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CHAPTER

I
Tensor Algebra

1. POINTS. VECTORS. TENSORS

The space under consideration will always be a three-dimensional
euclidean point space &. The term point will be reserved for elements of &, the
term vector for elements of the associated vector space ¥". The difference

vV=y-—-Xx
of two points is a vector (Fig. 1); the sum
y=x+yv

of a point x and a vector v is a point. The sum of two points is not a meaningful
concept.

Figure1 «x

The inner product of two vectors u and v will be designated by u - v, and we
define

lul = (u-w!2, u

I




2 I. TENSOR ALGEBRA

We use the symbol R for the reals, R* for the strictly positive reals.

Representation Theorem for Linear Forms.! Let Y: ¥ — R be linear. Then
there exists a unique vector a such that

Y(v) =a-v

Jor every vector v.

A cartesian coordinate frame consists of an orthonormal basis {e;} =
{e1, e,, €3} together with a point o called the origin. We assume once and for
all that a single, fixed cartesian coordinate frame is given. The (cartesian)
components of a vector u are given by

u,- =u- ei »
so that
uv =y .
. i
Similarly, the coordinates of a point x are
x;=(x—0)¢.

The spansp{u,v,...,w}ofaset{u,v,...,w}of vectors is the subspace of
¥ consisting of all linear combinations of these vectors:

sp{e,v,...,w} = {ou + Bv + --- + yw|a, B,...,7eR}.

(We will also use this notation for vector spaces other than ¥".)
Given a vector v, we write

{v}* = {uju-v =0}

for the subspace of ¥~ consisting of all vectors perpendicular to v.
We use the term tensor as a synonym for “linear transformation from ¥
into ¥".” Thus a tensor S is a linear map that assigns to each vector u a vector

v = Su.

The set of all tensors forms a vector space if addition and scalar multiplication
are defined pointwise; that is, S + T and «S (« € R) are the tensors defined by

(S + T)v = Sv + Ty,
(@S)y = o(Sv).

The zero element in this space is the zero tensor 0 which maps every vector v
into the zero vector:

Ov=0.

' Cf.,, e.g., Halmos [1, §67].

1. POINTS. VECTORS. TENSORS

Another important tensor is the identity I defined by
Iv=y

for every vector v. .
The product ST of two tensors is the tensor

ST=S-T;
that is,
(ST)v = S(Tv)
for all v. We use the standard notation
S? =SS, etc

Generally, ST # TS. If ST = TS, we say that S and T commute. '
We write ST for the transpose of S; ST is the unique tensor with the

property
Su-v=u-STy
for all vectors u and v. It then follows that

S+MDI=8S"+ T,

(ST)T = T'ST, n
SHT=-S.
A tensor S is symmetric if
S=S8T,
skew if
S = -ST.

Every tensor S can be expressed uniquely as the sum of a symmetric tensor E
and a skew tensor W:

S=E+W;
in fact,
E=4S+8"),
W=4S-SD.

We call E the symmetric part of S, W the skew part of S.




4 . I. TENSOR ALGEBRA

[—

The tensor product a @ b of two vectors a and b is the tensor that assigns
to each vector v the vector (b - v)a:

@®b)v =(b-va.
Then
@b’ =(b®a),
@@b)(c®@d =(-ca®d
0, i#j

e®e, iz @

(éi ® ei)(ej ® ej) = {
z e,~ ® ei = I.
Let e be a unit vector. Then e ® e applied to a vector v gives

(v-ede,

which is the projection of v in the direction of e, while I — e ® e applied to v
gives

v — (v-ee,

which is the projection of v onto the plane perpendicular to e (Fig. 2).

(e@e)vf— /

I-e®@ey
Figure 2

The corhponents §;; of a tensor S are defined by

S(j = e,~ ¢ SeJ.
With this definition v = Su is equivalent to

v,- = Z S,—l-uj.

i
Further,
S = ZS,-je;®ej o (3)
[}

and

(a ® b)ll = a,-bj.

. POINTS. VECTORS. TENSORS

We write [S] for the matrix
S 812 Sis
[S] = S21 822 S23 .
SBI S32 833

It then follows that
| [S™] = [S1%,
[ST] = [S1[T],

and
1 00
[[=]0 1 O]
0 0 1

The trace is the linear operation that assigns to each tensor S a scalar tr S
and satisfies

trla@v)=u-v
for all vectors u and v. By (3) and the linearity of tr,
trS = tr(z e ® ej> =Y S;tr(e®e)
i, . iJj
= Z Sijei ¢ ej = Z Sii'
ij i
Thus the trace is well defined:
tr S = Z Si'-.
This operation has the following properties:
tr ST =trS,

tr(ST) = tr(TS).

(4)

The space of all tensors has a natural inner product
S T = tr(S™D),
which in components has the form

S'T = Z SU’T;J'
iJ
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Then
I'S=trS,
R:(ST) = (S™R): T = RTD-S,
1°Sv=S-u®v),
@®b)-w®v)=(a-u)b-v)
More important is the following

%

Proposition
(@) IfSis symmetric,
S'T=S-TT=S- {%(T + Th}.
(b) If W is skew,
W-T=-W-TT = W-{{T - TD}.
(c) IfSis symmetric and W skew,
S-wW=0.

(d) IfT-S = O for every tensor S, then T = 0.
() IfT-S =0 for every symmetric S, then T is skew.
(f) IfT-W =0 for every skew W, then T is symmetric.

We define the determinant of a tensor S to be the determinant of the matrix
[S]:
det S = det[S].

This definition is independent of our choice of basis {e;}.
A tensor S is invertible if there exists a tensor S™!, called the inverse of S,
such that

SST'=S"1S=1

It follows that S is invertible if and only if det S # 0.
The identities

det(ST) = (det S)(det T),
det ST = det S,
det(S™1) = (det§)™!, ©)
ST ' =T"187,
ST = ST)!

1. POINTS. VECTORS. TENSORS
will be useful. For convenience, we use the abbréviation
S T=("HT
A tensor Q is orthogonal if it preserves inner products:

Qu-Qv=u-v

.

for all vectors u and v. A necessary and sufficient condition that Q be ortho-

gonal is that
QQ"=QQ =1,
or equivalently,
QT=Q

An orthogonal tensor with positive determinant is called a rotation. (Rota-
tions are sometimes called proper orthogonal tensors.) Every orthogonal
tensor is either a rotation or the product of a rotation with ~LIfR £ Iisa
rotation, then the set of all vectors v such that

Rv=v

forms a one-dimensional subspace of ¥~ called the axis of R.
A tensor S is positive definite provided

v'Sv>0

for all vectors v # 0.
Throughout this book we will use the following notation:

Lin = the set of all tensors;
Lin* = the set of all tensors S with det S > 0;
Sym = the set of all symmetric tensors;
Skw = the set of all skew tensors;
Psym = the set of all symmetric, positive definite tensors;
Orth = the set of all orthogonal tensors;
Orth* = the set of all rotations.

The sets Lin*, Orth, and Orth* are groups under multiplication; in fact,
Orth™* is a subgroup of both Orth and Lin*. Orth is the orthogonal group;
Orth* is the rotation group (proper orthogonal group).

On any three-dimensional vector space there are exactly two cross
products, and one is the negative of the other. We assume that one such cross
product, written

uxy

iy
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for all u and v, has been singled out. Intuitively, u x v will represent the right-
handed cross product of u and v; thus if

e3=el xez,

then the basis {e;} is right handed and the components of u x v relative to
{e;} are

U3 — U3V, Uy — u,v;, U0 — Uy vy,
Further,
UXvV=—vXxu,
uxu=20,

u-(vxw=w-(uxv)=v:(wxu).
When u, v, and w are linearly independent, the magnitude of the scalar
u(vxw
represents the volume of the parallelepiped £ determined by u, v, w. Further,!

Su - (Sv x Sw)

det S = u'(v xw

and hence
_ vol(S(2))
Idet SI = W,

which gives a geometrical interpretation of the determinant (Fig. 3). Here
S(2) is the image of 2 under S, and vol designates the volume.

There is a one-to-one correspondence between vectors and skew tensors:
given any skew tensor W there exists a unique vector w such that

Wy=wxyvy @)
for every v, and conversely; indeed,
0 -y B
Wl=] v 0 -«
-3 a O
corresponds to |
Wy =a, wy = f, w3 =79,

! Cf., e.g., Nickerson, Spencer, and Steenrod (1, §5.2).

-

O

1. POINTS. VECTORS. TENSORS

Figure 3

We call w the axial vector corresponding to W. It follows from (7) that (for
W # 0) the null space of W, that is the set of all v such that

Wy = 0,

is equal to the one-dimensional subspace spanned by w. This subspace is called
axis of W.

We will frequently use the facts that ¥ and Lin are normed vector spaces
and that the standard operations of tensor analysis are continuous. In
particular, on ¥” and Lin, the sum, inner product, and scalar product are
continuous, as are the tensor product on ¥~ and the product, trace, transpose,
and determinant on suitable subsets of Lin.

EXERCISES

L

Choose ae ¥ and let y: ¥ — R be defined by y(v) = a - v. Show that
a= Zi Y(e)e;.

Prove the representation theorem for linear forms (page 1).
Show that the sum S + T and product ST are tensors.
Establish the existence and uniqueness of the transpose ST of S.
Show that the tensor product a ® b is a tensor.

Prove that |

(@) S@a®b)=(Sa)®b,
(b) a®b)S=2a® (S
© Yi(Se)®e =S.

A Establish (1), (2), (4), and (5).

v




10 1. TENSOR ALGEBRA
& Show that
(@ v=Suis equxvalent tov; = Y ; S;;u;,
b SN, =

© (ST), = i"S.J;,,
@ @@y =ab,
(¢) S-T= S

ij Lij-
\9\ Prove that the operatlon S - T is indeed an inner product that is, show
that
(a S-T=T-§,
(b) S-Tislinear in T for S fixed,
(c) S-S=0

(d) S-S =0onlywhenS = 0.
19, Establish the proposition on p. 6.

N\] Show that the trace of a tensor equals the trace of its symmetric part, so
that, in particular, the trace of a skew tensor is zero.

H& Prove that Q is orthogonal if and only if QTQ = L
13. Show that Q is orthogonal if and only if H = Q — I satisfies

H+H"+HH" =0, HHT=HH.

14. Leto: ¥ x ¥ x ¥ — R be trilinear and skew symmetric; that is, ¢ is
linear in each argument and

pu,v,w) = —@(v,u,w) = —p(m, w,v) = —@(w, v, u)
for all u, v, we 7". Let S € Lin. Show that
©(Se;, e;, e3) + (e, Se,, €3) + ¢(ey, e,, Se3) = (tr S)p(e,, e,, €3).
TS.\ Let Q be an orthogonal tensor, and let e be a vector with

(a) Show that

(b) Let w be the axial vector corresponding to the skew part of Q.
Show that w is parallel to e.

Show that if w is the axial vector of W e Skw, then

1
Wl =—=|W|.

V2

1{. Let D € Psym, Q € Orth. Show that QDQT & Psym.

2. SPECTRAL, CAYLEY-HAMILTON, AND OTHER THEOREMS 1

2. SPECTRAL THEOREM. CAYLEY-HAMILTON THEOREM.
POLAR DECOMPOSITION THEOREM

A scalar w is an eigenvalue of a tensor S if there exists a unit vector e such
that

Se = we,

in which case e is an eigenvector. The characteristic space for S corresponding
to w is the subspace of ¥ consisting of all vectors v that satisfy the equation

Sv = wv.

If this space has dimension n, then  is said to have multiplicity n. The
spectrum of S is the list (w,, w,, .. .), where w, < w, < ---arethe eigenvalues
of S with each eigenvalue repeated a number of times cqual to its multiplicity.

Proposition
(@) The eigenvalues of a positive definite tensor are strictly positive.

(b) Thecharacteristic spaces of asymmetric tensor aremutually orthogonal.

Proof. let w be an eigenvalue of a positive definite tensor S, and let
e be a corresponding eigenvector. Then, since Se = we and |e| =1, w =
e-Se > 0.

To prove (b) let  and 4 be distinct eigenvalues of a symmetric tensor S,
and let

Su = wu, Sv = Ay,
so that u belongs to the characteristic space of w, v to the characteristic space
of 1. Then
wouv=v-Su=u-Sv=1u-y,
and, sincew # AL u-v=0 [
The next result! is one of the central theorems of linear algebra.

Spectral Theorem. Let S be symmetric. Then there is an orthonormal basis for
¥ consisting entirely of eigenvectors of S. Moreover, for any such basis

e,, e,, e, the corresponding ezgenvalues w4, Wy, W3, when ordered, form the
entire spectrum of S and

S = Zwie,-®e,~. ¢))

! Cf., e.g., Bowen and Wang (1, §27]; Halmos [1, §79]; Stewart [1, §37]. The first two refer-
ences state the theorem in terms of perpendicular projections onto characteristic spaces (cf.
Exercise 4).
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Conversely, if S has the form (1) with {e;} orthonormal, then ®,, w,, w; are
eigenvalues of S with e,, e,, e; corresponding eigenvectors. Further:

(a) S has exactly three distinct eigenvalues if and only if the characteristic
spaces of S are three mutually perpendicular lines through 0.

(b) S has exactly two distinct eigenvalues if and only if S admits the
representation

S=0ve®e+w,(I-e®e), lej =1, w; # w,. 2

In this case w, and w, are the two distinct eigenvalues and the corresponding
characteristic spaces are sp{e} and {e}*, respectively. Conversely, if sp{e}
and {e}* (|e| = 1) are the characteristic spaces-for S, then S must have the
form (2).

(c) S has exactly one eigenvalue if and only if
S = ol ?3)

In this case  is the eigenvalue and ¥ the corresponding characteristic space.
Conversely, if ¥ is a characteristic space for S, then S has the form (3).

The relation (1) is called a spectral decomposition of S. Note that, by (1),
the matrix of S relative to a basis {e;} of eigenvectors is diagonal:

w, 0 O
0 0 Wy

Further, in view of (a)-(c), the characteristic spaces of a symmetric tensor S
are three mutually perpendicular lines through 0; or a line / through 0 and the
plane through 0 perpendicular to [; or S has only one characteristic space, ¥~

itself. Thusif %, (x = 1, ..., n < 3) denote the characteristic spaces of S, then
any vector v can be written in the form
V=)V, Ve, @)
a

Commutation Theorem. Suppose that two tensors S and T commute. Then T
leaves each characteristic space of S invariant ; that is, if v belongs to a character-
istic space of S, then Tv belongs to the same characteristic space. Conversely, if
T leaves each characteristic space of a symmetric tensor S invariant, then S and T
commute.

Proof. LetS and T commute. Suppose that Sv = wv. Then
S(Tv) = T(Sv) = w(Tv),

so that Tv belongs to the same characteristic space as v.

2. SPECTRAL, CAYLEY—HAMILTON, AND OTHER THEOREMS 13

To prove the converse assertion choose a vector v and decompose v as in
(4). If T leaves each characteristic space %, of S invariant, then Tv, € %, and

S(Tv,) = 0 (Tv) = T(w,v.) = T(Sv,),

where w, is the eigenvalue corresponding to #,. We therefore conclude, with
the aid of (4), that “

STv =) STv, = ) TSy, = TSv.

Thus, since v was chosen arbitrarily, ST = TS. [

There is only one subspace of ¥~ that every rotation leaves invariant;
namely 7" itself. We therefore have the following corollary of the spectral
theorem.

Corollary. A symmetric tensor S commutes with every rotation if and only if
S =ol

Crucial to our dcvelopment of continuum mechanics is the polar de-
composition theorem; our proof of this theorem is based on the

Square-Root Theorem. Let C be symmetric and positive definite. Then there is
a unique positive definite, symmetric tensor U such that

Uz==_C
We write /C for U.
Proof. (Existence) Let
C= Z w;e; @ e

be a spectral decomposition of C € Psym and define U € Psym by
U=} Joe®e.
(Since w; > 0, this definition makes sense.) Then U? = C is a direct con-
sequence of (1.2);.
(Uniqueness!) Suppose
Ul=VvZ=C

with U, V € Psym. Let e be an eigenvector of C with @ > 0 the corresponding
eigenvalue. Then, letting 4 = /o, :

0 = (U? — wl)e = (U + AU — iDe.

! Stephenson f1].
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Let
v=(U - ADe.
Then
Uy = —Av

and v must vanish, for otherwise —A would be an eigenvalue of U, an im-
possibility since U is positive definite and 1 > 0. Hence

Ue = le.
Similarly,

Ve = le,
and Ue = Ve for every eigenvector e of C. Since we can form a basis of
eigenvectors of C (cf. the spectral theorem), U and V must coincide. [
Polar Decomposition Theorem. Let F € Lin*. Then there exist positive
definite, symmetric tensors U, V and a rotation R such that

F=RU = VR 5)

Moreover, each of these decompositions is unique; in fact,

U = /FTF, V = /FFT. (6)

We call the representation F = RU (resp. F = VR) the right (resp. left)
polar decomposition of F.

Proof. Our first step will be to show that FTF and FFT belong to Psym.
Both tensors are clearly symmetric. Moreover,

v+ FTFv = (Fv) - (Fv) = 0,

and this inner product can equal zero only if Fv = 0, or equivalently, since F is
invertible, only if v = 0. Thus F'F & Psym. Similarly, FFT € Psym.

(Uniqueness) Let F=RU be a right polar decomposition of F. Then
since R is a rotation,

F'F = URTRU = U2

But by the square-root theorem there can be at most one Ue Psym whose

- square is FTF. Thus (6), holds and U is unique; since R = FU™!, R is also
unique. On the other hand, if F = VR is a left polar decomposmon then

FFT = V2,
andV is'determined uniquely by (6),, R by the relation R = V™!F.

s ~iny
BIBLIOTEGA

Uy, oA
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(Existence) Define U € Psym by (6), and let
R =FU"!

To verify F = RU is a right polar decomposition we have only to show that
ReOrth*. Since det F > 0 and det U > 0 (the latter because all eigenvalues
of U are strictly positive),det R > 0. Thus we have only to show that R e Orth
But this follows from the calculation

R'R = U~'FTFU-! = U-'UPU~" = 1.
Finally, define
V = RUR™.
Then V e Psym (Exercise 1.17) and
VR=RUR™R=RU=F. [J]
Given a tensor S, the determinant of S — wl admits the representation
det(S — wl) = —w® + 1,(S)w? — 1,(S)w + 15(S) ©)

for every w € R, where

L(S)=1trS,
12(S) = 4[(tr S)* ~ tr(S?)], ®
15(S) = det S.
We call
Is = (14(8), 12(8), 15(8)) ®

the list of principal invariants' of S. When S is symmetric £ is completely
characterized by the spectrum (w,, @2, w3) of S. Indeed, a simple calculation
shows that

L) = o + 0 + w;,
1,(S) = 0,0, + W03 + W,w;, (10)
13(8) = W W, w;.

Moreover, the above characterization is a one-to-one correspondence. To see
this note first that w € R is an eigenvalue of a tensor S if and only if w satisfies

the characteristic equation
det(S — wI) = 0,

! 1(S) are called invariants of S because of the way they transform under the orthcgonal
group: 1,(QSQM = /(S) for all Q € Orth [cf. (37.3)].
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or equivalently,

Further, when S is symmetric the multiplicity of an eigenvalue w is equal to its
multiplicity as a root of (11).! Thus we have the following '

Proposition. Let S and T be symmetric and suppose that
J s = j T
Then S and T have the same spectrum.

More important is the

Cayley-Hamilton Theorem.? Every tensor S satisfies its own characteristic
equation:

S3 — 1,(S)S* + 1,(S)S — 1;(S)I = 0. (12)

EXERCISES

Determine the spectrum, the characteristic spaces, and a spectral de-
composition for each of the following tensors:

A=al+ﬁm®m’
B=m®®n+n@m

Here a and B are scalars, while m and n are orthogonal unit vectors.

2. Granted the validity of the portion of the spectral theorem ending with
(1), prove the remainder of the theorem.

\3\ Let D & Sym, Q € Orth. Show that the spectrum of D equals the spectrum
' of QDQT. Show further that if e is an eigenvector of D, then Qe is an
eigenvector of QDQT corresponding to the same eigenvalue.
P .. A tensor P is a perpendicular projection if P is symmetric and P2 =P.
A\éa) Let n be a unit vector. Show that each of the following tensors is a
" perpendicular projection:
L 0, n®@n, I-n®n. (13)

(b) Show that, conversely, if P is a perpendicular projection, then P
admits one of the representations (13).

! Cf., e.g., Bowen and Wang [1, Theorem 27.4]; Halmos [1, §78, Theorem 6}.
2 Cf. e.g., Bowen and Wang [1, Theorem 26.1}; Halmos [1, §58].

®? — 1,(S)w? + 1,(S)w — 15(S) = 0. (11)

SELECTED REFERENCES

5. Show that a (not necessarily symmetric) tensor S commutes with every
skew tensor W if and only if

S = ol (14)
6. LetF = RUand F = VR denote the right and left polar decompositions
of FeLin*.

(a) Show that U and V have the same spectrum (w,; @3, @3).
(b) Show that F and R admit the representations

F=Zwifi®eia
R=Zfi®ei,

where e; and f; are, respectively, the eigenvectors of U and V cor-
responding to w;.
7. Let R be the rotation corresponding to the polar decomposition of
FeLin®. Show that R is the closest rotation to F in the sense that

|F —R| < |F - Q| (15)

for all rotations Q # R.
The result (15) suggests that an alternate proof! of the polar decomposition
can be based on the following variational problem: Find a rotation R that
minimizes |F - Q] over all rotations Q.

SELECTED REFERENCES

Bowen and Wang [1].

Brinkman and Klotz [1].

Chadwick [1, Chapter 1].

Halmos [1].

Martins and Podio-Guidugli [1].

Nickerson, Spencer, and Steenrod {1, Chapters 1-5].
Stewart [1].

! Such a proof is given by Martins and Podio-Guidugli {1].




CHAPTER

II

Tensor Analysis

3. DIFFERENTIATION

In this section we introduce a notion of diflerentiation sufliciently gencral
to include scalar, point, vector, or tensor functions whose arguments are
scalars, points, vectors, or tensors. To accomplish this we use the fact that [,
77 and Lin are normed vector spaces, and where necessary phrase our def-
initions in terms of such spaces.

Let % and #" denote normed vector spaces, and let £ be defined in a
neighborhood of zero in % and have values in #°. We say that f(u) approaches
zero faster than u, and writc

f(u) = o(u) as u— 0,

or, more simply,

f(u) = g(u).

f
lim WU
woo - flul]
u+0

[
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[Here [[f(u)| is the norm of f(u) on ¥, while |lujj is thc norm of u on %.]
Similarly,

f(u) = g(u) + o(u)
significs that
f(u) — g(u) = o(u).

Note that this latter definition also has meaning when f and g have valucs in
&, since in this instance f — g has values in the vector space ¥
As an cxample consider the function ¢(t) = % Then

(1) = o(l)

if and only if & > 1.

Let g be a function whose values are scalars, vectors, tensors, or points,
and whose domain is an open interval @ of R. The derivative g(t) of g at ¢, if it
exists, is defined by

60 = T80 = lim ] [g0 + o) — g0]. m

a0 &

Il the valucs of g arc points, then g(t + «) — g(¢)is a point difference and hence
a vector. Thus the derivative of a point function is a vector. Similarly, the
derivative of a \;}:clor function is a veetor, and the derivative ofa tensor.func-
mlcnaorch say that g is smooth i g(r) exists atfcachyt € ¥, and if the
function g is continuous on 9. ?
Let g be differentiable at . Then (1) implies that

lnm [g(t + a) — g(t) - ag(t)] =0,

a-0 &%
or cquivalently, D /

\ wft“+ a) = g(r) + ag(t) + o). i\ )
Clearly, P e

) 2 “°\>"f<~ ‘*é )

™™

is linear in a; thus
gt + o) — g(0)

A A ————— e

is equal to a term linear in afplus a term that approaches zero faster than a. In
dealing with functions whose domains lic in spaces of dimension greater than
onc the most uscful definition of a derivative is based on this result; we define
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the derivative to be the linear map which approximates gt + a) — ~ g(t) for
small o

Thus let % and %" be finite- dimensional normed vector spaces, let 9 be
an opcn subset of %, and lct

g -
We say that g is differentiable at x e & if the diflerence

g(x + u) — g(x)

is cqual to a lincar function of u plus a term that approaches zero faster than u.
More precisely,; gis dlll'crclltlal)lq at x if there exists a lincar transformation
D Dg): U - u 3)

such that e o
8 + ) = g0 + Dglx) [u] + ofu) | @

asu— 0 lng(x) cx15ts itis unlquc in fa(,l for cach u, I

Dg(x) [u] = leo 5 [8(x +au) — g(x)] = —- L,(‘< + au)l, .
ac it

S —
[ We call Dg(x) the derivative of 1_, at ;‘ Since any two norms on a finjte-
“dimensional vector spaceare cquivalent, Dg(x) is independent of the choice of
norms on % and #°. If g is diffcrentiable at cach x € 2, then Dg denotes the
map x +— Dg(x) whose domain is & and whose codomain is the spacc of
linear transformations from % into #". This spacc is finite dimensional and
can be normed in a natural manner; thus it makes sense to talk about the
_continuity and differentiability of Dg. In particular, we suy that gis of class C*,
or smooth, if g is diffcrentiable at each point of ¥ and Dg is continuous. Con-
tinuing in thls _manner, we say g is of class C? if g is of class C' and Dg is
smooth, and 50 fortlﬁ
Of coursq }he three- dimensional cuclidean point space & is not a normed
vector space. However when the domain @ of g is contained in & the above
definition remains valid provided we replace# in (3) by the vector space /”
associated with &. Similarly, when g has values in & we need only replace
in (3) by 7.
Note that by (2), when the domain ¥

B U

of gis contained in R,

Dg(t) [a] = ag(1) (S)

for cvery e 8.+
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Smooth-Inverse Theorem.!  Let & be an open subset of a finite-dimensional
normed vector space . Further, let g: 2 — 9 be a one-to-one function of cluss
C" (n=1) und assume that the linear transformation Dg(X): U — U is
invertible at each x € 2. Then g~ is of cluss C*,

Often, the easiest method of computing derivatives is to appeal directly
to the definition. We demonstrate this procedurc with some examples.
Consider lirst the function ¢: 7" — R defined by

Q(v) =v-v.

Then
v+ uwy=v v+ 2veu 4+ u-u= @(v)+ 2v-u + o(u),
so that
Dp(v) [u] = 2v-u.

Similarly, for G: Lin — Lin defined by

G(A) = A?
we have

G(A + U) = A2 + AU + UA 4+ U? = G(A) + AU + UA + o(U),

so that
DG(A) [U] = AU + UA. (6)
Next, let G: Lin — Lin be defined by
G(A) = A*.
Then

GA + U) =(A + U)> = A® + A2U + AUA + UA? + o(U)
= G(A) + A?U + AUA + UA? 4+ o(U),

and hence
DG(A) [U] = A*U + AUA + UAZ%
As our last example, let L: 9% — ¥ be linear. Then

L(x + u) = L(x) + L(u),

' This result is a direct consequence of the inverse function theorem (ef. Dicudonné [1,
Theorem 10.2.5]).
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so that, trivially,
DL(x) = L. : (N
COHP TR
The next two results involve far less trivial computations.

Theorem (Derivative of the determinant).  Let ¢ be defined on the set of all
invertible tensors A by

P(A) = del A,
Then ¢ is smooth. In fuct,

Dp(A) [U] - (det A) tr(UA™) )

D

Jor every tensor U. N

Proof. By Q7 withw = —1,
det(f + 8) = | + tr S + o(S)
as S — 0. Thus, for A invertible and U e Lin,

det(A + U) = det[(1 + UA™HA] = (det A) det(d + UA™Y)
= (det A) [ + ((UA™") + o(U)]
= det A + (det A) te(UA ") + o(U)

as U — (. Therefore, sinc«_: the map
U (det A) t(UATY)

is lincar, (8) must be valid. The proof that Deg is continuous follows from the
continuity of the determinant, trace, and inversc operations. {7

Theorem (Derivative of the square root).  The function H: Psym — Psym ’
defined by

H(C) = JC
is smooth. b-._

Proof. By the square-root theorem (page 13), the function E is one-to-
one with inverse G: Psym — Psynm delined by -
G(A) = A
Clearly, G is smooth with derivative DG(A): Sym — Sym given by (6). Thus,
in view ol the smooth-inverse theorem, Lo complete the proofl it sullices to
show that DG(A) is invertible at cach A € Psym, or cquivalently, that

DGAY[U] =0 mplics U = 0.
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Assumec the former holds, so that, by (6),
AU+ UA =0,
Let A be an cigenvaluc of A with e a corresponding cigenvector. Then
AUe + UAce = AUe + AUc = 0
and
A(Ue) = —A(Ue).

If Ue # 0, then —disan eigenvalue of A. But A is positive definite, so that A
and -4 cannot both be cigenvalucs. Thus Ue = 0, and this must hold for
cvery cigenvector e of A. By the spectral theorem, there is a basis for 7 of
cigenvectors of A. Thus U = 0. [

It will frequently be necessary to compute the derivative of a product
n(f, g) of two functions f and g. In tensor analysis there are many different
products available; for example, the product of a scalar ¢ and a vector v

(e, v) = ov,
the inner product of two vectors
n(u, v) = u-v,
the tensor product of two vectors
(w, V) = u®yv,
the action of a tensor S on a vector v
(S, v) = Sy,

and so forth. The above operations have one property in common, bilinearity.
Therefore, in order to establish a product rule valid in all cascs of interest, we
consider the general product operation

TF XG> W,

which assigns to each f, e # and 8o € ¥ the product n(f,, g,) € #". Here &,
9, and ¥ are finite-dimensional normed spaces and w is a bilinear map. '
Within this gencral framework the product h = n(f, g) of two lunctions

f: 2> 7, 899
is the function

' h: 9w
defined by

h(x) = n(f(x), g(x))
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for all x € . Assume now that thc common domain & of f and g is an open
subsct of a finite-dimensional normed spice # (or of our cuclidean point
space). We then have the

Product Rule. Let T and g be differentiable at xe &, Then their product
h = n(f, g) is differentiable at x and

Dh(x) [u] = n(f(x), Dg(x) [u]) + n(DF(x) [u], g(x)) )
Jorallue .

The proof of this result will be given at the end of the section.
Note that when fis constant (9) reduces (o '

Dh(x) [u] = =(f, Dg(x) [u]),

with a similar result when g is constant. We can use this fact to interpret (9).
Thus let x, be a given point of 9, let f, and g, denote the constant functions on
2 with values f(x,) and g(x,), and Ict
hl = n(f(h g)’ hl = n(f. g())'
Then (9) becomes
Dh(xo) = Dhy(x,) + Dhy(x,); (10)

that is, the derivative of n(f, g) at x, is the derivative of the product holding f
constant at its value £(x,) plus the derivative of the product holding g constant at
its value g(x,).

When the common domain of f and g Is an open subsct of R, then (5), (9)
(with x replaced by 1), and the bilinearity of n imply that

h(r) = (f(1), 5(0)) + n(1(1), g(1).
Thus we have the following

Proposition. Lel g, v, w, S, and T be smooth Junctions on an open subset of R
with ¢ scalar valued, v and w vector valued, and S and T tensor valued. Then

(pv) = @V + v,
(Yow) =vew 4 vew,

(TSYy =TS + T8,
(T*Sy =T-S+7T-8,

(Suy = Su + Su.
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Figure |

Another theorem which we will use frequently is the chain rule. In order
to state this result in sufficient generality, let %, ¥, and & denote finite-
dimensional normed lincar (or cuclidean point) spaces, let ¥ and 2 denote
open subscts of ¥ and %, respectively, and let

g9 -9, f:%9 - .7,

with the range of g contained in %' (Fig. 1).

Chain Rule.!  Ler g be differentiable at x € @, and let £ be differentiable at
y = g(x). Then the composition

is differentiable at x and
Dh(x) = Df(y) o Dg(x). (1)
The relation (11), in less abbreviated form, reads

Dh(x) [u] = Df(g(x)) [Dg(x) [u]]

for cvery ue 4. In the casc % = R, g, and hence h, is a function of a recal
variable; writing ¢ in place of x,

Dh(1) [o] = oh(r),  Dg(r) [o] = ag(t)

for every a e R. Thus, since h(r) = [(g(1)), we have the important relation
d .
0 f(g(1)) = Df(g(0)) [&()]- (12)

! See, e.g.. Bartle {1, Theorem 40.2).
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Proposition.  Let S be a smooth tensor-valued function on an open subset & of
R. Then ~

ST =" =5 (13)
and if' S(t) is invertible at cacli 1 ¢ &, »
(det 8) = (det S) (Ss 1), _ (i
Proof.  Let L: Lin — Lin be dcfined by
L(A) = A",
Then L is fincar, so that (7) and (12) imply
S =[S = L) = )",
which is (13). The result (14) is a direct consequence of (8) and (12). O

We close this section with the

Proof of the Product Rule.  Let k, denote the maximum of f|n(e, k)| over
all unit vectors e and k. This maximum cerlainly cxists, since the set of all
unit vectors is compact. (Recall that the underlying spaces .# and 4 are
finitc dimensional.) Assume a # 0, b # 0, and let ¢ and k denote the unit
vectors

¢ = a/fia|, k =: b/||b|.
Since r is bilincar,
m(a, b) = [ja] ibln(e, k)
and
lIna, DY < wollall Ibj.

This incquality js also satisficd when a = 0 or b = 0, as is clear from the
bilinearity of =. A’ similar argument yields the existence of constants x, and xy
such that .

IPEx) [ulll < willull,  EDg(x) [u]i} < & ful

forallue .
To establish (9) we note first that

f(x + u) = f(x) + DI(x) [u] + o(u),

g(x + u) = g(x) + Dg(x) [u] - ofu),
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and
lin(DI(x) [u], Dg(x) [ul)]| < Kok kzllul?,
in(DE(x) [u], o)l < xoxy fufjo(u),
Im(o(u), Dg(x) [ul)ll < xqx;lullou).
Thus, since all of the above terms are o(u), we conclude from the bilinearity of
n that
h(x + u) = n(f(x + u), g(x + u))
= n(f(x), g(x)) + n(f(x), Dg(x) [ul)
+ n(DI(x) [u], g(x)) + o(u),

which yiclds the desired result, because the first term on the right side is h(x),
while the second and third terms are linearinuw. O

EXERCISES

><l. Compute DG(A) for cach of the following functions G: Lin — Lin,

(@) G(A) = (tr A)A,

(b) G(A) = ABA (B a given tensor),

(€) G(A) = ATA,

(d) G(A) = (u:Au)A (ua given vector).

2. Let G be defined on the sct of all invertible tensors by G(A) = A~ 1.
Assuming that G is diflerentiable, show that

DG(A)[H] = —A~'HA™ .,
3. Let ¢ be defined on the set of all invertible tensors by ¢(A) = det(A?).
Compute Do (A),
4, Let @(v) = ¢** for all ve 4. Computc Deo(v).
Let G: Lin — Lin be defined by

G(A) = K(A)AT,

where K: Lin — Lin is differentiable. Show that if G(A) is symmetric for
each A and if K(I) = 0, then DK(I) has symmetric values (i.c., DK(I) [H]
= DK(I) [H]T for every H € Lin).

6. Let Q: R — Orth be dillerentiable. Show that Q()Q(¢)" is skew at cach
teR .

7. Let G: Lin — Lin be differentiable and satisfy
QG(A)QT = G(QA)
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for all A € Lin and Q € Orth. Show that

G(A)WT + WG(A) = DG(A) [WA]
for all A e Lin and W e Skw.

8. LetS:Lin — Lin be smooth.

(a) Decfine G: Lin — Lin by
G(A) = S(A, + aA),
where « € R and A, € Lin. Show that
DG(A) [U] = a DS(A,, + aA) [U]

for every U e Lin.
(b) Decfine ¢: Lin —» R by

o(A) = J:A *S(Ay + aA) do.
Compute De. (It is permissible to differentiate under the integral.)
(¢) Assume that DS(A) is symmetric at cach A in the sense that
B DS(A) [C] = C- DS(A) [B]
for all tensors B and C. Show that
Dp(A) [U] = S(A, + A)- U

for cvery U e Lin.
9. Compute the derivatives of the principal invariants 1y, 1, 1;: Lin = R
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We now consider functions defined over an open set 4 in cuclidean space.
A function on ¢ is called a scalar, vector, tensor, or point field according as its
values are scalars, vectors, tensors, or points.

Let ¢ be a smooth scalar field on #. Then for each x € #, Dp(x) is a linear
mapping of ¥~ into R, and by the representation thcorem for lincar forms
there exists a vector a(x) such that De(x) [u] is the inner product of a(x) with
u. We write V(x) for the vector a(x), so that

Do(x) [u] = Vep(x) * u,

and we call Vop(x) the gradient of ¢ at x. In this casc the expansion (3.4) has
the form

o(x + u) = @(x) + Vo(x) - u + o(u).
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Similarly, il v is a smooth vector or point licld on A, then Dv(x) s a lincar
transformation from ¢ into 7 and hence a tensor. In this casc we use the
standard notation Vw(x) for Dv(x) and write

Vv(x) u = Dv(x) [u].

The tensor Vv(x) is the gradient of v at x.
Given a smooth vector lield v on 2, the scalar field

divy = tr Vy

. ..‘—-———’—-’.‘-—.
is called the divergence of v. Wc can use this operator Lo deline the divergence,
div §, of a smooth tensor field S. Indeed, div § is the unique vector field with
the following property:

5 divS)-a = div(s”fa):\ (1

for every vector a. The reason for defining div S in this manner will become
clear when we establish the divergence theorem for tensor ficlds.

Proposition. Let ¢, v, w, and S be smooth fields with ¢ scalar valued, v and w
vector valued, and S tensor valued. Then

- Vipv) =@ Vv +v® Vo,
~div(py) = @ divv + v- Vg,
Vyew) = (Vw)Tv + (Vv)T w, (2)
»diviv ®@ w) = vdivw + (Vv)w,
div(S™) = S+ Vv + v+ divSS,
div(pS) = @ divS + S V.
Progof. Let h = @v. Then by the general product rule (3.9),
Vh(x) u = ¢(x) V¥(x) u + (Vop(x) * u)v(x)
= [p(x) V¥(x) + v(x) ® Vop(x)]u,

which implies (2),. Taking the trace of (2),, we arrive at (2),.
Next, let y = v-w. Then by (3.9),

Vip(x) s u = v(x) - Vw(x) u + w(x) - Vv(x) u
= [Vw(x)" v(x) + Vv(x)" w(x)] - u,

and we have (2),.
To prove (2), note that, by (1) and (2),,

a-div(v @ w) = div[(w @ v)a] = div[(v:-a)w] = (v-a) divw + w- V(v - a).
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But by (2),,
V(v+a) = Vv'a.
Thus
a-diviv® w) = (v-a)divw + w-(Vv'a) = [vdivw + (Vv)w] : a,
which implics (2),.
Before proving (2)s, we note that
V(Av) = A Vv (3)
for any (constant) tensor A and any smooth vcclor‘licld v. Indeced,
v(x + u) = v(x) + Vv(x)u + ou)
and hence
Av(X + u) = Av(x) + A Vv(x) u + o(u),

which implics (3). [This result is also a direct conscquence of (3.7) and the
chain rule (3.11).] Taking the trace of (3), we arrive at the identity

div(Av) = AT Vv, 4
We arc now in a position to prove (2),. Clearly,
div(S™v) = tr V(S'v),

and by the product rule in the form (3.10), V(Sv) (x,) is the sum of two terms:
the gradient holding S constant at the value Sy = S(x,) plus the gradicat
holding v constant at v, = v(x,). Therefore

div(STv) (x,) = tr[V(S§v)(x,) + V(S'ryo)(xo)]
div(Siv)(x,) + div(STvg) (xo).

By (4) with A = S,
| div(STv) = S, - Vv.
On the other hand, since vy is constant, (1) implics
div(S"v,) = v, - div S.

Thus
diV(STV)(Xo) = 84 V¥(x,) + v, - div S(xg),

which implics (2)s.
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The proof of (2) is similar. Using the above argument it is clear that
div(¢S)(x,) is the divergence holding ¢ constant at @, = ¢(x,) plus the
divergence holding S constant at S, = S(xo):

div(9S)(x,) = div(p,S)(x,) + div(pSy)(x,).

Clearly,

div(¢,S) = ¢, div S.
Also, for any vector a,

a-div(pS,) = div(pSZa),

and by (2), with v = SJa this becomes

Vp:Sia=a-S, Vo,
hence

div(¢pS,) = S, V.
Therelore
div(@S)(x,) = @ div S(x,) + S, Vep(x,),
which implicé .. O
Another important identity, for a class C2 vector ficld v, is

div(VvT) = V(div v). %)

We postpone the proof of (5) until later. -
Thc@dcnolcd curl v, is the uniquclvcctor ficld}with the property
/(Vv — VvyMNa = (curl V) x a | ©6)

for every vector a. Thus curl v(x) is the axial vector corresponding to the skew
tensor Vv(x) — Vv(x)T.

Let @ be a scalar or vector ficld of class C2. Then W of Mhis
defined by P !
| 40 = div vo, |
If
Ab =0,

then @ is harmonic.
Proposition.  Let v be a class C? vector field with
divv =0, curl v = 0.

Then v is harmonic.
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Proof. Since curl v = 0, (6) implics
Vv — Vv =0,
Thereforc, by (5),
0 =div(Vy — Vv') = Av — Vdivy = Av.
Let @ be a smooth scalar, vector, or tensor licld. Then
DO(x) [e;] = lij‘;é {D(x + ae)) — O(x)}.

Ifx has components (x4, X,, x;), then x -+ ae,, say, has components (xy -+ o
X3, X3). Thus the limit on the right is simply the partial derivative of @ with
respect to x;:

od(x)

Dd(x) [¢;] = Fe

This fact can be used to establish the following component representations:

%

! do _ Oy
: (Vo) = oy (Vv)i; = ax;’
Jv; . OS'J‘
H = ! y), = — 7
divy ;0«\';’ (div S), %, (7
2
Ap = Z 0\*,2), (Av); = Av;.

Furthelf curl Vﬁlas components (a, f3, y) with
’ vy e, dv,  On, dv, o,
a=~—~———~’ If:—————~»’ ‘)':——————-—,
0x,  0x, dx;  Ix, Ox, 0x,

and if W is the skew part of Vv, then

i 0 —y B
- - o 0

The verification of (5) furnishes an excellent cxample of the use of the
above identitics. The components of Vy' are

;.

ax;’

(Vv =



g
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hence

. w0 o
O U L = = (div v) = [V(div V)],

IX;aOx;  Ox; G Ox;

[div(V")]; = ¥,

j
which implics (5).
We now list somiec obvious conscquences ol the chain rule. [First et
h=fog
with f and g smooth point ficlds. Then (3.11) takes the form
Vh(x) = Vi(y) Vg(x),

where y = g(x). On the other hand, for a smooth scalar field ¢, a smooth
vector field v, and a smooth point-valued function g of a real variable, (3.12)
reads

d 1 o ISP
= 0(e(0) = Volg(0) - 0, NG

!
:W v(g(0) = Vv(g()) (1)

A curve ¢ in Z is a smooth map
c:[0, 1] >

with ¢ never zero; ¢ is closed if ¢(0) = ¢(1); the length of ¢ is the number
1
length(c) = | [é(a)| da
0

(sce Fig. 2). Let v be a continuous vector field on #2. Then the integral of v
around c is defined by

Jv(x) ‘dx = J]V(C(O’)) - &(0) do.
c . Yo

Figure 2
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Similarly, for a continuous tensor ficld § on 2,
1
fS(x)zlx == f S{e(a))e(a) da.
[ 0

Note that il ¢ is a smooth sealar ficld on 2, e

" \

: .
fV(p(x)-dx = f Vip(e{a)) - &a) do = J ;i_ ple(a)) da \)
¢ 0 o 0o
= p(e(D) — ple(O); N S
thus ) o
JV(p(x) cdx =0 (8)

whencver ¢ is closed.

Given a subsct 2 of &, we write 3 [or its boundary and A for its interior.
Wesay that # is connected if any two points in 2 can be connected by a curve
in 2 ; simply connected if any closed curve in 2 can be continuously deformed
to a point without leaving :# (i.c., il given any closed curve ¢ in 2 there exists a
smooth function f: [0, 1] x [0, 1] — # and a point y € # such that, for all
ae [0, 1],f(s,0) = c(a).f(a, 1) = y,and [(0, o) = f(1, 6)). An openregionisa
connected, open sct in &7 the closure of an open region is called a closed
region.

Let # be a closed region. A ficld dvis smooth on 2 if @ is smooth on 2, and
il ® and Vb have continuous extensions Lo all of #2; in this case we also write @
and V& for the extended functions. An analogous interpretation applics lo the
statement “® is of class CY on 2™ note that (for :# open or closcd) this will
be truc if and only if the components of ® have continuous partial derivatives
of all orders <N on #.

A vecetor field of the form v = Vg satislies curl v = 0 (Exercise 5a). Our
next theorem, which we state without proof, gives the converse of this result.

Potential Theorem.! Let v be a smooth point field on an open or closed,
simply connected region A, and assume that

curl v = 0.
Then there is a class C* scalar field @ on 4 such that
v=Vaq.
We close this section by proving that veetor ficlds with constant gradients

arc afline.

'CI., e.g., Fleming [1, Corollary 2. p. 279,
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Proposition. Let fbe a smooth point- or vector-valued field on an open or closed
region A, and assume lhatzF = Vfis constaﬂ\ on R. Then

) f(x) = f(y) + F(x — y) ©)
R YL

Proof.  Choose x, y € #. Since £ is connected there is 4 curve ¢ in £ from
y to x. Thus

. 1 1
f(x) - f(y) = f ;;—1(; f(c(0)) do = J Vi(c(a))e(o) do
0 0

1
- Ff o) do = F(x —y). [J
0

By (9) any vector ficld f with constant gradient F can be written in the form
f(x) =a + F(x — x,)

with a e ¥" and x, € &. Morcover, the point x, can be arbitrarily chosen. (Of
course, a depends on the choice of x,,.)

EXERCISES

1. Leto, ¢, u,v,w,and S be smooth fields with & and ¢ scalar valued; u, v,
and w vector valued; and S tensor valued. Establish identities, similar to
(2), for

(@) V(ap),

(b) V[(u-v)w],

(c) div(gSy),

(d) A(v-w) (withvand wofclass C2).

2. Establish the existence and uniqueness of the divergence, div S, of a
smooth tensor field S.

3. Establish the component representations (7).
4. Use (7) to deduce (2), and (2)5.
5. Let ¢ and v be class C2. Show that

(@) curl Vo =0,

(b) divcurlv = 0.

In Exerciscs 6-8,

rx) =x — o.

-
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6. (a) ShowthatVr =1
(b) Let e = r/|r|. Computc (Ve)e.
7. Letae?”,SeLin, and define ¢: & -» I by
¢ = a-(r x Sr).
Compule V.
8. Let u be the vector ficld on & — {0} defined by
= r/|r|’.
Show that wis harmonic. Find a scalar ficld whose gradient is u.
9. Letu be a class C? vector ficld. Show that
(@) div{(Vu)u} = Vu-VuT + u+(Vdivu),
(b) Vu-VuT = div{(Vu)u — (div u)u} + (div u)2.
10. Let u and v be smooth. Show that

diviu x v) =v-curlu —u-curlv.

5. THE DIVERGENCE THEOREM. STOKES’ THEOREM

Wc use the term regular region in the sensc of Kellogg [1].' Roughly
speaking, a regular region is a closed region % with piecewise smooth
boundary 9. It is important to note that .# may be bounded or unbounded.
In the former case we write

vol(#)
for the volume of #.

Divergence Theorem. Let 4 be a bounded regular region, and let 2 :# — R,
viA -V, and S: # — Lin be smooth fields. Then

J ondA =fV(p dv,
oA AR

f vendAd = jdiv vdV,
R i

SndA = f divSdV,
o 4

i

where n is the outward unit normal field on 0:4.

' See also Gurtin |1, §5).
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Progf.  The results concerning ¢ and v are classical' and will not be
verified here. To cstablish the fast relation, let a be a vector. Then

a f SndA = J. a-SndA ;f (S™a) - n dA
oA of R

- fdiv(s"‘a) AV = f(div S)-adV =a- f divS dv,
¥4 N 4

which implics the desired result, since a is arbitrary. O

Our rcason for defining div § the way we did should be clear from the
foregoing proof.

We will often find it important to deduce local field cquations from global
formulations of balance laws. This procedure is greatly facilitated by the

Localization Theorem.  Let & be a continuous scalar or vector field on an open
set A in &. Then given any x, € A,

D(xy) = lim

I
- - D dV, )
a0 VOI(L2;) 04

where Qs (8 > 0) is the closed ball of radius & centered at x,. Therefore, if

f(l)th =0
Q

Jor every closed ball Q < £, then
¢ = 0.

Proof. Let

1.s=

Uy

1
I(xy) — — f ®dV l
Q2

where v; = vol(Q;). Then

1
li=~ J |D(xo) — P(x)} dV, < sup [P(xg) — B(x)|
3 JQs

xells

which tends to zero as o — 0, since @ is continuous, O

See, e.g., Kellogg {1, Chapter 4],
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Note that the localization theorem and the divergence theorem together
yield the following interesting interpretation of the divergence:

{
div v(x) = lim [ veondA,
s w0 VOI(L2,) Jogy,

div S(x) = lim

T Su dA.
g0 VOI(LS) Jig,

We will make use of Stokes™ theorem, but only in the following very
special form.

Stokes’ Theorem.'  Let v be a smooth vector field on an open set 2 in &
Further, let Q be a dise in 2 (Fig. 3). let w be a unit normal to §, and let the
bounding circle ¢(6),0 < o < 1, be oriented so that

[¢(0) x &(a)] 0> 0, O<a< |
Then

J(curl v)'ndA = [v-zlx.
€2 Je

J.v-dx

represents the circulation of v around ¢; it sums the tangential component of v
around the curve ¢ and can be used to give a physical interpretation of curl v,
Indeed, if we let x,, denote the center and 0 the radius of Q, and write Q = €,
¢ = ¢;, then by Stokes’ theorem and an argument similar to that uscd to
derive (1),

The integral

. fe vedx
n-curl v(x = [im Co -
W) = )

where A(Q;) is the arca of Q. Considering different choices for n, we conclude
that curl v lics perpendicular to the plane in which the circulation per unit

Figure 3 ¢

b See, e, Kellogg (1, Chapter 4, §4J.
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area is greatest, and that the magnitude of curl v is the circulation per unit
area in that plane.

EXERCISES

1. Let # be a bounded regular region, and let v, w: o — ¥~ and S: £ — Lin
be smooth. Show that:
(@) faxv®ndd= faVvdy,
. (b) j',,:,, (Sn) ® vdd = j',,, [divS)® v + SwT av,
% (©) fowv-SndA = f#(v-divS +S- W) dV, Porkuis p, ¢ ey
() fou v(wen)dA = fa [vdivw+ (Vv)wldv.,

2. Let v be a smooth vector field on an open region . Show that

f vendd =0
Ed

for every regular region #? < % ifapd only if divy = 0.
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CHAPTER

IIT

Kinematics

6. BODIES. DEFORMATIONS. STRAIN

Bodies have onc distinct physical property: they occupy regions of
cuclidean space &. Although a given body will occupy different regions at
different times, and no one of these regions can be intrinsically associated
with the body, we will find it convenient to choose one such region, 4 say,
as reference, and to identify points of the body with their positions in 4.
Formally, then, a body 4 is a (possibly unbounded) regular region in £. We
will sometimes refer to 4 as the reference configuration. Points p € # arc
called material points; bounded regular subregions of 4 are called parts.

Continuum mechanics is, for the most part, a study of deforming bodics.
Mathematically, a body is deformed via a mapping f that carries cach
material point p into a point

x = f(p).

The requirement that the body not penetrate itsclf is cxpressed by the
assumption that f be one-to-one. As we shall see later, det VF represents,
locally, the volume after deformation per unit original volume: it is therefore
rcasonable to assume that det V[ # 0. Further, a deformation with
det Vf < 0 cannot be reached by a continuous process starting in the reference
configuration; that is, by a continuous one-parameter family f, (0 < o < 1)

41
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of deformations with f the identity, f; = f, and det V{, never zero. Indeed,
since det Vf, is strictly positive at ¢ = 0, it must be strictly positive for all .
We thercfore require that

det Vf > 0. 0

The above discussion should motivate the following delinition. By
deformation of 4 we mean a smooth, one-to-one mapping f which maps :4
onto a closed region in &, and which satisfics (1). The vector

u(p) = f(p) — p 2
represents thedisplacement of p (Fig. 1). When uisa constant, fis a translation
in this case

fp=p+u
The tensor

F(p) = Vi(p) (3)

is called the deformation gradient and by (1) belongs to Lin*. A delormation
with F constant is homogeneous. In view of (4.9), every homogencous defor-
mation admits the representation

f(p) = f(q) + F(p — q) 4)

for all p, q € 4, and conversely, a point ficld f on & that satisfies (4) with
F e Lin” is a homogencous dcformation.

For any given valuc of q the right side of (4) is well delined for all pe &.
Thus any homogencous deformation of 4 can be extended to form a homo-
gencous deformation of &, We therefore consider homogeneous deformations
as defined on all of &.

For future use we note the following properties of homogeneous deforma-
tions:

i) Given a point q and a tensor F € Lin™, there is exactly one homo-
geneous deformation f with Vf = F and q fixed [i.e., f(q) = q].

u(p)

Figure |
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(i) If fand g are homogencous deformations, then so also is f o g and
V(fog) = (VI)Vg).
Morcover, il f and g have ¢ lixed, then so docs £ o g.

Proposition.  Let £ he a homogeneous deformation. I'hen given any puint q we
cun decompose £ as Jollows:

f=d,eg=god,,

where g is a homogencous deformation with q fixed, while d, and d, are trans-
lations. Further, cach of these decompositions is unique.

Proof. (Uniqueness)  Assume that the first decomposition f=d, - g
holds. Then VI = (Vd,)(Vg) and Vd, = I (because d, is a translation), so
that VI = Vg. Thercfore, by property (i) above, g is uniquely determincd.
Morcover, since d; = feog™!, this implics that d, is uniquely determined.
That f = g o d, is also unique has an analogous proof.

(Existence) By hypothcsis,

f(p) = [q) + F(p — q).
Since g must fix q and have Vg = VI (= F) (c[. the previous paragraph),
gp) = q + F(p ~ q).
Deline
d, =f.g" !, d, =g ' L
To complete the proof we must show that d, and d, arc translations. Let
u, = f(q) — q.
Then, since
7'M =q+F'(p—q),
we have
d,(p) = fl@)+ F(q + F~'(p — q) — @) = p + u,,
() =q+F'f@+Fp-q -—q=p+F 'y O

The last proposition allows us to concentrate on homogencous deforma-
tions with a point fixed. An important example of this type of deformation
is a rotation about ¢:

f(p)=q + R(p — q)

with R a rotation.
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A second example is a stretch from g, for which
fip) =q+ U(p -9
with U symmetric and positive definite. If, in particular,
U=I+(1-1e®e

with 4 > 0 and |e| = 1, then f is an extension of amount 4 in the direction e.
Here the matrix of U relative to a coordinate frame with e = e, has the
simple form

0
[Ul= 01,
I

O O =
S - O

and the corresponding displacement, shown in Fig. 2, has components
(u;, 0, 0) with

u(p) = (A — D(p, — ¢y).

Properties (i) and (ii) of homogeneous deformations, when used in
conjunction with the polar decomposition theorem, yield the following

Proposition. Let f be a homogeneous deformation with q fixed. Then f admits
the decompositions

f: gosl =52°g,

where g is a rotation about q, while s| and s, are stretches from q. Further, cach
of these decompositions is unique. In fact, if F = RU = VR is the polar de-
composition of T = Vi, then

Vg =R, Vs, = U, Vs, =V,

——
Thus{any homogencous dcformatlon (with a fixed pomt) can be dc\
composed mto a stretch followed by a rotation, or into a rotation followed

by a stretchi The next theorem yields a further decomposmon of either of

these stretches into a succession of three mutually orthogonal extensions.

L P T

R

5 A A
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Proposition. Every stretch f from q can be decomposed into a succession of
three extensions from q in nutually orthogonal directions. The amounts and
directions of the extensions are eigenvalues and eigenvectors of U = V1, and
the extensions may be performed in any order.

Proof.  Since U € Psym, we conclude from the spectral theorem that

U=Z/1,-Ci®c,-

with {e;} an orthonormal basis of cigenvectors and 4; > 0 the cigenvaluc
associated with ¢; (4; > 0since U is positive definite). In view of the identitics
(1.2);3.4, PP 4,
U = Ul UZ U'_;,
where
U=1+@~-De;®e;.

Let f; (i = 1, 2, 3) be the extension from q of amount 4; in the direction ¢;. By
property (ii) of homogencous deformations, f, -« f, o fy is a homogencous
deformation with q fixed and dcformation gradient U, U, U; = U. But

also has q fixed and VI = U. Thus by property (i) of homogencous deforma-
tions,

f="fof,0f;.
As a matter of fact, it is clcar that
[ =L Lzyo b

for any permutation ¢ of {1,2,3}. O

In view of the last proposition ecvery stretch can be decomposed into a
succession of extensions, the amounts of the extensions being the eigenvalues
4y, 3, A3 of U, For this reason we rcfer to the A; as principal stretches. Notc
that, since the stretch tensors U and V have the same spectrum, the stretch

s, (of the proposition on p. 44) has the same principal stretches as the stretch
s,. Nolc also that by (2.10) the principal invariants of U take the form

II(U) = A‘l + /12 -+ /13,
L(U) = 4,4, + 4,4, + 4,4,
13,(U) = 4,4, 4;.

We now turn to a study of gencral deformations of 4. To avoid repealed
hypotheses we assume for the remainder of the scction that f is a deformation
of #. Since f is one-to-one its inverse f ~!: f(44) — 2 cxists. Moreover, by (1),
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Vi(p) is invertible at cach point p of 4, and we conclude [rom the smooth-
inverse theorem (page 22) that £7! is a smooth map. Two other important
propertics of f arc

f(2) = (B)°,

5
((04) = ol(»), )

where ()" denotes the interior of (:#). We leave the proof of (5) as an
cXcreise.

The concept of stratin is most casily introduced by expanding the deforma- |

tion f about an arbitrary point q € #:

f(p) = Q) + Flq)p — q) + olp — q),

where F is the deformation gradient (3). Thus in a neighborhood of a point q
and to within an error of o(p — q) a deformation behaves like a homogeneous
deformation. This motivates the following terminology: let

F=RU=VR

be the pointwise polar decomposition of F; then R is the rotation tensor, U
the right streteh tensor, and V the left streteh tensor for the deformation [
R(p) measures the local rigid rotation of points ncar p, while U(p) and Y(p)
measure local stretching from p. Since U and V involve the square roots of
F'Fand FF7, their computation is often diflicult. For this rcason we introduce
the right and left Cauchy-Green strain tensors, C and B, delined by

C=U2= i<""|«‘, B=V?=FIT, (©)
in components,
= 5 Un R/
. Y& op Op . e 0P O
Note that T T T T T T e e
V =RUR", B =RCRT; (7N

thus, since R is a rotation,
cf‘/:-fu, (fn=.yfc

(cl. (2.10) and Excrcise 2.3).
Recall that the angle 0 between two nonzero vectors u and v is defined by

o i g
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fip + 10)

flp + 2d)

Figure 3

Proposition.  Let d and ¢ e unit vectors and let p e 4. Then as a - 0,
[f(p + o) — f(p)]
lal

and the angle between f(p + ad) — f(p) and f(p + oe) — f(p) tends to the angle
between U(p)d and U(p)e (Fie. 3).

= [U(p)el, (8

Proof. For convenience, we write IF for 19(p) and U for U(p). Then given
any vector u,

f(p + ou) = f(p) + oFu + ofa)
as o — 0. Let
d, = {(p + ad) — f(p), ¢, = f(p + ae) — 1(p).
Then |
d, = aFd + o(a), ¢, = ake + o(w),
and
d -

a

‘-a-;’—“ - Fd - Fe = RUd - RUe = Ud - Ue,

since the rotation tensor R s orthogonal. Taking d = ¢ lcads us to (8).
Next, let 0, designate the angle between d, and e,. Then
d,cc, d,ce, « o Ud - Ue
cOs ()a —_ 7 D == g ey e

e, o®  fd] e, U Ue}
which is the cosine of the angle between Ud and Ue. (Note that since U is
invertible, Ud, Ue # 0, and since fis onc-to-one, d,, ¢, # 0 for o # 0. Henee
the last computation makes sense.) Finally, since the cosine has a continuous
inverse on [0, x], 0, tends to the angle between Ud and Ue. [
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Figure 4

The above proposition shows that the stretch tensor U measures local
distance and angle changes under the deformation. In particular, since ja|
is the distance between p and q = p + ae, (8) asserts that to within an error

alter the deformation per.unjt original distance| The neXt result shows that”
U also determines the deformed length of curves in 4. In this regard, note
that given dny curve ¢ in 4, fo ¢ is the deformed curve f(e(a)), 0 < 0 < |

(Fig. 4).

Proposition. Given any curve ¢ in 4,

1
length(f o ¢) = J | U(c(0))e(o) | do. Q)]
[1]
Proof. By dcfinition,
1
length(f o ¢) = J —El— f(c(0))| do.
o lda

But by the chain rule,

d .. .

To f(c(0)) = F(e(0))é(o) = R(c(0))U(c(0))é(a),
where R(p) is the rotation tensor. Thus, since R is orthogonal,

l
%’ f(c(0))| = |U(c(o)é(e)l. O

A deformation that preserves distance is said to be rigid. More precisely,
fis rigid if

H(p) — (@) = Ip — ql (10)
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for all p, q € #. This condition imposcs severe restrictions; indeed, as the
next theorcm shows, a deformation f is rigid if and only if: (i) fis homo-
geneous and (ii) Vfis a rotation.

Theorem (Characterization of rigid dcformations). The following are
equivalent :

(a) fis arigid deformation.
(b) [admits a representation of the form

f(p) = f(q) -+ R(p — q)

Jor all p, q € :4 with R a rotation,

(c) K(p) is a rotation for each p € 4.

(d) U(p) = I for each p € 4.

{e) For any curve c in 4, length(c) = length(f - ¢).

Proof. We will show that (a) < (b) = (¢) = (d) = (¢) = (b).

(a) < (b). Let f be a rigid dcformation. If we use (4.2)y and (4.3) to
diffcrentiate

Lf(p) — f(@)] - [f(») — K} = (p — @) (p — @),

first with respect to q and then with respect to p, we find that
Vi@ [fp) — (@] =p — g (P

Vi)' Vi(p) = L

Taking q = p in (11), we sec that Vi(p) is orthogonal at cach p; hence (11),
implies that

(1

Vi(p) = Vi(q)

for all pand q, so that Vfis constant. Finally, sincc det VI > 0, Vfis a rotation.
Thus f is a homogeneous deformation with R = Vf a rotation. Converscly,
assumc that (b) holds. Then, since R is orthogonal,

[f(p) — f(q)] ) -l =Rp - -Re-a)=(p-0 (-9

and (a) follows.

(b) = (c) = (d). 1f(b) holds, then Vf = R, so that (c) is satisficd. Assume
next that F(p) is a rotation. Then C(p) = F(p)"F(p) = L. But U(p)? = C(p),
and by the square-root theorem (page 13) the tensor U(p) € Psym which
satisfies this equation is unique; hence U(p) = L

{d) = (c). This is an immediale consequence of (9).

(e) = (b). This is the most delicatc portion of the proof. Assume that (c)
holds. 1t clearly suflices to show that

F is a constant rotation. {12)
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Thus choose p, € % and let Q be an open ball centered at p, and sufliciently
“small that f(Q) is contained in an open ball I in f(:#) (cf. the discussion at the
end of the proofl). Let p, g€ Q (p # q), and let ¢ be the straight line from q
to p:

(o) =q + a(p — q), O<o< .
Then, trivially,

ip — q| = length(c),

and since the end points of £« ¢ are 1(q) and f(p),

length(f - ¢) = [f(p) — (q)];

hence (c) implics that

If(p) — o) < Ip — ql. (13)

Next, since f(q) and f(p) lic in the open ball T < (), the straight line h
from' f(q) to f(p) lics in f(:#). Consider the curve ¢ in 4 that maps into h:

c(o) = 7o), 0<o< i

Then the argument used to derive (13) now yields the opposite inequality
[f(p) — f@)| = |p — ql.

Thus (10) holds for all p, q € Q, and f restricted to Q is a rigid delormation.
The argument given previously [in the proof of the assertion (a) = (b)]
therefore tells us that (12) holds on Q.

We have shown that (12) holds in some ncighborhood of cach point of
A. Thus, in particular, the derivative of F exists and is zcro on Jf since 4 is
connected, this means that F is constant on &. Thus (12) holdson 4. [

We remark that U in (d) can be replaced by C, V, or B without impairing
the validity of the theorem.

We now construct the open ball Q used in the above proof. By (5),, (%)
contains an open ball I centered at f(p,). Moreover, since f is continuous,
f~}I) is an open neighborhood of p, and hence contains an open ball Q
centered at py. Trivially, ((Q) < T, so that Q has the requisite propertics.

1t follows from (b) of the last lhuomn_llmt}uvuy rigid deformation is a

““and converscly; thus (as a consequence of the first two propositions of thig
sccuon)fcvcry homogencous deformition can be expressed as a rigid ded

formann followed by a stretch, or as a stretch followed by a rigid dcl'ormdjX

} llon \i\

L lranslauon followcd by a 10h1uon or a rolation followed by a translation, |
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It is often important to converl integrals over (%) to integrals over /4.
The next pr oposmon which we state without proof, gives the corresponding
transformation law.!

Proposition.  Let 1 be a deformation of A, and let @ be a continuous scalar
Jield on §(:8). Then given any part :2 of 4.
f p(x)ydV, = f P({(p)) det F(p) dV,,
f(:”) .

. (1)
(EPHGpm(p) dA,.

i

[ e(x)m(x) dA,
BT Jor

where
G = (det IO Y
while m and n, respectively, are the outward wnit normal fields on 08:#) and 0.2
Given a part 2,

vol(f(:7)) = J dVv

r(.yl
represents the volume of ¢ alter it is dcfmmt.d under f. In view ol (14),.

( b
¥

vol(f(:2)) = J det K dV, = (15)

and therefore, by the localization theorem (5.1),

o vol(fiQs)
) 4 —_ _.,___' - l(
det F(p) = lu() vo l(."ﬁ) (16)

where Q; is the closed ball of radius & and center at p. Thus det gives the
volume after deformation per unit original volume.
We say that fis isechoric (volume prescrving) if given any part 2,

vol(f(:2)) = vol(:/).
An immediate consequence of this definition is the following
Proposition. A deformation is isochoric if and only if

det F = 1. (17
U For (143, ¢, e.g., Barte [1, Theorem 45.9]: Tor (14}, ol cp.. Truesdelt and Toupin
[1. Eq. (20.8)} '
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EXERCISES

Establish propertics (i) and (ii) of homogencous dcformations.
A homogencous deformation of the form

Xy=py -y,

X3 = P2,

X3 = D3
is called a pure shear. For this deformation compute:
(a) the matrices of F, C, and B;
(b) the list F¢ of principal invariants of C (or B);
(c) the principal stretches.
Compute C, B, and # for an extension of amount 4 in the dircction e.
Show that a deformation is isochoric if and only if det C = 1.
Show that

C=1+ Vu+ Vu' + Vu'"Vu
Show that a deformation is rigid if and only if ¢ = (3,3, ).
Show that the principal invariants of C arc given by

1(C) = A} + A} + A3,

1,(C) = A222 + 2323 + 437,

13(C) = 134343
with A; the principal stretches.

A deformation of the form

xy = Ji(p1s P2)s »

x2 = f2(P1s P2)s

X3 = Ps
is called a plane strain. Show that for such a deformation the principal
stretch 4, (in the p, direction) is unity. Show further that the deformation

is isochoric if and only if the other two principal stretches, 4, and 4,
satisfy

1
pI—
o
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)< 9. Let f; and f, be deformations of :# with the same right Cauchy-Green
strain tensors. Show that there exists a rigid deformation g such that

f, =g f,.
10. Establish the following analogs of (14),:

-

J v(x) - m(x) dA, = J V() - G(pIn(p) dA,,
hifEd}

i34

J Tx)m(x) dA, =J T(f(p)Gipn(p) d4,, (18)
aor¢:») oy

J (x — o) x T(x)m(x)dd, = J
)

(f(p) — o) x TEP)G(pn(p) dA,.
7

Here v and T are continuous ficlds on f(:4) with v vector valued and T
tensor valued.

11. Consider the hypothesis and notation of the proposition on page 47.
The number

1d, x ¢,

Joad x el

represents the ratio of the arca A4, at x = f(p) spanned by d, =
f(p + ad) — f(p) and e, = f(p + ac) — f(p) to the arca AAd, spanncd by
oe and ad (Fig. 5). Define

ld, % ¢|

dA i
A, " oo jad % el

X

Usce the identity

(Sa) x (Sb) = (det S)S™T(a x b)

Figure §




54 111, KINEMATICS

to show that

dA,

m(x) = = G(p)n(p),

where m(x) and n(p) arc the unit normals

. d x ¢
m(x) = lim % a

a—Q |d¢ X Cg‘

’

dxe
“(p) = ‘l'd'-‘;(——a.
[CL. (14),.]
12, Establish (5).

13. Let & be the closed half-space

% = {pl0 < p; < 0}
and consider the mapping f on 4 defincd by

X, = — ~wl-m—~
P+

Xz = Pa,

.\'3 = pj.

(a) Verify that f is one-to-onc and det VI > 0.

(b) Compulc. f(:#8) and usc this result to demonstrate that £ is not a
dcformation.

(¢c) Show that (5), is not satisfied.

7. SMALL DEFORMATIONS

. Loty epen ?
‘ We now sludy'thc behavior of the various kinematical ficlds when the
displacement gradient Vu is small. Since

f(p) = p + u(p),
it follows that

F=1+ Vu; )

hence the Cauchy-Green strain tensors C and B, defined by (6.6), obey the
relations o

C=1+4 Vu+ Vu' + Vu' Vu,
_ )
B=1+Vu+ Vu" + VuVu™. )
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When the deformation is rigid, C = B = Land

Vu + Vu' 4+ VuVva' = 0. )

»

Morcover, in this case Vu is constant, because F is.
The tensor field

£ = }(Vu - Vu') [ (4)
is called thci.'inl'initesimal strain(clcnrly
e e

C =1 4 2F 4 Vu' Vu.

{3)
B =1 2K + VuVu'.

Proposition. Let f; (0 < & < &4} be a one-parameter family of deformations
with ‘

{Vu,| = &
Then
2B, = C, — 1+ o) = B, — 1 + olz) (0)
as & = 0. Further, if cach {,is rigid,Allwn
Vu, = ——Vu',!' 4+ o(z). (N

Proof.  The result (6) is a trivial consequence of (2), while (7) follows

from (3). O

This proposition asserts that to within an error of order o(z) the tensors
2E,,C, — 1, and B, — 1 coincide. It asserts, in addition, that to within the
same crror the displacement gradicnt corresponding o a rigid deformation
is skew.

The above discussion should molivate the following dcfinition: An
infinitesimal rigid displacement of 4 is a vector ficld u on # with Vu constant
and skew: or equivalently, a vector ficld u that admits the representation

u(p) = u(q) + W(p — q) (8)

for all p, q € 4, where W is skew (cf. the proposition on page 36). Of coursc,
using the rclation between skew tensors and vectors, we can also wrile u in
the form

u(p) = u(q) + o x (p — q)

with @ the axial vector corresponding to W.
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Theorem  (Characterization of infinitesimal rigid displacements).  Let u be
a smooth vector field on 4. Then the following are equivalent :

(@) wis an infinitesimal rigid displacement.
(b) u has the projection property: for all p, q € 4,

(P — q) - [u(p) — u(q)] = 0.
(¢}  Vu(p) is skew at cach p e :4. .
() The infinitesimal strain E(p) = 0 at each p € 4.

Proof. (a)=(b). Let u be rigid. Then (8) implics
=) [up) — @] =@ —-q - Wp-q) =0,

since W is skew.

(b) = (a). 1If we diffcrentiate the cxpression in (b) with respect Lo p, we
arrive at

u(p) — u(q) + Vu(p)"(p — q) = 0,
and this result, when differentiated with respect to q, yiclds
—Vu(q) — Vu(p)' = 0. Q)]
Taking p = q tclls us that Vu(p) is skew; hence (9) implies that
| Vu(p) = Vu(q)

for all p, q € 4, and Vu is constant. Thus (a) holds.

(@) =>(c). Trivially, (a) implics (c). To prove the converse assertion
assume that H(p) = Vu(p) is skew at cach p € 4. We must show that H is
constant. Let Q be an open ball in #. Choose p, q € Q and let

c(o) = q + a(p — q), 0<o<l,

so that ¢ describes the straight line {rom q to p. Then
wp) — wa) = [ VuGo) dx = [ ieto)ico) do = | H)p ~ 0 do,
[ 0
so that
@ =0 (o)~ w@] = [ (¢~ ) Hel@)p ~ @) do = 0,
since H is skew. Thus u has the projection property on Q, and the argument
given previously [in the proof of the assertion (b) = (a)] tells us that H is

constant on Q. But Q is an arbitrary open ball in 4; thus H is constant on #.
(c)<>{d). This is a trivial consequence of (4). [J
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Lxercses
[~ Under the hypotheses of the proposition containing (6) show that

E,=U, —-140@) =V, —1-+ ),
det ¥, — I = divu, + o).

Give a physical interpretation of det ¥, — | in terms of the volume
change in the deformation f,.

(S

Let w and v be smooth vector ficlds on 4 and suppose that w and v
correspond to the same infinitesimal strain, Show that u — v is an in-
finitesimal rigid displaccment.

For the remaining exercises u is a smooth vector ficld on # and E is the
corresponding infinitesimal strain. Also, in 3 and 5, # is bounded.

3. Dcfine the mean strain E by

vol(:)E = f Edv.
N
Show that
—
vol( Dk == 5 f (U@n -+ n®@u)dA,
- v

s0 that E depends only on the boundary values of u.

4. Let

W = 4(Vu — vu").
Show that
IEP 4+ |W|? = |Vu 2,
IEP — |W|? = Vu-Vu".

5. (Korw's inequality)  Let u be of class C2 and suppose that

u=~»1» on 4.

Show that

f[Vullers’2f|E|2dV.
B4 Ed
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6. Consider the deformation defined in cylindrical coordinates

X, = rcos.0, Py = Rcos O,
X, = rsin 0, P, = Rsin O,
Xy =2 Py =4,

by
r=R, =0 + aZ, =242

A deformation of this type is called a pure torsion; it describes a situation

in which a cylinder with gencrators parallel to the Z-axis is twisted .

uniformly along its length with cross scclions remaining paralicl and
plane. The constant a represents the angle of twist per unit length. Show
that the corresponding displacement is given by

wi(p) = py(cos f— 1) — pysin f, = ops,
uy(p) = pyp(cos f — 1) + p,sin B,

uy(p) = 0.
Show further that both Vu and u approach zero as a — 0, and that, in
fact,
u = —0p, Py + olo),
i(P) papy + 0(a) (10)
uy(p) = ap,ps + o(a)
as o — ().

8. MOTIONS

Lct 42 be a body. A motion of 4 is a class C function
x: %4 xR 8
with x(-, t), for each fixed ¢, a deformation of # (Fig. 6). Thus a motion is a

smooth one-parameter family of deformations, the time { being the parameter.
We refer to!

x = x(p, 1)
as the place occupicd by the material point p at time ¢, and write
@B, = x(4,1)

¥ We carefully distinguish between the motion x and its values x, and between the reference
map p and material points p.

8. MOTIONS 59

x(-. 1)

Fipgure 6

for the rcgi.on of space occupied by the body
to work V\(lth places and times'tather th
and for this reason we introduce the traj

at 1. It is often more convenient

an with material points and times,
ectory

T ={x.1)[xeH, 1eR}

At cach ¢, x(-, 1) is
) » X(+ 1) 1s a one-to-one mappi y . )
inverse mapping of 4 onto 4, ; hence it has an

p(" 1): ") Pl _4//{7
such that

x(p(x, 1), 1) = x, p(x(p. 1), 1) = p.
Given (x, ) e .7,

= p(x, 1)

is the material point that occupics the place x at time . The map

p:.7 - %

so defined is called the reference map of the motion
We call .

. )
Mnn=$ﬂnn

the velocity and

2?2

X(p, 1) = 2 x(p, ()
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the acceleration. Using the reference map p we can describe the velocity
x(p, 1) as a function v(x, 1) of the placc x and time . Specifically,
Vil =
is defined by
v(x, 1) = X(p(x, 1), 1)

and is called the spatial description of the velocity. The vector v(x, () is the
velocity of the material point which at time ¢ occupies the place x.

More gencrally, any field associated with the motion can be expressed as
a function of the material point and time with domain £ x R, or as a function
of the place and time with domain .7. We therefore introduce the following
terminology: a material field is a function with domain 4 x R;a spatial field
is a function with domain .7 The field % is material, the field v is spatial. It

is a simplc matter to transform a material field into a spatial field, and vice
versa. We define the spatial description @, of a matcrial ficld (p, () O(p, 1) by

@ (x, 1) = B(p(x, 1), ),

and the material description 2, of a spatial ficld (x, 1) — Q(x, 1) by
Q,(p, 1) = Qx(p, 1), ).

Clcarly,

@), =® Q)=

”

Smoothness Lemma.  The reference map p is of class C3. Thus a material
field is of cluss C" (n < 3) if and only if its spatial description is of class C".

The proof of this lemma will be given at the end of the section.
Given a material ficld ® we write

: )
b, 1) = 5 9p. 0

for the derivative with respect to time ¢ holding the material point p fixed, and
VO(p, t) = V,&(p, 1)

for the gradient with respect to p holding ¢ fixed. ® is called the material
time derivative of ®, V& the material gradient of ®. In particular, the matcrial
ficld

F = Vx

8. MOTIONS 6l

is the deformation gradient in the motion x. Since the mapping p— x(p, () is
a deformation of 4,

det IF > 0. (H

Similarly, given a spatial ficld Q we write
)

Q(x, 1) = — O(x, 1)
N

for the derivative with respect to ¢ holding the place x fixed, and
grad Q(x, 1) = V,Q(x, 1)

for the gradient with respect to x holding ¢ fixed. Q' is called the spatial tiime
derivative of Q, grad Q the spatial gradicent ol Q.

We define the spatial divergence and the spatial curl, div and curl, to be
the divergence and curl operations for spatial fields, so that grad is the under-
lying gradient. Similarly, Div and Curl designate the material divergence
and the material curl computed using the material gradient V.

The notation introduced above is summarized in Table 1.

It is also convenicent to define the material time derivative Q of a spatial
ficld Q. Roughly spcaking, Q represents the time derivative of Q holding the
malterial point fixed. Thus to compute Q we transform € to the material
description, take the material time derivative, and then transform back to
the spatial description:

Q= ((Q,)),: 2
that is,

J
S'Z(X, l) = 0_1 Q(x(l’a l)! l)lp”—p(x.l)'

The next proposition shows that the material time derivative commutes
with both the material and spatial transformations.

Table 1
N Material ficld & Spatial licld Q
Domain 4 x B v
Arguments Material point p Place x and
and time ¢ time ¢

Gradicnt with respect lo

first argument v grad Q
Derivalive with respeet to

second argument (time) it Q
Divergence Div b divQ
Curl Curl @ curl Q
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Proposition.  Let @ be a smooth material field, Q a smooth spatial field. Then
(B),= (D)
Q), =@Q,)=Q

» » ot

-~
e
£

3)
Proof.  1f we take the material description of (2), we arrive at (3),. Also,
by dcefinition,
(@) = ((®),)), = @, O
Note that, by 3), with Q = v,
(M), =(v,) =%
so that v is the spatial description of the acceleration.

The relation between the material and spatial time derivatives is brought
out by the following

Proposition. Let ¢ and u be smooth spatial fields, with ¢ scalar valued and
_— )
u vector valued. Then

¢ = ¢ +v.grad ¢,

i =u + (grad u)v. )
Thus, in particular,
v = v + (grad v)v. ()
Proof. By the chain rule,
. i)
(%, 1) = 35 PO, 0, Dlo=pix.n
= [grad ¢(x, )]+ x(p(x, t), 1) -Ey(p’(x, 1) ( i
= v(x, 1) * grad o(x, 1) + @'(x, 1), ;
ax, 1) = g; u(x(p, 1), Dlp=pixety
= [grad u(x, )Ix(p(x, 1), 1) + u'(x, t)
= [grad u(x, )Iv(x, ) + v'(x, ). O
A simple application of (4) is expressed in the next result, which gives the

material time derivative of the position vector r: & — 7 defincd by

r(x) = x — o.

8. MOTIONS 03

Proposition. Consider the position vector as a spatial field by defining
r(x, t) = r(x) for cvery (x,t) € .7. Then

i=v. ' (6)

Proof.  Since 1 = 0 and grad r = 1, (4), with u = r yiclds (06). [This
result can also be arrived at directly by noting thatr,, (p, ) = x(p,t) —o.] [

Proposition.  Let w be a smoothgpatial vector field, Then
V(u,) = (grad uw), F, )
where IV is the deformation gradient. ‘
Proof. By delinition,
u,(p, 1) = u(x(p, 1), 1);
that is,
u, (- 0) = u(, 1) x(, 1)

Thus the chain rule (3.11) tells us that V(u,,) is the gradient grad u of u times
the gradient F = Vx of x. [

The spatial ficld
L =grudv
is called the velocity gradient.
Proposition

=LK

L (5)
F = (grad v), F.

Proof. Since x is by delinition C3,

. )
Bp, 1) = = Vx(p 1) = V(0. ) = Vo, (p. 1),

and (8), follows from (7) with u = v. Similarly,
F(p, 0 = Vx(p. 1) = Vi, (p. 1),
and takingu = vin(7)wearcled to (8),. O
Given a material point p, the function s: R — & defined by
s(1) = x(p, ()
is called the path line of p. Clearly, s is a solution of the differential cquation

C8(0) = v(s(o). 1),
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and conversely cvery maximal solution of this equation is a path line, (A
solution is maximal provided it is not a portion of another solution.) On the
other hand, il we frecze the time at ¢ = 7 and look at solution curves of the
veetor field v(., 1), we get the streamlines of the motion at time 7. Thus cach
strcamline is a maximal solution s of the diflerential equation

$(4) = v(s(1), 7).

An cxample of a motion x (of &) is furnished by the mapping defined in
cartcsian components by

. 12
Xy =pe,
X = pyé,
X3 = Ps3.

The deformation gradient F is given by

¢ 00
[F(p,)] =10 ¢ 0],
0 0 1

while the velocity x has components
2p,tet, p2¢, 0.
Thus, since the reference map p is given by

—q2
py=xe7",

P2 = xe”",
Py = X3,
the spatial dcécription of the velocity has components
vi(x, 1) = 2xt,
v(X, 1) = X3,
vy(x, 1) = 0,

and the velocity gradient L has the matrix

2% 0 0
[Lx,01=]0 1 of
0 00

8. MOTIONS 05

The streamlines of the motion at time 1 are solutions of the system

$1(A) = 21s,(4),

$2(4) = 5,(4),

534 =0,
so that

$1(4) = J::Um,

s(A) = y,eh

s3(4) = p,

is the streamline passing through (y,, y,, y3) at 4 = 0.
We close this section by giving the

Proof of the Smoothness Lemma. 1t suffices Lo show that p is of class ¢
for then the remaining assertion in the lemma follows trivially.
Consider the mapping

)

Wid xR .7
defined by
¥(p, 1) = (x(p, O), 1).

It follows from the propertics of x that ¥ is class C* and onc-lo-onc; in fact,

W l(x, 1) = (p(x. 1), 1).
Thus to complete the proof it suflices to show that the derivative
D¥(p,0): 7" xR—-71" xR

is invertible at cach (p, 1), for then the smooth-inverse theorem (page 22) tells
us that ¥~ ! is as smooth as ', and hence that p is of class C3.
Since

x(p+ht + 1) =x(p. 1) + F(p, Dh + x(p, )1 + o(x)
as & = (h? + t2)Y2 - 0, it follows that
W(p + bt + 1) ="Y(p, 1) + (F(p, Dh + x(p, 1)1, T) + ofz).
Thus

DY¥(p, 1) [h, 1] = (F(p, Hh + x(p, 1)1, T) )
forallhe? and re R.
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To show that D'P(p, t) is invertible, it suffices to show that
D¥(p,t)[h, 7] =0 (10)
implics
h =0, 1 =0.
Thus assume that (10) holds. Then by (9),
T=0, F(p, Hh = 0,

and, since F(p, 1) is invertible, h = 0. []

EXERCISES

il. A motion is a simple shear if the velocity field has the form
v(x, 1) = v(x3)e,
in some cartesian frame. Show that for a simple shear
divy =0,

In the next two exercises D and W, respectively, are the symmetric and skew
parts of grad v.

’

(grad v)y = 0, V=V

2. Prove that
C = 2D, K.

3. Let v be aclass C? velocity ficld. Show that
divv = (divv) + |D]* — |[W[A
4. Consider the motion of & dcfined by

Xy = e,
X;=p,+ 4
X3 = D3,

in some cartesian frame. Compute the spatial velocity field v and deter-
mine the streamlines.

5. Consider the motion x defined by

x(p, t) = pp + UD[p — pol

where
3

U@ = Y a)e; ®e¢;

i=1
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with «; > 0 smooth. (Here {¢;} is an orthonormal basis.) Compute p,
v, and L, and determine the streamlincs.

6. Deline the spatial gradient and spatial time derivative of a material fictd
and show that
x =0, grad x = L
7. Consider a surface & in 4 of the form
V= {pe2|p(p) = 0},
where 2 is an open subset of 4 and ¢ is a smooth scalar ficld on & with

Vo never zero on . Let x be a motion of :4. Then, at time 1, %" occupies
the surface

S, = ixe @, \i(x. 1) = 0},
where 2, = x(2, t) and
h(x, 1) = p{p(x, 1))

Show that:

(a) Ve(p)is normal to /" atpe /';

(b) grad Y(x, t) is normal to Y, ul X € ¥

(c) Vo = FT(grad y),,, and hence grad y(x, 1) never vanishes on /'

d) |Vel* = (grad ), - B(grad f),,, where B = FF'is theleft Cauchy
Green strain lensor;

(€) Y = —v-prad .

9. TYPES OF MOTIONS. SPIN. RATE OF STRETCHING

A motion x is steady if
B, =By
for all time ¢ and
' vi=10

everywhere on the trajectory . Note that .7 = 4, x R, because the body
occupics the same region 4, for all time. Also, since the velocity ficld v is
independent of time, we may consider v as a function x+— v(x) on #,. Thus
in a steady motion the particles that cross a given place x all cross x with the
same velocity v(x). Of course, for a given material point p the velocity will
gencrally change with time, since x(p, 1) = v(x(p, 1)).

Consider now a (not necessarily stcady) motion x and choosc a point p
with x(p, t) € 04, at some time 1. Then (6.5), with f = x(-, t) implies that
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p € 04 and a sccond application of (6.5),, this time with f = x(,, 1), tells us
that x(p, t) € 04, for all t. Thus a material point once on the boundary lies on
the boundary for all time. If the boundary is independent of time (3%, = 0%,
for all 1), as is the casc in a stecady motion, then x(p, 1), as a function of t,
describes a curve on 94, and x(p, 1) is tangent 1o 3:#,. Thus we have the
following

Proposition. In a steady motion the velocity field is tangent to the boundary;
i.e., v(X) is tangent to 08y at each X € 04,.

Inastcady motion path lincs and streamlines satisly the same autonomous
differential cquation

$(1) = v(s(t)).

Thus, as a consequence of the uniqueness theorem for ordinary differential
equations, we have the following

Proposition. In a steady motion every path line is a streamline and every
streamline is a path line.

Lct @ be a smooth ficld on the trajectory of a stcady motion. Then @ is
steady if

=0 )
[in which case we consider @ as a function x = ®(x) on %4,].

Proposition. Let ¢ be a smooth, steady scalar field on the trajectory of d
steady motion. Then the following are equivalent:

(a) @ is constant on streamlines; that is, given any streamline s,

d
0 p(s(1) =0
for all t.

(b)y ¢=0.
{c) v-gradp =0.

Proof. Note first that, by (§.4), and (1),
¢ = v-grad o;

thus (b) and (c) are equivalent. Next, for any streamline s,
d .
ifp(S(t)) = §(1) * grad @(s(N) = v(s()) - grad (s(1)), @

so that (¢) implics (a). On the other hand, since every point of A4, has a
streamline passing through it, (a) and (2) imply (c). 0O
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x(q. 1)

off)
/ X
thn

Figure 7 x{p.1)
The number

(1) = |x(p, 1) — x(q, 1)} ' (3)

represents the distance at time t between the material points pand g. Similarty,
the angle 0(¢) at time t subtended by the material points a, p, q is the angle
between the vectors x(a, t) — x(p, £) and x(q, ) — x(p, t). (See Fig. 7.)

A motion x is rigid if

0
S |x(p ) = (g, D] =0 (4)
ot
for all materials points p and ¢ and cach time (. Thus a motion is rigid if the
distance between any two material points remains constant in time.

Theorem (Characlerization of rigid motions).  Let x be a motion, and let v
be the corresponding velocity field. Then the following are equivalent:

(W) xis rigid.
(b) At each time t, v(-, 1) has the form of an infinitesimal rigid displacement
of 4, ; that is, ¥(-, t) admits the representation

V(X 1) = ¥(y, 1) + W(D)(x —y) (5

Jor all X, y € 4,, where W(t) is a skew tensor.
(c) The velocity gradient L(x, 1) is skew at each (x, 1) € -7.

Proof. 1 we use (3) to differentiate 5(1)*, we find that
8() 8(1) = [x(p. 1) — x(q, N1~ [x(p, 1) — (g, D),
or equivalently, letting x and y denote the places occupied by pand g at time,
8(1) (1) = (x — y) - [v(x, ) — Wy, O} (6)

By (6), (4), and the fact that §(1) # 0 for p # q, x is rigid if and only if ¥(-, 1)
has the projection property at cach time t. The cquivalence of (a), (b), and
() is therefore a direct conséquence of the theorem characterizing infinitesi-
mal rigid displacements (page 56). [




70 1. KINEMATICS

Let o(f) be the axial vector corresponding to W(t); then (5) becomes
VX, ) = v(y, 1) + o(t) x (x ~y),

which is the classical formula for the velocity field of a rigid motion. The
vector function o is called the angular velocity. Note that

curl v = 2w,
which gives a physical interpretation of curl v, at least for rigid motions.
For convenicnce, we suppress the argument ¢ and write
v(x) = v(y) + © x (x — y).

Assume @ # 0. Then (or fixed y the velocity field

X—ox(x—y)
vanishes for x on the line

{y + aw|a e R}
and represents a rigid rotation about this line. Thus given any fixed Y, Vis
the sum of a uniform velocity ficld with constant value

W(y)

and a rigid rotation about the line through y spanned by . For this reason
we call /= sp{w} the spin axis. For future use, we note that / = /(1) can also
be specified as the set of all vectors e such that

We = 0.

As we have seen, a rigid motion is characterized (at cach time) by a velocity
gradient which is both constant and skew. We now study the case in which
the gradient is still constant, but is symmetric rather than skew. Thus con-
sider a velocity field of the form

v(x) = D(x —y)

with D a symmetric tensor. By the spectral theorem D is the sum of three
tensors of the form

e ® e, le|l = I,

with corresponding ¢'s mutually orthogonal. It therefore suflices to limit our
discussion to the velocity ficld

V(x) = ofe @ e)(x — y). (7)
Relative to a coordinate frame with e = ¢,, v has components
(vh 07 0)’ Ul(x) = a(xl - yl),

P g e gt e
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and is described in Fig. 8. What we have shown is that every velocity ficld
with gradient symmetric and constant is (modulo i constant ficld) the sum of
three velocity ficlds of the form (7) with “axcs™ ¢ mutually perpendicular,
Now consider a general velocity ficld v. Since L = grad v, it follows that
v(x) = v(y) + L(YX(x — y) + o(x — y)

as x — y, where y is a given point, and where we have suppressed the argu-
ment ¢. Let D and W, respectively, denote the symmetric and skew parts of L:

D = (L + L") = Ygrad v + grad v"),

W = (L — L") = Jarad v — grad v").
Then

L=D-+W
and
v(x) = v(y) + W(y)(x —y) + D(y)(x — y) + o(x = y).
Thus in a neighborhood of a given point 'y and to within an error of o(x — y) a
general velocity field is the sum of a rigid velocity field
x> v(y) + W(y)x —y)
and a velocit y;'/ield of the form
~ x = D(y)(x — y).

For this rcason we call W(y, 1) and D(y, 1), respectively, the spin and the
stretching, and we use the term spin axis at (y, 1) for the subspace / of 7 con-
sisting of all vectors e for which

W(y, t)e = ().

[Of course, I has dimension onc when W(y, 1) # 0.] The term stretching is
further motivated by the following
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Figure 9

o
Proposition. Let x € 8, with t a fixed time, let e be a unit vector, and let 5,(z)
(or o sufficiently small) denote the distance at time © hetween the material
points that occupy the pluces X and x + ac at time t (Fig. 9). Then

&
o)
lim 5’(*
a= 0 ()a(t)
Further, if & is a unit vector perpendicular to e, and if 0,(t) is the angle at time

T subtended by the material points that occupy the pluces x + oe, X, x + ad at
time t, then

= ¢+ D(x, De. (8)

lim 0,(t) = —2d - D(x, t)e.

a~0

Proof. Since §,(t) is the distance between x and x + ae, which is a, (6)
with y = x + «e implics

Su(‘r) _es[v(x + ae, ) — v(x,1)]

O o
But
limé [v(x + ae, 1) — v(x, D] = L{x, e )
a=0

and
ﬁm JHa LT D

[since W(x, t) is skew]. Thus (8) holds.

wonr S
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Next, let p, q, and a denote the material points that occupy the places x,
y = X + ae, and z = x + ad, respectively, at time r. Further, let

U(T) = X(‘l» T) - X(l’, T),

w(t) = x(a, 1) ~ x(p, 1),
so that

u(t) = «ae, u(e) = vy, 1) — v(x, 1),
w(l) = od, w(t) = v(z, 1) — v(x, ).
Thus
—:;(u wy(t) = e [v(zg, 1) — v(x, )] + d - [v(y, t) — v(x, 1)].
Further,
o5 (0. = u-w
€08 o = fafiwi’

and, as u and w are orthogonal at time 1,

u-wy(
s 00 = o
Oﬁ the other hand, since sin 0,(1) = 1,
(cos 0,)(1) = —0,1),
and the above relations imply that
—a0,(t) = e [V(x + ad, 1) — v(x, 1)] + d - [v(x + oe, {) — ¥(x, 1)].

If wedivide by e and let & — 0, we conclude, with the aid of (9) and its counter-
part for d, that

lim 0,(1)

a—0

—e-L(x,1)d —d - L(x, e

= —d - [L(x, 1) + L(x, )"]e
= =2d-D(x, Ne. O
Using the spin W we can establish the following important relations for
the acceleration v.
Proposition
V=V 4+ ygrad(v?) + 2Wy,

. (10)
v=v + §grad(v?) + (curl v) x v.
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Proof. Since
2Wy = (grad v — grad v")y = (grad v)v — § grad(v?), 1))

(10), follows from (8.5). The result (10), lollows from (10), and the fact that
curl v is twice the axial vector corresponding to W. [

A motion is planc if the velocity ficld has the form
VX, 1) = 0,(xy, X3, e, + 0,(X,, X5, 0)e;, !
in somc cartesian frame.

Proposition.  In a plane motion

WD + DW = (div v)W. (12)
Proof. Clearly, D and W have matrices of the form

a A O 0 ¢y O

D=4 B 0, W]l=|-y 0 O

0 00 0 090

(relative to the above [rame), and a trivial computation shows that
0 o+ O
[WD + DW] =1} —y(a + 8) 0 0= (x+ HIWI

0 0 0

But
divv=uL=uD=a+f,

and the proof is complete. [

EXERCISES

1. Itis often convenicnt to label material points by their positions at a given
time 7. Suppose that a material point p occupies the place y at T and x
at an arbitrary time ¢ (Fig. 10):

y=x@0,  x=xp0.

Roughly speaking, we want x as a function of y. Thus, since
P = p(Y, ),

we have
x = x(p(y, 2, 1)
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We call the function
X oA x - b
delined by
Xy, 1) = x(p(y. 1), 1)

the motion relative to time 5 x (y, 1) is the place occupied at time 1 by the
madcrial point that occupics y at time 1. Let

F(y. 1) = V, x(y, ),
where V, is the gradient with respect to y holding 1 fixed. Also let
F,.=R.U,
denote the right polar decomposition of I, and define
C, = (U)~
(a) Shogv that

1
v(x, 1) = fﬁ Xy, 1) (13)

provided x = x(y, 1).
(b) Usc the relation x(-, 1) = x,(-, 1) » x(-, 7) to show that

FJy, OF(p, ©) = F(p, 1),

where y = x(p, 7), and then appeal to the uniquencss of the polar
decomposition to prove that

Fdy., 1) = Uy, 1) = R(y, 1) = L
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(c) Show that
C(p, 1) = F(p, 1)"'C(y, OF(p, 1). (14)
(d) Show that

J .
L(Yi T) = b—I: I‘:(ya l)ll=r

12umn+2n
- at :(y, )+'a_t t(y"[) > (15)

=z

Y )
D, D) = 2 U Dl WD = 2 R D (10)

(e) Show that

n+ 2

5,—"—;‘—2 F(y, )|,=. = grad a(")(Y: ),

where a® is the spatial description of the material time derivative
* of x of order nn -+ 2.

2. Let x be a motion and suppose that for some fixed t,

x{y, ) = q1) + Q)y — 2), (17)
with z and ¢(¢) points and Q(r) € Orth*. Show that x is rigid.
3. Let x be a rigid motion. Show that x, has the form (17).

Exercises 2 and 3 assert that, given a motion x and a time t, x.(-, ) is a rigid
deformation at each ¢ if and only if x is a rigid motion.
4. Let x be a C*® motion. The tensors

1

AGD = T CE 0l =12, (18)

are called the Rivlin~-Ericksen tensors.

(a) Show that A, = 2D.
(b) Show, by differentiating (14) with respect to ¢, that

C" = FTA,F, (19)

where C™ is the nth matcrial time derivative of C, and where we
have omitted the subscript s [rom C and F.
(c) Verify that

Au+l = An + Aul-’ + LTAu'

3
H
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5. Show that the acceleration ficld of a rigid motion has the form

W(x, 1) = ¥(y, 1) + @) X (x —y) + o) x [of) x (x —y)]

with o the angular velocity.

10. TRANSPORT THEOREMS. VOLUME.
ISOCHORIC MOTIONS
Let x be a motion of 4. Given a part 2, we write
D= x(21)

for the region of spacc occupied by ¢ at time t. Thus

vol(#,) = j dv

Ay

represents the volume of ¢ at time (. Using the deformation gradient F = Vx
we can also express vol(2)) as an intcgral over 2 itself [cf. (6.15)]:

vol(:2,) = f det I dV.

R4

Thus
!
= vol(#,) = f (det ¥y dV, (1
dt »

Next, (3.14) and (8.8), imply that
(det Fy = (det F) ur(FF~') = (det F) ir L,,..
But
trL=trgrad v=Jdivyv,
so that _
(det I7y = (det F)(divv),, (2)

and (1) becomes

(117 vol(#,) = J (divv),, det FdV = J‘ divvdV.
t d

'R




g 4

78 ' I11. KINEMATICS

Thus we have the following

o O I g T T 4

aaaaa o ™ St

. .M‘g
st

iTheorem (Transport of volume).  For any part  and time t, \
d . - %
! Lol = | (det Wy dV = J divvdV={ venda. | @
3 dt - I ) 2, .
e S s  ir ma h  I — o iR

AT o

Thus (det F) and div v represent rates of change of volume per unit
volume: (det F): is measured per unit volume in the reference configuration;
div v is measured per unit volume in the current configuration.

We say that x is isochoric il

l
£ vol(#,) =0 4)
dt

for cvery part £ and time t. As a direct conscquence of (3) and (4) we have the
following

Theorem (Characterization of isochoric motions). The Jollowing are
equivalent:

@) . x is isochoric.

(b) (det F)y =0.

(¢) divv=0.

(d) For every part # and time {,

J vendAd = 0.
hE

Warning: For a motion to be isochoric the volume of cach part must be
constant throughout the motion; it is not necessary that the volume of a part
during the motion be cqual to its volume in the reference configuration.

Note that rigid motions arc isochoric, a fact which follows from (c) of the
above theorem and (c) of the theorem on page 69.

The computations leading to (3) are easily generalized; the result is

Reynolds’ Transport Theorem. Let ® be a smooth spatial field, and assume
that ® is either scalar valued or vector valued. Then for any part & and time t,
d . )
—f OdV = | (®+ ddivy)dV,
dt Jy, S
)

|
21 @wdv= J. O dV + J Ov-ndA.
dt Jy, 2, 2

N
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Proof. In view of (2),

d d
— — MV = o [y
= f mq> dv = = f O, det Py = L((D"' det Fy dV

J (B + ddivv), det FdV = J (b + @ divv)dV,

4 Ay

which is (5),. To derive (5), assume that & is scalar valucd. Then (8.4), yiclds
the identity

B 4+ DO divy = O 4 div(dy),

and (5), follows from (5); and the divergence theorem. The proof for &
vector valued is exactly the same. [

Note that

f v dv = f
Py @, L

0 d
‘ T}‘l‘ (D(x, 1) ll Vx = [;Fr J:f. (l)(x, T) ll K]

=t

Thus (5), asserts that the rate at which the integral of & over ¢, is changing
1s cqual to the ratc computed as if 2, were fixed in its current position plus
the rate at which @ is carricd out of this region across its boundary.

EXERCISES

1. Let 8 beasmooth spatial scalar field with f§ = 0 and define ¢ = f/(det F),.
Show that

¢’ + div(pv) = 0.

2. Prove that (for # bounded)

%

L Wy + vdivv)dlV = f [v(v*n) — iv?n] dA,

OBy

where nis the outward unit normal to 34,, so that in an isochoric motion
with v = 0 on 0:4,,

f Wy dV = 0.
B

3. Derive (5); for & vector valued.
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I1. SPIN. CIRCULATION. YORTICITY

As we have scen, a rigid motion is characterized by a skew velocity
gradient; that is, the velocity field is determined (up to a spatially uniform
vector field) by its spin

W = Y(grad v — grad v").

More generally, given any motion the spin W(x, t) describes the local rigid
rotation of matcrial points currently ncar x. As our next theorem shows, the
cvolution of W with time is governed by the ficld

J = (grad v — grad v,

which represents the skew part of the acceleration gradient. The statement
and proof of this theorem are greatly facilitated if we introduce the notation

Gg = F'G_F (1)

for any spatial tensor field G, where IF is the delormation gradient.

Theorem (Transport ofspin).  The spin W satisfies the differential equations
(W) = J,
W + DW + WD = J,

o))

where D is the stretching.
Proof. Recall (8.8):
L= FF !,

i = (grad V)F,

where for convenience we have omitted the subscript » from L and grad v.

Since 2W = L — LT,
2Wg = F'F — FTF,
and hence
2We = FTi* — F'F = F" grad vF — F" grad V'F,
which implies (2);. Next, by (1) and (2),,
F'WF + F'WF + FTWF = F'JF.
Thus
W+ F TFTW 4+ WEF~! = J,
and, sincc L = FF~ ! and LT = F~ T, this cquation implies

W + L™W + WL = J.

Nkt R S Y R E T

A Sl > SN

11. SPIN. CIRCULATION; VORTICITY 81

Thus as

L=D+W, D=DT‘ w: —WT,

it follows that :
W4 (D - W)W + WD + W) = J,
which implies (2),. O
We now introduce two important (and somewhat related) definitions. A
motion is irrotational if
W =0,
or cquivalently, if
curf v = ¢.

A spatial vector field g is the gradient of a potential if there exists a spatial
scalar field « such that

g(x, 1) = grad a(x, 1)
for all (x, 1) on the trajectory of the motion.

For alarge class of fluids, in particular, inviscid fluids under a conservative
body force, the acceleration ¥ is the gradient of a potential. When this is the
case the potential, asay, is C? in x, because vis C', and thus grad grad ais sym-
metric; therefore

J = j[grad grad o — (grad grad «)'] = 0,
and we have the following consequence of (2),.

Lagrange—Cauchy Theorem. A motion with acceleration the gradient of u
potential is irrotational if'it is irrotational at one time.

Proof.  Since J = 0, we conclude from (2)l that
(We) =0, ()

so that Wy(p,t) is independent of «. But at some time T, W(x, 1) = 0 for all
X in 4., and hence Wg(p, ©) = 0 for all p in #4. Thus We(p, t) =0 for all p
and t, and, since F is invertible, (1) implics that W = 0. Hence the motion is
irrotational. [J

As is clear from (9.12) and (2),, for plane, isochoric motions a result
stronger than (3) holds.

Proposition.  For a plane, isochoric motion with acceleration the gradient of
« potential,

W =1
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Figure 11

Let x be a motion of #. By a material curve we mean a curve ¢ in 1}3
Choose an arbitrary material point ¢(g) on ¢. At time ¢, c¢(g) will occupy the
place

x(e(o), 1)
Thus the material points of the curve form a curve

¢(0) = x(c(@), 1), 0=<o<1 @

in 4, (Fig. 11). When ¢ (and hence ¢)) is closed,
J v(x, t) - dx

gives the circulation around ¢ at time t; this integral sums the tangential
componcnt of the velocity around the curve ¢,.
Theorem (Transport of circulation). Let ¢ be a closed material curve.
Then
4 j vx, 1) - dx = J W%, £) - dx. 5)
dt Je, o
Proof. By definition,
! 0
[ vox 0 ax = [ veto 05 o) dos
<t 0 o

our proof will involve differentiating the right §idc.undcr the integral. :Wg
thercfore begin by investigating the partial dcr?vatwcs 0/ot)v(c o), 1) ;‘Hh
(8%/0t da)c,(0). Note that ¢(o) has derivatives with respect to ¢ and ¢ whic
arc jointly continuous in (o, t). In particular, by (4),

2 (@) = (e(0) ) = e D) ©)
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Clearly, this relation has a derivative with respect Lo ¢ which is jointly con-
tinuous in (a, 1). Thus we can switch the order of diffcrentiation; that is,
hE
i 9 1)
exists and by (6)
0? a2 0
o A0 = gy A0 = g VLD

Note also that (6) implics

)
= ¥(e(0), 1) = K(e(@), ) = e a). ).

These identities can be used to transform the left side of (5) as follows:

{ . )
_‘_J v(x, 1) - dx =if Ve, (o), ,).ff!(_”_) do
dr J., dt Jo

da

J
-~ v(e (o), ) do
do

]
= f v(x, 1) dx + f v(e o), t) -

[} Q
= [ ¥ 0~ dx + e, 0 = vie o) )
But ¢ (and hence ¢,) is closed ; thus c,(1) = ¢, (0) and the last term vanishes. [

We say that the motion preserves circulation if
d
—J. v(x, 1) dx =0
dt J,

for every closed material curve c and all time . When v = grad a the right side
of (5) vanishes, as ¢, is closed [cf. (4.8)], and we have

Kelvin’s Theorem.  Assume that the acceleration is the gradient of a potential.
Then the motion preserves circulation,

A curve hin #, is a vortex line at time 1 if the tangent to h at each point
x on h lies on the spin axis of the motion at (x, ). Since the spin axis at (x, )
is the set of all vectors e such that

W(x, t)e = 0,
h is a vortex line if and only if

dh(er)

W(h(a), 1) - =

do
for0<eo< 1.
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Theorem (Transport of vorticity). Assume that the acceleration is the
gradient of a potential. Then vortex lines are transported with the motion;
that is, for any material curve ¢, if ¢, is a vortex line at some time t = t, then ¢
is a vortex line for all time t.

Proof. Let ¢ be a matcerial curve. Then by (4),

.f.l_ c‘(a') = F(C(O’), ’)k(o):
do

ko) = df[(;). Q)
If ¢, is a vortex linc, then
0= W(c(0), 7) dil(; c(0) = W(e (o), D)F(c(a), Dk(0),
so that trivially
We(e(o), Dk(a) = 0. @)

Moreover, by (3), Wy is constant in time, so that (8) is valid for any t. There-
fore, multiplying by F(c(e), £)~T and using (1),

W(c o), NF(c(0), k(o) = 0,
and this relation, with (7), implies that ¢, is a vortex line for all . [

We closc this scction by listing an important property of irrotational,
isochoric motions; this result follows from (c) of the thcorem on page 78 and
the proposition on page 32.

Theorem. The velocity field of an irrotational, isochoric motion is harmonic:

Av =0,
EXERCISES
We use the notation
w = curl v, v = (det F),.

I. Show that in a planc motion
(W) = uJ,
so that when v is the gradient of a potential,
(W) = 0.
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2. Establish the identity
(ow) = vLw + v curl v.
Note that when ¥ is the gradient of a potential this reduces to
(uw) = vlw. 9)

3. Assume that v is the gradicnt of a potential. Show, as a conscquence of
(9), that

w(x, 1) = [det F(y, 0] "F(y, DOw(y, 1),

whcrc.x is the place occupicd at time 1 by the material point which
occupics y al time 7 (cf. Exercise 9.1).

4. Let u be a smooth spatial vector ficld and ¢ a material curve. Show that

d
I LU cdx = L(l'l + L) - dx.

5. Let v be the gradient of a potential . Show that

. v?
v = pgrad ((p’ + 7), (10)

so that the acceleration is also the gradicnt of a potential.

SELECTED REFERENCHS

Chadwick [1, Chapter 2].

Eringen {1, Chapter 2].

Germain [1, Chapters 1, 5].

Serrin [1, §§11, 17, 21-23, 25-29].
Truesdell [1, Chapter 2].

Truesdell and Noll [, §§21-25].
Truesdell and Toupin [, §§13-149].
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Mass. Momentum

12. CONSERVATION OF MASS

Onc of the most important propertics of bodics is thatl they possess mass.
We here consider bodics whosc mass is distributed continuously. No matter
how severely such a body is deformed, its mass is the integral of a density ficld;;
that is, given any deformation f there is a density field p; on f(28) such that the
mass m(#?) of any part 2 is given by

m(&) = J pedV.

f(:.7)

Since the mass of a part cannot be altcred by deforming the part, m(:#) is
independent of the deformation f.

We now make the above idcas precisc. A mass distribution for # is a
family of smooth density fields

pe: £(8) - R,

onc for cach deformation f, such that
J pedV = J pedV = m(#) n
(:r) g:7)

N7
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for any part 2 and all deformations fand g. The number pg(x) represents the
density al the place x € [() in the deformation f, and cqualtion (1) cxpresses
conservation of mass.

We dcenote by p, the density ficld p; when f(p) = p for all pe 4. Thus
po(p) gives the density at p when the body is in the reference position. Note
that, by the localization theorem,

m(€2;)

o(p) = lim ——2=,
Polp) = B I

where €Q; is the ball of radius § centered at p. As our next result shows, the
reference density p, determines the density in all deformations.

Proposition. Let f be a deformation of % and let F = Vi, Then
pe(x) det F(p) = po(p) 2
provided x = f(p).

Proof. By (1) and the dcfinition of py,
]

f pe(x) dV, = f pol®) dV,.
i) @

On the other hand, if we change the variable of integration on the left side
from x to p, we arrive at

[ peton det @y av,.

Thus
[ toutae det ) — i av, = 0

for every part £, and (2) follows from the localization thcorem. [J

Given a motion x of 4 we will always write p(x, ) for the density at the
place x € 4, in the deformation x(-, t). Thus

p: T - R*
is defined by
p(x, t) = /)x(',()(x);

we will refer to p as the density in the motion x. In view of (1),

m(p) = f px, ndlv, = J pdv,
) #y
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and we have the following

Theorem. For every part 4 and time 1,

d f v =0 3
o :,"" = 1). 3

H I = Vx is the deformation gradient in the motion, then (2) takes the
form

p(x, 1) det F(p, 1) = po(p) 4
provided x = x(p, 1). ‘Thus p is the spatial description ol py/det 10, and we
conclude from the smoothness lemma that p is smooth on 7.

Theorem (Local conservation of mass)

p+ pdivy =0,

. (5
'+ div(py) = 0.
Proof. By (4),
pldet FY, 4+ pldet ), = 0,
which with (10.2) yiclds (5),. Next, by (8.4),,
p=p +v-grad p,

and (5), when combined with this relation, implics (5),. O

Since a motion is isochoric if and only il div v = 0, (5) has the following
Corollary. A motion is isochoric if and only if

p=0.

Equation (3) expresses conservation of mass for arcgion 2, that moves with
the body. It is often more convenient, however, to work with a fixed region £
called a control volume. Of course, material will generally flow into and out of

<2, a fact which will become clear in the derivation of the resulting conserva-

tion law. ,
By a control volume at time t we mecan a bounded regular region # with

R < A,

fo# all = in some neighborhood of t. Thus for § sufficiently small we have the
situation shown in Fig. 1. Let n denote the outward unit normal to 4. By
the divergence theorem,

[ div(pv) dV = J pyenda.
';f

[ 4

v
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Figure 1

Further,

0 d
! X, t IVx = - Xy = - ¢
J;p x 0« J’; i p(x, 1) dV, T L'p(x, ndv,,

where the last step uses the fact that .2 is independent of t. Conservation of
mass (5),, when combined with the relations above, yields the following

Theorem (Conservation of mass for a control volume). Let & be u control
volume at time t. Then

d f x, 1) dV,
Is NX = - . < - .
dr )4 f’ PO, DY, 0) - nex) dA. (6)

Since n is the outward unit normal to 94, pv e nrepresents the mass flow,
per unit area, out of # across its boundary. Thus (6) asserts that the rate of
increase of mass in R is equul to the mass flow into 4 across its boundary.

Lemma, 2t € ‘onti s spatial fi ] -
emma.  Let @ be a continuous spatial field. Then given any part 9,

| @, pex, 0y dv, = L‘D'"(‘” Dpa(p) 4V, ™

Be

Proof. We simply change the variable of integration from x to p in the
left side of (7); the result is

f O(x, Hp(x, t) dV, = j b, (p, Op,.(p, t) det F(p, 1) dv,,
P, I

and, in view of (4), this relation implics (7). [

If we diﬂ"crf:ntiate (7) with respect to ¢ we arrive at the integral of b, p,
over #, or equivalently [by (7) with @ replaced by §] the integral of dp over
2. Thus we have the following important
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Theorem. Let ® be a smooth spatial field. Then given any part 2,

il— J Op dV = [ (i)p dV. (8)
di J,, Jos

In other words, to differentiate

J bp dV
B

with respect to time we simply differentiate under the integral sign treating the
“mass measurc” p dV as a constant.
Note that il we take @ = 1 in (8) we recover (3).

EXERCISES
1. Derive (5), and (6) using (3) and Reynold's transport theorem (10.5).
2. Show that a deformation f is isochoric if and only if
pe(x) = po(p)
whenever x = f(p).
3. Let @ be a smooth spatial ficld. Show that for any part .2,

[ ot o 0% = [ oty 0,00 0 a8,
why Wy

’
where x,, delined in Exercisc 9.1, is the motion relative to time .

4. Prove Keleims theorem: Of all motions of a body which, at a given time /,
(a) correspond to a given steady density g,
(b) have 4, assigned,
(¢) have v n prescribed on 0:4,,
one with velocity the gradient of a potential yiclds the least kinetic encrgy
at time . More precisely, let 2 be a bounded regular region of space, Ict

« p > 0beasmooth scalar field on £, let A be a scalar field on 04, let ./ be
the set of all smooth vector fickds v on # that satisfy

div(pv) =0 in A, v-n=21 on J4,
and define the kinetic cnergy % on ./ by
¢ » V2 ,
Ky = 5P dV.
' * “~
Show that if ve.o/ has the form

v = grad o,
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then
A {v} < A {g}

for all g e o/, with cquality holding only when v = g.

13. LINEAR AND ANGULAR MOMENTUM.
CENTER OF MASS

Let x be a motion of 4. Given a part ¢ of 4, the lincar momentum I(:2, t)
and the angular momentum a(, 1) (about the origin o) of # at time ¢ arc
defined by

(2, t) = vp dV,
P (1)
fooa(A) = J rx vpdV,
where r: & — 77 is the position vector \
r(x) = x — o. 2)

Proposition. For cvery part & and time t,

(2,0 = f vp dV,
Py

&)

M2, = f rx vpdV.
&

Proof. The identity (12.8) yields (3), and
AP, t) = f (xr x v)’pdV.
)
But by (8.6),
rxvy=rxv+vxy,

and, since v x v = 0, (3), follows. [

Assumc now that 4 is bounded, so that m(:8) is finite. Then the center
of mass a(f) at time ¢ is the point of space defined by

|
-0 = —— 4
0 ‘ 0= ) L"rp dVv. )
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(It is not difficult to show that this dcfinition is independent of the choice of

origin o.) If we differentiate (4) with respect to ¢ and use (12.8) and (8.6), we
find that

‘ |
a' —_— . /
e 0 m(:A8) L,'U' dv,

so that & represents the average velocity of the body. This result and (1),
imply that

14, 1) = m(8)a(r). {(5)

Thus the linear momentum of a body 4 is the same as that of a particle of
mass m(%) attached to the center of mass of 4.

EXERCISES
In these exercises 4 is bounded.
1. Show that
ot) — z : f (x — 2)p(x, ) dV, {6)
g x — 2)p(x, () dV.,,
(A Joa, f

for any point z, so that a(f) is independent of the choice of origin,

“ * X
2. Other types of momenta of interest arc the angular momentum a (1)
relative 1o a moving point z(¢) and the spin angular momentum a g, (t):

a,(l) = f r, x vypdV,
@B,

3

(7N
aspin(r) = f I, X Yo l? (IV‘
w

Here
r(x, 1) = x — «(1) (8)
is the position vector from z(r), r.(x, 1) is the position vector from a(r), and
V=T, =v—a

Y is the velocity relative to a. For convenience, let I(r) = I(4, 1) and
a(t) = a(4, t). Show that

a, = as.pin + (a - Z) X I,

d=d,, + (-0 xl
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Theterm (o — z) x lis usually referred to as the orbital angular momen-
tum about z; it represents the angular momentum # would have if all of
its mass were concentrated at the center of mass.
Consider a rigid motion. By (9.17),

Xy, 1) = q(1) + QU){(y — ») (v

forally e 4, and alt . (Here xq is x, at T = 0; 1.c., X, is the motion taking
the configuration at time t = 0 as refercnce.)

(@)  Show that
a(r) = q(t) + Q(1)[e(0) — 7] (10

and hencee [noting that xy(y, f) is well defined for all y e &7
a(t) = xo(@(0), 1).

What is the meaning of this result?

(b) Show that the angular velocity w(r) is the axial vector of Q(1)Q(1)T
and that

Vo= X I,. (1

(¢) A vector function k on R rotates with the body if

k(1) = Q(1)k(0) (12)

forall . [Notc that Q(0) = 1, since x,(y, 0) = y for all y.] Show that
k rotates with the body if and only il

k=0 xk (13)
(d) Use the identity
fx@dxf)={1-f®N
to show that
“‘spin = J(.l),
where
JO=| =, @r)pdV (14)
2B

is the inertiu tensor of 4, relative to the center of mass.
(e) Show that

J(1) = QIOQM)T, (15)

and usc this fact to prove that the matrix [J(1)] of J(1)-- relative to
any orthonormal basis {e(/)} that rotates with the body--is
independent of 1.
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() Construct an orthonormal basis tei(0)} that rotates with the body
and has

Jpo0 0
[(Jl=10 J, 0
0 0 J,

In this casc {e(1)} is called a principal basis and the corresponding
numbers J; are called moments of incrtia. Let w(1) denote the com-

ponents of (1) with respecet Lo fe,(1)}. Show that the components of
A,ia(f) relative to this basis are given by

(ﬁspin)l = ‘Il“.)l -+ (‘IJ - 'IZ)”)Z (1)3..,
(ﬁspin)l = Jl(;)l + (Jl - '].\)(’)l(”.lv
(ﬁspiu).\ = JJ(")J + (‘12 - ‘ll)“)l(')l'

4. Deline the kinetic energy #(t) and the relative kinetic cnergy A (1) by
./l"({) = 5 f \’2[) (IV, .W—,‘(I) =z ;_ J V,;2 f dVv.
i, oy

(a)  Prove Kanig's theorem:
A=+ (. A)ad.
(b) Consider a rigid motion. l‘Jsc the identity
dx 0 =d-(Fl-f@Nd
to prove that
H, =30 Jo.
5. Show that

J = (tr M)I - M,
where

M(1) = J r,@ropdV

4y

is called the Euler tensor.

SELECTED REFERENCE

Truesdell and Toupin [1, $§155-171].
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14. FORCE. STRESS. BALANCE OF MOMENTUM

During a motion mechanical interactions between parts of a body or
between a body and its environment arc described by forces. Here we shall be
concerned with three types of forces: (i) contact forces between separatc parts
of a bodyj; (ii) contact forces exerted on the boundary of a body by its cn-
vironment; (iii) body forces exerted on the intcrior points of a body by the
environment.

One of the most important and far rcaching axioms in continuum
mechanics is Cauchy’s hypothesis concerning the form of the contact forees.
Cauchy assumed' the existence of a surface force density s(n, x, ) defined for
cach unit vector n and every (x, {) in the trajectory 7 of the motion (Fig. 1).
This field has the following property: Let & be an oriented surface in 44, with
positive unit normal n at x. Then s(n, x, t) is the force, per unit area, exerted
across & upon the material on the negative side of & by the material on the
positive side. Cauchy’s hypothesis is quite strong; indecd, if % is an oriented
surface tangent to & at x and having the same positive unit normal there, then
th% force per unit area at x is the same on % as on ¥ (Fig. 2).

! Noll [3] has shown that Cauchy’s hypothesis actually follows from balance of lincar
momentum under very gencral assumptions concerning the form of the surface foree s. (CF.

also Truesdel! {1, p. 136]: Gurtin and Williams [1].)

97
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s(n, x. 1)

s{n, x. 1)

€ ke

Figure 1 Figure 2

To determine the contact force between two separate parts 2 and 2 at
time ¢ (Fig. 3) one simply integrates s over the surface of contact

'(/)1:'-0}:“91;
thus

J . s(ng, X, 1) dA, = j _s(n) dA

o o

gives the foree exerted on 2 by 2 at time t. Heren, is the outward unit normal
to 0, at x. For points on the boundary of :4,, s(n, X, 1) —-with n the outward
unit normal to 0:4, at x— gives the surface foree, per unit arca, applied to the
body by thc environment. This force is usually referred to as the surface
traction. In any casc, given a part &,

j s(n) dA
&P

represents’ the total contact force exerted on & at time t (Fig. 4).

The environment can also exert forces on interior points of %, a classical
example being the force ficld duc to gravity. Such forces arc determined by a
vector field b on 7 ; b(x, t) gives the force, per unit volume, excrted by the
environment on x. Thus for any part 2 the integral

b(x, ) dV, = | bdV

Py P

gives that part of the environmental force on # not duc to contact.

! Here il is tacit that, given any part # and timc ¢, s(n,, X, 1) is an integrable function of x
on 8:#,. This assumption of intcgrability actually follows from the momentum balance laws (1)
and our hypotheses (i) and (ii) concerning force systems. Indeed, (i) trivially implics integrability
on surfaces of polyhedra, and this is all that is nceded to cstablish the existence of the stress T
(9)and (11) then yield integrability on 02, for any part 2.

e
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s(n)

=2

Figure 3 Figure 4

The above d?scussion should motivate the following definitions. Let .1 be
lhc. set of ullumt vectors. By a system of forces for 4 during a motion (with
trajectory 7°) we mean a pair (s, b) of functions

S: AN X T = ¥, b: 7 -1,
with
(.l-) s(n, x, 1), for cach n e .1 and ¢, a smooth function of x on 4,;
(1) b(x, 1), for cach 1, a continuous function of x on 4,.

We call s the surface foree and b the body force: and we define the foree [(:2, 1)
and moment m(:2, 1) (about e)on a part # at time ¢ by

f(2, 1) = f

&Py

s(n) dA + f bdV,
.

m(, 1) = f

i

r x s(n)dAd + f r x bhdV.
9Py
Heren is thc? outward unit normal to 92, and r is the position vector (13.2).
The basic axioms connecting motion and force are thc momentum
balance laws. Thesc laws assert that for every part 2 and time ¢,

i it

e 8
Py = N2, 1),

i m(, 1) = a2, ’);_..

(1

they express, respectively, balance of lincar momentum and balance of
angular momentum [cf. (13.1)].

_ Tacit in the statement of axiom (1) is the existence of an observer (frame of
reference) relative to which the motion and forces arc measured. The cxistencé
of sych an observer is nontrivial, since thc momentum balance laws arc
generally not invariant under changes in obscrver (cf. Excrcise 21.3). Ob-
servers relative to which (1) hold are called inertial; in practice the fixed stars
are often used to define the class of inertial obscrvers.
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An obvious conscquence of (1), and (13.5) is that
(4, t) = m(#B)a(L),

provided 4 is bounded. Thus the total force on a finite body is equal to the mass
of the body times the acceleration of its mass center.

By virtue of (13.3) the laws of momentum balance can be writlen as
follows:

f soydd + | bdv = f ipdv,
NPy e Wy

(2)
J rxs(n)dA+frxb¢lV=Jrxi'pdV.
LN Ed)

&y

If we introducc the total body force. ,
/’f v
b, =b— pv, 3)

which includes the inertial body force — pv, and define

o ity ST i BT S Yt TN S S AR R A ,g

f (2,0 = f s(n) dA + f b, dV, !

hit 2 :
g )

m (£, 1) = J r x s(n)dA + J rxb,dV, i

- 0“" “9‘ ..... A ,‘i

- e T . .
then (1) takes the simple form

f.(2 0 =0, m (2, t) = 0. (5)

Our next result gives a far less trivial characterization of the momentum
balance laws. Recall that an infinitesimal rigid displacement (of &) is a mapping
w: & — v of the form

w(x) = wy + W(x — o) (6)
with w, a vector and W a skew tensor [cf. (7.8)].

Theorem of Virtual Work. Let (s, b) be a system of forces for # during a
motion. Then a necessary and sufficient condition that the momentum balance
laws be satisfied is that given any part 2 and time t,

f sm)cwdA + | b,-wdV =0 @)
o2, &
Jor every infinitesimal rigid displacement w.

Proof. Note first that by (13.2) we can write (6) in the form

W=w,+®XT, @

P
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with o the axial vector corresponding to W. Let ¢(w,,, ®) denote the left side
of (7) with w given by (8). Then ¢(w,, ®) involves integrals of the ficlds

S°W=8Wy +8-(0® X r), b, w=b,-wy+ b, (0 xr),
where we have written s for s(n), and since
- k-(w xr)=w-(r x k),
it follows that
S W=Ww,'$ 4 0 (r xs),
by-w=w,b, + o-(rxb)
Thus by (4),
P(wg, @) = w, -T2 1) + ©-m (2 1),
and ¢(w,, ) = 0 for all vectors w, and @ if and only if (5) hold. [

The next theorem is one of the central results of continuum mechanics. Its
main assertion is that s(n) is linear in n.

Cauchy’s Theorem (Existence of stress).  Let (s, b) be a system of forces for
A during a motion. Then a necessary and sufficient condition that the nomentum
balance laws be satisfied is that there exist a spatial tensor field T (called the
Cauchy stress) such that
(a) for each unit vector n,
s(n) = Tn; )
(b) T is symmetric;
(¢) T satisfies the equation of motion
divT + b = pv. (10)
Proof. In stating condition (c) we do not assume cxplicitly that
T(x, t) is smooth in x, (11)

so that, a priori, it is not clear whether or not (c) makes scnse. We therclore
begin our proof by showing that (11) is a direct consequence of (9). Indeed, by
(9), for an orthonormal basis {e;},

Yse)@e =) (Te)® e

thus, in view of Exercisc 1.6¢,

T(x, 1) = ) s(e;, x, 1) ®@ ¢, (12)

oand (11) follows from (12) and properly (i) of force systems.
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We are now in a position o Lbldbllbh the m,cussxty and sufliciency of

(@)-(c).

Necessity.  Assume that (1) are satisfied. For convenicncee, we fix the time
¢ and suppress it as an argument in most of what follows. The proof wiil
proceed in a number of steps.

Assertion 1. Given any x € 4, any orthonormal basis {¢;}, and any
unit vector k with

k-e,>0 (i=123), (13)

il follows that
sk, x) = =) (k- e)s(—e;, x). (14)

Proof.  First let x belong to the interior of 4,. Let § > 0 and consider the
tetrahedron %; with the following properties: the faces of ¥; are &5, &5,
<25, and &35, where k and —e; are the outward unit normals to 0%; on &
and &4, respectively ; the vertex opposite to &5 is x; the distance from x to &
is 0 (Fig. 5). Clearly, ¢, is contained in the interior of 4, for all sufficicntly
small 8, say & < d,.

Next, by(x, 1), defined by (3), is continuous in x, since b(x, (), p(x, 1), and
v(x, 1) have this property; hence b, (-, r) is bounded on %, (for  fixed). Thus if
we apply (5), to the part 2 which occupics the region ¢ at time f, and use (4),,
we conclude that

f s(n) dA | < x vol(%;) (15)
09s
for all & < §, where x is independent of d.
ey
k
/
/.
/0
X > €2
€y
Figure §

coni P

o et e e
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Let A(9) denote the arca of .¥';. Since A(d) is a constant times §2, while
vol(%;) is a constant times ¢, we may conclude from (15) that

I
—_ ld -0
A0) ). s(n)(

f s(n)dA = f
% o

and, since s(n, x) is continuous in x for cach lixed n,

as 0 — 0. But
r-

s(k) doA -+ L‘J S(—¢;) dA,

i 7 o

|
/»4»(0_)- J,, :(k) dA — sk, x),

Z%O'—) f.'/.-:( —¢;)dA - (k- ¢)s(—e;, X),

where we have used the fact that lthuu.a of &5 is A(O)k - ¢ KCombmm;D the
above relations we conclude that (14)Folds as Tong as x lics i the interior of
4,. Bul x - s(n, X) is continuous on :4,. Thus, by continuity, (14) must hold
cverywhere on 4,.

Assertion 2 (Newton’s law ol action and reaction).  Forcach x € 4, the
map n=> s(n, X) is continuous on .+ and satisfics

s(n, X) = —s(—n, x). (16) |

Progf.  Since the right side of (14) is & continuous function of Kk, s(k, x) is
continuous on the set of all unit vectors k consistent with (13). Thus, since this
is true for cvery choice of orthonormal basis {e;}, s(k, x) must be a continuous
function of k everywhere on ./ Therefore, if in (14) we let k — e,, we arrive at

s(e,, x) = —s{—e,, x), and again, since the basis | .c,, is arbitrary, (16) must
hold.

Assertion 3. Given any x € #, and any orthonormal basis [c

lh

s(k, x) = Z (k - e;)s(e;. x) (17)

for all unit vectors k.

Proof.  Choosc an orthonormal basis {¢;} and a unit vector k that docs
not lic in a coordinate planc (that is, in a plane spanned by two ¢,). Then there
is no i such that k - ¢; = 0, and we can deline a new orthonormal basis {¢;} by

¢ ¢, = [san(k - ¢,)]e;.
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Then k- > O for i = 1,2, 3, and Assertion { together with (16) applicd to
the basis {g,} yiclds

sk, x) = — Z (k-T)s(—¢;, x) = Z (k-T)s(e;, x) = Z (k - e))s(c;, x).
Thus (17) holds as long as k does not lie in a coordinate plane. But the map
ni—s(n, x) is continuous on . ¥ Thus (17) holds for all unit vectors k, and
Asscriion 3 is proved.

Choose an orthonormal basis {¢;} and let T(x, ¢) be defined by (12). Then

T(x, 1) is smooth in x, and, in vicw of (17), (9) holds. By (9), balance of lincar
momentum (2), takes the form

TndA + J bdV = f vp dV,
N D Py
or equivalently, using the divergence theorem,
divT + b — pv)dV = 0.
#,

By the localization theorem, this relation can hold for every part £ and time ¢
only il the cquation of motion (10) is satisficd.

To complete the proof of neeessity we have only (o establish the symmetry
of T. Let w be any smooth vector ficld on 2,. We then conclude, with the aid of
the divergence theorem and (4.2),, that

Ta-wdA =J

APy hEN

(TTw) ndA = J div(TTw) dV
"y

= J (w-divT + T-grad w) dV.
@2

Thus, by (3), (9), and (10),
f s(n) -wdA + J b, wdV =1 T-grad wdV. (18)
P, B L
In particular, if we take w equal to the infinitesimal rigid displacement (6), then
grad w = W and (7) implies
J T-WdV =0
P

for every part 2, so that
T-W=0.

Sincc this result must hold for cvery skew tensor W, (1) of the proposition on
page 6 yiclds the symmetry of T.

L TR s g

et e
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Noroal force

Shearing force

Figure 6

Sufficiency.  Assumec that there exists a symmetric spatial tensor ficld T
consistent with (9) and (10). Clearly, (18) holds in the present circumstances.
Since T is symmetric, and since the gradient of an infinitesimal rigid displace-
ment is skew, when wis such a field the right side of (18) vanishes. We thercfore

conclude from the theorem of virtual work that the momentum balance laws
hold. O

Actually, one can show that (a) and (c) are equivalent to balance of lincar
momentum (1);; and that granted (1),, the symmetry of T is equivalent to
balance of angular momentum (1),.

Let T = T(x, t) be the stress at a particular place and time. If

-
I'n = an, n] =1,

then o is a principal stress and n is a principal direction, so that principal
stresses and principal directions arc eigenvalues and cigenvectors of T. Since
T is symmetric, there exist three mutually perpendicular principal directions
and threc corresponding principal stresses.

Consider an arbitrary oriented plance surface with positive unit normal n
at x (Fig. 6). Then the surface force Tn can be decomposed into the sum of a
normal force

(n-Tn)n = (n ® n)Tn
and a shearing force
K (I—-n®n)Th,

and it follows that n is a principal dircction if and only if the corresponding
shearing {orce vanishes.

A fluid at rest is incapable of cxerting shearing forces. In this instance Tn is
parallel to nfor each unit vector n, and every such vector is an cigenvector of T.
In view of the discussion given in the paragraph following the spectral
theorem, T has only one characteristic space, ¥ itscll, and (c) of the spectral
%hcorcm implics that

T= —=nl
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Pressure Pure tension Pure shear

Figure 7

with r a scalar. mis called the pressure of the [luid. Note that in this case the
force (per unit arca) on any surlace in the fluid is —nn.
Two other important states of stress arc:

(a) Pure tension (or compression) with tcnsile stress ¢ in the direction e,
where |e} = 1:
T =o(e ® e).

(b) Pure shear with shear stress T relative to the direction pair (k, n),
where k and n arc orthogonal unit veclors:

T=tk®n+n® k).

The surlace force ficlds corresponding to the above examples (with T con-
stant) are shown in Fig. 7.

EXERCISES

In Excrcises 1, 4, and 8, ¢ is boundcd.
1. The moment m,(t) about a moving point z(¢) is defined by

m,(t) = f r, X s(n) dA + f r, X bdV,
08,

@B
where r, is the position vector from z [cf. (13.8)].
(@) Letf(t) = £(4,1). Show that,fory: R — &,
m,=my, +(y—2z) xf.
(b) Let it) = 1(4, t). Show that [cf. (13.7)]

m,=42a,+17xl,

Z

m, = aspin .

2. Prove that the momentum balance laws (1) hold for every choice of origin
(constant in time) if they hold for one such choice.

-

-,
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3. Show that the Cauchy stress is uniquely determined by the force system.
Consider a rigid motion with angular velocity o. Let {e 1)} denote a
principal basis of inertia and let J; denote the corresponding moments of
incrtia (relative to o) (cf. Exercisc 13.3(). Further, let w(r) and my1)
denote the components of (/) and m,(7) relative to fe, (1)}, Derive
Luler's equations

i

ny

. n,

Jydry (g = Ty my,

i

Jadiny A4 (S = Yoy,
my == Jd iy - (Jy - oo,

These relations supplemented by

f = m(:A)a

constitute the basic equations of rigid body mechanics. When f and m,
are known they provide a systcm of nonlinear ordinary dilferential
cquations for o and e.

5. Let T be the stress at a particular place and time. Suppose that the
corresponding surface force on a given plane & is perpendicular to &,
while the surface force on any plance perpendicular to & vanishes. Show
that T is a purc tension.

6. Let T be a pure shear. Compute the corresponding principal stresses and
dircctions.

7. Prove directly that s(n, x) = —s(—mn, x) by applying (2), to the part =2
that occupies the region 4, at time 1. Here 2, is the rectangular region
which is centered at x, which has dimensions § x & x 62, and which has
n normal to the § x o faces (Fig. 8).

Figure 8

ec

Prove Da Silva’s theorem: At a given time the total moment on a body
can be made to vanish by subjecting the surface and body forces to a
suitable rotation; that is, there exists an orthogonal tensor Q such that

¢ f r x Qs(n) dA -l-f rx QbdV = 0.
121
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Show in addition that

Q") x s(n)dA + | (Qr) x bdV =0.
@B

0B,
What is the meaning of this relation?

9. Supposc that at time ¢ the surface traction vanishes on the boundary 04,.
Show that at any x € d4, the stress vector on any planc perpendicular to
048, is tangent to the boundary.

15. CONSEQUENCES OF MOMENTUM BALANCE

By Cauchy’s theorem (and Exercise 14.3), to each force system consistent
with the momentum balance laws there corresponds exactly one symmetric
tensor field T consistent with (14.9) and (14.10). Conversely, the force system
(s, b) is completely determined by the stress T and the motion x. Indeed, the
surface force s is given by (14.9), while the body force b is casily computed
using the equation of motion (14.10) [with p computed using (12.4)]:

s(n) = Tn, b=pv—-divT.

This obscrvation motivates the following definition. By a dynamical process
we mean a pair (x, T) with :

(a) x a motion,
(b) T asymmetric tensor field on the trajectory J of x, and
(©) T(x, t) a smooth function of x on %,.

Further, if v and p are the velocity field and density corresponding to x, then
the list (v, p, T) is called a flow. In view of the above discussion, to cach force
system consistent with the momentum balance laws there corresponds exactly
one dynamical process (or equivalently, exactly one flow), and conversely.

Fortheremainder of thissection (v, p, T)isaflow and (s, b)is the associated
force system.

Theorem  (Balance of momentum for a control yolume).  Let 2 be a control

volume at time t. Then at that time o J Ayyf\{_ o
a N\
f s(n) dA + fde =— f vpdV + f (pv)v-ndA,
o * dt Ja 2R

d —i (1)

{
f r x s(n) dA4 + fr x bdV =—‘~Jr xvpdV + J rx (pv)venda.
a a de Ja )

@

gy T A
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=N

Figure 9 re,

Proof.  We will prove only (1),. First of all, by (4.2),, (8.5), and (12.5),,
py =9 + p(grad v)v = (pv) — p'v -+ (grad v)(pv)

= (pv) + vdiv(py) + (grad v)(pv) = (pv) + div(y ® pv).
Thus, since

fdideV = f TndA = f s(n) dA4,
R [ 4 oA

f(pv)’ dv = il— pvdV,
i 4 di g4

j diviv ® pv) dV = J (y®@pvindA = f (pv)v-ndA,
4 QR R

if we integrate the cquation of motion (14.10) over 4 we arrive at H,. 4d

Equation (1) asserts that the total force on the control volume 9 is equal to
the rate at which the linear momentum of the material in % is increasing plus the
rate of outflow of momentum across . Equation (1), has an analogous inter-
pretation.

A fow (v, p, T) is steady if #, = 4, for all t and
v =0, p =0, =0

In this case we call %, the flow region. Note that our definitions arc consistent :
in a stcady flow the undcrlying motion is a steady motion (cf. Scction 9).
As an example of the last theorem consider the steady flow of a fluid
through a curyed pipe (Fig. 9), and let # be the control volume bounded by
the pipe walls and the cross sections marking the ends of the pipe. Assume that
the stress is a pressurc and that the velocity, density, and pressurc at the
entrance and cxit have the constant values
v,€, Py, T, and U1y, py, Ty,
respectively, with e, perpendicular to the cntrance cross section and ¢,
perpendicular to the exit cross section. Since the flow is steady,

d

il .
¢ yr ~[1VI) dV = 0.
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Further, v+ n must vanish at the pipe walls; therefore
(pv)v-ndA = p,vid e, — pwide,,
hi 4
where A and A, are the arcas of the entrance and ¢xit cross sections, re-
spectively. Let f denote the total force exerted by the fluid on the pipe walls.
Then the total force on the control volume 2 is
—f + TtlA’el - nzAzez,
and (1), yiclds
f=(n, + poD)dye, = (n, + pro3)d,e,.
A similar analysis, based on conservation of mass (12.6), tells us that
/’lUlAl = le’zAz = s,
and hence
{=(m Ay + mv))e, — (y Ay + w0wy)e,.

Thus we have a simple expression for the foree on the pipe walls in terms of
conditions at the cntrance and exit. Although the assumptions underlying
this example are restrictive, they are, in fact, good approximations for a large
class of physical situations.

Theorem of Power Expended.  For every part :# and time t,
2

/ \&
J s(m)-vdA + l)'vdl/=f 'l"Dth+—l-f —;/){/V, 2)
&P, B ¢ S

!
H
£
;
H
]
H P “

%’i where
{ D = {(grad v + grad vT)

t is the stretching. ‘ e et o b
e st —— et

B

Proof. Sincc T is symmetric, (a) of the proposition on page 6 implics
T-gradv=T-D.

Also, by (12.8), {
,

d v o
— —pdV = j vevpdV,
dt L 2 P e

so that (14.3) yiclds

d v?
J;b*'\’(ly = J;l)'\’(”/ —Zil J:’ '2“/)1”/.

R T

.
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Equation (14.18) (with w = v) und the above relations yield the desired
identity. [J

The terms

VZ
f 5 pdV and [ T-DdV
[ e LT RO et SN

are called, respectively, thé kinetic cnergy ind lhcfs(rcss powcr\bf 2 at time 1.

8 \‘Q & -
The theorem of power expendet-rsserts T h_gﬁﬁhc powerexpeiided on' 2 by llw’{
(.ﬁ:ij/&lliru:ul hody forces is equal to the stress power plus the rate of change of \y
kinetic energy. e RS e e T e

A Tow is potential if the velocity is the gradient of a potential:
v = grad o.
- grad ¢

Note that ¢ is a spatial ficld of class C2 (because v is C2); hence

curl v = curl grad p = 0

and potential flows are irrotational. Conversely, by the potential theorem
(page 35), if a flow is irrotational, and if 4, is simply connected at some (and
hence cvery) time ¢, then the flow is potential.

For a body force b, the ficld b/p represents the body force per unit mass.
We say thatfthe body force is €onservative with potential /3 if L

b/p = —grad fb.

e (3)
(14.10) implics that b’ = 0

I the flow is also steady the equation of motion
in this case we will require that

B = 0.

Bernoulli’s Theorem.  Consider a flow (v, p, T) with stress a pressure —ul and
hody force conservative with potential i

(@) If the flow is potential,

2
1
grad ((p' + 2;- + /f) + —gradn = (. 4)
2 P
(b) Ifthe flow is steady,
z |
v grad (L + /f) +—v-ogradn = 0. (5)
2 P

(¢) Ifthe flow is steady and irrotational,

<

2
1

4 grud('- 4- /i> +  prad o = 0. (6)
v P

8]
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Proof. By hypothesis,
T = —nl,

so that

divT = —grad =;
thus the equation of motion (14.10) takes the form

—grad T + b = pv, @)
or equivalently, by (3),

V= — —lgrud m — grad fi. )]
P

On the other hand, by (9.10),, for a potential (and consequently irrotational)
flow

2
v=v +{grad(v?) = grud(go' + !2—), )
for a steady flow
vZ
vVev= v-grad(i) (10)

(where we have used the [act that v+ Wy = 0, since W is skew); for a stcady,
irrotational flow

2
‘= grzld(é—). (11

The relations (9)-(11), when combined with (8), yield the dcsired results
@-©). O '

EXERCISES

1. Consider a statical situation in which a (bounded) body occupies the
region %, for all time. Let b: 8, — ¥ and T: 8, — Sym with T smooth
satisfy

divT +b=0.

Define the mean stress T through

vol(B,)T = | Tav.

EN
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(@) (Signorini’s theorem) Show that T is completely determined by the
surface traction Tn and the body force b as follows:

VolB)T = | (Ton®r)da + J b®rdV.

a8, )

(b) Assume that b = 0 and that A4, consists of two closed surfaces S
and 7, with .| enclosing ", (Fig. 10). Assume further that &,
and & are acted on by uniform pressurcs 1, and ny, so that

s(n) = —mgn on .%,,

sn) = —pgn on Y,

7

Figure 10

with 7, and #, constants. Show that T is a pressure of amount

where g and vy are, respectively, the volumes enclosed by ./, and
'y)
1-

2. Prove (1),.

3. Derive the following counterpart ol (2) for a control volume #:

f s(n)-vdA+fb-vdV
oR E 4

N d [ v? pv?
=1|T- 2= Y .
L DdV+dt L > p(lV+fw > (‘.l n) dA.

o

SELECTED REFERENCES

Gurtin and Martins [1].

Noll [3, 4].

Truesdell [1, Chapter 3].

Fruesdell and Toupin [1, §§195-238].



[ENCST

CHAPTER

VI

Constitutive Assumptiohs.
Inviscid Fluids

16. CONSTITUTIVE ASSUMPTIONS

Theaxioms laid down for force—namely the faws of momentum balance—
arc common to most bodies in nature. These laws, however, are insufficient to
{ully characterize the behavior of bodies because they do not distinguish
between different types of materials. Physical experience has shown that two
bodies of the same size and shape subjected to the same motion will gencrally
not have the same resulting force distribution. For example, two thin wircs
of the same length and diameter, one of steel and one of copper, will require
different forces to produce the same clongation. We therefore introduce
additional hypothescs, called constitutive assumptions, which scrve to dis-
tinguish different types of material behavior.

Here we will consider three types of constitutive assumptions.

(i) Constraints on the possible deformations the bod y may undergo. The
simplest constraint is that only rigid motions be possible, a constraint which
forms the basis of rigid body mechanics. Another cxample is the assumption
of incompressibility, under which only isochoric deformations arc permissible.
This assumplion is realistic for liquids such as water under normal flow

L)

(AN
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conditions and cven describes the behavior of gases like air provided the
velocities are not too large. o

(i) Assumptions on the form of the stress tensor. The most wndcly.uscd
assumption of this type is that the stress be a pressure, an assumption valid for
most fluids when viscous cflects are ncgligible. . |

(iii) Constitutive equations relating the stress Lo the motion. Here a
classical cxample is the cquation of statc of a gas giving the pressure as a
function of the density.

We now make these ideas precise. o

A material body is a body % together with a mass distribution and a
family % of dynamical processcs. ¢ is called the constituti_vc class of lhc’bon}y;
it consists of those dynamical processes consistent with the constitutive
assumptions of the body.

A dynamical process (x, T) is isocheric if

x(-, t) is an isochoric deformation )

at cach ¢; a material body is incompressible if cach (x, T) € ¢.is isochoric. By
(1), given any part 2,

vol(2)) = vol(#)

for all t, which implies (10.4). Thus every motion of an incompressible body is
isochoric. The restriction (1), however, implies morc: not only does cz_lch
motion preserve volume, but the volume ol any part tl}roughoul t{\c motion
must be the same as its volume in the reference configuration. F urther, in
view of (6.17) and (c) of the theorem characterizing isochoric motions (page
78), cvery flow (v, p, T) of an incompressible body must have
detF =1,
(2
divy = 0.

Also, by (2); and (12.4), p(x, t) = po(p) for x = x(p, t). Thus, in particular,
when p, is constaint,

P = Pos

in this case we refer to pg as the density o_f the body. _ . -
A dynamical process (x, T) is Eulerian if the stress T is a pressure; that s, 1

T= -nul

with = a scalar ficld on the trajectory of x.

16. CONSTITUTIVE ASSUMPTIONS 17
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Figure 1

An idcal fluid is a matcrial body consistent with the following two con-
stitutive assumptions:

(a) The constitutive class is the set of all isochoric, Eulerian dynamical
processes.

(b) The density py is constant,

Thus an ideal fluid is an incompressible material body for which the stress is a
pressure in every flow.

Note that for an ideal fluid the pressure is not determined uniquely by the
motion: an infinite number of pressure fields correspond to each motion.
This degree of flexibility in the pressurc is common to all incompressible
malcrials. That such a property is physically reasonable can be inferred from
the followiag example. Consider a ball composed of an ideal fluid under a
time-independent uniform pressure n (Fig. 1), and assume, for the moment,
that all body forccs, including gravity, arc abscnt. Then the ball should remain
in the same configuration for all time. Moreover, since the ball is incom-
pressible, an increase or decrease in pressure should not resulit in a deforma-
tion. Thus the same “motion™ should correspond to all uniform pressure
ficlds. This argument is casily cxtended to nonuniform pressurce ficlds and
arbitrary motions, but for consistency the requirecment of null body forces
must be dropped to insure satisfaction of the cquation of motion.

We next introduce a material body, called an clastic fluid, in which
compressibility effects are not ignored, and for which the pressure is com-

pletely specified by the motion. Here the constitutive class is defined by a
smooth response function

: :RY - R
giving the pressure when the density is known:
n = #(p). 3

That is, the constitutive class is the set of «ll Eulerian dynamical processes
(x, —nI) which obey the constitutive equation (3).
We will consistently write

(v, p, ) inplaccof (v, p, —nl)
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for the flow of an idcal fluid or of an clastic fluid. (Of coursc, p = p, in the
former casc.)

An inviscid fluid is often characterized by the requirement that it be
incapable of exerting shearing forces; in this sense both ideal and clastic
{luids are inviscid.

EXERCisE
1. Consider a material body # with constitutive class 4. A simple constraini
for 4 is a function
" y:Lin* - R
such that cach dynamical process (x, T) € 4 satisfics

¥(F) = 0. )

For such a material onc gencrally lays down the following constraint
axiom: the stress is determined by the motion only Lo within a stress N
that docs no work in any motion consistent with the constraint. [The rate
at which a stress N does work is given by the stress power, per unit
volume,

N-D

(cf. page 111), where D is the stretching.]

We now make this idea precise. Let & be the set of all possible stretch-
ing tensors; that is, 9 is the sct of all tensors D with the following prop-
erty: for some C? function F: R - Lin* consistent with 4), D is the
symmetric part of

L = F(OF(@) ™!
at some fixed time ¢. Lct
R =Gt
that is,
A ={NeSym|N-D =0 forall Dew)}.

Then the constraint axiom can be stated as follows: If (x, T) belongs to ¢,
then so also does cvery dynamical process of the form (x, T + N) with

N(x, ) e A

for all (x, r) in the trajectory of x. We call 2 the reaction spuce.

e

s i, 3
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An incompressible material can be delined by the simple constraint
P(F) =dct F — 1. 5

Show that this constraint satisfics the constraint axiom if and only if the
corresponding rcaction space is the sct of all tensors of the form —xl,
ne R;ic., if and only if the stress is determined by the motion at most to
within an arbitrary pressurc fickd. Show further that the constitutive
assumptions of an ideal fluid arce consistent with the constraint axiom.

17. IDEAL FLUIDS

Consider an ideal fluid with density p,,. The basic equations arc the cqua-
tion of motion (15.7) and the constraint cquation (16.2);:

—prad t + b = p ¥,
(h

divy = 0.

When the bodsy force is conservative with potential f§, (15.8) implics

V= —gl'zld(~n— + /)’),
Po

and the aceeleration is the gradient of a potential. We therefore have the
following corollary of the results established in Scction 1.

Theorem (Properties of idcal fluid motion). The flow of an ideal fluid
under a conservative body force has the following properties:

(@) If the flow is irrotational at one time, it is irrotational at all times.
(b) The flow preserves circulation.
(©)  Vortex lines are transported with the fluid.

As we shall sce, the equations of motion of a fluid arc greatly simplificd
when the flow is assumed to be irrotational. The above thcorem implics that
the motion of an idecal fluid under a conscrvative body force is irrotational if
the flow starts from a state of rest. This furnishes the usual justification for
the assumption ol irrotationality. For a planc [low in an infinite region a much
stronger assertion can be made. Indeed, if the flow is steady and in a uniform
state at infinity fi.c., if grad v(x) - O as x -» o], and if cach strcamline begins
or ends at infinity, then, since W is constant on streamlings (cf. the proposition
on page 81), the flow must necessarily be irrotational.
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Bernoulli’s Theorem for Ideal Fluids. Let (v, Po» 1) be a flow of an ideal fluid
under a conservative body force with potential b

@) Ifthe flow is potential (v = grad ),
grad (([)’ + X; + % + Il) = (.
(b) Ifthe flow is steady,
(v—2+1+/3)'=0, 2
2 Po

50 lhal_(vz/Z) + (n/pg) + [ is constant on streamlines.
(¢) Ifthe flow is steady and irrotational,

T

v2
— + — + f = const 3
2 po 3
everywhere.

Proof.  Conclusion (a) follows [rom (15.4) (with p = p,). To establish (b)
and (c) let

v2 n
= —- —
1=t b

For a stcady flow
v n =0,
and by (15.5),
vegrad n = 0;
hence
=y +v-gradn = 0,
which is (2). Finally, for a steady, irrotational flow (15.6) yields
gradn = 0,
which, with i’ = 0, implies (3). [J

By Bernoulli’s theorem, for a steady, irrotational flow under a conservative
body force equations (1) reduce to

divv =0, curlv = 0,
v} oz 4)

) + E + f} = const.
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These equations are also sufficient to characterize this type of flow. Indeed,
suppose that (v, n) is a stecady solution of (4) on a region of space 4,. Then,
sincc W = 0, (9.10), implics

2 2
vV=1yv + grud(l;—) = grud(-v-) = —grud(»«’i + /5),
2 2 Po

and the basic equations (1) (with b/p, = —grad f§) arc satisficd.
In a stcady motion the velocity is tangent to the boundary (cf. the prop-

osition on page 68); thus (4) should be supplemented by the boundary
condition

ven= () on  0A4,. ] (5)

When the flow is nonsteady we are left with the system (1) to solve. The
basic nonlinearity of these equations is obscured by the material time deriva-
tive in (1),. Indeed, in terms of spatial operators these equations take the form

vV + (grad v)v = —prad n + b,

) (6)
divy = (),

where, for convenience, we have written = for n/p, and b for b/p,. Equations
(0) arc usually referred to as Euler’s equations.

”~
EXERCISES

1. Show that in the flow of an ideal fluid the stress power is zero (cf. page
111).

2. Consider the flow of a bounded ideal fuid under a conservative body
force, and suppose that for cach ¢ and cach x € 04,, v(x, 1) is tangent to
Jd48,. Show that

d
— | v3dV =0,
‘lt 9B,
so that the kinetic energy is constant.
3. Consider a homogeneous motion of the form

x(p, ) = po + F()[p — pol-

Show that if x represents a motion of an ideal fluid under conscrvative
body forces, then F(t)F(£)™ ! must be symmetric at cach t.

4. Consider a steady, irrotational flow of an idcal fluid over an obstacle :#
(Fig. 2); that is, # is a bounded regular region whose interior lics outside
the flow region 4, and whose boundary is a subsct of d:4,,. Assume that
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/ n
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Figure 2

lhg body force is zero. Show that the totul force exerted on 2 by the
{luid is cqual to

Po 2
> J:wv ndA.

18. STEADY, PLANE, IRROTATIONAL FLOW
OF AN IDEAL FLUID

For a steady, planc flow the veloceity ficld has the form
v(x) = v,(xy, X5)e, + vy(xy, X3)e,, (n

and the flow region can be identified with a region # in R2. For con venience,
we identify v and x with vectors in R2 and write, in place of (1),

V(X) = (Ul(x)) I.Z(x)), X = (xh XZ)'
Then the basic cquations (17.4) reduce to

| o,

Ox; = 0x, =0,
01). avz _
dx, ox, @)

s
301 + vd) + = = const
Po

with = also a field on 2. Here, for convenience, we have assumed that the
body force is zero.
For the moment let

& =), B = —o,.
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Then the first two relations in (2) are the Cauchy-Ricmann cquations:

Oa o o o

xy  Ox,' dxy ax,’
these are necessary and suflicient conditions that
9(2) = ox ;. X)) iy, X))
be an analytic function of the complex variable
o A TS AN
on 2 (considered as a region in the complex plane C). Thus we have the
following

Theorem. Consider a steady, plane, irrotational flow of an ideal fluid. Let
g: A — C be defined by

g(2) = 0,(xy, X,) = dvy(xy, Xy). (3)

Then g is an analytic function. Conversely, any analytic function g yenerates, in
the sense of (3), a solution of (2), ,.

The function g is called the complex velocity.
Lete = (¢4, ;) be a curve in 4. Then ¢ can also be considered as a curve

H6) = ¢,(a) + icy(a), 0<ox1

in C. Given any complex function /1 on :# we writc
fh(:) dz = flh(r(a))i:(a) da;
3 0
in particular, we deline
M = [ d- )

To interpret I'(¢), note first that
k(a) = (¢x(a), —¢,(0)) (5)

is normal to ¢ at ¢(a). Therefore when ¢ is the boundary curve of # the re-
quirement that v-n = 0 on 0 [cf. (17.5)] becomes

v,(c(0))¢2(0) = 0y(c(0))C,(0). (6)

Thus in this instancc

o

1
jy(:) dz = f (vy = i0y))(¢) + i¢y) de = J (0,¢y + 0v,6,) da,
3 O U
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—Rn
¢ Figure 3

and

') = f v(x) - dx

is the circulation around c.
Next,

k| = /¢t +¢3,

so that [k(¢)| do is the clement of arc length along c. The vector

1
f(c) = —J; r(c(o))k(o) do O]

therefore represents the integral along ¢ of the surface forcc —zn (n = k/tkD
with respect to arc length. In fact, for a simple closed curve oriented counter-
clockwise as shown in Fig. 3, f(c) gives the total force (per unit length in the x;-
dircction) on the material inside c.

Blasius—-Kutta-Joukowski Theorem. Consider a stead y, plane, irrotational
flow of an ideal fluid in a region R whose boundary is a simple closed curve c.
Let g be the complex velocity of the flow. Then

1@ = 130) = 52 [ g(ay . ®
If in addition R is the region exterior to ¢ and the velocit y is uniform at infinity
in the sense that
9(z) = « as z-— oo )
With ¢ real, then
Jie) =0,

Proof.  Since c¢ is closed,

J2(€) = = po I (c). (10)

1
: fkdo‘=0,
0
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and we conclude from (7) and the Bernoulli cquation (2), that

f(c) = 'l:;’f vik da.

(3]
Thus

ipg

]
Ji©) = e = 22 fo Vil + it do =

N
J vié, — icy) da.
0

On the other hand,

[
fgz dz = f (0 — iv)* (¢4 + ic,) do,
c 0
and a simple calculation using (6) yiclds

(v} + Dg)(él —icy) = (v, — ivy)*(é, + ic,).
Thus (8) holds. ,

Assumc now that # is exterior (o ¢ and that (9) holds. Assumec further
that the origin o lics inside ¢. Then, since ¢ is analytic and (9) holds, the
Laurent expansion of g about the origin has the form
o

2
=y [ DRI

o
g(z) = e -+ »~_—'» + o
for any z € . Hence (4) and Cauchy’s thcorem of residues imply
[(c) = 2nia,.
Next, since g is analytic, we can compute g* by termwise multiplication. Thus

et o? + 2reat
9(2)2=az+~_’_—1+ ! —3 2 Tt

and a second application of Cauchy’s theorem tells us that

f_z/z dz = dnico, = 2,0(c).

Thercefore, in view of (8), (10) holds. O

If # is simply connccled, then ¢ can be written as the derivative of an
analytic function w:
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(This result extends to multiply connected regions provided one is willing to
admit multivalued functions.) The function w: # — C is called the complex
potential; the real and imaginary parts ol w, denoted ¢ and ), respectively,
generate the velocity v through

dp ayr dg N
I= e I — e ) - = —

Uy = o = 2 .
(’).\‘ 1 0.\‘ 2 ’ (—).\' 2 (7.\- {

Let s'= (54, §;) be a streamline so that
$(1) = v(s(1)). (1)
Then

1/ p ;
— 8§ +—3
ax, ' ox, R

%‘/’(S(f)) = = —u0, + 00, =0, (12)

and y is constant on streamlines. For this rcason i/ is called the stream
function.

Let ¢ be a curve. Then c is essentially a segment of a streamline s if thereis a
smooth one-to-onc mapping t of [0, 17 onto a closed interval of R such that

c(a) = s(t(a)), O0<o< Ll (13)

Proposition.  Cousider a flow with a complex potential. Let ¢ be a curve in the
flow region and assume that v is nowhere z¢ro on ¢. Then the following are
equivalent:

(@) v (c(0))y(0) = vy(c(a))éy(0) for0 <o < 1.
(b)  v(c(o)) is parallel to &(o) for0 < ¢ < 1.

(c) cis essentiully a segment of a streamline.
(d) o is constant on c; that is,for0 < 0 < 1,

d
e Y(c(a)) = 0.

Proof. We will show that (d) <> (a) < (b) < ().
(d) <> (a). This follows from the identity [cf. (12)]

:;‘I(; W(e(0)) = —0y(e(0))é1(0) + v1(e(0))éx(0)-

(a)<>(b). Hecre we use the fact that (a) and (b) are cach equivalent to lh_c
asscrtion that k(o) * v(e(a)) = 0 for 0 < ¢ < |, where Kk, delined by (5), is
normal to the curve c.
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(¢) = (b). If ¢ is essentially a scgment of a streamline s, then (1 1), (13),
and the chain rule yield

&(o) = $(r(a)ilo) = v(s(t(a)))i(s) = i(a)¥{(c(a)), (14)
and (b) is satisficd.
(b) = (¢). Assume that (b) holds. Then, since v(e(a)) and &) never
vanish,

&a) = ala)v(e(@)), O<o<

k)

with a a continuous function on [0, 1] which never vanishes. Let

Ky

() =J ai)di, O<a<l;
[}

let s be the streamline which passes through ¢(0) at time ¢ = 0, so that s
satisfies (11) and

5(0) = c(0);
and let d be the curve in R? defined by

d(o) = s((a)). O = L (15)
Then

d(0) = ()
and, using the argument (14),

d(o) = a(o)v(d(0)), O<a<l.

Thus ¢ and d satisfy the same dillerential cquation and the same initial
condition. We thercfore conclude from the uniqueness theorem for ordinary
differential equations that ¢ = d,so that, by (15), ¢ is essentially a segment of a
strcamline. [

For problems involving flows about a stationary region onc usually
assumes, as the boundary condition, that the boundary of the region be a
streamline, In view of the last proposition, this insurcs that the velocity ficld be
tangent to the boundary, or cquivalently, that the boundary be impenctrable
to the fluid (cf. the proposition on page 6S).

As an example consider the region exterior to the unit circle and assume
that the velocity is uniform and in the x-dircction at infinity, so that (9) is
satisficd. Consider the flow generated by the complex potential




Figure 4

In terms of cylindrical coordinates = = rei® (he stream function ¢ has the
form

Y(r, 0) = //(r - l) sin {),
p

so that ¢ has the constant value zero on the unit circle. Further, the complex

velocity
l
g(z) = /4<1 - :3>

satisfics (9). The streamlines are shown in F ig. 4. For this flow
I"(unit circle) = 0,
and by the Blasius-Kutta-Joukowski theorem there is no net force on the
boundary.
Another flow with the desired propertics is gencrated by

| .
w(z) = «<z + 2 + iy log z).

This potential has a stream function

i
Yl(r, 0) = t/[(l' - ’~> sin () + vy log r],

which again vanishes on the circle 5 = I. Further, w gencrates a complex

velocity
| iy
&) = ,,(1 — Q)

which satisfies (9).
‘ A point at which g(z) = Ois called a stagnation point. Points z on the unit
circle arc given by the cquation = = ¢, A necessary and sufficient condition
that there exist a stagnation point at z = ¢ js that
. Y
sin() = — -,

2
and hence that =2 < y < 2. Assume 7 > 0. Then: (a) for 0 < y < 2thercare
two stagnation points on the cylinder; (b) for y = 2 there is one stagnhation
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Figure 5§

a)

point on the cylinder; (¢) lor p > 2 there are no stagnation points on the
cylinder. These three cases arc shown in Fig. 5 with the stagnatlion points
denoted by S. IFor these flows

["(unit circle) = —2nuy

provided the unit circle has a counter-clockwise oricntation; thus there is no
drag (force in the x-direction), but there is a lift (force in the x,-direction)
cqual to

) 2.
2Ny ey

The problem of flow about an airfoil is far more complicated than the
simplc flow presented in Fig. 5, but the results are qualitatively the sgmc.Tlprc
the circulation is adjusted as shown in Fig. 6 to insurc two stagnation points
with the aft stagnation point coincident with the (sharp) tratling edge (Kulta-
Joukowski conﬁ‘dilion).

Figure 6
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EXERCISES

1. Show that the complex potential
w(z) = —Ceimf I*1

represents the flow past a wedge (Fig. 7) of angle 2«, where C and f8
(# > —1)arc real constants and

oo fin
YA

Determine the stagnation points (if any).

T
\\\\

2. Sketch the streamlines of the complex potential
w(z) = Cz?,

where C is a real constant, and show that the absolute value of the
velocity is proportional to the distance from the origin.

3. Consider a steady, plane, irrotational flow of an idcal {luid. Let ¢ be a
section of a streamline with

c(0) = (x4, ¥ (1) = (xy, yp)-

Let 7, be the pressure at a point at which the velocity is v,,. Show that the
force (8) on ¢ is given by

Fipure 7

2 ;
Ji(e) = ify(c) = <7f() + 1’02"0) [ra = yp) + i(xy — xp)] + I’gﬂ f.‘lz dz.

19. ELASTIC FLUIDS

The basic cquations for the flow of an clastic fluid arc the equation of
motion

—grad  + b = py, ' (N
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conscrvation of mass
P+ div(py) = 0, (2)
and the constitutive equation
o= ). (3)

We assume that @ has a strictly positive derivative, and we define functions
k> 0and con ' by

2y - dip)
K (l)) - (,ﬂ )

e ()
) = | S

o G

where p,, is an arbitrarily chosen value of the density. The function w(p) is
called the sound speed; the reason for this terminology will become apparcit
when we discuss the acoustic cquations.

In a flow o(p) may be interpreted as a spatiad ficld. We may therefore con-
clude from the chain rule that

2 ~
RE(p P da(p 1
grad «(p) = _\_ﬂ) grad p = - (’) prad p = - grad n. (5)
P nodp 0

Thus when the body foree is conservative with potential f8, (1) takes the form

v = —grad(@(p) + M),

and the aceeleration is the gradiemt of o potentiul. We thercefore have the
following corollary of the results established in Section { 1.

Theorem (Properties of clastic fluid motion).  The flow of an clastic fluid
under a conservative body force has the following properties:

(a) If the flow is irrotational at one time, it is irrotational at all times.
(b) The flow preserves circulation.
(¢) Vortex lines are transported with the fluid.

Thus, in particular, the flow of an clastic fluid under a conservative body
force is irrotational provided the flow starts from rest.

Bernoulli's ‘Theorem for Elastic Fluids. Lot (v, p. 1) be a flow of an elustic
Sliid under a conservative body force with potential ff. Let € be defined by (4).

(@) Ifthe flow is potential,

grad (fp’ + ) + /;) =0,
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(b) Ifthe flow is steady,

v2 )
(5 + #(p) + /f) = (, 6)

so that (v}/2) + «(p) + B is constant on streamlines.
©) Ifthe flow is steady and irrotational,

vZ

5 + &(p) + 1 = const (7)
everywhere.

Proof.  Conclusion (a) follows from (15.4) and (5). Let
v2
= +p)+ [

For a stcady flow
=0, vegrad n = 0,
where we have used (15.5) and (5); hence
= +v-grady =0,

which is (6). Finally, for a steady, irrotational flow, (5) and (15.6) yicld
grad = 0, which with i = 0 implics (7). O

If we define

«(p) = w*(p)/p,
then (1)~(3) take the form

v+ (grad v)v + a(p) grad p = b/p,
P+ div(py) = 0.
Equations (8) constitute a nonlinear system for p and v and are generally
quite difficult to solve. Further, for many problems of interest the solution will
not be smooth because of the appearance of shock waves (sarfaces across
which the velocity suffers a jump discontinuity), and the notion of a weak

solution must be introduced. A careful discussion of these mattcrs, however, is
beyond the scope of this book.

We now consider flows which are close to a given rest state with constant

density po. We therefore assume that | p — p,|, |grad p}, |v|, and |grad v]are
smalL.! Let & be an upper bound for these fields. Then, since

®

a(p) grad p = alpo) grad p + [a(p) — a(py)] grad p,

' Since our interest lies only in deriving the asymptotic form of the ficld cquations in the
limit as & ~ 0, it is not necessary 1o work with dimensionless quantitics.

e A BB S B 1y S g
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and since a is continuous, we have, formally,

a(p) grad p = afp,) grad p + o))

as d — 0. Similarly,

div(pv) = p, divy + o(3),
(grad v)v = o(d).

Thus il we assume b = 0 and ncgleet terms of o(d) in (8), we arrive at the
linear system

vo-ba(py) grad p =0,
0+ opydivy =0,

These equations are usually called the ucoustic equations; they constitule
an approximate system of ficld equations appropriate to small departurces
from a state of rest. If we take the divergence of the first equation and the
spatial time derivative of the sccond, and then climinate the velocity, we
obtain the clussical wave equation

P = w2 py) Ap,

where A = div grad is the spatial laplacian. Thus within the framework of the
lincarized acoustic cquations disturbances about a rest state with density p,
propagate with speed w(py). This should motivate our use of the term * sound
speed ™ for w(p).
We now return to the gencral nonlincar system (8). The ratio
"

I = e
w(p)
of fluid spced

= |v|

to sound speed is called the Mach number, and a flow is subsonic, sonic, or
supersonic at (x, 1) according as w(x, 1) is <1, =1, or > 1. '
Consider a stcady flow with b = 0. Since p’ = 0,
p=v-grad p,
and (8), implies that
K3 (p) wi(p)

vegrad p = — - =% .
p P

Vv = —

Thus

ve(pv) = ve(pv 4 pv) = p(v - V)l — )
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Further, if we differentiate »2 = v - v, we find that
B=vey,
Similarly,
p{po) = v+ (pv).
The last three identities yicld the following
Proposition. I a steady flow of an elastic fluid under vanishing body forces

(poy = p(l — ///2)[‘ )
wheneeer v # ).

Equation (9) demonstrates one of the chief qualitative differences between
subsonic and supersonic flow. Consider an arbitrary streamline s (Fig. 8) and
a point x on 4. Then the quantity p(x)s(x) represents the mass flow, per unit
area, across the plane through x perpendicular to o. For subsonic flow an
increasc in » along « is associated with an increase in mass flow; for supersonic
flow an increase in » corresponds to a decrease in mass flow. Thus if ¢ in-
creases along o from subsonic to supersonic values, then the mass flow
increases in the subsonic range to a maximum at » = 1, and subscquently
decreases along the remainder of 4, which is supersonic. This cxplains, at
least qualitatively, the difference between subsonic and supcrsonic nozzles.
Consider the nozzles shown in Fig. 9. Assume that the density and velocity
arc constant over cach cross scetion, so that the total mass flow across cach
such section is puA, with A the corresponding area. (Although this assumption
can be satisfied exactly only when A is constant, it is reasonable when A
varics slowly with length.) By conservation of mass (cf. the anlysis on page
110), puA isindependent of position along the nozzle, and hence pw is inversely
proportional to A. In the subsonic nozzle the flow is always in the subsonic
range, and the decreasing arca from centrance to exit results in an increasing
mass flow and a concomitant increase in velocity. A nozzle which increases the
velocity from subsonic to supersonic values cannot have this design; indeed,
in the supersonic region a decreasing area would resultin a decreasing velocity.
A nozzle with the desired properties is the de Laval nozzle. There the velocity
is subsonic at the entrance and increases with decreasing arca to a value of

Subsonic, p» increases

m o= |

P

-

Supersonic, pr decreases

Figure 8. Streamline with o increasing.
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M
; :
Entrance Exit
] 1

Subsonic nozzle

|
1
|
l‘:llll.:ln‘:c Exit
|
]
1
)

de Laval nozzle
Figure 9 (subsonic-supersonic)

#2 = | at the throat (point of minimum arca); the subsequent increasing arca
then accelerates the fluid into the supersonic range.
By Bernoulli’s theorem, when the Mlow is steady and irrotational, and
when the body force is conservative,
div(pv) = 0, curl v = (),
v2 §19)]
5t e(p) + f§ = C = conslL
Of course, as for an ideal fluid, (10) should be supplemented by the boundary
condition
v'n = () on  J4,. (n

Equations (10) also suffice to characterize this type of flow. Indeed, (10),
implics (2), and if = is defined by (3), then (10); and (9.10), imply

2
V= grud(%—) = —grad(e(p) + f3),

which, by (5), implies (1).

Forasteady potential flow the basic cquations reduce to a single nonlincar
sccond-order equation for the velocity potential . To derive this cquation
note first that, by (10),,

vegrad p + pdivv = 0, (12)
and if we take the inner product of (8), with v and use (12) to climinate the
term involving grad p, we arrive at

ve(grad v)v = k*(p) div v.
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Here, for convenience, we have assumed that b = 0. Thus, if
= grad ¢, (13)
then ¢ satisfics the partial diflerential cquation
grad ¢ - (grad? o) grad ¢ = k2(p) A, (14)
where grad? = grad grad, or cquivalently, in components,

dp dp D 2%
gLl L = 1) T 0

i a.\fi ()'\.j (‘).\.'- l’).\’j i b,\‘,z )

Further, by (11) and (13), the corresponding boundary condition is

99 =0 on 0%
on 0
where
do
— = n-grad
o n-grad ¢

is the normal derivative on 04,,.
The sound speed k(p) in (14) can also be expressed as a function of grad ¢
by solving the Bernoulli cquation

|grad ¢|?
)

<

o) =C

Ll (10); with 8 = O] for p as a function of grad ¢ as follows. Since k > 0, (4),
implies that de/dp > 0, so that &(p) is an invertible [unction of p; we may

therefore write
e oo - el

2
and use this relation to express k(p) as a function
" ad ¢|?
R(grad @) = x(z;“(c - I_g_r"lz d )) (15)

of grad ¢. Of course C and hence & will generally vary from flow to flow.

EXERCISES

I Anideal gas is an clastic fluid defined by a constitutive equation of the
form
= Aip’, (16)
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where 2 > Oand y > 1 are strictly positive constants. [Note that an ideal
gasis not anideal fluid. Actually, (16) represents the isentropic behavior of
an idcal gas with constant specilic heats.]
(i) Show that the sound speed x = w(p) is given by
K% = yn/p.

(b) Show that the relation (15) is given by

A2 r=1 2

R(grad ) = * o (0% —|grad ¢]?)

with v a constant.
2. Considcr the idcal gas (16) in equilibrium (v = 0y under the gravitational
body force
b= —pye;,
where g is the gravitational constant. Assume that
n(X) = m, = conslant at x, = (.

Determine the pressure distribution as a function of height x;.

3. Show that for an clastic Nuid the stress power of a part :2 at Lime 1 s

J T-DdV = — J tivp dV
oy Py

(cf. page 111), where

1

= -

Iy
is the specific volume (i.c., the volume per unit mass).
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20. CHANGE IN OBSERVER

Two observers viewing a moving body will generally record different
motions for the body; in fact, the two recorded motions will differ by the rigid
motion which represents the movement of onc observer relative to the other.
¢ We now make this idea precisc.

i Let x and x* be motions of #. Then x and x* are related by a change in
observer if

% ) X*(p, 1) = q(1) + Q) [x(p, 1) — o] (0
- : for every material point p and time 1, where (1) is a point of space and Q(f) is
!' a rotation. That is, writing
3
i
W f(x, 1) = q(0) + QU)(x — o), 2
. then at cach time ¢ the deformation x*(-, () is simply the deformation x(-, ¢)
j : followed by the rigid deformation (-, 1)
: X*(-,!)=f(-,!)"X(-,1). (3)

A 139
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X(-. ,V \x'(-.n

(-, 1)

Figure 1

For convenience, we write #* for the region of space occupied by 42 at time ¢
in the motion x*:
B = xX(A,1);

then the relation between x and x* is illustrated by Fig. 1.

We now determine the manner.in which the various kinematical quantitics
transform under a change in observer. Letting

F = Vx, F* = Vx*
and differentiating (1) with respect to p, we arrive at
F*(p, ) = Q(OF(p, 1), “

which is the transformation law for the deformation gradient. Note that, since
det Q = 1, (4) implies

det F* = det I (5)
Next, let
' F=RU=VR, F*=R*U*= V*R*
be the polar decompositions of F and F*. Then (4) implies
F* = R*U* = QRU,

and, since QR is a rotation, we conclude from the uniquencss of the polar
decomposition that

R* = QR, U* = U.
Also,

V* = R*U*R*" = QRURTQ"

o

Y
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B
A}
p(-. 1) O
A, > 47
Figure 2 f(..n

and therefore, since V = RURY,

V¢ = QVQ".
From thesc relations it follows that the Cauchy- Green strain tensors
C = U? B = V2 C* = U*?, B* = V*2
transform according to
C* = C, B* = QBQ".

Intuitively it is clear that if x € :4, and x* € 4 arc related through
x* = f(x, 1), (6)

then x and x* must correspond to the same material point. To verify that this is
indced the case, note that, by (3),

x(.i l) = f(v I)_l K X:k(‘» l)y
which is casily inverted to give
p(-, 1) = p*(-, )~ (-, 1),

where p and p* are the reference maps corresponding to the motions x and x*,
respectively (Fig. 2). Thus

p(x, 1) = p*(f(x, 1), 1),
or equivalently, by (6),
; p(x, 1) = p*(x*, 1), 0

so0 that x and x* correspond to the sume material point.
As a consequence of (1),

X¥(p, 1) = 4(1) + QX(p, 1) + Q) [x(p, 1) — 0].

If we take p = p*(x*, 1) in the left side and p = p(x, 1) in the right side of this
relation—a substitution justified by (7) provided x* and x are rclated by
(6)—wec conclude that

VE(X®, 1) = (1) + Q(v(x, 1) + Q(1)(x — o), (8)
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where
V* = (i*)a’ v = (i)J

are the spatial descriptions of the velocity in the two motions. Equation (8) is

the transformation law for the vclocity.
Now let

L =gradyv, L* = grad v*,

If we take x* = f(x, t) in (8) and differentiate with respect to x using the chain
rule and the fact that grad f = Q, we arrive at

L*(x*, Q) = Q()L(x, ) + Q)
so that the velocity gradient transforms according to
L¥x*, 1) = QUL(x, Q)T + Q(1)Q)"™. )
Since QQT = I, it follows that
QQ" +QQ" =0,
or cquivalently that
QQ" = —(QQ"",

and the tensor QQT is skew. Thus the symmctric part of (9) is the following
transformation law for the stretching:

D*(x*, 1) = Q(1)D(x, NQ(1)", (10)
where
D* = }(L* 4+ L*7), = 3L + L").
EXLRCISES
L. Show that the spin W transforms according to
W%, ) = QOW(x, QM) + QVIQ®)™.

2. A spatial tensor field A is indifferent if, during any change in observer, A
transforms according to

A*(x*, 1) = QA(x, HQ(1)™.
Assume that A is smooth and indifferent.

(@) Show that A is indifferent il and only il A(x. 1) = fi(x, Dl for all x
and 1.

¥
[4
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(b) Show that the tensor ficlds
A=A—WA+Aw,
A=A+ LA+ AL

: - N b
arc indifferent. In the case of the stress T [cf. (21.1)], T and T arc
called, respectively, the corotational and convected stress rates.

(¢) Show that

W= W,
W =W DW + WD, (11)
3. Use (9.14) to show that ‘

Cv% 0 = Q(CLy, NQ)T,

and use this result to show that the Riviin-Ericksen tensors (9.18) are
indifferent.

21. INVARIANCE UNDER A CHANGE IN OBSERVER

One of the main axioms of mechanics is the requirement that material
response be independent of the observer. This axiom is never stated ex Plicill yin
clementary books on mechanics, probably because it scems so obvious;
nonctheless it is instructive to look at a simple example from that subject. A
thin clastic string weighted at the end is spun with constant angular velocity
and suffers an clongation of amount §. The axiom above asserts that the force
in the string which produces this extension is the same as the force required to
produce the elongation § when the string is held in one place. Indeed, the two
motions of the string differ only by a change in observer; that is, an observer
spinning with the string sees the string undergoing the same motion as a “still
observer” sees when he extends the string by hand.

We now give a precise statement of this axiom within our general frame-
work. To do this we must first deduce the manner in which we would cxpect
the stress to transform under a changg in observer. Thus let (x, T)and (x*, T*)
be dynamical processes with x and x* related through (20.1). If T and T* are
also related through this change in observer, then the corresponding surface
force ficlds should transform as shown in Fig, 3. Thus if

n*=Qn  Q=Q()

we would expect that

s¥(n*) = Qs(n).
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s*(n*)

Figure 3
But
s(n) = Tn, s*(n*) = T*n*,
and hence
T*n* = QTQ"n*.

Since l_his relation should hold for every unit vector n*, we would expecet the
following transformation law for the stress tensor:

T*(x*, 1) = QIOT(x, Q™. (N

of coursc, in (1) it is understood that x* = f(x, () with [ given by (20.2).
This discussion should motivate the lollowing’ dcfinition: (x, T) and
(x*, T*) are related by a change in observer if there exist C? functions

¢ R- &, Q: R - Orth*
such that

(a) the transformation law (20.1) holds for all pe#andteR;
(b) the transformation law (1) holds for all (x, t) in the trajectory of x.

WC say that the response of a material body is independent of the observer
provided its constitutive class ¢ has the following property: if a process
(x, T) belongs to %, then so does every dynamical process related to (x, T) by a
change in observer. The content of this definition is, of course, the axiom
discussed previously.

T[heorem. The response of ideal fluids and elastic Suids are independent of the
observer. : .

. The proof of this result makes use of the following lemma, which is a
direct consequence of (16.2) and (20.5).

b s o 5 v A
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Lemma. A dynamical process related to an isochoric dynamical process by a
change in observer is itself isochoric.

Proof of the Theorem. Let 4 be the constitutive class of an ideal fluid, It
(x, TYe @, and lct (x*, T*) be related to (x, T) by a change in observer. To show
that {x*, T*) € ¢ we must show that (x*, T*) is isochoric and Eulerian. The
former asscrtion follows from the lemma; to verify the latter note that, since
T = —=zl, (1) yiclds

T* = QTQ" = —2QQ"' = —=l.

Thercefore ideal fluids are independent of the obscrver. The proof that clastic
ftuids also have this property proceeds in the same manner and is left as an
exercise. [0

EXERCISLES

1. Prove that the responsc of an clastic {luid is independent of the observer.
In the next two excercises we consider the chiange in observer defined by (20.1).
2. Show that
divy, TH(X*, 1) = Q) div, 'T(x, ().
3. Show that the acccleration transforms according to
YRR, 1) = QUOV(X, 1) + (1) + 2Q)v(x, 1) + Q) (x — o).
Show further that if the body foree transforms according to
b*(x*, 1) = Q(1)h(x, 1),
then 4
div T* + b* + k = p*v¥,
where
K(x*, 1) = p(x, D00 + 2QUvx, 1) + QU)(x — o).

Because'of the additional term k, the equation of motion is not incariant
under all changes in obscrver. The obscrvers for whom this cquation
transforms “properly” arc cxactly those with Q and q constant. Such
obscrvers arc called Galilean and have the property of being accelera-
tionless with respect to the underlying incrtial observer.

SELECTED REFERENCES

Noll [1, 2].
Truesdell and Noll [1, §§17-19).



CHAPTER

VIII

Newtonian Fluids.
The Navier-Stokes Equations

22. NEWTONIAN FLUIDS

Friction in fluids generally manifests itself through shearing forces which
retard the relative motion of fluid particles. The fluids discussed thus far
never exhibit shearing stress, and for this reason are incapable of describing
frictional forces of this type. A measure of the relative motion of fluid particles
is furnished by the velocity gradient

L =gradyv,
a fact which motivates our considering constitutive equations of the form
T= —al + C[L]. (1)

Materials defined by relations of this type with C linear are called Newtonian
fluids; they furnish the simplest—and most useful—model of viscous fluid
behavior. Here we will use the term Newtonian fluid to mean incompressible
Newtonian fluid; thus, since tr L = div v, we limit our discussion to fields L
with

trL =0.

147
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Since C is linear, C[0] = 0; thus
T = —nl

when L = 0, and a Newtonian fluid at rest behaves like an ideal fluid. Also,
as for «n ideal fluid, the pressure = is arbitrary (i.e., not determined by the
motion). ‘This flexibility in n leads to a certain ambiguity regarding the
response function C; given any linear, scalar-valued function (L) of L, we
can rewrife (1) in the form ’

T = —{rn + B} + C,(L],
where
C,[L] = C[L] + A(L)L

Since = is arbitrary, = can absorb the term f(L). Thus our constitutive
equation (1) is essentially unaltered by replacing the term C[L] by C,4[L].
To remove this ambiguity, we normalize C by demanding that

tr C[L] = 0. )

(This is equivalent to replacing C in (1) by C, with f(L) = —4tr C[L].) Then
C has domain

Lin, = {L € Lin|tr L = 0}
and codomain ’
Symy = {T e Sym|tr T = 0}.

In view of the restriction (2), the pressure = is uniquely determined by
the stress. In fact, if we take the trace of (1) and use (2), we conclude that
Ay LN n=—%ttrT.
We define the extra stress T, by
To=T+al =T - 4trN],

so that T, is the traceless part of the stress tensor. Our constitutive equation
(1) then takes the simple form

T, = C[L]. ©)

The above discussion should motivate our next definition.
A Newtonian fluid is an incompressible material body consistent with the
following constitutive assumptions:

(a) There exists a linear response function

C: Ling - Symy,

S s v s e v ey oA v i s over
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such that the constitutive class is the set of all isochoric dynamic
(x, T) which obey the constitutive equation (3).
(b) The density p, is constant,

al processes

The dimensions of the spaces Lin, and Sym,, are 8 and 5, respectively, so
that the matrix of C relative to a coordinate frame has 40 entries. Thus at
first sight it would appear that it takes 40 independent constants to specify
a Newtonian fluid. The next theorem shows that, in actuality, the response
is determined by a single constant.

Theorem. A necessary and sufficient condition that the response of a New-

tonian fluid be independent of the observer is that its response function C have
the form

C[L] = 2uD 4)
Jor every L € Lin,, where
' D=4L+L".
The scalar constant y is called the viscosity of the fluid.

Proof. (Sufficiency) Assume that (4) holds. Let (x, T) belong to the
constitutive class € of the fluid. Then (x, T) is isochoric and

To = 2uD.

Let (x*, T*) be related to (x, T) by a change in observer. Then (x*, T*) is
isochoric (cf. the lemma on page 145). Moreover, by (20.10) and 21.1),

T* =QTQ", D*=QDQ",

and (1.4), yields
tr T* = ((QTQT) = ((TQ'Q) = tr i’
Therefore
T8 =T* — 3(tr THI = QTQ" - 4(tr T)QQ™ = QT,QT
= Q(2uD)QT = 2uD*. )
Thus (x*, T*) € % and the response is independent of the observer.
The proof of necessity is facilitated by the following

Lemma. Let L, € Ling. Then there exists a motion x with velocity gradient

L=T, ‘ (6)
and with x(-, t) isochoric at each time .

L
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Proof. Take
F(1) = &'
so that F is the unique solution of
F=LF, FO0O=L1 N
By (36.2),
det F = elrlok = |,
Thus

x(p, ) = q + F())[p — q]

defines a motion with deformation gradient F angi with x(., t) isochoric at
each t. Further, (6) follows from (7), and the identity (8.8),.

We now return to the proof of the theorem. To establish the necessity of
(4) we assume that

the response is indepéndent of the observer. ®)

Let Ly € Ling be arbitrary, let x be the motion constructed in the lemma, and
let T = T, be the constant field defined by (3). Then, clearly, (x, T) € €. Let
(x*, T*) be related to (x, T) by a change in observer. Then by (8), (x*, T*) e ¥
and
§ = C[L*]. ©9)
But
T§ = QTQ", L*=QLQ"+QQ"
{cf. (20.9), (21.1), and (5)]; hence (9) yields
QT,Q" = C[QLQ" + QQ7],

and we conclude from (3) and (6) that

QC[L,1Q" = C[QL,Q™ + QQ"]. (10)

Clearly, this relation holds for every L, € Lin, (the domain of C) and every
C? function Q: R — Orth*. Fix L, and take

Q) = e Vo,
where
Wo = %(Lo - Lg)-

Then Q(t) is a rotation, since W, is skew, and

Q=1 QO =-W,
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(cf. the discussion in Section 36). Using this function Q in (10) at t = O yields

ClLo] = C[Lo — W,] = C[D,], (1n
where
Dy = {(L, + L).
Thus C is completely determined by its restriction to Sym,.
Next, let Q be a constant function with value in Orth*, Then (10) with
Lo = Dy (D, € Symy,) implies that
QC[DL]Q™ = C[QD,Q]. (12)

Since this relation must hold for every Dg € Sym, and every Q € Orth*, the
restriction of C to Sym, is isotropic; we therefore conclude from the repre-
sentation (37.26) that

C{D,] = 2ub,
for all Dy e Sym,. O

Note that the results (11) and (12) are valid also for nonlinear functions
C; we appealed to the linearity of C only in the last step of the argument.
By (4) the constitutive equation (1) takes the form

T

' T=—nl+ 2D, (13)
This equation must be sub;plpe;i‘éhted by the equaiion of motion
pPolV + (grad viv] =divT + b
and the incompressibility condition
divy = 0.
In view of (4.5),
2divD = div(grad v + grad v¥) = Av + grad divv = Av,

where A = div grad is the spatial laplacian. Thus the above equations reduce
to e s -

i polv' + (grad v)v] = pAv — grad 7 + b,
,9.

: divy = 0. T

(14)

pa . ¥ H
These relations are the ‘Navier-Stokes equations | given 1, p,, and b they
constitute a nonlinear syster of partial differential equations for the velocity
v and the pressure 7. If we define the kinematical viscosity v by
v = p/pg
and write

Ty = 7/pg, by = b/p,,
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I

we can rewrite the Navier-Stokes equations in the form
v Ay — grad m, + by,
0.

If the flow is steady, and if we neglect the nonlinear term (grad v)v, then
(15) reduce to

v + (grad v)v (15)

I

divy

v Av = grad my — by,
divy =0.

Solutions of this equation are called Stokes flows and are presumed to describe
slow or creeping flows of Newtonian fluids.

We now return to the general Navier-Stokes equations (15). One of the
basic differences between flows described by these equations and flows of
ideal or elastic fluids is the way circulation and spin are transported.

Theorem (Transport of spin and circulation). Consider the flow of a
Newtonian fluid under a conservative body force. Then

W + DW + WD = v AW, (16)
and given any closed material curve c,
%J;‘v(x, f)-dx = vJ;IAv(x, t) - dx. 7
If in addition the flow is plane,
W =vAW. (18)
Proof. Siqce the left side of (15), represents ¥, and since by = —grad §,

v = v Av — grad(ny + f).
If we substitute this equation into (11.5), we recover (17), since ¢ is closed.
Further,
grad v = v A grad v — grad grad(n, + f),

because A grad = grad A. (Here and in what follows we need the additional
assumption that, as functions of position, v is of class C3, while ny and f§ are
of class C2.) If we take the skew part of this equation and use the fact that
grad grad(m, + B) is symmetric, we arrive at

L(grad v — grad ¥v7) = v AW.

This equation and (11.2), imply (16). Finally, since divv = 0, (16) and (9.12)
yield (18). O
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jr Both ideal and elastic fluids preserve circulation. In contrast, (17) tells us
that circulation in a Newtoniun fluid generally varies with time. .

Equation (18) asserts that in planc flow the spin satisfies a diffusion
equation. Further, if in (16) we neglect terms of second order in grad v, we
again arrive at (18), but here for flows which are not necessarily plane. This
motivates the standard assertion that spin diffuses in a viscous fluid. Finally,
note that by (20.11), we can rewrite (16) as

o
W = v AW.

Suppose that the flow takes place in a region &. For the inviscid fluids
considered previously the boundary condition was that v-n = 0 on 0%,
which is simply the requirement that the boundary be impenetrable to the
fluid. For a Newtonian fluid we add the restriction that the fluid adhere,
without slipping, to the boundary. For a stationary boundary this means
thatv = 0 on d£. If the boundary moves, then at each point on the boundary
the fluid velocity must coincide with the velocity of the boundary.

The theorem of power expended has an interesting consequence for
Newtonian fluids. Indeed, by (13),

T-D = —al-D + 21D’ = 24|DP,
sinceI-D = tr D = divv = 0, and (15.2) yields the following

Theorem (Balance of energy for a viscous fluid). Consider the flow of a
Newtonian fluid. Then

d 2
j‘ s(n) - vdA + { bevd” = - J L;“uﬁ_VJrZ;LJ ID2av (19)
a2, J dt Jg, 2 2.

!,
Jor every part 2.
The term

2;4 D2 dV
K4

t

represents the rate at which the fluid in & dissipates energy. The energy
equation (19) asserts that the total power expended on P must equal the rate
of change of kinetic energy plus the rate of energy dissipation. Note that for a
finite body, if v vanishes on 84, for all time, and if b = 0, then (assuming
p>0)

d z .
%J\ %PodVSO,
B
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so that the kinetic energy decreases with time. This result represents a type
of stability inherent in viscous fluids; in Section 24 we will establish a stronger
form of stability: we will show that under these conditions the kinetic energy
actually decreases exponentially with time.

It is instructive to write the Navier-Stokes equations in dimensionless
form. Consider a solution of (15) with

b=0

Let [and » be numbers with ! a typical length (such as the diameter of a body)
and v a typical velocity (such as a mainstream velocity). Further, identify
points x with their position vectors x — o from a given origin o, and define
the dimensionless position vector

X
X =-,
!
the dimensionless time
tv
t = '1—,

the dimensionless velocity
o 1
V(X B) = —v(x, 1),
v
and the dimensionless pressure

1
To(X, [) = - To(X, t).

Then

o 1 ot I = [
gradv=—gradv, V=—vVv, grad®,=— gradmn,
v k%4 v

[where grad ¥(X, ) = V:¥(X, i), etc.], so that (15) reduces to
V' + (grad v)jv = ﬁlg AV — grad 71y,

‘ 2
divv =0, (20)

where

is a dimensionless quantity called the Reynolds number of the flow.
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Equations (20) show that a solution of the Navier-Stokes equations with
a given Reynolds number can be used to generate solutions which have differ-
ent length and velocity scales, but the same Reynolds number. This fact allows
one to model a given flow situation in the laboratory by adjusting the length
and velocity scales and the viscosity to give an experimentally tractable
problem with the same Reynolds number.

Some typical values for the kinematical viscosity are':

water: v = 1004 x 1072 cm?/sec,

il

air: v =1505 x 1072 cm?/sec.

EXERCISES

1. A Reiner-Rivlin fluid® is defined by the constitutive assumptions of the
Newtonian fluid with the assumption of linearity removed. Use (37.15)
to show that the response of a Reiner—Rivlin fluid is independent of the
observer if and only if the constitutive equation has the form

= —al + 4o(Fp)D + «,(Fp)D?

with ao(#p) and a,(Fp) scalar functions of the list %, = (0, 1,(D), 1,(D))
of principal invariants of D.

2. Consider a Newtonian fluid in a fixed, bounded region # of space and
assume that

v=10 on 0A
for all time.

(a) Show that the rate at which the fluid dissipates energy, i.e.,
2 [ ioRay,
a
can be written in the alternative forms
2;1[ |W|2aV, uf [curl v|2 2V,
@ ®
indicating that all-of the energy dissipation is due to spin.

' At20°C and atmospheric pressure. Cf., e.g., Bird, Stewart, and Lightfoot [1, p. 8).
? There are better models of non-Newtonian fluids (cf. Truesdell and Noll {1, Chapter E}
and Coleman, Markovitz, and Noll [1]).
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(b) The surface force exerted on 92 by the fluid is given by the simple
expression

s =n7xn~ 2uWn = 7n + un x curl v,

where n is the outward unit normal to 4. Establish this relation
for a plane portion of the boundary.

23. SOME SIMPLE SOLUTIONS FOR PLANE
STEADY FLOW

For steady flow in the absence of body forces the Navier-Stokes equations
(22.14) reduce to

polgrad v)v = u Av — grad 7,

. 1
divy =0,
Consider the plane velocity field
W(x) = vy(xy, x;)e;. @
Then (1), implies that
o
ox,

so that v; = v,(x,) and v is a simple shear (see Fig. 1). Further, the matrix of
grad vis

il
dx,
fgrad v] = o o ol 3
0 0 0
od
divy =0, (grad v)v = 0.
I'herefore (1) reduces to
#6201_ on 811:2:0’ @)

oxi ox,  0x, 0x;

and n = n(x,).
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o)

Figure 1

We now consider two specific problems consistent with the above flow.

' Problem I (Flow between two plates). Consider the flow between two
infinite flat plates, one at x, = 0 and one at x, = h, with the bottom plate
held stationary and the top plate moving in the x, direction with velocity »
(Fig. 2). Then the boundary conditions are

@ =0 o) =" %)

We assume in addition that there is no pressure drop in the x,-direction, so
that

7 = const.
Then (4), yields

vy = a+ fix,,

and this relation satisfies the boundary conditions (5) if and onlyifo = 0 and
B = v/h. Thus the solution of our problem is

v = vx,/h 6)
In view of (22.13), (3), and (6), the stress T is the constant field
1 00 010
[T]=-zl0 1 0 +% 10 of;

001 "Jooo
i >
7 TIA777 777777777,

Figure 2
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that is,
Ty =T =Ty = —mn,
. e
Ty =T, e

Thus the force per unit area exerted by the fluid on the top plate has a n.orgufll
component 7 and a tangential (shearing) componcnt ' —pwfh. This fac
furnishes a method of determining the viscosity of the fluid.

Problem 2 (Flow between two fixed plates under a pressure gradient).
Again we consider the above configuration, but now we .h.old the two plates
fixed in space (Fig. 3). Then the relevant boundary conditions are

0,(0) = v,(h) = 0. )

If the pressure were constant, then the solution of the first prc?blem “‘;ould.
tell us that the velocity is identically zero. We therefore allow a pressure drop;
in particular, since v = v(x,), (4), implies that

KL

Ox
with J (the pressure drop per unit length) constant. For this case (4), has the
solution

dx}
= — == + Bx,,
v, 7 + a4+ fix,
which satisfies (TYifand only if « = 0 and 8 = dh/2.. Thus
dx,
| vy = '5; (h - x,)

and tﬁe velocity distribution is parabolic. Further, we conclude from (22.13)
that the nonzero components of the stress are

T, =T =T =-mn

h
N,=T, = 5(5 - xz>~

ani ter.
Thus the shearing stress is a maximum at the walls and vanishes at the cen

b Figure 3

T R opanpep—
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The volume discharge Q per unit time through
deep is obtained by integrating 0,(x3) from x,

Q = ns/12.

Since the discharge Q is casily measurcd
formula yields a convenient method of det

a cross section one unit
= 010 x; = Ii; the result is

» @8 is the pressure drop ¢, this
crmining the viscosity.

EXERcCisEs

. Consider the flow of a Reiner-Rivlin fluid (cf. Exercise 1 of Section 22)

between two flat plates. Show that the linear velocity profile (2), (6)
remains a solution of the underlying equations with 7y constant, Show
further that, in contrast to the linear theory, the normal stresses are no
longer equal.
2. Consider the plane, steady flow of a Newtonian fluid of depth 1 down a

flat surface inclined at an angle « to the horizontal (Fig. 4). Thus the fluid
flows under the influence of the gravitational force

b = pogle, sina — €, Cos «),
and the boundary conditions are
v=0 at x, =0, Te, = —Ce, w Xy = h,

where C is the (constant) atmospheric pressure. Assume that the flow
has the form (2). Determine the velocity and stress fields in the fluid,

Figure 4

24. UNIQUENESS AND STABILITY

In this section we establish theorems of uniqueness and stability for the
Navier-Stokes equations. Aside from their intrinsic interest, the proofs of
these theorems utilize techniques which are important in their own right.

S e e P
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The classical viscous flow problem for the Navier-Stokes equations can
be posed as follows:

Given: a bounded regular region £, a kinematic viscosity v > 0, a body
force ficld b on # x [0, oo), an initial velocity distribution v, on 4, and a

boundary velocity distribution ¥ on 32 x [0, c0).
Find: a class C? velocity ficld v and a smooth pressurc ficld n on

R x [0, w) that satisfy the Navier-Stokes equations
v + (grad v)y = vAv — grad n + b,
0,

M

divy

the initial condition
v(x, 0) = vy(x)
for every x € &, and the boundary condition
V=1V on 0Z x [0, o).

A pair (v, n) with these properties will be called a solution. (Here, for con-
vznience, we have written  and b for what we earlier called ng and bg.)

Uniqueness Theorem. Let (v, n,) and (v,, n;) be solutions of the (same)
viscous flow problem. Then

Vi =V, my =T+
with o spatially constant:

grad a = 0.

The proof of this theorem is based on the following

Lemma. Let w be a smooth vector field on A, let 8 be a smooth scalar field
on R, and assume that

divw =0

and that at each point of 0 either w = O or f = 0. Then

Jw-gradﬁdV:O.
*

Proof. The proof follows from the identity
div(fw) = Bdivw + w- grad f3,

the divergence theorem, and the hypotheses. [
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Proof of Theorem. Let
u=v, —v,, & =1y — m,.
Then, since (v,, n,) and (v2. m,) are solutions,
u(x, 0) = 0, u=10 on 42 x [0, ), diva = 0. 2)

Furlher,- subtracting (1), withv = Vo, m=my from (1), withv =v,, n = =«
we obtain the relation )

u’ + (grad v,)v, — (grad v,)v, = v Au — grad a,
and, since
(grad vy)v, = (grad w)v, + (grad Vo)V,
we have
u’ -+ (grad u)v, + (grad v,)u = v Au — grad o. 3)
If we take the inner product of (3) with u, and use the identities
u - Au = div[(grad u)™u] — |grad u/?,
2
u - (grad v, = v, - (grad w'u = v, -8”“’(“?), @
u - (grad v)u = u + Dy,
where
D = j(grad v, + grad v}),
we conclude that
2

2y + v, -grad(z) + u- Du = vdiv[(grad w)™u] — vigrad u)?

—u-grad o

If we integrate this relation over 2, use the lemma twice (first with w = v,

B =u?2, thgn withw = u, 8 = «), and appeal to the divergence theorem, we
conclude, with the aid of (2), that ,

1d

5 luf? + L'u -DudV <0, (5

where

Jul() = f wi(x, 1) dV,.
R




o e,

162 VIII. NEWTONIAN FLUIDS. NAVIER-STOKES EQUATIONS

Since div v = 0, tr D = 0; thus the lowest proper value of the symmetric
tensor D(x, 1) is <0. Let —y(x, t) denote this proper value, so that y > 0 and

u-Du> —yul
Now choose © > 0 and let

A =2 sup y(x,1).
Oxselgs!t

(Since v, is smooth, D is continuous and 0 < 4 < oo.) Thus
A 2
u-DuZ—Eu on # x [0,1]

and (5) becomes

5}"“"2 ~ Auj?<0 on [0, 1]
i

Therefore

2 (it} <0 on [0,¢],

and hence
Tull2(z) < fufl*(0)e*.

But by (2),,

la}*(0) = 0;
thus ||uf2(z) = 0 and

u(x,7) =0
for every x € &. Since © was arbitrarily chosen, u = 0 and v, = y,. Finally,
(3) implies that grada = 0. [0
Stability Theorem. Consider the viscous flow problem with vanishing bound-
ary data and conservative body forces:
v=20 on 04 x [0, o),
b= —grad .

Let (v, n) be the solution (if it exists) of this problem. Then there exists a
constant A > 0 such that

6

Ivi ey < fvolle™ )
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Proof.  In view of (6), (v, ) satisfies the system
v + (grad v)v = v Av — grad o,
divy =0,
(8)
v=20 on 9% x [0, co),
(%, 0) = v,(x),

where « = n + f. If we take the inner product of (8), with v and use the
identities (4), ,, we arrive at the relation

<3V + v grad(x + 4v?) = v div{(grad v)"v} — v|grad v{%.

If we integrate this relation over A, we conclude, with the aid of the divergence
theorem, (8)2,3, and the lemma, that

\

d, .2
— { 2 —
T i + 2vligrad v 0,

where
llgrad v||2 = f lgrad v? 4V,
X

By the Poincaré inequality (Exercise 1) there exists a constant Ag > O such
that

llgrad vii2 = 2,liv)2.
Thus

d 2

— 220v)I2 < 0,

i Ivli® + 24(v)* <
where A = vl,, and hence

£ 1) <o,
which integrates to give
IvI2(e) < Ivll*(@e 2,
or equivalently, :
VI < fvli0)e™*.
In view of (8),, this inequality clearly implies (7). [J

Remark. It should be emphasized that the preceding two theorems
require that the solution be smooth for all time and therefore may be mis-

leading, since there is no global regularity theorem for the Navier-Stokes
equations.’

' Cf. Ladyzhenskaya [1, §6]; Temam {1, Chapter 11].

e
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EXERCISES

1. Supply the details of the following proof of the Poinqaré ix}equa]ily. Let
p be a smooth scalar field on & with ¢ = 0 on 4. Since f% is bounded,
¢ can be extended to a box 2 (with sides parallel to coordm.mc planes)
by defining ¢ = 0 on 2 — Z. Supposc that for x € &, x, varies between
o and f. Define ¢, = d¢/dx,. Then

P =2 f (8, X3, x3)91 (& X2 x3) dE,

«

and hence

f v =2 | f O(E. X3 X3)p1(E X3 x3) dE AV,
KX @ Ja

B 1/2
<2 (f f G¥(E x50 x3) dE de>
D Ja
B 1/2
2 L] 3 )1Cdl/x)
X (J;J;(PL(C X2 X3) ¢
1/2 1/2
—_ 24v ad ¢]? IV) s
< 2p a)(Lm( ) (ngn ol

which implies the Poincaré inequality

J @2dV < 4 — a)? J |grad ¢|? dV.
X k4

Show that this implies an analogous result for a smooth vector ficld v
on # with v = 0 on 04.

2. Establish (4).
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CHAPTER

IX

Finite Elasticity

25. ELASTIC BODIES

In classical mechanics the force on an elastic spring depends only on the
change in length of the spring; this force is independent of the past history of
the length as well as the raté at which the length is changing with time. For a
body the deformation gradient F measures local distance changes, and it
therefore secms natural to define an elastic body as onc whose constitutive
equation gives the stress T(x, 1) af x = x(p, t) when the deformation gradicnt
F(p, 1) is known:

T(x, 1) = T(F(p, 1), p). )

Formally, then, an elastic body is a material body whose constitutive class @
is defined by a smooth response function

T:Lin* x 2 > Sym

as follows: % is the set of all dys:-.iical processes (x, T) consistent with (1).

Note that for an elastic body .- \".ction T is vo: inferiy determined by
the response of the material to time-independent homogeneous motions of
the form

x(p, 1) = q + F(p — py); (2)
that is, to homogeneous deformations.
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166 IX. FINITE ELASTICITY

When convenient, and when there is no danger of confusion, we will write
T(F) in place of T(F, p).

Propesition. A necessary and sufficient condition that the response of an
elastic body be independent of the observer is that the response function T
satisfy
! ~
QT(F)Q" = T(QF) 3
Jor every F e Lin* and every Q € Orth*.

Proof. Choose F e Lin* arbitrarily, let x be the motion (2), and let T
be defined by (1), so that (x, T) € %, the constitutive ciass of the body. Assume
that the response is independent of the observer. Then every (x*, T*) related
to (x, T) by a change in observer must also belong to %. By (20.4) and (21.1),
this can happen only if, given any rotation Q,

QTQ" = T(QF).

Since T = T(F), this clearly implies (3). Conversely, if (3) is satisfied, then,
in view of (20.4) and (21.1), the response is independent of the observer. [J

We assume henceforth that the response is independent of the observer, so
that (3) holds.

The importance of the strain tensors U and C is brought out by the next
result, which gives alternative forms for the constitutive equation (1).

Corollary (Reduced constitutive equations). The response Sunction T is
completely determined by its restriction to Psym; in fact,

T(F) = RT(U)RT 4

Jor every F e Lin™, where R € Orth™ is the rotation tensor and U € Psym the
right stretch tensor corresponding to F; that is, F = RU is the right polar
decomposition of F. Further, there exist smooth response Junctions T, T, and T
Jrom Psym into Sym such that

T(F) = FI(U)FT,
T(F) = RT(C)R", 5
T(F) = FT(OF",

with C = U? = F'F the right Cauchy—Green strain tensor corresponding to F.

Proof.  To derive (4) we simply choose Q in (3) equal to RT. Next, since
F = RU, (4) can be written in the form

T(F) = FUT'T(U)UIFT.

t
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Thus if we define
T = u-tuyu-, (6)
we are led to (5),. On the other hand, if we let
T(©) = T(c'),
. T©) = Fcy, @

for.C € Psym, then (4) and (5), imply (5)2, 5. Finally, by (6), T is smooth,
whlle @) and the smoothness of the squareroot (page 23) yield the smoothness
of TandT. [J

The converse is also true: each of the constitutive equations in (4) and (5)
is independent of the observer. We leave the proof of this assertion as an
exercise,

It is important to hote that the response functions 'i‘, T,and T depend also
on the material point p under consideration,

Suppose that we rotate a specimen of material and then perform an
experiment upon it. If the outcome is the same as if the specimen had not been
rotated, then the rotation is called a symmetry transformation. To fix ideas
consider the two-dimensional.examplc shown in Fig. 1; there an elastic ring
is connected by identical mutually perpendicular elastic springs which mect
at the center of the ring, The forces required to produce any given deformation
arc the same for any prerotation of the ring by a multiple of 90°, so that such
rotations are symmetry transformations. Moreover, they are the only sym-
metry transformations, since any other prerotation can be detected by some
subscquent deformation. We now apply these ideas to the general elastic
body .

Choose a point p of 2 and let fr denote the homogeneous deformation
from p with deformation gradient F:

f@=p+Fq-p
for every q € 8. Consider two experiments:

(1) Deform % with the homogeneous deformation fi.

(2) Rotate # with the rotation fo (Q € Orth*) about p and then deform
the rotated body with the homogeneous deformation fr (Fig. 2). In this case
the total deformation is fy o fp and the deformation gradient is FQ.

Figure 1
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Figure 2

The stress at p is
T(F, p) in Experiment 1
and -
T(FQ, p) in Experiment 2.

If for Q fixed these two stress tensors coincide for each F, then Q is called a
symmetry transformation; Q has the property that the response of the
material at p is the same before and after the rotation fy. Thus, more suc-
cinctly, a symmetry transformation at p is a tensor Q € Orth™* such that

T(F, p) = T(FQ, p) ®)
for every F € Lin™. We write ¢, for the set of all symmetry transformations
at p and call %, the symmetry group at p. The next proposition shows that
this terminology is consistent.

Proposition. ¥, is a subgroup of Orth™.

Proof. Let us agree to write

¥ inplaceof %,

whenever there is no danger of confusion. [Recall our previous agreement to
write T(F) for T(F, p).] Clearly, ¢ is a subset of Orth* and I € 4. To show
that ¢ is a subgroup of Orth* it therefore suffices to show that ¢ is closed
under both inversion and multiplication:

Qed=0Q 'ey,
QHe9=QHe¥%.
Choose Q € 4 and F e Lin* arbitrarily. Then (8) with F replaced by FQ™!

. yelds

TFQ™Y) = T(FQ™1H)Q) = T(F)

o

e
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so that Q™! € 4. Next, choose F e Lin* and Q,H e ¥%. Then

TEY) = T - TFQIH) -- TFOH)
sothat QHe %, [J

Our next result shows t.hat (3) (which expresses invariance under observer
changes) and (8) together imply the invariance of T under @ (cf. Section 37).

o N = K ~
Proposition. The response Sunctions T, T, T, and T are invariant under @.
Thus, in particular,

QT(FQT = T(QFQM),
QT(O)Q" = T(QCQM),

JoreveryQe%, Felin*,and Ce Psym.

®

Progf. Choose Q € 9. Ther QT ¢ % and (8) implies

T(QF) = T(QFQM).

We therefore conclude, with the aid of (3), that (9), holds.

To prove (9), choose C Psym arbitrarily and let U be the unique square
root of C;

C=u2

By (6) and (7),,

T(C) = U 'T(uyu-.

Thus, since

(QUQ™? = QU?Q™ = QCQT,
(QUQN™!' = QU~1QT,
we conclude from (9), that
QT(C)Q" = QU™'QTQTW)QTQU QT ;
= (QUQT)™'T(QUQQUQ™ ! = T(QUQ™?) = KQCQM),

We leave as an exercise the proof of the assertions concerning Tand T. O

We say that the material at p is isotropic if

. 9, =0Orth*

(so that every rotation is a symmetry transformation), anisetropic if

%, # Orth™.




170 1X. FINITE ELASTICITY

This definition, the last proposition, and the proposition on page 230 imply
the following

Proposition. Assume that the material at p is isotropic. Then each of the
response fimetions T, "i‘, T, and T (at p) is an isotropic function.

The stress
Ty = T

is called the residual stress at p; Ty is the stress at p when the body is unde-
formed. Since C = U = R = I when F = I, (5) implies that

Te = T = T@) = TQ). (10)
Proposition. If the material at p is isotropic, then Ty is a pressure.
Proof. Let Q e Orth. Then, since T is isotropic,
QT:Q" = QTMQ™ = TQIQ") = T() = Ty,
or, equivalently, QT = Tz Q, so that Tz commutes with every orthogonal

tensor. We therefore conclude from the corollary on page 13 that Ty = —unl
with = a scalar. [

By (6.7) the right and left stretch tensors U and V and the right and left
Cauchy-Green strain tensors C and B are related by

V = RUR", B = RCRT,
where R € Orth* is the corresponding rotation tensor. Therefore when the
material is isotropic, (4), (5),, and the proposition containing (9) yield

T(F) = RT(U)RT = T(RUR") = T(V),
T(F) = RT(C)RT = T(RCR") = T(B),
and thus the constitutive relation T = T(F) can be written in the alternative
forms
T = T(V),
T =1(B),
with T and T isotropic functions. In view of (37.21), these comments have the
following consequence:

an

Theorem (Constitutive equation for an isotropic material). Assume that
the material at p is isotropic. Then the constitutive relation can be written in
the form

T = Bo(£) + B1(Fe)B + B,(S)B7, (12)

where B = FF7 is the left Cauchy-Green strain tensor and B, B, and 8, are
scalar functions of the list #y of principal invariants of B.

el e o, —
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Fur.ther, as is clear. from. (11) and (37.15), the constitutive equation 12)
for an isotropic material point can also be expressed in the forms

T = oo(SR) + a,(Fp)B + (.5 5)B?,
T = xo(FVI + Ki(FY)V + w,( SV,
T = 3o(FV) + 8 (Fy)V + 5,(5,)V?,

where V = B2 is the left stretch tensor.

W.e now return tg the general theory and list the complete system of field
equations; this consists of the constitutive equation

T = FI(OFT, |

i

C=FF,. : (13)

the equation of motion kt
divT +b=pi, | (14)

and balance of mass :
pdetF =p,, i (15)

.where Po is the density in the reference configuration. When the body is
1sotropic (13) may be replaced by

T = Bo(L)l + S(Ip)B + f5(Fg)B™ !,

B = FFT,
. We say that the body.is homogeneous provided both py(p) and T(F, p) are
independent of the material point p. In this case each of the response functions,
as well as the symmetry group %, is independent of p.

Consider the homogeneous deformation (2). For a homogeneous body

the corresponding stress T = T(F) is constant, because F is constant.
Therefore T satisfies the equation of equilibrium

divT =0

and (x, T) is a solution of (13)-(15) with b = 0. Thus q homogeneous body
can be deformed homogeneously without bod y force.

EXERCISES

1. Show that each of the constitutive equations in (5) is independent of the
observer. ’

2. Show that the response functions T and T are invariant under %.

SE
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Show that an elastic fluid is an isotropic elastic body.

Define the extended symmetry group 3, to be the set of all tensors
H € Lin™ such that

T(F, p) = T(FH, p) (16)
forall Fe Lin*.

(a) Show that #, is a subgroup of Lin*.
(b) Give a physical interpretation of 5.
(c) Let Unim denote the proper unimodular group; that is,

Unim = {He Lin*|det H = 1}.

Show that if #, is not contained in Unim, then there exist sequences
{F,} and {G,} with F,, G, € Lin* such that

(i) det F, — oo but T(F,, p) is the same for all n;
(ii) det G, — 0 but T(G,, p) is the same for all n.

Why is this physically unreasonable?

For the remainder of this section we assume that

#, < Unim. an
(d) Show that an elastic fluid has '
', = Unim 18)

for every pe 8.

() Show that, conversely, an elastic body whose response function
obeys (18) is an elastic fluid. [For bodies exhibiting more general
types of behavior, such as viscoelasticity, the condition (18) furnishes
a useful definition of a fluid.]

It is often convenient to use a deformed configuration as reference (see
Fig. 3). With this in mind, let g be a deformation of 4, let f be a deforma-
tion of g(%), and let

G = Vg(p),
Then (under f - g) the material point p experiences the stress
T = T(V(f - 2)(p), p) = T(FG, p).
Let Tg be defined by

4

F=Vi(g, q=zgp).

T(F, p) = T(FG, p)

. 5 e N i B
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Figure 3

for every Fe Lin'; T‘,(-, p) is the respense function for p when the de-
formed configuration (under the deformation g) is used as reference.

(a) Show that G € Unim belongs to syifand onlyif,foreveryFe Lin*,
T,(F, p) = T(F, p)

for every deformation g of & with Velp) = G.
(b) Define Ho(g) to be the extended symmetry group taking g as
reference; that is, Hy(g) is the set of all H e Lin* such that

T.(F,p) = T.(FH, p) (19
for all F e Lin*. Show that
Ho(®) =G, G, (20)

where G = Vg(p). (Here Go#,G ™! is the set of all tensors of the
form GHG™',He i#,.)
(c) Show that

;#p(g) < Unim.
Show further that if

Hp(g) = Unim 21
for some deformation g, then (21) holds for every deformation g

il

-
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' (d) A material is a solid if there exists a configuration from which any _ Two important examples of (23) are the Mooney-Rivlin material for
change in shape (i.e., any nonrigid deformation) is detectable by : which
some subsequent experiment. More preciscly, the material at p is
solid if there cxists a deformation g such that T=—nl+ ;B4 8"
#,(g) = Orth*, i with 8, and f8, constants, and the neo-Hookean material for which

; in which case g is undistorting at p. Assume that p is solid and that T=—nl+foB

4 the identity map on £ is undistorting at p (so that #°, < Orth™). with B, constant.
: : Let g be any other deformation which is undistorting at p. Show that

s £ Ho(@) = RA,R, 26. SIMPLE SHEAR OF A HOMOGENEOUS AND

15 ISOTROPIC ELASTIC BODY
L where R is the rotation in the polar decomposition of G = Vg(p).

Show further that if, in addition, the material at p is isotropic, then . )
Let 2 be a homogeneous, isotropic body in the shape of a cube, Consider

Hlg) = (= Orth*), the deformation x = x(p) defined (in cartesian components) by
§
and G is a similarity transformation: Xy = py + VP2
G =2Q | X3 = P2,
|
with A > 0 and Q € Orth*. X3 = p3,
6.  Anincompressible elastic body is an incompressible material body defined where
by a constitutive cquation of the form y=tan0
T = —nl + T(F), 22) X is the shear.ing strain (Fig. 4). Since this deformation is homogeneous, the
or, more prccise[y, for x = x(p, [)’ i cor?espondl’ng SU'?SS T is constant. Thus (X, T) represents a solution of the
basic equations with body force b = 0. (Cf. the discussion given at the end
T(x, ) = ~n(p, I + T(F(p, 1), p) i of the last section.) The matrix corresponding to the deformation gradient
with ' F is given by
T: Unim x # — Sym J ! 0
(Fl]=]0 1 0 ,
smooth. (As in the case of an incompressible fluid the pressure = is not » 0 0 1 i
uniquely determined by the motion.) For such a body: b
(a) Determine necessary and sufficient conditions that the response be , :
independent of the observer. i !
(b) Define the notions of material symmetry and isotropy. ;
{c) Show that in the case of isotropy the constitutive equation can be : —X .
written in the form €, 2 & () O
SERE T = —nl + o(Fe)B + f,(Fg)B ! (23) 0 a
| {
with £y = (1,(B), 1,(B), 1). [The quantities = appearing in (22) and ° € o :
: (23) are not necessarily the same.] Figure 4 :
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and the matrix for the left Cauchy-Green strain tensor B = FFT s : Thus for the normal stresses to vanish both B, and 8, would have to be zero,
and this, in turn, would imply that 4 = 0. Thus if
A [1+9* v 0
Gl (B] = y 1 ol Hy) #£0  for y£0, C))
IER 0 01 which is a reasonable assumption, then it is impossible to produce a simple
A simple caleulation shows that ‘ shear by applying shear stresses alone. Further (2)-(4) imply that, for y # 0,
T ‘ 5 N r
. MR 1 -y 0 T # Tz,
‘ . -1 | 2 L. . .
G (B]' = vob4y (1) » which is the Poynting effect. In fact, (1)-(3) yield the important result
e 0 0
11 ) Ty — Ty =yT,,.
v det(B — wl) = ~w® + 3 + y)o? — 3 + 2w + 1, 11~ fa2 =71y,
: i and hence the list of principal invariants of B is This relation is independent of the material properties of the body:; it is

satisficd by every isotropic elastic body in simple shear,
fg=(3+}’2>3+)’2»1)-

We therefore conclude from (25.12) that

T = BN + B,(y*)B + B,(»*)B™",
: 1 1. Show that the components of the unit normals on the slanted faces of the
or, equivalently, ! .
: : deformed cube are given by

EXERCISES

Ty Ty T 100 (1'*'7’2 v 0 2y-1/2
Ly Ty Toaf=B0M[0 1 0f+ 8,67 b4 1 0 ng=+(1+ 9%
Ty Ty, Ty 0 0 1 | 0 0t ny = Fy(l + 92”12,
1 -y 0 : ny =0,
i Hl—y t+9y* of ‘
] + A7) Oy -:) Y X and use this fact to show that
Hence T;; = T,; = Oand | At ar Tiz
s EaE PP [ +y?
Toafy = u(y?), ) .
represent, respectively, normal and tangential components of the surface
; where | : force Tn on these faces.
s . HO™) = B1(7) = B @ ? 2. Consider the uniform extension defined by
is the generalized shear modulus. The result (1) asserts that the shear stress ; = 1p
Ty, is an odd function of the shear strain 7. : 1 1

In linear elasticity theory (cf. page 202) the normal stresses Ti1, T;,, and : X3 = wp,,
T35 in simple shear are zero. Here X3 = wp;.
T =9p + 1, ) Show that the corresponding stress T is a pure tension in the direction
T22 — ,yZﬁz + 1, € 1.e,

Ty = 1= 10 = fo + B, + B;. | T=o(e, ®e,),
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if and only if
o= fo + f,1* + 4773,
0=y + piw? + frm™2,

where the scalar functions 8, §,, and f, are cach functions of 12 and o?
(through the invariants #£).

27. THE PIOLA-KIRCHHOFF STRESS

The Cauchy stress T measures the contact force per unit area in the
deformed configuration. In many problems of interest—especially those
involving solids—it is not convenient to work with T, since the deformed
configuration is not known in advance. For this reason we introduce a stress
tensor which gives the force measured per unit area in the reference con-
figuration.

Let (x, T) be a dynamical process. Then given a part 2, we can use (6.18),
to write the total surface force on & at time ¢ (see Fig. 5) as an integral over
02; the result is

TmdA = f (det )T, F~"n d4,
P, il

where m and n, respectively, are the outward unit normal fields on 02, and
02, while T, is the material descrjpti hus if we let

S = (det F)T_F~T,

then

f TmdA = Sn dA.
o7,

P

We call the field
S: %2 x R— Lin

defined by (1) the Piola-Kirchhoff stress.! By (2), Sn is the surface force
measured per unit area in the reference configuration.
Similarly, if b is the body force corresponding to (x, T), then

f de=me(detF)dV=fbodK
P 2 P

! In the literature S is often referred to as the first Piola-Kirchhoff stress.
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T(x, Nm(x)

S(p, Nn(p)

L

Figure 5

where

_}jmb = (det iﬂ @

We call b, the reference body force; b, gives the body force measured per unit
volume in the reference configuration.

Proposition. The Piola~Kirchhoff stress 8 satisfies the balance equations

SndA + f by dV = f Xpy dV,
o I ki
&)
f (x — 0) X SndA + f(x - 0) x bodV=f(x — 0) X XpodV
ag -4 k4
Jor every part 2.
Proof. By (12.7),

f vodV = f Xpo dV.
2, 2

This relation, (2), and (3), when combined with balance of linear momentum

(14.2),, imply (5),. Similarly, (6.18);, (12.7), (14.2),, and an analogous argu-
ment yields (5),. O

Proposition. S satisfies the field equations
— -
DivS + by = po¥%,
SFT = FS. \
Proof. By (5), and the divergence theorem,

L(Divs + by — poR)dV =0,
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and, since this relation must be satisfied for every part 2, (6), must hold.
Further, (1) implies

T, = (det F)~ISF,
and (6), follows from the symmetry of T. O

It is important to note that, by (6),, S generally is not symmetric.
Next, by the symmetry of T, (a) of the proposition on page 6, (8.8),, and
(1.5),,

T-D=T-L=T-(F,F )= (TF,;7)-F,,

and therefore
f T-DdV = f (det FY(T, F N -Fav = f S-Fdv,
L 4 K d
Thus the stress power of 2 at time ¢ is given by
f S-Fav,
4

Also, (1), (4), (6.18), and (6.14), imply

' Tm°vdA=f(Tv)-mdA:fSn-fulA,
a9

o2,

f b-vdV=fb0-x,/V,
P @

0P,

M

while (12.7) yields

V2 )~(2
—pdV:f = podV.
L 2 20

We therefore have the following alternative version of (15.2).

Theorem of Power Expended. Given any part 2,

e —
f Sn-idA+fbo-de=fs-FdV+—f 2 pedV. |®)
0P e 4. L drJ, 2 .

The results established thus far are consequences of balance of momentum
and are independent of the particular constitution of the body.

Assume now that the body is elastic, so that by (1) and (25.1), S is given by
a cor.stitutive equation of the form

S = §(F) ©)
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with
S(F) = (det FYT(F)F~ . (10)

(As before, we do not mention the cexplicit dependence of 8 on the material
point p.) Choose Q € Orth*. Then

det(QF) = det F,
so that (25.3) and (10) imply
S(QF) = det(QFT(QF)QF)™™ = (det F)QT(F)Q"QF T = QS(F).
Thus

(QF)™"T = QF T,

SQF) = Q8(F) (an

for every F e Lin™ and Q e Orth*. This relation expresses the requirement
that the response be independent of the observer; it can be used to deduce
constitutive equations for S analogous to (25.5). 1t is easier, however, to
proceed directly from (25.5),. Indeed, (25.5)3, (9), and (10) imply that

S = (det F)FT(C), (12)
and if we define
5(C) = \/det CT(C), 13)

then, since

det C = det(F'F) = (dct F)?,

z S = F§(<ﬂ (14)

We leave it as an exercise to show that this constitutive equation is indepen-
dent of the observer. ‘
_ Notethat, by (13) and the smoothness of T (cf. the corollary on page 166),
S is a smooth mapping of Psym into Sym.

In view of (6), and (14), we can rewrite the basic system of field equations
(25.13)-(25.15) in the form )

(12) reduces to

S = F5(C),
C =FTF, F=Vx (15)
DivS + by = poX.

The relation (6), follows automatically from the fact that § has symmetric
values. Also, since the density enters (15) only through its reference value p,,
which is assumed known a priori, balance of mass (25.15) need not be included
in the list of field equations.
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All of the fields in (15) have # x R as their domain, and the operator
Div is with respect to the material point p in 4. In contrast, some of the fields
in (25.13)-(25.15) are defined on the trajectory .77, and, more importantly,
the operator div is with respect to the place x in the current configuration,
For this reason the formulation (15) is more convenient than (25.13)-(25.15)
in problems for which the trajectory is not known in advance.

The boundary-value problems of finite elasticity are obtained by adjoining
to (15) suitable initial and boundary conditions. As initial conditions one
usually specifies the initial motion and velocity:

x(p, 0) = vo(p) (16)

with x4 and v, prescribed functions on #. To specify the boundary conditions
one considers complementary regular! subsets &, and %, of 4 (so that

x(p, 0) = xo(p),

B=SUF;, PinS =0,
where §,, is the relative interior of &,) and then prescribes the motion on
&1, the surface traction on &,

X = X on &, x [0, ), Sn=3§ on %, x [0, c0) a7

with & and § prescribed vector fields on &, x [0, o) and &, x [0, ),
respectively.

Another form of boundary condition arises when one specifies the surface
traction Tm on the deformed surface x(,, t). A simple example of this type
of condition arises when one considers the effects of a uniform pressure 7.
Here

T(x, Hm(x) = —n,m(x)

for all x e x(&,, t) and all ¢ > 0. We can also write this condition as a
restriction on the Piola-Kirchhoff stress S; the result is (cf. Exercise 6)

Sn = —7n4(det F)F~Tn on %, x [0, o). (18)
Clearly, this is not a special case of (17) because ¥(p, 1) is not known in
advance. We can, of course, generalize (17) to include this case by allowing §
to be a function §(F, p, 1) of F, p, and 1, rather than a function of pand t only.
[Actually, one can show that the combination (det F)F~Tn depends only on
the tangential gradient of x on &, .]

' Cf. Kellogg [1]; Gurtin [1, p. 14}. Roughly speaking, each' &, is a relatively closed,
piecewise smooth surface with boundary a piecewise smooth closed curve.
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—

In tl.me\ tatical Yheory all of the fields are independent of time and the
underlying boondary-value problem consists in finding a deformation f that
satisfies the field equations

S = F5(0),
C = FTF, F = Vf, (19)
DivS + by = 0,
and the boundary conditions
f=f on &, Sn=8% on &, (20)

with f and § prescribed functions on % and &,, respectively.

When tractions are prescribed over the entire boundary, that is, when
(20) has the form
Sn=3§ on 04, @n

(5), implies that

f gdA+fbodV=o.
R 2

This relation involves only the data and furnishes a necessary condition for
the existence of a solution. On the other hand, (5), yiclds

f (f—o)x§dA+f(f—o)xbodV=0,
23 X

and, because of the presence of the deformation f, is not a restriction on the
data, but rather a compatibility condition which will automatically be
satisfied by any solution of the boundary-value problem (19), (21). This
difference between force and moment balance is illustrated in Fig. 6. As long

T

Figure 6
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as the forces acting on & obey balance of forces, we expect a solution, even
though moments are not balanced in the reference configuration; the body
will simply deform to insure balance of moments in the deformed configura-
tion.

ExEercisss

. Give the details of the proof of (5),.
2. Show that

> S(FQ) = S(F)Q (22)

for every Q in the symmetry group % and every F € Lin*. Show further
that § and § are invariant under .

3. Use (11) to show that
SQ-Q=0 23)
for any smooth function (of time) Q with values in Orth*.
4. Let # be bounded. Consider a dynamical process and define

1
¢=3 Lu’po dv,
wh ere u(p, t) = x(p, t) — p is the displacement. Show that
@ = f wp,dV — f S-VudV + f u-SndA.
B @ B

5. Show that the constitutive equation (14) is independent of the observer.
Equation (6.18), holds for any sufficiently regular subsurface & of 02:

T()m(x) dd, = L TE@)G(p)a(p) dA,.

1(&)
Use this fact to establish (18).

28. HYPERELASTIC BODIES

Thus far the only general restriction we have placed on constitutive
equations is the requirement that material response be independent of the
. observer. Thermodynamics also serves to constrain constitutive behavior,
and a standard thermodynamic axiom (consistent with a purely mechanical
theory) is the requirement of nonnegative work in closcd processes. We now
study the implications of this axiom for elastic bodies.
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Let (x, T) be a dynamical process, and let b be the corresponding body
force. Then given any part &, the work on 2 during a time interval [1,, t,]
is given by

31
j { Tn-vdA + b'V(IV}(/I,
1 &P, >,

0

or equivalently, in view of (27.7), by

ty
J { Sn-di+fb0-de}d: (1)
to, 0P P

with S the Piola-Kirchhoff stress and b, the reference body force. Let us
agree to call (x, T) closed during [¢,, t,] provided

x(9, t0) = X(p, t,),  X(p, 1) = X(p, t,) )

for all p € 4. If we integrate (27.8) between to and t, and use (2),, we see that
for processes of this type (1) reduces to *

o
f JS“Fdth.

We consider now an elastic body and restrict our aticntion to dynamical
processes belonging to the constitutive class € of the body. For convenience,
we will use the term process as a synonym for “dynamical process in €.” We
say that the work is nonnegative in closed processes if given any part 2 and
any time interval [¢,, t,],

f‘fs-demzo 3)
to V&

in any process which is closed during [¢,, t,].

Proposition. The work is nonnegative in closed processes if and only if given
any p € & and any time interval [t,, t,],

f&mo-nuomzo @

in any process which is closed during [t,, t,].

Proof. Let A(p) denote the left side of (4). Clearly, A(p) = 0 for all p
implies (3). Conversely, assume that (3) holds for every part 2. Then, by
interchanging the integrations in (3), we may conclude that

fAdvzo
4

for every part 2. In view of the localization theorem (5.1), this implies that
Ap) = Oforallp. O )
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Our next step will be to describe the class of elastic materials for which the
work is nonnegative in closed processes. Anticipating the result, we introduce
the following definition: An elastic body is hyperelastic if the Piola-Kirchhoff

. stress S(F, p) is the derivative of a scalar function &(F, p); that is,

S(F, p) = Dé(F, p), ©)
where the derivative is with respect to F holding p fixed. The scalar function
é:Lin* x 2R

is called the strain-energy density. (Note that § determines & only up to an
arbitrary function of p alone.)

For (5) to make sense we must interpret the derivative D¢ as a tensor. By
definition D&(F, p) is a linear mapping of Lin into R, and hence D&(F, p) [A]
can be written as the inner product’ of a tensor K with A. We here identify
Dé(F, p) with K and write

D&(F,p)- A inplace of D&(F, p) [A].

With this interpretation D&(F, p) is a tensor and (5) has meaning. The
components of this tensor are

d
Do(F, p)j = 55~ 8(F, p).
ij

Theorem. An elastic body is hyperelastic if and only if the work is nonnegative
in closed processes. :

Proof.  Assume that & is hyperelastic. Consider a closed process during
[to, t,]. Then

d . .
i 6(F(p, 1), p) = D3(F(p, 1), p) - F(p, 1) = S(F(p, 1), p) - F(p, 1), (6)
and, since
F(p, t,) = F(p, t;)
fef (2,1,

s . 1y d
['se.o-fwoa= [ awe0na

= 6(F(p, 1), p) — 6F(p, 1), p) = 0.

Thus the work is nonnegative (in fact, zero) in closed processes.

Conversely, assume that the work is nonnegative in closed processes.

! The representation theorem for linear forms (page 2) is valid on any finite-dimensional
inner-product space.

28. HYPERELASTIC BODIS 187

Assertion 1. Let F: R — Lin* be a C? function with

F(to) = F(t)),  F(1o) = F(t,). )

Then

f 'é(F) -Fdt=0 )

(Here and in what [ollows we suppress the dependence of S on p.)

Proof. LetF = F(ty,t,)denote the set of all C? functions F: R — Lin™
which satisfy (8). As our first step we observe that given any F e &,

f“s(F) ‘Fdi =0, (10)

fo

for if x is the motion

x(p, £) = po + F()(p — po),

then the corresponding process is closed during [1,, t,] and (4) implies (10).
Choose F € # and let F*: R — Lin™* be defined by

FX(t) = Flto + 1, — 1),

so that F* represents the reversal (in time) of F. Then, by (8),

F*(to) = F(t,) = Ftp) = F*(t)), (1)
and, since
F*(1) = % Flto+t, — 1) = —F(ty + 1, — 1), (12)
it follows that
F*(to) = —F(1)) = —F(t) = F*(t,). (13)

By (11) and (13), F* € & ; thus we may use (10) with F replaced by F* and
(12) as follows:

0< f S(F*) - % dt —f'S(F(zO ity =) Kty + 1, — ) dt

]

- f “S(F(r)) - F(z) d.

This inequality is clearly compatible with (10) only if (9) holds.
Our next step wiil be to show that we can drop condition (8), without
affecting the validity of (9). We do this by applying (9) to a family of functions
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which satisfy both of (8), but whose limit satisfies only (8),. This family is
constructed in

Assertion 2. Let F be a piecewise smootly,! closed curve in Lin™; that
is, Iet F: [0, 1] — Lin* be piccewise smooth and satisfy

F(0) = F(1) = A.

Then there exists a one-parameter family F; (0 < § < §;) of C* functions
F,: R - Lin* such that:

(a) Fy=Aon(—c0, =8]UT[l + 6, 0);

{5} |F,] and | ¥, are bounded on R with bounds independent of §;
(¢, asd — 0, F; — F everywhere on [0, 1], while F; — F at points of
coniiuaty of Fon (0, 1)

Proof.  We use the Friedrichs-Sobolev method of mollifiers to construct
the family F,. For each § > 0 let ps: R— R be a C® function with the
following properties:

B p;20;
(i) pst) = 0 whenever |z} > §;

(ii) f ot dt = 1.

An example of such a family of functions is furnished by

1
-1 tl<d
poty =P ( 52~t2> I

0, It] =8
with i, chosen to insure satisfaction of (iii).
Using p; we define a C* family F, as

Fi) = | " palt = DF() de (14)

for all t € R, where we have extended the domain of F to R by defining
F=A on (—o0,0)u(l, )
By (ii) and (iii), for r < ~§ort > 1 + §,
1+ 6
Fi) = |t - oAde = a,
t—é

and (a) follows.

! Fiscontinuous on [0, 1], while F exists and is continuous at all but a finite number of points
where it suffers, at most, jump discontinuities.
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Next, (14) and an integration by parts using (ii) yield

© i}
f [~(,;—T pa(t — ‘C)]F(‘[) dt

J. ° ps(t — DF(1) dr. (15)

]

F(r) = f ot = DF(e) de

In view of (i) and (iii), we conclude from (14) and (15) that

IR0} < sup IF| [ py(e = 9 dc = sup|F|
fo, 1] -

(o, 11
[Fy(1)| < sup [F|,
[0, 1)
and these bounds yield (b).
Finally, by (14), (i), and (iii),

Fy(t) ~ F() = f pit — DF() di — () jw ot — 1) de

t+4
- j pdt = DIF( ~ FO) d;

hence (i) and (iii) imply that
IFs(t) — F(){ < sup |F(x) — F()|.

te{r—4,t+9)
Similarly, using (15),
Fs0) —F@OI < sup K1) - F@)l,
te(t~35,t+4)

and the last two inequalities imply (c). Moreover, since F is uniformly
continuous on R (F is continuous on R and constant outside a compact
interval), F; — F uniformly on R; thus, since det F > 0, there must exist a
0o > 0 such that det F, > 0 on R for 0 < § < §,. For this range of §, F
can be considered as a mapping of R into Lin*. This completes the proof of
Assertion 2,

Our last step is

Assertion 3. The body is hyperelastic.

Proof. Let F be an arbitrary piecewise smooth, closed curve in Lin*,
and let F; (0 < § < ,) be the family established in Assertion 2. By (a) of
Assertion 2, .

Fé( -1 = Fa(2): Fa( 1) = F,,(Z)
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aslongas é < L. Let §; = min(1, §,). Then for 0 < § < §,, each F; satisfies

the hypotheses of Assertion 1 (witht, = —1and ¢, = 2); hence
2
j @D dt =0, (16)
=1
where
Ps =§(Fa)'Fa- 17

By (a) of Assertion 2 the integral from — [ to ~8and from 1 + §to 2 vanishes;
we can therefore rewrite (16) as

1 o 1+48
j(p,dt-kf (p‘,dt—i-f @sdt = 0. (18)
0 ~-& 1

By (b) and (c¢) of Assertion 2 in conjunction with Lebesgue’s dominated
convergence theorem' (recall that F has at most a finite number of dis-
continuities),

J:(p,;dt - J:S(F) -Fdr.

On the other hand, (b) of Assertion 2 and (17) imply that the remaining
integrals in (18) converge to zero as § — 0. Thus

flS(F)-Fdr =0.
0

What we have shown is that the integral of § over any piecewise smooth,
closed curve in Lin* vanishes. Since Lin* is an open, connected subset of
(the vector space) Lin, a standard theorem? in vector analysis tells us that §
is the derivative of a smooth scalar function & on Lin*. Thus (5) holds and
the proof is complete. [J

Hyperelastic materials have several interesting properties; an example is
the following direct consequence of (7).

Proposition. For a hyperelastic material the work is zero in closed processes.
If we write
o(p, 1) = 8(F(p, 1), 1)
for the values of 4 in a process, then (6) implies
\ g=8-F,

! Cf., e.g., Natanson [1, p. 161].
% Cf., e.g., Nickerson, Spencer, and Steenrod [t, Theorem 8.4}.
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and the theorem of power expended (27.8) has the following important
corollary. :

Theorem (Balance of encrgy for hyperelastic materials).  Each dynamical
process for a hyperelastic body satisfies the eneryy equation

-2
Sn‘*dA+fbo-XdV=ij <a+pox— v
0P P dt Je 2

Jor each part P. Here S is the Piola-Kirchhoff stress, p, is the reference density,
and by is the reference body force (27.4).

The term
f cdV
id

represents the sirain energy of 2. The energy equation asserts that the power
expended on P must equal the rate at which the total energy of P is changing.

As a direct consequence of the above theorem we have the following
important

Corollary (Conservation of energy). Assume that the body is finite and
hyperelastic. Consider a dynamical process Jor the body corresponding to body
Jorce b = 0, and suppose that

Sn-x=0 on 0%

Jor all time. Then the total energy is constant:
X%
f (o + po“> dV = const.
@ 2,

EXERCISES

1. Consider a hyperelastic body. with strain-energy density 6. (For con-
venience, we suppress dependence on the material point p.)

(a) Use (27.23) and (5) to show that
6(Q) = 4(1) (19)
for every Q e Orth™. (Here you may use the connectivity of Orth *
to insure the existence of a smooth curve R: [0, 1] — Orth* with
R(0) = I'and R(1) = Q)
(b) Use (27.11) and (5) to show that
6(QF) = 6(F)
for every Qe Orth* and F e Lin*,
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(c) Use (27.22) and (5) to show that
8(FQ) = 6(F)

for cvery Q in the symmetry group und every F e Lin*,
(d) Show that

é6(F) = 6(U)
and that there exists a function & such that
é(F) = 6(C).

Here U is the right stretch tensor, C the right Cauchy-Green
strain tensor.
(¢) Show that
S =2Dg,
where D6(C) € Sym with components
4 .
3¢, %O

has an interpretation analogous to D&(F).
(f) Assume that the material at p is isotropic. Show that

‘ &C) = 6(B)
with B the left Cauchy-Green strain tensor, and that
6(B) = 6(1,(B), 1,(B), 1;(B))
{ef. (37.4)]. Let
. 0§
%= 3By

Show that the Piola-Kirchhoff and Cauchy stress tensors are given
by

S =2{6,F + &,[(tr B)] — BIF + (det B)5,F~T},
T = 2(det F)~*{(det B)5;1 + [&, + (tr B)3,]B — &,B?},

where we have omitted the arguments of 5,.

Extend the results of this section to incompressible elastic bodies (cf.
Exercise 25.6).

“onsider a Newtonian fluid. Show that the work is nonnegative in closed
processes if and only if the viscosity u is nonnegative.
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4. Consider the statical (time-independent) behavior of a homogeneous

hyperelastic body without body forces. Show that
Div[8(F)1 — F'S] =0

and hence that
[6(F)n — FTSn]dA = 0
o2 .

for every part 2 of . (This result is of importance in fracture mechanics.)

(Principle of stationary potential energy) For a hyperelastic body the
(statical) mixed problem discussed in Section 27 can be stated as follows:
find a C? deformation f such that

’ S =S8(F)=D3F), F=Vf
DivS+b, =0
on # and
f=f on 9, Sn=3§ on %,. 20)

Let us agree to call a C? function f: # ~ & with det Vf > 0 kinematically
admissible if f satisfies the boundary condition (20),. Assume that 4 is
bounded. Define the potential energy ® on the set of kinematically
admissible functions by

¢{f}=f6(Vf)dV—fb0-udV—J §-udd,
2 2 R

where u(p) = f(p) — p. We say that the variation of © is zero at f, and write
oP{f} =90,
if
2 0(f + og)lieg =0
do .

for every g with f + oag in the domain of @ for all sufficiently small «
(that is, for every C? function g: # — ¥" with g = 0 on &,). Show that
SO{f} =0

provided f is a solution of the mixed problem.
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29. THE ELASTICITY TENSOR

The behavior of the constitutive equation

S = §(F)
[cf. (27.9)] near F = 1 is governed by the linear transformation
C:Lin — Lin
defined by I
g C = DS(). ‘E (1

(As before we have suppressed mention of the dependence on the material
point p.) C is called thefelasticity tensor{for the material point p; roughly
speaking, C is the derivitive of the Piola-KirchhofT stress with respect to
F at F = L The importance of this tensor will become apparent in the next
section, where we deduce the linearized theory appropriate to small deforma-
tions from the reference configuration.

For convenience, we assume throughout this section that the residual stress
vanishes:

S@ =T =o0. )

Our first result shows that, because of (2), C could also have been defined
as the derivative of T, the response function for the Cauchy stress.

Proposition
| C = pT(). (3)
Proof. By (27.10),
| S(F)FT = o(F)T(F),

where @(F) = det F. If we differentiate this relation with respect to F, using
the product rule, we find that

S(FH™ + DS(FM[HIFT = o(F) DT(F) [H] + Do(F) [HIT(F)

for every H € Lin. Evaluating this expression at F = I, we conclude, with the
aid of (2), that

DS(I) [H] = DT(1) [H],
which implies (3). O
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Proposition (Properties of the elasticity tensor)

(a) C[H] e Sym for every H € Lin;
(b) C[W] = 0 for every W e Skw.

Proof.  Assertion (a) follows from the relation <
C[H] = 4 TA + aH)|, -,
da

and the fact that T has symmetric values. To prove (b) choose W ¢ Skw and
take

Q) = ™,
so that Q(r) € Orth™ (cf. Section 36). Then (25.3) with F = I and (2) imply

TQE) =0,
and this relation, when differentiated with respect to ¢, yields

DT(Q®) [Q)] = 0.

Since Q(0) = I and Q(0) = W, if we evaluate this expression at + = 0 and
use (3), we are led to (b). [

Let
E=4iH+HT

denote the symmetric part of H e Lin. Then H = E + W, with W skew, and
(b) and the linearity of C imply that

C[H] = C[E]; @)

i

hence C is completely determined by its restriction to Sym.
Our next step is to establish the invariance properties of C.

Proposition.  C is invariant under the symmetry group % for the material at p.

Proof. In view of (25.9),, the last thcorem in Section 37, and (3), for
Helinand Qe %,

QC[H]IQT = QDT(M [H]IQ" = DT(QIQ") [QHQ]
= DT(1) [QHQ"] = C[QHQT],

and C is invariant under 4. [
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Since C has values in Sym [cf. (a) above], this proposition and (37.22)
have the following obvious but important consequence.

Theorem.  Assume that the material at p is isotropic. Then there exist scalars
pand A such that

C[E] = 2uE + Atr E)I (5)

for every symmetric tensor E. The scalars it = u(p) and A = A(p) are called the
Lamé moduli at p.

We say that C is symmetric if
H-C[G] = G- C[H]

for all tensors H and G.

Since C[W] = 0 for all skew W, C can never be positive definite in the
usual sense. There are, however, important situations in which C restricted
to Sym has this property. Thus let us agree to call C positive definite if

E-C[El1> 0
for all symmetric tensors E # 0.

Proposition.  Assume that the material at p is isotropic. Then C is symmetric.

Moreover, C is positive definite if and only if the Lamé moduli obey the in-
equalities:

p>0, 2u+31>0 (6)

Proof. Let Hand G be tensors with symmetric parts I1; and G,, respec-
tively. Then, by (a) and (b) of the proposition on page 195, and since I - H, =
tr H, (5) implies

H - C[G] = H,- C[G,] = 2uH,- G, + Atr H)(ir G) = G - C[H],
so that C is symmetric. Next, choose a symmetric tensor H and let.
e=3trH, Hy=H—al
so that
H = H, + «l, tr Hy, = 0.
Then, since I - Hy = 0,
H C[H] = 2u(|H,1? + 3a?) + 94a® = 2u|Hl? + 3022t + 3).

Trivially, (6) implies that C is positive definite. Conversely, if C is positive
definite, then by choosing H = al we conclude that 2p + 34 > 0, and by
choosing Hwith tr H = Owe see that u > 0. O

At o e T o scrtlio: R
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Proposition. Assume that the material at p is hyperelastic. Then C is sym-
mefric.

Proof. Since
C = DS(I) = D¥(I)

[cf. (28.5)], the proposition follows from the symmetry of the second deriva-
tive. To see this note that

a—%&(l+aH+ﬂG)=S(I+aH+ﬁG)-G,

and hence
2

W&([ +aH + G|, yoo = DS() [} G = C[H] - G;

by switching the order of differentiation we see that this expression equals

-,
ma(l + aH + ﬁG)ia=ﬂ=0 = C[G] . H,

and the symmetry of C follows. [3

EXERCISES
1. Show that, as a consequence of (27.11),

DS(F) [WF] = WS(F) o)
forall Fe Lin* and W e Skw.

2. RelateC = DS(Dand L = DT(I) for the case in which (2) is not satisfied.
3. Cis strongly elliptic if

A-C[Al>0
whenever A hastheform A =a® ¢, a # 0, ¢ 3 0.

(a) Show thatif C is positive definite, then C is strongly clliptic.

{(b) Show that for an isotropic material C is strongly elliptic if and only
if .

u>0, 2u+ >0
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Linear Elasticity

30. DERIVATiON OF THE LINEAR THEORY

We now deduce the linearized theory appropriate to situations in which
the displacement gradient Vu is small. The crucial step is the linearization of
the general constitutive equation

S = §¥) )

for the Piola-Kirchhoff stress [cf. (27.9)]. In order to discuss the behavior of
this equation as

H=Vu
tends to zero, we consider S(F) as a function of H using the relation

F=I+H
[cf. (7.D)].

Theorem (Asymptotic form of the constitutive relation).  Asswme that the
residual stress vanishes. Then

- 8(F) = C[E] + o(H) @
as H — 0, where C is the elasticity tensor (29.1) and
E=iH+H") ~ 3)

is the infinitesimal strain (7.4).
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Proof. Since the residual stress vanishes, we may conclude from (29.1),
(29.2), and (29.4) that e

I
S(F) = 81 + H) = §() + DS(1) [H] + o(11)
= C[H] + o(H)
= C[E] + o(}). OO
Using (2) we can write the asymptotic form of the constitutive equation
) as
S = C[E] + o(Vu). “)

T 1erefore, if the residual stress in the reference configuration vanishes, then to
within terms of o(Vu) as Vu — 0the stress Sis alinear function of the infinitesimal
strain E. Also, since C has symmetric values [cf. (a) of the proposition on page
195], 1o within the same error S is symmetric.

The linear theory of elasticity is based on the stress-strain law (4) with the
terms of order o(Vu) neglected, the strain-displacement relation (3), and the
equation of motion (27.6),:

i eenghe
w

n:

O

.
=
!

) i
i
4 E = 4Vu+ vuh), 1 (3)
IDivS + by = poi. |

Note that these equations are expressed in terms of the displacement

u(p, 1) = x(p, t) — p,

rather than the motion x.
It is important to emphasize that the formal derivatjon Q“f__ggg__linegrized
constitutive equation (5), was based on the followingéwo assumpticns?
- A A S o . et sz . £

A i s e s

The residual stress in the reference configuration vanishes. {
The displacement gradient is small. .. .. ..o
“NGte that, by (5), and the theorem on page 56, E = S = 0 in an infini-
tesimal rigid displacement. This is an important property of the linearized
theory. )

Given C, po, and by, (5) is a linear system of partial differential equations
for the fields u, E, and S. By (29.5), when the body i ?‘*;'sotfgﬂgj(S)l may be
replaced by )y

P
o
e

{ S=2uE + Atr E)L (6)

Moreover, when the body is homogeests; py, 1, and A are constants.

W

L ndiet
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Assume now that 2 is homogeneous and isotropic. Then, since
Div(Vu + VuT) = Au + V Div u
and
tr E = Divu,

the equations (5)2.5 and (6) are easily combined to give the displacement
equation of motion

/,tAu+(l+p)VDivu+b0=poii. (7)
In the statical theory ii = 0 and we have the displacement equation of
equilibrium N
i # AU+ (A + 1)V Divu + by = 01 (8)
EXERCISES

1. Letu be.a c* so_lution of (8) with by = 0. Show that Div u and Curl u are
harmonic functions. Show further that u is biharmonic; that is,

AAu = 0.

2, Let. u be a C* solution of (7) with by = 0. Show that Div u and Curl u
satisfy wave equations.

3. (Boussinesq—Pflpkovitch~Neuber solution) Let ¢ and g be harmonic
ficlds on 4 (with ¢ scalar valued and g vector valued) and define

u=g-—aVir-g+ ¢, ‘
- _MEa
22u+ Ay
where r(p) = p — 0. Show that u is a solution of () with by =

4. Consider the case in which the residual stress S(I) » 0. Show that
S(F) = S + wW8() + C[E] + o(H).

31. SOME SIMPLE SOLUTIONS

Assume now that the bodv is homeogeneous and isotropic. Then any
statical (l.e:, time-independent} displacement field u with E constant gener-
ates a solution of the field equations (30.5), ; and (30.6) with S constant and
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t 2
‘—T Figure 1

b, = 0. We now discuss some particular solutions of this type, using cartesian
coordinates where convenient.

(a) Pure shear. Let
u(p) = yp, €,
(Fig. 1), so that the matrices of E and S are

[E]=% . [S]=

(=~
OO
o OO
[ I

S S M
[er B o N o

with
T = uy.

Thus p determines the response of the body in shear, at least withm the l'mcar
theory, and for this reason is called the shear modulus. Note that, in COI'ltI‘dSl to.
the general nonlinear theory (cf. Section 26), the normal stresses are all zero;
the only stress present is the shear stress 1.

(b) Uniform compression or expansion. Here

u(p) = z(p — o). o
Then Colvgl g RIES
= gl, - lzy/ SR E’j
S = —nl, _
7= —3ke, i ;
where
K=34u+ 4

is the modulus of compression. . .
For our third solution it is simpler to work with the stress-strain law (30.6)

inverted to give E as a function of S. This inversion is easily accomplished
upon noting that

trS=(Qu+3NrE,

R A S il AR i L2t e a6

O TN
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and hence .
1 i 1
E=—1S—.— " __(trSii
2 [S 2;4+3,1“S)ij M
(c) Puretension. Here we want the stress to have the form
[a’ 0 0
' [S]={0 0 oj
[0 0 0
The corresponding strain tensor is then given by
[u 00
[E]=(0 I ¢
0 01
with
1
L= 50 = —vg,
and
uQ2u + 32) A
E=—"_ "7 Vs,
A+ 2 2 + A)

Note that the strain E corresponds to a displacement field of the form
u(p) = epre, + ipae; + Ipse;.

The modulus E is obtained by dividing the tensile stress ¢ by the longitudinal ‘k
strain ¢ produced by it. It is known as Young's moduius. The modulus v is the

ratio of the lateral contraction to the longitudinal strain of a bar under pure

tension. It is known as Poisson’s ratio.

- If we write E,, and S, for the traceless parts of E and §, that is,
E, = E —~ L B, So =8 — i(tr S)§, 2)

then the isotropic constitutive relation (30.6) is equivalent to the following
pair of relations:

So = 2uE,,
trS = 3xtrE.

Another important form for this stress-strain relation is the one taken by the
inverted relation (1) when Young’s medulus and Poisson’s ratio are used:

E= é [(1 + S — wir S)I. O B)
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Since an elastic solid should increase its length when pulied, should
decrease its volume when acted on by a pure pressure, and should respond to a
positive shearing strain by a positive shearing stress, we would expect that

E >0, k>0, 0> 0.

Also, a pure tensile stress should produce a contraction in the direction
perpendicular to it; thus
v>0.

Even though these inequalities are physically well motivated, we will not
assume that they hold, for in many circumstances other (somewhat weakef)
assumptions are more natural. In particular, we will usually assume that C is
positive definite. A simple computation, based on (29.6), shows that. t.hxs
restriction is equivalent to either of the following two sets of inequalities:

(i u>0, k> 0;
(i) E>0, -l<v<i

Some typical values for Young’s modulus E and Poisson’s ratio v are!

carbon steel: E = 2.1 x 10** N/m?, v = 0.29,
copper: E = 10'! N/m?, v = 0.33,
glass: E = 0.55 x 10'' N/m?, v = 0.25.

EXERCISES
1. Assume that C is symmetric and define
#E) = $E - C[E]

for every Ee Sym.
(a) Show that the stress-strain law S = C[E] can be written as

S = DXE).

(b) Show that, for an isotropic material,
A
&E) = p|E]* + 3 (tr E)?,
N 2 K 2
HE) = plEo|” + -2-(lr E),

«|Ef < 8(E) < BIEP,

where o is the smaller and B the larger of the numbers u and 3k/2.

! Cf., e.g., Sokolnikoff {1, p. 70].

L i

32. LINEAR ELASTOSTATICS 205

2. Show that C is positive definite if and only if either of the two sets of
inequalities (i) or (ii) hold.

32. LINEAR ELASTOSTATICS

The system of field equations for the statical behavior of an elastic body—
within the framework of the linear theory—consists of the strain-displacement
relation

E = {(Vu + Vu"), 49)
the stress-strain relation
S = C[E], 2)
and the equation of equilibrium
DivS+b=0 3

(where we have written b for by). The elasticity tensor C, which is a linear
mapping of tensors into symmetric tensors, will generally depend on position
p in #; writing C,, to emphasize this dependence, we assume henceforth that
C, is a smooth function of p on 4.

A list [u, E, S] of fields which are smooth on & and satisfy (1)-(3) for a
given body force b will be called an elastic state corresponding to b. Note that
by (1), (2), and the properties of C, the fields E and S are symmetric.

We assume throughout this section that & is bounded.

Theorem of Work and Energy. Let [u, E, S] be an elastic state corresponding
to the body force b. Then

Sn-udA+Jb-udV=2‘?/{E}, 4)
oR ]

where
1
U{E} = 3 LE -C[ElaVv (5)

is the strain energy.
The proof of this theorem is an immediate consequence of the following

Lemma. Let S be a smooth symmetric tensor field on B, let @ be a smooth
vector field on %, and let

divS +b=0, E = LVi+ va").




206 X. LINEAR ELASTICITY

Then

Sn-ﬁdA+Jb-iidV=fS-fEdV. (6)
2 »8

o8

Proof. By the symmetry of S, the divergence theorem, (4.2)5, and (a) of
the proposition on page 6,

f Sn'ﬁdA:f (Sﬁ)-ndA:fDiv(Sﬁ)dV: f(ﬁ'DivS+S'Vl’i)dV,
oR oz 2 »

S-Vi=S-{(Vi + vi")} =5-E.
These relations clearly imply the desired result (6). [

We can interpret the left side of (4) as the work done by the external forces;
(4) asscrts that this work is equal to twice the strain energy. Note that when C
is positive definite, #{E} > 0, and the work is nonnegative,

The next theorem is one of the major results of elastostatics; in essence, it

expresses the fact that the underlying system of field equations is self-adjoint
when C is symmetric.

Betti’s Reciprocal Theorem. Assume that C is symmetric. Let [u, E, S]and

(&, E, ] be elastic states corresponding to body force fields b and b, respectively.
Then

sn-ﬁdA+fb-ﬁdV=f §n-udA+fB-udV
2 2B 2

oB

=LS-EdV=L§-EdV. )

Proof. Since C is symmetric, we conclude from the stress-strain relation
that

S-E=C[E]‘E=C[E]'E=§-E,

and (7) follows from (6) and the analogous relation with the roles of the two
states reversed. [J

Betti’s theorem asserts that given two elastic states, the work done by the
external forces of the first over the displacement of the second equals the work
done by the second over the displacement of the first.

Let ¥, and &, denote complementary regular subsets of the boundary of
4%, so that

B=P VS PP, =0

A v A 3o
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with 9”1 the relative interior of &,. Then the mixed problem of clastostatics
can be stated as follows:

Given: 4,9, %,, an elasticity tensor C on 4, a body force ficld b on 43,
surface displacements @ on &, surface tractions § on &,.

Find: An elastic state [u, E, S] that corresponds to b and satisfies the
boundary conditions

v=18 on %, Sn=8§ on ¥%,. 8)
An elastic state with these properties will be called a solution.

Uniqueness Theorem. Assume that C is positive definite. Let [u,, E;, S,]
and [uy, E,, 8,7 be solutions of the (same) mixed problem. Then

U =u; +w, E, = E,, S, =8,,
where w is an infinitesimal rigid disp[acément of B.
Proof. Let
W=u; — u,,

E=E -E, S=8§,-85,.

Then [w, E, 8] is an elastic state that corresponds to null body forces and
satisfies the boundary conditions

w=0 on %, Sn=0 on %,.
Thus
Sn‘w=0 on 0%,

and we conclude from (4) that
f E-C[E]dV = 0.
2

Since C is positive definite, this relation can hold only if E = 0; this in turn
implies that S = 0 and that w is an infinitesimal rigid displacement of & (cf.
the.theorem on page 56). [

When &, = 8% (¥, = D) the boundary condition (8) takes the form
u==Hh on 0%,

and the mixed problem is referred to as the displacement problem. On the
other hand, when &, = 98 (¥, = (), so that

Sn =38 on 0%,

tFom s




T T ARE R

S

208 X. LINEAR ELASTICITY

we have the traction problem. This last definition, (3), and Cauchy’s theorem
(page 101) have the following immediate consequence:

Proposition. A necessary condition that the traction problem have a solution is
that

J §dA+deV=0,
oR X

. ©)
frxsdA+jrxde=0,
oR B

where r(p) = p — o is the position vector.

Equations (9) insure equilibrium of the external forces applied to 4. It is
interesting to compare these conditions with the analogous restrictions of the
general nonlinear theory discussed at the end of Section 27. There the applied
forces need not obey balance of moments in the reference configuration
[cf. the discussion following (27.21)], as in the nonlinear theory the body is
allowed to undergo the possibly large deformation needed to insure moment
balance in the deformed configuration.

We now show that the solution of the mixed problem, if it exists, can be
characterized as the minimum value of a certain functional.

By a kinematically admissible state we mean a list 6 = [u, E, S] with u, E,
and S smooth fields on £ that satisfy the field equations

E=4Vu+ W), S=C[E]
and the boundary condition
n =i on %,

Let @ be the functional defined on the set of kinematically admissible states by

@{a}:%{E}——fb-udV— §-udA. 10)
. 2 ) &2 A
2
Principle of Minimum [Potential Energy.| Assume that C is symmetric and
positive definite. Let s = [, K, S] be @ solution of the mixed problem. Then
D{s} < B{3}

for cvery kinematically admissible state 5 = [ii, B, 83, and equality holds only if
o= u -+ wwith w an infinitesimal rigid displacement of 8.

Proof. Let
1 w=ﬁ—u, E=E—E.
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Then, since 4 is a solution and 3 is kinematically admissible,
E = {(Vw + vw"),
w=10 v:on !/’I. at
Further, since C is symmetric and § = C[E],
E-C[E]=E-C[E] + E-C[E] + E- C[E] + E-C[E]
=E-"%1 + E-C[E] + 25 - E;
hence

U{E) - %{E} = %({E} + fs-EdV.
@8

Because ais a solution, we conclude from (11), and (6) with @ and E replaced
by w and E that

fS'EdV= Sn'wdA-f-fb-de:f
@ r

&2

$-wdA +Jb-de.
2

oR

In view of (10) and the last two relations,
®{3} — O{s} = %{E}.
Thus, since C is positive definite,

s} < {3}
and

®{a} = ®{5} only when E =0;
that is, only when w = i — u is an infinitesimal rigid displacement. [J

In words, the principle of minimum potential energy asserts that the
difference between the strain energy and the work done by the body force and
prescribed surface traction assumes a smaller value for the solution of the
mixed problem than for any other kinematically admissible state.

A standard technique for obtaining approximate solutions is based on the
principle of minimum potential energy. We now demonstrate this method,

but for convenience limit our attention to the traction problem. Consider an
approximate solution of the form

N

u(p) = Zlangxp), (12)

where g,, g, ..., gy are given vector fields on 4, and where the scalar con-
stants ay, ay, ..., ay are chosen to make ®(«;, a,, ..., ay) a minimum. Here




S
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O(ay, @y, ..., ay) is the function obtained by substituting (12) into the right
side of (10):

1 N N
(D(ah Qgyeney aN) = '2_ Z K,,,,,oc,,,ot,, - Z Py s
mon=1

n=1

where

K, = f Gn-C[G1dV, G, ={(Ve, + Vg,
2

O = J-b'g,,dV-i-f §-g,dA.
2 a8

Let K be the matrix with entries K,,,. If C is symmetric and positive definite,
K will be symmetric and positive semidefinite; thus ®(a,, «5, ..., ay) will be a
minimum at a “vector” (a,, a,, . .., &y) if and only if the vector is a solution of
the equation

Ka = o,

where aand @ are the column vectors with entries «, and ¢, respectively. The
problem is therefore reduced to solving a matrix equation; the corresponding
solution represents the displacement field of the form (12) which is “nearest in
energy” to the true solution. The matrix K, which characterizes the response
of the system, is usually called the stiffness matrix.

The crucial part of this approximation technique lies in the choice of the
functions g;, g;, ..., gy (one specific family of choices generates what is
commonly called the finite-element method); in particular, an important
consideration is convergence as N — co. This matter, however, is beyond the
scope of this book.

EXERCISES

1. Show that if the traction problem has a solution [u, E, SJ, then [u + w,
E, S]is a solution for every infinitesimal rigid displacement w. Does the
analogous result hold for the mixed problem in general?

2. Show that for a2 homogeneous, isotropic elastic body the “infinitesimal
volume change”

J u-ndA:fdivudV
o® ?
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in an elastic state is given by

1
——{f r-sdaA + fr'b(IV},
Ik (Jow ; »

where r(p) = p — o.
For the remaining exerciscs C is symmetric.

3. Assume that C is positive definite. Then C restricted to symmetric
tensors is invertible. Let K denote the corresponding inverse, so that the
stress-strain relation S = C[E] can be inverted to give

E = K[S].

(a) Show that K is symmetric.
(b) Show that the strain energy can be written in the form

U (S} =%JS-K[S]dV
B

(©)  (Principle of minimum complementary energy) A statically ad-
missible stress field S is a smooth symmetric tensor field that
satisfies the equilibrium equation

DivS+b=0
and the boundary condition

Sn =28 on &,
Let 'V be the functional defined on the set of statically admissible
stress fields by
Y{S} = % {S} - Sn-adA.
&1
Show that if [u, E, 5] is a solution of the mixed problem, then
WS} < ¥{§;

for every statically admissible stress field §.
(d) Show thatifs = [u, E, S]is a solution of the mixed problem, then

Ols} + ¥{S} = 0.
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4 (Hu-Washizu principle) An admissible state is a list s = [u, E, S] of
sinooth fields on & with E and S symmetric. Let A be the functional
defined on the space of admissible states by

A{o} = U{E} — fs-EdV— j(l)ivS+b)-udV+ Sn-f dA
B B

Iy
+ (Sn — §)-udA.
&2
Show that
SA{s} =0,
provided s is a solution of the mixed problem (cf. Exercise 28.5).

5. (Hellinger-Prange~Reissner principle) Assume that C restricted to
symmetric tensors is invertible with inverse K. Let 57 be the set of all
admissible states that satisfy the strain-displacement relation (1) and
define ® on & by

Ofs) = U (S} — LS'EdV+ Lb-udV+ Sn-(u — @) dA

1

+ §-udA.
&2

Show that
500} =0
provided s is a solution of the mixed problem.
6. Show that for s kinematically admissible,
Afs} = D{s).

7. Consider a one-parameter family of (homogeneous and isotropic)
. elastic states [u,, E,, S,] with Poisson’s ratio v as parameter. These
states all correspond to the same shear modulus and to vanishing body

i forces.
(a) Assumingthat [u,, E,, S,] tends to a limit [u, E, S]asv — 1 show
that

S = —nl + 2uE, trE =0,

where © = —1 tr S. Give an argument to support the claim that
v = } corresponds to incompressibility. (Note that, as in the case of
ideal and Newtonian fluids, the “pressure” = is not uniquely
determined by the deformation; that is, E does not uniquely
determine .)
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(b) Assuming that the limit state [u, E, 8] is approached in a manner

whi}ch i-s sufficiently regular to justify interchanges of limits and
derivatives, show that

HAu — Vi =0,
Divu = 0.

(Cf. the equations on page 152 describing Stokes flows.)
8. An elastic state [u, E, S] is a state of plane strain if u has the form

u(p) = u,(py, pa)e; + uy(py, pae,

in some cartesian frame. Consider such a state, and assume that the
body is isotropic and that b = 0.

(a) Show that E and S are functions of (p,, P2), and that
Eﬂﬁ = %(ua,ﬂ + uﬁ,a)s

Sep = 2uE,; + A8,4(E,, + E,3), (13)
Z Sap.p =0,
£
while
Exa =E; = Ey3 =0,
Si3= 833 =0, S33 = ME, + Ejyy) = w8y, + S,,).

Here o and $ have the range of the integers (1, 2), 6,5 = 1 when
o = f and zero otherwise, and

Ju,
opy’
(b) Show that E (when C?) satisfies the compatibility equation

Uy g = etc.

o

2E12,12 = En,zz + Ezz.n- (14)
For the remaining exercises 2 is an open simply connected region in R2,

9. L.et E.s (=E;,) be a C? solution of (14) on &. Show that there exist
displacements u, such that (13), hold.

10. Let P;,,,, an.d S be C? functions on % consistent with (13), ;. Show that
(14) is satisfied if and only if . '

A(S,, + $22)=0. R (15)
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[Thus for a simply connected region plane elastic states are completely
characterized by (13); and (15). Indeed, when these equations are
satisfied, E,,; can be defined by (13), (assuming invertibility) and, since
(14) holds, there exist u, that satisfy (13),.]

11. Let ¢ be a scalar field of class C* on £. Define

S1y = ¢.22, S22 = @11, Si2= —@,a. (16)

Show that S, satisfies (13);. Show further that (15) holds if and only if
is biharmonic:

AAgp = 0.

The field ¢ is called an Airy stress function.

12. Let S, (=S,,) be a C? solution of (13); and (15) on %. Show that there
exists a biharmonic function ¢ on £ such that (16) holds.

33. BENDING AND TORSION

A. BENDING OF A BAR

Consider a (homogeneous, isotropic) cylindrical bar with generators
parallel to the py-axis (Fig. 2). Let the end faces &, and ., be located at p, = 0
and p; = [, respectively, with the origin at the centroid of &, and with the p,-
and p,-axes principal axes of inertia:

pydA=| pydA= | pp,dA=0. ey
Lo - Lo )

We assume that the bar is loaded only on the end faces, and by opposing
couples about the p,-axis. More precisely, we assume that

(a) body forces are zero;
(b) the lateral surface & is traction-free; that is,

Sn =0 on %,
or equivalently, since n; = 0 on &,

Siany + Siang = S0 + Syny = Sian, + S,5n, =0 on %; (2)
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Figure 2

(c) the total force on &, vanishes and the total moment on &, is
equipollent to a moment of magnitude m about the negative p,-axis; that is,

SndA4 = 0,

o
f r X SndA = —me,,
o
or equivalently, sincen = —e, and rp) =p—o,

Sisdd =1\ S,;;dd=| S,,d4 =0,
Fo

o o

f P2S3; dA
S0

f P1S33 dA
Yo

We do not specify the loading on &, since balance of forces and moments
require that (Exercise 1)

. (d) the total force on &, vanish and the total moment on &, equal me,;
in fact, (3) hold with & replaced by &,.

[

f (11523 — P28;3)dA =0, &)
Fo

il

—im.

There are many sets of boundary conditions consistent with (c) and (d).
We take the simplest possible and assume that

Sia(p) = S,3(p) = 0, S33(P) = Ko + Kyp; + KaP; at p; =0,/
with x,, k,, and x, constants. Then (1) and (3) imply that
Ko = Ky = (), Ky = —m/l,

where

I=f pldA
o
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is t 16 moment of inertia of &, about the p,-axis. Our boundary conditions
therefore consist of (2) and
. 1
S13(p) = S23(p) = 0, S33(p) = — ~+— at py=0,1L 4)

A stress field compatible with (2) and (4) is obtained by taking
S11(P) = S22(p) = S12(p) = S13(p) = S23(p) =0,

mp
S1(p) = — Tl
for all p in the body. This field clearly satisfies
DivS =0

Thus to show that S is actually a solution of our problem we need only
construct the corresponding displacement field.
Using the stress—strain law in the form (31.3), we see that

Ey2(p) = Ey3(p) = Eza(p) = 0,

vmp, mpy

EI’ EI’

and the strain—displacement relation (32.1) is easily integrated to give
(Exercise 2)

Eii(p) = Eza(p) = Ei(p) = —

u @ = 5= (63 + v} = P11 + w,(@),
/
uy(p) = g’; vpip2 + wa(p), (5)
m
us(p) = — T w3(p)

with w(p) an arbitrary infinitesimal rigid displacement. .
To compare our results with classical beam theory we “fix” &%, at p, =
p, = 0 by requiring that
u(o) = Vu(o) = 0.

Then w(p) = 0 and the displacement of the centroidal axis (ie., the p,-axis)
takes the form

2
mp
(0,0, p3) = 2‘5%’

uZ(Or 07 p3) = uS(O: 01 p3) = 0.

[ — LOTEATI vew s wenoes =

PO - &R LLTRIE P
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[Actually, to insure that w(p)
Vu(o) = Vu(o).]

In this solution the maximum stress oceurs at points of & for which |p, |
attains its largest value, ¢ say, and this maximal stress has magnitude

= 0 it suffices to assume that u(o) = 0 and

mc/l.
Moreover, the maximum deflection of the centroidal axis occurs at p3 = land
is given by '

mi?

2E]

B. TORSION OF A CIRCULAR CYLINDER

Consider a circular cylinder of length I and radius a (Fig. 3). As before, the
axis of the cylinder coincides with the P3-axis, while ¥ and &, correspond to
p3 = Oand p; = [. We assume that the end face & is held fixed, while the end
face &, isrigidly rotated about the py-axis through an angle f. Thus, assuming

that the lateral surface % is traction-free, our boundary conditions consist of
(2) and the requirement that

u(p) =0 at py =0,

u(p) =alp;, uy(p)=0 at p, =1

with o = B/I the angle oftub:ist per unit length. (The boundary condition at

P3 = I represents an infinitesimal rigid rotation of %, about the py-axis [cf.
(7.10) with p; = ]).

It seems reasonable to expect that under this type of loading the cylinder

u)(p) = —alp,,

will twist uniformly along its length; thus, in vic. .

{7.10), we consider a
displacement field cf the {rm

. uy(p) = —op,ps,

uy(p) = ap,p,, 6)
u(p) = 0.

Figure 3
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The corresponding stress field, computed using the strain-displacement
relation (32.1) and the stress—strain relation (30.6), is given by

S1:(p) = Sz2(p) = S33(p) = S12(p) = O,

$23(p) = pap,, S13(p) = —papy,

and clearly satisfies

Q)

DivS = 0.

Further, S satisfies the boundary condition (2); indeed (2),,, are satisfied
trivially, and, since n(p) on & is proportional to (1> P2, 0), it follows that

Siany + Sy3n, =0 on %2, (8)

which is (2);. Thus (6) and (7) comprise the solution of our problem.
Next, by (1) and (7),

Sisdd = | Sy dA=| Sy, dA =0,
o o o

so that

SndA = 0, )
and the total force on each end face vanishes. In addition,

PiSsy dA = f P2Syy dA =0,
Sa

Lo
(P1S23 = P2S13)dA = pa | (pf + p3) dA = pol,,
So o

where I, = na*/2 is the polar moment of inertia of the cross section. Therefore
f F X SndA = —me, (10)
Lo

with
m = pal,.

Further, by balance of moments,

f r X SndA = me,.
&,

Thus the cylinder is twisted by equal and opposite couples about the py-axis.
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EXERcIsES

1. Establish (d).
2. Derive (5).
3. Show that w(p) = 0 in (5) provided u(0) = 0 and Vu(o) = Vu(o)™.

In the next two exercises we consider the torsion of an arbitrary cylindrical
bar (cf. Fig. 2).

4. Show that (7) is compatible with (8) only if the cross section is circular.
5. Consider the displacement field
u(p) = —ap,ps,
uy(p) = ap,ps,
us(p) = agp(py, p,);
@ is called the warping Junction,

(a) Compute the corresponding stress field S and show that Divs = 0 is
equivalent to

Ap = 0.
Here
62
Ap =0, + ©.22, Py = *(g, etc.
op3
(b) Show that (2) is equivalent to
9¢(p) )
—5IT = pyn(p) — P1h2(p)
for all pe %, where
do
o - P + @iy (il)

is the normal derivative of pong.
{c) Show that (9) and (10) hold, where

m= xu,

K=y L(pf +P3+ pro,s — P29} dA;
[

x is called the torsional rigidity of the cross section.
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34. LINEAR ELASTODYNAMICS

In this section we will establish some of the basic results of linear elasto-
dynamics. Here the basic equations, as derived previously, are

E = {(Va + Vu"),
S = C[E], (1
DivS + b = pii

(where we have written p for p, and b for by).

We assume that B is bounded and that p is continuous.

Let [u, E,S]bealist of fieldson # x [0, o) withuofclass C2and Eand S
smooth, and suppose that (1) holds with b a given body force ficld on # x
[0, c0). Then [u, E, STis called an elastic process corresponding tob. Since E is
time-dependent, the strain energy

Y{E} = 4 LE-C[E] av

depends on tifne. In fact, when C is symmetric,
H(E-CLE]) = 4(E-C[E] + E-C[E]) = E-C[E] = S-E.
Thus
@{E}y = LS-Edv, @

so that the rate ofchangé of strain energy is equal to the stress power.
Theorem of Power and Energy. Assume that C is symmetric. Let [u, E, ST be

an elastic process corresponding to the body force b. Then

Sn-idA + f b-idV = (U{E) + X {a}), 3)
E]

0%
where
Ay =1 f pi? dV
2

i1 he kinetic energy.

Progf. In view of the lemma on page 205 with i replaced by @ and b by
b — pii,
Sn-ddA +fb-ﬁdV= fs-EdV+ ini'ﬂdV.

? 2 ]
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This relation, (2), and the identity
@)y = f pii - dV
)

imply 3). O

This theorem asserts that the powcr expended by the external forces equals
the rate at which the total energy is changing,

Corollary.  Assume that C is symmetric. Let [u, E, S} be an elastic process
corresponding to body force b = 0, and suppose that

Sn-a=0 on 02. “)
Then the total energy is constan::
W{E} + A {i} = const. (5)

Another interesting corollary may be deduced as follows. Consider an
elastic process which starts from an unstrained rest state. Then

E(,O) = 0’ v ll(, 0) = 0’

and the total energy is initially zero. Assume that C is positive definite and
p > 0,s0 that the total energy is always nonnegative. Then, if we integrate (3)
with respect to time from 0 to 7, we arrive at

ffSn-ﬂdAdr+ffb-ﬁdVd120. 6)
o Joa 0 Ja

The left side of (6) represents the work done by the external forces in the time
interval [0, t]; (6) asserts that for an elastic process starting from an un-
strained rest state this work is always nonnegative.

The mixed problem of elastodynamics can be stated as follows:

Given: 4, complementary regular subsets &y and &, of 048, an elasticity
tensor C on 4, a density field pon A, a boedy force field b on & x {0, oo),
surface displacements i on &1 x [0, o), surface tractions § on Sy x [0, o0),
an initial displacement field Up on 2, an initial velocity field v, on 4.

Find: An elastic process [u, E, S] that corresponds to b, satisfics the
initial conditions

“(Py O) = uO(’p)’ l.’(P’ 0) = VO(P)
for every p € 4, and satisfies the boundary conditions
u=ia on ¥ x [0, ), Sn=38 on &, x [0, c0)

An elastic process with these properties will be called a solution.
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Uniqueness Theorem. The mixed problem has at most one solution provided C
is symmetric and positive definite and p > 0.

Proof.  Let [u, E, S] denote the difference between two solutions. Then
[u, E, S] is an elastic process corresponding to b = 0 and satisfies

u(-,0) = a(-,0) =0,
u=0 on &, x [0, o), Sn=0 on ¥, x [0, w).
Thus (4) holds and we conclude from (5) that
U{E} + A {5} =0 (8)

for all time. Here we have used the fact that, by (7), ,, the total energy is
initially zero. But since C is positive definite and p > 0, both the strain energy
and kinetic energy are nonnegative; hence (8) implies that 2#'{4} = 0, and
this in turn yieldsa = 0 on 4 x [0, co). This fact and (7), imply that

u=20 on % x [0, c0),

and the proof is complete. [

N

EXERCISES

Throughout these exercises C is symmetric and # bounded.
1. Consider an elastic process and define
¢ =1E-C[E] + ipu?,
q= —Su.
Show that
é=—-Divg+b-a

2. (Brum’s theorem) Consider an elastic process with null initial data, i.c.,

with

u(p, 0) = 0, i(p,0) =0 9
for all p € #. Show that

U{E} — oA (i} = O, (10)
where
d(r) =%f[(p(t +1,t—1) — @t —1,t + 1)]dr,
o]
o )= [ stb.0)-ito, p) 4, + [ b0 ato, py v,
B R

with s = Sq.

a

i
3
d
2
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3. Use(8)and (10) to establish uniqueness for the mixed problem when C is
symmetric (but not necessarily positive definite) and p >0

4. Show that under the null initial data (9) the equation of motion
DivS + b = pii
can be written in the form
A% (DivS + b) = pu,
where A(f) = t and » denotes convolution; ie., if A and W are functions on
Z x [0, o0),
rl
AxP)p, 1) = J Alp, t — 1)¥(p, 1) dr. (1)
Qo

5. (Graffi’s reciprocal theorent) Let us agree to use the notation (11) when
Aand ‘¥ are vector fields, but here the product in the integrand is the inner
product A(p, ¢ — 1) ¥(p, t). Show rthat if [v, E, 8] and (&, &, §] are
elastic processes corresponding to body forces b and b, respectively, and
to null initial data, then

fs*ﬁdA+fb*ﬁdV=f 's'*udA+J brudv, (12
oRB 2 OB a2

where s = Sn and § = Sn,

35. PROGRESSIVE WAVES

Sinusoidal progressive waves form an important class of solutions to the
equations of linear elastodynamics. We will study these waves under the
assumptions of homogeneity and isotropy, and in the absence of body forces.
The underlying field equation is then the displacement cquation of motion

pAw+ (1 + w)V Dive = pii. ")
A vector field u of the form
u(p,t) = asin(r-m — ct), r=p-—o (2)

with [m| = liscalled a sinusoidal progressive wave with amplitade a, direction
m, and velocity ¢. We say that u is longitudinal if a and m are parallel, trans-
verse if a and m are perpendicular.

We now determine conditions which are necessary and sufficient that (2)
solve (1). By the chain rule, :

Vu = (a ® m) cos ,
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where
e, ) =r-m—c,
and h’ence
Divu = (a-m) cos ¢,
Curlu = (m x a) cos ¢.
Thus the wave is
longitudinal <> Curlu = 0,

transverse <> Divu = 0.

Next,
Aw = —asin ¢,
V Divu = —(a-m)m sin ¢,
ii = —c?asin g,
and u satisfies (1) if and only if
pa + (A + w(@ -mm = pc2a. “(3)

We call the tensor

A(m) = % [ul + @ + jym @ m]

the acoustic tensor; with this definition (3) takes the simple form
A{m)a = c?a. 4)

Thus a necessary and sufficient condition that u satisfy (1) is that ¢? be an
eigenvalue and a a corresponding eigenvector of the acoustic tensor A(m).
A simple computation shows that

A(m) = (’Uﬁ>m®m + 20 -m@m).
p P
But this is simply the spectral decomposition of A(m), and we conclude from
(b) of the spectral theorem (page 11) that

(A+2wp and  pfp

are the eigenvalues of A(m), while the line spanned by m and the plane (through
0) perpendicular to m are the corresponding characteristic spaces. Thus we
have the following

s i T A T R W SR AR A" R e B e i 5
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Theorem. A sinusoidal progressive wave with velocity c will be a solution of (1)
if and only if either

@ ¢ = Qu+ A)/p and the wave is longitudinal, or
(b) ¢* = p/p and the wave is transverse.

This theorem asserts that for a homogeneous and isotropic matcrial only
two types of sinusoidal progressive waves are possible: longitudinal and
transverse. The two corresponding speeds

VQu+A)fp  and ulp

are called, respectively, the longitudinal and transverse sound speeds of the
matcrial. (Note that these speeds are real when the elasticity tensor is positive
definite.) For an anisotropic body the situation is far more complicated. A
propagation condition of the form (4) still holds (Exercise 1), but the waves
will generally be neither longitudinal nor transverse, and they will generally
propagate with different speeds in different directions.

EXERCISES

1. For an anisotropic but homogeneous body the dispiacement equation of
motion has the form
Div C[Vu] = pii 5)
with C and p independent of position, (Here we have assumed zero body
forces.)

(a) Show that the sinusoidal progressive wave (2) solves (5) if and only
if the propagation condition {4) holds, where now A(m) is the tensor
defined by

Am)k = ;], Clk ® mim

for every vector k.

(b) Show that A(m) is positive definite for each direction m ifand only if
C is strongly elliptic (cf. Exercise 29.3).

(c) Show that :

QAMQ™ = A(Qm)

for any symmetry transformation Q.
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Appendix

36. THE EXPONENTIAL FUNCTION

The exponential of a tensor can be defined either in terms of its series
representation’ or in terms of a solution to an ordinary differential equation.
For our purposes the latter is more convenient. Thus let A be a tensor and
consider the initial-value problem

X(1) = AX(), >0,
X(0) =1,

for a tensor function X(r), 0 <t < o0. The existence theorem for linear
differential equations tells us that this problem has exactly one solution
X: [0, o) — Lin, which we write in the form

M

X(t) = M.
Proposition. For cach t > 0, e* belongs to Lin* and
det(eA’) = ot Ax, (2)
Proof. Let X(1) = ¢**, Since X is continuous and
det X(0) = 1,- 3

! See, e.g., Hirsch and Smale [1, Chapter 5, §3].

227




228 APPENDIX

1

det X(¢) > 0 in some nonempty interval [0, 7). Let 7 be as large 25 possible;
that is, let

t=sup{A|det X(z) >0 for 0<t <A}

"o show that X(t) e Lin™ for all t > 0 we must show that t = 0. Suppose, to
vae contrary, that t is finite. Then, since X is continuous,

det X(7) = 0. . 4)

We will show that this leads to a contradiction. Since X(¢) is invertible for all
t€[0, 1),(1), implies

A = X(OX(@)!
on (0, 1), and we conclude from (3.14) that
der Xy = (trA)detX
on (0, 7). This equation with the initial condition (3) has the unigue solution
det X(1) = A" &)

for 0 <t < 1. In view of the continuity of X, this result clearly implies that
det X(t) > 0, which contradicts (4). Thus © = oo and (5) implies (2). [

Proposition. Let W be a skew tensor. Then ¢™ is a rotation for each t > 0.
Proof. Let X(t) = ™ for t > 0. Then, by definition,
X=WX, XO0=1L
Let
Z = XX,
Then, since W is skew,
Z = XXT + XXT = WXXT + XX"WT = WXXT — XX"W,
and Z satisfies
Z=WZ-ZW, Z0) =1
This initial-value problem has the unique solution Z(t) = Iforallt > 0. Thus
XOX0)T =1

and X(t) is orthogonal. But from the preceding proposition X(t) € Lin*. Thus
X(t) is a rotation. [J
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EXERcCISE

1. Let AeLin and v, €9 . Show that the function
< (1) = erlvg
satisfies the initial-value problem
' W) = Av(), >0,
v(0) = v,.

SELECTED REFERENCE

Hirsch and Smale [1].

37. ISOTROPIC FUNCTIONS
Let % < Orth. A set o < Lin is invariant under ¢ if QAQT € o whenever
Aes/andQe¥.
Proposition.  The following sets are invariant under Orth:
Lin, Lin*, Orth, Orth*, Sym, Skw, Psym.

Proof. We will give the proof only for Lin*. Choose A eLin and
Q € Orth. Then

det(QAQT) = (det A)(det Q)? = det A, H
since [det Q[= . Thus A € Lin* implies QAQTeLin*. O

Let & < Lin. A scalar function
o — R
is invariant under ¢ if o/ is invarjant under % and
®(A) = p(QAQ")
for every A € o and Q € %. Similarly, a tensor function
G .o -+ Lin
is invariant under % if & is invariant under ¢ and
QG(A)QT = G(QAQ™

for every A € of and Q € 4. An isotropic function is a function invariant under
Orth.
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Proposition. Let @ be a scalar or tensor function with domain in Lin. Then ®
is isotropic if @ is invariant under Orth™.
Proof. The proof follows from the identity
(—QA(-Q)" = QAQ"
and the fact that for Q € Orth either Q or —Q belongs to Orth*. O

Theorem

(a) det and tr, considered as functions on Lin, are isotropic.
(b) The list (2.9) of principal invariants is isotropic; that is,

Fa = Foaqr 3)
Jor every A € Lin and Q € Orth.
Proof. That det is isotropic follows from (1). Next, for Q € Orth,
t((QAQ") = tr(AQ"Q) = tr A,

so that tr is isotropic. By (2.8) and (2.9), since A+ (tr A)? is isotropic, to
establish (b) we have only to show that A tr(A2) is isotropic. Choose
A e Lin and Q € Orth. Then

(QAQ™)? = QAQTQAQ™ = QA’QT,
and hence
tri(QAQ™)?] = tr(QA*QT) = tr A2. O
For convenience, we write
I(A) = {F A e}

for the set of all possible lists £, as A ranges through the set &Z. Of course,
H(A) < R3.

Next we establish several important representation theorems for functions
with domain & in Sym. We assume for the remainder of this section that s/
is invariant under Orth.

Representation Theorem for Isotropic Scalar Functions. A4 function
o - R (4 < Sym)
is isotropic if and only if there exists a funcion p: F(H) - R such that
@A) = @(Fa) 4)
Jor every Ae .

- S amn e e e e ——— e -
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Proof.  Assume that ¢ is isotropic. To establish the tepresentation (4) it
suffices to show that

©(A) = @(B) (5)
whenever
Fa = Fp. (6)

Thus let A, B € Sym and assume that (6) holds. By (6) and the proposition on
page 16, A and B have the same spectrum. Thus by the spectral theorem there
exist orthonormal bases {e;} and {f,} such that

A=Z(1)iei®e‘-, B=) of ®f,.

Let Q be the orthogonal tensor carrying the basis {f} into the basis {e;}:
Qf; = e;.

Then, since

Qf; ® £)Q™ = (Qf) ® (Qf),
it follows that
QBQT = A,

But since ¢ is isotropic, @(QBQT) = ©(B); thus (5) holds and ¢ admits the
representation (4).

The converse assertion, that (4) defines an isotropic function, is a trivial
consequence of (3). [J

Transfer Theorem. Let
G: o/ - Lin (& < Sym)
be isotropic. Then every eigenvector of A€ of is an eigenvector of G(A).

Proof. Letebean eigenvector of A € o7, and let Q € Orth be the reflection
across the plane perpendicular to e:

Qe = —e, Qf =1 if fre=0. @)

Then by the spectral theorem, Q leaves invariant the characteristic spaces of
A; hence we may conclude from the commutation theorem that

QAQT = A

Thus, since G is isotropic,

QG(A)Q" = G(QAQT) = G(4),




232 APPENDIX

so that Q commutes with G(A). Therefore
QG(A)e = G(A)Qe = —G(A)e,

and Q transforms G(A)e into its negative. But by (7) this can happen only if
G(A)e is parallel to e:

G(A)e = me,
Thus e is an cigenvector of G(A). O

The following lemma, whose statement is based on the spectral theorem,
will be extremely useful in what follows.

Wang’s Lemma. Let A e Sym.
(a) Consider the spectral decomposition
A=) ve®e, ®)
and assume that the eigenvalues w; are distinct. Then the set {1, A, A%} is
linearly independent and
sp{l, A, A%} = sp{e, ® e, e, D e,, €, ® e;}. ()
(b) Assume that A has exactly two distinct eigenvalues, so that
A=we®e+ w,I —e®e), le| = 1. (10)
Then {1, A} is linearly independent and
sp{l, A} =sple®e, I —c®e}. (n

Proof. We prove only (a). To establish the lincar independence of
{1, A, A%} we must show that

aA? + BA + 91 =0 (12)
implies
a=f=y=0. 13)
Assume (12) holds. Acting with (12) on the eigenvector e; leads to the relation
(w? + Po; + y)e, = 0,
5o that
aw? + fw; +y =0,

and the w; are roots of a quadratic equation; since the ; are distinct, this is
pessible only if (13) hold. Thus {I, A, A?} is linearly independent.
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Next, the subspace
# =sple; De e, De,, e;® e;}
of Lin has dimension 3. On the other hand, since
A? = ; wle, ® e, (14)
as is clear from (1.2); and (8), we may conclude from (1.2), and (8) that
I, A, A? € #. But 3 linearly independent vectors in a vector space of dimension

3 must necessarily span the space. Thus # = sp{l, A, A?} and the proof of (a)
is complete. We leave the remainder of the proof as an exercise. [J

We are now in a position to establish several important representation
theorems for isotropic tensor functions.

First Representation Theorem for Isotropic Tensor Functions. A function

G: o/ -+ Sym (o < Sym)

is isotropic if and only if there exist scalar functions @q, ¢, @4: I() > Rsuch
that

G(A) = 9y(F Il + @1 (DA + 62 I DA? (13)

Jor cvery Ae o,

Proof. Assume first that G admits the representation (15). Choose
A e.o and Q € Orth. Then by (3),

G(QAQ")

Po(-Forem) + 01(Foaem)QAQ" + 0:(Foaem)QAQTQAQT
?o(FA)QQT + ¢ (F)QAQT + ¢,(F)QA2QT = QG(A)Q,

It

so that G is isotropic.
To prove the converse assertion assume that G is isotropic. Choose
Aey.

Case 1. A has exactly three distinct eigenvalues. Let (8) be the spectral
decomposition of A. By the transfer theorem

G(A) = Z pie; ® e,

and we conclude from (9) that there exist scalars ap(A), &, (A), and a5(A) such
that

G(A) = ao(A) + o,(A)A +.az(A)A2. (16)
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Case 2. A has exactly two distinct eigenvalues. Then A admits the
representation (10), and the characteristic spaces for A are sp{e} and {e}*. By
the transfer theorem each of these two subspaces must be contained in a
characteristic space for G(A). This is possible only if cither: (i) G(A) has as
characteristic spaces sp{e} and {e}*,or(ii) ¥"isthconly characteristic space
for G(A). By (b) and (c) of the spectral theorem,

GA) =pe@e+ (1 —e®e) (17

ineither case [with 8, # f,incase(i), B, = B, incase (ii)]. In view of (11), (17)
can be written in the form (16) with

o5(A) = 0. (18)

Case 3. A has exactly one distinct eigenvalue. Then by (c) of the spectral
theorem in conjunction with the transfer theorem, ¥ is the characteristic
space for A and G(A), so that G(A) = g1, and G(A) again admits the repre-
sentation (16) with «y(A) = f and «,(A) = a,(A) = 0.

Since these three cases are exhaustive, we have shown that G, when
isotropic, admits the representation (16). In view of the representation
theorem for isotropic scalar functions, to complete the proof we have only
to show that g, a,, and «, are isotropic:

%(A) = 4(QAQT)  (k=0,1,2) (19)
for every A e/ and Qe Orth. Thus choose A €&/, Q € Orth. Since G is
isotropic,

QG(A)QT - G(QAQ™) =0,
or equivalently,

G(A) - Q'G(QAQNQ =10,
and, since

QT(QAQ™’Q = QTQAQ™QAQ™Q = A?,
it follows that
[%6(A) — 2o(QAQTII + [a;(A) — o (QAQM)IA
+ [a3(A) — a,(QAQ™]A? = 0. (20)

We consider again the three cases studied previously.

Case 1. By (a) of Wang’s lemma, {I, A, A%} is linearly independent, so
that (20) implies (19).
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Case 2. By (3) and the proposition on page 16, A and QAQT have the
same spectrum. Thus A and QAQ7 each have exactly two distinct eigenvalues
and (18) yields a,(A) = a,(QAQT) = 0. Moreover, by (b) of Wang's lemma,
{I, A} is lincarly independent, and (20) again yiclds (19).

Case 3. Here A = AI, so that A = QAQT and (19) holds trivially. O

By the Cayley-Hamilton theorem (2.12),
A = (A)A — (A + 1(A)A",

provided, of course, A is invertible. Thus, by (2.9), the previous theorem has
the following corollary:

Second Representation Theorem for Isotropic Tensor Functions. Let o he
a subset of the set of all invertible, symmetric tensors. Then

G: & — Sym

is isotropic if and only if there exist scalar functions Bo,Bis Ba: F(H) - Rsuch
that

G(A) = Bo( LI + Bi(FOA + B(F DA™ @t)
Jor every Ae of.

For linear functions there is a far simpler result.

Representation Theorem for Isotropic Linear Tensor Functions. A linear
function

G:Sym - Sym
is isotropic if and only if there exist scalars i and A such that

G(A) = 2uA + A(tr A)I 22)
Jor every A e Sym,

Proof. Let A be the set of all unit vectors. For e € A" the tensor e ®e
has spectrum {0, 0, 1} and characteristic spaces sp{e} and {e}*. Thus the same
argument used to arrive at (17) now leads to the conclusion that there exist
functions u, 4: & — R such that

Gle® ¢) = 2u(e)e ® e + Ae)l (23)
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forevery ee 4. Choosee,f € 4/, and let Q be any orthogonal tensor such that
Qe = f. (Clearly, at least one such Q vexists‘) Since
Qe®e)Q"=f®f,
and since G is isotropic,
0= QG ®e)Q" — GU®N = 2[j(e) — pMIf @1+ [Ae) — AD)]L
But {I, f ® f} is linearly independent; thus
we) = pf),  Ae) = Af).

Therefore p and A must be scalar constants, and we conclude from (23) that

Gle®e)=2ue®e + AL (24)

Next, choose A € Sym arbitrarily. By the spectral theorem A admits the
representation

A=Y we®e¢
with {e,} orthonormal; therefore, in view of (24) and the linearity of G,

G(A) = ¥ 0,;G(e; ® €) = 2uA + A, + w; + wy)L (25)

Since
tr A = w,; + w; + w;,

7.:5) implies the desired result (22). The converse assertion, that (22) delivers
21 isotropic function, is left as an exercisc. 0

Corollary. Let
Symgy = {A € Sym|tr A = 0},
und let
G: Symg — Sym
be linear. Then G is isotropic if and only if there exists a scalar p such that
G(A) = 2uA (26)
for every A € Sym,.

Proof. Clearly (26) defines an isotropic function. To prove the converse
assertion assume that G is isotropic. For A € Sym, A — %’(tr A)I belongs to
Symyg. Thus we can extend G from Sym, to Sym by defining

G(A) = G(A — i(tr A)D)
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for every A € Sym. Since G is isotropic, for every A € Sym and Q € Orth,
QG(AQT = G(QAQ™ - litr Ay

G(QAQ' — L 1 (QAQY)
= G(QAQ™),

where we have used the fact that tr is isotropic. Thus G is isotropic, and we
conclude from (22) and the fact that G and G coincide on Sym, that

G(A) = G(A) = 2uA + Atr AT = 2uA
for every A e Sym,. [

Our‘ncxt. step is to discuss the invariance properties of the derivative of a
tensor function. Thus let .2/ be an open subsel of 4 subspace % of Lin, and
let G:.&/ — Lin be smooth. ’

Theorem (Invariance of the derivative). Let G be invariant under 4. Then
QDG(A)[UJQ" = DG(QAQT[QUQ™] (27
Jforevery Ae o/, Ue %, and Qe @,

. Pl“()()f. For (27)_ to make sensc we must show that both .o and # arc
lnv‘ar'lt.mt uxlidcr '/,’ Since &7 is the domain of G and G is invariant, .o is (by
defmmon) Invariant under 4. To sec that % has this invariance, choose
Ue?” Ae.o,and Q € 4. Then for all sufficiently small a, (A + aU) € .7, so
l!)ut Q(/.\ +aU)QTe.& and hence (QAQT + aQUQN e.ov < %. Thus
since % is a subspace, QUQT € %, and ¥ is invariant under %, ’
We have only to show that (27) is satisfied. For A € &/, U € %, and Qe®

G(Q(A + U)Q") = G(QAQT + QUQM
= G(QAQY) + DG(QAQT)[QUQ] + o(U)

as U — 0. But since G is invariant under 4,
G(QA + U)Q") = QG(A + U)QT

= QG(A)Q" + QDG(A)[UIQT + o(U),
= G(QAQ") + QDG(A)[UIQ™ + o(U)

as U — 0. Thus by the uniqueness of the derivative,
QDG(A)[UIQT = DG(QAQM)[QUQT],
which is (27). O
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EXERCISES

1. Show that the sets Orth, Orth™, Sym, Skw, and Psym are invariant under
Orth,
2. A scalar function ¢: ¥ — R is isotropic if

o(v) = p(Qv)

for all ve ¥ and Q € Orth. Show that o is isotropic if and only if there
exists a function @: [0, o) — R such that

@(v) = ¢(Iv])

forallve 7.
3. A vector function q: ¥~ — ¥ is isotropic if

| Qq(v) = q(QV)

| for all ve ¥" and Q € Orth. Show that q is isotropic if and only if there
- exists a function ¢: [0, 0) — R such that

qav) = e(lv])v

forallve ¥

4. Let G:Lin — Lin be defined by
G(A) = A" (n > 1 aninteger).

Show that G is isotropic.

5. Show that the mapping
A ATl

from Lin™* into Lin* is isotropic. .
6. Show that the function G: Sym — Sym defined by (22) is isotropic.
7. Establish (b) of Wang’s lemma.

SELECTED REFERENCES

Gurtin {2]. ‘
Martins and Podio-Guidugli [2].
Serrin [1, §59}.

Truesdel} and Noli [1, §§10-13].
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38. GENERAL SCHEME OF NOTATION

38. GENERAL SCHEME OF NOTAT

INDEX OF FREQUENTIY Usen SymroLs

ION

Place of definition

Symbol Nume or first vecurrence
a angular momentum 92
A body 41
B, region occupied by body at time ¢ 58
b body force 98
b, reference body force 179
B left Cauchy-Green strain tensor 46
C right Cauchy-Green strain tensor 46
[ curve 34
C clasticity tensor 194
curl curl, spatial curl 32,61
div divergence, spatial divergence 30,61
Div material divergence 61
D derivative 21
D stretching 7
det determinant 6
E Young's modulus 203
E infinitesimal strain 55
4 euclidean point space 1
f deformation 42
F deformation gradient . 42
g complex velocity 123
K2 symmetry group 168
H displacement gradient 199
s list of principal invariants cf a tensor § 15
] identity tensor 3
Ha) kinetic energy 220
L velocity gradient 63
i linear momentum 92
Lin set of ali tensors 7
Lin* set of all tensors § with det § > 0 7
m(P) mass of P 87
m subscript indicating material description, also mach
number 60, 133

n outward unit normal to boundary 37
o(u) symbol for “small order u” 19
o origin 2
Orth set of all orthogonal tensors 7
Orth* sct of all rotations (proper orthogonal tensors) 7
p material point 41
p reference map 59

part of %
set of all symmetric, positive definite tensors
orthogonal tensor

rotation tensor

position vector
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Place of definition
Symbol Name or first occurrence
[ reals !
[ strictly-positive rea !
S Piola-Kirchhofl stress 178
5 stress vector 47
Syin set of all symmetric tensors 7
Sk* set of all skew tensors 7
3 subscript indicating spatial description, also
kinematically admissible state 60, 208
sp span 2
tr trace 5
t time 58
T Cauchy stress 104
g trajectory 59
u displacement 42
#{E} strain energy 205
U right stretch tensor 46
Y left stretch tensor 46
v spatial description of the velocity 60
v speed 133
v vector space associated with & 1
vol volume 37
w spin 71
w complex potential 126
X place 58
x motion 58
o center of mass 92
I potential of body force 1
@ potential of flow 1
O{s} potential energy 208
1(S) principal invariants of a tensor S 15
x{p) sound speed 131
Ay principal stretches 45
A Lamé modulus 196
k4 pressure 106
Po reference density 88
P density in motion 88
#(F) strain-energy density 186
u viscosity, also shear modulus 149, 196
v kinematic viscosity, also Poisson’s ratio 151,203
0] angular velocity 70
\ gradient, material gradient 29,60
A laplacian 32
® tensor product 4
X cross product 7
¢ material time derivative of ¢ 61
@ spatial time derivative of ¢ 61

38. GENERAL SCHEME OF NOTATION

GENERAL NOTATION

Expression Meaning
o

24 intetior of o

1 boundury of &

# closure of #

PO F union of # and .#

AT intersection of & and .7

R F A is a subset of .F

xeR x is an element of the set #

[:#—~F f maps the set 2 into the set .#; @ is the domain, 7 the
codomain

X+ f(x) the mapping that carries x into f(x); e.g., x — x? is the
mapping that carries every real number x into its
square

Soy composition of the mappings f and g; thatis, (f « g)(x)

{x]R(x) holds}

= flg(x);
the set of all x such that R(x) holds;e.g., {x]0 < x < 1}
is the interval {0, 1]
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Hints for Selected Exercises

SECTION 1
Consider y(v) with v = Y n;e;.
Take a = 3 y(e)e;.
i

Show that F = S + T is linear:

F(u + v) = Fu + Fy,

F(au) = o«Fu

i

for all vectors u, v and scalars «.
Fix v and consider Su - v as a function of u. Show that this function is
lincar and hence can be written as the inner product of a vector a,
(which depends on v) and u:

Su-v=oa_ - u

Show that a, is a linear function of v and hence can be written as
a, = Av with A a tensor. Define ST = A.

Apply each side of the identity to an arbitrary vector v.

247
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4b.

7.

HINTS FOR SELECTED EXERCISES

To verify (1), prove that
u-(S+Thv=E8"+THu-v,
which establishes 8T+ TV as the transposce of S 1T, To verily (2),
apply cach side of the identity to an arbitrary vector v.
Usc the identity
Se, =3 S;¢
j
to show that

©(Sey, €5, €3) = S ,0(ey, e;, €3).

SECTION 2

For part (a) use (b) of the first proposition. To derive (2) and (3) use
(1) and (1.2);.
Show that QDQT € Sym and .#;, = Fgper.

Prove that cach cigenvalue of P is either 0 or 1 and then (with the aid
of the spectral thcorem) consider separately the following four
possibilities for the spectrum of P: (0, 0, 0), (1. 1, 1), (0, 1, 1), (0,0, 1).

(onlyif) LetScommute with every W € Skw. Choose a vector w and
let W be the skew tensor whose axial vector is w. Show that

W(Sw) = SWw = (),
so that Sw belongs to the axis of W and is hence parallel to w. Thus
Sw = ow.

(Of course, ¢ may depend on the choice of w.) For S € Sym use the
spectral theorem and the fact that w is arbitrary to establish (14). For
S e Skw,

O=w-Sw=ow?=0g=0

and (14) holds trivially. We therefore have the desired result for
S e Sym and S e Skw. Complete the proof by showing that if S
commutes with every W e Skw, then so also do the symmetric and
skew parts of S.

Choose Q € Orth*, Q # R. Use the identity
|F -~ QP =|F>?-2F-Q +3

SECTION 5 249

to show that
IF— QP = |F — R’ =2U-(I - Q,),
where B RU is the right polar decomposition of IF and
Qo == RTQ # L
Next, establish the identity
2U-(1 = Q) =U-(Qp — INQy — )T = tr{(Q, — HTU(Q, — I},
and show that U+ (I — Q,) > 0 by showing that (Q, — DTU(Q, — De

Psym.
SECTION 3
2. Differentiate AA™! = L.
3. Use the chain rule.
6. Differentiate QQT = I.
7. Take Q(t) = ™.

8c. Show that
1
Do(A)[U] = U - f {S(Ay + aA) + a DS(A, + aA) [A]} da,
(o]
and show further that the integrand is equal to

d
iy [#S(Aa + )],

SECTION 4

2. Show that div(STa) is linear in a and use the representation theorem
for linear forms.

SECTION 5

la.  Use the fact that, given any vector a,

(j v®ndA>a = v® n)a.(IA = f (v® a)ndA.
R R oR R
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6. Use (2.7) and (2.10) to show that Je= (3.3, 1)if and only if the

9.

10.

13b.

HINTS FOR SELECTED EXERCISES

SECTION 6

spectrum of Cis (1, 1, 1).

Let
F, = R, U, and F,=R,U,

be right polar decompositions of F, = Vf, and F, = Vf,, and note
that U,(p) = U,(p)forall p € #. Define g = f, o f7 1. Choose q e f,(%)
arbitrarily and let p = f{ !(q). Show that

Ve@ = Ry(p)R,(p)”

and appeal to the characterization theorem for rigid deformations.
To establish (18), let v = ", 0;e;, write

f v-mdA=Ze,~-f v;m dA,
ot i f(P)

and use (14.2). For (18), letabe a vector, write

a- TmdA = f (TTa) * m dA,
or() 20(99)

and use (18),. For (18); use the identity

a:(rxTm)=(Tm)-axr)=m-Ta x r) [r(x) = x — o]
to write
a-f rmedA:f m-TT(a x r)dA
() of(#)
and appeal to (18), again.

To verify (5), use the continuity of f and f~! together with the fact
that for a continuous function the inverse image of an open set is open.
To prove (5), note that, since 4 is closed,

(B) = (%) U 1(0RB),
and since (%) is closed,
f(B) = (B L H(B).

Use these identities with (5), to verify (5),.
Show that f(4) is not closed.

Ta.

SECTION 8 251

SECTION 7

Consider C and U as functions of H = Vu:
C = ¢, U = O(H).
Use the chain rule and the identity € = 07 to conclude that

DC(0) [S] = 2 DOW) [S]

for all tensors S, and then conclude from (5), that

O(H) =1 + E + o(H).
Use Exercise 4 in conjunction with Exercise 4.9b.
Use the trigonometric identities
cos(® + f) = cos @ cos B — sin O sin f,
$in(® + B) = sin © cos ff + cos O sin B,

together with the estimates

cos B =1+ o(ff),

sin B = B + o(f).
[1t is a simple matter to verify that Vu — 0 as o — 0 without explicitly
computing the gradient. Indeed, one simply notes that u, as a function

of a and p, is smooth for (o, p)e R x &; one then obtains the above
limit by first evaluating w at o« = 0 and then taking its gradient. ]

SECTION 38
Compute div v using (5) and Exercise 4.9a,

Choose p e & and let c(0),0< 0 <

1, be a smooth curve in & with
¢(0) = p. Use the relation

d
45 0(e()) = 0

to show that Vo(p) is norma!l to ¢(0).
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3.

5.

4c.

2.

THNTS FOR SELECTED EXERCISES

SECTION 9

Show that the two terms in the right side of (15) arc symmetric and
skew, respectively, and use the uniqueness of the expansion L =
D + W ol L into symmetric and skew parts.

Show that

Ixz(Ya t) - X‘(Z, t)' = Iy - ZL
so that x.(., 1) is a rigid deformation.
By (19),

{n+

C' = F'A,, F = (& = (F"A,F).

SECTION 10

Use (4.2), and (9.11).

SECTION 11

Use (9.12), (10.2), and (2),.
Take the curl of (9.10), and use the identity
curliw x v) = (grad w)v — (grad v)w + (div v)w — (div w)y
. and (10.2).
Fix y and 1, and let
| 8(0) = v(x(y, 1), OW(xLy, ), 1)
It suffices to show that
g(t) = F(y, Ng(x).
By (9), g satisfics a certain ordinary differential equation. Show that
(1) = F(y, 0g(v)

satisfies the same differential equation and f(t) = g(z). Appeal to the
uniqueness theorem for ordinary differential equations.

Use (9.10).

3.

3a.
3b.

3c.

3e.

3f.

SECTION 13 253
SECTION 12

Show that
PY. ) = p(x, 1) det F(y, 1)
and then procced as in the proof of (7).

Letf =g — v and use the divergence theorem to prove that H{g} =
HA{v} + A {f}.

SECTION 13

Use (9) and (12.7) to convert (4) to an integral over #,.
Use (10) to eliminate q(r) from (9) and derive

Xoly, 1) = a(t) + Q()[y — a(0)].
By (9.13),
Y(Xo(3, 1), 1) = %o(y, 1) = &(t) + Q(1)y ~ a(0)].
Choose x € 4, arbitrarily, and lct y be such that x = Xoly. 1), i.c.,

y = o(0) = Q()"[x — a(r)].
Then

v(x, 1) = &(1) + QUIQN[x — a(r)].

Compare the gradicnts (with respect 1o x) of the above equation and
9.7).

(If)  Define g(r) = Q(t)k(0) and show that g and k satisfy the same
differential equation and g(0) = k(0). Appeal to the uniqueness
theorem for ordinary differential equations,

To establish (15) transform (14) to an integral over 4, using the same
steps as in (3a). Then use (12) (with k = e) and (15) to show that

e(t) - J(e(t) = €,0) - J(0)e,(0).
Choose {e,0)} to be an orthonormal basis of eigenvectors. Since

() = Z Jiyw (e (1),

where J; are the components of J(¢) relative to {e, (1)}, we may con-
clude, with the aid of (13), that :

i = ). [0, €; + Jijo(o % e)].
i




HINTS FOR SELECTED EXERCISES
Show that

f Vop dV =0
a4,

and then compute ¥~ with v = v, + a.
Use (11).

SECTION 14

Prove that it suffices to find a tensor Q such that

G(Q) = Lgr@Qs(n) dA + L’ r® Qbdv

is symmetric. Show that G(Q) = G)QT, take the left polar de-
composition of G(J), and choose QT to make G(DQT symmetric. Here
you will need the following extended version of the polar decom-
position theorem': given F e Lin there exist unique positive semi-
definite, symmetric tensors U, V and a (not necessarily unique)
orthogonal tensor R such that

'F=RU = VR
We must show that
n-T(x, Dk = 0,

whenever n is normal to—and k tangent to—Jd4, at x. Use the sym-
metry of T and the fact that 84, is traction-free.

SECTION 15
Use Exercise 5.1b.
Use Exercise 5.1a.

Use components.

' Cf,, e.g., Halmos [1, §83].

1.

SECTION 22

SECTION 16

Show that
P = {DeSym|tr D = 0.
Given any tensor N € Sym, write
N = —zl + N,

where m = —4tr N, so that tr Ny = 0. Show that N- D = 0 for every
D € 2 if and only if N, = 0.

SECTION 17

Use the divergence theorem to express the term involving b in (15.2)
as an integral over 9%, .

Compute grad v.
Use Bernoulli’s theorem.

SECTION 20

Use Exercise 2.5.

SECTION 21

Use (20.1), (6.18),, and (1) to show that
T*n*dA4 = Q) Tn dA.
ot LA

Apply the divergence theorem to both sides and then use (6.14), to
convert the integral over 2% to an integral over 2.

SECTION 22

Use Exercises 4.9b and 7.4.

Use coordinates with, say, €3 = n together with the relation divv = 0
to show that (grad v)Tn = 0. ’
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4c.

4e.

5b.

Sc¢.
5d.

6a.

6c.

HINTS FOR SELECTED EXERCISES

SECTION 25

For He ., with det H 5 I take F,=H"and G, = H™" (or vice
versa).

Choose F e Lin* arbitrarily and take H = (det FY'3F~! (o reduce
T to a function of the density. Show next that T is isotropic and use
this isotropy to reduce the stress to a pressure (cf. the corollary on
page 13),

Choose H e . By (16) and (19),
T,(FG™1) = T(F) = T(FH) = T,(FHG™ 1)
for every F e Lin*, so that :
T,(F) = T(FGHG" D)
for every FeLin*. Thus H €3, implies GHG !¢ Ho(g) and
BHLGT < #(g). Similarly, Hy(g) < GH#, G,
Use (17) and (20).
Let G = RU be a right polar decomposition of G. Then
H(g) = RUS, U IR,
'Choose Qe #,. Then
Q = RUQU"'R"!
belongs to #,(g). Thus, since Q, O € Orth * (why?),

(QR)U = (RQ)QUQ) (o)
represent polar decompositions of the same tensor; hence Q = RQR",
Thus Q € 5, implies RQRT e Ho(g), and R#,RT H#,(g). Similarly,
#4(8) = R, R™. Equation («) also implies that U = Q'UQ. When

P is isotropic this result and the corollary on page 13 tell us that
U = AI, so that G = JR.

Without loss in generality add the constraint

tr T(F) = 0
for all F € Unim (cf. the remarks on pagce 148).
Define
T(F) = T((det F)~ '1’F) )

for all FeLin*. Then T(F) = T(F) for all Fe Unim, so that T
provides an extension of T to Lin*. Show that T(F) must reduce to
an isotropic function of B = FFT and use (37.21).

6.

Ia.
1b.

SECTION 29 257
SECTION 27

Transform

f (T + noDm dA
x(.7, 1)

to an integral over & (< &) and use the fact that & is arbitrary.

SECTION 28

Integrate 8(R)- along a path from R = | toR = Q.
Substitute (5) into (27.1 1) and use the chain rule to verify that
De[6(QF) — a(F)] = 0.

Integrate this from F = [ [using (19)].
Use the chain rule to differentiate

4(F) = §(F'F)
with respect to F and appeal to (5) and (27.14).
Use the incompressibility of the body to show that

(a)-D =0,

so that the term involving the pressure  does not enter the expression
for the work. Then use the extension () to reduce the problem to the
one studied in this section.

Show that the work done on a part 2 during [t,, t,] is given by

g
f T-DdV dt
o Y&

provided the process is closed during this time interval.
Use components.

SECTION 29

Extend the proof of (b) of the theorem on page 195.
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SECTION 30

4 Use (29.7) withF = 1.

SECTION 32

2. Use Exercise 15.1.

The following theorem is needed: if w, are class CY (N > 1) fields on
& with

Wiz =Wy,
then there exists a class C¥* 1 field Y on 2 such that
Wo = i,
The compatibility equation in the form
(En,z - Elz,x)wz = (Exz,z - Ezz,x)sl
establishes the existence of a field ¥ such that
Eii2 =(E12+¢).1» Ejs., =(E12—‘//).z,

and hence fields u, such that

Ey=u,,  En+id=u.,,
Eyy=u,,, Epo =t =u,,.
11. Equation (13),, written in the form

Sisa = —sz,z’ Szz,z = =S

implies the existence of fields ¥ and 0 such that

S11 =ll/,2, S12= —th Szz=0s1, Sllz _0’2’

Yy = 0,,

and there exists a ¢ such that

!//=§Dsz, 9‘_‘(/”1-

SECTION 34 259

SECTION 33

4. Assume that the boundary of the cross section is paramectrized by

pi(o)and p,(o) with o the arc length. Then the vector with components

d
ny(o) = “Edz%z, hy(o) = — ﬂ%

is normal to this boundar

¥y at each g. Use this fact, (7), and (8) to show
that

P1(63* + py(0)? = const.
5¢c.  Show that
Si3 = /’“{[Px(%l =Pl + [1’1(‘Paz +p)la) .

and use the divergence theorem

on % (as a region in R?) and (11) to
verify that

Sy3dA = 0.

Lo
Similarly,

Sy3dA = 0.

Zo

SECTION 34

2. Show that

L fo {E(t - ) CE( + 1))
—E(t + 1) C[E(r - D1} dv dV = 2%{E}(),
f fp{l'l(t =) + 1) — (s + )Wt — )} drdV = =27 {a}(t)
B VO

(where we have suppressed the ar
to@(1). To derive these identities
as derivatives with respect to .

gument p), and that the Jeft sides sum
write the integrands on the left sides
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Show that the convolution of the left side of (12) with A(¢) = t is equal
to

A*fS*Ele—}-fpu*ﬁdV,
@ 2

where the convolution of two tensor ficlds is defined using the inner
product of tensors in the integrand in (11). Show further, using the
commutativity of the convolution operation and the symmetry of C,
that

S+E=8+E

In view of the above remarks we have the identity obtained by taking
the convolution of (12) with 4, and if we differentiate this relation twicc
with respect to time, we arrive at (12).

SECTION 37

Choose u and v with {u] = [v], let Q be the orthogonal tensor carrying
u into v, and show that o) = @(v).

Choose v and let Q be any rotation about v, Show that for this choice
of Q, Qq(v) = q(v), and use this fact to prove that q(v) is parallel to v.
Thus g(v) = ¢(v)v. Show that @ is isotropic and use Exercise 1.

Use induction.

A

Acceleration, 60

Acoustic equations, 133
Acoustic tensor, 224

Airy stress function, 214
Angle of twist, 58

Angular velocity, 70
Anisotropic material point, 169
Axial vector, 9

Balance of energy
for hyperelastic material, 191
for linear elastic material, 220
for viscous fluid, 153
Bending of bar, 214-217
Bernoulli’s theorem, 111
for elastic fluid, 131
for ideal fluid, 120
Betti's reciprocal theorem, 206
Blasius- Kutta-Joukowski theorem, 124
Body, 41
Body force, 99
Boundary, 35
Boussinesq- Papkovich— Neuber solution,
201
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C

Cartesian coordinate frame, 2
Cauchy stress, see Stress, Cauchy
Cauchy's theorem, 101
Cayley-Hamilton theorem, 16
Center of mass, 92
Chain rule, 26
Characteristic space, 11
Circulation, 82
Closed region, 35
cn, 21
Commutation of tensors, 3
Commutation theorem, 12
Compatibility equation, 213
Complex potential, 126
Complex velocity, 123
Connected set, 35
Conservation of mass, 88

for control volume, 90

local, 89
Conservative body force, 111
Constitutive assumption, 115-119
Control volume, 89
Cross product, 7
Curl, 32

material, 61

spatial, 61
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Curve, 34
closed, 34
length of, 34

D

Da Silva's theorem, 107
Deformation, 42
Deformation gradient, 42
Density, 88
Derivative, 20-21
invariance of, 237 -
Determinant, 6
derivative of, 23
Differentiable, 21
Displacement, 42
Displacement equation of equilibrium, 201
Displacement equation of motion, 201
Displacement problem of elastostatics, 207
Divergence
material, 61
spatial, 61
of tensor field, 30
- of vector field, 30
Divergence theorem, 37
Dynamical process, 108

E

Eigenvalue, 11

Eigenvector, 11

Elastic body, 165
incompressible, 174

Elastic fluid, 117, 130-137

Elasticity tensor, 194-197

Elastic process, 220

Elastic state, 205

Equation of motion, 101

Euclidean point space, 1

Eulerian process, 116

Euler’s equations for ideal fluids, 121

Euler tensor, 95

Exponential function, 227-229

Extended symmetry group, 172

Extension, 44

Extra stress, 148

F

Finite elasticity, 165~ 198
Flow, 108
Flow region, 109

Gradient
material, 60
of point ficld, 30
of scalar field, 29
spatial, 61
of vector field, 30
Graffi's reciprocal theorem, 223

H

Harmonic field, 32

Hellinger- Prange - Reissner principle, 212
Homogencous body, 171

Homogencous deformation, 42
Hu-Washizu principle, 212

Hyperelastic body, 186

1

- Ideal fluid, 117, 119-130

Incompressible body, 116
Inertia tensor, 94
Infinitesimal rigid displacement, 55
characterization of, 56
Infinitesimal strain, 55
Inner product
of tensors, §
of vectors, 1
Integral of vector field around curve, 34
Interior of set, 35
Invariance of function, 229
Invariance of set, 229
Invariance under change in observer, 143-
145
for elastic body, 166
for Newtonian fluid, 149
Inverse of tensor, 6
Irrotational motion, 81
Isochoric deformation, 51
Isochoric dynamical process, 116
Isochoric motion, 78
Isotropic function
definition, 229
representation theorem for linear tensor
functions, 235, 236
representation theorem for scalar func-
tions, 230
representation theorem for tensor func-
tions, 233, 235
Isotropic material point, 169

INDEX

K

Kelvin's theorem, 83
Kinematically admissible state, 208
Kinematical viscosity, 151

Kinetic energy, 111, 220

Konig's theorem, 95

Korn’s inequality, 57

L

Lagrange_ Cauchy theorem, 81
Lamé moduli, 196

Laplacian, 32

Left Cauchy-Green strain tensor, 46
Left stretch tensor, 46

Lin, 7

Lin*, 7

Linear elasticity, 199-226

Linear form, representation theorem, |
Localization theorem, 38
Longitudinal sound speed, 225

M

Mach number, 133
Mass, 87
Mass distribution, 87
Material body, 116
Material curve, 82
Material description, 60
Material field, 60
Material point, 41
Material time derivative, 60, 61
Mean strain, 57
Minimum complementary energy, principle
of, 211
Minimum potential energy, principle of,
193, 208
Mixed problem of elastodynamics,
221
Mixed problem of elastostatics, 207
Modulus of compression, 202
Momentum
angular, 92
balance for control volume, 108
balance of, 59
linear, 92
spin angular, 93
Motion, 58
Motion relative to time T, 75
Multiplicity of eigenvalue, 11

N

Navier-Stokes equations, 15]
Newtonian {luid, 148
Normal force, 105

o

Observer change, 139
Open region, 35
Origin, 2

Orth, 7

Orth+, 7

Orthogonal tensor, 7

P

Part of body, 41
Path line, 63
Piola- Kirchhoff stress, see Stress, Piola—
Kirchhoff
Place, 58
Plane motion, 74
Poincaré inequality, 163, 164
Point, 1|
Poisson’s ratio, 203
Polar decomposition of tensor, 14
Polar decomposition theorem, 14
Position vector, 62
Positive definite tensor, 7
Potential flow, 11]
Potential thcorem, 35
Power expended, theorem of, 110, 180
Pressure, 106
Principal invariants, 15
list of, 15
Principal stress, see Stress, principal
Principal stretch, 45
Progressive wave, 223-226
Psym, 7
Pure torsion, 58

R

Reduced constitutive equation, 166
Reference body force, 179
Referen‘ce configuration, 41
Reference density, 88

Reguiar region, 37

Reiner—Rivlin fluid, 155

Reynolds number, 154

Reynolds’ transport theorem, 78
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Right Cauchy-Green strain tensor, 46
Right stretch tensor, 46
Rigid deformation, 48
characterization of, 49
Rigid motion, 69
Rivlin~ Ericksen tensors, 76
Rotation, 7
about point, 43
tensor, 46

Shearing force, 105
Shear modulus, 202
Signorini's theorem, 113
Simple shear
of elastic body, 175-178
of Newtonian fluid, 156159
Simply connected set, 35
Skew tensor, 3
Skw, 7
Small deformation, 54-58
Smooth, 20
Smooth 1. verse theorem, 22
Smoothness lemma, 60
Sonic f1 v, 133
Sound o od, 131
Span, 2
Spatial description, 60
Spatial description of velocity, 60
Spatial field, 60
Spatial time derivative, 61
Spectral decomposition, 12
Spectral theorem, 1
Spectrum, 11
Spin, 71
axis, 71
transport of, 80
Square root of tensor, 13
derivative of, 23
Square-root theorem, 13
Stability theorem for Navier-Stokes equa-
tions, 162
Stagnation point, 128

INDEX

Strain-energy density, 186
Stream function, 126
Streamline, 64
Stress
Cauchy, 101
Piola~ Kirchhoff, 178
principal, 105
shear, 106
tensile, 106
Stress power, 111
Stretch, 44
Stretching, 71
Subsonic flow, 133
Supersonic flow, 133
Surface force, 99
Surface traction, 98
Sym, 7
Symmetric tensor, 3
Symmetry group, 168
Symmetry transformation, 168

T

Tensor, 2
skew part of, 3
symmetric part of, 3
Tensor product, 4
Time, 58
Torsion of circular cylinder, 217-219
Torsional rigidity, 219
Total body force, 100
Trace, §
Traction problem of elastostatics, 208
Trajectory of motion, 59
Transfer theorem, 231
Transformation law
for Cauchy—Green strain tensors, 141
for Cauchy stress, 144
for deformation gradient, 140
for rotation tensor, 140
for spin, 142
for stretch tensors, 140, 141
for stretching, 142
for velocity gradient, 142

Stationary potential energy, principle of, 193 Transverse sound speed, 225

Steady flow, 109
Steady motion, 67
Stiffness matrix, 210
Stokes flow, 152
Stokes’ theorem, 39
Strain energy, 205

U

Unimodular group, 172

Uniqueness
for linear elastodynamics, 222

for linear elastostatics, 207

“

for Navier-Stokes equations, 160

v

Vector, 1

Velocity gradient, 63

Virtual work, theorem of, 100
Viscosity, 149

Viscous flow problem, 160
Volume of set, 37

Wang's lemma, 232
Wave equation, 133
" Work in closed processes, 185

Young’s modulus, 203




