dx/d¢) implies that

(10.33)

x ds
=T / J2E U0

Equation (10.32) is the explicit form of level curves IV = cost. It shows that these
curves are symmetric with respect to the Ox-axis. Moreover, in view of (10.27),
(10.28), when v = 0, we also have X = 0. Consequently, the tangent straight line
to the level curves at the points in which they intersect Ox is orthogonal to Ox.
Finally, for any fixed value of E, the admissible values of x satisfy the condition
U(x) < E. Equation (10.33) gives the time needed to go from x to x.

If we assign an initial datum (xo, vo), where vy > 0, then we must choose the
+ sign in (10.32), (10.33) up to the instant at which U(x) = E. Consequently, if
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U(x) < E, Vx > Xxo, the function x (¢, xo, vp) goes to infinity in a finite or infinite
time according to whether the function 1/(,/2(E — U(x))) is integrable or not.

In contrast, if on the right-hand side of x( there is a point X where U(x) = E,
then we must consider the following two cases:

(@ U'(x)#0, (b)U'(x)=0.
In case (a), Taylor’s expansion of U(x) at X is
Ux)=E+UX)(x—-%) +0(x—x|).) (10.34)

Therefore, the function under the integral in (10.33) is integrable in [xy,X), and
x (¢, xo, vo) reaches the point X in the finite time

(10.35)

;_/" ds
Sy V2(E—U®))

Further, U(x) < E for x < X and U(x) = E for x = Xx. Therefore, the function
U(x) increases at the point X so that f(x¥) = —U’(X) < 0. Finally, if we take
into account (10.28), then we also have v(7, xo,v9) = X(7,x9,v0) < 0, whereas
(10.27) and (10.32) imply that v(z, xo,vo) = X(f,x0,v0) = 0. In conclusion,
X(f, x0,v0) <0 fort <t and x (7, xo,vo) comes back toward x. In particular, if to
the left of x is another point X with the same characteristics of X, then the function
x(, x9,vp) is periodic with a period

T = 2/“ s (10.36)
¥ +2(E-U(x))
In case (b), Taylor’s expansion of U(x) at X is
1
Ux) =E + EU”(Y)(x %)+ 0(lx =xP).) (10.37)

and the approach time to X is infinity since the function 1/(1/2(E — U(x))) is no
more integrable and x (7, x¢, vo) tends asymptotically to X. We notice that, in this
case, X is an unstable equilibrium position since the conditions U(x) < E forx <X,
U(X) = E for x = X, and U’(X) = 0, ensure that X is not a minimum.

The analysis we have just described can be carried out by the notebook
Weierstrass.

Example 10.5. Figure 10.7 shows the qualitative behavior of the potential energy
U(x) and the corresponding phase portrait of (10.27), (10.28). For E < E,
there is no solution. For E = E; the level curve reduces to the equilibrium
position (x1,0). For E; < E < E™, the level curves are closed and the orbits
correspond to periodic motions. For E* < E < E,, the level curves have two
connected components: the first of them corresponds to a periodic orbit, whereas
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U(x)
E4|
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E2 """ \
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X X X3 g
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Fig. 10.7 Phase portrait

the second one is an aperiodic orbit going to infinity. For £ = E, we have a level
curve with three connected components corresponding to a bounded open orbit, an
unstable equilibrium position, and an open orbit going to infinity. It is a simple
task to complete the analysis of the phase portrait. We conclude by noting that the

dashed lines represent orbits that tend to an unstable equilibrium position without
reaching it.

10.9 Exercises

1. Verify that V = 1 (x> + y?) is a Lyapunov function for the system

X

—y 4+ ax(x? + »?),
y =x +ay(x* +y?),

and determine the stability property of the origin upon varying the constant a.
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2. Verify that V = % (x2 + yz) is a Lyapunov function for the system
X =—y4axy?
§ o=y,

and determine the stability property of the origin upon varying the constant a.
3. Determine the periodic orbits of the following system in polar coordinates

(r, ¢):

i.

r(l—=r)(2—r),
o = -2
Are there equilibrium positions? Control the results using the notebook
PolarPhase.
4. Determine the equilibrium positions of the system
X = 2xy,
y=1- 3x2 — yz,
and analyze their linear stability properties. Control the obtained results using
the notebook Linstab.
5. Determine the equilibrium positions of the system
X=-x+Yy,
y =—x+2xy,
and analyze their linear stability properties. Control the obtained results using
the notebook Linstab.
6. Determine the equilibrium positions of the system
F=x(x?+y =)=y + 2+ 1),
y=y+y2 =)+ x(x +y2 4 1),
and analyze their linear stability properties. Control the obtained results using
the notebook Linstab.
7. Determine an approximate solution of the system
X =y,
¥ =—x+e(l =Yy

using Poincaré’s method, and control the obtained results using the notebook
Poincare.
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8.

10.

11.

12.

10 An Overview of Dynamical Systems
Determine an approximate solution of the system

X =y,

y = —x —ex’

using Poincaré’s method, and control the obtained results using the notebook
Poincare.

Determine an approximate solution of the system

X

y+e(x® =y,
—x + ey?

y
using Poincaré’s method, and control the obtained results using the notebook

Poincare.
Determine the equilibrium configurations of the potential energy

1 1
U=-x>+-x*
2 4
their stability properties, and the phase portrait using a Weierstrass analysis.
Control the obtained results using the notebook Weierstrass.
Determine the equilibrium configurations of the potential energy

U(x) = —cos(x),
their stability properties, and the phase portrait using a Weierstrass analysis.

Control the obtained results using the notebook Weierstrass.
Determine the equilibrium configurations of the potential energy

Ux) = —e¥’ cos(x),

their stability properties, and the phase portrait using a Weierstrass analysis.
Control the obtained results using the notebook Weierstrass.
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Chapter 11
Kinematics of a Point Particle

Kinematics analyzes the trajectories, velocities, and accelerations of the points of a
moving body, the deformations of its volume elements, and the dependence of all
these quantities on the frame of reference. In many cases, when such an accurate
description of motion is too complex, it is convenient to substitute the real body
with an ideal body for which the analysis of the preceding characteristics is simpler,
provided that the kinematic description of the ideal body is sufficiently close to the
behavior of the real one. For instance, when the deformations undergone by a body
under the influence of the acting forces can be neglected, we adopt the rigid body
model, which is defined by the condition that the distances among its points do not
change during the motion. More particularly, if the body is contained in a sphere
whose radius is much smaller than the length of its position vectors relative to a
frame of reference, then the whole body is sufficiently localized by the position of
any one of its points. In this case, we adopt the model of a point particle.'

11.1 Space-Time Frames of Reference of Classical
Kinematics

To analyze physical phenomena, an observer adopts a body of reference S at whose
points he places identical clocks. For the present, we consider a clock as an arbitrary
device defining the local time, i.e., an increasing continuous variable . The set R,
formed by S and the clocks placed in its points, is called a space-time frame of
reference.

By a space-time frame of reference R, we can introduce a time order into the
set of events happening at an arbitrary point A € S. In fact, it is sufficient to label
each event with the instant at which it takes place. Although we can introduce a

I'The contents of Chapters 11-17 can also be found in [4,12,20,23,24,26,32,33,45,46,49,54].

A. Romano, Classical Mechanics with Mathematica®, Modeling and Simulation 161
in Science, Engineering and Technology, DOI 10.1007/978-0-8176-8352-8_11,
© Springer Science+Business Media New York 2012



162 11 Kinematics of a Point Particle

chronology at any point A of S using the local time, at present we have no criterion
to compare the chronology of the events at A with the chronology of the events at
another point B of S. Only after the introduction of such a criterion can we state
when an event at 4 is simultaneous with an event at B or when an event at A happens
before or after an event at B. Already the measure of the distance d (A4, B) between
two points of S at a given instant requires the definition of simultaneity of events
happening at two different points.

We suppose that there is no problem in synchronizing two clocks at the same
point A of S. To introduce a definition of synchronism between two distant clocks,
we start by placing at the point A many identical and synchronous clocks. Then we
postulate that these clocks remain synchronous when they are placed at different
points of S. In other words, we assume the following axiom.

Axiom 11.1. The behavior of a clock does not depend on its motion. In particular,
it is not influenced by the transport.

This postulate allows us to define a universal time, i.e., a time that does not
depend on a point of S. In fact, it is sufficient to place synchronous clocks at 4
and then to transport them to different points of S. Adopting this universal time,
measured by synchronous clocks distributed at different points of .S, we can define
a rigid body as a body S for which the distance d (A4, B) between two arbitrary
points A and B of S is constant in time.

Another fundamental axiom of classical kinematics follows.

Axiom 11.2. There exist rigid bodies inside which the geometry of a three-
dimensional Euclidean space E; holds.

11.2 Trajectory of a Point Particle

Let R = {S,1} be a frame of reference formed by the rigid body S and universal
time 7. Henceforth, we will often identify a frame of reference with an orthonormal
frame (O, (e;)), i = 1,2, 3, of the three-dimensional Euclidean space describing
the geometry of S (Axiom 11.2). In this section, we analyze the kinematic behavior
of a point particle P moving with respect to (O, (e;)).

The equation of motion of P is a function

r=r(), t¢€][n,n] (1L.1)
giving the position vector r(¢) of P relative to the orthonormal frame (O, (e;)) at

any instant ¢ (Fig. 11.1). If (x;) are the Cartesian coordinates of P in (O, (e;)), then
(11.1) can also be written in the following form:2

2Henceforth we intend the summation from 1 to 3 on repeated indices. We use only covariant
indices since, in Cartesian orthogonal coordinates, there is no difference between covariant and
contravariant components.
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A3

e 1 (1) 4

0 > o2

»
€2
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X
Fig. 11.1 Trajectory of a point particle

r=x;(1)e;, 1€, nl, (11.2)

where the functions x; (¢) should be of class C2[t;, 1,].

The locus y of points (11.1) upon varying ¢ in the interval [t1, £;] is called the
trajectory of P. If we denote by s(¢) the value of the curvilinear abscissa on y
at instant ¢, then the trajectory and the equation of motion can respectively be
written as

r = r(s), (11.3)
r(t) = t(s(2)). (11.4)

11.3 Velocity and Acceleration

Let P be a point particle moving relative to the reference (O, (e;)), and let r(¢) be
the equation of motion of P. The vector velocity or simply velocity of P in (O, (e;))
is the vector function dr

r=—
dr

and the scalar velocity is the derivative §(¢).
Differentiating (11.4) with respect to time and recalling the first Frenet formula

(11.5)

@ _
ds 7
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where t is the unit vector tangent to the trajectory, we obtain the following relation
between the vector velocity and the scalar velocity:

F=3§t (11.6)

In other words, the vector velocity is directed along the tangent to the trajectory
and its length is equal to the absolute value of the scalar velocity. Finally, it has the
versus of t or the opposite versus depending on the sign of s.

In the Cartesian frame of reference (O, (e;)), we can write r(f) = x;(¢)e; so that
the velocity has the following Cartesian expression:

i':)'c,-ei. (117)
The vector acceleration, or simply the acceleration, of P is given by the vector

. dr dr

which, in view of (11.7), in Cartesian coordinates has the form
r = Xe;. (11.9)
Recalling the second Frenet formula

dt_n
dt ~ R

3

where n is the unit principal normal to the trajectory and R the radius of the
osculating circle, we obtain another important expression of acceleration differenti-
ating (11.6):

2

i =5t %n, v = i = 5. (11.10)

The preceding formula shows that the acceleration

e Lies in the osculating plane of trajectory,
e Is directed along the tangent if the trajectory is a straight line, and
e Is normal to the trajectory when § = 0 (uniform motion).

Henceforth, we will use the following definitions:

§ = scalar acceleration

§t = tangential acceleration

2
%n = centripetal acceleration (11.11)



11.4 Velocity and Acceleration in Plane Motions 165

We say that the motion of P is accelerated if v (equivalently, v?) is an increasing
function of time and decelerated in the opposite case. Since

d? ds?
— = — = 25§,
dr dr

the motion is accelerated if §5§ > 0 and decelerated if s§ < 0.

11.4 Velocity and Acceleration in Plane Motions

Let P be a point moving on the plane «. Introducing in « polar coordinates (r, ¢),
the motion of P is represented by the equations

r=r(t), ¢=q¢). (11.12)
The square distance ds? between the points (r, ¢) and (r + dr, ¢ + dg) is
ds? = dr* + r?d6?,

and the vectors

. J . 0
€ = —, e,=—
"o Y e
of the holonomic base relative to the polar coordinates verify the conditions

A A ~ ~

e e =1, e(p-ewzrz, & -, =0.

We denote by (P, e,, e,) the orthonormal frame relative to the polar coordinates at
any point P € o (Fig. 11.2), where

. 1,
e, =¢&, e, =—¢&,.
r =6 € =26
A
v
€, /
er
P
.
iA Y
®
|- »
L Ll
o i

Fig. 11.2 Trajectory in polar coordinates
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Then we define the radial velocity v, and transverse velocity v, are the scalar
quantities

Vo =T-e. v,=r-e, (11.13)

that is, the components of v relative to the base (e,,e,) at the point P € y. To
determine the form of (11.13) in terms of (11.12), we note that, in polar coordinates,
the position vector r is written as

r=re.(r,¢).
Differentiating this expression with respect to time, we obtain

Foie (g %y
e o 9% )

On the other hand, in a Cartesian frame of reference (O,1,j) (Fig. 11.2), this
results in

e, = cosgi +singj, e, = —sing@i+ cos ¢j,
so that we have
do_g e
giiﬂ ) gf’ . (11.14)
or 1) "
and the velocity in polar coordinates is written as
I = re, + roe,. (11.15)

In view of (1.13) and (1.15), the radial and transverse velocities are given by the
following formulae:

Ve =F. vy =1 (11.16)

Differentiating (11.15) with respect to time, we obtain the acceleration of P in polar
coordinates:

1d
. . . 2.
P=(F— e + —— e, 11.17
(7 —rgTe, + (¢, (11.17)
so that its components along e, and e, are
a, =a-e =i—r¢, (11.18)
1d ,
—a-e, = ——(r2¢). 11.19
a, =a-e, P (r=¢) ( )

Now we introduce a new definition that plays an important role in describing the
motions of planets. Consider the area A A spanned by the radius OP(¢), where P
belongs to the trajectory y, in the time interval (¢, ¢ + At) (Fig. 11.3). Then the limit



11.4 Velocity and Acceleration in Plane Motions 167
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Fig. 11.3 Areal velocity
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is the areal velocity of P. To obtain the explicit expression of A in terms of (11.12),

we denote by rpyi, and rp,x the minimum and the maximum of r(¢) in the interval
(t,t + At), respectively. Since

min max

1, 1
—r2 Ap < AA < =12 Ag,
2 minB¢ = 84 =5 29
in the limit At — 0, we obtain
1,
A= Er Q. (11.20)

In some cases, the Cartesian form of the areal velocity is more convenient. It can be
obtained by considering the coordinate transformation from Cartesian coordinates
(x, y) to polar ones

P = VAT,

y
@ = arctan —.
X

It is easy to verify that, in view of these formulae, (11.20) becomes

A= %(xj/—fcy). (11.21)
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11.5 Circular Motion and Harmonic Motion

Let P be a point moving on a circumference y with center O and radius r. Further,
let ¢ be the angle formed by the position vector r(¢) of P with the Ox-axis of an
arbitrary Cartesian system of coordinate (O, x, y) (Fig. 11.4). Since the curvilinear
abscissa s is related to the angle ¢ and the radius r by the relation

s = ro(t),
we have
s=ro(), §=r¢).

Introducing these results into (11.6) and (11.10), we obtain the expressions of
velocity and acceleration in a circular motion

P = rot, (11.22)
¥ = rgt 4 r¢’n, (11.23)

where t is the unit vector tangent to y and n is the unit vector orthogonal to y and
directed toward O. In particular, if P moves uniformly on y, then (11.23) gives

F=—o’r, (11.24)
where we have introduced the notation

o=@l (11.25)

Fig. 11.4 Circular motion
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Let P be a material point that uniformly moves counterclockwise (¢ > 0) along
a circumference y with its center at O and radius r. We define harmonic motion
with its center at O along the straight line Ox the motion that is obtained projecting
the point P along any diameter Ox of y. In the Cartesian coordinates of Fig. 11.4,
we have that the motion of X is represented by the following equation:

x(t) = rcos ¢(t) = rcos(wt + ¢o). (11.26)

In (11.26), r is called the amplitude of the harmonic motion and w its frequency.
Differentiating (11.26) twice, we obtain

x(t) = —rwsin(wt + @y), i) = —rw?cos(wt + @),

so that in a harmonic motion the following relation between position and accelera-
tion holds:

() = —0*x(1). (11.27)
It is simple to recognize that the homogeneous second-order linear differential
equation with constant coefficients (11.27) characterizes the harmonic motions, i.e.,
its solutions are only harmonic motions. In fact, A = Fiw are the roots of the
characteristic equation of (11.27)
224w’ =0,
and the general solution of (11.27) is

x(t) — Cl e—ia)t + C2 eiwt’

where C| and C; are arbitrary constants. Taking into account Euler’s formulae, the
preceding solution can also be written as

x(t) = Acoswt + Bsinwt,

where A and B are two arbitrary constants. Finally, we obtain (11.26) when we
write A and B in the form

A =rcosgy, B = —rsingy,

where r and ¢ are still arbitrary constants.
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11.6 Compound Motions

Let P be a moving point with respect to a frame of reference (0,1, j, k), where
i, j, and k are unit vectors along the (Ox, Oy, Oz) axes of a Cartesian system of
coordinates. If the position vector r can be written in the form

(1) =Y 1), (11.28)

i=1

then we say that the motion of P is a compound of the n motions r; (¢).
In this section, we analyze some interesting compound motions. First, we
consider the motions

ri(t) = voti,
1
ri(t) = —ngz + 20k,

where vy, g, and z¢ are arbitrary positive constants. Eliminating ¢ from the preceding
equations, we at once see that the trajectory of the compound motion is a parabola
of the Oxz plane with the concavity downward.

Now we consider the motion obtained by compounding the following motions:

ri(t) = Rcos(wt + @o)i + Rsin(wt + ¢o)j,
ra(t) = zotk.

The first equation represents a uniform motion along a circumference of radius R
and center O lying in the coordinate plane Oxy. The second equation is relative to
a uniform motion along the Oz-axis. The trajectory y of the compound motion is a
helix lying on a cylinder of radius R and axis Oz (Fig. 11.5). The helix is regular
since the unit tangent vector t = T'(—wR sin(w? + ¢), R cos(wt + @), %) to v,

where
= /0?R>+ 3,

forms a constant angle 0 with the directrices of the cylinder. In fact, it is
z
cosf = 2.
r
Finally, we consider the motion of a point P obtained by compounding two
harmonic motions along the O x- and Oy-axes of a Cartesian system of coordinates:
ri(t) = x(¢)i = ry cos(wit + ¢))i,

ry(t) = y(1)j = racos(wat + ¢2)j. (11.29)

The compound motion of P may be very complex, as is proved by the following
theorem.
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Z A

v'=

X

Fig. 11.5 Helicoidal motion

Theorem 11.1. Let ABCD be the rectangle [—ry, 11| X [—ra, r2] with vertices
A(=ry,—r2), B(ri,—r2), C(r1,r), and D(—ry, r;). The compound motion of the
harmonic motions (11.29) has the following properties:

o If o1 = @, or 1 = @2 F w and w1 = wy, then it is harmonic along one of the
diagonals of the rectangle ABCD;

e For all other values of ¢\ and ¢, and w, = w,, the trajectory y is an ellipsis
tangent to the sides of the rectangle ABCD every time y touches one of them;
further, P moves along y with constant areal velocity, and the motion is periodic;

e If w # w, and the ratio wy/w, is a rational number, the motion is periodic.
Further, the trajectory may be either an open curve or a closed curve;

e If v # w; and the ratio w\/w, is an irrational number, then the motion is
aperiodic and the trajectory is everywhere dense on the rectangle ABCD (i.e.,
the trajectory intersects any neighborhood of any point in the rectangle).

Proof. For the sake of simplicity, we limit ourselves to proving only the first three
items. Introducing the notation § = ¢, — ¢; and supposing w; = w, = o, from
(11.29) we obtain

X
— = cos(wt + @2 — 8) = cos(wt + ¢2) cos§ + sin(wt + ¢;) sin§
r

=2 cosd + sin(wt + @) sind,
)
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so that
X y . .
— — = cos§ = sin(wt + ¢;) sind. (11.30)
r v

On the other hand, in view of (11.29),, we also have that

L sind = cos(wt + ;) siné. (11.31)
)

Consequently, the trajectory of the compound motion is

2 2
2
x_2 y—z——xycosrs = sin® §. (11.32)

I‘l I‘2 ryry

If ¢; = ¢, then § = 0, whereas if ¢; = ¢, F 7, then § = Fr. In all these cases,
(11.32) gives

x v\

ZFL) =o, (11.33)
I )

where the — sign corresponds to § = 0, the + sign corresponds to § = F, and

the trajectory coincides with one of the diagonals of the rectangle A BCD. To prove

that the motion along the diagonal y = r,x/ry, for instance, is harmonic, we note

that the distance s of P from O along this diagonal is given by

s = /x2 4+ y2=/rf + ricos(wt + ¢y).

When § is different from 0 and F, the trajectory (11.32) is an ellipsis. In this case,
the areal velocity A [see (11.21)]

1 1
A= E(J'Cy —Xxy) = —Ea)rlrz sin §

is constant and the motion is periodic. Moreover, the ellipsis touches the sides
x = Fry of the rectangle ABCD when cos(wt + ¢;) = FI1, that is, when
ot + ¢; = nm, where n is an arbitrary relative integer. It is plain to verify that
the corresponding value of X vanishes and the ellipsis is tangent to the rectangle any
time it touches the sides x = Fr;.

We now determine the conditions under which the motion is periodic when
w1 # w,. The compound motion is periodic if and only if for any instant ¢ there
exists a value 7" of time such that

cos(wi(t +T) + ¢1) = cos(wit + ¢1),
cos(wa(t + T) + ¢2) = cos(wat + ¢2).
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<

1.0

\S]

Fig. 116 ri =2, n=1wv,=w, =1,¢0; =0,¢0, = /3

Fig. 11.7 rn=2,n=1m =2, 0y =1,¢, = 1,0y = 7/2

The preceding conditions can equivalently be written as

o1 T = 2nm,

T =2mm,

where n and m are arbitrary relative integers. In conclusion, the motion is periodic
if and only if the ratio
w1

n
wr m

(11.34)

is a rational number. O

Figures 11.6-11.10 show different cases of compounding two harmonic motions
along orthogonal axes. They were obtained by using the notebook Composition.nb,
which allows one to draw the trajectory obtained by compounding two or three
motions.
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11.7 Exercise

1. Let Oxy be a plane in which we adopt polar coordinates (r, ¢), and let r = Ag

be the trajectory of a point particle P, where A is a constant. Assuming that

@ = ¢ is constant, determine the radial and transverse velocity and the radial

and transverse acceleration of P. Verify that the areal velocity is constant.
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2. In the same plane of the preceding exercise, a point particle P describes the
trajectory r = roe” ¥, where ry and ¢ are constant. Determine the radial and
transverse velocity and acceleration.

3. In the plane Oxy, the equations of motion of a point particle P are

x =Xot, y=yo—p(l—e®),

where Xy, yo, o, and B are positive constant. Determine the velocity and
acceleration of P, its trajectory y, and the unit vector tangent to y.

4. Let P be a point particle moving on a parabola y, and let y = x? be the
equation of y in the frame Oxy. Determine the velocity, acceleration, and the
curvilinear abscissa of P.

Hint: The curvature 1/R of a curve y = f(x) is I/R = [f"(x)|1/(1 +
f l ( )C) 2) 3/2 .

5. Let Oxyz be a Cartesian frame of reference in space. A point particle P moves
on the parabola z = x2, which uniformly rotates with angular velocity w about
the Oz-axis. Determine the velocity and acceleration of P.

6. The acceleration and velocity of a point particle P moving on the O x-axis are
related by the equation

X =—ax, a>0.

Determine the equation of motion of P, and evaluate the limit of x(¢) and x(¢)
when ¢ — oo.

7. The acceleration and velocity of a point particle P moving on the Ox-axis are
related by the equation

X = —a|x|x, a>0.
Prove that lim; o, X = 0.

Hint: Multiply both sides of the equation by X, and take into account that xX =
1 di?

2 dr -

8. Determine the velocity, acceleration, and trajectory of a point particle P whose
equations of motion in the frame Oxy are

x(t) =sinwt, y(t)=e™".

Further, determine the instants at which the velocity is parallel to Oy.
9. Let P be a point particle moving on the ellipse y whose equation in polar
coordinates (r, @) is
_ P
r=a——
1 +ecosg

where p is a constant and e the eccentricity. If P moves on y with constant
areal velocity, prove that the velocity square has a maximum at the perihelion
and a minimum at the aphelion.
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Hint: Evaluate 7 taking into account that 72¢) = ¢, where c is a constant. Then
recall that the radial velocity is 7 and the transverse velocity is r¢.

A particle P moves along a curve y = a sinbx, where a and b are constant.
Determine the acceleration of P assuming that the component of its velocity
along the O x-axis is constant.



Chapter 12
Kinematics of Rigid Bodies

12.1 Change of the Frame of Reference

An important task of kinematics consists of comparing the measures of lengths and
time intervals carried out by two observers R and R’ moving each with respect to
the other with an arbitrary rigid motion. The solution of this problem allows us to
compare the measures of velocities, accelerations, etc., carried out by the observers’
comoving with R and R’.

Let E = (P’,t) be an event happening at the point P’ at instant ¢’ for an
observer at rest in the frame of reference R. Let E = (P,t) be the same event
evaluated from an observer at rest in R. The aforementioned problem of kinematics
can mathematically be formulated as follows:

Determine the functions

P = f(P, 1), (12.1)
t =g(Pt), (12.2)

relating the space-time measures that R and R’ associate with the same event.

When we recall the postulate stating that the behavior of a clock is not influenced
by the transport, we can equip R and R’ with synchronized clocks and be sure that
they will remain synchronous. Therefore, (12.2) becomes ¢ = t’. More generally,
even if R and R’ use clocks with the same behavior, they could choose a different
time unit and a different origin of time. In this case, instead of ¢ = ¢’, we have

t =at' +b, (12.3)

where a and b are constants. We remark that (12.3) still implies that two simultane-
ous events for R are also simultaneous for R’.

Let E4 = (A',t') and Ep = (B’,t’) be two events happening in two different
points at the same instant for the observer R’. The same events are also simultaneous
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for R but happening at points A and B. To determine the function (12.1), classical
kinematics resorts to another axiom.

Axiom 12.1. At any instant, transformation (12.1) preserves the spatial distance d
between simultaneous events, that is,

d(A, B) = d(f(A,1), f(B',1") = d(4', B'). (12.4)

In other words, Axiom 12.1 states that, at any instant, (12.1) is an isometry
between the three-dimensional Euclidean spaces £; and Eg of observers R and R/,
respectively. Let us introduce Cartesian axes (O’,(x/)) in the frame R’ and
Cartesian axes (O, (x;)) in R. If (x]) and (x;) are the coordinates that R” and R,
respectively, associate with the points P’ and P of the same event E = (P',t') =
(P, 1), then from linear algebra we know that transformation (12.1) is expressed by
the formulae

xi = xXqi + Qi ()X}, (12.5)

where €2 is the place in which occurs the arbitrary event Eq = (€2, ), evaluated by
observer R, and (Q;;(¢)) is an arbitrary time-dependent orthogonal matrix, that is,
a matrix satisfying the conditions

Qi (0" jn = Sin. (12.6)
Remark 12.1. When Q = O, (12.5) reduces to the relation
xi = Qi ()X,
which gives the transformation formulae of the components of the position vector

r’ in passing from the frame (O, (e})) to the frame (O, (e;)). Consequently, the two
bases (e;) and (e/) are related by the equations

¢ = (07 e, = (Q7)ie; = Qjre;, (12.7)

so that the coefficie