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Preface

The brain is the most intricate and fascinating organ of our body and its devel-
opment requires the rigorous control of a multitude of molecular signaling
and cellular events. Cell migration is one of these events and represents a
fundamental cornerstone of brain development, and homeostasis in the
mature brain. The project of writing this book was intended to extend the sci-
ence and lively discussions beyond a symposium devoted to neuronal migra-
tion that we organized at the 8th Federation of European Neuroscience
Societies (FENS) meeting held in Barcelona, on July 15, 2012. We decided to
set up a collection of individual chapters written by leaders in the field of
neuronal migration and covering various areas and structures of the nervous
system, ranging from the cerebral cortex to the spinal cord, the cerebellum,
and the postnatal rostral migratory stream and olfactory bulb. The prime
motivation for writing and editing this work was to provide a clear overview
of the distinct and overlapping molecular signaling pathways and cellular
principles of neuronal migration in several brain structures during develop-
ment and after birth. With this consolidated illustration and detailed discus-
sion of the mechanisms controlling neuronal migration, we hope to provide a
useful and focally up to date resource to the community. Besides, each chap-
ter raises novel important questions and provides perspectives for future
research on neuronal migration. Despite tremendous efforts, many outstand-
ing questions still remain and need to be addressed since numerous diseases
are caused by disruption of neuronal migration during early development of
the brain. Although a substantial catalogue of signaling pathways and suscep-
tibility genes has been compiled and implicated in the pathology of neuronal
migration disorders, the precise function of most of these genes in the sequen-
tial steps of neuronal migration remains elusive. Thus, we also strive to stim-
ulate future research which should have the goal to provide a clear conceptual
framework at the molecular and cellular level in order to understand the
underlying basis of neurodevelopmental migration disorders. In all the chap-
ters, we intended to govern most recent questions and novel methodological
approaches used in the field. We are very grateful to each and every author for
their scientific contribution to this book and wish to thank Martijn Roelandse
at Springer-Verlag for his patience and support of this project.

Liege, Belgium Laurent Nguyen
Klosterneuburg, Austria Simon Hippenmeyer
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Molecular Pathways Controlling
the Sequential Steps of Cortical
Projection Neuron Migration

Simon Hippenmeyer

Abstract

Coordinated migration of newly-born neurons to their target territories is
essential for correct neuronal circuit assembly in the developing brain.
Although a cohort of signaling pathways has been implicated in the regu-
lation of cortical projection neuron migration, the precise molecular
mechanisms and how a balanced interplay of cell-autonomous and non-
autonomous functions of candidate signaling molecules controls the
discrete steps in the migration process, are just being revealed. In this
chapter, I will focally review recent advances that improved our under-
standing of the cell-autonomous and possible cell-nonautonomous functions
of the evolutionarily conserved LIS1/NDELI-complex in regulating the
sequential steps of cortical projection neuron migration. I will then elaborate
on the emerging concept that the Reelin signaling pathway, acts exactly at
precise stages in the course of cortical projection neuron migration. Lastly,
I will discuss how finely tuned transcriptional programs and downstream
effectors govern particular aspects in driving radial migration at discrete
stages and how they regulate the precise positioning of cortical projection
neurons in the developing cerebral cortex.

S. Hippenmeyer (P<)

IST Austria (Institute of Science and Technology
Austria), Developmental Neurobiology,

Keywords
Neuronal migration * Cortex development * Lis/ ® Ndell * Reelin  MADM
* Transcriptional regulation

1 Introduction

The cerebral cortex is the largest structure of the
human brain, composed of a sophisticated net-
work of billions of excitatory projection neurons
and inhibitory interneurons. The assembly of

Am Campus 1, A-3400 Klosterneuburg, Austria functional cortical circuits requires the synchro-
e-mail: simon.hippenmeyer @ist.ac.at nized segregation and interconnection of the
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distinct classes of cortical neurons. The most
prevalent installation theme of cortical neurons is
their coalescence into stratified laminae (Cajal
1911). The mature cortical cytoarchitecture con-
sists of six distinct layers with different cellular
composition and function as a result of eminent
developmental processes. As such, precisely
coordinated migration of both projection and
interneurons from their respective birth places to
their final target areas in the developing embryo,
is essential to achieve appropriate lamination and
subsequent circuit formation in the cerebral cor-
tex. While cortical interneurons are born in the
ventrally located ganglionic eminences and
migrate along distant tangential routes (Batista-
Brito and Fishell 2009; Faux et al. 2012; Marin
2013; Wonders and Anderson 2006), cortical pro-
jection neurons are generated within the ventric-
ular (VZ) and subventricular (SVZ) zones in the
dorsal telencephalon (Fietz and Huttner 2011;
Franco and Muller 2013; LaMonica et al. 2012;
Lehtinen et al. 2011; Lui et al. 2011) and migrate
along radial trajectories to reach their final set-
tling position (Ayala et al. 2007; Marin et al.
2010). The laminar positioning of cortical projec-
tion neurons is one of the best described modes
of radial neuronal migration in the mammalian
brain. Cortical layering occurs in an ‘inside-out’
fashion whereby earlier born neurons populate
deep layers and later born neurons occupy pro-
gressively upper layers (Fig. 1.1) (Angevine and
Sidman 1961; McConnell 1995; Polleux et al.
1997; Rakic 1974, 2007). Thus, as part of a holis-
tic developmental program, the sequential gen-
eration of faithful cell fates and concerted
migration to correct laminae is critical for the
assembly of the cortex. Sophisticated live-
imaging approaches have revealed that radial
projection neuron migration occurs in discrete
phases (Kriegstein and Noctor 2004; Nadarajah
et al. 2003; Tabata and Nakajima 2003).
Moreover, the cortical projection neurons need to
migrate across several distinct compartments
from their birthplace in the ventrally located VZ/
SVZ through the relatively less cell dense
intermediate zone (IZ) and into their target zone,
the developing cortical plate (CP). How this
journey through different cellular environments
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is orchestrated, and the regulatory cues coordinat-
ing the execution of the specific sequential steps
of radial migration from the VZ/SVZ through the
1Z to the CP in vivo, are still mostly unclear.
Nonetheless, in the last decades an impressive
catalog of signaling pathways has been compiled,
and described to play fundamental roles in corti-
cal neuron migration (Ayala et al. 2007; Heng
et al. 2010; LoTurco and Bai 2006; Marin et al.
2010), but the functional relationships between
these molecular cues and the discrete steps of
cortical neuron migration are still mostly enig-
matic. Thus, the precise cellular and molecular
mechanisms regulating each and every step dur-
ing radial migration remain inexplicit although it
is conceivable that many extrinsic cues and
intrinsic signaling pathways impinge on the cyto-
skeleton [comprehensively discussed in the liter-
ature (Govek et al. 2011; Heng et al. 2010;
Kawauchi and Hoshino 2008)] to orchestrate the
cellular and subcellular events required in migrat-
ing neurons travelling through the distinct com-
partments in the developing cortical wall. T will
focus in this chapter on recent advances that led
to fundamental new insights into how a balanced
interplay of cell-autonomous and non-autono-
mous functions of candidate signaling molecules
precisely regulates the sequential stages of radial
migration. The role of the LIS 1/NDEL1-complex,
the function of the Reelin signaling pathway and
how specific transcriptional programs govern
discrete steps in cortical projection neuron migra-
tion will be discussed in detail.

2 The Sequential Steps
of Cortical Projection
Neuron Migration

Nascent cortical projection neurons migrate in a
step-wise fashion from their birth place in the
VZ/SVZ through the intermediate (IZ) zone in
order to reach the cortical plate (CP) and settle at
appropriate positions to build up the six cortical
layers (Ayala et al. 2007; Marin et al. 2010).
While in the rodent the migration paths are still
in the range of a few hundred microns, in the
developing human cerebral cortex, radially
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Fig.1.1 Developmental sequence of inside-out cortical
layer assembly. During cortical layer formation, earlier
born neurons occupy lower layers and later born neurons
progressively occupy upper layers. In the developing
mouse cortex, NESCs initially divide mostly symmetri-
cally in the VZ to expand the stem cell pool. The first
asymmetric divisions produce cells that occupy the PP.
Subsequently, the earliest neurons (purple, future layer
VI) forming the CP, split the PP into the SP and MZ, and
settle at appropriate positions. The next wave of neurons
(dark blue, future layer V), migrate from the VZ/SVZ
through the IZ and settle in the CP above the previously

migrating neurons travel approximately 2 cm
(Bystron et al. 2008; Meyer 2007; Molnar et al.
2006). Migration routes across the developing
cortical wall can be complex (Kriegstein and
Noctor 2004; Nadarajah et al. 2003; Tabata and
Nakajima 2003) and it has become increasingly
clear that radial migration of cortical projection
neurons occurs in a tightly regulated manner.
Time-lapse and videomicroscopy approaches
(Noctor 2011; Tabata and Nakajima 2008; Tsai
and Vallee 2011) with the goal to trace the
migration paths of individual cortical projection
neurons have revealed that (1) radially migrating
neurons proceed though several distinct migra-
tory phases; (2) change their morphology along
the way and (3) adjust their mode of migration
while transiting through the different zones along
the radial migratory path (Nadarajah et al. 2001;

generated neurons (purple, layer VI). This developmental
sequence is repeated for the red (layer IV), cyan (layer III)
and green (layer II) neurons until all cortical layers have
been established. During the first three postnatal weeks, a
phase of consolidation takes place where cortical neurons
finish axon and dendrite genesis, form synaptic connec-
tions and assemble into microcircuits. Abbreviations: VZ
ventricular zone, SVZ subventricular zone, PP preplate,
SP subplate, MZ marginal zone, IZ intermediate zone, CP
cortical plate, WM white matter, /-VI cortical layers 1-6,
NESCs neuroepithelial stem cells, RGPCs radial glia
progenitor cells

Noctor et al. 2004; Sekine et al. 2011; Tabata and
Nakajima 2003; Tsai et al. 2005).

At early stages of corticogenesis, the migration
distances for newly-born neurons are still short but
as development continuously progresses, nascent
neurons migrate along progressively longer dis-
tances. Therefore the patterns of neuronal migra-
tion are somewhat different during early versus
late corticogenesis (Nadarajah and Parnavelas
2002). The earliest postmitotic neurons delami-
nate and migrate away from the ventricular surface
primarily by somal translocation — by pulling up
the soma in the vertical direction with a process
stably attached to the pial surface — and form the
transient preplate (PP) structure (Allendoerfer and
Shatz 1994; Nadarajah et al. 2001; Price et al.
1997; Super et al. 1998). The next wave of postmi-
totic neurons moves toward the pial surface and
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Fig. 1.2 The sequential steps of cortical projection
neuron migration. Recent live-imaging experiments (see
main text for details) have traced the path of migrating
cortical projection neurons and revealed multiple discrete
steps and phases along the entire migration journey: (/)
nascent neurons delaminate from the ventricular surface
in the VZ and move to the SVZ where they adopt a multi-
polar configuration (2). Upon multi-to-bipolar transition
(3), neurons engage in locomotion along the radial glia
fiber (4) until they reach the SP, enter the CP target area
(5) and continue to migrate towards the MZ. Once the cor-
tical projection neurons have reached the uppermost area
of the CP, they detach from the radial glia fiber (6) and
execute terminal somal translocation (7) to conclude the
radial migration and settle in their appropriate position

splits the PP into the marginal zone (MZ) and the
subplate (SP), thus establishing the first neuronal
alignment as cortical plate (CP). The CP expands
in the vertical direction as consecutive waves of
neurons contribute successively to all the layers
VI-II in an inside out fashion (Fig. 1.1) (Angevine
and Sidman 1961; McConnell 1995; Polleux et al.
1997, Rakic 1974).

During the stages of progressive CP aggrega-
tion, nascent cortical projection neurons generated
in the proliferative VZ undergo a series of sequen-
tial migration steps until they reach their final
destination in the CP (Fig. 1.2). First, neurally

committed cells delaminate/detach from the
neuroepithelium at the ventricular surface (Itoh
et al. 2013) and move radially away to the SVZ.
Within the SVZ neurons ‘sojourn’ for about 24 h
or longer and most adopt a multipolar morphol-
ogy, extending and retracting processes in all
directions (Noctor et al. 2004; Tabata and
Nakajima 2003). During this phase, multipolar
neurons tend to migrate tangentially in an appar-
ent random fashion (Jossin and Cooper 2011;
Noctor et al. 2004) while critical signaling cues
induce polarization to predetermine the future
axon of the neuron (Barnes and Polleux 2009)
(see also Chap. 6). A substantial fraction but not
all neurons move retrogradely back towards the
VZ before they transform their shape, take on
their bipolar morphology and enter the next phase
in their migration journey (Noctor et al. 2004).
Subsequently, migrating neurons with bipolar
morphology locomote along radial glial fibers
(Nadarajah et al. 2001; Noctor et al. 2004; Rakic
1972). During this stage of cortical projection
neuron migration, the radial movement proceeds
in a saltatory fashion by leaps rather than gradual
transitions. Cortical projection neurons in the
locomotion mode repeat several basic events
which underlie their progressive advancement:
(1) rapid extension and retraction of the leading
neurite which protrudes several dozens of
microns from the soma; (2) formation of one or
more unsteady swellings/dilatations of the
plasma membrane in the leading process; (3)
advancement of the centrosome towards and/or
into the swelling; (4) forward displacement of the
nucleus and soma, a process also known as
nucleokinesis; and (5) retraction of the trailing
cytoplasmic region and basal process which usu-
ally occurs concurrently with nuclear transloca-
tion in step 4 (Schaar and McConnell 2005; Tsai
and Gleeson 2005; Vallee et al. 2009) (see also
Chaps. 2, 4 and 7). Neurons in locomotion mode
travel through the IZ until they reach their appro-
priate target area, the CP. Below the CP, radially
migrating neurons have to first pass the SP and
then need to invade the earlier generated neurons
that occupy the deepest cortical layers. Since the
environment of the CP differs significantly from
the one in the IZ, especially regarding the density
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and arrangement of neurons, it is conceivable that
the transition from the IZ into the CP must be
tightly regulated. The regulatory mechanisms
that control the passage of locomoting neurons
from the IZ into the CP are however mostly
unknown but may involve instructive or simply
permissive guidance cues that could act as a gate-
keeper for cortical projection neurons to enter
their prospective CP target zone. In a next step,
neurons then move within the CP further towards
the outermost MZ. Once the leading edge of the
apical neurite of the locomoting neuron reaches
the MZ, the soma with the nucleus rapidly moves
up to the top of the CP while the tip of the apical
process remains stably attached to the MZ
(Nadarajah et al. 2001; Sekine et al. 2011). This
last step — terminal somal translocation — is critical
for migrating cortical projection neurons to move
past all their predecessors in order to ensure
appropriate establishment of the inside out lami-
nation within the CP. Recent observations indicate
that the uppermost part of the CP comprises of
distinct features than the lower CP and was
termed primitive cortical zone (PCZ) (Sekine
et al. 2011). Interestingly, time-lapse analyses
revealed that locomoting neurons seem to tran-
siently pause just below the PCZ and switch at
this stage into the terminal translocation mode
(Sekine et al. 2011). Once cortical projection neu-
rons have reached their final destination they
complete their global differentiation program,
finish axon and dendrite genesis, commence syn-
aptogenesis and assemble into microcircuits.

3 Role of the LIS1/NDEL1-
Complex in the Regulation of
Discrete Steps During
Cortical Neuron Migration

The importance for appropriate execution of the
migration program in cortical projection neurons
during brain development is highlighted in
patients that suffer from neuronal migration
disorders, such as isolated lissencephaly sequence
(ILS) or Miller-Diecker Syndrome (MDS)
(Dobyns and Truwit 1995; Gleeson and Walsh
2000; Guerrini and Parrini 2010; Pilz and Quarrell

1996; Ross and Walsh 2001). Lissencephaly is
characterized by smooth brain surface, abnormal
brain morphology and function; and lissencephaly
patients suffer from mental retardation and
epilepsy. About 40 % of ILS and virtually 100 %
of MDS cases occur due to the loss of one copy
of the gene called Lissencephaly-1 (LISI, also
known as PAFAHI1B1) on human chromosome 17
(Cardoso et al. 2003; Lo Nigro et al. 1997; Pilz
et al. 1998; Reiner et al. 1993). Lissencephaly is
thus autosomal dominant but the concrete under-
lying basis of the clinical symptoms, and the
mechanisms by which a reduction of LIS1 pro-
tein results in human lissencephaly are not well
understood. It is however evident that reduced
levels of LIS1 negatively affect radial neuron
migration (Wynshaw-Boris 2007). Interestingly,
it has been documented that increased expression
of LIS in the developing brain also leads to brain
abnormalities in mice and human (Bi et al. 2009).
Below, I will first describe the LIS1 protein-
interactome and then elaborate on its function in
the sequential steps of cortical projection neuron
migration in vivo.

3.1 The LIS1/NDEL1-Complex

and Its Interacting Partners

The LIS1 protein is evolutionarily conserved
from yeast to man and was first identified as one
of the nuclear distribution mutants (NudF — for
nuclear distribution F) in the filamentous fungus
Aspergillus nidulans (Morris 2000; Xiang et al.
1995) amongst other mutants displaying also
defective nuclear distribution including NudA,
NudC and NudE (Efimov and Morris 2000;
Xiang et al. 1999). Orthologues of Lis/ have
been identified and cloned in many organisms
including Drosophila (Liu et al. 2000) and mice
(Hirotsune et al. 1997) whereby the murine LIS1
protein differs in only one aminoacid from the
human version (Hirotsune et al. 1998; Reiner
et al. 1993). In higher eukaryotes, LIS1 interacts
with cytoplasmic dynein (NudA orthologue in
A. nidulans) (Faulkner et al. 2000; Sasaki et al.
2000; Smith et al. 2000), which is critically
involved in subcellular transport and directed



cell movement (Kardon and Vale 2009). Lis/
interacts also with the two Ndel and Ndell — for-
merly known a NudE and NudEL — paralogues
that are homologous to A. nidulans NudE
(Efimov and Morris 2000; Feng et al. 2000;
Kitagawa et al. 2000; Niethammer et al. 2000;
Sasaki et al. 2000; Smith et al. 2000). Structural
analysis have revealed that both LIS1 and
NDEL1 form homodimers (NDELI1 also tetra-
mers) and that dimeric forms of NDEL1 are the
principal configurations that interact with LIS1
(Bradshaw et al. 2009; Derewenda et al. 2007;
Soares et al. 2012; Tarricone et al. 2004;
Zylkiewicz et al. 2011). The interaction of LIS1
with NDEI and NDEL1 critically influences the
activity of cytoplasmic dynein (McKenney et al.
2010; Mesngon et al. 2006; Shmueli et al. 2010;
Vallee et al. 2012; Yamada et al. 2008). In migrat-
ing cortical neurons, cytoplasmic dynein in con-
cert with LIS1 act along microtubules to create
forces, that eventually promote the saltatory
nuclear movement toward the centrosome (Tsai
and Gleeson 2005; Vallee et al. 2009). In fact, a
recent model proposes that the Syne-1/2-SUN1/2
nuclear membrane proteins critically function in
nucleokinesis by bridging the nucleus to the
cytoskeleton via LIS1 and cytoplasmic dynein
whereby the minus-end-directed microtubule
motor dynein-dynactin complex then promotes
nucleokinesis toward the centrosome (Zhang
et al. 2009). This nucleus-centrosome coupling
is the driving force and underlying molecular
basis for the “two-stroke” model of neuronal
migration (see also Chaps. 2, 4 and 7).

The regulation of the LISI/NDEL1-complex
and its functional interaction with dynein is
controlled at multiple levels and it has been
demonstrated that NDEL1 contains specific
phosphorylation sites that are targeted by CDKS
(Niethammer et al. 2000) and Aurora A (Mori
et al. 2007, 2009). NDELI1 is also regulated by
palmitoylation on a conserved cysteine residue
and it has been shown that palmitoylation of
NDELI1 is essential for the function of cytoplas-
mic dynein and its downstream activities, includ-
ing the control of cortical neuron migration
(Shmueli et al. 2010). Besides posttranslational
modifications regulating the LISI1/NDELI-
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complex and thus dynein activity, NDEL1 (much
more than LIS1) also serves as a structural and
signaling platform for a large amount of interacting
proteins [reviewed in (Chansard et al. 2011;
Moon and Wynshaw-Boris 2013)].

3.2 Functional Analysis
of the Lis1/Ndel1 in Cortical
Neuron Migration In Vivo

The biochemical and biophysical studies

described above resulted in a relatively detailed
molecular model of how the LIS1/NDELI-
complex regulates dynein-mediated nuclear/
somal migration (Tsai and Gleeson 2005; Vallee
et al. 2009). In contrast, very little is known how
the LISI/NDEL1-complex orchestrates neuronal
migration during cortical development in vivo.
Lisl and Ndell are essential genes and complete
ablation of Lis! and Ndell in knockout mice
results in early embryonic lethality at ES.5 pre-
implantation stages (Cahana et al. 2001;
Hirotsune et al. 1998; Sasaki et al. 2005), and
thus complicating the functional analysis of
Lis1/Ndell function in vivo. Besides controlling
neuronal migration, Lis/ has also essential func-
tions in cell proliferation and neurogenesis which
further compromises loss-of-function analysis of
LIS1 during cortical neuron migration (Faulkner
et al. 2000; Hippenmeyer et al. 2010; Tsai et al.
2005; Yingling et al. 2008). However, the dose of
Lis] is clearly very important and reduced levels
of LIS1 in mice results in defects in the radial
migration of several different types of neurons
including cortical projection neurons (Cahana
et al. 2001; Gambello et al. 2003; Hippenmeyer
et al. 2010; Hirotsune et al. 1998). Systematic
examination of the consequences of dosage
reduction of LIS1 on cortical development was
achieved by comparing wild-type (LisI**), null
heterozygotes (Lis1**), compound heterozygote
(null/hypomorph, LisI*"), and conditional null
(Lis1*",Cre) and it was found that Lis/ likely
controls the efficiency of neuronal migration in a
dose-dependent manner (Cahana et al. 2001;
Gambello et al. 2003; Hippenmeyer et al. 2010;
Hirotsune et al. 1998; Youn et al. 2009). It remains


http://dx.doi.org/10.1007/978-94-007-7687-6_2
http://dx.doi.org/10.1007/978-94-007-7687-6_4
http://dx.doi.org/10.1007/978-94-007-7687-6_7

1 Molecular Pathways Controlling the Sequential Steps of Cortical Projection Neuron Migration 7

unclear from these genetic in vivo studies whether
Lis1 has specific functions at discrete steps in the
radial migration process. In contrast, in utero
electroporation of Lis/ small interference RNA
and short hairpin dominant negative Lis/ in wild-
type background in rat and mouse brains caused
a dramatic accumulation of multipolar cells in
the SVZ (Shu et al. 2004; Tsai et al. 2005). In
addition, the above Lis/ knockdown experiments
indicate that even bipolar neurons in the 1Z criti-
cally depend on Lis! function for locomotion,
presumably by regulating nuclear translocation
through centrosome-nucleus coupling (Shu et al.
2004; Tsai et al. 2005; Tsai and Gleeson 2005;
Vallee et al. 2009). These findings are also in line
with the total inhibition of migration phenotype
observed in cortical slice assays upon complete
loss of Lis! in conditional null (Lisi*";Cre)
(Youn et al. 2009). We have recently applied the
MADM (Mosaic Analysis with Double Markers)
strategy (Zong et al. 2005) to ablate Lis/ in sparse
subpopulations of cortical projection neurons
(Hippenmeyer et al. 2010). In the experimental
MADM paradigm, homozygous mutant cells are
labeled in one color (e.g. green by GFP), wild-
type cells in another color (e.g. red by tdTomato)
and heterozygous cells in yellow (i.e. green and
red together) in an otherwise unlabeled back-
ground (Hippenmeyer et al. 2010; Zong et al.
2005). MADM-based functional gene analysis
has the advantage that essential genes can be
studied at any stage during development since the
sparseness of gene knockout in single cells allows
the bypass of embryonic lethality. Consequently,
we have quantified the distribution of LisI**,
LisI*~ and LisI~~ cortical projection neurons at
adult stages and noticed a significant reduction of
LisI*~ and LisI~~ neurons in the uppermost
layers II/III but concomitant increase in lower
layers. Interestingly, there was no significant
difference between Lis!*~ and Lis/™~ in their
laminar distribution although the migration of
Lis1~~ neurons is (at least initially) significantly
delayed at birth when compared to Lis/*~. In
contrast, LisI** neurons displayed a significant
cell-autonomous migration advantage when
compared to LisI*~ and Lis]~~ neurons, respec-
tively. The presence of MADM-labeled Lisl~~

neurons in all cortical layers indicates that
non-autonomous and/or community effects could
strongly influence the positioning of these Lis! ™~
mutant (and heterozygous Lis/*~) neurons (see
also below), given the critical function of Lis/ in
promoting nuclear/somal translocation. Future
detailed MADM-based analysis of Lis/ at embry-
onic stages may promise further insight into the
cell-autonomous and possibly cell-nonautono-
mous functions of Lis/ in regulating the
sequential steps of cortical neuron migration. In
summary, Lis/ acts in a dose-sensitive manner to
regulate the efficiency of neuronal migration,
likely by promoting somal translocation via
nucleus-centrosome coupling in migratory neu-
rons and catalyzes the exit from the multipolar
conformation to the bipolar state of nascent
neurons in the embryonic SVZ (Fig. 1.3a).
Experiments involving mosaic ablation of Lis/
by MADM in overall heterozygote Lis/*~ mice
also indicate a significant degree of intersecting
community effects (upon reduction of Lis/) and/
or cell-nonautonomous function(s) for Lis/ in
regulating neuronal migration (Hippenmeyer
et al. 2010; Youn et al. 2009).

Like for Lisl, homozygous complete knockout
of Ndell in mice results in embryonic lethality
(Sasaki et al. 2005) and although heterozygote
Ndell*~ mice do not show obvious phenotypes,
further reduction of Ndell in Ndell*" (null/
hypomorph) animals results in mild neuronal
migration phenotypes (Sasaki et al. 2005; Youn
et al. 2009). Ndell RNAi knockdown experiments
by in utero electroporation independently revealed
an essential function for Ndell for appropriate
cortical projection neuron migration (Shu et al.
2004). The function of Ndell involves proper cou-
pling of the centrosome to the nucleus, presum-
ably in a Lis/ dependent manner since the
requirement for Ndell in cortical neuron migra-
tion could be partially compensated by overex-
pression of Lis/ (Shu et al. 2004). Complete loss of
Ndell in conditional knockout mice (Ndel1*"<;Cre)
led to total inhibition of neuronal migration in
organotypic cortical brain slices as revealed by
high resolution time-lapse two-photon videomi-
croscopy (Youn et al. 2009). However, by using
the same migration assay, reduction of NDEL1
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Fig. 1.3 Cell-autonomous and non-autonomous func-
tions of LisI/Ndell at specific steps during radial
migration. Models of cell-autonomous (green) and non-
autonomous (blue) in vivo functions of LIS1 (a) and
NDEL1 (b) in the developing cortex. LISI cell-
autonomously regulates the efficiency of neuronal migra-
tion in a dose-dependent manner and has a role in the
multi-to-bipolar transition of cortical projection neurons.
NDELL1 cell-autonomously controls invasion and/or
migration within the developing CP target laminae.
Extensive interactions among migrating neurons, either
mediated by specific cell-nonautonomous effects of LIS1/
NDELLI or through a general community effect, promote
migration of Ndell~~ cells before reaching the target
laminae and Lis/~~ cells along the entire path under sparse
knockout conditions (Adapted from (Hippenmeyer et al.
2010) with permission)

protein levels to about 35 % in Ndell*" allowed
these neurons to migrate, albeit at reduced speeds.
The slower migrating neurons in Ndell*< dis-
played multiple branches, like multipolar cells, and
exhibited a branched migration pattern (Youn
et al. 2009). Such branched migration is very sim-
ilar to the movements of neurons lacking p35
(Chae et al. 1997; Gupta et al. 2003), which is the
activator of CDKS5 (Tsai et al. 1994). In p35~-
mutant mice (Chae et al. 1997) the vast majority
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of radially migrating cortical projection neurons
displayed branched migration behavior (Gupta
et al. 2003). Importantly, p35/CDKS5 phosphory-
lates NDEL1 at specific sites (S198, T219 and
S231) and this phosphorylation is essential for
NDELI function (Niethammer et al. 2000; Sasaki
et al. 2000). Therefore it is likely that the similar
neuronal migration phenotypes of neurons lack-
ing p35 or having reduced levels of NDEL1 could
be causally related. Whether p35/CDKS5-mediated
NDELI1 phosphorylation is critically required
during the entire radial neuron migration process
or just at discrete steps is an important open ques-
tion. In fact, loss of CDKJ5 function results in the
accumulation migrating cortical projection neu-
rons in the IZ and many of these Cdk5~~ mutant
neurons remain in a multipolar configuration
(Gilmore et al. 1998; Ohshima et al. 1996, 2007).
Thus, p35/CDKS5-induced phosphorylation of
NDELI could in principle, besides promoting
migration, trigger the multi-to-bipolar transition
although distinct pathways including other CDKS5
target molecules likely act in parallel in these
sequential radial migration steps.

In order to get further insights and identify the
critical step(s) in cortical neuron migration con-
trolled by NDELI1 function in vivo, we pursued
functional MADM analysis of Ndell (Hippenmeyer
et al. 2010). By using developmental time course
and single clone analyses, the phenotype of mutant
Ndell”- MADM-labeled cells revealed that Ndell
cell-autonomously regulates a very specific step in
cortical neuron migration: the entry into the CP
(Fig. 1.3b). Live-imaging experiments of MADM-
lableled neurons in organotypic slice preparations
further indicated that the speed of migration for
Ndell*"* and Ndell~~ neurons is not significantly
different as long as the neurons migrate within the
IZ. In contrast, the majority of Ndell~~ neurons
failed to cross the IZ-CP border (Fig. 1.4).
Altogether, the MADM experiments showed that
Ndell~~ neurons in a mosaic, mostly heterozy-
gous, environment can migrate through the VZ/
SVZ and the entire IZ. However, in the MADM
setting, Ndell~~ neurons are unable to enter and/or
migrate into their CP target lamina. The analysis
of several different types of MADM-labeled
Ndell~~ mutant neurons, besides cortical projection
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Fig. 1.4 Migration phenotypes of Ndell”~ cortical
projection neurons in whole and sparse knockout
experimental paradigms. Distinct migration pheno-
types in the IZ and CP in wild-type, Ndell*";,Cre
(whole cortex Ndell~~ knockout), MADM-11%""6 (con-
trol, all cells Ndell**) and MADM-1167TGNdell (mosaic

neurons, indicates that NDEL1 is generally
required for the invasion of the target area in the
course of radial neuronal migration (Hippenmeyer
et al. 2010). The mosaic analyses afforded by
MADM not only revealed cell-autonomous func-
tions of Ndell (and Lisl, see above) but indicates a
significant amount of cell-nonautonomous effects
which critically contribute to the regulation of dis-
crete steps in radial neuron migration. Most indica-
tive for such cell-nonautonomous effects is the fact
that the phenotypes resulting from sparse MADM-
based gene knockout are distinct from those
observed in whole cortex knockout (Hippenmeyer
et al. 2010; Youn et al. 2009) (Fig. 1.4). For
instance, Ndell~~ mutant neurons were unable to
move in cultured organotypic brain slices from
Ndel1*";Cre mice (complete loss of NDELI in
cortex) but MADM-labeled Ndell~~ neurons (in
genetic mosaic, mostly normal environment) could
migrate at regular speeds in IZ and only stalled
once they reached their CP target area. Thus, it is
conceivable that the inability of Ndell~~ mutant

MADM-11GT/TG MADM-11GT/TG.Ndel1

Ndel1+/+
Ndel1+

‘ ‘ Ndel1™-

control mosaic

Ndel1” ko

Ndell~~ knockout). The different colored outlines of
the migrating neurons shall indicate sequential posi-
tions at distinct times during progressive radial migra-
tion. This summary is based on the experimental
time-lapse imaging data from (Hippenmeyer et al. 2010;
Youn et al. 2009)

neurons to migrate in Ndell*”<,Cre mice is
potentially a consequence of adversive cell-nonau-
tonomous effects. What could be the molecular
nature of such ‘negative’ effects? Neuronal migra-
tion requires the dynamic adjustment of cell adhe-
sion molecules such as N-cadherin (see also below)
and possibly axon guidance molecules (see also
Chap. 9). Thus, one could speculate that the overall
molecular landscape at the cell membrane might be
non-permissive for migration and/or even inhibit-
ing when Ndell™~ neurons contact each other.
Conversely, in a mosaic MADM environment,
most Ndell~~ mutant neurons only get in contact
with Ndell*~ or Ndell*”* neurons and cross-inhib-
iting Ndell”~ — Ndell~~ cell contacts are mini-
mized. On the other hand, migrating
MADM-labeled Ndell~~ neurons, as long as pro-
gressing through the VZ/SVZ and the 1Z, could
even be positively influenced by the neighboring
Ndell*~ or Ndell** neurons. Such ‘positive’
effects might also account for the positioning of
MADM-labeled LisI~~ in upper cortical layers
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(see above). The precise nature of the ‘positive’
cell-nonautonomous effects and how they account
for positioning and/or migration of mutant Ndell~~
and LisI~~ cortical projection neurons is currently
unclear. In principle two scenarios could be possi-
ble: (1) community effects whereby isolated
Ndell~~ or LisI~’~ neurons, despite defective in the
intrinsic cytoskeletal migration machinery (e.g.
nucleus-centrosome coupling), may still “piggy-
back” on normally migrating abutting neurons; and
(2) neurons migrating in a crowd could actively
signal, in a LisI/Ndell-dependent manner, to each
other in order to boost the intrinsic migration
machinery. Molecularly, such a mechanism poses
however a significant challenge since intracellular
cytoplasmic proteins would need to signal inside-
out and trans-cellular to neighboring migrating
cells. Such a signaling pathway likely would need
to involve transmembrane receptors and possibly
extracellular matrix components, and some sort of
a sensor connecting to cytoskeletal force genera-
tors in the ‘signal-receiving’ cell. Interestingly,
cell-on-cell migration of Drosophila invasive bor-
der cells, which also depends on cell-autonomous
requirement for dLis/, has been proposed to
involve “piggy-backing” (Yang et al. 2012). More
generally, community effects have been observed
in a variety of other cell types moving collectively
(Friedl and Gilmour 2009; Tada and Heisenberg
2012; Theveneau and Mayor 2013).

The adaptor protein 14-3-3¢ is encoded by
YWHAE in human and deleted in all MDS
patients (Cardoso et al. 2003; Toyo-oka et al.
2003; Wynshaw-Boris 2007). The precise func-
tion of 14-3-3e during brain development is
unclear but it has been shown that Ywhae geneti-
cally interacts with Lis/ in mice and that the
14-3-3¢ protein binds to p35/CDKS5 phosphory-
lated NDEL1 (Toyo-oka et al. 2003). The 14-3-
3¢/NDELI interaction is important for binding
to LIS1 and the dynein motor. Thus, the tripartite
LIS1/NDEL1/14-3-3¢ complex appears as a key
regulator of neuronal migration. Interestingly,
sparse MADM-mediated conditional knockout
of Ywhae in cortical projection neurons did not
significantly affect their radial migration
although Ywhae™ pyramidal CA1 cells in hip-
pocampus showed slight defects in migration
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(Hippenmeyer et al. 2010). Since multiple isoforms
of 14-3-3 are expressed in the brain (Takahashi
2003), distinct 14-3-3 isoforms could compen-
sate for the loss of 14-3-3¢ function. Along the
same lines, genetic redundancy could also, at
least in part, explain some of the divergent phe-
notypes that were observed when comparing
the individual MADM-induced Lis! -, Ndell '~
and 7/4-3-3¢~~ mutant neurons to each other.
For instance Ndel, the second homologue of
A. nidulans NudE and paralogue of murine Ndell,
shares 55 % sequence homology with Ndell
(Feng et al. 2000; Sweeney et al. 2001) and
could possibly compensate for some Ndell func-
tions, especially during the early stages of neuro-
nal migration in VZ/SVZ and IZ. Although the
overall phenotype of Ndel~~ mutant mice is dis-
tinct from Ndell~~ mutants, NDE1 can interact
with LIS1 and this interaction is critical to con-
trol cortical lamination and thus cortical neuron
migration (Feng et al. 2000; Feng and Walsh
2004; Pawlisz et al. 2008). Alternatively, LIS,
NDELI1 and 14-3-3e may also each act in a
‘complex’-independent manner to execute dis-
tinct component-specific functions, at discrete
steps and transitions during radial migration of
cortical projection neurons. Recent biochemical
experiments support such a model whereby for
example both LIS1 and NDELI1 proteins may act
independently in certain contexts and that their
interaction can amplify and/or modulate those
activities (Zylkiewicz et al. 2011).

4 The Reelin Pathway Controls
Sequential Phases in Cortical
Neuron Migration

Cortical layering occurs in an ‘inside-out’ fashion
whereby earlier born neurons populate deep
layers and later born neurons occupy progres-
sively upper layers (Angevine and Sidman 1961;
McConnell 1995; Polleux et al. 1997; Rakic
1974, 2007). The Reelin signaling pathway plays
fundamental roles in cortical neuron migration
and inside-out lamination, and has attracted
unmatched attention, by now for over half a
decade. In human, mutations in the RELN gene
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(encoding RELN also known as Reelin) are
associated with autosomal recessive lissencephaly
and cerebellar hypoplasia (Hong et al. 2000) but
the precise function and mode of action of the
Reelin signaling cascade at the cellular and
molecular level in vivo remains unclear.
Historically, Falconer initially described the
Reeler mouse mutant phenotype which includes
ataxia, tremors and a reeling gait (Falconer 1951),
hence the name Reeler. A multitude of anatomical
studies has been carried out but the most striking
feature of the Reeler mouse is that laminated
brain structures including the neocortex are dis-
organized with misplaced projection neurons
(Caviness and Rakic 1978; Hamburgh 1963;
Tissir and Goffinet 2003). Upon cloning of the
Reelin gene Reln in mouse it became evident that
Reelin encodes a large (3,461 amino acids)
secreted glycoprotein (D’ Arcangelo et al. 1995).
Reelin is mostly expressed and secreted from the
earliest born cortical ‘pioneer’ Cajal-Retzius
cells which form the outermost layer of the PP
and later the MZ (D’Arcangelo et al. 1995;
Ogawa et al. 1995). Reelin binds to a receptor
complex — VLDLR (very low-density lipoprotein
receptor)/LRP8 (low-density lipoprotein related
receptor 8, formerly known as APOER2)
(D’ Arcangelo et al. 1999; Hiesberger et al. 1999)
and strikingly, the phenotype of VidIr/Lrp8 dou-
ble knockout mice is basically indistinguishable
from the Reeler phenotype (Trommsdorff et al.
1999). The Reelin signal is transmitted via the
intracellular signaling adaptor DAB1 which is
phosphorylated by Src-family kinases upon
Reelin binding (Arnaud et al. 2003; Bock and
Herz 2003; Howell et al. 1999), and Dabl mutant
mice (Howell et al. 1997; Sheldon et al. 1997,
Ware et al. 1997) exhibit neurological and ana-
tomical phenotypes the are indistinguishable
fromthe ones in Reeler mutant mice (Trommsdorff
et al. 1999). Both VLDLR and LRP8 do not
possess intrinsic kinase activity and it has been
shown that the axon guidance molecule ephrin-B
can act as a co-receptor for Reelin (Senturk et al.
2011). Reelin binds to the extracellular domain
of ephrin-Bs and thereby associating with the
VLDLR/LRPS complex. This leads to clustering
of ephrin-Bs and Src kinase-mediated DABI

phosphorylation and activation (Senturk et al.
2011). Finally, Notch signaling, executing most
important  functions during neurogenesis
(Kageyama et al. 2009) has recently been shown
to play a critical role in transducing the Reelin
signal during neuronal migration (Hashimoto-
Torii et al. 2008) although the precise mechanisms
how Notch functions as a Reelin downstream
mediator still remain enigmatic.

Despite tremendous efforts to decipher the
biological Reelin function(s) in cortical neuron
migration, important aspects are still unclear
and several somewhat conflicting hypotheses
have been put forth. It has been proposed that
Reelin might act (1) as a repellent cue (Ogawa
etal. 1995; Schiffmann et al. 1997); (2) as a stop
signal (Frotscher 1997; Sheppard and Pearlman
1997); (3) to stimulate detachment of migrating
cortical neurons from the radial glia process
(Dulabon et al. 2000; Sanada et al. 2004) or (4)
specifically could regulate radial glia-indepen-
dent somal translocation (Franco et al. 2011;
Jossin and Cooper 2011; Sekine et al. 2012) (see
also below).

One reason for the apparent pleiotropy of the
Reelin deficiency phenotypes could be that besides
cell-autonomous functions of Reelin signaling in
migrating neurons, environmental factors, com-
munity and other cell-nonautonomous effects
might critically influence Reelin-sensitive neurons
(Franco et al. 2011; Sanada et al. 2004). In any
case, several recent experiments convincingly sug-
gest that Reelin may play not only one but instead
several important cell-autonomous roles and likely
acts at multiple discrete steps during radial migra-
tion of cortical projection neurons. First, Reelin-
dependent LRP8 downregulation could be
important for nascent neurons to delaminate and
start their migration by uncoupling them from
neural progenitor cells (Perez-Martinez et al.
2012). It is however not clear if this proposed early
function acts more or less as a permissive signal
rather than acting as an instructive cue. Second,
Reelin plays an essential role in the multipolar-to-
bipolar transition while neurons migrate within the
1Z (Jossin 2011; Jossin and Cooper 2011). In fact,
migrating neurons in the IZ show the highest level
of “functional Reelin receptors” and the Reelin
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signal could diffuse from the MZ to the IZ (Jossin
et al. 2007; Uchida et al. 2009). Jossin and Cooper
propose a three step model how Reelin regulates
the multipolar-to-bipolar transition of cortical neu-
rons in the IZ. In a first step, multipolar neurons
migrate in an apparently stochastic mode in the IZ
where they encounter Reelin, which leads to acti-
vation of the small GTPase RAP1, presumably via
pDAB1-CRK/CRKL-C3G signaling (Ballif et al.
2004; Voss et al. 2008). RAP1 is a Ras-related
GTPase which plays important roles in the regula-
tion of the actin cytoskeleton, membrane traffick-
ing and cell adhesion (Gloerich and Bos 2011). In
the second step, active RAPI increases the surface
level of N-Cadherin in the multipolar neurons. The
increased levels of surface N-Cadherin could then
allow the multipolar neurons to sense environmen-
tal cues allowing the proper polarization and exit
of the multipolar state to adopt bipolar morphol-
ogy (Jossin 2011). While the precise intracellular
signaling mechanisms controlling RAP1-mediated
N-Cadherin regulation during multi-to-bipolar
transition and migration towards the upper 1Z
remain to be elucidated, Reelin also regulates later
aspects in the radial migration process. Upon tran-
sition to the bipolar morphology, cortical neurons
migrate along the radial glia processes towards the
cortical plate. This glia-dependent migration
(locomotion) mode appears to be independent of
Reelin signaling. In contrast, the very last step —
terminal somal translocation — which seems to
occur in a glia-independent manner requires
DABI1-mediated Reelin signaling (Franco et al.
2011; Jossin and Cooper 2011; Sekine et al. 2012).
Interestingly, such glia-independent somal translo-
cation is the predominant mode of migration of
early born neurons occupying the future lower cor-
tical layers (Nadarajah and Parnavelas 2002). Thus
DAB I-mediated Reelin signaling likely promotes
cell-autonomously the splitting of the PP by deep
layer neurons.

Because early and late born neurons travel dif-
ferent distances and through varying cellular
compartments in their individual migration jour-
neys, it is likely that the molecular machineries
driving their migration could be different for
future deep versus upper layer neurons, respec-
tively. Therefore, neurons destined for different
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layers most likely have additional distinct require-
ments for functional Reelin signaling.
Nevertheless, for the very last step in the migra-
tion process — terminal somal translocation —
which is conserved in early and late born neurons,
Reelin is equally important in both early and late
born neurons (Franco et al. 2011; Jossin and
Cooper 2011; Sekine et al. 2012). Mechanistically,
Reelin signaling via RAP1 and subsequent con-
trol of N-cadherin function seems to promote ter-
minal somal translocation (Franco et al. 2011;
Jossin and Cooper 2011). The functions of
N-cadherin in the control of radial neuron migra-
tion appear however pleiotropic since also glia-
dependent locomotion depends on N-cadherin
function (Kawauchi et al. 2010). How N-cadherin
signaling — triggered either by Reelin-RAPI-
mediated intracellular redistribution (multi-to-
bipolar transition and glia-independent terminal
somal translocation) or via Reelin-independent
pathways (glia-dependent locomotion) — regu-
lates the distinct sequential steps of neuronal
migration is currently not well understood. Precise
regulation of N-cadherin levels through endocytic
and/or coordinated intracellular trafficking path-
ways could be an effective way for appropriately
tuning of N-cadherin levels/activity (Kawauchi
et al. 2010). As such, during the locomotion pro-
cess of migrating neurons, N-cadherin undergoes
RABS5-dependent endocytosis at the trailing end
and is efficiently shuffled to the plasma mem-
brane at the forward end via a RAB11-dependent
recycling pathway. Conversely, RAB7-dependent
lysosomal degradation pathways with increased
degradation of N-cadherin and possibly other cell
adhesion molecules seem also important for the
final terminal somal translocation step (Kawauchi
et al. 2010). Although the Reelin-DAB1-CRK/
CRKL-C3G-RAP1 pathway dynamically regu-
lates N-cadherin activity and terminal somal
translocation, overexpression of N-cadherin alone
was not sufficient to rescue loss of Reelin-
mediated DAB1 signaling (Franco et al. 2011).
Therefore, distinct signaling molecules and/or
cell adhesion molecules have additional roles in
the transmission of the Reelin signal for the
promotion of terminal somal translocation.
Consequently, it has been demonstrated that
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Reelin triggers C3G-RAPI-mediated integrin
activation in an inside-out signaling fashion spe-
cifically during somal translocation (Sekine et al.
2012). In this pathway, Reelin acts as input signal
through VLDLR/LRP8-DAB1-CRK/CRKL-C3G
to activate RAP1 which recruits effectors to pro-
mote conformational change and thus activation
of a5p1-integrin, which then triggers adhesion to
fibronectin in the ECM of the MZ to mediate ter-
minal somal translocation (Sekine et al. 2012).

Altogether and despite tremendous efforts and
progress in deciphering the biological functions of
the Reelin signaling pathway, the precise mecha-
nism of the highly complex Reelin signaling cue
and how it regulates the proper positioning of neu-
rons in the CP remains unclear and somewhat con-
troversial. There is an emerging picture whereby
Reelin controls radial neuronal migration at several
distinct steps (Fig. 1.5). Reelin acts (1) during
delamination and separation of nascent neurons
from neuronal progenitors; (2) to regulate the multi-
to-bipolar transition; and (3) most importantly dur-
ing somal translocation of early born lower layer
neurons and terminal somal translocation of late
born upper layer neurons. Interestingly, the Reelin
and LIS1 pathways described above are likely to
intersect at certain stages during cortical neuron
migration (Assadi et al. 2003). However, the cytoar-
chitectural phenotypes of the cortex in mice with
absent Reelin or LIS1 are distinct (Caviness and
Rakic 1978; D’Arcangelo et al. 1995; Hirotsune
et al. 1998; Yingling et al. 2008) although loss of
function of either pathway cause lissencephaly
in human (Hong et al. 2000; Reiner et al. 1993).
At which steps during radial migration the Reelin
and LIS1 signaling pathways crosstalk to exert their
critical function(s) in driving migrating cortical
neurons awaits further investigation.

5 Transcriptional Programs
in the Regulation of Specific
Transitions During Radial
Neuron Migration

The assembly of functional cortical microcir-
cuits depends on a global and holistic develop-
mental program including specific transcriptional
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Fig. 1.5 Reelin signaling requirements at discrete
stages of radial migration. Nascent cortical projection
neurons downregulate LRPS in a Reelin-dependent man-
ner while delaminating from the ventricular surface.
Reelin signaling, via RAP1 and N-Cadherin, regulates the
multi-to-bipolar transition. During the last stages of corti-
cal neuron migration, Reelin signaling controls terminal
somal translocation via N-Cadherin and inside-out activa-
tion of a5P1-Integrin signaling
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regulatory schedules. Transcription factors have
been shown to play crucial roles in many phases
of cortical development including patterning in
neuroepithelia, neurogenesis, arealization and
neuronal specification (Martynoga et al. 2012;
O’Leary et al. 2007; Rash and Grove 2006).
Critical transcriptional programs control in par-
ticular the acquisition of cell-type and laminar
identity in the neocortex (Leone et al. 2008;
Molyneaux et al. 2007). It becomes now increas-
ingly clear that finely tuned transcriptional
programs do also control other aspects, besides
instructing cell identity in the course of neurogen-
esis, such as driving migration and precise
positioning of cortical projection neurons.
Interestingly, neurons migrating tangentially
along extended pathways and crossing many
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intermediate targets before reaching their final
positions require several levels of transcriptional
regulations. As such, specific classes of cortical
interneurons, motor and pontine neurons in hind-
brain for instance deploy transcriptional control
over their long distance tangential migrations
(Chedotal and Rijli 2009; Di Meglio et al. 2013;
Marin 2013). Recent studies implicate critical
transcriptional changes as well in the regulation
of discrete steps of the radial migration journey of
cortical neurons. Such transcriptional changes are
likely crucial for adjusting the molecular landscape
of migrating neurons. For instance, the transition
through distinct compartments (e.g. from VZ/
SVZ through the IZ into the CP target area) could
require the adjustment of cell surface receptors,
intracellular signaling or regulation of cell adhe-
sion in response to changes in the extracellular
matrix. The precise regulation of transcriptional
programs and their impact on sequential stages of
cortical projection neuron migration at the mech-
anistic level is however poorly understood and
just about to be deciphered.

5.1 Transcriptional Migration
Control of Early and Late Born

Cortical Projection Neurons

Certain transcription factors play a role in the
development of some but not other classes of
cortical projection neurons. As such it appears
that particular genetic programs seem to regulate
specifically the fate and positioning of early born
lower layer neurons and, that other programs are
important for migration and molecular differen-
tiation of later born upper layer neurons. The
transcription factor SOXS5 (Kwan et al. 2008; Lai
et al. 2008) is specifically expressed in postmi-
totic early born SP, layer VI and in a subset of
layer V projection neurons but not in VZ/SVZ
progenitors and nascent projection neurons
migrating in the IZ. Ablation of Sox5 in mice
showed that Sox5 controls the molecular differ-
entiation and development of axonal projections
but also regulates critical steps in the migration
of the early born deep layer projection neurons
(Kwan et al. 2008; Lai et al. 2008). In particular,
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the splitting of the PP is not complete and some
populations of deep layer neurons failed to
migrate past earlier born neurons in Sox5~~
mutant mice. Thus, Sox5 appears to play a crucial
role in the final step of neuronal migration (somal
translocation) and Sox5 deficient neurons show a
somewhat similar phenotype like neurons in
Reeler mutant mice (see above). How Sox5 regu-
lates the terminal steps of radial migration of
early born deep layer neurons is currently
unknown but the answer likely lies within the
group of SOXS5-regultated downstream target
genes acting at the final stage of deep layer neu-
ron positioning. Interestingly, however, late born
upper layer Sox5~~ neurons migrate normally
and past earlier born projection neurons (Kwan
et al. 2008; Lai et al. 2008). These studies indi-
cate that the molecular mechanisms, controlling
the migration of certain classes of late born pro-
jection neurons past earlier born neurons, might
not be equal for all cortical layers. More likely,
the regulation of the molecular mechanisms
promoting the passage of neurons past their
predecessors may involve adjustment according
to the respective layer landscape. Since the over-
all cortical architecture is substantially different
for earlier born neurons than for later born neu-
rons, appropriate readjustment of the migration
machinery may be necessary. For instance, layer
V neurons ‘only’ need to migrate past the SP and
one layer (layer VI), whereas layer III neurons
need to migrate past the SP, layers VI, V and IV
in order to reach their final settling area. Thus the
migration path is not only longer for layer III
neurons but requires the passage of multiple and
distinct classes of earlier born neurons.

The identity and migration of cortical upper
layer neuron is critically regulated by two related
POU domain transcription factors POU3F2
(BRN-1) and POU3F3 (BRN-2) acting to some
extent redundantly (McEvilly et al. 2002;
Sugitani et al. 2002). Pou3f2/3 are co-expressed
in progenitors in the VZ and in the CP in most
layer II-V cortical projection neurons. Analysis
of Pou3f2/3 double knockout mice revealed that
the generation of late born neurons was affected
but that the cortical projection neurons that were
successfully generated, could migrate away from
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the VZ and expressed some markers characteristic
for differentiating neurons (McEvilly et al. 2002;
Sugitani et al. 2002). However, the Pou3f2/3
double mutant neurons failed to pass the SP and
layer VI and accumulated below the SP in an
apparently cell-autonomous manner. The migra-
tion phenotype of Pou3f2/3 double mutant neurons
resembles to some extent the phenotype of
neurons lacking p35/CDKS5 activity [see also
above; (Gilmore et al. 1998; Ko et al. 2001)].
Interestingly, POU3F2/3 directly bind to the
promoters of both p35 and p39 genes, redun-
dantly regulate the cell-autonomous expression
of the p35/39 regulatory subunits for CDKS
(McEvilly et al. 2002) and control expression of
DABI1 (Sugitani et al. 2002). It is thus likely that
Pou3f2/3 control neuronal positioning through
direct regulation of the expression of components
of the Reelin and p35/CDKS5 signaling pathways
although the precise role of these pathways in
early versus late born neurons needs to be ana-
lyzed more detail. In addition to the above
described, apparently cell-population specific
transcriptional programs, another series of tran-
scriptional programs fine-tunes key downstream
intracellular pathways that drive neuronal migra-
tion at defined sequential steps in radially migrat-
ing projection neurons.

5.2 Transcriptional Programs
Regulating Discrete Steps
in Radial Cortical Neuron

Migration

The findings illustrated above indicate that dis-
tinct classes of neurons have different require-
ments for adjusting their migration efficiency
through the VZ/SVZ, 1Z and growing CP com-
partments, and thus exploit specialized cell-
type specific transcriptional programs to tune
their migration machinery. Besides the impor-
tant layer-specific transcriptional regulation,
finely-tuned transcriptional programs, their
downstream target genes and effectors also
play critical roles in the discrete steps and tran-
sitions during the migration process of cortical
projection neurons.

Members of the bHLH (basic helix-loop-helix)
family of proneural transcription factors such as
Neurogeninl/2 and ASCLI1, which exert key
roles in neurogenesis (Martynoga et al. 2012),
encoded by Neurogl/2 and Ascll (achaete-scute
complex homolog 1), also promote the migration
of nascent cortical projection neurons (Ge et al.
2006; Hand et al. 2005; Heng et al. 2008). Two
members of the Snail superfamily of transcrip-
tion factors, Scratchl and Scratch2, appear to be
expressed under the control of the above
Neurogl/2 and Ascll proneural genes in the
developing cortex and control the very first step
of the neuronal migration process — detachment
or delamination from the apical surface in the
ventricular zone (Itoh et al. 2013). On a mecha-
nistic level, Scratch proteins mediate transcrip-
tional repression and/or downregulation of
E-cadherin based adhesion in order to promote
the detachment of neurons from the ventricular
surface (Itoh et al. 2013) (Fig. 1.6a).

Apart from promoting Scratch-mediated
delamination during the very first step of neuronal
migration, proneural genes also regulate later but
discrete steps during the migration journey of
nascent cortical projection neurons. In particular,
Neurogl/2 has been initially shown to be involved
in controlling the expression of genes with promi-
nent functions in neuronal migration such as
RhoA, Dcx and p35 (Ge et al. 2006) but other tar-
get genes such as Rnd2 encoding a small GTP-
binding protein appear to play even more critical
roles in translating the Neurog2 requirement in
neuronal migration (Heng et al. 2008). On the
other hand, Ascll promotes migration of newly-
born neurons by direct regulation of another Rnd
family member: Rnd3 (Pacary et al. 2011). Both
RND?2 and RND3 inhibit RhoA signaling but lack
intrinsic GTPase activity, are thus constitutively
bound to GTP (Chardin 2006) and are thought to
be regulated at the level of their expression, post-
translational modification and intracellular local-
ization (Madigan et al. 2009; Riento et al. 2005).
Importantly, Rnd2 and Rnd3 control distinct key
steps in the migratory process (Heng et al. 2008;
Pacary et al. 2011) (Fig. 1.6b). While Rnd2 regu-
lates the transition from the multipolar state to a
bipolar arrangement in the IZ, Rnd3 controls the
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Fig.1.6 Transcriptional regulation of cortical projection
neuron migration. (a) The transcriptional regulators
Scratch1/2 (downstream of Neurog2) mediate the very
first step in cortical neuron migration — delamination
form the ventricular surface — via transcriptional repres-
sion of the cell adhesion molecule E-Cadherin. (b) Rnd2
(downstream of Neurog2) and Rnd3 (downstream of
Ascll) both inhibit RhoA signaling but promote distinct
steps in the migratory process of cortical projection neu-
rons. Rnd2 controls the multi-to-bipolar transition and

locomotion of migratory neurons in the CP.
Consequently, Rnd2 and Rnd3 cannot replace
each other although the mechanism of action for
both involves the inhibition of RhoA activity
(Hengetal. 2008; Pacary etal. 2011). Interestingly,
RND2 and RND3 seem to execute their functions
via RhoA inhibition in distinct cellular compart-
ments of the migrating neurons (Pacary et al.
2011). Since RND2 is primarily associated with
early endosomes it may be involved in the selec-
tive intracellular trafficking while neurons are
multipolar and thus contribute to the proper polar-
ization and transition from multi-to-bipolar mor-
phology. In contrast, RND3 is localized also at the
plasma membrane (besides early and recycling
endosomes) and appears to drive locomotion of
migratory cortical projection neurons by inhibit-
ing RhoA-mediated actin polymerization (Pacary
et al. 2011). Altogether, the proneural Neurog2
and Ascll regulate consecutive phases of cortical
neuron migration via induction of Rnd2/Rnd3
which then inhibit RhoA activity in distinct cel-
lular compartments catalyzing multi-to-bipolar

Rnd3 is required for glia-dependent locomotion. Neurog2
expression is tightly regulated via RP58-mediated tran-
scriptional negative feedback. (¢) Dynamic regulation of
Foxgl is critical for several steps during cortical neuron
migration. Downregulation of Foxg! in the early multi-
polar phase is necessary for initiation of Unc5D expres-
sion and to proceed from the early to the late multipolar
phase. Reiteration of Foxg/ expression in migrating cor-
tical projection neurons is required at later stages in order
to enter the CP

transition and driving locomotion, respectively
(Fig. 1.6b).

Since the function of Neurog2 via induction of
Rnd?2 is highly specific for a particular transient
step in the migration process, it is essential to
regulate and tune that Neurog2/Rnd2 function
appropriately. Negative feedback regulation
could be an ideal mechanism for dosing the
Neurog2/Rnd?2 action. Indeed, the transcriptional
regulator RP58, a zinc-finger transcriptional
repressor from the BTB/POZ-domain family
(Aoki et al. 1998), is a downstream target of
Neurog2 and appears to control neuronal migra-
tion via the regulation of the multipolar-to-bipolar
transition (Ohtaka-Maruyama et al. 2013).
Moreover, RP58 has been shown to directly
repress Neurog2 expression by binding to regula-
tory elements in the region near the Neurog2
genomic locus. Thus, while RP58 itself is a target
gene of Neurog2 (Ohtaka-Maruyama et al. 2012;
Seo et al. 2007), it ensures transient and to the
point action of the Neurog2/Rnd2 pathway for
controlling multipolar-to-bipolar transition during
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neuronal migration via negative feedback regula-
tion (Ohtaka-Maruyama et al. 2013) (Fig. 1.6b).

As illustrated above, the progression of the
multi-to-bipolar transition, of cortical projection
neurons in the course of their migration journey,
requires extensive regulation. The forkhead tran-
scription factor FOXG1, acting as a critical regu-
lator of early telencephalic development
(Hanashima et al. 2004; Kumamoto et al. 2013;
Martynoga et al. 2005; Muzio and Mallamaci
2005), is dynamically expressed while migrating
pyramidal neurons progress through the multi-to-
bipolar transition (Miyoshi and Fishell 2012)
(Fig. 1.6c). The dynamic Foxgl expression is
critical, because at the beginning of the multipo-
lar phase, Foxgl needs to be downregulated in
order to allow expression of Unc5D (Sasaki et al.
2008) which facilitates the transition from early
to late multipolar phase and thus migration
through the IZ (Miyoshi and Fishell 2012).
However, reiteration of Foxgl expression is
required for neurons to switch from the multipo-
lar state to the bipolar morphology and for enter-
ing into the CP (Miyoshi and Fishell 2012)
(Fig. 1.6¢c). Gene expression experiments along
within the above study strongly indicate that
Foxgl could control the expression of cell adhe-
sion molecules (including the above mentioned
putative Netrin receptor UNCS5D) in cortical pro-
jection neurons during the multi-to-bipolar tran-
sition. In summary, cortical projection neurons
need to migrate through highly distinct environ-
ments (VZ/SVZ, 1Z, and CP) in the course of
their radial migration journey and transcriptional
programs mediated by Foxgl and other transcrip-
tion factors fine tune the complement of receptors
on the extracellular surface of migration cells.
This can allow the optimal sensing of the extra-
cellular cue repertoire which then can serve as a
guide through the different zones across the
developing cortical wall.

6 Perspectives
Newly-born cortical projection neurons need to

migrate from their birthplace to their final posi-
tion to fulfill their appropriate function. It has

become well established that nascent cortical
neurons migrate in a step-wise fashion and prog-
ress through sequential migration phases, from
the VZ/SVZ through the IZ in order to reach their
final positions in the developing CP, and build up
the six cortical layers. The importance of neuronal
migration for correct brain development is high-
lighted in patients that suffer from certain brain
malformations which include the ‘migration’ dis-
order Lissencephaly. Although tremendous efforts
have revealed a variety of signaling pathways
regulating neuronal migration, our understanding
of the precise cellular and molecular mechanisms,
controlling specifically the sequential steps and
transitions during cortical neuron migration,
remains incomplete. Thus, future studies are
required in order to clarify the relationship
between particular signaling pathways and the
discrete steps of cortical neuron migration. The
precise nature of cell-autonomous and non-auton-
omous effects of gene function(s) and/or commu-
nity effects in the control of neuronal migration
are also not well understood. Such knowledge is
however relevant for our molecular and mecha-
nistic understanding of the precise nature of dev-
astating neurodevelopmental disorders, including
Lissencephaly, where non-autonomous and/or
community effects might influence the severity of
the condition in human patients. More generally,
investigations are necessary along these lines to
decipher both the nature and exact interplay of the
cell-autonomous and cell-nonautonomous func-
tions of candidate genes, and their effectors, in
regulating the precise stages during the radial cor-
tical neuron migration process.
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The Dynamics of Neuronal
Migration
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Abstract

Proper lamination of the cerebral cortex is precisely orchestrated, especially
when neurons migrate from their place of birth to their final destination. The
consequences of failure or delay in neuronal migration cause a wide range
of disorders, such as lissencephaly, schizophrenia, autism and mental retar-
dation. Neuronal migration is a dynamic process, which requires dynamic
remodeling of the cytoskeleton. In this context microtubules and microtu-
bule-related proteins have been suggested to play important roles in the
regulation of neuronal migration. Here, we will review the dynamic aspects
of neuronal migration and brain development, describe the molecular
and cellular mechanisms of neuronal migration and elaborate on neuronal
migration diseases.
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1 Neurons Originate from Two
Proliferative Zones of the
Cerebral Cortical Wall

Neuronal migration is a critical step in the forma-
tion of the nervous system. During development,
neurons migrate from their birthplace to their
final destination, where they form neuronal archi-
tectures, such as laminated structures and nuclei
that are necessary for information processing
in the nervous system. The majority of neurons in
the cerebral cortex, the pyramidal excitatory neu-
rons, are born either within the ventricular zone
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Fig.2.1 Proliferation of neuronal stem cells and interkinetic nuclear migration

(VZ) or the subventricular zone (SVZ) (Kriegstein
and Noctor 2004; Noctor et al. 2001; Tamamaki
et al. 2001; Wu and Wang 2012) (Fig. 2.1).
Neuronal progenitors in the VZ are the radial
glial (RG) cells that span the entire neocortical
wall and maintain contact both at the ventricular
and pial surfaces throughout their mitotic divi-
sion cycles. The RG cells are the major popula-
tion of neural progenitor cells occupying the
proliferative VZ in the developing mammalian
neocortex (Malatesta et al. 2000; Miyata et al.
2001; Noctor et al. 2001). Radial glia cells
undergo interkinetic nuclear migration, whereby
the nucleus moves within the cytoplasm of elon-
gated neuroepithelial progenitor cells in synchro-
nization with the cell cycle phase (Gotz and
Huttner 2005; Miyata et al. 2004; Noctor et al.
2004). The nucleus ascends to the upper region of
the VZ during S phase, and later descends to the
apical part of the VZ (Fig. 2.1).

Intermediate progenitor (IP) cells reside
within the VZ and often divide at ventricular sur-
face at early stages of neurogenesis (Franco and

Muller 2013; Noctor et al. 2004). However, as
neurogenesis proceeds, the IP cells migrate to a
distinct proliferation layer adjacent to the VZ, the
SVZ. Retroviral labeling and time-lapse imaging
in embryonic rodent cortical slice cultures as
well as staining for neuron markers was used to
demonstrate that IP cells most often undergo one
round of symmetric division to produce two neu-
rons (Attardo et al. 2008; Haubensak et al. 2004;
Kriegstein and Noctor 2004; Noctor et al. 2008).
In contrast to RG cells, IP cells seem to lack
apical-basal polarity (Attardo et al. 2008;
Kriegstein and Noctor 2004; Miyata et al. 2004;
Noctor et al. 2004). The ‘two-step pattern’ of
neurogenesis, involving RG cells and IP cells,
appears to be the predominant principle for
cortical neurogenesis in rodents (Haubensak
et al. 2004; Kriegstein and Noctor 2004; Miyata
et al. 2004). It has been suggested that the emer-
gence of the SVZ and its constituent IP cells may
have been responsible for the evolutionary
increase in cortical thickness and layering that
presumably occurred in the interval between a
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reptile-like mammalian ancestor and early
mammals (Cheung et al. 2007). As mentioned
above, neurons are usually born in a position,
which differs from their terminal destination.
Thus, neurons need to migrate from their place of
birth to their final position using several types of
cellular mechanisms.

2 The Cellular Mechanisms
of Neuronal Migration

The formation of the central nervous system
(CNS) depends on two crucial early development
events: (1) the proliferation and differentiation of
neural stem cells as discussed above, leading to
generation of a variety of different types and
numbers of neurons; (2) the migration of postmi-
totic neurons from the VZ and SVZ to appropri-
ate areas and specific locations within the central
nervous system where these neurons establish
functional neural circuits with each other (Marin
and Rubenstein 2003). During central nervous
system development, neurons utilize three modes
of migration: radial migration, tangential migra-
tion, and chain migration (Marin and Rubenstein
2003). In the developing cortex, later-born pro-
jection neurons migrate radially along the elon-
gated fiber of radial glia (RG) cells to reach their
final destinations at the interface between cortical
plate and marginal zone (Hatten 2002; Kriegstein
and Noctor 2004; Noctor et al. 2001; Rakic 2007;
Tamamaki et al. 2001). Meanwhile, GABAergic
cortical interneurons born in the ganglionic emi-
nences migrate tangentially into the developing
cortical wall (Anderson et al. 1997; Ang et al.
2003; de Carlos et al. 1996; Marin and Rubenstein
2003). In the postnatal brain, the radial migra-
tion mode still remains the primary way for
laminar positioning of newly generated granule
neurons of the dentate gyrus of the hippocampus
(Nowakowski and Rakic 1979). Interestingly,
olfactory interneurons migrate from the SVZ of
the lateral ventricles in the adult brain to the
olfactory bulbs via the rostral migratory stream
(RMS), by a specific mode of migration named
chain migration (Lois and Alvarez-Buylla 1994;
Lois et al. 1996) (see also Chap. 9).
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Within the CNS, despite differences in migratory
pathways and migration modes among the distinct
neuronal subtypes, it is believed that most migra-
tory processes are driven by similar cell-intrinsic
mechanisms, and determined by extracellular cues
to a large extent. Neurons contain a heterogeneous
network of filamentous structures known collec-
tively as the cytoskeleton consisting of the actin
microfilaments, the neurofilaments (called interme-
diate filaments in non-neuronal cells), and the
microtubules. Actin is prominent in axons, and is
particularly abundant in growing tips of axons,
the growth cones. It plays a critical role in orches-
trating dynamic changes of cellular morphology.
Microtubules form long scaffolds that extend the
full length of the neuron, and they also take part in
cell movement and cell division. Neurofilaments
are the bones of the cytoskeleton and the most abun-
dant fibrillar components of the axon. They are long
filaments of approximately 10 nm in diameter,
intermediate in size between actin filaments (about
5 nm) and microtubules (about 20 nm). Unlike
microtubules, neurofilaments are very stable and
remain mostly polymerized within neurons.

Additionally, the extracellular matrix (ECM)
acts as a major extracellular signaling mecha-
nism influencing the development of the central
nervous system (see also Chap. 9). The ECM is
composed of five classes of macromolecules —
collagens, elastin, proteoglycans, hyaluronan,
and adhesive glycoproteins, such as laminins,
reelin, tenascins, etc. The ECM plays important
roles during CNS development by acting as a
mechanical support, by providing essential sur-
vival signals and by regulating neuronal migra-
tion, which will be further discussed.

Neuronal migration is a cyclical multi-step
process that consists of collectively interrelated
but independent discrete events, including four
major cell biological stages: polarization, protru-
sion, adhesion, and retraction (Lauffenburger and
Horwitz 1996; Pollard and Borisy 2003; Ridley
et al. 2003). Each individual neuron responds to
certain extracellular signaling stimuli and the
cellular migration process is rapidly initiated.
The migration process is coordinated by internal
and external signaling mechanisms allowing the
cell to form transient specialized structures that
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direction of migration

Fig. 2.2 Multi-step process of neuronal migration.
(a) Cell movement in a certain direction and formation
of the leading edge, (b) Attachment of the leading edge

permit each neuron to complete the entire cell
migration process. Specifically, the neuron first
needs to polarize in a certain direction, to form an
active and extensive leading edge that allows the
dynamic protrusions of neurite to move forward
and initiate the cell migration cycle. Subsequently,
somal translocation, the most characteristic fea-
ture of neuronal migration, involves two consec-
utive steps. The first step in somal translocation is
the formation of a cytoplasmic swelling in the
leading edge, immediately ahead of the nucleus.
This cytoplasmic dilatation has been observed in
both tangentially and radially migrating neurons
(Bellion et al. 2005; Konno et al. 2005; Schaar
and McConnell 2005). The second step is nucleo-
kinesis, which repositions the nucleus forward
into the cytoplasmic dilatation following the cen-
trosome by coordination of many cytoskeletal
and signaling molecules (Bellion et al. 2005;
Godin et al. 2012; Solecki et al. 2009; Tsai and
Gleeson 2005) (Fig. 2.2). The leading edge of
migrating neuron displays diverse morphologies
in different neuronal types, for instance, the corti-
cal tangentially migrating interneurons dynami-
cally integrate their two leading edge branches
into the migratory cycle (Martini et al. 2009;
Okada et al. 2007). In contrast, radially migrating

>i<

to surrounding substrates, (¢) Remodeling of microtu-
bules and nuclear translocation, (d) Retraction of the
trailing edge

neurons seem to have a single leading edge
migrating along radial glia fibers (Gupta et al.
2003; Rakic 1972). Parallel to these events, rear-
rangements in adhesive complexes that link the
ECM to the cytoskeleton can lead to attachment
and stabilization of neurons to the surrounding
substrates, which is very helpful to move for-
ward. Cells modulate adhesion by controlling the
surface density, and state of activation of their
adhesion receptors. A variety of extracellular
stimuli activate intercellular signaling pathways
and cytoskeleton components in neurons, which
enhance or inhibit the ligand-binding activity
of the adhesion receptors to influence cellular
adhesion function. As the cell moves forward,
the trailing edge must remain in the rear and
retract to enable the cell to advance. During
neuronal migration, cytoplasmic rearrangements
and organelle repositioning also participate in
this process. The nucleus is the most remark-
able organelle during the forward movement
of the soma, and this process is commonly
referred to as nucleokinesis (Bellion et al. 2005;
Godin et al. 2012; Solecki et al. 2009; Tsai and
Gleeson 2005).

The cytoskeleton is the major intrinsic deter-
minant of the shape and migration mode of a
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neuron. Actin filaments play a central role in the
leading process formation, intracellular rear-
rangement events and all of the mechanical steps
during the migration cycle, since the actin mesh-
work can provide the major driving force for cell
movement. In addition, other cytoskeletal sys-
tems are also required for cell migration. As
such, a mechanical role for microtubules is also
important during cell movement. For example,
microtubules also grow during the elongation
of the leading edge, and nuclear movement seems
to involve the participation of microtubules
(Tanaka et al. 2004). Additionally, microtubules
also associate with some important signaling
proteins to control neuronal migration. CDKS5, a
serine/threonine cyclin-dependent kinase, modu-
lates nucleokinesis through phosphorylation of
many microtubule-associated proteins, including
Lissencephaly (LIS1) and Doublecortin (DCX),
which play well-established roles in nucleokinesis
(see also Chaps. 1, 5 and 6).

The ECM signals define the timing, the direc-
tion, and the final destination for the migrating
neurons. The coordination of ECM and cytoskel-
eton can initiate cell polarization and provide
grounds for neuronal migration and lamination
by affecting different modes of cellular migra-
tion, such as radial, tangential and chain migra-
tion, in distinct ways and controlling specific
aspects of neuronal migration. For example, lam-
inins is an ECM glycoprotein that have active
roles in promoting neuronal migration through
binding to cell surface receptors such as integrin
and then transducing information to the cytoskel-
eton (Belvindrah et al. 2007; Chen et al. 2009;
Mobley et al. 2009; Stanco et al. 2009). Reelin is
an extracellular molecule secreted by Cajal-
Retzius cells, and its binding to its receptors
induces a series of phosphorylated signaling cas-
cade that regulates microtubule dynamics and
triggers neurons to migrate into their proper des-
tination in the cortex (Beffert et al. 2004;
D’ Arcangelo et al. 1999; Gonzalez-Billault et al.
2005; Hiesberger et al. 1999; Howell et al. 2000).
The Reelin signaling pathway is one of the most
well-known signaling mechanisms involved in
the assembly of the cortical cytoarchitecture (see
also Chaps. 1 and 9). Reelin, the product of the
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Reln gene, is secreted by Cajal-Retzius (CR)
cells in the marginal zone (MZ) and binds to the
transmembrane lipoprotein receptors APOER?2
and VLDL, which are expressed by migrating
neurons and RG cells. The promotion of neuronal
detachment from RG fibers is a major function
of Reelin (Franco et al. 2011). Disruptions in
the Reelin signaling pathway in mice cause
disorganized lamination while in human causing
lissencephaly and cerebellar hypoplasia (Hong
et al. 2000). A multistep mechanism has been
proposed based on recent research, in which
Reelin orients multipolar neurons to polarize
their migration by activating RAP1/DAB1, then
controlling N-cadherin function to regulate somal
translocation (Franco et al. 2011; Jossin and
Cooper 2011).

3 The Molecular Mechanisms
of Neuronal Migration

Neurons within the developing neocortex find
their final destination specifically through a rear-
rangement of their cytoskeleton in response to
extracellular cues mediated by various intracel-
lular signaling pathways (Ayala et al. 2007).
In this part, we will discuss the extracellular
and intracellular signal mechanisms that regulate
the behavior of the cytoskeletal components
(Fig. 2.3). Extracellular molecules and surround-
ing cellular architecture, which function corpo-
rately as a microenvironment, play a critical role
in neural migration in an inside-out fashion to
their respective lamina of neocortex. In the CNS,
ECM glycoproteins display a dynamic expres-
sion pattern in developing and adult brain
(Franco and Muller 2011). The interactions
between neuroblasts and ECM molecules are
dynamic and mediated via cellular receptors and
molecules. In detail, cell surface receptors for
ECM are integrins while ECM molecules include
Reelin, laminin, proteoglycans and tenascin,
which take profound effect in neural migration
and lamination in the developing neocortex
(Barros et al. 2011). In addition to the glycopro-
teins mentioned above, the secreted netrins and
slits function in axonal outgrowth and guidance,
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Cajal-Retzius cell

—

F-actin —>

direction of migration

Fig. 2.3 The molecular mechanism of neuronal
migration. (a) Molecules in ECM secreted by sur-
rounding cells regulate neuronal migration. Notch signal-
ing pathway and endocytosis are involved in some

controlling cell adhesion, neuronal migration
and polarity (Bradford et al. 2009; Ypsilanti
et al. 2010).

Cellular communication can influence neuro-
nal migration in the neocortex by regulating

locomotion regulation. (b) Cytoskeletons, including
microfilament and microtubule, and attached molecules
play a role in pushing nucleus and cytoplasm to move
forward

neuroblast behavior. Cell communication can
occur in a cell-cell contact fashion. It has been
suggested that cell-cell communication and/or
adhesion through gap-junction-mediated interac-
tion by connexin 43 plays a crucial mechanistic
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role in radial migration of cortical projection
neurons (Elias et al. 2007); and in switching cell
migration from tangential to radial manner to
allow interneurons to move to their correct lami-
nar position (Elias et al. 2010). Furthermore, cell
communication can also capitalize on paracrine
signaling in neocortical migration. Chemokines,
a family of secreted cytokines, function in neuro-
nal migration during developing brain in addition
to their roles in pathological states. To give an
example, stromal cell-derived factor 1 (SCD1)
reinforces the motility of neuroblasts, migrating
from the SVZ towards the olfactory bulbs by
upregulating epidermal growth factor receptor
(EGFR) and a6 integrin in nearby cells, resulting
in enhancement of their ability to bind to laminin
in the vascular niche (Asensio and Campbell
1999). Moreover, neurotransmitters are impli-
cated in functioning in modulating the migration
of cortical neurons as well (Heng et al. 2007).
Dopamine can influence tangential migration of
cortical GABAergic neurons by redistributing
cytoskeletal elements (Bhide 2009; McCarthy
et al. 2007). GABA transiently released near tar-
get destinations for migrating neurons, acts as a
chemoattractant during corticogenesis by modu-
lating cortical neuronal movement via multiple
classes of receptors (Owens and Kriegstein
2002). Blockage of GABAj receptors with a
specific antagonist, results in altered tangen-
tial migration of cortical interneurons (Lopez-
Bendito et al. 2003). TorsinA plays a role in
GABAergic neuron migration in the embryonic
brain by tethering the nucleus to the cytoskeleton
(McCarthy et al. 2012).

The intracellular mechanisms initiated by the
extracellular cues are in critical operation dur-
ing neocortical migration. In addition to the
signaling pathways mentioned above, there are
additional critical intracellular signal pathways.
Notch signaling, which is widely known as a
vital regulator of neural stem cells and neural
development, affects neuronal migration by
altering the morphology of migrating neurons.
Increased Notch signaling leads to a bipolar mor-
phology that favors migration, while decreased
Notch signaling leads to a more multipolar mor-
phology that stalls migration (Hashimoto-Torii
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et al. 2008). Notch signal regulates neural
migration in different patterns. One scenario
involves a Reelin signaling related mechanism,
and another possible mechanism involves the
regulation of microtubule dynamics (Ables et al.
2011). A recent study further indicates that a
Reelin-Notch crosstalk is required during cortical
neuron migration (Hashimoto-Torii et al. 2008).
In addition, endocytosis is also involved in
neocortical migration. Clathrin—mediated endo-
cytosis (CME) takes effect in regulating sub-
strate detachment to enable soma translocation in
migrating neurons by modulating the subcellular
distribution of cell adhesion proteins at the neu-
roblast surface (Shieh et al. 2011).

Actin filaments, one of the major components
of cytoskeleton, are the structural element of the
lamellipodia and filopodia as mentioned above.
Thus, actin can modulate the leading process of
migrating neurons. Molecules such as tropomyo-
sin could regulate the polymerization and depo-
lymerization of actin and thus influence neuronal
migration. In addition, actin also affects nuclear
movement in many kinds of cells including the
developing neurons (Luxton et al. 2011). But
how these molecules mediate the contact between
actin and the nucleus remains still unclear. A very
important motor protein which could bind to
F-actin named myosin II has been shown to influ-
ence neuronal migration (Vallee et al. 2009).
Researchers who used blebbistatin, the inhibitor
of myosin II, have found that actomyosin fila-
ments are accumulated at the rear of nucleus
(Bellion et al. 2005; Vallee et al. 2009). These
results showed that myosin II may push nucleus
to move forward and control the nuclear move-
ment. Also, diabetes mellitus condition influ-
ences the brain function by modifying expression
of myosin II (Calabria et al. 2011). Recent stud-
ies further indicate that a protein complex named
linker of nucleoskeleton and cytoskeleton (LINC)
complex, which is composed by nesprin proteins
and SUN proteins, could connect with both actin
and nucleus (Luxton et al. 2011). Maybe this
complex constitutes the key that could explain
how actin could drive nuclear movement.

Microtubules could affect nuclear movement
by mutual antagonistic motors. Cytoplasmic
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dynein, a motor protein, moves toward the
minus-end of microtubules (Vallee et al. 2009)
and can be regulated by LIS1 (see also Chap. 1).
LISI1 is encoded by the LISI gene and can
cause Lissencephaly when mutated in human.
Both LIS1 and cytoplasmic dynein can interact
with the evolutionary conserved protein NDEL1
(Chansard et al. 2011). NDEL1 can recruit LIS1
and dynein to the nuclear envelope (Chansard
et al. 2011; Vallee et al. 2009). This microtubule-
LIS1-cytoplasmic dynein complex could link to
SUN-nesprin complex and accelerate nuclear
movement. In certain instances, neurons need to
retard this movement. A slow motor molecule
called kinesin-5 is thought to be the brake of
nuclear movement (Falnikar et al. 2011). Thus,
several motor proteins modulate the nuclear
movement.

4 Clinical Perspectives -
Neuronal Migration Diseases

Neuronal migration is a critical process in corti-
cal development and the defects in neuronal
migration can lead to devastating brain dis-
eases. For example, patients suffering from
Lissencephaly harbor cortical malformations
resulting from defective radial neuron migration
and failure of cortical fold formation (see also
Chaps. 1 and 5). As discussed earlier, the loss
function of LIS is a major cause of lissenceph-
aly, leading to abnormal nuclear translocation
during neuronal migration and hence impairing
brain gyrus formation (LaMonica et al. 2012; Wu
and Wang 2012). Mutation of Reelin, a molecule
that plays a critical role in neuronal migration
regulation during cortical development as dis-
cussed above, also lead to lissencephaly (Hong
et al. 2000). In addition, various mutation of
Reelin have also been reported in neuropsychiat-
ric disorders, including schizophrenia, bipolar
disorder and autism, and neurodegenerative dis-
ease, like Alzheimer’s disease (AD) (Botella-
Lopez et al. 2006; Chin et al. 2007; Kelemenova
et al. 2010; Nahin et al. 1991; Persico et al. 2001;
Rogers et al. 2011).
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5 Neuronal Migration
and Therapeutic Strategies
for Brain Disorders

Although not many neurons migrate in the adult
brain, cellular migration research is still impor-
tant with respect to stem cell therapies for some
brain diseases. Neural stem cells have been con-
sidered as potential and effective methods for
neurodegenerative diseases and CNS injury due
to their great abilities to proliferate and differen-
tiate into specific terminal cell types. There are
numerous studies using animal models, such as
rodents and primates, showing that transplanta-
tion of neural stem cells could be effective to
some extent in the treatments of Parkinson’s
disease (PD), Amyotrophic lateral sclerosis
(ALS), Alzheimer’s disease (AD) and stroke
(Blurton-Jones et al. 2009; Darsalia et al. 2007;
Kelly et al. 2004, 2005; Kim et al. 2006; Redmond
et al. 2007; Takagi et al. 2005). Defining the
experimental conditions to promote stem cells
migration to the desired regions is one of the
most important challenges that need to be over-
come for the success of neurological diseases
therapies. One can expect that efficient migration
to the desired destinations would favor appropri-
ate neural stem cell differentiation, and integra-
tion into neuronal circuits. Indeed, the regulation
of stem cell migration involves the contribution
of ECM components and intracellular signals,
including some members of the cytokine family.
Stem cell factor (SCF), originally was character-
ized as a molecule playing an important role in
the regulation of hematopoiesis, spermatogenesis
and melanogenesis during development. Recent
further studies have revealed that both SCF mes-
sengers and proteins are highly expressed in neu-
rons at injured sites in the brain. SCF signals
promote neural stem cell migration to lesions in
vitro and in vivo via the activation of its receptor
c-kit (Jin et al. 2002; Sun et al. 2004). In a rodent
model of Huntington’s disease, the activation of
SCF and c-kit signaling pathways are required
for transplanted NSCs to migrate to the diseased
striatum (Bantubungi et al. 2008).
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In a rat model of stroke, human neural stem
cells are able to migrate to the ischemic lesions
and differentiate into neurons after transplanta-
tion (Darsalia et al. 2007; Kelly et al. 2004).
Recently, further studies in stem cell therapy for
stroke have demonstrated that pre-differentiated
brain-derived adult human progenitor cells
migrate more efficiently to the stroke damaged
area after transplantation in vivo, due to the
signaling of chemokine receptor 4 (CXCR4)
and its ligand, stromal cell-derived factor-la
(SDF-1a), which are both highly expressed in
pre-differentiated cells and ischemic regions
respectively (Olstorn et al. 2011).

With the rapid emergence of sophisticated
molecular biological cell-label techniques and
powerful cell-tracing imaging systems, future
studies on the regulation of neural migration in
embryonic (developing) and adult (mature) CNS
will not only reveal the fundamental underlying
basis of pathological neurological disorders, but
also open new avenues to find prospective candi-
date drugs and therapeutic strategies for CNS dis-
eases and injury.
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The Impact of JNK on Neuronal
Migration

Justyna Zdrojewska and Eleanor T. Coffey

Abstract

Incorrect placement of nerve cells during brain development leaves us at
risk of diseases and conditions ranging from epilepsy and mental retarda-
tion to schizophrenia and dyslexia. The developing brain produces cells at
an impressive rate, with up to 250,000 new cells generated every minute.
These newborn cells migrate long distances in sequential waves to settle in
the layers that make up the cerebral cortex. If a nerve cell moves too fast
or too slow during this journey, it may not take the correct route or reach
its appropriate destination. Much knowledge has been accumulated on
molecular cues and transcriptional programs regulating cortical develop-
ment. More recently, components of the c-Jun N-terminal signaling cas-
cade have been brought to light as important intracellular regulators of
nerve cell motility. In this chapter, we focus on this family of protein
kinases, their upstream activators and downstream targets in the context of
neuronal migration. We first present basic information on these molecules,
much of which derives from studies outside the nervous system. We then
highlight key findings on JNK signaling in brain where it phosphorylates
brain-specific proteins that influence microtubule homeostasis. Finally, we
summarize recent findings from transgenic mice on the regulation of neu-
ronal migration by JNK cascade components and by JNK substrates.
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1 The JNK Family Protein
Kinases — Basic Pathway
Components

The JNK family of protein kinases consists of pro-
line-directed kinases that transfer phosphate to
serine or threonine residues that immediately pre-
cede a proline. JNKs belong to the large group of
mitogen activated protein kinases (MAPKS)
(Fig. 3.1). Although JNKs are phylogenetically
more distant from ERKs than are the p38s, there is
approximately 40 % sequence identity between
JNK and ERK MAPKSs (Kyriakis et al. 1994). The
MAPKSs in turn belong to the CMGC group
(containing Cyclin dependent kinases (CDKs),
MAPKSs, Glycogen synthase kinase-3 (GSK-3)
and CDK-Like kinases) (Manning and Davis
2003). INK was originally discovered as a stress-
induced protein kinase activity isolated from liver
of cycloheximide-challenged rats (Kyriakis and
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Fig.3.1 Scheme of the JNK cascade and the upstream
components that regulate cell migration during corti-
cal development. (a) JNKs are the effector kinases that
reside at the end of a classical MAPK signalling cascade.
Studies in transgenic mice have indicated a role for DLK
and MEKK4 in the regulation of neuronal migration, and
for MEKKI1 in the regulation of epithelial cell migration
during eye development. MEKK4 signals via p38 to posi-
tively regulate neuronal migration (green arrow), in con-
trast INK1 slows (red arrow) the rate of multipolar and
bipolar cell migration. The MAPK splice variants involved

Avruch 1990). Its name was later changed to JNK
when it was revealed that it specifically phosphor-
ylated the transcription factor c-Jun on serine 63
and serine 73, sites that induced API1 transcrip-
tional activity (Hibi et al. 1993; Dérijard et al.
1994). Indeed the stress-associated function of
JNK was studied intensively for some years in the
context of cell stress and apoptosis, and much
basic information on JNK cascade components as
well as information on substrate recognition
derived from these studies. We now know that the
mammalian genome encodes three Jnk genes,
Jnkl (Mapk8), Jnk2 (Mapk9) and Jnk3 (Mapkl0)
that are alternatively spliced within the catalytic
domain between subdomains IX and X (producing
o and B splice variants), and at the C-terminus pro-
ducing long (54 kDa) and short (46 kDa) forms
(Kyriakis and Avruch 2012). In humans the JNK
genes are located on chromosomes 10, 5 and 4 for
JNKI, JNK2 and JNK3 respectively. In mouse
however they localise to chromosomes 14, 11 and
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in migration regulation are not known, though multiple
forms are expressed in brain. (b) Depicted in the scheme
are those receptors that activate JNK in neuronal systems
in various contexts and may contribute to JNK regulation
during neuronal migration. ApoER2 is the Reelin receptor
that couples to JNK (Trommsdorff et al. 1999), BMP7
binding to BMPRII and activates JNK (Podkowa et al.
2010), endothelin-1 activates JNK via the ETB receptor in
developing brain (Mizuno et al. 2005). NMDA receptor
activation also induces JNK activity in neurons
(Mukherjee et al. 1999)
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5 and in rat to chromosomes 16, 10, 14 (Haeusgen
et al. 2011). JNKs act as the final effector
kinases within a classical protein kinase cascade
consisting of MAPKKKs (MAP3Ks), MAPKKs
(MAP2Ks) and MAPKs (Johnson and Nakamura
2007; Kyriakis and Avruch 2001). Like other
MAPKSs, JNKs are activated by phosphorylation
of two residues within the activation loop of the
kinase. For JNKs the conserved activation sites are
T183 and Y185. Phosphorylation of the TPY motif
is catalyzed only by MKK4 and MKK7. MKK4 is
a dual specificity kinase that shows preference for
phosphorylation of Y185 of JNK, while MKK?7
phosphorylates T183 (Wada et al. 2001; Kishimoto
et al. 2003). It is important to note that MKK4 can
also phosphorylate and activate p38. Further sig-
nalling diversity is conferred by the existence of
several splice variants each, two variants of MKK4
and six variants of MKK7. While MKK4 and
MKKT7 splice forms show different properties in
terms of JNK TPY phosphorylation and subse-
quent kinase activation in cell lines (Wada et al.
2001; Kishimoto et al. 2003), we do not yet under-
stand how they are coordinated to regulate JNK in
the nervous system. Activation of MKK4 and
MKK?7 is achieved through phosphorylation by
a number of MAP3Ks that are expressed in
brain and can be divided into several families such
as MEKKSs, mixed lineage kinases (MLKs), dual
leucine zipper kinase (DLK), apoptosis signal-
regulating kinases (ASKs), leucine zipper bear-
ing kinase (LZK), transforming growth factor
B-activated kinase (TAK), and these are in turn
activated by MAP4Ks including hematopoietic
progenitor kinase (HPK) and germinal center
kinase (GCK/MINK1) (Bogoyevitch and Kobe
2006; Kyriakis and Avruch 2012).

2 JNKs Regulate Cell Death
in Developing
and Ageing Brain

In non-neuronal cells INK activity is low and trig-
gered in response to stressful stimuli. However,
in primary neuron cultures and in brain tissue
JNK activity is anomalously high even in the
absence of stress (Coffey et al. 2000; Coffey and
Courtney 1997; Hu et al. 1997). This elevated
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activity in brain derives mainly from JNKI1
isoforms as 50 % of resting JNK activity is lost in
the cortex of Jnkl~~ mice, while INK2 and JNK3
isoforms contribute less (Tararuk et al. 2006).
Precise measurements of stress responsive JNK
in neuronal systems are for this reason com-
pounded by contaminating constitutive kinase
activity. However, JNK2/3 isoforms have been
isolated using isoform-specific antibodies and
shown to be activated by stress in the trophic fac-
tor deprivation model of developmental death in
neurons (Coffey et al. 2002). JNK3 has been
implicated in excitotoxic damage in brain and
Jnk3~~ adult mice show reduced sensitivity to
kainate-induced seizures (Yang et al. 1997b;
Kuan et al. 2003; Pirianov et al. 2007) while
Jnk3~~ neonates are less susceptible to hypoxia-
ischemia induced damage (Pirianov et al. 2007).
Furthermore, cortical and hippocampal neurons
derived from Jnk3~~ mice are protected from
beta-amyloid-induced death (Morishima et al.
2001). In the peripheral nervous system, Jnk3~~
neurons are protected from axotomy-induced
death and JNK pathway inhibitors protect in
models of Parkinson’s disease (Keramaris et al.
2005; Maroney et al. 1999; Brecht et al. 2005).
Studies evaluating neuronal death during devel-
opment, have shown that all JNKs (1, 2 and 3)
contribute to toxicity, and significant protection
requires silencing of all three genes (Bjorkblom
et al. 2008). Moreover, the JNK substrates medi-
ating neuronal death are not yet formally identi-
fied. While increased phosphorylation of JNK
substrates c-Jun and ATF2 accompanies JNK
activation in a range of neuronal death models,
efficient knockdown of c-Jun or Atf2 in neurons
does not protect from death (Bjorkblom et al.
2008), and c-Jun phosphorylation was unchanged
in Jnk1/27~ double mutants suggesting that c-Jun
phosphorylation by JNK is not essential for brain
morphogenesis and the accompanying apoptosis
changes (Behrens et al. 1999; Sabapathy et al.
1999). Although it is not easy to formulate a
simple model to explain how JNKs contribute
to both pathological and physiological functions,
for example based on isoform dependence alone,
the signaling complexity does not take away
from the wealth of evidence that indicates that
these kinases are major effectors of cell death in
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the nervous system. Indeed, inhibition of JNK
activity is elevated in post-mortem brain from
patients with Parkinson’s Disease and Dementia
with Lewy bodies and in Alzheimer’s patients
(Ferrer et al. 2001, 2002), and inhibition of JNK
provides neuroprotection in an extensive range of
neuronal death models (Waetzig et al. 2000).

3 Developmental Expression
in the Nervous System

Jnkl and Jnk2 are expressed ubiquitously through-
out the body including brain, while Jnk3 expression
is almost exclusively expressed in brain with low
levels found in heart and testis (Kuan et al. 1999).
Jnkl, 2 and 3 mRNAs are high in embryonic brain
(Kuan et al. 1999) and in adult brain JNK1 protein
expression is elevated in the cortex, hippocampus
and striatum while JNK3 expression is high in the
hippocampus, lower levels are detected in the cor-
tex, striatum and cerebellum (Brecht et al. 2005).
Directly upstream from JNK, Mkk4 and Mkk7
mRNAs are ubiquitously expressed in adult mouse
brain, whereas in the developing nervous system,
Mkk4 appears before E10 after which it is also
expressed in liver and thymus (Wang et al. 2007c¢).
As development proceeds MKK4 protein levels
increase in brain, reaching a stable level in adult-
hood, while MKK4 simultaneously decreases in the
liver and thymus (Lee et al. 1999). In contrast,
MKK?7 shows wide tissue expression both in during
development and in adult. However at later stages
of embryogenesis MKK?7 levels in brain, skin and
hair follicle increase (Yao et al. 1997).

4 Lessons Learned from
Genetic Disruption of JNKs
and Upstream Kinases
in Mice

4.1 Jnk1 and Jnk2 Regulate Early

Brain Morphogenesis

Genetic ablation of Jnkl and Jnk2 in mice
results in embryonic death at around E11.5 with
defective neural tube closure (Kuan et al. 1999).

J. Zdrojewska and E.T. Coffey

These mice show regional specific apoptosis
with decreased cell death in the hindbrain
neuroepithelium just prior to neural tube clo-
sure, and increased apoptosis and caspase-3
activation in the forebrain (Sabapathy et al.
1999; Kuan et al. 1999). Neural tube closure is a
process that requires cell migration, cell death
and cell proliferation. However, major defects
in neural crest cell migration were not described
in Jnk1/2~~ double mutants (Kuan et al. 1999;
Sabapathy et al. 1999). Similarly the number of
BrdU positive cells (reflecting the proliferating
population), were unchanged and the exenceph-
aly phenotype (where the brain is completely
exposed or protrudes outside of the skull) was
therefore attributed to deregulated apoptosis.
The open neural tube phenotype showed a gene
dosage effect since Jnkl~~;Jnk2*~ mice dis-
played exencephaly, while JnkI*~;Jnk2~~ mice
did not (Sabapathy et al. 1999), indicating
that JNK1 plays a dominant role in regulat-
ing the events underlying neural tube closure
(Sabapathy et al. 1999). These studies marked a
turning point in the field of JNK research as they
established an important role for JNK function
in the developing nervous system and demon-
strated a critical role in regulation of cranial
morphogenesis. Subsequent work has shown
that JNKs are fundamentally important for
migration of several cell types including epithe-
lial cells (Huang et al. 2004; Yamasaki et al.
2012). Therefore, the possibility that migration
defects contribute to the exencephaly pheno-
type of Jnk1/2~~ double mutant mice cannot be
excluded. Indeed these studies focused on quan-
titative measures of apoptosis and qualitative
measures of cell proliferation. A more detailed
analysis of cell migration in Jnkl/2~~ double
mutants during early embryogenesis may there-
fore be worth a re-visit.

It is notable that the classic phenotypic neural
tube defect observed in Jnk1/27~ double mutant
mice is not replicated by genetic ablation of
either of the upstream regulators Mkk4 or Mkk7
(Table 3.1) (Wang et al. 2007b, c; Wada et al.
2004), while double knockout mice die at E8.5
prior to neural tube closure. Thus the activation
of INK, in the context of neural tube closure, may



a

3 The Impact of JNK on Neuronal Migration

[So[onoeA
o13eydoine jo
Qouosaxd pasearouy

(110T

‘[e 19 Iyeseweg )
[ uoneIdru
[BIpRI paldly
1$°STd e YU
QLINAU PAONPY

[S1981) [RUOXE
Jo juowdoroadp
PaqINISIp ‘WnjeLns
paysturiq

6814 4q
SO[OINUAA pasieug
UD-USIN

“xomoyl PN

ysonssn
[erpynda ut

ureIq JIoAIquIa Ul
yuasaxd st /¥
doquunu 9Ko01eday

[ewAyouared
paonpar

)M UOT)BULIO]
JIOAI] 9AIIOQJAP pue

uonerajrjoxd
1[99 PIseAIN(]

snouwr
J[npe ut
QINSSIWWOD
JOLIO)UE Y} JO
uoneIudgaq
;uoneIdiw
[e1pel

pakerap pue
Suruonisod
1109 ofunying
Ten3omy

ool
STIa-sI1 d
LN 21D-ulisoN

ooyt AN

(1100) '[e 12 Desewex, “(L661) T8 12 08Xy “(+00T) T8 12 BPEA ((9L00T) 'T& 19 Suep,
(6661) Te 10 9T, “(8661) 'T& 12 SesIeIULD; “(qL661) T8 10 Suek; “(007) T8 19 J0UNH, (6661) T& 12 Uen3, “(S002) ‘T8 12 WoIgHQld, ((€00T) T8 12 SuBYD, ‘(1107) T8 12 PUNIASIA,

LUIR)SAS ounwiwl  ,3uny IGAI] 4Iedy

4IedY “IOAI] UI
syduosuen ‘spremuo
CId'SNO urord
Kq passaxdxa gy

sUonBIoUA3ap

19A1] pue sisoydode
J1k001eday
paseaIou]

ss1souagojedoy
[ewIouqe pue
BIWQUE WOTJ
gerg-¢grigea
--PPIN

‘ure1q Surpnpout
SoNSSI) SNOLIBA
ur SpIemuo

LA L/ reur

oS 1T

Je UIeIqIO] UI
[Jeap PaseaIdap
‘ureigpury ut
[jeap pasearou]

p2INSO[D aqM)
[eanoau parreduy

eYRr S 11d
-, [y

»STIS9) pue
1IBQY UI S[OAJ]
JOMO] pue ureIq
ur SpIemuo

[1d &yur

15SINZIAS pue
Kjo1X030INdU
paonpur
Jjeurey pue
dIdIN 0}
QOUB)SISOY

suonRULIO)[BW
ureiq 11940
ON "2[qeIA
—-Equr

pIOAT] ‘Suny
‘JIedy ‘urerq ur
SpIemuo /H gyuf

,K1101X0)

dLdIN O3
Q0UR)ISISAY

suoreuLIoj[ew
ureiq 31oA0

ON "2IqRIA
—-CAur

pauny

SIOAI] )Iedy ‘urerq
Surpnjour sanssn
JUSIQJJIP UI SPIeMUO
L Woly [yuf

LUTeIq OTuU0AIquIo ur
J1X3 9[0AD [0 Ul
9SBAIOIP [RWS Y
sqk3ojoydiowr
QLIPULP PaIANY
Syiuout ¢ Aq

JSO[ QINSSIUIWOD
IOUUY

*,23e)s Jefodnnu
Jo uoneInp
PaseaIns( el
Anmouw rejodiq
pue rejodnnu
paseaIour X900 ul
Suruonisod uomnau
POZIuESIOSI(T "O[qBIA

~-13ur

ACAVINAIIVIN
aanoadsar

Jo orgoxd
uorssardxo anssiy,

uonerayrjoxd
yieap 110D

adKjouayqg

Qo1 oruadsuen yzdvpy pue yuy ut sadKjouayd Jofewr oy jo Arewrwing L€ ajqeL



42

require a coordinated regulation by both MKK4
and MKK?7, or alternatively may involve an
unknown mechanism.

The JNK substrates contributing to cranial
morphogenesis have not been clarified though
transcription factor targets of JNK could be cen-
tral. Mice null for the JNK substrates c-Jun or Atf2
do not display defects in cranial morphogenesis
indicating that they either play redundant roles in
this process or none at all. Interestingly, c-Jun"~
mice do share the Mkk4 and Mkk7 phenotype of
deregulated hepatocyte proliferation, while A#f2~/~
mice die at birth with respiratory defects (Eferl
et al. 1999; Maekawa et al. 1999). More recently,
a screen for novel JNK substrates in brain revealed
an actin regulatory protein (required for neural tube
formation) which is myristoylated Alanine Rich
C-Kinase Substrate Like protein-1 (MARCKSLI),
also known as F52, Mac MARCKS and MRP
(Bjorkblom et al. 2012). MARCKSLI1 is phos-
phorylated on three sites by JNK and genetic dele-
tion of MARCKSLI results in exencephaly (Wu
et al. 1996; Bjorkblom et al. 2012). MARCKSLI1
is the only known JNK substrate to date that phe-
nocopies Jnk1/27~ double mutant mice.

4.2  JNK1 Regulates Multipolar
Stage Exit and the Rate

of Movement of Multipolar
and Bipolar Cells in

Developing Cortex

Movement of cells from their place of birth to
their final destination is a fundamental feature of
brain morphogenesis. The speed at which neurons
move to form the layers of the cortex could affect
their final placement. The role of JNK in regulat-
ing the rate of nerve cell movement has been
examined in the context of multipolar cell migra-
tion and bipolar cell locomotion and is discussed
in the following paragraph. The multipolar phase
occurs when the precursors of pyramidal neurons
in the intermediate (IZ) and subventricular (SVZ)
zones take on a multipolar shape and display a
movement that is characterized by frequent
changes in direction and a slower speed compared
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to locomoting cells moving on radial glia pro-
cesses (Tabata and Nakajima 2003). The molecu-
lar mechanisms of multipolar migration and
multipolar-to-bipolar transition have only recently
received attention, as described in more detail
below (Westerlund et al. 2011; Tabata et al. 2009;
Pacary et al. 2011). At the level of gene regula-
tion, transcription factors determining glutamater-
gic neuron differentiation are known as gene
regulators of multipolar transition. Recently a role
for the transcriptional repressor RP58 governing
multipolar-to-bipolar  conversion has been
described. RP58 represses Ngn2 transcription and
thereby regulates the Ngn2-Rnd2 pathway (Geisen
et al. 2008; Nobrega-Pereira et al. 2008; Ohtaka-
Maruyama et al. 2013) (see also Chap. 1).

JNK1 is directly implicated in regulation of
multipolar phase exit and neuronal migration
during cortical development (Westerlund et al.
2011). This study used in utero electroporation to
label neuroepithelial progenitors at E15.5 and
demonstrated that GFP-expressing neurons in
JnkI~~ mice migrated faster than those in wild-
type mice. Ex vivo imaging in organotypic slices
demonstrated a bipolar cell movement rate of
5-10 pm per hour in wild-type compared to
15-20 pm per hour in Jnkl~~ cortex. The multi-
polar cells also moved at higher speeds and
transit more quickly to the bipolar phase with
subsequent pial-directed migration (Westerlund
et al. 2011). This was illustrated by a relatively
large ratio of bipolar to multipolar cells in the IZ
and reduced duration of the multipolar phase.
Furthermore, the JNK binding domain (JBD) of
JIP [JIP1a(1-277)], a peptide inhibitor of JNK
that binds tightly to JNK and prevents substrate
binding (Dickens et al. 1997), was used in corti-
cal neurons. Neurons expressing GFP-JBD in
vivo reached the cortical plate (CP) faster than in
control mice (Mizuno et al. 2005; Westerlund
et al. 2011). Despite the altered migration speed,
no overt lamination defect was detected in Jnkl ™~
mice, in contrast to Cdk5~~ or p35~~ mice that
exhibit disturbed layering (Gilmore et al. 1998;
Gupta et al. 2003). However, in Jnkl~~ mice, the
final cell positioning was quite markedly disorga-
nized and crowded (Westerlund et al. 2011).
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This mal-positioning may be a consequence of
the unusually rapid transit through the multipolar
phase, when it is most probable that choices are
made to influence the final cellular placement.
This could include selection of the appropriate
radial glial scaffold for instance. The findings
from Jnkl~~ mice compare strikingly well to
those obtained with Reeler mice (Britto et al.
2011), and are discussed in more detail later in
this chapter. These results thus suggest that INK1
may be a conveyor of Reelin’s directive on cell
positioning in the developing cortex.

While it is not clear whether JNK2 or JNK3
regulate neuronal migration, it is worth noting
that opposing results were obtained using the
cytosolic or nuclear-targeted JBD inhibitor.
Inhibition of JNK in the cytoplasm using com-
partment specific inhibitors (Bjorkblom et al.
2005; Tararuk et al. 2006) led to an accelerated
migration phenotype, thereby mimicking Jnkl~~
mice, while inhibition of nuclear JNK had the
opposite effect (Westerlund et al. 2011). These
results suggest that in addition to cytosolic tar-
gets, JNK controls a gene transcription program
that is required for migrating neurons, while in
the cytoplasm JNK phosphorylates proteins that
slow down migration. Thus the subcellular loca-
tion of activated JNK is consequential in terms of
functional outcome.

4.3 Other Evidence for JNK
Regulation of Radial

Migration

Interestingly, while JnkI~~ mice present with
accelerated multipolar and radial migration
(Westerlund et al. 2011), Mizuno and col-
leagues obtained similar results from neuronal
progenitor cells in vitro and in developing brain
(Mizuno et al. 2005). They found that the vaso-
active peptide endothelin-1 induced JNK activ-
ity via the Gq heterotrimeric G protein, which
activates phospholipase C. They further showed
that endothelin-evoked inhibition of radial
migration was reversed when the JNK inhibitor
JBD was expressed.
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4.4 Upstream of JNKs, MAP2Ks
Regulate Liver Development

and Cortical Migration

Upstream regulators of JINK, MKK4 and MKK?7
play essential roles in liver morphogenesis. In
contrast to Jnk knockout mice, genetic disruption
of Mkk4 or Mkk7 results in defective liver devel-
opment and poor survival as embryos die between
E11.5 and EI12.5, displaying defects in hepato-
cyte proliferation (Table 3.1) (Ganiatsas et al.
1998; Nishina et al. 1999; Yang et al. 1997a;
Wada et al. 2004). Strikingly, the Mkk4~~ and
Mkk7-"~ phenotypes match closely that of ¢-Jun™-
mice (Eferl et al. 1999). However, they diverge
noticeably from Jnkl/27~ double mutant mice
which do not show liver morphogenesis defects,
but rather impairment of cranial morphogenesis
(Kuan et al. 1999). Early embryonic lethality has
prevented more detailed study of the nervous sys-
tem from Mkk4~~ mice and targeted deletion
strategies have therefore been applied. Targeted
disruption of Mkk4 and Mkk7 was accomplished
in the nervous system using transgenic Nestin—
cre mice. In the case of Mkk4, this resulted in
substantial but incomplete loss of MKK4 expres-
sion in brain (Wang et al. 2007c). Constitutive
JNK activity was reduced postnatally by 80 %
and p38 activity by 25 %, indicating a significant
impact on downstream signaling events in the
postnatal brain. Newborn Mkk4/"~;Nestin—Cre
mice did not exhibit overt differences to their
wild-type littermates, however they stopped
growing a few days after birth and died within
3 weeks showing defects in growth, balance and
righting reflex (Wang et al. 2007c). Substrate
phosphorylation was correspondingly reduced in
these mice. MAPIB phosphorylation decreased
from postnatal day 5 onwards and neurofilament
light chain phosphorylation decreased from post-
natal day 10 onwards. By adulthood, the mice
display axonal tract defects. Specifically, fascicu-
lation of the anterior commissure and corpus cal-
losum is substantially disrupted. While the
telencephalon was not studied in great detail,
defective positioning of Purkinje cells in the cer-
ebellum was noted.
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To further examine MKK?7 function in the
nervous system, Mkk7"ex; Nestin—-Cre mice
were generated with specific deletion of Mkk7 in
neural stem cells (Yamasaki et al. 2011). MKK?7
expression was significantly reduced from E16.5
onwards, while there was a compensatory gain in
MKK4 expression. Mkk7"“x; Nestin—Cre mice
were comparable to wild-type mice up to E18.5
but as with Jip3~~ mice, they died due to failed
respiration (Kelkar et al. 2003). Examination of
embryonic brains revealed serious defects in axo-
nal tract formation (reduced size of the corpus
callosum, anterior commissures and internal cap-
sule). Electron microscopy examination of axons
in Mkk7"ex: Nestin—Cre mice revealed defects
in neurofilaments and the presence of autophagic
vacuoles and swollen mitochondria. Consistent
with the neurofilament defects, neurons isolated
from Mkk7/fx: Nestin—Cre showed reduced
axon length (Yamasaki et al. 2011). In line with
this observation, inhibition of JNK in cultured
cortical and hippocampal neurons retards axo-
dendritic growth (Tararuk et al. 2006; Oliva et al.
2006) and JnkI~~ mice show disrupted axon
tracts (Chang et al. 2003). Detailed inspection of
the brain tissue revealed enlarged ventricles,
reduced striatum, and severe defects in axon for-
mation. The features were not observed in the
Mkk4/oex; - Nestin—Cre, thereby implying that
MKK4 and MKK?7 can exert functionally distinct
outcomes. Moreover genetic disruption of Mkk7
in the nervous system moderately altered radial
migration.

In conclusion, disruption of either Mkk4 or
Mkk7 in the CNS, leads to a reduction in JNK
activity in the brains of these mice and reduced
phosphorylation of the JNK substrates c-Jun,
MAPIB and NFL. However, the temporal
influence of these kinases on substrate phosphor-
ylation differs, MKK7 playing a critical phos-
phorylation role at earlier developmental time
points. These studies also show that MKK7 and
MKK4 can play differential roles in directing
JNK substrate phosphorylation, MKK?7 is a criti-
cal upstream component in DCX phosphoryla-
tion while MKK4 seems to play no role in
targeting JNK towards this substrate (Wang et al.
2007¢; Yamasaki et al. 2011).
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4.5 MEKK1 and DLK Regulate
Migration Upstream of

MAP2K

Several upstream regulators of JNK signalling
were identified, most of which have not been sys-
tematically studied in the nervous system. Among
those studied however, MEKK4 and DLK stand
out because genetic deletion of these genes
results in defective cell migration during cortical
formation. MEKK1 (MEK kinase 1) is a MAP3K
that directly phosphorylates and activates MKK4
and MKK?7, though it has a preference for MKK4.
MEKKI1 therefore activates p38 and JNK but also
ERK (Kyriakis and Avruch 2012). MEKKI1 is
essential for embryonic stem cell migration,
keratinocyte migration. Mice lacking MEKK1
display impaired eyelid closure due to disturbed
epithelial cell movement, these mice are born
with open eyes (Xia et al. 2000; Xia and Kao
2004). JNK activity is reduced by 50 % in
Mekk1~~ mice and JNK is thought to contribute
to the eyelid closure phenotype (Takatori et al.
2008). MEKK1 co-localizes with a-actinin along
actin stress fibers (Christerson et al. 1999) sug-
gesting an involvement of the actin cytoskeleton
in MEKKI-regulated cell movement. On the
other hand, MEKKI1 activates JNK in cells
treated with microtubule toxins and targeted dis-
ruption of Mekkl in embryonic cells results in
loss of JNK function and increased apoptosis,
suggesting that MEKK1 can protect cells from
apoptotic death (Yujiri et al. 2000), possibly as a
consequence of disturbed microtubule integrity.
While MEKKI1 can regulate migration in non-
neuronal cells via JNK (Xia and Kao 2004; Xia
et al. 2000), there is no evidence that MEKK1
regulates migration in neurons.

MEKK4, like MEKK1, is a MAP3K that can
regulate JNK and p38 activity (Takekawa et al.
2005). Mice lacking Mekk4 develop neural tubes
defects including cranial exencephaly, spina
bifida and curly tail. They also present with
severe periventricular heteropia (Chi et al. 2005).
The activity of MKK4 was decreased in these
embryos, as was p38, however JNK activity
remained unchanged. Mekk4~~ embryos showed
massively elevated apoptosis before and during
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neural tube closure. Rakic and colleagues
subsequently showed that siRNA knockdown of
Mekk4 using siRNA retarded neuronal migration
and BrdU-labelling of Mekk4~~ embryos at
El14.5 reveals impaired exit of BrdU positive
cells from the ventricular zone (VZ) (Sarkisian
et al. 2006). Importantly however, while p38 was
strongly inhibited, the INK pathway activity was
unaltered in Mekk4~~ brain, and phosphorylation
of the JNK substrate DCX was unaffected
(Sarkisian et al. 2006; Abell et al. 2005). This
data indicate that MEKK4 is required for neuro-
epithelial cell survival early and radial migration
later during cortical development. Impaired
migration in Mekk4~~ embryos correlates with
upregulated Filamin A expression and elevated
neuroepithelial cell apoptosis may be due to loss
of GADD45-induced p38 activation (Takekawa
et al. 2005). Thus MEKK4 is a critical regulator
of radial migration during corticogenesis. Its
mechanism of action most likely involves p38 as
JNK activity is not altered in Mekk4~~ brain
(Chi et al. 2005).

DLK is a MAP3K that is highly expressed in
developing brain and spinal cord (Hirai et al.
2006). In C. elegans DLK regulates MKK4 and
p38 activity and is required for nerve regeneration
(Nakata et al. 2005; Hammarlund et al. 2009). In
fly and mouse, DLK activation promotes stress
responses and Wallerian degeneration (Miller
et al. 2009; Ghosh et al. 2011). DLK has also been
associated with radial migration regulation in the
developing neocortex. At E16, DLK expression is
concentrated in the IZ of the telencephalon while
by El8, it accumulates in the SVZ (Hirai et al.
2002). Ectopic expression of DLK using adenovi-
ral gene transfer to E13 mice activates JNK and
arrests cell migration in the SVZ, while transfer of
a kinase dead DLK had no effect. This data
implied that DLK negatively regulated radial
migration. However, in contrast, it was later
reported that radial migration was arrested in
DIk1~~ mice or upon treatment with SP600125,
an ATP-competitive kinase inhibitor of JNK
(Hirai et al. 2006). A second study also showed
that SP600125 retarded radial migration in corti-
cal slices (Kawauchi et al. 2003). These results
were attributed to JNK inhibition, however results
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obtained using SP600125 are difficult to interpret,
as this molecule is not specific for INK. A kinome
screen has shown that SP600125 inhibits 74
kinases (of 353 tested) at a concentration of only
10 pM. Among those kinases inhibited are several
MAPK pathway upstream regulators e.g. MEK1,
MEK?2, MKK3, MKK4 and MKKGO6 [results from
KINOMEscan Library of Integrated Network
based Cellular Systems (LINCS) data base].
Nonetheless, these studies highlighted an impor-
tant role for DLK in regulating radial migration
(Hirai et al. 2002; Kawauchi et al. 2003).

5 JNK and Cell Migration -
A Closer Look

Several lines of evidence have shown that JNK is
required for migration in a variety of cell types
including epithelial cells, fibroblasts, endothe-
lial cells, various cancer cell lines and in aortic
vascular smooth muscle cells (Huang et al. 2003;
Malchinkhuu et al. 2005; Bjorkblom et al. 2012;
Kavurma and Khachigian 2003). This large and
concurrent data set derives largely from wound
healing assays and the use of Jnk™~ cells, or
pharmacological inhibition (Javelaud et al. 2003;
Huang et al. 2003). The situation in neurons has
been less clear however. Studies of mouse genet-
ics have revealed that components of the JNK
cascade namely JNK1, MEKK4 and DLK influ-
ence neuronal migration in the cortex, albeit in
different directions (inhibitory versus facilita-
tory). In freshly isolated cerebellar granule neu-
rons and in cortical neurons, JNKI activity
retards migration as demonstrated using Jnk™~
cells or upon expression of the JNK inhibitor
JBD (Westerlund et al. 2011; Bjorkblom et al.
2012). These authors also find that in non-neuronal
cells INK facilitates migration, thus inhibitors of
JNK retard motility, in agreement with a large
literature. Interestingly, ectopic expression of a
neuron-enriched JNK substrate (MARCKSLI)
in fibroblasts reverses this migration phenotype
to one that mimics JNK action in neuronal cells,
where JNK retards migration (Bjorkblom et al.
2012). Therefore the conflicting reports as to
whether JNK activates or inhibits migration in
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Fig.3.2 Model depicting neuronal JNK substrates and
their respective roles in regulating neuronal migration.
JNK phosphorylates SCG10 and DCX, microtubule regula-
tory proteins that have a major influence on multipolar tran-
sition and bipolar cell migration. When neurons have
reached their final position, JINK phosphorylation of MAP1b

neuronal and non-neuronal cells may depend on
JNK target expression. Perhaps the functional
multiplicity displayed by JNK in controlling cell
migration is not altogether surprising given the
signaling diversity at the MAP3K and MAP4K
level of the JNK cascade, the components
of which least well defined in neurons and
brain tissue. The striking differences in pheno-
types, while comparing even MAP2K (Mkk4
and Mkk7) single knockouts with MAPK (Jnk)
knockout mice, indicates that cooperative
activation of JNKs by MKK4 and MKK7 may be
critical for JNK’s management of migration in
neuronal cells.

and MAP2 regulates axonal extension and dendritic arbor
development. MARCKSL1 is also phosphorylated by JNK
and regulates neuronal migration in vitro (Bjorkblom et al.
2012). Whether MARCKSLI regulates radial migration
remains to be seen. CP cortical plate, IZ intermediate zone,
SVZ subventricular zone, VZ ventricular zone

5.1 JNK'’s Association with
Controllers and Executors

of Neuronal Migration

DCX: Tt is generally accepted that MAPK cas-
cades function linearly, the MAPK is the effector
kinase and the upstream kinases do not signal
orthogonally. The substrate of the effector kinase
therefore reveals information on mechanism.
Among the well-characterised substrates for
JNKs are several microtubule-modifying pro-
teins, including the classical neuronal migration
protein doublecortin, also known as DCX
(Fig. 3.2). DCX is a developmentally regulated,
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brain-specific microtubule-associated protein
that was first identified in patients with missense
mutations in DCX and lissencephaly syndrome
(characterized by smooth brain), subventricular
heteropia and cortical dysgenesis (des Portes
et al. 1998; Francis et al. 1999). DCX protein is
phosphorylated by JNK on T331, S334 and T321
(sites from human DCX isoform 2) (Gdalyahu
et al. 2004) and phosphorylation of these sites is
important for neurite length regulation and neu-
ronal migration (Gdalyahu et al. 2004; Bai et al.
2003). DCX binds to microtubules and enhances
polymer formation, it may do this by regulating
microtubule nucleation (Fourniol et al. 2010).
More recently, DCX has been shown to regulate
F-actin through its C-terminal region and this is
thought to involve its interaction with spinophil-
lin (the F-actin-binding, regulatory subunit of
protein phosphatase 1). Crosslinking of actin
and microtubules by DCX is proposed to be
important in growth cone guidance as DCX™%;
Dclkl~~ mutant neurons are unresponsive
to netrin guidance cues (Fu et al. 2013).
Furthermore, DCX is required for multipolar
transit and bipolar cell locomotion (LoTurco and
Bai 2006). DCX phosphorylation by JNK2 may
dissociate it from microtubules (Jin et al. 2010)
thereby increasing microtubule plasticity and
influencing migration. Whether JNK1 or JNK3
isoforms phosphorylate DCX in developing
brain and alter migration rate remains to be seen.

Reelin: Reelin is an extracellular glycoprotein
that negatively regulates migration in the devel-
oping cortex, hippocampus and cerebellum giv-
ing rise to the Reeler mouse phenotype (Tissir
and Goffinet 2003). An important link between
Reelin and JNK signalling has been established.
Mutations in Reelin or in two of its multiple
receptors APOER2 and VLDL (Trommsdorff
etal. 1999), or in the DABI1 protein that serves as
intracellular adaptor protein leads to a lissen-
cephaly in humans (Trommsdorff et al. 1999;
Hong et al. 2000). A proline rich region in the
cytoplasmic tail of APOER2 binds to two of the
JNK scaffold proteins, JIP1 and JIP2. The func-
tion of the JIP scaffolds is to co-assemble JNK
and distinct MAP2Ks and MAP3Ks thereby
facilitating the activation of JNK by these
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upstream regulators (Manning and Davis 2003;
Whitmarsh 2006). Importantly binding of JIP
to APOER?2 does not disturb the assembly of a
complete JNK signalling module consisting of
its upstream activators MLK3 and MKK?7
(Stockinger et al. 2000). Therefore APOER?2 is
capable of organizing a scaffold signalling com-
plex that activates JNK, and it could be expected
that Reelin binding to its receptor will regulate
JNK activation, though this still requires experi-
mental validation. Reelin also controls neuroblast
migration to the olfactory bulb via the receptor
APOER?2 (Hellwig et al. 2012). Whether or not
JNK regulates cell motility in the rostral migra-
tory stream is not known.

Notably, Reeler mice mimic Jnkl~~ mice in
several significant ways. Firstly, multipolar and
bipolar cells in Reeler mice move faster than in
wild-type mice and transit more quickly through
the multipolar phase (Britto et al. 2011). This
mimics the accelerated migration of multipolar
and bipolar cells in JnkI~~ mice with reduced
duration of the multipolar phase (Westerlund
et al. 2011). Another feature of migration in
Reeler mice was the disturbed trajectories of
migrating neurons that exhibited increased mean-
dering (Britto et al. 2011). Whether neuronal tra-
jectories are altered during cortical development
in JnkI~~ mice has not been reported. Finally,
Reeler mice are characterized by abnormal reor-
ganisation of preplate (PP) neurons, exemplified
by delayed and incomplete PP splitting (Sheppard
and Pearlman 1997). Similarly, Jnkl~~ mice dis-
play more prominent chondroitin sulphate pro-
teoglycan staining in the superplate that may
reflect differences in PP splitting (Westerlund
et al. 2011). Together these findings point to JNK
as a likely intracellular purveyor of Reelin’s stop
signal during formation of the cortex.

5.2 JNK1 Regulation

of Microtubules

The microtubule cytoskeleton and its posttransla-
tional modifications are critical determinants of
neuronal migration and there are several exam-
ples of mutant mice, where disruption of genes
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that directly or indirectly affect microtubule
homeostasis impose migration defects. For
example, missense mutations in DCX (des Portes
et al. 1998; Francis et al. 1999), TUBA1A
(Kumar et al. 2010), TUBGI1 (Poirier et al. 2013)
and Elongator (Creppe et al. 2009) result in sig-
nificantly altered migration patterns in the devel-
oping cortex. In this context, JNK1 has emerged
as a prominent regulator of microtubule integrity
in brain. Microtubule length is decreased in
brains from adult mice lacking Jnkl (Chang et al.
2003), microtubule dynamics is altered in corti-
cal neurons upon expression of the JBD inhibitor
of JNK (Tararuk et al. 2006), and there is a sig-
nificant increase in tyrosinated tubulin in Jnkl~~
neonates, suggesting increased microtubule
plasticity (Westerlund et al. 2011). Consistent
with this function in maintaining brain microtu-
bule stability, axon formation is also disturbed in
Jnk1~~ mice, for example, the anterior commis-
sure develops normally but is disrupted by
postnatal day 12 and is absent in adult brain
(Table 3.1) (Chang et al. 2003).

We now know that JNK displays a preference
for phosphorylating microtubule regulatory pro-
teins. DCX is one example (Gdalyahu et al. 2004),
phosphorylation of its S322 by JNK disrupts
microtubule binding (Jin et al. 2010). The den-
drite specific high molecular weight MAP2 is
another (Bjorkblom et al. 2005), as is MAPIb
(Chang et al. 2003; Kawauchi et al. 2005). It is not
therefore surprising that JNK is associated with
regulation of dendrite architecture (Bjorkblom
et al. 2005; Rosso et al. 2005) and the autism
spectrum disorder susceptibility gene TAOK?2,
acting via JNK, is essential for basal dendrite for-
mation (de Anda et al. 2012).

SCG10: Aside from DCX, the tubulin inter-
acting protein SCG10 has been validated as a
JNK substrate in vitro (Neidhart et al. 2001) and
in brain (Neidhart et al. 2001; Tararuk et al.
2006). SCG10 plays a critical role in regulating
neuronal migration during cortical development
as shRNA against SCG10 increases radial migra-
tion rate (Fig. 3.2) (Westerlund et al. 2011). JNK
phosphorylates SCG10 on S62 and S73 and
phosphorylation of S73 is significantly reduced
in Jnkl™~ brain (Tararuk et al. 2006). SCG10,
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also known as stathmin-2, is a member of the
stathmin family of microtubule destabilizing pro-
teins, the other members being stathmin, SCLIP,
and RB3 (Riederer et al. 1997). Tissue specific
expression of SCG10 in brain is under the con-
trol of the neuron restrictive silencing factor
(NRSF) (Sone et al. 2011). Expression peaks
in embryonic brain and decreases thereafter
(Stein et al. 1988). Knockdown of SCG10 signifi-
cantly altered radial migration, thereby highlight-
ing SCG10 as a new player in the regulation
of migration during cortical morphogenesis
(Westerlund et al. 2011). SCG10 may act down-
stream of JNKI1 in slowing the pace of radially
migrating neurons as expression of exogenous
SCG10rescues the migration phenotype observed
upon inhibitor JBD expression and in Jnkl~~
mice (Westerlund et al. 2011). Consistent with
this, in Drosophila melanogaster which encodes
only one stathmin, RNAi-mediated knockdown
of D-stathmin disrupts nerve cell placement, with
disturbed axonal organisation in both central and
peripheral nervous system (Ozon et al. 2002).
Interestingly, neurite extension is one of the first
hallmarks of migrating neurons (Rakic 1971),
and SCG10 phosphorylation is associated with
neurite growth (Grenningloh et al. 2004; Tararuk
et al. 2006). SCG10 is also present at the Golgi
apparatus and in growth cones, where it concen-
trates alongside loose microtubules (Stein et al.
1988). SCG10, like the other stathmin family
members (stathmin, SCLIP and RB3) is a micro-
tubule destabilizing protein. This function is con-
trolled by phosphorylation on sites that include
the JNK phosphorylation sites S62 and S73
(Antonsson et al. 1998; Neidhart et al. 2001).
Cells expressing pseudo-phosphorylated GFP-
SCG10S62DS73D display more stable microtu-
bules than cells expressing GFP-SCG10562AS734
(Westerlund et al. 2011). While it is not known
precisely how SCG10 regulates migration, the
model proposed in this study suggests that
SCGI10 acting locally on microtubules in the
growth cone may contribute to protrusion force
and forward movement of neurons.

Rnd2 and Rnd3 encode atypical Rho
GTPases that facilitate radial migration by inhi-
bition of RhoA signalling (Pacary et al. 2011).
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Like SCGI10, these proteins control multipolar
to bipolar transition (Rnd2) and locomotion
(Rnd3) to the CP (see also Chap. 1). Defects in
migration observed upon Rnd3 knockdown
were rescued by F-actin depolymerisation indi-
cating a central role for the actin cytoskeleton.
Importantly, gene knockdown of Rnd2 confined
cells at the multipolar stage in the IZ and pre-
vented migration to the CP. This suggested a
critical role for Rnd?2 in exit from the multipolar
phase. Interestingly, SCG10 was found in a
yeast two hybrid assay to interact with another
member of the Rnd family, RND1 (Li et al.
2009). This interaction was confirmed by
immunoprecipitation. Rnd] is highly expressed
in brain though unlike RND2 and RND3, it
lacks GTPase activity (Nobes et al. 1998).
RNDI1 binds to the central domain of SCG10
regardless of its phosphorylation state, and reg-
ulation of axon extension by RNDI requires
SCGI10 (Li et al. 2009). RND2/3 and SCG10
have been independently shown to regulate
migration and mutipolar stage exit, but whether
they cooperate to exert this function or act
exclusively remains to be seen.

5.3  JNKScaffolds and Migration

The JNK signaling cascade is shaped by interac-
tion with scaffolding proteins. Organization of
JNK and other MAPK kinases into signaling
cascades provides a high level of organization
and specific stimulation in response to external
stimuli (Davis 2000). The JNK scaffolds consist
of JIP1, JIP2, JIP3 (or JSAP-1) JIP4, JNK-
interacting leucine zipper proteins, plenty of SH3
(POSH), beta-arrestin 2, CRK3 and IKAP
(Morrison and Davis 2003). For the purpose of
this review we will discuss only those scaffolds
playing a role in migration, for others we refer
the reader to the literature (Davis 2000; Morrison
and Davis 2003).

JIP3 like JIP1 is a JNK scaffold that is highly
expressed in brain (Koushika 2008). Disruption
results in lung failure, perinatal death and the
absence of the telencephalic commissure.
Neuronal positioning was also altered in these
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mice (Chang et al. 2003; Kelkar et al. 2003).
The JNK scaffold POSH interacts with JIPs to
scaffold JNK cascade components and promote
activation of JNK (Kukekov et al. 2006). In
Drosophila POSH is required for epidermal dor-
sal closure, as is DINK (Sluss et al. 1996; Zhang
et al. 2010). In mice, POSH is strongly expressed
in the VZ and IZ of developing cortex and knock-
down of Posh impairs migration to the CP,
while overexpression of Posh advances migration
(Yang et al. 2012). POSH is however also consid-
ered a strong regulator of neuronal apoptosis and
POSH expression promotes death in a Parkinson’s
model (Wilhelm et al. 2007). Most of the analysis
of JNK scaffolds and cell migration are carried
out in the context of cancer, where JIP3 has also
received attention. For example high levels of
Jip3 mRNA correlate with advanced brain tumor
malignancy (Takino et al. 2002) and the mecha-
nism of JIP3 regulation of cancer cell motility
may involve focal adhesion kinase (Takino et al.
2002, 2005; Wang et al. 2007a). JIP4 on the
other hand regulates the migration of HeLa
cells (Gantulga et al. 2008) and SH2-containing
inositol polyphosphate 5-phosphatase 2 (SHIP2),
a new interacting partner for JIP1, regulates a
variety of cellular processes including cytoskele-
tal organization, adhesion and cell migration
(Xie et al. 2008).

54 Caenorhabditis elegans and

Drosophila melanogaster

Fundamental insights leading to new understand-
ing of cortical development, draws from studies
in model organisms. It is therefore worth remark-
ing on the JNK signalling cascade in this context.
The JNK pathway in C. elegans is less complex
than in mammals, and one JNK homolog, Jnk-1
is expressed in worm with two possible splice
variants (Villanueva et al. 2001). Upstream of
INK-1, two MAP2Ks, Jkk-1 and Mek-1 (Mkk7
homolog), are expressed that can activate JNK-1
in response to distinct stimuli (Kurz and Ewbank
2003). Mutant worms null for Jnk-1 show defec-
tive body movement and coordination, associated
with D-type motor neurons as do Jkk-I null
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worms (Villanueva et al. 2001). JNK signalling
was also identified as being important for vesicu-
lar cargo localisation in worms, and Jkk-1
mutants show mislocalized synaptic vesicle
markers (Byrd et al. 2001). In Drosophila mela-
nogaster however, the situation is different.
Drosophila expresses one JNK homolog dJnk.
Flies lacking dJ/nk (encoded by basket), show
defects in dorsal closure, a mid-embryogenesis
process involving morphogenic movement of
epithelial cells (Sluss et al. 1996; MacKrell et al.
1988). This phenotype was rescued when basket
was reintroduced to the developing embryo indi-
cating that DINK plays an important role in cell
spreading. The actin nucleating protein p150-
Spir has been identified as a DIJNK substrate
in Drosophila melanogaster. It is a member of
the Wiscott-Aldrich syndrome protein (WASP)
homology domain 2 (WH2) family of proteins
that play a role in actin reorganization (Ramesh
et al. 1999). It was identified in a yeast 2-hybrid
system as an interaction partner for DIJNK
(Otto et al. 2000). While mammalian homologs
of p150-Spir (formin-1 and formin-2) are highly
expressed in developing brain (Schumacher et al.
2004) and regulate actin nucleation and elonga-
tion, it remains to be seen whether these proteins
are substrates for JNK in brain.

5.5 Migration in Cancer, Ectopic
Expression of Neuronal JNK

Substrates

In cancer, the regulation of cell motility by activa-
tion of the JNK pathway may be significant in
terms of tumor metastasis. In approximately 5 % of
cancers, there is a loss of function mutation in the
Mkk4 gene and a variety of studies have implicated
MKK4 in cancer cell metastasis (Whitmarsh and
Davis 2007). However, while many studies suggest
a role for JNK signalling in the regulation of can-
cer, JNK activity is also associated with suppres-
sion of tumour development (Kennedy and Davis
2003). In the context of this chapter, it is worth not-
ing that some neuron-specific JNK substrates,
including SCG10 and MARCKSL1 are ectopically
expressed in cancers (Wang et al. 2007a; Bjorkblom
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et al. 2012; Lee et al. 2006). SCG10 is indeed
up-regulated in hepatomas while MARCKSLI
is up-regulated in a broad range of cancers.
MARCKSLI protein was strongly increased in
prostate carcinomas and in metastatic breast can-
cer (Wang et al. 2007a; Bjorkblom et al. 2012).
Moreover, MARCKSL1 enhances prostate cancer
cell migration in a JNK-dependent manner while
in neurons MARCKSLI1 also regulates migration
in a JNK-regulated manner (Bjorkblom et al.
2012). MARCKSL1 is phosphorylated by JNK on
C-terminal residues (S120, T148 and T183). A
phosphomimicry mutant of MARCKSL1 where
the JNK sites are mutated to aspartate, acts to bun-
dle F-actin in a reconstituted system and this stabi-
lization of actin filaments correlates with inhibited
migration of cortical neurons and of the PC3
prostate cancer cell line (Bjorkblom et al. 2012).
Interestingly both MARCKSLI1 and JNK are criti-
cal for brain morphogenesis as disruption of either
leads neural tube closure defects (Chen et al. 1996;
Kuan et al. 1999; Sabapathy et al. 1999).

6 Concluding Remarks

The last decade of research on JNKSs has revealed
that in addition to transcription factors, JNKs
phosphorylate cytosolic proteins, a number of
which are neuron-specific proteins that regulate
the cytoskeleton. It is not surprising therefore
that JNKs are pivotal players in neuronal migra-
tion and brain development. It has also emerged
that JNK regulation of migration in neurons is
complex and some apparently conflicting find-
ings have been described. For example knockout
of Jnkl produces one migration phenotype and
knockout of an upstream kinase evokes another
response (Table 3.1). This is perhaps not surpris-
ing given that individual MAPKs from yeast
to mammals share certain MAP2K and most
MAP3K upstream regulators. These activator
kinases are recruited via scaffold proteins to acti-
vate select MAPKs and direct distinct functional
outcomes. In addition, functional outcome can be
controlled at the effector kinase level itself.
There, four splice variants exist for JNKs 1, 2 and
3. These variants may behave differently in terms
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of substrate recognition and cellular response
thereby further increasing the signalling diver-
sity. Finally, the effector proteins phosphorylated
by JNK in brain have not been fully characterized
and we rely on substrate screens to identify these.
Finding answers to these questions will ulti-
mately yield improved insight on the cellular
mechanism of neuronal migration as well as
other aspects of brain development.
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Novel Functions of Core Cell Cycle
Regulators in Neuronal Migration
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Abstract

The cerebral cortex is one of the most intricate regions of the brain, which
required elaborated cell migration patterns for its development.
Experimental observations show that projection neurons migrate radially
within the cortical wall, whereas interneurons migrate along multiple tan-
gential paths to reach the developing cortex. Tight regulation of the cell
migration processes ensures proper positioning and functional integration
of neurons to specific cerebral cortical circuits. Disruption of neuronal
migration often lead to cortical dysfunction and/or malformation associ-
ated with neurological disorders. Unveiling the molecular control of neu-
ronal migration is thus fundamental to understand the physiological or
pathological development of the cerebral cortex. Generation of functional
cortical neurons is a complex and stratified process that relies on decision
of neural progenitors to leave the cell cycle and generate neurons that
migrate and differentiate to reach their final position in the cortical wall.
Although accumulating work shed some light on the molecular control of
neuronal migration, we currently do not have a comprehensive under-
standing of how cell cycle exit and migration/differentiation are coordi-
nated at the molecular level. The current chapter tends to lift the veil on

L. Nguyen (P<)

GIGA-Neurosciences, University of Liege, C.H.U.
Sart Tilman, Liege 4000, Belgium

Interdisciplinary Cluster for Applied Genoproteomics
(GIGA-R), University of Liege, C.H.U. Sart Tilman,

GIGA-Neurosciences, University of Liege, C.H.U. Liege 4000, Belgium

Sart Tilman, Liege 4000, Belgium

Wallon Excellence in Lifesciences and Biotechnology

Interdisciplinary Cluster for Applied Genoproteomics (WELBIO), University of Liege, C.H.U. Sart Tilman,
(GIGA-R), University of Liege, C.H.U. Sart Tilman, Liege 4000, Belgium

Liege 4000, Belgium

e-mail: Inguyen@ulg.ac.be

L. Nguyen and S. Hippenmeyer (eds.), Cellular and Molecular Control of Neuronal Migration, 59
Advances in Experimental Medicine and Biology 800, DOI 10.1007/978-94-007-7687-6_4,
© Springer Science+Business Media Dordrecht 2014

4



60

J.D. Godin and L. Nguyen

this issue by discussing how core cell cycle regulators, and in particular
p27%P! acts as a multifunctional protein to control critical steps of neuronal
migration through activities that go far beyond cell cycle regulation.

Keywords

Radial migration ¢ Cerebral cortex development * p27 ¢ Myosin II

Microtubules

1 Introduction

The cerebral cortex is a complex and highly
evolved brain structure that emerges from the
dorsal telencephalon as a result of birth and
migration of multiple neuron waves that settle
“inside-out” as adjacent layers in the cortical
plate (CP). Six neuronal layers are sequentially
produced between E11 and E18 in mouse and
each of them contains a characteristic set of
neuron subtypes that connect with specific
cortical and subcortical regions (Gupta et al.
2002; Hevner et al. 2003) (Fig. 4.1). In addition,
cortical neurons are regionally organized into
specialized areas that underlie elaborated motor,
cognitive and perceptual abilities (Rash and
Grove 2006). The cortex is mainly composed of
glutamatergic projection neurons that are born in
ventricular and subventricular zones of the dor-
sal telencephalon (VZ and SVZ, respectively),
while the population of GABAergic interneurons
arises from ventral progenitors located in medial
and caudal ganglionic eminences (MGE and
CGE, respectively) (Fig. 4.2a). The extraordi-
nary degree of organization of the cerebral cor-
tex reflects the complexity of the migratory
movements required to generate it. One of the
most remarkable features of the cerebral cortex
is the wide-range of distinct migration patterns
undertaken by neurons to integrate into func-
tional neural circuitry. In contrast to projection
neurons that show rather simple morphology and
engage locally in directed migration along
radial glia fibers (Gupta et al. 2002), interneu-
rons undergo dynamic branching and reach the

cortical wall by travelling along tangential paths
(Anderson et al. 1997; Tamamaki et al. 1997)
that run across various substrates (Yokota
et al. 2007) (Fig. 4.2b). Neuron migration is
orchestrated by both extracellular and intra-
cellular cues (Ayala et al. 2007; Marin and
Rubenstein 2001, 2003; Bielas et al. 2004), and
computation of these signals ultimately drives
cytoskeleton remodelling to support cell motility.
Accumulating knowledge of the molecular con-
trol of neuronal migration [reviewed in (Metin
et al. 2006; Tsai and Gleeson 2005)] revealed a
significant role for proteins associated with or
regulating the actin and microtubule (MT) cyto-
skeletons. In cortical neurons, some critical MT
regulators are dynein and its cofactor LISI,
CDKS3, and Doublecortin (Kappeler et al. 2006;
Kawauchi et al. 2006; Koizumi et al. 2006; Rakic
et al. 2009; Tanaka et al. 2004; Tsai et al. 2007).
Moreover, some small GTPases (Kholmanskikh
et al. 2003, 2006) and selected F-actin regulators
(Bellenchi et al. 2007; Nagano et al. 2002) pro-
mote actin microfilament modification during
neuronal migration in the cortex. Not surpris-
ingly, most cortical malformations associated
with neurological disorders arise as a conse-
quence of mutation in genes that encode cyto-
skeletal proteins or their modifiers (Breuss et al.
2012; Cushion et al. 2013; Gleeson et al. 1998;
Jaglin et al. 2009; Pilz et al. 1998; Reiner
et al. 1993). Recent works performed by us and
others shed some new light on novel cytoskeleton-
related mechanisms that regulate specific steps
of neuronal migration in the developing cerebral
cortex.
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E11

Fig. 4.1 Cortical layering process in mouse embryos.
Half coronal section through the forebrain of an E14.5
mouse embryo (upper left scheme). Successive waves of
post-mitotic projection neurons are generated between
El1l and EI18 in the dorsal telencephalon (cortical inter-
neurons are not represented). A magnified area of the neo-
cortex (boxed with a green square on the coronal section)
shows the sequential establishment of the adjacent corti-
cal layers (see timeline). The first wave of projection neu-
rons splits the preplate (PP) into a subplate (SP) and a

First identified as cell cycle inhibitors,
mediating the growth inhibitory cues of
upstream signalling pathways, the cyclin-CDK
inhibitors of the Cip/Kip family composed of
p21CPrl, p27KiPl - and p57XiP2 have emerged as
multifunctional proteins with roles extending
beyond cell cycle regulation. Cip/Kip proteins
in general, and p27%®! (renamed p27 further in
the text) in particular regulate cell migration in
various tissues in physiological or pathological
conditions (Baldassarre et al. 2005; Besson
et al. 2004b; Itoh et al. 2007; Kawauchi et al.
2006; McAllister et al. 2003; Nguyen et al.
2006). In this chapter, we discuss how p27 acts
as a modular protein to coordinate critical steps
of neuronal migration in the developing cere-
bral cortex.
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marginal zone (MZ), which also includes migrating Cajal-
Retzius cells (CR). These cells release the glycoprotein
Reelin that serves as migration signal. Projection neurons
arise from committed progenitors located in the ventricu-
lar (VZ) and subventricular (§VZ) zones and migrate radi-
ally towards the cortical plate (CP) by locomotion on
radial glia processes (black lines). At birth, the neocortex
is composed of six molecularly distinct (different colours)
layers (/I-1V) established in an inside-out fashion above
the white matter (WM)

2 Old Players, New Functions -
Revisiting the Role of Core
Cell Cycle Regulators in
Cerebral Cortical
Neurogenesis

The generation of cortical neurons by progenitor
cells is a finely tuned process that requires a tight
coordination of multiple cellular activities,
including cell specification, cell cycle exit,
cell migration and neuronal differentiation.
Achievement of these multiple biological steps
relies on implementation of specific genetic
inputs as well as on molecular signaling path-
ways triggered by specific extracellular cues,
including growth factors and neurotransmitters
(Heng et al. 2007; Nguyen et al. 2001). However,
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Fig. 4.2 Neuronal migration in the developing cere-
bral cortex. (a) Scheme representing a hemisection of an
E14.5 mouse embryo forebrain. Glutamatergic projection
neurons are born around the lateral ventricle (LV) from
stem and cortical progenitors residing in the pallial ven-
tricular (VZ, dark green) and subventricular (SVZ, light
green) zones. Projection neurons migrate radially (green
tortuous arrows) to integrate the cortical plate of the cor-
tex (Cx). Cortical interneurons are GABAergic and arise
from the subpallial medial (MGE) and caudal (CGE) gan-
glionic eminences. They are born from stem and progeni-
tor cells located in the VZ (dark red) and SVZ (light red).
These neurons undergo radial migration along various

the mechanisms that integrate these cellular
processes into appropriate developmental pro-
grams remain poorly understood. Accumulating
evidence supports the existence of a complex
relationship between cell cycle components
and factors promoting embryonic development
in various animal models (Godin et al. 2012;
Nguyen et al. 2006; Ohnuma et al. 1999; Reynaud
et al. 2000; Vernon et al. 2003; Joseph et al.
2009). More specifically, Cip/Kip proteins are
expressed in both, cycling progenitors and post-
mitotic neurons of the mouse developing cerebral
cortex where they modulate neural specification
and migration in addition to their “first-identified”
function as cell cycle regulators (Itoh et al. 2007;

paths (red) to integrate the developing cortical wall.
(b) Morphological remodelling of cortical neurons dur-
ing migration. Radial migration of projection neurons
(green) is a directed movement characterized by locomo-
tion on radial glia guides (light grey). These neurons are
bipolar during locomotion and undergo short-distance
nucleokinesis and limited remodelling of the leading pro-
cess. On the other hand, cortical interneurons (red) navi-
gate in the forebrain parenchyma through a migration
process characterized by an extensive nucleokinesis (red
arrow) that comes together with a highly dynamic growth
cone, which give rise to temporary branches that are both
requires for proper migration

Kawauchi et al. 2006; Nguyen et al. 2006; Tury
et al. 2011). Our work revealed that the most
abundant Cip/Kip in the embryonic telencepha-
lon is p27, which promotes projection neurons
specification through stabilization and thus pro-
gressive accumulation of the basic helix-loop-
helix (bHLH) proneural transcription factor
neurogenin 2 (Ngn2) in dorsal telencephalic pro-
genitors (Nguyen et al. 2006). In addition, p27
acts as key cellular cytoskeleton modulator, thus
promoting specific migratory steps of both corti-
cal projection neurons and interneurons (Godin
et al. 2012; Nguyen et al. 2006). Later during
adulthood, the brain retains stem/progenitor cells
in the subventricular zone (SVZ) of the lateral
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Fig. 4.3 Neurogenic niches of the adult brain.
Scheme of a parasagittal section made through the
brain of an adult mouse. While no more neurogenesis
takes place in the cortex (Cx), two focal brain neuro-
genic areas (orange) have been clearly identified after
birth. The more productive one is the subventricular
zone (SVZ) of the lateral ventricle. Adult stem cells are
quiescent and upon activation give birth to transient

ventricles and in the subgranular zone (SGZ) of
the dentate gyrus (DG) in the hippocampus that
support continuous generation of new neurons
(Fig. 4.3). All Cip/Kip proteins are expressed in
the postnatal brain where they play central func-
tion for the regulation of neurogenesis. Indeed,
they are detected in adult neurogenic regions
where they control proliferation kinetics (Doetsch
et al. 2002; Li et al. 2009) and promote cell cycle
exit (Pechnick et al. 2008) of specific progenitor
subtypes. In addition, p21 and p57 control the
pool of brain neural stem cell (NSC) by contrib-
uting to the regulation of their quiescence
(Furutachi et al. 2013; Kippin et al. 2005).
Interestingly, the number of stem cells increases
in selected adult tissues (including the retina and
the lung) of a knockin mouse line characterized
by expression of a cell cycle dead mutated ver-
sion of p27 [p27°%, a mutant that cannot interact
with cyclins and CDKs (Besson et al. 2004b); see
also Box 4.2]. This suggests that p27 controls
stem cell amplification in selected adult tissues
(Besson et al. 2007). Although classical function
as cell cycle regulators have been attributed to
Cip/Kip proteins in the adult brain, there is cur-
rently no demonstration of any additional cell
cycle unrelated activities in this specific context.
This issue should be further explored.
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amplifying progenitors that further differentiate into
neuroblasts that migrate along the rostral migratory
stream (RMS) towards the olfactory bulbs (OB). They
differentiate into granular or periglomerular neurons.
The second neurogenic niche is the subgranular zone
(SGZ) of the dentate gyrus (DG), which give rise to
limited number of excitatory granule neurons that settle
into the granular layer of the DG

3 Kip Movin’in the Brain - p27
Promotes Neuron Migration
by Regulating Cell
Cytoskeleton Dynamics

During migration, neurons undergo major mor-
phological changes (Box 4.1) that are accompa-
nied by dramatic shifts in cytoskeleton structure
and centrosome positioning. Cell migration is
initiated by the protrusion of a leading neurite
ending with a structure similar to a growth cone
(Tsai and Gleeson 2005). Extension of the highly
polarized leading process requires protrusion
forces exerted by actin polymerization, microtu-
bule growth and establishment of adhesion com-
plexes that link the extracellular substrate to the
actin cytoskeleton (Marin et al. 2006). The cen-
trosome, which comprises the microtubule organ-
isation centre (MTOC), is located ahead of the
nucleus in the direction of migration. This
elongation step is followed by formation of a
swelling, characterized by a cytoplasmic dilata-
tion, that encompass the centrosome, the golgi
apparatus, the mitochondria and the endoplasmic
reticulum. The nucleus and the centrosome are
attached together, through a fork-like structure
that enwraps the nucleus in a cage like fashion
(Xie et al. 2003). Then, the nucleus relocates into
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Box 4.1 Cortical Neurons: Two Distinct Modes
of Migration

The two major classes of cortical neurons
adopt distinct modes of migration to reach
their final position within the cortical plate.
Projection neurons undergo directed migra-
tion along straight radial glia guides (Gupta
et al. 2002). The migration process is divided
into four phases (see also Chap. 1): bipolar
progenitors migrate through the subventricu-
lar zone (SVZ) independently of the radial
glia scaffold. When they reach the intermedi-
ate zone (IZ), projections neurons stop their
migration, sprout multiple neurites and
become multipolar (Noctor et al. 2004).
Neurons further convert to a bipolar shape,
attach to radial glia and move to the cortical
plate by glia-guided locomotion. Once con-
necting to the pia, neurons undergo a final
nuclear translocation to settle at appropriate
position in the cortical plate (Noctor et al.
2004). Cortical interneurons extend multiple
branches and move along various tangential
paths that run across different substrates in the

the swelling through nucleokinesis (Schaar and
McConnell 2005). Nuclear movement varies
depending on the cell type with short and high
amplitude for projections neurons and interneu-
rons, respectively. Discrepancies about the con-
tribution of actin and microtubule networks to the
forward migration of the nucleus argue for either
pulling or pushing forces to generate somal
motion (see also Chap. 7).

3.1 p27,an Unexpected Regulator

of Cell Migration

The contribution of p27 to cell migration was
first reported in hepatocellular carcinoma cells:
transduction of a TAT-p27 protein promoted their
migration in vitro (Nagahara et al. 1998). Further
studies confirmed that p27 acts as a regulator of
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telencephalon  (Anderson et al. 1997;
Tamamaki et al. 1997), including progenitor
cells, post-mitotic neurons as well as radial
glia fibers (Yokota et al. 2007). Migration of
interneurons results from successive cycles of
morphological changes that couple saltatory
progression of their cell body with dynamic
remodelling of their leading process. The
nucleus alternates between resting phases that
correlate with elongation of the leading pro-
cess and movement phases associated with
splitting of growth cone-like structures that
give rise to new branches (Bellion et al. 2005).
This stepwise behavior relies on cytoskeletal
transformations that promote rostral translo-
cation of a cytoplasmic dilatation encompass-
ing the centrosome and the Golgi apparatus
into the extending leading process. This is fol-
lowed by forward migration of the nucleus,
and its perinuclear cytoplasm, a process
named nucleokinesis (Marin et al. 2010).
Finally, interneurons undergo retraction of the
trailing process and branching of the leading
process (Bellion et al. 2005).

cell migration in a variety of cell types, including
fibroblasts, vascular smooth muscle cells, endo-
thelial cells, and cortical neurons (Diez-Juan and
Andres 2003; McAllister et al. 2003; Sun et al.
2001; Godin et al. 2012; Nguyen et al. 2006)
(Fig. 4.4). Besson and collaborators showed that
p27 null mouse embryonic fibroblasts (MEFs)
have reduced motility compared to wild type
MEFs and re-expression of p27 rescued motility
defect of p27 null MEFs (Besson et al. 2004b).
Furthermore, re-expression of a p27 mutant
that cannot bind cyclins and CDKs (p27°%; see
Box 4.2) also restored migration, suggesting that
the effect of p27 on cell motility was independent
of its cell cycle activity (Besson et al. 2004b).
The first demonstration of an in vivo cell cycle-
unrelated activity of p27 came from the analysis
of neuronal migration during embryonic devel-
opment. Overexpression of wild-type or p27°%
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Fig. 4.4 Different roles of p27 during corticogenesis.
p27 promotes cell cycle exit by associating with specific
Cdk/cylins complexes through a N-terminal binding
domain and hence blocking their catalytic activity and
preventing G1-S phase transition (molecular pathway in
green). By stabilising Ngn2 in the nucleus of cortical
progenitors, p27 regulates neuronal differentiation, an
activity that resides in its N-terminal half (molecular
pathway in purple). p27 promotes the migration of
both types of cortical neurons (projection neurons,
upper panel; cortical interneurons, lower panel) by
blocking RhoA signalling pathway, an activity resid-
ing in its C-terminal domain (molecular pathway in yel-
low). While p27 regulates actin cytoskeleton through

activation of cofilin, an actin depolymerizing factor in
projection neurons, it controls actomyosin-contractions
by fine-tuning myosin II activity in cortical interneurons.
In cortical interneurons, p27 additionally controls migra-
tion through regulation of MT dynamics (pathway in
blue). p27 could also indirectly promote migration
through Ngn2 inducing the transcription of target genes
which regulate radial migration. Phosphorylation of p27
at Serine 10 (Serl10) by cdkS5 regulates its stability and
cytoplasmic localization. Phosphorylation at threonine
198 enhances p27 interaction with RhoA (green arrow).
Finally connexin 43 acts as an upstream regulator of p27
by controlling both synthesis (dark blue arrow) and
stability (light blue arrow)
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Box 4.2 Major Domains and Post-translational
Sites of p27 Protein

A detailed examination of the p27 protein
identifies two major regions, the N-terminal,
which according to homology with p21 and
p57 showed the capability of inhibiting the
kinase activity of cyclin-CDK complexes, and
a C-terminal region that interacts with several
proteins involved in processes not correlated to
the cell cycle control. p27 interacts with cyclins
and CDK through two distinct domains (30/32
and 62/64; Box 4.2). N-terminal half, but not
Cyclin-CDK interactions domains, is required
for p27-dependent stabilisation of Neurogenin2
(Ngn2) protein in cortical progenitors, proba-
bly through interaction domains with specific
ubiquitin ligases that may target Ngn2 to the
proteasome for degradation (Nguyen et al.
2006). When localized at cytosolic cellular
compartment, p27 interacts with various
proteins including RhoA (Red box, 190-198)
(Godin et al. 2012), Rac, stathmin (dashed
box, 170-198) (Baldassarre et al. 2005), Grb2
(90-96) (Kardinal et al. 2006) and 14-3-3
(Fujita et al. 2002). While both halves of
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p27 protein binds to microtubule in vitro,
proline-enriched domain located in the
C-terminal region (green box) is crucial for its
microtubule-associated function (see further in
the text) (Godin et al. 2012). Shuttling between
nucleus and cytoplasm is crucial for regulation
of p27 functions. A bipartite nuclear localiza-
tion signal (NLS, 152/153-166/168), which is
recognized by the alpha/beta importins,
allowing p27 transport into the nucleus
(Sekimoto et al. 2004; Zeng et al. 2000) and
a putative nuclear export signal (NES, 32-45)
have been identified. Finally, p27 post-transla-
tional modifications may also control its
function, by regulating subcellular localisation
(pS10, pY74, pY88, pY89) (Viglietto et al.
2002; Sekimoto et al. 2004; Liang et al. 2002;
Kardinal et al. 2006; Ishida et al. 2002; Fujita
et al. 2002, 2003), stability (pS10, pT187,
AcK100) (Tsvetkov et al. 1999; Perez-Luna
et al. 2012; Ishida et al. 2000) or protein-
protein interaction (pT198) (Larrea et al. 2008;
Fujita et al. 2003). Phosphorylation sites that
may regulate p27 migratory activities are
highlighted in blue.
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efficiently promoted migration of projection
neurons to the cortical plate, while overexpres-
sion of other members of the cip/kip family did
not affect radial migration (Nguyen et al. 2006).
Indeed lack of p27 impaired: (1) Radial migra-
tion of projection neurons: p27 knockdown
projections neurons remained in subventricular
and intermediate zones (Nguyen et al. 2006;
Kawauchi et al. 2006) and they failed to acquire
multipolar morphology in the intermediate zone
(Kawauchi et al. 2006); (2) Tangential migration
of interneurons: conditional removal of p27 in

interneurons led to decreased migration velocity
that arose from both nucleokinesis and branching
defects (Godin et al. 2012). Lack of p27 expres-
sion in cortical interneurons delayed the course
of tangential migration rather than permanently
blocking it. Radial and tangential migrations in
p27CK mice were not affected suggesting that
cortical migration properties of p27 are indepen-
dent of its cell cycle activity (Godin et al. 2012;
Nguyen et al. 2006). We will further discuss the
mechanisms by which p27 regulates migration
with an emphasis on cortical neurons.
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3.2 p27 and Actomyosin-Based

Cytoskeleton

The first understanding of the mechanisms by
which p27 regulates cell migration came from
studies performed with p27~~ mouse embryonic
fibroblasts. They revealed that p27 promotes
migration by inhibiting the Rho-kinase pathway
(Box 4.3) (Besson et al. 2004b). Motility of
p27~~ mouse fibroblasts was impaired as a result
of increased RhoA activity. Basal migration level
could further be restored by inhibiting the Rho-
kinase ROCK (Besson et al. 2004b). Indeed,
p27~~ cells had increased numbers of stress
fibers and focal adhesions as well as elevated
levels of Rho-GTP (Besson et al. 2004b).
Overexpression experiments showed that p27
interacts with RhoA, thereby preventing RhoA
activation by interfering with RhoA binding to its
GEFs, but not to its effectors (Besson et al.
2004b). It’s worth noting that modulation of p27
expression level can lead to distinct migratory
responses depending on the cellular context
(Besson et al. 2004a).

The regulation of RhoA by p27 is critical for
proper migration of both projection neurons and
interneurons in the cortex of developing mice

Box 4.3 RhoA, a Master Regulator of Actin
Dynamics

The Rho family of GTPases, which includes
Rho, Rac and Cdc42, regulate cell morphology,
cytokinesis and cell motility through reorgani-
zation of actin filaments (Bar-Sagi and Hall
2000). RhoA activation promotes actin stress
fiber formation, focal-adhesion assembly, as
well as actin-myosin contractility (Etienne-
Manneville and Hall 2002). The RhoA pathway
leads to a decrease in stress fibers and focal
adhesions, which increases cell motility. RhoA
exists in a GDP-bound inactive state and a GTP-
bound active state. Guanine nucleotide exchange
factors (GEFs) catalyse the release of GDP,
allowing GTP to bind RhoA, leading to activa-
tion of its downstream effectors; the Rho-

(Godin et al. 2012; Nguyen et al. 2006; Kawauchi
et al. 2006; Itoh et al. 2007) (Fig. 4.4). Although,
inhibition of RhoA signalling by p27 resulted in
changes in actin cytoskeleton in neurons, dis-
crepancy between downstream mechanisms have
been described in these two neuronal classes.
Recent work performed with projection neurons
suggested that p27-mediated block of Rho-kinase
pathway promoted actin reorganisation by acti-
vating cofilin, an actin-severing enzyme. Indeed,
knockdown of p27 in cortical projection neurons
lead to increased phosphorylation of cofilin
through ROCK but not PAKI signalling path-
ways (Gungabissoon and Bamburg 2003), sug-
gesting that defect of migration arose from
excessive stabilisation of the actin network in
p27-deprived projection neurons (Kawauchi
et al. 2006). These data were supported by some
work performed with fibroblasts showing that
p27 suppresses the activity of the RhoA-ROCK
(Rho-kinase) pathway, thereby decreasing Ser 3
phosphorylation of cofilin (Besson et al. 2004b).
However, the extent to which cofilin mediates
p27 activity in neuronal actin cytoskeleton
remodelling remains unclear since overexpression
of a constitutively active form of cofilin pre-
vents radial migration rather than promoting it

kinases, ROCK1 and ROCK2. Stress fiber
formation and focal-adhesion assembly and sta-
bility are mediated by the activation of LIM
domain-containing protein kinase (LIMK) by
ROCK, which in turn phosphorylates and inhib-
its cofilin, an actin depolymerization factor.
ROCK also controls actomyosin contractility,
by directly phosphorylating the light chain of
myosin I[I (MLC-II) (Amano et al. 1997) or
indirectly via inhibition of the MLC phospha-
tase MLCP (Kimura et al. 1996) or activation of
the MLC kinase MLCK (Chrzanowska-
Wodnicka and Burridge 1996). Importantly,
myosin activation promotes cell migration by
driving translocation of the cell body and retrac-
tion of the rear of the cell during migration
(Webb et al. 2002).
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(Kawauchi et al. 2006). In addition, the lack of
p27 expression in cortical interneurons correlated
with partial inactivation of cofilin but without
an accumulation of actin microfilaments. This
could be explained by the concomitant expres-
sion of gelsolin, another actin-severing protein,
as detected in cortical interneuron in vivo (Godin
et al. 2012). Together, these results suggest
that the severing of actin is driven by multiple
and redundant mechanisms, as G/F actin ratio
remained unchanged in p277- interneurons
(Godin et al. 2012) (Fig. 4.4). Indeed the main
candidate target of the Rho-kinase pathway in
migrating interneurons was myosin II (Fig. 4.4).
This protein complex is involved in actomyosin-
based contractions and p27 fine-tuned myosin II
activity at the rear of the nucleus and within the
growth cone. The lack of p27 led to a hyperacti-
vation of myosin II that came together with
increased frequency of nucleokinesis as well
as excessive branching activity. These cellular
defects were rescued by treatment with pharma-
cological inhibitors of the Rho effector ROCK or
of the myosin light chain kinase (MLCK) (Godin
et al. 2012). Although nucleokinesis and leading
process branching activities were rescued, the
elongation of neurites remained affected, sug-
gesting the existence of additional substrate of
p27 in migrating interneurons. In addition, tar-
geting The RhoA/myosinll pathway was not suf-
ficient to rescue basal level of velocity (Fig. 4.5).

Altogether, these data demonstrate that p27
controls Rho-kinase/myosin II activity to fine-
tune actomyosin-based contractions that take
place behind the nucleus during nucleokinesis
and the leading process growth cone. However,
there is an apparent discrepancy between the wide
cytoplasmic distribution of p27 and the discrete
location of actomyosin activity in migrating inter-
neurons. Several works showed that p27 undergo
multiple and dynamic post-translational modifi-
cations among which some are important to regu-
late its nucleo-cytoplasmic shuttling (Viglietto
et al. 2002; Sekimoto et al. 2004; Liang et al.
2002; Kardinal et al. 2006; Ishida et al. 2002;
Fujita et al. 2002, 2003; Zhang et al. 2013; Connor
et al. 2003). Such modifications may indeed con-
trol the specific and dynamic accumulation of a
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pool of p27 at the rear of the nucleus and in the
growth cone of actively migrating interneuron.
This hypothesis should be further investigated.

3.3 p27 and Microtubule

Dynamics

Further analyses of the role of p27 during
migration of both fibroblast and cortical inter-
neurons described p27 as a microtubule regula-
tor. It has been demonstrated that cortical
interneurons showed neurite elongation defects
upon removal of p27 and that these defects
were not rescued by tuning RhoA-dependent
actin contractibility. This raised the possibility
that p27 acts on both actin and microtubules
cytoskeletons (Godin et al. 2012). This hypoth-
esis has been recently validated by our labora-
tory that demonstrated that p27 associates with
microtubule network in migrating interneurons
and binds directly with both free and polymer-
ized tubulin in vitro. While p27 had no effect on
MT stability, it promoted MT polymerisation in
vitro, a function that required the integrity of a
proline-rich domain. Likewise, MT polymeri-
sation rate was impaired in p27~- MEFs, a
defect that could be rescued by re-expressing
p27 but not its proline mutant, p27 4A (see
Fig. 4.5). Importantly, expression of the proline
mutant could not rescue neurite extension in
migrating p27-null interneurons, indicating that
p27 controlled neurite extension by inducing
MT polymerisation. While, Godin and collabo-
rators identified p27 as a microtubule-associated
protein (MAP) that regulates MT dynamics
through direct interaction (Godin et al. 2012),
other work performed with mouse fibroblasts
(MEFs) and fibrosarcoma HT-180 cells showed
that p27 also binds to stathmin and interfere
with its ability to sequester free tubulin
(Baldassarre et al. 2005). Interestingly a mutant
form of p27 could not bind to stathmin pro-
motes MT polymerisation as wild type p27,
suggesting that stathmin-related activities of
p27 are not required to regulate microtubule
dynamics in cortical interneurons (Godin et al.
2012). It is worth noting that expression of the
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MT polymerization

Fig. 4.5 Summary scheme illustrating the molecular
pathways by which p27 regulates cortical interneurons
tangential migration. p27 acts as a master regulator of
cytoskeletal transformations to control cortical interneu-
ron migration in vivo. p27 controls neurite extension and
nucleokinesis through independent pathways. p27 con-
trols nucleokinesis, branching and growth cone splitting
through inhibition of RhoA and regulation of acto-myosin
contractility (molecular pathway in red). p27 promotes
neurites extension by regulation microtubule polymerisa-
tion (molecular pathway in green). p27 expression res-
cued tangential migration defects in brain slices from
p27-null embryos, including numbers of interneurons that

proline mutant p27 4A efficiently rescued
nuclear translocation frequency defects seen
upon loss of p27 in cortical interneurons, sug-
gesting that p27 regulates interneurons nucleo-
kinesis in a MT polymerisation-independent
manner. Likewise, neurite-extension defect
was rescued by expressing a p27 mutant that
fails to bind to RhoA. Altogether these data
suggest that p27 controls neurite extension and

A0 A2

RhoA
ROCK

MLCK

reached the cortex and mean interneuron velocity in
knockout embryonic slices. However, a p27 mutant
(p27190-4A) that lacks the ability to regulate both RhoA
signalling (p27-190) and polymerisation of MTs (p274A)
could not rescue interneuron migration, while single
mutants only partially contributed to this process. This
suggests that both novel cell cycle-unrelated activities are
required to support proper tangential migration of inter-
neurons in the cerebral cortex. Abbreviations, MLC-II for
myosin light chain II, RLC for regulatory light chain,
MHC for myosin heavy chain II. Blue boxes: cyclin and
CDK interacting domain; orange dots: centrioles; purple
line: golgi apparatus (Adapted from Godin et al. 2012)

nucleokinesis through two independent path-
ways, that both contribute to proper tangential
migration of interneurons in the cerebral cortex
(Godin et al. 2012) (Fig. 4.5). Neuritogenesis is
a critical process that takes place in projection
neurons undergoing bipolar-multipolar conver-
sion. Thus, it would be interesting to assess
whether p27 also control MT-dependent events
during radial migration (Box 4.4).
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Box 4.4 Microtubule Cytoskeleton
and Migration

Microtubules are essential components of the
cytoskeleton that play a major role in many
cellular functions such as cell migration.
Microtubules are hollow tubes composed of
o and P tubulin dimers that are, in most cells,
nucleated at the centrosome. Microtubule
plus-ends are oriented towards the periphery
of the cell and explore the cytoplasm in a
very dynamic manner. Microtubules alternate
between phases of growth (polymerisation)
and shrinkage (catastrophe, depolymerisa-
tion). Their dynamics are highly regulated by
tubulin post-translational modifications such
as detyrosination or acetylation, and binding
of microtubule-associated proteins (MAP).
The microtubule network is even more
dynamic and polarized in migrating neurons.
Morphological changes that occur during
neuron migration are accompanied by dra-
matic shifts in cytoskeleton structure and

34 Upstream Regulation of p27

Function During Migration

The mechanisms regulating the pro-motility role
of p27 are not fully understood. However some
regulatory mechanisms have been proposed
(Fig. 4.4). p90 ribosomal S6 kinase (RSK1), an
effector of both Ras/sMEK/MAPK and PI3K/
PDK1 pathways, drives phosphorylation of p27
at T198. This phosphorylation of p27 enhances
RhoA-p27 binding, RhoA-ROCK inhibition and
motility in melanoma cells (Larrea et al. 2008).
In addition, a recent study indicates that connexin
43, a component of gap junction involved in both
neural progenitor proliferation and neuronal
migration (Elias and Kriegstein 2008), acts
upstream of p27 to regulate the multipolar mor-
phology of migrating neurons (Liu et al. 2012).
The N terminal part of Connexin 43 increases the
synthesis of p27 via intracellular cAMP mechanism,
whereas C terminus reduces the degradation of
p27 via inhibition of skp2 (S phase kinase-
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centrosome positioning (Higginbotham and
Gleeson 2007). Microtubule growth and cen-
trosomes play a key role in driving neurites
extension and nuclear migration in neurons,
respectively. The centrosome typically pre-
cedes and is coupled to the nucleus via peri-
nuclear microtubules that envelop and
capture the nucleus (Rivas and Hatten 1995).
In one hand, models suggest that the centro-
some first moves into the leading process
and serves as a cue for forward displacement
of the nucleus along the microtubules
(Umeshima et al. 2007; Distel et al. 2010;
Solecki et al. 2004). In another hand, addi-
tional studies reveal that the movement of
nucleus and centrosome occur independently
(Umeshima et al. 2007; Distel et al. 2010).
The pulling effect of the centrosome is not
likely to be the only driving force of nuclear
translocation. Forward migration of the
nucleus indeed could also depend on actin
cytoskeleton.

associated protein 2), the human F-box protein
that regulates the ubiquitination of p27. Finally
CdkS5 has been proposed as a master regulator
of p27-dependent regulation of actin-base cyto-
skeleton. CdkS5 stabilizes p27 by phosphorylating
the Ser10 site, eventually increasing the amount
of p27 protein in the cytoplasm. It leads to an
increase of non-phosphorylated, activated cofilin
through the suppression of RhoA activity,
which is required for actin cytoskeletal reorga-
nization in the processes of migrating neurons
(Kawauchi et al. 2006). Therefore, dynamic post-
translational modification of p27 is a likely
mechanism that drives its migratory functions in
specific cellular context.

4 Conclusive Remarks
Although p27 has been discovered almost two

decades ago, its contribution to cell migration has
only been unveiled recently. Several intersecting



4 Novel Functions of Core Cell Cycle Regulators in Neuronal Migration 71

works showed its ability to control cell migration
by connecting two distinct molecular pathways:
the Rho kinase/actin-myosin II on one hand, and
the microtubule cytoskeleton, either directly as a
MAP or indirectly through inhibition of stathmin
activity. Thus, p27 acts as a cytoskeleton modula-
tor and its net activity on cell migration/motility
also depends on the migration mode adopted by
cells (directed versus ameboid-like migration). It
is worth noting that p27 is intrinsically unstruc-
tured and as such, may indeed interact with vari-
ous proteins found in specific subcellular context,
including novel yet to be discovered partners for
cell migration and beyond.
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Microtubules
and Neurodevelopmental Disease:
The Movers and the Makers
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Abstract

The development of the mammalian cortex requires the generation,
migration and differentiation of neurons. Each of these cellular events
requires a dynamic microtubule cytoskeleton. Microtubules are required
for interkinetic nuclear migration, the separation of chromatids in mito-
sis, nuclear translocation during migration and the outgrowth of neu-
rites. Their importance is underlined by the finding that mutations in a
host of microtubule associated proteins cause detrimental neurological
disorders. More recently, the structural subunits of microtubules, the
tubulin proteins, have been implicated in a spectrum of human diseases
collectively known as the tubulinopathies. This chapter reviews the dis-
covery of microtubules, the role they play in neurodevelopment, and
catalogues the tubulin isoforms associated with neurodevelopmental dis-
ease. Our focus is on the molecular and cellular mechanisms that under-
lie the pathology of tubulin-associated diseases. Finally, we reflect on
whether different tubulin genes have distinct intrinsic functions.
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1 Introduction

Microtubules were discovered in the early 1950s
by De Robertis and Franchi, who observed that
axons of amphibian sciatic nerves were composed
of “large bundle[s] of parallel, tightly packed
fibrils” (De Robertis and Franchi 1953). They were
similarly described by the neurocytologist
Sanford Palay in 1956 as “numerous, long, tubu-
lar elements of the endoplasmic reticulum, about
180 A wide and remarkably straight” (Palay
1956). Soon after Palay’s description, various
papers reported these structures in different cell
types and organisms, such as avian and murine
tumours or interstitial cells of hydra (De-The
1964; Slautterback 1963; Ledbetter and Porter
1964). Whereas Slautterback still assumed that
they were membranous structures that could be
involved in ion transport, De-Thé argued that the
“protein nature of these microtubules is very
probable” (De-The 1964; Slautterback 1963). In
the same year, Ledbetter and Porter described a
13-fold radial symmetry of microtubules in plants
and proposed an arrangement of longitudinal
subunits that form hollow tubes (Ledbetter and
Porter 1964). Shortly after this paper, the protein
subunits that form microtubules were isolated,
and finally, 1 year later, Mohri published the
amino-acid composition of this protein and
coined the expression tubulin (Mohri 1968;
Shelanski and Taylor 1967). Stephens reported
that there are at least two types of microtubule
proteins, describing a- and p-tubulins and the
tubulin-heterodimer (Stephens 1970). This work
culminated in a conference in tubulin biology in
1975 (Taylor 1975) by which time a basic under-
standing of microtubule structure and function
were established (see Fig. 5.1).

2 Tubulin Diversity
and Genetics

Shortly after this conference, it became appar-
ent that the a- and p- isoforms were not single
entities, but rather existed in multiple flavours.
N-terminal sequencing and biochemical sepa-
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ration experiments led Hayashi and colleagues
to conclude that both types of tubulins include
multiple isotypes consisting of slightly differ-
ent amino acids (Bryan et al. 1978). The advent
of molecular cloning further expanded the
tubulin family. cDNA libraries constructed by
Cowan and colleagues from chicken brain
mRNA resulted in the identification of four a-
and four B-tubulin genes; a list which has grown
over the years (Krauhs et al. 1981; Lopata et al.
1983; Cleveland et al. 1978, 1980; Cowan et al.
1981; Wilde et al. 1982a, b; Cowan and Dudley
1983; Hall et al. 1983; Little et al. 1981;
Ponstingl et al. 1981). With the completion of
the human and mouse genome sequences, we
now know that there are seven o- and eight
p-tubulins in mice; and eight a- and nine
B-tubulins in humans (Table 5.1).

With the exception of the carboxy terminus,
the a- and f-tubulin isoforms exhibit a high
degree of sequence homology; however, their
expression pattern varies (Lewis et al. 1985;
Villasante et al. 1986; Wang et al. 1986;
Burgoyne et al. 1988). For instance, in humans
the PB-tubulin isoform TUBBI is specifically
found in platelets and megakaryocytes, whereas
TUBB3 is expressed in post-mitotic neurons
(Wang et al. 1986; Schulze et al. 2004; Liu et al.
2007). Similarly, in Arabidopsis thaliana, the
ArathTub9 isoform accumulates specifically in
male reproductive tissue, the pollen, whereas
ArathTubl is preferentially found in roots and
leaves (Oakley et al. 2007; Snustad et al. 1992;
Cheng et al. 2001).

3 The Multi-tubulin
Hypothesis

The existence of this extended gene family with
distinct expression patterns led investigators to
speculate that the different tubulin isoforms
possess unique functional properties, account-
ing for the extraordinary diverse role microtu-
bules play in eukaryotic cells (Fulton and
Simpson 1976). This concept, which is referred
to as the multi-tubulin hypothesis, was advanced
by Raff and co-workers who employed the
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Fig.5.1 Microtubule biology and cellular function. (a)
Tubulin heterodimers are the basic building units of
microtubules. Both isoforms can bind to a guanidine
nucleotide. Whereas o-tubulin cannot hydrolyze and
exchange GTP, B-tubulin can exist in two states: GTP- or
GDP-bound. GTP-tubulin is the active state of the het-
erodimer with regards to polymerization capability (indi-
cated with a star). (b) Tubulin heterodimers build up
protofilaments by a juxtapositional head-to-tail arrange-
ment. The B-tubulin is oriented towards the so called plus-
end, the a-tubulin towards the minus-end. Protofilaments
are arranged into a hollow microtubule and have lateral
interactions with each other. Note that protofilaments are
not formed per se, but are always part of the microtubule
complex. (¢) A polymerizing microtubule will add GTP-
bound heterodimers, which will hydrolyze their nucleo-
tide. This results in a GTP-tubulin cap at the plus-end of
the microtubule. Due to low concentrations (in vitro) or
the activity of certain accessory proteins the microtubule

genetic tools available in Drosophila to replace
the testes specific tubulin -2 with the develop-
mentally expressed -3 tubulin (Kemphues et al.
1979). The B-3 isoform could support the assem-
bly of a cytoskeletal array, but the substitution

Protofilament Growing Microtubule

Cap

Catastrophe i
‘ Rescue

Shrinking Microtubule

MTOC

--=-¥Kinetochore
Microtubules

can change into a depolymerizing state; this transition is
called catastrophe. (d) Depolymerizing microtubules are
characterized by curved protofilaments (a structural trait
of GDP-bound heterodimers) at the plus-tip end that leave
the microtubule complex. The reversal of this state into a
polymerizing microtubule is called rescue. (e) Rigid
microtubules are used as transport highways for different
cargo, such as macromolecular protein complexes or
vesicles. Specialized motor proteins can attach to the
microtubule lattice and show processive movement
towards the plus- or the minus-end; these motors will bind
to cargo and transport it along the microtubule. (f)
Dynamic microtubules are needed for chromosome align-
ment in the metaphase plate (upper panel) and for sister
chromatid separation during anaphase (lower panel). MTOC
Microtubule Organizing Center, centrosome. Modelled
on Akhmanova and Steinmetz (2008, 2010), Conde and
Caceres (2009), Dogterom et al. (2005), Kuijpers and
Hoogenraad (2011) and Schliwa and Woehlke (2003)

nevertheless resulted in defects of axoneme
structure, meiosis, and nuclear shaping (Hoyle
and Raff 1990; Raff et al. 1997). The Raff group
was further able to show that the architecture of
microtubules was influenced by the isoform
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Table 5.1 List of all human and Murine Tubulin-Isotypes
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Symbol Name NCBI Gene ID
Mouse Human Mouse/Human Mouse Human
o-Tubulins Tubala TUBAITA Tubulin, o 1A 22142 7846
Tubalb TUBAIB Tubulin, o 1B 7846 10376
Tubalc TUBAIC Tubulin, o 1C 22146 84790
Tuba3a - Tubulin, o 3A 22144 —
Tuba3b - Tubulin, o« 3B 22147 -
- TUBA3C Tubulin, o 3C - 7278
- TUBA3D Tubulin, a 3D - 113457
- TUBA3E Tubulin, « 3E - 112714
Tubada TUBA4A Tubulin, o 4A 22145 7277
Tubal TUBAS Tubulin, o 8 53857 51807
B-Tubulins Tubbl TUBBI1 Tubulin, p 1 Class VI 545486 81027
Tubb2a TUBB2A Tubulin, p 2A Class ITA 22151 7280
Tubb2b TUBB2B Tubulin, p 2B Class IIB 73710 347733
Tubb3 TUBB3 Tubulin, p 3 Class III 22152 10381
Tubb4a TUBB4A Tubulin, p 1 Class VI 22153 10382
Tubb4b TUBB4B Tubulin, p 4B Class IVB 227613 10383
Tubb5 TUBBS Tubulin, B 5 Class I 22154 203068
Tubb6 TUBB6 Tubulin, B 6 Class V 67951 84617
- TUBBS Tubulin, B 8 Class VIII - 347688

For all isoforms the human and the murine gene symbols are given in addition to a full name. Note that a revised
nomenclature for the p-tubulin isoforms is shown and based on the nomenclature of the a-tubulin isoforms (Khodiyar

et al. 2007)

composition. Transgenic expression of the moth
p-tubulin (Hvpt) alongside the -2 isoform
resulted in a Drosophila germline that was
dominated by microtubules with 16 protofila-
ments, not the usual 13 (Hoyle and Raff 1990;
Raff et al. 1997).

Parallel to these reports a mutagenesis screen
performed in the group of Martin Chalfie identi-
fied a specific p-tubulin isoform (MEC7) that
caused loss of touch receptivity in the nematode
worm C. elegans (Savage et al. 1989, 1994).
Similar to Raff and colleagues, they observed
that the isoform composition of microtubules
could affect the microtubule superstructure.
MEC-7 mutants showed a shift from microtu-
bules with 15 protofilaments to microtubules
with just 11 protofilaments. This result was mir-
rored by another C. elegans strain harboring
mutations in the a-tubulin MEC-12, which is also
highly expressed in touch-sensitive neurons and
is believed to co-assemble with MEC-7.

Mutations in this tubulin again resulted in the
loss of microtubules with 15 protofilaments
(Fukushige et al. 1999).

These findings suggested that the protofila-
ment number is a fixed inherent property of
microtubules which is dependent on the tubulin
composition. This is supported by the finding
that the predominant configuration of mamma-
lian microtubules in cells is 13 protofilaments
(MclIntosh et al. 2009; Tilney et al. 1973).
However, in vitro experiments have shown that
vertebrate tubulin-heterodimers by themselves
assemble into microtubules ranging from 8§ to 17
protofilaments (Chretien et al. 1992; Chretien
and Wade 1991). Therefore, preference for a
specific number of protofilaments for one iso-
form can only be determined by interaction with
factors present in vivo.

So, what factors determine the protofilament
number? Brouhard and colleagues have demon-
strated that the microtubule associated protein
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DCX (Doublecortin) stabilizes the 13 protofila-
ment configuration in vitro and they argue that
this might be one of the main mechanisms that
ensure correct protofilament numbers in neu-
rons (Bechstedt and Brouhard 2012). Likewise,
the nucleation by a y-tubulin ring complex con-
tributes to a consistent width of cellular micro-
tubules (Moritz et al. 2000). Posttranslational
modifications may also play a role. Goodman
and colleagues have shown that acetylation of
the a-tubulin MEC-12 stabilizes the 15 proto-
filament configuration found in C. elegans
touch receptive cells (Cueva et al. 2012). The
deletion of the responsible acetylase, ATAT-2,
results in highly variable protofilaments num-
bers. This observation has led Goodman and
colleagues to the proposition that acetylation
promotes the formation of salt bridges that
mediate lateral interactions between protofila-
ments (Cueva et al. 2012). In their model an
interaction between glutamate at position 55
and lysine 40 exists within the o-tubulin
(aE55-0K40). This salt bridge is disrupted by
acetylation of the K40 residue, favoring an
interaction between adjacent heterodimers
(aE55-0'H283), the angle of which is consis-
tent with 15 protofilament microtubules (Cueva
et al. 2012).

4 Posttranslational
Modifications

Acetylation is but one of a myriad of different
posttranslational modifications associated with
the tubulins. Others include detyrosination,
polyglutamylation, polyglycylation, palmitoly-
ation and phosphorylation (Janke and Bulinski
2011; Westermann and Weber 2003). These
modifications affect tubulin dynamics and sta-
bility, the interaction with motor proteins and
also non-motor microtubule associated pro-
teins. The amino acid sequence of individual
tubulin isoforms influences their respective
posttranslational modifications. For instance, in
mice and humans TUBAS lacks a lysine at the
critical residue 40, and consequently cannot be
acetylated. This contrasts with the remaining

members of the a-tubulin family, all of which
have this residue, and therefore can be subject
to this modification (Fukushige et al. 1999;
Stanchi et al. 2000). Likewise, some tubulin
isoforms, such as the testis specific ca2 in
chicken, lack a carboxy-terminal tyrosine resi-
due and are therefore not subject to detyrosina-
tion (Pratt et al. 1987).

5 Tubulin proteins
in Neurodevelopmental
Disease — The Makers

Since their discovery in the 1950s it is has been
clear that microtubule function is essential for
the formation and function of the nervous system
in a broad range of animal species, whether it be
a nematode, a fruit fly, a frog or a rodent
(Goldstein and Yang 2000; Gerson et al. 1976;
Gray 1975, 1976; Ward et al. 1975; Poulain and
Sobel 2010). It is no surprise that the same holds
true for the development of the human brain.
Microtubules facilitate neurogenic division, they
drive neuronal migration, and they are required
for neuronal differentiation and circuit formation
(Ayala et al. 2007; Kuijpers and Hoogenraad
2011) (Fig. 5.2). Here we discuss the role of the
different tubulins in these processes with a focus
on human diseases caused by mutations in these
genes (Fig. 5.3).

6 TUBA1A -The First

The tubulin gene family was first implicated in
neurodevelopmental disease following the clon-
ing of an N-ethyl-N-nitrosourea (ENU) induced
Tubala mutation in the Jenna mouse mutant
(Keays et al. 2007). It was identified in a screen
for hyperactive behavior, but also showed defects
in working memory and presented with an exag-
gerated acoustic startle response (Edwards et al.
2011; Keays et al. 2007, 2010). Histological
examination revealed wave-like perturbations of
the adult cortex, a fractured pyramidal layer
of the hippocampus and structural abnormalities
in the superior colliculus; defects which were



80

M. Breuss and D.A. Keays

Fig.5.2 Examples for microtubule functions in neuro-
development. (a) Schematic of the developing cortex.
Radial glial progenitors span the entirety of the cortex
from the ventricular to the pial surface (shown in orange).
They undergo mitosis to generate other types of progeni-
tors (not shown) and neurons (shown in yellow).
Postmitotic neurons migrate along their radial glial
mother cell to their final destination in the cortical plate
where they will differentiate and extend their axons. (b)
Detailed view of the interkinetic nuclear migration of a
radial glial cell. The cell nuclei migrate basally (upwards)
during G1 phase, undergo S phase and migrate apically
(downwards) during G2. Finally, cells will undergo mito-
sis at the ventricular surface. Microtubules are required

attributed to impaired neuronal migration. These
phenotypes were reminiscent of mouse models of
lissencephaly (LisI, Dcx, and the Reeler mouse),
a disease which is characterized by a cortex with
a smooth surface (Gleeson and Walsh 2000;
Guerrini and Parrini 2010) (see also Chap. 1).
Speculating that mutations in TUBAIA might
cause neurodevelopmental disease in humans, a
genetic screen identified two de novo mutations
in this gene (R264C and R402H) in patients with
lissencephaly (Keays et al. 2007).

for interkinetic nuclear migration and spindle formation
(shown in green) which mediates sister chromatid separa-
tion in M phase. (c¢) Neuronal migration requires nuclear
translocation. Nuclei are surrounded by a microtubule
cage (nuclear cage; shown in green) that connects with the
actomyosin network (shown in red) via the centrosome.
(d) Differentiating neurons extend their neurites to form
connections. Axonal projections have to cover large dis-
tances within the brain and the correct pathfinding
requires the establishment of a growth cone. This special-
ized structure consists of microtubules (shown in green)
that provide a rigid platform which interacts with the actin
cytoskeleton (shown in red), facilitating the extension of
the lamellipodia

The introduction of a TUBAIA genetic test
into clinical practice has resulted in the identifi-
cation of a host of disease causing mutations in
this gene (Poirier et al. 2007, 2012; Fallet-Bianco
et al. 2008; Bahi-Buisson et al. 2008; Morris-
Rosendahl et al. 2008; Kumar et al. 2010;
Lecourtois et al. 2010; Jansen et al. 2011;
Mokanszki et al. 2012; Sohal et al. 2012; Hikita
et al. 2013). Most patients identified have de novo
mutations and present with a spectrum of pheno-
types that extends from an absence (agyria), to a
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a Anterior

Posterior

Control

Pachygyria

Polymicrogyria

Fig. 5.3 Spectrum of tubulinopathies. (a) Depiction
of an axial section of a control brain with regular distri-
bution and number of sulci and gyri. (b) Pachygyric
(meaning thick gyri) patients show a reduction in the
number and increase in the size of their gyri (indicated
with a dotted line). (¢) Lissencephalic (meaning smooth
brain) patients show a complete absence of sulci and gyri.
Both pachygyria and lissencephaly can be present as a

Lissencephaly

Microcephaly

gradient from anterior to posterior. (d) Polymicrogyric
(meaning many small gyri) patients show an increase in
the number of gyri with a decreased size. This is often
focally localized and asymmetric. (e) Microcephalic
(meaning small head) patients show a reduction in over-
all brain size (-2SD from the mean). Microcephaly vera
(or primary microcephaly) occurs in the absence of other
cortical malformations
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reduction (pachygyria) or even an increased
number of gyri (polymicrogyria) (Poirier et al.
2007, 2012; Kumar et al. 2010). These cortical
phenotypes are frequently accompanied by
hypoplasia or agenesis of the corpus callosum,
hypoplasia of the brain stem, dysgenesis of the
basal ganglia, ventricular dilation, and hypopla-
sia of the cerebellum (Sohal et al. 2012; Kumar
et al. 2010). In addition, almost all patients with
TUBAIA mutations present with a reduction in
brain size (—1 S.D. to =7 S.D. from mean), most
classifying as microcephalic (less than -2 S.D.
below mean; more than 90 %) (Poirier et al. 2007,
2012; Sohal et al. 2012; Kumar et al. 2010).

7 Molecular and Cellular
Mechanisms of TUBA1A
Mutations

What is the underlying molecular defect that
results in the disease state in patients with
TUBAIA mutations? TUBAIA, like all tubulins
protein, has three major domains; an N-terminal
domain (1-229), an intermediate domain (230-—
371), and a C-terminal domain (372—450). The
N-terminal domain harbors a GTP binding pocket
that, in the case of a-tubulins, is non-exchangeable
and is thought to act as a structural co-factor
(Nogales et al. 1997; Spiegelman et al. 1977). In
the case of the Jenna mouse it was shown that the
S140G mutation caused impairment in GTP
binding, and, consequently, a dramatic reduction
in heterodimer formation. The mutant heterodi-
mers, however, were able to incorporate into the
microtubule cytoskeleton, suggesting that the
mutation acted by haploinsufficiency. Similarly,
the human mutations V303G, L397P, and R402C
all result in a reduction in heterodimer levels,
which have been attributed to molecular defects
in the tubulin folding pathway (Tian et al. 2008,
2010). It is apparent, however, that some disease
causing tubulin mutations have no effect on the
efficiency of chaperon mediated tubulin folding
whatsoever. For instance, in vitro analysis of the
P263T, L286F, R402H, and S419L mutations has
shown that they do not cause impaired heterodi-
mer folding. In the case of the P263T mutation
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the incorporation of mutant heterodimers into the
microtubule lattice has a deleterious effect of
microtubule dynamics and growth, lending itself
to the conclusion that some tubulin mutations act
by a dominant negative mechanism (Tian et al.
2010). Mutations that fall within this class may
influence the binding of microtubule associated
proteins such as DCX or the kinesins (Amos and
Schlieper 2005). Tubulins might also interact
with unknown microtubule associated proteins
that are vital for the formation of the developing
brain.

What are the underlying cellular mechanisms
that give rise to TUBAIA-related disease? In
addressing this question it is important to appre-
ciate that TUBAIA is highly expressed in
post-mitotic neurons, but not glia, in the human
and mouse brain (Gloster et al. 1999; Bamji and
Miller 1996). Murine expression studies have
shown that TUBAIA is largely absent from the
proliferative ventricular zone (VZ), and its
expression peaks at embryonic day (E) 16.5
(Braun et al. 2010). The migration of neurons
requires the extension of the leading process, the
translocation of the nucleus and the retraction of
the trailing process (Trivedi and Solecki 2011)
(see also Chaps. 1, 2, 4 and 7). All of these pro-
cesses are heavily reliant on a dynamic microtubule
network, and could potentially be impaired by
mutations in TUBAIA. Similarly, neurite out-
growth requires the stable support and dynamic
force generated by microtubules (Dent and
Gertler 2003). Defects in this process can cause
inadequate crossing of the midline, resulting in
an abnormal corpus callosum and neurological
defects (Engle 2010). Disorders of axon guidance
or migration, however, fail to account for the
reduction in brain size that is observed in almost
all patients with mutations in TUBAIA. This is
particularly curious, given its post-mitotic
expression. One explanation that might account
for this phenotype is an increase in neuronal
apoptosis, which has been observed in the adult
superior colliculus in the Jenna mouse (Edwards
et al. 2011). This explanation is consistent with
the observation that TUBAIA associated micro-
cephaly can increase in severity postnatally
(Cushion et al. 2013).
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Agyria/Pachygyria

FAY FAy

Polymicrogyria

FAY rAY a7

Gene Name:

Genomic Location: Chromosome 12

TUBA1A (NCBI Gene ID 7846)

Lissencephaly (Agyria) to Pachygyria; or Polymicrogyria;

Size: 451 amino acids
Expression: Predominantly post-mitotic neurons
Malformations:
Microcephaly
Hypoplasia or agenesis of the corpus callosum
Hypoplasia of the brain stem
Dysgenesis of the basal ganglia
Ventricular dilation
Hypoplasia of the cerebellum
Mutations

Agyria/Pachygyria: E55K; L70S; L92V; V137D; 1188L; C200Y; Y210C; D218Y;
1238V; P263T; R264C (Hotspot); A270T; L286F; V303G; G366R;
R390C; N392S; L397P; R402H; R402C; R402L; S419L; R422C;

R422H; M425K; G436R

Polymicrogyria:

Fig.5.4 Mutations associated with TUBAIA

Why do mutations in TUBAIA cause a spec-
trum of distinct neurological disorders? Initially
this gene was strongly associated with lissen-
cephaly/pachygyria, but it is now clear that de novo
mutations can also cause polymicrogyria. For
instance, a mutation in valine 235 (V235L)
results in bilateral and asymmetric polymicrogy-
ria, whereas mutations in arginine 402 (R402C,
R402H) cause classic lissencephaly (Mokanszki
et al. 2012; Kumar et al. 2010; Poirier et al.
2007). An analysis of the position of polymicro-
gyria and lissencephaly causing mutations reveals
no obvious pattern (Fig. 5.4). It is conceivable
that different diseases are a consequence of
defects in different cellular processes associated
with microtubule based neuronal migration.
However, this would not account for the interest-
ing case of the R390C mutation. This very same

15L; Y161H; V235L; A333V; R3930C

mutation has been reported to cause polymicro-
gyria in a 1-year-old boy and mild gyral simplifi-
cation and total agenesis of the corpus callosum
in another child (Poirier et al. 2012; Kumar et al.
2010). How does the same mutation cause two
distinct migration phenotypes? One possibility
could be the exposure to different environmental
conditions in utero; or additional genetic factors
that contribute to one or the other phenotype.

8 TUBB2B - Expanding
the Spectrum

Given that mutations in TUBAIA cause neurode-
velopmental disease, it was reasonable to specu-
late that mutations in the p-tubulins might also
be pathogenic. Following a genetic screen of
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Polymicrogyria

Gene Name:

Genomic Location: Chromosome 6

TUBBZ2B (NCBI Gene ID 347733)

Post-mitotic neurons, but also at lower levels in progenitors

Polymicrogyria with or without CFEOM; or Agyria/Pachygyria

G98R; L117P; G140A; S172P; 1210T, L228P; A248V; F265L;

Size: 445 amino acids
Expression:
Malformations
Microcephaly
Dysmorphic basal ganglia
Cerebellar dys- or hypoplasia
Abnormal corpus callosum
Brain stem hypoplasia
Mutations
Polymicrogyria:
T312M; R380L; R380S; R380C; D417N
Agyria/Pachygyria: L207P; N256S

PMG and CFEOM: E421K

Fig.5.5 Mutations associated with TUBB2B

TUBB2A, TUBB2B, and TUBB2C, the Chelly
group reported the identification of five cases of
asymmetrical polymicrogyria (four patients, one
aborted fetus) caused by mutations in TUBB2B
(Jaglin et al. 2009). Besides asymmetrical poly-
microgyria, each patient presented with addi-
tional features, such as microcephaly, dysmorphic
basal ganglia, cerebellar dys- or hypoplasia,
abnormal corpus callosum and brain stem hypo-
plasia. Similar to TUBAIA, the spectrum of
TUBB2B related diseases has expanded rapidly.
Engle and colleagues recently reported the occur-
rence of a mutation (E421K) that causes congenital
fibrosis of the extraocular muscles (CFEOM), a
specific defect of axon guidance, accompanied
by polymicrogyria (Cederquist et al. 2012); axon
guidance defects accompanied by polymicrogyria
and schizenecephaly have also been reported for

a G140A mutation (Romaniello et al. 2012). Pilz
and colleagues have described a lissencephalic
patient with a TUBB2B mutation (L207P), and
Guerrini and colleagues have reported an indi-
vidual with pachygyria and microcephaly with an
N256S mutation (Cushion et al. 2013; Guerrini
etal. 2012) (Fig. 5.5). To date biochemical analysis
has been conducted on five TUBB2B mutations
(F265L, 1210T, L228P, S172P and T312M) and,
similar to TUBAIA mutations, they influence
tubulin heterodimer folding and their incorpora-
tion into microtubules in different ways. For
instance, the S172P mutation results in arrested
tubulin heterodimer folding, whereas the 1210T
is indistinguishable from the wild-type in bio-
chemical and cellular assays.

As might be expected TUBB2B is highly
expressed in post-mitotic neurons at key develop-
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mental time-points, but is also found in progenitor
cells at lower levels (Jaglin et al. 2009). In vivo
knockdown experiments in the rat have shown
that Tubb2b is required for radial migration. These
data have led to the hypothesis that TUBB2B-
related cortical malformations are due to a combi-
nation of impairment in neuronal migration and
radial glial dysfunction (Jaglin et al. 2009).

9 TUBB3 - The Janus Tubulin

The list of tubulinopathy causing genes
expanded in 2010 with the addition of TUBB3
by two independent studies. Engle and col-
leagues showed that six different heterozygous
mutations in this gene caused congenital fibrosis
of the extraocular muscles type 3 (CFEOM3),
either in isolation or as a component of a syn-
drome (Tischfield et al. 2010). Interestingly, and
in marked contrast to the previously described
TUBB2B and TUBAIA mutations, no neuronal
migration deficits or microcephaly could be
observed in these patients. The pathogenicity of
one mutation (R262C) was explored further by
the creation of a transgenic mouse line that rep-
licated various aspects of the human disease.
The R262C mutation increased microtubule sta-
bility and impaired their interaction with the
motor protein Kif2la. Ultimately, this resulted
in defects of axon guidance and cranial nerve
extension, but not cortical architecture
(Tischfield et al. 2010). In the same year, the
Chelly group reported six different TUBB3
mutations (five heterozygous, one homozygous)
in nine patients with malformations of cortical
development associated with neuronal migra-
tion defects (Poirier et al. 2010). All patients
suffered from polymicrogyria or gyral disorga-
nization with microcephaly and cerebellar dys-
or hypoplasia. With the exception of one
individual, these patients presented with brain-
stem hypoplasia, an abnormal corpus callosum
and dysmorphic basal ganglia, but not the
CFEOM3 phenotypes described by Engle and
colleagues (Fig. 5.6). None of the mutations
identified by the Chelly group were the same as
those that cause CFEOM3; curiously, however,

both studies described different mutations in the
same residue, A302. Its substitution with a thre-
onine caused CFEOM3, whereas the A302V
mutation was pathogenic in a patient with gyral
disorganization (Tischfield et al. 2010; Poirier
et al. 2010). These data imply that the mutations
probably act by a dominant mechanism and not
by haploinsufficiency. This idea is supported by
the observation that mutations that cause corti-
cal malformations, in contrast to the ones caus-
ing CFEOM3, reduce microtubule stability
(Tischfield et al. 2010; Poirier et al. 2010).
Finally, it should be noted that the phenotypes
associated with TUBB3 have recently been
expanded to include peripheral neuropathy,
defective olfactory function, photophobia,
cyclic vomiting and hypogonadotropic hypogo-
nadism with analogies to Kallmann syndrome
(Chew et al. 2013).

10 TUBBS - The Mitotic Tubulin

We have added another tubulin isoform to the list
of disease-causing genes: TUBBS (Breuss et al.
2012). In contrast to the other tubulinopathies,
the primary defect associated with TUBBS is
microcephaly. We reported three unrelated indi-
viduals with de novo TUBB5 mutations (M299V,
V3531, E401K) with only one patient presenting
with a notable migration phenotype (M299V)
(Fig. 5.7). Similar to other tubulin isotype-
dependent disorders, affected individuals pre-
sented with dysmorphic basal ganglia and corpus
callosum abnormalities. Employing a transgenic
mouse line that expresses GFP under the endog-
enous Tubb5 promoter, we have shown that
TUBBS is expressed in radial glial progenitors,
intermediate progenitors, and post-mitotic neurons.
Depletion of TUBBS in utero by shRNA knock-
down perturbed the cell cycle of progenitors and
resulted in neuronal migration defects. Similarly,
we have found that overexpression of two of the
three TUBB5 mutations (E401K and V353I)
increased the percentage of progenitors in M-phase
and altered neuronal positioning. Intriguingly,
these two mutations affected the tubulin folding
pathway in different ways. The behavior of the
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Gene Name:
Genomic Location:
Size:

Expression:

Malformations:
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CFEOM3:

PMG/Gyral Disorganization ; {

%, Micro-lissencephaly /

TUBB3 (NCBI Gene ID 10381)
Chromosome 16

450 amino acids

Exclusively post-mitotic neurons
CFEOMS3; or PMG/Gyral disorganization

Dysmorphic basal ganglia
Cerebellar hypoplasia

R62Q; R262H; R262C; A302T; R380C; E410K;
D417H; D417N

PMG/ Gyral disorganization: G82R; T178M; E205K; A302V; M323V

Micro-lissencephaly: M288V

Fig.5.6 Mutations associated with TUBB3

¢ Microcephaly with Structural Brain Abnormalities ™
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Gene Name:

Genomic Location:

TUBBS (NCBI Gene ID 203068)

Chromosome 6

Size: 444 amino acids
Expression: Progenitors and postmitotic neurons
Malformations: Microcephaly
Dysmorphic basal ganglia
Abnormal corpus callosum
Abnormal brain stem
Mutations
Microcephaly with structural brain abnormalities: M299V, V353I, E401K

Fig.5.7 Mutations associated with TUBBS
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7 Leukoencephalopathy Hypomyelination (H-ABC) ™

X7

Hereditary Dystonia

Gene Name:

Genomic Location: Chromosome 19

TUBB4A (NCBI Gene ID 10382)

Size: 444 amino acids

Expression: High levels in adult brain; lower levels during development
Malformations: Hereditary dystonia; or Leukoencephalopathy H-ABC
Mutations

Hereditary Dystonia: R2G, A271T

Leukoencephalopathy H-ABC: D249N

Fig.5.8 Mutations associated with TUBB4A

V3531 mutation was indistinguishable from
wild-type tubulin, whereas the E401K mutation
disrupted the chaperone-mediated folding with a
consequent dearth of o/} heterodimers that failed
to incorporate into the cytoskeletal network. This
result highlights that tubulin mutations that
operate by different mechanisms can still result
in similar phenotypes.

11 TUBB4A - Postnatal and
Motor-Related

There is emerging evidence that the tubulinopa-
thies are not limited to developmental phenotypes.
In 2013 two independent groups reported the
cloning of an R2G mutation in TUBB4A in a mul-
tigeneration Australian family that suffered from
Whispering Dysphonia. Affected individuals in
this family presented with a characteristic “hoppy
horse” gait, laryngeal dysphonia, and a thin face
(Hersheson et al. 2012; Lohmann et al. 2012).
Klein and colleagues additionally described an
A271T mutation in an unrelated familial case of
segmental dystonia with spasmodic dysphonia
(Lohmann et al. 2012). Complementing this find-

ing, Vanderver and colleagues have reported that
D249N mutations in TUBB4A cause a rare form
of hereditary leukoencephalopathy, characterised
by hypomyelination with atrophy of the basal
ganglia and the cerebellum (H-ABC) (Simons
et al. 2013) (Fig. 5.8). Most of the affected indi-
viduals, which originated from seven independent
families, presented in infancy with motor dys-
function, but with normal cognitive and language
development. While the underlying cellular and
molecular mechanisms responsible for these phe-
notypes remain to be defined, it is known that the
Asp249 residue forms a salt bridge with Arg2.
This is important for the correct positioning of the
T7 loop that interacts with the o-tubulin bound
GTP. It is therefore a tenable hypothesis that dis-
ruption of this bridge impairs heterodimer stabil-
ity or microtubule dynamics. Given the postnatal
motor-deficits in those individuals with TUBB4A
mutations, it is an unsurprising fact that this gene
is expressed at low levels in the developing CNS,
but is highly transcribed in adult cerebellum,
brainstem and striatum (Breuss et al. 2012;
Leandro-Garcia et al. 2010). It remains to be
determined which cell types in the adult brain
express this gene.
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12 TUBA8 - (Un)Related

TUBAS was first cloned from a human adult skel-
etal muscle cDNA library, and was shown to be
enriched in heart, skeletal muscle and testis
(Stanchi et al. 2000). Sheridan and colleagues
implicated this gene in polymicrogyria by under-
taking genetic mapping of two consanguineous
families (Abdollahi et al. 2009). They found
linkage to a 7.42 Mb region that contained 230
genes, one of which was TUBAS. Candidate gene
sequencing revealed a 14 base pair deletion in
intron 1 of TUBAS that altered splicing. Despite
assertions that this gene is widely expressed in
developing neuronal structures, careful analysis
in mice and humans has revealed that (unlike
other disease-causing tubulins) TUBAS8 is
expressed at extremely low levels in the develop-
ing brain (Braun et al. 2010). An alternative
explanation for the reported polymicrogyria is
that an unidentified mutation lies in another gene
in the candidate interval. In the absence of addi-
tional unrelated patients with mutations in this
gene the association of TUBAS8 with neurode-
velopment disease should be considered tenu-
ous at best. It may transpire that TUBAS is an
innocent gene.

13 TUBG1 - The Third Family

Implicated

The tubulin superfamily is not limited to the a- and
B-tubulins, but includes the y-, 8-, e-, {- and
n-tubulins (McKean et al. 2001; Dutcher 2001;
Oakley 2000; Oakley and Oakley 1989). Chelly
and colleagues have recently shown that mutations
in the y-tubulin TUBGI cause complex cortical
malformations (Poirier et al. 2013). The y-tubulins
are highly conserved in eukaryotes, forming a
structural component of the centrosome known as
the y-tubulin ring complex (Oakley 2000; McKean
et al. 2001). This complex is known to play a role
in the nucleation of microtubules and regulation of
the spindle during mitosis (Edgerton-Morgan and
Oakley 2012). Chelly and colleagues reported
three patients harboring missense de novo muta-
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tions in TUBG1 (LL387P, Y92C, T331P), one of the
two isoforms in humans. Functional analysis
revealed that the L.387P mutation impairs chaper-
one mediated folding of TUBGI, whereas the
WO92C mutation results in decreased frequency of
microtubule nucleation from the spindle body
(Poirier et al. 2013).

TUBG] is constitutively expressed throughout
the body and its homozygous deletion results in
an arrest of development at the morula/blasto-
cysts stage due to mitotic spindle disorganization
(Yuba-Kubo et al. 2005). Surprisingly, given the
function of y-tubulin in centrosome regulation,
only two of these patients suffered from
microcephaly. All patients showed agyria and/or
pachygyria with abnormalities of the corpus cal-
losum, highlighting the vanishing boundaries
between disorders characterised by defects in
proliferation, migration and differentiation.
Consistent with this observation, TUBG1 knock-
down by in utero electroporation resulted in a
drastic impairment in neuronal migration (Poirier
et al. 2013). The coupling of the centrosome to
the actin cytoskeleton is a critical requirement for
the saltatory nuclear translocation in migrating
neurons (Tsai and Gleeson 2005) (see also Chaps.
1,2,4 and 7).

14 Microtubule Associated

Proteins - The Movers

Microtubules do not act alone, but rather in con-
cert with an orchestra of microtubule associated
proteins (MAPs) (Amos and Schlieper 2005) (see
also Chaps. 4 and 6). The multitude of tubulin
mutations that do not affect folding, and are able
to incorporate into a functional cytoskeleton
strongly suggest that they act by impairing the
interaction with MAPs. There are a multitude of
MAPs that could potentially be involved, including
the microtubule stabilizer DCX (see also above)
which is a key player in the pathogenesis of lis-
sencephaly (Reiner 2013; Caspi et al. 2000;
Gleeson et al. 1998). Here, we focus on the movers;
dynein and kinesin.

These two classes of proteins are molecular
motors that employ microtubules as intracellular
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highways to delivery their molecular cargo (Vale
and Milligan 2000). In addition they can also act
as force generators or influence microtubule sta-
bility (Moore and Wordeman 2004; Mitchison
and Mitchison 2010). While it is unclear whether
isoform composition directly influences the inter-
action between microtubules and motor proteins,
it has been shown that posttranslational modifica-
tions are important (Janke and Bulinski 2011).
For instance, kinesin family motors increase
their microtubule-binding upon detyrosination
(Konishi and Setou 2009; Dunn et al. 2008).
Similarly, for dynein motors, it has been shown
that polyglutamylation directly regulates their
interactions with microtubules (Suryavanshi
et al. 2010; Kubo et al. 2010).

15 Dynein
Cytoplasmic dynein is a minus-end directed
motor protein that consists of two heavy chains
and a complex of associated light chains (Vallee
et al. 2012; Rodriguez-Crespo 2011). The major
cytoplasmic form, dynein 1 (DYNCIH1), is
ubiquitously expressed and important for various
functions ranging from vesicular transport to
nuclear envelope breakdown (Vallee et al. 2012).
The minor form, dynein 2 (DYNC2HI1), is
responsible for transport within cilia and flagella;
their beating behavior in turn, is driven by the
axonemal class of dyneins (Vallee et al. 2012).
Chelly and colleagues reported de novo muta-
tions in DYNCI1HI1 in nine independent cases of
pachygryria and/or polymicrogyria (Poirier et al.
2013). Consistent with earlier findings that impli-
cated dynein in peripheral neuropathy and an
axonal (type 2) form of Charcot-Marie-Tooth
disease, a subset of these patients also showed
defects in the peripheral nervous system (Harms
et al. 2012; Weedon et al. 2011; Poirier et al.
2013). Disease-causing missense mutations
causing malformations of cortical development
occurred throughout the protein; however, the
mutations affecting the peripheral nervous system
seem to cluster in the tail domain.

Although dynein has a multitude of cellular
functions, the observed cortical malformations

are most likely the result of deficient nuclear
translocation in migrating neurons. The critical
role dynein plays in this process has been revealed
by experiments in the fungus Aspergillus nidu-
lans, a eukaryotic model for nuclear migration
(Willins et al. 1997). Morris and colleagues
reported that mutations in the fungal homolog
NudA block nuclear migration (Xiang et al.
1994). They further showed genetic interaction
of this gene with the LISI homolog, NudF
(Willins et al. 1997). Subsequent functional char-
acterization of this interaction revealed that
dynein and Lis1 are acting in concert with Ndel/
Nudel to couple the centrosome and the nucleus
to the actin cytoskeleton (Tsai et al. 2007; Sasaki
et al. 2000). The importance of this interaction is
underlined by the finding that mutations in LIS/
and NDE] cause neurodevelopmental disease
(Reiner et al. 1993; Alkuraya et al. 2011;
Bakircioglu et al. 2011) (see also Chap. 1).

16 Kinesins

The kinesin superfamily consists of 45 genes
(also known as KIFs), classified into 15 families
(Hirokawa et al. 2009). The progressive move-
ment of most KIFs is directed toward the micro-
tubule minus-end, although there are some family
members that move toward the plus-end. Most
are dimeric in structure, which enables them to
“walk” along the surface of microtubules, driven
by the hydrolysis of ATP. Their preferred sub-
strates are 13 protofilament microtubules,
underlining the importance of protofilaments
number (Moores et al. 2006). Their main func-
tion is to transport of cellular cargo (Hirokawa
et al. 2009), however, they also play an important
role in the depolymerization of microtubules
and force generation during mitosis (Moore and
Wordeman 2004). These “movers” have also
been implicated in neurological disease: Marchuk
and colleagues identified a KIF5A mutation
(N256S) as causative in hereditary spastic
paraplegia, a neurodegenerative disorder (Reid
et al. 2002); Engle and colleagues showed that a
host of missense mutations in KIF2]A cause the
congenital axon guidance defects CFEOM1 and
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CFEOM3 (Yamada et al. 2003, 2004); and Chelly
and colleagues identified several mutations in
both KIF5C and KIF2A that cause microcephaly
with epilepsy and severe cortical phenotypes,
such as polymicrogyria and agyria/pachygryria
(Poirier et al. 2013).

17 Reflections and Directions

This review has catalogued those tubulin genes,
the “makers”, and those microtubule associated
motors, “the movers”, that cause neurodevelop-
mental disease. It is apparent that mutations in
the neurodevelopmentally expressed “makers”
(TUBAIA, TUBB2B, TUBB3, and TUBBS)
cause a spectrum of diseases with overlapping
phenotypes. At this juncture it is not possible to
predict a disease phenotype given the residue or
isoform mutated. This is because different
tubulin mutations act by distinct mechanisms,
some by haploinsuffiency, others by dominant
means. Dominant mutations, in turn, have dif-
ferent effects on the stability and dynamic
properties of microtubules, which is likely to be
associated with the binding affinities of various
MAPs. The question that arises is whether dif-
ferent tubulin proteins have intrinsic properties
that make them distinct? Alternatively, could
their unique expression patterns simply provide
spatio-temporally  critical = concentrations?
While the classic experiments in invertebrate
systems strongly pointed towards tubulin spe-
cific function(s), the same cannot be said for
the tubulinopathies, which have muddied the
scientific waters. One way to address this issue
would be to create a series of transgenic mouse
models whereby the coding region of one gene
of interest (e.g. Tubb5) is replaced by each of
the seven other p-tubulin isoforms. Driven by
the endogenous Tubb5 promoter, this experi-
ment would reveal, whether Tubb5 for instance,
has a specific function in the developing
telencephalon.

In the future, we expect that an understanding
of tubulin gene function and the underlying
molecular mechanisms that give rise to the tubu-
linopathies will play an important role in the
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development of novel therapeutics and diagnos-
tic tools. There is growing evidence that neuro-
developmental disorders, once thought to be
irreversible, may be treated effectively postna-
tally (Ehninger and Silva 2011). In the case of
loss of function mutations in TUBAIA it is
conceivable that a small molecule that increased
the transcriptional activity at the TUBAIA
genomic locus might be of utility (Kern et al.
2013). Finally, we expect that in the coming
years the tubulinopathies will expand further,
encompassing additional genes and disease
states. To date genetic screening has primarily
been biased by pre-conceived notions of the role
of a particular isoform, and the availability of
specific patient cohorts. There is already some
evidence implicating de novo TUBAIA and
TUBB2B mutations in autism spectrum disorders
(Neale et al. 2012; Pinto et al. 2010). With the
extension of exome, and eventually, whole
genome sequencing into the clinic we expect
that many more de novo mutations will be found.
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Mark/Par-1 Marking the Polarity
of Migrating Neurons

Orly Reiner and Tamar Sapir

Abstract

Proper brain development requires the orchestrated migration of neurons
from their place of birth to their final positioning, where they will form
appropriate connections with their target cells. These events require coor-
dinated activity of multiple elements of the cytoskeleton, in which the
MARK/Par-1 polarity kinase plays an important role. Here, the various
roles and modes of regulation of MARK/Par-1 are reviewed. MARK/Par-1
participates in axon formation in primary hippocampal neurons. Balanced
levels of MARK/Par-1 are required for proper radial migration, as well as
for migration in the rostral migratory stream. Normal neuronal migration
requires at least two of MARK/Par-1 substrates, DCX and tau. Overall, the
positioning of MARK/Par-1 at the crosstalk of regulating cytoskeletal

dynamics allows its participation in neuronal polarity decisions.

Keywords
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1 Introduction

The capacity of the mammalian brain to perform
complex tasks depends on the activity of a large
number of neurons spatially organized into
regions with distinct functions. Neocortical neu-
rons arise from dividing cells in the proliferative
regions of the developing brain. In the cerebral
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cortex, the two main types of neurons include the
excitatory glutamatergic neurons, which compose
the majority of the neurons in the cerebral cortex,
and the inhibitory GABAergic interneurons.
These two types of neurons are born in physically
distinct areas of the brain, therefore, they need to
migrate, sometimes very long distances, to their
final position using several types of cellular
motility [reviewed in (Ayala et al. 2007; Marin
and Rubenstein 2001, 2003; Kriegstein and
Noctor 2004; Nadarajah and Parnavelas 2002;
Tsai and Gleeson 2005; Reiner and Gerlitz 2013;
Reiner and Sapir 2009; Reiner 2013)]. The six
layers of the cerebral cortex are composed of
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neurons that are born in different areas but are
subsequently organized according to their birth-
dates (Angevine and Sidman 1961; McConnell
1991). In addition, the precursors for olfactory
bulb interneurons are generated from early
postnatal ages and during adulthood in the sub-
ventricular zone (SVZ) (Luskin 1993), and
migrate in the rostral migratory stream in a con-
tinuous way (Altman 1969; Lois et al. 1996;
Lledo et al. 20006).

Genetic mutations, which affect polarity regu-
lation and processes of neuronal migration in the
developing brain, result in a wide array of human
diseases [reviewed in (Lian and Sheen 2006;
Reiner 2013)]. The most common disturbances
of brain development affecting up to 4 % of chil-
dren cause functional deficits, leading to epi-
lepsy, mental retardation, behavioral disturbances
and functional psychosis (Surveys 1989).
Morphological abnormalities of the cortex also
account for a substantial fraction (5-15 %) of
epilepsy in adults (Hardiman et al. 1988;
Brodtkorb et al. 1992; Hauser et al. 1993). In
addition, a portion of cortical malformations in
humans is genetic in origin [reviewed in (Walsh
1999; Gupta et al. 2002)].

Taking into consideration the vast importance
of neuronal migration in health and disease,
understanding of the basic molecular mecha-
nisms underlying this phenomenon has been the
focus of multiple studies [reviewed in (Reiner
and Sapir 2009)]. A motile cell must have internal
polarity in order to move in a specified direction.
Locomotory polarity requires the coordinated
polymerization of cytoskeletal elements such as
microtubules and actin combined with regulated
activities of the associated molecular motors.
MARK/Par-1 appears to be at the crossroads of
various biological functions including cell polar-
ity and stability of microtubules [reviewed in
(Tassan and Le Goff 2004; Timm et al. 2008b;
Munro 2006; Hayashi et al. 2011; Cohen and
Musch 2003; Hurov and Piwnica-Worms 2007;
Bright et al. 2009; Marx et al. 2010; Reiner and
Sapir 2009; Macara 2004; Matenia and
Mandelkow 2009)]. MARK/Par-1 was initially
identified as a protein involved in the regulation
of cell polarity in the simple organism C. elegans
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(Par-1, partition defective gene 1) (Rose and
Kemphues 1998; Betschinger and Knoblich
2004) and in parallel as a protein kinase involved
in regulation of microtubule stability, MARK
(microtubule affinity-regulating kinase) (Drewes
et al. 1997) or also as EMK (ELKL motif kinase)
(Espinosa and Navarro 1998). Therefore, we
have further analyzed the roles of MARK/Par-1
in regulation of neuronal migration (Mejia-
Gervacio et al. 2011; Sapir et al. 2008a, b).

2 MARK/Par-1 Polarity -
Cytoskeletal Regulation
and Disease

Par genes include six members (Par-1 to -6) and
an additional member to this group was identified
as atypical protein kinase C (aPKC) (Kemphues
et al. 1988; Tabuse et al. 1998). Par proteins are
evolutionary conserved with the exception of
Par-2. Par-1, -4 and aPKC encode for serine/thre-
onine kinases that exhibit interesting and func-
tional enzyme-substrate interactions. Par-3 and
Par-6 are well-studied scaffold proteins [reviewed
in (Barnes et al. 2008; Munro 2006)]. They can
form a ternary complex containing aPKC that can
recruit the small-GTPase Cdc42 and thereby reg-
ulate the dynamics of actin and microtubule cyto-
skeleton, epithelial cell polarity, tight junction
formation, mitotic spindle orientation, and cell
migration. The mammalian orthologs of Par-1
are also known as MARK or EMK as stated
above, and four gene family members exist in
mammals (Tassan and Le Goff 2004; Marx et al.
2010). MARK/Par-1 is a central player in the
localization of several cell polarity proteins. The
importance of MARK/Par-1 to cell polarity is not
limited to C. elegans. Par-1 is involved in polar-
ization of the Drosophila oocyte (Doerflinger
et al. 2006, 2010). Additional kinases share struc-
tural similarities with the MARKS, and they
include several members of the AMPK (5’ AMP-
activated protein kinase) subgroup of human pro-
tein kinases [reviewed in (Marx et al. 2010)]. All
MARK isoforms contain six recognized seg-
ments: an N-terminal header (Fig. 6.1), catalytic
kinase domain (KD), linker, ubiquitin-associated
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Fig. 6.1 MARK/Par-1 domains and major modes of
regulation. MARK/Par-1 kinases consist of an N-terminal
domain (N) a catalytic domain followed by a common
docking domain-like CD-like motif, an auto-regulatory
UBA domain, a spacer, and a tail domain (or kinase asso-
ciated domain, KA1). MARK/Par-1 is subject to multiple
means of regulations that occur at several sites along the
protein. One requirement for MARK/Par-1 activity is the
phosphorylation of a threonine at the activation loop
(human MARK/Par-1 T208), which keeps the active site
accessible to the substrate. The kinases MARKK (TAO1)
and LKBI1 activate MARK/Par-1 by phosphorylating it on
T208 (green arrows). GSK3b inactivates the kinase by
targeting a different residue in the same domain, Serine
212 (red blocked lines). CaMKI also targets the catalytic
domain of MARK/Par-1. aPKC phosphorylation sites lies

(UBA) domain, spacer, and tail domain (including
the KA1 sequence motif). Other related kinases
usually differ in the UBA domain. The isolated
UBA domain exhibits conformational instability
and very weak affinity of binding to ubiquitin,
suggesting that this domain functions mainly in
stabilizing of the adjacent kinase domains
(Murphy et al. 2007). The MARKSs were origi-
nally discovered because of the ability of MARK1
or MARK?2 to regulate the stability of microtu-
bules by virtue of phosphorylating microtubule

within the space domain and its phosphorylation allows
the inhibitory binding of 14-3-3 to MARK/Par-1. This
binding represents a second mode of regulation of MARK/
Par-1, which involves protein-protein interaction (Black
blocked lines). 14-3-3 binds to the spacer domain and
relocalizes the kinase while PAKS binds MARK/Par-1 at
the catalytic domain itself. Intra-molecular inhibitory
interaction (red arched lines) of the tail may block the
catalytic domain. Alternatively, the tail may mediate bind-
ing of inhibitory partners. The regulatory role of the UBA
domain is not fully recognized. Its homology to the UBA
class of ubiquitin-associated proteins suggests that it may
be able to interact with different forms of polyubiquitin.
The common docking domain-like CD-like may exert
its function by binding to yet uncharacterized cofactors
(The scheme is adopted from Marx et al. 2010)

associated proteins, such as tau and MAP-2, and
reducing their affinity to microtubules (Drewes
et al. 1997). Many MARK/Par-1 substrates
were identified to contain conserved KXGS
motifs, where the serine residue is phosphory-
lated (Drewes et al. 1997). The removal of micro-
tubule-associated proteins from microtubules
following MARK/Par-1 phosphorylation also
affects microtubule-mediated transport especially
in neurons. The tight association of microtubule-
associated proteins to the microtubule ‘tracks’
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may impede the movements of motor proteins and
their associated cargoes along microtubules
(Mandelkow et al. 2004). Increased expression of
MARK/Par-1 has been shown to correct abnormal
transport resulting from overexpression of tau
(Thies and Mandelkow 2007). Transport of mito-
chondria may be affected via the phosphorylation
of a recently identified MARK/Par-1 interacting
protein and substrate, which is the phosphatase
and tensin homolog (PTEN)-induced kinase 1
(PINK1) (Matenia et al. 2012). PINK1 affects the
transport and autophagy of mitochondria through
its interaction with Parkin, and this process is
important for the survival of neurons (Clark et al.
2006; Park et al. 2006; Jones 2010; Vives-Bauza
et al. 2010). Mutations in either Parkin or PINK1
are linked to familial Parkinson disease (PD)
(see: http://www.thepi.org/parkinson-s-disease-
mutation-database/). Thus, MARK/Par-1 is also
linked with regulation of the transport and local-
ization of mitochondria (Matenia et al. 2012).
MARK/Par-1 acts as a key organizer of micro-
tubule arrays that govern polarized transport in
both vertebrate (Cohen et al. 2004a, b; Suzuki
et al. 2004) and invertebrate (Doerflinger et al.
2003) epithelia. It was identified as an important
microtubule organizer in the leading edge of
migrating cells downstream of Racl activity
(Nishimura et al. 2012). The microtubule-
associated proteins (MAPs) tau and MAP2 are
well-known substrates of MARK/Par-1 (Drewes
et al. 1997). MARK/Par-1 phosphorylates these
MAPs at their corresponding KXGS motifs,
which reside within their microtubule-binding
domain, resulting in a dramatic reduction in their
affinity to microtubules. The detachment of
MAPs from the microtubules can lead to highly
dynamic and unstable microtubules (Drewes
etal. 1997, 1998). Tau, an axonal MAP, regulates
not only microtubules stability but also axonal
transport and has a pivotal role in neuronal func-
tion and survival (Matenia et al. 2012; Timm
et al. 2011; Sydow et al. 2011; Li et al. 2011), as
well as regulation of dendritic functions (Ittner
et al. 2010). Tau is well known for its involve-
ment in a group of neurodegenerative diseases
collectively known as tauopathies [reviewed in
(Hernandez and Avila 2007; Avila et al. 2004;
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Mandelkow and Mandelkow 1998; Rademakers
et al. 2004)]. The most common tauopathy is
Alzheimer’s disease where hyperphosphorylated
tau accumulates within paired helical filaments.
During disease progression, hyperphosphory-
lated tau is missorted to the dendrites and cyto-
plasm and aggregates into neurofibrillary tangles
(NFTs), a process that lead to neuron dysfunction
and neurodegeneration (Thies and Mandelkow
2007). NFTs are a pathological hallmark of
Alzheimer’s disease (AD) as well as a collection
of other neurodegenerative disorders that are
referred to as tauopathies [reviewed in (Morris
et al. 2011; Morfini et al. 2009; Hernandez and
Avila 2007; Avila et al. 2004)]. Based on the
recent findings of a dendritic function of tau and
studies in mouse models, the role of tau in AD
pathogenesis was revisited and it was placed in
the amyloid-B toxicity cascade (Morris et al.
2011). In addition, mutations within the human
MAPT (tau) locus result in the neurodegenerative
disease, frontotemporal dementia with
Parkinsonism (Hutton et al. 1998; D’Souza et al.
1999). However, tau pathologies are not confined
to neurodegenerative diseases. Microdeletions of
a region encompassing the MAPT gene result in
moderate intellectual disability with associated
dysmorphic features (Shaw-Smith et al. 2006;
Sharp et al. 2006; Koolen et al. 2006, 2008;
Varela et al. 2006). The frequency of this micro-
deletion syndrome was estimated to be 1:13,000
to 1:20,000, thus suggesting it to be a common
underlying cause for intellectual disability. When
the same area on chromosome 17 is duplicated,
patients exhibit behavioral problems and poor
social interactions that are consistent with autism
spectrum disorders (ASD) (Grisart et al. 2009;
Kirchhoff et al. 2007). Interestingly, MARKI,
one of the members of the MARK/Par-1 gene
family has been suggested as a susceptibility
gene for autism (Maussion et al. 2008).

3 MARK/Par-1 Regulation

MARK/Par-1 activity is regulated by several mech-
anisms [see Fig. 6.1 and review (Marx et al. 2010)].
The kinase can be activated by phosphorylation
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on a conserved threonine in the activation loop,
which can be executed by MARKK/TAO-1 (Timm
et al. 2003) or LKB1 in association with STRAD
and MO25 (Lizcano et al. 2004). Phosphorylation
of an adjacent serine residue by GSK3p resulted in
inhibition of MARK2/Par-1 activity in one study
(Timm et al. 2008a) or activation in another study
(Kosuga et al. 2005). Phosphorylation at other sites
may affect MARK?2/Par-1 activity or its interac-
tions with additional proteins. For example, phos-
phorylation by aPKC induced binding of MARK/
Par-1 to the scaffold protein 14-3-3/PAR-5, which
resulted in relocation of the kinase from the cell
membrane to the cytosol (Suzuki et al. 2004;
Watkins et al. 2008; Hurov et al. 2004). In addition,
several protein interactions regulate MARK/Par-1
activity independent of protein phosphorylation.
For example, MARK/Par-1 interaction with PAK5
inhibited the activity of the kinase (Matenia et al.
2005). Furthermore, the C-terminal tail of MARK/

MARK2/Par-|
MAP-2 —> MAP-2 P*

Fig.6.2 Schematic representation of key substrates of
MARK/Par-1 during neuronal polarization. Neuronal
polarization of hippocampal neurons in vitro involves the
transition from a non-polarized cell extending multiple
undifferentiated neurites (green processes) to well-
characterized cellular compartments; a single axon (red)
and multiple dendrites (blue). Tau is the key microtubule-
associated protein in axons and MAP2 is the key microtu-
bule-associated protein in the dendrites. MARK/Par-1
phosphorylation alters their affinity the microtubule and
affects microtubules dynamics. The Par3/Par6/aPKC
complex counteracts excessive activity of MARK/Par-1

PARI1 kinases (which includes the KA1 domain) is
involved in binding to acidic phospholipids, which
may be important for the interaction with subcel-
lular fractions of the plasma and may also be
involved in regulation of enzymatic activity
(Moravcevic et al. 2010; Goransson et al. 2006;
Hurov et al. 2004). Tight control of MARK/Par-1
may be achieved in part by its regulated degrada-
tion; it has been shown that active MARK/Par-1
phosphorylated by LKB1 is targeted for ubiquitina-
tion and degradation (Lee et al. 2012).

4 MARK/Par-1 in Primary
Neurons

MARK/Par-1 is required for establishment of
neuronal polarity in culture (Biernat et al. 2002)
(Fig. 6.2). Within the axon, MARK/Par-1 medi-
ated phosphorylation may interfere with the

Spred|
PARBMMPKP(’I:ARKK T_é_SI(I
PAKS i
GSK3B LKBI' cofilin
MARK2/Par-| l
tau—P> tau P*  cofilin P*

MTs Actin

MARK2/Par-1
PSD95 —P> PSD95 P*

and relives possible inhibition of axonogenesis. In parallel,
modulation of the actin cytoskeleton occurs upstream of
MARK/Par-1. MARKK an activator of the kinase binds
Sprouty-related protein with EVH-1 domainl (Spredl)
and the later interacts and inhibits specific protein kinase
(TESK1) thus limiting the phosphorylation of Cofilin,
which results in the stabilization F-actin. Phosphorylation
of MAP2 by MARK/Par-1 shortens the length and
reduces the branching of dendrites. At the mature
dendrite, MARK/Par-1 regulates spine morphogenesis
through phosphorylating of Postsynaptic Density
Protein 95 (PSD-95)
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maintenance of the barrier-mediated sorting in
the initial axonal segment (Li et al. 2011).
Knockdown of MARK/Par-1 induced formation
of multiple axons in hippocampal neurons,
whereas strong MARK/Par-1 expression inhib-
ited axon formation. This inhibition was counter-
acted by the Par-3/Par-6/aPKC complex, which
inhibits MARK/Par-1 (Chen et al. 2006). Recent
research has demonstrated that Par-3 is also
involved in regulation of microtubule stability.
Furthermore, disruption of the microtubule regu-
latory activity of Par-3 impaired its function in
axon specification (Chen et al. 2013). At least
part of the functions of MARK/Par-1 in the axon
may be attributed to the activities of one of its
main substrates, tau [reviewed in (Matenia and
Mandelkow 2009; Timm et al. 2006)]. Tau is
mainly an axonal protein (Kempf et al. 1996;
Mandell and Banker 1996) however, it is highly
dynamic and its axonal sorting is regulated in
part by active phosphorylation, for example by
MARK/Par-1 (Li et al. 2011; Konzack et al.
2007). It should be noted that tau may be phos-
phorylated by additional kinases such as GSK-3f
and CDKS [reviewed in (Billingsley and Kincaid
1997; Drewes 2004)]. In vitro work also impli-
cates GSK3p as one of the critical regulators of
neuronal polarity [reviewed in (Polleux and
Snider 2010)]. Experiments using several types
of GSK-3 inhibitors indicate that GSK-3a/f act
as negative regulators of axon formation because
they lead to formation of multiple axons (Jiang
et al. 2005; Yoshimura et al. 2005). The activity
of MARK/Par-1 is not limited to axons, although
high activity, which was visualized by a cellular
biosensor, was noticed in the axon and growth
cone of developing neurons (Timm et al. 2011).
The active kinase was shown to inhibit the forma-
tion of dendrites via phosphorylation of MAP2 in
hippocampal neurons (Terabayashi et al. 2007).
A role for MARK/Par-1 has also been demon-
strated in dendritic spines (Wu et al. 2012). This
activity was mediated through MARK/Par-1
induced phosphorylation of the synaptic scaf-
folding protein PSD-95 (Fig. 6.2).

MARK/Par-1 is likely to be mediating an
active crosstalk between the microtubules and
actin microfilaments [reviewed in (Timm et al.
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2006; Matenia and Mandelkow 2009)]. Neuronal
polarization requires a continuous modulation of
both actin microfilaments and microtubules
[reviewed in (Witte and Bradke 2008; Arimura
and Kaibuchi 2007)]. The regulatory interactions
between MARK/Par-1 and several actin modula-
tors are capable of mediating this crosstalk
[reviewed in (Matenia and Mandelkow 2009)].
PAKS, a member of the Rac/Cdc42-associated
Ser/Thr kinases inhibits MARK/Par-1 activity
resulting in stable microtubules and in parallel
induces actin dynamics (Matenia et al. 2005)
(Fig. 6.2). A similar type of regulatory interac-
tions occurs more upstream, one of the MARK/
Par-1 activating kinases, MARKK has been
found to interact with TESK1 and Spred-1 (Johne
et al. 2008). TESK-1 belongs to the LIM kinase
family and stabilizes actin organization by phos-
phorylating Cofilin. TESK1 can also bind and
inactivate MARKK. Spred-1’s interaction with
TESKI1, inhibits TESK1 kinase activity. Thus,
the tripartite interaction of MARKK-TESKI1 and
Spred-1 can influence both the microtubules and
the actin elements of the cytoskeleton.

In vivo, kinases belonging to the MARK fam-
ily (SAD-A and SAD-B also known as BRSK1
and BRSK?2) have been shown to regulate neuro-
nal polarity (Kishi et al. 2005). Cortical neurons
doubly knockout for SAD-A and SAD-B kinases
were unable to specify a single neurite to become
an axon in vivo. Additional studies demonstrated
that the kinase LKB1 is the main upstream acti-
vator of SAD-A/B kinases in cortical neurons
(Barnes et al. 2007).

5 MARK/Par-1 and Neuronal
Migration

MARK?2 is a member of a small family of pro-
teins (Tassan and Le Goff 2004), thus, although it
could be expected that knockout of the Mark2
gene will result in a neuronal migration pheno-
type based on its cellular activities, developmen-
tal gene redundancy may explain why such a
phenotype has not been described in the Mark2
deficient mice. In utero electroporation has been
proven to be an efficient way to circumvent gene
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Fig. 6.3 MARK/Par-1 and neuronal migration.
(a) Simplified scheme of the radial migratory path of
excitatory neurons in the developing cerebral cortex.
Cells born at the ventricular zone (VZ) from a radial
progenitor (red) one of several types that occupy the
subventricular zone (sVZ). The postmitotic cells lose
their polarity and become multipolar (pink) before re-
establishing a bipolar morphology and moving to the
forming cortical plate (CP), sending connections to the
marginal zone (MZ) and towards other brain areas. A
migrating cell typically orients a leading edge towards
the pial surface and the centrosome is located in front of
the nucleus and serves as a microtubule organization cen-
ter. (b—j) MARK/Par-1 affects neuronal migration via its
dual role in regulating cellular polarity as well as micro-
tubule dynamics. Over expression of MARK/Par-1
causes destabilization of the microtubule, complete loss

redundancy, as previously demonstrated in case
of the Dcx family of proteins (Bai et al. 2003;
Koizumi et al. 2006) [reviewed in (Reiner et al.
2012)]. However, Mark2 knockout mice do
exhibit impairments in spatial learning and mem-
ory (Segu et al. 2008). Based on the tight correla-
tion between abnormal neuronal migration and
mental retardation, it may be hypothesized that
these mice exhibit a subtle previously unappreci-
ated phenotype in the developing brain.

During normal brain development, neuroblasts
proliferate in the ventricular (VZ) and the sub-
ventricular (SVZ) zones (Fig. 6.3a). Following
their postmitotic division, neurons adopt a multi-
polar morphology (Tabata and Nakajima 2003)
from which they will transit to a bipolar morphol-
ogy and migrate along radial glia (Fig. 6.3a, b).
Once they reach the cortical plate (CP), they
detach from the radial glia and form appropriate
connections. Overexpression of MARK/Par-1 in

d e
MARK/Par-1 shRNA

I

of polarity cell rounding and inhibition in radial migration
(d). Acute reduction in MARK?2/Par-1 levels in the devel-
oping brain is also detrimental to normal migration.
Neurons treated with MARK/Par-1 shRNA fail to migrate
beyond the IZ and fail to repolarize. The leading edge of
the migrating neurons is frequently hooked and distorted
and the centrosomal motility is decreased (f). Knock
down of DCX, a MARK/Par-1 substrate, cause cells to
stall in a highly branched multipolar morphology
(g) Bipolar cells occasionally display centrosome split
and irregular centrosomal motility (h). (i) Dcx shRNA
with additional reduction in MARK/Par-1 levels partially
rescues this phenotype and restores centrosomal motility
(jJ). (k) Introduction of tau shRNA in the developing brain
inhibits neuronal migration. Less neurons reach the corti-
cal plate. The leading edge of the migrating neurons is
curved and thin (1)

the developing brain using in utero electroporation
strongly inhibited neuronal migration; cells lost
their polarity and adopted round rather than mul-
tipolar or bipolar morphologies (Fig. 6.3c, d).
Reduction in the levels of polarity kinase MARK/
Par-1 by shRNA resulted in a pronounced inhibi-
tion of radial neuronal migration (Sapir et al.
2008a) (Fig. 6.3¢, ). Most of the shRNA treated
neurons were stalled at the boundary between the
intermediate zone (IZ) and CP (Fig. 6.3e, f). The
inhibited neurons mainly exhibited a multipolar
morphology. Some of the neurons that managed
to migrate towards the CP, exhibited abnormal
morphology with a curved or bifurcated leading
edge pointing to the VZ (Sapir et al. 2008a)
(Fig. 6.3f). The transient multipolar stage is sen-
sitive to the levels of quite a few proteins; includ-
ing DCX, LIS1, Filamin A and others (LoTurco
and Bai 2006). Schematic presentation of brain
sections treated with Dcx shRNA is shown in
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Fig. 6.3g, h. The proteins mentioned above
regulate cell polarity and motility in neocortical
SVZ and IZ during radial migration. Interestingly,
adding MARK/Par-1 kinase-dead on top of
MARK/Par-1 shRNA allowed neurons to change
their morphology from multipolar to bipolar.
Nevertheless, this transition was not sufficient to
allow successful migration to the CP. This result
strongly suggests that there may be different
modes of regulation for each phase. This was the
first example where a transition to the bipolar mor-
phology occurred without subsequent migration.
These results strongly suggest for an unknown
kinase-independent activity involved in morphol-
ogy change. Reduction of kinase activity on its
own also retarded neuronal migration and cells did
not reach their expected position in the cortical
plate. Reduction of kinase activity was achieved
by expression of MARK/Par-1 kinase-dead which
acts as a dominant negative and inhibits endoge-
nous kinase activity, or via expression of PAKS,
which binds to the catalytic domain of MARK2
and inhibits its activity (Matenia et al. 2005).
Taking into consideration the important role
that MARK/Par-1 plays in migration of radially
migrating neurons, we also examined its role in
migration of postnatal neurons to the olfactory
bulbs (Mejia-Gervacio et al. 2011). Rostral
migratory stream (RMS) neuroblasts expressed
MARK/Par-1 in the postnatal and adult brain.
Knockdown of MARK/Par-1 revealed that it is
required for correct positioning of the leading
processes of the neuroblasts heading toward the
olfactory bulb. Decreasing the expression levels
of MARK/Par-1 in neuroblasts impaired the
ability of cells to maintain a sustained forward
direction of displacement in the RMS. As a con-
sequence, the integration of newborn neurons
into the olfactory bulb circuit was compromised.
It is likely that the observed phenotypes can be
attributed at least in part to modulation of micro-
tubule dynamics. MARK/Par-1 phosphorylates
multiple substrates, some of them are MAPs,
which change their affinity to microtubules fol-
lowing MARK/Par-1 phosphorylation. The sub-
strates include tau, MAP2, MAP4 and DCX
(Drewes et al. 1997; Biernat et al. 1993; Schaar
et al. 2004). Overexpression of MARK/Par-1 in
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cells leads to hyperphosphorylation of MAPs on
KXGS motifs and to disruption of the microtubule
array (Drewes et al. 1997). As mentioned above,
in vivo overexpression of MARK/Par-1 resulted
in loss of neuronal polarity (Sapir et al. 2008a).
Reduction in MARK/Par-1 resulted in more sta-
ble microtubules detected in primary neurons,
and as a consequence in vivo neurons were stalled
in the multipolar stage (Sapir et al. 2008a).
Reduction in DCX, one of the substrates of
MARK/Par-1, resulted in an opposite effect with
more dynamic microtubules, yet in vivo neurons
are stalled in the multipolar stage (Sapir et al.
2008b) as previously reported (Bai et al. 2003;
Ramos et al. 2006) (Fig. 6.3g). One clear conclu-
sion from the above-described experiments may
be that proper neuronal migration requires very
accurate control of microtubule dynamics.
Tipping the balance in either direction inhibits
neuronal migration. Based on this conclusion it
was possible to postulate that simultaneous
reduction of both DCX and MARK/Par-1 will
allow for proper neuronal migration. Indeed, in
utero electroporation of both DCX and MARK/
Par-1 shRNA resulted in a partial rescue of neu-
ronal migration. These results have practical
implications following the clear demonstration
that a reduction in the levels of one gene may
ameliorate the phenotype observed in case of
mutation of another gene in the same pathway.
Previous studies indicated that centrosomal
motility and the coupling between the centro-
some and nucleus through microtubules is impor-
tant for neuronal migration [reviewed by (Solecki
et al. 2006; Tsai and Gleeson 2005; Vallee and
Tsai 2006)]. Centrosomal motility requires the
activity of molecular motors and cytoskeletal
integrity. Furthermore, this process is subject to a
delicate balance of opposing activities thus sug-
gesting that reversible post-translational modifi-
cations are likely to be involved in the regulation
of dynamics of centrosomal motility and neuro-
nal migration. When MARK/Par-1 levels were
reduced, centrosomes moved very slowly (Sapir
et al. 2008a) (Fig. 6.3f). The dynamics of
observed centrosomal behaviour when DCX was
reduced differed markedly (Sapir et al. 2008b).
The centrosome separated into two centrioles,



6 Mark/Par-1 Marking the Polarity of Migrating Neurons

which moved bi-directionally and fast (Fig. 6.3h).
It has been proposed that the mammalian inter-
phase centrosome consists of two independent
units held together primarily as a result of the
dynamic properties of the microtubule cytoskel-
eton (Jean et al. 1999). Furthermore, the balanced
activities of kinases and phosphatases play an
instructive role in centrosomal splitting (Meraldi
and Nigg 2001). Therefore, it is possible to
assume that reversible phosphorylation may also
be involved in splitting of the centrosome in
migrating neurons. DCX is a phosphoprotein and
is dephosphorylated by phosphatases. The role of
DCX kinases in neuronal migration has been
well established, but phosphatases are likely to
be as important. Of particular interest is the role
of Protein Phosphatase 1 (PP1) in centrosomal
splitting (Mi et al. 2007), since this phosphatase
is capable of dephosphorylating DCX in a site-
specific manner (Shmueli et al. 2006; Bielas et al.
2007). Nevertheless, the role of actin and the
associated molecular motor myosin in the main-
tenance of centosomal integrity cannot be
neglected. A basic role of the actin cytoskeleton
in centrosomal splitting has been established
(Euteneuer and Schliwa 1985; Thompson et al.
2004; Uzbekov et al. 2002). In migrating neurons
the role of actin remodelling and the activity of
myosin has proven to be essential for proper
nuclear and cellular motility (Bellion et al. 2005;
Schaar and McConnell 2005; Tsai et al. 2007;
Ma et al. 2004). Both DCX and MARK/Par-1 are
capable of mediating a crosstalk between the
microtubule and actin cytoskeleton (Tsukada
et al. 2003, 2005; Matenia et al. 2005; Johne et al.
2008). In summary, seamless motility of the
polarized centrosome requires a tight balance of
factors involved in regulation of the molecular
motors and the cytoskeleton.

As mentioned above, tau is one of the key sub-
strates of MARK/Par-1. Reduction of tau clearly
inhibits neuronal migration in the developing
cortex, thus revealing a clear developmental role
for tau (Sapir et al. 2012) (Fig. 6.3k, 1). Reduced
tau levels affected the morphology of the leading
edge in spite of normal morphology of radial glia
(Fig. 6.31). The leading edge of cells treated with
shRNA to tau was crooked and thinner than in
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control cells. Furthermore, tau has a role in
regulation of mitochondria in the migrating cells;
both intracellular mitochondrial transport and
morphology were severely affected following tau
knockdown. Neurons that did reach the CP, were
not entirely normal. They exhibited smaller cell
somas, far less developed dendrites and a striking
reduction in connectivity.

Collectively, these results demonstrate that
balanced levels of MARK/Par-1, relative levels
of at least two of its important substrates DCX
and tau, as well as their phosphorylation status,
are of importance in regulation of neuronal polar-
ity, migration and later on connectivity in the
developing brain.

6 Concluding Remarks

MARK/Par-1 belongs to a functionally conserved
family of protein kinases. It plays key roles in
several cellular processes including neuronal
polarity and migration and it has major roles in
more than one aspect of the neurodegenerative
cascades in pathologies such as Alzheimer’s dis-
ease. The protein is composed of functional
domains, which serve as sites for many levels of
regulatory modifications and interactions. Indeed
the kinase activity is tightly controlled by means
of post-translational modifications (phosphoryla-
tion), physical interactions, as well as intra- and
inter-molecular regulations of the active kinase.
MARK/Par-1 exerts its function by phosphory-
lating several effectors. The phosphorylation of
MAPs such as DCX in the developing neuron,
tau in the axon, MAP2 in the dendrite, and PSD-
95 in the synapse, affect neuronal polarization
and neuronal functioning. Its dual effects on
polarization and on the dynamic properties of the
microtubules make MARK/Par-1 regulated activ-
ity pivotal for proper advancement of radial
migration in the developing cortex.
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The PAR Polarity Complex
and Cerebellar Granule Neuron
Migration

Joseph S. Ramahi and David J. Solecki

Abstract

Proper migration of neurons is one of the most important aspects of early
brain development. After neuronal progenitors are born in their respective
germinal niches, they must migrate to their final locations to form precise
neural circuits. A majority of migrating neurons move by associating and
disassociating with glial fibers, which serve as scaffolding for the devel-
oping brain. Cerebellar granule neurons provide a model system for
examination of the mechanisms of neuronal migration in dissociated and
slice culture systems; the ability to purify these cells allows migration
assays to be paired with genetic, molecular, and biochemical findings.
CGNs migrate in a highly polarized fashion along radial glial fibers,
using a two-stroke nucleokinesis cycle. The PAR polarity complex of
PARD3, PARDG, and an atypical protein kinase C (aPKC) regulate sev-
eral aspects of neuronal migration. The PAR polarity complex regulates
the coordinated movements of the centrosome and soma during nucleoki-
nesis, and also the stability of the microtubule cytoskeleton during migra-
tion. PAR proteins coordinate actomyosin dynamics in the leading
process of migrating neurons, which are required for migration. The PAR
complex also controls the cell-cell adhesions made by migrating neurons
along glial cells, and through this mechanism regulates germinal zone
exit during prenatal brain development. These findings suggest that the
PAR complex coordinates the movement of multiple cellular elements as
neurons migrate and that further examination of PAR complex effectors
will not only provide novel insights to address fundamental challenges to
the field but also expand our understanding of how the PAR complex
functions at the molecular level.
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1 Introduction

In the developing brain, immature neurons must
migrate from the proliferative germinal zones
to their final destinations (Hatten and Heintz
1995; Marin et al. 2010; Manzini and Walsh
2011; Métin et al. 2008; Millen and Gleeson
2008; Vallee et al. 2009). They are guided along
their way by association and disassociation
with glial fibers that act as neuronal migration
tracts (Hatten 1990; O’Rourke et al. 1992).
Neurons throughout the brain migrate by salta-
tory motion, in which the highly dynamic
forward extension of the leading process is fol-
lowed by somal translocation (Edmondson and
Hatten 1987). This two-step motion is a highly
orchestrated process involving coordination of
the actin and microtubule cytoskeletons and
associated motor proteins (Trivedi and Solecki
2011; Bellion et al. 2005; Kawauchi and
Hoshino 2007; Valiente and Marin 2010). The
correct orientation and migration of these cells
is fundamental to the proper formation of neu-
ral circuits. Errors in neuronal migration and
germinal zone exit are implicated in develop-
mental and cognitive disorders such as lissen-
cephaly, mental retardation, epilepsy, and
pediatric cancers (Métin et al. 2008; Kato and
Dobyns 2003; Ross and Walsh 2001). The
molecular mechanisms of neuronal migration
provide insight into the progression and treat-
ment of these diseases.

The cerebellar granule neuron (CGN), the
most common cerebellar neuron, has been used
as a model for studies of polarity and migration.
CGNs are born prenatally in the rhombic lip of
the developing brain and form a secondary ger-
minal zone in the external granule layer (EGL) of
the developing cerebellum (Fig. 7.1) (Gregory
et al. 1988; Rakic 1971; Ryder and Cepko 1994).
In the EGL, immature proliferative granule neuron

progenitors (GNPs) follow tangential migration
paths parallel to the surface of the developing
brain. CGNs begin to terminally differentiate
between postnatal days 6-8 (P6-8). This process
comprises germinal zone exit, axon extension,
transition from tangential to radial migration
(perpendicular to the cerebellar surface) along
Bergmann glia, and arrival at their final positions
in the internal granule layer (IGL) (Rakic 1972;
Komuro and Rakic 1998). As radial migration
continues through to P15, the EGL disappears as
all CGNs have evacuated this transient germinal
zone and have migrated into the IGL.

Advances in microscopy have allowed ever
more detailed views of the morphology of migrat-
ing neurons in both dissociated culture and slice
imaging systems. CGNs have provided a proto-
typic model for examination of neuronal migra-
tion, progressing from studies of fixed cells to
high temporal-resolution live imaging assays of
migrating cells. First, electron microscopy of the
developing cerebellum in Rhesus macaques
showed the migration of individual CGNs per-
pendicular to the surface of the brain along radial
fibers later identified as Bergmann glia, with
leading and trailing processes extending from
their elongated soma (Rakic 1971, 1972). At the
junctions of migrating CGNs, electron micros-
copy identified interstitial densities, or regions of
the cell in which submembranous cytoskeletal
elements attach to microtubules, thereby anchor-
ing the cytoskeleton to a point at which forward
force can be generated from cell-cell contacts
(Gregory et al. 1988). Subsequent time-lapse
imaging revealed that CGNs are highly polarized,
having dynamic leading and trailing processes,
while the nucleus occupies most of the somal
volume. This polarity facilitates nuclear move-
ment as a crucial aspect of saltatory CGN migra-
tion (Edmondson and Hatten 1987; Rivas and
Hatten 1995; Solecki et al. 2004).
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Fig.7.1 Germinal zone migration in the developing
cerebellum. (a) Cerebellar granule neuron precursors
(cGNPs) migrate tangentially (horizontal arrows)
within the External Granule Layer (EGL). They then
transition to a radial migration mode (vertical arrows)
and migrate along glial fibers through the Molecular
Layer (ML) and into the Internal Granule Layer (/GL).

As with all neurons, the dynamic leading
processes of CGNs are guided by extracellular
cues but their movements are not synchronized
with those of the neuronal soma (Edmondson and
Hatten 1987). Polarized somal and organelle
movement during CGN migration provided a
foundation for understanding the basis of the
saltatory movement cycle, in which the soma
moves at an average rate of 33+20 pm/h
(Edmondson and Hatten 1987). Interestingly,

72 Hours (P10)

(b) Cereballarslice cultures electroporated with
CGN-specific H2B-mCherry nuclei to track neuronal
migration. At postnatal day 8 (P8, 24 h post electropora-
tion), H2B-mCherry labeled CGNs migrate tangentially
through the EGL. By P10 (72 h post electroporation)
most CGNs have evacuated the EGL and migrated radi-
ally into the ML and IGL

forward movement of vesicles precedes somal
movement, implying that specializations in cel-
lular structures occur prior to somal movement.
This concept was expanded with the observation
that the centrosome enters the leading process
prior to somal translocation, in what is termed the
two-stroke motility cycle (Fig. 7.2) (Solecki et al.
2009). Strikingly, the saltatory timing first
observed in early differential interference contrast
(DIC) microscopy studies matches the two-stroke
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Fig. 7.2 The two-stroke nucleokinesis cycle of
migrating neurons. (a) In the two stroke nucleoki-
nesis cycle, the centrosome is positioned into the
neuronal leading process before somal translocation.
(b) Time-lapse imaging of a migrating CGN whose

motility cycle of centrosome and soma (Solecki
et al. 2009). This original observation of the
mechanisms of CGN migration was expanded
to apply to several other neuronal subtypes
(Bellion et al. 2005; Schaar and McConnell
2005; Tsai et al. 2007; Sakakibara et al. 2013;
Yanagida et al. 2012; Yang et al. 2012; Shinohara
et al. 2012). Recently it has been shown a cyto-
plasmic dilation develops within the leading pro-
cesses of subventricular-zone neurons before
nuclear translocation, similar to the morphologic
change seen during actin and microtubule enrich-
ment of the leading processes of CGNs (Schaar
and McConnell 2005; Rivas and Hatten 1995).
Thus in vitro studies of CGN morphology pro-
vide a cellular context for understanding the
large-scale migration patterns within the devel-
oping brain.

Advances in ex vivo imaging have shown com-
plex alterations in the morphology of migrating
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centrosome is labeled with Centrin2-Venus (green)
(white arrow) and whose nucleus is labeled with H2B-
mCherry (red). Centrosome positioning occurs 0 and
30 min, and somal translocation occurs between 45
and 90 min

CGNs as they transit different environments and
interact with different cell types. The shapes of
radially migrating CGNs change as they pass
through different layers of the developing cere-
bellum. The growth cone of the leading tip of
migrating neurons has dynamic filopodia and
lamellipodia, which are dynamic extensions that
form and retract as the neuron samples its envi-
ronment and moves forward (Gregory et al.
1988). In the molecular layer of the cerebellum,
CGNs assume an extended shape as they move
rapidly along Bergmann glia, while they assume
a more rounded shape as they transiently and
slowly migrate through the Purkinje cell layer.
As CGNs enter the IGL, the cell body again
assumes an extended shape for rapid movement
independent of Bergmann glia (Komuro and
Rakic 1998). Observation of tangentially migrat-
ing CGNs shows that in the EGL their velocity is
dependent on their position. Their most rapid rate
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of tangential migration occurs in the center of the
EGL, where they maintain short leading and
trailing processes. As they move to the bottom of
the EGL, their tangential migration velocity
slows and they extend longer leading and trailing
processes. CGNs slowly migrate out of the EGL
upon reaching its interface with the molecular
layer and begin radial migration into the molecu-
lar layer (Komuro et al. 2001). Because the
multiple modes of CGN migration involve region-
specific rates and morphologies, the motor systems
and cytoskeletal regulation mechanisms that reg-
ulate these different types of migration are of
great interest.

The cytoskeletons of migrating neurons are
dynamic, changing within the different migration
environments. The leading processes of migrat-
ing neurons are enriched in microtubules and
actin, which extend toward a tubulin cage sur-
rounding the nucleus (Rivas and Hatten 1995).
Regulation of the microtubule cytoskeleton is a
driving factor in neuronal migration. The micro-
tubule array of migrating neurons is highly
polarized, as growing microtubule “plus” tips
extend into the leading process and depolymer-
izing “minus” ends are oriented toward the
nucleus (Rakic et al. 1996). The genetics of
human neuronal migration disorders further
highlight that microtubule cytoskeleton and its
associated motor protein dynein are regulators of
neuronal migration. The cytoplasmic dynein
motor protein is a polypeptide of 12 subunits,
comprising two identical heavy chains that con-
tain the AAA ATPase domains required for activ-
ity, two intermediate chains involved in cargo
anchoring, and additional intermediate and light
chains whose functions remain unclear (Cho and
Vale 2012; Dujardin and Vallee 2002; Feng et al.
2000). Genetic analysis of lissencephaly identi-
fied mutations in the dynein adaptor protein
Lissencephaly 1 (LIS1) (Reiner et al. 1993;
Dujardin et al. 2003; Faulkner et al. 2000;
Hirotsune et al. 1998; Smith et al. 2000).
Lissencephaly also results from mutations in the
Doublecortin (DCX) gene, which encodes a
microtubule bundling protein and is expressed in
migrating neurons (Kato and Dobyns 2003;
Francis et al. 1999; Gleeson et al. 1999; Allen
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et al. 1998). Both LIS1 and dynein play roles in
radial neuronal migration (Tsai et al. 2007;
Tanaka et al. 2004; Smith et al. 2000; Shu et al.
2004) (see also Chap. 1). As more genes that par-
ticipate in the regulation of neuronal migration
and brain development are identified, additional
genetic causes of cognitive and developmental
brain disorders will be recognized.

Active migration of CGNs requires coordina-
tion between the microtubule and actin cytoskel-
etons and their associated motor proteins (Ridley
et al. 2003). The leading processes of migrating
neurons are enriched in actin, and disruption of
the actin cytoskeleton with cytochalasin B is suf-
ficient to inhibit migration, implicating actin sub-
unit assembly in migration (Rivas and Hatten
1995; Le Clainche and Carlier 2008). Actin-based
motility is dependent on the myosin family of
motor proteins. Myosin II contains two heavy
chains that constitute the head and tail domains
of the protein and four light chains that bind to
the heavy chains (Vallee et al. 2009). Phosp-
horylation of myosin II by myosin light chain
kinase or myosin heavy chain kinase is required
for ATP hydrolysis, which drives motor function
(Kamm and Stull 2001; Moussavi et al. 1993).
Nonmuscle myosin IIb, the main myosin expre-
ssed in the developing brain, was identified as
important to neuronal migration when mutation
in the motor domain of nonmuscle myosin heavy
chain IIb was observed to disrupt CGN migration
and cerebellar foliation (Ma et al. 2004; Vicente-
Manzanares et al. 2009; Rochlin et al. 1995).
Actomyosin enrichment of the leading process
suggests this compartment may be the main site
for actin cytoskeletal dynamics in migrating neu-
rons (Rivas and Hatten 1995; Le Clainche and
Carlier 2008).

Migrating CGNs encounter multiple microen-
vironments and make several types of cell-cell
contact as they migrate from the EGL to the IGL
(Komuro and Rakic 1998). In CGNs migrating
along glial fibers, the dynamic leading process is
observed to wrap around Bergmann glia, and
junctional adhesion molecule (JAM)-mediated
adhesions are shown to form at cell-cell contacts
(Famulski et al. 2010). As the neurons encounter
different cell types, their modes of migration and
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their adhesions change accordingly (Hatten 1990;
Fishman and Hatten 1993). Astrotactin provides
a receptor system for CGN migration along
astroglia, and the integrin 1 receptor promotes
migration along laminin fibers (Edmondson et al.
1988; Fishell and Hatten 1991; Fishman and
Hatten 1993). Increased astrotactin expression,
identified as a general feature of migratory cells,
is noted in migratory CGNs in the EGL of the
cerebellum (Zheng et al. 1996). In vitro assays of
CGN migration along glial membrane- and
laminin-coated fibers mirrored the saltatory
nucleokinesis cycle observed in slice migration
assays; however, brief, limited migration was
observed on collagen and fibronectin fibers
(Fishman and Hatten 1993). Individual cell sur-
face receptors have been identified by in vitro
migration assays as a requirement for neuronal
migration, but it is unclear which combination of
receptors is used and how they are anchored to
the cytoskeleton in the different migration modes
in the developing cerebellum.

Cell biology and genetic studies have created
a basic framework to explore how neurons
migrate from a GZ to their final laminar positions.
However, several challenges remain: (1) Current
migration models show inconsistencies, how will
these differences be resolved? (2) How will the
ever increasing array of cytoskeletal regulators be
woven into an integrated model of neuronal
migration? (3) What mechanisms control migra-
tion initiation and migration mode during GZ
exit?

As all migrating cells are polarized (i.e., have
spatially defined cytoskeletal organizations that
are globally coordinated to execute complex
motility programs), we will address these three
major challenges by examining how polarity sig-
naling globally organizes the neuronal cytoskel-
eton rather than by the reductionist approach of
studying single cytoskeletal components in isola-
tion. The best characterized cell polarity signal-
ing molecules are the evolutionarily conserved
partitioning defective (PAR) proteins (Kemphues
et al. 1988). The PARD3 and PARD6 adaptor
proteins form a complex containing atypical PKC
and the CDC42 or Racl Rho GTPases (Joberty
et al. 2000; Lin et al. 2000). This ternary complex
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is critical for tight junction formation, mitotic
spindle orientation, cell migration and axon spec-
ification (Munro 2006; Barnes and Polleux 2009;
Nance and Zallen 2011). This chapter will dis-
cuss the multiple roles of these proteins in neuro-
nal migration through (1) organelle structure and
movement, (2) coordination of cytoskeletal
dynamics and associated motors, and (3) interac-
tion with cell-cell focal adhesions. As studies of
the PARD3/PARD6/aPKC complex (the PAR
complex) progress, the individual roles of the
PAR proteins in the centrosome, nucleus, acto-
myosin cytoskeleton, and focal adhesions are
becoming clearer. PAR signaling has been shown
to control the two-stroke nucleokinesis cycle of
centrosome motion followed by somal transloca-
tion (Solecki etal. 2004). During the nucleokinesis
cycle, the PAR complex has been shown to regu-
late myosin II activation and the actin cytoskele-
ton (Solecki et al. 2009). The role of PAR proteins
and their regulation of focal adhesion turnover
through the seven in absentia homolog (SIAH)
E3 ubiquitin ligase (Famulski et al. 2010) has
introduced PAR signaling as being regulated by
protein degradation. The question of how PAR
controls focal adhesions leads us to investigate
how polarity complexes are related to the neuro-
nal cytoskeleton and how these two dynamic
structures control cell adhesion and migration.

Taken together, the available evidence indi-
cates that the dynamic PAR complex plays key
roles in nucleokinesis and adhesion control. We
will now discuss in detail the role of PAR protein
in each of these processes in the following sec-
tions of the chapter.

2 The PAR Polarity Complex
and Microtubule
Cytoskeletal Regulation

2.1 Cerebellar Granule Neurons

Migrate with Coordinated

Organelle Movements

Neurons migrate via a coordinated two-stroke
motion of the centrosome and nucleus. Time-
lapse imaging of actively migrating CGNs shows
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that in the majority of migrating neurons, forward
movement of the centrosome is followed by
somal translocation (Solecki et al. 2004). As
centrosome movement precedes nuclear move-
ment, models have been proposed in which the
centrosome acts as a microtubule organizing cen-
ter, projecting microtubules rearward to the
perinuclear tubulin cage and “pulling” the nucleus
forward through a dynein-mediated process. A
competing model shows microtubules from the
nuclear tubulin cage extending past the centro-
some and anchoring in the membrane of the
leading process (Higginbotham and Gleeson
2007; Tsai and Gleeson 2005). The relationship
between centrosome positioning and nuclear
translocation may differ among migration modes,
as in vitro migration assays of CGNs identify a
subset of neurons in which the nucleus over-
takes the centrosome during active migration
(Umeshima et al. 2007). Electron microscopy of
CGNs has shown that microtubules extend from
the nuclear cage forward to both the centrosome
and the leading process membrane, although the
anchor point for the microtubule cytoskeleton in
the leading process remains unclear. As described
in the next section, the PARD6 component of the
PAR complex plays an important role in not only
regulating the structure the tubulin cage but also
the saltatory cadence of centrosome and somal
motility.

2.2 PARDG Signaling Controls
Centrosome Positioning

and Microtubule Dynamics

Using high temporal-resolution live imaging
techniques, Solecki and colleagues (2004) dem-
onstrated that the forward movements of the cen-
trosome and the nucleus are tightly coordinated
in migrating neurons. Photobleaching experi-
ments showed the microtubule cytoskeleton to be
highly dynamic. Overexpression of PARD6« in
granule neurons inhibits neurite extension and
disintegration of the perinuclear tubulin cage,
showing that PARD6a controls the microtubule
dynamics of migrating neurons (Solecki et al.
2004). Disruption of PARD6a signaling also
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uncoupled the movements of the centrosome and
nucleus and prevented migration of granule neu-
rons along Bergmann glial fibers. By using Venus-
labeled PARDO6«, Solecki et al. (2004) showed
PARDG6« to colocalize with y-tubulin and therefore
to be a component of the centrosome. PARD6a
shows a relationship to centrosome structure, as
overexpression of PARD6a reduced levels of cen-
trosomal y-tubulin (Solecki et al. 2004).

The mechanism by which PARD6 mechanisti-
cally controls centrosome positioning and migra-
tion has recently been clarified in non-neuronal
systems such as epithelial cells. PARD6a siRNA
disrupts the microtubule cytoskeleton in epithe-
lial cells (Kodani et al. 2010). PARD®6 is also a
controlling element of the mitotic spindle, as
RNAI of either PARD6a or PARD6y causes mul-
tipolar spindle formation and mitotic failure in
epithelial cells (Kodani et al. 2010; Dormoy et al.
2013). In epithelial cell wound healing assays,
PARD6Y RNAi-depleted cells were unable to
migrate (Dormoy et al. 2013). As overexpression
of PARD6a uncouples centrosomal and nuclear
movement and disrupts migration, it remains
unclear whether the centrosome was acting as an
organizer of polarity and migration or a reporter
of cellular mechanisms that control migration in
these studies.

The PAR polarity complex may play both
structural and signaling roles at the centrosome
in migrating neurons. In epithelial cells, PARD6a
interacts with the centriolar components PCM-1
and dynactin subunit p150%4, as shown through
colocalization and immunoprecipitation studies
(Kodani et al. 2010). The recruitment of PARD6«
to the centrosome requires intact microtubules
and dynein, as PARD6a was dispersed from the
centrosome when microtubules were destabilized
by nocodazole treatment and when dynein func-
tion was inhibited by overexpression of dynactin
subunit p1509"ed (Kodani et al. 2010; Young et al.
2000). Depletion of PARD6a by RNAi reduced
microtubule-dependent recruitment of the
centrosome proteins pericentrin, PCM-1, cen-
trin, ninein, Cepl170, and CPAP, showing that
PARDG6a promotes centrosome protein recruit-
ment (Kodani et al. 2010). PARD6y has been
found to be a component of the mother centriole
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Fig. 7.3 PAR proteins and cytoplasmic Dynein
directed minus-end transport. (a) Model of Dynein-
directed minus-end transport of centrosome components
mediated by PAR. This mechanism is responsible for
proper centrosome motility. (b) Disruption of PAR protein

(Dormoy et al. 2013) and is required for recruitment
of centrosome proteins such as PARD6a and
p150€ted nterestingly, recruitment of PARDG6y to
the mother centriole is microtubule-independent
and requires the C-terminus of the PARDG6Y pro-
tein (Dormoy et al. 2013). These findings show
that PARDG plays both structural and recruitment
roles in the centrosome. It is currently unclear
where PARDG lies in the hierarchy of centrosome
protein assembly.

23 PARD3 Regulates Centrosome
Protein Recruitment

and Orientation

PARD3 plays roles other than those of PARDG6 in
regulating centrosomal dynamics. PARD3 asso-
ciates with dynein, as shown by co-immuno-
precipitation of PARD3 with dynein light
intermediate chain 2 (Schmoranzer et al. 2009).
Dynein is required for assembly of y-tubulin on

components may result in inhibition of dynein mediated
centrosome assembly and centrosome motility by PARD6
overexpression (Solecki et al. 2004), PARD6 RNAi
(Kodani et al. 2010), and PARD3 depletion (Schmoranzer
et al. 2009)

centrosomes (Young et al. 2000), supporting the
role of the PAR complex in proper centrosome
assembly (Fig. 7.3). Removal of PARD3 prevents
correct centrosome positioning in relation to the
nucleus in epithelial cells (Schmoranzer et al.
2009). Like PARD6, PARD3 plays roles in both
directed migration and organelle positioning, and
PARD3 RNAIi depletion inhibits migration of
epithelial cells in wound healing assays
(Schmoranzer et al. 2009). Depletion of PARD3
results in increased microtubule dynamics at
cell-cell contacts, showing that PARD3 plays a
role in microtubule stability in epithelial cells
(Schmoranzer et al. 2009). Additional studies
have shown PARD3 to stabilize and bundle
microtubules both in vitro and in hippocampal
neurons (Chen et al. 2013). The role of the PAR
complex at the centrosome, as observed in sev-
eral migrating cell types, and its link to dynein,
add to our understanding of regulation of the
cytoskeleton and neuronal migration by the PAR
polarity complex.
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The PAR polarity complex and its individual
components have been shown to play roles in
centrosome structure, protein recruitment, and
motility in addition to regulating the dynamics of
the microtubule cytoskeleton. After examining
the role of the PAR polarity complex in control-
ling migration through microtubule-based mech-
anisms, we will explore the role of this complex
in regulating the actin cytoskeleton.

3 PAR Complex Regulation
of Myosin Il Motors

3.1 PARD6a Regulates Myosin Il

Dynamics in Migrating CGNs

Identification of PAR polarity proteins as regula-
tors of the microtubule cytoskeleton during neu-
ronal migration led to examination of other
cytoskeletal elements in migrating neurons.
While many migration studies focused on force
generation by microtubule-dynein systems,
Solecki and colleagues (2009) examined the role
of leading-process actomyosin in migrating
CGNs. Two opposing models have been pro-
posed for the mechanism by which actomyosin
contributes to force generation in neuronal migra-
tion: (1) a dynamic forward reach-and-pull
model, in which leading-process actomyosin
contraction pulls the neuron forward and (2) a
rearward contraction model, in which actomyo-
sin contraction at the rear of the cell pushes the
migrating neuron forward (Fig. 7.4) (Trivedi and
Solecki 2011; Martini and Valdeolmillos 2010;
Tsai et al. 2007). Time-lapse microscopy and
photobleaching/photoactivation experiments show
that leading-process actin is highly dynamic in
migrating neurons, and pharmacological stabili-
zation of the actin cytoskeleton or inhibition of
the myosin II motor reduces leading-process
dynamics, disrupts the two-stroke nucleokinesis
cycle, and halts migration of CGNs (Solecki
et al. 2009). The centrosome is central to the
nucleokinesis cycle, and both actin and myosin
light-chain kinase were found to accumulate at
the centrosome in the leading edge of migrating
neurons. The importance of myosin II to neuronal

migration was shown by pharmacological
inhibition of the myosin II motor with blebbi-
statin, which halted centrosome motion and the
two-stroke nucleokinesis cycle (Solecki et al.
2009). The PAR complex is a key regulator of
actomyosin dynamics in the leading process. In
previous studies, overexpression of PARD6a was
shown to inhibit neuronal migration (Solecki
et al. 2004). The same group (Solecki et al. 2009)
later reported that reduced myosin II activation in
cells overexpressing PARD6a was one mecha-
nism of migration inhibition. Overexpression of
PARDG6« or the truncated 1Q motif of PARD6a
significantly reduced leading-process actin turn-
over in migrating CGNs (Solecki et al. 2009),
showing for the first time that the PAR complex
can control myosin II through direct interaction
(Fig. 7.5). Co-immunoprecipitation studies
revealed that full-length PARD6a binds to myo-
sin light chain and myosin light chain kinase and
that overexpression of the PARD6a 1Q domain
inhibits myosin light chain binding to PARD6«a
(Solecki et al. 2009). In other studies in C. ele-
gans embryos, cortical flow of actin and non-
muscle myosin II transported the PARD3/
PARD6/aPKC complex to the anterior of the cell,
maintaining polarity (Munro et al. 2004). Myosin
IIb-deficient fibroblasts show polarity defects
and increased levels of cytosolic PARD3 and
PARDG (Solinet et al. 2011). The mechanism of
this relationship remains unclear, although it is
possible that myosin II controls proper local-
ization and stabilization of the PAR polarity
complex. These results show that the PAR
polarity complex regulates actomyosin contrac-
tility in the leading process of migrating neurons
via PARD6a.

3.2  Actomyosin Dynamics

in Migrating Neurons

Further studies examining the dynamics of actin
cytoskeletal elements in CGNs buttress the
importance of leading-process actin. The forward
flow of actin in the leading process plays several
roles important to migration. He and coworkers
(2010) examined the role of cytoskeletal components
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Fig.7.4 Actomyosin pulling models for Glial-guided
neuronal migration. (a) Rearward Contraction model.
(i) Prior to somal movement, actomyosin (red) is heav-
ily enriched at the cell rear. (ii) During somal move-
ment myosin II squeezing at the rear is thought to
“push” the cell body forward. (b) Reach and Pull
model. (i) Prior to somal movement, actomyosin (red)
is heavily enriched in the leading process from the
cytoplasmic dilation to the neuronal soma. Given a
muscle-like contraction of the F-actin array by myosin
II, a taut spring effectively describes the forces

and motors in vitro in distinct regions of migrating
rat CGNs. In their microdissection experiments,
severing the distal leading tip of migrating neu-
rons was sufficient to inhibit somal translocation,

produced when leading process and somal actomyosin
anchoring (i.e., adhesions) are balanced before somal
movement: one force vector points from the leading
process back towards the soma whereas another force
vector points from the soma towards the dilation
(the future direction of somal movement). (i) Once
somal adhesions release, as described in (Gregory et al.
1988), actomyosin tension generated in the leading
process primes somal movement towards the cytoplas-
mic dilation (Reproduced with permission of (Trivedi
and Solecki 2011))

while a dynamic leading tip contributed to somal
translocation by a distance of several cell-body
lengths (He et al. 2010). By micropipetting actin-
destabilizing drugs (cytochalasin D, latrunculin A)
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Fig.7.5 Model of Par6a interaction with the Myosin IT
motor complex and the Myosin cycle. (a) Par6o binds to
both MLC and MLCK, key signaling nodes regulating acto-
myosin contractility. Inset: The PARD6-MLC interaction
may be mediated by the IQ domain of Par6ot (IQ Motif (aa
104-120) = AFASNSLQRRKKGLLLRPV) and the EF
hand domains of MLC. (b) Myosin contractility is dependent

or actin-stabilizing drugs (jasplakinolide) into the
vicinity of the leading processes of migrating neu-
rons, they also showed that leading-process actin
dynamics are required for somal translocation.
Pharmacological inhibition of leading-process
actin dynamics halted somal translocation; how-
ever, when the inhibitor was concentrated in the
cell body area, it did not similarly inhibit somal
translocation (He et al. 2010). The same group (He
et al. 2010) also compared the roles of the microtu-
bule cytoskeleton and of actin in the leading tip and

on Myosin Light Chain (MLC) phosphorylation by Myosin
Light Chain Kinase (MLCK) at Ser19 and is required for
neuronal migration. De-phosphorylation of MLC by
Myosin Light Chain Phosphatase (MLCP) results in MLC
inactivity and lack of myosin contractility. MCL and
MLCP activity cycles Myosin contractility in migratory cells
((a) Reproduced with permission of (Solecki et al. 2009))

found that the microtubule-destabilizing drug
nocodazole did not halt somal translocation, but
rather enhanced the rate of nuclear migration.
Directed inhibition of myosin II by applying bleb-
bistatin to the leading tip of migrating CGNs halted
somal translocation, while blebbistatin treatment at
the rear of the cell increased the rate of nuclear
migration, demonstrating the importance of the
myosin IT motor (He et al. 2010). These findings
showed that polarized activity of myosin II plays
an important role in neuronal migration.
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Wang and coworkers (2012) expanded on the
role of leading-process actomyosin and its impor-
tance in active migration of neurons. They used
antibody-coated quantum dots to track the move-
ment of the membrane proteins VAMP2 and
endogenous neurotrophin receptor TrkB in
actively migrating mouse CGNs and showed that
both proteins are non-randomly translocated (in a
form of biased drift) in a myosin II-dependent
manner toward the leading process. This non-
random translocation was not identified in non-
migratory cells, leading the authors to hypothesize
that the biased forward drift of receptors may be
involved in the guidance of migrating neurons.
Taken together, these data support the forward
flow of the F-actin cytoskeleton in the leading
process of migrating neurons observed in our
laboratory (Gupton and Waterman-Storer 2006;
Vicente-Manzanares et al. 2007; Solecki et al.
2009) and highlight that forward flow is not just
important for centrosome positioning but also
regulates positioning of receptors within the
leading process.

33 Potential Role of Actomyosin
in Generating Leading Process

Traction Forces

The organization of motor proteins and their
function in migrating cells is highly regulated
during migration. The role of myosin II in both
the two-stroke nucleokinesis cycle (Solecki et al.
2009) and biased drift of surface receptors (Wang
et al. 2012) provides insight as to how the regula-
tion of actomyosin in the leading process con-
trols migration. It is possible that the actin
mechanisms involved in receptor transport in
migrating neurons also play a role in the forma-
tion and maturation of cell-surface adhesion
dynamics. Studies of myosin II in migrating epi-
thelial cells provide an example of the possible
roles of these motor proteins in migrating neu-
rons. Active migration of epithelial cells requires
the coordination of actin, myosin II, and focal
adhesions (Gupton and Waterman-Storer 2006).
Gupton and Waterman-Storer examined the
migration of Ptk1 cells on various concentrations
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of extracellular matrix (ECM) and observed the
effects of these concentrations on the actin
cytoskeleton and cellular adhesion. Migration
conditions were optimal at intermediate ECM
concentrations, indicating that too much or too
little adhesion limits cell migration. Higher ECM
concentrations were associated with more pro-
nounced focal adhesion density, yet migration
was halted due to lack of focal adhesion turnover.
Myosin II activity was highest at intermediate
ECM concentrations, showing that migration is
optimal when there is high myosin II activity,
which is associated with efficient turnover and
maturation of focal adhesions; these findings
highlight the importance of actomyosin in active
cell migration at the level of adhesion. The rela-
tion of myosin II activity to focal adhesion stabil-
ity and maturation of adhesions illustrates how
myosin II may control leading process traction. If
the leading process of migrating neurons is anal-
ogous to the myosin II enriched lamellum of
migrating fibroblasts, then myosin II motor activ-
ity may fine tune leading process adhesion to
neuronal migration substrates. Current studies
are further investigating the role of the PAR com-
plex in the balance of actomyosin dynamics in
the leading process of migrating neurons.

As actomyosin has a demonstrated role in the
leading process of migrating neurons and in
nucleokinesis, its interaction with PARD6a pro-
vides a mechanism linking polarity complexes
with cytoskeletal motor systems in migrating
neurons. The role of PARD6a in regulating
microtubule dynamics in neurons also provides
insight into the interaction of the actin and micro-
tubule cytoskeletal systems in neuronal migra-
tion. A molecular clutch model has been proposed
to allow transmission of polymerization-driven
flow of myosin into traction (Mitchison and
Kirschner 1988; Gardel et al. 2010). It is possible
that a function of the PAR complex in the leading
process of migrating CGNs is as a clutch between
the myosin and microtubule networks to generate
forward force on the cell and/or individual organ-
elles. As both myosin II and the PAR complex
have been shown to play an integral role in neu-
ronal migration, the relationship between polar-
ity, motor proteins, and cellular adhesions must be
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considered to further complete our understanding.
We will next discuss the relation between PAR
proteins and adhesion molecules.

4 The PAR Complex and
Adhesion Mechanisms

4.1 CGN Migration Varies in

Subsections of the Cerebellum

Neural progenitors proliferate in germinal zones
of the brain and must then migrate to their final
locations to establish proper neural circuits. A
key factor in controlling germinal zone exit is the
regulation of cell-cell contacts, especially those
that occur as migrating neurons encounter differ-
ent cell types within distinct regions of the devel-
oping cerebellum. During germinal zone exit,
CGNs must migrate tangentially among other
CGNs in the upper and middle layers of the exter-
nal granule layer before they transition to the
inner layer of the EGL (Komuro et al. 2001). The
migration rates differ in these distinct regions of
the EGL, suggesting that the motor and adhesion
systems of migration may differ as well. Exiting
the EGL and moving into the molecular layer,
CGNs migrate along glial fibers from the EGL of
the cerebellum to their final location in the IGL.

4.2 Antagonistic Interaction

of PARD3 and SIAH

The mechanisms controlling the germinal-zone
exit of migratory neuronal precursors have
revealed novel insights into when and how CGNs
initiate the first step in their journey to the IGL.
Previously, two competing models were used to
explain germinal zone exit: in one model it was
thought that a new form of cell-cell adhesion was
initiated upon movement of CGNs from the EGL
into the molecular layer. The other model pro-
posed that removal of a form of cell-cell adhesion
maintained in the EGL allowed maturing CGNs
to exit the germinal zone (Métin and Luccardini
2010). Examination of PARD3 function in ger-
minal zone exit suggests that the first model may
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be active and regulated by polarity signaling
cascades.

Famulski et al. identified PARD3 as a novel
regulator of cell adhesion through interaction with
the E3 ubiquitin ligase SIAH (Famulski et al.
2010). SIAH was identified from a yeast two-
hybrid screen of PAR complex interaction part-
ners. Evidence of physical interaction between
these proteins led researchers to examine the
amino acid sequence of PARD3. Examination of
PARD3 motifs identified two SIAH degron recog-
nition sequences as potential regulation sites of
germinal zone exit. SIAH and PARD3 interact
directly through the SIAH substrate-binding
domain targeting the two SIAH-degron recogni-
tion sequences of PARD3 in an interaction that
requires the catalytic SINA substrate binding dom-
ain of SIAH. Ubiquitination of PARD3 by SIAH
results in PARD3 degradation by the proteasome,
revealing an antagonistic interaction between
PARD3 and SIAH (Famulski et al. 2010).

Expression analysis revealed a reciprocal
expression profile of SIAH and PARD3. SIAH
showed high expression in CGN progenitors,
which was extinguished in differentiated CGNs
in the developing cerebellum. In contrast, PARD3
was found to be expressed at low levels in the
EGL and elevated levels in differentiating CGNs.
Systematic necessity/sufficiency testing was then
used to test whether these reciprocal expression
profiles were functionally relevant to germinal
zone exit. Ectopic expression of PARD3 in CGN
precursors in the EGL, which normally express
low levels of this polarity protein, was sufficient
to induce precocious germinal zone exit, while
gene silencing of PARD3 blocked migration,
showing that its activity was necessary for imma-
ture CGNs to exit the EGL and migrate to their
final destination (Fig. 7.6) (Famulski et al. 2010).
In contrast, ectopic expression of SIAH inhibited
germinal zone exit of CGNs and maintained tan-
gential migration paths. Interestingly, co-
expression of PARD3 with SIAH was sufficient
to restore directed migration and germinal zone
exit. Finally, SIAH silencing induced precocious
germinal zone exit to a degree similar to that of
PARD?3 gain of function (Famulski et al. 2010).
These results identified PARD3 and SIAH as
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Fig.7.6 Model of SIAH E3 Ligase regulation of ger-
minal zone exit. (a) During cerebellar development
CGN precursors migrate tangentially within the EGL.
Upon differentiation and polarization, CGNs exit the
GZ/EGL and migrate radially to traverse the ML and
assume their final position in the IGL. Within the devel-
oping postnatal cerebellum SIAH (E3 ubiquitin ligase) is
highly expressed in the EGL, where it ubiquitinates
PARD?3A to target it for proteasome-mediated degrada-
tion. PARD3A degradation results in inactivation of the
PAR polarity complex, thereby inhibiting recruitment of

novel regulators of the CGN migratory path and
germinal zone exit through posttranslational
modification of PARD3.

PARD3 had previously been found to localize
to cell-cell contacts and therefore to be essential
for junction formation in epithelial cells (Hirose
et al. 2002). Famulski and coworkers showed

=—pp Polarization =

v v

GZ/EGL Radial
exit migration

the JAM-C adhesion molecule to contacts between
CGNs or CGN precursors and glial cells. The absence of
JAM-C-mediated adhesion prevents GZ exit by restrict-
ing the radial migration of CGN precursors. (b) The PAR
polarity complex is required for differentiated CGNs to
polarize, exit the GZ via JAM-C-mediated adhesion, and
migrate radially via activation of the myosin II motor.
SIAH negatively regulates CGN polarization, GZ exit,
and radial migration by inactivating the PAR polarity
complex (Reproduced with permission of (Famulski
et al. 2010))

that PARD3 regulates germinal zone exit by
interacting directly with junctional adhesion mol-
ecule C (JAM-C), a cell-cell adhesion molecule
whose role in stabilizing cell-cell contacts is
required for CGN migration to the IGL (Famulski
et al. 2010). Using a JAM-C-pHluorin probe to
observe JAM-C junctions in living cells, the
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authors characterized JAM-C junctions forming
at cell-cell contacts in vivo in migrating neurons.
SIAH gain of function dissolved JAM-C tight
junctions in a manner that was rescued by
PARD3, while SIAH silencing greatly enhanced
JAM-C adhesion, suggesting that the antagonis-
tic relationship between SIAH and PARD3 con-
trols the surface levels of JAM-C. The critical
importance of JAM-C adhesion for germinal
zone exit was illustrated by JAM-C gain of func-
tion experiments: overexpression of a constitu-
tively active version of JAM-C not only induced
precocious germinal zone exit but also fully res-
cued a SIAH gain-of-function phenotype.
Famulski and colleagues identified SIAH as an
inhibitor of PARD3-dependent JAM-C adhe-
sion, revealing how reduced polarity signaling
within the EGL of the cerebellum prevents the
onset of cell-cell contacts that are necessary for
germinal zone exit. This was the first demon-
stration of the direct control of neuron—glial cell
adhesion by a polarity complex in the develop-
ing nervous system.

Mechanisms of PAR-Mediated
Cell Adhesion

4.3

The PAR polarity complex is indirectly related to
mechanisms of cell-cell adhesion. The interac-
tions of PAR in epithelial cell junctions and turn-
over may elucidate the role of PAR proteins in
neuronal migration. Myosin II promotes junction
formation in epithelial cells by strengthening
remodeling adhesions (Vicente-Manzanares
et al. 2009; Bertet et al. 2004). As PARD6« has
been found to be a regulator of myosin II (Solecki
et al. 2009), the PARD3-SIAH complex may be
an additional mechanism by which the PAR
polarity complex controls polarity and adhesion.
Interactions between cell adhesions and cytoskel-
etal motor systems provide the context in which
migrating cells generate force to propel them-
selves forward. Proteomic analysis identified
dynein intermediate chain 2 (DIC2) as a phos-
phorylation target of aPKC of the PAR complex
(Rosse et al. 2012). Regulation of DIC2 by aPKC
controls focal adhesion turnover through interac-

tion with focal adhesion complex member
paxillin (Rosse et al. 2012). PARD3 was also
implicated as a regulator of focal adhesion kinase
(FAK) through mass-spectrometry identification
of PARD3 binding partners in epithelial cells
(Itoh et al. 2010; Xie et al. 2003). Reduction of
PARD3 in epithelial cells inhibited adhesion-
induced activation of FAK, implicating the PAR
polarity complex in the regulation of focal adhe-
sions. Interaction of the PAR complex with both
the microtubule and actin cytoskeletons in
migrating cells potentially links the two systems,
allowing crosstalk between them. As disruption
of PAR signaling uncouples the two-stroke
nucleokinesis cycle and inhibits recruitment of
centrosome proteins, it is possible that interac-
tion between the PAR complex and myosin II
(PARDOG) and/or dynein (PARD?3) is required for
proper cytoskeletal rearrangement and is an
integral component of neuronal motility.

5 Further Studies of the
Compartmental Roles
of PAR in Migrating Neurons

PAR proteins and the PARD3/PARD6/aPKC
complex have been identified as key regulators of
neuronal migration and germinal zone exit. The
role of PAR proteins in discrete regions of the
cell, interacting with the centrosome or specifi-
cally at cell adhesions, may differ from the roles
of the PAR complex in migrating cells. Several
challenges remain in understanding the mecha-
nisms involved in neuronal migration, and they
can be addressed by future studies of the PAR
complex. By what mechanism does PARDG6 regu-
late the microtubule and actomyosin cytoskeleton?
As the PAR complex has been proposed to regu-
late actomyosin contraction in the leading edge
of migrating neurons, there may be a connection
between myosin and dynein motor—generated
force in migrating neurons. Does PARDG6 or the
PAR complex directly link the actin and microtu-
bule cytoskeletons in the leading process of
migrating neurons as a molecular clutch? High-
resolution co-localization studies of specific
components of the PAR complex with cytoskeletal



128

J.S. Ramahi and D.J. Solecki

motor systems in the leading processes of actively
migrating neurons may reveal such transient
interactions. What additional signals control
PARD?3’s regulation of cell-cell adhesions in the
transition from tangential to radial migration?
Examining how PARD3 regulates adhesion
systems other than JAM-C, and the cytoskeletal
systems that use these adhesions to generate pro-
pulsive force, will provide a larger context for
understanding how the neuronal cytoskeleton
interacts with cell-cell adhesions.
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Spinal Motor Neuron Migration
and the Significance

of Topographic Organization

in the Nervous System

Artur Kania

Abstract

The nervous system displays a high degree of topographic organisation
such that neuronal soma position is closely correlated to axonal trajectory.
One example of such order is the myotopic organisation of the motor
system where spinal motor neuron position parallels that of target muscles.
This chapter will discuss the molecular mechanisms underlying motor
neuron soma positioning, which include transcriptional control of Reelin
signaling and cadherin expression. As the same transcription factors have
been shown to control motor axon innervation of target muscles, a simple
mechanism of topographic organisation specification is becoming evident
raising the question of how coordinating soma position with axon trajec-
tory might be important for nervous system wiring and its function.
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1 Introduction

One of the characteristics of the nervous system
thought to underlie its accurate function is its
ordered layout. In general, sensory information is
received by sensory neurons and relayed to spe-
cialised centres, which process it and compute
the appropriate output, which activates motor
neurons and causes muscle contractions. At each
level of this hierarchy, neuronal position is
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rounding our bodies. Hence, the cortical neurons
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concerned with somatosensory information are
ordered into a somatotopic map first described by
Penfield (Penfield and Boldrey 1937), similar to
the topographic arrangement of neurons reflect-
ing external visual space in the brain’s primary
visual area. The latter was exploited by Sperry to
prove that ordered neuronal connections are
important for the accurate functioning of the ner-
vous system (Sperry 1963). Such order is also
apparent in the motor system, in particular
through the localisation of motor neuron somata
in the ventral spinal cord, which are grouped into
clusters or pools innervating a particular muscle,
and found in register with the position of their
target muscles, an idea proposed by early neuro-
anatomists such as Bikeles (1905), and later elab-
orated by Romanes (1951).

The developmental origin of highly ordered
neural circuits has been under consideration
almost since their first descriptions, no doubt
inspired by Ramon y Cajal’s call to study “the
young wood” (Ramén y Cajal 1989). This chap-
ter will attempt to summarise insights into the
question of how spinal motor neuron cell bodies
are positioned, first by considering cellular level
studies, and then by discussing the molecular
mechanisms that control spinal motor neuron
soma positioning. Finally, the functional implica-
tions of ordered spinal motor pools on locomotor
function will be explored.

2 Cellular Studies of Migrating
Spinal Motor Neurons

One simple answer to the question of how ordered
neuronal positioning arises is the idea that neu-
rons can be generated at the exact location where
they will reside and function. This appears to be
the case in the insect nervous system where for
example, neurogenesis involves delamination
from ectodermal or neuroblast precursor cells,
where the newborn neurons remain relatively
static (Dambly-Chaudiere and Gysen 1986). In
the vertebrate nervous system, neurons are born
from neuronal progenitors lining the nervous sys-
tem ventricles and migrate radially, perpendicu-
lar to and away from the surface of the ventricle

A. Kania

and in close contact with radial glia (Rakic 1971),
to eventually reach the place where they reside
permanently and function. One of the earliest
evidences of this process was obtained through
radiological labeling of developing cortical neu-
rons (Angevine and Sidman 1961). Additionally,
vertebrate neurons also migrate in a tangential
direction, approximately parallel to the surface of
the ventricular zone (O’Rourke et al. 1992). Over
the years, the conclusion that emerged is that this
is a highly ordered process, where the eventual
position of a neuronal soma within a particular
cortical layer is highly correlated with its time of
birth, an idea discussed in greater depth in other
chapters of this book.

The spinal cord originates as an epithelial
sheet, the neural plate, which through a folding
process becomes the neural tube: a pseudo-stratified
epithelium filled with dividing progenitor
cells (Ramén y Cajal 1911; Jacobson 1991).
Later, molecular studies revealed that these
progenitors are in fact radial glia, which in addi-
tion to serving as a source of newborn neurons
(Malatesta et al. 2000; Noctor et al. 2001), also
act as a migration scaffold (Choi 1981; Gomez
et al. 1990). Radiographic studies showed that
spinal neurogenesis proceeds in a ventral to
dorsal direction, such that motor neurons which
are found in ventral regions of the spinal cord are
born before the neurons that make up the dorsal
horn (Nornes and Das 1974). Early electron
microscopy studies confirmed that immature spinal
motor neurons have two processes: one reaching
the ventricle, and one contacting the pial surface
of the spinal cord, the latter becomes the axon
and leaves the spinal cord through the ventral
root (Chu-Wang et al. 1981; Dorado et al. 1990).
Hence, labelling of immature motor neurons by
applying a tracer reveals a structure reminiscent
of cortical radial glia, featuring an elongated,
spindle-shaped soma, and a ventricular zone
process (Farel and Bemelmans 1980).

Following cell cycle exit, the cell body of a
motor neuron begins a migration process, which
appears to be similar to the nuclear translocation
seen in the cortex. All motor neuron somata ini-
tially migrate radially, away from the ventricular
zone (Phelps et al. 1991). In general, motor
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neurons can be subdivided according to the
location of the structures that they innervate, and
are generated at rostro-caudal levels of the spinal
cord in register with their targets (Altman and
Bayer 1984; Oppenheim et al. 1989). This organ-
isation is demonstrated by the fact that body wall
and limb muscle innervating somatic motor neu-
rons are generated at non-limb and limb levels of
the spinal cord, respectively. Lineage tracing anal-
yses based on infecting single progenitors with a
virus encoding an indelible marker suggest that
some motor neurons, and spinal neurons in gen-
eral, migrate in radial, tangential as well as antero-
posterior directions (Leber and Sanes 1995; Leber
et al. 1990). Electron microscopy studies of such
migrating spinal motor neurons suggest that their
migration is a process that is very similar to that
occurring in the developing cortex (Chu-Wang
et al. 1981). As the spinal cord continues to grow,
motor neuron positions appear to shift, but it is not
clear whether this is an active process or a conse-
quence of increase in soma size.

Somatic motor neurons innervating non-limb
and limb muscles end their migration, respec-
tively, in medial or lateral regions of what will
become the ventral horn of the spinal cord. The
limb innervating motor neurons are eventually
confined to the lateral motor column (LMC),
whereas body wall and dorsal axial muscle
innervating motor neurons are found within the
medial motor column (MMC) (Gutman et al.
1993; Landmesser 1978b). These motor columns
are themselves subdivided into motor pools
which contain motor neurons innervating spe-
cific muscles (Romanes 1951, 1964; Hollyday
1980; McHanwell and Biscoe 1981), however
the identification of motor pools without molec-
ular markers is restricted to their retrograde
labelling from target muscles, which precluded a
cellular analysis of their early development.
LMC motor neuron somata come to rest near a
specialised group of cells called boundary cap
cells which lie at the ventral root of the spinal
cord and function to allow the exit of motor
axons from the central nervous system while at
the same time, preventing motor neuron somata
from trickling out (Altman and Bayer 1984;
Golding and Cohen 1997).
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Another motor neuron subtype whose
migration has been studied extensively are the
visceral pre-ganglionic (PG) motor neurons
whose axons leave the CNS through the ventral
root, but do not innervate somatic muscles. The
primary function of PG motor neurons is to con-
trol the action of peripheral sympathetic ganglia
(Levi-Montalcini 1950). The initial trajectory of
PG somata is similar to that of MMC and LMC
neurons: a radial displacement towards the lateral
edge of the spinal cord (Phelps et al. 1991), but
once near the ventral root, PG motor neurons
migrate dorsally in a tangential direction, and
eventually populate a medial region of the spinal
cord, close to the ventricular zone (Prasad and
Hollyday 1991; Markham and Vaughn 1991).

Although spinal motor neuron pools and col-
umns are organised more like nuclei than corti-
cal laminae, spinal motor neuron position can
also be correlated with their time of birth
(Whitelaw and Hollyday 1983). A significant
example of this is the differential migration of
lateral LMC and medial LMC motor neurons,
which are born from a common progenitor pool
but at different times (Hollyday and Hamburger
1977; Whitelaw and Hollyday 1983). Medial
LMC neurons innervate muscles of the ventral
limb, whereas lateral LMC neurons innervate
muscles of the dorsal limb (Landmesser 1978b).
Medial LMC neurons are born first and migrate,
as all somatic motor neurons do, towards the
lateral edge of the spinal cord. Lateral LMC
neurons are born at a later time, and end up
migrating either around or through the medial
LMC neurons, to eventually settle in a position
lateral to the medial LMC neurons (Whitelaw
and Hollyday 1983; Gould et al. 1999; Hollyday
and Hamburger 1977). Interestingly, this inside-
out mode of migration also appears to be true
for dorsal horn neurons, where later born neu-
rons migrate past those already generated, to
occupy more superficial dorsal horn laminae
(Nornes and Das 1974; Altman and Bayer
1984). On the other hand, one should not rely
excessively on this generalisation since, as sug-
gested by the work of the Sanes lab, many spinal
neurons have extensive and circuitous migration
patterns (Leber et al. 1990).
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3 Early Studies of Motor
Axon Guidance in Relation
to Soma Migration

As spinal motor neuron cell bodies are migrating
within the ventral spinal cord, their axons exit
through the ventral root and fasciculate with
other motor and sensory axons to form peripheral
nerves which follow a pre-determined trajectory
to their peripheral targets (Tosney and Landmesser
1985). The invariant nature of peripheral nerve
trajectories observed when comparing different
individuals of the same species (Landmesser
1978a) strongly argues that motor axon pathways
are not random and that axonal growth cones, the
sensory structures at the end of axons, are actively
sensing some sort of a molecular label. This idea
was first proposed by Ramon y Cajal (1911), and
was elaborated over many years by cellular stud-
ies of Weiss, Sperry and others (Jacobson 1991).
Arguably the most studied spinal motor axon tra-
jectory is that linking LMC neuron cell bodies to
their limb targets, a process which involves the
coalescence of LMC motor axons from a number
of spinal segments into a plexus region at the
base of a limb, the selection of a dorsal or ventral
limb nerve, and then further ramification into
ever smaller branches that eventually contain
single axons that innervate single muscle spin-
dles (Lance-Jones and Landmesser 1981;
Landmesser 1978a; Lu et al. 2009).

The intense interest in the question of how
limb axonal trajectory is selected has resulted in
many cellular experiments laying the ground-
work for molecular studies. One particular exper-
iment relevant to this chapter is the examination
of the effect of limb rotation on motor axon tra-
jectory selection (Summerbell and Stirling 1981;
Ferguson 1983; Ferns and Hollyday 1993).
Originally, these experiments were designed to
examine how limb tissues influence the selection
of a limb nerve trajectory, and demonstrated that
the proximal mesenchyme near the base of the
limb contains a source of a short-range acting
signal. However, these experiments, as well as
more extensive manipulations (Hollyday 1981),
also tell us something about the relationship
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between axon trajectory and the position of motor
neuron cell bodies. Namely, motor neuron soma
positioning and axon targeting appear to occur
independently of one another, such that motor
neurons whose axon trajectory is altered settle
their cell bodies in their usual location within the
ventral spinal cord. Moreover, experiments in
which developing neural tubes of a specific ros-
trocaudal identity are transposed to different
antero-posterior locations argue that functional
development of spinal motor neurons is indepen-
dent of the identity of the limb adjacent to it, fur-
ther suggesting the independence of motor
neuron soma positioning and axon trajectory
selection (Lance-Jones and Landmesser 1981;
Landmesser and O’Donovan 1984).

4 Transcription Factors
that Control Spinal Motor
Neuron Migration

The above cellular experiments laid down com-
pelling groundwork on which to base a molecular
analysis of spinal motor neuron migration. One
major advance in this direction was the isolation
and characterisation of molecular markers of spi-
nal neurons. Mainly through the work of the
Jessell laboratory, it became possible to subdi-
vide spinal motor neurons and their progenitors
without the necessity of anatomical handles or
generic neurotransmitter markers. Remarkably,
transcription factors from the LIM homeodomain
family could be used to subdivide LMC and
MMC motor neurons: all somatic motor neurons
express HB9 (Pfaff et al. 1996; Tanabe et al.
1998), while Lim1 or Lhx1 is expressed in lateral
LMC motor neurons, in contrast to the early
expression of Isll in all motor neurons, and its
subsequent restriction to medial LMC neurons
(Tsuchida et al. 1994). All LMC neurons express
high levels of the forkhead transcription factor
Foxpl, while PG motor neurons express it at
lower levels (Rousso et al. 2008; Dasen et al.
2008). Some MMC motor neurons can also be
identified by their expression of Lim3 or Lhx3
transcription factors (Tsuchida et al. 1994).
Additionally, the rostro-caudally restricted
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Fig.8.1 The function of transcription factors in spinal
motor neuron migration. Summary of expression of
LIM homeodomain and Hox transcription factors in spinal

expression of Hox genes involved in providing
antero-posterior identity of various tissues and
structures also delineates spinal motor neuron
columns (Dasen et al. 2003, 2005) (Fig. 8.1).
With the advent of these molecular markers it
became possible to ask whether the transcription
factors expressed by LMC, MMC and PG motor
neurons themselves are contributing to the

Hoxc8 loss of function

pectoralis muscle

motor neuron subpopulations (a). Functional evidence of
the role of LIM homeodomain (b) and Hox transcription
factors in spinal motor neuron soma localisation (c¢)

establishment of myotopic organisation. Thus,
when the HBO transcription factor was knocked
out, its importance in the consolidation and main-
tenance of motor neuron identity became appar-
ent, such that motor neurons lacking HB9 started
to express interneuron markers and were found
at aberrant positions within the spinal cord (Arber
et al. 1999; Thaler et al. 1999). Manipulation of
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transcription factors that are confined to a spinal
motor neuron column or division leads to a
change in motor neuron position specification.
Overexpression of the MMC identity marker
Lim3 in LMC neurons causes them to adopt a
cell body settling pattern like that of MMC neu-
rons, in addition to inducing changes in molecu-
lar marker expression and axonal projection
(Sharma et al. 2000). Similarly, overexpression
of the lateral LMC marker Lim1 in medial LMC
neurons causes their cell bodies to settle in lateral
regions of the LMC (Kania and Jessell 2003),
while loss of Liml from lateral LMC neurons
causes them to adopt a more medial settling pat-
tern (Palmesino et al. 2010). Ectopic expression
of the medial LMC marker Isll in lateral LMC
neurons causes them adopt a more medial posi-
tion within the LMC (Kania and Jessell 2003).
Together, these experiments argue that the LIM
homeodomain transcription factor markers of
spinal motor neurons are necessary and sufficient
to specify a distinct settling pattern of spinal
motor neuron subpopulations.

One of the earliest examples of transcription
factors controlling motor neuron migration is
that of Hoxbl, which is expressed in a popula-
tion of motor neurons confined to the hindbrain
rhombomere r4, and plays a role in specifying
their migration pattern (Studer et al. 1996). In
the spinal cord, rostrocaudally-restricted Hox
transcription factors are also involved in the
specification of motor neuron position. The
observation that Hoxcb6 is present in LMC motor
neurons at brachial level and that Hoxc9 is
expressed in PG motor neurons at thoracic levels,
suggested that these transcription factors could
be important in specifying PG versus LMC
motor neuron fate, and thus, dorsomedial versus
ventrolateral spinal cord position, respectively.
Indeed Hoxc9 overexpression leads to a transfor-
mation of LMC neurons into PG neurons, includ-
ing a shift in their position within the spinal
cord. Likewise, Hoxc6 overexpression leads to
the conversion of PG neurons into LMC neu-
rons, along with a corresponding cell body posi-
tion shift (Dasen et al. 2003).

Within a particular domain of the LMC, the
rostrocaudal extent of motor pools also coincides
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with specific domains of Hox protein expression,
implying that motor pool identity and therefore
motor neuron migration patterns might also be
controlled by this class of transcription factors.
Hox5 and Hoxc8 expression forms a sharp
boundary that coincides with the boundary of
scapularis and pectoralis motor pools within the
LMC. Overexpressing or inhibiting Hoxc8 shifts
HoxS5 expression and the boundary of these motor
pools such that with the loss of Hoxc8 function,
the caudal extent of the scapularis pool shrinks
while the pectoralis pool expands more rostrally.
Importantly, the mediolateral settling pattern of
the ectopic domain of the pectoralis pool as
assessed by the expression of its marker Pea3
transcription factor, appears more like the endog-
enous pectoralis pool and is markedly different
from the scapularis pool (Dasen et al. 2005).
Thus, not only do Hox genes control the identity
of motor neurons and their cell body position pat-
tern at the division level, i.e.: LMC versus MMC
versus PG, but also can control it at the level of
individual pools. This conclusion raises the ques-
tion of whether the function of Hox genes at the
level of entire motor neuron divisions can be dis-
connected from their apparently later action at
the level of pools, or whether pool identity and
soma settling pattern are defined simultaneously
at divisional and pool levels. Perhaps the answer
to this question might come from a better under-
standing of the soma position effector molecules
whose expression is controlled by Hox genes.
One interesting idea that emerged from study-
ing the development of motor neurons is that the
transcription factor Foxpl is required to mediate
the function of essentially all Hox genes. Thus, in
Foxpl mutants, the above functions of Hox pro-
teins in spinal motor neuron development are
abrogated, leading to an interesting consequence
on LMC neuron differentiation. In Foxp I mutants,
general spinal motor neuron identity is specified,
along with a general localisation within the ven-
trolateral region of the spinal cord, and an axon
projection through the ventral root. However, in
such mutants, none of the above molecular mark-
ers of LMC neuron subpopulations are expressed,
leading to the conclusion that Foxpl removal
results in the reversion of limb level LMC motor
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neurons to a more evolutionary primitive state in
which they exist as a homogenous ensemble,
undivided into subpopulations such as motor
pools. Retrograde labelling of these motor neu-
rons from a particular limb muscle reveals a dis-
ruption of their myotopic organisation, such that
while motor neurons apparently innervating the
same muscle are still located within the approxi-
mate position of the LMC, they are no longer
located within the same cluster or pool in the
ventral spinal cord (Dasen et al. 2008; Rousso
et al. 2008). Of course, in the absence of any pool
markers, it is difficult to conclude that these
motor neurons are indeed part of a molecularly-
defined motor pool in FoxpI mutants. An alterna-
tive possibility is that motor neurons from a
particular pool are still clustered, although their
axonal projections in the limb are randomised.
The resolution between these possibilities will
develop as new Foxpl-independent molecular
pool markers are uncovered.

The above experiments involve transcription
factors that appear to be master regulators of spi-
nal motor neuron identity at the level of divisions
or at the level of pools. In addition to controlling
cell body position, they sit at the top of a develop-
mental hierarchy, controlling other aspects of
motor neuron identity such as axonal projection.
Indeed, gain and loss of function experiments of
Foxpl, Liml, Isll and HB9 (see above) all dem-
onstrate that concomitant with inducing cell body
position change, these manipulations also lead to
a change of axon trajectory, but without any evi-
dence of cross-talk between the soma migration
and axon trajectory selection. In contrast, ETS
transcription factors appear to control cell body
position of spinal motor neurons in concert with
axon trajectory selection. Initial experiments
identifying these proteins as markers of specific
motor pools demonstrate that their expression is
dependent on signals from the periphery, such
that limb bud ablation results in the extinction of
expression of these transcription factors (Lin
et al. 1998). Further experiments demonstrate
that the neurotrophic factor GDNF, expressed in
the limb, is actively signalling the maintenance of
expression of the Pea3 ETS transcription factor,
and that this maintenance is important for
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specifying the particular migration and dendritic
arborisation pattern of the LMC motor neurons
that express it (Livet et al. 2002; Haase et al.
2002; Vrieseling and Arber 2006). Thus, the ETS
transcription factor Pea3 links axon growth into
the limb to soma localisation, and therefore its
action is mechanistically different from that of
LIM homeodomain transcription factors whose
expression does not appear to be induced by
extrinsic signals dependent on axonal trajectory
(Kania et al. 2000).

The converse of this idea is the dependence of
lateral versus medial LMC neuron identity spec-
ification on cell body migration. Medial LMC
motor neurons are born first, and express the
LIM homeodomain transcription factor Isll.
Later-born lateral LMC neurons also initially
express Isl1 yet they turn it off relatively quickly,
and turn on the expression of Liml (Tsuchida
et al. 1994). At the cellular level this coincides
with the migration of lateral LMC neurons, near
or through the cluster of medial LMC neurons,
which at this time begin to express the retinoic
acid synthesis enzyme retinaldehyde dehydroge-
nase 2 or RALDH2. Functional experiments
argue that this conjunction of lateral and medial
LMC neurons is required to turn off Isl1 expres-
sion and turn on Lim1 expression, providing an
example migratory behaviour in spinal motor
neurons that appears to be important for the
induction of a particular neuronal identity
(Sockanathan and Jessell 1998).

5 Effectors of Spinal Motor
Neuron Migration

5.1 Reelin Signaling

The analysis of the role of transcription factors in
the specification of spinal motor neurons position
certainly yielded some important molecular
handles on the problem of motor neuron soma
migration. These are now being linked to specific
effectors of neuronal migration that mediate
signals from the outside environment to the
neuronal cytoskeleton. Perhaps the best-known
pathway that transduces such a signal is the one



140

responding to the extracellular matrix protein
Reelin (see also Chap. 1). It is a large, secreted
protein, originally identified through a mutation
in its gene, which leads to a locomotor behav-
ioural phenotype due the aberrant localisation of
cerebellar neurons (D’Arcangelo et al. 1995;
Hamburgh 1963b). In the cortex, Reelin is depos-
ited in the superficial layer by Cajal-Retzius
neurons (Hirotsune et al. 1995; D’ Arcangelo et al.
1995) while ApoER2 and Very Low Density
Lipoprotein Receptor (VLDLR) are two principal
Reelin receptors that transduce the signal to the
cytoskeleton through the Dab1 adaptor phospho-
protein (Hiesberger et al. 1999; Trommsdorff
et al. 1999). Mice, mutant for genes encoding
these components, display severe disruptions in
cortical layering, and on the basis of these pheno-
types, Reelin has been postulated to act as a neu-
ronal migration stop signal (Falconer 1951;
Hamburgh 1963a; Hiesberger et al. 1999; Howell
etal. 1997; Sheldon et al. 1997; Tissir and Goffinet
2003; Trommsdorff et al. 1999; Jossin and Cooper
2011). The downstream targets of this pathway
include the cytoskeleton-associated proteins
Lissencephalyl (LIS1) and Doublecortin (DCX)
(Tissir and Goffinet 2003). Reelin signalling, and
its role in cortical projection neuron migration, is
described in greater detail in Chap. 1.

Reelin is also expressed in the spinal cord and
is required for the normal migration of PG neu-
rons as well as the layering of the dorsal horn
laminae (Yip et al. 2000, 2003a, 2004, 2009;
Villeda et al. 2006; Phelps et al. 2002).
Interestingly, the altered position of PG motor
neurons in Reeler mutants appears to have no
bearing on their connectivity to their ganglionic
targets (Yip et al. 2003b) arguing that cell body
position and axon projections of motor neurons
can be uncoupled. This is also paralleled in more
rostral regions of the nervous system where
despite being inappropriately positioned, many
neurons in the Reeler mouse project their axons
to appropriate targets (Caviness 1976; Caviness
and Frost 1980, 1983). Interestingly, the change
in spinal dorsal horn layering organisation seen
in Reeler mutants does have another important
functional consequence: Reeler mutants have
abnormal nociceptive responses (Wang et al.
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2012), although in this case it is somewhat
difficult to unequivocally exclude the contribu-
tion to this effect of inappropriately-developed
rostral regions of the nervous system.

The specification of LMC soma position by
transcription factors expressed in specific sub-
populations of spinal motor neurons raised the
question of whether these effects might be medi-
ated by the Reelin pathway. Indeed, Reelin is
expressed in the ventral spinal cord, and its recep-
tors as well as the signalling intermediate Dabl
are expressed by LMC neurons (Palmesino et al.
2010). Moreover, Reelin and Dabl mutants dis-
play LMC soma position defects: while LMC
cell bodies are found in their appropriate general
ventrolateral location in the spinal cord, the lat-
eral LMC and medial LMC neuron positions are
inverted along the mediolateral axis. One intrigu-
ing explanation for this phenotype is that Dabl1 is
expressed differentially in these neurons, with
lateral LMC neurons having higher levels of the
protein, compared to medial LMC. The model
that emerged from additional gain and loss of
function experiments is that Dabl expression
gates the LMC neurons’ sensitivity to Reelin,
such that lateral LMC neurons display high Dab1
levels and thus are sensitive to Reelin located
close to the ventricular zone. In contrast, medial
LMC neurons display lower levels of Dabl, and
thus are relatively insensitive to Reelin. This
model, which is further supported by Reelin
overexpression experiments (E. Palmesino and
A. Kania, unpublished), posits that Reelin is not
an absolute migration stop signal (D’Arcangelo
etal. 1995; Ogawa et al. 1995), but rather a repul-
sive or migration promoting cue for LMC motor
neurons, an idea in line with previous experi-
ments in which ectopic overexpression of Reelin
rescues cortical migration defects (Magdaleno
et al. 2002).

The differential Dabl expression in medial
and lateral LMC neurons suggested an intriguing
possibility that these levels are controlled by the
same transcription factors that control LMC
soma position. Indeed, Foxpl and Lim1 gain or
loss of function result in, respectively, increase or
decrease of Dabl expression in LMC neurons,
and are the first example of the control of Reelin
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pathway protein expression by specific transcription
factors (Palmesino et al. 2010). Moreover, since
the same transcription factors also control LMC
axon trajectory in the limb, these observations
suggest a molecular hierarchy where specific
transcription factors co-ordinately control both
cell body position and axon trajectory, and thus
establish myotopic organisation. At this point, it
is unclear whether this idea can be extended to
cortical or cerebellar neurons, two populations in
which Reelin signaling and migration as well as
molecular differentiation have been studied.

5.2 Cadherin Signaling

This large family of proteins has been associated
with many types of adhesive cell-cell interactions
(Nollet et al. 2000). Within the nervous system,
cadherins are selectively expressed in a combina-
torial manner and thus, can be used to subdivide
many neuronal populations (Suzuki et al. 1997).
This property, combined with their adhesive
function, endows them with the ability to control
neuronal soma position, as in the case of hind-
brain motor neurons (Garel et al. 2000). In the
context of spinal motor neurons, type II cadherin
expression is used to delineate specific motor
pools, suggesting a possible role in motor pool
sorting. Indeed, gain and loss of function experi-
ments in this system, where the expression of a
single cadherin protein is altered, result in inap-
propriate clustering of motor neurons such that
motor neurons from one transcription factor-
defined motor pool are mixed with those from
another pool (Price et al. 2002). Additional
experiments argue that cadherin-mediated con-
trol of LMC neuron migration occurs through
catenins, cytoplasmic effectors that link the
membrane-bound cadherins to the underlying
cytoskeleton (Bello et al. 2012; Price 2012).
Extending this idea further, Jessell and his col-
leagues used mouse genetics to block catenin
function and cadherin signalling in spinal motor
neurons (Demireva et al. 2011). In such mice, the
LMC neuron pool and division positions, as well
as those of PG neurons are scrambled, while
molecular identity is maintained. Moreover, the

limb axonal trajectory of such motor neurons
appears normal, providing further evidence that
motor neuron soma position and axon trajectory
can be uncoupled through the inactivation of spe-
cific molecular effectors. Conversely, in such
experiments, the link between transcriptional
identity and axon trajectory is maintained.

One outstanding question raised by these
experiments is how cadherins are acting to selec-
tively position spinal motor neuron cell bodies. In
order for the selective adhesion mediated by
combinations of cadherins to exert its effect on
soma position and thus to allow for the different
combinations of cadherins to interact with each
other, motor neuron cell bodies need to have an
opportunity to interact with one another. For this
to happen, cell bodies of motor neurons could be
mobilised randomly, like particles exhibiting
Brownian motion, or in a more directed fashion,
perhaps away from a source of a repellent, such
as Reelin. Thus the relative contribution of Reelin
signaling and cadherin-mediated adhesion in the
specification of motor neuron position becomes
an important question. The LMC soma position-
ing defects in catenin inactivation mutants are
apparently more severe than those found in
Reelin and Dabl mutants. It might be that in
order for Reelin signaling to occur, close cell-cell
contacts need to form, something that could be
precluded by inhibition of cadherin signalling.
Thus, Reelin signalling in spinal motor neurons,
might be dependent on cadherin function, and it
will be interesting to evaluate in the future if in
motor neurons the intersection of Reelin and cad-
herin signaling occurs in a mechanistically simi-
lar manner like in cortical projection neurons
(see also Chap. 1).

5.3 Eph Signaling

The Eph receptor tyrosine kinases and their eph-
rin ligands are also important protein families
that are expressed in many developing tissues,
including the nervous system. They have been
implicated in cell sorting, where cells that are
initially intermingled become sorted into two
separate compartments and thus form a boundary
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(Klein 2012). One seminal observation has been
that of the function of Eph receptors in the com-
partmentalisation of hindbrain, where molecu-
larly distinct neurons in adjacent thombomeres
form a sharp boundary (Xu et al. 1999). Unlike
cadherins, there is ample evidence of the
involvement of Eph receptors and their ligands
in motor axon trajectory selection (Kao et al.
2012). Thus, ephrin-Eph signaling is well posi-
tioned to influence both motor neuron soma
position and axon trajectory, coordinating their
myotopic organisation and raising the question
whether Eph signalling is involved in spinal
motor neuron migration. In mice lacking EphA,
a receptor important for the correct targeting of
lateral LMC axons to dorsal limb muscles, the
tibialis motor neuron pool is displaced within
the lumbar spinal cord, arguing that this recep-
tor is important for the normal positioning of
spinal motor neuron cell bodies (Coonan et al.
2003). Interestingly, in these animals, the tibia-
lis motor neurons still innervate their correct
muscle targets, suggesting that Eph receptors
can specify LMC soma position independently
of axonal trajectory. This is particularly interest-
ing given the expression patterns of ephrins and
Eph receptor proteins at the level of spinal
motor neuron cell bodies, and is very suggestive
of their restriction to specific motor pools
(Iwamasa et al. 1999).

5.4 Other Cell Surface Effectors

Although at this point there is no evidence of
their function in neuron soma migration, sema-
phorins and their transmembrane receptors
neuropilins have elaborate expression patterns
at the level of hindbrain and spinal motor neuron
somata (Cohen et al. 2005; Huber et al. 2005).
There is accumulating evidence that these
families of proteins function in the specification
of motor axon trajectory in the limb (Huber
et al. 2005; Moret et al. 2007; Huettl et al.
2011; Sanyas et al. 2012). Interestingly, since
semaphoring-neuropilin signaling has been pre-
viously implicated in cortical neuron migration
(Chen et al. 2008), it would not be at all surprising
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if such signaling also impacts spinal motor
neuron soma localisation, although so far no
evidence of this function has been reported.

6 Organisation of Spinal Motor
Neurons

The above experiments point to a clear conclu-
sion that started to emerge following cellular
level studies: spinal motor neuron somata are
positioned in a stereotyped manner that is highly
correlated with their axonal trajectory, and thus
muscle target, as well as their dendritic arborisa-
tion. The stereotypy implied that specific molec-
ular pathways position these neurons, as outlined
in the preceding section. Moreover, cellular ana-
tomical and structural features that are linked to
soma position have a substantial impact on the
function of a motor neuron, highlighting the
critical nature of soma position specification.
The impact of axon trajectory on function is
evident: the specificity of synaptic connections
is a hallmark of essentially any nervous system,
thus, in order to achieve efficient locomotor
behavior, motor neurons must be connected to
their appropriate muscle targets (Fig. 8.2).

The significance of the location of the cell
body of a motor neuron has only recently been
addressed in relation to its function. One obvious
impact this might have is at the level of sensory-
motor connectivity: sensory neurons residing in
the dorsal root ganglion innervate specific mus-
cles in the periphery, and transmit information
about their proprioceptive properties directly to
motor neurons innervating that particular muscle
(Eccles et al. 1957). Thus, if motor neuron cell
bodies are found in variable positions within the
ventral horn of the spinal cord, the specificity of
sensory-motor connectivity might be compro-
mised. Indeed, emerging evidence supports this
idea: in mice whose spinal motor neuron position
is scrambled due to Foxpl mutation, propriocep-
tive sensory axons terminate in stereotyped
ventral horn positions, even if their normal motor
neuron targets are not found there (Surmeli et al.
2011). This should presumably have a devastat-
ing consequence on locomotion, and reveals the
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Fig.8.2 Cell surface effectors of spinal motor neuron
migration. Summary of expression of Reelin signaling
pathway components, and consequence of Reelin, GDNF,

existence of a sensory axon targeting mechanism
that operates independently of soma position.
These experiments raise a question of the conse-
quence of molecular pathway manipulations,
particularly cadherin or Reelin blockade, on
sensory-motor connectivity and locomotor function.

Moreover, what about the relationship of den-
dritic organisation of motor neurons and their
spinal cord position? The dendritic arbors of spi-
nal motor neurons are quite complex, enabling
them to integrate information arriving not only

Reelin loss of function

s
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dorsal limb muscles
ventral limb muscles

pectoralis muscle
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pectoralis muscle

Cadherin and EphA4 loss of function on spinal motor
neuron soma localisation

from direct proprioceptive sensory inputs, but
also from spinal interneurons modulating loco-
motor behaviours or other sensory inputs such as
nociception (Brown 1981; Rall et al. 1967).
Analyses of mice mutant for the ETS transcrip-
tion factor Pea3, expressed in selected spinal
neuron motor pools (Lin et al. 1998), reveal that
in addition to defects in pool position, the den-
dritic arbor of these motor neurons is also affected
(Vrieseling and Arber 2006). The consequence
of these changes on locomotor behaviour are
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unclear, however, the sensory-motor connectivity
in these mutants is compromised. Given that
spinal motor neurons whose cell bodies are mis-
placed due to cadherin signalling defects have
aberrant dendritic arbors (Demireva et al. 2011),
and that blocking the Reelin signal results in
abnormal dendritic morphologies (Senturk et al.
2011; Rice et al. 2001), it is plausible that cell
body position could potentially impact how
spinal motor neurons receive and integrate the
signals normally passing through axon-dendritic
synapses. Another recent finding that potentially
impacts how we view motor neuron soma
position, functional connectivity and dendritic
arborisation is the observation that pre-motor
interneurons that directly synapse onto spinal
motor neurons are organised in a spatially segre-
gated manner that mirrors that of motor neuron
divisions (Tripodi et al. 2011).

Another important consequence of soma posi-
tion on motor neuron development and function
could be at the level of their electrical coupling.
There is ample evidence that in developing spinal
motor neurons, connexin proteins function to
maintain electrical synapses that are important
for the synchronisation of electrical activity
within motor pools (Fulton et al. 1980; Chang
et al. 1999). Disruption of gap junctions results in
decreased synchronous neuronal activity and pre-
cocious neuromuscular synapse elimination,
highlighting the importance of such coupling
(Personius et al. 2007). Thus, one of the conse-
quences of inappropriate positioning of motor
neuron cell bodies would be the disruption of the
gap junctions that couple all motor neurons
innervating a specific muscle, leading to the aber-
rant innervation of target muscles. Recording of
neuronal activity patterns in spinal cords with
disrupted myotopic organisation should reveal
whether this prediction holds true.

7 Conclusion

The evidence for the existence of topographic
organisation within the nervous system is over-
whelming. Pioneering cellular and anatomical
studies first brought to the fore this idea with

A. Kania

specific examples from the visual system, motor
and sensory cortex and the spinal cord. The
concept promoted by these observations is that
neuronal position is predictive of axonal trajec-
tory, implying that the two are being controlled
coordinately. As the molecular logic underlying
this coordination is unravelled, we are provided
with a toolkit that can be used to finely manipu-
late specific neuronal populations and can begin
to address the functional significance of organisa-
tion within the nervous system.
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Extracellular Signals Controlling
Neuroblast Migration in
the Postnatal Brain

Giovanna Lalli

Abstract

The most prominent example of long-distance migration in the postnatal
brain is the rostral migratory stream (RMS) formed by neuroblasts origi-
nating in the subventricular zone (SVZ), one of the main neurogenic
niches. Stem cell-derived neuroblasts leave the SVZ and migrate rostrally
towards the olfactory bulb (OB), where they ultimately differentiate into
inhibitory interneurons. This migration is essential for the proper integra-
tion of new neurons into the synaptic network and for the regulation of
synaptic plasticity and olfactory memory. SVZ-derived postnatal neuro-
blasts undergo tangential migration independent of radial glia. They slide
along each other in chains, which become progressively encased by an
astrocytic tunnel throughout adulthood, while keeping in close contact
with surrounding blood vessels. Once in the OB, neuroblasts switch to
radial migration before differentiating. While the existence of an RMS is
still controversial in the adult human brain, prominent migration of SVZ-
derived neuroblasts towards the OB is observed in human infants, where it
may play an important role in plasticity in a crucial period for the forma-
tion of synaptic networks. Moreover, SVZ neuroblasts are able to deviate
from their migratory path to reach areas of injury and neurodegeneration.
Identifying the extracellular factors and the intracellular mechanisms reg-
ulating neuroblast migration can therefore not only clarify a fundamental
aspect of postnatal neurogenesis, but can also become relevant for thera-
peutic strategies exploiting the recruitment of endogenous stem cell-
derived neural progenitors. This chapter presents an overview of the wide
range of extracellular factors guiding neuroblast migration that have
emerged over the last two decades.
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1 Introduction

The subventricular zone (SVZ) lining the lateral
ventricles and the subgranular zone of the dentate
gyrus of the hippocampus are the main neuro-
genic niches in the postnatal brain (Zhao et al.
2008). Here, stem cell-derived neural progenitors
acquire the ability to migrate to their final desti-
nations (either the granular zone of the hippo-
campus or the olfactory bulb — OB), where they
will ultimately integrate into a pre-existing neu-
ronal network. Increasing experimental evidence
supports the crucial role of postnatal neurogene-
sis in maintaining functional plasticity associated
with learning and memory in the hippocampus
and with olfactory memory and processing in the
OB (Lepousez et al. 2013; Lazarini and Lledo
2011; Zhao et al. 2008). Importantly, proper
migration of neuronal progenitors is essential to
determine their final fate and maturation as func-
tional neurons (Belvindrah et al. 2011). This is
especially evident along the so-called rostral
migratory stream (RMS), made of chains of neu-
roblasts migrating from the SVZ towards the OB
(Fig. 9.1a). The RMS displays the most substan-
tial, long-distance neuronal migration in the
mammalian postnatal brain. Slowly dividing neu-
ral stem cells in the SVZ (“B” cells) give rise to
highly proliferative transient amplifying progeni-
tors (“C” cells), which in turn generate migratory
neural progenitors (or neuroblasts, or “A” cells)
(Doetsch et al. 1997) (Fig. 9.1b). These highly
dynamic progenitors move rostrally towards the
OB by sliding along each other in chains running
tangentially (i.e. parallel) to the brain surface
(Fig. 9.1c). Once in the core of the OB the chains
disperse, allowing neuroblasts to migrate radially
to their final destination, the glomerular and peri-
glomerular cell layers of the OB. Within their
target area, neuroblasts will finally differentiate
into functional mature GABAergic interneurons

by extending a short basal dendrite and a long,
branched apical dendrite and by making dendro-
dendritic synapses with mitral and tufted cells
integrating olfactory sensory inputs (Fig. 9.1d)
(Lledo et al. 2006). These new neurons will par-
ticipate in complex processes such as olfactory
memory formation, odorant discrimination, and
social interactions (Lazarini and Lledo 2011).

Many studies have conclusively proven the
existence of neurogenesis in the human brain
(Goritz and Frisen 2012; Spalding et al. 2013).
Whereas the RMS is highly prominent in rodents,
its presence in the adult human brain is still a sub-
ject of controversy (Curtis et al. 2007b; Sanai
et al. 2007). A recent report monitoring levels of
nuclear bomb test-derived “C in genomic DNA
has shown very limited olfactory bulb neurogen-
esis in the adult human brain (Bergmann et al.
2012). However, a prominent RMS is visible in
the human infant brain up to 18-20 months after
birth (Sanai et al. 2011). The extensive migration
of neural progenitors observed in this early post-
natal stage could be linked to the need to main-
tain a high level of functional synaptic plasticity
at this crucial stage of human development.
Indeed, it has been suggested that this migration
may also be the target of a number of neurologi-
cal conditions developing in early infancy (Sanai
et al. 2011).

Interestingly, several rodent and human stud-
ies have shown that SVZ-derived neuroblasts
have the ability to be re-routed to sites affected
by injury, trauma, stroke or neurodegeneration
(Curtis et al. 2007a; Sundholm-Peters et al. 2005;
Arvidsson et al. 2002; Ohab et al. 2006). Studying
neuroblast motility may therefore be therapeuti-
cally relevant not only for devising endogenous
stem cell-based repair strategies but also to pro-
mote recruitment of transplanted progenitors in
neuroregenerative approaches. Finally, many
factors and intracellular regulators of neuroblast
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Fig. 9.1 Neurogenesis in the SVZ. (a) Schematic brain
sagittal section showing the two main neurogenic niches
in the postnatal brain, the dentate gyrus of the hippocam-
pus and the SVZ (orange). SVZ-derived migrating
progenitors (light blue) move tangentially along the RMS
towards the OB, where they migrate radially and differen-
tiate into inhibitory interneurons. (b) Anatomy of the
SVZ. Ependymal ciliated cells (purple) line the wall of
the lateral ventricle, and are in contact with quiescent
stem cells (“B” cells, yellow), which in turn give rise to
transit amplifying cells (“C” cells, orange). The latter pro-
duce migratory neuroblasts (“A” cells, light blue). The
SVZ niche is rich in blood vessels (red). (¢) (Left panel)
Migratory neuroblasts slide along each other in chains
surrounded by an astrocytic network. (Right panel)

migratory
neuroblasts (A cells)

Typical RMS migratory neuroblasts extend a long
protrusion oriented towards the OB, as shown by GFP-
labeling via in vivo postnatal electroporation. The OB is
located to the right of the image. (d) (Left panel) Following
radial migration in the OB, neuroblasts (light blue)
differentiate into either granular cells (purple) making
dendrodendritic synapses with mitral cells in the GCL
(green) or into periglomerular cells (dark pink), making
synapses with mitral cells and olfactory neurons in the
GL. (Right panel) Fluorescent SVZ-derived inhibitory
interneurons are visible in the OB 14 days after in vivo
electroporation of a GFP-encoding plasmid in the SVZ.
DG dentate gyrus, OB olfactory bulb, RMS rostral migra-
tory stream, SVZ subventricular zone, GCL granule cell
layer, MCL mitral cell layer, GL glomerular layer
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migration may also influence pathological cell
migration, as in the case of highly metastatic
brain tumour cells. This chapter provides an
overview of the main extracellular factors
regulating RMS neuroblast migration in the post-
natal brain.

2 The Migration of SVZ-
Derived Neuroblasts

RMS neuroblasts display a very characteristic
mode of migration, which does not rely on other
cell types (like, for example, glial-guided or
axon-guided migration in the developing brain)
(Lois et al. 1996). Indeed, neuroblasts slide along
each other in chains, which can be visualized by
immunostaining for neuroblast markers like the
polysialilated form of neural adhesion molecule
(PSA-NCAM) (Fig. 9.7a). The integrity of the
chains is also favoured by the presence of an
astroglial “tunnel” encasing the RMS (Fig. 9.1c),
which acts not only as a physical barrier but also
as a signaling system contributing to efficient
migration (see also below) (Bozoyan et al. 2012).
In the intact brain, a complex balance of
chemoattractant, chemorepellent and motogenic
factors ensures the directed migration of
RMS neuroblasts towards the OB, even though
the presence of the OB is not absolutely
necessary for the directed migration of neuro-
blasts (Kirschenbaum et al. 1999). The typical
chain migration can be recapitulated in vitro by
embedding RMS explants in a three-dimensional
Matrigel matrix (Wichterle etal. 1997) (Fig. 9.7g),
showing that neuroblasts have an intrinsic capac-
ity to migrate even when they are isolated from
their native environment.

Time-lapse imaging studies have highlighted
distinct phases in neuroblast migration (Nam
et al. 2007; Schaar and McConnell 2005) (see
also Chaps. 1,4, 6 and 7) (Fig. 9.2): (1) extension
of a leading process in the direction of migration,
followed by its stabilization via contacts with
other cells and/or the extracellular matrix; (2)
formation of a dilation in front of the nucleus,
where membranous organelles and the centro-
some are located, and where endocytic trafficking
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1 2 3 4 5

Fig. 9.2 Stereotypical phases of RMS neuroblast
migration. / Neuroblasts extend a leading process
tipped with a dynamic growth cone forming transient
adhesions. 2 The process stabilizes by strengthening
adhesions and a dilation forms in front of the nucleus
containing trafficking vesicles (yellow dots) and the cen-
trosome (red dot) connected to microtubules encasing
the nucleus (not shown). 3—4 Endocytic events in the
dilation weaken adhesion, while myosin II-mediated
contraction (yellow shading) at the cell rear promotes
nucleokinesis. 5 The cell starts the cycle again by
extending a new leading process

weakens adhesion; (3) advancement of the
nucleus in the dilation, helped by myosin
II-mediated contraction at the cell rear (nucleoki-
nesis step). Continuous repetition of this cycle
results in the forward movement of neuroblasts.
Localization of the centrosome in front of the
nucleus and the establishment of a protrusion in
the direction of the OB are key events requiring
the involvement of polarity regulators, such as the
Partitioning defective (Par) proteins (Goldstein
and Macara 2007). Among these, Par/ MARK?2 is
required for polarizing the neuroblast leading pro-
cess, thus contributing to the directed migration
towards the OB (Fig. 9.3). Depletion of MARK?2
via shRNA disrupts migration directionality and
results in poor integration of interneurons in the
OB (Megjia-Gervacio et al. 2012). MARK2 may
function by phosphorylating several microtubule-
associated proteins such as tau, or MAP2/4 and
doublecortin (DCX), a crucial molecule required
for both stabilization of the leading process and
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Fig. 9.3 Intracellular mechanisms regulating RMS
neuroblast migration. (7Top) Confocal images of post-
natal rat migratory neuroblasts. Microtubules (visualized
by BII tubulin immunostaining, red) fill in the neuro-
blast leading processes, which are tipped with a growth
cone-like structure enriched in actin filaments (visual-
ized by fluorescent phalloidin, green). Cell nuclei are
stained with Hoechst (blue). Scale bar, 10 pm. (Bottom)
Schematic diagram showing important intracellular
regulators of neuroblast migration. The microtubule
cytoskeleton (red lines) is necessary for maintenance
and growth of the leading process, whereas an intact
actin cytoskeleton (green) is necessary for repolarization
and centrosome reorientation, which is dependent on
GSK3p and PKCC activity. Parl/MARK?2 phosphorylates
MAPs and regulates the activity of other microtubule
regulators, such as DCX and CdkS. DCX may also promote

nuclear translocation. Indeed, DCX suppresses
secondary branching and promotes coupling
between nucleus and centrosome during migra-
tion (Koizumi et al. 2006). The latter role may
involve the coordination of DCX function with
the dynein protein complex. Given that the cen-
trosome acts as an anchor to the minus end of
microtubules encasing the nucleus, dynein could
promote translocation of the nucleus via its minus
end-directed motor activity. Indeed, disruption of
dynein or dynein-associated components such as
Lisl or Ndell impairs nucleus-centrosome cou-
pling and ultimately affects neuronal migration

coupling between nucleus and centrosome, together
with the Lis1/Ndell/dynein complex. CdkS contributes
to the dynamic organization of the microtubule cyto-
skeleton by phosphorylating a number of substrates
including Ndell, DCX, and FAK. Centrosomally
anchored microtubules may become captured in the
leading process through interactions between the Racl/
Cdc4?2 effector IQGAP and plus-end MT tip proteins.
Actomyosin-based contractility mediated by mDia and
ROCK at the cell rear (yellow) promotes nucleokinesis.
The actin-bundling protein fascin regulates actin
bundling in peripheral filopodia, and may participate in
controlling adhesion during migration. Localized
clathrin-mediated endocytosis of adhesion components
(vellow dots) occurs in the dilation forming ahead of the
nucleus after extension of the leading process, weaken-
ing adhesion before nucleokinesis

(Shu et al. 2004; Tanaka et al. 2004) (see also
Chaps. 1 and 7).

Parl/MARK2 may also regulate Cyclin-
dependent kinase 5 (CdkS5), another crucial mol-
ecule regulating the tangential migration of
neuroblasts along the RMS. Cdk5 deletion
impairs chain formation, speed, directionality
and leading process extension of SVZ-derived
neuroblasts in a cell-autonomous manner (Hirota
et al. 2007). This important kinase may contrib-
ute to the dynamic organization of the microtu-
bule cytoskeleton by phosphorylating a number
of substrates involved in neuronal migration,
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such as Ndell, Pakl, CRMP-2, DCX, and FAK
(Hirota et al. 2007).

Also involved in the directed migration of
neuroblasts is protein kinase C { (PKCC), a mem-
ber of the Par3-Par6-PKC{ complex, a master
regulator of polarization in a variety of cellular
contexts (McCaffrey and Macara 2009). Upon
binding of active Cdc42 to Par6, activation of the
polarity complex results in PKC{-mediated phos-
phorylation and inhibition of glycogen synthase
kinase 3p (GSK3p), ultimately affecting proper
centrosome localization and microtubule stabil-
ity. Indeed, both GSK3f and PKCC inhibition
block Slit-induced reorientation of the centro-
some and process stabilization (Higginbotham
et al. 2006), suggesting a conserved role for these
molecules in the regulation of neuroblast polar-
ization. Importantly, disruption of the actin but
not microtubule cytoskeleton impaired centro-
some movement within the cell body. This
suggests that while an intact microtubule cyto-
skeleton is necessary for maintenance and growth
of leading process, an intact actin cytoskeleton is
necessary for repolarization and centrosome
reorientation.

The centrosomally anchored microtubules
may become captured at the edge of the leading
process through interactions between the Racl/
Cdc42 effector IQGAP and plus-end MT tip pro-
teins. Consistent with this model, IQGAP is
required for neuroblast motility (Balenci et al.
2007). The essential role of tightly regulated
actin dynamics for migration along the RMS is
also emerging from studies in knockout mice
lacking actin regulators, such as the Rho effectors
mbDial and mDia3 and the actin-bundling protein
fascin. Both animal models have an abnormal
RMS with a caudal accumulation of migratory
neuroblasts and a smaller OB (Shinohara et al.
2012; Sonego et al. 2013). mDia is required for
anterograde F-actin movement towards the lead-
ing process during nucleus-centrosome separa-
tion and for the formation of an “F-actin cup” at
the cell rear during nuclear translocation, proba-
bly by generating actin filaments in actomyosin
bundles for nuclear translocation. At the cell rear,
activation of Rho-associated protein kinase
ROCK downstream of Rho would lead to phos-
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phorylation and activation of myosin light chain
kinase (MLCK), thus promoting actomyosin-
based contractility and nuclear movement over
large distances (Shinohara et al. 2012), as shown
in cortical interneurons (Godin et al. 2012).
Instead, F-actin condensation ahead of the
nucleus may ensure centrosomal movement
before nuclear translocation. The same area dis-
plays an accumulation of fascin, an actin bun-
dling protein also localized on peripheral
filopodia of the leading process tip. Consistent
with a role in regulating the directed motility of
RMS neuroblasts, fascin depletion disrupts neu-
roblast morphology, causing ectopic branching
and impairing migration both in vitro and ex vivo
(Sonego et al. 2013). The ability of fascin to
cycle on-off actin filaments via PKC-dependent
phosphorylation on Ser39 is crucial for neuro-
blast migration, and may provide a molecular
link between actin and adhesion dynamics
(Anilkumar et al. 2003).

Together with cytoskeletal regulation, mem-
brane trafficking is likely to play an important
role in the directed migration of neuroblasts.
Clathrin-mediated endocytic events frequently
occur in the dilation forming ahead of the nucleus
after extension of the leading process (Shieh
et al. 2011). Localized endocytosis of adhesion
components such as f1 integrins (see also below)
or N-cadherin (Kawauchi et al. 2010) could
weaken adhesions to facilitate forward translo-
cation during neuronal migration. Blocking
endocytosis by pharmacological inhibition or
expression of either dominant negative dynamin
or clathrin impairs migration by affecting the
ability of the cell body to advance. From these
experiments a model emerges where anchoring
adhesions in the leading growth cone provide
traction forces, a gradient of adhesive strength
enables the cell rear to detach from the substrate
during somal translocation, while endocytosis in
the dilation weakens adhesive contacts and
prepares the cell for the nuclear translocation
into the dilation (Shieh et al. 2011). Recent stud-
ies on embryonic neuronal migration have started
to highlight the importance of Rab GTPases in
trafficking of cell adhesion molecules (Kawauchi
et al. 2010), which could play similar roles also
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in postnatal neuroblast migration. Exploring the
function of these and other membrane traffic
regulators will help us understand how localized
signalling is achieved during the polarized
migration of postnatal neuroblasts and how
this can be coordinated with cytoskeletal and
centrosome dynamics.

3 Factors Controlling RMS
Neuroblast Migration

The directed migration of RMS neuroblasts relies
on the complex combination of a variety of extra-
cellular factors with chemorepellent, chemoat-
tractant, and motogenic activities. In the last two
decades in vitro migration assays using RMS
explants and a variety of transgenic mouse mod-
els have been instrumental to identify several
regulators of neuroblast migration, including cell
adhesion/ECM and axon guidance molecules,
growth factors, and neurotransmitters (Figs. 9.4,
9.5, 9.6 and 9.8). The following section describes
the roles of key extracellular signals controlling

Fig.9.4 Cell adhesion and ECM molecules involved in
neuroblast migration. PSA-NCAM and various integrin
subunits modulate neuroblast motility along the RMS.
Integrins can interact with a number of laminins present
along the RMS. The ECM glycoprotein anosmin secreted
by neuroblasts may cooperate with FGFR1 signalling to

the different phases of neuroblast migration,
including detachment from the SVZ, tangential
migration along the RMS, and the final switch to
radial migration in the OB.

3.1 Adhesion Molecules/ECM

Molecules

PSA-NCAM: A function for PSA-NCAM in the
formation of neuroblast chains was initially sug-
gested based on the high expression of this mol-
ecule by migrating neuroblasts (Rousselot et al.
1995). Indeed, migration along the RMS is ham-
pered in mice lacking NCAM and PSA
(Tomasiewicz et al. 1993; Cremer et al. 1994).
Although chains are still visible in NCAM~-
mice, they appear disorganized and more sparse
compared to wild-type animals (Chazal et al.
2000). However, migration may rely on PSA-
NCAM more in the early postnatal RMS com-
pared to later stages. PSA-NCAM may actually
serve more as an important mediator in favouring
the interaction of neural progenitors with their

% Anosmin
@ Reelin
@ Tenascin-R
THBS-1
@ Laminins

promote detachment of neuroblasts from the SVZ.
Secreted thrombospondin-1 (THBS-1) and Reelin act on
the same receptors (ApoER2 and VLDLR) to modulate
tangential and radial migration, respectively. Expression
of the ECM component Tenascin-R is activity-dependent
and controls chain dispersion in the OB
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Fig.9.5 Axon guidance molecules regulating neuroblast
migration. (7op) Slits1/2 derived from the choroid plexus
function as chemorepellents for RMS neuroblasts, while
Sema4 acts on PlexinB2 receptors to restrict tangentially
migrating neuroblasts to the RMS, forcing cells to move
along the caudo-rostral axis. The Nogo-A-A20 domain may
contribute to ensure proper adhesion/detachment cycles in
neuroblasts along the RMS. Prokineticin 2 expressed in the
OB acts as a chemoattractant for neuroblasts along the RMS
and as a dissociation signal at the OB entry. Netrin secreted

environment, rather than between migrating
precursors themselves. Indeed, enzymatic removal
of PSA by intraventricular injection of neuramini-
dase causes a major disorganization of the RMS,
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by mitral cells in the OB may promote the directed migra-
tion of neuroblasts expressing the DCC receptor. (Bottom)
Axon guidance molecules also function in neuroblast-astro-
cyte cross-talk along the RMS. Neuroblasts secrete Slit-1 to
remodel the surrounding glial tubes via Robo2/3 receptors
present on astrocytes. Eph receptors in the RMS may act
upon binding of EphrinB2/B3 ligands present on astrocytes
to regulate chain maintenance. NRG/ErbB4 signalling
regulates neuroblast-astrocyte interaction, chain organiza-
tion and both tangential and radial migration

disruption of astrocyte/neuroblast alignment and
most of all enhances dispersion of cells into neigh-
bouring areas, like the striatum or the cortex
(Battista and Rutishauser 2010). This is likely due
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Fig. 9.6 Growth factors involved in neuroblast
migration. IGF-I and FGF-2 promote the exit of neuro-
blasts from the SVZ while VEGF may favour tangential
migration via VEGFR2. VEGF secreted by astrocytes
may also indirectly regulate the motility of neuroblasts by

not only to abnormalities in the astrocytic “tun-
nels” encasing the neuroblast chains, but also to
the unveiling of some new, PSA-independent
migratory properties coupled with NCAM-
dependent triggering of neuroblast differentiation.

Integrins: Several studies have confirmed the
presence of different integrins along the RMS,
even though a thorough characterization of the
range of integrins present at different ages is still
lacking. For example, in neonatal mice ol integrin
subunit is expressed along the entire stream, but
then is downregulated from early postnatal stages
onwards (Murase and Horwitz 2002). In contrast,
the 8 integrin subunit is expressed throughout
development and adulthood and its genetic dele-
tion causes severe defects in chain migration, with
the appearance of disorganized neuroblast clusters
and increased numbers of GFAP-positive astro-
cytes throughout the brain (Mobley and McCarty
2011). av, f3 and P6 subunits are observed along
the RMS from early postnatal/young adulthood
stages onwards (Murase and Horwitz 2002). The
presence of different integrin subunits in the RMS
may reflect the diverse range of extracellular
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remodeling blood vessels functioning as scaffold for
migration. BDNF secreted by blood vessels promotes
neuroblast motility via p75NTR, while HGF acts as a
motogenic factor by binding the Met receptor present on
neuroblasts. See text for details

matrix (ECM) components surrounding the neuro-
blast chains. Indeed, integrins act as receptors for
several laminins, which also display a specific dis-
tribution in the different cell types composing the
SVZ niche (Kazanis et al. 2010). In the RMS,
prominent expression of several a, § and y laminin
subunits can be detected, including al, o2, and o4
(Belvindrah et al. 2007). While the requirement of
many laminin subunits for neuroblast migration is
difficult to test due to the early lethality of knock-
out mouse models (such as al, f1 and y1-deficient
mice), a2/a4 double knockout animals could be
examined thanks to their ability to survive to adult-
hood. These mice display a less compact RMS,
consistent with the idea that laminin/integrin
signaling ensures the formation of organized
neuroblast chains. Since the a2 and o4 subunits
are components of several laminin isoforms (lam-
inin-2, -4, -12 for o2 and laminin-8 and -9 for o4,
respectively) and given the lack of RMS defects in
the single a2 and a4 knockouts, it is likely that
several laminin isoforms perform redundant
roles in the maintenance of neuroblast chains
(Belvindrah et al. 2007).
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Genetic deletion or blocking of Pl integrin
disrupts RMS architecture, causing defects in the
glial tubes surrounding neuroblast chains. As a
consequence, ectopic migration is observed into
the tissue surrounding the RMS and also the
medial side of the lateral ventricle, an area usu-
ally almost completely lacking migratory neuro-
blasts (Kazanis et al. 2010). However, quite
surprisingly cells lacking P1 are still able to
extend dynamic protrusions and migrate towards
the OB. The disruption in chain migration caused
by blocking or genetically ablating f1 suggests
that this subunit is specifically required to ensure
proper cell-cell interactions during migration
(Emsley and Hagg 2003; Belvindrah et al. 2007).
In absence of Pl integrin, cells no longer form
compact chains also in vitro, and this influences
their mode of migration, which becomes more
random and less directional. The crucial role of
the Bl subunit suggests that several laminin-
binding integrins expressed on neuroblasts (such
as alfl, a2p1, a3p1, a6P1, and a7p1) may coop-
erate with each other, with additional ECM and
other secreted signaling molecules/surface recep-
tors to ensure migration of neuroblasts in com-
pact chains (Belvindrah et al. 2007). Interestingly,
integrins can also control the activity of
N-cadherin, a cell adhesion molecule highly
expressed along the RMS and downregulated in
the OB, where cells radially disperse (Yagita
etal. 2009). In this regard, it is also worth pointing
out that gangliosides such as ganglioside
9-O-acetyl GD3 (9acGD3) are markedly
expressed in the RMS from embryonic until
adult stages. This acetylated ganglioside dis-
plays a punctate distribution along the surface
of cultured neuroblasts, which partially colocal-
izes with B1 integrin (Miyakoshi et al. 2012).
Even though blocking 9acGD3 in vitro does not
disrupt neuroblast chains, it decreases the speed
of migration and leads to chain retraction, sug-
gesting that 9acGD3 could regulate neuroblast
motility by modulating integrin-dependent
adhesion. Interestingly, the deacetylated form of
GD3 can interact with Tenascin-R (Probstmeier
et al. 1999), another ECM molecule regulating
the radial migration of neuroblasts in the OB
(see below), which highlights the potential abil-
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ity of this glycolipid to mediate distinct modes
of migration when interacting with different
adhesion molecules present in the extracellular
environment.

Galectin-3: Galectin-3 is a member of a fam-
ily of 15 proteins identified by their similar car-
bohydrate recognition domains, with a conserved
sequence of approximately 130 aminoacids able
to bind galactoside residues. Among galectins,
Galectin-3 can regulate cell-ECM interactions
through laminin and integrins, but is also able to
shuttle between the cytoplasm and the nucleus,
where it regulates pre-mRNA splicing (Elola
et al. 2007). Interestingly, Galectin-3 is expressed
selectively in the RMS but not in the OB, sug-
gesting a specific role in tangential migration.
More detailed analysis showed that it can be
found in GFAP* astrocytes and ependymal cells
of the SVZ and in the astrocytes lining the RMS,
but is excluded from PSA-NCAM* migratory
neuroblasts. Gal3 ko mice display distorted and
thicker process of GFAP* cells, but chain integ-
rity is not altered, even though the number of
individually migrating cells appears increased.
However, BrdU labeling experiments clearly
showed a significantly impaired neuroblast
migration, resulting in a marked decrease of neu-
ron number in the OB (Comte et al. 2011).
Galectin-3 may regulate neuroblast migration in
several ways, given its ability to bind -galactoside
residues on Epidermal Growth Factor Receptor
(EGFR), laminin, integrins, NCAM and tenascin,
all involved in controlling neuroblast motility.
First, the lack of Galectin-3 decreases and
disrupts cilia, crucial structures present in the
ependymal cells lining the wall of the ventricle.
The correct orientation and beating of ependymal
cilia ensures proper flow of cerebrospinal fluid
(CSF), establishing gradients of chemorepellents
in the SVZ regulating the directed migration of
neuroblasts (Sawamoto et al. 2006), which may
therefore be affected by the deletion of Galectin-3.
Moreover, the disrupted astrocytic tunnels
observed in Gal3 ko mice are likely to have a
profound effect on neuroblast migration, given
that these structures play a fundamental role not
only in physically constraining the migratory
neuroblasts, but also in controlling the speed of
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migration through important cell-cell interac-
tions (see also below). Finally, Galectin-3 may
also decrease the activation state of epidermal
growth factor receptor (EGFR), which inhibits
neuronal migration (Kim et al. 2009). It will be
important to investigate the potentially multiple
signaling pathways operating downstream of
Galectin-3 in the control of neuroblast motility.

Thrombospondin-1 (THBS-1):  Thrombo-
spondins are secreted proteins involved in cell-
cell and cell-matrix interactions in a variety of
cellular contexts. Thrombospondin-1 (THBS-1)
can interact with integrins, proteoglycans, and
growth factors like PDGF and TGFp (Lawler
2000), and is found in both the SVZ and the
RMS. THBS-1 contributes to the stabilization
of RMS chains by binding to apolipoprotein E
receptor 2 (ApoER2) and very low-density lipo-
protein receptor (VLDLR) present on migrating
neuroblasts. Addition of THBS-1 to RMS
explants increases chain length, while THBS-1 ko
mice exhibit higher number of individual migrat-
ing cells in vitro, a widened, less compact RMS,
and a delayed migration to the OB in vivo (Blake
et al. 2008). However, the RMS phenotype in
THBS-1 ko is milder than that observed in mice
lacking both ApoER2 and VLDLR, where chain
formation is completely absent (Andrade et al.
2007), suggesting that other extracellular factors
may act on ApoER2 and VLDLR in the RMS.
Remarkably, while ApoER2 and VLDLR
maintain chains upon binding THBS-1 along the
RMS, in the OB they promote chain dispersion
and radial neuroblast migration downstream of
Reelin (Herz and Chen 2006; Hack et al. 2002).
Intriguingly, the interaction of ApoER2 and
VLDLR with both THBS-1 and Reelin lead to a
common initial event, the intracellular phosphor-
ylation of the adaptor protein Disabled (Dabl).
How the ApoER2 and VLDLR downstream
signaling pathways diverge in mediating such
different effects (tangential versus radial migration)
is still unclear.

Reelin: Reelin is a large secreted glycopro-
tein essential for the development of laminated
structures in the brain (Tissir and Goffinet
2003), and is best known for its role in promot-
ing radial neuronal migration in the neocortex
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and in the hippocampus. In the postnatal brain,
Reelin causes the detachment of RMS neuro-
blast chains, allowing proper radial migration
within the OB (Hack et al. 2002). Consistent
with this function, Reelin mutant animals
(Reeler mice) display abnormal neuroblast
accumulation at the end of the RMS, pointing
to a severe radial migration defect resulting in
the loss of the stereotypical layer organization
of the OB and in an overall significant reduc-
tion of newly generated neurons in this struc-
ture (Hack et al. 2002; Kim et al. 2002). Reelin
is highly expressed by mitral cells, the principal
neuronal targets for the interneuron precursors
that arrive via the RMS in the OB. Moreover, a
descending Reelin protein gradient can be
detected from the mitral cell layer (MCL)
through the entire granule cell layer (GCL) as
far as the RMS, which instead is negative for
reelin. A recent study has proposed that reelin,
which has a higher affinity for ApoER2 and
VLDLR than THBS-1, might displace THBS-1
and other putative ligands from ApoER2 and
VLDLR once neuroblasts start to enter the OB,
resulting in the dissolution of chains and help-
ing achieve correct positioning of cells in the
OB layers (Blake et al. 2008). In vitro studies
using neuroblast cultures suggest that reelin
may induce neuroblast detachment via a Dab1/
PI3K pathway leading to MAPK activation and
ERK phosphorylation (Simo et al. 2007), but
the functional relevance of these events still
needs to be explored in vivo.

Tenascin-R: Among the members of the
tenascin gene family is Tenascin-R, an ECM
component containing a cysteine-rich amino
terminal region, epidermal growth factor
(EGF)-like domains, fibronectin type III homol-
ogous repeats and a domain homologous to
fibrinogen (Jones and Jones 2000). This mole-
cule promotes the detachment of neuroblasts
from chains at the end of the RMS and their
radial migration in the OB. Consistent with this
function, Tenascin-R is detectable exclusively
in the deep layers of the OB and around the
rostral section of the RMS. TNR ko mice have
normal RMS architecture and tangential migra-
tion, but display neuroblast accumulation at
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the rostral RMS when cells enter the OB, indicat-
ing a failure in chain dispersion. Interestingly,
expression of Tenascin-R is activity-dependent,
as it is significantly reduced by odor deprivation
(Saghatelyan et al. 2004). Tenascin-R therefore
may act as an important signal linking net-
work activity with recruitment of newborn
neurons in the OB. The Tenascin-R receptors
involved in this function remain to be identi-
fied. They could include contactin (or F3)
(Pesheva et al. 1993), acetylated gangliosides
like GD3 (Probstmeier et al. 1999), and recep-
tor protein-tyrosine phosphatases belonging to
the family of chondroitin sulfate proteoglycans
(CSPGs) (Xiao et al. 1997). Another possible
mode of function may involve the ability of
Tenascin-R to capture and present extracellular
factors promoting radial migration. In this
regard, the possibility of cross-talk between
Tenascin-R and the reelin signaling pathway, also
involved in radial migration in the OB, remains
to be investigated. Interestingly, grafting exper-
iments of Tenascin-R-expressing cells showed
that this molecule not only promotes the
detachment of neuroblasts from chains, but is
also sufficient to re-route tangentially migrat-
ing neuroblasts towards non-neurogenic areas
(Saghatelyan et al. 2004), which could become
an important aspect in therapies exploiting
endogenous stem cell repair.

3.2 Axon Guidance Molecules

Slit/Robo: Slits are diffusible proteins involved in
multiple aspects of neurodevelopment, such as
axon guidance and neuronal migration (Ypsilanti
et al. 2010). Two Slit members, Slitl and Slit2
are expressed in the adult brain septum and cho-
roid plexus and are sufficient to repel SVZ-
derived neuroblasts in vitro (Hu 1999; Wu et al.
1999). Further studies using S/iz/ and Slir2 ko
mice identified the nature of the septum-derived
chemorepulsive activity as a mixture of Slitl and
Slit2, while Slit2 is the choroid plexus-derived
chemorepulsive factor (Nguyen-Ba-Charvet et al.
2004), demonstrating that both Slits play an
important role in orienting the migration of SVZ-
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derived neuroblasts. However, Slits do not seem
to act purely as chemorepellents. Indeed, Slit1 is
also present in type C and A cells in the SVZ/
RMS, while is absent from GFAP* astrocytes. In
Slit1 ko mice, neuroblasts leave the RMS prema-
turely to migrate dorsally and caudally to the
SVZ, throughout the corpus callosum (Nguyen-
Ba-Charvet et al. 2004). In the same study,
genetic deletion of S/it/ markedly increased the
migration of neuroblasts out of SVZ explants,
leading the authors to propose a cell-autonomous
role for Slit in neuroblast migration. A second
report more directly analyzed the dynamics of
Slit] ko neuroblasts labeled with Dil in brain
slices and found that they were 40 % slower than
wild-type, consistent with a marked reduction
in the proportion of cells able to reach the OB
(Kaneko et al. 2010). Slit] ko neurons trans-
planted in a wild-type RMS showed significantly
slower speed compared to Slitl-expressing wild-
type cells, supporting a cell-autonomous role for
Slitl in neuroblast migration. In addition, Slitl-
expressing wild-type cells displayed a slower and
more irregular migration when transplanted in a
Slitl-deficient RMS compared to a wild-type
RMS, revealing also a non-autonomous function
for Slit-1 in neuroblast migration. Interestingly,
the Slit receptors Robo2 and Robo3 are present
on both migrating neuroblasts and on the sur-
rounding astrocytes in the RMS. Elegant experi-
ments have shown that Slitl secreted by the
migrating neuroblasts “repels” and changes the
morphology of the surrounding astrocytes via
Robo signaling, thus contributing to the forma-
tion and maintenance of the astrocytic tunnels
that ensure proper long-range migration (Kaneko
et al. 2010).

Slit can also bind the secreted factor Netrin-1,
which is present on migrating neuroblasts
together with its receptor DCC (Murase and
Horwitz 2002) (see below). In other contexts, Slit
can modulate DCC-mediated responses by
silencing Netrin-1 signalling, but it is still unclear
whether such mode of action is preserved along
the RMS. It is intriguing that while all PSA-
NCAM" cells in the RMS express Slitl, radially
migrating cells in the OB appear to downregulate
Slitl levels, suggesting that the switch from
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tangential to radial migration may involve
modulation of Slit signaling. The absence of Slit
favours independent migration of neuroblasts,
and a possible cross talk with other signaling
molecules promoting the dispersion of chains in
the OB such as reelin or Tenascin-R would be
worth investigating.

Netrin-1/Dcc: Both Netrin and the netrin
receptors neogenin and DCC are strongly
expressed by migrating neuroblasts in the RMS
during E15 until P5, a time of massive migra-
tion from the SVZ to the OB (Murase and
Horwitz 2002). Moreover, mitral cells express
high levels of netrin-1, at least in late embry-
onic and early postnatal stages, but downregu-
late netrin-1 after PS. This suggests that a
chemogradient of netrin-1 secreted by the
mitral cells may help guiding neuroblast migra-
tion at least in the early postnatal brain. Time-
lapse imaging experiments in brain slices
performed in the presence of a function-
blocking antibody against the netrin receptor
DCC show a loss of neuroblast directionality
and a significant decrease in their speed, point-
ing to a role for the Netrin-DCC signaling system
in regulating the directed migration of neuro-
blasts along the RMS. A more recent report has
highlighted the presence of high levels of
netrin-4 in some astrocytes located in the OB
and along the border of the anterior RMS in
adult mice (Staquicini et al. 2009). These
netrin-4-producing astrocytes may have a role
in restricting the migratory pathway, promoting
the entry of neuroblasts into the OB. However,
whether this is indeed the case or whether there
may be an additional role for netrin-4 in con-
trolling the proliferation of migratory neuro-
blasts remains to be investigated.

ErbB4/Neuregulin NRG1-NRG3: Neuregulins
(NRGs) are multiple EGF-like domain-containing
ligands, which act on receptor tyrosine kinases
ErbB2, ErbB3 and ErbB4. NRGs are well-
characterized regulators of synaptic plasticity
(Buonanno 2010), oligodendrocyte/Schwann cell
lineages (Garratt et al. 2000), and muscle spindle
formation (Hippenmeyer et al. 2002). Moreover,
they can also control glial-guided neuronal
migration in the developing cortex and cerebel-

Ium (Anton et al. 1997; Rio et al. 1997). NRG1-3
are all expressed in the postnatal CNS and they
activate ErbB4, which is selectively expressed at
high levels in the SVZ and RMS, mainly in type
A migratory neuroblasts, a subset of GFAP*
astrocytes and type C proliferating progenitors
(Anton et al. 2004). Conditional deletion of
ErbB4 in nestin-expressing stem cells or in
GFAP-expressing stem cells and astrocytes leads
to similar phenotypes displaying fragmented
neuroblast chains and an RMS with jagged
boundaries. The close interaction between neuro-
blasts and ensheathing astrocytes along the RMS
was disrupted when ErbB4 was deleted in GFAP-
expressing cells, suggesting that this receptor is
required in both neuroblasts and astrocytes to
ensure proper formation and organization of the
RMS in vivo. Live cell-imaging also revealed
impaired orientation and decreased speed of neu-
roblast migration along the RMS in Erbb4"*"
;hGFAP-Cre mice. The impaired migration in
Erbb4"-;hGFAP-Cre mice leads to disrupted
organization of the OB, which displays a reduc-
tion in interneuron number, abnormal interneu-
ron morphology and distribution and a tendency
of cells to accumulate at the end of the RMS in
the internal granular layer (Anton et al. 2004).
Together, these observations indicate that lack of
ErbB4 affects both tangential and radial migra-
tion. Immunolocalization analysis of the different
NRGs suggests that NRGI1 type III isoform
(containing cysteine-rich/SMDF domains) is the
predominant ErbB4 ligand acting in the RMS,
where it is detectable especially in early postnatal
stages. Indeed, NRG1 exhibits almost complete
overlap with PSA-CAM* neuroblasts in the RMS
(Ghashghaei et al. 2006). Consistent with this, in
vitro stripe assays indicate that NRGI1 type III
on the cell surface may provide a permissive
guidance substratum with a motogenic effect for
ErbB4* migrating neuroblasts (Anton et al.
2004). Other NRGs such as NRG2 and NRG3 are
mostly expressed in the OB, where they could
influence the radial migration and final differen-
tiation of neuroblasts. How ErbB4 signalling
system can influence migration is still unclear,
but possible mechanisms include its ability to
cross-talk with integrin-linked pathways and to
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regulate transcription following proteolysis and
entry into the nucleus of its cytoplasmic tail.
Ephrin-B2/EphB2: The Eph family of receptor
tyrosine kinases and their transmembrane-
associated ephrins are divided into two sub-
classes, A and B, based on their binding
specificities. During development Eph/ephrin
signalling contributes to the regulation of a
multiple events such as axon guidance and neural
crest cell migration (Klein 2012). Eph receptors
signal through their tyrosine kinase domain upon
ligand binding (Hall and Lalli 2010). However,
Ephrin-B ligands also transduce intracellular sig-
nals through their cytoplasmic tyrosine residues,
thus allowing bidirectional signaling (Holland
et al. 1996). EphB/EphA4 and ephrin-B bi-direc-
tional signaling favours cell-cell repulsion, for
example to restrict cell intermingling during
boundary formation. However, it may also medi-
ate attraction in other contexts such as endothe-
lial assembly in blood vessels (Yancopoulos et al.
1998). Ephrin B2 and B3 ligands are present on
astrocytes in both the SVZ/RMS and OB.
Infusion of truncated EphB2 and ephrin-B2 pro-
teins into the lateral ventricle to perturb normal
EphB/ephrin-B signaling increases cell prolifera-
tion in the SVZ and disrupts neuroblast chain
migration (Conover et al. 2000). Since Ephrin
ligands are present on astrocytes both in the SVZ
and along the RMS, they may help to restrict the
migratory path that also contains the ephrin
receptors EphA4, B1 and B2. It is still unclear
which of these receptors are actually expressed
by the migratory neuroblasts in the RMS, and
whether disruption of chain migration may be a
secondary effect following the abnormal prolif-
eration caused by disruption of ephrin signaling
in the SVZ. However, the presence of both ephrin
ligands and Eph receptors along the RMS migra-
tory route suggests that this system plays an
active role in regulating cell-cell signaling both
during proliferation in the SVZ and in migration
towards the OB. The molecular details of this
event and the functional role of a potential
Ephrin-B/EphB bidirectional signaling in this
process remains to be clarified.
Semaphorin/Plexin-B2: Semaphorins are
axon guidance molecules controlling neuronal
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migration in the developing nervous system
(Renaud et al. 2008; Kerjan et al. 2005; Tran
etal. 2007). They act by binding to Plexin recep-
tors, which are divided into four subgroups
(A-D) based on structural features. Type B
Plexins are expressed in the postnatal CNS but
their function is still largely unclear. A recent
report analyzing Plxnb2 ko mice highlighted an
important role for this semaphorin receptor in
postnatal neurogenesis. In the SVZ, Plexin-B2
is highly expressed in GFAP+ astrocytes and
Mashl1* transit amplifying progenitors. In the
RMS, Plexin-B2 is present in migrating neuro-
blasts but absent in the surrounding astrocytic
tunnels. Interestingly, in the OB Plexin-B2
expression is not detectable in the radially
migrating neuroblasts cells, while it is found at
lower levels in all periglomerular cells, mitral
cells and olfactory axons (Saha et al. 2012). The
presence of the class IV Semaphorins (Sema4A,
4C, 4D, 4G) acting as ligands for Plexin-B2
along the RMS, granular cell and mitral cell lay-
ers suggests that a classical Semaphorin-Plexin
signaling may provide a way to fine-tune neuro-
blast migration in “decision points” such as the
RMS exit and the different layers of the OB.
Indeed, besides disruption in proliferation,
Pixnb2 ko mice display ectopic neuroblast
migration in non-neurogenic areas like the cor-
pus callosum and septum. Moreover, Plxnb2 ko
neuroblasts move faster, are less directed and
leave the RMS more rapidly once in the OB.
Sema-Plexin-B2 interactions may therefore help
neuroblasts to inhibit radial migration in the
CNS as well as polarize the tangential migration
along the RMS according to the so-called “sur-
round repulsion” model (Keynes et al. 1997),
forcing cells to move along the caudorostral
axis. Plexin-B2 can also bind to receptor tyro-
sine kinases such as MET and RET and modu-
late their activation by their respective ligands,
Hepatocyte Growth Factor (HGF) and Glial cell
Derived Neurotrophic Factor (GDNF), two
growth factors also involved in neuroblast
migration (see below). However, Plexin-B2
does not seem to be necessary for HGF or
GDNF-induced neuroblast migration, at least in
vitro (Saha et al. 2012).
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3.3  Other Factors

Sonic Hedgehog (Shh): The morphogen Shh has
recently been implicated in the regulation of neu-
roblast migration. In vivo perturbation of Shh sig-
naling significantly alters the amount of BrdU*
nuclei found in the SVZ and OB, without altering
the total amount of BrdU* cells. Specifically,
overexpression of Shh led to an increase in BrdU*
cells in the SVZ at the expense of the OB, while
overexpression of the Shh inhibitor Hip led to
opposite effects, suggesting an involvement of
Shh signaling in neuroblast proliferation and
migration (Angot et al. 2008). Indeed, RMS
migratory neuroblasts express both the 12-pass
transmembrane protein Patched (Ptc) and the G
protein-coupled receptor Smoothened (Smo),
which are the main mediators of Shh signaling.
In vitro migration assays using RMS explants
point to a chemoattractive role for Shh, confirmed
by the fact that in vivo grafting of Shh-expressing
cells attracts migrating neuroblasts away from
the RMS (Angot et al. 2008). Since Shh is highly
expressed in the SVZ and in the CSF, this mor-
phogen may act as a molecular cue to control the
exit of neuroblasts out of the SVZ, retaining them
within the niche. It remains to be seen how Shh
exerts this effect, whether classically through
attenuation of Gli transcriptional repressors or
through modulation of integrin/N-cadherin adhe-
sion, as shown in neural crest cells and in the
neuroepithelium (Jarov et al. 2003). Thus, Shh
signaling is likely to contribute to the complex
balance between attractive, repulsive and motogenic
factors regulating the detachment of neuroblasts
from the SVZ and the initiation of their migration
in the RMS.

Nogo: A recent study has highlighted the con-
tribution of Nogo signaling to the regulation of
neuroblast migration. Nogo-A and its receptor
NgR1 are well-known regulators of neurite
growth and synaptic plasticity in the CNS (Pernet
and Schwab 2012), but they have also been impli-
cated in controlling neural stem cell proliferation
(Li et al. 2011). Interestingly, while Nogo-A/
NgR1 signalling reduces neural stem cell pro-
liferation in vivo, the Nogo-A-A20 domain
supports tangential migration in the RMS indepen-
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dent of NgR1, which is absent from neuroblasts.
This effect appears to rely on the ability to affect
cytoskeletal dynamics by stimulating a Rho-
ROCK signaling cascade, which is likely to ulti-
mately contribute to the balance of adhesion/
detachment cycles during migration (Rolando
et al. 2012). Consistent with this, in vivo infusion
of a Nogo-A-A20 domain blocking antibody
causes a marked accumulation of DCX+ neuro-
blasts in the SVZ, supporting a role for Nogo-A
in promoting neuroblast mobilization via its A20
domain, facilitating their sliding onto each other.
Interestingly, this Nogo-A effect is lost at the
rostral end of the RMS, when cells switch from
tangential migration to radial migration along
vascular scaffolds, suggesting that Nogo-A-A20
may act by modulating homotypic interactions
between neuroblasts along the RMS. The
receptor(s) mediating this Nogo-A-A20 depen-
dent effect are still unknown.

Prokineticin 2: Prokineticin (1 and 2) are
secreted bioactive molecules acting via two
closely related G-protein-coupled receptors
(Prokrl and Prokr2), and are involved in control-
ling gut motility, reproductive function and circa-
dian output from the suprachiasmatic nuclei
(Prosser et al. 2007). Both prokineticin receptor
transcripts are highly expressed in the SVZ and
RMS, and prokineticin 2 plays an important che-
moattractant role for RMS neuroblasts (Ng et al.
2005). Prokr2 is highly expressed by RMS neu-
roblasts, but is also present on transit amplifying
cells, suggesting it could play an additional role
in regulating the transition from the transit
amplifying “C” cell state to the migratory neu-
roblast “A” cell state (Puverel et al. 2009).
Prokr28m! mice (with a null prokineticin
receptor 2) show severe defects in neuroblast
migration, with substantial accumulation of
cells in the RMS and a drastic decrease in the
size of the OB, which also displays disrupted
organization and failure in differentiation
(Prosser et al. 2007). Both Prok2 and Prokr2
genes play an essential role also during the ter-
minal steps of the migration of neuroblast
chains in the RMS, since both Prokr2~'- and
Prok2~~ mice display defective dissociation of
chains at the exit of the RMS. These data,
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together with the specific expression of Prok2
in the OB (Ng et al. 2005) strongly support a
role for prokineticin2 as a chemoattractant for
SVZ-derived neuroblasts along the RMS and as
a dissociation signal at the entry of the OB.
Importantly, Prokrl ko mice retain a normal
OB, supporting a specific role for Prokr2 in
neuroblast migration. Interestingly, the effects
on the OB observed in Prokr2 null mice are
more severe compared to those caused by the
lack of its ligand Prokineticin2, suggesting that
the loss of Prok2 is at least partially compen-
sated in vivo by other mechanisms.

3.4  Neurotransmitters

SVZ and RMS neuroblasts are characterized by a
typical “ionic electrophysiological signature”
distinct from that observed in mature neurons.
Indeed, they have high-input resistances, with an
estimated mean resting potential of —59 mV.
They also express Ca?*- and voltage-dependent
K* channels and delayed rectifying K* channels,
but they lack inward K* currents and transient
A-type outward K* currents. About 80 % of RMS
neuroblasts express Na* channels at a lower den-
sity than K* channels (Wang et al. 2003).
Expression of Na* channels by a higher percent-
age of neuroblasts in the RMS compared to the
SVZ suggests that the presence of Na* channels
is an early event characterizing the differentiation
of neural progenitors to a migratory phenotype.
However, although Na* channels participate to
the generation of action potentials in mature neu-
rons, their function in migrating neuroblasts is
still unclear, since these cells are unable to gener-
ate action potentials.

Because of the high input resistance observed
in neuroblasts, induction of small current flows
due to local changes in extracellular signals can
significantly modulate cell membrane potentials,
which could contribute to influence cell behavior.
These current flows may be associated with K*
channel opening/closing or the activation of
GABA, receptors, which are found in neuro-
blasts (Wang et al. 2003; Bolteus and Bordey
2004; Stewart et al. 2002).
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GABA is the main inhibitory neurotransmitter
in the brain acting through the activation of iono-
tropic ligand-gated GABA, or GABA( receptors
and G-protein-coupled GABAjp receptors.
Application of GABA in acute brain slices from
young and adult mice significantly reduces the
migration speed of RMS neuroblasts, an effect
mediated by GABA, receptors (Bolteus and
Bordey 2004). In contrast, pharmacological block-
ade of GABA, receptor activity increased migra-
tion rate, suggesting the presence of an endogenous
GABAergic tone controlling neuroblast migration.
Following high K* application, neuroblasts release
GABA, which can act in an autocrine-paracrine
manner on their GABA, receptors and decrease
migration speed by interfering with intracellular
Ca?* signaling independent of cell depolarization,
most likely by affecting the release of Ca’* from
intracellular Ca** stores. Since GABA release is
promoted by cell depolarization and GABA is able
to depolarize neuroblasts, this would create a posi-
tive feedback loop causing further increase in
extracellular GABA. Interestingly however, astro-
cytes surrounding the migratory neuroblasts are
able to modulate GABA levels in the environment
by controlling GABA uptake via the high-affinity
GABA transporter subtype GAT4, which can be
detected on the astrocytic processes ensheathing
GABA-containing neuroblasts (Bolteus and
Bordey 2004) (Fig. 9.8). Therefore, astrocytes
help to maintain appropriate GABA levels in the
microenvironment to ensure proper neuroblast
motility.

Other neurotransmitter receptors progressively
appear on neuroblasts during migration along
the RMS, including the metabotropic glutamate
receptor mGluRS5, the Ca?* permeable Glugs kai-
nate receptor and NMDA receptors (Platel et al.
2008b, 2010). Also in this case astrocytes sur-
rounding the RMS seem to play a major role by
releasing glutamate in a Ca**~dependent manner
to activate NMDA receptors on neuroblasts, thus
providing an important in vivo survival cue for
neuroblasts before their differentiation in the
OB. However, NMDA activity does not seem to
regulate neuroblast migration. Similarly, there is
some evidence that mGluR5 promotes neuro-
blast survival, but has no effect on motility
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(Platel et al. 2008a). In contrast, pharmacological
inhibition of Glugs kainate receptor significantly
promoted neuroblast migration in acute slices,
suggesting that Glugs receptors are tonically
activated in migrating neuroblasts to decrease
their speed, somehow cooperating with the
action of GABA (Platel et al. 2008b). Additional
experiments examining neural progenitor prolif-
eration support the idea that glutamate and
GABA provide a homeostatic system regulating
neuroblast production and migration along the
RMS. How the functions of these two neu-
rotransmitters are coordinated in migrating neu-
roblasts is still not understood, and is made more
complex by the heterogeneous expression of
GABA,, Glugs and mGIluRS5 in these cells (Platel
et al. 2008a; Young et al. 2011) and by the ability
of growth factors and other extracellular signals
to regulate expression of multiple neurotransmit-
ter transporters and receptors.

3.5 Growth Factors

Insulin-like Growth Factor-1 (IGF-I): Several
growth factors are present in the SVZ/RMS/OB
system and their actions interplay to achieve
optimal neural progenitor proliferation, neuro-
blast migration and differentiation. Igf-I”~ mice
display impaired radial migration in the OB,
with lower amounts of neuroblasts found in the
glomerular layer and a parallel increase in
neuroblast density at the exit of the RMS
(Hurtado-Chong et al. 2009). In addition, a
significant accumulation of DCX* neuroblasts
was observed in the SVZ, suggesting a defect in
the ability of neuroblasts to leave the SVZ to ini-
tiate migration. Interestingly, while wild-type
and Igf-I"~ neuroblasts migrate similarly in vitro,
addition of IGF-I significantly stimulated migra-
tion of cells out of wild-type RMS explants, an
effect that was blocked by PI3 kinase and Src
kinase inhibitors. Based on these observations
and on the fact that IGF-I is released by the cho-
roid plexus of the lateral ventricle, IGF-I is likely
to modulate neuroblast motility by influencing
adhesion during migration. Besides promoting
neuroblast exit from the SVZ, a second putative
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role for IGF in the OB would be to maintain
adequate levels of phosphorylated Dabl, a scaf-
fold protein operating downstream of Reelin to
guarantee proper radial migration and position-
ing of differentiating interneurons.

Vascular Endothelial Growth Factor (VEGF):
VEGF belongs to a family of glycoproteins play-
ing a fundamental role in the development of
blood vessels, angiogenesis and hematopoiesis.
The VEGF family includes six different homolo-
gous factors (VEGF-A-E). VEGF-A binds to the
receptor tyrosine kinases VEGF receptor-1
(VEGEFR-1, or fms-related tyrosine kinase-1, Flt-1)
and VEGF receptor-2 (VEGFR-2 or fetal liver
kinase 1). A first study showed that SVZ-derived
neural progenitors express both VEGFR-1 and -2
and that VEGF-A stimulated the migration of
progenitors from SVZ explants by acting via
VEGFR-2 (Zhang et al. 2003). A second report
analyzing the phenotype of VEGFR-1 signaling
deficient mice (Flt-ITK™") revealed lower
amounts of DCX*/BrdU* cells in the RMS and a
significant increase in the amount of BrdU" cells
found in the outer layers of the OB, consistent
with a greater supply of newly formed cells to the
OB compared to wild-type mice. Deleting Flit-1
specifically enhances the proliferation of neural
progenitor cells in the SVZ, affects the cell type
composition of the OB by promoting differentia-
tion into dopaminergic olfactory neurons, but
also promotes faster movement of neuroblasts, as
indicated by in vitro migration assays and by a
bigger OB size (Wittko et al. 2009). Interestingly,
these effects are phenocopied by intracellular
infusion of VEGF-A in wild-type mice, support-
ing the idea that deletion of VEGFR-1 signalling
leads to increased amounts of VEGF-A protein in
the SVZ/RMS, which in turn cause higher levels
of phosphorylated VEGFR-2 in migratory neuro-
blasts. Intriguingly, VEGFR-2 phosphorylation
is abolished when neuroblasts detach from the
RMS and enter the OB, suggesting an important
role for VEGF-A/VEGFR-2 in tangential migra-
tion. VEGF-A is expressed by glial cells in the
SVZ and RMS, and in the same study VEGFR-1
also appears to be confined to GFAP+ astrocytes.
While VEGF-A may have a paracrine role in
regulating migration by acting on VEGFR-2
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present in migratory neuroblasts, the potential
roles of VEGF signaling on remodeling the astro-
cytic tunnels guiding neuroblasts towards the OB
and the signaling pathways modulating VEGFR-2
activation at the RMS exit need further elucida-
tion. In this regard, a recent study on the function
of astrocyte-produced VEGF proposes that this
factor may have an indirect role on neuroblast
motility by modulating the vasculature used as a
scaffold by migrating neuroblasts (Bozoyan et al.
2012). Therefore, a direct effect of VEGF on
neuroblast migration along the RMS remains to
be conclusively demonstrated.

Brain Derived Neurotrophic Factor (BDNF):
BDNEF is highly expressed along the SVZ/RMS/
OB, even though both BDNF mRNA and protein
seem to be present at higher level in the OB. TrkB
is found in the RMS, particularly on astrocytes,
while migratory neuroblasts express the low
affinity BDNF receptor p75NTR at adult stages
(Snapyan et al. 2009). Interestingly, infection
with adenoviral BDNF or BDNF intraventricular
infusion cause a substantial increase in the num-
ber of newly generated migratory neuroblasts in
the RMS and OB (Zigova et al. 1998; Grade et al.
2013) while removal of BDNF with infusion of
TrkB-Fc drastically decreases the number of
BrdU* cells found in the OB (Snapyan et al.
2009). These observations support a major role
for BDNF in neuroblast migration, which is fur-
ther corroborated by the finding that BDNF hap-
loinsufficient mice have a decreased number of
BrdU* cells in the OB 28 days after BrdU
injection (Bath et al. 2008). Blood vessels
outlining the RMS have recently been identified
as a source of BDNF (Snapyan et al. 2009) (see
also below), which could then modulate neuro-
blast migration in a paracrine manner. Interes-
tingly, neuroblasts appear to regulate local levels
of BDNF via a complex interplay with the astro-
glial network and the vasculature scaffold (see
below). Similar to other growth factors like Glial-
Derived Neurotrophic Factor (GDNF), BDNF
appears to have a motogenic effect on neuroblasts
in vitro, since the number of migrating cells but
not the actual migration distance is increased
following exposure of RMS explants to BDNF
(Chiaramello et al. 2007).
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Hepatocyte Growth Factor (HGF): HGF is a
pleiotropic factor regulating migration, morpho-
genesis and proliferation in a variety of develop-
mental events (Birchmeier and Gherardi 1998). It
binds to its tyrosine kinase receptor Met and is
expressed in the brain both during development
and in adulthood. HGF appears to be produced
both in the SVZ and RMS, while high levels of
the Met receptor are localized on PSA-NCAM*
neuroblasts, but not on GFAP* astrocytes
(Garzotto et al. 2008). Supplying HGF to RMS
explants significantly promotes motility on larger
number of cells, without affecting total migration
distance. HGF therefore has a motogenic effect
on neuroblasts, and classical Boyden chamber
assays indicate that it may also have a chemoat-
tractant effect, even though the actual distribution
of this factor in the SVZ/RMS has not been
characterized in vivo. Upon HGF binding, Met
can activate a MAPK cascade directly through
the Grb2 binding site (Ponzetto et al. 1996),
ultimately leading to ERK phosphorylation.
Importantly, mice carrying a point mutation in
Met causing selective uncoupling from the Grb2
adaptor (Met®»¥¢"2) are impaired in their ability
to trigger downstream Ras/MAPK signaling.
Consistent with this, RMS explants derived from
Met®"2/62 mice have lower levels of phosphory-
lated ERK after exposure to HGF. This signaling
cascade can promote neuroblast motility,
since Metc?¥02 RMS explants show reduced
neuroblast migration. Even though other
HGF-dependent intracellular pathways involving
other adaptors could also control neuroblast
motility, these experiments strongly suggest that
a full HGF/Met signaling is required for proper
migration along the RMS.

Glial cell Derived Neurotrophic Factor
(GDNF): Members of the GDNF family bind to
specific glycosyl phosphatidylinositol (GPI)-
anchored co-receptors (GFRal-a4) but signal
together with the RET tyrosine kinase or NCAM
transmembrane receptors. GDNF appears to be
expressed all along the RMS and in the OB, simi-
lar to the GFRal receptor. Results from in vitro
migration assays suggest that GDNF has a che-
moattractant role on neuroblasts derived from
both caudal and rostral RMS. This effect may
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involve Cdk5, since incubation with GDNF
enhances Cdk5 activity monitored by in vitro
kinase assays using extracts from dissociated
RMS cells. In addition, the chemoattractant effect
of GDNF is abolished in presence of the CdkS
inhibitor roscovitine. Interestingly, RMS explants
from NCAM™ mice fail to respond to the che-
moattractant effect of GDNF in vitro, suggesting
that NCAM could act as an alternative receptor
for GDNF in the stream (Paratcha et al. 2006).
Evidence of this role for GDNF in vivo, however,
is still lacking.

Meteorin and Cometin: Recent reports have
highlighted a function for two newly discovered
secreted molecules defining a new family of neu-
rotrophic factors, meteorin and cometin, as regu-
lators of neuroblast migration. Meteorin is highly
expressed by neural stem cells, astrocytes and
discrete neuronal populations in the postnatal
brain. This factor can regulate axonal extension,
glial cell differentiation and angiogenesis, and
has a chemokinetic effect on SVZ-derived neuro-
blasts, increasing the length of chains migrating
out of SVZ explants (Wang et al. 2012). Moreover,
a possible role for meteorin in regulating neuro-
blast migration following stroke has been pro-
posed (see below). The receptor for meteorin and
the downstream signaling pathways still need to
be identified, even though there is some evidence
that meteorin can act via the Jak-STAT3 cascade
(Lee et al. 2010). Similarly, cometin also induces
neurite outgrowth and appears to act via Jak-
STAT3 and MEK-ERK signaling (Jorgensen
et al. 2012). Incubation with cometin significantly
stimulates chain migration out of SVZ explants.
More detailed characterization of both cometin
and meteorin activity is needed to confirm their
role on neuroblast migration in vivo.

Epidermal Growth Factor (EGF): EGF con-
trols a variety of processes during development,
including proliferation and cell migration, by
binding to its receptor (EGFR, also known as
ErbB1) (Wells 1999). In the context of neurogen-
esis, EGF is required to drive proliferation in the
SVZ via EGFR, which is expressed on stem cells
and particularly on transit-amplifying progenitors
(Doetsch et al. 1997, 2002). However, low levels
of EGFR can also be detected on a subset of
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migratory PSA-NCAM* and DCX* neuroblasts,
suggesting a role for EGF in controlling neuro-
blast motility. Indeed these EGFR™" cells exhibit
slower and less directed movement than EGFR-
negative neuroblasts, and perfusion of brain slices
with TGF-a, an EGFR selective agonist, decreases
the percentage of motile cells in the RMS (Kim
et al. 2009). It is possible that the EGFR" cells
are recently born neuroblasts that have not yet
acquired a fully mature migratory phenotype, and
that EGF inhibits the motility of these cells. In
contrast, infusion of EGF or TGF-a in pathologi-
cal contexts stimulates the emigration of neuro-
blasts out of the RMS towards the adjacent septum
and striatum (Craig et al. 1996; Doetsch et al.
2002). The precise molecular mechanisms under-
lying such different EGFR-dependent effects on
neuroblast motility still need to be clarified.
Fibroblast Growth Factor (FGF): FGFs are
members of a large family of structurally related
polypeptides regulating growth and differentia-
tion in a wide variety of structures of endoder-
mal, mesodermal and ectodermal origin (Itoh
and Ornitz 2004). In particular FGF-2 has a fun-
damental role in the niche, where it regulates
proliferation, self-renewal and differentiation of
neural precursors (Mason 2007). In early postna-
tal stages FGF-2 is present in the SVZ/RMS in a
caudo-rostral gradient, while later it is predomi-
nantly found in the SVZ, suggesting a possible
role in regulating neuroblast motility. Indeed, a
recent study showed that FGF-2 acts as a moto-
genic factor for SVZ-derived embryonic and
early postnatal neuroblasts without exerting a
chemotropic effect (Garcia-Gonzalez et al.
2010). Based on pharmacological experiments,
FGFR1 appears to be the main FGF receptor
responsible for the FGF-2-dependent motogenic
effect. The FGF-2 action may be modulated by
anosmin, a cleavable extracellular matrix glyco-
protein involved in axon guidance and neuronal
migration  during development  (Soussi-
Yanicostas et al. 2002; Cariboni et al. 2004),
which can bind to FGFR1 or other ECM compo-
nents to regulate adhesion and migration
(Gonzalez-Martinez et al. 2004; Dode et al.
2003; Bribian et al. 2006). Like FGF-2, anosmin
is localized in a rostro-caudal gradient along the
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SVZ/RMS particularly in early postnatal stages.
In vitro migration assays with SVZ explants
have highlighted a potential chemotropic role for
anosmin in neuroblast migration, which seems
particularly dependent on FGFRI1 activity at
early postnatal stages and other FGFRs like
FGFR2 and 3 during development (Garcia-
Gonzalez et al. 2010). The emerging picture
from these observations identifies FGF-2 and
anosmin as potential motogenic cues regulating
the early migration of SVZ-derived neural pro-
genitors (from E14 to P15), particularly in the
initial RMS. The presence of anosmin only in
PSA-NCAM* neuroblasts suggests that these
cells produce and secrete this glycoprotein,
which could then act in a paracrine fashion on
other neuroblasts. However, the molecular
details of anosmin function and its potential
additional interactions with other ECM compo-
nents along the RMS remain to be elucidated.

3.6 Endocannabinoid Signaling

The endocannabinoid (eCB) system plays a
fundamental role in the developing nervous
system by regulating axon guidance, neuronal
migration, and synaptic plasticity (Oudin et al.
2011b). To date, the lipid arachidonyletha-
nolamide (also known as anandamide) and
2-arachidonoylglycerol (2-AG) are the best
characterized candidate eCBs acting on the G
protein-coupled seven-transmembrane-spanning
cannabinoid receptors CB1 and CB2, widely
distributed in the brain. Synthesis of 2-AG is
achieved by two regulated enzymes, the diacylg-
lycerol lipases (DAGLa and ), which use
diacylglycerol (DAG) as a substrate (Reisenberg
et al. 2012). DAGLs and CB receptor expression
patterns are highly correlated in the brain during
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development and in adulthood, and the major
cannabinoid responses require at least one of the
DAGL enzymes, as shown by studies of DAGLa
and p~~ mice (Gao et al. 2010). These observa-
tions strongly support the idea that DAGL and
CB receptors cooperate to drive physiological
eCB responses. Recent studies have highlighted
the requirement for eCB signaling in postnatal
neurogenesis (Goncalves et al. 2008; Aguado
et al. 2006; Palazuelos et al. 2006; Molina-
Holgado et al. 2007; Jin et al. 2004), further sup-
ported by the significant decrease in neural stem
cell proliferation in both dentate gyrus and SVZ
in DAGL ko mice (Gao et al. 2010). In addition,
administration of a CB2 agonist stimulates SVZ
neural progenitor proliferation in vivo, counter-
acting the decline in neurogenesis in older ages.
As a result, CB receptor activation causes a sub-
stantial increase in the amount of new neurons
found in the OB, while inhibition of CB receptors
or DAGL has the opposite effect (Goncalves
et al. 2008). Interestingly, DAGL and CB recep-
tors are detected not only on actively proliferat-
ing progenitors, but also in their PSA-NCAM?*
migrating progeny, while they are not detected in
the surrounding GFAP* astrocytes along the
RMS (Fig. 9.7a—f). Stimulation of both CB1 and
CB2 receptors has a motogenic and chemokinetic
effect on RMS neuroblasts, which are able to
migrate longer distances (Fig. 9.7g-h). Time-
lapse imaging experiments show that CB ago-
nists promote neuroblast motility by increasing
process length and the frequency of efficient
nucleokinesis steps (Oudin et al. 2011a).
Importantly, specific pharmacological block of
CB receptors is sufficient to significantly inhibit
neuroblast migration out of RMS explants,
supporting the existence of an endogenous
endocannabinoid tone in RMS cultures. CB
antagonist-treated neuroblasts lose their typical

»

Fig. 9.7 (continued) and JTE-907, respectively both at
1 pM). (h) A GFP-encoding plasmid was electroporated
in P3 mouse pups to label migrating neuroblasts.
Fourteen days later animals received a single i.p.
administration of CB1 or CB2 antagonists (AM251 and
JTE-907, respectively both at 5 mg/kg). Representative
pictures of GFP-labelled migrating neuroblasts from

electroporated animals. Neuroblasts from CB antagonist-
treated animals (centre and right panels) display dis-
rupted morphology, with shorter processes and increased
branching compared to unipolar control cells (left panel).
Scale bar: (a-b), 30 pm; (c—e), 10 pm; (f), 4 pm; (g),
200 pm; (h), 20 pm (Figure adapted from (Oudin et al.
2011a))
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Fig. 9.7 Cannabinoid signaling regulates neuroblast
migration. (a—c) The 2-AG synthesizing enzyme DAGL« is
present in PSA-NCAM+ neuroblast chains but not in the
surrounding GFAP+ astrocytes. (d—f) Both DAGL«x and the
CBI receptor display a punctate distribution in migrating
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neuroblasts. (g) Activation of CB receptors by the CB1 agonist
ACEA or CB2 agonist JWH-133 (both at 0.5 pM) signifi-
cantly enhances the migration of mouse neuroblasts out of P7
RMS explants embedded in Matrigel. This effect is blocked
by preincubation with CB1 and CB2 antagonists, (AM251
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unipolar morphology and become highly
branched, suggesting that eCB signaling is
required to maintain their polarized morphology.
These effects were confirmed in vivo by intra-
peritoneal administration of a single dose of dif-
ferent CB1 or CB2 antagonists, which markedly
affected the morphology of RMS neuroblasts
labeled by in vivo postnatal electroporation of
GFP in the lateral ventricle (Fig. 9.7h). Endogenous
CB signaling can therefore have several roles in
postnatal neurogenesis, by regulating neural pro-
genitor proliferation and neuroblast migration.
Besides CB receptors and DAGL, neuroblasts
also express monoacylglycerol lipase (MAGL),
the enzyme responsible for 2-AG degradation,
suggesting they are able to synthesize, respond
and degrade 2-AG (Oudin et al. 2011a). This,
together with the notion that 2-AG has a relatively
short half-life (Rouzer et al. 2002), supports the
idea of an autocrine cannabinoid signaling regu-
lating neuroblast motility. It will be important to
identify not only the factors driving DAGL acti-
vation and triggering CB signaling, but also the
intracellular downstream players mediating the
effects of eCB on neuroblast motility. Interestingly,
CB1 agonists can promote axonal growth
(Williams et al. 2003; Keimpema et al. 2010) and
DAGL-dependent eCB signaling is required for
neurite growth promoted by FGF-2 and a number
of CAMs (Bisogno et al. 2003; Williams et al.
2003). PLCy activation downstream of receptor
tyrosine kinases like FGFR can lead to produc-
tion of DAG, which in turn functions as a DAGL
substrate for the synthesis of 2-AG. Similarly,
CB receptors on neuroblasts may have the poten-
tial to cross-talk with a number of factors and cell
adhesion molecules found along the RMS. In
developing neurons, the CB-dependent axon
growth response relies on N- and L- calcium
channels (Williams et al. 2003). Whether this is
true also for neuroblasts remains to be clarified.
Endogenous CB signaling ultimately influ-
ences cytoskeletal dynamics during neuroblast
migration. One piece of evidence comes from
recent Fluorescence Lifetime Imaging Micros-
copy (FLIM) imaging studies showing that
altering CB signaling modulates the localization
of fascin, an actin-bundling protein cycling
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on and off actin filaments depending on PKC-
mediated phosphorylation (Sonego et al. 2013).
By regulating the interaction between PKC and
fascin, cannabinoid signaling may participate to
the tight regulation of fascin localization, which
can influence both actin cytoskeleton dynamics
and adhesion in migrating neuroblasts. It will be
important to investigate how CB signaling is
regulated at a cellular level, and whether polarized
recycling CB receptors or spatio-temporal regu-
lation of DAGL activity play a role in controlling
neuroblast motility.

4 The Influence of the
SVZ-RMS Architecture
on Neuroblast Migration

The complex architecture of the SVZ/RMS plays
a major role in regulating neuroblast migration.
The SVZ ependymal layer in contact with the lat-
eral ventricle is polarized with oriented bundles
of motile cilia protruding into the ventricle lumen
(Mirzadeh et al. 2008) (Fig. 9.1b). The coordi-
nated beating of these cilia ensures proper flow of
CSF, which is secreted by the choroid plexus
located in the caudal region of the lateral ventri-
cle. The organized ciliar distribution helps to
create gradients of factors guiding neuroblast
migration along the SVZ network, such as mem-
ber of the Slit family. Indeed, disrupting cilia
structure as in the Tg737°P* mutant mice impairs
ependymal flow and disorients SVZ neuroblast
migration (Sawamoto et al. 2006), proving that
polarized ciliated cells play an important role in
conveying directional information.

Chain formation of neuroblasts occurs late in
postnatal development (Pencea and Luskin 2003;
Peretto et al. 2005). Neuroblast chains become
progressively ensheathed by a network of astro-
cytic processes forming “glial tubes”, resembling
tunnel structures. Moreover, blood vessels
become aligned in the direction of the RMS, sup-
porting the migration of neuroblasts (Bozoyan
et al. 2012). Recent studies have shed some light
on how astrocytes and blood vessels modulate
neuroblast motility, especially after the initial
postnatal stages (Fig. 9.8).
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Fig. 9.8 Role of the RMS architecture in neuroblast
migration. Neuroblasts (/ight blue) are in close proximity
with blood vessels (red), which serve as a scaffold for
their migration. Neighbouring astrocytes (orange) are
positioned between neuroblasts and the endothelial cells
of blood vessels, which synthesize and release BDNF to
promote neuroblast migration via p7SNTR. Activation of
astrocytes by GABA released by neuroblasts promotes the

4.1 Neuroblast-Astrocyte

Interaction

The major components of the parenchyma
around the RMS are GFAP* astrocytes, which
in adult stages separate the neuroblast chains
from their surrounding environment (Jankovski
and Sotelo 1996; Chazal et al. 2000; Lois et al.
1996). Several studies have described a close
interaction between astrocytes and migrating
neuroblasts along the RMS. Lack of NCAM
perturbs neuroblast-astrocyte interactions, which
ultimately contributes to inhibit neuroblast
migration (Chazal et al. 2000). Similarly, lack
of Bl integrin subunit disrupts glial tubes sur-
rounding the RMS, causing neuroblast chain
disorganization (Belvindrah et al. 2007).
Recent evidence indicates that neuroblasts can
dynamically remodel the astroglial tunnel net-
work by releasing Slit, which acts on Robo2/3
receptors on astrocytes and repels their pro-
cesses, “clearing” their migratory path (Kaneko
et al. 2010).

insertion of TrkB receptors on the astrocyte membranes,
which can trap BDNF, causing neuroblasts to pause.
GABA can also be cleared by astrocytes via the
high-affinity GABA transporter subtype GAT4, promot-
ing neuroblast migration. Astrocytes can therefore influ-
ence neuroblast motility by modulating the amount of
local BDNF and creating a microgradient of GABA in the
RMS chains

Even though astrocytes are not absolutely
required for chain migration (Wichterle et al.
1997), disrupting the astrocytic tunnels causes
neuroblasts to prematurely leave the RMS and
ectopically migrate towards surrounding regions.
Astrocytes may therefore create a physical bound-
ary by defining a ‘corridor’, where secreted signal-
ling molecules would influence chain formation
and migration speed. Indeed, several reports have
started to clarify some of the molecular events
involved in this process, such as for example
GABA clearance by astrocytes (Bolteus and
Bordey 2004), or glutamate release by astrocytes
influencing the activation state of GABA,, Glu,s
and NMDA receptors on migrating neuroblasts,
promoting their survival and modulating their
motility (Platel et al. 2007, 2008b, 2010).
Astrocytes could help to create a microgradient
of GABA and glutamate in the neuroblast chains,
thus the relative distance between neuroblast and
astrocyte may influence neuroblast speed and motile
behaviour in the RMS. Changes in the functional
state of astrocytes (linked for example to injury,
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disease or influence by growth factors) are likely
to affect their ability to regulate neurotransmitter
levels, ultimately influencing neuroblast motility.

4.2  Vasculature

Emerging evidence points to a fundamental role
for the vasculature surrounding the RMS in reg-
ulating neuroblast migration. Blood vessels,
which are usually randomly distributed through-
out the brain, progressively align parallel to the
RMS from birth onwards (Snapyan et al. 2009).
Importantly, the RMS astroglial network plays
an essential role in this process by secreting the
angiogenic factor VEGF at early postnatal
stages. Selective in vivo downregulation of
VEGF expression in astrocytes markedly altered
the morphology of blood vessels at the outer bor-
der of the RMS, and as a consequence disrupted
neuroblast migration, increasing stationary peri-
ods and decreasing displacement without affect-
ing speed (Bozoyan et al. 2012). Interestingly,
neuroblasts migrating along the vasculature
scaffold migrate more efficiently, consistent with
the fact that migration is faster in adult compared
to early postnatal stages, when the vascular net-
work is still developing along the RMS. Blood
vessels not only provide a physical scaffold for
migration, but are also likely to provide factors
promoting migration. Recent evidence has
shown a close interplay between blood vessels,
astrocytes and neuroblasts in maintaining proper
neural progenitor migration along the RMS.
Efficiently migrating neuroblasts in the adult
RMS and OB are positioned very close to blood
vessels, and surrounding astrocytic processes are
always present between endothelial cells and
neuroblasts (Bovetti et al. 2007; Snapyan et al.
2009). While astrocytes modulate blood vessel
growth and rearrangement via VEGF (Bozoyan
et al. 2012), endothelial cells in the blood vessels
in turn secrete BDNF that promotes migration
via p75SNTR on neuroblasts (Snapyan et al.
2009). However, GABA released by neuroblasts
activates Ca?*-dependent insertion of high-affinity
TrkB receptors on the astrocyte plasma membrane.
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This results in “trapping” of extracellular
BDNF, promoting the entrance of neuroblasts
into a stationary period. This dynamic modula-
tion of the local levels of available BDNF would
contribute to the control of the long-distance
saltatory migration of neuroblasts from the SVZ
to the RMS.

5 Neuroblast Migration
in Injury/Disease

Recent evidence has shown that the SVZ can
“reactivate” and respond to insults like ischemia,
epilepsy, and neurodegenerative conditions by
modulating neurogenesis (Curtis et al. 2007a).
SVZ-derived neuroblasts have the ability to
migrate towards sites of injury, stroke and neuro-
degeneration, as shown in some Huntington’s and
Parkinson’s disease models (Arvidsson et al.
2002; Sundholm-Peters et al. 2005; Ohab et al.
2006). Endogenous neural progenitors therefore
appear capable to leave their normal migratory
path by responding to signals triggered by damage
and inflammation. These include chemokines
like monocyte chemoattractant protein-1 (MCP-1),
stromal-derived factor-1 (SDF-1), meteorin.
MCP-1 and SDF-1 act via their receptors, CCR2
and CXCR4 to attract neuroblasts towards the
ischemic striatum (Belmadani et al. 2006; Imitola
et al. 2004; Robin et al. 2006; Yan et al. 2007).
It is still unclear whether SDF-1 regulates RMS
migration in the normal brain, where it is thought
to regulate homing of SVZ progenitors to endo-
thelial cells and support lineage progression
(Kokovay et al. 2010). Instead, inflammation at
the site of infarct triggers SDF-1 production by
reactive astrocytes, microglia and endothelial
cells which persists even weeks after stroke.
SDF-1 promotes chain migration out of RMS
explants and acts as a chemoattractant both in
vitro and in vivo, since a neutralizing anti-CXCR4
antibody significantly reduces stroke-induced
neuroblast migration (Robin et al. 2006).
Similarly, the chemokine MCP-1 is upregulated
after injury in astrocytes and microglia, and ko
mice lacking either MCP-1 or CCR2 display a
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decrease in neuroblast migration towards the
ischemic striatum in the middle cerebral artery
occlusion model of stroke (Yan et al. 2007).
Moreover, infusion of MCP-1 into the normal
striatum re-directs neuroblasts from the RMS,
showing that neuroblasts can be chemoattracted
by this chemokine both in the normal and in the
infarcted brain.

Injury may also regulate neuroblast migration
indirectly by perturbing the delicate balance of
neurotransmitters in the microenvironment,
which ensures proper movement of neuroblasts
in the healthy brain (Youngetal. 2011). Moreover,
after an ischemic episode ectopic migration may
be facilitated by the breakdown of the glial tubes
surrounding the RMS and consists of neuroblasts
moving either in chains or individually. In the
diseased brain neuroblasts may employ several
migration modes using myelinated fibre tracts,
astrocytes and blood vessels to target injured
sites (Cayre et al. 2009). Indeed, peri-infarct sites
display high levels of angiogenesis, and blood
vessels provide factors promoting neuroblast
migration like BDNF and matrix metalloprotein-
ases (MMP) 2 and 9, which facilitate neuroblast
displacement and recruitment (Lee et al. 2006;
Grade et al. 2013). Moreover, vasculature-derived
SDF-1 and angiopoietin (Angl) contribute to
recruit neuroblasts to infarct areas, and gain-of-
function and loss-of-function approaches for
these factors and their receptors have further
supported their requirement for vasophilic migra-
tion of neuroblasts towards stroke-affected areas
(Ohab et al. 2006).

Other studies have shown that infusion of
TGF-a in a 6-hydroxydopamine lesion model of
Parkinson’s disease can partially restore SVZ pro-
liferation and migration towards the injury site.
Whether SVZ-derived neural progenitors can tar-
get infarct areas in the human brain is still debated
(Ekonomou et al. 2011; Macas et al. 2006).
However, the therapeutic exploitation of endoge-
nous neural progenitors for brain repair relies not
only on the efficient recruitment, but also on the
differentiation of neuroblasts to the appropriate
neuronal cell type, which still remains a substan-
tial challenge for current and future research.
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6 Conclusive Remarks

Studies over the last two decades have clearly
identified the SVZ/RMS/OB system as a powerful
model to examine different stages of neurogene-
sis and neuronal migration in the postnatal brain.
Much progress has been made in understanding
the complex range of extracellular factors
regulating stem cell-derived neuroblast migra-
tion. More recent reports have started to address
how the disruption of migration affects neuro-
blast fate, functional maturation and integration
into pre-existing synaptic circuits. Several aspects
deserve future investigation, for example what
is the nature of the coupling between network
activity in the OB, proliferation in the SVZ and
migration along the RMS. Furthermore, it will be
important to explore how different extracellular
signals co-operate in modulating neuroblast
migration and identify the intracellular molecular
pathways involved. Also, do any of these signals
regulating migration play a role in the subsequent
morphological and functional maturation of
newborn neurons? Conditional approaches
allowing loss/gain of function or genetic deletion
at specific time points would help to answer
these points.

Basic cell biology questions relevant to the
characteristic collective migration of neuroblasts
are still outstanding, including how cytoskeletal
dynamics, adhesion and membrane trafficking
are coordinated in these cells. Investigating these
aspects is also likely to provide clues on the
metastatic properties of invasive brain tumour
cells, which like neuroblasts have the ability to
migrate long distances in the brain.

Given the complexity of the RMS architecture,
exploring the close interaction among migratory
neuroblasts, surrounding astrocytes and blood
vessels will be essential to better understand how
neuroblast motility is regulated both in health and
disease. This type of studies will likely benefit
from recent technological advances, including for
example two-photon time-lapse imaging of whole
mount preparations to study migration at the pop-
ulation level, in vivo postnatal electroporation and
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calcium imaging to visualize activity along the
RMS (James et al. 2011; Lacar et al. 2012; Sonego
et al. in press-b).

In conclusion, elucidating how neuroblast
migration is orchestrated will not only help to
clarify a fundamental aspect of postnatal neuro-
genesis, but will also contribute to identify
molecular mechanisms underlying the recruit-
ment of endogenous neural progenitors to injury
sites and the metastatic potential of stem cell-
derived brain tumours.
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