
Fragment-Based 
Methods in 
Drug Discovery

Anthony E. Klon Editor

Methods in 
Molecular Biology   1289



   M E T H O D S  I N  M O L E C U L A R  B I O L O G Y    

        Series Editor 
   John       M.   Walker   

  School of Life and Medical Sciences 
 University of Hertfordshire 

  Hatfield, Hertfordshire, AL10 9AB  ,   UK            

 For further volumes: 
 http://www.springer.com/series/7651     

http://www.springer.com/series/7651
http://www.springer.com/series/7651


     



 Fragment-Based Methods 
in Drug Discovery 

 Edited by 

    Anthony   E.   Klon
Pennsylvania Drug Discovery Institute, Doylestown, PA, USA                            



       ISSN 1064-3745       ISSN 1940-6029 (electronic) 
   Methods in Molecular Biology  
 ISBN 978-1-4939-2485-1      ISBN 978-1-4939-2486-8 (eBook) 
 DOI 10.1007/978-1-4939-2486-8 

 Library of Congress Control Number: 2015931254 

 Springer New York Heidelberg Dordrecht London 
 © Springer Science+Business Media New York   2015 
 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is 
concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction 
on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, 
computer software, or by similar or dissimilar methodology now known or hereafter developed. 
 The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not 
imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and 
regulations and therefore free for general use. 
 The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to 
be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, 
express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. 

 Printed on acid-free paper 

   Humana Press is a brand of Springer  
 Springer Science+Business Media LLC New York is part of Springer Science+Business Media (www.springer.com) 

 Editor 
   Anthony   E.   Klon   
  Pennsylvania Drug Discovery Institute 
  Doylestown ,  PA ,  USA   

www.springer.com


v

 Fragment-based methods for drug discovery have been investigated in one form or another 
for several decades, but there has been increased interest in the last 10 years in their practi-
cal application in drug discovery. This is partly due to some of the recent successes of the 
fi eld and their contribution to drug discovery, as well as an expansion in the number and 
availability of methods and improved computational resources. This volume will cover the 
techniques necessary for a successful fragment-based drug design project, beginning from 
defi ning the problem in terms of preparing the protein model, identifying potential binding 
sites, and the consideration of various candidate fragments for simulation. The second part 
of this volume discusses the technical aspects that various methods have used to simulate 
fragment binding to a target protein using Monte Carlo, molecular dynamics, and docking 
algorithms. After simulations, fragments are assembled into molecules using a variety of 
approaches, which are explored next. A discussion of design strategies and consideration of 
drug-like properties is included as part of the design process at this stage. Finally, several 
examples of successful fragment-based drug design projects are presented.  

  Doylestown, PA     Anthony     E.     Klon    
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    Chapter 1   

 Solvation Methods for Protein–Ligand Docking 

           Rachelle     J.     Bienstock    

    Abstract 

   Hydration has a signifi cant impact on ligand binding within protein active sites. Specifi c water molecules 
and their placement within protein active sites have been shown to make specifi c contributions to the 
energetics of protein–ligand binding and need consideration in the design of effi cient binding ligands. 
These specifi c nonbulk water molecules and their interactions are different and have more signifi cant 
impact in ligand design than the generalized bulk solvation of ligand–protein systems. Proper theoretical 
description of the solvation effects of water within a ligand-binding pocket is a signifi cant computational 
challenge. Recently, new computational methods have been developed which can more accurately describe 
the contribution of waters within a protein ligand site and lead to improved and enhanced ligand design 
and ranking in computational docking and to greater enrichment.  

  Key words     Solvation models  ,   3D-RISM  ,   Watermap  ,   Explicit solvation  ,   Implicit solvation  

  Abbreviations 

   RISM    Reference interaction site model   
  IFST/IST    Inhomogeneous fl uid solvation theory   
  HFE    Hydration free energy   
  MM-PB/SA    Molecular mechanics-poisson-boltzmann/surface area   
  MM-GB/SA    Molecular mechanics-generalized born method/surface area   
  FEP    Free energy perturbation   
  TIP    Transferable interaction potential   
  MD    Molecular dynamics   
  IETs    Integral equation theories   

1        Introduction 

 There is increasing interest in understanding the role and energy 
contribution of water molecules within protein active sites in drug 
design, since these nonbulk waters have been shown to signifi -
cantly impact protein–ligand binding. Ligand affi nity and 
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specifi city has been linked to and affected by water molecule 
interactions within ligand–receptor complexes. When a ligand 
binds, in a protein- binding pocket, solvent molecules within the 
pocket rearrange or become displaced. These rearrangements of 
water molecules within the binding pocket affect the binding free 
energy. Water solvation of narrow hydrophobic pockets is very 
unfavorable energetically because water in this situation cannot 
form hydrogen bonds. Expulsion of water from these types of 
enclosed protein regions leads to enhancement in ligand–protein 
binding affi nity. Displacement of water molecules, from the active 
site, when a ligand that is more energetically suitable binds, can 
liberate free energy when the ligand binding displaces active site 
waters (HFE=hydration free energy). Free energy perturbation 
methods can compute this free energy gain but at a signifi cant 
computational price. Are there less computationally expensive 
methods that can be used to calculate these free energy perturba-
tion gains and therefore give a more accurate docking score and 
measure of ligand-binding affi nity? 

 There are computational methods for including hydration 
effects ranging from simplistic empirical approximations to full rig-
orous free energy perturbation theoretical treatments. Can con-
tinuum solvation theories, which have been the major computational 
solvation methods used to describe hydration up until the present, 
adequately describe the physics involved to rank binding affi nities 
of ligands? Which methods are the most suitable and which can be 
used to effectively calculate ligand binding energies and correctly 
rank docked ligands? 

 Methods have been developed to calculate the contribution of 
the solvent to the binding free energy of a small molecule to its 
receptor, that include the effects of the ligand displacing solvent 
from the protein active site. These methods fall into three general 
categories: (Subheading  1.1 ) Explicit Solvation Simulation, 
(Subheading  1.2 ) Implicit Solvation (Solvent Continuum), i.e., 
includes only the high dielectric polarization term for water, and 
(Subheading  1.3 ) Intermediate Approximation Methods, i.e., 
Solvent Potential Methods. 

   Explicit water models differ in geometry, electrostatics, and param-
eters. TIP3P (3-point transferable interaction potential) water [ 1 ] 
and SPC water (simple point charge) [ 2 ] are among the most com-
mon water models used. They are fi xed charge, rigid water models. 
Efforts to improve the three-site TIP model have resulted in TIP4P, 
TIP5P water models [ 1 ]. Explicit solvent models use a microscopic 
and atomistic description with each water molecule represented as 
a point charge with Lennard-Jones van der Waals potential repre-
sentations. The advantage of explicit water models is that they can 
investigate reaction dynamics and probe the specifi c structure of 
water. However, explicitly treating each water molecule is more 

1.1  Explicit 
Solvation—Explicit 
Water Models

Rachelle J. Bienstock
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computationally intensive.    Explicit methods to calculate the bind-
ing free energy of displaced waters, and whether water displace-
ment is energetically favorable, include Thermodynamic integration 
(TI) or free energy perturbation theory (FEP) [ 3 ], which are used 
to calculate the energetics of water molecules in the binding pocket. 

  Lazaridis (1998) [ 4 ] developed IFST (inhomogeneous fl uid solva-
tion theory). Young et al., applied Lazaridis’ theory to develop the 
Watermap solvation [ 5 ,  6 ] site-based approach application of IFST 
toward identifying displaced water sites that enhanced ligand bind-
ing. Nguygen [ 7 ] developed GIST (Grid Inhomogeneous 
Solvation Theory), a grid-based application of IFST. Watermap 
and GIST are examples of explicit solvation simulation models that 
score the stability of specifi c water sites within the active sites of 
proteins. These methods are slower compared to approximate 
methods that use solvent continuum models, which include only 
the high dielectric polarization term for water. 

 Watermap, (implemented within the Glide XP docking com-
mercial software package from Schrodinger,   http://www.schro-
dinger.com/WaterMap.php    ), calculates the entropy of bound water 
due to the local environment. It is a post-MD (molecular dynamics) 
trajectory analysis method that uses the OPLS (Optimized Potentials 
for Liquid Simulations, WL Jorgensen) all atom force fi eld and the 
TIP4P water model. The local thermodynamic properties of active-
site solvent can be computed with explicitly solvated MD simula-
tions to sample the active-site solvent distribution. During MD 
water molecules are kept track of and the location and orientation 
of each water molecule is retained in a density profi le. Water posi-
tions are clustered based on the density profi le obtained from the 
MD simulation. The interaction energy between each water and 
system is calculated and the entropy of each water molecule esti-
mated. Then active-site solvent distributions can be clustered into 
high occupancy 1Å spheres, which denote hydration sites of the 
active site cavity. The average system interaction energy and excess 
entropy term for water in each hydration site is then calculated and 
the system interaction energy of the hydration site can be compared 
with the bulk solvation to estimate the enthalpy cost of water trans-
fer from the hydration active site to the bulk. 

 Watermap has effectively been used to identify druggable bind-
ing sites as these sites usually have a large number of unstable 
waters [ 8 ] .  For example WaterMap studies of factor Xa ligand 
binding. Watermap hydration sites correlated with the experimen-
tal SAR studies for fXa ligands. Solvent analysis indentifi ed three 
enthalphic unfavorable hydration sites, which agreed with experi-
mental data that this sites bound hydrophobic groups [ 6 ]. 
Watermap was tested with a set of 28 ligands extracted from solved 
crystal structures of factor Xa and the delta G calculated correlated 
well with delta G experimental.   

1.1.1  IFST 
(Inhomogeneous Fluid 
Solvation Theory)—
WaterMap and GIST

Solvation Methods

http://www.schrodinger.com/WaterMap.php
http://www.schrodinger.com/WaterMap.php
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   Continuum (implicit) Models are low-level theoretical approaches, 
which are more approximate and empirical but incur less computa-
tional cost than explicit solvent models. Implicit solvent models 
uncouple polar and nonpolar interactions, assume linear and local 
solvent polarization, and therefore do not represent a true physical 
interpretation. In implicit solvent models water is treated as a con-
tinuum electrostatic equation to describe polar solvation (continu-
ous homogenous polar liquid) with dielectrics largely based on the 
Poisson-Boltzman equation. The Poisson-Boltzman Equation is 
often used to calculated ligand solvation and estimate ligand bind-
ing free energies by calculating the total energy of the protein–
ligand complex and then subtracting the solvated energy of the 
protein and ligand separately to give the binding free energy esti-
mates. This commonly used protocol is referred to as the MM-PB/
SA method—Molecular Mechanic-Poisson-Boltzmann/Surface 
Area. Popularized by Kuhn and Kolman, [ 9 ] the high computa-
tional cost of PB (Poisson Boltzman) caused the development of 
the GB—generalized Born method. MM-GB/SA has been shown 
capable of capturing the experimental binding energies [ 10 ]. The 
key weakness of implicit solvation models are their poor descrip-
tion of water-mediated interactions, especially the directionality of 
water hydrogen bonds, additionally, they treat the nonpolar contri-
bution to solvation approximately. 

 The choice of an internal dielectric coeffi cient is important. 
Biomolecular dielectric coeffi cients should be 2–4 but low dielec-
tric models are not good for MM/PBSA calculations where molec-
ular fl exibility is explicitly modeled through conformational 
sampling. Dielectric coeffi cients 4–20 are used for biomolecular 
applications with lower values being more successful for modeling 
protein–ligand interactions. The dielectric interface must also be 
defi ned, usually as the molecular Connolly surface used to param-
eterize the biomolecular solvation calculations. Often molecular, 
Van der Waals surfaces are used sometimes with Gaussian smooth-
ing. The Poisson equation-includes only the infl uence of the sol-
vent on the electrostatic properties of solute; however, mobile ions 
can also play a part in electrostatics and solvation. Finite difference 
methods are the most frequently used numerical methods to solve 
the Poisson-Boltzman equation for biomolecular electrostatics. 
The following are all methods which are fi nite difference-based 
commonly used Poisson-Boltzmann solvers—APBS (Adaptive 
Poisson-Boltzmann Solver),DelPhi, MEAD,UHBD,ZAP,PBEQ 
in CHARMM,PB Solver in AMBER,MIB. SZMAP (commercial 
software from OpenEye   http://www.eyesopen.com/SZMAP    [ 11 ] 
is an example of a method based on a semi continuum sol-
vation model. PBSA and GBSA methods are implemented and 
 available within the AmberTools (  http://ambermd.org/doc12/
Amber14.pdf    ).  

1.2  Implicit Solvation 
(Solvent Continuum 
Models)-MM-PB/SA 
and GB-PB/ SA

Rachelle J. Bienstock

http://www.eyesopen.com/SZMAP
http://ambermd.org/doc12/Amber14.pdf
http://ambermd.org/doc12/Amber14.pdf


7

   Another alternative theoretical method uses IETS (integral equa-
tion theories) to simplify the all atom description of explicit solva-
tion into a probabilistic treatment of solvent and solute distributions. 
These methods use less computational resources than explicit sol-
vent but are a more detailed description than continuum models. 
IETS can predict the 3D spatial organization of solvent density 
around large molecules and thermodynamic solvation quantities. 
3D-RISM[ 12 ,  13 ] (three-dimensional reference interaction site 
model) calculates an approximate average solvent distribution 
around rigid solute and computes the hydration free energy (HFE) 
faster than molecular simulations methods. 3D-RISM techniques 
can compute the thermodynamic effects of water reorganization 
within a binding pocket without the need to use explicit simula-
tions and can help localize the regions of organized solvent and free 
energy and have favorable applications for ligand optimization. 

 3D-RISM does have a problem with the thermodynamics of 
hydrophobics and does not compute HFE of organics well. The 
3D-RISM method is relatively accurate at predicting electrostatic 
HFE without correction but requires modifi cation of the nonpolar 
contribution, which originates in the solute water cavity but 
doesn’t include size effect of water molecules in an active site. For 
3D RISM one only needs solute and solvent potential parameters 
as input from molecular two-body additive force fi elds, such as 
AMBER, or CHARMM and bulk solvent density, temperature and 
composition. 3D RISM equations derive the approximate density 
distribution functions and (DCF) direct correlation functions for 
each hydrogen and oxygen in water (the three dimensional analog 
of the radial distribution function). 3D RISM keeps the orienta-
tion dependence of solute molecules, which is necessary to describe 
solvation of large molecular solutes. 1D-RISM is less computation-
ally costly than the 3D method; however, the 3D-RISM method 
also provides correct dielectric properties of polar solvents. The 
Chemical Computing MOE 3D RISM is a commercially available 
implementation of this method   http://www.chemcomp.com/
MOE-Structure_Based_Design.htm     [ 12 ] .  

 A recent method developed by the research group at 
GlaxoSmithKline (GSK) combines elements of the IFST and 
3D-RISM. The Group at GSK calls their method SPAM [ 14 ] 
which is a statistical mechanics-based approach which estimates 
free energy difference between protein-bound and bulk water. The 
SPAM method uses explicit solvent molecular simulations for dis-
crete hydration sites at the water protein interface and computes 
local free energy of water and site specifi c interactions. This method 
provides a qualitative estimate of the thermodynamics of water in 
hydration sites that agrees well with SAR (structure activity data) 
and known hot spots. The IFST-based approach estimates the local 
thermodynamic solvation properties, and interaction energy con-
tribution due to water binding and entropy penalty due to the 

1.3  Intermediate 
Approximate 
Methods—Solvent 
Potential Methods-
3D-  RISM

Solvation Methods

http://www.chemcomp.com/MOE-Structure_Based_Design.htm
http://www.chemcomp.com/MOE-Structure_Based_Design.htm
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ordering of the bulk. In IFST the entropy is calculated by 
expanding the sum over solute-solvent and solvent-solvent micro-
scopic  rotational and translational states. SPAM obtains the entropy 
contribution from MD simulations. Instead of obtaining states of 
water from translational and rotational degrees of freedom to 
obtain entropy, SPAM calculates the distribution of interaction 
energies between the water and surrounding solute and solvent 
molecules at a given time. The GSK group has applied their SPAM 
computational technique to the correct water placement in HIV 
protease and Hen Egg White Lysozyme. SPAM has provided qual-
itative estimates that have correlated with experimental SAR obser-
vations, for example for HIV1 protease favorable ligand binding 
hot spots in the protein can be associated with water displaced 
from the receptor-ligand (causing favorable enthalpy and entropy 
changes) interaction site or interface to the bulk.   

2    Materials 

 Available Software

    1.    SPC Water and TIP3p, TIP4p, TIP5P solvation models can be 
used to solvate proteins in GROMACS,   http://www.gromacs.
org/Documentation/How-tos/TIP3P_coordinate_fi le    ; VMD 
  http://www.ks.uiuc.edu/Research/vmd/plugins/solvate/     

 AMBER Tools   https://www.cgl.ucsf.edu/chimera/docs/
ContributedSoftware/solvate/solvate.html       

   2.    Watermap (Commerical Software from Schrodinger)   https://
www.schrodinger.com/WaterMap.php       

   3.    MM=GB/SA and MM=PB/SA(AMBER and AmberTools) 
  http://ambermd.org/tutorials/advanced/tutorial3/       

   4.    SZMAP (Commercial Software from OpenEye)   http://www.
eyesopen.com/SZMAP       

   5.    APBS (Adaptive Poisson-Boltzmann Solver)   https://sites.
google.com/a/poissonboltzmann.org/software/apbs       

   6.    DelPhi   http://wiki.c2b2.columbia.edu/honiglab_public/
index.php/Software:DelPhi       

   7.    MEAD(Macroscopic Electrostatics with Atomic Detail) 
  http://www.teokem.lu.se/~ulf/Methods/mead.html    ; 
  http://stjuderesearch.org/site/lab/bashford/       

   8.    GROMACS   http://www.gromacs.org/Documentation/How-
tos/TIP3P_coordinate_fi le       

   9.    SPAM in AmberTools   http://archive.ambermd.org/201401/
0290.html       

   10.    UHBD   http://gilsonlab.umbi.umd.edu       

Rachelle J. Bienstock

http://www.gromacs.org/Documentation/How-tos/TIP3P_coordinate_file
http://www.gromacs.org/Documentation/How-tos/TIP3P_coordinate_file
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https://www.schrodinger.com/WaterMap.php
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   11.    ZAP (electrostatics solver in Commerical OpenEye software) 
  http://www.eyesopen.com/zap-tk       

   12.    PBEQ (in CHARMM)   http://www.charmm-gui.org/?doc=
input/pbeqsolver       

   13.    3D-RISM (Commerical Software Chemical Computing 
Group (CCG))   http://www.chemcomp.com/MOE-Structure_
Based_Design.htm#SolventAnalysiswith3D-RISM     and   http://
dansindhikara.com/Tutorials/Entries/2012/1/1_Using_3D-
RISM_and_PLACEVENT.html          

3    Methods 

  Dan Sindhikara [ 13 ] has made available a tutorial and his code 
implementing the 3D-RISM water solvation algorithm within 
AmberTools14 (  http://ambermd.org/doc12/Amber14.pdf    .) He 
outlines all the methods and steps on his website using code freely 
available.   http://dansindhikara.com/Tutorials/Entries/2012/1/
1_Using_3D-RISM_and_PLACEVENT.html    ,   https://sites.google.
com/site/dansindhikara/Home/software/placement/tutorial-
      http://dansindhikara.com/Software/Entries/2012/6/22_
Placevent_New.html    

    1.    Parameterize a downloaded PDB structure fi le   
   2.    Prepare solvent—use SPC water with ions for initial solvation   
   3.    Run 3D-RISM   
   4.    Placevent for water distribution analysis   
   5.    SANDER minimization and simulation    

  Sindhikara demonstrated accurate predicted water placement 
in HIV protease [ 15 ].  

  G_mmpbsa is an implementation of the MM_PBSA method by the 
Open Source Drug Discovery Consortium using GROMACS 
(Molecular Simulations force fi eld) and the APBS package, which 
compares favorably with the AMBER MM-PBSA method [ 16 ]. 
This method is freely available   http://rashmikumari.github.io/g_
mmpbsa/    . The MM-PBSA method calculates the binding energy 
and also available with this software are scripts to obtain the binding 
energy and energetic contribution of each residue. The binding 
energy consists of three energetic terms, (a) potential energy in vac-
uum, (b) polar-solvation energy, and (c) nonpolar-solvation energy.  

  (A Simple Approach for Profi ling Bound Water Molecules)[ 14 ], a 
simple way to profi le local solvation is now part of Ambertools 
(AmberTools version 12 and later). 

 The SPAM code has two components, a Python driver (SPAM.py) 
and modifi cations to the cpptraj AmberTools12 (and later versions) 

3.1  3D-RISM

3.2  GROMACS

3.3  SPAM

Solvation Methods

http://www.eyesopen.com/zap-tk
http://www.charmm-gui.org/?doc=input/pbeqsolver
http://www.charmm-gui.org/?doc=input/pbeqsolver
http://www.chemcomp.com/MOE-Structure_Based_Design.htm#SolventAnalysiswith3D-RISM
http://www.chemcomp.com/MOE-Structure_Based_Design.htm#SolventAnalysiswith3D-RISM
http://dansindhikara.com/Tutorials/Entries/2012/1/1_Using_3D-RISM_and_PLACEVENT.html
http://dansindhikara.com/Tutorials/Entries/2012/1/1_Using_3D-RISM_and_PLACEVENT.html
http://dansindhikara.com/Tutorials/Entries/2012/1/1_Using_3D-RISM_and_PLACEVENT.html
http://ambermd.org/doc12/Amber14.pdf
http://dansindhikara.com/Tutorials/Entries/2012/1/1_Using_3D-RISM_and_PLACEVENT.html
http://dansindhikara.com/Tutorials/Entries/2012/1/1_Using_3D-RISM_and_PLACEVENT.html
https://sites.google.com/site/dansindhikara/Home/software/placement/tutorial
https://sites.google.com/site/dansindhikara/Home/software/placement/tutorial
https://sites.google.com/site/dansindhikara/Home/software/placement/tutorial
http://dansindhikara.com/Software/Entries/2012/6/22_Placevent_New.html
http://dansindhikara.com/Software/Entries/2012/6/22_Placevent_New.html
http://rashmikumari.github.io/g_mmpbsa/
http://rashmikumari.github.io/g_mmpbsa/
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program module. The SPAM energy evaluations are done with the 
NAMD software, (because this functionality is not yet part of the 
Amber software). Prerequisites to running SPAM are therefore 
AmberTools12 and NAMD installed on your computer. 

 The SPAM implementation computes the location of hydration 
sites around the target protein from a multi-nanosecond explicit 
solvent MD simulation. All steps prior to the water interaction 
energy calculation are in the cpptraj module AmberTools 12 suite. 

 SPAM can fi nd the interaction energy of water molecules that 
travel through the hydration sites of interest. The protein conforma-
tion is restrained while solvent molecules can move freely so the sys-
tem will converge easily and more rapidly where hydration sites are 
located by identifying the peaks in the computer water density map. 

 SPAM procedure used by the GSK group:

    1.    System preparation: water and ligands removed from protein 
PDB structure.   

   2.    Maestro Protein preparation used protonation states assigned, 
and the hydrogen bond network optimized.   

   3.    Parm99SB and gaff AMBER force fi elds used AM1-BCC 
charges calculated for docking inhibitor.   

   4.    MD simulations with NAMD 2.8 using PME grid spacing 
1 Å, 10 Å cutoff with 8 Å switching function –NVT 5,000 
step min and 30 ps constant temperature (T=300K) and 1 atm 
pressure equilibration, followed by 200 ps NPT molecular 
dynamics followed by production run sampling with a hydra-
tion shell for 10 ns with 2fsec time steps. This simulation was 
able to identify water-binding sites.   

   5.    SPAM analysis—water density map calculated as a time aver-
age, with a 5 Å grid using VMD 1.8.7 VolMap—each hydra-
tion site of interaction of water molecules calculated using pair 
Interaction in NAMD.   

   6.    SPAM free energy for hydration site calculated.      

  Docking programs use scoring functions; however, it is a challenge to 
produce accurate scoring functions, which estimate ligand- binding 
affi nities. The PPC method (polarized protein –specifi c charge 
model) included in MM/PBSA was used to rescore ligand binding 
poses to include the bridging water molecules that were found to 
play a signifi cant role in determining the protein–ligand binding 
modes [ 17 ]. The accuracy of the MM/PBSA method for docking 
and predicting ligand-binding affi nity relies on the force fi eld accu-
racy; however, nonpolarizable force fi elds, such as CHARMM and 
AMBER, do not accurately represent the protein electrostatics 
environment. PPC described the polarized electrostatic state of the 
protein and therefore gives a more accurate description of the elec-
trostatic interactions between the protein and ligand and agrees 
better with experimental data. Only a few scoring functions take 

3.4  Ligand-Docking 
(Scoring) 
Improvements

Rachelle J. Bienstock
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water into consideration in protein–ligand docking and include 
binding water molecules in molecular docking. The bridging water 
molecules were treated as part of the receptor in this method. PPC 
polarized protein specifi c charges calculated the electron structure 
of biomolecules and the continuum dielectric model for solvent. 
The PPC charge model and MM/PBSA calculations were applied 
with the Amber ff 99SB on ranking protein–ligand docked poses. 
The bridging waters need to be explicitly included in the calculation 
(treated as part of the receptor).

    1.    Prepare Protein–Ligand complexes from PDB structure 
coordinates- hydrogens added using Leap AMBER 11  module, 
all amine groups fully protonated.   

   2.    Partial charges of protein assigned with Amber ff99SB force 
fi eld.   

   3.    Hydrogens added to ligand and geometry of ligand optimized 
at HF/6-31G* level and ANTECHAMBER used to obtain 
ligand force fi eld parameters. All structures had bridging water 
molecules.   

   4.    Autodock used to create ensemble of docked conformations 
for each ligand (bound to receptor).   

   5.    Then 1,500 steps steepest descent followed by 1,500 steps 
conjugate gradient minimization using AMBER11 Sander.   

   6.    Next step, PPC charges are fi tted to electrostatic potentials by 
QM calculations. Minimized structure used to calculate PPC 
charges by the MFCC-PB computational protocol –Poisson- 
Boltsman Delphi.   

   7.    Solvent to calculate induced charges on solute-solvent inter-
face with probe radius 1.4 Å. Solvent dielectric constant set to 
80 and grid density of 4 grids/ angstrom used to numerically 
solve Poisson-Boltzman equation.   

   8.    QM calculation of protein fragments performed with DFT the-
ory at B3LYP/6-31G*. Molecular Dynamics simulations with 
TiP3P water and counterions and Amber ff99SB force fi eld.   

   9.    MM/PBSA calculation of the binding affi nity.    

  With molecular docking with structural waters in the binding 
pocket, Autodock still could not predict the native structure poses. 
Rescoring the binding free energies using the MM/PBSA and 
structural waters, including the bridging waters, the MM/PBSA 
with Amber ff99SB method recognizes the correct binding for 
some structures. The MM/PBSA and PPC model recognizes all the 
native binding poses since the polarized state of the protein pro-
vides accurate electrostatic interactions and near native structure.  

  Fragments are smaller and less complex than lead compounds and 
therefore have fewer degrees of freedom for virtual screening and 
docking. Additionally, fragments have greater solubility and polarity 

3.5  Applications 
to FBDD-

Solvation Methods
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than regular molecular hits and lower binding affi nities. Docking 
scoring functions sometimes neglect solvation, including solvation 
that would make fragment docking scoring more accurate since sol-
vation is a greater proportion of the binding free energy in fragments 
that in larger lead molecules. Docking fragments rescored with 
MM-PBSA, which gave signifi cantly better docking results [ 18 ].  

      1.    Active site waters play a signifi cant role and need to be consid-
ered in the development of computational docking and ligand 
binding site studies.   

   2.    Computational and theoretical methods to describe the ener-
getics of water and solvent interactions at ligand binding site 
are improving in their ability to predict and correlate with 
experimental binding data.          
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    Chapter 2   

 Binding Site Druggability Assessment 
in Fragment-Based Drug Design 

           Yu     Zhou     and     Niu     Huang    

    Abstract 

   Target druggability refers to the propensity that a particular target is amenable to bind high-affi nity drug- like 
molecules. A robust yet accurate computational assessment of target druggability would greatly benefi t the 
fi elds of chemical genomics and drug discovery. Here, we illustrate a structure-based computational 
protocol to quantitatively assess the target binding-site druggability via in silico screening a fragment-like 
compound library. In particular, we provide guidelines, suggestions, and critical thoughts on different 
aspects of this computational protocol, including: construction of fragment library, preparation of target 
structure, in silico fragment screening, and analysis of druggability.  

  Key words     Druggability assessment  ,   Fragment screening  ,   Molecular docking  ,   MM-GB/SA rescor-
ing  ,   Hit rate  

1      Introduction 

 Successful drug development requires a disease target of both bio-
logical relevance and chemical tractability. With the completion of 
the human genome, we now have unprecedented access to large 
numbers of potential therapeutic targets. The question that arises 
is which specifi c protein targets can be modulated by a drug-like 
molecule. Druggability (i.e., propensity that a particular target is 
amenable to bind high-affi nity drug-like molecules) assessment in 
the process of target selection would reduce drug discovery attri-
tion and put effort on those targets most likely to lead to therapeu-
tic intervention [ 1 ]. 

 The fi rst step in evaluating the druggability of a target is to 
identify the presence of binding pockets with suitable size, shape, 
and composition to accommodate drug-like molecules. Many 
approaches for this purpose have been developed that are generally 
classifi ed as geometry-based [ 2 – 5 ], information-based [ 6 ,  7 ], 
and energy-based algorithms [ 8 ,  9 ]. Benchmarking studies using 
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training set data extracted from the Protein Data Bank (PDB), 
most approaches have demonstrated to correctly detect the true 
ligand- binding sites. However, the presence of a suitable protein 
pocket is necessary but not suffi cient to guarantee potent binding 
of drug- like small molecules. 

 The more diffi cult step is to quantitatively predict the drug-
gability index of a given binding site. Early studies have pre-
dicted target druggability on the basis of sequence and structure 
homology to known drug targets [ 10 ,  11 ]. However, not all 
members of the same protein family are equally druggable [ 12 ]. 
More importantly, such methods cannot be used to assess drug-
gability of novel target families. Recently several structure-based 
target druggability methods have been developed and validated 
against a set of reference targets where the degree of tractability 
is known. These methods provide quantitative assessments of 
druggability using physicochemical descriptors derived from the 
ligand binding pockets and apply techniques as varied as bio-
physical modeling [ 13 ], linear regression [ 14 ,  15 ], and support 
vector machines [ 16 ]. 

 Hajduk et al. made a seminal contribution by demonstrating 
that experimental hit rates from the heteronuclear-NMR-based 
fragment screening could serve as an effective druggability index 
within a set of 23 protein targets containing 28 different binding 
sites [ 17 ]. Furthermore, they derived a linear regression model to 
fi t the experimentally measured hit rates to physicochemical 
descriptors of these 28 binding pockets. Applying an appropriate 
cutoff, this model was assessed using an additionally assembled 
binding-site dataset, and 33 out of 35 known drug-like ligand- 
binding sites were correctly identifi ed. Being essentially analog to 
the NMR-based fragment screening, an in silico fragment screen-
ing protocol was also developed to assess target binding-site drug-
gability [ 18 ]. It makes use of a molecular mechanics-based scoring 
method for the protein–ligand interaction and the obtained virtual 
hit rates were demonstrated to correlate with the hits rate mea-
sured experimentally from the NMR-based screening method. 
This protocol can be employed to distinguish known druggable 
and non-druggable targets, and it is generally applicable without 
relying on any assembled training data set that potentially extends 
its capacity toward unexplored target space. 

 In this chapter, we illustrate the computational details of this in 
silico fragment screening protocol for target druggability assess-
ment ( see  Fig.  1  for a schematic overview). We outline the criteria 
for the construction of fragment library, discuss the method for the 
preparation of target structure, and describe the procedure for car-
rying out the in silico fragment screening. Finally, we discuss the 
druggability analysis from the virtual screening results.   

Yu Zhou and Niu Huang



15

2    Materials 

 The druggability assessment protocol entails building a fragment- 
like compound library and performing in silico fragment screening 
experiments, which could be carried out by means of a variety of 
Web servers and software. The programs listed here are merely the 
ones used as examples for illustrating this procedure. The diverse 
set of fragments is selected from the fragment-like subset of the 
ZINC database [ 19 ,  20 ]. The DOCK 3.5.54 program [ 21 ,  22 ] is 
used to dock the fragment database into the protein binding site. 
The Protein Local Optimization Program (PLOP) [ 23 – 25 ] is used 
to perform MM-GB/SA refi nement and rescoring.  

3    Methods 

      1.    Extract compounds from the fragment-like subset of the ZINC 
database ( see   Note 1 ).   

   2.    Eliminate fragments with more than 15 heavy atoms ( see   Note 2 ).   

3.1  Fragment Library 
Construction

  Fig. 1    Schematic illustration of druggability prediction via fragment-based dock-
ing and scoring approach       

 

Binding Site Druggability Assessment
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   3.    Calculate feature key fi ngerprints using CACTVS [ 26 ], and 
perform the fi ngerprint-based similarity analysis with a modi-
fi ed version of the program SUBSET [ 27 ] to reduce redun-
dancy of the fragment library ( see   Note 3 ).      

      1.    Select one or more representative structures for the protein 
target ( see   Note 4 ).   

   2.    Determine the ligand binding pocket ( see   Note 5 ). Identify 
cofactors, metal ions, and structural waters in the target pro-
tein and treat them as part of the protein if they are involved in 
ligand binding.   

   3.    Add hydrogen atoms to the protein. Assign proper proton-
ation states for binding-site residues and optimize the orienta-
tions for polar hydrogen atoms using PLOP ( see   Note 6 ).      

  The in silico screening protocol employs a physics-based hierarchi-
cal scoring method which consists of two steps: predicting the 
binding poses of ligands using a docking program, and then refi n-
ing and rescoring those protein–ligand complexes using a more 
computationally intensive molecular-mechanics based energy func-
tion [ 28 ,  29 ]. This protocol uses a high-throughput docking pro-
gram to initially orient and score the ZINC fragment-like 
compounds in the binding site, and subjects the best single dock-
ing pose for each docked compound to a rescoring stage in which 
the ligand is fully minimized inside the binding site and the bind-
ing energy is estimated with an all-atom molecular mechanics force 
fi eld combined with an implicit solvent model. Finally the results 
of all compounds are analyzed based on the binding energy 
distribution. 

      1.    Identify binding site residues within a certain range (e.g., 
12 Å) away from any heavy atom of the crystallographic ligand 
or the residues used to defi ne the site, using the program FILT 
(part of the UCSF DOCK suite).   

   2.    Calculate the solvent-accessible molecular surface [ 30 ] of the 
protein binding site with the program DMS [ 31 ] using a probe 
radius of 1.4 Å.   

   3.    Generate receptor-derived spheres with the program SPHGEN 
(part of the UCSF DOCK suite) [ 32 ], in combination with the 
ligand-derived spheres if necessary ( see   Note 7 ).   

   4.    Set the grid box dimensions with edges 15 Å beyond the 
matching spheres initially. Then refi ne the box dimensions to 
maximize the coverage of the protein without exceeding 2 mil-
lion grid points at a predefi ned grid resolution (three points 
per angstrom by default). Finally, four scoring grids are gener-
ated: an excluded volume grid using DISTMAP [ 33 ], a united 

3.2  Target Structure 
Preparation

3.3  In Silico 
Fragment Screening

3.3.1  Docking Fragment- 
Like Compounds Library

Yu Zhou and Niu Huang
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atom AMBER-based van der Waals potential grid using 
CHEMGRID [ 33 ], an electrostatic potential grid using DelPhi 
[ 34 ], and a solvent occlusion map using the program 
SOLVMAP [ 35 ].   

   5.    Perform docking with DOCK 3.5.54, a fl exible-ligand method 
that uses a force-fi eld-based scoring function. Ligand confor-
mations are scored on the basis of the total docking energy 
( E  tot  =  E  ele  +  E  vdw  − Δ G  lig-solv ), which is the sum of electrostatic 
( E  ele ) and van der Waals interaction energies ( E  vdw ), corrected 
by the partial ligand desolvation energy (Δ G  lig-solv ).   

   6.    Save a single docking pose with the best total energy score for 
each docked molecule for the next stage of scoring ( see   Note 8 ).      

      1.    Generate OPLS force fi eld parameter for each molecular com-
pound and cofactor (if present), using IMPACT (part of the 
Schrödinger suite).   

   2.    Submit the free ligand, free protein and docked protein–
ligand complex to multi-scale Truncated Newton (MSTN) 
energy minimization [ 25 ] in all-atom OPLS force fi eld [ 36 , 
 37 ] and Generalized Born (GB) solvent [ 38 ,  39 ] using PLOP 
( see   Note 9 ).   

   3.    Calculate the binding energy ( E  bind  =  E  RL  −  E  L  −  E  R ) by subtract-
ing the energies of the optimized free ligand in solution ( E  L ) 
and the free protein in solution ( E  R ) from the optimized pro-
tein–ligand complex’s energy in solution ( E  RL ) ( see   Note 10 ).      

      1.    Report the energy scores distribution for the protein target.       

      1.    Compute the “hit rate” for the in silico screening based on a 
chosen energy cutoff value (−40 kcal/mol) ( see   Note 11 ).   

   2.    Calculate the druggability score which is defi ned as log(hit 
rate).   

   3.    Compare the druggability score with the cutoff value of 0.36 
to classify the assessed target as druggable or non-druggable 
( see   Note 12 ).       

4    Notes 

     1.    Fragments are molecules of low complexity, which sample 
chemical space exponentially more effectively than drug-sized 
molecules. Different estimates exist of the size of chemical 
space. Here, the fragment-like subset of the ZINC database 
(version 6, December 2005) contains 49,134 compounds with 
relatively low molecular weight (MW ≤ 250), few  rotatable 

3.3.2  MM-GB/SA 
Refi nement and Rescoring

3.3.3  Histogram Analysis 
of Energy Score

3.4  Druggability 
Analysis

Binding Site Druggability Assessment



18

bonds (RB < 3), low hydrophobicity (−2 < log  P  < 3), and weak 
hydrogen bonding potentials (HB donor  < 3 and HB acceptor  < 6).   

   2.    Kuntz et al. observed that the maximal binding free energy 
increases more slowly for ligands containing more than 15 
heavy atoms [ 40 ]. Therefore, fragments with more than 15 
heavy atoms were eliminated. This fi lter reduced the library 
size to 32,717 molecules.   

   3.    Representative structures were selected for each structural 
cluster with Tanimoto coeffi cient (Tc) less than 0.9 to other 
clusters. This further reduced the library to 11,129 diverse 
molecules. To assess any potential bias resulting from the 
diversity-based fi ltering, redo the screening using 32,717 
ZINC fragment-like compounds for the training dataset, leads 
to very similar energy distributions.   

   4.    Targets may have multiple crystal complex structures available 
and some display signifi cant side-chain movement upon bind-
ing to different ligands [ 41 ]. In most cases, we found that the 
changes of the histograms of energy scores and the druggabil-
ity scores calculated from them are remarkably small when 
using different crystal structures. Nevertheless, multiple con-
formations are recommended for the binding sites with large 
structural variation, especially for the protein–protein interac-
tion (PPI) interfaces. Applying our protocol, specifi c drugga-
ble conformations could also be identifi ed.   

   5.    The identifi cation of the protein binding pocket is straightfor-
ward for ligand-bound complex structures. However, the 
binding site is not known from a 3-D structure or from other 
experimental data, a “suitable” pocket is required to be 
detected fi rstly by pocket detection programs or virtual 
inspection.   

   6.    Ideally, the target protein should be prepared as if the crystal 
ligand was absent, as adjusting the protein to favor crystal 
ligands is a source of bias.   

   7.    Spheres are generated to fi ll the binding site. Matching spheres 
required for the orientation of the ligand within the binding 
site are obtained by augmenting the ligand-derived spheres 
with receptor-derived spheres. By default, spheres furthest 
away from ligand-derived spheres, furthest from the centroid 
of the remaining spheres, too close to receptor atoms, or too 
close to each other are removed iteratively until the total num-
ber of sphere is 35 or less. However, for large binding surfaces 
like protein–protein interfaces, we use a maximum of 120 
matching spheres to ensure adequate ligand sampling.   

   8.    One major limitation of the current protocol is that it relies 
entirely on the docking algorithm to identify the correct 
 binding pose. A simple extension of this protocol is to subject 

Yu Zhou and Niu Huang
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a small number of dissimilar binding poses to minimization in 
the MM-GB/SA rescoring step and use the most favorable 
binding energy for rank-ordering ligands. Therefore, multiple 
(usually hundreds of) docking poses could be saved in docking 
stage and subjected for structural descriptor-based fi ltering and 
KGS-penalty function-based conformational clustering [ 42 ]. 
Tens of poses might be fi nally obtained for next MM-GB/SA 
rescoring.   

   9.    The molecular mechanics forces are divided into short-range 
(bond, angle, torsion, and local non-bonded) and long-range 
components, with the long-range forces updated only inter-
mittently. The algorithm is also optimized for minimizations 
with GB solvent that increases the computational expense by 
only a factor of ~3 relative to the vacuum. Thus, this scoring 
approach accounts for accurate and effi cient calculations of 
ligand–protein interaction energies, the ligand/receptor desol-
vation, and to a lesser extent, ligand strain energies. In this 
work, the protein was kept rigid during protein–ligand mini-
mization to reduce the computational expense.   

   10.    Accurate free energy calculations depend on a proper balance 
of many different energetic components. The MM-GB/SA 
rescoring method strikes a balance between computational 
speed and accuracy, and in particular neglects entropic loss and 
protein fl exibility. Empirically scaling certain energy compo-
nents as a post-rescoring process, in a manner similar to LIE 
scheme, may be useful to compensate for some of these limita-
tions [ 43 ]. It has been suggested that the MM-GB/SA scoring 
function underestimates the nonpolar binding contributions 
to the free energy of binding [ 28 ]. In this study, we empirically 
scaled the van der Waals energy component by a factor of 2.   

   11.    This cutoff value was empirically chosen to maximally differen-
tiate druggable and non-druggable binding site. We visually 
inspected the energy distributions for the 13 druggable bind-
ing sites and 11 non-druggable binding sites in Hajduk et al. 
training data set and explored the effect of varying the cutoff 
with respect to differentiating between druggable and non- 
druggable binding sites. We found the correlation between the 
docking screening hit rates and the NMR screening results is 
relatively insensitive to the value of the energy cutoff within a 
certain range (from −40 to −34 kcal/mol). In this work, an 
energy cutoff of −40 kcal/mol was used for computing the in 
silico hit rate.   

   12.    The calculated druggability scores correlate reasonably well 
with the NMR-based fragment screening results. Hajduk et al. 
defi ned binding sites as “highly druggable” if they have a 
experimental log(hit rate) > −1.0. The corresponding value of 
computational log(hit rate) is 0.36, and we used this value to 
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classify proteins as druggable or non-druggable in this work. 
Although Hajduk et al. distinguish between “highly drugga-
ble” and “moderately druggable,” we use a simple binary clas-
sifi cation for simplicity. Nevertheless, the higher druggability 
score a target is assigned, the more druggable it might be.         
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    Chapter 3   

 Generating “Fragment-Based Virtual Library” Using 
Pocket Similarity Search of Ligand–Receptor Complexes 

              Raed     S.     Khashan    

    Abstract 

   As the number of available ligand–receptor complexes is increasing, researchers are becoming more dedicated 
to mine these complexes to aid in the drug design and development process. We present free software 
which is developed as a tool for performing similarity search across ligand–receptor complexes for identify-
ing binding pockets which are similar to that of a target receptor. The search is based on 3D-geometric and 
chemical similarity of the atoms forming the binding pocket. For each match identifi ed, the ligand’s 
fragment(s) corresponding to that binding pocket are extracted, thus forming a virtual library of fragments 
(FragVLib) that is useful for structure-based drug design. The program provides a very useful tool to 
explore available databases.  

  Key words     Fragment-based  ,   Drug design  ,   Virtual library  ,   In silico  ,   Pocket similarity  ,   Subgraph 
mining  

1        Introduction 

 We present a tool that mine ligand–receptor complexes and generate 
a library of fragments for a target receptor so it can be used for 
structure-based drug design, such as Fragment-Based Lead Design 
(FBLD). FBLD is a computational approach which begins with a 
small low affi nity fragment(s) which bind to the target of interest, 
followed by a careful construction and optimization of these 
fragments to end up with a high affi nity lead drug. In theory, this 
is a highly effi cient approach for drug design, and it has become 
enormously popular in the past few years [ 1 – 4 ]. 

 Our method, FragVLib [ 5 ], relies on a  Graph -based represen-
tation for interfacial atoms of a ligand–receptor complex. Interfacial 
atoms are defi ned as the adjacent receptor and ligand atoms which 
are within certain cutoff distance. Interfacial atoms are represented 
by nodes, and distances between them are represented by edges 
connecting these nodes. Therefore, the resulting interfacial-graph 
contains a number of nodes representing atoms from the ligand 
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connected by edges to a number of nodes representing atoms from 
the receptor. Furthermore, the interfacial-graph also includes all 
the atoms that are covalently bound to the interfacial atoms. These 
atoms are represented by nodes, and the covalent bonds connect-
ing them to the interfacial atoms are represented by edges (Fig.  1 ).  

 We should mention that we make use of the tessellation tech-
nique to identify the interfacial atoms. Specifi cally, we use almost- 
Delaunay (AD) tessellation [ 6 ] which has a unique advantage of 
incorporating the imprecision of the point coordinates in defi ning 
the tessellation patterns. Besides the cutoff distance ( ADdistance ) 
used to identify adjacent atoms, a threshold value ( ADepsilon ) is 
used to signify the minimum perturbation needed for an atom to 
be part of the interfacial atoms. This is important when dealing 
with bad-resolution ligand–receptor complexes. 

 Now let us assume that we have a “target” ligand–receptor 
complex for which we are interested in designing a lead compound 
using FragVLib method. Let us also assume that we have a data-
base of X-ray crystallized ligand–receptor complexes, i.e., “native” 
complexes. First, we will generate the interfacial-graphs for all 
ligand–receptor complexes involved, i.e., the target complex and 
all the native complexes. 

 Now since we have the complexes’ interfaces represented by 
interfacial-graphs, we can use effi cient subgraph match to perform 
a pocket similarity search between the interfacial-graph of the tar-
get complex and the interfacial-graph of each one of the “native” 
complexes in the database. The match considers all possible sub-
graphs and is performed over the atoms and bonds composing the 
receptor side of the interfacial graphs  only ; this is a pocket similar-
ity search, and ligands were only used to defi ne the binding pock-
ets. The match takes into account the chemistry and the 3D 
geometry of the matching atoms and bonds. The 3D geometry is 
checked by making sure that the matching atoms superimpose 
within a user- defi ned RMSD cutoff value ( dRMSDcutoff ). The 
user of the tool (FragVLib) can also limit the size of an accepted 
match (i.e., number of nodes in the matched subgraph) by provid-
ing the minimum value ( minMatchSize ) and a maximum value 
( maxMatchSize ) for the size. 

 Every time an accepted subgraph match is identifi ed between 
the interfacial-graph of the target complex and the interfacial- 
graph of a native complex, the ligand’s part (atoms and bonds) of 
the interfacial-graph of the native complex that are only in direct 
contact with the identifi ed subgraph match is copied into the 
pocket of the target receptor. When repeating this pocket similarity 
search using each native complex in the database, we will generate 
a collection of chemical fragments fi lling the binding pocket of the 
target receptor. These fragments constitute the so called “Fragment- 
based Virtual Library” or FragVLib (Fig.  2 ).  

Raed S. Khashan
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  Fig. 1    ( a ) An example of a receptor–ligand complex. ( b ) The same example after 
defi ning interfacial atoms using almost-Delaunay (AD) tessellation. ( c ) The inter-
facial atoms and their bonds form the interfacial-graph       

 

Virtual Library of Fragments
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 Finally, for lead design, the user can explore these fragments 
and perform one of the following: growing them into the depth of 
the binding pocket; carefully connecting two or more fragments 
into one compound for optimized potency; or merging two or 
more fragments in regions of mutual overlap to construct a lead 
compound [ 7 ].  

2     Materials 

 The program is written in C++, and it is publicly available freeware; 
it can be copied and distributed freely. The user manual and the pre-
compiled executables can be downloaded by going to the website 
“  http://www.bioinformatics.org/fragvlib    ” and installing the fi le 
“FragVLib.zip”. It is easy to install (no external libraries) and easy to 
use as we explain in the next section. After unzipping the fi le, you 
will have the following executables (see Note 1, and Note 7):

   -  getIntGraph4Target   
  -  getIntGraphs4DB   
  -  FragVLib   
  -  rmLigHs   
  -  rmProHs   
  -  rmProWs   
  -  getAlmDisGraphMol2   
  -  mol2graphXYZ   
  -  ADCGAL   
  -  ADedgeCGAL     

  Fig. 2    A picture for the target receptor–ligand complex on the  left side , and another picture for the receptor 
after identifying the fragments (virtual library of fragments) using FragVLib, on the  right side        
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 Notice that all of them run on a Linux operating system. You 
will have the target receptor–ligand complex for which you would 
like to design the lead compound in the PDB fi le format and in 
MOL2 fi le format, for the receptor and the ligand, respectively. 
You will also have a database of native, X-ray crystallized, receptor–
ligand complexes in the same fi le format. You will need a program 
like  PyMOL  to view the fragments after generating them; you can 
install it from this website: “  http://www.pymol.org/    ”.  

3    Methods 

 The following are the steps you will need to generate the virtual 
library of fragments (FragVLib). You need to have all the execut-
able fi les and your fi les in one directory. 

  The fi rst step in this method is obtaining the interfacial-graph for 
the target receptor. You should have the target receptor–ligand 
complex available in MOL2 fi le format for the ligand, and in PDB 
fi le format for the receptor. Then you can type the following 
command:

    getIntGraph4Target namesFile ADdistance ADepsilon noW     

 The  namesFile  is a fi le containing the name (including location) 
of the ligand’s fi le, followed by space, followed by name (including 
location) of the receptor’s fi le. The  ADdistance  is the maximum 
distance for two interfacial atoms to be considered in contact, the 
recommended value is between 3.5 and 5.8 Å. The  ADepsilon  
parameter is the maximum perturbation allowed for the location of 
an atom, the recommended value is between 0.01 and 0.1 Å. Go 
back to the Subheading  1  for more details about these parameters 
( also ,  see   Note 2 ). The  noW  is a parameter that, if included, tells 
the program to ignore water molecules and treat them implicitly 
( see   Note 3 ). If you want water molecules to be part of the inter-
face, simply do not include this parameter. Below are two examples 
of running the  getIntGraph4Target  program:

    getIntGraph4Target namesFile 4.25 0.05 noW   
   getIntGraph4Target namesFile 4.0 0.01     

 The output of this step will be two fi les for the atoms and 
bonds of the target receptor’s interfacial-graph:  Target_atomsXYZ , 
and  Target_bonds .  

  The second step is obtaining the interfacial-graphs for the database 
of X-ray crystallized (native) receptor–ligand complexes. For each 
complex, you should have the ligand’s fi le in MOL2 fi le format, 
and the receptor’s fi le in PDB fi le format. You need to list the 
names of all receptor–ligand complexes in one fi le  namesFile , such 

3.1  Obtaining 
the Interfacial- Graph 
for the Target 
Receptor

3.2  Obtaining 
the Interfacial- Graphs 
for the Database 
of Complexes
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that each line refers to one complex and contains the name (including 
location) of the ligand’s fi le, followed by space, and followed by 
the name (including location) of receptor’s fi le. Then you will type 
the following command:

    getIntGraphs4DB namesFile ADdistance ADepsilon noW     

 Make sure you use the same values for parameters  ADdistance  
and  ADepsilon  used in previous step when obtaining interfacial- 
graph for the target receptor. The output of this step will be two 
fi les for the atoms and bonds of the interfacial-graphs:  DB_atom-
sXYZ_name , and  DB_bonds .  

  Finally, the last step is performing the pocket similarity search 
between the target receptor’s interfacial-graph, and the interfacial- 
graph for each receptor–ligand complex in the database. A sub-
graph match will start by running the following command:

    FragVLib Target_atomsXYZ Target_bonds DB_atomsXYZ_name 
DB_bonds minMatchSize minMatchSize dRMSDcutOff outDir     

 The fi rst four fi les are the same ones generated in the previous 
two steps, so you will not have to do anything about them. The 
 minMatchSize  and  maxMatchSize  is the minimum and maximum 
size of a matched interface to be accepted ( see   Note 4 ). The  dRMS-
Dcutoff  is the maximum value for an RMSD of the matching pock-
ets to be accepted as similar pockets, it can take a value from 0.1 to 
1.0 Å. Go back to the Subheading  1  for more details about these 
three parameters ( also ,  see   Note 5 ). The  outDir  is the directory 
where all the generated fragments will be stored in ( see   Note 6 ). 
These fragments will constitute the virtual library, and they will be 
stored in MOL2 fi le format. You can use  PyMOL  to view the frag-
ments and start the lead design process.   

4    Notes 

        1.    The program utilizes efficient tools for representing the 
interfacial atoms of the ligand–receptor complexes, as well as 
performing the pocket similarity search. However, the major 
drawback for the method is the fact that it relies on subgraph 
matching as a way of performing the match searching process. 
Subgraph mining in the presence of isomorphism is a well-
known NP-Complete problem [ 8 ] in the fi eld of computer sci-
ence. Such kind of problems is typically solved using techniques 
such as: Approximation, Randomization, Parameterization, 
Restriction, and Heuristic algorithms. Herein, to speed up the 
searching process, we implemented parameterization, restric-
tion and heuristic algorithms. Parameterization is possible by 
controlling certain input parameters, such as:  ADdistance , 

3.3  Generating 
the Virtual Library 
of Fragments
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 ADepsilon ,  minMatchSize ,  maxMatchSize , and  dRMSDcutoff . 
For example, using short cutoff distances ( ADdistance ) in 
identifying interfacial atoms will result in interfacial-graphs 
that are smaller in size, and therefore, faster search is obtained.   

   2.    Short cutoff distances ( ADdistance ) can be used when the tar-
get receptor’s binding pocket is expected to have interactions 
such as: hydrogen bond and ion exchange, which occur over 
short distances. If we expect hydrophobic interactions, which 
can occur over large distances, higher cutoff values can be 
used.   

   3.    Water molecules can be included as part of the interface, or 
they can be omitted and treated implicitly by adding the  noW  
parameter. Omitting water molecules will speed up the search 
process.   

   4.    You can modify the size of the matching binding pockets to 
search for a smaller binding region in the target receptor by 
modifying values of  minMatchSize , and  maxMatchSize .   

   5.    The RMSD cutoff value ( dRMSDcutoff ) for accepting the 
matched (superimposed) interfacial-graphs can be used to 
decide how (geometrically) similar the binding matching bind-
ing pockets are.   

   6.    If you decide to run another round of  FragVLib , make sure 
you choose a different name for the  outDir , or delete the one 
you have.   

   7.    Always make sure you have all the executables (listed in 
Subheading  2 ) in the same directory where you are running 
the program.         
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    Chapter 4   

 Virtual Fragment Preparation for Computational 
Fragment- Based Drug Design 

           Jennifer     L.     Ludington    

    Abstract 

   Fragment-based drug design (FBDD) has become an important component of the drug discovery process. 
The use of fragments can accelerate both the search for a hit molecule and the development of that hit into 
a lead molecule for clinical testing. In addition to experimental methodologies for FBDD such as NMR 
and X-ray Crystallography screens, computational techniques are playing an increasingly important role. 
The success of the computational simulations is due in large part to how the database of virtual fragments 
is prepared. In order to prepare the fragments appropriately it is necessary to understand how FBDD dif-
fers from other approaches and the issues inherent in building up molecules from smaller fragment pieces. 
The ultimate goal of these calculations is to link two or more simulated fragments into a molecule that has 
an experimental binding affi nity consistent with the additive predicted binding affi nities of the virtual frag-
ments. Computationally predicting binding affi nities is a complex process, with many opportunities for 
introducing error. Therefore, care should be taken with the fragment preparation procedure to avoid 
introducing additional inaccuracies. 

 This chapter is focused on the preparation process used to create a virtual fragment database. Several 
key issues of fragment preparation which affect the accuracy of binding affi nity predictions are discussed. 
The fi rst issue is the selection of the two-dimensional atomic structure of the virtual fragment. Although 
the particular usage of the fragment can affect this choice (i.e., whether the fragment will be used for cali-
bration, binding site characterization, hit identifi cation, or lead optimization), general factors such as 
synthetic accessibility, size, and fl exibility are major considerations in selecting the 2D structure. Other 
aspects of preparing the virtual fragments for simulation are the generation of three-dimensional confor-
mations and the assignment of the associated atomic point charges.  

  Key words     Fragment-based drug design  ,   FBDD  ,   Fragment screening  ,   Virtual fragment  ,   Fragment 
preparation  ,   Conformations  ,   Partial charges  ,   Fragment database  ,   Fragment linking  

1      Introduction 

 The concept of using small molecule fragments in drug design is 
not new. The theoretical concept of linking fragments into mole-
cules was presented by Jenks in 1981 [ 1 ]. In 1995, a review was 
published by Böhm regarding computational methods for joining 
fragments into molecules [ 2 ]. Fragment-based screening using 
NMR was described by Shuker et al. in 1996 [ 3 ]. In 2000, X-ray 
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crystallography was reported as another method for screening 
 fragments by Nienaber et al. [ 4 ]. With experimental techniques, a 
fragment’s binding to a protein can be detected in the high micro-
molar to millimolar range [ 3 ,  4 ]. In an increasing number of cases, 
screening fragments has led to successful hits where the traditional 
high-throughput screening of larger molecules did not [ 3 – 6 ]. 
A number of reviews report the progress of the fragment-based 
drug design (FBDD) fi eld in greater detail [ 5 – 12 ]. 

 There are multiple advantages to evaluating fragment–protein 
binding versus the binding of larger molecules. Synthesis timelines 
can be shortened, since a fragment-based approach is well suited to 
building molecules through parallel synthesis libraries. In- house 
chemistry developments can be leveraged in fragment-based design 
with proprietary fragments. Another advantage of using fragments 
is that fragment chemical space is much smaller than molecule 
chemical space; on the order of 10 7  for fragments with up to 11 
heavy atoms [ 13 ] versus greater than 10 60  for molecules with up to 
30 heavy atoms [ 14 ]. Hann and coworkers proposed that simpler 
molecules would have increased hit rates compared to those of 
complex molecules [ 15 ], and this theory has been verifi ed experi-
mentally. The Novartis group reported typical hit rates for frag-
ment screens of 10–1,000 times that of traditional HTS [ 16 ]. The 
combination of a reduced chemical space to explore and higher hit 
rates means improved chemical diversity can be attained with mol-
ecules that are built up from fragments [ 7 ,  17 ]. These advantages 
increase the probability that a novel, potent inhibitor can be 
designed for a particular protein with the requisite physical proper-
ties for a drug molecule. 

 Fragment binding data can also facilitate the understanding of 
the protein binding site. It has been demonstrated that the ability 
of fragments to bind to an active site relates to the druggability of 
that site [ 18 ]. A fragment’s binding location can give information 
about what chemotypes can have favorable interactions with the 
protein’s binding site and what contribution those interactions 
have to whole-molecule binding, clarifying the structure-activity 
relationship (SAR) [ 12 ]. This knowledge can be used to shorten 
the time from hit to lead molecule and to increase the quality of 
the leads. Fragment–protein interactions can be observed that are 
excluded when the fragment is part of an elaborated molecule due 
to geometric, steric, or electrostatic constraints of the protein [ 15 ]. 
For that reason, observing a fragment’s binding position may sug-
gest scaffolds or connectivities that were not previously explored. 
Novel interactions that increase the potency of a molecule so that 
it can be truncated in other regions will create new intellectual 
property (IP) and potentially improve the selectivity and physical 
properties of the molecule. In the case of p38 MAP kinase, simula-
tions of fragments with the allosteric X-ray structure led to the 
discovery of a new interaction with Arginine 70 on the αC-helix [ 19 ]. 
A molecule was designed that utilized this novel interaction region 
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in the allosteric site and did not interact with the ATP hinge-region. 
This molecule was potent (IC 50  = 22 nM) and selective against a 
panel of 150 kinases [ 19 ].  

2    Computational Theory 

 Although there are advantages to experimental fragment-based 
screening over HTS, these methods also have drawbacks. As men-
tioned in the review by Konteatis, the high solubility necessary for 
the fragment screens and the experimental detection limits of frag-
ment binding are disadvantages of the biophysical methods [ 12 ]. 
These techniques may also require large quantities of protein 
(0.5–5 mg) and have low experimental throughput [ 7 ]. In silico 
approaches are not bound by these constraints. By exploring frag-
ment–protein binding with computational fragments, more possi-
bilities can be evaluated. In theory, simulating two-thousand 
fragments represents a chemical space of 8 × 10 9  three fragment 
molecules [ 17 ]. Virtual fragments hit rates, as well as the ability to 
connect these fragments geometrically and synthetically, generally 
leads to several hundred promising synthetic targets to evaluate 
experimentally [ 17 ]. Computational fragment methods (either 
alone or combined with experimental fragment screening) are con-
tributing to the discovery of nanomolar inhibitors [ 5 ,  11 ,  19 ]. 

 At Locus Pharmaceuticals two types of fragment–protein simu-
lations were used: Grand Canonical Monte Carlo simulations where 
the excess chemical potential of the system is annealed, and system-
atic sampling that methodically and effi ciently explores fragment 
binding positions [ 20 – 24 ]. For both methods the virtual fragments 
are treated as rigid bodies and the protein structure has a fi xed con-
formation [ 22 ,  24 ]. The interaction energies between fragment and 
protein are calculated from non-bonded interaction parameters 
from the molecular mechanics force fi eld AMBER [ 25 ], except for 
the fragment partial charges which are calculated with the quantum 
mechanics software Gaussian [ 26 ]. Since the fragments are regarded 
as rigid bodies, multiple conformations are generated for fl exible 
fragments. Further molecule fl exibility is accounted for when the 
fragments are linked to form molecules [ 27 ]. 

 When linking the virtual fragments to form molecules, the 
binding energies of the fragments are assumed to be additive. The 
binding energy of the linked molecule is approximated by the sum 
of the fragment binding energies, even though this approximation 
does not account for the entropy loss upon linking the fragments 
[ 1 ,  8 ]. The preparation method of the virtual fragment also affects 
how well the assumption of binding energy additivity holds true. 
The selection of the fragment’s two-dimensional atomic structure, 
the generation of three-dimensional conformers, and the calcula-
tion of the fragment’s atomic point charges all affect the success of 
the fragment binding affi nity predictions.  

Virtual Fragment Preparation for FBDD
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3    Methods for Preparing Computational Fragments 

  The fi rst step in preparing a virtual fragment is to decide on the 2D 
atomic structure of that fragment. The fragment’s 2D structure 
should be selected so that the properties of the fragment do not 
change signifi cantly when that fragment is part of a molecule. 
There should not be a large change in the partial charge distribu-
tion or the geometry of the local energy minimum pose when the 
fragments are linked. The size of the fragment is also important. A 
fragment that is very small or does not have enough interacting 
groups may show non-selective binding to the protein (a desirable 
trait for non-interacting linkers). A large, complex fragment may 
generate an unmanageable number of conformations, or it may 
not bind to the protein due to steric constraints or charge repul-
sions. Based on observed fragment hits from X-ray crystallography 
screens, Jhoti and coworkers proposed a “Rule of Three” in 2003 
[ 28 ] for building fragment databases. The “Rule of Three” guide-
lines (analogous to Lipinski’s “Rule of Five” [ 29 ]) constrain a frag-
ment’s molecular weight to less than 300, with no more than 3 
hydrogen bond donors or acceptors, and a  C  log  P  ≤ 3. The authors 
also suggest limits on rotatable bonds (≤3) and polar surface area 
(≤60) as possible selection criteria. In a 2013 follow-up to the 
“Rule of Three” proposal, Jhoti et al. state that the limitations on 
hydrogen bond donors and acceptors have not been generally 
implemented, due in part to ambiguities in how they should be 
defi ned [ 30 ]. There is experimental evidence that valuable frag-
ments fall outside these guidelines [ 31 ] and this may be the case 
even more with in silico fragments. 

 Another consideration for selecting the 2D structure of a vir-
tual fragment is if the synthetic intermediate for the fragment is 
commercially available or synthetically feasible. The chemistry to 
incorporate the fragment into a full molecule should also be rea-
sonable. Ideally, the fragment should not contain any substructures 
that are unstable in vivo or known to produce toxicity in a drug. 
When selecting the 2D structure, the fragment should be evaluated 
for other stable enantiomers or charge states. Unless these states 
are generated by the simulation software, they should be prepared 
as distinct fragments for the database. 

 The intended purpose of the fragment may affect how the 2D 
atomic structure is selected. Fragments may be chosen as part of a 
diverse “probe” set, in order to map a protein’s binding site and 
explore its affi nity for different chemotypes. Other fragments may 
be proprietary, based on in- house synthetic schemes. Another 
method for generating fragments is to deconstruct known ligands 
into their fragment components. This approach is useful when 
reproducing known SARs and calibrating the simulation method-
ology for a particular protein, or when designing for families of 
proteins that may bind similar fragments. A large portion of the 
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Locus Fragment Database was generated by deconstructing com-
pounds from medicinal chemistry literature, with emphasis on 
fragments found in known orally bioavailable drugs [ 21 ]. 

 The 3D properties of the fragment also need to be considered 
when choosing the 2D structure. For instance, when an amide 
bond is added to an aromatic ring the electronic distribution of 
the system changes, since the aromaticity is maintained across 
the linkage. Therefore, more accurate results would be obtained 
by simulating a benzamide fragment instead of benzene and 
N-Methylacetamide. In other words, if the electronic distribution 
is different after connection, the binding of the separate fragments 
may be overestimated or underestimated compared to the linked 
entity. This adds additional inaccuracies to an already complex pro-
cess. The differences between a fragment as a distinct entity versus 
as a substructure in a molecule should always be kept in mind when 
preparing fragments and building molecules. These issues cannot 
always be resolved through fragment selection, so the designed 
molecules should be further analyzed to verify that the desired pro-
tein ligand interactions are preserved [ 32 ]. 

 A published p38 MAP kinase ligand [ 33 ] provides an example 
of deconstructing a ligand into the appropriate fragment com-
ponents [ 12 ,  17 ]. If the molecule in question is the p38 kinase 
inhibitor BIRB - 796 (Fig.  1a ), a reasonable way to break up the 
fragments is as shown (Fig.  1b ). As stated before, factors such as 
size, fl exibility, and electronic distribution should be considered 
when selecting fragment substructures. Although one could simu-
late a single fragment containing the urea,  N -methylpyrazole, and 
 t -butyl moieties (Fig.  2 ), in the allosteric site of p38 the channel 
where the urea binds is narrow, with specifi c interactions to the 
urea. Only certain torsion angles around the urea–pyrazole bond 
will result in fragment geometries compatible with the constraints 
of the binding pocket.  If other torsion angles are used, the com-
pound fragment might be erroneously excluded from the pocket 
by the simulation. Hence, knowledge of the protein binding site 
can also infl uence fragment selection for a particular protein target.    

  Some of the conformational information for molecules built by link-
ing fragments is determined by where the fragments are positioned 
when they are joined [ 27 ]. However, since the simulations use rigid 
fragments, for a chemical structure that is actually fl exible (i.e., has 
rotatable bonds or unsaturated ring systems), multiple 3D structures 
(i.e., conformers) must be prepared [ 21 ,  22 ] .  The 2D structure of 
the fragment should be selected to minimize the number of rotatable 
bonds. Otherwise, the large number of conformers generated for the 
fragment will create an unmanageable number of simulations, with 
the associated data storage and data processing issues. The rule of 
thumb is to have three or less rotatable bonds in a fragment [ 28 ]. 

 Changes in the geometry of the local energy minimum pose 
when the fragment becomes part of a molecule is also a concern 
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  Fig. 2    Alternative fragment choice from BIRB-796       
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when preparing the 3D conformers of a fragment. This issue can be 
addressed by manually adding rotor states to the fragment con-
former set that are known to be reasonable when the fragment is a 
substructure of a molecule. Another option is to simulate fragments 
with a steric placeholder, such as a methyl group, where the linkage 
would be. When a methyl placeholder is used, the software for link-
ing fragments needs to handle removing the methyls or it will need 
to be done manually.  

  The partial (point) charges of a virtual fragment are another impor-
tant component of binding affi nity predictions. A study was done 
in 2003 comparing four methodologies to calculate geometries 
and charges of virtual fragments [ 34 ]. Since partial charges cannot 
be measured directly, solvation energies and dipole moments of 20 
small fragments were calculated from the point charges and com-
pared to experimental values. It was determined that the best com-
promise between speed and accuracy of the four methods was to 
use the molecular mechanics program MacroModel [ 35 ] with its 
implementation of the AMBER force fi eld [ 36 ], AMBER*, to gen-
erate conformations, and to use a Gaussian [ 26 ] CHelpG [ 37 ] 
single- point calculation with B3LYP [ 38 – 40 ] functionals and 
6–31G(d) basis set [ 41 ] for the partial charges. The predicted 
binding affi nity of ligands built from multiple fragments for three 
published protein systems were then evaluated with this method 
and compared to experimentally measured IC 50 s .  The resulting 
standard deviation was ± 1.0 pIC 50  units/molecule [ 34 ]. 
Simulations of fragments prepared by the selected method were 
also used to reproduce X-ray crystal binding poses [ 19 ,  21 ,  22 , 
 34 ], and to predict the binding affi nities of designed compounds 
with a similar standard deviation to the literature compounds [ 34 ].   

4    Fragment Preparation Workfl ow 

 The specifi c steps for preparing a virtual fragment for simulation are 
discussed below (Fig.  3 ). The fragment fi les and preparation tech-
niques should be tailored to the requirements of the individual sim-
ulation software, therefore not all of the steps may be necessary. 

    1.    The fi rst step of preparing a fragment for simulation is to select 
the 2D structure according to the previously mentioned 
considerations.   

   2.    After the fragment has been selected, the 2D representation is 
converted into a group of 3D conformers. Since the 2D struc-
ture of the fragment is selected to be small, with a limited 
number of rotatable bonds, the conformational analysis can be 
done by systematically rotating bonds and then energy mini-
mizing the structure’s coordinates. In this procedure, the 

3.3  Partial Charge 
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 systematic conformational search in MacroModel [ 35 ] is used 
to produce the fragment conformations. If the fragment is not 
fl exible there will be only one conformation.   

   3.    Since the fragment–protein simulations use a molecular 
mechanics force fi eld, force fi eld atom types are assigned to the 
fragment atoms. These atom types determine the force fi eld 
parameters used for each atom during the simulations. For cal-
culations with rigid fragments and a static protein, only the 
non-bonded parameters of the force fi eld are needed. The force 
fi eld used for fragments in this procedure is AMBER*, the ver-
sion of the AMBER force fi eld [ 36 ] used in MacroModel [ 35 ]. 
The AMBER force fi eld was originally developed for studying 
proteins and nucleic acids [ 36 ] but can also perform well when 
calculating protein–fragment interactions [ 19 ,  22 ,  24 ,  34 ].   

   4.    The atomic point charges for each 3D conformation are calcu-
lated because the charge distributions are dependent upon the 
3D structure. Since the geometry of the fragment is already 
determined, a single point calculation is performed in Gaussian 
[ 26 ]. The B3LYP [ 38 – 40 ] density functional method (which 
uses hybrid functionals) is used, along with the 6–31G(d) 
basis set [ 41 ]. CHelpG [ 37 ] is used to calculate the point 
charges from the electronic distribution.   

   5.    Next, a symmetry operation is performed on the atomic coor-
dinates and point charges. This accounts for rounding errors 
and maintains the planes of symmetry in the fragment.   

   6.    The treatment of the solvent for fragment–protein simulations 
can be done by using a continuum dielectric, explicit water 

  Fig. 3    The work fl ow of the virtual fragment preparation process       
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 molecules that are co-simulated, or a solvent correction fac-
tor that is based on the solvation energy of the fragment. This 
particular procedure was developed for preparing fragments 
that would be simulated in vacuo. Therefore, a solvent correc-
tion factor is calculated with the generalized Born surface area 
(GB/SA) method [ 42 ] as implemented in MacroModel [ 35 ].   

   7.    A category fi eld is created for the fragment. Labels like “Probe 
Set,” “Heterocyclic,” or “Kinase Hinge Pieces” can facilitate 
the extraction of fragments from the database. Different frag-
ment sets may be used based on the stage of a project and the 
current design issues to be addressed.   

   8.    Finally the fragment is stored in a database with a format that 
is compatible with the software used to perform the fragment–
protein simulations.    

5      Conclusion 

 Fragment-based drug design is emerging as a signifi cant area of 
the drug discovery fi eld. Fragment screening provides an effi cient 
exploration of chemical space, and the ability to detect valuable hits 
that are missed with traditional screening methods. Computational 
approaches can avoid experimental limitations of solubility, pro-
tein supply, and throughput, but accuracy in the predicted binding 
affi nities remains a concern. The preparation of the virtual frag-
ments, including the selection of the 2D atomic structures and 
the generation of the 3D conformers and atomic partial charges, is 
critical to the success of the computational simulations.     
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Chapter 5

Fragment Library Design: Using Cheminformatics 
and Expert Chemists to Fill Gaps in Existing  
Fragment Libraries

Peter S. Kutchukian, Sung-Sau So, Christian Fischer, and Chris L. Waller

Abstract

Fragment based screening (FBS) has emerged as a mainstream lead discovery strategy in academia, bio-
technology start-ups, and large pharma. As a prerequisite of FBS, a structurally diverse library of fragments 
is desirable in order to identify chemical matter that will interact with the range of diverse target classes that 
are prosecuted in contemporary screening campaigns. In addition, it is also desirable to offer synthetically 
amenable starting points to increase the probability of a successful fragment evolution through medicinal 
chemistry. Herein we describe a method to identify biologically relevant chemical substructures that are 
missing from an existing fragment library (chemical gaps), and organize these chemical gaps hierarchically 
so that medicinal chemists can efficiently navigate the prioritized chemical space and subsequently select 
purchasable fragments for inclusion in an enhanced fragment library.

Key words Fragment based screening, Cheminformatics, Chemogenomics, Library design, Privileged 
substructure, Chemical space, Chemical diversity

1  Introduction

The design of fragment libraries has garnered much attention as 
fragment based lead discovery has transitioned from an exploratory 
field for lead identification to a more standard industrial strategy to 
identify novel starting points for hit to lead campaigns. The com-
position of a fragment library may be based on the assay technol-
ogy that is employed—for example fluorine containing fragments 
for NMR [1], bromine containing fragments for X-ray crystallog-
raphy [2], or fragments amenable to SPR [3]. On the other hand, 
a library may be designed for general use for multiple assay tech-
nologies [4]. In addition, libraries may be designed to include bio-
logically active motifs [5]. Furthermore, the input of chemists on 
the desirability of fragments for optimization has been incorpo-
rated into the design of fragment libraries [6].
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Many research groups have a standard fragment library which 
at some point, will need to be updated for a variety of reasons. 
Primary among these is to replace compounds that have historically 
behaved badly (e.g., promiscuity, inactivity) or to replenish com-
pounds that are no longer available. Herein we describe a simple 
procedure that can easily be carried out in an academic or industrial 
setting to identify “chemical gaps”—i.e., desirable substructures 
that are present in biologically active compounds but not in the cur-
rent fragment library—and identify purchasable compounds that fill 
these gaps. The chemical gaps are organized in a hierarchical fash-
ion so that chemists can easily traverse chemical space in a Spotfire 
[7] session, and select purchasable fragments to fill the gaps.

2  Materials

	 1.	 Carry out all computational procedures with Pipeline Pilot ver-
sion 9.1 (Biovia) [8] unless otherwise specified (see Note 1).

	 2.	 Commercially available catalogues of fragments are obtained 
directly from vendors in a structure format (e.g., SD file) or in 
a text file that includes SMILES that are converted to struc-
tures in Pipeline Pilot (see Note 2).

	 3.	 We use Merck’s Chemical Genetic Interaction Enterprise 
(CHEMGENIE) Database for chemogenomic data (see Note 
3). CHEMGENIE is comprised of both internal dose-response 
data such as PanLabs, Invitrogen Kinase Screen, and High-
Throughput Screening and external dose-response data such 
as ChEMBL (EMBL-EBI) [9, 10] and Metabase (Thomson 
Reuters) [11] as well as high quality biophysical binding data 
such as ALIS [12].

	 4.	 Visualization of chemical gaps is performed in Spotfire version 
5.5.1 (TIBCO) [7].

3  Methods

A high level flow diagram for the method is depicted in Fig. 1.

	 1.	 A Pipeline Pilot protocol is used to convert the current frag-
ment library and chemogenomic library (CHEMGENIE) to 
hierarchical sets of SMILES and corresponding InChIKeys 
(Fig. 2, see Note 4). The three sets of SMILES/InChIKeys 
are carbon graph substructures (CG, with some aromatic 
information—see Note 5), heteroatom substructures (HA), 
and substitution pattern substructures (SP).

	 2.	 First de-salt and standardize all compounds in Pipeline Pilot.

2.1  Filling 
Chemical Gaps

3.1  Filling 
Chemical Gaps
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	 3.	 Fragment each compound into one subunit substructures 
(Fig.  2a, see Note 6). Convert each resulting substructure 
with substitution pattern (SP) into a substructure with hetero-
atoms (HA), and a carbon graph (CG) as in Fig. 2b. To do 
this, use the “Map Substructure” component twice—once 
using a SMARTS file of disallowed bond breaks, and once 
using a SMARTS file with allowed bond breaks. Then use the 
“Enumerate Fragments” component, specifying the “allowed 
bond breaks” and “disallowed bond break” properties as the 
“Property with Bonds to Break” and “Property with Bonds to 
Skip” parameters, respectively. Add “Mg” as “Atoms to Add 

Fragment
Library

Small Molecule
Chemogenomic

Library

Enumerate
Substructures

Enumerate
Substructures

Merge
Substructures

Calculate
Chemical Gap

Score and Tanimoto
Similarity

Filter for High
Chemical Gap Score
and Low Tanimoto

Similarity

Construct Spotfire 
Session for Fragment 
Selection by Chemists

Fig. 1 High level flow diagram of method. All steps enclosed by boxes are per-
formed in Pipeline Pilot
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at Break Points”. Prior to visualizing the SP SMILES string, 
however, convert Mg atoms to [*] using the “Reaction from 
SMIRKS” component, and a SMIRKS string that converts 
Mg to [*]. To generate the HA substructures, convert all Mg 
to H atoms. To generate the CG substructure, use the 
“Standardize Molecule” component to convert all non-
hydrogen atoms to carbon and to make all bonds single.

	 4.	 Count each type of substructure (CG, HA, and SP) in three 
separate data streams, and merge the counts obtained from 
the fragment library and from CHEMGENIE, so that there 
are three separate tables written to file with the following 
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Substructure with 
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b

Fig. 2 Fragmentation of compounds. (a) A parent compound is fragmented into 1 subunit or 2 subunit substruc-
tures using bond break and bond protect rules. (b) A substructure with substitution pattern (SP) is converted to a 
substructure with heteroatoms (HA) but no substitution pattern, and finally to a carbon graph (CG) substructure
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properties: substructure SMILES, substructure InChIKey, 
count in fragment library (Library A), count in CHEMGENIE 
Bioactives (Library B). Also, the InChIKey for the sub-
structure that is one hierarchical step towards being more 
general should be written out. Thus, for SP table, the HA 
InChIKey should be written out, and for the CG table the 
HA InChIKey should be written out. These will be used to 
relate tables in spotfire. Thus, there will be a SP, HA, and CG table.

	 5.	 To prioritize filling chemical gaps—substructures that are 
present in bioactive CHEMGENIE compounds (library B), 
but not in the fragment library (library A)—calculate a 
Chemical Gap Score for the CG substructures and for the HA 
substructures (see Note 7). The chemical gap score for a sub-
structure i is the sum of occurrences of substructure j in library 
B (CHEMGENIE Bioactives) if the substructure j is not pres-
ent in library A (fragments):

	
ChamicalGapScore

if
else

B A

i
N N

j

j j( ) = =ì
í
ï

îï
å

0
0

	
where i is hierarchically related to j (e.g., if i corresponds to a 
CG substructure, then j corresponds to all HA substructures 
that share that carbon graph, or if i corresponds to a HA sub-
structure, then j corresponds to all SP substructures that share 
that HA substructure), NjA is the occurrences of substructure j 
in library A, and NjB is the occurrences of substructure j in 
library B. Note, to prioritize SP substructures, the occurrence 
of the SP substructure in the CHEMGENIE Bioactives is used.

	 6.	 Prioritize HA substructures based on similarity to HA sub-
structures in current fragment library. Calculate the maximum 
nearest neighbor Tanimoto similarity (ST) to HA substructures 
present in the current fragment library. HA substructures with 
low ST are prioritized (see Note 8).

	 7.	 Use chemical gap score and similarity to select high priority 
substructures that are missing from the current fragment 
library. Filtering is performed on the HA substructure level. 
All HA substructures with ST < 0.5 and a chemical gap score 
>100 are selected (see Note 9). Filter the HA, and CG sub-
structure tables so that they only include substructures that 
will link to the high priority substructures. Only high priority 
HA substructures are visualized in Spotfire.

	 8.	 Divide the CG substructure that correspond to high priority 
HA substructures equally among chemists that will be evaluat-
ing purchasable fragments (see Note 10). In this manner, one 
chemist will evaluate similar HA substructures (e.g., similar 
ring systems with different substitution patterns), and can 
select a desirable number of neighbors from the purchasable 
fragments.

Fragment Library Design
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	 9.	 Identify fragments that can be purchased for the purpose of 
filling chemical gaps.

	10.	 For each compound in the commercial fragment library, iden-
tify all SP substructures and HA substructures. Generate a 
table that includes the SP substructure InChIKey, HA sub-
structure InChIKey, parent compound identifier, parent com-
pound SMILES, and source.

	11.	 Filter the previous table (step 10) for substructures (HA) that 
are high priority. That is, read in all high priority substructures 
(HA) identified above (step 7) to an array, and only include 
substructures in the purchasable set of fragments that are con-
tained in this array. This will be the purchasable fragments 
table in spotfire.

	12.	 Prepare the CHEMGENIE bioactive compounds for inclu-
sion in the spotfire selection session. Fragment and filter the 
compounds as in steps 10 and 11. This will be the 
CHEMGENIE Bioactives table in spotfire.

	13.	 Assemble spotfire session for purchasable fragment selection as 
follows (see Note 11). First, import tables and add relationships. 
Import the carbon graph (CG) substructure table, the hetero-
atom (HA) substructure table, the substitution pattern (SP) 
substructure table, the purchasable fragments table, and the 
CHEMGENIE Bioactives table. Add table relationships to 
relate the tables to each other in the following manner, where 
the column used to relate the table is in parenthesis. The CG and 
HA table (CG InChIKey), the HA and SP table (HA InChIKey), 
the SP and purchasable fragments table (SP InChIKey), the SP 
and CHEMGENIE Bioactives table (SP InChIKey).

	14.	 Add a filter on the CG table so that the chemist selecting frag-
ments can be selected (Fig. 3).

	15.	 Add CG substructures, HA substructures, SP substructure, 
purchasable fragments, and CHEMGENIE bioactives table 
visualizations to spotfire session (Fig. 3).

	16.	 Add “Purchasable_Fragments” tag collection to Purchasable_
Fragments table, and add “Selected” tag.

	17.	 Each chemist initiates a selection session by selecting their 
name. A CG is then selected, which populates the HA sub-
structures. An HA substructure is then selected, which popu-
lates the SP substructures. An SP substructure is then selected, 
which populates purchasable fragments, as well as 
CHEMGENIE Bioactive compounds that contain the SP sub-
structure that is missing from the current fragment library 
(Fig. 3).

	18.	 Chemists can then “tag” the purchasable fragments as 
“Purchasable_Fragments:Selected.”

	19.	 All tagged fragments can be reviewed (Fig. 4). Fragments can 
also be untagged in this tab.

Peter S. Kutchukian et al.
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4  Notes

	 1.	 Protocols with sample input files are available upon request.
	 2.	 It is assumed that the commercially available fragments librar-

ies are filtered for desirable physical chemical properties (e.g., 
the rule of 3) [13] and substructures (e.g., to remove reactive 
or pan assay interference compounds) [14] prior to inclusion 
in the following method.

	 3.	 In this procedure, we use the chemogenomics database 
CHEMGENIE to identify biologically relevant substructures 
missing from the current fragment library. Another strategy, 
however, might entail using a company’s current high-
throughput screening (HTS) deck as a library source, frag-
menting the deck, and counting the occurrence of substructures 
(or biologically active substructures). This alternate strategy 
ensures good overlap between the fragment library and the 
HTS library, and increases the probability that virtual frag-
ment linking (VFL) could be applied successfully to expand 
from fragments to small molecules [15, 16].

	 4.	 A chemogenomic database is required to associate chemical 
structures with their biological activity. Ideally, the chemoge-
nomic database should include data that has been integrated 
from internal and external repositories.

	 5.	 For the carbon graph InChIKey, we sought to capture some of 
the aromatic information in the ring system as well. Thus, we 
used a modified key which was the carbon graph InChIKey 
concatenated with the number of ring bonds and number of 
aromatic bonds originally present prior to converting all bonds 
to single bonds. For example, an indole key would be 
BNRNAKTVFSZAFA-UHFFFAOYSA-N_10_10.

	 6.	 In the current implementation, we use specific bond break/
protect rules to fragment compounds into substructures. 
These rules are intended to obtain substructures that are 
meaningful to medicinal chemists (i.e., no rings are broken in 
half, and functional groups are protected). However, there are 
alternative strategies to derive substructures, for example, ret-
rosynthetic transformations can be employed to derive sub-
structures with synthetic handles [17].

	 7.	 In this procedure we use the count of a particular substructure 
in the CHEMGENIE Bioactives to prioritize the substruc-
tures that were missing in the current fragment library. There 
are other ways of measuring the biological importance of sub-
structures, however. For example, chemogenomics data like 
CHEMGENIE could be used to assess the count of the num-
ber of target classes that a substructure has been present in, or 
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	 1.	 Dalvit C (2009) NMR methods in fragment 
screening: theory and a comparison with other 
biophysical techniques. Drug Discov Today 
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	 2.	 Blaney J, Nienaber V, Burley SK (2006) 
Fragment-based Lead Discovery and 
Optimization Using X-Ray Crystallography, 
Computational Chemistry, and High-
throughput Organic Synthesis. In: Jahnke W, 
Erlanson DA (eds) Fragment-based approaches 
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pp 215–248

	 3.	 Elinder M, Geitmann M, Gossas T et al (2011) 
Experimental validation of a fragment library 
for lead discovery using SPR biosensor tech-
nology. J Biomol Screen 16:15–25

	 4.	 Lau WF, Withka JM, Hepworth D et al (2011) 
Design of a multi-purpose fragment screening 
library using molecular complexity and 
orthogonal diversity metrics. J Comput Aided 
Mol Des 25:621–636

	 5.	 Mok NY, Brenk R, Brown N (2014) Increasing 
the coverage of medicinal chemistry-relevant 
space in commercial fragments screening. 
J Chem Inf Model 54:79–85

	 6.	 Kutchukian PS, Vasilyeva NY, Xu J et al (2012) 
Inside the mind of a medicinal chemist: the 
role of human bias in compound prioritization 
during drug discovery. PLoS One 7:e48476
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	 8.	 Biovia (2013) Pipeline Pilot, 9.1
	 9.	 Overington JP (2009) ChEMBL: large-scale 

mapping of medicinal chemistry and pharma-
cology data to genomes. Abstr Pap Am Chem 
S 238

	10.	 Bento AP, Gaulton A, Hersey A et al (2014) 
The ChEMBL bioactivity database: an update. 
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whether the substructure is enriched for a certain number of 
targets or target classes based on a Bayesian score for the sub-
structure [18].

	 8.	 We filter away HA substructures with a high Tanimoto similar-
ity to existing HA substructures in the fragment library, to 
focus chemists’ selections on novel HA substructures present 
in purchasable fragments. This approach, however, is prone to 
remove HA substructures that exist in the fragment library, 
although the library might not contain fragments that encom-
pass all substitution patterns present in the CHEMGENIE 
Bioactives for a given HA substructure. This concern could be 
addressed by removing the Tanimoto Similarity filter, and 
focusing on substructures that are missing at the SP level.

	 9.	 These filters can be modified to increase or decrease the poten-
tial set of chemical gaps and purchasable fragments to assess.

	10.	 There are alternative strategies to divide the chemical gaps and 
corresponding purchasable compounds among chemists. For 
example, divisions could take place at the HA or SP substruc-
ture level.

	11.	 In this procedure, we build a Spotfire session that allows 
chemists to tag fragments for purchase. If there are chemical 
gaps that do not correspond to purchasable fragments, how-
ever, these gaps could serve as inspiration for de novo frag-
ment synthesis designs. In this case, the HA substructure 
could be tagged as a template for de novo synthesis.

References

Peter S. Kutchukian et al.

http://thomsonreuters.com/metabase/
http://thomsonreuters.com/metabase/


53

	12.	 Annis DA, Nickbarg E, Yang X et  al (2007) 
Affinity selection-mass spectrometry screening 
techniques for small molecule drug discovery. 
Curr Opin Chem Biol 11:518–526

	13.	 Congreve M, Carr R, Murray C et al (2003) A 
rule of three for fragment-based lead discov-
ery? Drug Discov Today 8:876–877

	14.	 Baell JB, Holloway GA (2010) New substruc-
ture filters for removal of pan assay interfer-
ence compounds (PAINS) from screening 
libraries and for their exclusion in bioassays. 
J Med Chem 53:2719–2740

	15.	 Crisman TJ, Bender A, Milik M et al (2008) 
"Virtual fragment linking": an approach to 
identify potent binders from low affinity frag-
ment hits. J Med Chem 51:2481–2491

	16.	 Wassermann AM, Kutchukian PS, Lounkine E 
et al (2013) Efficient search of chemical space: 
navigating from fragments to structurally diverse 
chemotypes. J Med Chem 56:8879–8891

	17.	 Lewell XQ, Judd DB, Watson SP et al (1998) 
RECAP – retrosynthetic combinatorial analysis 
procedure: a powerful new technique for iden-
tifying privileged molecular fragments with 
useful applications in combinatorial chemistry. 
J Chem Inf Comp Sci 38:511–522

	18.	 Lounkine E, Kutchukian P, Glick M (2013) 
Chemometric applications of naïve Bayesian 
models in drug discovery – beyond compound 
ranking. In: Bajorath J (ed) Chemoinformatics: 
case studies and pharmaceutical applications. 
Wiley, Hoboken, NJ

Fragment Library Design





   Part II 

   Simulation        





57

Anthony E. Klon (ed.), Fragment-Based Methods in Drug Discovery, Methods in Molecular Biology, vol. 1289,
DOI 10.1007/978-1-4939-2486-8_6, © Springer Science+Business Media New York 2015

    Chapter 6   

 Protocol for Fragment Hopping 

           Kevin     B.     Teuscher     and     Haitao     Ji    

    Abstract 

   Fragment hopping is a fragment-based approach to designing biologically active small molecules. The key 
of this approach is the determination of the minimal pharmacophoric elements in the three-dimensional 
space. Based on the derived minimal pharmacophoric elements, new fragments with different chemotypes 
can be generated and positioned to the active site of the target protein. Herein, we detail a protocol for 
performing fragment hopping. This approach can not only explore a wide chemical space to produce new 
ligands with novel scaffolds but also characterize and utilize the delicate differences in the active sites 
between isofunctional proteins to produce new ligands with high target selectivity/specifi city.  

  Key words     Fragment-based drug discovery  ,   Fragment hopping  ,   Scaffold diversity  ,   Isofunctional pro-
teins  ,   Protein–protein interactions  ,   Inhibitors  ,   Selectivity  ,   Peptidomimetics  

1       Introduction 

 Fragment-based drug design is widely used as an effective tool for 
lead discovery [ 1 ,  2 ]. The starting point for fragment-based drug 
design is the identifi cation of low molecular weight fragments 
that bind to a target of interest by fragment screening. Biophysics-
based techniques such as nuclear magnetic resonance (NMR) 
[ 3 – 7 ], X-ray crystallography [ 8 – 11 ], mass spectrometry (MS) 
[ 12 ,  13 ], surface plasmon resonance (SPR) spectroscopy [ 14 –
 16 ], and confocal fl uorescence correlation spectroscopy [ 17 ,  18 ] 
have been applied to screen fragment libraries. After fragment 
hits are identifi ed, fragment evolution, fragment linking, and in 
situ fragment assembly (including dynamic combinatorial chem-
istry [ 19 – 21 ], tethering with extenders [ 22 ,  23 ], and in situ click 
chemistry [ 24 – 26 ]) have been employed to convert fragment(s) 
into a ligand molecule and maintain drug-like properties of the 
generated ligand. There are internal limitations and problems for 
the drug discovery projects that are initiated by fragment screen-
ing. First, these approaches only cover a small fraction of the total 
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chemical diversity space. It is estimated that a collection of 10 3  
fragments can typically sample the chemical diversity space of 10 9  
molecules. Although the combinatorial advantage of fragment 
screening makes a signifi cant increase relative to high throughput 
screening (HTS), it is still a small fraction of the total chemical 
diversity space (10 60 ). Second, in fragment screening fragment 
molecules can bind to the protein binding sites that are different 
from the binding sites of lead-like molecules [ 27 – 29 ]. Third, 
fragment screening only identifi es and characterizes fragments for 
potency, that is, the fragments that bind to energetic hotspots 
(the regions on protein surface that are the major contributors to 
ligand free energy of binding). In fact, many binding sites that 
are responsible for target specifi city and/or selectivity are not 
included in hotspots. The identifi cation of fragments that bind to 
the sites responsible for target specifi city is a crucial step for the 
discovery of selective inhibitors. There is a great desire to design 
small-molecule inhibitors for a specifi c target while leaving other 
related targets unaffected. Based on the factor that the structures 
of the biologically active compounds for a specifi c target are dis-
continuous points in chemical space, scaffold hopping has been 
used to identify compounds that have similar biological activities 
but totally different scaffolds [ 30 ,  31 ]. These methods can 
decrease the risks of construction for bioactive molecules, increase 
hit rates, and offer structural diversity. However, in scaffold hop-
ping the skeleton of the newly designed molecules is confi ned to 
the basic architecture of the template structure, which usually 
comes from a known drug or drug candidate. In addition, mim-
icking the template structure using different scaffolds often does 
not optimize ligand–protein interactions to the maximal extent, 
because the biologically relevant groups in the template structure 
do not offer an optimal match between a small molecule and the 
biological target. 

 We proposed fragment hopping to initiate the design of 
potent and selective small-molecule inhibitors [ 32 ]. Fragment 
hopping is a pharmacophore-driven strategy. The core of this 
approach is the derivation of the minimal pharmacophoric ele-
ments for key binding pockets. Then, fragments with different 
chemotypes are generated to match the requirement of minimal 
pharmacophoric elements. Therefore, fragment hopping can 
explore a wider chemical space. Fragment hopping determines the 
positioning of the minimal pharmacophoric elements and then 
places fragments to match the generated minimal pharmacophoric 
elements, leading to a higher success rate for fragment identifi ca-
tion. After fragment linking or evolving, the pharmacophores in 
the new molecule maintain the same spatial orientation as those in 
the minimal pharmacophoric element model. Fragment hopping 
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determines the minimal pharmacophoric elements that are impor-
tant for ligand selectivity and generates fragments to trigger inhib-
itor selectivity, providing an effi cient pathway to generate selective 
inhibitors. Compared with scaffold hopping, fragment hopping 
not only maps important interaction patterns between a ligand 
and the protein target based on a priori scaffold but also makes it 
possible to generate more diverse scaffolds. Furthermore, frag-
ment hopping takes into account synthetic accessibility in frag-
ment linking and evolving through the use of the bioisosteric 
replacement technique. 

 Since fragment hopping was proposed in 2008 and applied to 
design highly potent and selective inhibitors for neuronal nitric oxide 
synthase (nNOS) as shown in Fig.  1  [ 32 ,  33 ], a few successful exam-
ples using the fragment hopping concept to design small- molecule 
inhibitors have been reported for the other enzymes [ 34 ,  35 ] and 
protein–protein interaction targets [ 36 ,  37 ]. The key step of all these 
reported studies was the determination of the pharmacophores. 
However, the procedures to generate lead-like molecules have been 
diverse, and a different effi ciency for lead generation has been 
observed for different approaches. There is a need to overview cur-
rent studies and outline a general procedure for a productive frag-
ment hopping design.   

2     Materials 

 Table  1  lists common programs that can be used in fragment hop-
ping. Table  2  indicates the fragment libraries that are used in frag-
ment hopping.

m m m

m
m

m
m

m
m

  Fig. 1    Fragment hopping to design highly potent and selective inhibitors for neuronal nitric oxide synthase       
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      Table 1  
  Common programs used in fragment hopping   

 Program  Version  Provider  URL 

 GRID a   22c  Molecular Discovery Ltd.    www.moldiscovery.com     

 SiteMap  2.6  Schrödinger    www.schrodinger.com     

 MCSS a   2.1  Accelrys/Discovery 
Studio 4.0 

   www.accelrys.com     

 GOLPE a   4.5  Multivariate Infometric 
Analysis S.r.l. 

   www.miasrl.com/golpe.htm     

 FTMap a   Professor Sandor Vajda    www.ftmap.bu.edu     

 Computational 
alanine scanning a  

 Accelrys/Discovery Studio    www.accelrys.com     

 ANCHOR a   Professor Carlos 
J. Camacho 

   www.structure.pitt.edu/anchor     

 PocketQuery a   Professor Carlos 
J. Camacho 

   www.pocketquery.csb.pitt.edu     

 Catalyst b   Accelrys/Discovery 
Studio 4.0 

   www.accelrys.com     

 GALAHAD b   Certara/Tripos    www.tripos.com/index.php     

 Phase b   3.4  Schrodinger    www.schrodinger.com     

 LigandScout b   3.1  Inte:Ligand    www.inteligand.com     

 MOE 
pharmacophore b  

 MOE    www.chemcomp.com     

 CoMFA, COMSIA b   Certara/Tripos    www.tripos.com/index.php     

 LUDI  Accelrys/Discovery 
Studio 4.0 

   www.accelrys.com     

 SEED  Professor Amedeo Cafl ish    www.biochem-cafl isch.uzh.ch/download/     

 GLIDE  5.8  Schrodinger    www.schrodinger.com     

 DOCK  3.7  Professor Brian 
K. Schoichet 

   www.dock.compbio.ucsf.edu/DOCK3.7/     

 FFLD  Professor Amedeo Cafl ish    www.biochem-cafl isch.uzh.ch/download/     

 AutoDock  4.2  Professor Arthur J. Olson    www.autodock.scripps.edu     

 Cscore  Certara/Tripos    www.tripos.com/index.php     

 MetaSite  4.1  Molecular Discovery Ltd.    www.moldiscovery.com     

 DAIM c   Professor Amedeo Cafl ish    www.biochem-cafl isch.uzh.ch/download/     

   a Used to derive the pharmacophores based on the structure of the protein target 
  b Used to derive the pharmacophores based on the structures of a set of known bioactive compounds or the ligand pep-
tides/proteins 
  c Used to deconstruct known drugs and drug candidates  
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3         Methods 

 A schematic fl ow diagram for fragment hopping is shown in Fig.  2  
(see Note 1). 

    1.    When the protein target is an enzyme and the structure of the 
enzyme target is known, GRID [ 38 ,  39 ], SiteMap [ 40 ] ,  and 
multiple copy simultaneous search (MCSS) [ 41 ,  42 ] in Table  1  
are used to reveal the key binding sites for inhibitor potency.
   (a)    Go to RCSB protein data bank (   http://www.rcsb.org/

pdb/        ) to download the protein structure, identify the ligand 
binding site, and defi ne the regions of interest. Typically the 
residues that are within 6 Å from the center of the regions 
of interest were included in the calculations (see Note 2).   

  (b)    GRID was used to calculate 3D energy maps around the 
ligand binding site and highlight the favorable sites for a 
specifi c functional group of an organic compound. 
Hydrogen atoms were added by program GRIN. The 
GRID box dimensions were chosen to encompass all of 
the active site residues. The grid spacing was typically set 
to 1 Å. Directive NPLA (number of planes of GRID points 
per Angstrom) was set to 1. The amino acids in the ligand 
binding site were considered rigid (directive move is set to 
0) or fl exible (directive move is set to 1). The other set-
tings were the standard default parameters. The typical 
probes used in the GRID modeling were DRY, C3, NM3, 
N1+, N3+, N1, NH=, O, O1, COO − , amidine, and 
ARamidine. The DRY probe was used to calculate the 
hydrophobic interactions. The C3 and NM3 probes were 
used to describe steric interactions. N1+, N3+, NM3, and 
COO −  were used to explore charge–charge interactions. 
The others probes were used to determine the sites for 
hydrogen- bonding and other electrostatic interactions.   

       Table 2  
  Databases used in fragment hopping   

 Name  Source 

 Basic fragment library   ACS Chem Biol  2013, 8, 524–529, Supplementary Figure 5 

 Bioisostere library   ACS Chem Biol  2013, 8, 524–529, Supplementary Figure 4 

 Rules for metabolic stability   J Am Chem Soc  2008, 130, 3900–3914, Supplementary Figure 3 

 Toxicophore library   J Am Chem Soc  2008, 130, 3900–3914, Supplementary Figure 4 

 Side chain library   ACS Chem Biol  2013, 8, 524–529, Supplementary Figure 6 
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  (c)    MCSS randomly places thousands of copies of small func-
tional groups into the ligand binding site, and the copies of 
small functional groups are subjected to energy minimiza-
tion. The copies with the lowest energies highlight the 
potential regions for ligand binding. Hydrogen atoms were 
added to protein structure by Accelrys/Discovery Studio. 

  Fig. 2    Schematic fl ow diagram for fragment hopping, a pharmacophore-driven strategy to generate selective 
inhibitors. Reprinted with permission from  J. Am. Chem. Soc.  (Ji, H., Stanton, B. Z., Igarashi, J., Li, H., Martásek, 
P., Roman, L.J., Poulos, T.L., Silverman, R.B. (2008) Minimal pharmacophoric elements and fragment hopping, 
an approach directed at molecular diversity and isozyme selectivity. Design of selective neuronal nitric oxide 
synthase inhibitors.  J Am Chem Soc  130, 3900–3914). Copyright 2008 American Chemical Society       
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The CHARMm force fi eld and the Momany–Rone partial 
charge [ 43 ] were applied to minimize the orientation of 
hydrogen atoms. About 2,500–5,000 replicas of a given 
functional group were randomly distributed in the defi ned 
binding site and then simultaneously and independently 
energy minimized. Pairs of molecules were considered 
identical if the root-mean-square deviation (rmsd) between 
them was <0.2 Å. In such cases, one of the pairs with a 
lower binding energy was eliminated. The distance thresh-
old for generating random fragments was set to 0.9 Å. The 
other settings were the standard default parameters. The 
MCSS calculations were performed using the CHARMM22 
force fi eld and the MCSS 2.1 program. Common func-
tional groups used in the MCSS calculations are benzene, 
cyclohexane, propane, isobutane,  N -methylacetamide, 
methanol, ether, acetate ion, methylammonium, and 
trimethylammonium.    

      2.    When the protein target is an enzyme and the structures of the 
isoenzymes are known, GRID/consensus principal component 
analysis (CPCA) can be used to map the key binding site for 
inhibitor selectivity [ 44 ,  45 ]. The molecular interaction fi elds 
(MIFs) from the GRID calculations were imported into the 
GOLPE program, as shown in Table  1 . A maximum cutoff was 
set to 0 kcal/mol to consider only the favorable protein–ligand 
interactions (negative energy values). The positive interaction 
energy is in most cases due to unfavorable steric repulsions 
between the probes and the atoms in the box. Because the equa-
tions used for calculating the MIF values are very different for 
different probes, block unscaled weights (BUW) were used to 
normalize the interaction energies between different probes so 
that each probe would get the same importance in the model. 
Variables with the values <0.01 kcal/mol and those with a stan-
dard deviation below 0.02 were removed to eliminate noisy vari-
ables. The pretreated data were then used in CPCA modeling. 
CPCA is a hierarchical principal component analysis (PCA) and 
can capture the information in both the blocks (i.e., individual 
probes) and the whole X-matrix (i.e., MIFs values). Therefore, 
CPCA can be regarded as a PCA at two different levels: one is 
the block level, which provides the relative importance of differ-
ent probes; another is the superlevel, which is the combination 
of these blocks to yield an analysis for the overall data (the results 
are similar to that obtained from the usual PCA). Each of these 
levels has loading and score vectors that summarize the informa-
tion like in a usual PCA. In a selectivity study, often more than 
one principal component contributes to discriminate different 
objects in the scores plot; therefore, any single CPCA loadings 
plot can only partially describe the MIFs difference for a specifi c 
GRID probe between different target proteins. By using active 
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CPCA differential plots implemented in the GOLPE program, 
the difference between the two points for the fi rst and second 
principal components can be calculated and projected back into 
the original space (a pseudofi eld) using PCA loading. That is, 
the vector linking pairs of objects in a two-dimensional scores 
plot can be translated into isocontour plots that identify those 
variables that contribute most to differentiating selected objects. 
Two stages of the GRID/CPCA analyses are typically made. 
One includes all residues of the ligand binding site. The second 
one targets a limited region for a specifi c subpocket using the 
cutout tool of GOLPE.   

   3.    When the target is a protein–protein interface, FTMap [ 46 ,  47 ], 
computational alanine scanning [ 48 ], AnchorQuery [ 49 ], and 
PocketQuery [ 50 ,  51 ] in Table  1  can be used to derive the key 
sites for protein–protein binding and small- molecule inhibition 
(see Note 3).
   (a)    If the structure of the target protein is known, Web-based 

FTMap can be used to predict the energetic hotspots for 
ligand potency. The PPI mode of the FTMap was selected 
to ensure a better prediction for the shallow pockets on the 
protein surface.   

  (b)    If the structure of the protein–protein complex is known, 
computational alanine scanning can be used to predict key 
residues that signifi cantly contribute to the protein–pro-
tein interaction. Click “Design Protein” from the 
“Macromolecule” menu of Accelrys Discovery Studio and 
then “Calculate Mutation Energy (Binding)”. Assign 
“Mutate To” alanine and “Implicit Solvent Dielectric 
Constant” to 80 to derive key residues for protein–protein 
interactions.   

  (c)    If the structure of the protein–protein complex is known, 
Web-based ANCHOR [ 52 ] can be used to identify the 
protruding hotspot residues whose solvent accessible sur-
face area (SASA) displays a >0.5 Å 2  change upon protein–
protein complexation. PocketQuery can be used to predict 
concave hot regions. Both searches simply require an 
upload of the structure for the protein–protein complex. 
The output data are the changes in SASA (ΔSASA) and the 
FastContact energy (Δ G ). PocketQuery also provides the 
Rosetta energy (ΔΔ G ) that equals to the ΔΔ G  from com-
putational alanine scanning, the residue conservation 
scores, and a consensus druggability score for the concave 
hot region.    

      4.    Establishment of minimal pharmacophoric elements. The mini-
mal pharmacophoric elements can be an atom, a cluster of 
atoms, a virtual graph, or vectors. It is an ensemble of electronic 
and steric features that is essential for binding to a specifi c 
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pocket in the ligand binding site. Figure  3  shows a minimal 
pharmacophoric element model for selective nNOS inhibitors 
(see Notes 4 and 5).    

   5.    The basic fragment library in Table  2  was manually examined to 
fi nd all of the possible fragments that can match the require-
ments of the minimal pharmacophoric elements for each pocket. 
The bioisostere library was manually examined to generate a 
focused fragment library with diverse structures. The generated 
focused fragment library was then interrogated with the rules for 
metabolic stability and a toxicophore library shown in Table  2  to 
provide potential fragments for a specifi c pharmacophore.   

   6.    The targeted fragment libraries were converted into a LUDI 
user library [ 53 ,  54 ]. To determine the appropriate position 
and orientation of the fragments from the LUDI user library, 

  Fig. 3    Minimal pharmacophoric elements for selective nNOS inhibitors. An amidino group is positioned close 
to E592. A yellow nitrogen atom is close to D597. The regions where hydrophobic and/or steric interactions 
play important roles are indicated by circles. Three blue nitrogen atoms are placed close to the heme propio-
nate. Reprinted with permission from  J. Am. Chem. Soc.  (Ji, H., Stanton, B. Z., Igarashi, J., Li, H., Martásek, 
P., Roman, L. J., Poulos, T. L., Silverman, R. B. (2008) Minimal pharmacophoric elements and fragment hopping, 
an approach directed at molecular diversity and isozyme selectivity. Design of selective neuronal nitric oxide 
synthase inhibitors.  J Am Chem Soc  130, 3900–3914). Copyright 2008 American Chemical Society       
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LUDI was fi rst applied to generate the interaction sites for 
each pharmacophore. Four different types of the interaction 
sites are defi ned in the LUDI program: lipophilic–aliphatic, 
lipophilic–aromatic, hydrogen bond donor, and hydrogen 
bond acceptor. The residues inside an 8.0 Å radius sphere, 
which centered on the centroid of the minimal pharmacoph-
oric elements, were used to generate the interaction sites. The 
link library switch was turned off, and the target mode switch 
was turned on. The LUDI scoring function was set to Energy- 
Estimate–2. The other settings were kept with the standard 
default parameters (see Note 6).   

   7.    The generated fragments were then docked to the ligand bind-
ing site using Schrödinger Glide XP and to relax the fl exible 
bonds in the fragment molecules [ 55 ,  56 ]. All fragments were 
charged by OPLS_2005. For fragment docking, any atoms 
within 6 Å from the proposed critical pharmacophoric ele-
ments were used to defi ne the grid box. The number of poses 
per ligand for the initial docking stage was set to 50,000. A 
wider scoring window of 500.0 kcal/mol was used to keep 
initial poses, and the best 1,000 poses per ligand were kept for 
energy minimization. The keyword  roughmin  was added to the 
 maxkeep  line of the Glide input fi le to instruct Glide to bypass 
sorting by the rough score and to minimize all  maxkeep  poses 
on the Glide grid. The maximum number of minimization 
steps was set to 5,000. One hundred poses were subjected to 
post-docking minimization, and 100 poses were recorded for 
output. The other settings were the default Glide XP parame-
ters. A visual inspection was performed to examine the degree 
of match between the docked fragment poses and the pro-
posed critical pharmacophoric elements (see Note 7).   

   8.    To convert the newly generated fragments into a molecule, the 
side chain library in Table  2  was converted into a LUDI link 
library and used for the connection operation. The hydrogen 
atoms in the above fragment structures were replaced by a link 
fragment to create a new substructure. The LUDI switch for 
the target mode was turned off, but the LUDI switch for the 
link library was turned on. The linkage parameter can be set to 
1 (the link fragment fi ts at least one link site), 2 (the link frag-
ment simultaneously fi ts at least two link sites), or was specifi ed 
(the link site was specifi cally assigned) according to the actual 
requirements. The other settings were the standard default 
parameters. The bioisostere library in Table  2  and the 
SciFinder ®  search are two useful tools for generating syntheti-
cally feasible molecules.   

   9.    AutoDock 4.2 [ 57 ] was used to dock lead-like molecules to 
the protein target. Hydrogen atoms were added to the ligand 
molecules and the partial atomic charges were calculated using 
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the Gasteiger–Marsili method [ 58 ]. The protonation state of 
the target protein was set to pH 7.0 when adding hydrogen 
atoms. The partial atomic charges of the target protein were 
calculated by AMBER 7 FF99. The AMBER 7 force fi eld 99 
within SYBYL X2.0 was used to optimize the orientation of 
the hydrogen atoms on the target protein. In AutoDock 4.2 
calculations, the grid maps were calculated using AutoGrid 
with the grid spacing of 0.375 Å. For the ligand docking study, 
the dimensions of the grid box included all residues of the 
active site. Docking was performed using the Lamarckian 
genetic algorithm (LGA), and the pseudo-Solis and Wets 
method was applied for the local search. Each docking experi-
ment was performed 100 times, yielding 100 docked confor-
mations. Parameters for the docking experiments were as 
follows: the number of individuals in the population was 150; 
the maximum number of energy evaluation was 2,500,000; 
the maximum number of generations was 27,000; the number 
of top individuals to survive to the next generation was 1; the 
rate of gene mutation was 0.02; the rate of crossover was 0.8; 
the iterations of Solis and Wets local search was 300; the local 
search rate was 0.06. The other settings were the standard 
default parameters. The auxiliary clustering analysis was then 
used to evaluate the results of the docking experiments.   

   10.    The CScore module of SYBYL X2.0 was further used to evalu-
ate the binding mode of the lead-like molecules. The AutoDock 
Binding Energy and the LUDI binding score were retrieved 
from the AutoDock and LUDI studies, respectively. The G_
Score, PMF_Score, D_Score, and ChemScore were calculated 
using the Tripos CScore module. Open a spreadsheet table 
that contains the ligand molecules. Then, create the ORIGIN 
attribute by typing “table attribute create ORIGIN string”, 
and set it to DOCKING by typing “table attribute set ORIGIN 
DOCKING”. Save the spreadsheet table and reopen it. Run 
Cscore to obtain G_Score, PMF_Score, D_Score, and 
ChemScore. AutoDock, and LUDI scores can be imported 
manually. Click Consensus to generate the consensus score for 
each docked molecule. Two other scoring functions commonly 
used for consensus scoring were ASP [ 59 ] and ChemPLP [ 60 ].   

   11.    The last step is ligand-based prediction to evaluate absorption, 
distribution, metabolism, excretion, and toxicity (ADME/Tox) 
of the designed ligand molecule. Lipinski’s rule of fi ve (H-bond 
donors ≤ 5, H-bond acceptors ≤ 10, molecular weight ≤ 500, 
and log  P  ≤ 5) [ 61 ] and the polar surface area (PSA) ≤ 140 Å 2  
[ 62 ] was used to predict oral bioavailability of the designed mol-
ecule. The blood–brain barrier penetration was predicted by the 
following rules of thumb [ 63 ,  64 ]: the number of nitrogen and 
oxygen atoms ≤ 5,  C  log  P  − (N + O) > 0, PSA < 90 Å 2 , molecular 
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weight ≤ 450, and the logarithm of distribution coeffi cient of a 
compound (logD) is between 1 and 3. Rule of four (molecular 
weight > 400,  A  log  P  > 4, rings > 4, and H-bond acceptors > 4) 
has been used to defi ne the profi le of a protein–protein interac-
tion inhibitor [ 65 ]. The metabolically labile sites were predicted 
using MetaSite 4.1 [ 66 ]. The conformations of the ligand mol-
ecule were generated by molecular dynamics simulated anneal-
ing. The system was heated at 1,000 K for 1.0 ps and then 
annealed to 250 K for 1.5 ps. The annealing function was expo-
nential. One hundred such cycles of annealing were performed 
and the resulting 100 conformers were subjected to energy min-
imization. Energy minimization was performed using the Tripos 
force fi eld, Powell optimization method, and MAXIMIN2 min-
imizer with a convergence criterion of 0.05 kcal/mol·Å. Charges 
were calculated using the Gasteiger–Marsili method [ 58 ]. The 
conformations of the ligand molecules were clustered based on 
the rmsd value of non-hydrogen atoms < 1.0. The site of metab-
olism prediction module of MetaSite 4.1 was used to predict the 
metabolically labile sites of the ligand molecules (see Note 8).    

4       Notes 

        1.    The results of the experimental approaches are useful for 
deriving the minimal pharmacophoric elements. When the 
target enzyme structure is known, the results of the site-
directed mutagenesis and fragment screening using NMR, 
X-ray crystallography, MS-based tethering, SPR, and substrate 
activity screening (SAS) [ 67 ,  68 ] are valuable for the deter-
mination of the pharmacophores. When the structure of the 
protein–protein interaction target is known, alanine scanning 
can be performed to identify and quantify the hotspots for 
protein–protein interactions.   

   2.    The correct input protein structure is essential for almost all of 
the computer modeling programs. Therefore, it would be ben-
efi cial to clean the protein structure by removing the alternate 
conformations, patching missing side chains, and adding 
hydrogens before it is subjected to computer modeling. The 
orientations of hydrogens need be energically optimized.   

   3.    Neither GRID nor MCSS has the desolvation term in the 
scoring potential, but FTMap does. FTMap is more appropri-
ate for mapping the energetic hotspots for protein–protein 
interactions.   

   4.    When a set of bioactive small-molecule inhibitors is obtained 
for a specifi c target, ligand-based pharmacophore mapping is 
also important for deriving the minimal pharmacophoric ele-
ments. The commonly used pharmacophore modeling pro-
grams include Catalyst [ 69 – 71 ], GALAHAD [ 72 ,  73 ], Phase 
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[ 74 ,  75 ], LigandScout [ 76 ], and MOE pharmacophore. The 
structure–activity relationship analysis, the 3D-QSAR analysis 
such as CoMFA [ 77 ], CoMSIA [ 78 ], and the GRID/GOLPE 
analysis [ 79 ], and the 2D-pharmacophoric descriptors [ 80 ] are 
also useful for deriving the minimal pharmacophoric elements 
for both inhibitor potency and inhibitor selectivity. When the 
crystal structure of the protein–protein complex is known, the 
geometries and electronic properties of the projecting hotspots 
from the ligand peptides/proteins should be derived and used 
to determine the minimal pharmacophoric elements.   

   5.    The mapping of the minimal pharmacophoric elements is user- 
dependent and iterative. If the result of ligand design from the 
fi rst round is unsatisfactory, it is necessary to redefi ne the phar-
macophore model. Based on our experience, the experimental 
results for protein–ligand binding are dependent upon effi cient 
mapping of the minimal pharmacophoric elements.   

   6.    LUDI has primarily been used to place the fragment into the 
corresponding binding site to match the proposed minimal 
pharmacophoric elements. SEED [ 81 ,  82 ] can be used as an 
alternative.   

   7.    Glide XP has primarily been used to dock the generated frag-
ments to match the proposed minimal pharmacophoric ele-
ments. DOCK [ 83 ], GOLD [ 84 ], and fragment-based fl exible 
ligand docking (FFLD) [ 85 ] can be used as alternatives.   

   8.    In fragment hopping, the protein structures are treated rigid, 
which is a drawback if protein fl exibility needs to be considered 
in the design of new inhibitors with new scaffolds.         
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Chapter 7

Site Identification by Ligand Competitive Saturation 
(SILCS) Simulations for Fragment-Based Drug Design

Christina E. Faller, E. Prabhu Raman, Alexander D. MacKerell, Jr., 
and Olgun Guvench

Abstract

Fragment-based drug design (FBDD) involves screening low molecular weight molecules (“fragments”) 
that correspond to functional groups found in larger drug-like molecules to determine their binding to 
target proteins or nucleic acids. Based on the principle of thermodynamic additivity, two fragments that 
bind nonoverlapping nearby sites on the target can be combined to yield a new molecule whose binding 
free energy is the sum of those of the fragments. Experimental FBDD approaches, like NMR and X-ray 
crystallography, have proven very useful but can be expensive in terms of time, materials, and labor. 
Accordingly, a variety of computational FBDD approaches have been developed that provide different 
levels of detail and accuracy.

The Site Identification by Ligand Competitive Saturation (SILCS) method of computational FBDD 
uses all-atom explicit-solvent molecular dynamics (MD) simulations to identify fragment binding. The 
target is “soaked” in an aqueous solution with multiple fragments having different identities. The resulting 
computational competition assay reveals what small molecule types are most likely to bind which regions 
of the target. From SILCS simulations, 3D probability maps of fragment binding called “FragMaps” can 
be produced. Based on the probabilities relative to bulk, SILCS FragMaps can be used to determine “Grid 
Free Energies (GFEs),” which provide per-atom contributions to fragment binding affinities. For essen-
tially no additional computational overhead relative to the production of the FragMaps, GFEs can be used 
to compute Ligand Grid Free Energies (LGFEs) for arbitrarily complex molecules, and these LGFEs can 
be used to rank-order the molecules in accordance with binding affinities.

Key words Fragment-based drug design (FBDD), Molecular dynamics (MD), Site identification by 
ligand competitive saturation (SILCS), Binding free energy, FragMap, Grid free energy (GFE), 
Ligand grid free energy (LGFE)

1  General FBDD Methods and the SILCS Approach

Fragment-based drug design (FBDD) seeks to identify low molec-
ular weight molecules (“fragments”) that bind to target proteins 
or nucleic acids of interest. The identities of these fragments are 
chosen based on their similarity to functional groups commonly 
occurring in drug-like molecules. After determining which of these 
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fragments bind, as well as their binding poses, fragments binding 
to adjacent sites on the target can be linked to create a molecule 
with a higher binding affinity [1]. This approach derives from the 
principle of thermodynamic additivity, which states that if two 
components are independent in their contributions to the change 
in free energy, then the sum of their respective contributions gives 
the total change in free energy, i.e., ΔGtotal = ΔGfragment1 + ΔGfragment2 
[2]. A variety of experimental techniques, including X-ray crystal-
lography, NMR, surface plasmon resonance, isothermal titration 
calorimetry, and mass spectrometry, have proven to be very useful 
in determining binding affinities and binding poses of fragments to 
target proteins [3–6]. However, FBDD can be an expensive 
endeavor using experimental approaches, as they are associated 
with high costs in materials and time, especially for high-throughput 
screening, as well as in labor.

Computational approaches to FBDD aim to minimize the vari-
ous costs associated with experimental approaches. Many in silico 
methods utilize simplified representations of the target and of the 
solvent in order to reduce the computational burden by reducing 
the number of degrees of freedom in the system. Examples of com-
mon simplifications include a rigid target model and representing 
the solvent as a continuum [7–11]. The rigid target model approach 
is often referred to as docking and has difficulty identifying ligands 
that require even minor changes in target conformation for bind-
ing [12–15]. More recent work has sought to improve sampling in 
this regard by using several different rigid target conformations for 
docking calculations [16]. Because of its computational speed, 
FBDD docking can allow high-throughput screening of large 
libraries of fragments that approach the theoretical limit of frag-
ment diversity, which is 107 unique fragments [17]. FBDD dock-
ing, in addition to having the capacity to test all possible fragments, 
benefits from the fact that fragments have few internal degrees of 
freedom, which greatly simplifies the conformational search prob-
lem in docking [18–20]. However, development of sufficiently 
accurate scoring functions for ranking different docked molecules 
continues to be a challenge [21–24].

The opposite end of the spectrum from rigid target docking is 
the application of all-atom explicit-solvent molecular dynamics 
(MD) simulations, in which the solvent is explicitly modeled in 
atomic detail, and the ligands and target protein or nucleic acid are 
all fully flexible. In these MD simulations binding free energies can 
be determined and, in conjunction with the optimized empirical 
force fields presently available for biomolecules and small mole-
cules [25–33], near-quantitative binding free energy agreement 
can be reached relative to wet-lab experiments [34–43]. 
Unfortunately, while this level of detail provides accuracy, compu-
tational efficiency is lost due to the need to sample ligand, target, 
and solvent degrees of freedom sufficiently to obtain converged 
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results. Therefore, using this type of thorough MD simulation to 
do high-throughput analysis of fragment binding is simply not 
possible for the foreseeable future.

While it is computationally inefficient to do MD simulations on 
individual small molecules from a large set, a possible advantageous 
approach is to employ a competitive method that simultaneously 
screens a simplified set of fragment molecules that represent various 
functional groups. The SILCS (Site Identification by Ligand 
Competitive Saturation) method [44] does exactly this by using 
atomic level of detail MD simulations of a target in an aqueous solu-
tion containing selected fragment molecules so as to determine 
regions of high probability binding for different fragment types.

2  SILCS Methodological Details

SILCS [44] uses nanosecond-length all-atom explicit-solvent MD 
simulations of the target in an aqueous solution containing a vari-
ety of fragments. Explicitly modeling water molecules allows for 
atomic-level solvation effects to be included. Multiple simulations 
are run for each system, the trajectories are combined, and 3D 
probability maps of each fragment type around the target are cal-
culated. The 3D probability maps are then normalized relative to 
fragment probabilities in bulk solution, thereby incorporating frag-
ment desolvation free energies into the final maps, which are 
referred to as “FragMaps.” As explicit water is included in the MD 
simulations, the free energy penalty for desolvation of the target to 
allow fragments binding is taken into account in the final FragMaps 
in addition to all other components of binding free energy includ-
ing target–ligand interactions, target deformation energy, and 
entropic contributions.

Selecting fragments to include in the aqueous solution is an impor-
tant step in the SILCS methodology: the fragments should be 
small enough to allow adequate concentrations to facilitate confor-
mational sampling, and should minimally represent hydrogen 
bond donors, hydrogen bond acceptors, aliphatic groups, and aro-
matic groups. In the original conception of SILCS, the water por-
tion of the solution contributed both hydrogen bond donors and 
hydrogen bond acceptors. The other fragments, therefore, needed 
to include aliphatic and aromatic moieties, meaning two more 
fragments were required to provide these functional moieties to 
complement those provided by water. Low molecular weight frag-
ments are particularly desirable due to their high diffusion rates, 
which lead to improved convergence of simulations. By these stan-
dards, the original SILCS fragments were water, benzene, and pro-
pane. However, while water is a convenient choice, there are 
potentially many other hydrogen bond donor and/or hydrogen 

2.1  Fragment 
Selection
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bond acceptor-containing fragment choices that are more 
representative of moieties in drug-like molecules. As such, the 
original SILCS fragment set is now referred to as “Tier 1,” and a 
new “Tier 2” fragment set consisting of propane, benzene, metha-
nol, formamide, acetaldehyde, methylammonium, and acetate has 
been validated [45]. Notable in Tier 2 SILCS is the use of both 
neutral and charged donors and acceptors, allowing for regions of 
the target that bind these to be differentiated.

Low molecular weight fragments have an additional benefit, 
which stems from the competitive nature of the SILCS in silico 
assay: there is an upper limit to the ligand binding affinity per heavy 
atom [46], commonly referred to as “ligand efficiency” [47], and 
this limit is 0.4–0.5 kcal/mol per heavy atom [17]. As a conse-
quence, smaller fragments (fewer heavy atoms) translate to weaker 
binding and higher turnover of fragments on target binding sites, 
which improves sampling. Characterization of such weakly binding 
fragments through NMR and X-ray crystallography experiments 
can be challenging, which limits the number of fragment types that 
are recognized in experimental FBDD efforts. In contrast, SILCS 
does not have this limitation. Of course, fragments other than 
those mentioned above can be used to further broaden the range 
of chemical space represented by FragMaps, but again it is empha-
sized that larger fragments may slow convergence because of slower 
diffusion and greater binding affinity.

The fact that SILCS uses fragment concentrations approaching 
1 M in an aqueous solution brings about the problem of aggrega-
tion. The aggregation of hydrophobic molecules occurs because 
they prefer not to be solvated, but to associate with other hydro-
phobic molecules. The resulting phase separation has the serious 
consequence that the effective concentration of the hydrophobic 
molecules is substantially reduced. In Tier 2 SILCS, the presence 
of ions can lead to ion-pair formation in solution, again reducing 
the effective fragment concentration. In both instances, the chemi-
cal potential of the fragments in bulk solution is reduced, thereby 
reducing their sampling of the target surface.

SILCS overcomes this barrier to sampling by leveraging the 
fact that it is a computational method: in SILCS, a repulsive poten-
tial between fragments is used to prevent fragment association 
[44]. This repulsive potential—unique to SILCS—only alters frag-
ment–fragment interactions in the system, thereby maintaining an 
“ideal” solution of fragments in water while leaving all other inter-
actions in the system unperturbed (Fig. 1).

The value of including target flexibility can be visualized by compar-
ing atomic resolution structures of apo- and ligand-bound proteins; 
in many cases, binding of a ligand is coupled to a conformational 
change, including in therapeutically relevant targets such as kinases 

2.2  Preventing 
Fragment Aggregation

2.3  Balancing Target 
Flexibility 
and Denaturation
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and proteases [48]. Common to SILCS-like approaches [49–53] 
is the risk of fragment-induced target denaturation, especially in 
cases of inherently less-stable target proteins, such as those with no 
disulfide bonds. A range of options has been considered with 
regard to treatment of target flexibility in SILCS to optimally bal-
ance inclusion of target flexibility while minimizing the risk of 
fragment-induced target denaturation: a fully flexible protein (no 
positional restraints), weak Cα positional restraints, and weak posi-
tional restraints on non-hydrogen atoms near the protein core [54]. 
The weak positional restraints allow for relatively large motions of 
the restrained atoms while limiting the motions enough to avoid 
denaturation. What is clear is that a lack of restraints (i.e., “full flex-
ibility) can allow target denaturation regardless of whether the 
fragments are hydrophobic or hydrophilic.

Should full target flexibility be required, a protocol has been 
developed to identify denaturing SILCS trajectories for exclusion 
from subsequent analysis. It employs a combined metric consisting 
of the root-mean square deviation (RMSD) and the radius of gyra-
tion (Rgyr). The average RMSD (with the starting structure as ref-
erence coordinates) and the average Rgyr are computed for each 
SILCS trajectory. Likewise, they are computed for non-SILCS 
standard MD control trajectories of the target in the absence of 
fragments. Each SILCS trajectory average RMSD, average Rgyr pair 
is then compared to the cluster of these values from the control 
trajectories, and the SILCS trajectory is excluded from further 

Fig. 1 Fragment aggregation after 20 ns of SILCS MD simulation. (a) No inter-fragment repulsive potential. (b) 
With SILCS inter-fragment repulsive potential. The protein target is displayed as ribbons, water oxygen atoms 
are in red, and benzene and propane carbon atoms are in blue

SILCS: Site Identification by Ligand Competitive Saturation
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analysis if its values lie outside the cluster for the control simulation 
[54]. While large RMSD values alone may be good indicators of 
denaturation, intermediate values can require visualization of snap-
shots from the trajectory to confirm the RMSD results. In cases of 
structural rearrangement, like loop rearrangements or sliding of 
helices relative to one another, intermediate RMSD can be mis-
leading, as the increase in RMSD is not due to denaturation, but 
due to functionally-relevant conformational change. The use of 
Rgyr has a long history as a reaction coordinate in computational 
studies of protein folding [55–57] and is a metric of the overall 
spatial extent of the protein that increases as a protein unfolds. In 
the context of SILCS, Rgyr is especially capable of identifying situ-
ations where fragments tunnel into and disrupt the protein hydro-
phobic core, which may lead to ambiguous intermediate changes 
in RMSD.

FragMaps are 3D probability distributions of the fragment atom 
types in the context of the target. They serve to identify which 
functionalities (e.g., hydrogen bond donors, hydrogen bond 
acceptors, aromatic groups, aliphatic groups) associate most 
strongly with different areas of the target. FragMaps can be conve-
niently visualized as isocontour surfaces in the context of the target 
using freely available molecular graphics software like VMD [58] 
(Fig. 2) or PMV/ADT [59, 60], or any of the widely used com-
mercial molecular visualization software packages, since FragMaps 
can be stored in the same formats as those used for electron densi-
ties [61] or docking grids [60].

In the initial SILCS implementation using Tier 1 fragments, to 
be included in a FragMap a fragment atom must meet a distance 

2.4  FragMaps

Fig. 2 Tier 1 FragMaps. (a) Target protein molecular surface in white, propane FragMap in green mesh, and 
benzene FragMap in purple mesh. (b) Same as (a) but with clipping and depth-cueing to expose additional 
FragMap density (white boxes) beneath the molecular surface of the apo-target crystal structure; this density 
corresponds to experimentally known ligand-binding sites [54]
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criterion relative to the target protein: for example, for inclusion in 
the hydrogen bond acceptor FragMap, water molecule oxygen 
atoms must be within 2.5 Å of the protein [44]. This criterion was 
particularly relevant in order to distinguish whether the water was 
acting in a hydrogen bond donor or acceptor capacity, as a target-
bound water molecule may be serving in either role or simultane-
ously in both roles. With the move to the more varied and specific 
Tier 2 fragments, this is less of an issue, and inclusion of all frag-
ments during FragMap generation, regardless of distance from the 
target, can be useful to capture longer-range interactions such as 
water-mediated interactions of polar molecules with the target. In 
either of these two approaches, fragment atom locations are binned 
to create a 3D histogram (FragMap) having 1 Å × 1 Å × 1 Å voxels.

A practical means to evaluate SILCS simulation convergence is to 
run ten independent simulations, and create two sets of FragMaps 
by averaging over two sets of five independent FragMaps. Data in 
the second set are combined and subtracted from the combined 
data in the first set to generate a difference map. If the simulations 
are converged, differences should be due to random error and 
therefore have a tight distribution centered around zero [44]. 
Alternatively, the overlap coefficient of the two maps can be calcu-
lated to gauge the extent of convergence [62].

To obtain quantitative free-energy information, FragMaps are nor-
malized relative to fragment occupancies in bulk solvent and con-
verted to “Grid Free Energies (GFEs)” via inverse-Boltzmann 
weighting of the normalized FragMap occupancies [63]. In order 
to normalize results, simulations with conditions similar to those 
of the target + fragments + water system are run with only the 
SILCS solution (i.e., water + fragments). As with the target-
containing simulations, the solution-only simulations are run in 
the isothermal–isobaric (NPT) ensemble to allow for system size 
relaxation to account for the volume occupied by fragments in the 
solution. After relaxation, the bulk occupancy for a particular frag-
ment type is computed by simply dividing the number of atoms of 
that fragment type by the average volume of the system computed 
from the NPT simulations. The GFE for a fragment atom type f in 
a particular voxel centered at x, y, z is then,
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where GFEmax can be set as a maximum unfavorable value. A 
GFEmax of 0 has been used previously [63], which removes any 
unfavorable contributions arising from voxels having an occupancy 
lower than bulk.

2.5  Determining 
Convergence

2.6  Grid Free 
Energies (GFEs)
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Ligand Grid Free Energy scores (LGFEs) can provide an estimate 
of binding free energy of a particular target–ligand conformation 
for an arbitrarily complex ligand molecule. In order to calculate 
LGFE scores, ligand molecule atoms are classified into FragMap 
types based on their chemical similarity to the various fragment 
atoms used to compute the FragMaps. To this end, an assignment 
convention has been developed that translates force-field atom 
types into the FragMap classes. Additionally, certain ligand atoms 
may be excluded from the LGFE calculation. For example, aro-
matic hydrogen atoms are implicitly accounted for in the FragMap 
for the parent benzene carbon atom. The LGFE for a ligand mol-
ecule is computed as a sum of the GFEs of its classified atoms:
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= ( )å å
f i

x y z
f

f
f

GFE i, ,

	
(2)

where the outer summation is over the FragMap types denoted by 
f and the inner summation is over the atoms denoted by if that are 
classified into each FragMap type. In addition to single conforma-
tions, LGFE scores can be computed for an ensemble of conforma-
tions and thermodynamically averaged. Such ensembles of 
conformations may be obtained, for example, from relatively short 
(e.g., 1–2 ns) Langevin simulations of the target–ligand complex 
in the gas phase or with a continuum solvent model. When this is 
performed it is suggested that the simulations be repeated multiple 
times with different target conformations.

Figure  3 demonstrates the utility of LGFE scores in structure 
based drug design. The crystallographic conformations of three 
ligands that bind to the protein α-thrombin with progressively increas-
ing affinities are shown, along with LGFE scores and experimentally 

2.7  Ligand Grid Free 
Energy Scores (LGFEs)

Fig. 3 Crystallographic complexes of α-thrombin with three ligands of progressively higher affinity, along with 
benzene and propane FragMaps. The benzene and propane FragMaps are in purple and green, respectively. 
The ligand grid free energy (LGFE) for each ligand is displayed on the right-bottom side of each panel and the 
experimentally measured binding affinity difference is at the interface of each pair of panels. Protein–ligand 
structures are from PDB IDs (a) 2ZGX, (b) 2ZDA, and (c) 2ZO3
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determined binding free energies. The overlap of the optimized 
ligands with FragMaps reflected in the increasingly favorable LGFE 
scores captures the experimental trend of increasing binding affinities 
[63, 64].

3  SILCS Workflow

	 1.	Determine size of system: a cube with edge lengths x is typical, 
where x is 16  Å longer than the longest dimension of the 
target.

	 2.	Generate a box of water molecules of edge length x at the 
experimental density.

	 3.	Choose a fragment palette, e.g.: Tier 1 SILCS = propane and 
benzene; Tier 2 SILCS = propane, benzene, methanol, for-
mamide, acetaldehyde, methylammonium, and acetate.

	 4.	Compute fragment placement grid overlapping with water 
box, such that a ~1 M for Tier 1 or ~0.25 M for Tier 2 solution 
in each of the fragments will result.

	 5.	At each placement grid point, randomly select and place a frag-
ment from the palette to generate a fragment solution box.

	 6.	Center the target in fragment solution box from above.
	 7.	Delete water molecules and fragments overlapping with 

target.

	 1.	Nonbonded conditions: 8 Å real-space cutoff; Particle-mesh 
Ewald for long-range electrostatics; Switching function 
between 5 and 8  Å for Lennard–Jones; Virtual particles are 
added to center of each fragment to serve as interaction sites 
for inter-fragment repulsion (repulsive potential between the 
virtual particle pairs is modeled using Lennard–Jones potential 
combined with above switching function, where Lennard–
Jones parameters are e = −0.01 kcal/mol, Rmin = 12.0 Å).

	 2.	Positional restraints for protein target sidechain flexibility: 
Harmonic restraints on Cα atom positions of the form k(Δr)2, 
where Δr is the displacement in Å from the crystallographic 
position and k = 0.1 kcal/mol/Å2. In addition to full sidechain 
flexibility, these restraints are sufficiently weak to allow modest 
backbone flexibility.

	 3.	Or positional restraints for loop flexibility: Harmonic restraints 
on non-hydrogen atoms within x Å of the target center of 
mass, where x is sufficiently small (e.g., half of the radius of 
gyration of the target) so as not to include residues near the 
surface of the target. Restraint functional form and force con-
stants are same as for “sidechain flexibility” above.

3.1  System 
Construction

3.2  System 
Simulation
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	 4.	Or full flexibility: No positional restraints. In this case, run 
control simulations of just the target without fragments for use 
in post-run determination of denaturing trajectories using 
average RMSD, average Rgyr pair metric.

	 5.	Simulate with isothermal–isobaric (NPT) molecular dynamics 
(MD).

	 6.	Typical simulation length is 50 ns.
	 7.	It is recommended that ten independent simulations be run: 

Same solution box with ten different random seeds to initiate 
MD, or, preferably, ten different solution boxes.

	 1.	For a given fragment atom type f, bin all atomic positions 
from all SILCS trajectory snapshots to create a 3D histo-
gram spanning the size of the system and having 
1 Å × 1 Å × 1 Å voxels.

	 2.	If, as recommended, multiple independent simulations were 
run, generate two FragMaps for each fragment atom type f, 
using half the simulations for each FragMap, and compute a 
difference map or overlap coefficient to estimate convergence.

	 3.	n.b.: If “full flexibility” was used, snapshots from denaturing 
trajectories must be excluded and each snapshot needs to be 
aligned to a single reference orientation of the target prior to 
binning of fragment atom positions.

	 1.	See Eq. 1.

	 1.	Ligand conformation generation: Can be a docking pose, mul-
tiple poses from an MD simulation of the target–ligand com-
plex, etc.

	 2.	Ligand atom classification: Each ligand atom is mapped to a 
fragment atom type f based on chemical similarity.

	 3.	LGFE is computed using Eq. 2.
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    Chapter 8   

 A Computational Fragment-Based De Novo Design Protocol 
Guided by Ligand Effi ciency Indices (LEI) 

           Álvaro     Cortés-Cabrera    ,     Federico     Gago    , and     Antonio     Morreale    

    Abstract 

   We present a new protocol aimed at the structure-based design of drug-like molecules using a fragment 
approach. It starts from a suitably placed and well-defi ned “base fragment” and then uses an incremental 
construction algorithm and a scoring function to grow the molecule into prioritized candidates. The selec-
tion of the most promising solutions for synthesis and validation is guided by the optimization of the cal-
culated ligand effi ciency indices known as binding effi ciency index (BEI) and surface effi ciency index 
(SEI), which allow the user to navigate profi ciently in chemico-biological space. A test case for the proto-
col is exemplifi ed here using published data for inhibitors of protein kinase B, aka AKT, a key enzyme in 
several signal transduction pathways. Our procedure was able to identify the main features responsible for 
the binding of inhibitors and guided the selection process towards molecules that included or resembled 
those shown as the most active in the original studies.  

  Key words     Fragment-based drug design  ,   Docking  ,   Ligand effi ciency indices  ,   Scoring functions  

1      Introduction 

 Fragment-based drug design (FBDD) is a mature and well- 
established approach for drug discovery and optimization [ 1 ]. 
However, several limitations still exist related to the equipment 
and the expensive materials that are needed for the implementation 
of the experimental protocols. For this reason chemoinformatics 
and computational tools can assist those discovery efforts, in a par-
allel or independent manner, by simplifying the fragment space 
that needs to be explored or by pointing out which are the best 
spots within this space [ 2 ]. 

 Although the defi nition of molecular fragment varies across 
the literature and depends on its intended use, the most common 
one takes into account size and physicochemical properties. Thus, 
the Rule of Three [ 3 ] states that the most successful fragments 
have a molecular weight (MW) of less than 300 kDa, a  c  Log  P  
equal or less than 3 and a number of hydrogen bond donor and 



90

acceptor atoms of less than or equal to 3. This defi nition has been 
applied widely, but it should not be considered in absolute terms 
because some successful studies have employed fragments that do 
not fulfi ll one or even two of these recommendations [ 4 ]. Fragment 
databases are generally obtained either directly from chemical sup-
pliers that provide diverse sets of building blocks or from fi ltering 
some commonly used large chemical libraries using the above 
mentioned rule of three. Another, and perhaps more interesting, 
alternative is to break down the molecules present in drug-like 
databases into smaller pieces following a rational fragmentation 
scheme. 

 The concept of ligand effi ciency was introduced to account for 
the differences in ligand affi nity or potency with respect to molecu-
lar size [ 5 ]. As a consequence it is now common practice to normal-
ize the binding free energy of a ligand with respect to different 
properties such as MW, number of heavy atoms, and polar surface 
area (PSA). The resulting ligand effi ciency indices (LEIs) [ 6 ] have 
demonstrated to be very useful in both experimental and computa-
tional FBDD campaigns [ 7 ] and to properly describe the chemico- 
biological space (CBS) that is being explored for fragment 
optimization [ 8 ]. Prospective and retrospective analyses [ 9 ,  10 ] 
have shown that a given optimization path in CBS can be success-
fully predicted and followed using a LEI framework and 2D planes. 

 In the next sections we describe a fully LEI-driven computa-
tional protocol that employs a succinct and diverse fragment library 
together with a growing scheme within the binding site to suggest 
new target-oriented compounds with drug-like properties starting 
from a previously identifi ed scaffold. The protocol makes use of a 
tailor-made four-module toolbox to perform the following tasks:

    1.    Binding pocket analysis to characterize the structural and ener-
getic properties that are needed in subsequent steps.   

   2.    Placement of a suitable base fragment that displays good steric 
and electrostatic complementarities with the binding site at a 
particular location.   

   3.    Attachment of new fragments to the base fragment using a 
growing algorithm.   

   4.    Scoring and optimization of the resulting candidates using a 
scoring function that maximizes the square sum of the binding 
effi ciency index (BEI) and the surface effi ciency index (SEI).     

 A Graphical User Interface (GUI), implemented as a plugin 
for the molecular visualization and editing program PyMOL [ 11 ], 
and two simple scripts facilitate the use of this toolchest by nonex-
perts ( see   Note 1 ). 

 The whole procedure is exemplifi ed here for the target protein 
kinase B (PKB), a serine/threonine kinase that regulates many sig-
naling pathways involved in cell growth and differentiation.  

Álvaro Cortés-Cabrera et al.
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2    Materials 

 The co-crystal structures of a PKA-PKB chimeric protein in com-
plex with every intermediate obtained during the optimization 
process in an experimentally validated FBDD campaign that also 
provided inhibitory activity values (IC 50 ) for all compounds [ 12 ]. 

      1.    Protein Data Bank (PDB) entry 2UW3.   
   2.    Four databases containing fragments (stored as individual fi les) 

whose functionalities are intended to match the four different 
types of hotspots detected by the binding pocket analysis tool, 
i.e., hydrogen bond donors, hydrogen bond acceptors, mixed 
hydrogen bond donor/acceptor groups, and hydrophobic 
moieties ( see   Note 2 ).      

      1.    The binding pocket analysis tool cGRILL, a stand-alone C 
program ( see   Note 3 ) that is formally equivalent to Goodford’s 
program GRID [ 13 ].   

   2.    Two scripts for (a) library linking ( linker.py ) and (b) scoring 
new molecules ( scorer.py ).   

   3.    Scoring functions MM-ISMSA [ 14 ], of general use and our 
default procedure ( see   Note 4 ), ChemScore [ 15 ], better suited 
for non-charged ligands and hydrophobic pockets ( see   Note 5 ), 
and HYDE [ 16 ], which works best for accurately placed ligands 
and can be applied to any protein–ligand/fragment structure 
( see   Note 6 ).   

   4.    A LEI-driven algorithm that calculates BEI and SEI for each 
candidate molecule and then plots the BEI vs. SEI effi ciency 
plane [ 17 ] to guide the growing scheme ( see   Note 7 ).       

3    Methods 

      1.    Extract the protein coordinates (ATOM records) from PDB 
entry 2UW3 to create target fi le rec.pdb.   

   2.    Add missing hydrogen atoms to all residues possibly taking 
into account the ionization state of titratable amino acids at 
the reference pH value ( see   Note 8 ).   

   3.    For all ATOM records replace the occupancy and  B -factor  values 
(last two columns) in fi le rec.pdb with atomic radii ( R ) and 
atom point charges ( Q ), respectively, and save the resulting new 
fi le as rec.prq (PRQ or “swapped” PQR format) ( see   Note 8 ).      

      1.    Extract residue GVG (3-methyl-4-phenyl-1 H -pyrazole), with 
HETATM records, from PDB entry 2UW3 to create base frag-
ment fi le lig.pdb.   

2.1  Three- 
Dimensional 
Coordinates 
for Protein 
and Fragments

2.2  Software

3.1  Target Setup

3.2  Base 
Fragment Setup

LEI-Guided FBDD
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   2.    If no experimentally determined hit exists for the target, per-
form a virtual screening campaign to identify a suitable starting 
scaffold as the “base fragment” and determine its optimal posi-
tioning within the binding pocket [ 18 ] ( see   Note 9 ).   

   3.    Add any missing hydrogen atoms to lig.pdb (e.g., using 
OpenBabel or PyMOL,  see   Note 10 ), and write out the result-
ing fi le in PDB format as ligH.pdb.      

      1.    In PyMOL, open the rec.pdb and ligH.pdb fi les to work on 
and the original 2UW3.pdb fi le for reference.   

   2.    Display the cGRILL window by clicking on the corresponding 
option from the Plugin main menu.   

   3.    Choose the  Confi guration tab  to type in the path to the 
cGRILL executable and to specify the name of the working 
directory where results will be stored.   

   4.    To defi ne the grid center, select object ligH (the chosen base 
fragment) in the PyMOL Viewer window and type  sele  inside 
the  Selection  box under the  Run cGRILL  tab in the cGRILL 
plugin window. Press  Enter .   

   5.    Once the grid center coordinates and the cubic box chosen for 
the analysis are displayed, adjust the default dimensions 
(40 × 40 × 40 points) and spacing (0.5 Å) values if required. 
Click the  Show box  button to update the view.   

   6.    Type in rec.prq into the  Receptor File  box ( see   Note 11 ) and 
then click on the  Run cGRILL  button to evaluate, at each grid 
point, the interaction energy between the whole receptor and 
fi ve different probes combining van der Waals (Lennard–Jones 
potential), electrostatic (Coulombic), and hydrogen bonding 
[ 19 ] (geometry-based) terms ( see   Note 12 ).   

   7.    In the cGRILL plugin window click on the  Load Grids  tab and 
type in the name of the directory containing the results from 
either the current session or a previously saved analysis.   

   8.    Display the calculated affi nity maps (CH3, NH4, O, OH, and 
Hydrophobic) and fi ne-tune the contours by wisely changing 
the default cutoff energy values (−1.0 kcal mol −1 ). Display waters 
in object 2UW3 and note the very precise identifi cation of many 
hydration sites by the OH, O, and NH4 probes (Fig.  1 ).    

   9.    Open the hotspots.pdb fi le in the same PyMOL session and 
display the hotspots object as dots or spheres ( see   Note 13 ) to 
identify the most favorable regions for interaction with hydro-
phobic groups (white), hydrogen-bond acceptors (red), 
hydrogen-bond donors (blue), and mixed hydrogen bond 
accepting/donating hydroxyl groups (yellow).   

   10.    Note the three close hydrophobic hotspots laid over the phe-
nyl ring of the base fragment, as well as the good superposition 

3.3  Binding Pocket 
Characterization
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of two mixed hydrogen bond donor/acceptor hotspots onto 
the two pyrazole ring nitrogens (Fig.  1 ).   

   11.    Also note (a) the mixed hydrogen bond donor/acceptor 
hotspots that spread along the bottom of the pocket pointing 
towards an adjacent cavity and (b) the positively charged clus-
ter with a mixed hydrogen bond donor/acceptor character 
located near the DFG motif, a key element in the process of 
activation/inactivation of many kinases [ 20 ].      

      1.    Use  linker.py  to explore every possible combination resulting 
from attaching each fragment contained in the different librar-
ies to the base fragment at the defi ned position (e.g., the car-
bon at the  para  position of the phenyl ring labeled as C11 in 
object ligH) ( see   Note 14 ): 
    linker.py ligH.pdb C11 <path_to/fragment_library>   

   2.    Use  scorer.py  to compute the MW and the PSA of the candi-
dates ( see   Note 15 ) by means of the OpenBabel Python wrap-
per  pybel  [ 21 ] and to evaluate SEI and BEI for all those 
compounds with scores that are compatible with favorable 
binding free energies: 

3.4  Placement 
and Linking of New 
Fragments

  Fig. 1    PyMOL Viewer window displaying Protein Kinase B as a pink cartoon with a bound inhibitor, as found in 
PDB entry 2uw7 [ 12 ], in stick representation ( left  ) and main menu of the cGRILL GUI ( right  ). The calculated 
energy contours for hydrophobic, O, NH4, and OH probes are shown as wireframe mesh in  magenta ,  red ,  blue , 
and  cyan  colors, respectively. Coalescence of these maps into hotspots ( dotted spheres ) provides precise loca-
tions for the placement of fragments possessing atoms with specifi c hydrogen bonding or hydrophobic proper-
ties. Note the good agreement found between hydrophilic hotspots and crystallographic water molecules ( cyan 
cross marks ), as well as the good overlay of NH4 and hydrophobic contours onto the piperidine and 
4- chlorophenyl substituents, respectively, attached to the 4-phenyl-1 H -pyrazole base fragment       
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 scorer.py rec.prq <path_to_dir/where/candidates_
will_be_stored>   

   3.    Import the CSV fi le that is generated by the program into a 
standard worksheet to produce a table containing the scores, 
LEIs, and compound names (Table  1 ) and plot the results for 
visual inspection (Fig.  2 ).

        4.    Visualize the docking poses of the candidates (pdb.sol fi les) in 
PyMOL.       

4    Notes 

     1.    The software described in this protocol is available for down-
loading from   http://farmamol.uah.es/soft/fragments/     under 
the open source license GPL v2.   

   2.    Depending on their source, some fragment libraries may 
require some previous processing. 3D coordinates, if missing 
because the library consists only of SMILES strings [ 22 ] or 2D 
graphs, can be generated using the OpenBabel  obgen  com-
mand or CORINA software [ 23 ]. Input fi les (target, ligand 
and fragments) must be in Protein Data Bank (PDB) format. 
In addition, for the target receptor, radii ( R ) and atom point 
charges ( Q ) are required in the last two columns (PRQ or 
“inverse” PQR format) in place of the default occupancy and 
 B -factor values, respectively, for all atoms.  See  also  Note 8 .   

   Table 1  
  Chemical structures and BEI and SEI values of the top scoring molecules 
resulting from the fi rst optimization round in the search for PKB inhibitors   

    Compound  BEI  SEI 

      

 55.2  7.2 

      

 53.1  7.8 

      

 55.1  7.5 

      

 50.5  8.0 
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   3.    cGRILL can be used in command-line mode or within the 
molecular visualization and editing program PyMOL [ 11 ] as a 
GUI plugin.   

   4.    MM-ISMSA is an ultrafast and accurate force fi eld-based scor-
ing function that comprises (a) a molecular mechanics (MM) 
part that relies on a 12–6 Lennard–Jones potential; (b) an elec-
trostatic component calculated by means of an implicit solvent 
model (ISM) [ 24 ] that includes individual desolvation penal-
ties for each partner in the protein–ligand/fragment complex; 
and (c) an SA contribution that accounts for the loss of water 
contacts upon protein–ligand/fragment complex formation. 
Since force fi eld-based scoring functions are known to be well 
suited for pose prediction in docking and to discriminate effi -
ciently amongst native and nonnative candidates [ 25 ], 
MM-ISMSA is the default scoring function for sampling and 
fi nal evaluation in our protocol.   

   5.    The empirical function ChemScore decomposes the binding 
energy in terms of (a) a lipophilic contribution (only for non-
polar atoms), (b) hydrogen bonding interactions (with a 
geometry-dependent function), (c) metal interactions (when 
present and only for hydrogen bond acceptor atoms), and (d) 
an entropic penalty for the freezing of any rotatable bond 

  Fig. 2    The BEI vs. SEI effi ciency plane for the putative Protein Kinase B inhibitors resulting from attaching dif-
ferent amine-containing fragments to the base fragment. The most promising compounds from the fi rst round 
which will be used in the next fragment linking step have been  highlighted        
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during the binding event (proportional to the number of fro-
zen rotatable bonds). In our implementation, this function 
lacks any penalty terms for highly strained ligand conforma-
tions or for the atomic clashes sometimes observed for very 
tight binding molecules in X-ray crystal structures. Therefore 
it will perform optimally in the evaluation of fi nal poses that 
are force fi eld-compliant in terms of both geometries and 
energies.   

   6.    The HYDE (HYdration and DEhydration) scoring function 
assumes that the main contributions to the binding free energy 
arise from hydrogen bonding interactions between the target 
and the ligand/fragment and also that the accompanying 
desolvation event can either favor or penalize binding depend-
ing on the nature of the interacting chemical groups. The 
hydrophobic/hydrophilic nature of the atoms is determined 
by means of log  P  atomic contributions using empirically 
deduced coeffi cients from experimental values. The free energy 
is estimated as a sum of the goodness of the hydrogen bonds’ 
geometry and the change in solvent-accessible SA of both frag-
ment and target upon complex formation [ 14 ,  26 ,  27 ].   

   7.    To simultaneously optimize both indices, the sum of their 
squared values is computed. This information will help the 
user to decide which of the best possible candidates will be 
selected as the new scaffold for the next round of growing.   

   8.    If the PDB2PQR tool [ 28 ] or the H++ (  http://biophysics.
cs.vt.edu/    ) or PROPKA (  http://propka.ki.ku.dk/    ) web inter-
faces are used the standard output fi le in PQR format can be 
converted to the corresponding PRQ fi le by using the  autorec.
py  script included in the software distribution. There is no need 
to this, however, if the PyMOL GUI is used because cGRILL.
py correctly identifi es the columns containing charges and radii 
irrespective of their relative position.   

   9.    An experimentally confi rmed fragment hit at the starting loca-
tion (as shown in this proof-of-concept example) is not neces-
sary but it increases the odds of a successful fi nal design. 
Besides, and depending on the structure–activity landscape of 
the target, it is possible that the resulting optimized com-
pounds will not share the binding mode of the starting frag-
ment [ 29 ]. This risk can be minimized by using feature-rich 
fragments that establish relatively strong and defi ned interac-
tions with the target. On the other hand, docking-based poses 
are prone to very well-known errors [ 30 ] and do not always 
ensure that the fi nal molecule will interact with the target as 
predicted.   

   10.      http://openbabel.org/     [ 31 ].   
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   11.    Protein atoms are internally characterized according to their 
connectivity (bond order), ring state, chemical type, and non- 
bonded parameters using the generalized AMBER force fi eld 
(GAFF) [ 32 ].   

   12.    These probes are thought to summarize the main stereo- 
electronic properties of the binding pocket and are defi ned as 
follows: lipophilic (CH 3 ), hydrogen bond donor (H 4 N + ), 
hydrogen bond acceptor (=O), mixed hydrogen bond donor/
acceptor (–OH), and hydrophobic. cGRILL implements the 
extended atom concept to simplify the probes and to speed up 
the calculations [ 13 ]. The probes are reduced to their central 
atom with its partial charge increased depending on the atoms 
attached to it. Accordingly, the hydrogen bond acceptor probe 
has an assigned charge of −0.37e to better represent the partial 
negative potential on the oxygen atom when it is in a carbonyl 
group. On the contrary, the lipophilic C atom probe is neutral 
(charge 0e) and therefore only van der Waals interactions are 
calculated for it. The functions for hydrogen bond donor, 
acceptor and mixed donor/acceptor probes include an extra 
term (besides van der Waals and electrostatic energies) that 
accounts for the geometry of the hydrogen bond and depends 
on: (a) the distance between acceptor and hydrogen atoms, (b) 
the angle between donor, hydrogen and acceptor atoms, and 
(c) the relative orientation of the planes where the atomic 
orbitals of the acceptor and the hydrogen atoms are located. 
The hydrophobic probe is built on the lipophilic one but it 
adds, as a unique extra feature, the inverse of the default hydro-
gen bonding term. Thus, this probe will identify those regions 
where the interaction between the receptor and water mole-
cules is unfavorable and the binding of a small molecule (or 
fragment) is favored by desolvation due to the hydrophobic 
effect [ 33 ].   

   13.    After the mapping of the binding pocket is complete, the pro-
gram fi lters out all those grid points for each probe with scores 
higher than a user-defi ned cutoff value (the interaction energy, 
by defi nition, is negative), which is set by default to −12.0, 
−6.0, −7.0, and −1.7 kcal/mol for H 4 N + , =O, –OH, and 
hydrophobic probes, respectively. At each of the surviving 
points the probes compete according to their interaction 
energy values, and the best of the set becomes the  representative 
probe at this grid point with its associated energy value. These 
grid points are then coalesced into local minima that are con-
sidered interaction “hotspots” and their coordinates (and 
energy values) are saved for further use. At each grid point the 
clustering algorithm checks for the energy values of the nearest 
surviving points (within 2.0 Å of distance) and, if at least one 
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of these points has a better value than its own, the current grid 
point is discarded [ 34 ]. In the hotspots.pdb fi le, atoms and 
 residues are named (N, POS); (O, HBA); (S, HBD); and (H, 
HPH) for coloring purposes so that positively charged 
hydrogen- bond donating nitrogens, neutral hydrogen-bond 
accepting oxygens, mixed hydrogen-bond accepting and 
donating hydroxyls, and hydrophobic atoms, respectively, can 
be easily identifi ed. Probe–target interaction energy values, on 
the other hand, can be displayed in PyMOL by using the 
hotspots’ “ B -values” as labels.   

   14.    Script  linker.py  takes three different parameters: (a) the name 
of the fi le containing the base fragment properly located in the 
binding site, (b) the name of the heavy atom in the base frag-
ment to which each fragment in the library will be linked, and 
(c) the path to the fragment library. This heavy atom must 
have, at least, one hydrogen atom attached to it since this open 
valence will be used for bonding purposes. This script requires 
OpenBabel for internal format conversion and automatic 
assignment of atomic point charges as these are necessary for 
the next steps. 

 Sampling is a completely interactive step that is started by 
choosing the appropriate fragment database(s) depending on 
the nature of the hotspot(s) closer to the selected point of 
attachment on the base fragment. Hydrogen atoms are used 
for connecting both fragments and the bond length is regular-
ized in accordance with the bond type. The SIMPLEX algo-
rithm [ 35 ] and GAFF non-bonded terms are then used 
to optimize the ligand's rotatable bonds and (optionally) the 
translational and rotational degrees of freedom to fi ne-tune the 
pose within the binding pocket and rank the candidates.   

   15.    The sampling and scoring program can be used as a stand- 
alone optimization tool for other molecules.         
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    Chapter 9   

 Scoring Functions for Fragment-Based Drug Discovery 

           Jui-Chih     Wang     and     Jung-Hsin     Lin    

    Abstract 

   Fragment-based drug design represents a challenge for computational drug design because almost inevitably 
fragments will be weak binders to the biomolecular targets of a specifi c disease, and the performances of the 
scoring functions for weak binders are usually poorer than those for the stronger binders. This protocol 
describes how to predict the binding modes and binding affi nities of fragments towards their binding partner 
with our refi ned AutoDock scoring function incorporating a quantum chemical charge model, namely, the 
restrained electrostatic potential (RESP) model. This scoring function was calibrated by robust regression 
analysis and has been demonstrated to perform well for general classes of protein–ligand interactions and for 
weak binders (with root-mean square of error of about 2.1 kcal/mol).  

  Key words     Scoring function  ,   Protein–ligand interactions  ,   Drug design  ,   Fragment-based  , 
  Computational  ,   Structure-based  ,   Docking  

1      Introduction 

 With the approval of vemurafenib by the US Food and Drug 
Administration on August 17, 2011, fragment-based drug design 
(FBDD) is no longer just a “promising” approach for drug discov-
ery [ 1 ] .  However, fragment-based approaches for making leads or 
drug candidates still represent a challenge for structure-based drug 
design. Almost inevitably, fragments will be weak binders to the 
biomolecular targets of a specifi c disease. It is therefore of crucial 
importance to be able to discriminate weak binders from non- 
binders, which usually requires biophysical techniques or computa-
tional methods of high accuracy for making the designing process a 
rational route [ 2 ] .  Flexibilities of biomolecules have been incorpo-
rated in diffi cult drug design tasks that need to discriminate protein 
isoforms with high sequence similarity [ 3 ] .  In the past 2–3 decades, 
computational approaches for studying the protein–ligand interac-
tions have made a tremendous progress. To refl ect the structural 
variations in the physiological condition, dynamics of biomolecules 
have been incorporated in computational drug design [ 4 – 7 ] .  
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 Effective scoring functions play a central role the structure- 
based drug design. We recently refi ned the AutoDock 4 scoring 
function [ 8 ] with the quantum chemical charge models and robust 
regression analysis [ 9 ] .  The refi ned AutoDock4 scoring functions 
have been demonstrated to have consistent performance for very 
large external test sets of protein–ligand complexes [ 9 ] .  In particu-
lar, they also performed very well for weakly interacting protein–
ligand complexes [ 10 ] .  With different binding affi nity criteria of 
weak protein–ligand interactions, our scoring functions showed very 
consistent performance for three subsets of PDBbind (48 entries for 
 K  i/d  ≥ 1 mM; 158 entries for  K  i/d  ≥ 100 μM; 335 entries for 
 K  i/d  ≥ 10 μM), with the root-mean square of error of about 2.1 kcal/
mol [ 10 ]. This indicated that these robust scoring functions with the 
quantum chemical charge models may be suitable for fragment-
based drug design, especially when combined with molecular 
dynamics simulations to accommodate for protein fl exibilities.  

2    Materials 

 The source of materials and software used in this chapter are 
 mentioned here.

    1.    The three compounds in the original “SAR by NMR” paper 
[ 11 ] with the optimal binding affi nities binding at the fi rst 
binding pocket, the adjacent second pocket, and both pockets, 
 2  (2 μM),  9  (0.1 mM), and  14  (49 nM), respectively, are used 
in this chapter. The chemical structures of these three com-
pounds are shown in Fig.  1 .    

   2.    The target biomolecule of these three compounds is FK506 
binding protein (FKBP). The protein structure is downloaded 
from the Protein Data Bank [ 12 ] and then the protonation is 
predicted by PDB2PQR [ 13 ].   

  Fig. 1    The chemical structures of the three compounds in this chapter. The numberings are the same as those 
in ref. [ 11 ]       
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   3.    Its partial charges are assigned by the  tleap  program of 
AmberTools 13 [ 14 ] .    

   4.    For the ligands, structures and protonations are prepared by 
MarvinSketch 6.1.0 [ 15 ], and their partial charges are calcu-
lated by Gaussian 03 [ 16 ] and the  antechamber  program of 
AmberTools 13 [ 14 ].   

   5.    The docking jobs are conducted by AutoDock 4.2.5.1 [ 17 ], 
and the input fi les for docking are prepared by AutoDockTools 
4 [ 17 ].   

   6.    To use the AutoDock 4 robust scoring functions, one can 
download the patch fi les to modify the parameters in the origi-
nal AutoDock 4 source codes. (  http://jlin.rcas.sinica.edu.
tw/~jlin/ScoringScripts/AD4_RobustSF.tar    ).      

3    Methods 

      1.    Download MarvinSketch (  http://www.chemaxon.com/
download/marvin-suite    ).   

   2.    Draw the 2D diagram of  2  and predict its protonation state by 
MarvinSketch, then convert it to the 3D structure with explicit 
hydrogens added.   

   3.    Optimize the ligand conformation and conduct quantum 
chemical calculation with Gaussian 03 (  http://www.gaussian.
com    ) at the HF/6-31G* level. The Gaussian script for this 
task, lig_2.g03.in, is as follows (only partial coordinates are 
shown): 
 --Link1-- 
 %chk=lig_2.g03    
 %Mem=512MB 
 # opt HF/3-21g Test 
 lig_2.pdb.g03

 0 1 

 C1  0.942  3.137  -2.486 

 C2  -3.229  -2.939  1.280 

 C3  0.420  4.559  -2.824 

 … 

 O47  -1.345  1.262  -0.900 

 O48  -2.005  -3.660  1.215 

 O49  2.160  -1.952  3.231 

   --Link1-- 
 %chk=lig_2.g03 
 %Mem=512MB 

3.1  Docking 
Compound  2  to FKBP
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 # sp HF/6-31g* Test SCF=Tight Pop=MK IOp(6/33=2) 
iop(6/42=6) geom=AllCheck 
 The command to run Gaussian 03 reads: 
 %g03<lig_2.g03.in>lig_2.g03.out   

   4.    Download AmberTools 13 (  http://ambermd.
org/#AmberTools    ). The RESP partial charges can then be cal-
culated by running the  antechamber  program of AmberTools 13: 
 % antechamber -i lig_2.g03.out -fi  gout -o lig_2.mol2 -fo 
mol2 -c resp -at sybyl   

   5.    Prepare the ligand pdbqt fi le with RESP charges by the python 
script  prepare_ligand4.py  in AutoDockTools (  http://autodock.
scripps.edu/resources/adt    ): 
 % prepare_ligand4.py -l lig_2.mol2 -C -v -o lig_2.pdbqt   

   6.    Download the FKBP structure (1DO6) from the Protein Data 
Bank (  http://dx.doi.org/10.2210/pdb1do6/pdb    ). Predict 
the protonation of the protein by the PDB2PQR server 
(  http://nbcr-222.ucsd.edu/pdb2pqr_1.8/    ).   

   7.    Assign Amber Parm99SB charges for the receptor by  tleap  of 
the AmberTools 13. The commands for  tleap  are shown as 
follows: 
 >1d6o=loadpdb 1d6o-protonated.pdb 
 > saveamberparm 1d6o 1d6o.top 1d6o.crd 
 > savepdb 1d6o 1d6o_exleap.pdb 
 > quit   

   8.    There are many possible ways to transfer Amber parm99SB 
charges into the pdbqt fi le. Here we present an automatic pro-
cedure where the pqr fi le is used to deposit charges, and then 
the conversion from the pqr fi le to the pdbqt fi le is done by 
 prepare_receptor4.py . The perl scripts  rename_pqr.pl  and 
 replace_charge_pdbqt.pl  are also needed to map atoms between 
different fi le formats, which can be downloaded at   http://jlin.
rcas.sinica.edu.tw/~jlin/ScoringScripts/rename_pqr.pl     and 
  http://jlin.rcas.sinica.edu.tw/~jlin/ScoringScripts/replace_
charge_pdbqt.pl    , respectively. 
 % ambpdb -p 1d6o.top -pqr<1d6o.crd>rec.pqr 
 % perl rename_pqr.pl 1d6o_exleap.pdb rec.pqr>rec_rename.
pqr 
 % prepare_receptor4.py -r 1d6o_exleap.pdb -A 'None' -U 
'None' -v -o rec_leap.pdbqt 
 % perl replace_charge_pdbqt.pl rec_rename.pqr rec_leap.
pdbqt>receptor.pdbqt   

   9.    Prepare the gpf fi le (the grid maps parameter fi le) for the input 
of AutoGrid and the dpf fi le (the docking parameter fi le) for 
the input of AutoDock by AutoDockTools with the default 
settings. 
 % prepare_gpf4.py -l ligand.pdbqt -r receptor.pdbqt 
 % prepare_dpf4.py -l ligand.pdbqt -r receptor.pdbqt   
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   10.    Modify the AutoDock parameter fi le (for using our refi ned 
scoring function), the number of grid points, and the grid cen-
ter in the gpf fi le and the dpf fi le: 
  receptor.new.gpf : 
 parameter_fi le AD4.1_RP_wN_110511.dat 
 npts 26 22 24 
 gridfl d receptor.maps.fl d            # grid_data_fi le 
 spacing 0.375                        # spacing(A) 
 receptor_types A C HD N NA OA SA     # receptor atom types 
 ligand_types A C N OA                # ligand atom types 
 receptor receptor.pdbqt              # macromolecule 
 gridcenter 57.311 -4.091 -0.814 
 smooth 0.5                           # store minimum energy w/in 
rad(A) 
 map receptor.A.map                   # atom-specifi c affi nity map 
 map receptor.C.map                   # atom-specifi c affi nity map 
 map receptor.N.map                   # atom-specifi c affi nity map 
 map receptor.OA.map                  # atom-specifi c 
affi nity map 
 elecmap receptor.e.map               # electrostatic 
potential map 
 dsolvmap receptor.d.map              # desolvation 
potential map 
 dielectric -0.1465                   # <0, AD4 distance-dep.diel;>0, 
constant 
  ligand_receptor.new.dpf : 
 parameter_fi le AD4.1_RP_wN_110511.dat 
 autodock_parameter_version 4.2       # used by autodock to 
validate parameter set 
 outlev 1                             # diagnostic output level 
 intelec                              # calculate internal electrostatics 
 seed pid time                        # seeds for random generator 
 ligand_types A C N OA                # atoms types in ligand 
 fl d receptor.maps.fl d                # grid_data_fi le 
 map receptor.A.map                   # atom-specifi c affi nity map 
 map receptor.C.map                   # atom-specifi c affi nity map 
 map receptor.N.map                   # atom-specifi c affi nity map 
 map receptor.OA.map                  # atom-specifi c 
affi nity map 
 elecmap receptor.e.map               # electrostatics map 
 desolvmap receptor.d.map             # desolvation map 
 move ligand.pdbqt                    # small molecule 
 about -0.0157 -0.027 -0.0478         # small molecule center 
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 tran0 random                         # initial coordinates/A or 
random 
 axisangle0 random                    # initial orientation 
 dihe0 random                         # initial dihedrals (relative) or 
random 
 tstep 2.0                            # translation step/A 
 qstep 50.0                           # quaternion step/deg 
 dstep 50.0                           # torsion step/deg 
 torsdof 7                            # torsional degrees of freedom 
 rmstol 1.0                           # cluster_tolerance/A 
 extnrg 1000.0                        # external grid energy 
 e0max 0.0 10000                      # max initial energy; max num-
ber of retries 
 ga_pop_size 150 
 ga_num_evals 25000000 
 ga_num_generations 27000 
 ga_elitism 1                         # number of top individuals to 
survive to next generation 
 ga_mutation_rate 0.02                # rate of gene mutation 
 ga_crossover_rate 0.8                # rate of crossover 
 ga_window_size 10                    # 
 ga_cauchy_alpha 0.0                  # Alpha parameter of Cauchy 
distribution 
 ga_cauchy_beta 1.0                   # Beta parameter Cauchy 
distribution 
 set_ga                               # set the above parameters for GA 
or LGA 
 sw_max_its 600 
 sw_max_succ 4                        # consecutive successes before 
changing rho 
 sw_max_fail 4                        # consecutive failures before 
changing rho 
 sw_rho 1.0                           # size of local search space to 
sample 
 sw_lb_rho 0.01                       # lower bound on rho 
 ls_search_freq 0.06                  # probability of performing local 
search on individual 
 set_psw1                             # set the above pseudo-Solis & 
Wets parameters 
 unbound_model bound 
 ga_run 10                            # do this many hybrid GA-LS runs 
 analysis                             # perform a ranked cluster analysis   

   11.    Perform the grid maps calculations and the docking calcula-
tions by AutoDock 4.2.5.1 ( see   Note 1 ) 
 % autogrid4 -p receptor.new.gpf -l grid.glg 
 % autodock4 -p ligand_receptor.new.dpf -l result.dlg      
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      1.    Draw the 2D diagram of  9  and predict its protonation state by 
MarvinSketch, then convert it to the 3D structure with explicit 
hydrogens added.   

   2.    Optimize the ligand conformation and conduct the quantum 
chemical calculation with Gaussian 03 at the HF/6-31G* 
level. The Gaussian script for this task, lig_.g03.in, is as follows 
(only partial coordinates are shown): 

 --Link1-- 
 %chk=lig_9.g03 
 %Mem=1GB 
 # opt HF/3-21g Test 
 lig_9.pdb.g03

 0 1 

 C1  1.923  2.093  0.673 

 C2  1.705  0.708  0.463 

 C3  2.796  -0.144  0.155 

 … 

 O26  5.632  2.295  0.149 

 O27  -5.705  -2.671  0.264 

 O28  -0.478  1.091  -1.341 

   --Link1-- 
 %chk=lig_9.g03 
 %Mem=1GB 
 # sp HF/6-31 g* Test SCF=Tight Pop=MK IOp(6/33=2) 
iop(6/42=6) geom=AllCheck   

   3.    RESP partial charges can be obtained by the  antechamber  
program. 
 % antechamber -i lig_9.g03.out -fi  gout -o lig_9.mol2 -fo 
mol2 -c resp -at sybyl   

   4.    Prepare the ligand pdbqt fi le with RESP charges by the 
python script  prepare_ligand4.py  in AutoDockTools: 
 % prepare_ligand4.py -l lig_9.mol2 -C -v -o lig_9.pdbqt   

   5–7.    Use the same receptor.pdbqt fi le as the one in “Docking 
compound 2 to FKBP”.   

   8.    Prepare the gpf fi le (the grid maps parameter fi le) for the 
input of AutoGrid and the dpf fi le (the docking parameter 
fi le) for the input of AutoDock by AutoDockTools with the 
default settings: 
 % prepare_gpf4.py -l ligand.pdbqt -r receptor.pdbqt 
 % prepare_dpf4.py -l ligand.pdbqt -r receptor.pdbqt   

   9.    Modify the number of grid points and grid center in the gpf 
fi le and the dpf fi le. 

3.2  Docking 
Compound  9  to FKBP
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  receptor.new.gpf:  
 parameter_fi le AD4.1_RP_wN_110511.dat 
 npts 24 24 24 
 gridfl d receptor.maps.fl d            # grid_data_fi le 
 spacing 0.375                        # spacing(A) 
 receptor_types A C HD N NA OA SA     # receptor atom 
types 
 ligand_types A C HD N OA             # ligand atom types 
 receptor receptor.pdbqt              # macromolecule 
 gridcenter 58.118 -11.946 4.259 
 smooth 0.5                           # store minimum energy w/in 
rad(A) 
 map receptor.A.map                   # atom-specifi c affi nity map 
 map receptor.C.map                   # atom-specifi c 
affi nity map 
 map receptor.HD.map                  # atom-specifi c 
affi nity map 
 map receptor.N.map                   # atom-specifi c 
affi nity map 
 map receptor.OA.map                  # atom-specifi c 
affi nity map 
 elecmap receptor.e.map               # electrostatic 
potential map 
 dsolvmap receptor.d.map              # desolvation 
potential map 
 dielectric -0.1465                   # <0, AD4 distance-dep.diel;>0, 
constant 
  ligand_receptor.new.dpf:  
 parameter_fi le AD4.1_RP_wN_110511.dat 
 autodock_parameter_version 4.2       # used by autodock to 
validate parameter set 
 outlev 1                             # diagnostic output level 
 intelec                              # calculate internal electrostatics 
 seed pid time                        # seeds for random generator 
 ligand_types A C HD N OA             # atoms types in ligand 
 fl d receptor.maps.fl d                # grid_data_fi le 
 map receptor.A.map                   # atom-specifi c affi nity map 
 map receptor.C.map                   # atom-specifi c 
affi nity map 
 map receptor.HD.map                  # atom-specifi c 
affi nity map 
 map receptor.N.map                   # atom-specifi c 
affi nity map 
 map receptor.OA.map                  # atom-specifi c 
affi nity map 
 elecmap receptor.e.map               # electrostatics map 
 desolvmap receptor.d.map             # desolvation map 
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 move ligand.pdbqt                    # small molecule 
 about -0.0135 -0.1605 -0.0127        # small molecule 
center 
 tran0 random                         # initial coordinates/A or 
random 
 axisangle0 random                    # initial orientation 
 dihe0 random                         # initial dihedrals (relative) or 
random 
 tstep 2.0                            # translation step/A 
 qstep 50.0                           # quaternion step/deg 
 dstep 50.0                           # torsion step/deg 
 torsdof 4                            # torsional degrees of freedom 
 rmstol 1.0                           # cluster_tolerance/A 
 extnrg 1000.0                        # external grid energy 
 e0max 0.0 10000                      # max initial energy; max 
number of retries 
 ga_pop_size 150 
 ga_num_evals 25000000 
 ga_num_generations 27000 
 ga_elitism 1                         # number of top individuals to 
survive to next generation 
 ga_mutation_rate 0.02                # rate of gene mutation 
 ga_crossover_rate 0.8                # rate of crossover 
 ga_window_size 10                    # 
 ga_cauchy_alpha 0.0                  # Alpha parameter of Cauchy 
distribution 
 ga_cauchy_beta 1.0                   # Beta parameter Cauchy 
distribution 
 set_ga                               # set the above parameters for GA 
or LGA 
 sw_max_its 600 
 sw_max_succ 4                        # consecutive successes before 
changing rho 
 sw_max_fail 4                        # consecutive failures before 
changing rho 
 sw_rho 1.0                           # size of local search space to 
sample 
 sw_lb_rho 0.01                       # lower bound on rho 
 ls_search_freq 0.06                  # probability of performing 
local search on individual 
 set_psw1                             # set the above pseudo-Solis & 
Wets parameters 
 unbound_model bound 

 ga_run 10                            # do this many hybrid 
GA-LS runs 

 analysis                             # perform a ranked cluster 
analysis   
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   10.    Perform the grid maps calculations and the docking calculations 
by AutoDock 4.2.5.1 ( see   Note 1 ) 
 % autogrid4 -p receptor.new.gpf -l grid.glg 
 % autodock4 -p ligand_receptor.new.dpf -l result.dlg      

      1.    Draw the 2D diagram of  14  and predict its protonation state 
by MarvinSketch, then convert it to the 3D structure with 
explicit hydrogens added.   

   2.    Optimize the ligand conformation and conduct the quantum 
chemical calculation with Gaussian 03 at the HF/6-31G* 
level. The Gaussian script for this task, lig_14.g03.in, is as fol-
lows (only partial coordinates are shown): 
 --Link1-- 
 %chk = lig_14.g03 
 %Mem = 1GB 
 # opt HF/3-21 g Test 
 lig_14.pdb.g03

 0 1 

 C1  -4.795  1.411  -0.116 

 C2  -3.261  1.360  0.119 

 C3  6.953  4.245  4.746 

 … 

 O79  -4.746  -2.020  0.318 

 O80  -3.940  -0.559  -2.833 

 O81  5.053  5.198  0.197 

   --Link1-- 
 %chk=lig_14.g03 
 %Mem=1GB 
 # sp HF/6-31g* Test SCF=Tight Pop=MK IOp(6/33=2) 
iop(6/42=6) geom=AllCheck   

   3.    RESP partial charges can be calculated by the  antechamber  
program. 
 % antechamber -i lig_14.g03.out -fi  gout -o lig_14.mol2 -fo 
mol2 -c resp -at sybyl   

   4.    Prepare the ligand pdbqt fi le with RESP charges by the 
python script  prepare_ligand4.py  in AutoDockTools. 
 % prepare_ligand4.py -l lig_14.mol2 -C -v -o lig_14.pdbqt   

   5–7.     Use the same receptor.pdbqt fi le as “Docking compound 2 
to FKBP“.   

   8.    Because the number of rotatable bonds of  lig_14.pdbqt  is 15, 
here we use AutoDock Vina 1.1.2 for the subsequent docking, 

3.3  Docking 
Compound  14  to FKBP
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which is effi cient in fi nding the optimal pose and is able to do 
multithreading. Next, each docking pose will be rescored by 
the AutoDock4 RRP  scoring function. 
 % autodock_vina_1_1_2_linux_x86/bin/vina--onfi g confi g.
txt--og vina.out 
  confi g.txt:  
 receptor=receptor_Vina.pdbqt 
 ligand=ligand.pdbqt 
 center_x=56.924 
 center_y=−9.062 
 center_z=2.224 
 size_x=15 
 size_y=15 
 size_z=11.25 
 cpu=16 
 num_modes=10 
 energy_range=4 
 exhaustiveness=100   

   9.    For rescoring each docking pose from Vina calculation, prep-
aration of dpf is needed. Here, only local minimization is 
conducted with AutoDock robust scoring function. 
  receptor.new.gpf:  
 parameter_fi le AD4.1_RP_wN_110511.dat 
 npts 40 40 30 
 gridfl d receptor.maps.fl d            # grid_data_fi le 
 spacing 0.375                        # spacing(A) 
 receptor_types A C HD N NA OA SA     # receptor atom 
types 
 ligand_types A C HD N OA             # ligand atom types 
 receptor receptor.pdbqt              # macromolecule 
 gridcenter 56.924 -9.062 2.224 
 smooth 0.5                           # store minimum energy w/in 
rad(A) 
 map receptor.A.map                   # atom-specifi c affi nity map 
 map receptor.C.map                   # atom-specifi c 
affi nity map 
 map receptor.HD.map                  # atom-specifi c 
affi nity map 
 map receptor.N.map                   # atom-specifi c 
affi nity map 
 map receptor.OA.map                  # atom-specifi c 
affi nity map 
 elecmap receptor.e.map               # electrostatic 
potential map 
 dsolvmap receptor.d.map              # desolvation 
potential map 
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 dielectric -0.1465                   # <0, AD4 distance-dep.diel;>0, 
constant 
  pose_1_receptor.new.dpf:  
 parameter_fi le AD4.1_RP_wN_110511.dat 
 autodock_parameter_version 4.2       # used by autodock to 
validate parameter set 
 outlev 1                             # diagnostic output level 
 intelec                              # calculate internal electrostatics 
 seed pid time                        # seeds for random generator 
 ligand_types A C HD N OA             # atoms types in ligand 
 fl d receptor.maps.fl d                # grid_data_fi le 
 map receptor.A.map                   # atom-specifi c affi nity map 
 map receptor.C.map                   # atom-specifi c 
affi nity map 
 map receptor.HD.map                  # atom-specifi c 
affi nity map 
 map receptor.N.map                   # atom-specifi c 
affi nity map 
 map receptor.OA.map                  # atom-specifi c 
affi nity map 
 elecmap receptor.e.map               # electrostatics map 
 desolvmap receptor.d.map             # desolvation map 
 move pose_1.pdbqt                    # small molecule 
 about 57.5219 -8.2867 2.3028         # small molecule 
center 
 tran0 57.5219 -8.2867 2.3028         # small molecule 
center 
 tstep 2.0                            # translation step/A 
 qstep 50.0                           # quaternion step/deg 
 dstep 50.0                           # torsion step/deg 
 torsdof 15                            # torsional degrees of freedom 
 rmstol 2.0                           # cluster_tolerance/A 
 extnrg 1000.0                        # external grid energy 
 e0max 0.0 10000                      # max initial energy; max 
number of retries 
 sw_max_its 600 
 sw_max_succ 4                        # consecutive successes before 
changing rho 
 sw_max_fail 4                        # consecutive failures before 
changing rho 
 sw_rho 1.0                           # size of local search space to 
sample 
 sw_lb_rho 0.01                       # lower bound on rho 
 ls_search_freq 0.06                  # probability of performing 
local search on individual 
 set_psw1                             # set the above pseudo-Solis & 
Wets parameters 
 unbound_model bound 
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 do_local_only 10 
 analysis                             # perform a ranked cluster analysis   

   10.    Perform the grid maps calculations and the docking calcula-
tions by AutoDock 4.2.5.1 ( see   Note 2 ) 
 % autogrid4 -p receptor.new.gpf -l grid.glg 
 % autodock4 -p pose_1_receptor.new.dpf -l result.1.dlg       

4    Notes 

     1.    Figure  2  shows the docking poses of  2  and  9  to their target 
protein, FKBP, which is shown with the molecular surface 
representation. The binding pose of  2  with third lowest pre-
dicted energy (−6.04 kcal/mol) and the binding pose of  9  
with l owest predicted energy (−4.22 kcal/mol) are illustrated. 
It should be noted that the protein fl exibility is not yet taken 
into account in this chapter.    

   2.    Figure  3  depicts the binding pose of  14 , the composite com-
pound of  2  and  9,  with lowest predicted energy (−8.12 kcal/
mol). The binding pose and contacted residues are consis-
tent with the determination in [ 11 ]. From Table  1 , it can be 
seen that the predicted binding affi nity is lower than that of 

  Fig. 2    FKBP is shown with the molecular surface representation.  2  and  9  are 
shown with the  stick style , and with the  cyan  and the  pink color , respectively. The 
binding pose of  2  with third lowest predicted energy (−6.04 kcal/mol) and the 
binding pose of  9  with lowest predicted energy (−4.22 kcal/mol) are illustrated       
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the experimental binding affi nity, which can likely be attributed 
to the missing incorporation of protein fl exibility in this 
tutorial. 
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  Fig. 3    FKBP is shown as  ribbons . The binding pose of  14  with lowest calcu-
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color . The binding pose and contacted residues are consistent with the deter-
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   Table 1  
  Comparison of the experimental binding affi nities and calculated binding 
affi nities of the three compounds   

  2    9    14  

 Shuker et al.  2 μM  0.1 mM  0.049 μM 

 AutoDock4  RRP   −6.04 kcal/mol  −4.22 kcal/mol  −8.12 kcal/mol 
 37.3 μM  0.8 mM  1.11 μM 
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    Chapter 10   

 Computational Methods for Fragment-Based Ligand 
Design: Growing and Linking 

           Rachelle     J.     Bienstock    

    Abstract 

   Fragment-based drug design has proved itself as a powerful technique for increasing the sampling and 
diversity of chemical space and enabling the design of novel leads and compounds. Computational tech-
niques for identifying fragments, binding sites and particularly for linking, growing, and evolving frag-
ments play a signifi cant role in the process. Information from ADME studies and clustering property 
information in the form of toxicophores and chemotypes can play a signifi cant role in aiding the design of 
novel, selective fragments with good activity profi les.  

  Key words     Fragment-based ligand design  ,   Fragment linking  ,   Fragment growing  ,   Evolving frag-
ments  ,   Fragment libraries  ,   Structure-based drug design  ,   ADME properties and fragment-based 
design  ,   Chemotypes  ,   Toxicophores  

1      Introduction 

 Fragment-based ligand design is now well established as an effi -
cient starting point and optimization method in structure-based 
drug discovery. Pharmaceutical industry-based application of 
fragment- based screening was fi rst described by Dr. Stephen Fesik 
and colleagues at Abbott using SAR by NMR [ 1 ] with the detec-
tion of millimolar binding ligands to N 15  labeled protein. Since 
their initial application, fragment-based methods have shown 
promise for the identifi cation and development of novel hits and 
lead compounds. The essential concept behind fragment-based 
design is the use of a fragment library consisting of weak binders to 
the identifi ed target. These weak binding fragments (fragment 
affi nities usually in the millimolar range) are then linked and opti-
mized to create appropriate tight-binding drugs. In many cases, 
experimental methods such as NMR or X-ray crystallography are 
used to detect fragment binding and initially identify fragments. 
However, the identifi cation of fragments is often accomplished by 
computational methods as well. 
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 What are the advantages and why would someone pursue 
fragment- based design as opposed to traditional virtual screening 
of a regular ligand library? The fragment-based approached has 
been pursued because of the advantage for vastly increasing com-
pound chemical diversity. Also screening large diverse libraries, 
containing complex compounds, incurs the diffi culty of problem-
atic functional groups, which must then be removed or modifi ed 
to increase binding. Traditional high-throughput screening (HTS) 
library successful hit rates are low (<0.01 %). Well-designed frag-
ment libraries include more diversity than typical large molecule 
HTS databases; fragment libraries can be designed with lead like 
compound fragments only and therefore exhibit increased proba-
bly of binding to the target of interest. Eighty percent of atoms in 
fragment hits are retained in the derived lead compound and 
exhibit less than 1 Å displacement shifts [ 2 ]. There has been great 
success using fragment design with traditional targets, as well as 
diffi cult ones like BACE and protein–protein interaction targets. 

 One advantage of fragment-based drug design is that chemical 
space can be explored more effi ciently by screening collections of 
small fragments rather than high throughput screening of virtual 
libraries of larger drug-like molecules. Hann’s model for receptor–
ligand interactions states that the probability of detecting a hit 
binding to a target will increase with a smaller less complex frag-
ment. With a library comprising 10  7  fragments with 12 heavy 
atoms rather than 10  60  drugs with 30 heavy atoms a much greater 
percentage of fragment space can be screened. It has been esti-
mated that there are 10 20 –10 200  molecules with molecular weight 
(MW) 300–500 Da (i.e., drug-like compounds) more than all the 
atoms in the universe [ 3 ]. It is felt that even a small fragment 
library will do a better job sampling fragment chemical space than 
a larger traditional compound library. Fragment-based drug design 
has a high impact-high hit rate, a high binding effi ciency for frag-
ments, and a high proportion of fragment hit atoms directly 
involved in interacting with the target-binding site. Fragments can 
easily be optimized. One of the major diffi culties encountered with 
fragment-based drug design is initially identifying fragments, 
which bind the target since fragments have low affi nities for targets 
(usually on the order of 1 mM or less). Fragments, which bind 
targets, are identifi ed computationally, or by experimental meth-
ods, such as NMR, surface plasmon resonance (SPR), thermal 
shift, functional screen, X-ray crystallography, isothermal titration 
calorimetry, or a biophysical assay. 

 Also some fragments, which bind and seem to be identifi ed, as 
good fragments in assays are not. They are referred to as “PAINS” 
(pan-assay interference compounds), have common features (Michael 
acceptors), and are soft electrophiles that readily react with nucleo-
philic residues in proteins and bind covalently. However, because 
they form covalent bonds it makes them unsuitable to use in 
 fragments. Redox cycling compounds are also part of this group [ 4 ]. 
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 A fragment library for drug design must be chemically diverse 
and synthetically expandable. Fragments traditionally have low 
affi nity binding (micromolar to millimolar) and high ligand effi -
ciency ≥0.3 (ratio of free energy of binding to number of heavy 
atoms). A good fragment library has a range of physicochemical 
properties, aqueous solubility, molecular diversity, and drug like-
ness with medicinal chemistry scaffolds. Astek [ 2 ] researchers fi rst 
proposed the “Rule of 3” (Ro3) for fragment design, based on 
Chris Lipinski’s popular rule of fi ve for general virtual library 
design. The Rule of 3 for fragment library design is as follows: 
MW ≤300, CLogP ≤3, number of H bond donors ≤3, number of 
H bond acceptors ≤3. Also usually the number of rotatable bonds 
is ≤3 and the polar surface area is ≤60 Å 2 . This is in contrast to 
Lipinski’s rule of fi ve, Ro5, for general virtual screening library 
design proposes MW ≤500; cLogP ≤5; number of H bond donors 
<+5; number of H bond acceptors ≤10. 

 When designing a fragment library, another measure of a 
ligand quality is the LE (Ligand effi ciency):

  LE deltaG HAC heavy atom count IC HAC ligand effici       / ln /RT 50 eency    

The group effi ciency is an estimation of a group’s contribution 
toward the overall free energy of binding (the heavy atom count 
(HAC) number in a particular group). The Ligand-lipophilicity 
effi ciency is often thought to be a better measure of successful frag-
ment design since lipophilic molecules have an increased change 
on binding to any drug pocket (LLE) LLE = pIC50 or pKi-cLogP 
(or LogD). 

 Fragment-based drug design is currently such a rapidly devel-
oping fi eld that it is often diffi cult remaining informed. There are 
two popular blogs which contain a wealth of information regard-
ing meetings, available fragment libraries, publications, and new 
developments in the fi eld: Dr. Daniel Erlanson’s (Carmot 
Therapeutics) and Dr. Edward Zartler’s (Quantum Tessera 
Consulting) Practical Fragments   http://practicalfragments.
blogspot.com/     and Dr. Peter W Kenny’s FBDD and Molecular 
Design (formerly FBDD Literature blog)   http://fbdd-lit.
blogspot.com/    . 

 The 3D Fragment Consortium (  http://www.3DFrag.org    ) has 
recently been established in the UK for not-for-profi t drug discov-
ery groups and currently includes as members—University College 
London, Structural Genomics Consortium, Institute of Cancer 
Research, University of Cambridge, Peterson institute for Cancer 
Research, Cancer Research Technology, Cancer Research UK, 
MRC, and University of Dundee Drug Discovery Unit. The con-
sortium has recently developed a tool 3DFIT = 3D Fragment Idea 
Tool to determine shape and predicted physicochemical properties 
of compounds, which is based on commercial software—Accelrys’ 
Pipeline Pilot tool and ChemAxon’s 3D conformation generator.  
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2    Identifying the Fragments and Developing Good Fragment Libraries: 
Computational Methods 

 Fragment libraries can be much smaller than typical large molecule 
virtual screen libraries (1,000–20,000 fragments) [ 5 ] .  Successful 
drugs have specifi c properties—low MW and low lipophilicity. 
Fragments usually have low ClogP and low MW, are weak in 
potency, but still form high-quality interactions with the target pro-
tein. Fragments overcome entropic barriers to bind to the target 
and form very high quality interactions. There are some basic 
requirements for a fragment library—all fragments must have aque-
ous solubility so that they can be screened at high concentrations; 
low logP biases a fragment library towards increased solubility. 

 Computational methods have tried to categorize, classify, and 
visualize chemical fragment space. Two dimensional (2D) molecu-
lar FPS (fi ngerprints) (MD keys, Daylight FPS, extended connec-
tivity FPs, and Unity 2D FPS), compared using Jaccard, Tanimoto 
coeffi cients, principal component analysis, or fi eld similarity meth-
ods have been used to compare molecules and are computational 
methods that can be used to describe diversity in chemical space. 
Jean-Louis Reymond’s group [ 6 ] (  http://www.gdb.unibe.ch/    ) 
has designed MQN (multiple quantum numbers) a simple classifi -
cation system for organic molecules based on only 42 integer value 
descriptors for molecular structure. Molecules are classifi ed by 
topological indexes such as atom and ring counts, cyclic and acyclic 
unsaturations, atoms and bonds in fused rings and electrostatic 
charges predicted for neutral pH, molecular size and H bond 
acceptor count, Lipinski’s bioavailability rules, Opera lead likeness 
rules and Congreve fragment likeness rules. Since fragment library 
composition is critical, computational methods for analysis of the 
chemical space available for fragments improves and facilitates frag-
ment selection. MQN classifi ers can then be used for similarity 
searches to enrich binding fragments tied to bioactive compounds. 
This method can also used to assess diversity of a library. 

 Jean-Louis Reymond has constructed a database GDB-13 
(updated and now called GDB-17) [ 7 ,  8 ] which contains 977 mil-
lion virtual organic molecules composed of C, N, O, S, Cl for gen-
erating a diverse comprehensive fragment library which was then 
analyzed using his MQN method to subdivide the database into 
255 characteristic subsets, and analyzed by principal component 
analysis using Jsci a publicly available code    http://jsci.scource-
forge.net    .     A searchable version of the GDB-13 (now GDB-17) 
database is available at   www.gdb.unibe.ch    . 

 Computational fragment positioning methods such as HSITE, 
HIPPO, GRID, MCSS, SPROUT, MUSIC, LUDI, and SuperStar 
have been used for over 20 years as early stage lead optimization 
techniques. These methods either determine binding site positions 
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for chemical functional groups based on molecular mechanics 
potentials, or determine hotspots on the target/receptor. Caveat 
and HOOK are computational fragment linking fi rst approaches. 
LUDI was a very early based computational scaffold replacement 
method [ 9 ] for ligand design based on fragments. Newer methods 
such as Recore, Allegrow, Confi rm, Med-Sumo, MOE scaffold 
replacement, and the CHARLIE/RACHEL Tripos package are 
used for linking and scaffold replacement. 

 Some computational fragment design methods have their ori-
gins in experimental X-ray techniques, such as the MCSS X-ray 
methodology pioneered by Drs. Dagmar Ringe, Gregory Petsko 
[ 10 ], and Carla Mattos where crystals were soaked with various 
organic solutes of small molecular weight to experimentally identify 
groups, which bound and could be incorporated into ligands, and 
linked to create tighter binders. SGX’s method FAST (Fragments 
of Active Structures) relies on X-ray crystallography with many 
library members containing bromine [ 3 ] to facilitate detection by 
crystallographic screening using the X-ray energy tuned to the bro-
mine absorption edge and its chemistry advantage (bromide acts as 
a leaving group in Suzuki coupling and related reactions). 

 SILCS (Site Identifi cation by Ligand Competitive Saturation) 
is a computational in silico method [ 11 ] ,  based on the experimen-
tal MCSS technique to detect multiple binding sites of fragments. 
Targets are computationally soaked in an aqueous solution of com-
pounds with drug like fragments. Then molecular dynamics (MD) 
is performed of the target protein in the presence of an aqueous 
solution of organic solutes. The probability of the fragments bind-
ing to different sites on the protein is obtained. The 3D probability 
distributions of the molecular fragments binding on the protein 
surface are called “FragMaps” (“hotspots” for binding). The 
SILCS method quantifi es relative ligand affi nities by converting 
the fragmaps into Grid Free Energies. Unrestrained MD simula-
tions can be performed as well to consider target fl exibility. With 
fragments there is signifi cant conformational changes and move-
ment on binding, with movements > 5 Å observed. 

 GRID interaction, MCSS (multiple copy simultaneous search) 
and SILCS (site identifi cation by ligand competitive saturation) are 
computational methods where the interaction between a variety of 
molecular probes and a receptor are energetically calculated to 
quantify the low energy-binding pocket. There are other computa-
tional fragment mapping programs, such as FTMAP [ 12 ]   http://
ftmap.bu.edu/login.php    . The FTMAP algorithm searches the 
protein surface for regions that bind small organic probe molecules 
using an FFT algorithm, and can be used to identify druggable 
binding hotspots on targets. These methods are more computa-
tionally intensive than other computational methods to geometri-
cally determine the ligand-binding pocket. 
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 Computational design of fragment libraries involves either ret-
rospective analysis (dissection) or forward de Novo design. In retro 
synthesis, an existing molecule with known activity is fragmented. 
Lead compounds are cleaved at acyclic bonds. The RECAP method 
is one of the fi rst computational retro synthetic combinatorial anal-
ysis procedures [ 13 ] and is implemented in the Open Source pub-
licly available RDKIT   http://www.rdkit.org/docs/api/rdkit.
Chem.Recap-module.html    . RECAP performs retro synthesis and 
can help identify building blocks in active molecules. These build-
ing blocks are often called “privileged structures.” RECAP frag-
ments molecules at 11 predefi ned bond types selected because they 
are formed by combinatorial synthetic methods. Other widely used 
fragment methods besides RECAP include Richard Cramer’s 
Tripos method ChemSpace [ 14 ], AllChem Topomer search [ 15 ] ,  
and Rarey’s FTtrees-FS—feature trees fragment space (available 
commercially from BioSolveIt) [ 16 ] .  Eugene Lounkine’s FragFCA 
[ 17 ] method identifi es fragments and fragment combinations for 
compounds having certain activity profi les. Bajorath’s MolBlaster 
[ 18 ] generates fragments based on molecular similarity relation-
ships. There are several other commercial fragmentation methods 
available—Flux, BioSolveIT’s ReCore, and Chemical Computing 
Groups MOE fragmentation method. In forward design, frag-
ments are constructed de novo. Vertex’s retro synthetic SHAPES 
library is an example of a simple organic framework. In silico de 
novo design and combinatorial libraries are built using prioritizing 
algorithms for assembly rules, considering molecular attributes and 
physicochemical properties. 

 FragVLib [ 19 ], (  http://www.unc.edu/~raed/FragVLib.zip    ) 
is a free database mining program for generating a “Fragment- 
based Virtual Library” using a pocket similarity search of ligand–
receptor complexes. Tools that mine databases of ligand–receptor 
complexes and can generate a library of fragments rely on a graphi-
cal representation of interfacial atoms for the ligand–receptor com-
plex. Interfacial atoms are nodes and the distances between them 
are edges. Pocket similarity matches are performed using a graph 
type match. The program written in C++ is available as freeware 
and downloadable. Once fragments are identifi ed another program 
FragVScreen can be used to search molecules that contain these 
fragments. 

 REOS (rapid elimination of swill) (Vertex) is used to fi lter a 
fragment database for desirable properties—solubility, MW, lipo-
philicity, polar surface area, number of rotatable bonds, and H 
bonding potential. Data mining workfl ows (Knime, Accelrys 
Pipeline Pilot, Taverna) are used to screen and fi lter compounds 
with substructure fi lters for toxicophores and other undesirable 
features and also to screen for halogen enriched fragments to take 
advantage of halogen bonding (viewed as a plus in ligand design). 
Workfl ows can be implemented as well, with diversity selection 
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algorithms—Similog keys, hole-fi lling algorithms for diversity 
selection of fragments. In drug discovery very often a diverse frag-
ment set is paired with a focused fragment set—usually from in 
silico virtual screening (i.e., computational docking or 3D pharma-
cophore analysis). 

 The National Center for Advancing Translational Sciences 
(NCATS) and National Chemical Genomics Center (NCGC) pro-
vides a group of free Java tools, called Tripod (  http://tripod.nih.
gov/    ) (Therapeutically  R elevant  I nformatics for  P rioritization, 
 O ptimization, and  D evelopment), which perform automated R 
group analysis and editing of scaffolds, a fragment activity profi le, 
a program, Siponify, for fragment searching, library synthesizer, 
scaffold activity diagram and scaffold hopper. Figure  1  illustrates 
the graphical interface for the R group analysis.  

  Fragment-based chemogenomics adds genomic information to 
inform the chemistry. It is a new method, which uses information 
from protein–ligand binding sites of genetically related protein 
family members to search all related proteins with the libraries of 

2.1  Some Newer 
Methods Applied 
to Fragment Design

  Fig. 1    This image illustrates the graphical interface for the R group analysis performed using the free Java 
tools, called Tripod (  http://tripod.nih.gov/    ) developed by NCATS and NCGC which perform automated R group 
analysis       
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small fragment like molecules. One example where this method 
was successfully applied has been to a family of 4 G-coupled recep-
tor and related adrenaline receptors [ 20 ]. 

 CANVAS HF (hole fi lling) [ 21 ] a new commercial method 
developed by Schrödinger, uses distances computed from 2D fi n-
gerprints to fi ll regions in a chemical library which are not repre-
sented, in order to add additional chemical diversity. This software 
uses a greedy selection algorithm, combined with simulated 
annealing to minimize nearest neighbor 2D fi ngerprint similari-
ties among structures selected with respect to an existing com-
pound library. 

 Virtual fragment screening using molecular fi ngerprints 
derived from fragment affi nity data is a novel method called FLAP 
(Fingerprints of Ligands and Proteins). FLAP uses four point phar-
macophores derived from molecular interaction fi elds to align mol-
ecules (GRID Molecular Interaction Fields)   http://www.
moldiscovery.com/soft_fl ap.php     [ 22 ]. 

 SERAPhiC is a fragment–protein dataset available developed 
from selected fragment–protein complexes. This is a test set which 
can be used for in silico protocol assessment and software develop-
ment   http://www.iit.it/en/drug-discovery-and-development/
seraphic.html     [ 23 ]. 

 Fragment-based shape descriptors can be generated using a 
Connolly rolling probe sphere. An updated triangular form is 
used (  https://www.artemisdiscovery.com/    ) for a fragment-based 
shape signature implementation method. Shape signatures can be 
used to screen databases and can produce hits active against a 
target. Since the method does not involve chemical structure, it 
allows for identifi cation of novel chemical classes and modulators 
of drug targets and performs novel scaffold hopping. This method 
has been used to compute shape signatures for the ZINC data-
base [ 24 ]. 

 S4MPLE [ 25 ] (Sampler For Multiple Protein–Ligand 
Entities), along with two Java programs, Genlinkers DB and 
JmolEvolve, (based on the ChemAxon API) is a fragment-based 
ligand design method that performs conformational sampling 
using a genetic algorithm and suggests fragment growth using 
bridging waters. S4MPLE (x86_64) can be uploaded from 
  http://infochim.u-strasbg.fr    ; however, a license is needed for the 
ChemAxon (commercial software) growth/linking tools. 
GenLinkers and JMolEvolve “evolve” compounds by starting 
with lead like and drug like fragments to create a library. 
GenLinkers creates linkers using RECAP-like rules and methods 
and JMolEvolve generates new molecules by combining the frag-
ments in the database with the GenLink generated linkages. 
Many useful software tools for fragment-based design are avail-
able and are compiled on websites, as shown in Table  1 .
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3        Growing, Linking and Evolving Fragments 

 Once candidate fragments are identifi ed from a library they are 
merged or linked together, adding functionalities to increase bind-
ing and selectivity. When linking fragments the LE (ligand effi -
ciency) and affi nity should be greater than the sum of binding free 
energy of the two-parent fragments—referred to as the “super-
additivity” of fragment binding energies. Computational fragment 
linking is very diffi cult and often what is proposed from computa-
tional studies is not synthetically feasible. Privileged-fragment 
merging involves recognizing fragments inside larger molecules, 
pharmacophore modeling and overlays of X-ray structures. 
Merging of fragments identifi ed through screening can be per-
formed with cocrystal structures of multiple fragments overlaid. 
It is important when merging fragments not to make major changes 
to the core scaffold. 

 The binding modes of the parent fragments must be main-
tained on linking. SPROUT [ 26 ] (  http://www.simbiosys.com/
sprout/overview.html    ), marketed by Symbiosis, uses steric electro-
static H bonds, dispersion or van der Waals, and hydrophobic inter-
actions as constraints when adjoining templates. Other common 
commercial software for designing linkers between two fragments 
includes CCG MOE, BioSolveIt Recore, and ChemAxon Reactor. 
GANDI [ 27 ] (Genetic Algorithm-based de Novo Design of 
Inhibitors) is a fragment-based method that generates leads by join-
ing predocked fragments with linkers using a parallel genetic algo-
rithm. Predocked fragments are encoded by the genetic algorithm, 
and linker fragments are evaluated using lookup tables (tabu search). 
GANDI (  http://www.biochem-cafl isch.uzh.ch/ download/    ) is 
available for download free to nonprofi ts. 

   Table 1  
  Many useful software tools for fragment-based design are available and are compiled on these 
websites   

 Description  Website 

 Bruno Villoutreix’s group has compiled 
a list of useful computational 
fragment-based drug design tools 

   http://www.vls3d.cm/links.html     

 O’Boyle, Linux4Chemistry    http://www.redbrick.dcu.ie/~noel/linux4chemistry    ; 
  http://www.linux4chemistry.info/     

 Drs Zoete and Grosdidier, Click2Drug    http://www.click2drug.org/     

 Dr Sung Kwang Lee    http://www.qspr.pe.kr/my/index.php     

 Etox Library    http://cadd.imim.es/etox-library     
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 Fragment evolution and optimization can be built around a 
well-characterized target or existing SAR (Structure–Activity 
Relationship), or 3D QSAR (CoMFA and CoMSIA). A selected 
fragment can be grown by doing a QSAR search and picking mol-
ecules similar to the identifi ed fragment. The SAR results for two 
sites are applied for fragment screening. Suitable fragments 
obtained were added to a scaffold, and then docked and the activ-
ity predicted by the 3D CoMSIA model [ 28 ]. Docked poses are 
then compared to crystal structures of the fragment with the tar-
get. The fragment-linking step can involve several different types 
of chemistry. 

 Autogrow [ 29 ] from MacCammon’s group   http://autogrow.
ucsd.edu/     is a free open source software, which optimizes candi-
date ligands using rules of “click chemistry.” The program grows 
fragments using an evolutionary algorithm and discards non-drug 
like candidates. Autogrow 3.0 contains autoClick Chem [ 30 ] reac-
tions (  http://autoclickchem.ucsd.edu    ) programmed into it so that 
unlike previous versions designed molecules from fragments are 
synthesizable in a practical way. The program has Lipinski’s rules 
embedded so it only designs drug-like molecules. 

 BREED [ 31 ] is a computational method for fragment merging 
which is widely employed. SPLICE and BREED mix and match 
sets of overlaid 3D X-ray structures using combinatorics. BREED 
uses “Fragment Shuffl ing” and aligns 3D coordinates of two 
ligands and recombines the fragments or substructures at overlap-
ping bonds to generate new hybrid molecules. MED-hybridize 
and FLUX are other 3D ligand-based methods. MED-hybridize 
relies on ligand structural information from the PDB (Protein 
Databank). FLUX uses a stochastic search algorithm for combina-
torics. LigMerge [ 32 ] is an automated algorithm for swapping 
chemical substituents in known ligands to generate new ligands. 
It identifi es common substructures in ligands and superimposes 
two substructures and then scrambles them at each atom to gen-
eral multiple compounds related to the known inhibitors. This is a 
stand-alone ligand-based tool that does not require knowledge of 
the receptor structure unlike BREED, and is available for down-
load (  http://www.nbcr.net/ligmerge    ). 

 Fragment tethering-the formation of a disulfi de bond between 
the fragment and a cysteine residue in the target protein is an addi-
tional novel method. Ideally linkers would not perturb the optimal 
binding geometry of the fragments and not have conformational 
fl exibility so that they would not increase the entropy of binding. 
Free energies of binding shows that fl exibility and linker strain can 
have an impact on binding affi nity [ 33 ]. A new approach uses a 
piece of the full substrate fragment that is still binding competi-
tively, and the substrate fragment is modifi ed with a chemical “han-
dle” to connect via variable length linker to a random fragment 
library. 
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 CONFIRM (connecting fragments found in receptor  molecules) 
(Wyeth) [ 34 ] is a pre-prepared library of linkers searched to match 
criterion found from experimental or computational studies about 
fragments within the target binding site. Other computational tools 
available for growing fragments include; SPROUT, LEGEND, 
LUDI, GROWMOL, LigBuilder, SkelGen, and SMoG. Techniques, 
which favor the linking approach vs. growing approach, are LUDI, 
HOOK, PRO_LiGAND, LigBuilder, SPLICE/RACHEL, and 
CAVEAT. Linking fragments positions them in the target-binding 
site and connects them to each other by designed linkers to con-
struct a compound that satisfi es signifi cant interactions with the tar-
get. Many of these methods search databases of bridges using 
substrate pattern search functions, with a given set of distances 
between attachment points and atoms used to form the query to 
search the linker database. The linkers found are than joined using a 
combinatorial method. Once fragments are linked, computational 
docking of molecules is performed, computing strain energy of 
docked poses. 

 ReCore [ 35 ] is a popular commercial software (BioSolveIT), 
which performs scaffold hopping, and fragment linking (  http://
www.biosolveit.de/ReCore/index.html?ct=1    ). The Recore 
approach is to use a database of 3D molecular structures converted 
into a fragment database. Given the geometric arrangement of two 
or more exit vectors and a pharmacophore feature, the algorithm 
fi nds 3D fragments within the database, generated by combinato-
rial analysis of 3D compound libraries, fulfi lling all constraints. The 
fragmentation method is similar to RECAP, in terms of the rules 
considered for generating fragments-no cut points within ring 
fragments, with rules usually cutting C–C, C–O, C–N, and C–H 
bonds in specifi c environments. 

 Scaffold hopping or lead hopping where the central part of 
known active molecule is varied instead of an R group is often used 
to improve ADME properties, and avoids structures with strained 
conformations. Programs which perform scaffold hopping include 
CAVEAT, BROOD, sparkV10, Core Hopping, SHOP, Scaffold 
Replacement, PraFrag, and the OECHem toolkit C++ Web appli-
cation [ 36 ] .  CAVEAT was one of the fi rst and premiere programs 
designed to do scaffold hopping and is licensed and available 
through Paul Bartlett’s group at UC Berkeley (  http://www.cchem.
berkeley.edu/pabgrp/Data/caveat.html    ). CAVEAT searches a 
database of geometric relationships using bond pairs. 

 NCGC developed Scaffold Hopper, a freely available tool for 
automated R-group analysis (Fig.  2a  is an illustration of the graphi-
cal interface for the Scaffold hopper as well as graphical  visualization 
tools (Fig.  2b ) available for scaffold activity analysis). It is a 
 self-contained Java web start application.   https://tripod.nih.gov/
ws/hopper/hopper.jnlp    . The software generates “reasonable” 
R-group tables for a given dataset and performs Scaffold-based 
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  Fig. 2    ( a ) This is an illustration of the graphical interface for the NCGC Scaffold hopper, a freely available tool 
for automated R-group analysis (  https://tripod.nih.gov/ws/hopper/hopper.jnlp    ) as well as graphical visualiza-
tion tools ( b ) available for scaffold activity analysis. (sad.jnlp) is downloadable from   http://tripod.nih.gov     and 
can perform a network oriented view of fragment/scaffold collections       
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“clustering” of the data. The NCGC scaffold activity diagram (sad.
jnlp) is downloadable from   http://tripod.nih.gov     can perform a 
network oriented view of fragment/scaffold collections.  

 The SAMPL3 Challenge [ 37 ] was a public competitive chal-
lenge initiated to evaluate performance of fragment-based design 
methodology. Statistical Assessment of the modeling challenge at 
(  http://sampl.eyesopen.com/    ) method-input summarizes how 
incorporation of different modeling techniques impacts the predic-
tion accuracy including protein dielectric models and charged vs 
neutral ligands. The linker problem is a signifi cant one in fragment- 
based ligand design. Linking close fragments depends on bond 
length and angle strain and high-energy conformations can be cre-
ated and electronic properties change. Simulated annealing of rigid 
fragments does not answer these problems, and new techniques, 
such as constrained fragment annealing (CFS) must be performed.  

4    ADME Properties and Fragment-Based Design 

 Fragments from large collections can also be used to generate 
models for QSAR studies, and as fi lters and scaffolds, and to 
explore chemotypes. Using fragment libraries to predict drug tox-
icity is a way to minimize expensive drug failures and to identify 
potential toxicity early in the drug discovery process. An extension 
of the use of QSAR methods for toxicity prediction is the use of 
fragments for predicting lead compound toxicity. Toxicity predic-
tion algorithms frequently fragment molecules as they are based on 
the idea that the toxicity of a molecule is associated with particular 
structural motifs or groups within a compound—a defi ned “toxi-
cophore” or chemotype [ 38 ]. A computational screening approach 
using compound fragment toxicophores was able to identify and 
classify mutagenic compounds with an error rate of 18 %—on the 
order of that of the experimental Ames test (with an error rate of 
15 %). Fragmentation-based statistical analysis of toxicity databases 
has been performed to fi nd substructure fragments, which are 
common and frequently found in toxic compounds and drugs. 
One group [ 39 ] used fragments from the Registry of Toxic Effects 
of Chemical Substances database (RTECS) as a training set. Use of 
a fragment-based toxicity predictor enables extension of experi-
mental drug-like compound toxicity data since experimental data is 
only available for a small subset of compounds. 

 Fraggle, [ 40 ] the fragment store dataset is a database (  http://
bioinf-applied.charite.de/fragment_store/    ) that provides property 
information (charge, hydrophobicity, and binding site preferences) 
and performs statistical analysis and can view the IDS of drugs and 
toxic compounds, which contain the fragments. This website also 
has a fragment assembler. The database is based on the fragmenta-
tion of metabolic compounds, toxic compounds, and drugs, with 
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binding site preferences determined for each fragment using PDB 
(Protein Data Bank) structures. Often there is no shared overlap 
between the dataset of metabolic compounds compiled from 
KEGG [ 41 ] and the SuperDrug drugs [ 42 ] and SuperToxic data-
base (  http://bioinformatics.charite.de/supertoxic/    ) drugs, until 
they are fragmented and then there is a great deal of overlap of the 
fragments derived from these three databases [ 43 ] .  

 There are useful techniques to assess toxicology and chemical 
risk assessment based on fragment substructural analysis. 
MULTICASE (  http://multicase.com/    ) predicts carcinogenicity 
and toxicity on linear fragments, identifi cation and use of substruc-
ture toxicophores, based on the recognition of chemical features 
and molecular descriptors. Substructures can predict specifi c com-
pound activities, such as confer bitter taste, predict CNS activity, 
and predict plasma permeability. 

 Fragment design can be used in a negative way in that struc-
tural alerts and model building features in programs such as 
Leadscope, Derek, and ToxTree [ 44 ] can be used to determine 
structural features and fragments to omit from fragment libraries. 
Leadscope can be used to fi lter fragments according to nine global 
molecular properties (A log P; H bond acceptors and donors; 
Lipinski Score, MW, Parent atom count, polar surface area, rotat-
able bonds) and the compounds. Leadscope contains 27,000 
structural fi ngerprint features, which can be used for clustering and 
activity prediction of fragments, structure and similarity searching. 
The program has a recursive-partitioning algorithm to classify 
structural fragment subsets within a database and simulated anneal-
ing can be sued to fi nd statistical correlations within the subset 
based on the presence of sub structural features. Leadscope can 
therefore be used to break down molecules into structural frag-
ments and then use them for dynamic scaffold generation.  

5    Conclusion: Successful Drugs from Fragments 

 Tipranavir (HIV protease inhibitor) reached the market in 2005 
and was recognized as one of the fi rst drugs developed by structure- 
based drug design starting from a fragment-based approach. 
In 2011, Vemurafenib (B-Raf inhibitor) reached the market [ 45 ]. 
Plexxikon’s Vemurafenib, a selective inhibitor of mutant kinase 
B-Raf (V600E) was the fi rst drug developed by fragment screening 
and optimization. Beginning with a screen of diverse 20,000 frag-
ment scaffold like compounds (MW 150–350 kDa) with activity 
assays performed at 200 μM (very high) concentrations, and with 
less than 8 H bond donors and acceptors. Seven azaindole frag-
ments were found that inhibited three kinases PIM1, p38, and 
CSK by 30 %. The fragment was incorporated into a 3- aminophenyl 
analog and then inhibited PIM1 kinase in a single binding mode. 

Rachelle J. Bienstock

http://bioinformatics.charite.de/supertoxic/
http://multicase.com/


133

 Computational methods in fragment-based drug design have 
proved to be successful in their application to numerous 
targets—kinases, proteases, dehydrogenases. Plexxikon (indegli-
tazar, PLX- 4032), Abbott/AbbieVie (ABT 263, ABT518, 
ABT869, ABT737), Astex (AT9283, AT7519), Lilly/Protherics 
(LY517717), Vernalis/Novartis (VER52296/NVP-AUY-922), 
deCODE/Emerald (DG051), Locus (LP261) and SGX 
(SGX523), and Sunesis (SNS314) are all examples of drugs 
developed by fragment methods in clinic or development. Over 
the last 10 years fragment-based drug design has led to 50 small 
molecule hits that have advanced to lead structures [ 46 ] .  

 In conclusion, computational fragment-based methods have 
demonstrated that they provide for greater diversity in compound 
hit development. Astek, Vernalis, Evotec, and Abbot all have had 
Hsp90 inhibitor development programs utilizing fragment-based 
drug design and although both Vernalis and Astek had initial phe-
nol and resorcinol fragment hits, evolution of these fragment hits 
have taken very different paths even when similar initial fragment 
hits are identifi ed indicating the value of fragment-based drug 
design in providing for compound diversity [ 47 ]. More novel 
computational fragment-based methods will facilitate further drug 
design in the future.     
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    Chapter 11   

 Design Strategies for Computational Fragment-Based 
Drug Design 

           Zenon     D.     Konteatis    

    Abstract 

   The computational design method described in this chapter is an approach to de-risking the design process 
due to the limitations of current computational algorithms with respect to predictive accuracy. The method 
takes advantage of the crystallographically demonstrated interactions between a ligand and its protein 
target, and through systematic, one fragment replacements allows for quick feedback on the direction of 
the designs. This design approach can still be useful in the future as computational algorithms improve and 
become more predictive and reliable.  

  Key words     Computational fragment-based design  ,   Design strategies  ,   Molecules from fragments  , 
  Fragment designs  ,   Fragment evolution  ,   Chemotype evolution  ,   Molecular evolution  

1      Introduction 

 Structure-based drug design (SBDD) approaches have become 
well established in drug discovery over the last 25 years [ 1 – 4 ] and 
have contributed to the successful introduction of more than 40 
New Chemical Entities (NCEs) in clinical trials [ 5 ] and eleven 
marketed drugs [ 6 ]. Most pharmaceutical and biotechnology com-
panies have SBDD departments incorporating X-ray crystallogra-
phy, NMR, and computational groups, and recently many academic 
laboratories have developed this discovery capability [ 7 ]. 

 Experimental fragment-based drug design (experimental 
FBDD) emerged in the late 1990s as a new approach to drug dis-
covery [ 8 ], and it has gained wide acceptance over the last fi fteen 
years as multiple pharmaceutical and biotechnology companies and 
academic institutions have incorporated experimental FBDD in 
their research capabilities [ 9 ]. Multiple NCE’s developed by the 
use of experimental FBDD have reached clinical trials [ 9 ] and one 
of them was approved by the FDA in 2011 [ 10 ]. Experimental 
FBDD requires specialized methods such as NMR, X-ray crystal-
lography, mass spectroscopy, surface plasmon resonance (SPR), 
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tethering, isothermal calorimetry (ITC), and high concentration 
assay (HCA) screening to detect the weak affi nity of fragments for 
their protein targets [ 11 ]. 

 Computational technologies developed over the last three 
decades have contributed to the success of SBDD and have been 
recently adapted to establish computational fragment-based drug 
design (computational FBDD) [ 12 ,  13 ]. Computational FBDD 
methods use the same principles established for experimental 
FBDD and are beginning to aid in the successful design of FBDD- 
based inhibitors for a variety of pharmaceutical targets [ 13 ]. In this 
chapter we discuss various strategies employed in designing ligands 
for specifi c protein targets starting with a co-crystal structure, irre-
spective of the specifi c computational software used.  

2    Materials: Strengths and Limitations of Computational Software Programs 
for Drug Design 

 A variety of available computational software programs that enable 
docking or energy minimization of a ligand in the protein binding 
site (e.g., CCG’s MOE, Schrödinger’s Glide, GOLD, FLEXX) can 
be used to prosecute the design approaches described in this chapter. 
A crystal structure of a ligand with a known binding affi nity for the 
protein target is also necessary to enable these design strategies. 

  A number of computational methods have been used in computa-
tional SBDD and FBDD with varying degrees of success in select-
ing or designing drug-like compounds. A variety of investigations 
on the accuracy of these methods [ 14 – 17 ] have led to the conclu-
sion that current software generate ligand conformations and 
binding poses similar (<2 Å rmsd) to the ones observed in co- 
crystal structures. Predicting the correct binding mode of ligands 
and fragments is of great value in FBDD, especially when com-
bined with experimental FBDD to focus the number of fragments 
or ligands to be examined by a biophysical method such as NMR 
or crystallography [ 13 ].  

  The same studies also demonstrated that docking programs with 
scoring functions do not predict ligand binding affi nities or rank 
order ligands correctly [ 14 – 17 ]. When applied to a congeneric 
series of compounds interaction energies showed a modest correla-
tion ( r  2  of 0.7) with experimental affi nities [ 18 ], establishing the 
upper limit of prediction for current algorithms. This accuracy limi-
tation can be attributed to the absence of a robust solvation treat-
ment and the lack of full accounting for the entropy effects of both 
the ligand and the protein. Several methods with more  rigorous 
physical treatment of the thermodynamic cycle, such as free- energy 
perturbation (FEP) [ 19 ], thermodynamic integration (TI) [ 20 ], 

2.1  Binding Pose 
Accuracy

2.2  Affi nity 
Prediction Limitation
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and grand canonical Monte Carlo (GCMC) [ 21 ] simulations have 
the potential to generate more quantitatively accurate rank ordering 
of ligands. However, to date not enough data have been reported 
in the literature to make a proper assessment. This inaccuracy in 
rank ordering predicted affi nities of virtual compounds hampers the 
practical application of computational FBDD and SBDD and has 
limited virtual screening campaigns in SBDD to just enrichment of 
active compounds over inactive ones [ 22 ,  23 ].  

  One of the challenges that computational fragment-based design 
strategies face is the prediction of binding modes [ 21 ,  24 ]. In gen-
eral the energy difference between two binding modes for a frag-
ment are much smaller than that seen for full molecules and this 
gives rise to multiple binding modes for fragments [ 25 ]. However, 
predicting not only the lowest energy pose but other reasonable 
poses can be a true strength in this strategy as these other poses 
may be better suited for building full molecules by joining or link-
ing with nearby poses of other fragments [ 13 ].   

3    Methods: General Design Strategies 

 A large number of computational design methods have been 
described in the literature with varying degrees of success. The 
methods discussed herein have proven to decrease the risk of 
design failure to an extent that overcomes the limitations men-
tioned in Subheading 2. 

  Computational FBDD is based on many of the same concepts that 
experimental FBDD has used successfully: starting with small 
chemical building blocks (fragments) both methods try to build 
novel compounds with “drug-like” characteristics by growing, 
directly joining, or linking fragments as shown in Fig.  1 .  

 Computational FBDD methods that can dock a number of 
fragments independently in the binding pocket of the target pro-
tein (receptor) can easily implement both linking and growing 
approaches. Other methods that only dock one fragment at a time 
can also be used by fi rst docking a key fragment and then evolving 
this fragment by building extensions or joining a second fragment 
and re-docking the combined two fragment molecule and so on 
until the full molecule is elaborated.  

  Early de novo design and Virtual Screening approaches relied 
exclusively on computation and the inaccuracy of scoring functions 
led to limited success as already discussed. In this section we will 
show that incorporating experimental data in computational 
fragment- based design approaches can both complement and de- 
risk the process. 

2.3  Multiple Binding 
Modes for Fragments

3.1  FBDD Similarities 
and Builds

3.2  Knowledge- 
Based 
(Pharmacophore) 
Screening

Design Strategies 
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 A number of studies have demonstrated that virtual screening 
can provide successful lead molecules when combined with a 
pharmacophore- directed search, especially when the pharmaco-
phore is based on a co-crystal structure of a ligand with its recep-
tor. Many examples exist in the area of kinase inhibition [ 13 ,  15 , 
 18 ], and one such example is illustrated in Fig.  2 , with TGF-beta 
kinase. A crystallographic starting point (PDB code: 2WOU) is 
used to generate a pharmacophore query aimed at the protein–
ligand hinge binding interactions and the virtual screening identi-
fi es molecules that contain such binding motifs and fi t the protein 
binding pocket at least geometrically.   

  Computational approaches can be made more successful by adding 
knowledge-based experimental information to the design process. 
The pharmacophore example explained above demonstrates that 
most computational algorithms, which are very good at producing 
meaningful poses [ 14 – 17 ], and if combined with experimental 
data can generate designs that are very productive. We term this 
process Computational Fragment-Based Design Evolution 
(cFBDE). This is composed of four key steps that take the designs 
from a known ligand to novel compounds. 

  At the center of this method is the availability of experimental data 
for the system of study, especially a co-crystal structure of an active 
molecule in the binding pocket of the protein target. We use the 
co-crystal structure as a  normalizing factor  to de-risk the designs 

3.3  Computational 
Fragment-Based 
Design Evolution 
(Chemotype Evolution)

3.3.1  Co-crystal 
Structure as a  Normalizing 
Factor  and Relative (Not 
Absolute) Designs

  Fig. 1    Fragment-based drug design: linking, growing. Linking: ( a ) Fragment 1 binds to the target protein at site 
1; fragment 2 binds at an adjacent site 2. ( b ) Fragments 1 and 2 are joined together by a linking group that 
generates a molecule which spans both sites (adapted from ref.  26 ). Growing: ( c ) Fragment 1 binds to the 
target protein at site 1; ( d ) a second fragment is joined directly to fragment 1; ( e ) and the molecule is com-
pleted by growing into site 2       
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and thus produce  relative  designs  not absolute  designs. By using the 
known inhibitor and its interactions with the protein, we start with 
 real interactions  which then can be the  reference point  for compu-
tational comparisons with other computationally driven interac-
tions. Thus, computationally reproducing the co-crystal ligand 
binding pose becomes the fi rst step in this process.  

  The co-crystal structure ligand is considered to be composed of a 
number of fragments. One of these fragments is replaced by 
another fragment while the rest of the ligand remains the same; 
this enables fragment optimization without changing the linking 
scheme, thus avoiding one of the most diffi cult steps in fragment- 
based design. Each fragment in the molecule is replaced indepen-
dently to generate multiple new subclasses of the original ligand, as 
illustrated in Fig.  3a–d . Multiple fragment replacements can be 
tried, and the best are carried forward.   

  During this fragment replacement, new interactions with the pro-
tein may be targeted with the new fragment, as seen in Fig.  3b , 
thus creating new, pharmacophore-driven extensions that have a 
very good chance of adding affi nity to the molecule produced.  

  Once multiple optimized fragments are produced for each posi-
tion, they can be recombined to generate completely new classes of 
compounds as depicted in Fig.  3e . These molecules are novel 

3.3.2  Stepwise Fragment 
Replacement Strategy 
to Address Computational 
Limitations

3.3.3  Pharmacophore- 
Driven New Interactions 
(Extensions)

3.3.4  Design 
Recombination to De 
Novo Designs

  Fig. 2    Pharmacophore selection for TGF-beta. Hydrogen bond acceptor ( cyan ) 
and donor ( magenta ) pharmacophoric elements are generated to direct the 
 virtual screening to identify molecules that will bind to the hinge region of TGF-
beta kinase (PDB code 2WOU). Figure generated in MOE [ 27 ]       
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  Fig. 3    Stepwise fragment replacement generates new subclasses of ligands. Recombination leads to new 
chemotypes equivalent to de novo designs. ( a ) Crystallographic ligand composed of four fragments is fi rst 
reproduced computationally in the protein binding pocket by docking or other algorithm in use; ( b ) fragment 1 
is extended 1′ to add a new, nearby interaction with the protein (fragment optimization or extension); ( c ) frag-
ment 2 is replaced by another fragment 2′ (scaffold hopping); ( d ) fragment 4 is optimized to fragment 4′; ( e ) 
recombining all the new, successful individual replacements produces a new, novel class or chemotype (de 
novo design)       
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classes that are the equivalent of de novo produced designs but 
with much less computational risk. 

 The cFBDE process is illustrated above in Fig.  4  with an exam-
ple from the TGF-beta reported literature. Each replaced fragment 
is highlighted and the stepwise process depicted by arrows.     

4    Conclusion 

 The overall design strategy described here is a reliable and effi cient 
method of generating new, novel chemotypes starting with a 
known ligand and its co-crystal binding site. The method can be 
also used in cases where a co-crystal structure is not available but a 
reasonable receptor homology model can be built using experi-
mental information of related protein class members and a few 
ligands with known structure–activity relationship (SAR) in the 
compound class of interest. In the case where an apo crystal struc-
ture is available, but not a co-crystal with a ligand, then careful 
docking experiments can be used to set up a reasonable model of 
the ligand binding site in the receptor by analogy to similar recep-
tors with known ligand binding sites. Thus, this methodology can 
be applied in many cases involving most receptor classes where 
members of the class have produced some co-crystal structures. 

  Fig. 4    Design process generates potent TGF-beta inhibitors. ( a ) A crystallographic ligand with IC50 of 94 nM 
was redesigned fragment ( b ) by fragment ( c ) and ( d ) to produce a recombined inhibitor ( e ) with 14.3 nM affi nity 
for TGF-beta. Scaffold hopping by changing the imidazole fragment to a pyrazole ( f ) and re-optimizing the 
hinge binding fragment ( c ) gave a new compound class with 4 nM affi nity       
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    Chapter 12   

 Protein Binding Site Analysis for Drug Discovery 
Using a Computational Fragment-Based Method 

           Jennifer     L.     Ludington    

    Abstract 

   One of the most powerful tools for designing drug molecules is an understanding of the target protein’s 
binding site. Identifying key amino acids and understanding the electronic, steric, and solvation properties 
of the site enables the design of potent ligands. Of equal importance for the success of a drug discovery 
program is the evaluation of binding site druggability. Determining, a priori, if a particular binding site has 
the appropriate character to bind drug-like ligands saves research time and money. 

 While there are a variety of experimental and computational techniques to identify and characterize 
binding sites, the focus of this chapter is on Binding Site Analysis (BSA) using virtual fragment simulations. 
The methodology of the technique is described, along with examples of successful application to drug 
discovery programs. BSA both indicates if a protein is a viable target for drug discovery and provides a 
roadmap for designing ligands. Using a computational fragment- based method is a effective means of 
understanding of a binding site.  

  Key words     Protein binding site  ,   Binding site analysis  ,   Fragment-based drug design  ,   Structure-based 
drug design  ,   Binding site identifi cation  ,   Binding site characterization  ,   Druggability  

1      Introduction 

 Understanding protein binding sites is the basis of structure- based 
drug design. A binding site is a region on a protein where another 
molecule interacts. A binding site may be the interface of a pro-
tein–protein interaction, a region where a ligand co-factor binds, 
or the catalytic pocket of an enzyme in which a molecule is cleaved 
or modifi ed. A drug molecule is intended to affect the function of 
a protein in vivo, so it must either bind in a region overlapping 
with that of the natural ligand (to either mimic or inhibit that 
ligand), or in an allosteric pocket that affects the shape of the natu-
ral ligand’s binding site. A protein is considered to be druggable as 
defi ned by Hopkins and Groom if a ligand with “drug-like” prop-
erties (i.e., orally bioavailable) can bind with high affi nity and if 
modifi cation of the protein’s function positively affects a disease 
state [ 1 ]. The presence of a druggable binding site is a determining 
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factor for whether or not a protein is a viable target for drug dis-
covery. The knowledge that a protein lacks a druggable binding 
site early in a drug discovery project frees a research team to pursue 
alternative targets.  

2    Methodologies for Binding Site Analysis 

  Binding Site Analysis (BSA) is a two stage process, consisting of an 
identifi cation stage in which potential ligand binding sites are 
located and a characterization stage in which the identifi ed sites are 
evaluated for druggability. Various experimental and computa-
tional techniques have been developed for binding site identifi ca-
tion and druggability determination as discussed extensively in 
recent reviews [ 2 – 5 ]. Some techniques are only applicable to the 
identifi cation stage, while other methods like fragment-based 
approaches, give insight into both stages of BSA. 

 The most defi nitive method of determining where a ligand 
binds is by experimentally determining the 3D structure of a pro-
tein–ligand complex, but this approach requires a ligand for each 
binding site to be located. Three general approaches to computa-
tional binding site identifi cation that do not rely on knowledge of 
the ligand are geometric, energy-based, and fragment- based meth-
ods. A 2010 study by Schmidtke et al. [ 6 ] evaluated the perfor-
mance of four algorithms with a large-scale data set; the geometric 
algorithms SiteFinder [ 7 ] and fpocket [ 8 ] and the energy- based 
methods SiteMap [ 9 ,  10 ] and PocketFinder [ 11 ] were compared. 
The techniques performed similarly when evaluating the 5 highest-
scored pockets for  holo  structures; all had a 95 % or higher success 
rate of identifying a true binding site [ 6 ]. The sucess rate of the 
methods for identifying the known site as the fi rst ranked pocket 
was between 70 and 82 % for  holo  structures and between 42 and 
80 % for  apo  structures [ 6 ]. It appears to be more diffi cult to iden-
tify the binding sites of apo structures and yet this is where the 
computational methods are needed the most. 

 The computational fragment-based approach to BSA used in the 
Locus Pharmaceuticals Core Technology (LCT) [ 12 ,  13 ] is analo-
gous to the experimental methodology, Multiple Solvent Crystal 
Structures (MSCS), developed by Ringe and coworkers [ 14 – 16 ]. 
With the MSCS method, X-ray structures are solved for protein crys-
tals after they are equilibrated in an organic solvent. Superimposing 
the crystal structures from various solvent soaks overlays the binding 
locations of the different solvent molecules. The region where many 
types of solvent molecules cluster, irrespective of size and polarity, is 
indicative of a binding site. Ringe also reported three categories of 
water molecules: tightly bound or structural waters that were present 
in all structures, partially ordered waters that were only present in 
one of the structures, and fully disordered waters that could not be 
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resolved in any of the crystal structures [ 14 ]. The waters observed in 
the sites where different organic solvent molecules overlapped were 
of the second type, displaceable and unlike fully disordered water 
capable of gaining entropy when displaced [ 14 ]. 

 The LCT-BSA methodology is based on Grand Canonical 
Monte Carlo (GCMC) simulations of fragments with a protein, as 
presented in detail in previous publications [ 17 – 19 ]. Similar to 
MSCS, the simulations begin with saturating the protein simula-
tion cell with a solvent of an organic fragment [ 17 – 19 ]. Both the 
fragment and the protein are treated as rigid bodies, so multiple 
conformations of fl exible fragments are simulated individually [ 17 –
 19 ]. As the simulation progresses, a unitless parameter B (related 
to the excess chemical potential in the system) is lowered, causing 
fragments to leave the protein simulation box until only the 
 tightest-binding fragments remain [ 17 – 19 ]. A diverse set of probe 
fragments including water is simulated, and the results of the sepa-
rate simulations are combined [ 2 ,  20 ,  21 ]. These fragments are 
small to prevent steric exclusion from legitimate pockets [ 18 ]. The 
probe fragments represent the different types of interactions a 
ligand can have with a protein: hydrogen bond donor (HBD), 
hydrogen bond acceptor (HBA), aliphatic hydrophobic, and aro-
matic [ 21 ]. Examples of probe fragments for identifying binding 
sites are shown in Table  1 . Putative binding sites are located where 
the different fragment types cluster with high binding affi nity, iden-
tifying a hotspot [ 2 ,  20 ,  21 ]. (The term hotspot was coined to refer 
to amino acids whose interactions provide most of the binding 
affi nity in protein–protein interactions [ 22 ]. The term is general-
ized here for protein–ligand interactions.) For a hotspot to repre-
sent a binding site, the waters in this region must be less tightly 
bound to the protein than the other fragments are [ 20 ,  21 ]; they 
should be analogous to the type II waters of MSCS [ 14 ].

   The accuracy of the GCMC calculations comes at a 
 computational expense that makes it unrealistic to test with the 
large data sets used to validate faster techniques. However, this 
approach has been successful for the limited set of test cases used. 
Anecdotal evidence from drug discovery programs has also 
 demonstrated success. Data have been published on the identifi ca-
tion of binding sites for dihydrofolate reductase (DFHR) and 

   Table 1  
  Example probe fragments used for binding site identifi cation   

 Acetamide  Dimethylsulfoxide  Methanol 

 Acetone  Ethane  Methylamine 

 Benzene  Ether  Pyrimidine 

 Carboxylic acid  Imidazole  Urea 

Fragment-Based BSA
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human immunodefi ciency virus aspartic protease (HIV protease) 
[ 2 ]. A calculated hotspot that was identifi ed on DHFR by a com-
putational fragment cluster was found to be located in the same 
region of the protein where an electron is transfered from nicotin-
amide adenine dihydrogen phosphate (NADPH) to 7, 8-dihydro-
folate (DHF) [ 2 ]. In the case of HIV protease, fragment probes 
simulated with a mutant form of the protein predicted that the 
extended dimer interface is a signifi cant binding region [ 2 ]. The 
result was consistent with the overlay of the experimental binding 
positions of six HIV protease inhibitors [ 2 ]. Binding locations and 
binding free energies were calculated for T4 lysozyme [ 18 ], which 
has a tight, induced pocket for small organic molecules. All but 3 
of the 14 test molecules were found in the binding site and the 
calculated lowest energy pose for each found molecule was in good 
agreement with the experimental location, where available [ 18 ]. 
The rank-order of molecules based on the calculated free energies 
of binding also matched well with the experimental results [ 18 ]. 
These test cases support the assumption that high accuracy binding 
calculations give high success rates. 

 Protein fl exibility affects binding site identifi cation as demon-
strated by the better success rates using structures with bound 
ligands compared to  apo  structures. A tight pocket can exclude 
fragments in a signifi cant region, as was seen in the study of T4 
lysozyme [ 18 ]. Protein–protein interaction (PPI) sites have been 
recognized to be more fl exible than protein–ligand sites, as 
reviewed by Grimme et al. [ 23 ]. Therefore, the protein conforma-
tion used in the simulations of a PPI site is critical. A conformation 
omitting a transient, deeper pocket would greatly infl uence the 
BSA and ligand design. Small-motion fl exibility is addressed indi-
rectly with LCT; simulations generate ensembles of fragments 
instead of single-point binding modes. Also, the binding site is 
defi ned as a consensus site where multiple fragments bind with 
high affi nity, so the exclusion of a few of the fragment types will 
not typically prevent binding site identifi cation. Molecular dynam-
ics (MD) and normal mode analysis (NMA) can be included as part 
of the LCT protein preparation to address larger scale changes in 
protein conformation [ 21 ,  24 ].  

  Determining the druggability of a protein binding site is a chal-
lenging aspect of BSA that has been addressed with a number of 
approaches. Protein druggability is not always defi ned consistently 
and non-druggable proteins can be recategorized if new ligands 
are found [ 5 ]. Screening hit rates from high-throughput [ 25 ], 
NMR-fragment [ 26 ], or computational-fragment [ 27 ] methods 
have been used successfully as measures of druggability. Several 
methods have been developed that predict druggability based on 
calculated physicochemical descriptors of the protein pockets [ 10 , 
 26 ,  28 – 31 ]. These methods tend to rate larger pocket size, solvent 
shielding, and hydrophobicity as factors which increase 
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druggability, but differ in whether polar and hydrophilic contact 
areas are considered favorable [ 5 ]. The LCT method uses binding 
information for sets of fragments with homogenous chemical char-
acter to evaluate the druggability of a binding site [ 20 ,  21 ].   

3    Fragment-Based Binding Site Analysis 

  The identifi cation phase of the Locus BSA process consists of fi nd-
ing clusters of fragments with high binding affi nity and then deter-
mining which ones defi ne bio-relevant hotspots. Hotspots are 
anchoring regions for ligand binding, and are a necessary compo-
nent of a binding site [ 2 ,  20 – 22 ]. The ATP-site hinge region 
 present in kinases is an example of such a hotspot, and fragment- 
based BSA identifi ed this region in p38 MAP kinase [ 13 ]. 

 The fragment clusters that represent an actual ligand binding 
site have the following attributes: they contain the majority of probe 
fragment types, they contain fragments with low energy binding 
poses, the fragments in the cluster can outcompete water binding, 
and they are located on regions of the protein where the topography 
allows for more than minimal surface contact [ 20 ,  21 ]. A hotspot 
will not represent a ligand binding site if tightly bound water is 
located in the same region, since a ligand cannot bind with high 
affi nity if its interactions with the protein are not stronger than those 
of the water that will be replaced [ 21 ,  32 ]. The binding pocket 
should ideally contain some deep clefts so that the ligand can make 
adequate surface contact for tight binding [ 20 ,  21 ]. Explicit solva-
tion is not part of these fragment simulations, so the solvent screen-
ing of solvent exposed interactions is not accounted for which may 
cause overestimated binding affi nities of fragments. Consequently, 
sites that are signifi cantly solvent exposed are excluded, since they 
are most likely artifacts of the technique. Fragment clusters in true 
binding sites are also persistent. The presence of these clusters is 
largely independent of the values of parameters such as the number 
of fragment types in a cluster and the cluster radius [ 21 ]. A binding 
site must also be solvent accessible so that ligands can enter the site. 
If an interesting fragment cluster is totally encapsulated by the pro-
tein, MD and NMA simulations can be used to explore if there is a 
state with reasonable energy in which the site is accessible [ 21 ,  24 ]. 

 In addition to detecting the binding site of the natural ligand, 
BSA can identify novel sub-pockets and alternative sites. These 
types of regions allow for innovation in designed molecules, 
which is important for intellectual property and the exploration 
of ligand property space. In addition to the ATP and allosteric 
site, BSA of multiple p38 MAP kinase X-ray crystal structures 
identifi ed three novel binding sites (the docking site, the C-lobe 
exosite, and the ACT site) [ 13 ]. Each of these sites was later con-
fi rmed experimentally [ 13 ].  

3.1  Identifi cation 
of Binding Sites

Fragment-Based BSA
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  The purpose of the BSA characterization phase is to determine the 
druggability of binding sites found in the identifi cation stage. For a 
binding site to be druggable there must be ligands with “drug- like” 
properties that bind with high affi nity and that modify the protein’s 
function [ 1 ]. To accommodate a ligand with acceptable properties, 
a binding site should be relatively compact, have some deeper clefts, 
and support strong interactions of varying chemical character [ 20 , 
 21 ]. For PPI sites, fi nding this desired topography is challenging, as 
these sites may have a large, shallow surface area comprised of mul-
tiple weaker interactions [ 23 ]. If the majority of binding interactions 
are weak, it is diffi cult to design molecules with the necessary potency 
and still constrain ligand size. Although many PPI sites may not be 
druggable, a BSA can predict the exceptions. 

 To evaluate binding site druggability, fragments that belong to 
sets with homogeneous chemical character are simulated with the 
protein. Each characterization set contains fragments representing 
one type of interaction in the probe set (HBD, HBA, aliphatic 
hydrophobic, aromatic); additionally a set of fragments with mul-
tiple interaction types is simulated [ 20 ,  21 ]. The fragments in the 
characterization sets can be slightly larger than the probe frag-
ments [ 21 ]. The fragment clusters for this phase of analysis each 
contain a single category of fragments, but several types of frag-
ments in that category must bind with good affi nity and not be 
excluded by tightly bound water [ 21 ]. If there is a water molecule 
with high affi nity that outcompetes fragments in the binding 
pocket, a new protein may be simulated that includes  that water as 
part of the structure [ 21 ,  32 ]. In that case, ligands can be designed 
to interact with the water molecule, so competition with the water 
is no longer an issue [ 21 ,  32 ]. 

 To judge the druggability of a binding site, the following crite-
ria are assessed. Several high affi nity characterization clusters should 
be present within 15 Å- of the hotspot fragment cluster [ 21 ]. If the 
site has a larger radius, it may indicate that only ligands with high 
molecular weights can bind with high potency. The fragment clus-
ters should be in linkable distance and clusters of different chemical 
character should alternate throughout the site [ 21 ]. The ratio and 
pattern of hydrophobic and hydrophilic surface areas in the bind-
ing site affects the membrane permeability and solubility of 
designed ligands. A site for which complementary ligands will be 
linear or detergent-like will have poor druggability. Finally, the 
binding site should not be highly hydrated, according to the water 
fragment simulation [ 21 ]. These principles for evaluating the drug-
gability of a binding site are not absolute, but are guidelines for 
fi nding the sites best suited for binding a drug-like molecule [ 21 ]. 

 In addition to evaluating the druggability of a binding site, 
binding site characterization can generate strategies for ligand 
design. Analysis of the simulation data highlights promising molec-
ular scaffolds and reveals which fragment types are acceptable in 
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each sub-pocket of the binding site. The characterization analysis of 
the allosteric binding site of p38 MAP kinase provided important 
design information. Previously, ligands that bound to the allosteric 
site of p38 had hydrophobic moieties that interacted with what has 
been termed the tolyl pocket [ 33 ]. Analysis of the allosteric site led to 
a prediction that the protein could also support interactions with 
fragments of mixed hydrophilic–hydrophobic character in that 
region; simulated dioxothiomorpholine, ketopiperazine, and diazep-
anone fragments all bound with high affi nity. A molecule was synthe-
sized with a decorated diazepanone group that interacted in the tolyl 
pocket. This molecule had a p38α IC 50  of 22 nM and an oral PK (rat) 
of 33 % F (at 4 mg/kg) [ 33 ].   

4    Binding Site Analysis Workfl ow 

 The fragment-based analysis of a protein to locate and characterize 
binding sites requires simulations of small molecule fragments with 
that protein. First probe fragments are used to fi nd consensus sites, 
where multiple fragment types of diverse character have strong 
interactions with the protein. Clusters which are not excluded by 
high affi nity waters or highly solvent exposed identify promising 
sites for ligand binding and are assessed for druggability. 

   The starting point for computationally analyzing binding sites is a 
3D representation of the protein, typically an experimental structure 
from X-ray crystallography or NMR. In cases where there is no 
experimental structure, a computational homology model is gener-
ated using related proteins as templates [ 21 ]. When seeking new 
sub-pockets or sites (including allosteric sites), or if the experimental 
structure is  apo  with a potentially collapsed binding pocket, a fl exi-
bility simulation using MD or NMA may be performed [ 21 ,  24 ]. 
The protein structure that is selected for simulation should be, to 
the best of one’s knowledge, a bio-relevant form of the protein. 

 If an X-ray crystal structure has regions of unresolved density, 
missing residues are modeled with care [ 21 ]. Missing amino acids 
may lead to errors in the site identifi cation stage, but an incorrect 
placement of missing atoms could exclude fragments, also causing 
errors. The appropriate charge and rotor states are assigned to 
amino acid side chains [ 21 ] and the termini are capped to prevent 
overestimated fragment binding energies. Finally, a constrained 
minimization is performed to relax the protein structure [ 21 ].  

  To generate the necessary fragment data, the probe fragments are 
simulated individually with the protein. These calculations can be 
run in parallel on a computer cluster for effi ciency [ 13 ,  18 ]. As pre-
viously described, GCMC simulations of the protein–fragment sys-
tem provide information on fragment binding poses and their 
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associated binding energies [ 17 – 19 ]. A fragment simulation of 
water is also performed to provide a solvation map of the protein 
[ 2 ,  20 ,  21 ]. The poses with the best predicted binding affi nity for 
each probe fragment type are overlaid to obtain consensus clusters 
of the probe fragments [ 2 ,  20 ,  21 ]. Fragments of different types 
within a defi ned cluster radius of each other are grouped together 
[ 2 ,  20 ,  21 ].  

  A sensitivity analysis is performed by adjusting the values of the 
parameters for the number of fragments in a cluster and the cluster 
radius [ 21 ]. Persistent clusters are kept for further analysis. Clusters 
are excluded based on the locations of tightly bound water [ 2 ,  20 , 
 21 ] that have a  B -value below a user defi ned cutoff. Highly solvent 
exposed clusters are also removed [ 21 ]. The remaining fragment 
clusters typically indicate a true ligand binding site. This fragment-
based technique has performed well at identifying experimental 
binding sites in a number of protein classes [ 2 ,  13 ,  21 ].   

   In the same manner as data is generated for the probe fragments, 
fragments used for binding site characterization are simulated with 
the protein. The consensus clusters for this analysis phase contain 
 fragments from a single characterization category and most of the 
fragment types in that category must bind with good affi nity to 
defi ne a cluster. Clusters are rejected that overlap with tightly 
bound water.  

  The following criteria are considered when determining the drug-
gability of a site. At least three or four characterization clusters of 
different categories should fall inside a 15 Ǻ radius of the hotspot 
cluster defi ning the site [ 21 ]. The fragment clusters should be no 
 farther apart than can be spanned with a linker of three or four 
atoms. When high affi nity waters are found in the binding pocket, 
they are either  re-simulated as part of the protein, or the binding 
affi nity of the designed molecule must be favorable enough to 
compensate for the water’s displacement [ 21 ,  32 ]. The risks of 
designing ligands to binding sites that do not meet these criteria 
should be carefully weighed.  

  There are a number of ways in which the binding site characteriza-
tion stage can be useful for ligand design. If the fragment compo-
nents of known ligands are simulated, the data can be used to 
clarify binding modes of those ligands [ 18 ,  33 ,  34 ]. The fragment 
analysis can be used to calibrate the simulations by comparing 
fragment data with structure-activity relationship (SAR) informa-
tion [ 18 ,  34 ]. If the selectivity of a ligand is a concern for the 
project, a BSA can be performed on the anti-targets for  comparison. 
Additionally, the fragment clusters interacting with anchoring 
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hotspots are useful starting points for design,  characterization 
clusters indicate what types of interactions are acceptable in each 
sub- pocket, and the arrangement of the clusters can provide 
insight into what chemical scaffolds are appropriate for designing 
ligands.    

5    Conclusion 

 Binding site analysis using virtual fragments is a valuable tool for 
structure-based drug design. This method identifi es bio-relevant 
binding sites that are druggable, as has been demonstrated by the 
design of orally bioavailable, nM inhibitors for those sites. The util-
ity of this type of binding site analysis ranges from prioritizing sites 
based on the predicted diffi culty of designing “drug-like” ligands 
to fi nding novel binding regions for ligand design.     
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    Chapter 13   

 Fragment-Based Design of Kinase Inhibitors: 
A Practical Guide  

           Jon     A.     Erickson    

    Abstract 

   Fragment-based drug design has become an important strategy for drug design and development over the 
last decade. It has been used with particular success in the development of kinase inhibitors, which are one 
of the most widely explored classes of drug targets today. The application of fragment-based methods to 
discovering and optimizing kinase inhibitors can be a complicated and daunting task; however, a general 
process has emerged that has been highly fruitful. Here a practical outline of the fragment process used in 
kinase inhibitor design and development is laid out with specifi c examples. A guide to the overall process 
from initial discovery through fragment screening, including the diffi culties in detection, to the computa-
tional methods available for use in optimization of the discovered fragments is reported.  

  Key words     Fragment-based drug design  ,   Kinase inhibitors  ,   X-Ray crystallography  ,   Fragment 
 screening  ,   Computational chemistry  ,   Structure-based drug design  ,   De novo design  

1      Introduction 

 Protein kinases are a class of enzymes involved in important cellular 
roles, specifi cally, signal transduction pathways in the regulation of 
proliferation, differentiation and survival. Over the last 20 years, 
kinases have become a major target for drug design in many indica-
tions, but particularly in oncology and infl ammation. Fragment- based 
drug design (FBDD) emerged in the mid-1990s with Fesik’s ground-
breaking SAR-by-NMR work and has since blossomed into a major 
strategy for drug discovery and development. This review provides a 
general overview of the concepts, techniques, and application of 
FBDD to kinase inhibitor discovery. Both kinase inhibitor design and 
fragment-based design have been reviewed extensively, so this is not 
intended to be fully comprehensive review of each area, but rather a 
look at the practical aspects of FBDD of kinase inhibitors. Due to the 
multidisciplinary nature of FBDD, a survey of biochemical, biophysi-
cal, and virtual fragment screening, assembly of cassettes, strategies 
and techniques in design, and a few examples are highlighted. 
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  Kinases are one of the largest families of proteins in the human 
genome, consisting of 518 protein kinases and at least 20 lipid 
kinases [ 1 ]. In fact, they are encoded by approximately 2 % of 
eukaryotic genes. Protein kinases catalyze protein phosphorylation, 
i.e., the transfer of the γ-phosphoryl group of adenosine triphos-
phate (ATP) to the hydroxyl group of a tyrosine, serine, and threo-
nine residues in protein substrates. This transfer is part of a vast 
signal transduction pathway that dictates the regulation of cells. 
Conversely, their deregulation leads to many disease pathologies. 
Specifi cally, human malignancies are associated with activated pro-
tein or lipid kinases or inactivated phosphatases. This occurs for 
many reasons, for example, mutations, chromosomal rearrange-
ments, and/or gene amplifi cation. As such kinases now represent 
almost one third of drug targets currently being examined by phar-
maceutical companies and academic researchers [ 2 ]. While their 
primary therapeutic indications are cancer and infl ammatory dis-
eases, kinases are also under investigation as targets for diabetes, 
infectious diseases, cardiovascular disorders and cell growth and 
survival. Over the last 10–15 years, several kinase inhibitors have 
been approved for therapeutic use. Specifi cally, 11 have been 
approved for cancer of the 20 overall kinase inhibitor drugs that are 
on the market. Furthermore, over 150 additional kinase inhibitors 
are currently in various stages of clinical trials. It is estimated that 
about 50–70 % of current cancer drug discovery efforts in industry 
and academia are focused on protein kinase inhibitors. Of the over 
500 human kinases, a relatively small number of them are the pri-
mary target for the current kinase drugs. These include the tyrosine 
receptor kinases, EGFR, ERBB2, VEGFR, Kit, PDGFR, the nonre-
ceptor tyrosine kinases ABL and SRC, and one Ser/Thr-specifi c 
kinase, the atypical protein kinase, mTOR. In all but the last case, 
these drugs bind in the ATP pocket. Kinase inhibitor drugs are just 
now emerging, but their discovery and development still faces many 
issues such as resistance through mutation, selectivity, a limited 
number of inhibitor chemotypes, in addition to the need for mak-
ing inhibitors potent enough to compete with the cellular milli-
molar ATP concentrations [ 3 ]. As such, almost all drug discovery 
and optimization strategies have been applied to kinase inhibitors, 
including structure- and fragment-based methods.  

  Protein kinases are often classifi ed on the highly conserved sequence 
similarity of their catalytic domains. Manning et al. subclassifi ed 
them into eight major groups, namely, AGC, CAMK, CK1, CMGC, 
STE, TK, TKL, and other using hierarchical clustering techniques 
and this grouping has been largely taken up as the standard classifi -
cation of the protein family [ 4 ]. Additionally, kinases and particu-
larly their catalytic domain have been very  amenable to X-ray 
crystallography, allowing a detailed analysis of their three dimen-
sional structures. The structures of protein kinases have been 

1.1  Kinase Overview

1.2  Kinase X-Ray 
Structures
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extensively reviewed [ 5 – 7 ] and analyzed, especially with respect to 
binding of ligands to the ATP pocket [ 8 – 10 ]. Among the 518 
kinases, it has been estimated that about 190 unique human kinase 
structures have been solved encompassing over 1,200 individual 
kinase ligand co-complex structures [ 10 ]. These numbers agree 
with a similar annotated and aligned database maintained internally 
at Eli Lilly [ 11 ]. For example, we have annotated ~2,200 human 
protein and lipid kinase X-ray structures from the PDB with some 
sort of bound ligand, and ~1,600 of those ligands have a unique 
chemical structure (not including internal X-ray structures). This 
type of annotation is very useful in the structure-based design and 
optimization of kinase inhibitors. In fact, ~200 of the unique ligands 
bound to kinases in the PDB could be considered fragments (< =18 
heavy atoms) in our annotated database. The numbers are a little 
higher than those found in an internal analysis of the KLIFs data-
base [ 10 ] that showed ~1,000 unique ligand structures and approx-
imately 100 fragments. The KLIFS database, however, does not 
include non-protein kinases or kinases with non-kinase domains. 
For a breakdown of the distribution of the kinase structures with 
unique bound ligands refer to Fig.  1 . This histogram shows the 
large number of X-ray structures available from each subfamily. 
In the 10 years since fi rst publishing the kinase annotated database, 
the number of kinase X-ray structures has gone up dramatically. 
At that time, only 38 kinase structures were available. In the 

  Fig. 1    Histogram showing the number of X-ray structures of unique ligands bound to kinases and grouped 
according to kinase subfamily. Fragments, ligands with less than or equal to 18 non-hydrogen atoms, are 
colored in  pink , while the larger ligand numbers are represented in  blue        
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intervening decade, the number of kinases represented in the PDB 
has increased fi ve times. At the same rate, all 518 identifi ed kinases 
will have representative structures in the PDB in the near future. 
Additionally, the proportion of the fragment structures to larger 
ligands is highlighted. These kinase structures represent a wealth of 
data for subsequent fragment- based design. Examples of this use 
are given in the case study section of this guide ( vide infra ).  

 The kinase catalytic domain has a bilobal structure with the 
N-terminal lobe, consisting of mainly β-sheet, connected to the 
α-helical C-terminal lobe through a “hinge” strand. ATP binds to 
this hinge region in a cleft between the two lobes. Figure  2  shows 
the general overall structure of a kinase, in this case, AMP-PNP 
(i.e., a non-hydrolyzable form of ATP) bound to cyclic AMP 
dependent protein kinase A, PKA [ 12 ]. The protein is displayed in 
ribbon format with the N-terminal domain at the top of Fig.  2a . 
The mostly β-sheet lobe is connected through a “hinge,” (shown 
in cyan) to the lower C-terminal, which can be seen to consist of 
mainly α-helices. AMP-PNP is shown located between the two 
lobes, located where the cofactor, ATP, binds. Lying over the ade-
nine and ribose rings of ATP is a conserved hairpin loop (in yellow) 
called the glycine-rich, G- or P-loop. This loop is very fl exible and 
typically changes conformation in response to the bound ligand. 
In addition, this structure, 1cdk, has a peptide bound in the  protein 
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  Fig. 2    ( a ) X-Ray structure of AMP-PNP bound to PKA shown in ribbon format (PDB code 1cdk). The hinge region 
is colored in  cyan , the glycine-rich loop in  yellow , and the substrate in  orange . ( b ) ATP binding pocket of AMP-
PNP bound to PKA displaying hydrogen bonds to the hinge region in  yellow . ( c ) Annotated schematic of the ATP 
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substrate site (colored in orange) showing the close proximity of 
where the γ-phosphate of ATP is in relation to the substrate resi-
due that is phosphorylated. In Fig.  2b , a focused view of the ATP 
pocket is shown. The characteristic hydrogen bonds made by the 
adenine ring of AMP-PNP to the hinge backbone are highlighted. 
Also the gate-keeper residue, which is a methionine for PKA, is 
shown. This residue varies in many kinases and thus provides a 
“selectivity pocket” which has been exploited in many inhibitor 
designs [ 13 ]. The catalytic lysine in the back-pocket, a conserved 
residue in all kinases, is also shown. These various regions in the 
ATP pocket have been extensively explored and described. 
Figure  2c  shows a schematic of the pocket using the annotation 
according to Liao [ 9 ]. Information on the groups that can be 
accommodated and the interactions available in the various areas in 
the ATP binding site are critical for structure- and fragment-based 
design.  

 Besides the G-loop, other portions of the ATP binding pocket 
are conformationally fl exible, and thus very sensitive to inhibitor 
binding. Both the DFG- and G-loop can change in response to the 
inhibitor, creating a challenge and opportunity in ligand design. In 
the conserved portion of the back pocket there is a small loop 
made up of an aspartate–phenylalanine–glycine or DFG motif 
(red in Fig.  2 ). This loop typically exists in an “in” structure (as 
shown in Fig.  2 ), but depending on the activation state and/or the 
type of inhibitor bound, it can “fl ip” into an “out” conformation. 
In the “out” conformation another pocket is formed, from the 
movement of the Phe residue, which has been exploited for inhibitor 
design. There is, however, a downstream effect on the activation 
loop of the kinase from this movement. The DFG-out conforma-
tion can perturb the activation loop into an inactive conformation, 
similar to that of an unphosphorylated kinase. An example is shown 
in Fig.  3 . The X-ray structure of Abl kinase bound to an inhibitor 
that does not change the activation loop is shown in Fig.  3a  with 
the activation loop highlighted in red [ 14 ]. On the other hand, 
when imatinib (drug known as Gleevec) binds, it induces or traps 
an inactive conformation with the DFG loop in an “out” confor-
mation which forces the activation loop into a conformation that 
blocks the substrate binding pocket (Fig.  3b ). Due to these large 
conformational changes, selecting the appropriate X-ray structure 
to use for kinase inhibitor design can be critical.   

  Since Fesik’s seminal SAR by NMR work in 1996, the screening and 
optimizing of weak affi nity compounds with low molecular weight 
for drug lead generation has mushroomed [ 15 ]. In the intervening 
time, the strategy now termed as fragment-based ligand discovery 
(FBLD) or fragment-based drug design (FBDD), has become a 
common tool in the pharmaceutical industry [ 16 ]. As the FBLD 
fi eld has developed, it has converged on some common concepts 

1.3  Fragment 
Concepts
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and processes over time. The general process for application of 
FBLD is out lined in Fig.  4  but the screening strategy, make-up of 
the compound screening library and methods of optimizing the 
fragments differ according to the target and goals of the effort [ 17 ]. 
The overall process doesn’t differ signifi cantly from that used in the 
discovery of more typical size lead compounds. The assembly of 
screening collections and the methods of detection, however, can be 
quite different. These methods will be briefl y discussed below. 

  Fig. 3    X-ray structures of Abl kinase in the active and inactive form in ribbon format with the activation loop 
highlighted in  red . ( a ) Active form of Abl kinase bound to PD173955, PDB code 1 m52. ( b ) Inactive form of Abl 
kinase bound to imatinib, PDB code 1iep       

  Fig. 4    Overview of the fragment-based ligand discovery process. See text for discussion       
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In addition, analysis of screening results must be reevaluated for 
fragment screens. Since fragments are likely to have very weak bind-
ing affi nity, the compounds selected for follow-up cannot be chosen 
from an absolute potency perspective. This philosophy is the key 
paradigm shift and value of FBLD. Instead of selecting potent, but 
often large molecules with poor solubility and other properties, 
smaller fragments with improved physical properties but weaker 
potency are considered. Fragments can be defi ned in various ways, 
but in general, a molecular weight or heavy atom count metric is 
used. A variant of Lipinski’s “rule of 5” [ 18 ] was proposed where 
fragments are defi ned to have a molecular weight less than 300 Da, 
 C  log  P  < 3, the number of hydrogen-bond donors/accepters <3 
each, and ≤3 rotatable bonds [ 19 ]. In order to evaluate these often 
low affi nity compounds the concept of atom effi ciency, that is, the 
amount of free energy of binding per atom in a molecule, was intro-
duced and turns out to be very useful for FBLD. Ligand effi ciency 
(LE), fi rst published by Hopkins, is defi ned as the free energy of 
binding divided by the number of heavy (i.e., non-hydrogen) atoms 
in a ligand [ 20 ]. This effectively normalizes the potency of a com-
pound with respect to its size. Selecting compounds with better 
ligand effi ciencies as starting points for lead optimization may be 
preferable to a potent, but large compound that has a greater poten-
tial for poor ADME properties [ 21 ]. Although the estimated maxi-
mal binding energy per atom is 1.5 kcal/mol, compounds with LE’s 
of ~0.3 is a good benchmark to attain in screening and to maintain 
during optimization. Atom effi ciency analysis can be extended to 
functional groups as well. Verdonk and Rees showed the use of 
group effi ciency in a fragment optimization of inhibitors of the 
kinase, PKB [ 22 ,  23 ]. Here the effi ciency of a group of atoms is 
compared to the ligand without a group at the position in question 
or to a common analog in a series. This allows comparison of func-
tional groups in terms of atom effi ciency during a structure–activity 
relationship (SAR) study. Another very useful concept that is aimed 
at normalizing compounds for properties is ligand lipophilicity effi -
ciency (LLE) [ 24 ]. This metric consists of the difference between 
the pIC 50 (−logIC 50 ) and its logP. Since lipophilic compounds can 
bind through a mechanism driven by the entropy gain that occurs by 
simply displacing weakly bound waters, LLE can help to focus on 
compounds with a balance of entropic and enthalpic driven binding 
energies. Values between 3 and 5 are considered a good range to 
attain for optimization in order to avoid overly hydrophobic mole-
cules. These terms and others like them can be important for kinase 
discovery, as ATP competitive inhibitors often tend to have low 
 solubilities due to their fl at nature and hydrogen bonding function-
ality. FBLD emphasizes the discipline to adhere to atom effi ciency 
concepts throughout optimization in order to maintain the good 
properties inherent in the initial fragment hit.    

Fragment Based Design of Kinase Inhibitors
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2    Methods 

  Fragment identifi cation for a particular target can be challenging 
using traditional biochemical screening methods. Due to the weak 
affi nity of most fragments, biochemical screening paradigms at 
concentrations up to millimolar concentrations can lead to many 
false positives. For this reason typical fragment identifi cation pro-
tocols employ an additional biophysical detection method to iden-
tify hits and/or to confi rm true positives from high concentration 
biochemical screens. Nuclear magnetic resonance (NMR), surface 
plasmon resonance (SPR), isothermal titration calorimetry (ITC) 
and X-ray crystallography are examples of successful methods used 
for kinase FBLD [ 25 ,  26 ] .  Since these methods have been exten-
sively reviewed, only a brief summary of each method is given in 
this chapter. 

 NMR-based methods applied to fragments can be carried out 
from the ligand or protein perspective [ 17 ,  27 ]. Ligand-based 
methods have the advantage of working without need for labeled 
protein and rely on the high sensitivity of NMR for the free and 
bound states [ 28 ]. Ligand-based NMR will also work at much 
lower protein concentrations than is needed to detect changes in 
protein resonances. One can observe many changes (NOE, relax-
ation or magnetization transfer) of the ligand NMR spectrum to 
indicate whether it is binding or not making it useful for screening. 
The saturation transfer difference (STD) experiment is commonly 
used due to the ability to use very low ratio of protein to ligand 
concentrations. This method can also be used in a competition-like 
experiment to displace a “spy” molecule to confi rm binding sites. 
Ligand NMR, however, does not give any binding information so 
is typically followed up with X-ray crystallography. To get binding 
location information, one can also detect changes in protein  15 N 
chemical shifts upon ligand binding in HSQC or TROSY spectra. 
This data can provide not only binding confi rmation but also infor-
mation on where the fragments bind. The requirement of labeled 
proteins and the limitation on the size of the protein does con-
strain the applicability of the protein experiment. 

 Another versatile biophysical screening method involves sur-
face plasmon resonance (SPR) [ 29 ]. The method typically involves 
immobilization of the protein on a metal (typically gold or silver) 
surface that the ligands/fragments are passed over. Oscillations in 
the electrons (plasmons) excited by polarized light can be detected 
and related to the mass change. Bound and unbound molecules 
can then be quantifi ed in a binding and subsequent rinsing 
 experiment yielding kinetic and thermodynamic data, i.e., on/off 
rates and thus dissociation constants. Recent advances in SPR 
detection, allow the method to be used in a high throughput for-
mat, permitting the screening of large fragment libraries. 

2.1  Fragment 
Detection
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 Isothermal titration calorimetry (ITC) is another technique that 
has been used to identify fragments [ 30 ]. This technique directly 
measures the heat of binding, allowing the calculation of thermody-
namic terms, Δ H  and Δ S . These terms provide valuable information 
in the selection of compounds to pursue and also in their optimiza-
tion. ITC is primarily used as a secondary screen, as the amount of 
protein required and lack of high throughput formats preclude it as 
a method to screen large libraries of compounds. 

 Perhaps the most information rich fragment identifi cation 
method is X-ray crystallography. It not only allows detection of 
fragments, but directly gives the binding mode ( see   Note 1 ). Some 
of the earliest fragment work was carried out with X-ray crystal-
lography. The seminal work by Ringe and coworkers used organic 
solvents in crystallography to map binding pockets of a protein 
[ 31 ]. In most cases, however, X-ray crystallography is not amena-
ble to screening large libraries and thus is used mostly to follow-up 
confi rmed hits found from other detection methods [ 32 ]. That 
said, several groups have developed methods to use X-ray crystal-
lography in a direct screening fashion [ 33 ,  34 ]. These are mainly 
accomplished through soaking of cocktails of fragments/ligands 
into preformed crystals. Astex, SGX (currently Eli Lilly), and other 
companies have used this methodology to identify and optimize 
fragments. Not all proteins have been amenable to this technique, 
but it has been shown to particularly useful for kinases.  

  Like biophysical methods, computational and informatics technol-
ogy plays an integral part of fragment-based drug discovery. 
Computational tools are used throughout the process, from initial 
screening to compound design and fi nally lead optimization 
( see   Note 2 ). Here a brief kinase-focused overview of computa-
tional fragment methodologies is outlined. 

 Many of the detection methods for fragments relies on low 
throughput methods so libraries of compounds to screen must be 
assembled in order to give the best chances for a positive outcome, 
i.e., a variety of starting points with good ligand effi ciency 
( see   Note 3 ), physical properties and an opportunity for optimiza-
tion. Furthermore, the need for highly soluble compounds is 
essential due to the high concentrations needed to detect binding. 
Fragment screening libraries can be constructed as general screen-
ing pools to represent chemical diversity or as focused library on a 
particular target. Many examples of general fragment screening 
libraries have been published and reviewed [ 35 ]. An example is the 
one described by Astex [ 36 ] but other similar libraries have been 
used by other companies [ 35 ]. Astex began by identifi cation of 
rings and functional groups found in known drugs to create an 
initial virtual database that was expanded to topological equiva-
lents and enumerated with other atoms and single substitutions of 
favored functional groups [ 36 ]. A database of ~4,000 compounds 

2.2  Computational 
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was produced of which ~400 were available for purchase. This 
work was somewhat based on the scaffold generalization paradigm 
used at Vertex [ 37 ]. They used a similar approach for an NMR 
screening library that was based on a small set of fragments designed 
to represent a diversity of shapes [ 38 ]. In addition to general librar-
ies, target focused libraries have also been created and used for 
kinase fragment screening. For example, Astex used docking and a 
hinge- specifi c pharmacophore to select fragments for a kinase-
biased library ( see   Note 4 ) [ 36 ]. In a similar fashion, a kinase phar-
macophore based on hinge binding in kinase X-ray structures was 
used to create a kinase-biased NMR screening library [ 39 ]. The 
“privileged- structure” concept was used to greatly enrich screen-
ing results for kinases by workers at Vertex [ 40 ]. Using a “kinase- 
likeness” parameter developed from scaffold or “framework” 
analysis of kinase inhibitors to select compounds for screening, 
gave up to a fi vefold enrichment in kinase screening experiments. 
Docking-based methods have also been used to focus screening 
sets on kinase targets [ 41 ]. More recently QSAR and machine 
learning methods have yielded highly enriched screening cassettes 
for kinases. For example, support vector machine [ 42 ] and Bayesian 
[ 43 ] models have shown high enrichments in kinase screening. 
Sutherland et al. showed that naïve Bayes models built from kinase 
and other target family inhibitor fragment fi ngerprints could pre-
dict potency quite well and thus would be another method to 
select compounds for kinase fragment screening [ 44 ]. 

 Computational methods are also quite useful in specifi c design 
and optimization of fragments, using many structure-based design 
methods. Selection of kinase fragments for optimization typically 
begins with an X-ray structure of the small compounds bound to 
the kinase of interest, as docking of fragments to estimate the bind-
ing mode of small fragments has been a challenge. Even though 
fragment docking should be somewhat simplifi ed due to a lack of 
conformation degrees of freedom, inaccuracies and molecular 
weight dependence of most scoring functions are often unable to 
distinguish the correct pose as defi ned by the X-ray structure. This 
concept was examined in a recent study that systematically com-
pared fragment with drug-size molecule docking [ 45 ]. They con-
cluded that docking accuracy of fragments did not differ signifi cantly 
from that of docking larger molecules. Interestingly, the root cause 
for accuracy did differ. It was observed that scoring functions were 
the main problem with fragments, while sampling of the ligand 
conformation caused inaccuracies with larger molecules. The over-
all cross-docking result for fragments, however, showed low 
 accuracy, ~40 % success rate, using a 1.5 Å RMSD successful dock-
ing criterion. In another recent study, cross-docking results with 
Glide show somewhat better results, ~60 % accuracy, but their defi -
nition of a fragment was larger and they used a 2.0 Å RMSD to 
defi ne a successful pose. An interesting prospective analysis of 
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PIM1 kinase docking highlighted some of the value and pitfalls of 
fragment docking [ 46 ]. Analysis of hits from a fragment screening 
experiment that used docking to select the compounds going into 
the screen, showed some interesting results. Docking was able to 
identify several effi cient fragments, but in two of the fi ve cases dis-
cussed, the docking pose didn’t agree with the subsequent X-ray 
structure. This was mainly due to water positions and the misplace-
ment of hydrophobic portions of the fragments. These observa-
tions highlighted the critical need for an X-ray structure in FBDD 
if available. Docking, however, was able to reproduce the impor-
tant hydrogen bonding patterns that were useful in the design of 
new compounds. The take home learning is that docking can be 
useful, but care should be taken in the use of the results and itera-
tive X-ray crystallography should be used whenever possible. Other 
computational methods have been employed for fragment place-
ment besides docking. Karplus’s MCSS [ 47 ] protocol was the pio-
neering fragment placement and binding site mapping algorithm 
actually predating the advent of experimental fragment-based 
methods. The multiple copy simultaneous search method (MCSS) 
fl oods a protein binding site with thousands of copies of a frag-
ment followed by simultaneous minimization of the copies. The 
most energetically favorable positions of the fragments can be used 
to provide guidance on the position and types of interactions to be 
used for structure-based design. Another fragment placement 
method also involves simulation of many fragments in the context 
of a protein. The Grand Canonical Monte Carlo (GCMC) method 
solvates a protein in a fragment bath and calculates the ligand–pro-
tein binding modes and their binding free energies by annealing 
[ 48 ,  49 ]. Fragment stability at different energy levels can point to 
those that are most viable for optimization. Again the position and 
interactions that these fragments make with the protein can help 
guide structure- and fragment-based design by direct linking or 
inference. 

 Fragment-based ligand design, after selection of the original 
fragment placement in the binding pocket, typically employs a 
linking or a growing strategy. In the latter case, one typically begins 
with a bound fragment from an X-ray structure or a computation-
ally placed fragment. Positions on the fragment that can be substi-
tuted and yield vectors able to access pockets or additional 
interactions to the protein are then identifi ed. In a linking strategy, 
substitutable valences on two fragments in the binding pocket are 
identifi ed followed by fi nding an appropriate linker group to com-
bine the two fragments. This was strategy was initially carried out 
in the SAR-by-NMR experiments that launched fragment-based 
methods [ 15 ]. For both strategies, computational techniques have 
been developed and have evolved over the years, mostly under the 
term “de novo design” methods. In fact, most of the techniques 
used to place, link, grow or otherwise optimize fragments come 
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from structure-based de novo efforts. One of the earliest fragment 
placement and linking methods was pioneered by Bohm [ 50 ,  51 ]. 
The LUDI algorithm automatically placed fragments in a protein 
binding site using molecular interaction rules derived from the 
PDB and CSD databases. In addition, small fragment databases 
were provided to link fragments together and also for growth from 
a fragment to pick up additional molecular interactions. Other 
linking methods were also developed. The HOOK program was 
developed to link fragments generated using the MCSS method [ 52 ]. 
In another approach, a functional group linker was developed by 
Bartlett’s group [ 53 ] to fi nd optimal rings to position two frag-
ments based on their respective linking vectors. The initial imple-
mentation of CAVEAT has been updated and augmented with the 
use of substituted rings [ 54 ]. This idea was further expanded by 
implementing a more general vector alignment linking protocol 
using experimental or computed ring conformations to replace 
scaffolds in a bound ligand [ 55 ]. The method, called RECORE, 
allows linking and growing plus an option to use the protein struc-
ture as a constraint along with a scoring function to rank order 
ideas. Besides linking, LUDI was also able to grow from a frag-
ment in an attempt to satisfy extra potential interactions in a pro-
tein binding pocket. Another seminal development in 
structure- based fragment growth was the work of Bohacek and 
McMartin [ 56 ]. The GrowMol algorithm begins with a pre-gener-
ated grid enclosing the binding pocket with a heuristic comple-
mentarity potential encoded on each grid point that attempts to 
capture the chemical environment of the local area of the pocket. 
The available growth points are identifi ed on the fragment or mol-
ecule and atoms and functional groups are added in a stochastic 
manner (metropolis sampling) and scored for complementarity for 
retention. The method has the added ability to grow rings and 
macrocycles. In another early approach, Dean and coworkers ini-
tially utilized placement of fragments and concomitant growth 
through the addition of predefi ned groups in a protein binding 
pocket [ 57 ,  58 ]. They used a simulated annealing algorithm to 
drive the optimization allowing movement of the new structures in 
the pocket, thus effectively sampling chemical, conformational, 
and positional spaces simultaneously for new molecules. The pro-
gram, Skelgen, has been improved to add key innovative steps to 
increase its usefulness. The addition of a fragment library gener-
ated from the RECAP rules [ 59 ], which disconnects molecules 
according to retrosynthetic rules, helped Skelgen produce more 
synthetically feasible molecules. The ability to incorporate side 
chain fl exibility of the protein during design to accommodate 
induced fi t was also added [ 60 ,  61 ]. CDK2, was used as an initial 
test case for Skelgen, showing its usefulness for kinases [ 62 ]. A fi nal 
innovative strategy for structure-based fragment or de novo design 
involved a chimera- like approach utilizing the X-ray structures of 
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ligands bound to the same protein or family of proteins [ 63 ]. 
BREED matches bonds using a geometric (distance and angle) 
criteria in ligands overlaid by aligning their protein X-ray struc-
tures. Once the bonds are matched, molecular fragments are 
recombined to produce hybrid molecules. This method was also 
demonstrated using two kinases, p38 Map kinase and CDK2, and 
showed an ability to generate kinase inhibitors that fell under the 
scope of a p38 inhibitor patent. An exhaustive recount of all the 
specifi c de novo strategies for fragment- based design has not been 
given here, but rather an attempt to highlight the main strategies. 
Many groups have taken these basic ideas, augmented and improved 
them through expanded fragment databases, scoring function 
development and increased conformational sampling. In practice, 
many of these techniques are available through commercial soft-
ware packages. Examples are the fragment-based capabilities from 
within the Schrodinger Inc. [ 64 ] or Chemical Computing Group’s 
(CCG) [ 65 ] suite of programs. These groups have implemented 
several of the fragment-based methods discussed herein and inte-
grated them into useful graphical interfaces. Schrodinger’s dock-
ing program, Glide, can be used for fragment placement and 
docking-based selection of fragment libraries to screen. They also 
have routines for structure-based combinatorial library expansion 
of fragments and core-hopping ability (CombiGlide) with supplied 
fragment databases and all integrated into their Maestro interface. 
CCG’s fragment tools are even more extensive. They have a spe-
cifi c fragment menu in their MOE interface that allows access to 
almost all of the fragment elaboration and de novo design strate-
gies discussed. In particular, MOE contains linking and growing 
methods that allow facile fragment elaboration with included frag-
ment libraries. They have provided access to an implementation of 
the RECAP rules in order to allow users to create their own frag-
ment databases. Fragments can be evolved with either an X-ray 
structure or pharmacophore model using a number of strategies 
with their tools. Fragment replacement with bioisosteres, medici-
nal chemistry rules or through an implementation of the BREED 
algorithm can also be carried out. Finally, CCG has created an 
annotated kinase X-ray database, which allows a by-residue analysis 
and comparison of kinase ATP binding sites as well as annotation 
of the state of the DFG loop conformation ( see   Note 5 ). As with 
the KLIFS database, this annotation is very useful for design and 
optimization of both potency and selectivity. Thus, in practice, 
fragment-based design can be carried out readily given the avail-
ability of a X-ray structure of a fragment bound to the kinase of 
interest using already existing structures and computational tools. 

 The starting place for most applications of kinase fragment- 
based design is an X-ray structure of a small ligand bound to the 
kinase of interest. This fragment typically comes initially through 
screening ( vide supra ) or mining of the numerous already available 
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kinase-fragment X-ray structures. As previously highlighted, 
kinases are particularly amenable to X-ray crystallography and as 
such provide an ideal target family for FBDD and FBLD. Many 
annotated kinase X-ray structure databases have been created to 
help with inhibitor design. In Lilly’s version [ 11 ], we have created 
tools to identify common scaffolds found as hinge binders in the 
kinase-ligand co-complex X-ray structures. All of the kinase struc-
tures are aligned in a common frame of reference so the ligands 
bound can be readily compared according to a binding mode. 
Figure  5  shows a partial classifi cation of the structures from the 
KLIFS database using our scaffold classifi cation method. Many 
common scaffolds are represented in ligands bound throughout 
the various subfamilies of the kinome. Furthermore, we (and oth-
ers) have recognized that most of the kinase hinge interacting scaf-
folds, bind in a similar way across the various kinases. There are 
many exceptions to this observation, but there is enough com-
monality in scaffold-binding mode that it can be used in a reason-
ably predictive fashion. In other words, given a particular mode 
that a kinase inhibitor scaffold binds to the hinge of one kinase, 
there is a good chance that it will have a similar binding interaction 
with the other kinases. We have used this to qualitatively predict 
binding modes for fragment- and structure-based design of kinase 
inhibitors [ 66 ,  67 ]. In fact, in many cases a hinge-binding frag-
ment X-ray structure can be predictive of a more elaborated 

  Fig. 5    Histogram showing the number of X-ray structures of unique ligands bound to kinases and grouped 
according to kinase subfamily. Here the ligands are  colored  by the scaffold as classifi ed with an in-house 
method. See text for further description       
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 compound with the same hinge binder. For example, four  common 
hinge binding scaffolds (i.e., from data shown in Fig.  5 ) with both 
fragment and larger molecules X-ray structures were examined and 
results shown in Table  1 . For each scaffold, a majority of the bind-
ing modes were qualitatively the same as the fragment, even though 
the structures represented by these scaffolds bound are in many 
different kinases. The binding modes of the four representative 
fragments are shown in Fig.  6  to highlight the binding mode in 
relation to the hinge region. Figure  7  shows an overlay of the 
fragment- containing larger molecule structures on these frag-
ments. Since the overlays are of the kinase proteins and not the 
ligands, the scaffolds don’t exactly align, but have the same relative 
binding mode as the fragment structure for many ligands. This 
gave us confi dence to utilize predicted binding modes from previ-
ously crystallized kinase inhibitors of the same or similar scaffold in 
library design. This method of predicted binding mode was  utilized 
in the de novo design of several kinase libraries and fragment 
expansion using the predicted binding modes led to the synthesis 
of several kinase active libraries [ 68 ]. 

     Table 1  
  Analysis of the conservation of    kinase ligand binding modes   

 Scaffold 

 Number of 
X-ray structures 
(fragment) 

 Number of X-ray 
structures with common 
binding mode (fragment)     Representative fragment 

 PDB 
code 

 Aminopyrazole  26 (2)  21 (2) 

  

O NH

N

N
H

    

 1vyz 

 Aminopyrimidine  130 (7)  91 (4) 

  

N

NH2 N

OH

O

    

 2xj0 

 Azaindole  20 (3)  16 (3) 

  

N
H

NH

N
    

 3c4e 

 Indazole  22 (5)  21 (5) 

  

N
H

N

    

 2vta 

  The analysis is based on alignment of kinases proteins X-ray structures from the PDB in a common frame of reference  
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       Since many excellent reviews on FBLD and FBDD have been pub-
lished showcasing very successful and elegant practical kinase 
inhibitor examples [ 36 ,  69 ,  70 ], here only a few recent reports of 
the various FBDD strategies are summarized,  see  Table  2 . These 
reports were identifi ed from recent kinase bound fragment struc-
tures in the PDB, which utilized FBLD for discovery and/or opti-
mization. They represent a variety of kinases and scaffolds and 
represent the wide applicability of FBLD and FBDD for kinases.

   Astex, one of the pioneering companies for FBLD and FBDD, 
provides a nice example of the fragment process in a recent report 
on discovery of CDK2 inhibitors [ 71 ]. Using a CDK2 X-ray crys-
tallography soaking system, they screened their fragment library to 
identify viable starting points for optimization. The library 
 consisted of 500 fragments from general and kinase focused meth-
ods. They uncovered over 30 hits, and described evaluation of 
four. As typical for initial fragment hits each of the four had 

2.3  Recent Case 
Studies

  Fig. 6    X-Ray structures of four fragments from Table  1  bound to various kinases. ( a ) Aminopyrazole scaffold, 
PDB code 1vyz. ( b ) Aminopyrimidine scaffold, PDB code 2xj0. ( c ) Azaindole scaffold, PDB code 3c4e. ( d ) 
Indazole scaffold, PDB code 2vta       
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 relatively low binding affi nities (ranging from ~100 μM to 1 mM 
IC 50 s) but the hits were very effi cient with LE’s of 0.37–0.57. The 
report illustrates the use of X-ray crystallography to grow and opti-
mize three of the four fragments. They nicely emphasize that the 
key to the effi cient optimization is examination of the molecular 
interactions the fragment (and from all the other fragment struc-
tures) displays in the X-ray structures and identifi cation of substitu-
tion points that allow growth to form new interactions, often 
described as “vectors.” For example, they immediately went from 
mM activity to 7 μM by adding a phenyl group to the amine of the 
aminopyrazine fragment in order to fi ll a hydrophobic pocket that 
was seen in the X-ray structure. In another example, they were able 
to attain 30 nM potency of a pyrazolopyrimidine fragment by 
 picking up an additional hydrogen bond in the hinge region plus 
the addition of a piperidine group in the ribose pocket to access 

  Fig. 7    Overlay of the X-ray positions of larger ligands on the four fragments from Table  1  showing the conser-
vation of binding mode. ( a ) Aminopyrazoles, ( b ) Aminopyrimidines, ( c ) Azaindoles, (d) Indazoles       
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   Table 2  
  Summary of kinase FBLD examples   

 Kinase  Scaffold 

 Representative 
fragment 
structure (s)  PDB code (s)  Strategy  Reference 

 CDK2  Pyrazine 

  N

N NH 2Cl

    

 2vta; 2vth; 
2vtm; 
2vtj;2vtr; 2vts; 
2vti; 2vtl; 
2vtn; 2vto; 
2tp; 2vtq; 
2vtt;2vu3 

 X-ray screening and 
SBDD 
optimization 

 [ 71 ] 

 Indazole 

  
N
H

N
    

 [ 71 ] 

 Hydroxynaphthalene 

  OH

SO O

N H2

    

 [ 71 ] 

 Pyrazolopyrimidine 

  N

N

N

N

    

 [ 71 ] 

 AuroraA-B  Pyrazole 

  N

N
H

N NH

    

 2w1d; 2w1f; 
2w1c; 2w1e; 
2w1g 

 X-ray screening and 
SBDD 
optimization 

 [ 72 ] 

 JAK2  Indazole 

  

N
H

N

NH 2

Br

    

 3e62; 3e63; 
3e64 

 X-ray screening and 
SBDD 
optimization 

 [ 73 ] 

 PIM1  Benzofuran 
  

O

Br     
 3r00; 3r01; 3r04  SPR screening 

SBDD 
optimization 

 [ 46 ,  74 ] 

 Mps1  Quinazoline 

  

N

N

NH

Cl

    

 3hmp  High concentration 
biochemical 
screening and 
SBDD 
optimization 
with MOE tools 

 [ 75 ] 

 CHK1  Pyrrolopyrimidine 

  N
H

N

N

N

O

    

 2wmq; 2wmr; 
2wms; 2wmt; 
2wmu; 2wmv; 
2wmw; 2wmx 

 High concentration 
biochemical  
screening and 
SBDD 
optimization 
with MOE tools 

 [ 76 – 78 ] 

 Rho Kinase  Indazole 

  

N
H

N

NH 2     

 3vbs  High concentration 
biochemical  
screening and 
SBDD 
optimization 

 [ 79 ] 

(continued)
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another hydrogen bond. The indazole fragment was carried the 
furthest in the optimization. It was, in fact, morphed through sev-
eral FBDD iterations into a diamido-pyrazole which was eventually 
advanced to clinical trials. In another case of FBLD, researchers 
used a scaffold, specifi cally, pyrazole-benzimidazole, which was a 
fragment identifi ed not for the target of interest, Aurora A, but in 
an X-ray screen for CDK2 inhibitors [ 72 ]. Characterization of 
these compounds against a panel of kinases showed good potency 
and especially, effi ciency, for Aurora A kinase. This is a good exam-
ple, of transferring scaffolds from one kinase to another. X-ray 
crystallography of the pyrazole-benzimidazole bound to both 
kinases showed a similar binding mode to both CDK2 and Aurora 
A and explained the additional potency of this fragment for Aurora 
A as the complementarity of this scaffold to Aurora A near the 
hinge was better than it was for CDK2. Astex was able to take 
advantage of this complementarity to grow this fragment into a 
potent and selective compound that was also advanced to clinical 
studies. During the optimization, they again emphasized the atten-
tion to physical properties, specifi cally size and lipophilicity. The 
fi nal molecule, for example, featured a cyclopropyl urea group that 
provided the right conformation and lipophilicity for cell potency 
and solubility. Another indazole fragment found for JAK2 kinase 
through X-ray crystallographic screening was recently reported 
[ 73 ]. Using the SGX X-ray crystallographic screening protocol, a 
fragment library designed to have good physical chemical and 
drug-like properties, yielded several hits. They selected a bromo-
amino-imidazole to follow-up (41 μM IC 50 ) for a fragment growth 

Table 2
(continued)

 Kinase  Scaffold 

 Representative 
fragment 
structure (s)  PDB code (s)  Strategy  Reference 

 GSK3b  Pyridine 

  
NH

O

O
N

    

 3zrk; 3zrl; 3zrm,  Kinase panel 
screening and 
SBDD 
optimization 

 [ 81 ] 

 GSK3b & 
FLT3 

 Triazole 

  Cl

N N

N

N

    

 None  Kinase panel 
screening and 
SBDD 
optimization 

 [ 80 ] 

 PDK1  Pyrimidine 

  

N

NN
H

N
H

O

SH

NH

SH    

 3qc4  Covalent tethering 
to screen thiol 
library followed 
with SBDD 
optimization 

 [ 82 ] 
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strategy due to its high LE (0.54) and its potential substitution 
points. Using the X-ray structure, viable vectors for growth were 
selected, namely the 5- and 6-positions of the indazole, and several 
analogs were synthesized. A highly atom effi cient 5-phenyl substi-
tution was identifi ed and selected over the less effi cient 6-position 
for further elaboration. A very potent 4-t-butyl-sulfonamide sub-
stitution on the 5-phenyl ring was designed and yielded very potent 
binding (78 nM). From the initial fragment and synthesis of a 
minimal number of analogs (<25), they achieved a 500-fold 
potency increase. Other screening methods have also been quite 
successful for FBLD. An example of a fragment campaign using 
SPR screening was recently reported for PIM1 [ 46 ,  74 ]. In this 
effort, a 1,800 compound fragment library was screened using 
SPR at high concentration (75 μM) with the hits being followed 
up with biochemical IC 50  determinations. Several active fragments 
were found, but a few 2-carboxylic acid benzofuran analogs were 
particularly interesting due to their high LE values and novelty for 
PIM1. This kinase is quite unique in its structure as it has a proline 
residue in the hinge position whose backbone NH normally acts as 
a key hydrogen bond donor with the purine ring of ATP and to 
most kinase inhibitors. This is a case where previous co-crystal 
structures of the scaffold bound to other kinases will most likely 
not transfer due to the unique hinge in PIM1. Thus, X-ray struc-
tures were critical here for use in growth and optimization of the 
fragment. The X-ray structure and activity relationship of the ben-
zofuran hits suggested 5-position and 7-position elaboration. 
A fl ip in the binding mode of about 180° occurred when the 
5-bromo analog was substituted with a 7-methoxy group. In effect 
the fl ip overlays the two bromine atoms in the same hydrophobic 
pocket while allowing the methoxy group to project into an open 
area. This is an example, where the binding mode can change upon 
growth, emphasizing the importance of iterative X-ray crystallog-
raphy for fragment work. Further optimization is described explor-
ing the 5- and 7-position vectors leading to a compound with a 
425-fold potency increase. In addition, the physical properties of 
the fragments were also very important during the growth and 
optimization. Some of the optimized compounds proved to be 
very soluble and metabolically stable. The next two examples uti-
lized a similar process of high concentration screening to identify 
fragments from cassettes built using kinase-based pharmacophore 
methods in MOE. In the fi rst case, a screening cassette of 
 commercial compounds was constructed with the help of a MOE 
3D pharmacophore to focus the fragments for screening against 
Mps1 kinase [ 75 ]. In particular, a set of fi ve different kinase X-ray 
structures was used to build a pharmacophore model which was 
subsequently used to fi lter 15,000 commercial compounds. 
In addition, the compounds were fi ltered using general drug- 
likeness models to comply with good size and physical properties. 
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The resulting hits were clustered by scaffold into a 160 compound 
set that was used in the biochemical screening at a 50 μM concen-
tration. Six quinazoline hits were found and followed up with 
X-ray crystallography from which an Mps1 X-ray structure co- 
crystallized with a 13 μM hit was solved. Full characterization of 
the molecular interactions provided data important for further 
growth and optimization. A second example of the using of high 
concentration biochemical screening involved the discovery of a 
CHK1 inhibitor [ 76 – 78 ]. Again using a 3D pharmacophore built 
with the MOE tools was enlisted to fi lter commercial databases for 
an initial screening set. In addition to the kinase pharmacophore, 
which required three hydrogen bonds to the hinge region, a hydro-
phobic group in the adenine-ribose pocket and an interaction with 
the catalytic lysine, they also used a CHK1 X-ray structure as an 
excluded volume constraint. Hits from the screen were clustered 
into chemotypes and representatives from each scaffold were 
selected to yield 361 compounds for high concentration biochemi-
cal screening. Of the nine hits that were confi rmed by X-ray crys-
tallography, a pyrrolopyrimidine fragment was particularly effi cient 
and thus selected for some initial structure-guided growth. This 
scaffold was later morphed into an amino-isoquinoline which 
showed good activity in mouse xenograft models. Instead of 
screening commercial or in-house databases of compounds, several 
efforts demonstrated the use of X-ray data to design one-step reac-
tions to generate screening cassettes for FBLD. One example uti-
lizing this strategy focused initially on small library of 4-pyridyl 
analogs [ 79 ]. High concentration biochemical screening identifi ed 
several weakly active (72–270 μM), but atom effi cient analogs 
(0.29–0.39) for Rho kinase. Modeling suggested substitution of 
the 4-pyridyl hinge binder with an indazole which further increased 
the potency. Optimization ultimately produced potent compounds 
with promising cell potency against Rho kinase. A similar approach 
utilizing synthetic libraries combined with FBLD principles was 
used to identify inhibitors of GSK3β and FLT3 [ 80 ]. Here the 
authors took advantage of click chemistry from which they were 
able to assemble 1,4- and 1,5-di-substituted 1,2,3-triazole ana-
logs. The 1,2,3-triazole group was designed to bind to the hinge 
region of the kinases while the various di-substituted regioisomers 
could explore the pockets of the kinases. Screening of the initial 
triazole library against a panel of kinases uncovered inhibitors of 
both GSK3β and FLT3. Another example of panel screening of 
fragment-like compounds reported was the discovery of thieno-
pyridinone inhibitors of GSK3β [ 81 ]. Crystal structures obtained 
on the fi rst few fragments found and the information obtained 
from the binding mode regarding the molecular interactions were 
used to grow the molecule. The fi rst pass optimization consisted of 
a structure-guided medicinal chemistry approach followed by a 
computational driven approach to optimize the CNS permeability 
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properties of the compounds. Virtual libraries were enumerated 
and fi ltered with calculated ADME and physical properties. This 
was followed by docking to models constructed with the initial 
X-ray structures to select the fi nal molecules for synthesis. In the 
end they were able to improve properties for blood–brain barrier 
penetration and increase potency sixfold. Most recent examples of 
FBLD and of those presented here, describe fragment growth to 
optimize ligands rather than linking of fragments. This is mainly 
due to the common use of X-ray structural data, where the binding 
of multiple fragments in the same structure are not as common as 
single fragment binding. An interesting alternative approach uses a 
technique of tethering a fragment covalently to the kinase followed 
by X-ray crystal structure guided elaboration [ 82 ]. In this instance, 
a cysteine was introduced at position 166 in the ATP binding site 
of PDK1 kinase and then coupled to a diaminopyrimidine thiol to 
covalently bind to the protein. The X-ray crystal structure of one of 
the optimally linked analogs showed that the aminopyrimidine 
attained a binding mode bound to the hinge region of PDK1. The 
bound fragment also had a free thiol, so was able to form covalent 
bonds readily with other thiols with complementary substituents. 
To optimize the initial aminopyrimidine, the PDK1 protein with 
the covalently attached diaminopyrimidine thiol was in turn sub-
jected it to a library of 3,000 thiol containing groups to identify 
optimal groups for binding in the back pocket of PDK1. A pyrimi-
done substituted analog was found, and an alkyl chain version of 
the thiol compound found to bind at 200 nM IC 50  without the 
covalent tether. Exploration of the tether lengths plus aminopy-
rimidine replacements led to the inhibitors that bound to a DFG 
out conformation of PDK1, the fi rst demonstrated by X-ray 
crystallography. 

 With the continued advancement of fragment detection meth-
ods, computational tools and the ever-increasing number of frag-
ment bound kinase X-ray structures, the future of FBLD to discover 
new kinase inhibitor drugs is very bright.   

3    Notes 

     1.    Fragment-based methods have had markedly good success in 
the development of kinase inhibitors for drugs. The amenabil-
ity of kinases to X-ray crystallography and especially the ability 
to solve fragment bound structures has driven this success.   

   2.    The most challenging aspect for kinase FBLD comes in during 
the optimization of the fragments. Selectivity, potency, solubil-
ity and ADME properties can be very diffi cult issues to sur-
mount, but with the ability to use iterative X-ray crystallography 
and computational tools, many examples of successful kinase 
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FBLD have been noted. In fact, one of the fi rst drugs to 
 originate from a fragment campaign is the BRAF kinase inhibi-
tor, Vemurafenib [ 83 ,  84 ].   

   3.    One reason kinases have been very good targets for FBLD is 
the high ligand effi ciency with which fragments bind to this 
class of proteins. Highly effi cient fragments are much easier to 
detect and crystallize.   

   4.    The hinge binders, which are the most common place for frag-
ments to bind to kinases, provide a very nice potential for sev-
eral molecular interactions. Specifi cally, 1–3 hydrogen bonds 
and a lipophilic pocket can all contribute to high ligand 
effi ciency.   

   5.    The commonality of ATP binding sites has allowed the ability 
to transfer X-ray binding mode information from one kinase to 
another. This greatly expands the number of scaffolds that can 
be utilized for fragment optimization.         
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    Chapter 14   

 Designing a Small Molecule Erythropoietin Mimetic 

           Frank     Guarnieri    

    Abstract 

   Erythropoietin (EPO) is a protein made by the kidneys in response to low red blood cell count that is 
secreted into the bloodstream and binds to a receptor on hematopoietic stem cells in the bone marrow 
inducing them to become new red blood cells. EPO made with recombinant DNA technology was brought 
to market in the 1980s to treat anemia caused by kidney disease and cancer chemotherapy. Because EPO 
infusion was able to replace blood transfusions in many cases, it rapidly became a multibillion dollar per year 
drug and as the fi rst biologic created with recombinant technology it launched the biotech industry. For 
many years intense research was focused on creating a small molecule orally available EPO mimetic. The 
Robert Wood Johnson (RWJ) group seemed to defi nitively establish that only large peptides with a mini-
mum of 60 residues could replace EPO, as anything less was not a full agonist. An intense study of the 
published work led me to hypothesize that the size of the mimetic is not the real issue, but the symmetry 
making and breaking of the EPO receptor induced by the ligand is the key to activating the stem cells. This 
analysis meant that residues in the binding site of the receptor deemed absolutely essential for ligand bind-
ing and activation from mutagenesis experiments, were probably not really that important. My fundamental 
hypotheses were: (a) the symmetric state of the homodimeric receptor is the most stable state and thus must 
be the off-state, (b) a highly localized binding site exists at a pivot point where the two halves of the receptor 
meet, (c) small molecules can be created that have high potency for this site that will be competitive with 
EPO and thus can displace the protein–protein interaction, (d) small symmetric molecules will stabilize the 
symmetric off-state of the receptor, and (e) a key asymmetry in the small molecule will stabilize a mirror 
image asymmetry in the receptor resulting in the stabilization of the on-state and proliferation of the stem 
cells into red blood cells. Researchers at Amgen published a co-crystal structure of EPO bound to the EPO 
receptor, which has a beautiful twofold symmetry—it was argued that this is the active state of the receptor. 
Activating the EPO receptor with EPO induces an almost instantaneous shutdown mechanism to sharply 
curtail any proliferative signal transduction, and thus, my hypotheses lead to the conclusion that the Amgen 
co-crystal is actually the state after receptor downregulation and thus an off-state. To put these hypotheses 
to the test, my computational method of Simulated Annealing of Chemical Potential was run using the 
co- crystal created at RWJ, which is the receptor trapped in a partial agonist state. The simulations predicted 
a previously unknown high affi nity binding site at the pivot point where the two halves of the dimeric 
receptor meet, and detailed analysis of the fragment patterns led to the prediction of a molecule less than 
300 MW that is basically twofold symmetric with a chiral center on one side and not the other. Thus, to the 
degree that computer simulations can be taken seriously, these results support my hypotheses on small 
molecule receptor activation. When this small molecule was synthesized and tested it indeed induced human 
hematopoietic stems cells to become red blood cells. When the predicted chiral center of this molecule 
was removed eliminating its one asymmetric feature, the resulting molecule was an antagonist—it could 
potently displace hot EPO but could no longer induce stem cell proliferation and differentiation. These 
results provided strong support for my theories on how to create potent small molecule EPO agonists and 
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were used to launch the new company Locus Pharmaceuticals. These molecules, however, required 
signifi cant chemical changes in order to make them stable in other in vitro assays and to be in vivo active, 
but these alterations had to be done in a way that maintained the symmetry–asymmetry considerations 
that led to the creation of an in vitro active molecule. The combination of changing functional groups 
to enable good pharmacokinetics, while not changing the key intrinsic symmetry properties were never 
seriously pursued at Locus and the program died. Investigations into how red blood cells are created have 
occupied many prominent researchers for the entire twentieth century. In the second half of the 
century EPO was discovered and by the end of the century it became a blockbuster commercial product 
that launched the biotech revolution.  

  Key words     Erythropoietin  ,   EPO mimetic  ,   Small molecule  ,   Protein–protein interaction  ,   Fragment 
based drug design  ,   Monte Carlo  

1      Historical Background 

 What are the factors that induce the bone marrow to produce new 
red blood cells? The search for answers to this question occupied 
many investigators during the twentieth century and the fi ndings 
have the dual distinctions of being an epic case study in medical 
research and a focal point of the genomics revolution. In the fi rst 
half of the 1900s it was generally accepted that low blood oxygen 
levels directly stimulated the bone marrow to produce new red 
blood cells. Thus, it is interesting that as early as 1906 Carnot [ 1 ,  2 ] 
proposed the alternate theory of a humoral factor produced by 
some organ in response to low oxygen levels that circulated to the 
bone marrow stimulating red blood cell production. For the next 
40 years, no research group produced compelling experimental 
evidence supporting either theory. In 1950, Reissmann [ 3 ] para-
biotically united a pair of rats by an anastomosis from the ears to 
the tail roots and demonstrated that elevated erythropoiesis 
occurred in both partners when only one was subjected to hypoxic 
conditions. This was arguably the fi rst signifi cant experimental 
demonstration of the existence of a blood factor, the so-called 
erythropoietin (EPO), responsible for causing the bone marrow 
to produce red blood cells. The interpretation of Reissmann’s 
results is that the animal put in the hypoxic chamber produces 
excess EPO, while its partner in the normal atmospheric chamber 
does not. The normal animal nevertheless, has enhanced levels of 
red blood cells that are comparable to its hypoxic partner, because 
the EPO produced by one is shared by the other through the 
anastomosis. 

 Although Riessmann’s experiments were a tour-de-force, the 
complexity and expertise required to carry out the anastomosis 
procedure made replication of results by other labs diffi cult to 
impossible. For the community to defi nitively adopt the EPO the-
ory of red blood cell production, simple widely accessible proce-
dures that could be reproduced by others needed to be developed. 
In 1953 Erslev [ 4 ] showed that normal rabbits would produce 
large amounts of reticulocytes 4–6 days after being injected with 
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200 ml of plasma drawn from anemic rabbits but there were no 
measurable changes in reticulocyte count if the injected plasma was 
taken from normal animals. The interpretation of these results is 
that rabbits made anemic either by starvation or bleeding produce 
EPO in order to stimulate the bone marrow to create new replace-
ment red blood cells. Since the plasma collected from anemic rab-
bits should be high in EPO—if this “anemic” plasma is injected 
into normal rabbits these animals should produce signifi cantly 
enhanced numbers of reticulocytes. Erslev’s procedure is simple 
and easy to reproduce by other labs. The experimental procedures 
became solidifi ed in 1955 when Jacobson and coworkers [ 5 ] dem-
onstrated that the EPO effect could be quantitated by monitoring 
the red blood cell uptake of radioactive iron-59. By injecting the 
test animals with radiolabeled iron in conjunction with anemic 
plasma and then subsequently harvesting the cellular fraction from 
blood, an assay of the radioactivity gives quantitative information 
on how EPO stimulates red blood cell production. 

 Once the EPO theory of red cell proliferation became embraced 
by the medical community, the next step was to fi nd the organ that 
produced it. Jacobson and coworkers [ 6 ] made their next contri-
bution to this fi eld. They systematically removed different organs 
in rats and then subjected them to either a signifi cant hemorrhage 
or a dose of CoCl 2 . Only nephrectomy resulted in no elevation of 
EPO. The interpretation of these results is that hypophysectomy or 
thyroidectomy or splenectomy or removal of most of the liver fol-
lowed by hemorrhage or CoCl 2  red cell destruction, did not stop 
the rats from producing large amounts of EPO—plasma redrawn 
from these animals could dramatically increase red cell production 
in normal rodents. When the kidneys were removed, however, no 
EPO production was induced in the animals. These results were 
taken as defi nitive proof that the kidneys are the source of 
EPO. Subsequent studies by Reissmann et al. [ 7 ] and Hirashima 
and Takaku [ 8 ] confi rmed that the kidneys are in fact the source of 
EPO, unleashing an explosive amount of new investigations and 
necessitating that researchers have readily available sources of EPO 
and a generally agreed upon reference standard. In 1966 the World 
Health Organization certifi ed an International Reference Preparation 
of Erythropoietin [ 9 ] isolated from severely anemic human urine 
making 1 ml samples available to the research community with an 
arbitrary assignment of 10 units of EPO activity. 

 Continuing research throughout the 1970s clearly indicated that 
EPO would very likely be an effective treatment for various forms of 
anemia [ 10 ] especially in renoprival [ 11 ] patients. The detailed 
molecular characterization necessary for further progress required 
highly purifi ed protein, which Goldwasser and Kung produced [ 12 ] 
in 1971, but unfortunately in quantities too small for sequence analy-
sis. It took another 6 years for these investigators [ 13 ] to develop 
a protocol for producing purifi ed EPO in milligram quantities. 
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This was of seminal importance in developing EPO as a commercial 
product, because the Miyake purifi cation method was used to pro-
duce protein for tryptic digestion, sequence analysis of peptide 
fragments, DNA probe construction, genomic library screening 
[ 14 ], and cloning and expression of the EPO gene by both Amgen 
[ 15 ] and Genetics Institute [ 16 ]. Just 2 years later in 1987, recom-
binant human erythropoietin from Amgen was shown in clinical 
trials [ 17 ] to restore hematocrit to normal levels in patients with 
end-stage renal failure with no discernible toxicities, thus eliminat-
ing the need for transfusions in these patients. For more than two 
decades to the present recombinant EPO has been used for the 
treatment of cancer chemotherapy induced anemia and renal 
failure, with both [ 18 ] having 2003 sales ~$4B for Procrit from 
Johnson and Johnson and Epogen and Aranesp [ 19 ] combined 
from Amgen, respectively.  

2    The Case Against the Existence of an Orally Available Small Molecule 
EPO Mimetic 

 The earliest evidence suggesting that any EPO mimetic whatsoever 
might be impossible is posttranslational modifi cation of the pro-
tein. Both recombinant studies cited above [ 15 ,  16 ] state that 
about 40 % of EPO’s molecular weight comes from carbohydrates. 
Physicochemical comparisons between natural EPO purifi ed 
from the urine of patients with aplastic anemia and recombinant 
EPO indicate that both [ 20 ] have one  O -glycosylation and three 
N-glycosylation sites. Wasley and coworkers [ 21 ] have shown that 
EPO with incompletely processed N-linked oligosaccharides is 
500-fold less active in vivo. Experiments from Yamaguchi and col-
leagues [ 22 ] confi rm this fi nding while Delorme et al. produced 
[ 23 ] similar results by selectively mutating sites of glycosylation. 
One reasonable interpretation of these results is that a subset of the 
posttranslational modifi cations are essential for high in vivo EPO 
activity. In fact, Amgen’s Aranesp is a modifi ed non-natural version 
of EPO specifi cally engineered [ 24 ] to have fi ve N-glycosylation 
sites, which gives it a threefold longer serum half-life, thus further 
validating the importance of posttranslational modifi cation. 

  The RWJ group produced a singularly impressive body of work that 
is the basis of the atomic level mechanistic understanding of the 
binding and signal transduction of EPO. RWJ in collaboration with 
Affymax [ 25 ] discovered 20-mer EPO mimetic peptides (EMP) 
using phage display and showed that EMP1 is an in vitro and in vivo 
agonist. RWJ solved the co-crystal structure [ 26 ] of the extracel-
lular binding domain of the EPO receptor (EPOR) with EMP1 
demonstrating homodimerization of EPOR with two equivalents 
of bound ligand. The EMP1 dimer is approximately two orders of 

2.1  The Work 
from Robert Wood 
Johnson (RWJ)
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magnitude less potent than EPO, so the RWJ group had the clever 
idea of cross-linking the EMP1–EMP1 dimer, hypothesizing that 
this should increase agonist potency. They discovered that a poly-
ethylene glycol linker [ 27 ] that is approximately 23 amino acids 
long yielded a molecule EMP1–PEG–EMP1 that has comparable 
agonist potency to EPO itself. These results, summarized in Fig.  1 , 
defi nitively demonstrate that EPO mimetics that are functional 
both in vitro and in vivo can be created and that the apparently 
essential posttranslational modifi cation of the natural hormone is in 
fact not an absolute requirement for activating the receptor. 
The other strong conclusion of the RWJ work is that ~60 AA is the 
minimal structure for full agonist mimetic activity (EPO is 166 AA 
with almost 50 % of its total weight coming from carbohydrates) 

EPO + Di-peptide EMP1 EPO + Di-peptide EMP1 and linker PEG

Di-peptide EMP1
Di-peptide
EMP1 and
linker PEG

IC50 (uM) ED50 (uM)

EMP1
EMP1-PEG

0.07 0.1
0.02 0.001

~23 AA 

  Fig. 1    A summary of some results from the Robert Wood Johnson Group. The  upper left panel  is the co-crystal 
structure of the 20-mer EPO mimetic peptide known as EMP1 (Science 1996). Both the receptor and ligand 
crystallize in the dimeric state. The  upper right hand panel  is a simplifi ed rendition of cross-linking of EMP1 
with polyethyleneglycol (Chem and Bio 1997) also known as PEG. The number of repeating units in the linker 
is approximately 23 amino acids long. The  lower left  and  right hand panels  are a blowup of the EMP1 dimer 
and EMP1 cross-linked with PEG. Interestingly, shown at the  bottom , with or without cross-linking the binding 
affi nity is almost the same as seen in the IC50, but agonist activity is enhanced by two orders of magnitude 
with the addition of the PEG cross-link shown in the ED50       
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with additional supporting evidence coming from their mutagenesis 
studies showing that ligand contact with Phe93 on both receptors 
[ 28 ] is essential for receptor activation. The pair of Phe93 residues 
is separated by over 20A as shown in Fig.  2 . Taken as a whole, this 
collection of work demonstrates that carbohydrates are not neces-
sarily needed for ligand agonist activity, but that there is no way to 
make a small organic molecule with agonist potency comparable to 
EPO—at least not one that is small enough to be potentially orally 
bioavailable if dual Phe93 interaction is required.    

  In 1999 the Merck group [ 29 ] did in fact demonstrate that organic 
non-peptide molecules could bind to and activate the EPOR. 
Their strategy was to fi rst identify a small organic molecule that 
binds to the receptor by screening an in-house library and then 
covalently link multiple copies of this molecule to a common core. 
The screening hit ( N -3-[2-(4-biphenyl)-6-chloro-5-methyl]
indolyl-acetyl- L   -lysine methyl ester) inhibited EPO binding with 
an IC50 of 59.5 μM. Eight copies of this molecule attached to an 
eight-fold reactive polyamidoamino-octa-4-hydroxymethylbenza-
mide dendrimer resulted in a molecule that inhibited EPO binding 
with an IC50 of 4.4 μM. The dendrimer scaffold alone had no 
detectable binding to the EPOR. This very complicated large small 

2.2  Non-peptide 
Organic EPO Mimetics

  Fig. 2    The RWJ group identifi ed the pair of Phe93 residues as critical interaction 
points for both natural EPO and EMP1. The salient point that they make is that 
EMP1 has no sequence similarity to EPO and yet both make intimate interactions 
with the pair of Phe93 amino acids as demonstrated by mutagenesis experi-
ments (JBC 1997). The interpretation of these results is the PEG-EMP1 is likely 
the minimal ligand that can have full agonist activity, because this construct is 
required for proper ligand presentation to the pair of Phe93 residues of the 
receptor       
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molecule “octa-oligomer” does in fact show weak agonist activity 
in stimulating human hematopoietic progenitor cells, which does 
establish that non-peptides can activate the EPOR. A group at 
Scripps took a similar approach to the Merck group, creating and 
screening combinatorial libraries designed to mimic the RWJ 
EMP1 peptide to obtain weak EPOR binders and then oligomer-
izing these small molecules unto symmetric cores to enhance 
potency and demonstrate weak agonist activity [ 30 ]. While these 
efforts demonstrate that organic structures can activate the EPOR, 
the size and complexity of these molecules seem to indicate the 
impossibility of making a small drug-like EPO agonist.   

3    Theory and Hypotheses for Creating Small Molecule EPO Mimetics 

 The RWJ group performed mutagenesis studies [ 31 ] confi rming 
that the pair of Phe93 residues are important binding partners for 
both EPO itself and the mimetic peptides, which led them to con-
clude that “these residues may represent a minimum epitope on 
the EPOR for productive ligand binding.” Figure  2  shows the dis-
tance between the pair of Phe93 and the space below that needs to 
be fi lled in, in order to create a scaffold to present the interactions 
to these key residues, which can only lead to the conclusion that no 
small molecule can be created to activate the receptor. The Merck 
and Scripps work discussed above apparently confi rms these con-
clusions, because their organic molecules were designed to mimic 
these key interactions. A small molecule in this context means 
something that has the potential to be orally bioavailable—a com-
pound that has a molecular weight of less than 600. The combina-
tion of all the work summarized so far indicates that this is not 
possible. 

 The Amgen group solved the crystal structure of EPO bound 
to the extracellular binding domain. It is a beautiful twofold sym-
metric ligand–receptor complex, which “shows that erythropoietin 
imposes a unique 120° angular relationship and orientation that is 
responsible for optimal signaling through intracellular kinase path-
ways [ 32 ].” The orientation of the receptor in this EPO bound 
structure is signifi cantly different from the structure solved by the 
RWJ group with bound EPO mimetic peptides. The EPO mimetic 
peptides are partial agonists, so they do in fact activate the receptor 
to some extent even though the receptor is in a completely differ-
ent state compared to the Amgen structure. My interpretation of 
Amgen’s results is quite different. 

  There are two main reasons for my hypothesis, one biological and 
one mathematical. The biological reason is that EPOR normally 
resides in the off state, because it is immediately shut down by 
intramolecular phosphorylation and ubiquitination [ 33 ] upon 
activation. Any growth factor receptor has to normally be in the 

3.1  Hypothesis I: 
The Amgen Structure 
Is the Receptor 
in the Off-State Not 
the On-State
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off-state because being excessively in the on-state as is the case with 
constitutively active mutants [ 34 ] can lead to cancer. From this it 
may be concluded that the on-state is a higher energy state and 
that it is probably unstable requiring ligand-binding to populate it. 
The straightforward interpretation of the EPO-bound co-crystal 
of the receptor is that this is the ligand induced active state. The act 
of forming crystals that yield high resolution structure, however, 
inherently drives the system into a stable state  not a transient active 
state ; thus, I hypothesize that the Amgen structure represents an 
off-state. Mathematically, the most stable state of a complex system 
is often the state of highest symmetry, the global minimum, which 
I hypothesize, is represented by this structure.  

  This is essentially a corollary to the fi rst hypothesis. If the off-state 
of the receptor is the stable 2-fold symmetric state, then activating 
the receptor requires that a ligand break this symmetry.  

  The RWJ group has shown very compelling experimental evidence 
on the seminal importance of interacting with the Phe93 pair of 
the dimerized EPO receptor for both EPO and EPO mimetic pep-
tide agonist activity. They also showed that inducing receptor 
dimerization alone in not suffi cient [ 35 ] for activation. The essence 
of this hypothesis is that receptor activation occurs via a ligand- 
driven switch from the symmetric off-state to its asymmetric on- 
state. It should be possible to induce this change without interacting 
with the Phe93 pair.  

  The essence of this last hypothesis is on the nature of the dimerized 
receptors, particularly the point where they meet and how the two 
parts pivot either symmetrically or asymmetrically relative to each 
other. This pivoting will cause the receptor to be in the off-state or 
the on-state, respectively. A small molecule that binds to this site 
must have an asymmetry that counteracts the asymmetry of the 
activated receptor. When they are paired, the asymmetry of one 
cancels the asymmetry of the other resulting in a symmetric ligand–
receptor complex that transiently stabilizes the active state of the 
receptor.   

3.2  Hypothesis II: 
The Partial Agonist 
State of the EPOR 
Represented by 
the EMP1 Bound 
Peptides from RWJ 
Has an Asymmetry 
That Is Induced by 
the Ligand

3.3  Hypothesis III: 
Interacting 
with the Essential 
Phe93 Pair Is Not 
Essential for Receptor 
Activation

3.4  Hypothesis IV: 
The Pivot Point Where 
the Two Receptors 
Meet Is a High Affi nity 
Binding Site 
of the Receptor 
and a Small Molecule 
That Binds at This Site 
Will Activate 
the Receptor if It Has 
the Right Symmetry 
Properties
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4    Testing the Hypotheses with Computer Simulations 

 To my knowledge, there is no experimental evidence that the pivot 
point where the two receptors meet has any importance whatso-
ever for ligand binding and receptor activation. So the fi rst prereq-
uisite is to test the hypothesis that this location is a high affi nity 
binding site—and this will be done with simulations. The 
 computational technique of grand canonical Monte Carlo [ 36 ] 
with the variable chemical potential [ 37 ] method (SACP) that I 
fi rst introduced to study the differential hydration properties of the 
major and minor grooves of DNA [ 38 ] has been generalized to 
predict protein binding sites. The algorithm successfully predicted 
the binding sites in eight different variants of hen egg white lyso-
zyme [ 39 ], demonstrating its robustness, and predicted a previ-
ously unknown lipid binding site [ 40 ] in mitochondrial aspartate 
amino transferase (mAAT). Experiments on the mAAT confi rmed 
the computational predictions that this enzyme binds lipids and 
moonlights [ 40 ] as a plasma membrane transporter. The SACP 
simulations do indeed predict that a high affi nity binding site exists 
at the point where the two EPO receptors meet (Fig.  3 ).  

  SACP is a straightforward Monte Carlo procedure that is illus-
trated in Fig.  4 . A simplifi ed but representative protocol is to 
generate a random number (RanX) between 0 and 1 and to insert 

4.1  Simulated 
Annealing of Chemical 
Potential: The Method

  Fig. 3    The  red  blob is a cluster of high affi nity fragments predicted by the com-
puter simulation technique simulated annealing of chemical potential (SACP). In 
order to be classifi ed as a true binding site this location must also have a pre-
dicted low affi nity for water. So at least by computer simulation, there is evidence 
that a high affi nity binding site does exist where the two receptors meet in support 
of Hypothesis IV. Note SACP has been very successful in predicting binding sites       
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  Fig. 4    The SACP method is demonstrated schematically. The  graph  at the  bottom  shows that when the chemical 
potential of the protein simulation cell is high, the bulk region at  B  = 10, the probability of accepting an inser-
tion of a fragment is very likely and the simulation cell becomes completely saturated, which is shown in the 
 upper left panel . As the chemical potential is lowered, nothing particularly dramatic occurs, because insertions 
and deletions are approximately balanced. When the chemical potential is lowered to the point that it begins 
to surpass the free energy of fragment–fragment cohesion (this is the solvent–solvent interaction energy), the 
system goes through a phase transition evacuating most of the solvent fragment molecules, which is shown 
in the  center panel . The very interesting result is that a discrete number of sites on the protein retain fragment 
binding throughout the phase transition—these are the high affi nity sites. As the chemical potential is annealed 
(further lowered) additional sites are evacuated, which is shown in the  right panel . Because chemical potential 
is a formal free energy, this process defi nes a quantitative relative rank order affi nity between different sites 
on the protein for a particular fragment. Different fragments have different binding patterns       
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a fragment into the protein simulation cell if RanX < 0.5 or delete a 
fragment if RanX > 0.5. In either case this is a trial move with 
attempted insertion assigned a probability of  P  = exp[−
[ E ( n  + 1) −  E ( n )]/(RT)] × exp[ B ]/( N  + 1) and attempted fragment 
deletion a probability of  P  =  N  × exp[−[ E ( n  − 1) −  E ( n )]/(RT)] × 
exp[−B] where  E ( n ) is the energy of the system before an insert or 
delete,  E ( n  + 1) is the energy of the system after a  fragment is 
inserted, and  E ( n  − 1) is the energy of the system after a fragment 
has been deleted,  R  is the gas constant and  T  is the temperature in 
Kelvin.  B  is the chemical potential of the simulation cell containing 
the protein and the only adjustable parameter. Operationally, a ran-
dom number (RanX) is generated between 0 and 1 and the inserted 
or deleted fragment is accepted as the new confi guration if 
 P  < =RanX. When  B  is set high, the probability of inserting a frag-
ment into the protein simulation cell is dramatically enhanced 
resulting in saturation with fragments as shown in the left panel of 
Fig.  4 . As the chemical potential is gradually lowered by decreasing 
the value of  B , fragments persist in the simulation cell until a low 
enough  B -value occurs that causes a dramatic evacuation of the 
simulation cell with almost all fragments exiting. As shown in the 
middle panel of Fig.  4 , discrete high affi nity binding sites for one 
particular fragment are revealed. The chemical potential can be 
successively lowered until only one site remains as shown in the 
right-most panel of Fig.  4 . Generally about fi ve million simulation 
steps are done at each  B -value (value of the chemical potential) and 
the simulation is run for about 30 different  B -values. The delta- B -
value between two different positions on the protein for a given 
fragment is a measure of the relative free energy of binding since 
chemical potential is a formally correct free energy and not just an 
enthalpy of binding—sampling in this manner takes the entropy 
component into account. Note, when using somewhat more 
sophisticated procedures such as cavity-bias [ 41 ] to determine 
where to insert fragments more effi ciently, the probability equation 
has to be adjusted to maintain detailed balance, but this is a techni-
cal matter that does not change the conceptual process. It is very 
important to note that the only input into the algorithm is the 
protein structure and the fragments to be simulated. There is no 
other human intervention so the predictions of high affi nity vs. low 
affi nity sites and quantitative rank ordering of binding is predicted 
in a totally objective manner. Flaws in the predictions occur when 
the force fi eld parameters do not accurately represent the fi elds of 
the fragments or proteins, which is especially true of large concen-
trated charges. We have recently demonstrated these problems 
[ 42 ] in a blind competition study.   

  One very compelling aspect of SACP is how the procedure can be 
generalized to create an automated protocol for locating sites on a 
protein capable of making high affi nity non-bonded interactions, 

4.2  Binding Site 
Determination
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so-called hotspots. When SACP is run on a range of fragments 
independently, each fragment has a distinct and unique binding 
pattern on the protein that is quite different from any other frag-
ment. What is very striking is what happens when individual simula-
tions are brought together and two questions are asked, (1) which 
localized sites on the protein have high affi nity for a chemical diver-
sity of fragments and thus can be labeled sites of  clustering, and 
(2) of these clustering sites, which do NOT have high affi nity for 
water (the so-called water exclusion principle). The combination of 
these three principles, SACP predicting high affi nity fragment bind-
ing, clustering, and water exclusion have been shown to accurately 
predict protein hotspots in a wide variety of macromolecules.  

  Figure  5  is a blowup of the predicted binding site of the EPOR 
shown in Fig.  3  from two different perspectives. These views clearly 
show not only that the simulation predicts a high affi nity binding 
site at the point where the receptors meet but that the collective 
fragment patterns bind in an asymmetric mode. The locus of 

4.3  Prediction 
of Ligand Binding 
Asymmetry: 
Hypotheses II, 
III, and IV

  Fig. 5    Two different perspectives of the predicted high affi nity binding site illustrated in Fig.  3  are shown so 
that the asymmetry of the fragment patterns can be clearly seen. Since SACP produces results that are inde-
pendent of human intervention other than the choice of protein structure and the fragments to be simulated, 
this at least provides computational evidence for the perhaps surprising hypotheses that not only is the focal 
point where the receptors meet a high affi nity binding site, but that it will have a characteristic asymmetry       
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predicted fragment binding from SACP is very small, which is an 
indication from the simulation of the potential for designing very 
small molecules with signifi cant binding affi nity. It is important to 
note that the Phe93 pair is far from this predicted binding site. 
This does not mean that SACP predicts that the Phe93 pair is 
unimportant. Examination of Fig.  4  shows that there are multiple 
important interaction sites on a protein. For the EPOR, SACP is 
predicting that the site of primary importance is the focal point 
where the receptors meet.   

  SACP takes a protein and a collection of organic fragments includ-
ing water and runs a sequence of grand canonical ensemble simula-
tions starting from a very high chemical potential with gradual 
reduction until the chemical potential is very low. Each fragment is 
a solvent molecule and is run on one CPU. If 100 fragments 
including water are run, then this can be carried out on 100 pro-
cessors simultaneously. Each fragment is driven through a phase 
transition represented by the graph shown in Fig.  4 . This usually 
produces about a dozen high affi nity sites on a protein for a given 
fragment. As the chemical potential is lowered further, high affi nity 
sites are gradually depopulated of fragments—this gives a relative 
rank order of the free energy of interaction between different pro-
tein localities for a given fragment. Because this performs a com-
plete sampling of the protein–fragment interactions for the entire 
protein with no human bias and no a prior knowledge, it is an 
extremely powerful algorithm.  

  The SACP method on its own will not determine or predict 
binding sites. When the prediction of fragment binding affi nity 
as a function of chemical potential is augmented with the clus-
tering and water exclusion postulates, then a very robust recipe 
for binding site prediction exists. SACP cannot possibly predict 
what will be an agonist for the EPO receptor or if such a thing 
even exists. The four hypotheses stated above were developed 
from a careful study of erythropoiesis, which is completely inde-
pendent of SACP. Given these hypotheses, the fragment patterns 
generated from SACP can be analyzed to see if the simulation 
data supports or negates the preconceived notions. The struc-
ture of the SACP method does NOT allow for any biases to be 
built into the simulation, so the fragment patterns are unbiased. 
There is, however, a large bias that occurs with the choice of 
protein structure, because it is kept static during the simulations. 
My hypotheses lead to the perhaps counterintuitive choice of 
NOT using the Amgen structure with bound EPO, but the RWJ 
structure with the artifi cial EMP1 mimetic peptides. SACP has 
nothing to say about which protein structure should be used. Of 
course making an agonist is much more diffi cult than making an 

4.4  What SACP Does

4.5  What SACP 
Does NOT Do
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antagonist—so designing an activator requires more a prior 
hypotheses and thus a deeper understanding of the system, 
whereas often making an antagonist requires imposing no 
hypotheses. To be clear, it is my personal choice to use the RWJ 
structure with the artifi cial EPO mimetic peptides removed in 
order to generate fragment patterns that I believe will lead to an 
agonist. I believe that using the Amgen structure co-crystallized 
with the natural EPO hormone will produce symmetric frag-
ment patterns that will lead to the design of an antagonist. After 
choice of input structure is made, SACP will produce free energy 
rank-ordered fragment binding modes.  

  The actual molecular design process requires adding a little 
more detail to the hypotheses. Because the receptor in all states 
(on- state, off-state, or partial agonist state) has a basic twofold 
symmetry, I expect that the asymmetry of the on-state will be 
subtle. Chemically, asymmetry means a chiral center. Therefore, I 
expect that the fragment patterns will be basically symmetric from 
the SACP simulations,  but a chiral center will be predicted on one 
side and not the other . The top panel of Fig.  6  shows a blowup of 
the EPOR binding site with overlaid high affi nity fragment pat-
terns of furan, methyl acetate, and methanol predicted by SACP. 
Furan shown in blue has a directional and distinct binding mode 
with a defi nite orientation that is twofold symmetric across both 
halves of the receptor dimer. Methylacetate populates the region 
between the furan pair with a translational invariance that merges 
into and links the furan duo with multiple copies, but shows dis-
tinct asymmetric preference for binding the carboxyl groups to 
one side. The equipotent multi-copy translational binding forms 
the di-ketone and ester moiety. The most striking pattern is the 
prediction of methanol. One methanol fragment cluster occurs 
in the dead center of the receptor dimer in an isolated fashion 
unable to bind with the other fragments. The other methanol 
cluster binds to only one side of the receptor and not the other. 
Furthermore, this methanol cluster merges into the methylace-
tate linker in a way that produces a chiral center. The data is only 
computational at this point, but SACP predicts, (1) a previously 
unknown high affi nity binding site at the focal point where the 
receptors meet, (2) fragments that bind in a twofold symmetric 
manner with high affi nity (very negative chemical potential)—the 
furan pair, (3) introduction of a stereocenter on one side of the 
molecule and not the other and thus a characteristic asymmetry. 
 The bottom left panel of  Fig.  6   shows the molecule that I designed 
from these patterns, which my hypotheses predict will be an agonist.  
The bottom right panel shows the molecule with the stereocenter 
removed, and thus, my hypotheses predict that this should be an 
antagonist.    

4.6  Computational 
Design 
of the Proposed EPOR 
Agonist
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5    Binding and Proliferation Experimental Results 

 Theories and hypotheses are thought exercises that make science 
fun and interesting and computer simulations while intriguing may 
or may not capture an important aspect of reality. Ultimately, 
experiments must be performed to test the predictions, so the mol-
ecules shown in Fig.  6  were synthesized and tested in binding and 
proliferation experiments. A total of three molecules were made, 
both stereoisomers of the optically active molecule and the mole-
cule without the stereocenter. It is important to note that only one 
stereoisomer is defi nitely favored according to the SACP simula-
tions, indicating that only one enantiomer will be an agonist. 

blue-furan
cyan-ester
red-methanol

OO

OH

OO
O

OO

OO
O

Predicted Agonist Predicted Antagonist

stereocenter
(optically pure)

no stereocenter

  Fig. 6    The  top panel  shows a blowup of three different superimposed high affi nity fragment patterns predicted 
by SACP in the previously unknown binding site of the EPO-R using the structure from the RWJ group. 
The input structure for the simulations was the receptor bound to the EMP1 peptides with the EMP1 peptides 
removed. Furan, shown in  blue , binds in a twofold symmetric manner with a clearly defi ned orientation. 
Methylacetate has a set of translationally invariant equipotent high affi nity states that merge into a linker for 
the furan pair. Methylacetate does NOT bind in a twofold symmetric state according to the SACP simulations, 
but places the ester group preferentially to one side creating a double ketone moiety. One methanol cluster 
binds right in the center of where the two receptors meet. What is most striking is the high affi nity binding of 
methanol that merges into one side of the acetate linker but is completely absent from the other. At least the 
computational data support the hypotheses that an asymmetry exists in the receptor that will give rise to a 
complementary asymmetry in the ligand. It also suggests that if the molecule has the stereocenter removed, 
it will no longer be able to activate the receptor and thus should be an antagonist, which is shown in the  lower 
right panel        
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 Binding experiments are commonly standardized by fi rst 
establishing competition between I-125-EPO (hot or H-EPO) 
and cold EPO (C-EPO). Hot EPO is purchased highly purifi ed 
and cold EPO is purchased as a dilute mixture. We performed 
these set of experiments multiple times and determined that dis-
placement of H-EPO required a 400-fold molar excess of C-EPO, 
which is shown in Fig.  7  with the experimental protocol shown 
in Fig.  8 . While the experimental protocol needs to be followed 
carefully, it is conceptually straightforward. Erythroid progenitor 
cells are  proliferated with EPO demonstrating that functional 
receptor exists. The cells are then washed and centrifuged to 
remove any EPO. Equivalent amounts of these cells are added to a 
set of  centrifuge tubes. C-EPO in 400-fold molar excess relative to 
H-EPO is pipetted into a subset of control tubes. Various concen-
trations of the predicted small molecule agonist and antagonist 
are pipetted into select tubes that are labeled. All tubes then get 
H-EPO in the concentration precisely matching what is displaced 
by the 400X C-EPO. The cells are incubated for 3 h then washed 
to remove any unbound H-EPO. Each tube is individually mea-
sured with a counter to quantitate the remaining bound H-EPO. 
These experiments were replicated many times with representative 
results shown in Fig.  9 . Both compounds have high affi nity for 
the EPOR with the predicted agonist being about 10 nm and the 
predicted antagonist being about 100 nm.  It is quite amazing and 
satisfying that molecules with molecular weights of less than 280 can 
displace H-EPO with such potency .    
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  Fig. 7    EPO binding experiments are commonly done by competing radioactive I–125 labeled EPO against cold 
EPO. Hot EPO is purchased in a highly pure form and is quite expensive. Cold EPO is a dilute mixture and thus 
is signifi cantly cheaper, so C-EPO is used wherever possible. The molar excess of C-EPO needed to displace 
H-EPO must be established, which is 400×       
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Binding Procedure

• Grew Erythroid Progenitor cells in DPBM Medium containing IL-3, IL-6, SCF and EPO
• Spun the cells down for 10 minutes at 1,000rpm
• Added 3M Glycine pH 3 in 0.9% Saline to the cells for 3 minutes to dissociate preformed receptor-ligand complexes
• Washed the cells with DPBM medium containing 5% BSA
• Counted and resuspended the cells in final volume of 1X106 cell/200ul
• Aliquoted 200ul of cells in each centrifuge tube
• Let the cells sit on ice for ~5minutes
• Added  400X cold Epo to the control tubes
• Added compounds (30nM-7.5nM) to the labeled tubes
• Added  PBS/0.1% BSA to all the tubes except cold Epo to compensate for addition of cold Epo
• Added PBS/0.1% BSA/0.00042% DMSO to the all the tubes except compound tubes  to compensate for addition of compounds
• Diluted I125Epo in DPBM Medium/2-5% BSA bringing final concentration to 0.5uci/100ul
• Added 100ul of I125Epo solution to all the tubes
• Incubated the the tubes for 3 hours on the rotator at 4°C
• Took 10ul aliquots from each tube for counting the cells
• Added 800ul of Dibutyl Phthalate to all the tubes
• Shook the tubes and centrifuged them for 2 minutes at 10,000g
• Took supernatant off , froze the bottom of the tubes in Liquid Nitrogen, and clipped the bottoms into LSC vials
• Added 100ul of PBS buffer to the LSC vials to dissolve the pellet
• Added 5ml of Ready Safe to the vials, shook them and counted in LSC6500

  Fig. 8    This is the protocol for a standard assay used to quantitate EPO and EPO mimetic binding. Cells need to 
be proliferated with EPO to make sure that they express functional receptor. The EPO then needs to be washed 
out. The same number of cells is added to all centrifuge tubes. C-EPO in 400× molar excess relative to H-EPO 
is added to control tubes in order to prevent all H-EPO binding. A set of tubes get different concentrations of 
compounds. H-EPO is added to all tubes and the tubes are incubated for 3 h. All tubes are washed to remove 
unbound H-EPO. Each tube is put into a scintillation counter to quantitate bound H-EPO       
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  Fig. 9    The compounds do indeed bind to the EPO receptor and displace H-EPO. The compound with the ste-
reocenter has a molecular weight of only 277 Da and yet has an IC50 of about 10 nm. Removing the hydroxyl 
functional group that creates the stereocenter reduces the binding to about 100 nm       

 

 

Small Molecule EPO Mimetic



202

 Testing whether or not these compounds can induce stem 
cells to divide and then become red blood cells is the fi nal set of 
experiments. For this purpose we used human hematopoietic stem 
cells purchased from a blood bank. The standard MTS prolifera-
tion assay was used and all results were confi rmed by cell counting 
with a hemocytometer. The proliferation experimental procedures 
are summarized in Fig.  10 . The basic principle is very simple—
enzymes in living cells will convert a tetrazolium salt into a col-
ored formazan product and the intensity of this color is 
proportional to the number of living cells. The One Solution is a 
commercially available kit (Promega) for doing this assay. It is 
recommended to read the intensity at 490 nm and subtract out the 

Proliferation Procedure

· Spun down cells (1000 rpm/15min)

· Removed supernatant 
· Resuspended pellet in 30 ml of Epo-free media (DPBM media, SCF, IL-3, and IL-6) 

· Spun down cells (700 rpm/10 min) 
· Removed supernatant 

· Resuspended cells in 30 ml of Epo-free media and starved cells for 2hrs at 37°C/5%CO2 

· Spun down cells (700 rpm/10 min) 
· Counted cells via hemacytometer grid method  
· To each flask added 10 ml of Epo-free media and 500,000 cells 

· Added appropriate amount of Epo or Test compound to flask  

· Grew cells at 37°C/5% CO2 

· MTS Assay 
Aliquoted out 100ul/200ul sample of cell suspension into 96-well plate 
(each flask is sampled 5X) 
Added 20ul of Solution One 
Incubated plates for 3 – 4 hrs at 37°C/5% CO2 
Read plate on Dynex plate reader at 490nm (reference filter 630nm) 

· Hand Count Assay 
Spun down 5 ml of cell suspension (1000 rpm/3 min) 

Removed 4.5 ml of supernatant 

Resuspended cells 
To a 50 ul aliquot and added 50 ul of trypan blue stain 

Loaded aliquot onto hemacytometer and counted cells 

  Fig. 10    Standard experimental protocols were used to determine cell proliferation. The MTS One Solution 
assay uses a tetrazolium salt that is converted to a colored soluble Formazan by an enzyme in living cells, and 
thus, the absorption intensity is directly proportional to the number of cells. The older method used MTT, which 
is converted into a crystalline Formazan product that needs to be isolated and dissolved in order to perform 
colorimetric assays. All results were confi rmed by a technician using a hemocytometer. This is a tedious pro-
cedure using a specialized microscope slide with an indented rectangular well that is precisely gridded on the 
millimeter and submillimeter scale. It enables depositing exact volumes of a solution containing cells into small 
wells in a way that a human being can look under the microscope and actually count the cells. This gives 
precise cell densities. It is common to use hemocytometers to confi rm cell proliferation data       
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absorbance at 620 or 630 nm. Figure  11  shows the results of our 
fi rst experiment, which demonstrates that the predicted agonist 
compound is almost as potent as EPO. Note that the  X -axis is in 
picomolar concentration units. The compound’s binding affi nity 
at 10 nm is reminiscent of the RWJ fi ndings (Fig.  1 ) that receptor 
activation occurs at concentrations substantially below the IC50. 
This is indeed a very exciting result that strongly confi rms the 
proposed hypotheses, so the assays were set up on another day and 
repeated. Figure  12  shows that the second time the assays were 
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  Fig. 11    Human hematopoietic stem cells were used for the MTS proliferation assays. The optical density mea-
surements show that the compound predicted to be an agonist causes cellular proliferation almost as potently 
as EPO itself       

  Fig. 12    The assays were set up on a different day and redone—the results again 
show that the compound predicted to be an agonist causes cell proliferation 
comparable to EPO       
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performed—again the compound is almost as potent as EPO. 
On yet another day the assays were set up in triplicate, which is 
shown in Fig.  13 . All results were confi rmed by cell counting with 
a hemocytometer. Next, the compound with the stereocenter 
removed was tested in the cellular proliferation assays in triplicate 
on 2 different days. These  experiments show that this compound 
cannot cause proliferation of human hematopoietic stem cells as 
shown in Figs.  14  and  15 .        

6    Scanning Electron Microscopy 

 Samples of the proliferation experiments were taken on different 
days and analyzed with scanning electron microscopy. The fi rst 
SEM experiments were repeatedly performed on samples of human 
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  Fig. 13    The results were repeated in triplicate       
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  Fig. 14    The results were done in triplicate, but this time using the compound with 
the stereocenter removed, showing that the compound cannot cause cellular 
proliferation       
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hematopoietic stem cells exposed to EPO. In our hands it took 8 
days before observing the characteristic puckered red blood cell 
shown Fig.  16 . SEM showed the compound inducing cell division 
on the fourth day as shown in the left panel of Fig.  17  with a puck-
ered red blood cell shown in the right panel. An image on the fi fth 
day shown in the left panel of Fig.  18  shows cell in the process of 
dividing as seen by the cell-cell contact apparently indicating one 
cell splitting off from the other and what look like several puckered 
red blood cells. An image from the ninth day shows one red blood 
cell that is apparently in very poor condition.     
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  Fig. 15    The results were repeated       

  Fig. 16    Scanning electron microscopy of EPO induced differentiation of hematopoietic stem cells into red blood 
cells. EM scans were done every day for 10 days—on the eighth day we obtained a picture of a puckered cell 
shown in the  left panel  that is characteristic of a red blood cell. The larger view in the  right panel  shows a few 
puckered cells—many others appear to be dead or dying       
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7    Conclusions 

 The results presented in this chapter are very exciting, because 
they lend strong support to a set of hypotheses on how the EPO 
receptor is activated and illustrate how Simulated Annealing of 
Chemical Potential can be used to design extremely low molecular 
weight novel compounds to test such hypotheses. Furthermore, the 

  Fig. 17    After the fourth day, the EM scans show that the compound is inducing cell division as can be seen in 
the  left panel . In the  right panel  is a puckered cell indicating that a red blood cell has been formed       

  Fig. 18    On the fi fth day that hematopoietic stem cells are exposed to the compound one of the EM scans 
shows what appears to be many red blood cells in the  left panel . On the ninth day only one red blood cell is 
left and is apparently in a very poor state       
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fact that these compounds have a MW < 300 indicates that there is 
a possibility of making orally bioavailable small molecule EPO 
mimetic agonists. It must, however, be stated that the agonist com-
pound is certainly not a drug and that several complex issues remain 
unresolved. The fi rst most obvious fl aw with these small molecules is 
the ester bond. Carboxylesterase [ 43 ] is the main enzyme in fi rst 
pass hydrolysis of drugs and is the reason that most prodrug strate-
gies [ 44 ] incorporate an ester bond, which will be cleaved in the 
intestine. The small molecules used in these studies here have a 
highly exposed ester bond and thus will be highly susceptible to 
hydrolytic cleavage. Prodrug studies have long recognized that spe-
cial care is required to chemically stabilize [ 45 ] esters so further 
in vivo investigations on the small molecules created for these studies 
will likely require replacing or at least chemically stabilizing the ester 
bond. The most obvious next step of these investigations is solving 
the co-crystal structure of the extracellular domain of EPOR with 
the small molecules—the predicted binding mode needs to be con-
fi rmed. Secondly, SACP simulations should be applied to the Amgen 
structure, see if the fragment patterns confi rm my hypothesis that 
these patterns will be symmetric and not asymmetric as occurred 
with the RWJ structure and that the resultant small molecules will be 
antagonists not agonists. 

 Finally, after these studies were concluded, a small amount of 
assay work was performed using Baf3 and UT-7 cell lines, which are 
commonly employed when working with EPO. Baf3 are an immor-
talized cell line derived from the bone marrow of rodents that 
requires IL-3 to survive and grow. When Baf3 cells are transfected 
with the EPOR gene, these cells can survive and grow when exposed 
to EPO, so this has become a common cell line in EPO research. 
There are, however, complications, because Krosl and coworkers 
[ 46 ] have shown signaling through the IL-3 pathway actually inhib-
its EPO activity in Baf3 cells. UT-7 is a cell line from leukemia 
patients that expresses EPOR and thus has become a standard tool 
in EPO research, because proliferation occurs upon application of 
EPO. The Centocor group [ 47 ] has done an intriguing study com-
paring a set of high potency EPO agonist biological molecules for 
their ability to cause proliferation in UT-7 cells versus in vivo activ-
ity. When EPO, Aranesp, and Centocor’s antibody that contains 
two EMP1 peptides were compared, EPO and Aranesp caused 
UT-7 cellular proliferation 100× more potently than the Centocor 
construct—it is important to note that all constructs potently 
proliferated UT-7 cells. Conversely, the Centocor construct caused 
a sixfold greater increase in red blood cell count relative to EPO. 
These observations led the Centocor investigators to conclude 
that maintaining agonist activity over the time required for the 
maturation of reticulocytes is likely an important factor for in vivo 
effi cacy. This would seem to disfavor an agonist with a highly 
exposed ester bond, which is expected to have a short half- live in vivo. 
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Since application of EPO to UT-7 or Baf3 cells transfected with 
EPOR activates signal transduction pathways, it was expected that 
this cellular activation would result in a rise of intracellular ATP 
levels. This is easily checked by applying EPO to the cells, lysing the 
cells, and measuring the ATP content [ 48 ] with a luciferase assay. 
EPO does indeed cause a signifi cant rise in ATP of both cell lines as 
shown in Fig.  19 . The agonist compound does NOT cause eleva-
tion of ATP levels in these cells, possibly because the ester bond is 
cleaved under the conditions of this assay—but this is unknown at 
this time.      

   References 

Baf3 Cell Assay

0

50

100

150

200

250

0 70 140 280
Concentration (pM)

A
T

P EPOR EPO

PAR EPO

Baseline 

UT-7 Cell Assay

0
100
200
300
400
500
600

0 50 100 200 400
Concentration (pM)

A
TP EPO

Baseline

  Fig. 19    Baf3 are immortalized murine cells derived from bone marrow that depend upon IL3—withdrawing IL3 
will cause the cells to go into apoptosis. Baf3 cells transfected with EPOR survive and proliferate upon applica-
tion of EPO. UT-7 cells come from the bone marrow of patients with acute megakaryoblastic leukemia and 
proliferate when exposed to EPO. EPO activates signal transduction in both of these cell lines resulting in ele-
vation of intracellular levels of ATP. EPO has no effect on ATP levels of Baf3 cells not transfected with EPOR. The 
predicted agonist compound has no effect on ATP levels in either of these cell lines       
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    Chapter 15   

 Designing an Orally Available Nontoxic p38 
Inhibitor with a Fragment-Based Strategy 

           Frank     Guarnieri    

    Abstract 

   The MAPK p38 became a focal point of infl ammatory research when it was recognized that it played a key 
role in the production of the pro-infl ammatory molecules TNF-alpha, IL-beta, and cyclooxygenase-2 
(COX-2). The pharmaceutical industry devoted enormous efforts to creating p38 inhibitors, because 
blocking p38 had the potential of downregulating a group of pro-infl ammatory mediators, and thus, one 
drug could have a cocktail effect. The market potential seemed to be clearly established (Bonafede et al., 
Clinicoecon Outcomes Res 6:381–388, 2014) with a multiplicity of TNF-alpha antibodies and a soluble 
receptor (Mewar and Wilson, Br J Pharmacol 162:785–791, 2011) already on the market, although the 
relationship between TNF-alpha production and p38 activation is a complicated two-way (Sabio and 
Davis, Semin Immunol 26:237–245, 2014) signal transduction process. With the discovery that activated 
p38 stabilizes (Mancini and Di Battista, Infl amm Res 60:1083–1092, 2011) COX-2 mRNA and upregu-
lates expression of IL-beta (Bachstetter and Van Eldik, Aging Dis 1:199–211, 2010) probably in a similar 
manner, inhibiting p38 appeared to be a way of blocking TNF-alpha, COX-2, and IL-beta simultaneously. 
At Locus Pharmaceuticals we jumped on this opportunity, because we believed that our fragment-based 
drug discovery approach was ideally suited for making a potent small molecule p38 inhibitor that did not 
bind in the ATP site, but also had the solubility, lack of planarity, and low molecular weight required of a 
clinical candidate. Just to be clear, in our experience highly planar compounds often result in poor phar-
macokinetics, because they tend to bind strongly to plasma proteins. At Locus we typically repeated assays 
by adding increasing amounts of plasma to check for potency degradation in the presence of blood. We 
found this to be a useful early indicator of pharmacokinetics and in vivo behavior. It became clear from 
our work and the work of others that binding to the ATP site resulted in nonspecifi c isoform toxicities, 
but binding in the adjacent allosteric DFG-site resulted in molecules that were too planar and too hydro-
phobic. Applying the computational method of Simulated Annealing of Chemical Potential (SACP) to 
this problem, we at Locus were able to come up with surprising fragment substitution patterns that led to 
potent non-ATP p38 inhibitors with the solubility and lack of planarity that resulted in potent in vivo 
effi cacy in rodents with 33 % oral bioavailability. By using the simulations, we made only a small number 
of molecules and created a high quality clinical candidate. We also did extensive co-crystallography work, 
which demonstrated that the compounds bound in the mode predicted by the simulations. Unfortunately, 
all p38 programs ultimately shut down, because compelling evidence emerged that inhibiting p38 had no 
long-term clinical (Genovese, Arthritis Rheum 60:317–320, 2009) benefi t. Devoting a large amount of 
limited resources to a target that ultimately turns out to be a mistake because it was not properly validated 
is a fatal error for a small company, and this is one of the reasons that Locus ultimately failed.  

  Key words     p38  ,   Fragment-based drug design  ,   ATP site  ,   DFG site  ,   Monte Carlo  ,   Plasma assays  
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1      Introduction 

 The discovery in the early 1990s that activated p38 MAP kinase 
induces expression of a range of pro-infl ammatory cytokines made 
it an attractive target for pharmaceutical [ 1 – 8 ] drug discovery. 
Combinatorial chemistry and high-throughput screening at Bayer 
[ 9 ] led to the discovery of a class of p38 inhibitors exemplifi ed by 
the molecule shown in Fig.  1 . While this compound has good 
potency in both p38 inhibition and cellular assays, its planar hydro-
phobic nature is generally associated with a poor in vivo profi le. 
Nevertheless, because it does not bind at the ATP site, it is an exam-
ple of an allosteric inhibitor that binds in the pocket vacated by the 
kinase activation loop—specifi cally the highly conserve ASP- PHE-
GLY motif commonly referred to as the DFG binding site. Just to 
be clear, the DFG sequence of the activation loop of p38 MAP 
kinase behaves like an “intramolecular ligand” and this class of 
compounds binds to and displaces the DFG triplet from the p38 
allosteric site. The Boehringer Ingelheim group subsequently 
showed that adding a morpholino-ATP binding moiety (Fig.  2 ) to 

  Fig. 1    Bayer p38 inhibitor that binds in the allosteric DFG site. They report that 
this compound has an IC50 of 30 nm and inhibits p38 in SW 1353 cells at 70 nm       

ATP-binding group

  Fig. 2    This is the Boehringer Ingelheim p38 inhibitor, BIRB-796, taken into human 
clinical trials. Note that the DFG-binding motif is essentially identical to the Bayer 
compound shown in Fig.  1 . The di-Chloro-Phenyl group in the Bayer compound 
is a hydrophobic isostere of the naphthyl group in the BI compound. The new 
feature of the BI molecule is the morpholino group that binds in the ATP site. This 
makes BIRB-796 a hybrid DFG-ATP binding molecule       
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this class of compounds results in a subnanomolar p38 inhibitor 
with slow on kinetics [ 10 ] due to the displacement of the activation 
loop from the allosteric site. Importantly, the morpholino group 
adds signifi cant solubility to the DFG-binding molecule. The BI 
group also reported that BIRB-796 had low affi nity for 11 other 
kinases [ 11 ], and thus, it was deemed suffi ciently selective to take 
into clinical trials.    

2    The p38 Drug Discovery Program at Locus Pharmaceuticals 

 The aim of this chapter is to describe the strategy and execution of 
the computational fragment-based drug discovery method used to 
create an isoform specifi c, orally available, small molecule p38 
inhibitor. 

  After intensely studying the results from the Bayer and BI groups, 
there was a disagreement at Locus about whether it was good or 
bad to be binding in the ATP site. The pro ATP-binding site camp 
pointed out that the Bayer molecule, which binds in the DFG site 
and not the ATP site is too hydrophobic and thus could never have 
the in vivo profi le required of a real clinical candidate. This camp 
made the case that the hybrid DFG-and-ATP binding BIRB-796 
not only had the needed solubility but was also highly selective 
since it did not appreciably bind to 11 other kinases. They were 
also impressed with the fact that it inhibited p38 with ~100 pm 
affi nity. I was in the other camp and insisted that binding in the 
ATP-site would at some point result in off-target interactions 
resulting in unacceptable toxicities. My counter to the BI claim of 
kinase selectivity was that they never tested for p38 isoform selec-
tivity (to our knowledge)—a viable drug-like candidate must only 
inhibit p38 in infl ammatory cells and not inhibit p38 expressed in 
other tissue types. While it was not absolutely clear that this must 
be true at the time that this program was active, it seemed obvious 
and compelling to a group of us at Locus and publications years 
[ 12 ,  13 ] later validated that this was indeed the case. Specifi cally, 
the p38-gamma isoform is essential for skeletal muscle metabolic 
adaptation. Thus, the chronic inhibition of the alpha and beta iso-
forms required to treat infl ammation, must also be inactive against 
the gamma isoform to avoid deleterious muscular side effects.  

  We decided that the only way to settle the dispute between the 
group advocating for creating a compound that binds in the ATP 
site to maintain solubility and the group that wanted to make a 
purely allosteric DFG binding compound to achieve selectivity, 
was to synthesize BIRB-796 and test it. By testing it we mean not 
just against 11 random kinases as BI did, but against a panel of 
100 kinases and most importantly against all four p38 isoforms. 

2.1  ATP or Non-ATP 
Binding

2.2  Let Us Test 
BIRB-796 to See 
Who Is Right

Non-ATP p38 Oral Clinical Candidate
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A small but crucial subset of the data is shown in Fig.  3 . We ran 
single point assays at a compound concentration of 2 μm. It is 
important to note that this is not a dose–response curve, so this 
does not give an IC50. A typical procedure is to defi ne any single 
point inhibition of >50 % as signifi cant and perform a complete 
dose–response experiment only on these high affi nity molecules. 
If the single point inhibition is greater than 70 % this is very signifi -
cant and all of these situations are carefully analyzed with full dose–
response experiments and cell assays. As the table in Fig.  3  clearly 
shows, BIRB-796 signifi cantly inhibits all p38 isoforms. A small set 
of the other kinases that are substantially blocked is also shown. 
Since p38 gamma is crucial for skeletal muscle metabolic regulation, 
BIRB-796 cannot be given for a chronic indication such as infl am-
mation, because continuously downregulating the p38 isoform 
expressed in muscle tissue is obviously unacceptable.   

  The Pro-ATP-binding camp made the important point that BIRB- 
796 makes a key hydrogen bond in the ATP site at the so-called 
hinge region and that this is highly analogous to how many other 
small molecules bind to other kinases. The prototypical example is 
the binding of Gleevec to the BCR-Abl kinase. Figure  4  shows the 
crystal structures of BIRB-796 bound to p38 and Gleevec bound 
to ABL2 with this key hydrogen bond highlighted with a double- 
headed arrow. This leads to the compelling hypothesis that this 
specifi c interaction alone is responsible for the lack of selectivity. 
Just to be clear, because the hydrogen bond formed between the 
compounds bound in the ATP site with the amide backbone pro-
ton of a methionine is a repeating motif in kinases, the lack of 
selectivity may be due to the formation of this hydrogen bond 
alone and not to the binding in the ATP site. The Locus group 

2.3  Is One Hydrogen 
Bond Responsible 
for the Non- 
selectivity?

P38 Isoform % Inhibition @ 2 um

P38 alpha 98

P38 beta 94

P38 delta 95

P38 gamma 77

Tie2 99

TrkB 96

JNK2 alpha2 93

C-RAF 84

  Fig. 3    As part of the Locus p38 program we synthesized and tested BIRB-796 
against four different p38 isoforms and a range of kinases not tested by 
Boehringer Ingelheim. BIRB-796 is very potent for all p38 isoforms and a range 
of other kinases. One camp at Locus postulated that the ATP binding moiety of 
the compound was responsible for this lack of selectivity       
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that favored this hypothesis proposed replacing the morpholino 
group with a fragment that had high affi nity for the ATP site,  but 
did not make this hydrogen bond . If such a compound could be 
made, it would be a novel patentable derivative of BIRB-796 that 
retained its high potency, but also achieved the necessary alpha- 
beta isoform selectivity for p38 required to avoid the toxicities that 
will happen if the compound also bound to the delta and gamma 
isoforms. Even though I was in the camp that favored avoiding all 
ATP binding—I wanted to make purely DFG-binding molecules—
I agreed with doing this experiment, because if I were wrong and 
simply breaking this hydrogen bond would achieve isoform selec-
tivity, then we would have created a clinical candidate superior to 
BIRB-796.    

3    Simulated Annealing of Chemical Potential (SACP) 

 In order to discover fragments with high affi nity for the ATP- 
binding site of p38 that do not make a hydrogen bond with the 
methionine in this site, SACP—the technology used to found 
Locus—was run on the BI crystal structure PDB.1KV2. A good 
simple description of the SACP method with illustrations is given 
in the supplementary material of a paper showing how the method 
located a long sought after lipid binding site [ 14 ] on the mito-
chondrial aspartate amino transferase. Also it is described in detail 
in my patent [ 15 ] on the technique, its uses [ 16 ,  17 ] at Locus, and 

  Fig. 4    ( a ) The molecule in ball-and-stick is BIRB-796. The amino acid in sticks is methionine 109 in the ATP 
binding site from the p38 co-crystal structure 1KV2.PDB. The  black two-sided arrow  shows the very tight 
hydrogen bond—the distance between the oxygen from the morpholino group and the backbone nitrogen is 
only 2.9 A. Note that the proton attached to this nitrogen that makes the hydrogen bond is not shown. ( b ) The 
molecule in ball-and-stick is Gleevec. The amino acid in sticks is methionine 364 in the ATP binding site from 
the ABL2 co-crystal structure 3GVU.PDB. The  black two-sided arrow  shows the very tight hydrogen bond—the 
distance between the nitrogen from Gleevec and the backbone nitrogen is only 2.9 A. Note that the proton 
attached to this nitrogen that makes the hydrogen bond is not shown       
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in some recent publications [ 18 ,  19 ] from Bioleap. There is also an 
abbreviated description of SACP in the chapter on making a small 
molecule EPO mimetic in this same volume. The fi rst illustration 
of the method demonstrated the differential hydration propensi-
ties [ 20 ] between the major and minor grooves of DNA. The 
SACP simulations predict that diphenylether and some it is deriva-
tives will bind in the ATP site of p38 and that this fragment does 
not make a hydrogen bond at the hinge region. Locus synthesized 
several of these compounds and they were quite active in p38 inhi-
bition assays. There is an especially interesting comparative aspect 
between two different classes of these compounds—the diphenyl-
ether is quite removed from the MET 109 in both cases, but in one 
class an amide backbone from the inhibitor makes a hydrogen 
bond with MET 109 while the other does not. Thus, from the 
SACP simulations and the Locus experiments, two closely related 
diphenylether molecules block p38 with comparable affi nity but 
have different binding modes in the ATP site.  This gave Locus a 
defi nitive answer—we needed to be out of the ATP site, because 
whether or not the compounds H-bond to MET 109 made no differ-
ence—all of these ATP-binding compounds inhibited all four p38 iso-
forms with comparable affi nity.  It was quite gratifying that when 
co-crystal structures of these compounds were made with p38, the 
compounds were found to bind exactly as predicted from the sim-
ulations. The co-crystals did beautifully confi rm the computational 
predictions, so Locus published [ 21 ] the results (some key aspects 
of the co-crystals are shown in Fig.  5 ).   

4    The Challenge of Obtaining p38 Inhibition in Blood 

 The fragment-based experiments discussed above united the team 
at Locus on the fact that we had to make a purely DFG binding 
compound and that we needed to stay out of the ATP site if we 
were to create an isoform selective nontoxic clinical candidate. We 
restarted the program beginning with the Bayer molecule shown in 
Fig.  1 . Our working hypothesis was that this molecule needed to be 
solubilized with a heterocyclic aliphatic functional group. Clearly 
BI was on the right track that this molecule required a solubilizing 
moiety, but it also required something that would break the planar-
ity of the compound. We believed that this was necessary for main-
taining the potency of the compound when plasma was added to 
the assays. Just to be clear, in our experience highly planar com-
pounds often have a strong propensity for tightly binding to blood 
proteins. To illustrate this point we performed a triplet set of assays 
on the BIRB-796, which is shown in Fig.  2 . Our assays confi rmed 
that BIRB-796 is a very potent p38 inhibitor. When we used the 
full length MKK in the phosphorylation assays, the IC50 was 
around 2 nm. BI used a peptide fragment of MKK, which likely 
accounts for the small discrepancy—BI reported a subnanomolar 
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IC50. We then used a THP cell line. THP cells have been used for 
~30 years. They were derived from a patient [ 22 ] that had acute 
monocytic leukemia. The singular benefi t of using this cell line is 
that it only requires 0.5 % serum in the media to maintain its normal 
activity. The reason that this is so important is because the com-
pounds are tested for their ability to cross the cell membrane with-
out the confounding factor of whether or not they are sequestered 
by the blood. The EC50 of BIRB-796 in the THP assays was 
20 nm. The third assay used a PBMC cell line that required 5 % 
serum in order to get a preliminary indication of how the com-
pound behaves in the presence of blood. The three step assay pro-
tocol is, (1) obtain the IC50 for directly inhibiting p38, (2) because 
p38 resides inside the cell, obtain the EC50 of inhibition using the 
THP cancer cell line that requires virtually no serum as a test for 
how well the compound crosses the cell membrane, (3) repeat the 
cell experiments using PBMC cells, because they require 5 % 
serum and thus comparing the difference between the 2 cell 
assays give a fi rst indication of how well the inhibibitor behaves in 
the presence of blood. A fi nal in vitro (sometimes called ex vivo) 
assay is the whole bllood LPS test. In this assay whole blood is 
taken from a donor. When bacterial lipopolysacchride, a compo-
nent of the gram negative outer membrane, is added to the blood 
it elicits a violent infl ammatory reaction resulting in the a 

  Fig. 5    ( a ) The molecule in ball-and-stick is a new diphenylether class of p38 inhibitors discovered using the 
computational fragment-based drug discovery technique “Simulated Annealing of Chemical Potential” or 
SACP. Methionine 109 is shown in ball-and-stick with the carbons colored in  slate gray . This is from co-crystal 
structure 1ZZ2.PDB of p38 with the new class of compounds created at Locus experimentally confi rming the 
computational prediction of diphenylether binding in the ATP site, but NOT making a hydrogen bond with the 
backbone of MET 109. ( b ) The molecule in ball-and-stick is a second new diphenylether class of p38 inhibitors 
discovered using SACP. Methionine 109 is shown in sticks with the carbons colored in  slate gray . This is from 
co-crystal structure 1ZYJ.PDB of p38 with the new class of compounds created at Locus. Interestingly, an 
amide carbonyl from the molecule makes a tight hydrogen bond with the backbone amide of MET 109—this 
is highlighted with the  two-headed arrow . The oxygen-nitrogen distance is only 2.9 A. Note the amide proton 
making the H-bond is not shown       
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 dramatic upregulation of TNF. The p38 inhibitor is then added 
and the decrease in TNF production is monitored. The whole 
bllod LPS assay is reserved for the best compounds, because it 
can be diffi cult to perform. The variations of TNF in whole blood 
exposed to LPS can be very large so a great deal of standardization 
may be required. This demonstrates one of the practical diffi culties 
encountered in drug discovery. In theory having an in vitro assay 
that is a reliable indicator of in vivo behavior is highly desirable. 
Often the high degree of diffi culty in performing such an assay leads 
to the conclusion that it is just easier to go straight into the animal 
and get the in vivo data directly. The results of the triplet assay on 
the BI compound are summarized in Fig.  6 .  

 While it is imperative to remove the morpholino group from 
BIRB-796 in order to achieve isoform selectivity, there is the addi-
tional extremely positive benefi t of reducing the molecular weight 
by 120 Da. Oprea [ 23 ] emphasizes that quality lead compounds  in 
general  are low molecular weight molecules (MW < 425) with 
good solubility and modest log  P  values (<3). Just to be clear, 
Oprea does not say that there are not some exceptions to this char-
acterization, but that overall there is a better chance of developing 
a high quality clinical candidate if these constraints are approxi-
mately adhered to. Thus, after intensive study of the p38 literature 
and our own work, we concluded that for a compound to be a 
viable clinical candidate it had to bind exclusively in the DFG site 
with no ATP-binding for isoform selectivity (avoid toxicity), and 
have signifi cant solubility coming from a new and different three- 
dimensional heterocyclic functional group (maintain potency in 
plasma). Our goal was to create a low molecular weight (~450 Da), 
nonplanar, soluble, DFG binding compound that inhibits p38 
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Tolyl pocket

t-Butyl pocketNaphthyl pocket

Hinge Region

Linker: urea-pyrazole

• In vitro Inhibition    <1nM
• Cellular Inhibition   20nM
• Whole Blood LPS  800nm

  Fig. 6    A summary of the triplet assay procedure used at Locus in the p38 program. 
Our working hypothesis was that it would be much better to create an inhibitor 
with substantially lower MW that had a more consistent effi cacy from protein 
inhibition to cell inhibition to cell inhibition in the presence of blood. In other words, 
pm inhibition in a protein assay with a compound that loses four orders of mag-
nitude effi cacy when progressively going to more biologically relevant assays is 
probably an indication of something that will have a poor in vivo profi le       
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with submicromolar effi cacy in a cell assay in the presence of 
 signifi cant plasma. Our hypothesis was that such a molecule would 
be orally bioavailable and have signifi cant in vivo potency. Just to 
be clear, the singular focus on making compounds that bind to p38 
that are nanomolar to subnanomolar without worrying about any-
thing else, seems to result in molecules that either behave poorly in 
blood or bind to the ATP site and thus lack the isoform specifi city 
required to be nontoxic. We felt that striving for submicromolar in 
a cell assay in the presence of blood was a better predictor of a 
good in vivo profi le. 

  One of the functional groups in the Bayer compound must be 
replaced if the resultant molecule is to have a molecular weight of 
450 or less—obviously just adding an additional functional group 
as BI did would cause an unacceptable increase in the molecular 
weight. Bayer has a phenyl group attached to the pyrazine and BI 
slightly derivatizes it to the toluene. This phenyl moiety mimics 
the conserved phenylalanine of the DFG triplet from the activa-
tion loop that binds in the p38 allosteric site. Because this phenyl-
alanine is so critical in the functioning of the protein, all molecules 
published at the time we were doing the work contained this 
 phenyl group—it was considered essential. The SACP simulations 
made the startling predictions that certain complicated aliphatic 
heterocycles had approximately the same free energy of binding as 
the phenyl group and the toluene fragments. I say that this was 
startling, because at the time it was generally accepted that this 
was a hydrophobic pocket designed by nature to bind the benzene 
ring of the conserved DFG triplet. The two fragments that we 
decided to incorporate into the Bayer scaffold are shown in Fig.  7 . 
It was very gratifying that co-crystal structures of these com-
pounds showed that they bound exactly as predicted by the simu-
lations. The co-crystal structures and how they confi rm and 
validate the computational predictions have been published by 
Locus [ 24 ] and many of the structures have been deposited in the 
protein data bank.   

  SACP simulations predict the relative rank order binding affi nity of 
different fragments for a given pocket in the protein, but have 
nothing to say about how the compounds will behave in the 
presence of blood. Our studies of albumin binding profi les indi-
cated that planar structures have a higher probability of being 
sequestered by blood proteins. In fact, in our experiments, BIRB-
796 is 99 % plasma protein bound. Once we confi rmed the SACP 
simulations predicting that dioxothiomorpholine and diazepanone 
could be substituted for the phenyl group by inhibition assays and 
co-crystallography, we made a set of derivatives of the two 
 fragments and assayed their potency in the presence of high 
amounts of plasma. One compound stood out as maintaining sub-

4.1  Can the Highly 
Conserved Phenyl 
Group Be Replaced?

4.2  The Importance 
of Activity in Blood 
as an Indicator 
of In Vivo Activity

Non-ATP p38 Oral Clinical Candidate
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micromolar inhibition in a cell assay even when high amounts of 
human plasma was added to the media—this is compound D 
shown in Fig.  7 . Accordingly we tested this molecule in vivo show-
ing that it has 33 % oral bioavailability in a rat pharmacokinetic 
model and that it has signifi cant effi cacy in blocking p38 induced 
TNF production in a mouse infl ammatory [ 25 ] model (shown in 
Fig.  8 ). These results validate our strategy for creating a p38 clini-
cal candidate, which can be summarized as, (1) no ATP binding to 
avoid isoform nonspecifi c toxicity, (2) achieving solubility by 
replacing a hydrophobic moiety generally thought to be essential 
with a soluble aliphatic heterocycle predicted from the SACP simu-
lations, (3) breaking the planarity of the molecule to retain a good 
deal of the potency in the presence of blood, (4) integrating the 
simulation results with a triplet assay of binding to p38, p38 inhibi-
tion in THP cells, and p38 inhibition in PBMC cells. While our 
compounds did not bind with subnanomolar potency to p38—
they were generally about 20 nm—they were designed to be sub-
micromolar in cell assays in the presence of blood. We felt that 
maintaining good potency when going to successively more bio-
logically relevant assays was a better indicator of what would hap-
pen in vivo compared to having extreme potency in a binding assay 
with orders of magnitude of degradation in potency when going to 
cell assays and then plasma assay. Our in vivo results of 33 % oral 
bioavailability and signifi cant p38 blockage in rodent models dem-
onstrates that this approach at least for a p38 inhibitor is a good 
way to achieve the in vivo results required of a clinical candidate.    

c

b

d

a

Molecular Weight: 486
Molecular Weight: 541

  Fig. 7    Compounds A and B are the core structures discovered by Bayer and BI. Note that the dichlorophenyl 
moiety in B is considered to be a hydrophobic isostere of the naphthyl group in A. The SACP simulations predict 
that thiophene can be substituted for pyrazine. SACP also predicts that the dioxothiomorpholine shown in 
compound C and the diazepanone shown in compound D are equipotent replacements of the phenyl group. 
Locus medicinal chemists were adamant that no one would have ever thought to make these substitutions to 
create compounds C and D, because the phenyl binding pocket was considered to be the conserved aspect of 
the DFG activation loop intramolecular interaction and thus must be kept       
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5    Conclusions 

 Unfortunately, the p38 program at Locus was ultimately a failure 
because Cohen and coworkers [ 26 ] showed that an isoform selec-
tive p38 inhibitor was less effective than methotrexate in treating 
active rheumatoid arthritis. Genovese [ 6 ] nicely summarizes these 
results in an editorial by stating, “The p38 MAP kinase inhibitors 
represent one of the most heralded classes of therapies for the 
treatment of infl ammation in the past decade,” and “the fat lady 
has sung for the beleaguered development of p38 inhibitors for the 
treatment of RA.” The business decision at Locus to put so many 
resources into this program along with other questionable business 
decisions resulted in the company going bankrupt after about 10 
years in existence.  The main lesson for a small company is – make 
sure that your target is clinically validated . As an example, blocking 
PCSK9—the liver protein that downregulates the LDL receptor 
has been clinically validated as an anticholesterol target. Amgen has 
excellent data [ 27 – 30 ] in Phase III clinical trials with an anti- 
PCSK9 antibody, and thus, this is a validated high value target for 
small molecule development. A small company simply cannot 
afford to make the mistake that we made at Locus—getting caught 
up in the current hype surrounding a new and exciting target with-
out fi rst seeing validation in a clinical setting. The target must be 
proven in humans and you must have a strategy for why you can do 
better scientifi cally and  more importantly why you can do better eco-
nomically —ultimately this is business and getting overly caught up 
in the science was a big mistake.  

  Fig. 8    Compound D from Fig.  7  was taken into animal studies, because it inhibited p38 with an IC50 of 20 nm 
and it inhibited p38 in a PBMC cell line that requires 5 % serum with 400 nm EC50, and most importantly was 
still 860 nm in the PBMC assay when large quantities of human plasma was added. This compound has 33 % 
oral bioavailability in a rat PK model and is highly selective for the p38alpha isoform and shows signifi cant p38 
inhibition in vivo       
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6    Final Thoughts and Acknowledgements 

 At the time that the work was going on I was caught up in proving 
that the SACP simulations that I invented would lead to the dis-
covery of classes of inhibitors that no medicinal chemist would 
have come up with and that my ideas on non-ATP binding and 
tightly coupling inhibition assays with cell and blood assays would 
lead to a clinical candidate making only a small number of mole-
cules. Just to be clear, several other Locus scientists felt the same 
way about non-ATP binding and the need for activity in human 
plasma, so these were not my ideas alone. Many of us felt that opti-
mizing a compound to get nanomolar or subnanomolar potency in 
a binding assay was probably in fact counterproductive, since it was 
likely to lead to poor behavior in vivo and that the best and easiest 
surrogate for a good in vivo profi le was maintaining potency in the 
presence of human blood. Of course if the target is intracellular 
like p38, it is vitally important to not lose too much potency when 
going from a protein inhibition assay to a cell assay.  We felt that a 
good rule of thumb would be to lose not more than one order of 
magnitude in potency when going from a protein inhibition assay to 
a cell assay and not more than an additional one order of magnitude 
in potency when blood was added to the cell assay.  Basically, we 
thought that losing many orders of magnitude of potency when 
progressing to more biologically relevant assays was a bad omen 
for in vivo effi cacy. The SACP predictions that nonplanar heterocy-
clic functionalities could replace the conserved benzene ring of the 
DFG triplet of the activation loop was a completely startling result 
and I have to thank the Locus chemists for being open-minded 
enough to synthesize the molecules and the Locus biologists for 
doing the assays and obtaining co-crystals. The Locus chemists 
went even further—the SACP simulations predicted that the 
dioxothiomorpholine could bind in several different modes and 
they actually synthesized a few variants to test these computational 
predictions. Co-crystals of these different variants were obtained 
and deposited in the protein data bank validating the computa-
tional predictions. 

 Figure  9a–d  show the co-crystal structures of the Locus p38 
inhibitors with the dioxothiomorpholine fragment in place of the 
phenyl group that was generally accepted as irreplaceable. The 
SACP simulations predicted that the dioxothiomorpholine frag-
ment would bind in three different modes (Fig.  10 ) if a one carbon 
linker was used. Referring back to Figs.  1  and  2 , both Bayer and BI 
directly connected the phenyl ring to the pyrazine scaffold. The 
SACP simulations predicted that directly linking the dioxothio-
morpholine fragment to the pyrazine or thiophene scaffold would 
also be fi ne, but would be confi ned to one binding mode. The four 
co-crystals shown in Fig.  9  experimentally confi rm these computa-
tional predictions.   
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 Figure  11a, b  shows the co-crystal structures of the diazepa-
none fragment predicted from SACP to be a replacement for the 
conserved phenylalanine. We considered the molecule in Fig.  11b  
to be our best candidate for clinical trials, because it inhibits p38 in 
a direct binding assay at 20 nm, inhibits p38 in a PBMC cell line in 
5 % serum at 400 nm, and inhibits p38 in the PBMC cell line with 
added human plasma at 800 nm. Even though this compound is 
not a 100 pm inhibitor in a direct binding assay, the fact that it lost 
only one order of magnitude in potency when going from a pro-
tein inhibition assay to a cell assay in serum and then lost virtually 
no additional potency when human serum was added was taken as 

  Fig. 9    ( a ) A binding mode of the dioxothiomorpholino p38 inhibitor with a one carbon link to the thiophene 
scaffold taken from 3P5K.PDB experimentally confi rming the computational prediction from SACP simulations. 
( b ) A different binding mode of the dioxothiomorpholino p38 inhibitor taken from 3P7A.PDB. The SACP simula-
tions predicted that an alternate binding mode would occur if the dioxothiomorpholine fragment was directly 
linked to the thiophene scaffold and co-crystallography confi rms this computational prediction. ( c ) The SACP 
simulations predicted that the one carbon linker to the thiophene would result in multiple binding modes of the 
dioxothiomorpholine fragment. This co-crystal is taken from 3P78.PDB, which experimentally confi rms the 
prediction of the additional binding modes. ( d ) The SACP simulations actually predicted three different binding 
modes for the dioxothiomorpholine fragment with a one carbon linker to the thiophene. This co-crystal is taken 
from 3P79.PDB, which experimentally confi rms this third binding mode       

 

Non-ATP p38 Oral Clinical Candidate



224

  Fig. 10    SACP predicts that the dioxothiomorpholine fragment will bind with high affi nity in the conserved phe-
nylalanine binding DFG pocket. Interestingly, all three of these binding modes are predicted to occur for a 
1-carbon link to the pyrazine or thiophene scaffold, and only one of these modes is predicted to occur with a 
direct link to the pyrazine or thiophene scaffold. Co-crystal structures shown in Fig.  9  confi rm these 
predictions       

  Fig. 11    ( a ) This co-crystal is taken from 3P7B.PDB, which experimentally confi rms the SACP prediction that 
the diazepanone fragment can replace the phenyl group that replaces the F in the DFG triplet of the activation 
loop. ( b ) This co-crystal is taken from 3P7C.PDB. SACP simulations indicated that the diazepanone fragment 
could be derivatized at this position with alkyl amines. This, however was more of a Medicinal Chemistry effort 
to obtain better affi nity when human plasma was added to the cell assays       
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an indication that the compound had a high likelihood of behaving 
well in vivo. The animal data show (Fig.  8 ) that this molecule has 
high oral bioavailability and signifi cant in vivo effi cacy, supporting 
the hypothesis that submicromolar effi cacy in blood is a good indi-
cator of in vivo potency.  

 One fi nal comment—this molecule violates our initial desire to 
keep the molecular weight low—hopefully below 450 but at least 
under 500 Da. The dioxothiomorpholine compounds were designed 
with this goal in mind, but for some unknown reason this fragment 
resulted in compounds that lost too much effi cacy in the presence 
of human plasma. We really wanted the compound taken into 
in vivo studies to be submicromolar in the presence of human 
plasma. This required relaxing the low molecular weight con-
straint. The in vivo data confi rm the benefi ts of seeing submicro-
molar activity in the presence of human blood and the goal of 
making a compound that maintains most of its potency when pro-
gressing through a set of assays that are increasingly biologically 
relevant.     
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