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Preface

Fragment-based methods for drug discovery have been investigated in one form or another
for several decades, but there has been increased interest in the last 10 years in their practi-
cal application in drug discovery. This is partly due to some of the recent successes of the
field and their contribution to drug discovery, as well as an expansion in the number and
availability of methods and improved computational resources. This volume will cover the
techniques necessary for a successful fragment-based drug design project, beginning from
defining the problem in terms of preparing the protein model, identifying potential binding
sites, and the consideration of various candidate fragments for simulation. The second part
of this volume discusses the technical aspects that various methods have used to simulate
fragment binding to a target protein using Monte Carlo, molecular dynamics, and docking
algorithms. After simulations, fragments are assembled into molecules using a variety of
approaches, which are explored next. A discussion of design strategies and consideration of
drug-like properties is included as part of the design process at this stage. Finally, several
examples of successful fragment-based drug design projects are presented.

Doylestown, PA Anthony E. Klon
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Chapter 1

Solvation Methods for Protein-Ligand Docking

Rachelle J. Bienstock

Abstract

Hydration has a significant impact on ligand binding within protein active sites. Specific water molecules
and their placement within protein active sites have been shown to make specific contributions to the
energetics of protein-ligand binding and need consideration in the design of efficient binding ligands.
These specific nonbulk water molecules and their interactions are different and have more significant
impact in ligand design than the generalized bulk solvation of ligand—protein systems. Proper theoretical
description of the solvation effects of water within a ligand-binding pocket is a significant computational
challenge. Recently, new computational methods have been developed which can more accurately describe
the contribution of waters within a protein ligand site and lead to improved and enhanced ligand design
and ranking in computational docking and to greater enrichment.

Key words Solvation models, 3D-RISM, Watermap, Explicit solvation, Implicit solvation

Abbreviations

RISM Reference interaction site model
IEST /IST Inhomogeneous fluid solvation theory
HFE Hydration free energy

MM-PB/SA  Molecular mechanics-poisson-boltzmann/surface area
MM-GB/SA Molecular mechanics-generalized born method/surface area

FEP Free energy perturbation

TIP Transferable interaction potential
MD Molecular dynamics

IETs Integral equation theories

1 Introduction

There is increasing interest in understanding the role and energy
contribution of water molecules within protein active sites in drug
design, since these nonbulk waters have been shown to signifi-
cantly impact protein-ligand binding. Ligand affinity and

Anthony E. Klon (ed.), Fragment-Based Methods in Drug Discovery, Methods in Molecular Biology, vol. 1289,
DOI 10.1007/978-1-4939-2486-8_1, © Springer Science+Business Media New York 2015
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1.1 Explicit
Solvation—Explicit
Water Models

Rachelle J. Bienstock

specificity has been linked to and affected by water molecule
interactions within ligand-receptor complexes. When a ligand
binds, in a protein-binding pocket, solvent molecules within the
pocket rearrange or become displaced. These rearrangements of
water molecules within the binding pocket affect the binding free
energy. Water solvation of narrow hydrophobic pockets is very
unfavorable energetically because water in this situation cannot
form hydrogen bonds. Expulsion of water from these types of
enclosed protein regions leads to enhancement in ligand—protein
binding affinity. Displacement of water molecules, from the active
site, when a ligand that is more energetically suitable binds, can
liberate free energy when the ligand binding displaces active site
waters (HFE=hydration free energy). Free energy perturbation
methods can compute this free energy gain but at a significant
computational price. Are there less computationally expensive
methods that can be used to calculate these free energy perturba-
tion gains and therefore give a more accurate docking score and
measure of ligand-binding affinity?

There are computational methods for including hydration
effects ranging from simplistic empirical approximations to full rig-
orous free energy perturbation theoretical treatments. Can con-
tinuum solvation theories, which have been the major computational
solvation methods used to describe hydration up until the present,
adequately describe the physics involved to rank binding affinities
of ligands? Which methods are the most suitable and which can be
used to effectively calculate ligand binding energies and correctly
rank docked ligands?

Methods have been developed to calculate the contribution of
the solvent to the binding free energy of a small molecule to its
receptor, that include the effects of the ligand displacing solvent
from the protein active site. These methods fall into three general
categories: (Subheading 1.1) Explicit Solvation Simulation,
(Subheading 1.2) Implicit Solvation (Solvent Continuum), i.e.,
includes only the high dielectric polarization term for water, and
(Subheading 1.3) Intermediate Approximation Methods, i.e.,
Solvent Potential Methods.

Explicit water models differ in geometry, electrostatics, and param-
eters. TIP3P (3-point transferable interaction potential) water [1]
and SPC water (simple point charge) [2] are among the most com-
mon water models used. They are fixed charge, rigid water models.
Eftforts to improve the three-site TIP model have resulted in TIP4P,
TIP5P water models [1]. Explicit solvent models use a microscopic
and atomistic description with each water molecule represented as
a point charge with Lennard-Jones van der Waals potential repre-
sentations. The advantage of explicit water models is that they can
investigate reaction dynamics and probe the specific structure of
water. However, explicitly treating each water molecule is more



1.1.1 IFST
(Inhomogeneous Fluid
Solvation Theory)—
WaterMap and GIST
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computationally intensive. Explicit methods to calculate the bind-
ing free energy of displaced waters, and whether water displace-
ment is energetically favorable, include Thermodynamic integration
(TI) or free energy perturbation theory (FEP) [ 3], which are used
to calculate the energetics of water molecules in the binding pocket.

Lazaridis (1998) [4] developed IEST (inhomogeneous fluid solva-
tion theory). Young et al., applied Lazaridis’ theory to develop the
Watermap solvation [5, 6] site-based approach application of IFST
toward identifying displaced water sites that enhanced ligand bind-
ing. Nguygen [7] developed GIST (Grid Inhomogeneous
Solvation Theory), a grid-based application of IFST. Watermap
and GIST are examples of explicit solvation simulation models that
score the stability of specific water sites within the active sites of
proteins. These methods are slower compared to approximate
methods that use solvent continuum models, which include only
the high dielectric polarization term for water.

Watermap, (implemented within the Glide XP docking com-
mercial software package from Schrodinger, http://www.schro-
dinger.com/WaterMap.php), calculates the entropy of bound water
due to the local environment. It is a post-MD (molecular dynamics)
trajectory analysis method that uses the OPLS (Optimized Potentials
for Liquid Simulations, WL Jorgensen) all atom force field and the
TIP4P water model. The local thermodynamic properties of active-
site solvent can be computed with explicitly solvated MD simula-
tions to sample the active-site solvent distribution. During MD
water molecules are kept track of and the location and orientation
of each water molecule is retained in a density profile. Water posi-
tions are clustered based on the density profile obtained from the
MD simulation. The interaction energy between each water and
system 1is calculated and the entropy of each water molecule esti-
mated. Then active-site solvent distributions can be clustered into
high occupancy 1A spheres, which denote hydration sites of the
active site cavity. The average system interaction energy and excess
entropy term for water in each hydration site is then calculated and
the system interaction energy of the hydration site can be compared
with the bulk solvation to estimate the enthalpy cost of water trans-
fer from the hydration active site to the bulk.

Watermap has eftectively been used to identify druggable bind-
ing sites as these sites usually have a large number of unstable
waters [8]. For example WaterMap studies of factor Xa ligand
binding. Watermap hydration sites correlated with the experimen-
tal SAR studies for fXa ligands. Solvent analysis indentified three
enthalphic unfavorable hydration sites, which agreed with experi-
mental data that this sites bound hydrophobic groups [6].
Watermap was tested with a set of 28 ligands extracted from solved
crystal structures of factor Xa and the delta G calculated correlated
well with delta G experimental.


http://www.schrodinger.com/WaterMap.php
http://www.schrodinger.com/WaterMap.php
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1.2 Implicit Solvation
(Solvent Continuum
Models)-MM-PB/SA
and GB-PB/ SA

Continuum (implicit) Models are low-level theoretical approaches,
which are more approximate and empirical but incur less computa-
tional cost than explicit solvent models. Implicit solvent models
uncouple polar and nonpolar interactions, assume linear and local
solvent polarization, and therefore do not represent a true physical
interpretation. In implicit solvent models water is treated as a con-
tinuum electrostatic equation to describe polar solvation (continu-
ous homogenous polar liquid) with dielectrics largely based on the
Poisson-Boltzman equation. The Poisson-Boltzman Equation is
often used to calculated ligand solvation and estimate ligand bind-
ing free energies by calculating the total energy of the protein—
ligand complex and then subtracting the solvated energy of the
protein and ligand separately to give the binding free energy esti-
mates. This commonly used protocol is referred to as the MM-PB/
SA method—Molecular Mechanic-Poisson-Boltzmann /Surface
Area. Popularized by Kuhn and Kolman, [9] the high computa-
tional cost of PB (Poisson Boltzman) caused the development of
the GB—generalized Born method. MM-GB /SA has been shown
capable of capturing the experimental binding energies [10]. The
key weakness of implicit solvation models are their poor descrip-
tion of water-mediated interactions, especially the directionality of
water hydrogen bonds, additionally, they treat the nonpolar contri-
bution to solvation approximately.

The choice of an internal dielectric coefficient is important.
Biomolecular dielectric coefficients should be 2—4 but low dielec-
tric models are not good for MM /PBSA calculations where molec-
ular flexibility is explicitly modeled through conformational
sampling. Dielectric coefficients 4-20 are used for biomolecular
applications with lower values being more successful for modeling
protein-ligand interactions. The dielectric interface must also be
defined, usually as the molecular Connolly surface used to param-
cterize the biomolecular solvation calculations. Often molecular,
Van der Waals surfaces are used sometimes with Gaussian smooth-
ing. The Poisson equation-includes only the influence of the sol-
vent on the electrostatic properties of solute; however, mobile ions
can also play a part in electrostatics and solvation. Finite difference
methods are the most frequently used numerical methods to solve
the Poisson-Boltzman equation for biomolecular electrostatics.
The following are all methods which are finite difference-based
commonly used Poisson-Boltzmann solvers—APBS (Adaptive
Poisson-Boltzmann Solver),DelPhi, MEAD,UHBD,ZAP,PBEQ
in CHARMM,PB Solver in AMBER MIB. SZMAP (commercial
software from OpenEye http: //www.cyesopen.com/SZMAP[11]
is an example of a method based on a semi continuum sol-
vation model. PBSA and GBSA methods are implemented and
available within the AmberTools (http://ambermd.org/docl2/
Amberl4.pdf).


http://www.eyesopen.com/SZMAP
http://ambermd.org/doc12/Amber14.pdf
http://ambermd.org/doc12/Amber14.pdf
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Solvation Methods 7

Another alternative theoretical method uses IETS (integral equa-
tion theories) to simplify the all atom description of explicit solva-
tion into a probabilistic treatment of solvent and solute distributions.
These methods use less computational resources than explicit sol-
vent but are a more detailed description than continuum models.
IETS can predict the 3D spatial organization of solvent density
around large molecules and thermodynamic solvation quantities.
3D-RISM[12, 13] (three-dimensional reference interaction site
model) calculates an approximate average solvent distribution
around rigid solute and computes the hydration free energy (HFE)
faster than molecular simulations methods. 3D-RISM techniques
can compute the thermodynamic effects of water reorganization
within a binding pocket without the need to use explicit simula-
tions and can help localize the regions of organized solvent and free
energy and have favorable applications for ligand optimization.
3D-RISM does have a problem with the thermodynamics of
hydrophobics and does not compute HFE of organics well. The
3D-RISM method is relatively accurate at predicting electrostatic
HEFE without correction but requires modification of the nonpolar
contribution, which originates in the solute water cavity but
doesn’t include size effect of water molecules in an active site. For
3D RISM one only needs solute and solvent potential parameters
as input from molecular two-body additive force fields, such as
AMBER, or CHARMM and bulk solvent density, temperature and
composition. 3D RISM equations derive the approximate density
distribution functions and (DCF) direct correlation functions for
each hydrogen and oxygen in water (the three dimensional analog
of the radial distribution function). 3D RISM keeps the orienta-
tion dependence of solute molecules, which is necessary to describe
solvation of large molecular solutes. 1D-RISM is less computation-
ally costly than the 3D method; however, the 3D-RISM method
also provides correct dielectric properties of polar solvents. The
Chemical Computing MOE 3D RISM is a commercially available
implementation of this method http://www.chemcomp.com/
MOE-Structure_Based_Design.htm [12].

A recent method developed by the research group at
GlaxoSmithKline (GSK) combines elements of the IFST and
3D-RISM. The Group at GSK calls their method SPAM [14]
which is a statistical mechanics-based approach which estimates
free energy difference between protein-bound and bulk water. The
SPAM method uses explicit solvent molecular simulations for dis-
crete hydration sites at the water protein interface and computes
local free energy of water and site specific interactions. This method
provides a qualitative estimate of the thermodynamics of water in
hydration sites that agrees well with SAR (structure activity data)
and known hot spots. The IFST-based approach estimates the local
thermodynamic solvation properties, and interaction energy con-
tribution due to water binding and entropy penalty due to the


http://www.chemcomp.com/MOE-Structure_Based_Design.htm
http://www.chemcomp.com/MOE-Structure_Based_Design.htm
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ordering of the bulk. In IEST the entropy is calculated by
expanding the sum over solute-solvent and solvent-solvent micro-
scopic rotational and translational states. SPAM obtains the entropy
contribution from MD simulations. Instead of obtaining states of
water from translational and rotational degrees of freedom to
obtain entropy, SPAM calculates the distribution of interaction
energies between the water and surrounding solute and solvent
molecules at a given time. The GSK group has applied their SPAM
computational technique to the correct water placement in HIV
protease and Hen Egg White Lysozyme. SPAM has provided qual-
itative estimates that have correlated with experimental SAR obser-
vations, for example for HIV1 protease favorable ligand binding
hot spots in the protein can be associated with water displaced
from the receptor-ligand (causing favorable enthalpy and entropy
changes) interaction site or interface to the bulk.

2 Materials

Available Software

1. SPC Water and TIP3p, TIP4p, TIP5P solvation models can be
used to solvate proteins in GROMACS, http: //www.gromacs.
org/Documentation/How-tos/TIP3P_coordinate_file; VMD
http: //www.ks.uiuc.edu/Research /vmd /plugins/solvate /

AMBER Tools https: //www.cgl.ucsf.edu/chimera/docs/
ContributedSoftware /solvate /solvate.html

2. Watermap (Commerical Software from Schrodinger) https: //
www.schrodinger.com/WaterMap.php

3. MM=GB/SA and MM=PB/SA(AMBER and AmberTools)
http: //ambermd.org/tutorials /advanced /tutorial 3 /

4. SZMAP (Commercial Software from OpenEye) http: //www.
eyesopen.com/SZMAP

5. APBS (Adaptive Poisson-Boltzmann Solver) https://sites.
google.com/a/poissonboltzmann.org/software /apbs

6. DelPhi  http://wiki.c2b2.columbia.edu/honiglab_public/
index.php/Software:DelPhi

7. MEAD(Macroscopic Electrostatics with Atomic Detail)
http: //www.teokem.lu.se /~ulf/Methods/mead.html;
http: //stjuderesearch.org/site /lab /bashford /

8. GROMACShttp: //www.gromacs.org,/Documentation,/How-
tos/TIP3P_coordinate_file

9. SPAM in AmberTools http: //archive.ambermd.org,/201401 /
0290.html

10. UHBD http: //gilsonlab.umbi.umd.edu


http://www.gromacs.org/Documentation/How-tos/TIP3P_coordinate_file
http://www.gromacs.org/Documentation/How-tos/TIP3P_coordinate_file
http://www.ks.uiuc.edu/Research/vmd/plugins/solvate/
https://www.cgl.ucsf.edu/chimera/docs/ContributedSoftware/solvate/solvate.html
https://www.cgl.ucsf.edu/chimera/docs/ContributedSoftware/solvate/solvate.html
https://www.schrodinger.com/WaterMap.php
https://www.schrodinger.com/WaterMap.php
http://ambermd.org/tutorials/advanced/tutorial3/
http://www.eyesopen.com/SZMAP
http://www.eyesopen.com/SZMAP
https://sites.google.com/a/poissonboltzmann.org/software/apbs
https://sites.google.com/a/poissonboltzmann.org/software/apbs
http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:DelPhi
http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:DelPhi
http://www.teokem.lu.se/~ulf/Methods/mead.html
http://stjuderesearch.org/site/lab/bashford/
http://www.gromacs.org/Documentation/How-tos/TIP3P_coordinate_file
http://www.gromacs.org/Documentation/How-tos/TIP3P_coordinate_file
http://archive.ambermd.org/201401/0290.html
http://archive.ambermd.org/201401/0290.html
http://gilsonlab.umbi.umd.edu/
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11. ZAP (electrostatics solver in Commerical OpenEye software)
http: //www.eyesopen.com/zap-tk

12. PBEQ (in CHARMM) http://www.charmm-gui.org/?doc=
input/pbeqsolver

13. 3D-RISM  (Commerical Software Chemical Computing
Group (CCQ)) http: //www.chemcomp.com/MOE-Structure_
Based_Design.htm#SolventAnalysiswith3D-RISM and http://
dansindhikara.com/Tutorials /Entries /2012 /1 /1_Using_3D-
RISM_and_PLACEVENT.html

3 Methods

3.1 3D-RISM

3.2 GROMACS

3.3 SPAM

Dan Sindhikara [13] has made available a tutorial and his code
implementing the 3D-RISM water solvation algorithm within
AmberTools14 (http://ambermd.org/docl2/Amberl4.pdf.) He
outlines all the methods and steps on his website using code freely
available. http: //dansindhikara.com /Tutorials /Entries /2012 /1 /
1_Using_3D-RISM_and_PLACEVENT.html, https: //sites.google.
com/site /dansindhikara /Home /software /placement/tutorial-
http://dansindhikara.com /Software /Entries /2012 /6 /22 _
Placevent_New.html

1. Parameterize a downloaded PDB structure file
. Prepare solvent—use SPC water with ions for initial solvation
. Run 3D-RISM

. Placevent for water distribution analysis

[S2NNN" ~NEIN I 8]

. SANDER minimization and simulation

Sindhikara demonstrated accurate predicted water placement
in HIV protease [15].

G_mmpbsa is an implementation of the MM_PBSA method by the
Open Source Drug Discovery Consortium using GROMACS
(Molecular Simulations force field) and the APBS package, which
compares favorably with the AMBER MM-PBSA method [16].
This method is freely available http://rashmikumari.github.io/g_
mmpbsa/. The MM-PBSA method calculates the binding energy
and also available with this software are scripts to obtain the binding
energy and energetic contribution of each residue. The binding
energy consists of three energetic terms, (a) potential energy in vac-
uum, (b) polar-solvation energy, and (c¢) nonpolar-solvation energy.

(A Simple Approach for Profiling Bound Water Molecules)[14], a
simple way to profile local solvation is now part of Ambertools
(AmberTools version 12 and later).

The SPAM code has two components, a Python driver (SPAM.py)
and modifications to the cpptraj AmberToolsl12 (and later versions)


http://www.eyesopen.com/zap-tk
http://www.charmm-gui.org/?doc=input/pbeqsolver
http://www.charmm-gui.org/?doc=input/pbeqsolver
http://www.chemcomp.com/MOE-Structure_Based_Design.htm#SolventAnalysiswith3D-RISM
http://www.chemcomp.com/MOE-Structure_Based_Design.htm#SolventAnalysiswith3D-RISM
http://dansindhikara.com/Tutorials/Entries/2012/1/1_Using_3D-RISM_and_PLACEVENT.html
http://dansindhikara.com/Tutorials/Entries/2012/1/1_Using_3D-RISM_and_PLACEVENT.html
http://dansindhikara.com/Tutorials/Entries/2012/1/1_Using_3D-RISM_and_PLACEVENT.html
http://ambermd.org/doc12/Amber14.pdf
http://dansindhikara.com/Tutorials/Entries/2012/1/1_Using_3D-RISM_and_PLACEVENT.html
http://dansindhikara.com/Tutorials/Entries/2012/1/1_Using_3D-RISM_and_PLACEVENT.html
https://sites.google.com/site/dansindhikara/Home/software/placement/tutorial
https://sites.google.com/site/dansindhikara/Home/software/placement/tutorial
https://sites.google.com/site/dansindhikara/Home/software/placement/tutorial
http://dansindhikara.com/Software/Entries/2012/6/22_Placevent_New.html
http://dansindhikara.com/Software/Entries/2012/6/22_Placevent_New.html
http://rashmikumari.github.io/g_mmpbsa/
http://rashmikumari.github.io/g_mmpbsa/
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3.4 Ligand-Docking
(Scoring)
Improvements

program module. The SPAM energy evaluations are done with the
NAMD software, (because this functionality is not yet part of the
Amber software). Prerequisites to running SPAM are therefore
AmberTools12 and NAMD installed on your computer.

The SPAM implementation computes the location of hydration
sites around the target protein from a multi-nanosecond explicit
solvent MD simulation. All steps prior to the water interaction
energy calculation are in the cpptraj module AmberTools 12 suite.

SPAM can find the interaction energy of water molecules that
travel through the hydration sites of interest. The protein conforma-
tion is restrained while solvent molecules can move freely so the sys-
tem will converge easily and more rapidly where hydration sites are
located by identifying the peaks in the computer water density map.

SPAM procedure used by the GSK group:

1. System preparation: water and ligands removed from protein
PDB structure.

2. Maestro Protein preparation used protonation states assigned,
and the hydrogen bond network optimized.

3. Parm99SB and gaft AMBER force fields used AM1-BCC
charges calculated for docking inhibitor.

4. MD simulations with NAMD 2.8 using PME grid spacing
1 A, 10 A cutoff with 8 A switching function -NVT 5,000
step min and 30 ps constant temperature (T=300K) and 1 atm
pressure equilibration, followed by 200 ps NPT molecular
dynamics followed by production run sampling with a hydra-
tion shell for 10 ns with 2fsec time steps. This simulation was
able to identify water-binding sites.

5. SPAM analysis—water density map calculated as a time aver-
age, with a 5 A grid using VMD 1.8.7 VolMap—each hydra-
tion site of interaction of water molecules calculated using pair
Interaction in NAMD.

6. SPAM free energy for hydration site calculated.

Docking programs use scoring functions; however, it is a challenge to
produce accurate scoring functions, which estimate ligand-binding
affinities. The PPC method (polarized protein —specific charge
model) included in MM /PBSA was used to rescore ligand binding
poses to include the bridging water molecules that were found to
play a significant role in determining the protein—ligand binding
modes [17]. The accuracy of the MM /PBSA method for docking
and predicting ligand-binding affinity relies on the force field accu-
racy; however, nonpolarizable force fields, such as CHARMM and
AMBER, do not accurately represent the protein electrostatics
environment. PPC described the polarized electrostatic state of the
protein and therefore gives a more accurate description of the elec-
trostatic interactions between the protein and ligand and agrees
better with experimental data. Only a few scoring functions take
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water into consideration in protein-ligand docking and include
binding water molecules in molecular docking. The bridging water
molecules were treated as part of the receptor in this method. PPC
polarized protein specific charges calculated the electron structure
of biomolecules and the continuum dielectric model for solvent.
The PPC charge model and MM /PBSA calculations were applied
with the Amber ff 99SB on ranking protein-ligand docked poses.
The bridging waters need to be explicitly included in the calculation
(treated as part of the receptor).

1. Prepare Protein-Ligand complexes from PDB structure
coordinates-hydrogens added using Leap AMBER 11 module,
all amine groups fully protonated.

2. Partial charges of protein assigned with Amber ff99SB force
field.

3. Hydrogens added to ligand and geometry of ligand optimized
at HF/6-31G* level and ANTECHAMBER used to obtain
ligand force field parameters. All structures had bridging water
molecules.

4. Autodock used to create ensemble of docked conformations
for each ligand (bound to receptor).

5. Then 1,500 steps steepest descent followed by 1,500 steps
conjugate gradient minimization using AMBERI11 Sander.

6. Next step, PPC charges are fitted to electrostatic potentials by
QM calculations. Minimized structure used to calculate PPC
charges by the MFCC-PB computational protocol —Poisson-
Boltsman Delphi.

7. Solvent to calculate induced charges on solute-solvent inter-
face with probe radius 1.4 A. Solvent dielectric constant set to
80 and grid density of 4 grids/ angstrom used to numerically
solve Poisson-Boltzman equation.

8. QM calculation of protein fragments performed with DFT the-
ory at B3LYP/6-31G*. Molecular Dynamics simulations with
TiP3P water and counterions and Amber {ff99SB force field.

9. MM /PBSA calculation of the binding affinity.

With molecular docking with structural waters in the binding
pocket, Autodock still could not predict the native structure poses.
Rescoring the binding free energies using the MM /PBSA and
structural waters, including the bridging waters, the MM /PBSA
with Amber ff99SB method recognizes the correct binding for
some structures. The MM /PBSA and PPC model recognizes all the
native binding poses since the polarized state of the protein pro-
vides accurate electrostatic interactions and near native structure.

Fragments are smaller and less complex than lead compounds and
therefore have fewer degrees of freedom for virtual screening and
docking. Additionally, fragments have greater solubility and polarity
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than regular molecular hits and lower binding affinities. Docking
scoring functions sometimes neglect solvation, including solvation
that would make fragment docking scoring more accurate since sol-
vation is a greater proportion of the binding free energy in fragments
that in larger lead molecules. Docking fragments rescored with
MM-PBSA, which gave significantly better docking results [18].

1. Active site waters play a significant role and need to be consid-

ered in the development of computational docking and ligand
binding site studies.

2. Computational and theoretical methods to describe the ener-
getics of water and solvent interactions at ligand binding site
are improving in their ability to predict and correlate with
experimental binding data.
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Chapter 2

Binding Site Druggability Assessment
in Fragment-Based Drug Design

Yu Zhou and Niu Huang

Abstract

Target druggability refers to the propensity that a particular target is amenable to bind high-affinity drug-like
molecules. A robust yet accurate computational assessment of target druggability would greatly benefit the
fields of chemical genomics and drug discovery. Here, we illustrate a structure-based computational
protocol to quantitatively assess the target binding-site druggability via in silico screening a fragment-like
compound library. In particular, we provide guidelines, suggestions, and critical thoughts on different
aspects of this computational protocol, including: construction of fragment library, preparation of target
structure, in silico fragment screening, and analysis of druggability.

Key words Druggability assessment, Fragment screening, Molecular docking, MM-GB /SA rescor-
ing, Hit rate

1 Introduction

Successful drug development requires a disease target of both bio-
logical relevance and chemical tractability. With the completion of
the human genome, we now have unprecedented access to large
numbers of potential therapeutic targets. The question that arises
is which specific protein targets can be modulated by a drug-like
molecule. Druggability (i.e., propensity that a particular target is
amenable to bind high-affinity drug-like molecules) assessment in
the process of target selection would reduce drug discovery attri-
tion and put effort on those targets most likely to lead to therapeu-
tic intervention [1].

The first step in evaluating the druggability of a target is to
identify the presence of binding pockets with suitable size, shape,
and composition to accommodate drug-like molecules. Many
approaches for this purpose have been developed that are generally
classified as geometry-based [2-5], information-based [6, 7],
and energy-based algorithms [8, 9]. Benchmarking studies using
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training set data extracted from the Protein Data Bank (PDB),
most approaches have demonstrated to correctly detect the true
ligand-binding sites. However, the presence of a suitable protein
pocket is necessary but not sufficient to guarantee potent binding
of drug-like small molecules.

The more difficult step is to quantitatively predict the drug-
gability index of a given binding site. Early studies have pre-
dicted target druggability on the basis of sequence and structure
homology to known drug targets [10, 11]. However, not all
members of the same protein family are equally druggable [12].
More importantly, such methods cannot be used to assess drug-
gability of novel target families. Recently several structure-based
target druggability methods have been developed and validated
against a set of reference targets where the degree of tractability
is known. These methods provide quantitative assessments of
druggability using physicochemical descriptors derived from the
ligand binding pockets and apply techniques as varied as bio-
physical modeling [13], linear regression [14, 15], and support
vector machines [16].

Hajduk et al. made a seminal contribution by demonstrating
that experimental hit rates from the heteronuclear-NMR-based
fragment screening could serve as an effective druggability index
within a set of 23 protein targets containing 28 different binding
sites [17]. Furthermore, they derived a linear regression model to
fit the experimentally measured hit rates to physicochemical
descriptors of these 28 binding pockets. Applying an appropriate
cutoft, this model was assessed using an additionally assembled
binding-site dataset, and 33 out of 35 known drug-like ligand-
binding sites were correctly identified. Being essentially analog to
the NMR-based fragment screening, an in silico fragment screen-
ing protocol was also developed to assess target binding-site drug-
gability [18]. It makes use of a molecular mechanics-based scoring
method for the protein-ligand interaction and the obtained virtual
hit rates were demonstrated to correlate with the hits rate mea-
sured experimentally from the NMR-based screening method.
This protocol can be employed to distinguish known druggable
and non-druggable targets, and it is generally applicable without
relying on any assembled training data set that potentially extends
its capacity toward unexplored target space.

In this chapter, we illustrate the computational details of this in
silico fragment screening protocol for target druggability assess-
ment (see Fig. 1 for a schematic overview). We outline the criteria
for the construction of fragment library, discuss the method for the
preparation of target structure, and describe the procedure for car-
rying out the in silico fragment screening. Finally, we discuss the
druggability analysis from the virtual screening results.
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Fragment library Target structure
construction preparation

Insilico fragment screening

Docking fragment-like compounds

MM-GB/SA refinement/rescoring

Binding energy histogram analysis

Druggability analysis

Fig. 1 Schematic illustration of druggability prediction via fragment-based dock-
ing and scoring approach

2 Materials

The druggability assessment protocol entails building a fragment-
like compound library and performing in silico fragment screening
experiments, which could be carried out by means of a variety of
Web servers and software. The programs listed here are merely the
ones used as examples for illustrating this procedure. The diverse
set of fragments is selected from the fragment-like subset of the
ZINC database [19, 20]. The DOCK 3.5.54 program [21, 22] is
used to dock the fragment database into the protein binding site.
The Protein Local Optimization Program (PLOP) [23-25] is used
to perform MM-GB /SA refinement and rescoring.

3 Methods

3.1 Fragment Library
Construction

1. Extract compounds from the fragment-like subset of the ZINC
database (see Note 1).

2. Eliminate fragments with more than 15 heavy atoms (se¢ Note 2).
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3.2 Target Structure
Preparation

3.3 In Silico
Fragment Screening

3.3.1 Docking Fragment-
Like Compounds Library

3. Calculate feature key fingerprints using CACTVS [26], and
perform the fingerprint-based similarity analysis with a modi-
fied version of the program SUBSET [27] to reduce redun-
dancy of the fragment library (se¢ Note 3).

1. Select one or more representative structures for the protein
target (see Note 4).

2. Determine the ligand binding pocket (see Note 5). Identify
cofactors, metal ions, and structural waters in the target pro-
tein and treat them as part of the protein if they are involved in
ligand binding.

3. Add hydrogen atoms to the protein. Assign proper proton-
ation states for binding-site residues and optimize the orienta-
tions for polar hydrogen atoms using PLOP (se¢ Note 6).

The in silico screening protocol employs a physics-based hierarchi-
cal scoring method which consists of two steps: predicting the
binding poses of ligands using a docking program, and then refin-
ing and rescoring those protein-ligand complexes using a more
computationally intensive molecular-mechanics based energy func-
tion [28, 29]. This protocol uses a high-throughput docking pro-
gram to initially orient and score the ZINC fragment-like
compounds in the binding site, and subjects the best single dock-
ing pose for each docked compound to a rescoring stage in which
the ligand is fully minimized inside the binding site and the bind-
ing energy is estimated with an all-atom molecular mechanics force
field combined with an implicit solvent model. Finally the results
of all compounds are analyzed based on the binding energy
distribution.

1. Identify binding site residues within a certain range (e.g.,
12 A) away from any heavy atom of the crystallographic ligand
or the residues used to define the site, using the program FILT
(part of the UCSF DOCK suite).

2. Calculate the solvent-accessible molecular surface [30] of the
protein binding site with the program DMS [31] using a probe
radius of 1.4 A.

3. Generate receptor-derived spheres with the program SPHGEN
(part of the UCSF DOCK suite) [32], in combination with the
ligand-derived spheres if necessary (see Note 7).

4. Set the grid box dimensions with edges 15 A beyond the
matching spheres initially. Then refine the box dimensions to
maximize the coverage of the protein without exceeding 2 mil-
lion grid points at a predefined grid resolution (three points
per angstrom by default). Finally, four scoring grids are gener-
ated: an excluded volume grid using DISTMAP [33], a united
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atom AMBER-based van der Waals potential grid using
CHEMGRID [33], an electrostatic potential grid using DelPhi
[34], and a solvent occlusion map using the program
SOLVMAP [35].

. Perform docking with DOCK 3.5.54, a flexible-ligand method

that uses a force-field-based scoring function. Ligand confor-
mations are scored on the basis of the total docking energy
(Eioc= Eac+ Evaw— AGiigsory), Which is the sum of electrostatic
(E..) and van der Waals interaction energies ( E.q,), corrected
by the partial ligand desolvation energy (A Gig-soly)-

. Save a single docking pose with the best total energy score for

each docked molecule for the next stage of scoring (see Note 8).

. Generate OPLS force field parameter for each molecular com-

pound and cofactor (if present), using IMPACT (part of the
Schrodinger suite).

. Submit the free ligand, free protein and docked protein—

ligand complex to multi-scale Truncated Newton (MSTN)
energy minimization [25] in all-atom OPLS force field [36,
37] and Generalized Born (GB) solvent [38, 39] using PLOP
(see Note 9).

. Calculate the binding energy ( E,q= ER~ EX - E}) by subtract-

ing the energies of the optimized free ligand in solution (EY)
and the free protein in solution (ER) from the optimized pro-
tein-ligand complex’s energy in solution ( E*) (see Note 10).

. Report the energy scores distribution for the protein target.

. Compute the “hit rate” for the in silico screening based on a

chosen energy cutoft value (=40 kcal/mol) (see Note 11).

. Calculate the druggability score which is defined as log(hit

rate).

. Compare the druggability score with the cutoff value of 0.36

to classify the assessed target as druggable or non-druggable
(see Note 12).

4 Notes

. Fragments are molecules of low complexity, which sample

chemical space exponentially more effectively than drug-sized
molecules. Different estimates exist of the size of chemical
space. Here, the fragment-like subset of the ZINC database
(version 6, December 2005) contains 49,134 compounds with
relatively low molecular weight (MW <250), few rotatable
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bonds (RB < 3), low hydrophobicity (-2 <log P< 3), and weak
hydrogen bonding potentials (HBgonor < 3 and HB,ccepror <6).

. Kuntz et al. observed that the maximal binding free energy

increases more slowly for ligands containing more than 15
heavy atoms [40]. Therefore, fragments with more than 15
heavy atoms were eliminated. This filter reduced the library
size to 32,717 molecules.

. Representative structures were selected for each structural

cluster with Tanimoto coefficient (Tc) less than 0.9 to other
clusters. This further reduced the library to 11,129 diverse
molecules. To assess any potential bias resulting from the
diversity-based filtering, redo the screening using 32,717
ZINC fragment-like compounds for the training dataset, leads
to very similar energy distributions.

. Targets may have multiple crystal complex structures available

and some display significant side-chain movement upon bind-
ing to different ligands [41]. In most cases, we found that the
changes of the histograms of energy scores and the druggabil-
ity scores calculated from them are remarkably small when
using different crystal structures. Nevertheless, multiple con-
formations are recommended for the binding sites with large
structural variation, especially for the protein—protein interac-
tion (PPI) interfaces. Applying our protocol, specific drugga-
ble conformations could also be identified.

. The identification of the protein binding pocket is straightfor-

ward for ligand-bound complex structures. However, the
binding site is not known from a 3-D structure or from other
experimental data, a “suitable” pocket is required to be
detected firstly by pocket detection programs or virtual
inspection.

. Ideally, the target protein should be prepared as if the crystal

ligand was absent, as adjusting the protein to favor crystal
ligands is a source of bias.

. Spheres are generated to fill the binding site. Matching spheres

required for the orientation of the ligand within the binding
site are obtained by augmenting the ligand-derived spheres
with receptor-derived spheres. By default, spheres furthest
away from ligand-derived spheres, furthest from the centroid
of the remaining spheres, too close to receptor atoms, or too
close to each other are removed iteratively until the total num-
ber of sphere is 35 or less. However, for large binding surfaces
like protein—protein interfaces, we use a maximum of 120
matching spheres to ensure adequate ligand sampling.

. One major limitation of the current protocol is that it relies

entirely on the docking algorithm to identity the correct
binding pose. A simple extension of this protocol is to subject
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a small number of dissimilar binding poses to minimization in
the MM-GB/SA rescoring step and use the most favorable
binding energy for rank-ordering ligands. Therefore, multiple
(usually hundreds of) docking poses could be saved in docking
stage and subjected for structural descriptor-based filtering and
KGS-penalty function-based conformational clustering [42].
Tens of poses might be finally obtained for next MM-GB/SA
rescoring.

. The molecular mechanics forces are divided into short-range

(bond, angle, torsion, and local non-bonded) and long-range
components, with the long-range forces updated only inter-
mittently. The algorithm is also optimized for minimizations
with GB solvent that increases the computational expense by
only a factor of ~3 relative to the vacuum. Thus, this scoring
approach accounts for accurate and efficient calculations of
ligand—protein interaction energies, the ligand /receptor desol-
vation, and to a lesser extent, ligand strain energies. In this
work, the protein was kept rigid during protein—ligand mini-
mization to reduce the computational expense.

Accurate free energy calculations depend on a proper balance
of many different energetic components. The MM-GB/SA
rescoring method strikes a balance between computational
speed and accuracy, and in particular neglects entropic loss and
protein flexibility. Empirically scaling certain energy compo-
nents as a post-rescoring process, in a manner similar to LIE
scheme, may be useful to compensate for some of these limita-
tions [43]. It has been suggested that the MM-GB /SA scoring
function underestimates the nonpolar binding contributions
to the free energy of binding [28]. In this study, we empirically
scaled the van der Waals energy component by a factor of 2.

This cutoft value was empirically chosen to maximally differen-
tiate druggable and non-druggable binding site. We visually
inspected the energy distributions for the 13 druggable bind-
ing sites and 11 non-druggable binding sites in Hajduk et al.
training data set and explored the effect of varying the cutotf
with respect to differentiating between druggable and non-
druggable binding sites. We found the correlation between the
docking screening hit rates and the NMR screening results is
relatively insensitive to the value of the energy cutoff within a
certain range (from -40 to -34 kcal/mol). In this work, an
energy cutoft of —40 kcal /mol was used for computing the in
silico hit rate.

The calculated druggability scores correlate reasonably well
with the NMR-based fragment screening results. Hajduk et al.
defined binding sites as “highly druggable” if they have a
experimental log(hit rate)>-1.0. The corresponding value of
computational log(hit rate) is 0.36, and we used this value to
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classify proteins as druggable or non-druggable in this work.
Although Hajduk et al. distinguish between “highly drugga-
ble” and “moderately druggable,” we use a simple binary clas-
sification for simplicity. Nevertheless, the higher druggability
score a target is assigned, the more druggable it might be.
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Chapter 3

Generating “Fragment-Based Virtual Library” Using
Pocket Similarity Search of Ligand-Receptor Complexes

Raed S. Khashan

Abstract

As the number of available ligand-receptor complexes is increasing, researchers are becoming more dedicated
to mine these complexes to aid in the drug design and development process. We present free software
which is developed as a tool for performing similarity search across ligand—-receptor complexes for identify-
ing binding pockets which are similar to that of a target receptor. The search is based on 3D-geometric and
chemical similarity of the atoms forming the binding pocket. For each match identified, the ligand’s
fragment(s) corresponding to that binding pocket are extracted, thus forming a virtual library of fragments
(FragVLib) that is useful for structure-based drug design. The program provides a very useful tool to
explore available databases.

Key words Fragment-based, Drug design, Virtual library, In silico, Pocket similarity, Subgraph
mining

1 Introduction

We present a tool that mine ligand—-receptor complexes and generate
a library of fragments for a target receptor so it can be used for
structure-based drug design, such as Fragment-Based Lead Design
(FBLD). FBLD is a computational approach which begins with a
small low affinity fragment(s) which bind to the target of interest,
followed by a careful construction and optimization of these
fragments to end up with a high affinity lead drug. In theory, this
is a highly efficient approach for drug design, and it has become
enormously popular in the past few years [ 1-4].

Our method, FragVLib [5], relies on a Graph-based represen-
tation for interfacial atoms of a ligand—-receptor complex. Interfacial
atoms are defined as the adjacent receptor and ligand atoms which
are within certain cutoff distance. Interfacial atoms are represented
by nodes, and distances between them are represented by edges
connecting these nodes. Therefore, the resulting interfacial-graph
contains a number of nodes representing atoms from the ligand
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connected by edges to a number of nodes representing atoms from
the receptor. Furthermore, the interfacial-graph also includes all
the atoms that are covalently bound to the interfacial atoms. These
atoms are represented by nodes, and the covalent bonds connect-
ing them to the interfacial atoms are represented by edges (Fig. 1).

We should mention that we make use of the tessellation tech-
nique to identify the interfacial atoms. Specifically, we use almost-
Delaunay (AD) tessellation [6] which has a unique advantage of
incorporating the imprecision of the point coordinates in defining
the tessellation patterns. Besides the cutoff distance (ADdistance)
used to identify adjacent atoms, a threshold value (ADepsilon) is
used to signify the minimum perturbation needed for an atom to
be part of the interfacial atoms. This is important when dealing
with bad-resolution ligand-receptor complexes.

Now let us assume that we have a “target” ligand-receptor
complex for which we are interested in designing a lead compound
using FragVLib method. Let us also assume that we have a data-
base of X-ray crystallized ligand-receptor complexes, i.c., “native”
complexes. First, we will generate the interfacial-graphs for all
ligand-receptor complexes involved, i.e., the target complex and
all the native complexes.

Now since we have the complexes’ interfaces represented by
interfacial-graphs, we can use efficient subgraph match to perform
a pocket similarity search between the interfacial-graph of the tar-
get complex and the interfacial-graph of each one of the “native”
complexes in the database. The match considers all possible sub-
graphs and is performed over the atoms and bonds composing the
receptor side of the interfacial graphs only, this is a pocket similar-
ity search, and ligands were only used to define the binding pock-
ets. The match takes into account the chemistry and the 3D
geometry of the matching atoms and bonds. The 3D geometry is
checked by making sure that the matching atoms superimpose
within a user-defined RMSD cutoff value (ARMSDcutoff). The
user of the tool (FragVLib) can also limit the size of an accepted
match (i.e., number of nodes in the matched subgraph) by provid-
ing the minimum value (minMatchSize) and a maximum value
(maxMatchSize) for the size.

Every time an accepted subgraph match is identified between
the interfacial-graph of the target complex and the interfacial-
graph of a native complex, the ligand’s part (atoms and bonds) of
the interfacial-graph of the native complex that are only in direct
contact with the identified subgraph match is copied into the
pocket of the target receptor. When repeating this pocket similarity
search using each native complex in the database, we will generate
a collection of chemical fragments filling the binding pocket of the
target receptor. These fragments constitute the so called “Fragment-
based Virtual Library” or FragVLib (Fig. 2).
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Fig. 1 (a) An example of a receptor—ligand complex. (b) The same example after
defining interfacial atoms using almost-Delaunay (AD) tessellation. (c) The inter-
facial atoms and their bonds form the interfacial-graph
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Fig. 2 A picture for the target receptor—ligand complex on the /eft side, and another picture for the receptor
after identifying the fragments (virtual library of fragments) using FragVLib, on the right side

Finally, for lead design, the user can explore these fragments
and perform one of the following: growing them into the depth of
the binding pocket; carefully connecting two or more fragments
into one compound for optimized potency; or merging two or
more fragments in regions of mutual overlap to construct a lead
compound [7].

2 Materials

The program is written in C++, and it is publicly available freeware;
it can be copied and distributed freely. The user manual and the pre-
compiled executables can be downloaded by going to the website
“http: //www.bioinformatics.org/fragvlib” and installing the file
“FragVLib.zip”. Itis easy to install (no external libraries) and easy to
use as we explain in the next section. After unzipping the file, you
will have the following executables (se¢ Note 1, and Note 7):

- getIntGraph4Target

- getIntGraphs4DB

- FragVLib

- rmLigHs

- rmProHs

- rmProWs

- getAlmDisGraphMol2

- mol2graphXYZ

- ADCGAL

- ADedyeCGAL
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Notice that all of them run on a Linux operating system. You
will have the target receptor-ligand complex for which you would
like to design the lead compound in the PDB file format and in
MOL2 file format, for the receptor and the ligand, respectively.
You will also have a database of native, X-ray crystallized, receptor—
ligand complexes in the same file format. You will need a program
like PyMOL to view the fragments after generating them; you can
install it from this website: “http: /www.pymol.org/”.

3 Methods

3.1 Obtaining

the Interfacial-Graph
for the Target
Receptor

3.2 Obtaining

the Interfacial-Graphs
for the Database

of Complexes

The following are the steps you will need to generate the virtual
library of fragments (FragVLib). You need to have all the execut-
able files and your files in one directory.

The first step in this method is obtaining the interfacial-graph for
the target receptor. You should have the target receptor-ligand
complex available in MOL2 file format for the ligand, and in PDB
file format for the receptor. Then you can type the following
command:

getIntGraph4Target namesFile ADdistance ADepsilon noW

The namesFile is a file containing the name (including location)
of the ligand’s file, followed by space, followed by name (including
location) of the receptor’s file. The ADdistance is the maximum
distance for two interfacial atoms to be considered in contact, the
recommended value is between 3.5 and 5.8 A. The ADepsilon
parameter is the maximum perturbation allowed for the location of
an atom, the recommended value is between 0.01 and 0.1 A. Go
back to the Subheading 1 for more details about these parameters
(also, see Note 2). The noW is a parameter that, if included, tells
the program to ignore water molecules and treat them implicitly
(see Note 3). If you want water molecules to be part of the inter-
face, simply do not include this parameter. Below are two examples
of running the getIntGraph41nrget program:

getIntGraph4Tnrget namesFile 4.25 0.05 noW
getIntGraph4Target namesFile 4.0 0.01

The output of this step will be two files for the atoms and
bonds of the target receptor’s interfacial-graph: Target_atomsXYZ,
and Target_bonds.

The second step is obtaining the interfacial-graphs for the database
of X-ray crystallized (native) receptor-ligand complexes. For each
complex, you should have the ligand’s file in MOL2 file format,
and the receptor’s file in PDB file format. You need to list the
names of all receptor-ligand complexes in one file namesFile, such
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3.3 Generating
the Virtual Library
of Fragments

that each line refers to one complex and contains the name (including
location) of the ligand’s file, followed by space, and followed by
the name (including location) of receptor’s file. Then you will type
the following command:

getIntGraphs4DB namesFile ADdistance ADepsilon noW

Make sure you use the same values for parameters A Ddistance
and ADepsilon used in previous step when obtaining interfacial-
graph for the target receptor. The output of this step will be two
files for the atoms and bonds of the interfacial-graphs: DB_atom-
sXY7Z_name, and DB_bonds.

Finally, the last step is performing the pocket similarity search
between the target receptor’s interfacial-graph, and the interfacial-
graph for each receptor-ligand complex in the database. A sub-
graph match will start by running the following command:

FragVLib Target_atomsXYZ Target_bonds DB_atomsXYZ name
DB_bonds minMatchSize minMatchSize ARMSDcutOff outDir

The first four files are the same ones generated in the previous
two steps, so you will not have to do anything about them. The
minMatchSize and maxMatchSize is the minimum and maximum
size of a matched interface to be accepted (see Note 4). The ARMS-
Dcutoff'is the maximum value for an RMSD of the matching pock-
ets to be accepted as similar pockets, it can take a value from 0.1 to
1.0 A. Go back to the Subheading 1 for more details about these
three parameters (also, see Note 5). The outDir is the directory
where all the generated fragments will be stored in (se¢ Note 6).
These fragments will constitute the virtual library, and they will be
stored in MOL2 file format. You can use PyMOL to view the frag-
ments and start the lead design process.

4 Notes

1. The program utilizes efficient tools for representing the
interfacial atoms of the ligand-receptor complexes, as well as
performing the pocket similarity search. However, the major
drawback for the method is the fact that it relies on subgraph
matching as a way of performing the match searching process.
Subgraph mining in the presence of isomorphism is a well-
known NP-Complete problem [8] in the field of computer sci-
ence. Such kind of problems is typically solved using techniques
such as: Approximation, Randomization, Parameterization,
Restriction, and Heuristic algorithms. Herein, to speed up the
searching process, we implemented parameterization, restric-
tion and heuristic algorithms. Parameterization is possible by
controlling certain input parameters, such as: ADdistance,
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ADepsilon, minMatchSize, maxMatchSize, and dARMSDcutoff.
For example, using short cutoff distances (ADdistance) in
identifying interfacial atoms will result in interfacial-graphs
that are smaller in size, and therefore, faster search is obtained.

. Short cutoft distances (ADdistance) can be used when the tar-

get receptor’s binding pocket is expected to have interactions
such as: hydrogen bond and ion exchange, which occur over
short distances. If we expect hydrophobic interactions, which
can occur over large distances, higher cutoff values can be
used.

. Water molecules can be included as part of the interface, or

they can be omitted and treated implicitly by adding the no W
parameter. Omitting water molecules will speed up the search
process.

. You can modify the size of the matching binding pockets to

search for a smaller binding region in the target receptor by
modifying values of minMatchSize, and maxMatchSize.

. The RMSD cutoff value (dRMSDcutoff) for accepting the

matched (superimposed) interfacial-graphs can be used to
decide how (geometrically) similar the binding matching bind-
ing pockets are.

. If you decide to run another round of FragVLib, make sure

you choose a different name for the outDir, or delete the one
you have.

. Always make sure you have all the executables (listed in

Subheading 2) in the same directory where you are running
the program.
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Chapter 4

Virtual Fragment Preparation for Computational
Fragment-Based Drug Design

Jennifer L. Ludington

Abstract

Fragment-based drug design (FBDD) has become an important component of the drug discovery process.
The use of fragments can accelerate both the search for a hit molecule and the development of that hit into
a lead molecule for clinical testing. In addition to experimental methodologies for FBDD such as NMR
and X-ray Crystallography screens, computational techniques are playing an increasingly important role.
The success of the computational simulations is due in large part to how the database of virtual fragments
is prepared. In order to prepare the fragments appropriately it is necessary to understand how FBDD dif-
fers from other approaches and the issues inherent in building up molecules from smaller fragment pieces.
The ultimate goal of these calculations is to link two or more simulated fragments into a molecule that has
an experimental binding affinity consistent with the additive predicted binding affinities of the virtual frag-
ments. Computationally predicting binding affinities is a complex process, with many opportunities for
introducing error. Therefore, care should be taken with the fragment preparation procedure to avoid
introducing additional inaccuracies.

This chapter is focused on the preparation process used to create a virtual fragment database. Several
key issues of fragment preparation which affect the accuracy of binding affinity predictions are discussed.
The first issue is the selection of the two-dimensional atomic structure of the virtual fragment. Although
the particular usage of the fragment can affect this choice (i.c., whether the fragment will be used for cali-
bration, binding site characterization, hit identification, or lead optimization), general factors such as
synthetic accessibility, size, and flexibility are major considerations in selecting the 2D structure. Other
aspects of preparing the virtual fragments for simulation are the generation of three-dimensional confor-
mations and the assignment of the associated atomic point charges.

Key words Fragment-based drug design, FBDD, Fragment screening, Virtual fragment, Fragment
preparation, Conformations, Partial charges, Fragment database, Fragment linking

1 Introduction

The concept of using small molecule fragments in drug design is
not new. The theoretical concept of linking fragments into mole-
cules was presented by Jenks in 1981 [1]. In 1995, a review was
published by Bohm regarding computational methods for joining
fragments into molecules [2]. Fragment-based screening using
NMR was described by Shuker et al. in 1996 [3]. In 2000, X-ray
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crystallography was reported as another method for screening
fragments by Nienaber et al. [4]. With experimental techniques, a
fragment’s binding to a protein can be detected in the high micro-
molar to millimolar range [ 3, 4]. In an increasing number of cases,
screening fragments has led to successful hits where the traditional
high-throughput screening of larger molecules did not [3-6].
A number of reviews report the progress of the fragment-based
drug design (FBDD) field in greater detail [5-12].

There are multiple advantages to evaluating fragment—protein
binding versus the binding of larger molecules. Synthesis timelines
can be shortened, since a fragment-based approach is well suited to
building molecules through parallel synthesis libraries. In-house
chemistry developments can be leveraged in fragment-based design
with proprietary fragments. Another advantage of using fragments
is that fragment chemical space is much smaller than molecule
chemical space; on the order of 107 for fragments with up to 11
heavy atoms [13] versus greater than 10% for molecules with up to
30 heavy atoms [14]. Hann and coworkers proposed that simpler
molecules would have increased hit rates compared to those of
complex molecules [15], and this theory has been verified experi-
mentally. The Novartis group reported typical hit rates for frag-
ment screens of 10-1,000 times that of traditional HTS [16]. The
combination of a reduced chemical space to explore and higher hit
rates means improved chemical diversity can be attained with mol-
ecules that are built up from fragments [7, 17]. These advantages
increase the probability that a novel, potent inhibitor can be
designed for a particular protein with the requisite physical proper-
ties for a drug molecule.

Fragment binding data can also facilitate the understanding of
the protein binding site. It has been demonstrated that the ability
of fragments to bind to an active site relates to the druggability of
that site [18]. A fragment’s binding location can give information
about what chemotypes can have favorable interactions with the
protein’s binding site and what contribution those interactions
have to whole-molecule binding, clarifying the structure-activity
relationship (SAR) [12]. This knowledge can be used to shorten
the time from hit to lead molecule and to increase the quality of
the leads. Fragment—protein interactions can be observed that are
excluded when the fragment is part of an elaborated molecule due
to geometric, steric, or electrostatic constraints of the protein [15].
For that reason, observing a fragment’s binding position may sug-
gest scaffolds or connectivities that were not previously explored.
Novel interactions that increase the potency of a molecule so that
it can be truncated in other regions will create new intellectual
property (IP) and potentially improve the selectivity and physical
properties of the molecule. In the case of p38 MAP kinase, simula-
tions of fragments with the allosteric X-ray structure led to the
discovery of a new interaction with Arginine 70 on the aC-helix [19].
A molecule was designed that utilized this novel interaction region
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in the allosteric site and did not interact with the ATP hinge-region.
This molecule was potent (IC50=22 nM) and selective against a
panel of 150 kinases [19].

2 Computational Theory

Although there are advantages to experimental fragment-based
screening over HTS, these methods also have drawbacks. As men-
tioned in the review by Konteatis, the high solubility necessary for
the fragment screens and the experimental detection limits of frag-
ment binding are disadvantages of the biophysical methods [12].
These techniques may also require large quantities of protein
(0.5-5 mg) and have low experimental throughput [7]. In silico
approaches are not bound by these constraints. By exploring frag-
ment—protein binding with computational fragments, more possi-
bilities can be evaluated. In theory, simulating two-thousand
fragments represents a chemical space of 8 x10° three fragment
molecules [17]. Virtual fragments hit rates, as well as the ability to
connect these fragments geometrically and synthetically, generally
leads to several hundred promising synthetic targets to evaluate
experimentally [17]. Computational fragment methods (either
alone or combined with experimental fragment screening) are con-
tributing to the discovery of nanomolar inhibitors [5, 11, 19].

At Locus Pharmaceuticals two types of fragment—protein simu-
lations were used: Grand Canonical Monte Carlo simulations where
the excess chemical potential of the system is annealed, and system-
atic sampling that methodically and efficiently explores fragment
binding positions [20-24]. For both methods the virtual fragments
are treated as rigid bodies and the protein structure has a fixed con-
formation [22, 24 ]. The interaction energies between fragment and
protein are calculated from non-bonded interaction parameters
from the molecular mechanics force field AMBER [25], except for
the fragment partial charges which are calculated with the quantum
mechanics software Gaussian [26]. Since the fragments are regarded
as rigid bodies, multiple conformations are generated for flexible
fragments. Further molecule flexibility is accounted for when the
fragments are linked to form molecules [27].

When linking the virtual fragments to form molecules, the
binding energies of the fragments are assumed to be additive. The
binding energy of the linked molecule is approximated by the sum
of the fragment binding energies, even though this approximation
does not account for the entropy loss upon linking the fragments
[1, 8]. The preparation method of the virtual fragment also affects
how well the assumption of binding energy additivity holds true.
The selection of the fragment’s two-dimensional atomic structure,
the generation of three-dimensional conformers, and the calcula-
tion of the fragment’s atomic point charges all affect the success of
the fragment binding affinity predictions.
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3 Methods for Preparing Computational Fragments

3.1 Selection

of the Two-
Dimensional Atomic
Structure

The first step in preparing a virtual fragment is to decide on the 2D
atomic structure of that fragment. The fragment’s 2D structure
should be selected so that the properties of the fragment do not
change significantly when that fragment is part of a molecule.
There should not be a large change in the partial charge distribu-
tion or the geometry of the local energy minimum pose when the
fragments are linked. The size of the fragment is also important. A
fragment that is very small or does not have enough interacting
groups may show non-selective binding to the protein (a desirable
trait for non-interacting linkers). A large, complex fragment may
generate an unmanageable number of conformations, or it may
not bind to the protein due to steric constraints or charge repul-
sions. Based on observed fragment hits from X-ray crystallography
screens, Jhoti and coworkers proposed a “Rule of Three” in 2003
[28] for building fragment databases. The “Rule of Three” guide-
lines (analogous to Lipinski’s “Rule of Five” [29]) constrain a frag-
ment’s molecular weight to less than 300, with no more than 3
hydrogen bond donors or acceptors, and a Clog P< 3. The authors
also suggest limits on rotatable bonds (<3) and polar surface area
(<60) as possible selection criteria. In a 2013 follow-up to the
“Rule of Three” proposal, Jhoti et al. state that the limitations on
hydrogen bond donors and acceptors have not been generally
implemented, due in part to ambiguities in how they should be
defined [30]. There is experimental evidence that valuable frag-
ments fall outside these guidelines [31] and this may be the case
even more with in silico fragments.

Another consideration for selecting the 2D structure of a vir-
tual fragment is if the synthetic intermediate for the fragment is
commercially available or synthetically feasible. The chemistry to
incorporate the fragment into a full molecule should also be rea-
sonable. Ideally, the fragment should not contain any substructures
that are unstable in vivo or known to produce toxicity in a drug.
When selecting the 2D structure, the fragment should be evaluated
for other stable enantiomers or charge states. Unless these states
are generated by the simulation software, they should be prepared
as distinct fragments for the database.

The intended purpose of the fragment may affect how the 2D
atomic structure is selected. Fragments may be chosen as part of a
diverse “probe” set, in order to map a protein’s binding site and
explore its affinity for different chemotypes. Other fragments may
be proprietary, based on in-house synthetic schemes. Another
method for generating fragments is to deconstruct known ligands
into their fragment components. This approach is useful when
reproducing known SARs and calibrating the simulation method-
ology for a particular protein, or when designing for families of
proteins that may bind similar fragments. A large portion of the
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Locus Fragment Database was generated by deconstructing com-
pounds from medicinal chemistry literature, with emphasis on
fragments found in known orally bioavailable drugs [21].

The 3D properties of the fragment also need to be considered
when choosing the 2D structure. For instance, when an amide
bond is added to an aromatic ring the electronic distribution of
the system changes, since the aromaticity is maintained across
the linkage. Therefore, more accurate results would be obtained
by simulating a benzamide fragment instead of benzene and
N-Methylacetamide. In other words, if the electronic distribution
is different after connection, the binding of the separate fragments
may be overestimated or underestimated compared to the linked
entity. This adds additional inaccuracies to an already complex pro-
cess. The differences between a fragment as a distinct entity versus
as a substructure in a molecule should always be kept in mind when
preparing fragments and building molecules. These issues cannot
always be resolved through fragment selection, so the designed
molecules should be further analyzed to verify that the desired pro-
tein ligand interactions are preserved [32].

A published p38 MAP kinase ligand [33] provides an example
of deconstructing a ligand into the appropriate fragment com-
ponents [12, 17]. If the molecule in question is the p38 kinase
inhibitor BIRB-796 (Fig. 1a), a reasonable way to break up the
fragments is as shown (Fig. 1b). As stated before, factors such as
size, flexibility, and electronic distribution should be considered
when selecting fragment substructures. Although one could simu-
late a single fragment containing the urea, N-methylpyrazole, and
t-butyl moieties (Fig. 2), in the allosteric site of p38 the channel
where the urea binds is narrow, with specific interactions to the
urea. Only certain torsion angles around the urea—pyrazole bond
will result in fragment geometries compatible with the constraints
of the binding pocket. If other torsion angles are used, the com-
pound fragment might be erroneously excluded from the pocket
by the simulation. Hence, knowledge of the protein binding site
can also influence fragment selection for a particular protein target.

Some of the conformational information for molecules built by link-
ing fragments is determined by where the fragments are positioned
when they are joined [27]. However, since the simulations use rigid
fragments, for a chemical structure that is actually flexible (i.e., has
rotatable bonds or unsaturated ring systems), multiple 3D structures
(i.e., conformers) must be prepared [21, 22]. The 2D structure of
the fragment should be selected to minimize the number of rotatable
bonds. Otherwise, the large number of conformers generated for the
fragment will create an unmanageable number of simulations, with
the associated data storage and data processing issues. The rule of
thumb is to have three or less rotatable bonds in a fragment [28].
Changes in the geometry of the local energy minimum pose
when the fragment becomes part of a molecule is also a concern
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Fig. 1 An example of deconstructing a known ligand into fragments. BIRB-796 is a
potent binder to the p38 MAP Kinase allosteric site [13]. (@) BIRB-796 and the bonds
to be broken to form fragments. (b) The 2D structures of the resulting fragments
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3.3 Partial Charge
Assignment
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when preparing the 3D conformers of a fragment. This issue can be
addressed by manually adding rotor states to the fragment con-
former set that are known to be reasonable when the fragment is a
substructure of a molecule. Another option is to simulate fragments
with a steric placeholder, such as a methyl group, where the linkage
would be. When a methyl placeholder is used, the software for link-
ing fragments needs to handle removing the methyls or it will need
to be done manually.

The partial (point) charges of a virtual fragment are another impor-
tant component of binding affinity predictions. A study was done
in 2003 comparing four methodologies to calculate geometries
and charges of virtual fragments [ 34]. Since partial charges cannot
be measured directly, solvation energies and dipole moments of 20
small fragments were calculated from the point charges and com-
pared to experimental values. It was determined that the best com-
promise between speed and accuracy of the four methods was to
use the molecular mechanics program MacroModel [35] with its
implementation of the AMBER force field [36], AMBER*, to gen-
erate conformations, and to use a Gaussian [26] CHelpG [37]
single-point calculation with B3LYP [38—40] functionals and
6-31G(d) basis set [41] for the partial charges. The predicted
binding affinity of ligands built from multiple fragments for three
published protein systems were then evaluated with this method
and compared to experimentally measured 1Cses. The resulting
standard deviation was +1.0 plICsy units/molecule [34].
Simulations of fragments prepared by the selected method were
also used to reproduce X-ray crystal binding poses [19, 21, 22,
34], and to predict the binding affinities of designed compounds
with a similar standard deviation to the literature compounds [34].

4 Fragment Preparation Workflow

The specific steps for preparing a virtual fragment for simulation are
discussed below (Fig. 3). The fragment files and preparation tech-
niques should be tailored to the requirements of the individual sim-
ulation software, therefore not all of the steps may be necessary.

1. The first step of preparing a fragment for simulation is to select
the 2D structure according to the previously mentioned
considerations.

2. After the fragment has been selected, the 2D representation is
converted into a group of 3D conformers. Since the 2D struc-
ture of the fragment is selected to be small, with a limited
number of rotatable bonds, the conformational analysis can be
done by systematically rotating bonds and then energy mini-
mizing the structure’s coordinates. In this procedure, the
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>
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Fig. 3 The work flow of the virtual fragment preparation process

systematic conformational search in MacroModel [35] is used
to produce the fragment conformations. If the fragment is not
flexible there will be only one conformation.

Since the fragment—protein simulations use a molecular
mechanics force field, force field atom types are assigned to the
fragment atoms. These atom types determine the force field
parameters used for each atom during the simulations. For cal-
culations with rigid fragments and a static protein, only the
non-bonded parameters of the force field are needed. The force
field used for fragments in this procedure is AMBER*, the ver-
sion of the AMBER force field [ 36] used in MacroModel [35].
The AMBER force field was originally developed for studying
proteins and nucleic acids [ 36] but can also perform well when
calculating protein—fragment interactions [19, 22, 24, 34].

The atomic point charges for each 3D conformation are calcu-
lated because the charge distributions are dependent upon the
3D structure. Since the geometry of the fragment is already
determined, a single point calculation is performed in Gaussian
[26]. The B3LYP [38—40] density functional method (which
uses hybrid functionals) is used, along with the 6-31G(d)
basis set [41]. CHelpG [37] is used to calculate the point
charges from the electronic distribution.

. Next, a symmetry operation is performed on the atomic coor-

dinates and point charges. This accounts for rounding errors
and maintains the planes of symmetry in the fragment.

. The treatment of the solvent for fragment—protein simulations

can be done by using a continuum dielectric, explicit water
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molecules that are co-simulated, or a solvent correction fac-
tor that is based on the solvation energy of the fragment. This
particular procedure was developed for preparing fragments
that would be simulated in vacuo. Therefore, a solvent correc-
tion factor is calculated with the generalized Born surface area
(GB/SA) method [42] as implemented in MacroModel [35].

7. A category field is created for the fragment. Labels like “Probe
Set,” “Heterocyclic,” or “Kinase Hinge Pieces” can facilitate
the extraction of fragments from the database. Different frag-
ment sets may be used based on the stage of a project and the
current design issues to be addressed.

8. Finally the fragment is stored in a database with a format that
is compatible with the software used to perform the fragment—
protein simulations.

5 Conclusion

Fragment-based drug design is emerging as a significant area of
the drug discovery field. Fragment screening provides an efficient
exploration of chemical space, and the ability to detect valuable hits
that are missed with traditional screening methods. Computational
approaches can avoid experimental limitations of solubility, pro-
tein supply, and throughput, but accuracy in the predicted binding
affinities remains a concern. The preparation of the virtual frag-
ments, including the selection of the 2D atomic structures and
the generation of the 3D conformers and atomic partial charges, is
critical to the success of the computational simulations.
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Chapter 5

Fragment Library Design: Using Cheminformatics
and Expert Chemists to Fill Gaps in Existing
Fragment Libraries

Peter S. Kutchukian, Sung-Sau So, Christian Fischer, and Chris L. Waller

Abstract

Fragment based screening (FBS) has emerged as a mainstream lead discovery strategy in academia, bio-
technology start-ups, and large pharma. As a prerequisite of FBS, a structurally diverse library of fragments
is desirable in order to identify chemical matter that will interact with the range of diverse target classes that
are prosecuted in contemporary screening campaigns. In addition, it is also desirable to offer synthetically
amenable starting points to increase the probability of a successful fragment evolution through medicinal
chemistry. Herein we describe a method to identify biologically relevant chemical substructures that are
missing from an existing fragment library (chemical gaps), and organize these chemical gaps hierarchically
so that medicinal chemists can efficiently navigate the prioritized chemical space and subsequently select
purchasable fragments for inclusion in an enhanced fragment library.

Key words Fragment based screening, Cheminformatics, Chemogenomics, Library design, Privileged
substructure, Chemical space, Chemical diversity

1 Introduction

The design of fragment libraries has garnered much attention as
fragment based lead discovery has transitioned from an exploratory
field for lead identification to a more standard industrial strategy to
identify novel starting points for hit to lead campaigns. The com-
position of a fragment library may be based on the assay technol-
ogy that is employed—for example fluorine containing fragments
for NMR [1], bromine containing fragments for X-ray crystallog-
raphy [2], or fragments amenable to SPR [3]. On the other hand,
a library may be designed for general use for multiple assay tech-
nologies [4]. In addition, libraries may be designed to include bio-
logically active motifs [5]. Furthermore, the input of chemists on
the desirability of fragments for optimization has been incorpo-
rated into the design of fragment libraries [6].

Anthony E. Klon (ed.), Fragment-Based Methods in Drug Discovery, Methods in Molecular Biology, vol. 1289,
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Many research groups have a standard fragment library which
at some point, will need to be updated for a variety of reasons.
Primary among these is to replace compounds that have historically
behaved badly (e.g., promiscuity, inactivity) or to replenish com-
pounds that are no longer available. Herein we describe a simple
procedure that can easily be carried out in an academic or industrial
setting to identify “chemical gaps”—i.c., desirable substructures
that are present in biologically active compounds but not in the cur-
rent fragment library—and identity purchasable compounds that fill
these gaps. The chemical gaps are organized in a hierarchical fash-
ion so that chemists can easily traverse chemical space in a Spotfire
[7] session, and select purchasable fragments to fill the gaps.

2 Materials

2.1 Filling
Chemical Gaps

1. Carry out all computational procedures with Pipeline Pilot ver-
sion 9.1 (Biovia) [8] unless otherwise specified (see Note 1).

2. Commercially available catalogues of fragments are obtained
directly from vendors in a structure format (e.g., SD file) or in
a text file that includes SMILES that are converted to struc-
tures in Pipeline Pilot (see Note 2).

3. We use Merck’s Chemical Genetic Interaction Enterprise
(CHEMGENIE) Database for chemogenomic data (see Note
3). CHEMGENIE is comprised of both internal dose-response
data such as Panlabs, Invitrogen Kinase Screen, and High-
Throughput Screening and external dose-response data such
as ChEMBL (EMBL-EBI) [9, 10] and Metabase (Thomson
Reuters) [11] as well as high quality biophysical binding data
such as ALIS [12].

4. Visualization of chemical gaps is performed in Spotfire version

5.5.1 (TIBCO) [7].

3 Methods

3.1 Filling
Chemical Gaps

A high level flow diagram for the method is depicted in Fig. 1.

1. A Pipeline Pilot protocol is used to convert the current frag-
ment library and chemogenomic library (CHEMGENIE) to
hierarchical sets of SMILES and corresponding InChIKeys
(Fig. 2, see Note 4). The three sets of SMILES /InChIKeys
are carbon graph substructures (CG, with some aromatic
information—see Note 5), heteroatom substructures (HA),
and substitution pattern substructures (SP).

2. First de-salt and standardize all compounds in Pipeline Pilot.
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Small Molecule

Fragment \
Library Chemogenomic
Library
Enumerate Enumerate
Substructures Substructures
Merge
Substructures
Calculate
Chemical Gap
Score and Tanimoto
Similarity

Filter for High
Chemical Gap Score
and Low Tanimoto
Similarity

Construct Spotfire
Session for Fragment
Selection by Chemists

Fig. 1 High level flow diagram of method. All steps enclosed by boxes are per-
formed in Pipeline Pilot

3. Fragment each compound into one subunit substructures
(Fig. 2a, see Note 6). Convert each resulting substructure
with substitution pattern (SP) into a substructure with hetero-
atoms (HA), and a carbon graph (CGQG) as in Fig. 2b. To do
this, use the “Map Substructure” component twice—once
using a SMARTS file of disallowed bond breaks, and once
using a SMARTS file with allowed bond breaks. Then use the
“Enumerate Fragments” component, specitying the “allowed
bond breaks” and “disallowed bond break” properties as the
“Property with Bonds to Break” and “Property with Bonds to
Skip” parameters, respectively. Add “Mg” as “Atoms to Add
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Fig. 2 Fragmentation of compounds. (a) A parent compound is fragmented into 1 subunit or 2 subunit substruc-
tures using bond break and bond protect rules. (b) A substructure with substitution pattern (SP) is converted to a
substructure with heteroatoms (HA) but no substitution pattern, and finally to a carbon graph (CG) substructure

at Break Points”. Prior to visualizing the SP SMILES string,
however, convert Mg atoms to [*] using the “Reaction from
SMIRKS” component, and a SMIRKS string that converts
Mg to [*]. To generate the HA substructures, convert all Mg
to H atoms. To generate the CG substructure, use the
“Standardize Molecule” component to convert all non-
hydrogen atoms to carbon and to make all bonds single.

. Count each type of substructure (CG, HA, and SP) in three

separate data streams, and merge the counts obtained from
the fragment library and from CHEMGENIE, so that there
are three separate tables written to file with the following
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properties: substructure SMILES, substructure InChIKey,
count in fragment library (Library A), countin CHEMGENIE
Bioactives (Library B). Also, the InChIKey for the sub-
structure that is one hierarchical step towards being more
general should be written out. Thus, for SP table, the HA
InChIKey should be written out, and for the CG table the
HA InChIKey should be written out. These will be used to
relate tables in spotfire. Thus, there will be a SP, HA, and CG table.

. To prioritize filling chemical gaps—substructures that are
present in bioactive CHEMGENIE compounds (library B),
but not in the fragment library (library A)—calculate a
Chemical Gap Score for the CG substructures and for the HA
substructures (see Note 7). The chemical gap score for a sub-
structure 7 is the sum of occurrences of substructure jin library
B (CHEMGENIE Bioactives) if the substructure jis not pres-
ent in library A (fragments):

B ipATA
N]. 1fNj =0

else0

Chamical Gap Score(z) = Z{

J

where 7 is hierarchically related to j (e.g., it z corresponds to a
CG substructure, then j corresponds to all HA substructures
that share that carbon graph, or if z corresponds to a HA sub-
structure, then j corresponds to all SP substructures that share
that HA substructure), N7* is the occurrences of substructure j
in library A, and N® is the occurrences of substructure j in

library B. Note, to prioritize SP substructures, the occurrence
of the SP substructure in the CHEMGENIE Bioactives is used.

. Prioritize HA substructures based on similarity to HA sub-
structures in current fragment library. Calculate the maximum
nearest neighbor Tanimoto similarity (Sr) to HA substructures
present in the current fragment library. HA substructures with
low §; are prioritized (see Note 8).

. Use chemical gap score and similarity to select high priority
substructures that are missing from the current fragment
library. Filtering is performed on the HA substructure level.
All HA substructures with §r<0.5 and a chemical gap score
>100 are selected (see Note 9). Filter the HA, and CG sub-
structure tables so that they only include substructures that
will link to the high priority substructures. Only high priority
HA substructures are visualized in Spotfire.

. Divide the CG substructure that correspond to high priority
HA substructures equally among chemists that will be evaluat-
ing purchasable fragments (see Note 10). In this manner, one
chemist will evaluate similar HA substructures (e.g., similar
ring systems with different substitution patterns), and can
select a desirable number of neighbors from the purchasable
fragments.
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18.
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Identify fragments that can be purchased for the purpose of
filling chemical gaps.

For each compound in the commercial fragment library, iden-
tify all SP substructures and HA substructures. Generate a
table that includes the SP substructure InChIKey, HA sub-
structure InChIKey, parent compound identifier, parent com-
pound SMILES, and source.

Filter the previous table (step 10) for substructures (HA) that
are high priority. That is, read in all high priority substructures
(HA) identified above (step 7) to an array, and only include
substructures in the purchasable set of fragments that are con-
tained in this array. This will be the purchasable fragments
table in spotfire.

Prepare the CHEMGENIE bioactive compounds for inclu-
sion in the spotfire selection session. Fragment and filter the
compounds as in steps 10 and 11. This will be the
CHEMGENIE Bioactives table in spotfire.

Assemble spotfire session for purchasable fragment selection as
follows (see Note 11). First, import tables and add relationships.
Import the carbon graph (CGQG) substructure table, the hetero-
atom (HA) substructure table, the substitution pattern (SP)
substructure table, the purchasable fragments table, and the
CHEMGENIE Bioactives table. Add table relationships to
relate the tables to each other in the following manner, where
the column used to relate the table is in parenthesis. The CG and
HA table (CG InChIKey), the HA and SP table (HA InChIKey),
the SP and purchasable fragments table (SP InChIKey), the SP
and CHEMGENIE Bioactives table (SP InChIKey).

Add a filter on the CG table so that the chemist selecting frag-
ments can be selected (Fig. 3).

Add CG substructures, HA substructures, SP substructure,
purchasable fragments, and CHEMGENIE bioactives table
visualizations to spotfire session (Fig. 3).

Add “Purchasable_Fragments” tag collection to Purchasable_
Fragments table, and add “Selected” tag.

Each chemist initiates a selection session by selecting their
name. A CG is then selected, which populates the HA sub-
structures. An HA substructure is then selected, which popu-
lates the SP substructures. An SP substructure is then selected,
which populates purchasable fragments, as well as
CHEMGENIE Bioactive compounds that contain the SP sub-
structure that is missing from the current fragment library
(Fig. 3).

Chemists can then “tag” the purchasable fragments as
“Purchasable_Fragments:Selected.”

All tagged fragments can be reviewed (Fig. 4). Fragments can
also be untagged in this tab.
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4 Notes

. Protocols with sample input files are available upon request.

. Itis assumed that the commercially available fragments librar-

ies are filtered for desirable physical chemical properties (e.g.,
the rule of 3) [13] and substructures (e.g., to remove reactive
or pan assay interference compounds) [14] prior to inclusion
in the following method.

. In this procedure, we use the chemogenomics database

CHEMGENIE to identify biologically relevant substructures
missing from the current fragment library. Another strategy,
however, might entail using a company’s current high-
throughput screening (HTS) deck as a library source, frag-
menting the deck, and counting the occurrence of substructures
(or biologically active substructures). This alternate strategy
ensures good overlap between the fragment library and the
HTS library, and increases the probability that virtual frag-
ment linking (VFL) could be applied successtully to expand
from fragments to small molecules [15, 16].

. A chemogenomic database is required to associate chemical

structures with their biological activity. Ideally, the chemoge-
nomic database should include data that has been integrated
from internal and external repositories.

. For the carbon graph InChIKey, we sought to capture some of

the aromatic information in the ring system as well. Thus, we
used a modified key which was the carbon graph InChIKey
concatenated with the number of ring bonds and number of
aromatic bonds originally present prior to converting all bonds
to single bonds. For example, an indole key would be
BNRNAKTVFSZAFA-UHFFFAOYSA-N_10_10.

. In the current implementation, we use specific bond break/

protect rules to fragment compounds into substructures.
These rules are intended to obtain substructures that are
meaningful to medicinal chemists (i.e., no rings are broken in
half, and functional groups are protected). However, there are
alternative strategies to derive substructures, for example, ret-
rosynthetic transformations can be employed to derive sub-
structures with synthetic handles [17].

. In this procedure we use the count of a particular substructure

in the CHEMGENIE Bioactives to prioritize the substruc-
tures that were missing in the current fragment library. There
are other ways of measuring the biological importance of sub-
structures, however. For example, chemogenomics data like
CHEMGENIE could be used to assess the count of the num-
ber of target classes that a substructure has been present in, or



whether the substructure is enriched for a certain number of
targets or target classes based on a Bayesian score for the sub-

. We filter away HA substructures with a high Tanimoto similar-

ity to existing HA substructures in the fragment library, to
focus chemists’ selections on novel HA substructures present
in purchasable fragments. This approach, however, is prone to
remove HA substructures that exist in the fragment library,
although the library might not contain fragments that encom-
pass all substitution patterns present in the CHEMGENIE
Bioactives for a given HA substructure. This concern could be
addressed by removing the Tanimoto Similarity filter, and
focusing on substructures that are missing at the SP level.

These filters can be modified to increase or decrease the poten-
tial set of chemical gaps and purchasable fragments to assess.

There are alternative strategies to divide the chemical gaps and
corresponding purchasable compounds among chemists. For
example, divisions could take place at the HA or SP substruc-

In this procedure, we build a Spotfire session that allows
chemists to tag fragments for purchase. If there are chemical
gaps that do not correspond to purchasable fragments, how-
ever, these gaps could serve as inspiration for de novo frag-
ment synthesis designs. In this case, the HA substructure
could be tagged as a template for de novo synthesis.
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Chapter 6

Protocol for Fragment Hopping

Kevin B. Teuscher and Haitao Ji

Abstract

Fragment hopping is a fragment-based approach to designing biologically active small molecules. The key
of this approach is the determination of the minimal pharmacophoric elements in the three-dimensional
space. Based on the derived minimal pharmacophoric elements, new fragments with different chemotypes
can be generated and positioned to the active site of the target protein. Herein, we detail a protocol for
performing fragment hopping. This approach can not only explore a wide chemical space to produce new
ligands with novel scaffolds but also characterize and utilize the delicate differences in the active sites
between isofunctional proteins to produce new ligands with high target selectivity /specificity.

Key words Fragment-based drug discovery, Fragment hopping, Scaffold diversity, Isofunctional pro-
teins, Protein—protein interactions, Inhibitors, Selectivity, Peptidomimetics

1 Introduction

Fragment-based drug design is widely used as an effective tool for
lead discovery [1, 2]. The starting point for fragment-based drug
design is the identification of low molecular weight fragments
that bind to a target of interest by fragment screening. Biophysics-
based techniques such as nuclear magnetic resonance (NMR)
[3-7], X-ray crystallography [8-11], mass spectrometry (MS)
[12, 13], surface plasmon resonance (SPR) spectroscopy [14—
16], and confocal fluorescence correlation spectroscopy [17, 18]
have been applied to screen fragment libraries. After fragment
hits are identified, fragment evolution, fragment linking, and in
situ fragment assembly (including dynamic combinatorial chem-
istry [19-21], tethering with extenders [22, 23], and in situ click
chemistry [24-26]) have been employed to convert fragment(s)
into a ligand molecule and maintain drug-like properties of the
generated ligand. There are internal limitations and problems for
the drug discovery projects that are initiated by fragment screen-
ing. First, these approaches only cover a small fraction of the total

Anthony E. Klon (ed.), Fragment-Based Methods in Drug Discovery, Methods in Molecular Biology, vol. 1289,
DOI 10.1007/978-1-4939-2486-8_6, © Springer Science+Business Media New York 2015
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chemical diversity space. It is estimated that a collection of 103
fragments can typically sample the chemical diversity space of 10°
molecules. Although the combinatorial advantage of fragment
screening makes a significant increase relative to high throughput
screening (HTS), it is still a small fraction of the total chemical
diversity space (10%). Second, in fragment screening fragment
molecules can bind to the protein binding sites that are different
from the binding sites of lead-like molecules [27-29]. Third,
fragment screening only identifies and characterizes fragments for
potency, that is, the fragments that bind to energetic hotspots
(the regions on protein surface that are the major contributors to
ligand free energy of binding). In fact, many binding sites that
are responsible for target specificity and/or selectivity are not
included in hotspots. The identification of fragments that bind to
the sites responsible for target specificity is a crucial step for the
discovery of selective inhibitors. There is a great desire to design
small-molecule inhibitors for a specific target while leaving other
related targets unaffected. Based on the factor that the structures
of the biologically active compounds for a specific target are dis-
continuous points in chemical space, scaffold hopping has been
used to identify compounds that have similar biological activities
but totally different scaffolds [30, 31]. These methods can
decrease the risks of construction for bioactive molecules, increase
hit rates, and offer structural diversity. However, in scaffold hop-
ping the skeleton of the newly designed molecules is confined to
the basic architecture of the template structure, which usually
comes from a known drug or drug candidate. In addition, mim-
icking the template structure using different scaffolds often does
not optimize ligand—protein interactions to the maximal extent,
because the biologically relevant groups in the template structure
do not offer an optimal match between a small molecule and the
biological target.

We proposed fragment hopping to initiate the design of
potent and selective small-molecule inhibitors [32]. Fragment
hopping is a pharmacophore-driven strategy. The core of this
approach is the derivation of the minimal pharmacophoric ele-
ments for key binding pockets. Then, fragments with different
chemotypes are generated to match the requirement of minimal
pharmacophoric elements. Therefore, fragment hopping can
explore a wider chemical space. Fragment hopping determines the
positioning of the minimal pharmacophoric elements and then
places fragments to match the generated minimal pharmacophoric
elements, leading to a higher success rate for fragment identifica-
tion. After fragment linking or evolving, the pharmacophores in
the new molecule maintain the same spatial orientation as those in
the minimal pharmacophoric element model. Fragment hopping
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Fig. 1 Fragment hopping to design highly potent and selective inhibitors for neuronal nitric oxide synthase

determines the minimal pharmacophoric elements that are impor-
tant for ligand selectivity and generates fragments to trigger inhib-
itor selectivity, providing an efficient pathway to generate selective
inhibitors. Compared with scaffold hopping, fragment hopping
not only maps important interaction patterns between a ligand
and the protein target based on a priori scaffold but also makes it
possible to generate more diverse scaffolds. Furthermore, frag-
ment hopping takes into account synthetic accessibility in frag-
ment linking and evolving through the use of the bioisosteric
replacement technique.

Since fragment hopping was proposed in 2008 and applied to
design highly potent and selective inhibitors for neuronal nitric oxide
synthase (nNOS) as shown in Fig. 1 [32, 33], a few successful exam-
ples using the fragment hopping concept to design small-molecule
inhibitors have been reported for the other enzymes [34, 35] and
protein—protein interaction targets [ 36, 37]. The key step of all these
reported studies was the determination of the pharmacophores.
However, the procedures to generate lead-like molecules have been
diverse, and a different efficiency for lead generation has been
observed for different approaches. There is a need to overview cur-
rent studies and outline a general procedure for a productive frag-
ment hopping design.

2 Materials

Table 1 lists common programs that can be used in fragment hop-
ping. Table 2 indicates the fragment libraries that are used in frag-
ment hopping.
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Table 1

Common programs used in fragment hopping

Program Version Provider URL
GRID? 22c¢ Molecular Discovery Ltd.  www.moldiscovery.com
SiteMap 2.6 Schrodinger www.schrodinger.com
MCS$? 2.1 Accelrys/Discovery www.accelrys.com
Studio 4.0
GOLPE* 45 Multivariate Infometric www.miasrl.com /golpe.htm
Analysis S.r.l.
FTMap® Professor Sandor Vajda www.ftmap.bu.edu
Computational Accelrys/Discovery Studio www.accelrys.com
alanine scanning®
ANCHOR® Professor Carlos www.structure.pitt.edu/anchor
J. Camacho
PocketQuery* Professor Carlos www.pocketquery.csb.pitt.edu
J. Camacho
Catalyst® Accelrys/Discovery www.accelrys.com
Studio 4.0
GALAHAD? Certara/Tripos www.tripos.com /index.php
Phase® 34 Schrodinger www.schrodinger.com
LigandScout® 3.1 Inte:Ligand www.inteligand.com
MOE MOE www.chemcomp.com
pharmacophore®
CoMFA, COMSIA® Certara/Tripos www.tripos.com/index.php
LUDI Accelrys/Discovery www.accelrys.com
Studio 4.0
SEED Professor Amedeo Caflish ~ www.biochem-caflisch.uzh.ch /download /
GLIDE 5.8 Schrodinger www.schrodinger.com
DOCK 3.7 Professor Brian www.dock.compbio.ucsf.edu/DOCK3.7 /
K. Schoichet
FFLD Professor Amedeo Caflish ~ www.biochem-caflisch.uzh.ch /download /
AutoDock 4.2 Professor Arthur J. Olson  www.autodock.scripps.edu
Cscore Certara/Tripos www.tripos.com/index.php
MetaSite 4.1 Molecular Discovery Ltd.  www.moldiscovery.com
DAIM: Professor Amedeo Caflish ~ www.biochem-caflisch.uzh.ch /download /

“Used to derive the pharmacophores based on the structure of the protein target
*Used to derive the pharmacophores based on the structures of a set of known bioactive compounds or the ligand pep-

tides/proteins

“Used to deconstruct known drugs and drug candidates
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Table 2
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Databases used in fragment hopping

Name

Source

Basic fragment library
Bioisostere library

Rules for metabolic stability
Toxicophore library

Side chain library

ACS Chem Biol 2013, 8, 524-529, Supplementary Figure 5
ACS Chem Biol 2013, 8, 524-529, Supplementary Figure 4
J Am Chem Soc 2008, 130, 3900-3914, Supplementary Figure 3
J Am Chem Soc 2008, 130, 3900-3914, Supplementary Figure 4
ACS Chem Biol 2013, 8, 524-529, Supplementary Figure 6

3 Methods

A schematic flow diagram for fragment hopping is shown in Fig. 2
(see Note 1).

1. When the protein target is an enzyme and the structure of the
enzyme target is known, GRID [38, 39], SiteMap [40], and
multiple copy simultaneous search (MCSS) [41,42] in Table 1
are used to reveal the key binding sites for inhibitor potency.

(a) Go to RCSB protein data bank (http://www.rcsb.org/

pdb/) to download the protein structure, identify the ligand
binding site, and define the regions of interest. Typically the
residues that are within 6 A from the center of the regions
of interest were included in the calculations (se¢ Note 2).

(b) GRID was used to calculate 3D energy maps around the

ligand binding site and highlight the favorable sites for a
specific functional group of an organic compound.
Hydrogen atoms were added by program GRIN. The
GRID box dimensions were chosen to encompass all of
the active site residues. The grid spacing was typically set
to 1 A. Directive NPLA (number of planes of GRID points
per Angstrom) was set to 1. The amino acids in the ligand
binding site were considered rigid (directive move is set to
0) or flexible (directive move is set to 1). The other set-
tings were the standard default parameters. The typical
probes used in the GRID modeling were DRY, C3, NM3,
N1+, N3+, N1, NH=, O, Ol, COO-, amidine, and
ARamidine. The DRY probe was used to calculate the
hydrophobic interactions. The C3 and NM3 probes were
used to describe steric interactions. N1+, N3+, NM3, and
COO- were used to explore charge—charge interactions.
The others probes were used to determine the sites for
hydrogen-bonding and other electrostatic interactions.


http://www.rcsb.org/pdb/
http://www.rcsb.org/pdb/
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1. Determination of minimal pharmacophoric elements l

i a. Target-based analysis ; i b. Ligand-based analysis
+ Key sites for ligand binding i+ Pharmacophore modeling: Catalyst,
i * GRID, MCSS GALAHAD, Phase, LigandScout,

* FPMap, 3D-QSAR: CoMFA, CoMSIA
* Anchor, PocketQuery, AnchorQuery b 2D-pharmacophoric descriptors
! » Regions in the active site for ligand selectivity: GRID/CPCA | 7T

i * computational alanine scanning : <:>i MOE pharmacophore

2. Construction of fragment library for binding (LUDI Library) a. Basic fragment library

+ Binding and selectivity (Predominant determinants) b. Bioisostere library

+ Fragment diversity <:’ c. Rules for metabolic stability
* Metabolic stability d. Toxicophore library

+ Exclusion of toxicity

|

3. Construction of fragment library for linking (LUDI Library) a. Side chain library

+ Synthetic accessibility (Scifinder) b. Bioisostere library

+ Assistant role in binding or chemical properties <:| c. Rules of metabolic stability
+ Metabolic stability d. Toxicophore library

+ Exclusion of toxicity

l 4. Construction of the molecules (LUDI) | —_—

! |
‘ 5. Docking of the molecules }7

‘ 6. Scoring of the molecules (Consensus scoring) ‘—

|

7. ADME/Tox considerations
+ Oral bioavailability No
+ Blood-brain distribution

* Metabolic stability
@ Yes

Lead generation |

Structural Modification

Fig. 2 Schematic flow diagram for fragment hopping, a pharmacophore-driven strategy to generate selective
inhibitors. Reprinted with permission from J. Am. Chem. Soc. (Ji, H., Stanton, B. Z., Igarashi, J., L, H., Martasek,
P., Roman, L.J., Poulos, T.L., Silverman, R.B. (2008) Minimal pharmacophoric elements and fragment hopping,
an approach directed at molecular diversity and isozyme selectivity. Design of selective neuronal nitric oxide
synthase inhibitors. J Am Chem Soc 130, 3900-3914). Copyright 2008 American Chemical Society

(c) MCSS randomly places thousands of copies of small func-
tional groups into the ligand binding site, and the copies of
small functional groups are subjected to energy minimiza-
tion. The copies with the lowest energies highlight the
potential regions for ligand binding. Hydrogen atoms were
added to protein structure by Accelrys/Discovery Studio.
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The CHARMm force field and the Momany—Rone partial
charge [43] were applied to minimize the orientation of
hydrogen atoms. About 2,500-5,000 replicas of a given
functional group were randomly distributed in the defined
binding site and then simultaneously and independently
energy minimized. Pairs of molecules were considered
identical if the root-mean-square deviation (rmsd) between
them was <0.2 A. In such cases, one of the pairs with a
lower binding energy was eliminated. The distance thresh-
old for generating random fragments was set to 0.9 A. The
other settings were the standard default parameters. The
MCSS calculations were performed using the CHARMM?22
force field and the MCSS 2.1 program. Common func-
tional groups used in the MCSS calculations are benzene,
cyclohexane, propane, isobutane, N-methylacetamide,
methanol, ether, acetate ion, methylammonium, and
trimethylammonium.

2. When the protein target is an enzyme and the structures of the
isoenzymes are known, GRID /consensus principal component
analysis (CPCA) can be used to map the key binding site for
inhibitor selectivity [44, 45]. The molecular interaction fields
(MIFs) from the GRID calculations were imported into the
GOLPE program, as shown in Table 1. A maximum cutoft was
set to 0 kcal/mol to consider only the favorable protein-ligand
interactions (negative energy values). The positive interaction
energy is in most cases due to unfavorable steric repulsions
between the probes and the atoms in the box. Because the equa-
tions used for calculating the MIF values are very different for
different probes, block unscaled weights (BUW) were used to
normalize the interaction energies between different probes so
that each probe would get the same importance in the model.
Variables with the values <0.01 kcal /mol and those with a stan-
dard deviation below 0.02 were removed to eliminate noisy vari-
ables. The pretreated data were then used in CPCA modeling.
CPCA is a hierarchical principal component analysis (PCA) and
can capture the information in both the blocks (i.e., individual
probes) and the whole X-matrix (i.e., MIFs values). Therefore,
CPCA can be regarded as a PCA at two different levels: one is
the block level, which provides the relative importance of differ-
ent probes; another is the superlevel, which is the combination
of these blocks to yield an analysis for the overall data (the results
are similar to that obtained from the usual PCA). Each of these
levels has loading and score vectors that summarize the informa-
tion like in a usual PCA. In a selectivity study, often more than
one principal component contributes to discriminate different
objects in the scores plot; therefore, any single CPCA loadings
plot can only partially describe the MIFs difference for a specific
GRID probe between different target proteins. By using active
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CPCA differential plots implemented in the GOLPE program,
the difference between the two points for the first and second
principal components can be calculated and projected back into
the original space (a pseudofield) using PCA loading. That is,
the vector linking pairs of objects in a two-dimensional scores
plot can be translated into isocontour plots that identity those
variables that contribute most to differentiating selected objects.
Two stages of the GRID/CPCA analyses are typically made.
One includes all residues of the ligand binding site. The second
one targets a limited region for a specific subpocket using the
cutout tool of GOLPE.

3. When the target is a protein—protein interface, FTMap [46, 47],

computational alanine scanning [48], AnchorQuery [49], and
PocketQuery [50, 51] in Table 1 can be used to derive the key
sites for protein—protein binding and small-molecule inhibition
(see Note 3).

(a) If the structure of the target protein is known, Web-based
FTMap can be used to predict the energetic hotspots for
ligand potency. The PPI mode of the FTMap was selected
to ensure a better prediction for the shallow pockets on the
protein surface.

(b) If the structure of the protein—protein complex is known,
computational alanine scanning can be used to predict key
residues that significantly contribute to the protein—pro-
tein interaction. Click “Design Protein” from the
“Macromolecule” menu of Accelrys Discovery Studio and
then “Calculate Mutation Energy (Binding)”. Assign
“Mutate To” alanine and “Implicit Solvent Dielectric
Constant” to 80 to derive key residues for protein—protein
interactions.

(c) If the structure of the protein—protein complex is known,
Web-based ANCHOR [52] can be used to identify the
protruding hotspot residues whose solvent accessible sur-
face area (SASA) displays a >0.5 A2 change upon protein—
protein complexation. PocketQuery can be used to predict
concave hot regions. Both searches simply require an
upload of the structure for the protein—protein complex.
The output data are the changes in SASA (ASASA) and the
FastContact energy (AG). PocketQuery also provides the
Rosetta energy (AAG) that equals to the AAG from com-
putational alanine scanning, the residue conservation
scores, and a consensus druggability score for the concave
hot region.

. Establishment of minimal pharmacophoric elements. The mini-

mal pharmacophoric elements can be an atom, a cluster of
atoms, a virtual graph, or vectors. It is an ensemble of electronic
and steric features that is essential for binding to a specific
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Fig. 3 Minimal pharmacophoric elements for selective nNOS inhibitors. An amidino group is positioned close
to E592. A yellow nitrogen atom is close to D597. The regions where hydrophobic and/or steric interactions
play important roles are indicated by circles. Three blue nitrogen atoms are placed close to the heme propio-
nate. Reprinted with permission from J. Am. Chem. Soc. (Ji, H., Stanton, B. Z., lgarashi, J., Li, H., Martasek,
P.,Roman, L. J., Poulos, T. L., Silverman, R. B. (2008) Minimal pharmacophoric elements and fragment hopping,
an approach directed at molecular diversity and isozyme selectivity. Design of selective neuronal nitric oxide
synthase inhibitors. J Am Chem Soc 130, 3900-3914). Copyright 2008 American Chemical Society

pocket in the ligand binding site. Figure 3 shows a minimal
pharmacophoric element model for selective nNOS inhibitors
(see Notes 4 and 5).

5. The basic fragment library in Table 2 was manually examined to
find all of the possible fragments that can match the require-
ments of the minimal pharmacophoric elements for each pocket.
The bioisostere library was manually examined to generate a
focused fragment library with diverse structures. The generated
focused fragment library was then interrogated with the rules for
metabolic stability and a toxicophore library shown in Table 2 to
provide potential fragments for a specific pharmacophore.

6. The targeted fragment libraries were converted into a LUDI
user library [53, 54]. To determine the appropriate position
and orientation of the fragments from the LUDI user library,
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LUDI was first applied to generate the interaction sites for
each pharmacophore. Four different types of the interaction
sites are defined in the LUDI program: lipophilic-aliphatic,
lipophilic—aromatic, hydrogen bond donor, and hydrogen
bond acceptor. The residues inside an 8.0 A radius sphere,
which centered on the centroid of the minimal pharmacoph-
oric elements, were used to generate the interaction sites. The
link library switch was turned off, and the target mode switch
was turned on. The LUDI scoring function was set to Energy-
Estimate-2. The other settings were kept with the standard
default parameters (see Note 6).

. The generated fragments were then docked to the ligand bind-

ing site using Schrodinger Glide XP and to relax the flexible
bonds in the fragment molecules [55, 56]. All fragments were
charged by OPLS_2005. For fragment docking, any atoms
within 6 A from the proposed critical pharmacophoric ele-
ments were used to define the grid box. The number of poses
per ligand for the initial docking stage was set to 50,000. A
wider scoring window of 500.0 kcal/mol was used to keep
initial poses, and the best 1,000 poses per ligand were kept for
energy minimization. The keyword roughmin was added to the
maxkeep line of the Glide input file to instruct Glide to bypass
sorting by the rough score and to minimize all maxkeep poses
on the Glide grid. The maximum number of minimization
steps was set to 5,000. One hundred poses were subjected to
post-docking minimization, and 100 poses were recorded for
output. The other settings were the default Glide XP parame-
ters. A visual inspection was performed to examine the degree
of match between the docked fragment poses and the pro-
posed critical pharmacophoric elements (se¢ Note 7).

. To convert the newly generated fragments into a molecule, the

side chain library in Table 2 was converted into a LUDI link
library and used for the connection operation. The hydrogen
atoms in the above fragment structures were replaced by a link
fragment to create a new substructure. The LUDI switch for
the target mode was turned off, but the LUDI switch for the
link library was turned on. The linkage parameter can be set to
1 (the link fragment fits at least one link site), 2 (the link frag-
ment simultaneously fits at least two link sites), or was specified
(the link site was specifically assigned) according to the actual
requirements. The other settings were the standard default
parameters. The bioisostere library in Table 2 and the
SciFinder® search are two useful tools for generating syntheti-
cally feasible molecules.

. AutoDock 4.2 [57] was used to dock lead-like molecules to

the protein target. Hydrogen atoms were added to the ligand
molecules and the partial atomic charges were calculated using
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the Gasteiger—Marsili method [58]. The protonation state of
the target protein was set to pH 7.0 when adding hydrogen
atoms. The partial atomic charges of the target protein were
calculated by AMBER 7 FF99. The AMBER 7 force field 99
within SYBYL X2.0 was used to optimize the orientation of
the hydrogen atoms on the target protein. In AutoDock 4.2
calculations, the grid maps were calculated using AutoGrid
with the grid spacing of 0.375 A. For the ligand docking study,
the dimensions of the grid box included all residues of the
active site. Docking was performed using the Lamarckian
genetic algorithm (LGA), and the pseudo-Solis and Wets
method was applied for the local search. Each docking experi-
ment was performed 100 times, yielding 100 docked confor-
mations. Parameters for the docking experiments were as
follows: the number of individuals in the population was 150;
the maximum number of energy evaluation was 2,500,000;
the maximum number of generations was 27,000; the number
of top individuals to survive to the next generation was 1; the
rate of gene mutation was 0.02; the rate of crossover was 0.8;
the iterations of Solis and Wets local search was 300; the local
search rate was 0.06. The other settings were the standard
default parameters. The auxiliary clustering analysis was then
used to evaluate the results of the docking experiments.

The CScore module of SYBYL X2.0 was further used to evalu-
ate the binding mode of the lead-like molecules. The AutoDock
Binding Energy and the LUDI binding score were retrieved
from the AutoDock and LUDI studies, respectively. The G_
Score, PMF_Score, D_Score, and ChemScore were calculated
using the Tripos CScore module. Open a spreadsheet table
that contains the ligand molecules. Then, create the ORIGIN
attribute by typing “table attribute create ORIGIN string”,
and set it to DOCKING by typing “table attribute set ORIGIN
DOCKING?”. Save the spreadsheet table and reopen it. Run
Cscore to obtain G_Score, PMEFE_Score, D_Score, and
ChemScore. AutoDock, and LUDI scores can be imported
manually. Click Consensus to generate the consensus score for
each docked molecule. Two other scoring functions commonly
used for consensus scoring were ASP [59] and ChemPLP [60].

The last step is ligand-based prediction to evaluate absorption,
distribution, metabolism, excretion, and toxicity (ADME /Tox)
of the designed ligand molecule. Lipinski’s rule of five (H-bond
donors<5, H-bond acceptors<10, molecular weight<500,
and log P<5) [61] and the polar surface area (PSA)<140 A2
[62] was used to predict oral bioavailability of the designed mol-
ecule. The blood-brain barrier penetration was predicted by the
following rules of thumb [63, 64]: the number of nitrogen and
oxygen atoms<5, Clog P-(N+0)>0, PSA<90 A2, molecular
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weight <450, and the logarithm of distribution coefficient of a
compound (logD) is between 1 and 3. Rule of four (molecular
weight>400, Alog P>4, rings>4, and H-bond acceptors>4)
has been used to define the profile of a protein—protein interac-
tion inhibitor [65]. The metabolically labile sites were predicted
using MetaSite 4.1 [66]. The conformations of the ligand mol-
ecule were generated by molecular dynamics simulated anneal-
ing. The system was heated at 1,000 K for 1.0 ps and then
annealed to 250 K for 1.5 ps. The annealing function was expo-
nential. One hundred such cycles of annealing were performed
and the resulting 100 conformers were subjected to energy min-
imization. Energy minimization was performed using the Tripos
force field, Powell optimization method, and MAXIMIN2 min-
imizer with a convergence criterion of 0.05 kcal /mol-A. Charges
were calculated using the Gasteiger—Marsili method [58]. The
conformations of the ligand molecules were clustered based on
the rmsd value of non-hydrogen atoms<1.0. The site of metab-
olism prediction module of MetaSite 4.1 was used to predict the
metabolically labile sites of the ligand molecules (see Note 8).

4 Notes

. The results of the experimental approaches are useful for

deriving the minimal pharmacophoric elements. When the
target enzyme structure is known, the results of the site-
directed mutagenesis and fragment screening using NMR,
X-ray crystallography, MS-based tethering, SPR, and substrate
activity screening (SAS) [67, 68] are valuable for the deter-
mination of the pharmacophores. When the structure of the
protein—protein interaction target is known, alanine scanning
can be performed to identify and quantify the hotspots for
protein—protein interactions.

. The correct input protein structure is essential for almost all of

the computer modeling programs. Therefore, it would be ben-
eficial to clean the protein structure by removing the alternate
conformations, patching missing side chains, and adding
hydrogens before it is subjected to computer modeling. The
orientations of hydrogens need be energically optimized.

. Neither GRID nor MCSS has the desolvation term in the

scoring potential, but FTMap does. FTMap is more appropri-
ate for mapping the energetic hotspots for protein—protein
interactions.

4. When a set of bioactive small-molecule inhibitors is obtained

for a specific target, ligand-based pharmacophore mapping is
also important for deriving the minimal pharmacophoric ele-
ments. The commonly used pharmacophore modeling pro-
grams include Catalyst [69-71], GALAHAD [72, 73], Phase
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[74, 75], LigandScout [76], and MOE pharmacophore. The
structure—activity relationship analysis, the 3D-QSAR analysis
such as CoMFA [77], CoMSIA [78], and the GRID /GOLPE
analysis [79], and the 2D-pharmacophoric descriptors [80] are
also useful for deriving the minimal pharmacophoric elements
for both inhibitor potency and inhibitor selectivity. When the
crystal structure of the protein—protein complex is known, the
geometries and electronic properties of the projecting hotspots
from the ligand peptides/proteins should be derived and used
to determine the minimal pharmacophoric elements.

. The mapping of the minimal pharmacophoric elements is user-

dependent and iterative. If the result of ligand design from the
first round is unsatisfactory, it is necessary to redefine the phar-
macophore model. Based on our experience, the experimental
results for protein—ligand binding are dependent upon efficient
mapping of the minimal pharmacophoric elements.

. LUDI has primarily been used to place the fragment into the

corresponding binding site to match the proposed minimal
pharmacophoric elements. SEED [81, 82] can be used as an
alternative.

. Glide XP has primarily been used to dock the generated frag-

ments to match the proposed minimal pharmacophoric ele-
ments. DOCK [83], GOLD [84], and fragment-based flexible
ligand docking (FFLD) [85] can be used as alternatives.

. In fragment hopping, the protein structures are treated rigid,

which is a drawback if protein flexibility needs to be considered
in the design of new inhibitors with new scaffolds.
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Chapter 7

Site Identification by Ligand Competitive Saturation
(SILCS) Simulations for Fragment-Based Drug Design

Christina E. Faller, E. Prabhu Raman, Alexander D. MacKerell, Jr.,
and Olgun Guvench

Abstract

Fragment-based drug design (FBDD) involves screening low molecular weight molecules (“fragments”)
that correspond to functional groups found in larger drug-like molecules to determine their binding to
target proteins or nucleic acids. Based on the principle of thermodynamic additivity, two fragments that
bind nonoverlapping nearby sites on the target can be combined to yield a new molecule whose binding
free energy is the sum of those of the fragments. Experimental FBDD approaches, like NMR and X-ray
crystallography, have proven very useful but can be expensive in terms of time, materials, and labor.
Accordingly, a variety of computational FBDD approaches have been developed that provide different
levels of detail and accuracy.

The Site Identification by Ligand Competitive Saturation (SILCS) method of computational FBDD
uses all-atom explicit-solvent molecular dynamics (MD) simulations to identify fragment binding. The
target is “soaked” in an aqueous solution with multiple fragments having different identities. The resulting
computational competition assay reveals what small molecule types are most likely to bind which regions
of the target. From SILCS simulations, 3D probability maps of fragment binding called “FragMaps” can
be produced. Based on the probabilities relative to bulk, SILCS FragMaps can be used to determine “Grid
Free Energies (GFEs),” which provide per-atom contributions to fragment binding affinities. For essen-
tially no additional computational overhead relative to the production of the FragMaps, GFEs can be used
to compute Ligand Grid Free Energies (LGFEs) for arbitrarily complex molecules, and these LGFEs can
be used to rank-order the molecules in accordance with binding affinities.

Key words Fragment-based drug design (FBDD), Molecular dynamics (MD), Site identification by
ligand competitive saturation (SILCS), Binding free energy, FragMap, Grid free energy (GFE),
Ligand grid free energy (LGFE)

1 General FBDD Methods and the SILCS Approach

Fragment-based drug design (FBDD) seeks to identify low molec-
ular weight molecules (“fragments”) that bind to target proteins
or nucleic acids of interest. The identities of these fragments are
chosen based on their similarity to functional groups commonly
occurring in drug-like molecules. After determining which of these

Anthony E. Klon (ed.), Fragment-Based Methods in Drug Discovery, Methods in Molecular Biology, vol. 1289,
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fragments bind, as well as their binding poses, fragments binding
to adjacent sites on the target can be linked to create a molecule
with a higher binding affinity [1]. This approach derives from the
principle of thermodynamic additivity, which states that if two
components are independent in their contributions to the change
in free energy, then the sum of their respective contributions gives
the total change in free energy, i.c., AGioa = A Gagmentt + A Ghragmene
[2]. A variety of experimental techniques, including X-ray crystal-
lography, NMR, surface plasmon resonance, isothermal titration
calorimetry, and mass spectrometry, have proven to be very useful
in determining binding affinities and binding poses of fragments to
target proteins [3—-6]. However, FBDD can be an expensive
endeavor using experimental approaches, as they are associated
with high costs in materials and time, especially for high-throughput
screening, as well as in labor.

Computational approaches to FBDD aim to minimize the vari-
ous costs associated with experimental approaches. Many in silico
methods utilize simplified representations of the target and of the
solvent in order to reduce the computational burden by reducing
the number of degrees of freedom in the system. Examples of com-
mon simplifications include a rigid target model and representing
the solventas a continuum [7-11]. The rigid target model approach
is often referred to as docking and has difficulty identitying ligands
that require even minor changes in target conformation for bind-
ing [12-15]. More recent work has sought to improve sampling in
this regard by using several different rigid target conformations for
docking calculations [16]. Because of its computational speed,
FBDD docking can allow high-throughput screening of large
libraries of fragments that approach the theoretical limit of frag-
ment diversity, which is 107 unique fragments [17]. FBDD dock-
ing, in addition to having the capacity to test all possible fragments,
benefits from the fact that fragments have few internal degrees of
freedom, which greatly simplifies the conformational search prob-
lem in docking [18-20]. However, development of sufficiently
accurate scoring functions for ranking different docked molecules
continues to be a challenge [21-24].

The opposite end of the spectrum from rigid target docking is
the application of all-atom explicit-solvent molecular dynamics
(MD) simulations, in which the solvent is explicitly modeled in
atomic detail, and the ligands and target protein or nucleic acid are
all fully flexible. In these MD simulations binding free energies can
be determined and, in conjunction with the optimized empirical
force fields presently available for biomolecules and small mole-
cules [25-33], near-quantitative binding free energy agreement
can be reached relative to wet-lab experiments [34—43].
Unfortunately, while this level of detail provides accuracy, compu-
tational efficiency is lost due to the need to sample ligand, target,
and solvent degrees of freedom sufficiently to obtain converged
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results. Therefore, using this type of thorough MD simulation to
do high-throughput analysis of fragment binding is simply not
possible for the foreseeable future.

While it is computationally inefficient to do MD simulations on
individual small molecules from a large set, a possible advantageous
approach is to employ a competitive method that simultaneously
screens a simplified set of fragment molecules that represent various
functional groups. The SILCS (Site Identification by Ligand
Competitive Saturation) method [44] does exactly this by using
atomic level of detail MD simulations of a target in an aqueous solu-
tion containing selected fragment molecules so as to determine
regions of high probability binding for different fragment types.

2 SILCS Methodological Details

2.1 Fragment
Selection

SILCS [44] uses nanosecond-length all-atom explicit-solvent MD
simulations of the target in an aqueous solution containing a vari-
ety of fragments. Explicitly modeling water molecules allows for
atomic-level solvation effects to be included. Multiple simulations
are run for each system, the trajectories are combined, and 3D
probability maps of each fragment type around the target are cal-
culated. The 3D probability maps are then normalized relative to
fragment probabilities in bulk solution, thereby incorporating frag-
ment desolvation free energies into the final maps, which are
referred to as “FragMaps.” As explicit water is included in the MD
simulations, the free energy penalty for desolvation of the target to
allow fragments binding is taken into account in the final FragMaps
in addition to all other components of binding free energy includ-
ing target-ligand interactions, target deformation energy, and
entropic contributions.

Selecting fragments to include in the aqueous solution is an impor-
tant step in the SILCS methodology: the fragments should be
small enough to allow adequate concentrations to facilitate confor-
mational sampling, and should minimally represent hydrogen
bond donors, hydrogen bond acceptors, aliphatic groups, and aro-
matic groups. In the original conception of SILCS, the water por-
tion of the solution contributed both hydrogen bond donors and
hydrogen bond acceptors. The other fragments, therefore, needed
to include aliphatic and aromatic moieties, meaning two more
fragments were required to provide these functional moieties to
complement those provided by water. Low molecular weight frag-
ments are particularly desirable due to their high diffusion rates,
which lead to improved convergence of simulations. By these stan-
dards, the original SILCS fragments were water, benzene, and pro-
pane. However, while water is a convenient choice, there are
potentially many other hydrogen bond donor and/or hydrogen
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2.2 Preventing
Fragment Aggregation

2.3 Balancing Target
Flexibility
and Denaturation

bond acceptor-containing fragment choices that are more
representative of moieties in drug-like molecules. As such, the
original SILCS fragment set is now referred to as “Tier 1,” and a
new “Tier 2” fragment set consisting of propane, benzene, metha-
nol, formamide, acetaldehyde, methylammonium, and acetate has
been validated [45]. Notable in Tier 2 SILCS is the use of both
neutral and charged donors and acceptors, allowing for regions of
the target that bind these to be differentiated.

Low molecular weight fragments have an additional benefit,
which stems from the competitive nature of the SILCS in silico
assay: there is an upper limit to the ligand binding affinity per heavy
atom [46], commonly referred to as “ligand efficiency” [47], and
this limit is 0.4-0.5 kcal/mol per heavy atom [17]. As a conse-
quence, smaller fragments (fewer heavy atoms) translate to weaker
binding and higher turnover of fragments on target binding sites,
which improves sampling. Characterization of such weakly binding
fragments through NMR and X-ray crystallography experiments
can be challenging, which limits the number of fragment types that
are recognized in experimental FBDD efforts. In contrast, SILCS
does not have this limitation. Of course, fragments other than
those mentioned above can be used to further broaden the range
of chemical space represented by FragMaps, but again it is empha-
sized that larger fragments may slow convergence because of slower
diffusion and greater binding affinity.

The fact that SILCS uses fragment concentrations approaching
1 M in an aqueous solution brings about the problem of aggrega-
tion. The aggregation of hydrophobic molecules occurs because
they prefer not to be solvated, but to associate with other hydro-
phobic molecules. The resulting phase separation has the serious
consequence that the effective concentration of the hydrophobic
molecules is substantially reduced. In Tier 2 SILCS, the presence
of ions can lead to ion-pair formation in solution, again reducing
the effective fragment concentration. In both instances, the chemi-
cal potential of the fragments in bulk solution is reduced, thereby
reducing their sampling of the target surface.

SILCS overcomes this barrier to sampling by leveraging the
fact that it is a computational method: in SILCS, a repulsive poten-
tial between fragments is used to prevent fragment association
[44]. This repulsive potential—unique to SILCS—only alters frag-
ment—fragment interactions in the system, thereby maintaining an
“ideal” solution of fragments in water while leaving all other inter-
actions in the system unperturbed (Fig. 1).

The value of including target flexibility can be visualized by compar-
ing atomic resolution structures of apo- and ligand-bound proteins;
in many cases, binding of a ligand is coupled to a conformational
change, including in therapeutically relevant targets such as kinases
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Fig. 1 Fragment aggregation after 20 ns of SILCS MD simulation. (a) No inter-fragment repulsive potential. (b)
With SILCS inter-fragment repulsive potential. The protein target is displayed as ribbons, water oxygen atoms
are in red, and benzene and propane carbon atoms are in blue

and proteases [48]. Common to SILCS-like approaches [49-53]
is the risk of fragment-induced target denaturation, especially in
cases of inherently less-stable target proteins, such as those with no
disulfide bonds. A range of options has been considered with
regard to treatment of target flexibility in SILCS to optimally bal-
ance inclusion of target flexibility while minimizing the risk of
fragment-induced target denaturation: a fully flexible protein (no
positional restraints), weak Ca positional restraints, and weak posi-
tional restraints on non-hydrogen atoms near the protein core [54].
The weak positional restraints allow for relatively large motions of
the restrained atoms while limiting the motions enough to avoid
denaturation. What is clear is that a lack of restraints (i.e., “full flex-
ibility) can allow target denaturation regardless of whether the
fragments are hydrophobic or hydrophilic.

Should full target flexibility be required, a protocol has been
developed to identify denaturing SILCS trajectories for exclusion
from subsequent analysis. It employs a combined metric consisting
of the root-mean square deviation (RMSD) and the radius of gyra-
tion (R, ). The average RMSD (with the starting structure as ref-
erence coordinates) and the average R, are computed for each
SILCS trajectory. Likewise, they are computed for non-SILCS
standard MD control trajectories of the target in the absence of
fragments. Each SILCS trajectory average RMSD, average R,,, pair
is then compared to the cluster of these values from the control
trajectories, and the SILCS trajectory is excluded from further
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2.4 FragMaps

analysis if its values lie outside the cluster for the control simulation
[54]. While large RMSD values alone may be good indicators of
denaturation, intermediate values can require visualization of snap-
shots from the trajectory to confirm the RMSD results. In cases of
structural rearrangement, like loop rearrangements or sliding of
helices relative to one another, intermediate RMSD can be mis-
leading, as the increase in RMSD is not due to denaturation, but
due to functionally-relevant conformational change. The use of
R,,, has a long history as a reaction coordinate in computational
studies of protein folding [55-57] and is a metric of the overall
spatial extent of the protein that increases as a protein unfolds. In
the context of SILCS, R,,, is especially capable of identifying situ-
ations where fragments tunnel into and disrupt the protein hydro-
phobic core, which may lead to ambiguous intermediate changes
in RMSD.

FragMaps are 3D probability distributions of the fragment atom
types in the context of the target. They serve to identify which
functionalities (e.g., hydrogen bond donors, hydrogen bond
acceptors, aromatic groups, aliphatic groups) associate most
strongly with different areas of the target. FragMaps can be conve-
niently visualized as isocontour surfaces in the context of the target
using freely available molecular graphics software like VMD [58]
(Fig. 2) or PMV /ADT [59, 60], or any of the widely used com-
mercial molecular visualization software packages, since FragMaps
can be stored in the same formats as those used for electron densi-
ties [61] or docking grids [60].

In the initial SILCS implementation using Tier 1 fragments, to
be included in a FragMap a fragment atom must meet a distance

Fig. 2 Tier 1 FragMaps. (a) Target protein molecular surface in white, propane FragMap in green mesh, and
benzene FragMap in purple mesh. (b) Same as (a) but with clipping and depth-cueing to expose additional
FragMap density (white boxes) beneath the molecular surface of the apo-target crystal structure; this density
corresponds to experimentally known ligand-binding sites [54]
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criterion relative to the target protein: for example, for inclusion in
the hydrogen bond acceptor FragMap, water molecule oxygen
atoms must be within 2.5 A of the protein [44]. This criterion was
particularly relevant in order to distinguish whether the water was
acting in a hydrogen bond donor or acceptor capacity, as a target-
bound water molecule may be serving in either role or simultane-
ously in both roles. With the move to the more varied and specific
Tier 2 fragments, this is less of an issue, and inclusion of all frag-
ments during FragMap generation, regardless of distance from the
target, can be useful to capture longer-range interactions such as
water-mediated interactions of polar molecules with the target. In
either of these two approaches, fragment atom locations are binned
to create a 3D histogram (FragMap) having 1 Ax1 Ax1 A voxels.

A practical means to evaluate SILCS simulation convergence is to
run ten independent simulations, and create two sets of FragMaps
by averaging over two sets of five independent FragMaps. Data in
the second set are combined and subtracted from the combined
data in the first set to generate a difference map. If the simulations
are converged, differences should be due to random error and
therefore have a tight distribution centered around zero [44].
Alternatively, the overlap coefficient of the two maps can be calcu-
lated to gauge the extent of convergence [62].

To obtain quantitative free-energy information, FragMaps are nor-
malized relative to fragment occupancies in bulk solvent and con-
verted to “Grid Free Energies (GFEs)” via inverse-Boltzmann
weighting of the normalized FragMap occupancies [63]. In order
to normalize results, simulations with conditions similar to those
of the target+fragments+water system are run with only the
SILCS solution (i.e., water+fragments). As with the target-
containing simulations, the solution-only simulations are run in
the isothermal-isobaric (NPT) ensemble to allow for system size
relaxation to account for the volume occupied by fragments in the
solution. After relaxation, the bulk occupancy for a particular frag-
ment type is computed by simply dividing the number of atoms of
that fragment type by the average volume of the system computed
from the NPT simulations. The GFE for a fragment atom type fin
a particular voxel centered at «, ¥, z is then,

f
occupancyy .

GFE?M =ming—RTlog ,GFE,__ (1)

* bulk occupancy

where GFE,,,, can be set as a maximum unfavorable value. A
GFE,,,, of 0 has been used previously [63], which removes any
unfavorable contributions arising from voxels having an occupancy
lower than bulk.
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2.7 Ligand Grid Free Ligand Grid Free Energy scores (LGFEs) can provide an estimate

Energy Scores (LGFEs)  of binding free energy of a particular target-ligand conformation
for an arbitrarily complex ligand molecule. In order to calculate
LGFE scores, ligand molecule atoms are classified into FragMap
types based on their chemical similarity to the various fragment
atoms used to compute the FragMaps. To this end, an assignment
convention has been developed that translates force-field atom
types into the FragMap classes. Additionally, certain ligand atoms
may be excluded from the LGFE calculation. For example, aro-
matic hydrogen atoms are implicitly accounted for in the FragMap
for the parent benzene carbon atom. The LGFE for a ligand mol-
ecule is computed as a sum of the GFEs of its classified atoms:

LGFE= Y ¥ GFE[, (i) (2)

FragMaps fatomsi,

where the outer summation is over the FragMap types denoted by
fand the inner summation is over the atoms denoted by 7, that are
classified into each FragMap type. In addition to single conforma-
tions, LGFE scores can be computed for an ensemble of conforma-
tions and thermodynamically averaged. Such ensembles of
conformations may be obtained, for example, from relatively short
(e.g., 1-2 ns) Langevin simulations of the target-ligand complex
in the gas phase or with a continuum solvent model. When this is
performed it is suggested that the simulations be repeated multiple
times with different target conformations.

Figure 3 demonstrates the utility of LGFE scores in structure
based drug design. The crystallographic conformations of three
ligands that bind to the protein a-thrombin with progressively increas-
ing affinities are shown, along with LGFE scores and experimentally

1

LGFE=-21.4

1

LGFE=-11.0 »

LGFE=-16.2

Al N

Fig. 3 Crystallographic complexes of a-thrombin with three ligands of progressively higher affinity, along with
benzene and propane FragMaps. The benzene and propane FragMaps are in purple and green, respectively.
The ligand grid free energy (LGFE) for each ligand is displayed on the right-bottom side of each panel and the
experimentally measured binding affinity difference is at the interface of each pair of panels. Protein-ligand
structures are from PDB IDs (@) 2ZGX, (b) 2ZDA, and (¢) 2203
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determined binding free energies. The overlap of the optimized
ligands with FragMaps reflected in the increasingly favorable LGFE
scores captures the experimental trend of increasing binding affinities

[63, 64].

3 SILCS Workflow

3.1 System
Construction

3.2 System
Simulation

1. Determine size of system: a cube with edge lengths x is typical,
where x is 16 A longer than the longest dimension of the
target.

2. Generate a box of water molecules of edge length x at the
experimental density.

3. Choose a fragment palette, e.g.: Tier 1 SILCS=propane and
benzene; Tier 2 SILCS=propane, benzene, methanol, for-
mamide, acetaldehyde, methylammonium, and acetate.

4. Compute fragment placement grid overlapping with water
box, such thata ~1 M for Tier 1 or ~0.25 M for Tier 2 solution
in each of the fragments will result.

5. At each placement grid point, randomly select and place a frag-
ment from the palette to generate a fragment solution box.

6. Center the target in fragment solution box from above.

7. Delete water molecules and fragments overlapping with
target.

1. Nonbonded conditions: 8 A real-space cutoff; Particle-mesh
Ewald for long-range electrostatics; Switching function
between 5 and 8 A for Lennard-Jones; Virtual particles are
added to center of each fragment to serve as interaction sites
for inter-fragment repulsion (repulsive potential between the
virtual particle pairs is modeled using Lennard—Jones potential
combined with above switching function, where Lennard-
Jones parameters are ¢=-0.01 kcal /mol, R,,;,=12.0 A)

2. Positional restraints for protein target sidechain flexibility:
Harmonic restraints on Co atom positions of the form &(A7)?,
where A7 is the displacement in A from the crystallographic
position and %=0.1 kcal /mol /A2. In addition to full sidechain
flexibility, these restraints are sufficiently weak to allow modest

backbone flexibility.

3. Orpositional restraints for loop flexibility: Harmonic restraints
on non-hydrogen atoms within x A of the target center of
mass, where «x is sufficiently small (e.g., half of the radius of
gyration of the target) so as not to include residues near the
surface of the target. Restraint functional form and force con-
stants are same as for “sidechain flexibility” above.



84 Christina E. Faller et al.

3.3 FragMap
Generation

3.4 GFE Generation

4. Or full flexibility: No positional restraints. In this case, run
control simulations of just the target without fragments for use
in post-run determination of denaturing trajectories using
average RMSD, average R,y pair metric.

5. Simulate with isothermal—-isobaric ( NPT) molecular dynamics
(MD).

6. Typical simulation length is 50 ns.

7. It is recommended that ten independent simulations be run:
Same solution box with ten different random seeds to initiate
MD, or, preferably, ten different solution boxes.

1. For a given fragment atom type f; bin all atomic positions
from all SILCS trajectory snapshots to create a 3D histo-
gram spanning the size of the system and having
1 Ax1Ax1 A voxels.

2. If, as recommended, multiple independent simulations were
run, generate two FragMaps for each fragment atom type f;
using half the simulations for each FragMap, and compute a
difference map or overlap coefficient to estimate convergence.

3. n.b.: If “full flexibility” was used, snapshots from denaturing
trajectories must be excluded and each snapshot needs to be
aligned to a single reference orientation of the target prior to
binning of fragment atom positions.

1. See Eq. 1.

35 LGFE 1. Ligand conformation generation: Can be a docking pose, mul-
Computation tiple poses from an MD simulation of the target-ligand com-
plex, etc.
2. Ligand atom classification: Each ligand atom is mapped to a
fragment atom type fbased on chemical similarity.
3. LGFE is computed using Eq. 2.
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Chapter 8

A Computational Fragment-Based De Novo Design Protocol
Guided by Ligand Efficiency Indices (LEI)

Alvaro Cortés-Cabrera, Federico Gago, and Antonio Morreale

Abstract

We present a new protocol aimed at the structure-based design of drug-like molecules using a fragment
approach. It starts from a suitably placed and well-defined “base fragment” and then uses an incremental
construction algorithm and a scoring function to grow the molecule into prioritized candidates. The selec-
tion of the most promising solutions for synthesis and validation is guided by the optimization of the cal-
culated ligand efficiency indices known as binding efficiency index (BEI) and surface efficiency index
(SEI), which allow the user to navigate proficiently in chemico-biological space. A test case for the proto-
col is exemplified here using published data for inhibitors of protein kinase B, aka AKT, a key enzyme in
several signal transduction pathways. Our procedure was able to identify the main features responsible for
the binding of inhibitors and guided the selection process towards molecules that included or resembled
those shown as the most active in the original studies.

Key words Fragment-based drug design, Docking, Ligand efficiency indices, Scoring functions

1 Introduction

Fragment-based drug design (FBDD) is a mature and well-
established approach for drug discovery and optimization [1].
However, several limitations still exist related to the equipment
and the expensive materials that are needed for the implementation
of the experimental protocols. For this reason chemoinformatics
and computational tools can assist those discovery efforts, in a par-
allel or independent manner, by simplifying the fragment space
that needs to be explored or by pointing out which are the best
spots within this space [2].

Although the definition of molecular fragment varies across
the literature and depends on its intended use, the most common
one takes into account size and physicochemical properties. Thus,
the Rule of Three [3] states that the most successful fragments
have a molecular weight (MW) of less than 300 kDa, a cLogP
equal or less than 3 and a number of hydrogen bond donor and
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acceptor atoms of less than or equal to 3. This definition has been
applied widely, but it should not be considered in absolute terms
because some successful studies have employed fragments that do
not fulfill one or even two of these recommendations [4 ]. Fragment
databases are generally obtained either directly from chemical sup-
pliers that provide diverse sets of building blocks or from filtering
some commonly used large chemical libraries using the above
mentioned rule of three. Another, and perhaps more interesting,
alternative is to break down the molecules present in drug-like
databases into smaller pieces following a rational fragmentation
scheme.

The concept of ligand efficiency was introduced to account for
the differences in ligand affinity or potency with respect to molecu-
lar size [5]. As a consequence it is now common practice to normal-
ize the binding free energy of a ligand with respect to different
properties such as MW, number of heavy atoms, and polar surface
area (PSA). The resulting ligand efficiency indices (LEIs) [6] have
demonstrated to be very useful in both experimental and computa-
tional FBDD campaigns [7] and to properly describe the chemico-
biological space (CBS) that is being explored for fragment
optimization [8]. Prospective and retrospective analyses [9, 10]
have shown that a given optimization path in CBS can be success-
tully predicted and followed using a LEI framework and 2D planes.

In the next sections we describe a fully LEI-driven computa-
tional protocol that employs a succinct and diverse fragment library
together with a growing scheme within the binding site to suggest
new target-oriented compounds with drug-like properties starting
from a previously identified scaffold. The protocol makes use of a
tailor-made four-module toolbox to perform the following tasks:

1. Binding pocket analysis to characterize the structural and ener-
getic properties that are needed in subsequent steps.

2. Placement of a suitable base fragment that displays good steric
and electrostatic complementarities with the binding site at a
particular location.

3. Attachment of new fragments to the base fragment using a
growing algorithm.

4. Scoring and optimization of the resulting candidates using a
scoring function that maximizes the square sum of the binding
efficiency index (BEI) and the surface efficiency index (SEI).

A Graphical User Interface (GUI), implemented as a plugin
for the molecular visualization and editing program PyMOL [11],
and two simple scripts facilitate the use of this toolchest by nonex-
perts (see Note 1).

The whole procedure is exemplified here for the target protein
kinase B (PKB), a serine /threonine kinase that regulates many sig-
naling pathways involved in cell growth and differentiation.
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2 Materials

2.1 Three-
Dimensional
Coordinates
for Protein

and Fragments

2.2 Software

The co-crystal structures of a PKA-PKB chimeric protein in com-
plex with every intermediate obtained during the optimization
process in an experimentally validated FBDD campaign that also
provided inhibitory activity values (ICs) for all compounds [12].

1.
2.

Protein Data Bank (PDB) entry 2UW3.

Four databases containing fragments (stored as individual files)
whose functionalities are intended to match the four different
types of hotspots detected by the binding pocket analysis tool,
i.e., hydrogen bond donors, hydrogen bond acceptors, mixed
hydrogen bond donor/acceptor groups, and hydrophobic
moieties (see Note 2).

. The binding pocket analysis tool cGRILL, a stand-alone C

program (see Note 3) that is formally equivalent to Goodford’s
program GRID [13].

. Two scripts for (a) library linking (Zinker.py) and (b) scoring

new molecules (scorer.py).

. Scoring functions MM-ISMSA [14], of general use and our

default procedure (see Note 4), ChemScore [15], better suited
for non-charged ligands and hydrophobic pockets (se¢ Note 5),
and HYDE [16], which works best for accurately placed ligands
and can be applied to any protein-ligand /fragment structure
(see Note 6).

. A LEI-driven algorithm that calculates BEI and SEI for each

candidate molecule and then plots the BEI vs. SEI efficiency
plane [17] to guide the growing scheme (see Note 7).

3 Methods

3.1 Target Setup

3.2 Base
Fragment Setup

. Extract the protein coordinates (ATOM records) from PDB

entry 2UW3 to create target file rec.pdb.

. Add missing hydrogen atoms to all residues possibly taking

into account the ionization state of titratable amino acids at
the reference pH value (se¢ Note 8).

. For all ATOM records replace the occupancy and B-factor values

(last two columns) in file rec.pdb with atomic radii (R) and
atom point charges ( Q), respectively, and save the resulting new
file as rec.prq (PRQ or “swapped” PQR format) (se¢ Note 8).

. Extract residue GVG (3-methyl-4-phenyl-1 H-pyrazole), with

HETATM records, from PDB entry 2UW3 to create base frag-
ment file lig.pdb.



92 Alvaro Cortés-Cabrera et al.

3.3 Binding Pocket
Characterization

2.

10.

If no experimentally determined hit exists for the target, per-
form a virtual screening campaign to identify a suitable starting
scaffold as the “base fragment” and determine its optimal posi-
tioning within the binding pocket [18] (se¢ Note 9).

. Add any missing hydrogen atoms to lig.pdb (e.g., using

OpenBabel or PyMOL, see Note 10), and write out the result-
ing file in PDB format as ligH.pdb.

. In PyMOL, open the rec.pdb and ligH.pdb files to work on

and the original 2UW3.pdb file for reference.

. Display the cGRILL window by clicking on the corresponding

option from the Plugin main menu.

. Choose the Configuration tab to type in the path to the

cGRILL executable and to specify the name of the working
directory where results will be stored.

. To define the grid center, select object ligH (the chosen base

fragment) in the PyYMOL Viewer window and type sele inside
the Selection box under the Run ¢cGRILL tab in the cGRILL
plugin window. Press Enter.

. Once the grid center coordinates and the cubic box chosen for

the analysis are displayed, adjust the default dimensions
(40x40x40 points) and spacing (0.5 A) values if required.
Click the Show box button to update the view.

. Type in rec.prq into the Receptor File box (see Note 11) and

then click on the Run cGRILL button to evaluate, at each grid
point, the interaction energy between the whole receptor and
five different probes combining van der Waals (Lennard—Jones
potential), electrostatic (Coulombic), and hydrogen bonding
[19] (geometry-based) terms (sec Note 12).

. In the cGRILL plugin window click on the Load Grids tab and

type in the name of the directory containing the results from
either the current session or a previously saved analysis.

. Display the calculated affinity maps (CH3, NH4, O, OH, and

Hydrophobic) and fine-tune the contours by wisely changing
the default cutoff energy values (-1.0 kcal mol™!). Display waters
in object 2UW3 and note the very precise identification of many
hydration sites by the OH, O, and NH4 probes (Fig. 1).

. Open the hotspots.pdb file in the same PyMOL session and

display the hotspots object as dots or spheres (see Note 13) to
identify the most favorable regions for interaction with hydro-
phobic groups (white), hydrogen-bond acceptors (red),
hydrogen-bond donors (blue), and mixed hydrogen bond
accepting/donating hydroxyl groups (yellow).

Note the three close hydrophobic hotspots laid over the phe-
nyl ring of the base fragment, as well as the good superposition
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Fig. 1 PyMOL Viewer window displaying Protein Kinase B as a pink cartoon with a bound inhibitor, as found in
PDB entry 2uw7 [12], in stick representation (/eff) and main menu of the cGRILL GUI (right). The calculated
energy contours for hydrophobic, O, NH4, and OH probes are shown as wireframe mesh in magenta, red, biue,
and cyan colors, respectively. Coalescence of these maps into hotspots (dotted spheres) provides precise loca-
tions for the placement of fragments possessing atoms with specific hydrogen bonding or hydrophobic proper-
ties. Note the good agreement found between hydrophilic hotspots and crystallographic water molecules (cyan
cross marks), as well as the good overlay of NH4 and hydrophobic contours onto the piperidine and
4-chlorophenyl substituents, respectively, attached to the 4-phenyl-1H-pyrazole base fragment

3.4 Placement
and Linking of New
Fragments

11.

of two mixed hydrogen bond donor/acceptor hotspots onto
the two pyrazole ring nitrogens (Fig. 1).

Also note (a) the mixed hydrogen bond donor/acceptor
hotspots that spread along the bottom of the pocket pointing
towards an adjacent cavity and (b) the positively charged clus-
ter with a mixed hydrogen bond donor/acceptor character
located near the DFG motif, a key element in the process of
activation /inactivation of many kinases [20].

. Use linker.py to explore every possible combination resulting

from attaching each fragment contained in the different librar-
ies to the base fragment at the defined position (e.g., the car-
bon at the para position of the phenyl ring labeled as C11 in
object ligH) (see Note 14):

linker.py ligH.pdb Cl11l <path to/fragment library>

. Use scorer.py to compute the MW and the PSA of the candi-

dates (see Note 15) by means of the OpenBabel Python wrap-
per pybel [21] and to evaluate SEI and BEI for all those
compounds with scores that are compatible with favorable
binding free energies:
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Table 1
Chemical structures and BEI and SEI values of the top scoring molecules
resulting from the first optimization round in the search for PKB inhibitors
Compound BEI SEI
N= 55.2 7.2
HN-/
N= 53.1 7.8
HN—/
N=S 55.1 7.5
HN NH,
N= 50.5 8.0
HN—/
scorer.py rec.prqg <path to dir/where/candidates
will be stored>
. Import the CSV file that is generated by the program into a
standard worksheet to produce a table containing the scores,
LEIs, and compound names (Table 1) and plot the results for
visual inspection (Fig. 2).
. Visualize the docking poses of the candidates (pdb.sol files) in
PyMOL.
4 Notes

. The software described in this protocol is available for down-
loading from http: //farmamol.uah.es/soft/fragments/ under
the open source license GPL v2.

. Depending on their source, some fragment libraries may
require some previous processing. 3D coordinates, if missing
because the library consists only of SMILES strings [22] or 2D
graphs, can be generated using the OpenBabel o4gen com-
mand or CORINA software [23]. Input files (target, ligand
and fragments) must be in Protein Data Bank (PDB) format.
In addition, for the target receptor, radii (R) and atom point
charges (Q) are required in the last two columns (PRQ or
“inverse” PQR format) in place of the default occupancy and
B-factor values, respectively, for all atoms. See also Note 8.
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Fig. 2 The BEI vs. SEl efficiency plane for the putative Protein Kinase B inhibitors resulting from attaching dif-
ferent amine-containing fragments to the base fragment. The most promising compounds from the first round
which will be used in the next fragment linking step have been highlighted

3. ¢cGRILL can be used in command-line mode or within the
molecular visualization and editing program PyMOL [11] as a
GUI plugin.

4. MM-ISMSA is an ultrafast and accurate force field-based scor-
ing function that comprises (a) a molecular mechanics (MM)
part that relies on a 12—-6 Lennard—Jones potential; (b) an elec-
trostatic component calculated by means of an implicit solvent
model (ISM) [24] that includes individual desolvation penal-
ties for each partner in the protein-ligand /fragment complex;
and (c) an SA contribution that accounts for the loss of water
contacts upon protein-ligand /fragment complex formation.
Since force field-based scoring functions are known to be well
suited for pose prediction in docking and to discriminate effi-
ciently amongst native and nonnative candidates [25],
MM-ISMSA is the default scoring function for sampling and
final evaluation in our protocol.

5. The empirical function ChemScore decomposes the binding
energy in terms of (a) a lipophilic contribution (only for non-
polar atoms), (b) hydrogen bonding interactions (with a
geometry-dependent function), (¢) metal interactions (when
present and only for hydrogen bond acceptor atoms), and (d)
an entropic penalty for the freezing of any rotatable bond
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during the binding event (proportional to the number of fro-
zen rotatable bonds). In our implementation, this function
lacks any penalty terms for highly strained ligand conforma-
tions or for the atomic clashes sometimes observed for very
tight binding molecules in X-ray crystal structures. Therefore
it will perform optimally in the evaluation of final poses that
are force field-compliant in terms of both geometries and
energies.

. The HYDE (HYdration and DEhydration) scoring function

assumes that the main contributions to the binding free energy
arise from hydrogen bonding interactions between the target
and the ligand/fragment and also that the accompanying
desolvation event can either favor or penalize binding depend-
ing on the nature of the interacting chemical groups. The
hydrophobic/hydrophilic nature of the atoms is determined
by means of logP atomic contributions using empirically
deduced coefficients from experimental values. The free energy
is estimated as a sum of the goodness of the hydrogen bonds’
geometry and the change in solvent-accessible SA of both frag-
ment and target upon complex formation [14, 26, 27].

. To simultaneously optimize both indices, the sum of their

squared values is computed. This information will help the
user to decide which of the best possible candidates will be
selected as the new scaffold for the next round of growing.

. If the PDB2PQR tool [28] or the H++ (http://biophysics.

cs.vt.edu/) or PROPKA (http://propka.ki.ku.dk/) web inter-
faces are used the standard output file in PQR format can be
converted to the corresponding PRQ file by using the auntorec.
py script included in the software distribution. There is no need
to this, however, if the PyMOL GUTI is used because cGRILL.
py correctly identifies the columns containing charges and radii
irrespective of their relative position.

. An experimentally confirmed fragment hit at the starting loca-

tion (as shown in this proof-of-concept example) is not neces-
sary but it increases the odds of a successful final design.
Besides, and depending on the structure—activity landscape of
the target, it is possible that the resulting optimized com-
pounds will not share the binding mode of the starting frag-
ment [29]. This risk can be minimized by using feature-rich
fragments that establish relatively strong and defined interac-
tions with the target. On the other hand, docking-based poses
are prone to very well-known errors [30] and do not always
ensure that the final molecule will interact with the target as
predicted.

10. http://openbabel.org/ [31].
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Protein atoms are internally characterized according to their
connectivity (bond order), ring state, chemical type, and non-
bonded parameters using the generalized AMBER force field
(GAFF) [32].

These probes are thought to summarize the main stereo-
electronic properties of the binding pocket and are defined as
follows: lipophilic (CHj3), hydrogen bond donor (HN*),
hydrogen bond acceptor (=O), mixed hydrogen bond donor/
acceptor (-OH), and hydrophobic. cGRILL implements the
extended atom concept to simplify the probes and to speed up
the calculations [13]. The probes are reduced to their central
atom with its partial charge increased depending on the atoms
attached to it. Accordingly, the hydrogen bond acceptor probe
has an assigned charge of —0.37¢ to better represent the partial
negative potential on the oxygen atom when it is in a carbonyl
group. On the contrary, the lipophilic C atom probe is neutral
(charge Oe) and therefore only van der Waals interactions are
calculated for it. The functions for hydrogen bond donor,
acceptor and mixed donor/acceptor probes include an extra
term (besides van der Waals and electrostatic energies) that
accounts for the geometry of the hydrogen bond and depends
on: (a) the distance between acceptor and hydrogen atoms, (b)
the angle between donor, hydrogen and acceptor atoms, and
(c) the relative orientation of the planes where the atomic
orbitals of the acceptor and the hydrogen atoms are located.
The hydrophobic probe is built on the lipophilic one but it
adds, as a unique extra feature, the inverse of the default hydro-
gen bonding term. Thus, this probe will identify those regions
where the interaction between the receptor and water mole-
cules is unfavorable and the binding of a small molecule (or

fragment) is favored by desolvation due to the hydrophobic
effect [33].

After the mapping of the binding pocket is complete, the pro-
gram filters out all those grid points for each probe with scores
higher than a user-defined cutoff value (the interaction energy,
by definition, is negative), which is set by default to -12.0,
-6.0, -7.0, and -1.7 kcal/mol for H,N*, =O, —OH, and
hydrophobic probes, respectively. At each of the surviving
points the probes compete according to their interaction
energy values, and the best of the set becomes the representative
probe at this grid point with its associated energy value. These
grid points are then coalesced into local minima that are con-
sidered interaction “hotspots” and their coordinates (and
energy values) are saved for further use. At each grid point the
clustering algorithm checks for the energy values of the nearest
surviving points (within 2.0 A of distance) and, if at least one
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14.

15.

of these points has a better value than its own, the current grid
point is discarded [34]. In the hotspots.pdb file, atoms and
residues are named (N, POS); (O, HBA); (S, HBD); and (H,
HPH) for coloring purposes so that positively charged
hydrogen-bond donating nitrogens, neutral hydrogen-bond
accepting oxygens, mixed hydrogen-bond accepting and
donating hydroxyls, and hydrophobic atoms, respectively, can
be easily identified. Probe—target interaction energy values, on
the other hand, can be displayed in PyMOL by using the
hotspots’ “B-values” as labels.

Script linker.py takes three different parameters: (a) the name
of the file containing the base fragment properly located in the
binding site, (b) the name of the heavy atom in the base frag-
ment to which each fragment in the library will be linked, and
(c) the path to the fragment library. This heavy atom must
have, at least, one hydrogen atom attached to it since this open
valence will be used for bonding purposes. This script requires
OpenBabel for internal format conversion and automatic
assignment of atomic point charges as these are necessary for
the next steps.

Sampling is a completely interactive step that is started by
choosing the appropriate fragment database(s) depending on
the nature of the hotspot(s) closer to the selected point of
attachment on the base fragment. Hydrogen atoms are used
for connecting both fragments and the bond length is regular-
ized in accordance with the bond type. The SIMPLEX algo-
rithm [35] and GAFF non-bonded terms are then used
to optimize the ligand's rotatable bonds and (optionally) the
translational and rotational degrees of freedom to fine-tune the
pose within the binding pocket and rank the candidates.

The sampling and scoring program can be used as a stand-
alone optimization tool for other molecules.
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Chapter 9

Scoring Functions for Fragment-Based Drug Discovery

Jui-Chih Wang and Jung-Hsin Lin

Abstract

Fragment-based drug design represents a challenge for computational drug design because almost inevitably
fragments will be weak binders to the biomolecular targets of a specific disease, and the performances of the
scoring functions for weak binders are usually poorer than those for the stronger binders. This protocol
describes how to predict the binding modes and binding affinities of fragments towards their binding partner
with our refined AutoDock scoring function incorporating a quantum chemical charge model, namely, the
restrained electrostatic potential (RESP) model. This scoring function was calibrated by robust regression
analysis and has been demonstrated to perform well for general classes of protein-ligand interactions and for
weak binders (with root-mean square of error of about 2.1 kcal/mol).

Key words Scoring function, Protein-ligand interactions, Drug design, Fragment-based,
Computational, Structure-based, Docking

1 Introduction

With the approval of vemurafenib by the US Food and Drug
Administration on August 17, 2011, fragment-based drug design
(FBDD) is no longer just a “promising” approach for drug discov-
ery [1]. However, fragment-based approaches for making leads or
drug candidates still represent a challenge for structure-based drug
design. Almost inevitably, fragments will be weak binders to the
biomolecular targets of a specific disease. It is therefore of crucial
importance to be able to discriminate weak binders from non-
binders, which usually requires biophysical techniques or computa-
tional methods of high accuracy for making the designing process a
rational route [2]. Flexibilities of biomolecules have been incorpo-
rated in difficult drug design tasks that need to discriminate protein
isoforms with high sequence similarity [3]. In the past 2—-3 decades,
computational approaches for studying the protein-ligand interac-
tions have made a tremendous progress. To reflect the structural
variations in the physiological condition, dynamics of biomolecules
have been incorporated in computational drug design [4-7].
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Effective scoring functions play a central role the structure-
based drug design. We recently refined the AutoDock 4 scoring
function [8] with the quantum chemical charge models and robust
regression analysis [9]. The refined AutoDock4 scoring functions
have been demonstrated to have consistent performance for very
large external test sets of protein-ligand complexes [9]. In particu-
lar, they also performed very well for weakly interacting protein—
ligand complexes [10]. With different binding affinity criteria of
weak protein-ligand interactions, our scoring functions showed very
consistent performance for three subsets of PDBbind (48 entries for
K, ,>1 mM; 158 entries for K, ,4>100 pM; 335 entries for
K /4>10 pM), with the root-mean square of error of about 2.1 kcal /
mol [10]. This indicated that these robust scoring functions with the
quantum chemical charge models may be suitable for fragment-
based drug design, especially when combined with molecular
dynamics simulations to accommodate for protein flexibilities.

2 Materials

HO

The source of materials and software used in this chapter are
mentioned here.

1. The three compounds in the original “SAR by NMR” paper
[11] with the optimal binding affinities binding at the first
binding pocket, the adjacent second pocket, and both pockets,
2 (2 uM), 9 (0.1 mM), and 14 (49 nM), respectively, are used
in this chapter. The chemical structures of these three com-
pounds are shown in Fig. 1.

2. The target biomolecule of these three compounds is FK506
binding protein (FKBP). The protein structure is downloaded
from the Protein Data Bank [12] and then the protonation is
predicted by PDB2PQR [13].

HO
N
[+]
o
o

Fig. 1 The chemical structures of the three compounds in this chapter. The numberings are the same as those

in ref. [11]
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. Its partial charges are assigned by the tleap program of

AmberTools 13 [14].

. For the ligands, structures and protonations are prepared by

MarvinSketch 6.1.0 [15], and their partial charges are calcu-
lated by Gaussian 03 [16] and the antechamber program of
AmberTools 13 [14].

. The docking jobs are conducted by AutoDock 4.2.5.1 [17],

and the input files for docking are prepared by AutoDockTools
4[17].

. To use the AutoDock 4 robust scoring functions, one can

download the patch files to modity the parameters in the origi-
nal AutoDock 4 source codes. (http://jlin.rcas.sinica.edu.
tw/~jlin/ScoringScripts /AD4_RobustSF.tar).

3 Methods

3.1 Docking
Gompound 2 to FKBP

. Download = MarvinSketch  (http: //www.chemaxon.com/

download /marvin-suite).

. Draw the 2D diagram of 2 and predict its protonation state by

MarvinSketch, then convert it to the 3D structure with explicit
hydrogens added.

. Optimize the ligand conformation and conduct quantum

chemical calculation with Gaussian 03 (http: //www.gaussian.
com) at the HF/6-31G* level. The Gaussian script for this
task, lig_2.g03.in, is as follows (only partial coordinates are
shown):

--Link1--

%chk=lig_2.g03

%Mem=512MB

# opt HF/3-21g Test

lig_2.pdb.g03

01
Cl 0.942 3.137 -2.486
C2 -3.229 -2.939 1.280
C3 0.420 4559 -2.824
047 -1.345 1.262 -0.900
048 -2.005 -3.660 1.215
049 2.160 -1.952 3.231
--Link1--

%chk=lig_2.g03
%Mem=512MB


http://jlin.rcas.sinica.edu.tw/~jlin/ScoringScripts/AD4_RobustSF.tar
http://jlin.rcas.sinica.edu.tw/~jlin/ScoringScripts/AD4_RobustSF.tar
http://www.chemaxon.com/download/marvin-suite
http://www.chemaxon.com/download/marvin-suite
http://www.gaussian.com/
http://www.gaussian.com/
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# sp HE/6-31g* Test SCF=Tight Pop=MK 10p(6,/33=2)
iop(6,/42=6) geom=AllCheck

The command to run Gaussian 03 reads:
%g03<lig_2.g03.in>lig_2.g03.out

. Download AmberTools 13 (http: //ambermd.

org/#AmberTools). The RESP partial charges can then be cal-
culated by running the antechamberprogram of AmberTools 13:
% antechamber -i lig_2.g03.out -fi gout -o lig_2.mol2 -fo
mol2 -c resp -at sybyl

. Prepare the ligand pdbqt file with RESP charges by the python

script preparve_ligand4.pyin AutoDockTools (http: //autodock.
scripps.edu/resources/adt):
% prepare_ligand4.py -1 lig_2.mol2 -C -v -o lig_2.pdbqt

. Download the FKBP structure (1DOG6) from the Protein Data

Bank (http://dx.doi.org/10.2210/pdbldo6/pdb). Predict
the protonation of the protein by the PDB2PQR server
(http: //nbcr-222.ucsd.edu/pdb2pqr_1.8/).

. Assign Amber Parm99SB charges for the receptor by tleap of

the AmberTools 13. The commands for tleap are shown as
follows:

>1d6o=loadpdb 1d6o-protonated.pdb

> saveamberparm 1d6o 1d6o.top 1d6o.crd

> savepdb 1d6o 1d6o_exleap.pdb

> quit

. There are many possible ways to transfer Amber parm99SB

charges into the pdbqt file. Here we present an automatic pro-
cedure where the pqr file is used to deposit charges, and then
the conversion from the pqr file to the pdbqt file is done by
preparve_receptord.py. The perl scripts rename _pqrpl and
replace_charge_pdbgt.pl are also needed to map atoms between
different file formats, which can be downloaded at http: //jlin.
rcas.sinica.edu.tw/~jlin/ScoringScripts /rename_pqr.pl  and
http://jlin.rcas.sinica.edu.tw/~jlin /ScoringScripts /replace_
charge_pdbqt.pl, respectively.

% ambpdb -p 1d6o.top -pqr<ld6o.crd>rec.pqr

% perl rename_pqr.pl 1d6o_exleap.pdb rec.pqr>rec_rename.
pqr

% prepare_receptor4.py -r 1d6o_exleap.pdb -A 'None' -U
'None' -v -o rec_leap.pdbqt

% perl replace_charge_pdbqt.pl rec_rename.pqr rec_leap.
pdbqt>receptor.pdbqt

. Prepare the gpffile (the grid maps parameter file) for the input

of AutoGrid and the dpf file (the docking parameter file) for
the input of AutoDock by AutoDockTools with the default
settings.

% prepare_gpf4.py -1 ligand.pdbqt -r receptor.pdbqt

% prepare_dpt4.py -1 ligand.pdbqt -r receptor.pdbqt


http://ambermd.org/#AmberTools
http://ambermd.org/#AmberTools
http://autodock.scripps.edu/resources/adt
http://autodock.scripps.edu/resources/adt
http://dx.doi.org/10.2210/pdb1do6/pdb
http://nbcr-222.ucsd.edu/pdb2pqr_1.8/
http://jlin.rcas.sinica.edu.tw/~jlin/ScoringScripts/rename_pqr.pl
http://jlin.rcas.sinica.edu.tw/~jlin/ScoringScripts/rename_pqr.pl
http://jlin.rcas.sinica.edu.tw/~jlin/ScoringScripts/replace_charge_pdbqt.pl
http://jlin.rcas.sinica.edu.tw/~jlin/ScoringScripts/replace_charge_pdbqt.pl

Scoring Functions for FBDD 105

10. Modify the AutoDock parameter file (for using our refined
scoring function), the number of grid points, and the grid cen-
ter in the gpf file and the dpf file:
receptor.new gpf:
parameter_file AD4.1_RP_wN_110511.dat
npts 26 22 24

gridfld receptor.maps.fld # grid_data_file

spacing 0.375 # spacing(A)

receptor_types A C HD N NA OA SA  # receptor atom types
ligand_types A C N OA # ligand atom types
receptor receptor.pdbqt # macromolecule

gridcenter 57.311 -4.091 -0.814

smooth 0.5 # store minimum energy w,/in
rad(A)

map receptor.A.map # atom-specific affinity map
map receptor.C.map # atom-specific atfinity map
map receptor.N.map # atom-specific affinity map
map receptor.OA.map # atom-specific
affinity map

elecmap receptor.e.map # electrostatic
potential map

dsolvmap receptor.d.map # desolvation
potential map

dielectric -0.1465 # <0, AD4 distance-dep.diel;>0,
constant

ligand_receptor.new.dpf:
parameter_file AD4.1_RP_wN_110511.dat

autodock_parameter_version 4.2 # used by autodock to
validate parameter set

outlev 1 # diagnostic output level

intelec # calculate internal electrostatics
seed pid time # seeds for random generator
ligand_types A C N OA # atoms types in ligand

fld receptor.maps.fld # grid_data_file

map receptor.A.map # atom-specific affinity map
map receptor.C.map # atom-specific affinity map
map receptor.N.map # atom-specific affinity map
map receptor.OA.map # atom-specific
affinity map

elecmap receptor.e.map # electrostatics map
desolvmap receptor.d.map # desolvation map

move ligand.pdbqt # small molecule

about -0.0157 -0.027 -0.0478 # small molecule center
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11.

tran0 random
random
axisangle0 random
dihe0 random
random

tstep 2.0

gstep 50.0

dstep 50.0
torsdof 7

rmstol 1.0
extnrg 1000.0
e¢Omax 0.0 10000
ber of retries
ga_pop_size 150

ga_num_evals 25000000

# initial coordinates/A or

# initial orientation
# initial dihedrals (relative) or

# translation step/A
# quaternion step/deg
# torsion step/deg
# torsional degrees of freedom
# cluster_tolerance /A
# external grid energy
# max initial energy; max num-

ga_num_generations 27000

ga_elitism 1

# number of top individuals to

survive to next generation
ga_mutation_rate 0.02 # rate of gene mutation
ga_crossover_rate 0.8 # rate of crossover
ga_window_size 10 #

ga_cauchy_alpha 0.0 # Alpha parameter of Cauchy
distribution
ga_cauchy_beta 1.0
distribution

set_ga

or LGA
sw_max_its 600
Sw_max_succ 4

# Beta parameter Cauchy

# set the above parameters for GA

# consecutive successes before

changing rho

sw_max_fail 4 # consecutive failures before
changing rho

sw_rho 1.0 # size of local search space to
sample

sw_lb_rho 0.01
Is_search_freq 0.06
search on individual
set_pswl

Wets parameters
unbound_model bound
ga_run 10

analysis

# lower bound on rho
# probability of performing local

# set the above pseudo-Solis &

# do this many hybrid GA-LS runs
# perform a ranked cluster analysis

Perform the grid maps calculations and the docking calcula-
tions by AutoDock 4.2.5.1 (see Note 1)

% autogrid4 -p receptor.new.gpf -1 grid.glg
% autodock4 -p ligand_receptor.new.dpt -1 result.dlg



3.2 Docking
Gompound 9 to FKBP

1.

2.

3

5-7.
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Draw the 2D diagram of 9 and predict its protonation state by
MarvinSketch, then convert it to the 3D structure with explicit
hydrogens added.

Optimize the ligand conformation and conduct the quantum
chemical calculation with Gaussian 03 at the HF/6-31G*
level. The Gaussian script for this task, lig_.g03.in, is as follows
(only partial coordinates are shown):

--Link1--

%chk=lig_9.g03

%Mem=1GB

# opt HF/3-21g Test

lig_9.pdb.g03

01
Cl 1.923 2.093 0.673
C2 1.705 0.708 0.463
C3 2.796 -0.144 0.155
026 5.632 2.295 0.149
027 -5.705 -2.671 0.264
028 -0.478 1.091 -1.341

--Link1--

%chk=lig_9.g03

%Mem=1GB

# sp HF/6-31 g* Test SCF=Tight Pop=MK 1O0p(6,/33=2)
iop(6,/42=6) gecom=AllCheck

. RESP partial charges can be obtained by the antechamber
program.
% antechamber -i lig_9.g03.out -fi gout -o lig_9.mol2 -fo
mol2 -c resp -at sybyl

. Prepare the ligand pdbgqt file with RESP charges by the
python script prepare_ligand4.py in AutoDockTools:
% prepare_ligand4.py -1 lig_9.mol2 -C -v -o lig_9.pdbqt

Use the same receptor.pdbqt file as the one in “Docking
compound 2 to FKBP”.

. Prepare the gpf file (the grid maps parameter file) for the
input of AutoGrid and the dpf file (the docking parameter
file) for the input of AutoDock by AutoDockTools with the
default settings:

% prepare_gpf4.py -1 ligand.pdbqt -r receptor.pdbqt
% prepare_dpt4.py -1 ligand.pdbqt -r receptor.pdbqt

. Modify the number of grid points and grid center in the gpf

file and the dpf file.
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receptor.new gpf:

parameter_file AD4.1_RP_wN_110511.dat

npts 24 24 24
gridfld receptor.maps.fld
spacing 0.375

types

ligand_types A C HD N OA

receptor receptor.pdbqt

# grid_data_file
# spacing(A)
receptor_types A C HD N NA OA SA

# receptor atom

# ligand atom types
# macromolecule

gridcenter 58.118 -11.946 4.259

smooth 0.5

rad(A)

map receptor.A.map
map receptor.C.map
affinity map

map receptor. HD.map
affinity map

map receptor.N.map
affinity map

map receptor.OA.map
affinity map

elecmap receptor.e.map
potential map

dsolvmap receptor.d.map
potential map

dielectric -0.1465
constant
ligand_receptor.new.dpf:

# store minimum energy w/in

# atom-specific affinity map
# atom-specific

# atom-specific
# atom-specific
# atom-specific
# electrostatic

# desolvation

# <0, AD4 distance-dep.diel;>0,

parameter_file AD4.1_RP_wN_110511.dat

autodock_parameter_version 4.2

validate parameter set
outlev 1

intelec

seed pid time

ligand_types A C HD N OA

fld receptor.maps.fld
map receptor.A.map
map receptor.C.map
affinity map

map receptor. HD.map
affinity map

map receptor.N.map
affinity map

map receptor.OA.map
affinity map

elecmap receptor.e.map
desolvmap receptor.d.map

# used by autodock to

# diagnostic output level
# calculate internal electrostatics
# seeds for random generator

# atoms types in ligand

# grid_data_file

# atom-specific affinity map
# atom-specific

# atom-specific
# atom-specific
# atom-specific

# electrostatics map
# desolvation map
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move ligand.pdbqt # small molecule

about -0.0135 -0.1605 -0.0127 # small molecule
center

tran0 random # initial coordinates/A or
random

axisangle0 random # initial orientation

dihe0 random # initial dihedrals (relative) or
random

tstep 2.0 # translation step/A

gstep 50.0 # quaternion step/deg

dstep 50.0 # torsion step/deg

torsdof 4 # torsional degrees of freedom
rmstol 1.0 # cluster_tolerance /A

extnrg 1000.0 # external grid energy

eOmax 0.0 10000 # max initial energy; max

number of retries
ga_pop_size 150
ga_num_evals 25000000
ga_num_generations 27000

ga_elitism 1 # number of top individuals to
survive to next generation

ga_mutation_rate 0.02 # rate of gene mutation
ga_crossover_rate 0.8 # rate of crossover
ga_window_size 10 #

ga_cauchy_alpha 0.0 # Alpha parameter of Cauchy
distribution

ga_cauchy_beta 1.0 # Beta parameter Cauchy
distribution

set_ga # set the above parameters for GA
or LGA

sw_max_its 600

SW_max_succ 4 # consecutive successes before
changing rho

sw_max_fail 4 # consecutive failures before
changing rho

sw_rho 1.0 # size of local search space to
sample

sw_lb_rho 0.01 # lower bound on rho
Is_search_freq 0.06 # probability of performing
local search on individual

set_pswl # set the above pseudo-Solis &

Wets parameters
unbound_model bound

ga_run 10 # do this many hybrid
GA-LS runs
analysis # perform a ranked cluster

analysis
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3.3 Docking
Gompound 14 to FKBP

10.

3

Perform the grid maps calculations and the docking calculations
by AutoDock 4.2.5.1 (see Note 1)

% autogrid4 -p receptor.new.gpf -1 grid.glg
% autodock4 -p ligand_receptor.new.dpf -1 result.dlg

. Draw the 2D diagram of 14 and predict its protonation state

by MarvinSketch, then convert it to the 3D structure with
explicit hydrogens added.

. Optimize the ligand conformation and conduct the quantum

chemical calculation with Gaussian 03 at the HF/6-31G*
level. The Gaussian script for this task, lig_14.g03.in, is as fol-
lows (only partial coordinates are shown):

--Link1--

%chk=lig_14.g03

%Mem=1GB

# opt HF/3-21 g Test

lig_14.pdb.g03

01
Cl -4.795 1.411 -0.116
C2 -3.261 1.360 0.119
C3 6.953 4.245 4.746
079 -4.746 -2.020 0.318
080 -3.940 -0.559 -2.833
081 5.053 5.198 0.197

--Link1--

%chk=lig_14.g03

%Mem=1GB

# sp HE/6-31g* Test SCE=Tight Pop=MK 10p(6,/33=2)
iop(6,/42=6) geom=AllCheck

. RESP partial charges can be calculated by the antechamber
program.
% antechamber -i lig_14.g03.out -fi gout -o lig_14.mol2 -fo
mol2 -c resp -at sybyl

. Prepare the ligand pdbqt file with RESP charges by the
python script preparve_ligand4.py in AutoDockTools.
% prepare_ligand4.py -1lig_14.mol2 -C -v -o lig_14.pdbqt

. Use the same receptor.pdbqt file as “Docking compound 2

to FKBP“.

. Because the number of rotatable bonds of /zg_14.pdbgt is 15,
here we use AutoDock Vina 1.1.2 for the subsequent docking,
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which is efficient in finding the optimal pose and is able to do
multithreading. Next, each docking pose will be rescored by
the AutoDock4™?F scoring function.

% autodock_vina_1_1_2_linux_x86 /bin/vina--onfig config.
txt--og vina.out

config.txt:

receptor=receptor_Vina.pdbqt

ligand=ligand.pdbqt

center_x=56.924

center_y=-9.062

center_z=2.224

size_x=15

size_y=15

size_z=11.25

cpu=16

num_modes=10

energy_range=4

exhaustiveness=100

. For rescoring each docking pose from Vina calculation, prep-
aration of dpf is needed. Here, only local minimization is
conducted with AutoDock robust scoring function.
receptor.new gpf:

parameter_file AD4.1_RP_wN_110511.dat

npts 40 40 30

gridfld receptor.maps.fld # grid_data_file

spacing 0.375 # spacing(A)

receptor_types A C HD N NA OA SA  # receptor atom
types

ligand_types A C HD N OA # ligand atom types
receptor receptor.pdbqt # macromolecule
gridcenter 56.924 -9.062 2.224

smooth 0.5 # store minimum energy w,/in
rad(A)

map receptor.A.map # atom-specific affinity map
map receptor.C.map # atom-specific
affinity map

map receptor.HD.map # atom-specific
affinity map

map receptor.N.map # atom-specific
affinity map

map receptor.OA.map # atom-specific
affinity map

elecmap receptor.e.map # electrostatic
potential map

dsolvmap receptor.d.map # desolvation

potential map
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dielectric -0.1465
constant
pose_1_receptor.new.dpf:

# <0, AD4 distance-dep.diel;>0,

parameter_file AD4.1_RP_wN_110511.dat

autodock_parameter_version 4.2

validate parameter set
outlev 1

intelec

seed pid time

ligand_types A C HD N OA

fld receptor.maps.fld
map receptor.A.map
map receptor.C.map
affinity map

map receptor.HD.map
affinity map

map receptor.N.map
affinity map

map receptor.OA.map
affinity map

elecmap receptor.e.map

desolvmap receptor.d.map

move pose_l.pdbqt

about 57.5219 -8.2867 2.3028

center

tran0 57.5219 -8.2867 2.3028

center

tstep 2.0

gstep 50.0

dstep 50.0

torsdof 15

rmstol 2.0

extnrg 1000.0
eOmax 0.0 10000
number of retries
sw_max_its 600
sw_max_succ 4
changing rho
sw_max_fail 4
changing rho
sw_rho 1.0

sample

sw_lb_rho 0.01
Is_search_freq 0.06
local search on individual
set_pswl

Wets parameters
unbound_model bound

# used by autodock to

# diagnostic output level
# calculate internal electrostatics

# seeds for random generator
# atoms types in ligand
# grid_data_file
# atom-specific affinity map
# atom-specific

# atom-specific
# atom-specific
# atom-specific
# electrostatics map
# desolvation map
# small molecule

# small molecule

# small molecule

# translation step /A

# quaternion step/deg
# torsion step/deg
# torsional degrees of freedom
# cluster_tolerance /A
# external grid energy
# max initial energy; max

# consecutive successes before
# consecutive failures before

# size of local search space to

# lower bound on rho
# probability of performing

# set the above pseudo-Solis &
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do_local_only 10
analysis # perform a ranked cluster analysis

Perform the grid maps calculations and the docking calcula-
tions by AutoDock 4.2.5.1 (see Note 2)

% autogrid4 -p receptor.new.gpf -1 grid.glg
% autodock4 -p pose_1_receptor.new.dpf -1 result.1.dlg

4 Notes

. Figure 2 shows the docking poses of 2 and 9 to their target

protein, FKBP, which is shown with the molecular surface
representation. The binding pose of 2 with third lowest pre-
dicted energy (-6.04 kcal/mol) and the binding pose of 9
with lowest predicted energy (-4.22 kcal /mol) are illustrated.
It should be noted that the protein flexibility is not yet taken
into account in this chapter.

. Figure 3 depicts the binding pose of 14, the composite com-

pound of 2 and 9, with lowest predicted energy (-8.12 kcal /
mol). The binding pose and contacted residues are consis-
tent with the determination in [11]. From Table 1, it can be
seen that the predicted binding affinity is lower than that of

Fig. 2 FKBP is shown with the molecular surface representation. 2 and 9 are
shown with the stick style, and with the cyan and the pink color, respectively. The
binding pose of 2 with third lowest predicted energy (—6.04 kcal/mol) and the
binding pose of 9 with lowest predicted energy (—4.22 kcal/mol) are illustrated
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Fig. 3 FKBP is shown as ribbons. The binding pose of 74 with lowest calcu-
lated energy (—8.12 kcal/mol) is shown with the stick style and the cyan
color. The binding pose and contacted residues are consistent with the deter-
mination in [11]

Table 1
Comparison of the experimental binding affinities and calculated binding
affinities of the three compounds

2 9 14
Shuker et al. 2 M 0.1 mM 0.049 pM
AutoDock4 **  _6.04 kcal/mol ~ -4.22 kcal/mol  -8.12 kcal /mol
37.3 uM 0.8 mM 1.11 pM

the experimental binding affinity, which can likely be attributed
to the missing incorporation of protein flexibility in this
tutorial.
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Chapter 10

Computational Methods for Fragment-Based Ligand
Design: Growing and Linking

Rachelle J. Bienstock

Abstract

Fragment-based drug design has proved itself as a powerful technique for increasing the sampling and
diversity of chemical space and enabling the design of novel leads and compounds. Computational tech-
niques for identifying fragments, binding sites and particularly for linking, growing, and evolving frag-
ments play a significant role in the process. Information from ADME studies and clustering property
information in the form of toxicophores and chemotypes can play a significant role in aiding the design of
novel, selective fragments with good activity profiles.

Key words Fragment-based ligand design, Fragment linking, Fragment growing, Evolving frag-
ments, Fragment libraries, Structure-based drug design, ADME properties and fragment-based
design, Chemotypes, Toxicophores

1 Introduction

Fragment-based ligand design is now well established as an effi-
cient starting point and optimization method in structure-based
drug discovery. Pharmaceutical industry-based application of
fragment-based screening was first described by Dr. Stephen Fesik
and colleagues at Abbott using SAR by NMR [1] with the detec-
tion of millimolar binding ligands to N'* labeled protein. Since
their initial application, fragment-based methods have shown
promise for the identification and development of novel hits and
lead compounds. The essential concept behind fragment-based
design is the use of a fragment library consisting of weak binders to
the identified target. These weak binding fragments (fragment
affinities usually in the millimolar range) are then linked and opti-
mized to create appropriate tight-binding drugs. In many cases,
experimental methods such as NMR or X-ray crystallography are
used to detect fragment binding and initially identify fragments.
However, the identification of fragments is often accomplished by
computational methods as well.

Anthony E. Klon (ed.), Fragment-Based Methods in Drug Discovery, Methods in Molecular Biology, vol. 1289,
DOI 10.1007/978-1-4939-2486-8_10, © Springer Science+Business Media New York 2015
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What are the advantages and why would someone pursue
fragment-based design as opposed to traditional virtual screening
of a regular ligand library? The fragment-based approached has
been pursued because of the advantage for vastly increasing com-
pound chemical diversity. Also screening large diverse libraries,
containing complex compounds, incurs the difficulty of problem-
atic functional groups, which must then be removed or modified
to increase binding. Traditional high-throughput screening (HTS)
library successful hit rates are low (<0.01 %). Well-designed frag-
ment libraries include more diversity than typical large molecule
HTS databases; fragment libraries can be designed with lead like
compound fragments only and therefore exhibit increased proba-
bly of binding to the target of interest. Eighty percent of atoms in
fragment hits are retained in the derived lead compound and
exhibit less than 1 A displacement shifts [2]. There has been great
success using fragment design with traditional targets, as well as
difficult ones like BACE and protein—protein interaction targets.

One advantage of fragment-based drug design is that chemical
space can be explored more efficiently by screening collections of
small fragments rather than high throughput screening of virtual
libraries of larger drug-like molecules. Hann’s model for receptor—
ligand interactions states that the probability of detecting a hit
binding to a target will increase with a smaller less complex frag-
ment. With a library comprising 10 7 fragments with 12 heavy
atoms rather than 10 ¢ drugs with 30 heavy atoms a much greater
percentage of fragment space can be screened. It has been esti-
mated that there are 10?°-10%2%° molecules with molecular weight
(MW) 300-500 Da (i.e., drug-like compounds) more than all the
atoms in the universe [3]. It is felt that even a small fragment
library will do a better job sampling fragment chemical space than
a larger traditional compound library. Fragment-based drug design
has a high impact-high hit rate, a high binding efficiency for frag-
ments, and a high proportion of fragment hit atoms directly
involved in interacting with the target-binding site. Fragments can
easily be optimized. One of the major difficulties encountered with
fragment-based drug design is initially identifying fragments,
which bind the target since fragments have low affinities for targets
(usually on the order of 1 mM or less). Fragments, which bind
targets, are identified computationally, or by experimental meth-
ods, such as NMR, surface plasmon resonance (SPR), thermal
shift, functional screen, X-ray crystallography, isothermal titration
calorimetry, or a biophysical assay.

Also some fragments, which bind and seem to be identified, as
good fragments in assays are not. They are referred to as “PAINS”
(pan-assay interference compounds), have common features (Michael
acceptors), and are soft electrophiles that readily react with nucleo-
philic residues in proteins and bind covalently. However, because
they form covalent bonds it makes them unsuitable to use in
fragments. Redox cycling compounds are also part of this group [4].
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A fragment library for drug design must be chemically diverse
and synthetically expandable. Fragments traditionally have low
affinity binding (micromolar to millimolar) and high ligand effi-
ciency >0.3 (ratio of free energy of binding to number of heavy
atoms). A good fragment library has a range of physicochemical
properties, aqueous solubility, molecular diversity, and drug like-
ness with medicinal chemistry scaffolds. Astek [2] researchers first
proposed the “Rule of 3” (Ro3) for fragment design, based on
Chris Lipinski’s popular rule of five for general virtual library
design. The Rule of 3 for fragment library design is as follows:
MW <300, CLogP <3, number of H bond donors <3, number of
H bond acceptors <3. Also usually the number of rotatable bonds
is <3 and the polar surface area is <60 A2. This is in contrast to
Lipinski’s rule of five, Ro5, for general virtual screening library
design proposes MW <500; cLogP <5; number of H bond donors
<+5; number of H bond acceptors <10.

When designing a fragment library, another measure of a
ligand quality is the LE (Ligand efficiency):

LE = —deltaG / HAC (heavy atom count) = —RT'In(IC50) / HAC ligand efficiency

The group efficiency is an estimation of a group’s contribution
toward the overall free energy of binding (the heavy atom count
(HAC) number in a particular group). The Ligand-lipophilicity
efficiency is often thought to be a better measure of successful frag-
ment design since lipophilic molecules have an increased change
on binding to any drug pocket (LLE) LLE =pIC50 or pKi-cLogP
(or LogD).

Fragment-based drug design is currently such a rapidly devel-
oping field that it is often difficult remaining informed. There are
two popular blogs which contain a wealth of information regard-
ing meetings, available fragment libraries, publications, and new
developments in the field: Dr. Daniel Erlanson’s (Carmot
Therapeutics) and Dr. Edward Zartler’s (Quantum Tessera
Consulting) Practical Fragments http://practicalfragments.
blogspot.com/ and Dr. Peter W Kenny’s FBDD and Molecular
Design  (formerly FBDD Literature blog) http://tbdd-lit.
blogspot.com/.

The 3D Fragment Consortium (http://www.3DFrag.org) has
recently been established in the UK for not-for-profit drug discov-
ery groups and currently includes as members—University College
London, Structural Genomics Consortium, Institute of Cancer
Research, University of Cambridge, Peterson institute for Cancer
Research, Cancer Research Technology, Cancer Research UK,
MRC, and University of Dundee Drug Discovery Unit. The con-
sortium has recently developed a tool 3DFIT =3D Fragment Idea
Tool to determine shape and predicted physicochemical properties
of compounds, which is based on commercial software—Accelrys’
Pipeline Pilot tool and ChemAxon’s 3D conformation generator.


http://practicalfragments.blogspot.com/
http://practicalfragments.blogspot.com/
http://fbdd-lit.blogspot.com/
http://fbdd-lit.blogspot.com/
http://www.3dfrag.org/

122

Rachelle J. Bienstock

2

Identifying the Fragments and Developing Good Fragment Libraries:

Computational Methods

Fragment libraries can be much smaller than typical large molecule
virtual screen libraries (1,000-20,000 fragments) [5]. Successful
drugs have specific properties—low MW and low lipophilicity.
Fragments usually have low ClogP and low MW, are weak in
potency, but still form high-quality interactions with the target pro-
tein. Fragments overcome entropic barriers to bind to the target
and form very high quality interactions. There are some basic
requirements for a fragment library—all fragments must have aque-
ous solubility so that they can be screened at high concentrations;
low logP biases a fragment library towards increased solubility.

Computational methods have tried to categorize, classify, and
visualize chemical fragment space. Two dimensional (2D) molecu-
lar FPS (fingerprints) (MD keys, Daylight FPS, extended connec-
tivity FPs, and Unity 2D FPS), compared using Jaccard, Tanimoto
coefficients, principal component analysis, or field similarity meth-
ods have been used to compare molecules and are computational
methods that can be used to describe diversity in chemical space.
Jean-Louis Reymond’s group [6] (http://www.gdb.unibe.ch/)
has designed MQN (multiple quantum numbers) a simple classifi-
cation system for organic molecules based on only 42 integer value
descriptors for molecular structure. Molecules are classified by
topological indexes such as atom and ring counts, cyclic and acyclic
unsaturations, atoms and bonds in fused rings and electrostatic
charges predicted for neutral pH, molecular size and H bond
acceptor count, Lipinski’s bioavailability rules, Opera lead likeness
rules and Congreve fragment likeness rules. Since fragment library
composition is critical, computational methods for analysis of the
chemical space available for fragments improves and facilitates frag-
ment selection. MQN classifiers can then be used for similarity
searches to enrich binding fragments tied to bioactive compounds.
This method can also used to assess diversity of a library.

Jean-Louis Reymond has constructed a database GDB-13
(updated and now called GDB-17) [7, 8] which contains 977 mil-
lion virtual organic molecules composed of C, N, O, S, Cl for gen-
erating a diverse comprehensive fragment library which was then
analyzed using his MQN method to subdivide the database into
255 characteristic subsets, and analyzed by principal component
analysis using Jsci a publicly available code http://jsci.scource-
forge.net. A searchable version of the GDB-13 (now GDB-17)
database is available at www.gdb.unibe.ch.

Computational fragment positioning methods such as HSITE,
HIPPO, GRID, MCSS, SPROUT, MUSIC, LUDI, and SuperStar
have been used for over 20 years as early stage lead optimization
techniques. These methods either determine binding site positions
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for chemical functional groups based on molecular mechanics
potentials, or determine hotspots on the target/receptor. Caveat
and HOOK are computational fragment linking first approaches.
LUDI was a very early based computational scaffold replacement
method [9] for ligand design based on fragments. Newer methods
such as Recore, Allegrow, Confirm, Med-Sumo, MOE scaffold
replacement, and the CHARLIE /RACHEL Tripos package are
used for linking and scaffold replacement.

Some computational fragment design methods have their ori-
gins in experimental X-ray techniques, such as the MCSS X-ray
methodology pioneered by Drs. Dagmar Ringe, Gregory Petsko
[10], and Carla Mattos where crystals were soaked with various
organic solutes of small molecular weight to experimentally identify
groups, which bound and could be incorporated into ligands, and
linked to create tighter binders. SGX’s method FAST (Fragments
of Active Structures) relies on X-ray crystallography with many
library members containing bromine [3] to facilitate detection by
crystallographic screening using the X-ray energy tuned to the bro-
mine absorption edge and its chemistry advantage (bromide acts as
a leaving group in Suzuki coupling and related reactions).

SILCS (Site Identification by Ligand Competitive Saturation)
is a computational in silico method [11], based on the experimen-
tal MCSS technique to detect multiple binding sites of fragments.
Targets are computationally soaked in an aqueous solution of com-
pounds with drug like fragments. Then molecular dynamics (MD)
is performed of the target protein in the presence of an aqueous
solution of organic solutes. The probability of the fragments bind-
ing to different sites on the protein is obtained. The 3D probability
distributions of the molecular fragments binding on the protein
surface are called “FragMaps” (“hotspots” for binding). The
SILCS method quantifies relative ligand affinities by converting
the fragmaps into Grid Free Energies. Unrestrained MD simula-
tions can be performed as well to consider target flexibility. With
fragments there is significant conformational changes and move-
ment on binding, with movements>5 A observed.

GRID interaction, MCSS (multiple copy simultaneous search)
and SILCS (site identification by ligand competitive saturation) are
computational methods where the interaction between a variety of
molecular probes and a receptor are energetically calculated to
quantify the low energy-binding pocket. There are other computa-
tional fragment mapping programs, such as FTMAP [12] http: //
ftmap.bu.edu/login.php. The FTMAP algorithm searches the
protein surface for regions that bind small organic probe molecules
using an FFT algorithm, and can be used to identify druggable
binding hotspots on targets. These methods are more computa-
tionally intensive than other computational methods to geometri-
cally determine the ligand-binding pocket.
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Computational design of fragment libraries involves either ret-
rospective analysis (dissection) or forward de Novo design. In retro
synthesis, an existing molecule with known activity is fragmented.
Lead compounds are cleaved at acyclic bonds. The RECAP method
is one of the first computational retro synthetic combinatorial anal-
ysis procedures [13] and is implemented in the Open Source pub-
licly available RDKIT http://www.rdkit.org/docs/api/rdkit.
Chem.Recap-module.html. RECAP performs retro synthesis and
can help identify building blocks in active molecules. These build-
ing blocks are often called “privileged structures.” RECAP frag-
ments molecules at 11 predefined bond types selected because they
are formed by combinatorial synthetic methods. Other widely used
fragment methods besides RECAP include Richard Cramer’s
Tripos method ChemSpace [14], AllChem Topomer search [15],
and Rarey’s FTtrees-FS—feature trees fragment space (available
commercially from BioSolvelt) [16]. Eugene Lounkine’s FragFCA
[17] method identifies fragments and fragment combinations for
compounds having certain activity profiles. Bajorath’s MolBlaster
[18] generates fragments based on molecular similarity relation-
ships. There are several other commercial fragmentation methods
available—Flux, BioSolveIT’s ReCore, and Chemical Computing
Groups MOE fragmentation method. In forward design, frag-
ments are constructed de novo. Vertex’s retro synthetic SHAPES
library is an example of a simple organic framework. In silico de
novo design and combinatorial libraries are built using prioritizing
algorithms for assembly rules, considering molecular attributes and
physicochemical properties.

FragVLib [19], (http://www.unc.edu/~raed/FragVLib.zip)
is a free database mining program for generating a “Fragment-
based Virtual Library” using a pocket similarity search of ligand—
receptor complexes. Tools that mine databases of ligand-receptor
complexes and can generate a library of fragments rely on a graphi-
cal representation of interfacial atoms for the ligand—receptor com-
plex. Interfacial atoms are nodes and the distances between them
are edges. Pocket similarity matches are performed using a graph
type match. The program written in C++ is available as freeware
and downloadable. Once fragments are identified another program
FragVScreen can be used to search molecules that contain these
fragments.

REOS (rapid elimination of swill) (Vertex) is used to filter a
fragment database for desirable properties—solubility, MW, lipo-
philicity, polar surface area, number of rotatable bonds, and H
bonding potential. Data mining workflows (Knime, Accelrys
Pipeline Pilot, Taverna) are used to screen and filter compounds
with substructure filters for toxicophores and other undesirable
features and also to screen for halogen enriched fragments to take
advantage of halogen bonding (viewed as a plus in ligand design).
Workflows can be implemented as well, with diversity selection
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algorithms—Similog keys, hole-filling algorithms for diversity
selection of fragments. In drug discovery very often a diverse frag-
ment set is paired with a focused fragment set—usually from in
silico virtual screening (i.e., computational docking or 3D pharma-
cophore analysis).

The National Center for Advancing Translational Sciences
(NCATS) and National Chemical Genomics Center (NCGC) pro-
vides a group of free Java tools, called Tripod (http://tripod.nih.
gov/) (Therapeutically Relevant Informatics for Prioritization,
Optimization, and Development), which perform automated R
group analysis and editing of scaffolds, a fragment activity profile,
a program, Siponify, for fragment searching, library synthesizer,
scaffold activity diagram and scaffold hopper. Figure 1 illustrates
the graphical interface for the R group analysis.

Fragment-based chemogenomics adds genomic information to

Methods Applied inform the chemistry. It is a new method, which uses information
to Fragment Design from protein-ligand binding sites of genetically related protein
family members to search all related proteins with the libraries of
VY P S——— - -]
| 2293 " WL - - - ball LT - .-
= e —
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Fig. 1 This image illustrates the graphical interface for the R group analysis performed using the free Java
tools, called Tripod (http://tripod.nih.gov/) developed by NCATS and NCGC which perform automated R group
analysis
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small fragment like molecules. One example where this method
was successfully applied has been to a family of 4 G-coupled recep-
tor and related adrenaline receptors [20].

CANVAS HF (hole filling) [21] a new commercial method
developed by Schrodinger, uses distances computed from 2D fin-
gerprints to fill regions in a chemical library which are not repre-
sented, in order to add additional chemical diversity. This software
uses a greedy selection algorithm, combined with simulated
annealing to minimize nearest neighbor 2D fingerprint similari-
ties among structures selected with respect to an existing com-
pound library.

Virtual fragment screening using molecular fingerprints
derived from fragment affinity data is a novel method called FLAP
(Fingerprints of Ligands and Proteins). FLAP uses four point phar-
macophores derived from molecular interaction fields to align mol-
ecules (GRID Molecular Interaction Fields) http://www.
moldiscovery.com/soft_flap.php [22].

SERAPhIC is a fragment—protein dataset available developed
from selected fragment—protein complexes. This is a test set which
can be used for in silico protocol assessment and software develop-
ment  http://www.it.it/en/drug-discovery-and-development/
seraphic.html [23].

Fragment-based shape descriptors can be generated using a
Connolly rolling probe sphere. An updated triangular form is
used (https: //www.artemisdiscovery.com/) for a fragment-based
shape signature implementation method. Shape signatures can be
used to screen databases and can produce hits active against a
target. Since the method does not involve chemical structure, it
allows for identification of novel chemical classes and modulators
of drug targets and performs novel scaffold hopping. This method
has been used to compute shape signatures for the ZINC data-
base [24].

S4MPLE [25] (Sampler For Multiple Protein—Ligand
Entities), along with two Java programs, Genlinkers DB and
JmolEvolve, (based on the ChemAxon API) is a fragment-based
ligand design method that performs conformational sampling
using a genetic algorithm and suggests fragment growth using
bridging waters. S4MPLE (x86_64) can be uploaded from
http: //infochim.u-strasbg.fr; however, a license is needed for the
ChemAxon (commercial software) growth/linking tools.
GenLinkers and JMolEvolve “evolve” compounds by starting
with lead like and drug like fragments to create a library.
GenLinkers creates linkers using RECAP-like rules and methods
and JMolEvolve generates new molecules by combining the frag-
ments in the database with the GenLink generated linkages.
Many useful software tools for fragment-based design are avail-
able and are compiled on websites, as shown in Table 1.
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Table 1
Many useful software tools for fragment-based design are available and are compiled on these
websites
Description Website
Bruno Villoutreix’s group has compiled http: //www.vls3d.cm /links.html
a list of useful computational
fragment-based drug design tools
O’Boyle, Linux4Chemistry http: //www.redbrick.dcu.ie /~noel/linux4chemistry;
http: //www.linux4chemistry.info /
Drs Zoete and Grosdidier, Click2Drug http: //www.click2drug.org/
Dr Sung Kwang Lee http: //www.gspr.pe.kr /my/index.php

Etox Library

http: //cadd.imim.es/etox-library

3 Growing, Linking and Evolving Fragments

Once candidate fragments are identified from a library they are
merged or linked together, adding functionalities to increase bind-
ing and selectivity. When linking fragments the LE (ligand effi-
ciency) and affinity should be greater than the sum of binding free
energy of the two-parent fragments—referred to as the “super-
additivity” of fragment binding energies. Computational fragment
linking is very difficult and often what is proposed from computa-
tional studies is not synthetically feasible. Privileged-fragment
merging involves recognizing fragments inside larger molecules,
pharmacophore modeling and overlays of X-ray structures.
Merging of fragments identified through screening can be per-
formed with cocrystal structures of multiple fragments overlaid.
Itis important when merging fragments not to make major changes
to the core scaffold.

The binding modes of the parent fragments must be main-
tained on linking. SPROUT [26] (http://www.simbiosys.com/
sprout/overview.html), marketed by Symbiosis, uses steric electro-
static H bonds, dispersion or van der Waals, and hydrophobic inter-
actions as constraints when adjoining templates. Other common
commercial software for designing linkers between two fragments
includes CCG MOE, BioSolvelt Recore, and ChemAxon Reactor.
GANDI [27] (Genetic Algorithm-based de Novo Design of
Inhibitors) is a fragment-based method that generates leads by join-
ing predocked fragments with linkers using a parallel genetic algo-
rithm. Predocked fragments are encoded by the genetic algorithm,
and linker fragments are evaluated using lookup tables (tabu search).
GANDI  (http://www.biochem-caflisch.uzh.ch/download /) is
available for download free to nonprofits.
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Fragment evolution and optimization can be built around a
well-characterized target or existing SAR (Structure—Activity
Relationship), or 3D QSAR (CoMFA and CoMSIA). A selected
fragment can be grown by doing a QSAR search and picking mol-
ecules similar to the identified fragment. The SAR results for two
sites are applied for fragment screening. Suitable fragments
obtained were added to a scaffold, and then docked and the activ-
ity predicted by the 3D CoMSIA model [28]. Docked poses are
then compared to crystal structures of the fragment with the tar-
get. The fragment-linking step can involve several different types
of chemistry.

Autogrow [29] from MacCammon’s group http: //autogrow.
ucsd.edu/ is a free open source software, which optimizes candi-
date ligands using rules of “click chemistry.” The program grows
fragments using an evolutionary algorithm and discards non-drug
like candidates. Autogrow 3.0 contains autoClick Chem [30] reac-
tions (http://autoclickchem.ucsd.edu) programmed into it so that
unlike previous versions designed molecules from fragments are
synthesizable in a practical way. The program has Lipinski’s rules
embedded so it only designs drug-like molecules.

BREED [31]is a computational method for fragment merging
which is widely employed. SPLICE and BREED mix and match
sets of overlaid 3D X-ray structures using combinatorics. BREED
uses “Fragment Shuffling” and aligns 3D coordinates of two
ligands and recombines the fragments or substructures at overlap-
ping bonds to generate new hybrid molecules. MED-hybridize
and FLUX are other 3D ligand-based methods. MED-hybridize
relies on ligand structural information from the PDB (Protein
Databank). FLUX uses a stochastic search algorithm for combina-
torics. LigMerge [32] is an automated algorithm for swapping
chemical substituents in known ligands to generate new ligands.
It identifies common substructures in ligands and superimposes
two substructures and then scrambles them at each atom to gen-
eral multiple compounds related to the known inhibitors. This is a
stand-alone ligand-based tool that does not require knowledge of
the receptor structure unlike BREED, and is available for down-
load (http://www.nbcr.net/ligmerge).

Fragment tethering-the formation of a disulfide bond between
the fragment and a cysteine residue in the target protein is an addi-
tional novel method. Ideally linkers would not perturb the optimal
binding geometry of the fragments and not have conformational
flexibility so that they would not increase the entropy of binding.
Free energies of binding shows that flexibility and linker strain can
have an impact on binding affinity [33]. A new approach uses a
piece of the full substrate fragment that is still binding competi-
tively, and the substrate fragment is modified with a chemical “han-
dle” to connect via variable length linker to a random fragment
library.
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CONFIRM (connecting fragments found in receptor molecules)
(Wyeth) [34] is a pre-prepared library of linkers searched to match
criterion found from experimental or computational studies about
fragments within the target binding site. Other computational tools
available for growing fragments include; SPROUT, LEGEND,
LUDI, GROWMOL, LigBuilder, SkelGen, and SMoG. Techniques,
which favor the linking approach vs. growing approach, are LUDI,
HOOK, PRO_LiGAND, LigBuilder, SPLICE/RACHEL, and
CAVEAT. Linking fragments positions them in the target-binding
site and connects them to each other by designed linkers to con-
struct a compound that satisfies significant interactions with the tar-
get. Many of these methods search databases of bridges using
substrate pattern search functions, with a given set of distances
between attachment points and atoms used to form the query to
search the linker database. The linkers found are than joined using a
combinatorial method. Once fragments are linked, computational
docking of molecules is performed, computing strain energy of
docked poses.

ReCore [35] is a popular commercial software (BioSolvelT),
which performs scatfold hopping, and fragment linking (http://
www.biosolveit.de /ReCore /index.html?ct=1). The Recore
approach is to use a database of 3D molecular structures converted
into a fragment database. Given the geometric arrangement of two
or more exit vectors and a pharmacophore feature, the algorithm
finds 3D fragments within the database, generated by combinato-
rial analysis of 3D compound libraries, fulfilling all constraints. The
fragmentation method is similar to RECAP, in terms of the rules
considered for generating fragments-no cut points within ring
fragments, with rules usually cutting C-C, C-O, C-N, and C-H
bonds in specific environments.

Scaftold hopping or lead hopping where the central part of
known active molecule is varied instead of an R group is often used
to improve ADME properties, and avoids structures with strained
conformations. Programs which perform scaffold hopping include
CAVEAT, BROOD, sparkV10, Core Hopping, SHOP, Scatfold
Replacement, PraFrag, and the OECHem toolkit C++ Web appli-
cation [36]. CAVEAT was one of the first and premiere programs
designed to do scaffold hopping and is licensed and available
through Paul Bartlett’s group at UC Berkeley (http: //www.cchem.
berkeley.edu/pabgrp/Data/caveat.html). CAVEAT searches a
database of geometric relationships using bond pairs.

NCGC developed Scaffold Hopper, a freely available tool for
automated R-group analysis (Fig. 2a is an illustration of the graphi-
cal interface for the Scatfold hopper as well as graphical visualization
tools (Fig. 2b) available for scaffold activity analysis). It is a
self-contained Java web start application. https: //tripod.nih.gov/
ws/hopper/hopper.jnlp. The software generates “reasonable”
R-group tables for a given dataset and performs Scaffold-based
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Fig. 2 (a) This is an illustration of the graphical interface for the NCGC Scaffold hopper, a freely available tool
for automated R-group analysis (https://tripod.nih.gov/ws/hopper/hopper.jnip) as well as graphical visualiza-
tion tools (b) available for scaffold activity analysis. (sad.jnlp) is downloadable from http://tripod.nih.gov and
can perform a network oriented view of fragment/scaffold collections
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“clustering” of the data. The NCGC scaffold activity diagram (sad.
jnlp) is downloadable from http://tripod.nih.gov can perform a
network oriented view of fragment/scaffold collections.

The SAMPL3 Challenge [37] was a public competitive chal-
lenge initiated to evaluate performance of fragment-based design
methodology. Statistical Assessment of the modeling challenge at
(http://sampl.eyesopen.com/) method-input summarizes how
incorporation of different modeling techniques impacts the predic-
tion accuracy including protein dielectric models and charged vs
neutral ligands. The linker problem is a significant one in fragment-
based ligand design. Linking close fragments depends on bond
length and angle strain and high-energy conformations can be cre-
ated and electronic properties change. Simulated annealing of rigid
fragments does not answer these problems, and new techniques,
such as constrained fragment annealing (CES) must be performed.

4 ADME Properties and Fragment-Based Design

Fragments from large collections can also be used to generate
models for QSAR studies, and as filters and scaffolds, and to
explore chemotypes. Using fragment libraries to predict drug tox-
icity is a way to minimize expensive drug failures and to identify
potential toxicity early in the drug discovery process. An extension
of the use of QSAR methods for toxicity prediction is the use of
fragments for predicting lead compound toxicity. Toxicity predic-
tion algorithms frequently fragment molecules as they are based on
the idea that the toxicity of a molecule is associated with particular
structural motifs or groups within a compound—a defined “toxi-
cophore” or chemotype [38]. A computational screening approach
using compound fragment toxicophores was able to identify and
classity mutagenic compounds with an error rate of 18 %—on the
order of that of the experimental Ames test (with an error rate of
15 %). Fragmentation-based statistical analysis of toxicity databases
has been performed to find substructure fragments, which are
common and frequently found in toxic compounds and drugs.
One group [39] used fragments from the Registry of Toxic Effects
of Chemical Substances database (RTECS) as a training set. Use of
a fragment-based toxicity predictor enables extension of experi-
mental drug-like compound toxicity data since experimental data is
only available for a small subset of compounds.

Fraggle, [40] the fragment store dataset is a database (http://
bioinf-applied.charite.de /fragment_store/) that provides property
information (charge, hydrophobicity, and binding site preferences)
and performs statistical analysis and can view the IDS of drugs and
toxic compounds, which contain the fragments. This website also
has a fragment assembler. The database is based on the fragmenta-
tion of metabolic compounds, toxic compounds, and drugs, with
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binding site preferences determined for each fragment using PDB
(Protein Data Bank) structures. Often there is no shared overlap
between the dataset of metabolic compounds compiled from
KEGG [41] and the SuperDrug drugs [42] and SuperToxic data-
base (http://bioinformatics.charite.de/supertoxic/) drugs, until
they are fragmented and then there is a great deal of overlap of the
fragments derived from these three databases [43].

There are useful techniques to assess toxicology and chemical
risk assessment based on fragment substructural analysis.
MULTICASE (http://multicase.com/) predicts carcinogenicity
and toxicity on linear fragments, identification and use of substruc-
ture toxicophores, based on the recognition of chemical features
and molecular descriptors. Substructures can predict specific com-
pound activities, such as confer bitter taste, predict CNS activity,
and predict plasma permeability.

Fragment design can be used in a negative way in that struc-
tural alerts and model building features in programs such as
Leadscope, Derek, and ToxTree [44] can be used to determine
structural features and fragments to omit from fragment libraries.
Leadscope can be used to filter fragments according to nine global
molecular properties (A log P; H bond acceptors and donors;
Lipinski Score, MW, Parent atom count, polar surface area, rotat-
able bonds) and the compounds. Leadscope contains 27,000
structural fingerprint features, which can be used for clustering and
activity prediction of fragments, structure and similarity searching.
The program has a recursive-partitioning algorithm to classify
structural fragment subsets within a database and simulated anneal-
ing can be sued to find statistical correlations within the subset
based on the presence of sub structural features. Leadscope can
therefore be used to break down molecules into structural frag-
ments and then use them for dynamic scaffold generation.

5 Conclusion: Successful Drugs from Fragments

Tipranavir (HIV protease inhibitor) reached the market in 2005
and was recognized as one of the first drugs developed by structure-
based drug design starting from a fragment-based approach.
In 2011, Vemurafenib (B-Raf inhibitor) reached the market [45].
Plexxikon’s Vemurafenib, a selective inhibitor of mutant kinase
B-Raf (V600E) was the first drug developed by fragment screening
and optimization. Beginning with a screen of diverse 20,000 frag-
ment scaffold like compounds (MW 150-350 kDa) with activity
assays performed at 200 pM (very high) concentrations, and with
less than 8 H bond donors and acceptors. Seven azaindole frag-
ments were found that inhibited three kinases PIM1, p38, and
CSK by 30 %. The fragment was incorporated into a 3-aminophenyl
analog and then inhibited PIM1 kinase in a single binding mode.
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Computational methods in fragment-based drug design have
proved to be successful in their application to numerous
targets—kinases, proteases, dehydrogenases. Plexxikon (indegli-
tazar, PLX-4032), Abbott/AbbieVie (ABT 263, ABT518,
ABTS869, ABT737), Astex (AT9283, AT7519), Lilly/Protherics
(LY517717), Vernalis/Novartis (VER52296,/NVDP-AUY-922),
deCODE/Emerald (DGO051), Locus (LP261) and SGX
(SGX523), and Sunesis (SNS314) are all examples of drugs
developed by fragment methods in clinic or development. Over
the last 10 years fragment-based drug design has led to 50 small
molecule hits that have advanced to lead structures [406].

In conclusion, computational fragment-based methods have
demonstrated that they provide for greater diversity in compound
hit development. Astek, Vernalis, Evotec, and Abbot all have had
Hsp90 inhibitor development programs utilizing fragment-based
drug design and although both Vernalis and Astek had initial phe-
nol and resorcinol fragment hits, evolution of these fragment hits
have taken very different paths even when similar initial fragment
hits are identified indicating the value of fragment-based drug
design in providing for compound diversity [47]. More novel
computational fragment-based methods will facilitate further drug
design in the future.
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Chapter 11

Design Strategies for Computational Fragment-Based
Drug Design

Zenon D. Konteatis

Abstract

The computational design method described in this chapter is an approach to de-risking the design process
due to the limitations of current computational algorithms with respect to predictive accuracy. The method
takes advantage of the crystallographically demonstrated interactions between a ligand and its protein
target, and through systematic, one fragment replacements allows for quick feedback on the direction of
the designs. This design approach can still be useful in the future as computational algorithms improve and
become more predictive and reliable.

Key words Computational fragment-based design, Design strategies, Molecules from fragments,
Fragment designs, Fragment evolution, Chemotype evolution, Molecular evolution

1 Introduction

Structure-based drug design (SBDD) approaches have become
well established in drug discovery over the last 25 years [1-4] and
have contributed to the successful introduction of more than 40
New Chemical Entities (NCEs) in clinical trials [5] and eleven
marketed drugs [6]. Most pharmaceutical and biotechnology com-
panies have SBDD departments incorporating X-ray crystallogra-
phy, NMR, and computational groups, and recently many academic
laboratories have developed this discovery capability [7].
Experimental fragment-based drug design (experimental
FBDD) emerged in the late 1990s as a new approach to drug dis-
covery [8], and it has gained wide acceptance over the last fifteen
years as multiple pharmaceutical and biotechnology companies and
academic institutions have incorporated experimental FBDD in
their research capabilities [9]. Multiple NCE’s developed by the
use of experimental FBDD have reached clinical trials [9] and one
of them was approved by the FDA in 2011 [10]. Experimental
FBDD requires specialized methods such as NMR, X-ray crystal-
lography, mass spectroscopy, surface plasmon resonance (SPR),
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tethering, isothermal calorimetry (ITC), and high concentration
assay (HCA) screening to detect the weak affinity of fragments for
their protein targets [11].

Computational technologies developed over the last three
decades have contributed to the success of SBDD and have been
recently adapted to establish computational fragment-based drug
design (computational FBDD) [12, 13]. Computational FBDD
methods use the same principles established for experimental
FBDD and are beginning to aid in the successful design of FBDD-
based inhibitors for a variety of pharmaceutical targets [ 13]. In this
chapter we discuss various strategies employed in designing ligands
for specific protein targets starting with a co-crystal structure, irre-
spective of the specific computational software used.

2 Materials: Strengths and Limitations of Computational Software Programs

for Drug Design

2.1 Binding Pose
Accuracy

2.2 Affinity
Prediction Limitation

A variety of available computational software programs that enable
docking or energy minimization of a ligand in the protein binding
site (e.g., CCG’s MOE, Schrodinger’s Glide, GOLD, FLEXX) can
be used to prosecute the design approaches described in this chapter.
A crystal structure of a ligand with a known binding affinity for the
protein target is also necessary to enable these design strategies.

A number of computational methods have been used in computa-
tional SBDD and FBDD with varying degrees of success in select-
ing or designing drug-like compounds. A variety of investigations
on the accuracy of these methods [14-17] have led to the conclu-
sion that current software generate ligand conformations and
binding poses similar (<2 A rmsd) to the ones observed in co-
crystal structures. Predicting the correct binding mode of ligands
and fragments is of great value in FBDD, especially when com-
bined with experimental FBDD to focus the number of fragments
or ligands to be examined by a biophysical method such as NMR
or crystallography [13].

The same studies also demonstrated that docking programs with
scoring functions do not predict ligand binding affinities or rank
order ligands correctly [14-17]. When applied to a congeneric
series of compounds interaction energies showed a modest correla-
tion (72 of 0.7) with experimental affinities [18], establishing the
upper limit of prediction for current algorithms. This accuracy limi-
tation can be attributed to the absence of a robust solvation treat-
ment and the lack of full accounting for the entropy effects of both
the ligand and the protein. Several methods with more rigorous
physical treatment of the thermodynamic cycle, such as free-energy
perturbation (FEP) [19], thermodynamic integration (TT) [20],
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and grand canonical Monte Carlo (GCMC) [21] simulations have
the potential to generate more quantitatively accurate rank ordering
of ligands. However, to date not enough data have been reported
in the literature to make a proper assessment. This inaccuracy in
rank ordering predicted affinities of virtual compounds hampers the
practical application of computational FBDD and SBDD and has
limited virtual screening campaigns in SBDD to just enrichment of
active compounds over inactive ones [22, 23].

One of the challenges that computational fragment-based design
strategies face is the prediction of binding modes [21, 24]. In gen-
eral the energy difference between two binding modes for a frag-
ment are much smaller than that seen for full molecules and this
gives rise to multiple binding modes for fragments [25]. However,
predicting not only the lowest energy pose but other reasonable
poses can be a true strength in this strategy as these other poses
may be better suited for building full molecules by joining or link-
ing with nearby poses of other fragments [13].

3 Methods: General Design Strategies

3.1 FBDD Similarities
and Builds

3.2 Knowledge-
Based
(Pharmacophore)
Screening

A large number of computational design methods have been
described in the literature with varying degrees of success. The
methods discussed herein have proven to decrease the risk of
design failure to an extent that overcomes the limitations men-
tioned in Subheading 2.

Computational FBDD is based on many of the same concepts that
experimental FBDD has used successfully: starting with small
chemical building blocks (fragments) both methods try to build
novel compounds with “drug-like” characteristics by growing,
directly joining, or linking fragments as shown in Fig. 1.

Computational FBDD methods that can dock a number of
fragments independently in the binding pocket of the target pro-
tein (receptor) can easily implement both linking and growing
approaches. Other methods that only dock one fragment at a time
can also be used by first docking a key fragment and then evolving
this fragment by building extensions or joining a second fragment
and re-docking the combined two fragment molecule and so on
until the full molecule is elaborated.

Early de novo design and Virtual Screening approaches relied
exclusively on computation and the inaccuracy of scoring functions
led to limited success as already discussed. In this section we will
show that incorporating experimental data in computational
fragment-based design approaches can both complement and de-
risk the process.
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Fig. 1 Fragment-based drug design: linking, growing. Linking: (a) Fragment 1 binds to the target protein at site
1; fragment 2 binds at an adjacent site 2. (b) Fragments 1 and 2 are joined together by a linking group that
generates a molecule which spans both sites (adapted from ref. 26). Growing: (¢) Fragment 1 binds to the
target protein at site 1; (0) a second fragment is joined directly to fragment 1; (¢) and the molecule is com-
pleted by growing into site 2

A number of studies have demonstrated that virtual screening
can provide successful lead molecules when combined with a
pharmacophore-directed search, especially when the pharmaco-
phore is based on a co-crystal structure of a ligand with its recep-
tor. Many examples exist in the area of kinase inhibition [13, 15,
18], and one such example is illustrated in Fig. 2, with TGFE-beta
kinase. A crystallographic starting point (PDB code: 2WOU) is
used to generate a pharmacophore query aimed at the protein—
ligand hinge binding interactions and the virtual screening identi-
fies molecules that contain such binding motifs and fit the protein
binding pocket at least geometrically.

3.3 Computational Computational approaches can be made more successful by adding
Fragment-Based knowledge-based experimental information to the design process.
Design Evolution The pharmacophore example explained above demonstrates that

(Chemotype Evolution) =~ most computational algorithms, which are very good at producing
meaningful poses [14-17], and if combined with experimental
data can generate designs that are very productive. We term this
process Computational Fragment-Based Design Evolution
(cFBDE). This is composed of four key steps that take the designs
from a known ligand to novel compounds.

3.3.1 Co-crystal At the center of this method is the availability of experimental data
Structure as a Normalizing ~ for the system of study, especially a co-crystal structure of an active
Factor and Relative (Not molecule in the binding pocket of the protein target. We use the

Absolute) Designs co-crystal structure as a normalizing factor to de-risk the designs
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Limitations

3.3.3 Pharmacophore-
Driven New Interactions
(Extensions)

3.3.4 Design
Recombination to De
Novo Designs
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Fig. 2 Pharmacophore selection for TGF-beta. Hydrogen bond acceptor (cyan)
and donor (magenta) pharmacophoric elements are generated to direct the
virtual screening to identify molecules that will bind to the hinge region of TGF-
beta kinase (PDB code 2WOU). Figure generated in MOE [27]

and thus produce 7elative designs not absolute designs. By using the
known inhibitor and its interactions with the protein, we start with
real interactions which then can be the reference point for compu-
tational comparisons with other computationally driven interac-
tions. Thus, computationally reproducing the co-crystal ligand
binding pose becomes the first step in this process.

The co-crystal structure ligand is considered to be composed of a
number of fragments. One of these fragments is replaced by
another fragment while the rest of the ligand remains the same;
this enables fragment optimization without changing the linking
scheme, thus avoiding one of the most difficult steps in fragment-
based design. Each fragment in the molecule is replaced indepen-
dently to generate multiple new subclasses of the original ligand, as
illustrated in Fig. 3a—d. Multiple fragment replacements can be
tried, and the best are carried forward.

During this fragment replacement, new interactions with the pro-
tein may be targeted with the new fragment, as seen in Fig. 3b,
thus creating new, pharmacophore-driven extensions that have a
very good chance of adding affinity to the molecule produced.

Once multiple optimized fragments are produced for each posi-
tion, they can be recombined to generate completely new classes of
compounds as depicted in Fig. 3e. These molecules are novel
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Fig. 3 Stepwise fragment replacement generates new subclasses of ligands. Recombination leads to new
chemotypes equivalent to de novo designs. (a) Crystallographic ligand composed of four fragments is first
reproduced computationally in the protein binding pocket by docking or other algorithm in use; (b) fragment 1
is extended 1’ to add a new, nearby interaction with the protein (fragment optimization or extension); (c) frag-
ment 2 is replaced by another fragment 2’ (scaffold hopping); (¢) fragment 4 is optimized to fragment 4’; (¢)
recombining all the new, successful individual replacements produces a new, novel class or chemotype (de
novo design)
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Fig. 4 Design process generates potent TGF-beta inhibitors. (a) A crystallographic ligand with IC50 of 94 nM
was redesigned fragment () by fragment (c) and (@) to produce a recombined inhibitor (€) with 14.3 nM affinity
for TGF-beta. Scaffold hopping by changing the imidazole fragment to a pyrazole (/) and re-optimizing the
hinge binding fragment (c) gave a new compound class with 4 nM affinity

classes that are the equivalent of de novo produced designs but
with much less computational risk.

The cFBDE process is illustrated above in Fig. 4 with an exam-
ple from the TGF-beta reported literature. Each replaced fragment
is highlighted and the stepwise process depicted by arrows.

4 Conclusion

The overall design strategy described here is a reliable and efficient
method of generating new, novel chemotypes starting with a
known ligand and its co-crystal binding site. The method can be
also used in cases where a co-crystal structure is not available but a
reasonable receptor homology model can be built using experi-
mental information of related protein class members and a few
ligands with known structure—activity relationship (SAR) in the
compound class of interest. In the case where an apo crystal struc-
ture is available, but not a co-crystal with a ligand, then careful
docking experiments can be used to set up a reasonable model of
the ligand binding site in the receptor by analogy to similar recep-
tors with known ligand binding sites. Thus, this methodology can
be applied in many cases involving most receptor classes where
members of the class have produced some co-crystal structures.
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This design strategy can be further de-risked by obtaining co-
crystal structures at key intervals to guide redesigns based on pro-
tein adaptation to related states that may influence ligand binding

and affinity.
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Chapter 12

Protein Binding Site Analysis for Drug Discovery
Using a Computational Fragment-Based Method

Jennifer L. Ludington

Abstract

One of the most powerful tools for designing drug molecules is an understanding of the target protein’s
binding site. Identifying key amino acids and understanding the electronic, steric, and solvation properties
of the site enables the design of potent ligands. Of equal importance for the success of a drug discovery
program is the evaluation of binding site druggability. Determining, a priori, if a particular binding site has
the appropriate character to bind drug-like ligands saves research time and money.

While there are a variety of experimental and computational techniques to identify and characterize
binding sites, the focus of this chapter is on Binding Site Analysis (BSA) using virtual fragment simulations.
The methodology of the technique is described, along with examples of successful application to drug
discovery programs. BSA both indicates if a protein is a viable target for drug discovery and provides a
roadmap for designing ligands. Using a computational fragment-based method is a effective means of
understanding of a binding site.

Key words Protein binding site, Binding site analysis, Fragment-based drug design, Structure-based
drug design, Binding site identification, Binding site characterization, Druggability

1 Introduction

Understanding protein binding sites is the basis of structure-based
drug design. A binding site is a region on a protein where another
molecule interacts. A binding site may be the interface of a pro-
tein—protein interaction, a region where a ligand co-factor binds,
or the catalytic pocket of an enzyme in which a molecule is cleaved
or modified. A drug molecule is intended to affect the function of
a protein in vivo, so it must either bind in a region overlapping
with that of the natural ligand (to either mimic or inhibit that
ligand), or in an allosteric pocket that affects the shape of the natu-
ral ligand’s binding site. A protein is considered to be druggable as
defined by Hopkins and Groom if a ligand with “drug-like” prop-
erties (i.e., orally bioavailable) can bind with high affinity and if
modification of the protein’s function positively affects a disease
state [ 1]. The presence of a druggable binding site is a determining
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factor for whether or not a protein is a viable target for drug dis-
covery. The knowledge that a protein lacks a druggable binding
site early in a drug discovery project frees a research team to pursue
alternative targets.

2 Methodologies for Binding Site Analysis

2.1 Techniques
for Binding Site
Identification

Binding Site Analysis (BSA) is a two stage process, consisting of an
identification stage in which potential ligand binding sites are
located and a characterization stage in which the identified sites are
evaluated for druggability. Various experimental and computa-
tional techniques have been developed for binding site identifica-
tion and druggability determination as discussed extensively in
recent reviews [2-5]. Some techniques are only applicable to the
identification stage, while other methods like fragment-based
approaches, give insight into both stages of BSA.

The most definitive method of determining where a ligand
binds is by experimentally determining the 3D structure of a pro-
tein—ligand complex, but this approach requires a ligand for each
binding site to be located. Three general approaches to computa-
tional binding site identification that do not rely on knowledge of
the ligand are geometric, energy-based, and fragment-based meth-
ods. A 2010 study by Schmidtke et al. [6] evaluated the perfor-
mance of four algorithms with a large-scale data set; the geometric
algorithms SiteFinder [7] and fpocket [8] and the energy-based
methods SiteMap [9, 10] and PocketFinder [11] were compared.
The techniques performed similarly when evaluating the 5 highest-
scored pockets for holo structures; all had a 95 % or higher success
rate of identifying a true binding site [6]. The sucess rate of the
methods for identifying the known site as the first ranked pocket
was between 70 and 82 % for holo structures and between 42 and
80 % for apo structures [6]. It appears to be more difficult to iden-
tify the binding sites of apo structures and yet this is where the
computational methods are needed the most.

The computational fragment-based approach to BSA used in the
Locus Pharmaceuticals Core Technology (LCT) [12, 13] is analo-
gous to the experimental methodology, Multiple Solvent Crystal
Structures (MSCS), developed by Ringe and coworkers [14-16].
With the MSCS method, X-ray structures are solved for protein crys-
tals after they are equilibrated in an organic solvent. Superimposing
the crystal structures from various solvent soaks overlays the binding
locations of the different solvent molecules. The region where many
types of solvent molecules cluster, irrespective of size and polarity, is
indicative of a binding site. Ringe also reported three categories of
water molecules: tightly bound or structural waters that were present
in all structures, partially ordered waters that were only present in
one of the structures, and fully disordered waters that could not be
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Table 1

Example probe fragments used for binding site identification
Acetamide Dimethylsulfoxide Methanol
Acetone Ethane Methylamine
Benzene Ether Pyrimidine
Carboxylic acid Imidazole Urea

resolved in any of the crystal structures [ 14]. The waters observed in
the sites where different organic solvent molecules overlapped were
of the second type, displaceable and unlike fully disordered water
capable of gaining entropy when displaced [14].

The LCT-BSA methodology is based on Grand Canonical
Monte Carlo (GCMC) simulations of fragments with a protein, as
presented in detail in previous publications [17-19]. Similar to
MSCS, the simulations begin with saturating the protein simula-
tion cell with a solvent of an organic fragment [17-19]. Both the
fragment and the protein are treated as rigid bodies, so multiple
conformations of flexible fragments are simulated individually [17-
19]. As the simulation progresses, a unitless parameter B (related
to the excess chemical potential in the system) is lowered, causing
fragments to leave the protein simulation box until only the
tightest-binding fragments remain [17-19]. A diverse set of probe
fragments including water is simulated, and the results of the sepa-
rate simulations are combined [2, 20, 21]. These fragments are
small to prevent steric exclusion from legitimate pockets [18]. The
probe fragments represent the different types of interactions a
ligand can have with a protein: hydrogen bond donor (HBD),
hydrogen bond acceptor (HBA), aliphatic hydrophobic, and aro-
matic [21]. Examples of probe fragments for identifying binding
sites are shown in Table 1. Putative binding sites are located where
the different fragment types cluster with high binding affinity, iden-
tifying a hotspot [2, 20, 21]. (The term hotspot was coined to refer
to amino acids whose interactions provide most of the binding
affinity in protein—protein interactions [22]. The term is general-
ized here for protein-ligand interactions.) For a hotspot to repre-
sent a binding site, the waters in this region must be less tightly
bound to the protein than the other fragments are [20, 21]; they
should be analogous to the type II waters of MSCS [14].

The accuracy of the GCMC calculations comes at a
computational expense that makes it unrealistic to test with the
large data sets used to validate faster techniques. However, this
approach has been successful for the limited set of test cases used.
Anecdotal evidence from drug discovery programs has also
demonstrated success. Data have been published on the identifica-
tion of binding sites for dihydrofolate reductase (DFHR) and
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2.2 Druggability of
Protein Binding Sites

human immunodeficiency virus aspartic protease (HIV protease)
[2]. A calculated hotspot that was identified on DHFR by a com-
putational fragment cluster was found to be located in the same
region of the protein where an electron is transtered from nicotin-
amide adenine dihydrogen phosphate (NADPH) to 7, 8-dihydro-
folate (DHF) [2]. In the case of HIV protease, fragment probes
simulated with a mutant form of the protein predicted that the
extended dimer interface is a significant binding region [2]. The
result was consistent with the overlay of the experimental binding
positions of six HIV protease inhibitors [2]. Binding locations and
binding free energies were calculated for T4 lysozyme [ 18], which
has a tight, induced pocket for small organic molecules. All but 3
of the 14 test molecules were found in the binding site and the
calculated lowest energy pose for each found molecule was in good
agreement with the experimental location, where available [18].
The rank-order of molecules based on the calculated free energies
of binding also matched well with the experimental results [18].
These test cases support the assumption that high accuracy binding
calculations give high success rates.

Protein flexibility affects binding site identification as demon-
strated by the better success rates using structures with bound
ligands compared to apo structures. A tight pocket can exclude
fragments in a significant region, as was seen in the study of T4
lysozyme [18]. Protein—protein interaction (PPI) sites have been
recognized to be more flexible than protein-ligand sites, as
reviewed by Grimme et al. [23]. Therefore, the protein conforma-
tion used in the simulations of a PPI site is critical. A conformation
omitting a transient, deeper pocket would greatly influence the
BSA and ligand design. Small-motion flexibility is addressed indi-
rectly with LCT; simulations generate ensembles of fragments
instead of single-point binding modes. Also, the binding site is
defined as a consensus site where multiple fragments bind with
high affinity, so the exclusion of a few of the fragment types will
not typically prevent binding site identification. Molecular dynam-
ics (MD) and normal mode analysis (NMA) can be included as part
of the LCT protein preparation to address larger scale changes in
protein conformation [21, 24].

Determining the druggability of a protein binding site is a chal-
lenging aspect of BSA that has been addressed with a number of
approaches. Protein druggability is not always defined consistently
and non-druggable proteins can be recategorized if new ligands
are found [5]. Screening hit rates from high-throughput [25],
NMR-fragment [26], or computational-fragment [27] methods
have been used successfully as measures of druggability. Several
methods have been developed that predict druggability based on
calculated physicochemical descriptors of the protein pockets [10,
26, 28-31]. These methods tend to rate larger pocket size, solvent
shielding, and hydrophobicity as factors which increase
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druggability, but differ in whether polar and hydrophilic contact
areas are considered favorable [5]. The LCT method uses binding
information for sets of fragments with homogenous chemical char-
acter to evaluate the druggability of a binding site [20, 21].

3 Fragment-Based Binding Site Analysis

3.1 Identification
of Binding Sites

The identification phase of the Locus BSA process consists of find-
ing clusters of fragments with high binding affinity and then deter-
mining which ones define bio-relevant hotspots. Hotspots are
anchoring regions for ligand binding, and are a necessary compo-
nent of a binding site [2, 20-22]. The ATP-site hinge region
present in kinases is an example of such a hotspot, and fragment-
based BSA identified this region in p38 MAP kinase [13].

The fragment clusters that represent an actual ligand binding
site have the following attributes: they contain the majority of probe
fragment types, they contain fragments with low energy binding
poses, the fragments in the cluster can outcompete water binding,
and they are located on regions of the protein where the topography
allows for more than minimal surface contact [20, 21]. A hotspot
will not represent a ligand binding site if tightly bound water is
located in the same region, since a ligand cannot bind with high
affinity if its interactions with the protein are not stronger than those
of the water that will be replaced [21, 32]. The binding pocket
should ideally contain some deep clefts so that the ligand can make
adequate surface contact for tight binding [20, 21]. Explicit solva-
tion is not part of these fragment simulations, so the solvent screen-
ing of solvent exposed interactions is not accounted for which may
cause overestimated binding affinities of fragments. Consequently,
sites that are significantly solvent exposed are excluded, since they
are most likely artifacts of the technique. Fragment clusters in true
binding sites are also persistent. The presence of these clusters is
largely independent of the values of parameters such as the number
of fragment types in a cluster and the cluster radius [21]. A binding
site must also be solvent accessible so that ligands can enter the site.
If an interesting fragment cluster is totally encapsulated by the pro-
tein, MD and NMA simulations can be used to explore if there is a
state with reasonable energy in which the site is accessible [21, 24].

In addition to detecting the binding site of the natural ligand,
BSA can identify novel sub-pockets and alternative sites. These
types of regions allow for innovation in designed molecules,
which is important for intellectual property and the exploration
of ligand property space. In addition to the ATP and allosteric
site, BSA of multiple p38 MAP kinase X-ray crystal structures
identified three novel binding sites (the docking site, the C-lobe
exosite, and the ACT site) [13]. Each of these sites was later con-
firmed experimentally [13].
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3.2 Characterization
of Binding Sites

The purpose of the BSA characterization phase is to determine the
druggability of binding sites found in the identification stage. For a
binding site to be druggable there must be ligands with “drug-like”
properties that bind with high affinity and that modify the protein’s
function [1]. To accommodate a ligand with acceptable properties,
a binding site should be relatively compact, have some deeper clefts,
and support strong interactions of varying chemical character [20,
21]. For PPI sites, finding this desired topography is challenging, as
these sites may have a large, shallow surface area comprised of mul-
tiple weaker interactions [23]. If the majority of binding interactions
are weak, it is difficult to design molecules with the necessary potency
and still constrain ligand size. Although many PPI sites may not be
druggable, a BSA can predict the exceptions.

To evaluate binding site druggability, fragments that belong to
sets with homogeneous chemical character are simulated with the
protein. Each characterization set contains fragments representing
one type of interaction in the probe set (HBD, HBA, aliphatic
hydrophobic, aromatic); additionally a set of fragments with mul-
tiple interaction types is simulated [20, 21]. The fragments in the
characterization sets can be slightly larger than the probe frag-
ments [21]. The fragment clusters for this phase of analysis each
contain a single category of fragments, but several types of frag-
ments in that category must bind with good affinity and not be
excluded by tightly bound water [21]. If there is a water molecule
with high affinity that outcompetes fragments in the binding
pocket, a new protein may be simulated that includes that water as
part of the structure [21, 32]. In that case, ligands can be designed
to interact with the water molecule, so competition with the water
is no longer an issue [21, 32].

To judge the druggability of a binding site, the following crite-
ria are assessed. Several high affinity characterization clusters should
be present within 15 A- of the hotspot fragment cluster [21]. If the
site has a larger radius, it may indicate that only ligands with high
molecular weights can bind with high potency. The fragment clus-
ters should be in linkable distance and clusters of different chemical
character should alternate throughout the site [21]. The ratio and
pattern of hydrophobic and hydrophilic surface areas in the bind-
ing site affects the membrane permeability and solubility of
designed ligands. A site for which complementary ligands will be
linear or detergent-like will have poor druggability. Finally, the
binding site should not be highly hydrated, according to the water
fragment simulation [21]. These principles for evaluating the drug-
gability of a binding site are not absolute, but are guidelines for
finding the sites best suited for binding a drug-like molecule [21].

In addition to evaluating the druggability of a binding site,
binding site characterization can generate strategies for ligand
design. Analysis of the simulation data highlights promising molec-
ular scaffolds and reveals which fragment types are acceptable in
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each sub-pocket of the binding site. The characterization analysis of
the allosteric binding site of p38 MAP kinase provided important
design information. Previously, ligands that bound to the allosteric
site of p38 had hydrophobic moieties that interacted with what has
been termed the tolyl pocket [ 33]. Analysis of the allosteric site led to
a prediction that the protein could also support interactions with
fragments of mixed hydrophilic-hydrophobic character in that
region; simulated dioxothiomorpholine, ketopiperazine, and diazep-
anone fragments all bound with high affinity. A molecule was synthe-
sized with a decorated diazepanone group that interacted in the tolyl
pocket. This molecule had a p38a ICsy of 22 nM and an oral PK (rat)
of 33 % F (at 4 mg/kg) [33].

4 Binding Site Analysis Workflow

4.1 Steps for Binding
Site Identification

4.1.1 Select and Prepare
Protein Structure

4.1.2 Generate
and Cluster Data for Probe
Fragments

The fragment-based analysis of a protein to locate and characterize
binding sites requires simulations of small molecule fragments with
that protein. First probe fragments are used to find consensus sites,
where multiple fragment types of diverse character have strong
interactions with the protein. Clusters which are not excluded by
high affinity waters or highly solvent exposed identity promising
sites for ligand binding and are assessed for druggability.

The starting point for computationally analyzing binding sites is a
3D representation of the protein, typically an experimental structure
from X-ray crystallography or NMR. In cases where there is no
experimental structure, a computational homology model is gener-
ated using related proteins as templates [21]. When secking new
sub-pockets or sites (including allosteric sites), or if the experimental
structure is apo with a potentially collapsed binding pocket, a flexi-
bility simulation using MD or NMA may be performed [21, 24].
The protein structure that is selected for simulation should be, to
the best of one’s knowledge, a bio-relevant form of the protein.

If an X-ray crystal structure has regions of unresolved density,
missing residues are modeled with care [21]. Missing amino acids
may lead to errors in the site identification stage, but an incorrect
placement of missing atoms could exclude fragments, also causing
errors. The appropriate charge and rotor states are assigned to
amino acid side chains [21] and the termini are capped to prevent
overestimated fragment binding energies. Finally, a constrained
minimization is performed to relax the protein structure [21].

To generate the necessary fragment data, the probe fragments are
simulated individually with the protein. These calculations can be
run in parallel on a computer cluster for efficiency [13, 18]. As pre-
viously described, GCMC simulations of the protein—fragment sys-
tem provide information on fragment binding poses and their
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4.1.3 Analyze
and Select Sites

4.2 Steps for Binding
Site Characterization

4.2.1 Generate
and Cluster Data
for Characterization
Fragments

4.2.2 Analyze
and Prioritize Sites

4.2.3 Initiate
Ligand Design

associated binding energies [17-19]. A fragment simulation of
water is also performed to provide a solvation map of the protein
[2, 20, 21]. The poses with the best predicted binding affinity for
each probe fragment type are overlaid to obtain consensus clusters
of the probe fragments [2, 20, 21]. Fragments of different types
within a defined cluster radius of each other are grouped together
[2, 20, 21].

A sensitivity analysis is performed by adjusting the values of the
parameters for the number of fragments in a cluster and the cluster
radius [21]. Persistent clusters are kept for further analysis. Clusters
are excluded based on the locations of tightly bound water [2, 20,
21] that have a B-value below a user defined cutoft. Highly solvent
exposed clusters are also removed [21]. The remaining fragment
clusters typically indicate a true ligand binding site. This fragment-
based technique has performed well at identifying experimental
binding sites in a number of protein classes [2, 13, 21].

In the same manner as data is generated for the probe fragments,
fragments used for binding site characterization are simulated with
the protein. The consensus clusters for this analysis phase contain
fragments from a single characterization category and most of the
fragment types in that category must bind with good affinity to
define a cluster. Clusters are rejected that overlap with tightly
bound water.

The following criteria are considered when determining the drug-
gability of a site. At least three or four characterization clusters of
different categories should fall inside a 15 A radius of the hotspot
cluster defining the site [21]. The fragment clusters should be no
farther apart than can be spanned with a linker of three or four
atoms. When high affinity waters are found in the binding pocket,
they are either re-simulated as part of the protein, or the binding
affinity of the designed molecule must be favorable enough to
compensate for the water’s displacement [21, 32]. The risks of
designing ligands to binding sites that do not meet these criteria
should be carefully weighed.

There are a number of ways in which the binding site characteriza-
tion stage can be useful for ligand design. If the fragment compo-
nents of known ligands are simulated, the data can be used to
clarify binding modes of those ligands [18, 33, 34]. The fragment
analysis can be used to calibrate the simulations by comparing
fragment data with structure-activity relationship (SAR) informa-
tion [18, 34]. If the selectivity of a ligand is a concern for the
project, a BSA can be performed on the anti-targets for comparison.
Additionally, the fragment clusters interacting with anchoring
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hotspots are useful starting points for design, characterization
clusters indicate what types of interactions are acceptable in each
sub-pocket, and the arrangement of the clusters can provide
insight into what chemical scaffolds are appropriate for designing
ligands.

5 CGonclusion

Binding site analysis using virtual fragments is a valuable tool for
structure-based drug design. This method identifies bio-relevant
binding sites that are druggable, as has been demonstrated by the
design of orally bioavailable, nM inhibitors for those sites. The util-
ity of this type of binding site analysis ranges from prioritizing sites
based on the predicted difficulty of designing “drug-like” ligands
to finding novel binding regions for ligand design.
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Chapter 13

Fragment-Based Design of Kinase Inhibitors:
A Practical Guide

Jon A. Erickson

Abstract

Fragment-based drug design has become an important strategy for drug design and development over the
last decade. It has been used with particular success in the development of kinase inhibitors, which are one
of the most widely explored classes of drug targets today. The application of fragment-based methods to
discovering and optimizing kinase inhibitors can be a complicated and daunting task; however, a general
process has emerged that has been highly fruitful. Here a practical outline of the fragment process used in
kinase inhibitor design and development is laid out with specific examples. A guide to the overall process
from initial discovery through fragment screening, including the difficulties in detection, to the computa-
tional methods available for use in optimization of the discovered fragments is reported.

Key words Fragment-based drug design, Kinase inhibitors, X-Ray crystallography, Fragment
screening, Computational chemistry, Structure-based drug design, De novo design

1 Introduction

Protein kinases are a class of enzymes involved in important cellular
roles, specifically, signal transduction pathways in the regulation of
proliferation, differentiation and survival. Over the last 20 years,
kinases have become a major target for drug design in many indica-
tions, but particularly in oncology and inflammation. Fragment-based
drug design (FBDD) emerged in the mid-1990s with Fesik’s ground-
breaking SAR-by-NMR work and has since blossomed into a major
strategy for drug discovery and development. This review provides a
general overview of the concepts, techniques, and application of
FBDD to kinase inhibitor discovery. Both kinase inhibitor design and
fragment-based design have been reviewed extensively, so this is not
intended to be fully comprehensive review of each area, but rather a
look at the practical aspects of FBDD of kinase inhibitors. Due to the
multidisciplinary nature of FBDD, a survey of biochemical, biophysi-
cal, and virtual fragment screening, assembly of cassettes, strategies
and techniques in design, and a few examples are highlighted.

Anthony E. Klon (ed.), Fragment-Based Methods in Drug Discovery, Methods in Molecular Biology, vol. 1289,
DOI 10.1007/978-1-4939-2486-8_13, © Springer Science+Business Media New York 2015
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1.1 Kinase Overview

1.2 Kinase X-Ray
Structures

Kinases are one of the largest families of proteins in the human
genome, consisting of 518 protein kinases and at least 20 lipid
kinases [1]. In fact, they are encoded by approximately 2 % of
eukaryotic genes. Protein kinases catalyze protein phosphorylation,
i.e., the transfer of the y-phosphoryl group of adenosine triphos-
phate (ATD) to the hydroxyl group of a tyrosine, serine, and threo-
nine residues in protein substrates. This transfer is part of a vast
signal transduction pathway that dictates the regulation of cells.
Conversely, their deregulation leads to many disease pathologies.
Specifically, human malignancies are associated with activated pro-
tein or lipid kinases or inactivated phosphatases. This occurs for
many reasons, for example, mutations, chromosomal rearrange-
ments, and/or gene amplification. As such kinases now represent
almost one third of drug targets currently being examined by phar-
maceutical companies and academic researchers [2]. While their
primary therapeutic indications are cancer and inflammatory dis-
eases, kinases are also under investigation as targets for diabetes,
infectious diseases, cardiovascular disorders and cell growth and
survival. Over the last 10-15 years, several kinase inhibitors have
been approved for therapeutic use. Specifically, 11 have been
approved for cancer of the 20 overall kinase inhibitor drugs that are
on the market. Furthermore, over 150 additional kinase inhibitors
are currently in various stages of clinical trials. It is estimated that
about 50-70 % of current cancer drug discovery efforts in industry
and academia are focused on protein kinase inhibitors. Of the over
500 human kinases, a relatively small number of them are the pri-
mary target for the current kinase drugs. These include the tyrosine
receptor kinases, EGFR, ERBB2, VEGFR, Kit, PDGFR, the nonre-
ceptor tyrosine kinases ABL and SRC, and one Ser/Thr-specific
kinase, the atypical protein kinase, mTOR. In all but the last case,
these drugs bind in the ATP pocket. Kinase inhibitor drugs are just
now emerging, but their discovery and development still faces many
issues such as resistance through mutation, selectivity, a limited
number of inhibitor chemotypes, in addition to the need for mak-
ing inhibitors potent enough to compete with the cellular milli-
molar ATP concentrations [3]. As such, almost all drug discovery
and optimization strategies have been applied to kinase inhibitors,
including structure- and fragment-based methods.

Protein kinases are often classified on the highly conserved sequence
similarity of their catalytic domains. Manning et al. subclassified
them into eight major groups, namely, AGC, CAMK, CK1, CMGC,
STE, TK, TKL, and other using hierarchical clustering techniques
and this grouping has been largely taken up as the standard classifi-
cation of the protein family [4]. Additionally, kinases and particu-
larly their catalytic domain have been very amenable to X-ray
crystallography, allowing a detailed analysis of their three dimen-
sional structures. The structures of protein kinases have been
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extensively reviewed [5-7] and analyzed, especially with respect to
binding of ligands to the ATP pocket [8-10]. Among the 518
kinases, it has been estimated that about 190 unique human kinase
structures have been solved encompassing over 1,200 individual
kinase ligand co-complex structures [10]. These numbers agree
with a similar annotated and aligned database maintained internally
at Eli Lilly [11]. For example, we have annotated ~2,200 human
protein and lipid kinase X-ray structures from the PDB with some
sort of bound ligand, and ~1,600 of those ligands have a unique
chemical structure (not including internal X-ray structures). This
type of annotation is very useful in the structure-based design and
optimization of kinase inhibitors. In fact, ~200 of the unique ligands
bound to kinases in the PDB could be considered fragments (<=18
heavy atoms) in our annotated database. The numbers are a little
higher than those found in an internal analysis of the KLIFs data-
base [10] that showed ~1,000 unique ligand structures and approx-
imately 100 fragments. The KLIFS database, however, does not
include non-protein kinases or kinases with non-kinase domains.
For a breakdown of the distribution of the kinase structures with
unique bound ligands refer to Fig. 1. This histogram shows the
large number of X-ray structures available from each subfamily.
In the 10 years since first publishing the kinase annotated database,
the number of kinase X-ray structures has gone up dramatically.
At that time, only 38 kinase structures were available. In the

Binned HA |

Wo<x<18
| REE$

TK CAMK Other AGC TKL CK1 STE
Family

Fig. 1 Histogram showing the number of X-ray structures of unique ligands bound to kinases and grouped
according to kinase subfamily. Fragments, ligands with less than or equal to 18 non-hydrogen atoms, are
colored in pink, while the larger ligand numbers are represented in blue
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intervening decade, the number of kinases represented in the PDB
has increased five times. At the same rate, all 518 identified kinases
will have representative structures in the PDB in the near future.
Additionally, the proportion of the fragment structures to larger
ligands is highlighted. These kinase structures represent a wealth of
data for subsequent fragment-based design. Examples of this use
are given in the case study section of this guide (vide infra).

The kinase catalytic domain has a bilobal structure with the
N-terminal lobe, consisting of mainly p-sheet, connected to the
a-helical C-terminal lobe through a “hinge” strand. ATP binds to
this hinge region in a cleft between the two lobes. Figure 2 shows
the general overall structure of a kinase, in this case, AMP-PNP
(i.e., a non-hydrolyzable form of ATP) bound to cyclic AMP
dependent protein kinase A, PKA [12]. The protein is displayed in
ribbon format with the N-terminal domain at the top of Fig. 2a.
The mostly p-sheet lobe is connected through a “hinge,” (shown
in cyan) to the lower C-terminal, which can be seen to consist of
mainly o-helices. AMP-PNP is shown located between the two
lobes, located where the cofactor, ATP, binds. Lying over the ade-
nine and ribose rings of ATP is a conserved hairpin loop (in yellow)
called the glycine-rich, G- or P-loop. This loop is very flexible and
typically changes conformation in response to the bound ligand.
In addition, this structure, 1cdk, has a peptide bound in the protein
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Fig. 2 (a) X-Ray structure of AMP-PNP bound to PKA shown in ribbon format (PDB code 1cdk). The hinge region
is colored in cyan, the glycine-rich loop in yellow, and the substrate in orange. (b) ATP binding pocket of AMP-
PNP bound to PKA displaying hydrogen bonds to the hinge region in yellow. (¢) Annotated schematic of the ATP
binding pocket labeled for the various subpockets. A for the adenine, R for the ribose, and K for the lysine
subpockets
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substrate site (colored in orange) showing the close proximity of
where the y-phosphate of ATP is in relation to the substrate resi-
due that is phosphorylated. In Fig. 2b, a focused view of the ATP
pocket is shown. The characteristic hydrogen bonds made by the
adenine ring of AMP-PNP to the hinge backbone are highlighted.
Also the gate-keeper residue, which is a methionine for PKA, is
shown. This residue varies in many kinases and thus provides a
“selectivity pocket” which has been exploited in many inhibitor
designs [13]. The catalytic lysine in the back-pocket, a conserved
residue in all kinases, is also shown. These various regions in the
ATP pocket have been extensively explored and described.
Figure 2c¢ shows a schematic of the pocket using the annotation
according to Liao [9]. Information on the groups that can be
accommodated and the interactions available in the various areas in
the ATP binding site are critical for structure- and fragment-based
design.

Besides the G-loop, other portions of the ATP binding pocket
are conformationally flexible, and thus very sensitive to inhibitor
binding. Both the DFG- and G-loop can change in response to the
inhibitor, creating a challenge and opportunity in ligand design. In
the conserved portion of the back pocket there is a small loop
made up of an aspartate—phenylalanine—glycine or DFG motif
(red in Fig. 2). This loop typically exists in an “in” structure (as
shown in Fig. 2), but depending on the activation state and/or the
type of inhibitor bound, it can “flip” into an “out” conformation.
In the “out” conformation another pocket is formed, from the
movement of the Phe residue, which has been exploited for inhibitor
design. There is, however, a downstream effect on the activation
loop of the kinase from this movement. The DFG-out conforma-
tion can perturb the activation loop into an inactive conformation,
similar to that of an unphosphorylated kinase. An example is shown
in Fig. 3. The X-ray structure of Abl kinase bound to an inhibitor
that does not change the activation loop is shown in Fig. 3a with
the activation loop highlighted in red [14]. On the other hand,
when imatinib (drug known as Gleevec) binds, it induces or traps
an inactive conformation with the DFG loop in an “out” confor-
mation which forces the activation loop into a conformation that
blocks the substrate binding pocket (Fig. 3b). Due to these large
conformational changes, selecting the appropriate X-ray structure
to use for kinase inhibitor design can be critical.

Since Fesik’s seminal SAR by NMR work in 1996, the screening and
optimizing of weak affinity compounds with low molecular weight
for drug lead generation has mushroomed [15]. In the intervening
time, the strategy now termed as fragment-based ligand discovery
(FBLD) or fragment-based drug design (FBDD), has become a
common tool in the pharmaceutical industry [16]. As the FBLD
field has developed, it has converged on some common concepts



162 Jon A. Erickson

Fig. 3 X-ray structures of Abl kinase in the active and inactive form in ribbon format with the activation loop
highlighted in red. (a) Active form of Abl kinase bound to PD173955, PDB code 1 m52. (b) Inactive form of Abl

kinase bound to imatinib, PDB code 1iep

Computational Methods: *De Novo Design
*Physical property filters *Docking
*Kinase focused (p’phore/docking) * Scaffold hopping
*Chemical diversity *Linker design

Screening Cassette

: Screening Optimization
Design
Experimental Methods: +giochemical *Medicinal Chemistry
*Purity/Quality *NMR *SBDD
*Solubility *SPR *Library design
*Chemical libaries «X-ray crystallography ~ *ADMET

Fig. 4 Overview of the fragment-based ligand discovery process. See text for discussion

and processes over time. The general process for application of
FBLD is out lined in Fig. 4 but the screening strategy, make-up of
the compound screening library and methods of optimizing the
fragments differ according to the target and goals of the effort [17].
The overall process doesn’t differ significantly from that used in the
discovery of more typical size lead compounds. The assembly of
screening collections and the methods of detection, however, can be
quite different. These methods will be briefly discussed below.
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In addition, analysis of screening results must be reevaluated for
fragment screens. Since fragments are likely to have very weak bind-
ing affinity, the compounds selected for follow-up cannot be chosen
from an absolute potency perspective. This philosophy is the key
paradigm shift and value of FBLD. Instead of selecting potent, but
often large molecules with poor solubility and other properties,
smaller fragments with improved physical properties but weaker
potency are considered. Fragments can be defined in various ways,
but in general, a molecular weight or heavy atom count metric is
used. A variant of Lipinski’s “rule of 5” [18] was proposed where
fragments are defined to have a molecular weight less than 300 Da,
Clog P<3, the number of hydrogen-bond donors/accepters <3
each, and <3 rotatable bonds [19]. In order to evaluate these often
low affinity compounds the concept of atom efficiency, that is, the
amount of free energy of binding per atom in a molecule, was intro-
duced and turns out to be very useful for FBLD. Ligand efficiency
(LE), first published by Hopkins, is defined as the free energy of
binding divided by the number of heavy (i.e., non-hydrogen) atoms
in a ligand [20]. This effectively normalizes the potency of a com-
pound with respect to its size. Selecting compounds with better
ligand efficiencies as starting points for lead optimization may be
preferable to a potent, but large compound that has a greater poten-
tial for poor ADME properties [21]. Although the estimated maxi-
mal binding energy per atom is 1.5 kcal /mol, compounds with LE’s
of ~0.3 is a good benchmark to attain in screening and to maintain
during optimization. Atom efficiency analysis can be extended to
functional groups as well. Verdonk and Rees showed the use of
group efficiency in a fragment optimization of inhibitors of the
kinase, PKB [22, 23]. Here the efficiency of a group of atoms is
compared to the ligand without a group at the position in question
or to a common analog in a series. This allows comparison of func-
tional groups in terms of atom efficiency during a structure—activity
relationship (SAR) study. Another very useful concept that is aimed
at normalizing compounds for properties is ligand lipophilicity effi-
ciency (LLE) [24]. This metric consists of the difference between
the pICsy(-loglCs) and its logP. Since lipophilic compounds can
bind through a mechanism driven by the entropy gain that occurs by
simply displacing weakly bound waters, LLE can help to focus on
compounds with a balance of entropic and enthalpic driven binding
energies. Values between 3 and 5 are considered a good range to
attain for optimization in order to avoid overly hydrophobic mole-
cules. These terms and others like them can be important for kinase
discovery, as ATP competitive inhibitors often tend to have low
solubilities due to their flat nature and hydrogen bonding function-
ality. FBLD emphasizes the discipline to adhere to atom efficiency
concepts throughout optimization in order to maintain the good
properties inherent in the initial fragment hit.
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2 Methods

2.1 Fragment
Detection

Fragment identification for a particular target can be challenging
using traditional biochemical screening methods. Due to the weak
affinity of most fragments, biochemical screening paradigms at
concentrations up to millimolar concentrations can lead to many
false positives. For this reason typical fragment identification pro-
tocols employ an additional biophysical detection method to iden-
tify hits and /or to confirm true positives from high concentration
biochemical screens. Nuclear magnetic resonance (NMR), surface
plasmon resonance (SPR), isothermal titration calorimetry (ITC)
and X-ray crystallography are examples of successful methods used
for kinase FBLD [25, 26]. Since these methods have been exten-
sively reviewed, only a brief summary of each method is given in
this chapter.

NMR-based methods applied to fragments can be carried out
from the ligand or protein perspective [17, 27]. Ligand-based
methods have the advantage of working without need for labeled
protein and rely on the high sensitivity of NMR for the free and
bound states [28]. Ligand-based NMR will also work at much
lower protein concentrations than is needed to detect changes in
protein resonances. One can observe many changes (NOE, relax-
ation or magnetization transfer) of the ligand NMR spectrum to
indicate whether it is binding or not making it useful for screening.
The saturation transfer difference (STD) experiment is commonly
used due to the ability to use very low ratio of protein to ligand
concentrations. This method can also be used in a competition-like
experiment to displace a “spy” molecule to confirm binding sites.
Ligand NMR, however, does not give any binding information so
is typically followed up with X-ray crystallography. To get binding
location information, one can also detect changes in protein *N
chemical shifts upon ligand binding in HSQC or TROSY spectra.
This data can provide not only binding confirmation but also infor-
mation on where the fragments bind. The requirement of labeled
proteins and the limitation on the size of the protein does con-
strain the applicability of the protein experiment.

Another versatile biophysical screening method involves sur-
face plasmon resonance (SPR) [29]. The method typically involves
immobilization of the protein on a metal (typically gold or silver)
surface that the ligands/fragments are passed over. Oscillations in
the electrons (plasmons) excited by polarized light can be detected
and related to the mass change. Bound and unbound molecules
can then be quantified in a binding and subsequent rinsing
experiment yielding kinetic and thermodynamic data, i.e., on/off
rates and thus dissociation constants. Recent advances in SPR
detection, allow the method to be used in a high throughput for-
mat, permitting the screening of large fragment libraries.
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Isothermal titration calorimetry (ITC) is another technique that
has been used to identify fragments [30]. This technique directly
measures the heat of binding, allowing the calculation of thermody-
namic terms, AH and AS. These terms provide valuable information
in the selection of compounds to pursue and also in their optimiza-
tion. ITC is primarily used as a secondary screen, as the amount of
protein required and lack of high throughput formats preclude it as
a method to screen large libraries of compounds.

Perhaps the most information rich fragment identification
method is X-ray crystallography. It not only allows detection of
fragments, but directly gives the binding mode (see Note 1). Some
of the earliest fragment work was carried out with X-ray crystal-
lography. The seminal work by Ringe and coworkers used organic
solvents in crystallography to map binding pockets of a protein
[31]. In most cases, however, X-ray crystallography is not amena-
ble to screening large libraries and thus is used mostly to follow-up
confirmed hits found from other detection methods [32]. That
said, several groups have developed methods to use X-ray crystal-
lography in a direct screening fashion [33, 34]. These are mainly
accomplished through soaking of cocktails of fragments/ligands
into preformed crystals. Astex, SGX (currently Eli Lilly), and other
companies have used this methodology to identify and optimize
fragments. Not all proteins have been amenable to this technique,
but it has been shown to particularly useful for kinases.

Like biophysical methods, computational and informatics technol-
ogy plays an integral part of fragment-based drug discovery.
Computational tools are used throughout the process, from initial
screening to compound design and finally lead optimization
(see Note 2). Here a brief kinase-focused overview of computa-
tional fragment methodologies is outlined.

Many of the detection methods for fragments relies on low
throughput methods so libraries of compounds to screen must be
assembled in order to give the best chances for a positive outcome,
i.e., a variety of starting points with good ligand efficiency
(see Note 3), physical properties and an opportunity for optimiza-
tion. Furthermore, the need for highly soluble compounds is
essential due to the high concentrations needed to detect binding.
Fragment screening libraries can be constructed as general screen-
ing pools to represent chemical diversity or as focused library on a
particular target. Many examples of general fragment screening
libraries have been published and reviewed [35]. An example is the
one described by Astex [36] but other similar libraries have been
used by other companies [35]. Astex began by identification of
rings and functional groups found in known drugs to create an
initial virtual database that was expanded to topological equiva-
lents and enumerated with other atoms and single substitutions of
favored functional groups [36]. A database of ~4,000 compounds
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was produced of which ~400 were available for purchase. This
work was somewhat based on the scaffold generalization paradigm
used at Vertex [37]. They used a similar approach for an NMR
screening library that was based on a small set of fragments designed
to represent a diversity of shapes [ 38]. In addition to general librar-
ies, target focused libraries have also been created and used for
kinase fragment screening. For example, Astex used docking and a
hinge-specific pharmacophore to select fragments for a kinase-
biased library (se¢ Note 4) [36]. In a similar fashion, a kinase phar-
macophore based on hinge binding in kinase X-ray structures was
used to create a kinase-biased NMR screening library [39]. The
“privileged-structure” concept was used to greatly enrich screen-
ing results for kinases by workers at Vertex [40]. Using a “kinase-
likeness” parameter developed from scaffold or “framework”
analysis of kinase inhibitors to select compounds for screening,
gave up to a fivefold enrichment in kinase screening experiments.
Docking-based methods have also been used to focus screening
sets on kinase targets [41]. More recently QSAR and machine
learning methods have yielded highly enriched screening cassettes
for kinases. For example, support vector machine [42 ] and Bayesian
[43] models have shown high enrichments in kinase screening.
Sutherland et al. showed that naive Bayes models built from kinase
and other target family inhibitor fragment fingerprints could pre-
dict potency quite well and thus would be another method to
select compounds for kinase fragment screening [44].
Computational methods are also quite useful in specific design
and optimization of fragments, using many structure-based design
methods. Selection of kinase fragments for optimization typically
begins with an X-ray structure of the small compounds bound to
the kinase of interest, as docking of fragments to estimate the bind-
ing mode of small fragments has been a challenge. Even though
fragment docking should be somewhat simplified due to a lack of
conformation degrees of freedom, inaccuracies and molecular
weight dependence of most scoring functions are often unable to
distinguish the correct pose as defined by the X-ray structure. This
concept was examined in a recent study that systematically com-
pared fragment with drug-size molecule docking [45]. They con-
cluded that docking accuracy of fragments did not differ significantly
from that of docking larger molecules. Interestingly, the root cause
for accuracy did differ. It was observed that scoring functions were
the main problem with fragments, while sampling of the ligand
conformation caused inaccuracies with larger molecules. The over-
all cross-docking result for fragments, however, showed low
accuracy, ~40 % success rate, using a 1.5 A RMSD successful dock-
ing criterion. In another recent study, cross-docking results with
Glide show somewhat better results, ~60 % accuracy, but their defi-
nition of a fragment was larger and they used a 2.0 A RMSD to
define a successful pose. An interesting prospective analysis of
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PIM1 kinase docking highlighted some of the value and pitfalls of
fragment docking [46]. Analysis of hits from a fragment screening
experiment that used docking to select the compounds going into
the screen, showed some interesting results. Docking was able to
identity several efficient fragments, but in two of the five cases dis-
cussed, the docking pose didn’t agree with the subsequent X-ray
structure. This was mainly due to water positions and the misplace-
ment of hydrophobic portions of the fragments. These observa-
tions highlighted the critical need for an X-ray structure in FBDD
if available. Docking, however, was able to reproduce the impor-
tant hydrogen bonding patterns that were useful in the design of
new compounds. The take home learning is that docking can be
useful, but care should be taken in the use of the results and itera-
tive X-ray crystallography should be used whenever possible. Other
computational methods have been employed for fragment place-
ment besides docking. Karplus’s MCSS [47] protocol was the pio-
neering fragment placement and binding site mapping algorithm
actually predating the advent of experimental fragment-based
methods. The multiple copy simultaneous search method (MCSS)
floods a protein binding site with thousands of copies of a frag-
ment followed by simultaneous minimization of the copies. The
most energetically favorable positions of the fragments can be used
to provide guidance on the position and types of interactions to be
used for structure-based design. Another fragment placement
method also involves simulation of many fragments in the context
of'a protein. The Grand Canonical Monte Carlo (GCMC) method
solvates a protein in a fragment bath and calculates the ligand—pro-
tein binding modes and their binding free energies by annealing
[48, 49]. Fragment stability at different energy levels can point to
those that are most viable for optimization. Again the position and
interactions that these fragments make with the protein can help
guide structure- and fragment-based design by direct linking or
inference.

Fragment-based ligand design, after selection of the original
fragment placement in the binding pocket, typically employs a
linking or a growing strategy. In the latter case, one typically begins
with a bound fragment from an X-ray structure or a computation-
ally placed fragment. Positions on the fragment that can be substi-
tuted and yield vectors able to access pockets or additional
interactions to the protein are then identified. In a linking strategy,
substitutable valences on two fragments in the binding pocket are
identified followed by finding an appropriate linker group to com-
bine the two fragments. This was strategy was initially carried out
in the SAR-by-NMR experiments that launched fragment-based
methods [15]. For both strategies, computational techniques have
been developed and have evolved over the years, mostly under the
term “de novo design” methods. In fact, most of the techniques
used to place, link, grow or otherwise optimize fragments come
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from structure-based de novo efforts. One of the earliest fragment
placement and linking methods was pioneered by Bohm [50, 51].
The LUDI algorithm automatically placed fragments in a protein
binding site using molecular interaction rules derived from the
PDB and CSD databases. In addition, small fragment databases
were provided to link fragments together and also for growth from
a fragment to pick up additional molecular interactions. Other
linking methods were also developed. The HOOK program was
developed to link fragments generated using the MCSS method [52].
In another approach, a functional group linker was developed by
Bartlett’s group [53] to find optimal rings to position two frag-
ments based on their respective linking vectors. The initial imple-
mentation of CAVEAT has been updated and augmented with the
use of substituted rings [54]. This idea was further expanded by
implementing a more general vector alignment linking protocol
using experimental or computed ring conformations to replace
scaffolds in a bound ligand [55]. The method, called RECORE,
allows linking and growing plus an option to use the protein struc-
ture as a constraint along with a scoring function to rank order
ideas. Besides linking, LUDI was also able to grow from a frag-
ment in an attempt to satisfy extra potential interactions in a pro-
tein binding pocket. Another seminal development in
structure-based fragment growth was the work of Bohacek and
McMartin [56]. The GrowMol algorithm begins with a pre-gener-
ated grid enclosing the binding pocket with a heuristic comple-
mentarity potential encoded on each grid point that attempts to
capture the chemical environment of the local area of the pocket.
The available growth points are identified on the fragment or mol-
ecule and atoms and functional groups are added in a stochastic
manner (metropolis sampling) and scored for complementarity for
retention. The method has the added ability to grow rings and
macrocycles. In another early approach, Dean and coworkers ini-
tially utilized placement of fragments and concomitant growth
through the addition of predefined groups in a protein binding
pocket [57, 58]. They used a simulated annealing algorithm to
drive the optimization allowing movement of the new structures in
the pocket, thus effectively sampling chemical, conformational,
and positional spaces simultaneously for new molecules. The pro-
gram, Skelgen, has been improved to add key innovative steps to
increase its usefulness. The addition of a fragment library gener-
ated from the RECAP rules [59], which disconnects molecules
according to retrosynthetic rules, helped Skelgen produce more
synthetically feasible molecules. The ability to incorporate side
chain flexibility of the protein during design to accommodate
induced fit was also added [60, 61]. CDK2, was used as an initial
test case for Skelgen, showing its usefulness for kinases [62]. A final
innovative strategy for structure-based fragment or de novo design
involved a chimera-like approach utilizing the X-ray structures of
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ligands bound to the same protein or family of proteins [63].
BREED matches bonds using a geometric (distance and angle)
criteria in ligands overlaid by aligning their protein X-ray struc-
tures. Once the bonds are matched, molecular fragments are
recombined to produce hybrid molecules. This method was also
demonstrated using two kinases, p38 Map kinase and CDK2, and
showed an ability to generate kinase inhibitors that fell under the
scope of a p38 inhibitor patent. An exhaustive recount of all the
specific de novo strategies for fragment-based design has not been
given here, but rather an attempt to highlight the main strategies.
Many groups have taken these basicideas, augmented and improved
them through expanded fragment databases, scoring function
development and increased conformational sampling. In practice,
many of these techniques are available through commercial soft-
ware packages. Examples are the fragment-based capabilities from
within the Schrodinger Inc. [64] or Chemical Computing Group’s
(CCQ) [65] suite of programs. These groups have implemented
several of the fragment-based methods discussed herein and inte-
grated them into useful graphical interfaces. Schrodinger’s dock-
ing program, Glide, can be used for fragment placement and
docking-based selection of fragment libraries to screen. They also
have routines for structure-based combinatorial library expansion
of fragments and core-hopping ability (CombiGlide) with supplied
fragment databases and all integrated into their Maestro interface.
CCG’s fragment tools are even more extensive. They have a spe-
cific fragment menu in their MOE interface that allows access to
almost all of the fragment elaboration and de novo design strate-
gies discussed. In particular, MOE contains linking and growing
methods that allow facile fragment elaboration with included frag-
ment libraries. They have provided access to an implementation of
the RECAP rules in order to allow users to create their own frag-
ment databases. Fragments can be evolved with either an X-ray
structure or pharmacophore model using a number of strategies
with their tools. Fragment replacement with bioisosteres, medici-
nal chemistry rules or through an implementation of the BREED
algorithm can also be carried out. Finally, CCG has created an
annotated kinase X-ray database, which allows a by-residue analysis
and comparison of kinase ATP binding sites as well as annotation
of the state of the DFG loop conformation (se¢ Note 5). As with
the KLIFS database, this annotation is very useful for design and
optimization of both potency and selectivity. Thus, in practice,
fragment-based design can be carried out readily given the avail-
ability of a X-ray structure of a fragment bound to the kinase of
interest using already existing structures and computational tools.

The starting place for most applications of kinase fragment-
based design is an X-ray structure of a small ligand bound to the
kinase of interest. This fragment typically comes initially through
screening (vide supra) or mining of the numerous already available
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kinase-fragment X-ray structures. As previously highlighted,
kinases are particularly amenable to X-ray crystallography and as
such provide an ideal target family for FBDD and FBLD. Many
annotated kinase X-ray structure databases have been created to
help with inhibitor design. In Lilly’s version [11], we have created
tools to identify common scaffolds found as hinge binders in the
kinase-ligand co-complex X-ray structures. All of the kinase struc-
tures are aligned in a common frame of reference so the ligands
bound can be readily compared according to a binding mode.
Figure 5 shows a partial classification of the structures from the
KLIES database using our scaffold classification method. Many
common scaffolds are represented in ligands bound throughout
the various subfamilies of the kinome. Furthermore, we (and oth-
ers) have recognized that most of the kinase hinge interacting scat-
folds, bind in a similar way across the various kinases. There are
many exceptions to this observation, but there is enough com-
monality in scaffold-binding mode that it can be used in a reason-
ably predictive fashion. In other words, given a particular mode
that a kinase inhibitor scaffold binds to the hinge of one kinase,
there is a good chance that it will have a similar binding interaction
with the other kinases. We have used this to qualitatively predict
binding modes for fragment- and structure-based design of kinase
inhibitors [66, 67]. In fact, in many cases a hinge-binding frag-
ment X-ray structure can be predictive of a more elaborated
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Analysis of the conservation of kinase ligand binding modes

Number of Number of X-ray
X-ray structures structures with common PDB
Scaffold (fragment) binding mode (fragment) Representative fragment code
Aminopyrazole 26 (2) 21 (2) H lvyz
Y
Ny
B‘H
Aminopyrimidine 130 (7) 91 (4) o 2xj0
HQN*N
Azaindole 20 (3) 16 (3) HNAA H 3cde
N7\
Indazole 22 (5) 21 (5) H 2vta

The analysis is based on alignment of kinases proteins X-ray structures from the PDB in a common frame of reference

compound with the same hinge binder. For example, four common
hinge binding scaffolds (i.e., from data shown in Fig. 5) with both
fragment and larger molecules X-ray structures were examined and
results shown in Table 1. For each scaffold, a majority of the bind-
ing modes were qualitatively the same as the fragment, even though
the structures represented by these scaffolds bound are in many
different kinases. The binding modes of the four representative
fragments are shown in Fig. 6 to highlight the binding mode in
relation to the hinge region. Figure 7 shows an overlay of the
fragment-containing larger molecule structures on these frag-
ments. Since the overlays are of the kinase proteins and not the
ligands, the scaffolds don’t exactly align, but have the same relative
binding mode as the fragment structure for many ligands. This
gave us confidence to utilize predicted binding modes from previ-
ously crystallized kinase inhibitors of the same or similar scaffold in
library design. This method of predicted binding mode was utilized
in the de novo design of several kinase libraries and fragment
expansion using the predicted binding modes led to the synthesis
of several kinase active libraries [68].
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Fig. 6 X-Ray structures of four fragments from Table 1 bound to various kinases. (a) Aminopyrazole scaffold,
PDB code 1vyz. (b) Aminopyrimidine scaffold, PDB code 2xj0. (c) Azaindole scaffold, PDB code 3c4e. (d)
Indazole scaffold, PDB code 2vta

2.3 Recent Case
Studies

Since many excellent reviews on FBLD and FBDD have been pub-
lished showcasing very successful and elegant practical kinase
inhibitor examples [36, 69, 70], here only a few recent reports of
the various FBDD strategies are summarized, see Table 2. These
reports were identified from recent kinase bound fragment struc-
tures in the PDB, which utilized FBLD for discovery and /or opti-
mization. They represent a variety of kinases and scaffolds and
represent the wide applicability of FBLD and FBDD for kinases.
Astex, one of the pioneering companies for FBLD and FBDD,
provides a nice example of the fragment process in a recent report
on discovery of CDK2 inhibitors [71]. Using a CDK2 X-ray crys-
tallography soaking system, they screened their fragment library to
identify viable starting points for optimization. The library
consisted of 500 fragments from general and kinase focused meth-
ods. They uncovered over 30 hits, and described evaluation of
four. As typical for initial fragment hits each of the four had
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Fig. 7 Overlay of the X-ray positions of larger ligands on the four fragments from Table 1 showing the conser-
vation of binding mode. (a) Aminopyrazoles, (b) Aminopyrimidines, (¢) Azaindoles, (d) Indazoles

relatively low binding affinities (ranging from ~100 pM to 1 mM
1Csps) but the hits were very efficient with LE’s of 0.37-0.57. The
report illustrates the use of X-ray crystallography to grow and opti-
mize three of the four fragments. They nicely emphasize that the
key to the efficient optimization is examination of the molecular
interactions the fragment (and from all the other fragment struc-
tures) displays in the X-ray structures and identification of substitu-
tion points that allow growth to form new interactions, often
described as “vectors.” For example, they immediately went from
mM activity to 7 pM by adding a phenyl group to the amine of the
aminopyrazine fragment in order to fill a hydrophobic pocket that
was seen in the X-ray structure. In another example, they were able
to attain 30 nM potency of a pyrazolopyrimidine fragment by
picking up an additional hydrogen bond in the hinge region plus
the addition of a piperidine group in the ribose pocket to access
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Summary of kinase FBLD examples

Representative
fragment
Kinase Scaffold structure (s)  PDB code (s) Strategy Reference
CDK2 Pyrazine C'\[N\j/NHZ 2vta; 2vth; X-ray screening and [71]
N7 2vtm; SBDD
2vtj;2vtr; 2vts;  optimization
2vti; 2vtl;
2vtn; 2vto;
2tp; 2vtq;
2vtt;2vu3
Indazole H [71]
q@
Hydroxynaphthalene o' [71]
Pyrazolopyrimidine \({7 [71]
N
Q/N\N/
AuroraA-B Pyrazole N Newy 2wld; 2wlf; X-ray screening and [72]
@j—@ 2wlc; 2wle;  SBDD
2wlg optimization
JAK2 Indazole H 3e¢62; 3¢63; X-ray screening and [73]
. @E(N 3c64 SBDD
NH optimization
PIM1 Benzofuran O/\O) 3r00; 3r01; 3r04 SPR screening [46, 74]
Y
Br SBDD
optimization
Mpsl Quinazoline “ le 3hmp High concentration [75]
. biochemical
l screening and
SBDD
optimization
with MOE tools
CHKI1 Pyrrolopyrimidine [oj 2wmgq; 2wmr;  High concentration [76-78]
Y 2wms; 2wmt; biochemical
“ﬁ\\/ h} 2wmu; 2wmyv;  screening and
Vo 2wmw; 2wmx SBDD
optimization
with MOE tools
Rho Kinase Indazole 3vbs High concentration [79]

biochemical
screening and
SBDD
optimization

(continued)
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Table 2
(continued)
Representative
fragment
Kinase Scaffold structure (s)  PDB code (s) Strategy Reference
GSK3b Pyridine “Y c; — W 3zrk; 3zrl; 3zrm, Kinase panel [81]
HN \ 7 .
screening and
© SBDD
optimization
GSK3b & Triazole J None Kinase panel [80]
FLT3 - screening and
&) SBDD
: optimization
PDK1 Pyrimidine HS,\)OLN,\J AN 3qc4 Covalent tethering [82]
" K(” to screen thiol
HNWSH library followed
with SBDD
optimization

another hydrogen bond. The indazole fragment was carried the
furthest in the optimization. It was, in fact, morphed through sev-
eral FBDD iterations into a diamido-pyrazole which was eventually
advanced to clinical trials. In another case of FBLD, researchers
used a scaffold, specifically, pyrazole-benzimidazole, which was a
fragment identified not for the target of interest, Aurora A, but in
an X-ray screen for CDK2 inhibitors [72]. Characterization of
these compounds against a panel of kinases showed good potency
and especially, efficiency, for Aurora A kinase. This is a good exam-
ple, of transferring scatfolds from one kinase to another. X-ray
crystallography of the pyrazole-benzimidazole bound to both
kinases showed a similar binding mode to both CDK2 and Aurora
A and explained the additional potency of this fragment for Aurora
A as the complementarity of this scaffold to Aurora A near the
hinge was better than it was for CDK2. Astex was able to take
advantage of this complementarity to grow this fragment into a
potent and selective compound that was also advanced to clinical
studies. During the optimization, they again emphasized the atten-
tion to physical properties, specifically size and lipophilicity. The
final molecule, for example, featured a cyclopropyl urea group that
provided the right conformation and lipophilicity for cell potency
and solubility. Another indazole fragment found for JAK2 kinase
through X-ray crystallographic screening was recently reported
[73]. Using the SGX X-ray crystallographic screening protocol, a
fragment library designed to have good physical chemical and
drug-like properties, yielded several hits. They selected a bromo-
amino-imidazole to follow-up (41 pM IC;) for a fragment growth
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strategy due to its high LE (0.54) and its potential substitution
points. Using the X-ray structure, viable vectors for growth were
selected, namely the 5- and 6-positions of the indazole, and several
analogs were synthesized. A highly atom efficient 5-phenyl substi-
tution was identified and selected over the less efficient 6-position
for further elaboration. A very potent 4-t-butyl-sulfonamide sub-
stitution on the 5-phenyl ring was designed and yielded very potent
binding (78 nM). From the initial fragment and synthesis of a
minimal number of analogs (<25), they achieved a 500-fold
potency increase. Other screening methods have also been quite
successful for FBLD. An example of a fragment campaign using
SPR screening was recently reported for PIM1 [46, 74]. In this
effort, a 1,800 compound fragment library was screened using
SPR at high concentration (75 pM) with the hits being followed
up with biochemical ICs, determinations. Several active fragments
were found, but a few 2-carboxylic acid benzofuran analogs were
particularly interesting due to their high LE values and novelty for
PIMI. This kinase is quite unique in its structure as it has a proline
residue in the hinge position whose backbone NH normally acts as
a key hydrogen bond donor with the purine ring of ATP and to
most kinase inhibitors. This is a case where previous co-crystal
structures of the scaffold bound to other kinases will most likely
not transfer due to the unique hinge in PIM1. Thus, X-ray struc-
tures were critical here for use in growth and optimization of the
fragment. The X-ray structure and activity relationship of the ben-
zofuran hits suggested 5-position and 7-position elaboration.
A flip in the binding mode of about 180° occurred when the
5-bromo analog was substituted with a 7-methoxy group. In effect
the flip overlays the two bromine atoms in the same hydrophobic
pocket while allowing the methoxy group to project into an open
area. This is an example, where the binding mode can change upon
growth, emphasizing the importance of iterative X-ray crystallog-
raphy for fragment work. Further optimization is described explor-
ing the 5- and 7-position vectors leading to a compound with a
425-fold potency increase. In addition, the physical properties of
the fragments were also very important during the growth and
optimization. Some of the optimized compounds proved to be
very soluble and metabolically stable. The next two examples uti-
lized a similar process of high concentration screening to identify
fragments from cassettes built using kinase-based pharmacophore
methods in MOE. In the first case, a screening cassette of
commercial compounds was constructed with the help of a MOE
3D pharmacophore to focus the fragments for screening against
Mpsl kinase [75]. In particular, a set of five different kinase X-ray
structures was used to build a pharmacophore model which was
subsequently used to filter 15,000 commercial compounds.
In addition, the compounds were filtered using general drug-
likeness models to comply with good size and physical properties.
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The resulting hits were clustered by scaffold into a 160 compound
set that was used in the biochemical screening at a 50 pM concen-
tration. Six quinazoline hits were found and followed up with
X-ray crystallography from which an Mpsl X-ray structure co-
crystallized with a 13 pM hit was solved. Full characterization of
the molecular interactions provided data important for further
growth and optimization. A second example of the using of high
concentration biochemical screening involved the discovery of a
CHKI inhibitor [76-78]. Again using a 3D pharmacophore built
with the MOE tools was enlisted to filter commercial databases for
an initial screening set. In addition to the kinase pharmacophore,
which required three hydrogen bonds to the hinge region, a hydro-
phobic group in the adenine-ribose pocket and an interaction with
the catalytic lysine, they also used a CHK1 X-ray structure as an
excluded volume constraint. Hits from the screen were clustered
into chemotypes and representatives from each scaffold were
selected to yield 361 compounds for high concentration biochemi-
cal screening. Of the nine hits that were confirmed by X-ray crys-
tallography, a pyrrolopyrimidine fragment was particularly efficient
and thus selected for some initial structure-guided growth. This
scaffold was later morphed into an amino-isoquinoline which
showed good activity in mouse xenograft models. Instead of
screening commercial or in-house databases of compounds, several
efforts demonstrated the use of X-ray data to design one-step reac-
tions to generate screening cassettes for FBLD. One example uti-
lizing this strategy focused initially on small library of 4-pyridyl
analogs [79]. High concentration biochemical screening identified
several weakly active (72-270 pM), but atom efficient analogs
(0.29-0.39) for Rho kinase. Modeling suggested substitution of
the 4-pyridyl hinge binder with an indazole which further increased
the potency. Optimization ultimately produced potent compounds
with promising cell potency against Rho kinase. A similar approach
utilizing synthetic libraries combined with FBLD principles was
used to identify inhibitors of GSK3f and FLT3 [80]. Here the
authors took advantage of click chemistry from which they were
able to assemble 1,4- and 1,5-di-substituted 1,2,3-triazole ana-
logs. The 1,2,3-triazole group was designed to bind to the hinge
region of the kinases while the various di-substituted regioisomers
could explore the pockets of the kinases. Screening of the initial
triazole library against a panel of kinases uncovered inhibitors of
both GSK3p and FLT3. Another example of panel screening of
fragment-like compounds reported was the discovery of thieno-
pyridinone inhibitors of GSK3p [81]. Crystal structures obtained
on the first few fragments found and the information obtained
from the binding mode regarding the molecular interactions were
used to grow the molecule. The first pass optimization consisted of
a structure-guided medicinal chemistry approach followed by a
computational driven approach to optimize the CNS permeability



178 Jon A. Erickson

properties of the compounds. Virtual libraries were enumerated
and filtered with calculated ADME and physical properties. This
was followed by docking to models constructed with the initial
X-ray structures to select the final molecules for synthesis. In the
end they were able to improve properties for blood—brain barrier
penetration and increase potency sixfold. Most recent examples of
FBLD and of those presented here, describe fragment growth to
optimize ligands rather than linking of fragments. This is mainly
due to the common use of X-ray structural data, where the binding
of multiple fragments in the same structure are not as common as
single fragment binding. An interesting alternative approach uses a
technique of tethering a fragment covalently to the kinase followed
by X-ray crystal structure guided elaboration [82]. In this instance,
a cysteine was introduced at position 166 in the ATP binding site
of PDKI1 kinase and then coupled to a diaminopyrimidine thiol to
covalently bind to the protein. The X-ray crystal structure of one of
the optimally linked analogs showed that the aminopyrimidine
attained a binding mode bound to the hinge region of PDKI1. The
bound fragment also had a free thiol, so was able to form covalent
bonds readily with other thiols with complementary substituents.
To optimize the initial aminopyrimidine, the PDKI protein with
the covalently attached diaminopyrimidine thiol was in turn sub-
jected it to a library of 3,000 thiol containing groups to identify
optimal groups for binding in the back pocket of PDKI1. A pyrimi-
done substituted analog was found, and an alkyl chain version of
the thiol compound found to bind at 200 nM 1Cs, without the
covalent tether. Exploration of the tether lengths plus aminopy-
rimidine replacements led to the inhibitors that bound to a DFG
out conformation of PDKI, the first demonstrated by X-ray
crystallography.

With the continued advancement of fragment detection meth-
ods, computational tools and the ever-increasing number of frag-
ment bound kinase X-ray structures, the future of FBLD to discover
new kinase inhibitor drugs is very bright.

3 Notes

1. Fragment-based methods have had markedly good success in
the development of kinase inhibitors for drugs. The amenabil-
ity of kinases to X-ray crystallography and especially the ability
to solve fragment bound structures has driven this success.

2. The most challenging aspect for kinase FBLD comes in during
the optimization of the fragments. Selectivity, potency, solubil-
ity and ADME properties can be very difficult issues to sur-
mount, but with the ability to use iterative X-ray crystallography
and computational tools, many examples of successful kinase
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FBLD have been noted. In fact, one of the first drugs to

originate from a fragment campaign is the BRAF kinase inhibi-
tor, Vemurafenib [83, 84].

. One reason kinases have been very good targets for FBLD is

the high ligand efficiency with which fragments bind to this
class of proteins. Highly efficient fragments are much easier to
detect and crystallize.

4. The hinge binders, which are the most common place for frag-

ments to bind to kinases, provide a very nice potential for sev-
eral molecular interactions. Specifically, 1-3 hydrogen bonds
and a lipophilic pocket can all contribute to high ligand
etficiency.

5. The commonality of ATP binding sites has allowed the ability

to transfer X-ray binding mode information from one kinase to
another. This greatly expands the number of scaffolds that can

be utilized for fragment optimization.

The author is indebted to Drs. M. Vieth, J. Sutherland, J. Toth,
D. Robertson, and C. Humblet for valuable suggestions and
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Chapter 14

Designing a Small Molecule Erythropoietin Mimetic

Frank Guarnieri

Abstract

Erythropoietin (EPO) is a protein made by the kidneys in response to low red blood cell count that is
secreted into the bloodstream and binds to a receptor on hematopoietic stem cells in the bone marrow
inducing them to become new red blood cells. EPO made with recombinant DNA technology was brought
to market in the 1980s to treat anemia caused by kidney disease and cancer chemotherapy. Because EPO
infusion was able to replace blood transfusions in many cases, it rapidly became a multibillion dollar per year
drug and as the first biologic created with recombinant technology it launched the biotech industry. For
many years intense research was focused on creating a small molecule orally available EPO mimetic. The
Robert Wood Johnson (RW]) group seemed to definitively establish that only large peptides with a mini-
mum of 60 residues could replace EPO, as anything less was not a full agonist. An intense study of the
published work led me to hypothesize that the size of the mimetic is not the real issue, but the symmetry
making and breaking of the EPO receptor induced by the ligand is the key to activating the stem cells. This
analysis meant that residues in the binding site of the receptor deemed absolutely essential for ligand bind-
ing and activation from mutagenesis experiments, were probably not really that important. My fundamental
hypotheses were: (a) the symmetric state of the homodimeric receptor is the most stable state and thus must
be the off-state, (b) a highly localized binding site exists at a pivot point where the two halves of the receptor
meet, (¢) small molecules can be created that have high potency for this site that will be competitive with
EPO and thus can displace the protein—protein interaction, (d) small symmetric molecules will stabilize the
symmetric off-state of the receptor, and (e) a key asymmetry in the small molecule will stabilize a mirror
image asymmetry in the receptor resulting in the stabilization of the on-state and proliferation of the stem
cells into red blood cells. Researchers at Amgen published a co-crystal structure of EPO bound to the EPO
receptor, which has a beautiful twofold symmetry—it was argued that this is the active state of the receptor.
Activating the EPO receptor with EPO induces an almost instantaneous shutdown mechanism to sharply
curtail any proliferative signal transduction, and thus, my hypotheses lead to the conclusion that the Amgen
co-crystal is actually the state after receptor downregulation and thus an oft-state. To put these hypotheses
to the test, my computational method of Simulated Annealing of Chemical Potential was run using the
co-crystal created at RW]J, which is the receptor trapped in a partial agonist state. The simulations predicted
a previously unknown high affinity binding site at the pivot point where the two halves of the dimeric
receptor meet, and detailed analysis of the fragment patterns led to the prediction of a molecule less than
300 MW that is basically twofold symmetric with a chiral center on one side and not the other. Thus, to the
degree that computer simulations can be taken seriously, these results support my hypotheses on small
molecule receptor activation. When this small molecule was synthesized and tested it indeed induced human
hematopoietic stems cells to become red blood cells. When the predicted chiral center of this molecule
was removed eliminating its one asymmetric feature, the resulting molecule was an antagonist—it could
potently displace hot EPO but could no longer induce stem cell proliferation and differentiation. These
results provided strong support for my theories on how to create potent small molecule EPO agonists and
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were used to launch the new company Locus Pharmaceuticals. These molecules, however, required
significant chemical changes in order to make them stable in other in vitro assays and to be in vivo active,
but these alterations had to be done in a way that maintained the symmetry—asymmetry considerations
that led to the creation of an in vitro active molecule. The combination of changing functional groups
to enable good pharmacokinetics, while not changing the key intrinsic symmetry properties were never
seriously pursued at Locus and the program died. Investigations into how red blood cells are created have
occupied many prominent researchers for the entire twentieth century. In the second half of the
century EPO was discovered and by the end of the century it became a blockbuster commercial product
that launched the biotech revolution.

Key words Erythropoietin, EPO mimetic, Small molecule, Protein—protein interaction, Fragment
based drug design, Monte Carlo

1 Historical Background

What are the factors that induce the bone marrow to produce new
red blood cells? The search for answers to this question occupied
many investigators during the twentieth century and the findings
have the dual distinctions of being an epic case study in medical
research and a focal point of the genomics revolution. In the first
half of the 1900s it was generally accepted that low blood oxygen
levels directly stimulated the bone marrow to produce new red
blood cells. Thus, it is interesting that as early as 1906 Carnot [1, 2]
proposed the alternate theory of a humoral factor produced by
some organ in response to low oxygen levels that circulated to the
bone marrow stimulating red blood cell production. For the next
40 years, no research group produced compelling experimental
evidence supporting either theory. In 1950, Reissmann [3] para-
biotically united a pair of rats by an anastomosis from the ears to
the tail roots and demonstrated that elevated erythropoiesis
occurred in both partners when only one was subjected to hypoxic
conditions. This was arguably the first significant experimental
demonstration of the existence of a blood factor, the so-called
erythropoietin (EPO), responsible for causing the bone marrow
to produce red blood cells. The interpretation of Reissmann’s
results is that the animal put in the hypoxic chamber produces
excess EPO, while its partner in the normal atmospheric chamber
does not. The normal animal nevertheless, has enhanced levels of
red blood cells that are comparable to its hypoxic partner, because
the EPO produced by one is shared by the other through the
anastomosis.

Although Riessmann’s experiments were a tour-de-force, the
complexity and expertise required to carry out the anastomosis
procedure made replication of results by other labs difficult to
impossible. For the community to definitively adopt the EPO the-
ory of red blood cell production, simple widely accessible proce-
dures that could be reproduced by others needed to be developed.
In 1953 Erslev [4] showed that normal rabbits would produce
large amounts of reticulocytes 4—6 days after being injected with
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200 ml of plasma drawn from anemic rabbits but there were no
measurable changes in reticulocyte count if the injected plasma was
taken from normal animals. The interpretation of these results is
that rabbits made anemic either by starvation or bleeding produce
EPO in order to stimulate the bone marrow to create new replace-
ment red blood cells. Since the plasma collected from anemic rab-
bits should be high in EPO—if this “anemic” plasma is injected
into normal rabbits these animals should produce significantly
enhanced numbers of reticulocytes. Erslev’s procedure is simple
and easy to reproduce by other labs. The experimental procedures
became solidified in 1955 when Jacobson and coworkers [5] dem-
onstrated that the EPO effect could be quantitated by monitoring
the red blood cell uptake of radioactive iron-59. By injecting the
test animals with radiolabeled iron in conjunction with anemic
plasma and then subsequently harvesting the cellular fraction from
blood, an assay of the radioactivity gives quantitative information
on how EPO stimulates red blood cell production.

Once the EPO theory of red cell proliferation became embraced
by the medical community, the next step was to find the organ that
produced it. Jacobson and coworkers [6] made their next contri-
bution to this field. They systematically removed different organs
in rats and then subjected them to either a significant hemorrhage
or a dose of CoCl,. Only nephrectomy resulted in no elevation of
EPO. The interpretation of these results is that hypophysectomy or
thyroidectomy or splenectomy or removal of most of the liver fol-
lowed by hemorrhage or CoCl, red cell destruction, did not stop
the rats from producing large amounts of EPO—plasma redrawn
from these animals could dramatically increase red cell production
in normal rodents. When the kidneys were removed, however, no
EPO production was induced in the animals. These results were
taken as definitive proof that the kidneys are the source of
EPO. Subsequent studies by Reissmann et al. [7] and Hirashima
and Takaku [8] confirmed that the kidneys are in fact the source of
EPO, unleashing an explosive amount of new investigations and
necessitating that researchers have readily available sources of EPO
and a generally agreed upon reference standard. In 1966 the World
Health Organization certified an International Reference Preparation
of Erythropoietin [9] isolated from severely anemic human urine
making 1 ml samples available to the research community with an
arbitrary assignment of 10 units of EPO activity.

Continuing research throughout the 1970s clearly indicated that
EPO would very likely be an effective treatment for various forms of
anemia [10] especially in renoprival [11] patients. The detailed
molecular characterization necessary for further progress required
highly purified protein, which Goldwasser and Kung produced [12]
in 1971, but unfortunately in quantities too small for sequence analy-
sis. It took another 6 years for these investigators [13] to develop
a protocol for producing purified EPO in milligram quantities.
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This was of seminal importance in developing EPO as a commercial
product, because the Miyake purification method was used to pro-
duce protein for tryptic digestion, sequence analysis of peptide
fragments, DNA probe construction, genomic library screening
[14], and cloning and expression of the EPO gene by both Amgen
[15] and Genetics Institute [ 16]. Just 2 years later in 1987, recom-
binant human erythropoietin from Amgen was shown in clinical
trials [17] to restore hematocrit to normal levels in patients with
end-stage renal failure with no discernible toxicities, thus eliminat-
ing the need for transfusions in these patients. For more than two
decades to the present recombinant EPO has been used for the
treatment of cancer chemotherapy induced anemia and renal
failure, with both [18] having 2003 sales ~$4B for Procrit from
Johnson and Johnson and Epogen and Aranesp [19] combined
from Amgen, respectively.

2 The Case Against the Existence of an Orally Available Small Molecule

EPO Mimetic

2.1 The Work
from Robert Wood
Johnson (RWJ)

The earliest evidence suggesting that any EPO mimetic whatsoever
might be impossible is posttranslational modification of the pro-
tein. Both recombinant studies cited above [15, 16] state that
about 40 % of EPO’s molecular weight comes from carbohydrates.
Physicochemical comparisons between natural EPO purified
from the urine of patients with aplastic anemia and recombinant
EPO indicate that both [20] have one O-glycosylation and three
N-glycosylation sites. Wasley and coworkers [21] have shown that
EPO with incompletely processed N-linked oligosaccharides is
500-fold less active in vivo. Experiments from Yamaguchi and col-
leagues [22] confirm this finding while Delorme et al. produced
[23] similar results by selectively mutating sites of glycosylation.
One reasonable interpretation of these results is that a subset of the
posttranslational modifications are essential for high in vivo EPO
activity. In fact, Amgen’s Aranesp is a modified non-natural version
of EPO specifically engineered [24] to have five N-glycosylation
sites, which gives it a threefold longer serum half-life, thus further
validating the importance of posttranslational modification.

The RW] group produced a singularly impressive body of work that
is the basis of the atomic level mechanistic understanding of the
binding and signal transduction of EPO. RW] in collaboration with
Affymax [25] discovered 20-mer EPO mimetic peptides (EMP)
using phage display and showed that EMP1 is an in vitro and in vivo
agonist. RW] solved the co-crystal structure [26] of the extracel-
lular binding domain of the EPO receptor (EPOR) with EMP1
demonstrating homodimerization of EPOR with two equivalents
of bound ligand. The EMP1 dimer is approximately two orders of
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magnitude less potent than EPO, so the RW] group had the clever
idea of cross-linking the EMP1-EMP1 dimer, hypothesizing that
this should increase agonist potency. They discovered that a poly-
ethylene glycol linker [27] that is approximately 23 amino acids
long yielded a molecule EMP1-PEG-EMP1 that has comparable
agonist potency to EPO itself. These results, summarized in Fig. 1,
definitively demonstrate that EPO mimetics that are functional
both in vitro and in vivo can be created and that the apparently
essential posttranslational modification of the natural hormone is in
fact not an absolute requirement for activating the receptor.
The other strong conclusion of the RW] work is that ~60 AA is the
minimal structure for full agonist mimetic activity (EPO is 166 AA
with almost 50 % of its total weight coming from carbohydrates)

EPO + Di-peptide EMP1 EPO + Di-peptide EMP1 and linker PEG

Di-peptide
EMP1 and
linker PEG

IC50 (uM) ED50 (uM)
EMP1 0.07 e 0.1
EMP1-PEG 0.02 0.001

Fig. 1 A summary of some results from the Robert Wood Johnson Group. The upper left panel is the co-crystal
structure of the 20-mer EPO mimetic peptide known as EMP1 (Science 1996). Both the receptor and ligand
crystallize in the dimeric state. The upper right hand panel is a simplified rendition of cross-linking of EMP1
with polyethyleneglycol (Chem and Bio 1997) also known as PEG. The number of repeating units in the linker
is approximately 23 amino acids long. The lower left and right hand panels are a blowup of the EMP1 dimer
and EMP1 cross-linked with PEG. Interestingly, shown at the bottom, with or without cross-linking the binding
affinity is almost the same as seen in the IC50, but agonist activity is enhanced by two orders of magnitude
with the addition of the PEG cross-link shown in the ED50



190 Frank Guarnieri

2.2 Non-peptide
Organic EPO Mimetics

Crucial Phe93 separated >20A

Fig. 2 The RWJ group identified the pair of Phe93 residues as critical interaction
points for both natural EPO and EMP1. The salient point that they make is that
EMP1 has no sequence similarity to EPO and yet both make intimate interactions
with the pair of Phe93 amino acids as demonstrated by mutagenesis experi-
ments (JBC 1997). The interpretation of these results is the PEG-EMP1 is likely
the minimal ligand that can have full agonist activity, because this construct is
required for proper ligand presentation to the pair of Phe93 residues of the
receptor

with additional supporting evidence coming from their mutagenesis
studies showing that ligand contact with Phe93 on both receptors
[28] is essential for receptor activation. The pair of Phe93 residues
is separated by over 20A as shown in Fig. 2. Taken as a whole, this
collection of work demonstrates that carbohydrates are not neces-
sarily needed for ligand agonist activity, but that there is no way to
make a small organic molecule with agonist potency comparable to
EPO—at least not one that is small enough to be potentially orally
bioavailable if dual Phe93 interaction is required.

In 1999 the Merck group [29] did in fact demonstrate that organic
non-peptide molecules could bind to and activate the EPOR.
Their strategy was to first identify a small organic molecule that
binds to the receptor by screening an in-house library and then
covalently link multiple copies of this molecule to a common core.
The screening hit (N-3-[2-(4-biphenyl)-6-chloro-5-methyl ]
indolyl-acetyl-L-lysine methyl ester) inhibited EPO binding with
an IC50 of 59.5 pM. Eight copies of this molecule attached to an
eight-fold reactive polyamidoamino-octa-4-hydroxymethylbenza-
mide dendrimer resulted in a molecule that inhibited EPO binding
with an IC50 of 4.4 pM. The dendrimer scaffold alone had no
detectable binding to the EPOR. This very complicated large small
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molecule “octa-oligomer” does in fact show weak agonist activity
in stimulating human hematopoietic progenitor cells, which does
establish that non-peptides can activate the EPOR. A group at
Scripps took a similar approach to the Merck group, creating and
screening combinatorial libraries designed to mimic the RWJ
EMPI1 peptide to obtain weak EPOR binders and then oligomer-
izing these small molecules unto symmetric cores to enhance
potency and demonstrate weak agonist activity [30]. While these
efforts demonstrate that organic structures can activate the EPOR,
the size and complexity of these molecules seem to indicate the
impossibility of making a small drug-like EPO agonist.

3 Theory and Hypotheses for Creating Small Molecule EPO Mimetics

3.1 Hypothesis I:
The Amgen Structure
Is the Receptor

in the Off-State Not
the On-State

The RW]J group performed mutagenesis studies [31] confirming
that the pair of Phe93 residues are important binding partners for
both EPO itself and the mimetic peptides, which led them to con-
clude that “these residues may represent a minimum epitope on
the EPOR for productive ligand binding.” Figure 2 shows the dis-
tance between the pair of Phe93 and the space below that needs to
be filled in, in order to create a scaffold to present the interactions
to these key residues, which can only lead to the conclusion that no
small molecule can be created to activate the receptor. The Merck
and Scripps work discussed above apparently confirms these con-
clusions, because their organic molecules were designed to mimic
these key interactions. A small molecule in this context means
something that has the potential to be orally bioavailable—a com-
pound that has a molecular weight of less than 600. The combina-
tion of all the work summarized so far indicates that this is not
possible.

The Amgen group solved the crystal structure of EPO bound
to the extracellular binding domain. It is a beautiful twofold sym-
metric ligand-receptor complex, which “shows that erythropoietin
imposes a unique 120° angular relationship and orientation that is
responsible for optimal signaling through intracellular kinase path-
ways [32].” The orientation of the receptor in this EPO bound
structure is significantly different from the structure solved by the
RWJ group with bound EPO mimetic peptides. The EPO mimetic
peptides are partial agonists, so they do in fact activate the receptor
to some extent even though the receptor is in a completely differ-
ent state compared to the Amgen structure. My interpretation of
Amgen’s results is quite different.

There are two main reasons for my hypothesis, one biological and
one mathematical. The biological reason is that EPOR normally
resides in the off state, because it is immediately shut down by
intramolecular phosphorylation and ubiquitination [33] upon
activation. Any growth factor receptor has to normally be in the
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3.2 Hypothesis II:
The Partial Agonist
State of the EPOR
Represented by
the EMP1 Bound
Peptides from RWJ
Has an Asymmetry
That Is Induced by
the Ligand

3.3 Hypothesis Il
Interacting

with the Essential
Phe93 Pair Is Not
Essential for Receptor
Activation

3.4 Hypothesis IV:
The Pivot Point Where
the Two Receptors
Meet Is a High Affinity
Binding Site

of the Receptor

and a Small Molecule
That Binds at This Site
Will Activate

the Receptor if It Has
the Right Symmetry
Properties

off-state because being excessively in the on-state as is the case with
constitutively active mutants [34] can lead to cancer. From this it
may be concluded that the on-state is a higher energy state and
that it is probably unstable requiring ligand-binding to populate it.
The straightforward interpretation of the EPO-bound co-crystal
of the receptor is that this is the ligand induced active state. The act
of forming crystals that yield high resolution structure, however,
inherently drives the system into a stable state not a transient active
state; thus, 1 hypothesize that the Amgen structure represents an
off-state. Mathematically, the most stable state of a complex system
is often the state of highest symmetry, the global minimum, which
I hypothesize, is represented by this structure.

This is essentially a corollary to the first hypothesis. If the off-state
of the receptor is the stable 2-fold symmetric state, then activating
the receptor requires that a ligand break this symmetry.

The RW] group has shown very compelling experimental evidence
on the seminal importance of interacting with the Phe93 pair of
the dimerized EPO receptor for both EPO and EPO mimetic pep-
tide agonist activity. They also showed that inducing receptor
dimerization alone in not sufficient [ 35 ] for activation. The essence
of this hypothesis is that receptor activation occurs via a ligand-
driven switch from the symmetric off-state to its asymmetric on-
state. It should be possible to induce this change without interacting
with the Phe93 pair.

The essence of this last hypothesis is on the nature of the dimerized
receptors, particularly the point where they meet and how the two
parts pivot either symmetrically or asymmetrically relative to each
other. This pivoting will cause the receptor to be in the off-state or
the on-state, respectively. A small molecule that binds to this site
must have an asymmetry that counteracts the asymmetry of the
activated receptor. When they are paired, the asymmetry of one
cancels the asymmetry of the other resulting in a symmetric ligand—
receptor complex that transiently stabilizes the active state of the
receptor.
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4 Testing the Hypotheses with Computer Simulations

4.1 Simulated
Annealing of Chemical
Potential: The Method

To my knowledge, there is no experimental evidence that the pivot
point where the two receptors meet has any importance whatso-
ever for ligand binding and receptor activation. So the first prereq-
uisite is to test the hypothesis that this location is a high affinity
binding site—and this will be done with simulations. The
computational technique of grand canonical Monte Carlo [36]
with the variable chemical potential [37] method (SACP) that I
first introduced to study the differential hydration properties of the
major and minor grooves of DNA [38] has been generalized to
predict protein binding sites. The algorithm successfully predicted
the binding sites in eight different variants of hen egg white lyso-
zyme [39], demonstrating its robustness, and predicted a previ-
ously unknown lipid binding site [40] in mitochondrial aspartate
amino transferase (mAAT). Experiments on the mAAT confirmed
the computational predictions that this enzyme binds lipids and
moonlights [40] as a plasma membrane transporter. The SACP
simulations do indeed predict that a high affinity binding site exists
at the point where the two EPO receptors meet (Fig. 3).

SACP is a straightforward Monte Carlo procedure that is illus-

trated in Fig. 4. A simplified but representative protocol is to
generate a random number (RanX) between 0 and 1 and to insert

air

._:C__,ry_cial Pheo3 _P

Fig. 3 The red blob is a cluster of high affinity fragments predicted by the com-
puter simulation technique simulated annealing of chemical potential (SACP). In
order to be classified as a true binding site this location must also have a pre-
dicted low affinity for water. So at least by computer simulation, there is evidence
that a high affinity binding site does exist where the two receptors meet in support
of Hypothesis IV. Note SACP has been very successful in predicting binding sites
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Immerse protein

Anneal p (chemical potential)

Isolated binding Lowest free energy,
sites revealed highest affinity site
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Fig. 4 The SACP method is demonstrated schematically. The graph at the bottom shows that when the chemical
potential of the protein simulation cell is high, the bulk region at B=10, the probability of accepting an inser-
tion of a fragment is very likely and the simulation cell becomes completely saturated, which is shown in the
upper left panel. As the chemical potential is lowered, nothing particularly dramatic occurs, because insertions
and deletions are approximately balanced. When the chemical potential is lowered to the point that it begins
to surpass the free energy of fragment—fragment cohesion (this is the solvent—solvent interaction energy), the
system goes through a phase transition evacuating most of the solvent fragment molecules, which is shown
in the center panel. The very interesting result is that a discrete number of sites on the protein retain fragment
binding throughout the phase transition—these are the high affinity sites. As the chemical potential is annealed
(further lowered) additional sites are evacuated, which is shown in the right panel. Because chemical potential
is a formal free energy, this process defines a quantitative relative rank order affinity between different sites
on the protein for a particular fragment. Different fragments have different binding patterns
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a fragment into the protein simulation cell if RanX < 0.5 or delete a
fragment if RanX>0.5. In either case this is a trial move with
attempted insertion assigned a probability of P=exp[-
[E(n+]1)-E(n)]/(RT)]xexp[B]/(N+1) and attempted fragment
deletion a probability of P= Nxexp[-[E(n-1)-E(n)]/(RT)]x
exp[-B] where E(#) is the energy of the system before an insert or
delete, E(n+1) is the energy of the system after a fragment is
inserted, and E(#z-1) is the energy of the system after a fragment
has been deleted, R is the gas constant and 7T'is the temperature in
Kelvin. Bis the chemical potential of the simulation cell containing
the protein and the only adjustable parameter. Operationally, a ran-
dom number (RanX) is generated between 0 and 1 and the inserted
or deleted fragment is accepted as the new configuration if
P<=RanX. When Bis set high, the probability of inserting a frag-
ment into the protein simulation cell is dramatically enhanced
resulting in saturation with fragments as shown in the left panel of
Fig. 4. As the chemical potential is gradually lowered by decreasing
the value of B, fragments persist in the simulation cell until a low
enough B-value occurs that causes a dramatic evacuation of the
simulation cell with almost all fragments exiting. As shown in the
middle panel of Fig. 4, discrete high affinity binding sites for one
particular fragment are revealed. The chemical potential can be
successively lowered until only one site remains as shown in the
right-most panel of Fig. 4. Generally about five million simulation
steps are done at each B-value (value of the chemical potential) and
the simulation is run for about 30 different B-values. The delta-B-
value between two different positions on the protein for a given
fragment is a measure of the relative free energy of binding since
chemical potential is a formally correct free energy and not just an
enthalpy of binding—sampling in this manner takes the entropy
component into account. Note, when using somewhat more
sophisticated procedures such as cavity-bias [41] to determine
where to insert fragments more efficiently, the probability equation
has to be adjusted to maintain detailed balance, but this is a techni-
cal matter that does not change the conceptual process. It is very
important to note that the only input into the algorithm is the
protein structure and the fragments to be simulated. There is no
other human intervention so the predictions of high affinity vs. low
affinity sites and quantitative rank ordering of binding is predicted
in a totally objective manner. Flaws in the predictions occur when
the force field parameters do not accurately represent the fields of
the fragments or proteins, which is especially true of large concen-
trated charges. We have recently demonstrated these problems
[42] in a blind competition study.

One very compelling aspect of SACP is how the procedure can be
generalized to create an automated protocol for locating sites on a
protein capable of making high affinity non-bonded interactions,
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4.3 Prediction
of Ligand Binding
Asymmetry:
Hypotheses I,

I, and IV

so-called hotspots. When SACP is run on a range of fragments
independently, each fragment has a distinct and unique binding
pattern on the protein that is quite different from any other frag-
ment. What is very striking is what happens when individual simula-
tions are brought together and two questions are asked, (1) which
localized sites on the protein have high affinity for a chemical diver-
sity of fragments and thus can be labeled sites of clustering, and
(2) of these clustering sites, which do NOT have high affinity for
water (the so-called water exclusion principle). The combination of
these three principles, SACP predicting high affinity fragment bind-
ing, clustering, and water exclusion have been shown to accurately
predict protein hotspots in a wide variety of macromolecules.

Figure 5 is a blowup of the predicted binding site of the EPOR
shown in Fig. 3 from two different perspectives. These views clearly
show not only that the simulation predicts a high affinity binding
site at the point where the receptors meet but that the collective
fragment patterns bind in an asymmetric mode. The locus of

Fig. 5 Two different perspectives of the predicted high affinity binding site illustrated in Fig. 3 are shown so
that the asymmetry of the fragment patterns can be clearly seen. Since SACP produces results that are inde-
pendent of human intervention other than the choice of protein structure and the fragments to be simulated,
this at least provides computational evidence for the perhaps surprising hypotheses that not only is the focal
point where the receptors meet a high affinity binding site, but that it will have a characteristic asymmetry
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predicted fragment binding from SACP is very small, which is an
indication from the simulation of the potential for designing very
small molecules with significant binding affinity. It is important to
note that the Phe93 pair is far from this predicted binding site.
This does not mean that SACP predicts that the Phe93 pair is
unimportant. Examination of Fig. 4 shows that there are multiple
important interaction sites on a protein. For the EPOR, SACP is
predicting that the site of primary importance is the focal point
where the receptors meet.

SACP takes a protein and a collection of organic fragments includ-
ing water and runs a sequence of grand canonical ensemble simula-
tions starting from a very high chemical potential with gradual
reduction until the chemical potential is very low. Each fragment is
a solvent molecule and is run on one CPU. If 100 fragments
including water are run, then this can be carried out on 100 pro-
cessors simultaneously. Each fragment is driven through a phase
transition represented by the graph shown in Fig. 4. This usually
produces about a dozen high affinity sites on a protein for a given
fragment. As the chemical potential is lowered further, high affinity
sites are gradually depopulated of fragments—this gives a relative
rank order of the free energy of interaction between different pro-
tein localities for a given fragment. Because this performs a com-
plete sampling of the protein—fragment interactions for the entire
protein with no human bias and no a prior knowledge, it is an
extremely powerful algorithm.

The SACP method on its own will not determine or predict
binding sites. When the prediction of fragment binding affinity
as a function of chemical potential is augmented with the clus-
tering and water exclusion postulates, then a very robust recipe
for binding site prediction exists. SACP cannot possibly predict
what will be an agonist for the EPO receptor or if such a thing
even exists. The four hypotheses stated above were developed
from a careful study of erythropoiesis, which is completely inde-
pendent of SACP. Given these hypotheses, the fragment patterns
generated from SACP can be analyzed to see if the simulation
data supports or negates the preconceived notions. The struc-
ture of the SACP method does NOT allow for any biases to be
built into the simulation, so the fragment patterns are unbiased.
There is, however, a large bias that occurs with the choice of
protein structure, because it is kept static during the simulations.
My hypotheses lead to the perhaps counterintuitive choice of
NOT using the Amgen structure with bound EPO, but the RW]
structure with the artificial EMP1 mimetic peptides. SACP has
nothing to say about which protein structure should be used. Of
course making an agonist is much more difficult than making an
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4.6 Computational
Design

of the Proposed EPOR
Agonist

antagonist—so designing an activator requires more a prior
hypotheses and thus a deeper understanding of the system,
whereas often making an antagonist requires imposing no
hypotheses. To be clear, it is my personal choice to use the RW]
structure with the artificial EPO mimetic peptides removed in
order to generate fragment patterns that I believe will lead to an
agonist. I believe that using the Amgen structure co-crystallized
with the natural EPO hormone will produce symmetric frag-
ment patterns that will lead to the design of an antagonist. After
choice of input structure is made, SACP will produce free energy
rank-ordered fragment binding modes.

The actual molecular design process requires adding a little
more detail to the hypotheses. Because the receptor in all states
(on-state, off-state, or partial agonist state) has a basic twofold
symmetry, I expect that the asymmetry of the on-state will be
subtle. Chemically, asymmetry means a chiral center. Therefore, I
expect that the fragment patterns will be basically symmetric from
the SACP simulations, but a chiral center will be predicted on one
side and not the other. The top panel of Fig. 6 shows a blowup of
the EPOR binding site with overlaid high affinity fragment pat-
terns of furan, methyl acetate, and methanol predicted by SACP.
Furan shown in blue has a directional and distinct binding mode
with a definite orientation that is twofold symmetric across both
halves of the receptor dimer. Methylacetate populates the region
between the furan pair with a translational invariance that merges
into and links the furan duo with multiple copies, but shows dis-
tinct asymmetric preference for binding the carboxyl groups to
one side. The equipotent multi-copy translational binding forms
the di-ketone and ester moiety. The most striking pattern is the
prediction of methanol. One methanol fragment cluster occurs
in the dead center of the receptor dimer in an isolated fashion
unable to bind with the other fragments. The other methanol
cluster binds to only one side of the receptor and not the other.
Furthermore, this methanol cluster merges into the methylace-
tate linker in a way that produces a chiral center. The data is only
computational at this point, but SACP predicts, (1) a previously
unknown high affinity binding site at the focal point where the
receptors meet, (2) fragments that bind in a twofold symmetric
manner with high atfinity (very negative chemical potential)—the
furan pair, (3) introduction of a stereocenter on one side of the
molecule and not the other and thus a characteristic asymmetry.
The bottom left panel of Fig. 6 shows the molecule that I designed
from these patterns, which my hypotheses predict will be an agonist.
The bottom right panel shows the molecule with the stereocenter
removed, and thus, my hypotheses predict that this should be an
antagonist.
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blue-furan
cyan-ester
red-methanol

Predicted Agonist Predicted Antagonist

stereocenter

(optically pure) no stereocenter

Fig. 6 The fop panel shows a blowup of three different superimposed high affinity fragment patterns predicted
by SACP in the previously unknown binding site of the EPO-R using the structure from the RWJ group.
The input structure for the simulations was the receptor bound to the EMP1 peptides with the EMP1 peptides
removed. Furan, shown in blue, binds in a twofold symmetric manner with a clearly defined orientation.
Methylacetate has a set of translationally invariant equipotent high affinity states that merge into a linker for
the furan pair. Methylacetate does NOT bind in a twofold symmetric state according to the SACP simulations,
but places the ester group preferentially to one side creating a double ketone moiety. One methanol cluster
binds right in the center of where the two receptors meet. What is most striking is the high affinity binding of
methanol that merges into one side of the acetate linker but is completely absent from the other. At least the
computational data support the hypotheses that an asymmetry exists in the receptor that will give rise to a
complementary asymmetry in the ligand. It also suggests that if the molecule has the stereocenter removed,
it will no longer be able to activate the receptor and thus should be an antagonist, which is shown in the lower
right panel

5 Binding and Proliferation Experimental Results

Theories and hypotheses are thought exercises that make science
fun and interesting and computer simulations while intriguing may
or may not capture an important aspect of reality. Ultimately,
experiments must be performed to test the predictions, so the mol-
ecules shown in Fig. 6 were synthesized and tested in binding and
proliferation experiments. A total of three molecules were made,
both stereoisomers of the optically active molecule and the mole-
cule without the stereocenter. It is important to note that only one
stereoisomer is definitely favored according to the SACP simula-
tions, indicating that only one enantiomer will be an agonist.
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Fig. 7 EPO binding experiments are commonly done by competing radioactive I-125 labeled EPO against cold
EPO. Hot EPO is purchased in a highly pure form and is quite expensive. Cold EPO is a dilute mixture and thus
is significantly cheaper, so C-EPO is used wherever possible. The molar excess of C-EPO needed to displace
H-EPO must be established, which is 400x

Binding experiments are commonly standardized by first
establishing competition between I-125-EPO (hot or H-EPO)
and cold EPO (C-EPO). Hot EPO is purchased highly purified
and cold EPO is purchased as a dilute mixture. We performed
these set of experiments multiple times and determined that dis-
placement of H-EPO required a 400-fold molar excess of C-EPO,
which is shown in Fig. 7 with the experimental protocol shown
in Fig. 8. While the experimental protocol needs to be followed
carefully, it is conceptually straightforward. Erythroid progenitor
cells are proliferated with EPO demonstrating that functional
receptor exists. The cells are then washed and centrifuged to
remove any EPO. Equivalent amounts of these cells are added to a
set of centrifuge tubes. C-EPO in 400-fold molar excess relative to
H-EPO is pipetted into a subset of control tubes. Various concen-
trations of the predicted small molecule agonist and antagonist
are pipetted into select tubes that are labeled. All tubes then get
H-EPO in the concentration precisely matching what is displaced
by the 400X C-EPO. The cells are incubated for 3 h then washed
to remove any unbound H-EPO. Each tube is individually mea-
sured with a counter to quantitate the remaining bound H-EPO.
These experiments were replicated many times with representative
results shown in Fig. 9. Both compounds have high affinity for
the EPOR with the predicted agonist being about 10 nm and the
predicted antagonist being about 100 nm. It is quite amazing and
satisfying that molecules with molecular weights of less than 280 can
displace H-EPO with such potency.
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Binding Procedure

* Grew Erythroid Progenitor cells in DPBM Medium containing IL-3, IL-6, SCF and EPO

* Spun the cells down for 10 minutes at 1,000rpm

* Added 3M Glycine pH 3 in 0.9% Saline to the cells for 3 minutes to dissociate preformed receptor-ligand complexes
* Washed the cells with DPBM medium containing 5% BSA

» Counted and resuspended the cells in final volume of 1X10° cell/200ul

* Aliquoted 200ul of cells in each centrifuge tube

e Let the cells sit on ice for ~5minutes

* Added 400X cold Epo to the control tubes

¢ Added compounds (30nM-7.5nM) to the labeled tubes

* Added PBS/0.1% BSA to all the tubes except cold Epo to compensate for addition of cold Epo

¢ Added PBS/0.1% BSA/0.00042% DMSO to the all the tubes except compound tubes to compensate for addition of compounds
* Diluted 1"®Epo in DPBM Medium/2-5% BSA bringing final concentration to 0.5uci/100ul

* Added 100ul of 1">°Epo solution to all the tubes

* Incubated the the tubes for 3 hours on the rotator at 4°C

* Took 10ul aliquots from each tube for counting the cells

* Added 800ul of Dibutyl Phthalate to all the tubes

* Shook the tubes and centrifuged them for 2 minutes at 10,0009

» Took supernatant off , froze the bottom of the tubes in Liquid Nitrogen, and clipped the bottoms into LSC vials

* Added 100ul of PBS buffer to the LSC vials to dissolve the pellet

¢ Added 5ml of Ready Safe to the vials, shook them and counted in LSC6500

Fig. 8 This is the protocol for a standard assay used to quantitate EPO and EPO mimetic binding. Cells need to
be proliferated with EPO to make sure that they express functional receptor. The EPO then needs to be washed
out. The same number of cells is added to all centrifuge tubes. C-EPO in 400x molar excess relative to H-EPO
is added to control tubes in order to prevent all H-EPO binding. A set of tubes get different concentrations of
compounds. H-EPO is added to all tubes and the tubes are incubated for 3 h. All tubes are washed to remove
unbound H-EPOQ. Each tube is put into a scintillation counter to quantitate bound H-EPO

Predicted Agonist Predicted Antagonist
OH o
/N & 3 / \ '\ 6 o
(6]
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Normalized % Inhibition Againts Cold EPO Normalized % Inhibition Against Cold EPO
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Fig. 9 The compounds do indeed bind to the EPO receptor and displace H-EPO. The compound with the ste-
reocenter has a molecular weight of only 277 Da and yet has an IC50 of about 10 nm. Removing the hydroxyl
functional group that creates the stereocenter reduces the binding to about 100 nm
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Proliferation Procedure

Spun down cells (1000 rpm/15min)
Removed supernatant
Resuspended pellet in 30 ml of Epo-free media (DPBM media, SCF, IL-3, and IL-6)
Spun down cells (700 rpm/10 min)
Removed supernatant
Resuspended cells in 30 ml of Epo-free media and starved cells for 2hrs at 37°C/5%CO,
Spun down cells (700 rpm/10 min)
Counted cells via hemacytometer grid method
To each flask added 10 ml of Epo-free media and 500,000 cells
Added appropriate amount of Epo or Test compound to flask
Grew cells at 37°C/5% CO,
MTS Assay
» Aliquoted out 100ul/200ul sample of cell suspension into 96-well plate
» (each flask is sampled 5X)
» Added 20ul of Solution One
» Incubated plates for 3 — 4 hrs at 37°C/5% CO,
» Read plate on Dynex plate reader at 490nm (reference filter 630nm)
Hand Count Assay
Spun down 5 ml of cell suspension (1000 rpm/3 min)
Removed 4.5 ml of supernatant
Resuspended cells
To a 50 ul aliquot and added 50 ul of trypan blue stain
Loaded aliquot onto hemacytometer and counted cells

YV V V VY

Fig. 10 Standard experimental protocols were used to determine cell proliferation. The MTS One Solution
assay uses a tetrazolium salt that is converted to a colored soluble Formazan by an enzyme in living cells, and
thus, the absorption intensity is directly proportional to the number of cells. The older method used MTT, which
is converted into a crystalline Formazan product that needs to be isolated and dissolved in order to perform
colorimetric assays. All results were confirmed by a technician using a hemocytometer. This is a tedious pro-
cedure using a specialized microscope slide with an indented rectangular well that is precisely gridded on the
millimeter and submillimeter scale. It enables depositing exact volumes of a solution containing cells into small
wells in a way that a human being can look under the microscope and actually count the cells. This gives
precise cell densities. It is common to use hemocytometers to confirm cell proliferation data

Testing whether or not these compounds can induce stem
cells to divide and then become red blood cells is the final set of
experiments. For this purpose we used human hematopoietic stem
cells purchased from a blood bank. The standard MTS prolifera-
tion assay was used and all results were confirmed by cell counting
with a hemocytometer. The proliferation experimental procedures
are summarized in Fig. 10. The basic principle is very simple—
enzymes in living cells will convert a tetrazolium salt into a col-
ored formazan product and the intensity of this color is
proportional to the number of living cells. The One Solution is a
commercially available kit (Promega) for doing this assay. It is
recommended to read the intensity at 490 nm and subtract out the
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Fig. 11 Human hematopoietic stem cells were used for the MTS proliferation assays. The optical density mea-
surements show that the compound predicted to be an agonist causes cellular proliferation almost as potently

as EPO itself
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Fig. 12 The assays were set up on a different day and redone—the results again
show that the compound predicted to be an agonist causes cell proliferation
comparable to EPO

absorbance at 620 or 630 nm. Figure 11 shows the results of our
first experiment, which demonstrates that the predicted agonist
compound is almost as potent as EPO. Note that the X-axis is in
picomolar concentration units. The compound’s binding affinity
at 10 nm is reminiscent of the RW] findings (Fig. 1) that receptor
activation occurs at concentrations substantially below the 1C50.
This is indeed a very exciting result that strongly confirms the
proposed hypotheses, so the assays were set up on another day and
repeated. Figure 12 shows that the second time the assays were
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Fig. 14 The results were done in triplicate, but this time using the compound with
the stereocenter removed, showing that the compound cannot cause cellular
proliferation

performed—again the compound is almost as potent as EPO.
On yet another day the assays were set up in triplicate, which is
shown in Fig. 13. All results were confirmed by cell counting with
a hemocytometer. Next, the compound with the stereocenter
removed was tested in the cellular proliferation assays in triplicate
on 2 different days. These experiments show that this compound
cannot cause proliferation of human hematopoietic stem cells as
shown in Figs. 14 and 15.

6 Scanning Electron Microscopy

Samples of the proliferation experiments were taken on different
days and analyzed with scanning electron microscopy. The first
SEM experiments were repeatedly performed on samples of human
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Fig. 15 The results were repeated

SEM of EPO Induced Cells (IL-3, IL-6, SCF, EPO)
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Fig. 16 Scanning electron microscopy of EPO induced differentiation of hematopoietic stem cells into red blood
cells. EM scans were done every day for 10 days—on the eighth day we obtained a picture of a puckered cell
shown in the left panel that is characteristic of a red blood cell. The larger view in the right panel shows a few
puckered cells—many others appear to be dead or dying

hematopoietic stem cells exposed to EPO. In our hands it took 8
days before observing the characteristic puckered red blood cell
shown Fig. 16. SEM showed the compound inducing cell division
on the fourth day as shown in the left panel of Fig. 17 with a puck-
ered red blood cell shown in the right panel. An image on the fifth
day shown in the left panel of Fig. 18 shows cell in the process of
dividing as seen by the cell-cell contact apparently indicating one
cell splitting off from the other and what look like several puckered
red blood cells. An image from the ninth day shows one red blood
cell that is apparently in very poor condition.
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SEM of C-1 Induced Cells (IL-3, IL-6, SCF, C-1)
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Fig. 17 After the fourth day, the EM scans show that the compound is inducing cell division as can be seen in
the left panel. In the right panelis a puckered cell indicating that a red blood cell has been formed
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Fig. 18 On the fifth day that hematopoietic stem cells are exposed to the compound one of the EM scans
shows what appears to be many red blood cells in the /eft panel. On the ninth day only one red blood cell is
left and is apparently in a very poor state

7 Conclusions

The results presented in this chapter are very exciting, because
they lend strong support to a set of hypotheses on how the EPO
receptor is activated and illustrate how Simulated Annealing of
Chemical Potential can be used to design extremely low molecular
weight novel compounds to test such hypotheses. Furthermore, the
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fact that these compounds have a MW < 300 indicates that there is
a possibility of making orally bioavailable small molecule EPO
mimetic agonists. It must, however, be stated that the agonist com-
pound is certainly not a drug and that several complex issues remain
unresolved. The first most obvious flaw with these small molecules is
the ester bond. Carboxylesterase [43] is the main enzyme in first
pass hydrolysis of drugs and is the reason that most prodrug strate-
gies [44] incorporate an ester bond, which will be cleaved in the
intestine. The small molecules used in these studies here have a
highly exposed ester bond and thus will be highly susceptible to
hydrolytic cleavage. Prodrug studies have long recognized that spe-
cial care is required to chemically stabilize [45] esters so further
in vivo investigations on the small molecules created for these studies
will likely require replacing or at least chemically stabilizing the ester
bond. The most obvious next step of these investigations is solving
the co-crystal structure of the extracellular domain of EPOR with
the small molecules—the predicted binding mode needs to be con-
firmed. Secondly, SACP simulations should be applied to the Amgen
structure, see if the fragment patterns confirm my hypothesis that
these patterns will be symmetric and not asymmetric as occurred
with the RWJ structure and that the resultant small molecules will be
antagonists not agonists.

Finally, after these studies were concluded, a small amount of
assay work was performed using Baf3 and UT-7 cell lines, which are
commonly employed when working with EPO. Baf3 are an immor-
talized cell line derived from the bone marrow of rodents that
requires 1L.-3 to survive and grow. When Baf3 cells are transfected
with the EPOR gene, these cells can survive and grow when exposed
to EPO, so this has become a common cell line in EPO research.
There are, however, complications, because Krosl and coworkers
[46] have shown signaling through the IL-3 pathway actually inhib-
its EPO activity in Baf3 cells. UT-7 is a cell line from leukemia
patients that expresses EPOR and thus has become a standard tool
in EPO research, because proliferation occurs upon application of
EPO. The Centocor group [47] has done an intriguing study com-
paring a set of high potency EPO agonist biological molecules for
their ability to cause proliferation in UT-7 cells versus in vivo activ-
ity. When EPO, Aranesp, and Centocor’s antibody that contains
two EMP1 peptides were compared, EPO and Aranesp caused
UT-7 cellular proliferation 100x more potently than the Centocor
construct—it is important to note that all constructs potently
proliferated UT-7 cells. Conversely, the Centocor construct caused
a sixfold greater increase in red blood cell count relative to EPO.
These observations led the Centocor investigators to conclude
that maintaining agonist activity over the time required for the
maturation of reticulocytes is likely an important factor for in vivo
efficacy. This would seem to disfavor an agonist with a highly
exposed ester bond, which is expected to have a short half-live in vivo.
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Fig. 19 Baf3 are immortalized murine cells derived from bone marrow that depend upon IL3—withdrawing IL3
will cause the cells to go into apoptosis. Baf3 cells transfected with EPOR survive and proliferate upon applica-
tion of EPO. UT-7 cells come from the bone marrow of patients with acute megakaryoblastic leukemia and
proliferate when exposed to EPO. EPO activates signal transduction in both of these cell lines resulting in ele-
vation of intracellular levels of ATP. EPO has no effect on ATP levels of Baf3 cells not transfected with EPOR. The
predicted agonist compound has no effect on ATP levels in either of these cell lines

Since application of EPO to UT-7 or Baf3 cells transfected with
EPOR activates signal transduction pathways, it was expected that
this cellular activation would result in a rise of intracellular ATP
levels. This is easily checked by applying EPO to the cells, lysing the
cells, and measuring the ATP content [48] with a luciferase assay.
EPO does indeed cause a significant rise in ATP of both cell lines as
shown in Fig. 19. The agonist compound does NOT cause eleva-
tion of ATP levels in these cells, possibly because the ester bond is
cleaved under the conditions of this assay—but this is unknown at

this time.
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Chapter 15

Designing an Orally Available Nontoxic p38
Inhibitor with a Fragment-Based Strategy

Frank Guarnieri

Abstract

The MAPK p38 became a focal point of inflammatory research when it was recognized that it played a key
role in the production of the pro-inflammatory molecules TNF-alpha, IL-beta, and cyclooxygenase-2
(COX-2). The pharmaceutical industry devoted enormous efforts to creating p38 inhibitors, because
blocking p38 had the potential of downregulating a group of pro-inflammatory mediators, and thus, one
drug could have a cocktail effect. The market potential seemed to be clearly established (Bonafede et al.,
Clinicoecon Outcomes Res 6:381-388, 2014) with a multiplicity of TNF-alpha antibodies and a soluble
receptor (Mewar and Wilson, Br J Pharmacol 162:785-791, 2011) already on the market, although the
relationship between TNF-alpha production and p38 activation is a complicated two-way (Sabio and
Davis, Semin Immunol 26:237-245, 2014) signal transduction process. With the discovery that activated
p38 stabilizes (Mancini and Di Battista, Inflamm Res 60:1083-1092, 2011) COX-2 mRNA and upregu-
lates expression of IL-beta (Bachstetter and Van Eldik, Aging Dis 1:199-211, 2010) probably in a similar
manner, inhibiting p38 appeared to be a way of blocking TNF-alpha, COX-2, and IL-beta simultaneously.
At Locus Pharmaceuticals we jumped on this opportunity, because we believed that our fragment-based
drug discovery approach was ideally suited for making a potent small molecule p38 inhibitor that did not
bind in the ATP site, but also had the solubility, lack of planarity, and low molecular weight required of a
clinical candidate. Just to be clear, in our experience highly planar compounds often result in poor phar-
macokinetics, because they tend to bind strongly to plasma proteins. At Locus we typically repeated assays
by adding increasing amounts of plasma to check for potency degradation in the presence of blood. We
found this to be a useful early indicator of pharmacokinetics and in vivo behavior. It became clear from
our work and the work of others that binding to the ATP site resulted in nonspecific isoform toxicities,
but binding in the adjacent allosteric DFG-site resulted in molecules that were too planar and too hydro-
phobic. Applying the computational method of Simulated Annealing of Chemical Potential (SACP) to
this problem, we at Locus were able to come up with surprising fragment substitution patterns that led to
potent non-ATP p38 inhibitors with the solubility and lack of planarity that resulted in potent in vivo
efficacy in rodents with 33 % oral bioavailability. By using the simulations, we made only a small number
of molecules and created a high quality clinical candidate. We also did extensive co-crystallography work,
which demonstrated that the compounds bound in the mode predicted by the simulations. Unfortunately,
all p38 programs ultimately shut down, because compelling evidence emerged that inhibiting p38 had no
long-term clinical (Genovese, Arthritis Rheum 60:317-320, 2009) benefit. Devoting a large amount of
limited resources to a target that ultimately turns out to be a mistake because it was not properly validated
is a fatal error for a small company, and this is one of the reasons that Locus ultimately failed.

Key words p38, Fragment-based drug design, ATP site, DFG site, Monte Carlo, Plasma assays
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1

Introduction

The discovery in the early 1990s that activated p38 MAP kinase
induces expression of a range of pro-inflammatory cytokines made
it an attractive target for pharmaceutical [1-8] drug discovery.
Combinatorial chemistry and high-throughput screening at Bayer
[9] led to the discovery of a class of p38 inhibitors exemplified by
the molecule shown in Fig. 1. While this compound has good
potency in both p38 inhibition and cellular assays, its planar hydro-
phobic nature is generally associated with a poor in vivo profile.
Nevertheless, because it does not bind at the ATP site, it is an exam-
ple of an allosteric inhibitor that binds in the pocket vacated by the
kinase activation loop—specifically the highly conserve ASP-PHE-
GLY motif commonly referred to as the DFG binding site. Just to
be clear, the DFG sequence of the activation loop of p38 MAP
kinase behaves like an “intramolecular ligand” and this class of
compounds binds to and displaces the DFG triplet from the p38
allosteric site. The Boechringer Ingelheim group subsequently
showed that adding a morpholino-ATP binding moiety (Fig. 2) to

AN
A&XNJLNQCI
<IN

Fig. 1 Bayer p38 inhibitor that binds in the allosteric DFG site. They report that
this compound has an IC50 of 30 nm and inhibits p38 in SW 1353 cells at 70 nm
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Fig. 2 This is the Boehringer Ingelheim p38 inhibitor, BIRB-796, taken into human
clinical trials. Note that the DFG-binding motif is essentially identical to the Bayer
compound shown in Fig. 1. The di-Chloro-Phenyl group in the Bayer compound
is a hydrophobic isostere of the naphthyl group in the Bl compound. The new
feature of the Bl molecule is the morpholino group that binds in the ATP site. This
makes BIRB-796 a hybrid DFG-ATP binding molecule
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this class of compounds results in a subnanomolar p38 inhibitor
with slow on kinetics [10] due to the displacement of the activation
loop from the allosteric site. Importantly, the morpholino group
adds significant solubility to the DFG-binding molecule. The BI
group also reported that BIRB-796 had low affinity for 11 other
kinases [11], and thus, it was deemed sufficiently selective to take
into clinical trials.

2 The p38 Drug Discovery Program at Locus Pharmaceuticals

2.1 ATP or Non-ATP
Binding

2.2 LetUs Test
BIRB-796 to See
Who Is Right

The aim of this chapter is to describe the strategy and execution of
the computational fragment-based drug discovery method used to
create an isoform specific, orally available, small molecule p38
inhibitor.

After intensely studying the results from the Bayer and BI groups,
there was a disagreement at Locus about whether it was good or
bad to be binding in the ATP site. The pro ATP-binding site camp
pointed out that the Bayer molecule, which binds in the DFG site
and not the ATP site is too hydrophobic and thus could never have
the in vivo profile required of a real clinical candidate. This camp
made the case that the hybrid DFG-and-ATP binding BIRB-796
not only had the needed solubility but was also highly selective
since it did not appreciably bind to 11 other kinases. They were
also impressed with the fact that it inhibited p38 with ~100 pm
affinity. I was in the other camp and insisted that binding in the
ATP-site would at some point result in off-target interactions
resulting in unacceptable toxicities. My counter to the BI claim of
kinase selectivity was that they never tested for p38 isoform selec-
tivity (to our knowledge)—a viable drug-like candidate must only
inhibit p38 in inflammatory cells and not inhibit p38 expressed in
other tissue types. While it was not absolutely clear that this must
be true at the time that this program was active, it seemed obvious
and compelling to a group of us at Locus and publications years
[12, 13] later validated that this was indeed the case. Specifically,
the p38-gamma isoform is essential for skeletal muscle metabolic
adaptation. Thus, the chronic inhibition of the alpha and beta iso-
forms required to treat inflammation, must also be inactive against
the gamma isoform to avoid deleterious muscular side effects.

We decided that the only way to settle the dispute between the
group advocating for creating a compound that binds in the ATP
site to maintain solubility and the group that wanted to make a
purely allosteric DFG binding compound to achieve selectivity,
was to synthesize BIRB-796 and test it. By testing it we mean not
just against 11 random kinases as BI did, but against a panel of
100 kinases and most importantly against all four p38 isoforms.
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2.3 Is One Hydrogen
Bond Responsible

for the Non-
selectivity?

P38 Isoform | % Inhibition @ 2 um

P38 alpha 98
P38 beta 94
P38 delta 95
P38 gamma 77

Tie2 99
TrkB 96
JNK2 alpha2 93
C-RAF 84

Fig. 3 As part of the Locus p38 program we synthesized and tested BIRB-796
against four different p38 isoforms and a range of kinases not tested by
Boehringer Ingelheim. BIRB-796 is very potent for all p38 isoforms and a range
of other kinases. One camp at Locus postulated that the ATP binding moiety of
the compound was responsible for this lack of selectivity

A small but crucial subset of the data is shown in Fig. 3. We ran
single point assays at a compound concentration of 2 pm. It is
important to note that this is not a dose-response curve, so this
does not give an IC50. A typical procedure is to define any single
point inhibition of >50 % as significant and perform a complete
dose-response experiment only on these high affinity molecules.
If the single point inhibition is greater than 70 % this is very signifi-
cant and all of these situations are carefully analyzed with full dose—
response experiments and cell assays. As the table in Fig. 3 clearly
shows, BIRB-796 significantly inhibits all p38 isoforms. A small set
of the other kinases that are substantially blocked is also shown.
Since p38 gamma is crucial for skeletal muscle metabolic regulation,
BIRB-796 cannot be given for a chronic indication such as inflam-
mation, because continuously downregulating the p38 isoform
expressed in muscle tissue is obviously unacceptable.

The Pro-ATP-binding camp made the important point that BIRB-
796 makes a key hydrogen bond in the ATDP site at the so-called
hinge region and that this is highly analogous to how many other
small molecules bind to other kinases. The prototypical example is
the binding of Gleevec to the BCR-ADbI kinase. Figure 4 shows the
crystal structures of BIRB-796 bound to p38 and Gleevec bound
to ABL2 with this key hydrogen bond highlighted with a double-
headed arrow. This leads to the compelling hypothesis that this
specific interaction alone is responsible for the lack of selectivity.
Just to be clear, because the hydrogen bond formed between the
compounds bound in the ATP site with the amide backbone pro-
ton of a methionine is a repeating motif in kinases, the lack of
selectivity may be due to the formation of this hydrogen bond
alone and not to the binding in the ATP site. The Locus group
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Fig. 4 (a) The molecule in ball-and-stick is BIRB-796. The amino acid in sticks is methionine 109 in the ATP
binding site from the p38 co-crystal structure 1KV2.PDB. The black two-sided arrow shows the very tight
hydrogen bond—the distance between the oxygen from the morpholino group and the backbone nitrogen is
only 2.9 A. Note that the proton attached to this nitrogen that makes the hydrogen bond is not shown. (b) The
molecule in ball-and-stick is Gleevec. The amino acid in sticks is methionine 364 in the ATP binding site from
the ABL2 co-crystal structure 3GVU.PDB. The black two-sided arrow shows the very tight hydrogen bond—the
distance between the nitrogen from Gleevec and the backbone nitrogen is only 2.9 A. Note that the proton
attached to this nitrogen that makes the hydrogen bond is not shown

that favored this hypothesis proposed replacing the morpholino
group with a fragment that had high affinity for the ATP site, buz
did not make this bydrogen bond. If such a compound could be
made, it would be a novel patentable derivative of BIRB-796 that
retained its high potency, but also achieved the necessary alpha-
beta isoform selectivity for p38 required to avoid the toxicities that
will happen if the compound also bound to the delta and gamma
isoforms. Even though I was in the camp that favored avoiding all
ATP binding—I wanted to make purely DFG-binding molecules—
I agreed with doing this experiment, because if I were wrong and
simply breaking this hydrogen bond would achieve isoform selec-
tivity, then we would have created a clinical candidate superior to
BIRB-796.

3 Simulated Annealing of Chemical Potential (SACP)

In order to discover fragments with high affinity for the ATP-
binding site of p38 that do not make a hydrogen bond with the
methionine in this site, SACP—the technology used to found
Locus—was run on the BI crystal structure PDB.1KV2. A good
simple description of the SACP method with illustrations is given
in the supplementary material of a paper showing how the method
located a long sought after lipid binding site [14] on the mito-
chondrial aspartate amino transferase. Also it is described in detail
in my patent [ 15] on the technique, its uses [ 16, 17] at Locus, and
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in some recent publications [ 18, 19] from Bioleap. There is also an
abbreviated description of SACP in the chapter on making a small
molecule EPO mimetic in this same volume. The first illustration
of the method demonstrated the differential hydration propensi-
ties [20] between the major and minor grooves of DNA. The
SACP simulations predict that diphenylether and some it is deriva-
tives will bind in the ATP site of p38 and that this fragment does
not make a hydrogen bond at the hinge region. Locus synthesized
several of these compounds and they were quite active in p38 inhi-
bition assays. There is an especially interesting comparative aspect
between two different classes of these compounds—the diphenyl-
ether is quite removed from the MET 109 in both cases, but in one
class an amide backbone from the inhibitor makes a hydrogen
bond with MET 109 while the other does not. Thus, from the
SACP simulations and the Locus experiments, two closely related
diphenylether molecules block p38 with comparable affinity but
have different binding modes in the ATP site. This gave Locus a
definitive answer—we needed to be out of the ATP site, because
whether or not the compounds H-bond to MET 109 made no differ-
ence—all of these ATP-binding compounds inhibited all four p38 iso-
forms with comparable affinity. It was quite gratifying that when
co-crystal structures of these compounds were made with p38, the
compounds were found to bind exactly as predicted from the sim-
ulations. The co-crystals did beautifully confirm the computational
predictions, so Locus published [21] the results (some key aspects
of the co-crystals are shown in Fig. 5).

4 The Challenge of Obtaining p38 Inhibition in Blood

The fragment-based experiments discussed above united the team
at Locus on the fact that we had to make a purely DFG binding
compound and that we needed to stay out of the ATP site if we
were to create an isoform selective nontoxic clinical candidate. We
restarted the program beginning with the Bayer molecule shown in
Fig. 1. Our working hypothesis was that this molecule needed to be
solubilized with a heterocyclic aliphatic functional group. Clearly
BI was on the right track that this molecule required a solubilizing
moiety, but it also required something that would break the planar-
ity of the compound. We believed that this was necessary for main-
taining the potency of the compound when plasma was added to
the assays. Just to be clear, in our experience highly planar com-
pounds often have a strong propensity for tightly binding to blood
proteins. To illustrate this point we performed a triplet set of assays
on the BIRB-796, which is shown in Fig. 2. Our assays confirmed
that BIRB-796 is a very potent p38 inhibitor. When we used the
full length MKK in the phosphorylation assays, the IC50 was
around 2 nm. BI used a peptide fragment of MKK, which likely
accounts for the small discrepancy—BI reported a subnanomolar
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Fig. 5 (a) The molecule in ball-and-stick is a new diphenylether class of p38 inhibitors discovered using the
computational fragment-based drug discovery technique “Simulated Annealing of Chemical Potential” or
SACP. Methionine 109 is shown in ball-and-stick with the carbons colored in slate gray. This is from co-crystal
structure 1Z2Z2.PDB of p38 with the new class of compounds created at Locus experimentally confirming the
computational prediction of diphenylether binding in the ATP site, but NOT making a hydrogen bond with the
backbone of MET 109. (b) The molecule in ball-and-stick is a second new diphenylether class of p38 inhibitors
discovered using SACP. Methionine 109 is shown in sticks with the carbons colored in slate gray. This is from
co-crystal structure 1ZYJ.PDB of p38 with the new class of compounds created at Locus. Interestingly, an
amide carbonyl from the molecule makes a tight hydrogen bond with the backbone amide of MET 109—this
is highlighted with the two-headed arrow. The oxygen-nitrogen distance is only 2.9 A. Note the amide proton
making the H-bond is not shown

IC50. We then used a THP cell line. THP cells have been used for
~30 years. They were derived from a patient [22] that had acute
monocytic leukemia. The singular benefit of using this cell line is
that it only requires 0.5 % serum in the media to maintain its normal
activity. The reason that this is so important is because the com-
pounds are tested for their ability to cross the cell membrane with-
out the confounding factor of whether or not they are sequestered
by the blood. The EC50 of BIRB-796 in the THP assays was
20 nm. The third assay used a PBMC cell line that required 5 %
serum in order to get a preliminary indication of how the com-
pound behaves in the presence of blood. The three step assay pro-
tocol is, (1) obtain the IC50 for directly inhibiting p38, (2) because
p38 resides inside the cell, obtain the EC50 of inhibition using the
THP cancer cell line that requires virtually no serum as a test for
how well the compound crosses the cell membrane, (3) repeat the
cell experiments using PBMC cells, because they require 5 %
serum and thus comparing the difference between the 2 cell
assays give a first indication of how well the inhibibitor behaves in
the presence of blood. A final in vitro (sometimes called ex vivo)
assay is the whole bllood LPS test. In this assay whole blood is
taken from a donor. When bacterial lipopolysacchride, a compo-
nent of the gram negative outer membrane, is added to the blood
it elicits a violent inflammatory reaction resulting in the a
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dramatic upregulation of TNEFE. The p38 inhibitor is then added
and the decrease in TNF production is monitored. The whole
bllod LPS assay is reserved for the best compounds, because it
can be difficult to perform. The variations of TNF in whole blood
exposed to LPS can be very large so a great deal of standardization
may be required. This demonstrates one of the practical difficulties
encountered in drug discovery. In theory having an in vitro assay
that is a reliable indicator of in vivo behavior is highly desirable.
Often the high degree of difficulty in performing such an assay leads
to the conclusion that it is just easier to go straight into the animal
and get the in vivo data directly. The results of the triplet assay on
the BI compound are summarized in Fig. 6.

While it is imperative to remove the morpholino group from
BIRB-796 in order to achieve isoform selectivity, there is the addi-
tional extremely positive benefit of reducing the molecular weight
by 120 Da. Oprea [23] emphasizes that quality lead compounds iz
general are low molecular weight molecules (MW <425) with
good solubility and modest log P values (<3). Just to be clear,
Oprea does not say that there are not some exceptions to this char-
acterization, but that overall there is a better chance of developing
a high quality clinical candidate if these constraints are approxi-
mately adhered to. Thus, after intensive study of the p38 literature
and our own work, we concluded that for a compound to be a
viable clinical candidate it had to bind exclusively in the DFG site
with no ATP-binding for isoform selectivity (avoid toxicity), and
have significant solubility coming from a new and different three-
dimensional heterocyclic functional group (maintain potency in
plasma). Our goal was to create a low molecular weight (~450 Da),
nonplanar, soluble, DFG binding compound that inhibits p38

Naphthyl pocket t-Butyl pocket
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Fig. 6 A summary of the triplet assay procedure used at Locus in the p38 program.
Our working hypothesis was that it would be much better to create an inhibitor
with substantially lower MW that had a more consistent efficacy from protein
inhibition to cell inhibition to cell inhibition in the presence of blood. In other words,
pm inhibition in a protein assay with a compound that loses four orders of mag-
nitude efficacy when progressively going to more biologically relevant assays is
probably an indication of something that will have a poor in vivo profile

Tolyl pocket
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with submicromolar efficacy in a cell assay in the presence of
significant plasma. Our hypothesis was that such a molecule would
be orally bioavailable and have significant in vivo potency. Just to
be clear, the singular focus on making compounds that bind to p38
that are nanomolar to subnanomolar without worrying about any-
thing else, seems to result in molecules that either behave poorly in
blood or bind to the ATP site and thus lack the isoform specificity
required to be nontoxic. We felt that striving for submicromolar in
a cell assay in the presence of blood was a better predictor of a
good in vivo profile.

One of the functional groups in the Bayer compound must be
replaced if the resultant molecule is to have a molecular weight of
450 or less—obviously just adding an additional functional group
as BI did would cause an unacceptable increase in the molecular
weight. Bayer has a phenyl group attached to the pyrazine and BI
slightly derivatizes it to the toluene. This phenyl moiety mimics
the conserved phenylalanine of the DFG triplet from the activa-
tion loop that binds in the p38 allosteric site. Because this phenyl-
alanine is so critical in the functioning of the protein, all molecules
published at the time we were doing the work contained this
phenyl group—it was considered essential. The SACP simulations
made the startling predictions that certain complicated aliphatic
heterocycles had approximately the same free energy of binding as
the phenyl group and the toluene fragments. I say that this was
startling, because at the time it was generally accepted that this
was a hydrophobic pocket designed by nature to bind the benzene
ring of the conserved DFG triplet. The two fragments that we
decided to incorporate into the Bayer scaffold are shown in Fig. 7.
It was very gratifying that co-crystal structures of these com-
pounds showed that they bound exactly as predicted by the simu-
lations. The co-crystal structures and how they confirm and
validate the computational predictions have been published by
Locus [24] and many of the structures have been deposited in the
protein data bank.

SACP simulations predict the relative rank order binding affinity of
different fragments for a given pocket in the protein, but have
nothing to say about how the compounds will behave in the
presence of blood. Our studies of albumin binding profiles indi-
cated that planar structures have a higher probability of being
sequestered by blood proteins. In fact, in our experiments, BIRB-
796 is 99 % plasma protein bound. Once we confirmed the SACP
simulations predicting that dioxothiomorpholine and diazepanone
could be substituted for the phenyl group by inhibition assays and
co-crystallography, we made a set of derivatives of the two
fragments and assayed their potency in the presence of high
amounts of plasma. One compound stood out as maintaining sub-
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Fig. 7 Compounds A and B are the core structures discovered by Bayer and BI. Note that the dichlorophenyl
moiety in B is considered to be a hydrophobic isostere of the naphthyl group in A. The SACP simulations predict
that thiophene can be substituted for pyrazine. SACP also predicts that the dioxothiomorpholine shown in
compound C and the diazepanone shown in compound D are equipotent replacements of the phenyl group.
Locus medicinal chemists were adamant that no one would have ever thought to make these substitutions to
create compounds C and D, because the phenyl binding pocket was considered to be the conserved aspect of
the DFG activation loop intramolecular interaction and thus must be kept

micromolar inhibition in a cell assay even when high amounts of
human plasma was added to the media—this is compound D
shown in Fig. 7. Accordingly we tested this molecule in vivo show-
ing that it has 33 % oral bioavailability in a rat pharmacokinetic
model and that it has significant efficacy in blocking p38 induced
TNF production in a mouse inflammatory [25] model (shown in
Fig. 8). These results validate our strategy for creating a p38 clini-
cal candidate, which can be summarized as, (1) no ATP binding to
avoid isoform nonspecific toxicity, (2) achieving solubility by
replacing a hydrophobic moiety generally thought to be essential
with a soluble aliphatic heterocycle predicted from the SACP simu-
lations, (3) breaking the planarity of the molecule to retain a good
deal of the potency in the presence of blood, (4) integrating the
simulation results with a triplet assay of binding to p38, p38 inhibi-
tion in THP cells, and p38 inhibition in PBMC cells. While our
compounds did not bind with subnanomolar potency to p38—
they were generally about 20 nm—they were designed to be sub-
micromolar in cell assays in the presence of blood. We felt that
maintaining good potency when going to successively more bio-
logically relevant assays was a better indicator of what would hap-
pen in vivo compared to having extreme potency in a binding assay
with orders of magnitude of degradation in potency when going to
cell assays and then plasma assay. Our in vivo results of 33 % oral
bioavailability and significant p38 blockage in rodent models dem-
onstrates that this approach at least for a p38 inhibitor is a good
way to achieve the in vivo results required of a clinical candidate.
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Fig. 8 Compound D from Fig. 7 was taken into animal studies, because it inhibited p38 with an 1C50 of 20 nm
and it inhibited p38 in a PBMC cell line that requires 5 % serum with 400 nm EC50, and most importantly was
still 860 nm in the PBMC assay when large quantities of human plasma was added. This compound has 33 %
oral bioavailability in a rat PK model and is highly selective for the p38alpha isoform and shows significant p38

inhibition in vivo

5 Conclusions

Unfortunately, the p38 program at Locus was ultimately a failure
because Cohen and coworkers [26] showed that an isoform selec-
tive p38 inhibitor was less effective than methotrexate in treating
active rheumatoid arthritis. Genovese [6] nicely summarizes these
results in an editorial by stating, “The p38 MAP kinase inhibitors
represent one of the most heralded classes of therapies for the
treatment of inflammation in the past decade,” and “the fat lady
has sung for the beleaguered development of p38 inhibitors for the
treatment of RA.” The business decision at Locus to put so many
resources into this program along with other questionable business
decisions resulted in the company going bankrupt after about 10
years in existence. The main lesson for a small company is — make
suve that your target is clinically validated. As an example, blocking
PCSK9—the liver protein that downregulates the LDL receptor
has been clinically validated as an anticholesterol target. Amgen has
excellent data [27-30] in Phase III clinical trials with an anti-
PCSKO9 antibody, and thus, this is a validated high value target for
small molecule development. A small company simply cannot
afford to make the mistake that we made at Locus—getting caught
up in the current hype surrounding a new and exciting target with-
out first seeing validation in a clinical setting. The target must be
proven in humans and you must have a strategy for why you can do
better scientifically and more importantly why you can do better eco-
nomically—ultimately this is business and getting overly caught up
in the science was a big mistake.
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6 Final Thoughts and Acknowledgements

At the time that the work was going on I was caught up in proving
that the SACP simulations that I invented would lead to the dis-
covery of classes of inhibitors that no medicinal chemist would
have come up with and that my ideas on non-ATP binding and
tightly coupling inhibition assays with cell and blood assays would
lead to a clinical candidate making only a small number of mole-
cules. Just to be clear, several other Locus scientists felt the same
way about non-ATP binding and the need for activity in human
plasma, so these were not my ideas alone. Many of us felt that opti-
mizing a compound to get nanomolar or subnanomolar potency in
a binding assay was probably in fact counterproductive, since it was
likely to lead to poor behavior in vivo and that the best and easiest
surrogate for a good in vivo profile was maintaining potency in the
presence of human blood. Of course if the target is intracellular
like p38, it is vitally important to not lose too much potency when
going from a protein inhibition assay to a cell assay. We felt that a
good rule of thumb would be to lose not more than one ovder of
magnitude in potency when going from a protein inhibition assay to
a cell assay and not move than an additional one order of magnitude
in potency when blood was added to the cell assay. Basically, we
thought that losing many orders of magnitude of potency when
progressing to more biologically relevant assays was a bad omen
tor in vivo efficacy. The SACP predictions that nonplanar heterocy-
clic functionalities could replace the conserved benzene ring of the
DEFG triplet of the activation loop was a completely startling result
and I have to thank the Locus chemists for being open-minded
enough to synthesize the molecules and the Locus biologists for
doing the assays and obtaining co-crystals. The Locus chemists
went even further—the SACP simulations predicted that the
dioxothiomorpholine could bind in several different modes and
they actually synthesized a few variants to test these computational
predictions. Co-crystals of these different variants were obtained
and deposited in the protein data bank validating the computa-
tional predictions.

Figure 9a—d show the co-crystal structures of the Locus p38
inhibitors with the dioxothiomorpholine fragment in place of the
phenyl group that was generally accepted as irreplaceable. The
SACP simulations predicted that the dioxothiomorpholine frag-
ment would bind in three different modes (Fig. 10) if a one carbon
linker was used. Referring back to Figs. 1 and 2, both Bayer and BI
directly connected the phenyl ring to the pyrazine scaffold. The
SACP simulations predicted that directly linking the dioxothio-
morpholine fragment to the pyrazine or thiophene scaffold would
also be fine, but would be confined to one binding mode. The four
co-crystals shown in Fig. 9 experimentally confirm these computa-
tional predictions.
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Fig. 9 (a) A binding mode of the dioxothiomorpholino p38 inhibitor with a one carbon link to the thiophene
scaffold taken from 3P5K.PDB experimentally confirming the computational prediction from SACP simulations.
(b) A different binding mode of the dioxothiomorpholino p38 inhibitor taken from 3P7A.PDB. The SACP simula-
tions predicted that an alternate binding mode would occur if the dioxothiomorpholine fragment was directly
linked to the thiophene scaffold and co-crystallography confirms this computational prediction. (¢) The SACP
simulations predicted that the one carbon linker to the thiophene would result in multiple binding modes of the
dioxothiomorpholine fragment. This co-crystal is taken from 3P78.PDB, which experimentally confirms the
prediction of the additional binding modes. (d) The SACP simulations actually predicted three different binding
modes for the dioxothiomorpholine fragment with a one carbon linker to the thiophene. This co-crystal is taken
from 3P79.PDB, which experimentally confirms this third binding mode

Figure 11a, b shows the co-crystal structures of the diazepa-
none fragment predicted from SACP to be a replacement for the
conserved phenylalanine. We considered the molecule in Fig. 11b
to be our best candidate for clinical trials, because it inhibits p38 in
a direct binding assay at 20 nm, inhibits p38 in a PBMC cell line in
5 % serum at 400 nm, and inhibits p38 in the PBMC cell line with
added human plasma at 800 nm. Even though this compound is
not a 100 pm inhibitor in a direct binding assay, the fact that it lost
only one order of magnitude in potency when going from a pro-
tein inhibition assay to a cell assay in serum and then lost virtually
no additional potency when human serum was added was taken as
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3 binding modes

Fig. 10 SACP predicts that the dioxothiomorpholine fragment will bind with high affinity in the conserved phe-
nylalanine binding DFG pocket. Interestingly, all three of these binding modes are predicted to occur for a
1-carbon link to the pyrazine or thiophene scaffold, and only one of these modes is predicted to occur with a
direct link to the pyrazine or thiophene scaffold. Co-crystal structures shown in Fig. 9 confirm these
predictions

Fig. 11 (a) This co-crystal is taken from 3P7B.PDB, which experimentally confirms the SACP prediction that
the diazepanone fragment can replace the phenyl group that replaces the F in the DFG triplet of the activation
loop. (b) This co-crystal is taken from 3P7C.PDB. SACP simulations indicated that the diazepanone fragment
could be derivatized at this position with alkyl amines. This, however was more of a Medicinal Chemistry effort
to obtain better affinity when human plasma was added to the cell assays
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an indication that the compound had a high likelihood of behaving
well in vivo. The animal data show (Fig. 8) that this molecule has
high oral bioavailability and significant in vivo efficacy, supporting
the hypothesis that submicromolar efficacy in blood is a good indi-
cator of in vivo potency.

One final comment—this molecule violates our initial desire to
keep the molecular weight low—hopefully below 450 but at least
under 500 Da. The dioxothiomorpholine compounds were designed
with this goal in mind, but for some unknown reason this fragment
resulted in compounds that lost too much efficacy in the presence
of human plasma. We really wanted the compound taken into
in vivo studies to be submicromolar in the presence of human
plasma. This required relaxing the low molecular weight con-
straint. The in vivo data confirm the benefits of seeing submicro-
molar activity in the presence of human blood and the goal of
making a compound that maintains most of its potency when pro-
gressing through a set of assays that are increasingly biologically

relevant.
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