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Preface

This book has grown out of lecture notes in courses in Mathematical Statistics, Linear
Models, Multivariate Analysis, and Time Series Analysis taught by the authors over many
years at UC Davis. Of these, Mathematical Statistics (Chapters 1-10) and Linear Models
(Chapter 11) are core courses for PhD students in Statistics and Biostatistics at most
institutions. Courses in Multivariate Analysis and Time Series Analysis are also taken by
many students in these programs. A good background in Advanced Calculus and Matrix
Analysis is a prerequisite for these courses.

Although most students in these courses would have taken an intermediate level course
in Probability Theory, we have included such material in Chapters 1 and 2 for a review.
Chapter 3 introducers various modes of convergence of an infinite sequence of random
variables, which may be deferred until the study of asymptotic theory begins in Chapter 7.
In Chapter 4, we outline the main problems of statistical inference and various approaches
to optimality in the decision theoretic framework before treating Point Estimation, Hy-
pothesis Testing, and Confidence Sets in Chapters 5 and 6. Methods based on Likelihood,
Distribution-free Tests, and Curve Estimation are treated in Chapters 7-9, and Chapter 10
deals with Statistical Functionals. Gauss-Markov Models, topics in Model selection and
Linear Mixed Models are the main focus of Chapter 11. Chapter 12 deals with Multivariate
Analysis covering many of the standard methods used in practice. An introduction to
Time Series Analysis is given in Chapter 13 covering aspects of ARMA modeling and
Spectral Analysis. These chapters mostly concentrate on asymptotic properties of these
methodologies, using the material in Chapter 3. Some technical results are included in
Appendices A and B.

Throughout the book we have restricted to discrete and absolutely continuous random
variables. Except for using the concept of a o-field of subsets and in particular the Borel
o-field in Euclidean spaces, we have avoided all technicalities of measure theory. On
the other hand, we have used Stieltjes integrals, providing a quick introduction to these
integrals in Appendix A. Basic results from matrix algebra and distribution of quadratic
forms are included in Appendix B.

We have not been able to cover everything in Chapters 1 through 10 and Appendix A in
a three-quarter course with three lectures and one discussion per week in Mathematical
Statistics. The following possibility of slightly trimming this material is suggested so as to
fitinto a three-quarter framework.

xiii



xiv PREFACE

(i) Give a quick review of Chapters 1 and 2, leaving out most of the materials for
self-study.

(ii) Introduce as many topics as possible out of locally best tests (Section 6.8), SPRT
(Section 6.11), locally most powerful rank tests (Section 8.2), and curve estimation
(Chapter 9).

(iii) Leave the details of most of the proofs in Sections 6.7-6.9, 7.2, 7.4, and 10.6 for
self-study, going over only the main ideas in class-room presentation.

We also suggest the following outline for a full academic year Master’s level course in
Probability and Mathematical Statistics.

(i) Chapters 1-3 omitting Theorems 3.2.5 parts IX—XI; Theorems 3.2.3-3.2.5.

(ii) Omit the following: proofs in Sections 4.6.5 and 4.6.6; Ancillarity and Completeness;
proof in Section 5.2.3; Equivariance in its generality; Section 6.8 and Section 6.11;
proofs in Sections 6.12.2, 7.1.1, and 7.1.2; proofs of Theorems 7.2.1,7.2.2, and 7.4.1;
Section 8.2; proofs in Section 8.3; proofs in Chapter 9 and the entire Chapter 10.

Chapters 5 and 6 are influenced by Ferguson [1] and Lehmann [2, 3], and Chapter 8
relies heavily on Hajek and Sidék [4].

The material in Chapter 11 can be fitted in a two-quarter course in Linear Models with
minor modifications; introduce as many topics as possible from Model Selection omitting
some of the proofs, using examples to clarify the concepts.

Most of the material in Chapter 12 should be accessible to doctoral students along with
the examples. An introduction to Time Series (Chapter 13) can be done by focusing on the
main ideas and examples. The material in these two chapters can be fitted in two one-
quarter courses for PhD students.

Chapters 11 and 12 use the material provided in Appendix B.

Our work on this book was initiated at the insistence of Jerome Braun, who took the
Mathematical Statistics course from one of us. Thank you Jerome! The authors are also
grateful to Ms Christine Cai for typing some parts of the book. We are indebted to the
National Science Foundation for a grant (DMS 09-07622) for support of research in writing
this book.

PK. Bhattacharya, Prabir Burman
Davis, California



Probability Theory

1.1 Random Experiments and Their Outcomes

Probability theory is the systematic study of outcomes of a random experiment such as
the roll of a die, or a bridge hand dealt from a thoroughly shuffled deck of cards, or the
life of an electric bulb, or the minimum and the maximum temperatures in a city on a
certain day, etc. The very first step in such a study is to visualize all possible outcomes of the
experiment in question, and then to realize that the actual outcome of such an experiment
is not predictable in advance. However, from the nature of the experiment, or from our
experience with the past results of the experiment (if available), we may be able to assign
probabilities to the possible outcomes or sets thereof.

For example, in the roll of a balanced, six-faced die, the possible outcomes are
{1,2,3,4,5,6} to each of which we may assign a probability of % (ie, in many repetitions of
the trial, we expect each of these outcomes to occur % of the times). From this, we can also
conclude the outcome to be an even number with probability % = %

Similarly, the possible outcomes of a bridge hand dealt from a standard deck are all the
(‘;’g) = % combinations of 13 cards from a 52-card deck, each carrying a probability of
1/(55)-

The possible outcomes of the life of an electric bulb (in hours) is the set [0, c0) and
the possible outcomes of the minimum and maximum temperatures in Philadelphia on
a certain day in future (in °C) is {(x, y): =273 <x<y< oo}. In these last two examples,
the sets of possible outcomes may seem to be unrealistically large, but this is because we
cannot put an upper limit to the life of an electric bulb, or lower and upper limits to the
temperatures in a city. However, from the past performance of many electric bulbs of a
certain make, or from the meteorological records over many years in the past, we may be
able to assign probabilities to various outcomes in these two examples. Such probabilities
are empirical in nature.

1.2 Set Theory

The collection of all possible outcomes of a random experiment and various sub-
collections of these outcomes are the entities to which we want to assign probabilities.

Theory and Methods of Statistics. http://dx.doi.org/10.1016/B978-0-12-802440-9.00001-1 1
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2 THEORY AND METHODS OF STATISTICS

These sub-collections are sets in the space of all possible outcomes. Our aim is to develop a
logical system which would enable us to calculate the probabilities of sets of complicated
nature from the probabilities of sets whose probabilities are more clearly understood.
For this, we need to have an understanding of some basic facts about the theory
of sets.

We denote by S the space of all possible outcomes of a random experiment, consisting
of elements (particular outcomes) s € S. In S, we would be interested in various sets A C S
and their combinations of different types.

Definition 1.2.1.

(i) The entire space is S consisting of elements s € S, and ¢ is the empty set which
contains no element of S.
(ii) A°={seS:s ¢ A}isthe complement of A C S.
(iii) A1 NA2 =A1A2 = {s € S:s €Ay and s € Ay} is the intersection of A and Ay.
(iv) A1UA; = {s € S:s € atleast one of A}, A} is the union of A; and A».
(v) A C Ayifs € Ay implies s € Ap; Ay = Ap if A} C Az and Ay C A;.

The following are immediate from the above definitions:

() 0 =S (i) A1 U Az = (A145) U (AS42) U (A1), (i) (A)° = A.
(iv) (A; UA»)° = Af N AS and more generally (Ul'-lzlA,-)c = Niz1 A5

(v) (A1 NA2)¢ = AS U AS and more generally (ﬂl'-lzlA,-)c = U1 A5
(vi) AN(BUC)=(ANBU(ANC)and AU (BNC) = (AUB) N (AUC).
(vii) IfA; C Ao, thenA; UA» = A and A; N Ay = Aj.

Note. (iv) and (v) are called DeMorgan’s rules.
Definition 1.2.2. Sets A1, Ay, ... are disjoint (or mutually exclusive) if A; N Aj=10 for all
i#].
Definition 1.2.3.
(i) IfthesetsAj, Ay, ...aresuchthat|J;”; A, =S, then the collection {A;, Ay, ...} forms a
covering of S.
(i) If the sets Aj, A, ... are disjoint and [ ;. ; A, = S, then the collection {A;, A, .. .}
forms a partition of S.

Note. To avoid triviality, the sets in a covering or a partition of S are nonempty.

From any covering {A;, Az, ...} of S we can construct a partition {B;, B, ...} of S by
letting By =A,B = A<1:A2, ...,By = A%Ag .- 'Ail—lAn’ R

Clearly, By, By, . .. are disjoint and U° | B, = U Ay = S. In particular, if Ay C A> C
- CAp C --- and U A, = S, then {By, By, ...} forms a partition of Sif By = A}, Bz =
ASAz,...,Bp=A5_An,....



Chapter 1 » Probability Theory 3

1.3 Axiomatic Definition of Probability

A probability spaceis described by a triple (S, A, P) where S is an arbitrary space consisting
of elements s € S, Ais a collection of sets A C S, called events, with the properties:

(E)S € A. (Ei) A € A = A € A. (Eiii) A1, Az, ... € A= | A € A,
and P: A — [0, 1] is a function on .4 with the properties:
(P))P[S] = 1. (Pii) for disjoint sets A1, Ap, ... € A, P[Usne; An] = Yo PlAAL

A collection of sets of S with properties E(, ii, iii) is called a o-field of subsets of S and a
function on A with the property P(ii) is called a a countably additive set function. The
property P(i) makes such a set function a Probability.

Proposition 1.3.1 (Continuity Property of Probability). From the axioms P(, ii), it
follows that

(Piii) ifA1 DA2 DA3D - DAy D andlimy oo Ap =y An = ¥, then
limy,_, o P[An] = 0, or equivalently,

(Piv) ifAy CA2 CA3C - CAyC - andlimy oo Apn =y An = S, then
lim;,_, o P[An] = 1.

Conversely, either P(i, iii) or P(i, iv) implies P(i, ii).
Proof of the equivalence of P(j, ii), P(j, iii), and P(j, iv) is left as an exercise.

1.4 Some Simple Propositions

Proposition 1.4.1.

(i) P[AS] =1— PlA], P[#)] = 0.
(ii) IfA C B, then P[A] < P[B].
(iii) P[AU B] = P[A] + P[B] — P[AB].
(iv) P[Uis, Ai] < X1, PlAL.
Proof.

(i) Aand A€ are disjoint and AU A® = S. Hence
1 = P[S] = P[AUAS] = P[A] + P[A%], so P[A] = 1 — P[AL
In particular, # = S¢ and therefore, P[] =1 — P[S]=1—-1=0.
(ii) IfAcC B, thenB=AU (ACB), where A and A°B are disjoint. Hence
P[B] = P[A] + P[A°B] = P[A], because P[A°B] > 0.
(iii) A= (AB)U (AB%), B= (AB) U (AB), AUB = (AB%) U (A°B) U (AB), and the sets
AB¢, A°B, AB are disjoint. Thus

P[AU B] = P[AB] + P[A°B] + P[AB]
= {P[AB] + P[AB‘]} + {P[AB] + P[AB]} — P[AB]
= P[A] + P[B] — P[AB].
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(iv) LetB; = Ay, By = A,°As, ..., By = A°---AS_ Ay Then
(@) Uit 4i=UiL1 Biy
(b) B1,Bsy,..., By are disjoint, and
(© BicA,i=1,...,n.
Hence P[UiL, A;] = P[UL, Bi] = Y iL1 PIBil < YL, PIA;] by (ii).

Proposition 1.4.2.

n
PIAJU---UAnl =) PiA— ) P[A4;)]
i=1 1<ii<iz<n
+oo o (=D > P[Ay Ay -+ A ]
1<ii<ip<--<ir<n

+oo 4 (=D"TIP[A1 A, - Ap)

The proof, which follows by induction, starting from Proposition 1.4.1(iii), is left as an
exercise.

Proposition 1.4.3 (Bonferroni’s Inequality). P[A1A2---Ay] > P[A1] + P[A2] + -+ +
P[A,] — 1.

For n = 2, P[A1A2] > P[A1] + P[A2] — 1is proved as follows: 1 > P[A; U Az] = P[A1] +
P[A2] — P[A1A2]. Hence the result.The proof of the general case follows by induction, and
is left as an exercise.

This inequality may be useful in some situations to get some idea about P[A1A; - - - Ay
where actual evaluation may be difficult.

1.5 Equally Likely Outcomes in Finite Sample Space

Suppose that S consists of N elements, S = {s1, ..., sy}, which are equally likely. Then the
total probability of 1 is shared equally by these N elements, so that P[{s;}] = % for each i.
Consequently, for any event A = {s;,,..., i}, P[Al = & = %, where #(E) = number of
elements in E.

Evaluation of probabilities of events in such a setting, essentially reduces to counting
problems which are often of a combinatorial nature.

Example 1.5.1. Two balanced dice with 1, 2, 3, 4, 5, 6 on the six faces are rolled. Find
the probabilities of the events: (a) the numbers on the two dice are equal, (b) the sum
of the numbers on the two dice is 10, (c) the number on at least one die is 6, and (d) none
of the numbers is a 6.

Solution.

(a) #(S) =6-6 =36 and if we let A; be the event in question, then

A1 ={(1,1),(2,2),...,(6,6)) and #(4)) = 6. Thus P[A] = 2} = & =

(b) Here the event A, = {(4,6), (5,5), (6,4)}, 50 #(42) = 3. Thus P[A;] = 2%
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(d) We answer (d) first. None of the numbers is a 6, means no 6 on the first, with
probability (1 - —) and no 6 on the second, with probability (1 — —) Hence the

probability of no 6 on any of the two d1ce is the probability of the event

Az, PIAJ) = (1 — 31— 3) = 2 - 2 = 22, because the roll of the first die has nothing to
do with the roll of the second die, that is, they are “independent,” which is a concept
to be introduced in the sequel. In a direct counting approach,

Ay ={xy): x_l 2,3,4,5andy =1,2,3,4,5}. Thus #(A4) =5-5 = 25, 50

P[A4] = #(AS“)) 36, which agrees with our calculation based on the concept of

independence.
(c) “Atleastone 6” is the complement of “no 6”. Hence
P[A3] = PIA§] =1 - P[A4] =1 - 2 = 1.

Example 1.5.2. What is the probablhty that a bridge hand dealt from a well-shuffled
standard deck of cards will contain 2 Aces and 2 Kings?

Solution. Here #(S) = number of ways to choose 13 cards from a deck of 52 cards = (33),
and if A denotes the event in question, then #(A) = number of ways to choose 2 out of 4
Aces, 2 out of 4 Kings, and 9 out of the remaining 44 cards = (3)(3) (). Thus

P[A] = % ~ 0.04.

1.6 Conditional Probability and Independence

Definition 1.6.1. For events A and B with P[A] > 0, the conditional probability of B given
Ais defined to be
P[AB]

This is the probability that we assign to the event B if we know that the event A has
occurred. Now if the knowledge of occurrence of A does not change the probability of B
(ie, if P[B|A] = P[B]), then we say that B is independent of A. But this holds if P[AB] =
P[A]P[B]. Now if P[B] > 0, then P[AB] = P[A]P[B] also implies

P[AB
PIA|B] = % = P[A],

so that A is independent of B. This leads to the following definition.
Definition 1.6.2. Events A, B are independent if
P[AB] = P[A]P|B]. (2a)
More generally, events Aj,...,A; are independent if for every subset {ij,...,i} of
{1,2,...,n},2<r<n,

P[A; Aj, - - Aj ] = PlA;1P[A;,]--- PIA;, ] (2b)
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From the definition of P[B|A] in Eq. (1), we have
P[AB] = P[A]P[B|A]. (3a)
More generally, we have
PIA1Ay - - - An] = PlA11P[A2]|A11P[A3]A1A2] - - - PlAR|Ay - - - Ap—1]. (3b)
This is proved by applying the above formula repeatedly to the right side to see that

P[A1]P[A2]|A1]1P[A3|A1As] - - - P[Ap|Ay - - - Ap—1]
= P[A1A2]P[A3|A1A2] - - - P[Ap|Ar - - - Ap_1]

P[A1A2A3] - PlAp|A; -+ - Ap_1]

=...=P[AjAs - Apl.

Formulas (2a) and (2b) are special cases of Egs. (3a) and (3b) when the events are
independent.

Proposition 1.6.1. [Bayes Formula] If the collection of events {A1, Az, .. .} forms a parti-
tion of S, that is, if A1, Az, . . . € A aredisjoint and U]?i1 Aj =S, then

PIA;Bl _  PIA]IP(BIA;]
PB] ~ L3, PIAPIBIA;T

P[A;|B] =

Proof. We only have to observe that by virtue of Aj,Ap,... being a partition of
S, B = UoflA]B and the events A1 B, A2B, ... are disjoint. Hence P [B] = ZJ 1 PIAjB] =
Z] 1 PIAj1P[B|A;] by P(ii) and Eq. (3a). O

For any event B with P[B] > 0, P[A|B] as a function of A € A is a probability, that is,
0 < P[A|B] < 1forall A € A and P[-|B] satisfies P(i, ii). The verification of these facts and
the proof of the following proposition are left as exercises.

Proposition 1.6.2. IfA and B are independent, then the pairs A and B¢, A and B, A and
B¢ are also independent.

Example 1.6.1. There are 20 balls in a bag, of which 8 are white and 12 are black. We
draw three balls at random from the bag. Find the probability that all three of these balls
are white if (a) each ball drawn is replaced before the next draw, (b) the balls are drawn
without replacement.

Solution.

(a) Here the outcomes of the three draws are independent events, because the
composition of the bag is unchanged after a draw due to replacement. Let A; denote
the event of a white ball in ith draw, i = 1, 2, 3. Then P[A;] = % for each i and
A1, Az, Az are independent. Hence P(All three balls are white) = P[A;A2A3] = P[A;1]

3 3
PlA2IPAs) = (35) = (3) = o35

(b) When the draws are without replacement, the events A;, A2, A3 are not independent.
Here we can approach the problem in two ways:
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(i) Bydirect Counting, we have #(A1A42A3) = ( ) =56 and #(S) = ( ) = 1140. Hence
PlA1A243] = 1140 = 21845'

(ii) Arguing with conditional probabilities, by looking at the composition of the bag
conditional upon the outcomes of previous draws we have
PlA1] = ZO»P[A2|A1] = 19, P[A3]A1A2] =

Hence PLA;Ay/As] = PLA11PLAsI Ay P[As |1 dy] = I AR

Example 1.6.2. There are three boxes of which Box 1 contains tickets numbered
1,...,5; Box 2 contains tickets numbered 1, ..., 10; and Box 3 contains tickets numbered
1,...,20. One of the three boxes is chosen at random and then a ticket is drawn at random
from the chosen box. Find the probability that the ticket is from Box 2 if (a) the number on
the ticket is 4, (b) the number on the ticket is 7.

Solution. Let A; be the event that Box i is chosen, B the event that the number on
the ticket is 4 and C the event that the number on the ticket is 7. Then P[A;] = 1,1’ =

1,2,3; P[BIA1] = P[B|A2] 10,P[B|A3] 20, P[C|A1] =0, P[C|A2] = 10,P[C|A3] = 20
(a) Here we need P[A2|B]. By Bayes’ formula,

1.1
PlAz|B] = 3P[A2]P[B|A2] =TT it 1 T 1° %
ijl PIAjIPIBIA]l  3-5+3 19+t3 30
(b) Here we need P[A2|C]. By Bayes’ formula,
1.1
P[AgIC] _ f[AZ]P[ClAZ] _ . 13 110 . . _ g
]=1P[A]]P[C|A]] 3'0+§'m+§'m 3

1.7 Random Variables and Their Distributions

Definition 1.7.1. A real-valued function X: S — R on a probability space (S, A, P) is a
random variable (rv) if for all a € R,

{seS:X(s) <a}e A (4a)

More generally, X = (X1, ..., Xg): S — RF on a probability space (S, A, P) is a k-dimensional
(k-dim) random vector (rv) if for all (ay, ..., a) € Rk,

{[seS:X1() <ay,...,X0) <a}e A (4b)

Definition 1.7.2. The cumulative distribution function (cdf) of a 1-dim rv X is de-
fined as

Fx(a) = P[X < a] = P[{s: X(s) < a}] forallaeR. (5a)

Note. We shall use P as a set function P: A — [0, 1] as in P(, ii) as well as in a more
informal way as in P[X < a] to indicate the probability of X < a.
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Remark 1.7.1. We are using the abbreviation rv to indicate both a random variable and
arandom vector. The meaning of one or the other should be clear in the context.
Proposition 1.7.1 (Properties of a cdf Fx (x)).

(i) Fx(a) < Fx(b) foralla < b.

(ii) limy, o Fx(x 4+ h) = Fx(x) for all x.
(iii) lim,_, o Fx(x) =0.
(iv) limy_, o Fx(x) = 1.

Property (i) says that Fx is monotone nondecreasing (because (—oo, a] C (—oo, b] for all
a < b) and Property (ii) says that Fx is right continuous. Properties (ii), (iii), and (iv) follow
from the continuity property of probability, the proofs of which are left as exercises.
Foranyrv X,

P[X =a)=P[X <a] - P[X <a] =Fx(a) — l}}mFX(a +h)
10
= magnitude of jump of Fx at a (if any).

We shall consider only two types of rv’s, discrete and continuous. A 1v X is discrete if its
cdf Fx is a step-function (ie, increases only by jumps and stays constant elsewhere) and is
continuous if its cdf Fx is differentiable everywhere. Since a cdf Fx can have only a finite
or a countably infinite number of jumps, a discrete rv can have only a finite or countably
infinite number of possible values {x;}.

Definition 1.7.3. The probability mass function (pmf) of a discrete rv X is defined as

fxx)=PX=x], i=1,2,... and fx(x) =0 forallx ¢ {x;}. (6a)

ForanysetBCR, PIX e Bl =), pfx(®) and ) ;°, fx(x;) =P[X e R] = L.
Definition 1.7.4. The probability density function (pdf) of a continuous rv X is de-
fined as

fx(®) =Fx(x) >0 forallx € R. (7a)

Clearly, P[X < a] = Fx(a) = [“_ fx(x) dx, and [*_ fx(x) dx = limy_.o Fx(x) = 1.

Note. Since the cdf of a continuous rv X is differentiable everywhere, it has no jumps.
Hence P[X = a] = 0 for all a.

On the real line R, the smallest o-field of subsets which includes all intervals, is called
the o -field of Borel sets and is denoted by B. For each B € B,

PX e Bl = /fx(X) dx,
B

when this integral is defined in an appropriate manner.
The cdf ofa k-dim rvX = (X, ..., X)) is defined as

Fx(ay,...,ap) =P[Xy <ay,..., Xg <ai] forall(ay,...,a) e R¥. (5b)
The marginal cdf of X; is obtained as Fx;(a) = Fx(oo,...,0,a,,...,00), that is, by taking
a; = a,and a; = ooforallj # iin Fx(a,...,a;). Again we consider the discrete and

continuous cases, and define
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fX(xl,...,xk) (6b)
| P[Xi=x1,..., X =x¢] if(x1,...,x5) € setof possible values of X
10 otherwise
as the pmf of X in the discrete case, and .
fX(Xl,...,Xk) = mFX(X],...,X’C) (7b)

as the pdf of X in the continuous case.

The various marginal pmf’s and pdf’s are obtained by summing or integrating over the
other variables in Eq. (6b) or (7b).

For random variables defined by (4a, b), the cdf defined by (5a, b), the pmf/pdf defined
by (6a, b) or (7a, b) contain all the information.

Example 1.7.1. Players 1 and 2 each rolls a balanced six-faced die. Let (s1, s2) be the
outcome of the rolls, s; the number on the die rolled by Player i. On the sample space of
{(s1,82):5:=1,2,3,4,5,6, i = 1,2}, we define X(s1, s2) = s1 —$2 as the amount which Player
1 wins from Player 2, a negative win being interpreted as a loss. Find the pmf of X.

Solution. The possible values of the rv X are 0, £1, £2, +3, +4, and +5. For x >
0, #{(s1,82): 51 —s2 =x} =#{(1+x,1),...,(6,6 — x)} = 6 — x, each carrying a probability of
31—6. Hence for x > 0,

6—x

:PX: = —— =0,1,...,5.
fx(x) = PIX = x] 35 ©

Again for x < 0, #{(s1,82): 81 —S2 = x} = #{(s1,82): 82 —s1 = |x|]} = #{(1,1+|x]),...,
(6 —|x|,6)} = 6 — |x|, each carrying a probability of %. Hence for x < 0,
6 — |x|
36
Thus, fx(x) = 55, x = 0, £1, £2, £3, +4, £5.
Example 1.7.2. A point s is selected at random from the unit circle with center at the
origin (0, 0) and radius 1 and

fx(x)=PX =x]=

, x=-5,...,—1.

X(s) = distance of s from the center.

Find the cdf and the pdf of X and the probability that % <X< %.
Solution. The cdf of X is

Fx(x) = P[{s: X(s) < x}]
= P[s € acircle of radius x centered at origin|

Area of a circle of radius x
- Area of unit circle

=—=x7 0<x<1.

This is because, for a randomly selected point s from a set S in the plane,

Area of A
Plse Al=———, forallA
[s €Al Area of S orallAc$
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assuming that the areas of S and of A are well-defined.
Now the pdf of X is

fx() = Fy(x) = %(xz) =2x, 0<x<l.

Finally,

Alternatively,

3 3
P[l §X§§}:/4fX(x)dx=/42xdx=x2
2 4 % 1

2

1.8 Expected Value, Variance, Covariance, and Correlation
Coefficient

Definition 1.8.1. The expected value or the mean of an rv X is defined as

Y2 xifx(x)  if X is discrete

ux = EIX] = { [oo Xfx(x) dx  if X is continuous,

provided that the sum or the integral exists and is finite. Otherwise, we say that E[X] does

not exist.
More generally, we define

| X 8kpfx(x)  if X is discrete
Elgx0] = { fféoo g)fx(x) dx if X is continuous.

Note. E[X] exists if and only if E[|X]|] < co.
For a k-dim random vector X = (X1, ..., X}), we define

E[gX1,...,Xp)]

_ D all X1 Xk glxy, .., xp)fx(x1, ..., xp) if X is discrete
T S S 8, X)X (X1, ., xg) dxy - dxye  if X is continuous.

.....

Note. The term Expectation is often used for Expected Value.
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Proposition 1.8.1 (Properties of Expectation).

(i) IfPIX =c] =1, then E[X] =c.
(ii) IfP[X > 0] = 1 with probability 1, then E[X] > 0.
(iii) IfIa(x) =1 forx € Aand Ix(x) = 0 for x ¢ A, then E[I4(x)] = P[X € A].
(iv) E[aX + b] = aE[X] + b.
(v) B[ Xk aXi| = Yk aiBX.
(vi) IfP[X; > Xo] = 1, then E[X1] > E[X»].

The proofis omitted.
Definition 1.8.2. The variance of an rv X is defined as

o2 = Var[X] = E[{X — E[X]}Z] - E[XZ] — (EX1}2.

The last equality follows by expanding {X — E[X]}? and then using the properties of
expectation in Proposition 1.8.1, remembering that E[X] = ux is a constant. The standard
deviation of X is /Var[X] = ox.

Definition 1.8.3. The covariance between rv’s X and Y is defined as

oxy = Cov[X, Y] = E[{X — E[X]}{Y — E[Y]}] = E[XY] — E[X]E[Y]

Again the last equality follows by expanding {X — E[X]}{Y — E[Y]} and using the properties
of expectation. Obviously,

Cov([X, X] = Var[X].

Note. If X" = (Xj,...,Xp) is a k-dim v, then ¥ = ((COV[Xi,)(j]ij)) is called the
covariance matrix of X.
Proposition 1.8.2 (Properties of Variance and Covariance).

(i) Var[aX + b] = a*o}.
(ii) Var[Zle a,-X,-] = Z?:l 61?0‘)2(1, +2 Zlgkjgk aiaj GXin'
(iii) Cov[aX + b,cY +d] = acoyx,y.
(iv) Coo| LIy aXi+ Yy byYj| = S S, aibjoxy; = a' b,
wherea' = (ay,...,am), b' = (by,...,by), and X = (o5, v))-

(v) IfX is a k-dim rv, then Cov[X,X] = E[(X — ux) X — ux)"].
(vi) IfX isak-dimrvandAisak x k matrix, then Cov[AX,AX] = ACov[X, X)A".

The proofis omitted.

Question. Why is the mean px called the “expected value” of X?
The answer is statistical in nature. Suppose we want to predict the value of the rv X before it
is actually observed, by making a guess a and paying a penalty (X — a)?, which is the square
of the discrepancy between our guess a and the actual observation X. Then the average
penalty is
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B[ — @] = B[(X - jx) — (@ = 12012
= B[(X - )] + @ = w0)? = o} + (@ — ux?,

(using the fact E[X — ux] = 0), which is minimized by taking a = px. Thus the mean uy is
the best guess for an unobserved X under the rule of squared-error penalty and that is why
ux = E[X] is called the expected value of X. In a variation of the above game of prediction,
what would be the best guess if the penalty is the absolute error | X — a|? Here we want
to minimize E[|X — a|] by our choice of a. For simplicity, suppose Fx is continuous and
strictly increasing and let m = mx = Fy ! (%) be the solution of the equation Fx(m) = %
Then under the rule of absolute error penalty, m is the best guess for an unobserved X. The
quantity my is called the median of X, which has some advantages over the mean nx, as
will be seen later. For one thing, mx always exists even when ux may not.

We now prove an important inequality.

Proposition 1.8.3 (Cauchy-Schwarz Inequality). Let X, Y be rv’s for which E[XZ] < 00
and E[Y?] < oco. Then

(EXY1)? < E[x?]E[v?]
Proof. The function
ht) = E[(tX - Y)Z] - tZE[XZ] _2(E[XY] + E[YZ] >0 forallt,

so the quadratic equation h(#) = 0 can have at most one real root. But the roots of this
equation are

2E[XY] % \/4{EIXY])? — 4E[X2]E[ 2]
= 2E[X7]

Hence the expression under the radical must be < 0. O
Replacing X and Y by X — ux and Y — uy, respectively, in the above inequality, we have

Cov?[X, Y] < Var[X] Var[Y], ie, 0%y <oZo?.

Definition 1.8.4. The correlation coefficient between X and Y is defined as

B Cov[X, Y] _oxy
PXY = RarXIVarlX] _ oxoy

From Cauchy-Schwarz inequality, it follows that p%, < 1, thatis, —1 < pxy < 1. Moreover,
pxy = +1or pxy = —1, that s, p%, = 1 iff the equation

h(e) = B[ (tX = ) = (¥ = uy))?] =0
holds for exactly one real value of ¢. But

B[ (60X — ) = (¥ = uy))?] =0

&Y —puy=tX-px) wp.lforsomet #O0.
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(t=0= Y —puy =0wp.1 = o2 = 0, and we exclude this degenerate case from our
consideration.) Thus pxy = +1 or —1 iff Y is a linear function of X w.p. 1, the slope having
the same sign as pxy.

1.9 Moments and the Moment Generating Function

Definition 1.9.1. The rth moment of an rv X is defined as

wrx =E[X"], r=1,2,...

assuming existence, and 1o, x = 1. In particular, the mean ux = p1,x, and 0)2( = U2,x — uix.
Definition 1.9.2. The moment generating function (mgf) of X is defined as Mx(f) =
E[eX], provided that the expectation exists.
Differentiating under the integral,

r

d
) ) = = Mx (1)

r

=E[x"eX]  =E[X]=ur

t=0 =0

o0 t_r
Mx (1) = Z Thr
r=0 "’

Hence the name moment generating function. For a linear function a + bX, My, px () =
E[et(aerX):I — e‘”MX(bt).

1.10 Independent Random Variables and Conditioning
When There Is Dependence

Random variables Xj, . . ., X; are said to be mutually independent if
k
Fxy, o x (X1 -0 X)) = l_[FXl.(x,-) forall xq, ..., x. (8a)

i=1

Equivalently, for mutually independent rv’s,

k
le AAAAA X (xl, . ,xk) = l_[in (xi) for all X1y X (8b)
i=1
holds for their joint pdf or joint pmf. The conditional pmf or pdf of X;41,..., Xk given
X,..., X)) = (x1,...,x)when fx,, x,(x1,...,x) > 0is

Ixpox (1, )
f(Xr+1 ,,,,, X (X1, X)) Xrg 1y Xl X1, X)) = .
o x (X1, xp)
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In particular, for (X, Y) having joint pmf/pdf fxy (x, y),

_fMvey) - fry)
@ 2 fyy) dy’

On the other hand, from the marginal pdf fx of X and the conditional pdf fyx of Y given X,
the joint pdf of (X, Y) is obtained as

fxy (6, y) = fx@fyix (1x). 9)

If Xy, ..., Xi are mutually independent rv’s, then

frix(ylx) when fx (x) > 0.

k

E[g1(XD) - & X)) = [ | E[&:i(X)]
i=1

provided that E[g,- (Xi)], i=1,...,kexist. This follows immediately from the definition of
independence (8a, b). It follows that if X, Y are independent, then oxy = Cov[X, Y] = 0,
and pxy = 0, and therefore,

0§X+bY = aza)z( + b2012/.

However, pxy = 0 does not imply that X, Y are independent.

Suppose that Xj, ..., X}, are mutually independent and each X; is distributed as X. We
then say that Xj, ..., X;, are independent and identically distributed (iid) as X, and if X =
15" X;, then

of

_ 2 _ X
pug = pmx and og = mat

If Xy, ..., X are independent rv’s and if the mgf My, () exists for each X;, then

k k
Mx, 4..4x,(0) = E[etZ;;lX"] = ]_[ E[etX"] = HMX,-(t)-
i=1 i=1

Going back to the general case of (X, Y) with joint pdf fxy (x, y), let
m) = Egix =] = [ gwfyxvio dy.

We now denote by m(X) = E[g(Y)|X] the conditional expectation of g(Y) given X. This
conditional expectation is a function of the rv X and therefore, is itself an rv, which takes
the value m(x) when X = x. Hence

E[E[g(V)IX]] = E(m(X)] = / MmOy () dx
= /[_/ gWfrix(Ix) dy]fx(x) dx
= [ s ) dy = Elgm],
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because [ fyx(¥1x)fx (x) dx = [ fxy(x,y) dx = fyr(y) using Eq. (9). Next consider
E[R(X)g(V)|X = x] = / h()g)fy|x ¥Ix) dy
= h(x) /g(y)fmx()’lx) dy
=h(x)E[g(Y)|X =x] foreachx.
Hence E[h(X)g(Y)|X] = h(X)E[g(Y)|X]. We thus have the following important results:
EE[g(Y)lX] = E[g(Y)] and E[h(X)g(Y)|X] = h(X)E[g(Y)|X].
We next consider the conditional properties of variance.
VarlY] =E[(Y — E[Y])?]
- EE[{(Y — E[Y|X]) + (B[Y|X] — E[Y])}ZIX]
= EE[(Y - E[Y|XD)2|X | + EE[ (E[Y|X] - E[YD)?|x]
+ 2EE[(Y — E[YIX])(E[Y|X] — E[Y])IX].
The three terms in the last expression are
EE[(Y — E[YIX)?X] = E[Var[Y|X]],
since E[(Y — E[Y[X])?|X] = Var[Y|X],
EE[(E[Y|X] - E[YD)2|X| = E[(E[Y|X] — E[Y])?] = Var[E[Y|X]],

and the third term is 0, using E[h(X)g(Y)|X] = h(X)E[g(V)|X].

Summary. Besides all the properties analogous to the properties of expectation, we
have proved the following important properties of conditional expectation.

Proposition 1.10.1.

(i) E[E[g(V)IX]] = E[g(V)].
(i) E[hX)g()IX] = h(X)E[g(V)IX].
(iii) Var(Y] = E[Var[Y|X]] + Var[E[Y|X]].

Definition 1.10.1. The function m(x) = E[Y|X = x] is called the regression function of
Y on X. In particular, if m(x) is a linear function of x, then we can represent Y as

Y =a+ BX + e withE[¢|X] =0,
and if ¢ is independent of X, then this is called the linear regression model and Var|e], if
it exists, is the residual variance. More generally, if the dependence of Y on a k-dim rv

X = (Xy,...,X;) is such that m(xy, ..., x;) = E[Y|X = x] is a linear function of (x, ..., xg),
then

Y=o+ p1 X1+ -+ BiX + ¢ with E[¢]X] = 0,
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and (X, Y) is said to follow a multiple linear regression model if ¢ is independent of X.
Example 1.10.1. The joint pdf of (X, Y) is

C(x2 +2y2) 0<x,y<l1
0 otherwise.

fxr(x,y) = {

Find the constant C, the marginal pdf’s of X and Y, the conditional pdf of Y given X = x

and then find the means ux, uy, the variances 0)2(, a%, the correlation coefficient pxy and

the conditional expectation E[Y|X = x]. Also find P[X > Y].
Solution.

bt ! ! 1 2
1=c/ /(x2+2y2)dxdy=C[1/ xzdx+2/ yzdyi|=C|:_+_:|_
0 Jo 0 0 3 3
Thus C =1and fxy(x,y) = x* +2)?, 0 <x < 1,0 <y < 1. Now
1
fx(x)=/(x2+2y2)dy=x2+§, 0<x<l1,
0
1
fy(y)=/(x2+2y2)dx=2y2+%' 0<y<l.
0

The conditional pdf of Y given X = x is

fxy(y)  x%+2y2
fx) 242

frixlx) = , O0<y<lfor0O<x<l.

Next, we evaluate the means, the variances, and the correlation coefficient:

1 1
uwx = / xfx(x) dx = / x<x2 + E) dx
0 0 3

_(1,21 7\ 19 49 59
“\5 3 3 12) ~ 45 144 720’

2 11 2\%2 23
533 3 45
2

1 1 7
UXY=E[XY]—MXMY=/(;/(;xy(xZ+2yz)dxdy—ﬁ.§
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11 11 7 2 3 7 1
= - " +2 TA AT T T s = — T =a
4 2 2 4) 12 8 18 72

1
oxy — 10, 800
Xy = = ‘l —0.1879.
oxoy /59 1 59
720 © 15

The conditional expectation of Y given X = x is

1 1 42492
E[Y|X=x1=/ Yy ix (v dy=/ Y le dy
0 0 X +§
21 1
_ 3y 4 X 7+2'I
= ) y_iz 5
X +§
2+
224 d
Note that
1 1 2
EE[Y|X] =/ E[Y[X = xIfx (%) dx:/ a +14 <x2+g> dx
0 0 2x2+§ 3
1 1/1 2
— — 2 - — = - = i
_/(; 2(x +1) dx 2(3+1) 3 uy, asitshould be.
Finally,

1x22dd12x3d515
P[X>Y]=/O[/O(x +2y)y] x=/0 x+2? ng-zzﬁ.

17

1.11 Transforms of Random Variables and Their Distributions

We start with some simple transforms. In our following discussion, we shall often work
with continuous rv’s and their pdf’s, of which (i), (ii), and (iii) will remain valid for discrete

rv’s and their pmf’s by replacing [ dxby ), .

(i) Forb >0, F,px(2) = Pla+ bX < z] = P[X < 54| = Fx(%5%). Hence
farbx (@) = b1 fx(5:2). More generally,

for b # 0, fo, px(2) = |b|*1fX<Z;“). (10)
In the discrete case, f,, px(2) = fx(%).
(i) Fy2(2) = P[—vz < X < /z] = Fx(J/2) — Fx(—+/2) for z > 0. Hence
fx2(2) = %fx(ﬁ) - ( \/_>fx( Vz) (11a)

2\/_[fx(«/—) + fx(—v2)] forz > 0.

If X is distributed symmetrically about 0, then fx(v/z) = fx(—+/2), so that
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(iii)

(iv)

(v)
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1

fX2 (2) = ﬁ

fxWz), z>0

for symmetrically distributed X. In the discrete case,

fre@ = fx(V2) +

and fy2 (z) = 2fx(/z) if X is symmetric.
If X3, X, are independent, then

Fx1x,(2) = / / fx, (e
X1+X2<2

oo Z—X1
= / / le (xl)fX2 (x2) dx1 dxo.
X]=—00 JX.

2=—00

Differentiating under the integral, we have

00 d rzx
Xax (@ = / x (xl)[% / fx, (x2) dxz] dxy
—00 —00

fx(—=v2)

)fXZ (x2) dx1 de

o0
= / Iy Ofx, (z — x) dx.
—00

(11b)

If Xj, X> are nonnegative, then fx, (x) = 0 for x < 0 and fx, (z — x) = 0 for x > z. In this

case the above formula becomes

Z
F+x,(2) = /0 fi, (i, 2 — ) d.

For independent discrete rv’s,

fi+%@ =) _ fx, Wfx, @ - x).
X

If X3, X» are independent with P[X> > 0] = 1, then

X2 2=0LJx1=—00

and differentiating under the integral, we have

o0 X2Z
Fx, (2) = / [ / fx, Gep) dxl]fxz (x2) dxz
X X

o0
fx (@ = / xfx, (x2)fx, (x) dx.
X5 0

For mutually independent Xj, . .., X, let Y = min(Xj, ..., X}) and

Z = max(Xj,...,Xy). Then

1 — Fy(y) = P[min(Xy, ..., Xg) > y]

k
=HP[Xi>y]=

Fz(z) =P

- =

P[Xl' < Z] =

1

~.

k
[ [{1-Fx;0»} and

i=1

max(Xy, ..., X) <z|

k
[[Fx@.
i=1

(12a)

(12b)

13)
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Hence
q .k k
oy =-— [T-Fx»}=> fx» l_[[l —FXJ-()’)]
y ; sl
i=1 i=1 J#i
qd .k k k
2@ = ]"[ Fx,(2) = fo,.(z) ]"[ Fy; ().
i=1 i=1 J#i=1
We now consider a transformation of
X=(X,...Xp 3 m,...,vp=Y
(ie, V; = gi(Xy,...,Xy)), where g is one to one with continuous partial derivatives and

a nonvanishing Jacobian of transformation in the continuous case. Let g~! denote the

inverse transformation, that is,

gl =101 yi= (oL 70 he G Y0)-

In the discrete case,

oLy =KMoy b0 - ve) =fx<g71()’)>~

In the continuous case, for all events B, P[Y € B = P[X € g"}(B)], where g71(B) =

{x: g®) € B}. Thus
/BfY(Vl,n-rJ’k) dyy - dyy

= L,l(B)fX(xl"“'xk) dxy--- dxp

a1 a1
=/ . fX(gfl(V)) det| : dyy - dyy
8B o X
Yk Yk
-1
- )14l 1 -+ dy,
./BfX(g U’) gyl @ 73
a1 a1
where J,-1q) = det| : .. i |, and note that J1() = []g(g_l(y))]_l, S0 we
Yk Yk

compute the one which is easier. Thus

) =fX(g*10/)>|Ig71(y)| =fx(g710’)>M'
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An Extension

Let Sy, ..., S; be disjoint open sets in R¥ with Z]l':l P[X € Sj]=1.Letg: U]l-zl Si—>RK Y=
g(X), where for each j, the restriction g; of g on §; is one to one with continuous partial
derivatives and nonvanishing Jg;. Then for all events B,

/fy(v)dy P[Y € B = ZP[YeBXeS]

Jj=1

Il
MN

Plxeg '), X 5]

~.
Il
—

/ fx &) dx
1BNS;

/Bmg](s) fx (871 0))Ug-1) dy

T MN T MN

= /B 5 () g g 0
j=1
where I4(y) = 1ify e Aand = 0ify ¢ A. Hence

!
fr®) =Y fx (871 001 Mgesp 0)-
j:l
Joint Distribution of Order Statistics

LetXj, ..., X, beiid real-valued rv’s with common pdf f. Define
Yi=X,;, i=1,...,n,

where Xj;.1 < --- < X,:p are the order statistics, that is, the ordered values of X, . . ., X;,. (The
Xi’s are all distinct with probability 1.) The joint pdf of (X, ..., Xp) is fx(x) = ]_[;7‘:1 f(x;). For
the n! permutations (ji, ..., j) of (1,..., n), let

S]1 jn = {(xl,...,xn):le < e <xjn]
and define Y = (11,...,Y,) = &iyjn X1y, X)) = Xp,..., X)) on Sy ., for each

(1,.--,jn). Then Y71 < --- < Y, with probability 1 and 8ji,....j» is one to one with|/ -1 )| =

8jteain

.....

1 for each permutation (ji, ..., ju) of (1,..., n). Hence

fr) = Z fx(gh

.....

and fy (y) = 0 otherwise.

L) =n! Hf(y, foryy <+ <yn

.....
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Linear Transformation

As a special case of g: X — Y from RF — Rk, consider a linear transformation ¥ = AX
where A is a nonsingular k x k matrix. Then the inverse transformation is X = A~'Y =
g (Y), 50 [Jg-1(1)| = | detA™ )| = mTl(A)l Hence

fr» =fx@ly (14)

1
| det(4)|”

In particular, if A is orthonomial, that is, AA"T = ATA = I, then | det(A)| = 1, so that fy(y) =
fx@ly).

Probability Integral Transform

Suppose X has cdf F which is continuous and strictly increasing. Then F~! is uniquely
defined as

Ffl(u) =xiff Fx) = ufor0 <u < 1.

Then the cdfof Y = F(X) atu € (0,1) is
Fy(u) = PIF(x) < u] = P[X < F*l(u)] - F(F*l(u)) —u

Thus fy(w) = 1for0 < u < 1and fy(u) = Oforu ¢ (0,1), because 0 < Y = F(X) < 1
with probability 1. In other words, if X has a continuous and strictly increasing cdf F, then
Y = F(X) is distributed with pdf

1 ifo<u<l,
0 otherwise.

frw) = {

A rv with this pdf is said to be a Uniform(0, 1) rv. Conversely, if U is Uniform(0, 1), then
X = F~1(U) has cdf F. This fact is useful in generating random samples (ie, iid rv’s) with
cdf F by first generating random samples Uy, Uy, . .. from Uniform(0, 1), which is easy, and
then transforming Uy, Us, ... to X1 = F~1(U1), X2 = F1(U>), .. ..

Exercises

1.1. Prove that the axioms P(j, ii), P(j, iii), and P(j, iv) are equivalent.

1.2. Prove Proposition 1.4.2 by induction, starting from Proposition 1.4.1(iii).

1.3. Five cards with numbers 1,...,5 are arranged in random order. A person claiming
psychic power, declares the arrangement. Assuming that the numbers are declared
purely at random, what is the probability that
(a) All are correct? (b) Exactly 4 are correct?

1.4. From a well-shuffled standard deck of cards, eight cards are dealt.

(a) What is the probability that the hand contains two trios (exactly three cards of
the same denomination such as three kings)?
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1.5.

1.6.

1.7.

1.8.
1.9.

1.10.

1.11.

1.12.

1.13.
1.14.

1.15.

(b) What is the probability that the hand contains a run of five cards (exactly five
cards of consecutive denominations such as 8,9, 10, J, Q irrespective of suits,
10,7, Q, K, A included)?

A poker hand consists of five cards dealt from a well-shuffled standard deck of

cards. Ahand is a

(a) straight if the cards are of consecutive denominations (including A2345 and

AKQJ10), but not of the same suit,

(b) flush if all five cards are of the same suit but not a straight,

(c) full house if three cards are of the same denomination and the other two cards
are also of the same denomination such as three 10s and two Queens.

Find the probabilities of a hand being a straight, a flush, and a full house.

(The birthday problem) In an assembly of n people, what is the probability that no

two have the same birthday? Find the smallest n for which this probability is less

than 1/2. [For simplicity, ignore leap-years and assume that the birthdays are
equally likely to be any of the 365 days of a year.]

Show that for any event Bwith P[B] > 0, P[A|B] as a function of A € Aisa

probability.

Prove Proposition 1.6.2.

A couple has two children. If one child is a boy, what is the probability that the

other child is a girl?

Two shooters A and B can hit a target with probabilities 0.8 and 0.7, respectively.

They shoot alternatively and the one who first makes three hits wins. Find the

probability that A wins if

(a) A shoots first, (b) B shoots first, (c) the one who shoots first is decided by the toss

of a fair coin.

There are two dice in a bag both of which are balanced, but one has 1,2, 3,4, 5,6

and the other has 1, 1, 2, 3, 4, 5 on the six faces. One of the dice is selected at random

and rolled.

(a) What is the probability that the outcome is an even number?

(b) If the outcome is an even number, what is the probability that the standard die
was rolled?

In a city, in the month of July, the maximum temperature reaches 100°F or above

with probability 0.2 on any day and with probability 0.8 if the previous day was

100°F or above. What is the probability that there will be exactly 5 consecutive days

of 100°F or above starting on July 15?

Prove Proposition 1.7.1.

There are N tickets in a bag, numbered 1, ..., N, from which 7 tickets are drawn. Let

X be the largest number drawn. Find the pmf and the cdf of X if the tickets are

drawn at random (a) with replacement, (b) without replacement.

The lifetime of an equipment (in hours) is a random variable X with pdf



1.16.

1.17.

1.18.

1.19.
1.20.
1.21.

1.22.

1.23.
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c 0<x<50

f ={ cexp(—(x—50) x> 50.

Find (a) the constant ¢, (b) the cdf of X, (c) P[10 < X < 100].
Let X be a random variable with pmf

f)y=c¢/2%, x=1,2,....

Find (a) the constant ¢, (b) the cdf of X, (c) P[X > 5].

A game consists of tossing a fair coin and then drawing a random number from

0,1,...,9with equal probabilities if head comes up, or spinning a wheel to choose a

random number in the interval (0, 10] if tail comes up. Let X be the outcome of this

game, which is either an integer between 0 and 9 or a number in the interval (0, 10].

(a) Find the cdf of X and P[3 < X < 5]. Note that the rv X is neither discrete nor
continuous, but a mixture.

(b) Express X as a mixture, X = aU + (1 — «)V, where U is discrete and V is
continuous, giving the pmf of U and the pdf of V. [Interpretation of mixture is
Fx =aFy+ (1 —-a)Fy.]

(Censoring: another example of a mixture) Let T be a nonnegative rv (life of an

equipment or survival time of a patient undergoing a certain treatment) and f; > 0

is a time at which observation stops. So we observe T if 0 < T < tcand ¢, if T > t,.

The resulting observation is Y = min(T, ). Find the cdf of Y which is a mixture.

Verity (i)—(vi) of Proposition 1.8.1.

Verity (i)—(vi) of Proposition 1.8.2.

Let (X, Y) be a two-dimensional rv with joint pdf

fy)=cx+2y), 0<x, y<l1.

(a) Find the constant cand P[X < Y].

(b) Find the marginal pdf’s fx of X and fy of Y.

(c) Calculate ux, uy, o2, and 0. Also find the medians of X and Y.
(d) Find Cov[X, Y] and pxy.

The joint pdf of (X, Y) is

fy) =c@x®+xy), 0<x<1 0<y<2
Find
(a) the constant ¢, (b) the marginal pdf fx of X, (c) the conditional pdf fyx (y|x) of Y
given X = x, (d) the regression function m(x) = E[Y|X = x].
The pdf of X and the conditional pdf of Y given X = x are given by

fx(x) = exp(—x), 0 <x < oo, and fy|x(y|x) = xexp(—xy), 0 <y < oo.

(a) Find the joint pdf of (X, Y), the marginal pdf of Y, and the conditional pdf of X
givenY =y.
(b) Find the regression function m(x) = E[Y|X = x].
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1.24. Thejoint pdfof (X, Y) is
f,y) =cxexp(—x), 0<y<x<oo.

Find

(a) the constant c and the marginal pdf’s fx and fy,

(b) E[X], Var[X], E[Y], Var[Y], Cov[X, Y], and pxy,

(c) the conditional pdf of Y given X = x, E[Y|X = x] and Var[Y|X = x], and
(d) verify: E[Y[= E[E(Y|X)] and Var[Y] = E[Var(Y|X)] + Var[E(Y|X)].



Some Common Probability
Distributions

2.1 Discrete Distributions

We shall start with the simplest nontrivial rv X which can take only one of two values, say
Oand 1, with PIX =0] =1 — p = gand P[X = 1] = pwhere 0 < p < 1. This arises in the
context of a random experiment resulting in success or failure, such as the toss of a coin
resulting in head (success) or tail (failure), or a medicine having favorable effect (success)
or not (failure) on a patient, etc., with P[success] = p and P[failure] =g=1—-p.ThervX
takes the values 1 or 0 for the outcomes success or failure, respectively. Such an rv is called
a Bernoulli(p) rv and we write the pmf of X as

fxw=p1-p) ™ x=01 o)

2.1.1 Binomial Distribution Bin(n, p)

Suppose Xj, ..., X, are independent Bernoulli(p) rv’s as described by Eq. (1) and let X =
X1 + .-+ + X;, that is, X = total number of successes in n independent experiments with
P[success] = pin each experiment. The pmf of X is obtained by noting that each sequence
of n outcomes with x successes and n — x failures has probability = p*(1 — p)n_x, and the
number of such sequences is the number of ways in which x trials (resulting in successes)

can be chosen from 7 trials, which is () = ﬁlx), Hence the pmf of X is

fxx) = <Z>px(1 -p)"* x=01,...,n
Since E[X;] =1-p+0-(1—p)=pand
var[x1] = E[X} ] - (E[x1])*
- [12~P+02~(1—p)]—p2
=p-p*=p(1-p)
we have

E[X] = nE[Xj ] = np and Var[X] = n Var[X; | = np(1 — p). 2)

Theory and Methods of Statistics. http://dx.doi.org/10.1016/B978-0-12-802440-9.00002-3 25
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Example 2.1.1. An equipment with 7 components needs at least 3 to function properly
for its overall effectiveness. If each of these components function with probability 4/5,
independently of one another, what should be the minimum #» for the equipment to
remain effective with probability 0.9 or more?

Solution.
2 ANX 1\
P[Not Effective] = ;( )(5) (5>

_ 1 0o, (M, (" 2]
_5"[<0)4 +<1>4 +<2)4
=—n[1+4n+8n(n—1)]

1
5n[1—4n+8n]

We want the smallest n2 so that z[1 — 4n + 8n?] < .

n (1 —4n+ 8n2)/5"

3 (1—12+72)/5% =0.488
4 (1-16+ 128)/5% =0.1808
5 (1 =20+ 200)/5° = 0.05792

so the minimum 7 to keep the equipment effective, n,;, = 5.

2.1.2 Multinomial Distribution Multi(n; p1, ..., pk)

Extending the concept of the Binomial(n, p) distribution from the outcomes of 7 indepen-
dent trials, each with two possible outcomes, consider n independent trials with k possible
outcomes 1, ..., kwith

P[ith outcome] = p; > 0, Zp, =1.

Let X = (X V... ,Xk) with X; = number of trials resulting in the ith outcome. Then any
sequence of n outcomes with x; = number of trials with the ith outcome, i = 1,..., k has
probability

k
p)fl ‘e pzk ifx; >0, in = nand 0 otherwise,
i=1
and the number of such sequences is the number of ways in which such (x1,...,x;) can
be chosen from the 7 trials. This number is n!/(x1!, ..., x;!), the multinomial coefficient.
Thus, the joint pmf of X = (Xi,...,X}) is
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n! X1 Xp
fX(x]y-.-,Xk)zx' .xk!pl pk
k
ifxy,...,x > 0and Zx,- = n, and 0 otherwise.
i=1

The multinomial coefficient is obtained by multiplying the number of successive choices
of x; out of n trials, followed by x, out of n — x; trials and so on, and finally, x;_; out of
n— (x1+---+xg_2). Thus, using x; = n — Zf;ll x;, we have

(L) ()

n! (n—x1)! (n—x1— — xp_p)!
x!(n—x1)! x2!(n—x1 — x2)! Xpeq %! '

By cancellation, this yields the multinomial coefficient. To find E[Xj], Var[X;], and
Cov[X;, X;| for any i # j, note that each X; ~ Bin(n, p;) and X;|X; ~ Bin(n — X;, p;j/(1 — p))).
Hence

E[X;] = np;, Var[X;] = np;(1 - p;) and
as in Eq. (2), and using Proposition 1.10.1,
cOv[X,-,Xj] - E[Xin] - E[Xi]E[Xj]
= E[XiE<Xj|Xi)] — np;p;
= E[Xi(n - X))pj/(1 - Pi)] — n’p;p;

= [ = {1 = p) + w292 ) - i

= —np;p;

by algebraic simplification.

2.1.3 Geometric Distribution Geom (p)

In a sequence of independent trials, each resulting in success with probability p or failure
with probability 1 — p = ¢, let X be the number of trials needed for the first success to
occur. Then the pmf of X is

fx(n) = P[Failures in the first n — 1 trials and success in the nth trial]

=q"*1p, n=12,...

Then 52, fx(n) = Y00, 4" p=p X0 q° = p(1—q) "' =1,and
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o o d o
EX] = nfxm) =) ng" lp=p_-> 4
n=1 n=1 q s=0
d -1 2 1
p dq( q) =p(-q) P
o o
E[XZ] = rfxm) = Z n?q" p=p > n+nmn-1Dig"
n=1 n=1
0 d2 0
=p> ng"! +qu nn—1q"*=EX1+pg—— > 4
dq
n=1 n=1 s=0
1 d? 11 3 2 1
=~ +pg—(1- = —+pg-2(1— S
5P qz( q) , T rd (1-q) 2 p
T2 s (2 1 1 q
Var[X] _E[X ] — B2 = <ﬁ -5) =

Remark 2.1.1. Memoryless property of the Geometric distribution. If X ~ Geom(p),

then P[X > k] = pYpiin @™ = pd* Y200 = pd“(1—q)"" = q*. More directly,
P[X > k| = P[all failures in the first k trials] = g*. So
PX=k+n] qktnlp

PX=k+nlX>k]= =K~ =q" 'p=PX =n)

2.1.4 Negative Binomial Distribution N Bin(r, p)

In a sequence of independent trials resulting in success or failure with probabilities p and
q = 1 — prespectively, let X be the number of trials needed for the rth success to occur.
Then

fx(n) = P[(r — 1) successes in the first (n — 1) trials and success on the nth trial]

n—1 r—1_n—r
= ) =, 1,...
(r_1>p q n=rr+

Note that this X can be expressedas X = Y1 +---+ Y, where Y1, .. ., Y; are independent
Geom(p). Hence

E[X] = rE[Y1] =r/pand Var[X] = r Var[V;] = rq/p?.

Note. A binomial rv is the number of successes in a given number of trials, whereas, a
negative binomial rv is the number of trials needed for a given number of successes.

Example 2.1.2. A target-shooter can hit the bull’s eye once in three attempts on average,
that is, with probability 1/3. In a tournament with an entry fee of $10, there are prizes of
$100, $50, and $20 if one can hit the bull’s eye three times in 3, 4, or 5 attempts, respectively.
Should our target-shooter enter this tournament paying the fee?

Solution. Let N = number of attempts needed to hit the bull’s eyes r = 3 times, where
the probability of a hitis p = 1/3 and the results of the attempts are mutually independent,
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and for N = n, let X = X(n) be the prize won. Then X(3) = $100, X(4) = $50, X(5) =
$20, X(n) = 0forn > 5,and N is NB(r = 3, p = 1/3). Since

PIN=n] = (:l:ll)pr(l )T = (n; 1) (%)3<§)n—3'

-GG -
- Q) C) -2
- () C) -8

So E[X] = $100 - 5 + $50 - & + $20 - & = $Z ~ $9.38. Since the entry fee of $10 is
greater than the expected value of prize to be won, which is $9.38, this game is not in favor
of our target-shooter, who (strictly speaking) should not enter unless for fun, because the
expected loss is very little.

2.1.5 Hypergeometric Distribution (n, N, m)

Suppose that from a box containing N balls of which m are white and N — m are red, n balls
are drawn at random without replacement. Then the number of white balls in the sample

is an rv X with pmf
m\(N—-m N
o= (M) /(%) w=om

with the convention (;) = 0 for k < 0 or k > r. Thus the effective range of X is
max(0, m+n— N) < x < min(m, n). To find the mean and variance of X, we calculate
E[Xk] for k = 1and k = 2, using x('}) = m(m_l) and n(],\{) = N(N_l) as shown below.

x—1 n—1

E[Xk]zixk.w
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m-—1 N-—-m
mn " k-1 ( y )(n—l—y>
=N LT N-1
y=0
(h-1)
_mn k-1
- NE[(Y+1) }

where Y is Hypergeometric (n — 1, N — 1, m — 1). Hence

E[X]—@E[(YH)O]—@ =7y,
=N TN TN

where p = m/N = proportion of white balls in the box, and
Var(X] = E[X?] - (BIX)?

= np(E[Y] + 1} — (np)?

m-1n-1)
=””{T+1}—(nlﬂ)2
N-—-n
=y-1i-p)

by algebraic simplification.
Remark 2.1.2.

1. Ifin the above set-up, n balls are drawn at random with replacement, then the
number of white balls in the sample is distributed as Bin(n, p). In the without
replacement case, the mean of the hypergeometric rv remains the same as in Bin(n, p),
but the variance is reduced by a factor of %

2. For any n, the factor ]]\\’,:’11 — 1as N — oo, which agrees with the common sense that
for sampling from a very large collection with %} = p, sampling with or without
replacement are practically the same.

2.1.6 Poisson Distribution Poi(})

The Poisson Distribution is an approximation of the Binomial Distribution Bin(n, p),
where n is large, p is small, and np is of moderate magnitude. So let n — oo, p — 0 in
such a manner that np — A € (0, 00), and approximate the pmf of Bin(n, p) for such n, p as
follows:

nm—1)---(n—x+1) _
fx(xn,p) = = pra-p"

N () e T

= A1nA2nA3nAan,

where Ay, — A*/x!, Asp, — 1, A3, — 1 and since (1 — %)" — e~ %, which extends to

(1- “—n”)" — e 4, ifa, — a, we see that Ay, — e~*. Thus the pmf of Bin(n, p), as n — oo
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and p — 0 in the above manner, tends to the following:

)\x 5 A)\x
fX(x;n,p)—>fX(x)=E~l~1-e_ =e L x=0,1,2,...

This limiting pmf of Bin(n, p) as n — oo, p — 0 so that np — A € (0, 00) is the pmf of the
Poisson distribution Poi(A):

)\x
fx@=e*=—, x=0,1,2,...

X!
and
00 o X
_a—A AT Ao
ZfX(x)_e Zx!_e et =1.
x=0 x=0

The mean and the variance of Poi(A) are

e¢] )Lx

') PE
_ —A _ —A
E[X]_er x!_ze (x—1)!
x=0 x=1

=X E e —x.1=2xrand,
Y
y=0

- Y S
EX(X - 1)] = Zx(x—l)e 5= Ze T
x=0 x=2

00 A
=A22e7)‘— =A2~1=A2, o)
)
y=0

VarlX] = E[X?] - (BIX)? = EIX(X — D] + E[X] — (EIX])
=224 a—22=.
Some Properties of Poi()).

1. Let Xj, Xo be independent, X; ~ Poi(};). Then X = X; + X ~ Poi(x1 + A2), by Eq. (12b)
of Chapter 1,

: N Y
fx =3 f (a)fi (v —x) =e”WH) 57 L —x)!
X1=0 0=0"" Y

X _
_ ei(MJr)\z) . ()\1 + )\2) i X A X1 A X—Xx1
X! oW\ AL+ A2 A1+ A2
1=

X
= e~ (Mtr2). (CRL)N +,A2) 1
X!

’

which is the pmf of Poi(11 + A2). More generally, Xj, ..., X independent with
X; ~ Poi();) implies X | X; ~ PO(ZL )»,-).
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2. If Xj, Xo are independent with X; ~ Poi(};), then conditionally, given
X1 4+ Xo = n, X1 ~ Bin(n, A /(h1 + A2)).
Proof.

P[X; =x,Xp =n—x]
P[X] +Xo = n]

P[Xl =xX]+Xo = n] =

e ()\1+)»2))‘1 )‘2
x! (n—x)!

e— (i) B tig)”
n!

_ n! SRR Ay n—x
T xlm =0\ A1+ A A+ Ao ’

which is the pmf of Bin(n, 11/(A1 + A2)). O
More generally, if X; ~ Poi(A;)i =1, ..., k are independent, then conditionally,
givenXy + -+ Xg =n, (X1,...,Xg) ~ Mult(n; py, ..., pr) with p; = &/ (A1 + -+ + Ag).
3. If N ~ Poi()) and conditionally, given N = n, Xj, ..., X, are independent Bernoulli(p),
then Xj + - -+ + Xy = X ~ Poi(Ap).
Proof.

oo
PX=x]=) P[N=nX + - +Xn=x]
n=x
7).)\}1 n!

— Z o mpx(l _p)nfx

n=

_en 02 S5 0 p)

x! = (n—x)!

X X
Example 2.1.3. An insurance agent has sold fire insurance policies to 200 homeowners
in a town. If the probability of a fire in a house during a year is 1/250 in this town, what is
the probability that this agent will have to handle two or more claims in a year?
Solution. The number of policies n = 200 (large) and the probability of a fire is
p = 1/250 (small), so » = np = 0.8. Assuming independence, X = number of claims =
number of fires, is approximately Poi(» = 0.8). Hence

PIX>2=1-(PIX=0]+PX=1]) =1-e"%8[1+0.8]
—1-0.4493-1.8 =1 — 0.8088 = 0.1912.

Example 2.1.4. If the number of tropical storms on the Gulf of Mexico during
September follows a Poisson distribution with mean A = 5 and if each of these storms
can become a hurricane with probability p = 1/4, what is the probability of at least one
hurricane in September?

Solution. N = Number of storms ~ Poi(A =5), and Xj,...,Xy given N are iid
Bernoulli(p =1 /4), where X; = 1 or 0 according as the ith storm becomes a hurricane
or not. Hence X = number of hurricanes = Xj +--- + Xy ~ Poi(kp = 1.25), and so
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P[Atleast one hurricane| = P[X > 1]
=1-PX=0]=1-—e"12
=1-0.2865=0.7135.

2.2 Continuous Distributions
2.2.1 The Gamma and Beta Functions

These two functions are essential in connection with many distributions and their proper-
ties discussed here.
Definition 2.2.1. The gamma function is defined as

o0
I'(a) =/ e %y ldu, «>0
0
and the beta function is defined as
1
Be(al,az) =/ el (1-— t)a271 dt, oy,az > 0.
0

Properties of the Gamma and Beta Functions.

(i) I'@+1)=al(x) fora > 0, so for a positive integer o, I'(¢ + 1) = !.
Proof. Integrating by parts,

o0 o0
e+ = / e “u® du = —/ ud(e™%)
0 0

o0 o0
=/ e “d(u”) =a/ e “u*1 qu
0 0

=al (),
because e “u* =0atu =0and — 0as u — oo. O
i) r(3) = .
Proof.

1 2 00 oo
{F(—)} =/ / e UtV =122 gy qy
2 o Jo
00 1
= / / e S(st) V2 s(1 — )Y V2 . s ds dr,
0 0

withu+v=s, u/(u+ v) =t, sothat du dv = s ds dt. Next let sin? 6 = t, so that
dt = 2sin6 cos6 db and {t(1 — 1)}!/? = sin6 cos . Hence

{ 1\ 12 00 s 1 12
F(—)} =/ e ds~/ {t(1 -1} dt
2 0 0

_ /”/2 25sin6 coso
) sin6 cos 6
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(iii) Be(o1,a2) = % This will follow as part of the proof of Proposition 2.2.1.

We now introduce some important continuous distributions and examine some of their
properties.

2.2.2 Uniform Distribution Unif(a, b)

Definition 2.2.2. X is a Unif(a, b) 1vif fx(x) = I [ab] %)/ (b—a).
Of course, fab(b — 61)71 dx = (b— a)fl(b —a)=1.

/b x 1 b —-a> a+b
b—a

b—a 2 2’
X2 / b —ad _a 2 4 ab + b? and
b— a “3b-a 3 ’

@ +ab+1? @ +2ab+b2  (b—a)?
Var[X] = 3 — 1 =( 12) .

and Var[X] = X

In particular, if X ~ Unif (0, 1), then fx(x) = Ijo,11(x), E[X] = 1z

_2,

2.2.3 Gamma and Beta distributions
Definition 2.2.3. X is a Gamma(a, B) 1v if the pdf of X is

fx() = e Px 10 00)®), @>0, B>0.

I (a)p“

The mean and variance of a Gammay(a, B) 1v are

1 o0 ﬁ o0
EX] = / xe ¥ Pxe=1 gx = —/ e %u* du
'(@)B% Jo I'(a) Jo
B
mp((x +1) =ap,

2 o0
Var[X] = [ ] (aﬁ) Fﬁ(a) e Uyt du — (ozﬁ)2

s 2
mF(oz+2) (aB)

= ala + 1% — a?p% = ap?.

Proposition 2.2.1. If X;, i = 1,2 are independent Gamma(ai, ﬁ) rvs, then X1 +Xo isa
Gamma(oy + a2, B) .
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Proof. By Eq. (12a) in Chapter 1,

1 £ x/B 11— (z—x)/B -1
o) = Ty © e e

B e—%/Bga1taz—1 /Z<x>a1—l(l x)olg—lﬂ
0

- Ten) I (az)pte Jo \z p ~
L -1a —pne-l g
a F(dl)F(ag)ﬁﬂl1+ag 0
e—%/Bza1taz—1
N F(Oll)F((xz)ﬁOl1+ag ~Be(a1,a2), z>0.

But we must have
o
1= _/0 le X (2) dz

__ Belen, o) / X elB gl g
I(o1) I (a2) B2 Jo
Be(al,az)

- I (1) (a2) Flen +e2).

Hence Be(aj,a2) = % as stated earlier, and therefore,

1 zZ
— —z/B o1+az—1
fX1+X2 (2) = T +a2)ﬁal+a26 Z IO,oo(Z)-
O
By induction, if X;, i = 1,...,k are independent Gamma(a;, B), then Y X ~

Gamma(Zle o, ,B).
Definition 2.2.4. T is a Be(«1, a2) rvif the pdf of T'is

F(al + ag)

T T qn-lq el 0, , 0.
Ta) I (a2) ( ) o,n®, ay,ap>

fr® =

The mean and variance of a Beta(«1, ) rv are

1
gy — L1 te2) / 11— %! dr
F(al)l"(az) 0
F(al —i—(xg)
=—— "B 1,
F(al)F(az) e(ozl + 052)

_ F(ozl +052) F(al + I)F(ozg)
" (o) (ep) Moy +ap+1)
-

oy tap’

Var[T] = E[Tz] — (al"Tlaz)z
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aj(ag +1) B ( o >2
(051 +(X2)((X1 + oy + 1) o] + o
ajoy

(051 + 052)2(051 +ap + l).

Proposition 2.2.2. If X; ~ Gamma(e;, B), i = 1,2 are independent, then Z = Xi + X
and T = X1/(Xi + Xo) are independent, Z ~ Gamma(o + a2, B) and T ~ Be(a1, 2).
Proof. Rewrite the transformation as: X1 = TZ, X» = (1 — T)Z. Then the Jacobian of the

transformation is |/| = z, and
1

fz160 = ) ) pe e /P (1) "1 - 0)2)*2 7 2l (9,00) (D) I(0,1) (1)
1 2
e %/ B zontoz—1 F(Ol] -I-Olz)
- I B A I Ly PN ()8
Flar ragyprren 0@ Ty 70 000
as was to be shown. O

2.2.4 Exponential Distribution
Definition 2.2.5. A rv X is distributed as Exp(#) if X has pdf

1
fx(x) = ge*xw, 6 >0,

and cdf
¢
Fx(t) = l/ e 0 dx=1—e /9,
0 Jo

Clearly, Exp(6) is a special case of Gamma(c, B) withe = 1 and g = 6. Hence, E[X] = 6 and
Var[X] = 62.
The exponential distribution shares with geometric distribution, the memoryless
property:
PIX>t+s] e Ut9/f
PX>1 e /Y

PIX>t+sX>1= —e S = PIX > 5]

2.2.5 Normal Distribution N(g, 62)
Definition 2.2.6. Xis an N (1, 0%) rv if X has pdf

o 507 -

2no '
We first verify that fx(x) is indeed a pdf. Since fx(x) > 0, we only need to check that
[°o fx(@) dx = 1. By symmetry,

/Oof (x) dx—L/oo e_zz/zdz—i/me_zz/zdz
—00 X ’\/27'[ —00 \/2” 0
2

2 [® w1 - z
= — e . —u du |withu= —
«/271/0 V2 2

fx) =

— 0 <X < OQ.

, dz = u)~1/? du)
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= g5 f, e = Joor(3)
=1, since F<%> =.r.

The mean and variance of N(, 0'2) are

o0 o0
E[X] = / Xfx (%) dx = / xX—wWfxx) dx+p-1
—00

:/ooo-z.L 7z/2dZ+M

-0 27
00 2
= 1, because f ze %12 dz = 0 by symmetry.
—00

Var[X] = E[(X — w)]?
2

00 (x—p)
=/ (x_mzx/z_;e— 7 20 2e-212 g
—00 TOo
2
= % 2ue . 2u) Y2 du ( with u = = as above)
T
202 w12 20 3
77 Jo T N 2>

_2% 1 p<1> _ 2
Jr 2 \2 '
For this reason, N (u, 02) is called a normal distribution with mean x and variance o2. For
uw=0and o =1, N(0,1) is called the standard normal distribution.

Example 2.2.1. The life of a tire on freeway is a Normal rv with mean px = 25,000 miles
and sd o = 1,000 miles. If a car goes on a coast-to-coast round-trip in the United States,
which we can assume is 6000 miles, what is the probability that none of the four tires will
need replacement during the 6000 miles trip, given that the tires were already used for
17,500 miles?

Solution. Note that

P[min(Xj, ..., Xs) > 23,500] = {P[X; > 23,500]}*

X - ) - » 4
_[p[Xi—m _, _ 23,500 25000
o 1000
={P[Z > —1.51}* = (P[Z < 1.5)}*

={®(1.5)}* = {1 — 0.0668}* = 0.7584,

using the normal table.
Strictly speaking, in this problem, we should have considered

P[min(Xl, ..., X4) > 23,5001X; > 17,500, i = 1,. ..,4],
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but

17,500 — 25,000

P[X; > 17,500] = P[Z >
1000

} =PIZ>-75]~1,

so this conditionality does not matter.
pdfand cdf of N(0,1). Let Z ~ N(0, 1). Then the pdf of Z is

frx) = _L 2

V2n

which we shall denote by ¢(x). The cdf of Z is Fz(x) = ffoo @(t) dt, which we shall denote
by @ (x). Since ¢(x) is symmetric about 0, we have

®(—x) =1—&(x) and P[|Z| > x] = 2[1 — 2 (x)].

The cdf @(x) cannot be calculated analytically. There are tables for @ (x). However, the
following are useful upper and lower bounds for 1 — @ (x) for all x > 0,

x 1 (1 — xfz)go(x) <l—-9okx) < x*1<p(x).
By a change of variable y = x?/2,

o0 o0
1-ox) = / o(t) dt = (1/2)n~1/2 y12e 7V dy.
X x2/2
For notational convenience use ¢ = x?/2. The upper bound is obtained by noting that
o o
(1/2)71—1/2/ y V2e Y dy < (1/2)71_1/20_1/2/ eV dy=Q1/2r Y2cV2e ¢ = x o).
Cc Cc

To get the lower bound, use the integration by parts formula

o0 r o
(1/2)71*1/2/ y12e7Y dy = (1/2)n 12| c71/2e¢ — % / y3/2ey dy]
[ L c

- (1/2)n- 12 [~1/24—c _ %c*3/2 /00 eJ]

L c

— 1/2)n-12[ ¢ V2ee 16—3/2e—c]
2

= (1/2)71_1/26_1/2[1 - %c‘l}e_c

=x1 <1 - x_2><p(x).

Normal Approximation to the Binomial Distribution: De Moivre-Laplace Theorem. If
Sp = X1 + -+ + Xy, where Xi, ..., X,, are independent Bernoulli(p), that is, S, ~ Bin(n, p),
then for large n and for any a < b,

P|:u < Syl s @ (b) - ®(a)
)
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This is a special case of the Central Limit Theorem which holds for sums of iid 1v’s S, =
X1 + - -+ + X, with finite variance.
Some Properties of N(u,0?).

1. If X ~ N(u,0?), then a+ bX ~ N(a+ bu, b*o?) follows by using Eq. (10) in Chapter 1.
In particular, Z = (X — u)/o ~ N(0, 1).

2. IfX; ~ N(/L,-,ol.z), i = 1,2 are independent, then X; + Xz ~ N(u1 + u2, o +a2).
Proof. Z; = (X; — u)/oj, i = 1,2 are independent N (0, 1), and

X1 +Xo = (u1 + ) + (0121 + 022). Transform " = (1 2. 21 . Then
Y, o2 —o0] V4

or 02 || _ 2. 2 Zi|_ 1 |o1 o2 | [N he ioi fof
‘det[a2 _01:| =o; + 05, and |:Zg:| = 74l [02 —01:| [Y2:|’ and the joint pdf o
Y1 =01Z1 + 0222 and Yo = 0271 — 012> is
R AGBE)
- e —%{(Gm +0212) + (021 — 12)?}
27 (012 + 022> i 2(012 4 022>
= 21 N exp| — 1 5 {(012 + 022>y% + <012 + 022>y§}
2n(of o) | 2ot +o})

S SN D/ S
2m <<712 + 022> 2((712 + 022> 2((712 + 022)
Thus Y}, Y, are independent N(0, o2 + 67), so

X1 +Xo = (u1 + p2) + (0121 + 0222)
= (u1+u2)+ 11
~ N(Ml + 2,07 + 022>

O
By induction, if X; ~ N(u;,02), i = 1,..., k are mutually independent, then
Zle X; ~ N(Zle Wi, Zle al?). In particular, if Xi, . . ., X;, are independent N (u, 0%),
then Y1 | X; ~ N(nu, no?), and X, = + Y71 X; ~ N(u,02/n).
3. If Z ~ N(0,1), then W = Z? has pdf
fww) = e 2w 2 g o) (). 3)

0]
Proof. W = 72 has cdf (by Eq. (11b) in Chapter 1)
Fpw) =P[-Vw=Z<Vw]=2-P[0<Z < Juw]
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= Z/W Lefzz/2 dz,
0

V2
SO
2 1 1
frw) = /Ze . w2 = ——— e W2y V2 wso.
T 2 21/21"(%)

2.2.6 Chi-Square Distribution

If Z ~ N(0, 1), then from the pdf of Z? derived in Eq. (3) we see that Z? is a Gamma(%, 2)
rv and from the additive property of independent Gamma rv’s with common g in Proposi-
tion 2.2.1, the following proposition is an immediate consequence.

Proposition 2.2.3. If Z;,...,Z; are independent N(0,1), then W = Zle Zi2 is a
Gamma(k/2, 2) rv with pdf:

1

76710/2“/](7/27110 (w)
Zk/2F<I§C> (0,00)

fww) =

This rv is known as x? with k degrees of freedom (df), denoted by x ,3 Clearly, the sum of
independent x? rv’s is a x2 rv, the df of which is the sum of the df’s of its components.
Proposition 2.2.4. If ,31, % ,%n are mutually independent, then by the additive prop-

erty of independent Gamma rv'’s derived in Proposition 2.2.1, x /%1 +-+x ,fn is distributed as

2
Xy 4tk
Now suppose that X ~ N(u, 1), then by Eq. (11a) of Chapter 1,

1 1 _ L Ji—u)? Y Jw—n)?

fxz(”“)=z—fw'—m[e P ez M)}
_ 1 U L2 Lwl uw , o—udw
== 2]Te 272 [e“ +e M ]

Using the properties of Gamma function and remembering I” (%) = /7,
B o 2r 00 (a2>r
e “=2¥ (Zr)! ZZZ: 2713 @2r — 1)]
r=0 r=0
o (a2>r/22r—1
= V7
") )
o <a2)r/22r—1

zﬁg nr(r+3)
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We thus arrive at the Noncentral x? distribution with 1 df and noncentrality parameter
1,2,
K

00 (M2>rwr/22r71

1 1 1,2 1
frz(w) = —= - ——e 2¥ 2% . /7 B
X 2Jw 2x o r!F(r—l—%)
—u? (1 2\"
€ 2 (7“ ) . 1 —w/2,,2H 1
e r! F(zr;1)22r2+1

Let N be a Poisson rv with mean %/Lz. Then the rth term in the above sum is

Xlt2r

()

Hence, fx2 (W) = E[fxleN (w)], where N is a Poi(%/ﬁ) rv. This is the pdf of a noncentral x?2

rv with 1 df and noncentrality parameter ;x> denoted by x? (% u2>.

2.2.7 Sampling From a Normal Distribution, Sample Mean
and Sample Variance

LetXi,..., X, be nindependent rv’s, each distributed as N(u, 0%). Such a collection of rv’s
will be called “a random sample of n observations from the normal population N(u, %).”
The concepts of population and sample will be discussed in Chapter 4.

We have seen that x is the mean and o2 is the variance of N (u, 02) The analogs of 1« and

o2 in the sample (X1, ..., X;) are, respectively, the sample mean and sample variance
$= 1S Xand?= LS (% _%)?
_ﬁ; ;and s fl;(l— )
(The reason for the factor ﬁ instead of % in s2 will be made clear later in Chapter 5). In

the following proposition we derive the joint distribution of X and 2.
Proposition 2.2.5. Let X and s* be the sample mean and sample variance, respectively,
in a random sample (X1, . .., Xy) from N(u, o?). Then

(i) X ~ N(u,0?%/n),
(i) (n—1s?/o? ~ x2_|,and
(iii) X and s? are independent.

Proof. Let W; = X; — . Then Wy,..., W, are iid N(0,02), and letting wT =
(W1, ..., Wy), w' = (wr, ..., wy), the joint pdf of (W1, ..., Wy,) is expressed as
fww) = ;n exp[—%wTw]
(«/271(7) 20
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Transform Y = AW, where A = ((a;j)) with aiT = (ap, ..., aip), i =1,..., nsatisfying
a-{ =n"12@,...,1), a-{a,- =1,and a-{aj =0foralli#j
so that A is orthonormal. (In particular,

T_ fi_1yn—1/2 . .
aj_{(] nj}=(1,...,1,j-1,0,...,0), j=2,...,n

will do.) Then

n
Yi=aiW=n""23"W; = /nW = Vn(X - )

i=1
where W = n ' Y W, and Y'Y = W' (ATA)W = W'W. Hence

n n n
SVE=YY-Yi=WW- (VaWw)? = > (W - W)* = > X —X)?
=2 i=1 i=1

Now by Eq. (14) of Chapter 1, the joint pdf of (Y1, ..., ¥) is

el )

fr(») =fW(A_1J’) = ( .

1 T
= eXP[——y y]r
(mg)" 202
thatis, Y1,..., Y, are iid N(0, 0%). Thus
(i) vnX —u)=alW =Y;isN(0,02), thatis, X is N(i, 0%/n),

(i) YO (X —X) =YL, (Wi—W)" =YL, Y2iso2x2 |, thatis, (n — 1)s?/o2is x2_|,
(iii) X =p+n"12y;ands? = (n— 1) Y I, Y? are independent.

2.2.8 t and F Distributions
Definition 2.2.7. Arv t;, = Z/\/W/k, where Z ~ N(0,1) and W ~ x]% are independent, is
called a ¢ rv with k df. It follows from Proposition 2.2.5 that

V(X - p) V(X —u)/o

s \/{(n—l)sz/az}/(n—l)

isa trvwith (n — 1) df.
This rv is commonly referred to as Student’s ¢ (“Student,” [5]).
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Proposition 2.2.6. IfZ ~ N(0,1) and W ~ 2 are independent, then T ~ t,, = Z/ /W /k
has pdf

—(k
fr@® = F((k+ l)/2) ! (1 + t2/k> ( +1)/2, —00 <t < 00.

RUPRCENG

Adistribution with this pdfis called the t distribution with k df.
Proof. The cdfof T ~ 1 is

NI
Fr@ :P[Z/\/W/kg t] - / OOO / b @fww) dz dw, and
—0 Jz=—00

o0
fr = /0 fW(w)\/w/ku<t\/w/k) dw (by Eq. (13) in Chapter 1)

o0 1 k w 1 2
_ 9—k/2g-10/2, k/2-1 \/j( o1/t w/k) dw
/o (r(k/z) AW

(k+1)/2
(1/2) L [% /(14 /kw,, k4 /2-1 gy,
ra/2)rk/2) vk Jo

_ I(k+1/2) 1 ) Nkt
= rmri ) et <o
recognizing the last integral as I"((k + 1)/2) by appropriate normalization. O

Using Stirling’s approximation, I'(p) ~ «/2me~ P~V (p — 1)P=V/2 for large p, we see that
the pdf fr(t) converges to the pdf of N(0, 1) at each t, as k — oc.

Another important rv is
By, = X /K
Mg ke

where xlfl and xlfz are independent x? rv’s with k; df and k; df, respectively.

To find the pdf of Fy, x,, we first use Eq. (13) and then Eq. (10) in Chapter 1 for the pdf of
the ratio of two independent rv’s and then for the pdf of the multiple of an rv. In this way,
we arrive at

w >0,

T (k1 + k2)/2) (I \K1/2 k1/2—1
kal ko (w) (( 1 2)/ ) ( 1) w
| [1+(

T Tk /2T ka2 \kep Kz w] FITR2

the verification of which is left as an exercise.

2.2.9 Noncentral x2 and F Distributions

In Section 2.2.5 we introduced the noncentral x? rv with 1 df and noncentrality parameter
w?/2 as the rv X? where X ~ N (i, 1). The pdf of this rv was expressed as E[fxﬁzw (w)] where

Nisa Poi(u2 /2) v. We now extend this by considering the distribution of Zle Xl.2 where
Xj,..., Xy are independent N (u;, 1).



44 THEORY AND METHODS OF STATISTICS

As in the proof of the Proposition 2.2.5, transform ¥ = AX where A = ((a;)) with a] =
(ain, ..., a;) satisfying
1 ifi=j
0 ifi#j

1
T T
a; = 7 ll(m,...,uk)andaiajz

where [[pn|? = Zl | #2. Then A is orthonormal and "5, X? = Y% | Y2. Moreover, since
Y1 = alX Zl 1 wiXi/llpll, we have

(A_IY - u)T(A_lY - u) = X-w'X-—p= Xk:(Xi —wi)?
pat
k k

=3 x? 2ZMX+ZM DY = 2elvy + e

i=1 i=1

2 2
= (11 =l + 37,

and the joint pdf of (V1,..., ¥) is

) = 47) = e 5 (47 ) (47 )

L exp| =2 (1 — i) 1j§jy2
= -5 0= 52V |
(vzr) 2 2z

It follows that ¥; ~ N (|||, 1) and Y% , Y? ~ x2 |, which are independent. Now

k k

2 2 2 2 2
DXP=Yi+ ) Y~ aian F iy
izl =

where the two x? rv’s are independent. Using additive property of independent x? rv’s, we
seethat W = Yf_ | X? = x2,,, has the pdf

o0
_ 2 _
fww) = ;fN<r’ el /z)fX13+2r(W) B E|:fXI%+2N(W)i|'

N ~ Poi(|||?/2). We denote this by writing W ~ x2(||x|?/2), which is a x? rv with k df
and noncentrality parameter ||u|%/2.

ArvoftheformV = VV'G//’Z, where Wy ~ x2,(8%) and W, ~ x2 are independent, is said to
be distributed as F with numerator df m, denominator df » and noncentrality parameter
82, denoted by Fy, (52).
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Since Wy ~ xZ,,,n With N ~ Poi(s2/2), we can write V = Fy 2n,n, Where Fp 2, is F
with numerator df m+2r and denominator df . In particular, if Xi, . . . , X;; are independent
N(/,L, 0'2), then

VX VnX/o
S lm=Ds2/02}/n-1)

is distributed as
N(vnp/o,1)

JxZ /-1

the numerator and denominator being independent (by Proposition 2.2.5), so that

2 2,.2
xy\nus/o n,uz
Tzwgzplyn_l( )

x2_1/(n—1) o2

The noncentral x? and F distributions are used in evaluating “power properties” of tests
of significance of various hypotheses about means and variances of normal populations
and in tests of hypotheses in Linear Models, as will be seen later. The noncentrality param-
eter is a measure of departure from “null hypothesis,” and for fixed ¢, k, m, n, P[x ]% (82) = c]
and P[F,n(8%) > c] are increasing functions of §2. Proofs of these monotonicity properties
are left as exercises.

2.2.10 Cauchy Distribution
Definition 2.2.8. A rv X is distributed as Cauchy(0) if X has pdf

@ 1 1 .
= —00 <X < 0.
Y T iva—e?

We first verify that fx is indeed a pdf. Since fx(x) > 0 for all x, we only need to check
o0 1 [ 1 1 > 1
dx = — — —dx=— —d
ﬁwa(X) * n/m 1+ (x—0)2 T3 /m 1+ y2 Y
2 (> 1 2 [7/2 1+ tan?
— _/ 5 dy = _/ l+tan~¢ dy
TJo 14y 7 Jo 1—|—tan2<p
/2
7 Jo

using the transformation ¢ = tan~!y, thatis, y = tan¢. To find the mean of X, note that
X =Y + 6 where Y = X — 6 has pdf
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Now

1 [ 2 [
E[|Y|1=—f VL gy = / Y ay
—0 0

T 1—|—y2 T 1+y2
1 [*1 . 5
_;/I ;dt(wnht—l—l—y)'

which diverges. Hence E[Y] does not exist, and therefore, E[X] does not exist.

2.2.11 Multivariate Normal Distribution

Definition 2.2.9. If X' = (X1,...,Xp) is a p-dim rv which can be written as X = u + BZ,
where p is a p-dim vector in R”, Bis a p x k matrix and Z is a k-dim vector of iid N(0, 1)
rv’s, then X is said to follow a p-variate normal distribution.

Since E[X] = p and Cov[X, X] = E[(X — )X - /L)T:I =BB" := ¥ wecallXa p-variate
normal rv with mean vector g and covariance matrix ¥, and write X ~ Ny (u, X).

We now list the important properties of p-variate normal distribution in the following
propositions.

Proposition 2.2.7. If X ~ Ny(n, X) and Y = ¢ + AX, wherecisinR" andAisar x p
matrix, then' Y ~ Nr<c —i—A;L,AZAT).

It follows that the vector formed by any subset of r coordinates, 1 < r < p — 1, follows
an r-variate normal distribution with appropriate mean vector and covariance matrix. In
particular, each X; ~ N(u;, 0j7).

Proof. Since X = p + BZ, the transform

Y=c+A(n+BZ) = (c+Apn) + (AB)Z,

and (AB)AB)" = A(BBT)AT — A3A". Hence, Y ~ Nr<c + A;L,AEAT). 0
Proposition 2.2.8. If p < k and rank(B) = p, then ¥ = BB' is positive definite, and
X = u + BZ has pdf

fxxp %) = —%(x—u)TE_l(x—u)], x eRP.

1
@nPEz oY [
Conversely, if X has pdf fx(x; n, X) given above, for some p and positive definite X, then X
can be expressedasX = p +BZ, Z" = (Z1,...,Zp) with Zy, ..., Zp iid as N(0, 1).

Proof. Since the rank of Bis p < k, B'a # 0 for any a # 0 in R, so that ¥ = BB' is
positive definite. Next augment B and p with a (k — p) x k matrix C and a k — p vector of
zeros, respectively, so that

«_| B x _ | M
o2 Jer (5}

where the rows of C are of unit length, mutually orthogonal, and orthogonal to the rows of
B. Note that B* is a square matrix of order k and u* is a k-dim vector. Then letting Y = CZ,
we have
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« | X |_| »n+BZ
e[y - [e ]
as a one-to-one transformation from Z. We now find the pdf of X* from the pdf of Z and
integrate out Y. The details are left as an exercise.
To prove the converse, find B so that ¥ = BB' (B is not unique) and transform
Z = B (X — p). Then Z has the desired property. O

Remark 2.2.1. If X, and X are p- and g-dimensional rv’s, then independence of X; and
X, implies ¥, = Cov[Xj,X2] = 0. However, the converse is not true in general. In the

e ) ) . X
case of normal distributions the converse is also true. More precisely, if X = [ Xl } ~
2

Npiq(n, X), then X; and X» are independent iff ¥1> = Cov[X1,X2] = 0. The proof can be
easily seen when X is positive definite. If ¥ 12 = 0, then ¥ is a block diagonal matrix of the

21 0
form
[ 0 3

and X being the product of the pdf’s of X; and X».
Proposition 2.2.9. Suppose X ~ Ny, 4(u, X) where X is positive definite. Let

Xy 3] ] [ Zun X2 ]
X = , = , E = )
[Xz] # [Mz 2 X
where X1, pnq and X2, p, denote the first p and last q coordinates of X and p, respec-
tively, and ¥11 = Cov[X1,X1], X2 = Cov[X2,X>], ZL = Y12 = Cov[X1,X2], where
Cov[X;, X;] = E[(X,- — ) (X — ﬂj)T]. Then the conditional distribution of X, given X, = x1
is Nq(ﬂz + 22121_11 (x1—p), Zo2 — 22121_11212)-
Proof. Write fx, x, (*2|x1) = fx, x, *1, %2)/fx, (x1), where

} and its inverse is also block diagonal. This results in the joint pdf of X;

1

fx.x, (%1, %2) = F—T
(Zﬂ)(p+q)/2 11 12

T X

1 T T Zn Zw 7' x-m
xexp{—g[(xl—ul) G- 2] [ Rom

and
1 1 Te—1
= exp| -z (¥ —p1) = — )|
fxi (%1) I eXP[ z(xl 1) Zip (%1 ﬂl)]
To calculate the ratio of the last two terms, the main task is to find the inverse and

the determinant of the partitioned matrix involved in fx, x, (x1, x2). For this we need the
following argument. Let

A Ay i| . T |: I 0 ]
A= withA4y1 =A;, and B = _ .
[ Ay Az Sl —ALA T
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Then
A 0
D=BAB' = [ 1 _ ]
0 Ayp-ALA AL
-1
-1 All 0 .. . -1 T -1
soD™ " = )71 . This implies A = B D(B ) and therefore,

0 (Az—ALAj Ar
-1
denoting (Azz - A{ZAfllAu) by H,

-1 -1 T 41 -1
A l'=B'D'B= [ Ay +A11A12Hf;112A11 —Aj; Ai2H }

T —
—HA12A11 H
Finally,

Al = B |D|BT|™! = |D| = |A11 1422 — A, A} A1),

-1
. b)) X X )
because |[B| = |B'| = 1. Using these results on [ 1 12 } and ‘ 1 12
XYo1 Xoo Yo X

we obtain after some algebraic simplification,
Fraixy (%21%1) = fx, x5 (%1, %2) /fx, (*1)

_ 1 1 Te-1
= W €xp [—E(xz - IL2.1) 222.1(362 - ﬂz.l)}v

where py; = o + 2212;11 (x1 — [Ll) and X1 = Yoo — 2212;11212. The expression
displayed above is the pdf of Ny(pt21, X22.1). O
Remark 2.2.2. Special Cases.

(i) For g = 1, write ‘7;(1) = (01,p+1, - - -»opp+1) where oj; = Cov[X;, X;]. Then
Ay _ 2 T -1 2
o= XXy 12 =0p41 — 00y 211 92(1) = 9(py1).(12..p)r A0
-1 -1 -1
p2+ X1 X7y (%1 — 1) = (“PH - 05(1)211 “1> + ”5(1)211 X1
=a+ B1x1+ -+ Bpxp,
where BT = (B1,..., Bp) = a;(l)Zfll and o = pupy1 — (B + -+ + Bpiip). (Remember:

In the above, x{ = (x1,...,%p) and [Ll- = (1, ..., 1p).) Thus the conditional
distribution of X,,41 given (X1, ...,Xp) = (x1,...,Xp) is

N(oz + B1x1 + -+ + BpXp, ‘7(2p+1).(12...p)> where the conditional mean
o + p1x1 + - - - + Bpxp and the conditional variance a(zp +1).(12-p) AT€ given by the above
formulas.

012 00102
pO102 022

_ -1 1/02 —p/(0102)
1/2 /i o 1 2 i p/(o102
|X|“ =o01024/1 — p%and X _(1 p) [ 1/022 .

—p/(0102)

(ii) Forp=qg=1,%= [ } and therefore,
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Thus for -1 < p < 1,

1 1 x1— 1\
fx,x (X1, %2) = —————=exp| — (
! 2( ) 2no102y/1 — p? 2(1—p2) o1
2
X1 — X2 — X2 —
—2,0( 1 Ml)( 2 M2>+< 2 Mz) H’
o1 02 )

which is the pdf of bivariate normal distribution Nz (11, u2, 07, 03, p) with mean

. . o 010 . . . N
vector (11, u2)" and covariance matrix [ pala p 012 2 ] The marginal distribution
102 2

of X; is N(u;, o?) and the conditional distribution of X, given X; = x; is

N(a + ﬁxl,ogl), where 8 = po2 /o1, @ = u2 — By, and 022.1 = 022(1 — pz).
Conversely, if X1 ~ N (m, 012) and the conditional distribution of X, given Xj is
N(a + BX1,7?%), then (X1, X2) ~ Na(u1, 2, 0%, 04, p), where

n2 = o+ Bui, of = 1%+ B%0?, and p = Bo1/,/12 + p2ot.

a  aaz
a1 azz
Y1 = anXi + a12X2 and Yz = a»1X7 + az»X» are jointly bivariate normal with
appropriate parameters. In particular X + X> and X; — X» are independent iff o1 = o».

Moreover, if (X1, X2) ~ Na(u1, u2, 02,04, p) and A = [ } is nonsingular, then

Proposition 2.2.10. Suppose X ~ Ny(u, X) with positive definite X. Then (X — w'x-1
X — ) ~ x5

Proof. Find B such that BB" = ¥ and write X = n + BZ with Z ~ Ny(0,1), as in the
proof of the converse part of Proposition 2.2.8. Then

p
-1
X-wz X —p= ZTBT<BBT> BZ=7"2=Y 72~ .

i=1

2.2.12 Exponential Family of Distributions

A family of pdf’s or pmf’s is said to be an exponential family if it is of the form
k
f(x,0)=c(0)exp| D" Qi(0)Tjw |rx), 0 €0,
=1

where r(x) > 0, ¢(#) > 0, and each Tj(x) is a real-valued function of x, while each Q;(6) is a
real-valued function of 6.

Note. The set {x: f(x,0) > 0} = {x: r(x) > 0} does not depend on 6.

Many distributions including most of those discussed above belong to this family.
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Example 2.2.2. The pmf of the Binomial distribution Bin(n, p) is

flop) = (Z) exp[xlog(p) + (n — x)log(1 — p)]

(o renf )

x =0,1,...,n. Thus f(x, p) is of the desired form with 6 = p, c(9) = (1 — )", r(x) = (}),
Q) =1log(6/(1 —0)), and T(x) = x.
Example 2.2.3. The pmf of Poi(}) is

Ax 1
f,n = e’)‘; = e’)‘; exp(xlogi), x=0,1,...

This pmf is of the desired form with 6 = A, r(x) = 1/x!, c(#) = e ?, Q0O = log9, and
T(x) = x.
Example 2.2.4. The pdf of N(u, %) is

o2 1 1 2
f(x,u,a ) = mexp[—za—z(X—M) i|

= () exp[%“ (_sz_ZZH

This pdf is of the desired form with 8 = (u,0?),r(x) = 1, ¢(9) = \/2170 e /(2% 0, (0) =
n/o?, Ti(x) = x, Q2(0) = —1/(20?), and T (x) = x*.

The pdf of Unif (0,6) is f(x,6) = ) (x). Here, the set {x: f(x,6) > 0} = (0,6) depends
on 0. Therefore, this family of pdf’s { fx,0), 6 > 0} is not an exponential family.

Natural Parameters. In the form of f(x;8) given in the definition of an exponential
family, if we reparameterize by letting

0; = Qj(0), j=1,...,k andletc(8) = c(6y,...,6%),

Q

then the k-parameter exponential family of pdf’s or pmf’s is represented as

k
f(x;6) =c(6) exp |;Z ejTj(x):| r(x) = c(0) exp[ (0, T(x))]r(x),

1

where the parameters 61, ... ., 6y are called natural parameters and ®* is called the natural
parameter space defined as

k
O = {0 = (91,...,9k): /Oo exp|;29]T](x):| r(x) dx < OO},
—00 -

where X = R (and analogously for more general X). Also, the constant ¢(6) is given by

c(6) = { /_ O; exp Lﬁ 9jTj(x)}r(x) dx] .
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With the reparameterization 6; = u /o2, 60 = —1 /(202), the pdf’s of the family of normal
distributions can be written as

f(x:61,62) = c(8) exp[@lx + ngz].

Proposition 2.2.11. The natural parameter space ©* of a k-parameter exponential
family of distributions is a convex set in RX; that is, if0 and 0’ are in ©* then af + (1 — «)0’
forall0 <« < 1.

Proof. We shall use Holder’s Inequality: if f and g are real-valued functions on R”" for
which [ |f|” and [ |g|9 are finite for p > 1, g > 1 with 1/p + 1/g = 1, then [ |fg| <
(JIFIP)P ([ 1g19)"/7 (see Section A.2).

To prove the proposition, letp = 1/a, g = 1/(1 — ) for 0 < « < 1, so that p and g are
larger than 1 with 1/p 4+ 1/g = 1. Then by Holder’s inequality,

/exp[(a, T(x))]r(x) dx < oo and /exp[(o’, T(x)]r(x) dx < oo

and hence
/exp[(a() (1 — o), TG)]r(x) dx
= /{exp[a(o, T(x))]r“(x)}{exp[(l —a)f, T(x))]rl—a(x)} »
: U{eXp[“(o’T(x))]r“(x)}l/“ dx]
—o ) —
X [/{exp[(l _“W/vT(x))]rl‘“(x)}l/(l ) dx]
o l_a
< oo.
O

Exercises

2.1. A multiple choice exam consists of 20 questions, each with four possible answers
and carries four points. If a question is attempted, then the score is 4 for a correct
answer and 0 otherwise, while a score of 1 is awarded for a question which is not
attempted. A student knows the answers to eight questions, but has no idea about
six questions and is 50% sure about the answers of the other six questions. It takes
50 points to pass the exam. Find the probability of passing for each of the following
strategies and choose the best one.

(a) Answer the 8 sure ones and guess at random the answers of the other 12.

(b) Answer the 8 sure ones, choose the answers of the 6 that you are 50 sure about
and guess at random the other 6.

(c) Answer the 8 sure ones and do not answer the other 12.



52 THEORY AND METHODS OF STATISTICS

2.2,

2.3.

2.4,

2.5.

2.6.

2.7.

2.8.

Samples from a large lot of manufactured items are being inspected to determine
whether the proportion of defectives p = 0.1 or less as claimed by the supplier. The
following sampling plan is under consideration:

Take a sample of 15 items and accept the lot if all are good, reject the lot if 2 or
more are defectives and take another sample of 15 items if there is 1 defective in the
sample. Accept the lot if all 15 in the second sample are good and reject the lot
otherwise.

Find the probabilities that this sampling plan will result in
(a) rejection of alot with p = 0.1,

(b) acceptance of a lot with p = 0.15.

An insurance company writes automobile insurance policies in an area where 1 out

of 200 drivers causes accidents in a year according to past record. If the company

writes 500 policies, find

(a) the probability that there will be no more than two claims in a year,

(b) the expected amount of claims to be settled if the average claim is $1500.

On a certain segment of a freeway, accidents happen during the rush hour at the

rate of two per hour, following the Poisson distribution. Find the probabilities of

(a) atleast one accident in an hour,

(b) if there was one accident in an hour, the accident occurred during the first half
hour.

A radioactive source emits particles at a rate of 0.4/s. Suppose that the number of

particles emitted per second is a Poisson rv.

(a) Find the probability that two or more particles will be emitted in 3 s.

(b) A counter registers an emitted particle with probability 0.75. What is the
probability that two or more particles will be registered on the counter in 3 s?

Three players A, B, and C will play a table tennis match. In each game, A defeats B

with probability 0.6, C defeats B with probability 0.6, and A and C are evenly

matched. First, A plays against B and the one who wins three games, plays against

C. Then the one who wins three games wins the match.

(a) Find the probability that A wins the first round and the probability that the first
round is settled in four games.

(b) Find the probabilities of A, B, and C winning the match and the probability that
the entire match is settled in nine games.

(c) Find the expected number of games to settle the match.

Find the moment generating function (mgf) of each of the following rv’s:

(a) X ~ Poi(2), (b) Y ~ Geom(p), (c) T ~ Exp(6), (d) W ~ Gamma(a,,B).

Also find the means and variances of these rv’s from their mgf’s.

Show that the pdf of Fy, , = ( X ,%1 / kl) / ( X ,%2 / k2> where x ,%1 and x ,%2 are independent

chi-square rv’s with df’s k; and ky, respectively, is as given in the text.



2.9.

2.10.
2.11.

2.12.

2.13.

2.14.

2.15.

2.16.
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Asin Section 2.2.8, let x?(8?) and Fy,»(8?) denote the noncentral xZ and Fy,
rv's with noncentrality parameter §2. Show that for fixed ¢, k, m, n, P[x%(8%) > c]
and P[F, n(82) > c] are increasing functions of §2.

Verify the details of the proof of Proposition 2.2.8.

LetXi, ..., X, beindependent N(0,02) rv’s. Then Y, = (X2 + - + X,Zl)l/2 is

distributed as a\/;% . Find the pdf of ¥;,. [This distribution is called Raleigh

distribution for n = 2 and Maxwell distribution for n = 3.]

Let X1, X> be independent N (0, o2) rv’s. Find the pdf’s of

1 =X1/X2, Y2 = X1/|Xz|, Y3 = | X1|/IXz].

Let V1, ..., V441 beindependent Exp(1) rv’'sand let S = Vi + -+ - + V,

k=1,...,n+1.Let Ug) < --- < Uy be the order statistics in a random sample

(Uy, ..., Uy) from Unif (0, 1).

(a) Show that the joint distribution of (Uq), . .., Ugw) is the same as that of
(S1/Sn+15- > Sn/Sn+1)-

(b) Use this result and Proposition 2.2.2 to find the pdf’s of
(1) U(k) and (ii) U(l) — U(k) forl<k<l<n.

Let X() < --- < X be the order statistics in a random sample (Xj, ..., X;) from

Exp(1). Show that nX(), (n — 1)(X(2) — X(l)), (n—2) (X(g) — X(z)), RN (X(n) — X(n—l))

are iid Exp(1).

(a) Show thatif X has a continuous strictly increasing cdf F, then F(X) is Unif (0, 1).

(b) If Ty, ..., T, are iid Exp(mean 0), then 2(T1 + - - - + Tp,) /0 is x3,.

(c) Let (£1,2,) = (R cosé, Rsin 9) define a one-to-one map between (21, Z») and
(R, 0). What is the joint distribution of (R, #) when Z;, Z, are independent
N(0,1)?

(d) LetZ;,Z, beindependent N (0, 1) and let

X1 =a1 +b11Z1 +b12Z, Xo=ap+bo1Z1+ b

Find the constants ay, az, b11, b12, bo1, b2 so that (X7, X») follows a bivariate

normal distribution with mean vector (11, 12) and covariance matrix

[ o?  poioy }

pO102 022 ’
Suppose that you have a computer program to generate Unif (0, 1) rv’s Uy, Ua, . . ..
How would you use these rv’s to generate independent rv’s distributed as
(@) T ~Exp(1), (b) V ~ x%, (c) W ~ Cauchy(0,1), (d) Z ~ N(0, 1),
2
(e) (X1, X2) ~ Na(, ) where g = (u1, u2) and X = [ G }
pO102 0

Use the results in Exercise 2.15.
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2.17. Suppose that (X, X», X3) follows a 3-dim normal distribution with the mean vector
(w1, 2, 13) and a positive definite covariance matrix ¥ = ((0j;)). Let
X211 =Xo — E[X2|X1], X3.1 = X3 — E[X3]X1], and X3.12 = X3 — E[X3]X1, X2].
(a) Show that Xj, X>.; and X3.12 are mutually independent
(b) The partial correlation coefficient between X», X3 given X is

Cov[Xo.1,X3.1]
\/Var[Xz‘l]Var[Xg‘l]

p23.1 = Cort[Xp.1,X3.1] =

Express p23.1 in terms of p12, p13 and po3 where p;; = Corr[X;, X;].

() The multiple correlation of X3 on (X1, X>) is p3.12 = Corr[X3, E(X3/X1, X2)]. Show
that p3.12 > 0 and Var[Xs.12] = 0‘33(1 — P?%.lz)-

(d) Show that1 — ,032_12 = (1 — p%)(l - ,053.1).



Infinite Sequences of Random

Variables and Their Convergence
Properties

3.1 Introduction

Let T be a statistic based on the data consisting of rv’s X1, . . ., X;;. Most statistical methods
(such as estimation and hypothesis testing discussed in subsequent chapters) use a
statistic appropriate for the problem at hand. It is of interest to know how T behaves as we
have more and more data in order to understand the behavior of the procedures based on
T with large data sets. For a rigorous examination of this question, we need proper notation
for T based on (Xj, ..., Xy) as n — oo and the concept of how T behaves as n — oo should
be made more precise.

3.2 Modes of Convergence

Let T be a statistic based on the data consisting of rv’s X7, . . ., X;,. Most statistical methods
(such as estimation and hypothesis testing discussed in subsequent chapters) use a
statistic appropriate for the problem at hand. It is of interest to know how T behaves as we
have more and more data in order to understand the behavior of the procedures based on
T with large data sets. For a rigorous examination of this question, we need proper notation
for T based on (Xi, ..., X,) as n — oo and the concept of how T behaves as n — oo should
be made more precise.

Definition 3.2.1. LetXj,..., X, beiid rv’s with common cdf F € F, where F is the class
of all cdf’s on R. Then the function

n
Fu(x) = ") " I oo (X3)
i=1
is called the empirical distribution function (edf).
Definition3.2.2. Let T: F »RF. Then T, = (T, .. ., Tyx) = T(Fy) is the k -dim statistic
T based on (Xi,...,Xy), thatis, T, = T(Xy, ..., Xp).
We now define various modes of convergence.

Theory and Methods of Statistics. http://dx.doi.org/10.1016/B978-0-12-802440-9.00003-5 55
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Definition 3.2.3. The various modes of convergence are defined as:

1. Convergence in Probability: X, —P> aiflimy, o P[|X;;, —a| > ¢] = 0forall¢ > 0 and
Xn 5 Xif Xy — X| 5 0, denoted by X,, = a + op(1) and X, = X + op(1),
respectively.

2. Convergence in Law: Xj, £> X if P[X,, € A] — P[X € A] for all A for which P[X € 0A] =0
where dA is the boundary of A. For 1-dim rv’s, Fx, (x) — Fx(x) at all continuity points of
Fx is enough.

3. Convergence in Quadratic Mean: X, iy a if E[(Xn — a)z] — 0and X, iy X if
E[(X» — X)?] — 0. More generally, X, Lx if E[|1X;, — X|"] — 0 for X, X such that
E[|Xn|"] < oo and E[|X|"] < oc.

4. Bounded in Probability: {X,,} is bounded in probability, denoted by X;, = Op(1), if for
any ¢ > 0 there exists a positive constant M, such that P[|X,,| < M;] > 1 — ¢ for all n.

5. Almost Sure Convergence: X, = a if Pllim,— 0o Xy = a] = 1.

6. Uniform Integrability: {X,} is uniformly integrable if

Jlim i E[1 X500 (1Xn])] = 0.

Compare the stochastic order relations op and Op with the usual order relations o and O
for sequence of real numbers:

1. Iflim;,,—, o X, = 0, then x,, = 0(1).
2. If {x,} is bounded, then x,, = O(1).

Extensions of the above definitions. Let {r,} be a sequence of real numbers. Then X,, =
op(rn) iff Xn/tn = op(1), Xn = Op(rn) iff Xn/tn = Op(1), Xn = 0(rn) Uff Xn/mn = o(1),
Xn = O(ry) iff Xn/1n = O(1). For example, X, = 6 + Op(1/v/n) iff v/n(X, —6) = Op(1).

Convergence Properties of Sample Means of iid Random Variables and Random Vectors.
Suppose {X;} is a sequence of iid rv'sand X, = n=! 31, X;.

Theorem 3.2.1 (Weak Law of Large Numbers (WLLN, Khinchine)). If E[X;] = u exists,
then X, 5 1.

Theorem 3.2.2 (Central Limit Theorem (CLT, Lindeberg-Lévy)). If E[X1] = pn and
Var[X1] = o2 > 0 exist, then

X —
Jn2 TR L 7 N, 1).
o

Theorem 3.2.3 (Multivariate CLT). Let {X;} be k-dim iid random vectors with mean
and covariance matrix X, then

V(% — 1) 5 Z ~ Ni(0, ).

Theorem 3.2.4 (Strong Law of Large Numbers (SLLN, [6])). If E[Xi] = p exists, then
Xn & "
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The proofs of Theorems 3.2.1-3.2.3 using characteristic functions, are given in
Section A.4.

Two proofs of Theorem 3.2.4 will be given in Section 3.3, one under a stronger condition
that Xj has a finite fourth moment and the other assuming finite variance.

We conclude this section with a number of basic facts which follow from the definitions
of various modes of convergence. We shall sketch the proofs of some of these, while the
proofs of others are left as exercises. These facts will be used in the sequel without further
explanation.

Theorem 3.2.5. The following are true.

1. Convergence in quadratic mean implies convergence in probability.

I If X, X X and g is continuous, then g(Xy) X g(X).

n. If X, £ Xand g is continuous (more generally, if P[X € Dg| = 0, where Dy is the set
of discontinuity points of g), then g(Xy,) A g(X).

IV. (a) Xu 5 X implies X, = Op(1).
(b) X, £> 0 implies X, = op(1).

V. Xo 5 Xand Y, 5 cimplies Xp + Yn 55 X + ¢, X Yn 5 ¢X, and if ¢ # 0,
X/ Yn 5 X/c.

VI. (a) If X, = Op(1) and Y, = op(1), then XY, = op(1) and X, + Y, = Op(1).
(b) If X,, = op(1) and Y, = op(1), then X,,Y, = op(1) and X, + Y, = op(1).
VIl. Slutsky’s Theorem: Xy, £ Xand Yy, = op(1) implies X, + Yy £x.
VIIl. Polya’s Theorem: If F,, and F are cdf’s, F is continuous, and F,,(x) — F(x) for all x,
then the convergence is uniform.
IX. Borel-Cantelli Lemma:If Y . P[|Xn — al > €] < oo foralle > 0, then X, L a. (The
converse also holds under further conditions.)
X (a) If X, & a, then X, £ a.
(b) If X, £ a, then there exists a sequence {n]} such that the subsequence
X = a.
Outlines of some proofs.

I. IfE[(X; — @)?] — 0as n — oo, then by Tchebyshev’s inequality (to be proved in the
next section), for any ¢ > 0,

E[|Xn - a|2]

P(|X, —al > €] < ,
&

— 0,asn — oo.

Il. (i) Foré > 0, there exists M > 0 such that P[|X| > M] <.
(ii) For s > 0, there exists a positive integer n(8) such that P[|X;, — X| > ¢] < é for all
n > n(é).
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VII.
VIII.

IX.

(iii) By (i) and (ii), for § > 0, there exist M > 0 and n(3), so that for all n > n(3),
PIX| <M, | X, —X| <¢, | Xn| <M+e] >1-26,
(iv) gis continuous on R, so g is uniformly continuous on [-M — ¢, M + ¢].
Therefore, for 1 > 0, there exists ¢2 > 0, so thatforx,x’ € [M — e, M + ¢],

|x — x| < &2 implies |g(x) — g(x')| < e1.
(v) In (iii), choose ¢ = g2 and choose § accordingly. Then

PllgXn) — gX)| < &1] = 1 — 28 for n > n(s).

The proof is in Section A.4.
The proof of part (a) is in (iii) of I above. To prove part (b), note that X, £> 0 means
Xn £> X where P[X = 0] = 1. Now taking A = (—¢, ¢) in the definition of X}, £> X, we
have

P[|Xp| <¢] =P[X, €Al > PIXc Al =P[|X| <¢] = 1.
For any constant a

PXp+Yn<al=PXn+Ypn=<a|Yn—c|l<el]+PXn+Yy<al|Y,—c|l>el

Hence as n — oo,
PXpy+Y,<al<PXy<a—-c+el+Pl|lYy—c|>¢]>PX<a—c+e].
On the other hand
PXp+Yn<al>PXp<a—c—¢|Yn—c|<el+0
>PXp<a—c—¢]—P[|Yy—c| > ¢l
— P X<a-c+¢].
Thus forany ¢ > 0,

P[Xfa—c—s]fnlim PX,+Y,<al<PX<a-c+e¢].
—00

Hence

nlim PIXy+Y,<al=PX<a-—c]=PX+c<a
—00

at all continuity points a of X + c¢. Hence X, + Y, £> X+ec.

Slutsky’s Theorem is a special case of (V) for ¢ = 0.

To prove Polya’s Theorem, choose x; < --- < x; such that F(x;) < ¢/2,

1— F(xx) <¢&/2,and F(x;11) — F(x;) < ¢/2,i=1,...,k— 1. Now find N such that
|Fn(x;)) — F(x))| <¢/2,i=1,...,k, forn > N . The proof follows from these.
Almost Sure Convergence <a—s>) takes place in the context of infinite sequences

{Xn, n=1,2,...}. For this, the appropriate probability space is constructed by
extending the probability spaces of (X, ...,Xy,), n =1,2,...in a suitable manner.
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Now limy,_, « X, is to be thought of in the space (£2, F, P), where £2 is the space of all
infinite sequences w = (x1, X2, ...), F is a suitable o -field consisting of all sets
Cn(Bn) = {w: (x1,X2,...): (x1,...,Xn) € By}, n=1,2,...and all Borel sets B;, in R"
with P[Cn(By)] = Pl(X1, - .., Xn) € Bul.

Almost sure convergence X, %3 ahas the following meaning in this space: for
every ¢ > 0 and for ¢ N where P[N] = 0, there exists n(o, ¢) such that
| Xn(w) — al| < ¢ forall n > n(w, ¢). If there is no such n(w, ¢), then the event
An(e) = {w: | Xu(w) — al > e} must occur infinity often (i.0.). Thus Xj, s a, that is,
P[limy—, o Xy = a] = 1if P[Ap(e) i.0.] = 0 forall e > 0.

Now {A,(¢) i.0.}° means that A, (s)¢ must occur for all > k, for some positive
integer k, that is,

oo 0

{An(e) 10} = [ A%, s0
k=1 n=k
o o0 ¢ oo oo
{An(e)io) = [U N Aﬁ(e)} = U 4ne)
k=1 n=k k=1n=k

by De Morgan'’s rule (Chapter 1). Since {| 5 An(¢)} is a decreasing sequence of sets,

P[|X, — a| > i.0] = P[An(e) i0] = klir?o P|:nL=JkAn(e):| < klf?o ;CP[An(e)].

Hence ) 72 | Pl|Xn —al > ] = Y ;| P[An(e)] < oo implies limy_, oo Yo i
P[An(e)], so

P(|X;, —a| > ei.o.] =0foralle > 0,

that is, X, = a. This proves the direct part of Borel-Cantelli Lemma.
X(a). Note that X, &3 a iff imy_, oo P[Uner An(e)] = 0 for all ¢ > 0, which implies

limy_, o P[Ak(e)] = limy_, oo P[|Xx — al > ¢] = 0for all & > 0, that is, Xj £ a

Algebra of op, Op, o, and O. The properties (Vla, b) given above can be stated as:

Op(1) + op(1) = Op(1), Op(1)op(1) = op(1),
op(1) + op(1) = op(1), and op(1)op(1) = op(1).

The following also hold

Op(1) +o(1) = Op(1), O(1) + op(1) = Op(1), Op(1)o(1) = op(1),
O(L)op(1) = op(1), op(1) + o(1) = op(1), and op(1)o(1) = op(1).
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Theorem 3.2.6 (Delta Method). Suppose that in Rk, X, —p) £> Z ~ Ni(0, X) and
g: R¥ — R has continuous first partial derivatives. Then

VrlgXn) - guw] 5 W~ N(0, [vgw] Z[vew))-

The proof of this theorem is left as an exercise.

In many instances of asymptotic normality, the variance of the asymptotic normal
distribution is a function of its mean. This poses a problem in the construction of a large
sample confidence interval for the mean, which is the parameter of interest. In such cases,
it is convenient to make a transformation so that in the asymptotic distribution of the
transform, the variance is a constant. These are called variance-stabilizing transformations
of which some well-known examples are given below.

Example 3.2.1. If X is Poi(u), then for large p, (X — p) is asymptotically N (0, u). Here

(\/X - ﬁ) is asymptotically N (0, 1/4).

Example 3.2.2. If X,...,X, are iid Bernoulli(p) and p, = n~'> 3 X;, then
Vn(pn — p) LY N(0,p(1 — p)). Here ﬁ(arcsin Pn — arcsin ﬁ) LY N(0,1/4).

Example 3.2.3. Let $2 = (n— 1)1 2%, (X; — Xn)z, where Xi, ..., X, are iid N(u, 0?).
Then /(S — 02) 5 N(0,20%). Here /7i(log 2 — logo?) 5 N(0,2).

Example 3.2.4. If (X1, Y1), ..., Xy, Y3,) are iid bivariate normal with Corr[X;, Y;] = p €
(—1,1) and if r, is the sample correlation coefficient, then /n(r, — p) £> N (0, (1 — ,02)2).
Here \/ﬁ(tanh*1 rp — tanh ™! ,o) A N(0,1) (recall that tanh™' x = (1/2)log[(1 +x)/(1 — x)]).
Actually, using vn —3 (tanh*1 7n — tanh ™! ,o) as an asymptotically N(0,1) rv for the
purpose of constructing confidence intervals for p results in a better approximation.

. . L
To prove these results, find a transformation g in each case, such that n(X, — n) =

N(0,02(1)) leads to VA[g(Xy) — gw)] N(o, {g’(m}zaz(m), where {g'(1)} 02 (u) is
constant.

3.3 Probability Inequalities

In the previous section we have seen that the proofs of many “in probability” or “almost
sure” convergence results require good upper bounds for tail probabilities of deviations
of rv’s from their means, such P[|Xn — | > a] where X, is the mean of iid Xj, . . ., X,, with
mean u. The following probability inequalities are useful for this purpose.

Theorem 3.3.1 (Markov Inequality). If X is an rv with P[X > 0] = 1, then

E[X
PIX >a] < %, foranya > 0.
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Proof. Note that for any a > 0, Ij4,00) (X) < x/a and hence

E[X]
PIX >a] = E[I[a,oo)(X)] =< o
(See Proposition 1.8.1(iii and vi).) O
Tchebyshev’s Inequality. If X is an rv with mean p and variance o2, then
o2
PIX —ul>1] < L foranyt > 0.
Proof. Using Markov’s inequality
E[|1X — u?] o2
PIX—ulz ) =P[IX - uP = ] = % =
r r
(]

Generalization. It follows in the same way, that if X is an rv with mean x and (2r)th central
moment por = E[|X — 1|?], then

PlX—ul>1] < %, forany ¢ > 0.

r

Applications.

1. Asimple proof of the WLLN assuming finite variance:
WLLN. If X, is the sample mean of iid rv’s Xj, . . ., X;; with mean p and finite variance
o2, then by Tchebyshev’s inequality

_ Var[ X, 2
lim P[|X, — | > €] < lim ar[z ] = lim 2 =o.
n—00 n—o0 &

2. Asimple proof of the SLLN assuming finite fourth moment:
SLLN. If X, is the sample mean of iid rv’s X, . . ., X;; with mean y and finite fourth
central moment 4, then by generalized Tchebyshev’s inequality;

E[Sy]

(ne)*’

P[|Xn — ul = &] = P[ISul = ne] <

where S, = > 20, (X; — ) = Y 72, Y;, where Y1, ..., Y, are iid with mean 0 and finite
fourth moment E[Y*] = t*. Therefore

E[Sh] = E[(Sn-1 + Yn)*] = E[Sh_1 ] +6(n— Dot + 24 = .
=E[S‘1‘]+6{1+2+~--+(n—1)}a4+(n—1)r4

=3n(n — 1o + ne.
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Thus
- 3nn — Do* +nt*  30* + 14
P[IXy — i = 6] < o <
so that
0 4 4 00
- 30"+ 1 1
ZP[|Xn—M|ZE]S Tzﬁ < 090,
n=1 n=1

and now X,, = 1 by the Borel-Cantelli Lemma.

This covers the case of many standard distributions where the SLLN holds. Another
proof of the SLLN, assuming only finite variance, will be given later in this section, using a
much stronger probability inequality.

We now obtain two more powerful inequalities which provide exponential bounds
for tail probabilities. Of these, the first holds for bounded rv’s and the second requires
some moment conditions, providing a sharper bound. However, the first inequality due
to Hoeffding has the advantage of simplicity and is very useful in many situations.

Theorem 3.3.2 (Hoeffding’s Inequality [7]). If Xi,...,X, are independent with
PO<X;<1] =1foralli, Sy = X1 + -+ + Xp, Xn = Sp/n, and n = E[X,] = E[Su]/n,
thenfor0 <t <1—p, P[X,—p>t] < g—2nt®

Proof. Note that

P[Xn — > t] = P[Sp — np — nt > 0] = E[Ij0,00) (Sn — nw — nt)]

< E[eh(sn—"ﬂ—m)], forh >0
= e Mth(u+1) ﬁE[thi] < e MthntD ﬁE[(l —X;)e + X,-eh]
j i=1

—_

n

n
[1 —wi+ M,-eh] < e~ hlutD {n_l Z(l — Wi+ Mieh):|

i=1

— e~ th(u+1)

s

i=1

n
= e hutD) <1 -+ ueh)

= e"L(h), with L(h) = log(l -+ ueh) —h(u+1),

using the convexity of e/* and because geometric mean is no larger than the arithmetic
mean. Next, we want to choose h > 0 so that L(k) < 0. This is possible because L'(0) = —t
and L"(h) < 1/4 for all h, as can be easily verified, so that

L(h) = L(0) + hL'(0) + %th”(h*) =0—ht+ %th”(h*)
W2
< —ht+ 7= —2¢2 for h = 4t.

Hence we get the inequality by taking h = 4t¢. O
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Theorem 3.3.3 (Bernstein’s Inequality). If X1, ..., X, are independent with E[X;] = 0,
E[X?] = bj, By =b1 + -+ by, and forr > 2,

1 .
E[1X;"] < Er!bic”z, i=1,...,n,
where c is a constant, then

[2
n

Proof. For an outline of the proof, see Uspensky [8, p. 204-5]. O
Corollary. IfP[|X;| < M] =1, then forr > 2,

H1x;"] = 15[)(,.2 |Xl~|r_2] < b;M"2

b;M™ 211 1 M\"2
<= —Znp(=)
2.3r-2 " 2 3

becauser!/(2 - 3"-2) > 1. In Bernstein's inequality we can now take ¢ = M /3, resulting in

[2
n

In particular, if X, . . ., X, are iid Bernoulli(p), then M = max(p, 1 — p), and we have

_ 1 nt?
=1 2| 5 e |

Finally we obtain two bounds for tail probabilities of the maximum of cumulative sums of
independent rv’s. For this reason, they are called maximal inequalities.

In what follows, Xi, . . ., X, is a sequence of independent rv’s with E[X;] = 0, E[Xlz] = ol.z,
Sk=X1+--+X,ande > 0.

Theorem 3.3.4 (Kolmogorov’s Inequality).

1
Pl max [Sg|>¢| < — o,?.
1<k<n g2
1<k<n

Proof. In the space of infinite sequences w = (x1,x2,...), let A; = {w: [X1| > ¢} and
Ao 1Skl <&, k=1,...,7—1, |S;| = &}, for r > 2, that is, A, is the set of all » for which
the cumulative sums Sy, Sy, . . . go beyond +¢ for the first time. Then A;, Ay, . . . are mutually
exclusive and

n n
: max |Sg| > =1 JA P| max |Sg| > = PlAL|.
{w max | k|_e} kL_J1 g so L<k<n| k|_8:| k_Zl [Ad]
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Now

Xn: of = E[(Xl T +Xn)2] > Xn: P[Ak]E[(Xl TR +Xn)2|Ak]
k=1 k=1
= Xn: P[AL] {E[(Xl ot Xk)zlAk] + E[(Xk+1 oot Xn)2|Ak]
k=1

k n

w2 E[X,-leAk]]
i=1 j=k+1

n

n
PlA 12 +0+00 =62 P[A] = ZP[ S ]
Zk;l [ k][s +0+ ] & k;l [Ax]=¢ 1Isnkasxn| >

Hence the inequality follows. In the above argument,

(i) E[(X1 +-- 4 Xk)2 IAk] > ¢2 because Ay is defined that way, and
(i) forl<i<kk+1<j=<n,

B[ X,X; ’Ak] = E[E( X% ’Xl, oK) ’Ak]

since the X;s are independent and E(X;) = 0. O

Remark 3.3.1. In this proof, independence is used only in (i) which holds more
generally, so long as E[Xj|X1,...,Xg| = 0forj > k + 1. Let 7 be the o-field generated
by Xi,...,Xg. Then 71 ¢ F» C --- and E[Sj|F] = S for j > k + 1. This property of
(St Fi)1<k-oo 18 called the martingale property, which is enough for this theorem (see
9, p. 105]).

Theorem 3.3.5 (Hdjek-Rényi Inequality). Let c1, ¢, . .. be a nonincreasing sequence of
positive numbers. Then for any two positive integers m < n,

11, < 2 - 2 2
P[mrl_gleclécncklsk|28:|§8—2|:cm20k+ Z Ciok |-

k=1 k=m+1

(Form =1andc) = --- = ¢y, this reduces to the Kolmogorov inequality.)
Proof. Generalizing the definition of {A;} in the proof of the Kolmogorov inequality, let

Am = {w: cm|Sm| > e} and Ar{w: ¢Skl <&, m <k <1 -1, ¢;|S;| > ¢}
forr > m + 1, and as a generalization of (X1 +--- + X,)2, let

n—1
2 2 2 2
Z = Z (Ck —_ Ck+1>Sk + Cl’l'

k=m
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Then
n—1
2= 3 () (o + o) +i(oF + - +7)
k=m
n—1 k n k-1 n
_ 2 2 2 2 2 2
Y @Y Y Yot rd)
k=m j=1 k=m+1 j=1 j=1
n—1 k n—1 k-1 n—1
_J) .2 2 2 20 2 2 2 2
@ Y Gyt 1 Y dY.ofrd Yo
j=1 k=m+1 j=1 k=m+1 j=1 j=1
n
2 2
+C"ZUJ
j=1
m n
=Cn ) o+ ). cgop and
k=1 k=m+1

n

P[ max ci|Si| > e} = Z P[Ay].

<k<
m<K<n ke=m

We now proceed as in the previous proof:

m n n
cm Y of+ Y. ciof =ElZ1= Y P[ACJE[ZIAL]
k=1 k=m+1 k=m

n—1

P[Ak]E|: 3 <c]2 - c]?H)S]? + C%S%IA/C}

j=m

n—1

: P[Ak]E|:Z(cj2—cj2+1>{Si—l—(Sj—Sk)z—l—Zi i ers}

j=k r=1s=k+1
Ak}

2

z

k n
+c§{5i+(sn—sk)2+22 > XrXs;

r=1s=k+1

n-l g2 (262
> Z P[Ag] {Z <c]2 - 0]2+1>C—2 + Z—2:|
k=m j=k k k
2 v 2
= kgnp[Ak] = P[mr;l]acugcn CrlSkl > g}.

O
Application of Hdjek-Rényi Inequality. A simple proof of the SLLN assuming finite variance
is given here. Using the notations used in the above proof we see that for ¢, = 1/k, ¢ |Si| =
|Xi|. Hence by the H-R inequality,
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P[max IX;.| = max ci|Sk| > si| = lim P[ max c¢i|Sy| > si|
k>m k>m n—o0o m<k<n

1| axn S
Snll)ngog—2|:cmkzl(7k+ Z CkO'k

k=m+1

m o0

=1

1 B m 00 02
=8—2|:m 220,3—{— Z k_§:|

k=1 k=m+1

Now suppose that E[X,f] = o2 for all k, that is, X3, X», . . . have finite variance o2. Then

m 00 02 m 00 1
: -2 2 2 S T 21 — | =
Jm i m) o+ Y, | = Mmoot m e ) =0
k=1 k=m+1 k=m+1

Hence limy;,—, .o P[maxs, Xkl > g]=0.
But the events
o0 o0
{w max| k|_s} {o: Xkl = e} = | Br(e)
k=m k=m

are nonincreasing as m increases. Therefore

o0 (e.¢]
0= i, 7l i = | - P{ N U Bkw)}
= m=1k=m

= P[By(e) i.0.] = P[|X}| = ¢ i.0.] = P[X; - 0].

Thus X; & 0 if {Xi) is a sequence of independent rv’s with mean 0 and finite

variance o2.

3.4 Asymptotic Normality: The Central Limit Theorem
and Its Generalizations

The basic Lindeberg-Lévy CLT has been stated in Theorem 3.2.2 and its proof, using
characteristic functions is given in Section A.4. The Lindeberg-Lévy CLT is restricted to
sample means of iid rv’s with finite variance. However, in statistical inference based on
large samples, we often have to deal with sample means of independent but nonidentically
distributed 1v’s and in some situations, even the distribution of the n independent rv’s
changes from one n to another, as well as the sample size n. In the following, we state
two generalizations of Theorem 3.2.2 without proof which address theses generalities.
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Theorem 3.4.1 (Lindeberg-Feller Theorem). Let Xi,Xo, ... be independent rv’s with
E[X;] = w;, VarlX;] = o7 < oo, and suppose B2 = o + - - - + o2 satisfies limy_. o By = oo and

limy, o0 (03/B%) = 0. Then

n
_ c .
B, Y (X — 1) 3 Z~N©O,1) iff
i=1

n
Jim_ By? Y B[ len,,o0 (X — 1il) (i — 1)?] =0 foraile > 0.

i=1

Triangular Arrays. Here we think of a double array of rv’s in which each row consists of
independent rv’s

{(Xlly .. -!Xlkl)! (ley .. ~rX2k2)r ey (any .. -ankn); .. }

with E[Xpi] = i, Var(Xp;) = 02, < 0o, and B = 02, + -+ + ogkn.
Theorem 3.4.2 (Lindeberg-Liapounov Theorem). The Lindeberg condition

n—oo

kn
im By > B[ Liey o0 (Xni — i) Cni = 1ni)?| =0 foralle > 0
i=1

implies B;! > 1<i<k, Xni — Hni) A Z ~ N(0,1). The above convergence in law is also
implied by the Liapounov condition

3 k
n

kn
lim -2 =0, where,o,gl = ZE[le- - Mmlg] < ooandBfl = Zoﬁi
i=1

3
n— 00
Bn i=1

Finally, we state another generalization of Theorem 3.2.2 for sequences of rv’s with
limited dependence.

Definition 3.4.1. A sequence of 1v’s {X], X», . . .} is said to be m-dependent if (Xi, ..., X;)
is independent of (X;, X;41, ...) whenever s — r > m.

LetA; =2 Z}ZBI Cov[Xitj, Xivm] + Var[Xip].

Theorem 3.4.3 (Hoeffding and Robbins [10]). If for an m dependent sequence {X;} with
EIXj] = 0, Var[|Xi’] < K < oo, and limy—.co 171 311 Ajyj = A > 0 exists uniformly for all i,

thenn= 123" X; 5 N(0, A).
In particular, if {X;} is stationary m-dependent sequence with E[X;] = pu, E[lXi|3] < 00

and A = VarlX,] + 2 75" CovlXy, Xl > 0, then /(% — 1) 5 N(0, A).
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Exercises
For all the problems below, when there are observations Xj, .. ., Xj, it is understood that
n n
Xn =n1 ZXi’ s% =(n- 1)71 Z(Xl —Xn)zy
i=1 i=1
Xn:l = min(Xl, e ,Xn), Xn:n = maX(Xl, e ,Xn)

3.1. Prove VI(a,b) of Theorem 3.2.5.

3.2. Prove X(b) of Theorem 3.2.5.

3.3. Prove Theorem 3.2.6, the Delta Method.

3.4. Prove the results stated in the examples on applications of the Delta Method.

3.5. LetXj,..., X, beiid with E[X;] = 1 # 0, Var[X;] = 02 and E[X}!] < cc. Find the

3.6.

3.7.

3.8.

3.9.

3.10.

asymptotic distribution of /n(s,/X, — o/1) as n — oc.

Let B;,» denote a Beta(m, n) rv. Show that if m, n — oo in such a way that

m/(m+ n) — a € (0, 1), then /m + n(By,n — m/(m + n))//a(1 — a) converges in
distribution to Z ~ N(0, 1). [First show that if X, ..., X;;, Y1, ..., ¥, are iid Exp(1),
then Ry, n(1 + Rm,n)_1 2 B, where Ry, = (mXpm)/(nYy).]

Let {X;} be a sequence of rv’s with E[X;] = 0, Var1X;] = 1 and Cov[X;, X;] = 0 for

|i — j| > k, where k is a fixed positive integer. Show that X, —P> 0.
Let {X,,} be a sequence of rv’s’ with E[X;;] = u, and Var[X,,] = onz. Show that if

n — Oandag — 0asn — oo, then X, £ 0.
Let {X,,} be a sequence of rv’s such that X, is distributed as Z with probability p,
and as 0, Z with probability 1 — p;, where Z ~ N(0, 1), p, — p € [0,1] and o, — o0.
(a) Show that X, £> X if and only if p = 1. What is the distribution of X?
(b) lim,_, Var[X;] is not necessarily the same as Var[X]. Find the possible values
of lim;,_, 5o Var[(X;,].
Let {(Xpi, Yui), i = 1,..., n};2, be a triangular array following a simple linear
regression model Y;,; = o + Bxn; + Z,i, where Zy1, . . ., Zy, are iid with mean 0 and
variance 2. Assume that the common distribution of Z,,;’s is the same for all n. Let
n n n
En = Z(xni - J_Cn) Yhi Z(xni - J_Cn)z» Xp = nt ani

i=1 i=1 i=1
denote the least squares estimator of 8. Use Lindeberg’s condition to establish the
asymptotic normality of \/n (,3,1 — ,8), making appropriate assumptions on {x;}.



Basic Concepts of
Statistical Inference

4.1 Population and Random Samples

The term “Statistics” is commonly used as a synonym for data, but “Statistical Infer-
ence” is the science of analyzing data to probe into where the data came from. The
data is a “sample” and where the data came from is the “population” having some
unknown characteristics in which we are interested. The sample has to be a “random
sample” for the sake of objectivity and thus randomness brings probability into the
picture.

A population can be thought of as a concrete, finite collection, such as individuals in
a city, from which a random sample is drawn and some characteristic of each of these
individuals, such as opinion on a certain issue, or income, etc., is recorded. This is the
data, from which a summary measure of the characteristic in the entire population must
be inferred. This is the framework of Survey Sampling.

Here, on the other hand, we think of a population consisting of observations on the
outcomes of infinite repetitions of an experiment, such as survival times of cancer patients
on a certain drug, or the number of defective items in lots of N items coming out of a
production line, or the number of accidents during certain hours on a particular stretch
of a freeway. Clearly, these observations vary from one experiment to another and they
vary in a random manner. The collection of possible outcomes of such an experiment

is a probability space (S,.4,P) and the observation on an outcome, X = X(s) is a
random variable or more generally, a random vector. From 7 independent repetitions
of such an experiment, we observe independent random variables Xj,...,X,. This is
the data.

The probability distribution of X should be denoted by PX in strict notation (to
distinguish it from the set function P: 4 — [0, 1] in the basic probability space), defined as
PX[(—00,a]] = P[{s: X(s) < a}] and more generally by PX[B] = P[{s: X(s) € B}] for all Borel
sets in R. However, to keep the notation simple, we shall use P instead of PX to denote the
probability distribution of X when there is no chance of confusion. These notations will
extend to the case of multidimensional rv’s in an obvious manner. We can now say that
our observations Xj, Xz, . .. are independent rv’s with common probability distribution P
which is an unknown element of a family of distributions P.

Theory and Methods of Statistics. http://dx.doi.org/10.1016/B978-0-12-802440-9.00004-7 69
Copyright © 2016 Elsevier Inc. All rights reserved.
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4.2 Parametric and Nonparametric Models

Instead of leaving the family P wide open, we shall assume that P is either a parametric
family

P={Py, 6 € ©},

where @ = (01, ..., ;) is a k-dim parameter vector belonging to the parameter space ® and
Py is known for any given # € ©, or a nonparametric family P whose members cannot be
identified by a finite number of parameters.

Examples of parametric family are

P(i) Bernoulli #),0 <0 < 1,
P(ii) Poisson (1), > > 0,
P(iii) Normal (11,02), —0o < < coand o? > 0,
P(iv) Gamma (o, B), > 0and B > 0,
P(v) Linear Regression Model ((x, B, 02), etc.

The families P(i)-P(iv) have been discussed in Chapter 2 and P(v) has been introduced
in Chapter 1, Section 1.10. In P(v), the distributions of X and ¢ are not fully specified, but
we still can do a lot within the model as it is and much more conditionally given X = x if
e ~N(0,02).

Examples of nonparametric family are

NP(i) All probability distributions on the real line.
NP(ii) All probability distributions on the real line with pdf’s satisfying some smoothness
conditions.
NP(iii) The family described in NP(ii) with the further restriction that the pdf’s are
symmetric about some 6 € R.
NP(iv) All probability distribution of X; and X» on the real line which are independent
and

fx, (x) = fx, (x —6) for all x and for some 6 € R.

.....

m(x1, ..., x;) = E[Y|X = x], satisfying some smoothness conditions.

4.3 Problems of Statistical Inference

Based on observed data consisting of random samples (Xi,...,X;) or (Xn,...,Xlnl;
Xgl,...,sz) or ((X1,Y1),..., Xn, Yn)), etc., from an unknown probability distribution
P € P in a parametric or nonparametric model, we have to make inference about some
unknown features of P. The three main types of inference that the statistical science has
been concerned with from its very inception are Point Estimation, Hypothesis Testing, and
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Confidence Sets. We briefly describe these three types here by means of some examples
before taking them up in more details in subsequent chapters.

Point Estimation

Here we want to make a guess about a function g(0) of the unknown 6 € © in a parametric
model, or construct a pdf or a regression function with prescribed properties as our guess
for an unknown pdf f or an unknown regression function m in a nonparametric model.
In a parametric model, we may want to estimate the mean % of a Poisson distribution or
the slope B of a linear regression function or P[X < a] of X distributed as N(u, o).

Hypothesis Testing

In a parametric model, this involves deciding whether 6 € ©y or 6 € ©; where ©y and ©,
are disjoint sets in the parameter space ©, such as deciding in the context of N(x, o) with
o2 known or unknown, whether 1 < 0 or u > 0. We call Hy: 6 € O the null hypothesis
which we are inclined to believe unless the data provides significant evidence in favor
of Hi: 6 € ©; which we call the alternative hypothesis. So there is an asymmetry in this
problem due to our attitude toward Hy and H;. For this reason, this is a problem of testing
Hj against H;. An example in a nonparametric model is to decide whether or not 6 = 0 (ie,
testing Hy: 6 = 0 against H;: 6 # 0) in the nonparametric family NP(iv).

Confidence Sets

Unlike point estimation, here we want to construct a set in the parameter space to which
we guess the unknown 6 to belong. In a parametric model, this may be an interval which
includes the mean u of a normal distribution N (/L, 02) with o2 known or unknown, while
in a nonparametric model this may be a band in which we guess that an unknown cdf F
belongs.

These three problems will be treated in Chapters 5 and 6 within parametric families and
in Chapter 8 within nonparametric families.

4.4 Statistical Decision Functions

Problems of statistical inference in a parametric model such as Point Estimation, Hypothe-
sis Testing, and many others can be fitted in a general framework of decision making based
on arandom sample X from (X, B, Py) with unknown 6 € ®. The decision consists of taking
an action a € A, where A is the set of available actions which we call the action space. This
action has to be a function of the observed value x of X. We call this function a Decision
Function or Decision Rule:

d: X - Awithd(x) =a € Awhen X = x.
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Now there are good decisions and bad decisions for any given 6 € ©, and for making
a bad decision one has to pay a penalty, or take a loss, which is the consequence of taking
the action a = d(x) when the observed value x of X was generated from Py. This leads
to the definition of a Loss Function: L: ® x A — R with L8, a) := loss due to action a
when 6 is the true value of the parameter. Then for X = x, L(@, d(x)) = loss due to action
d(x) when X = x is generated by P(9).

Since the data is the rv X, we should be thinking of the loss as an rv L(@, d(X)) where
X ~ Py. Note that the 6 in Py and the 8 in L(@, d (X)) is the same unknown element of @ (ie,
the true value of the parameter).

A statistical decision problem is thus described by the triple ({Py: 6 € ©}, A, L), and the
overall performance of a decision function d is measured by its risk

R(6,d) = Eg[L(6,d(X))]
3 Jx L(6,d®)f (x,6) dx in the continuous case,
- Y xex L(6,d®)f(x,6) in the discrete case,

assuming that the [ or the )" defining R(6, d) exists. This holds if X is finite and more
generally, if L(-, -) is bounded below, although the | or the )" may be +oc.

Definition 4.4.1. The function R(-, d) is called the risk function of the decision rule d.

Ideally, we should be using a decision rule d* for which R(¢, d*) < R(0,d), forall 6 € &
and for all decision rules d.

Unfortunately, such a decision rule does not exist (except in some trivial cases). This is
illustrated by the following examples. Before introducing these examples, we enlarge the
class of decision rules by allowing randomization over a € A for each x.

Definition 4.4.2. A behavioral decision rule § consists of a probability distribution
3(-|x): C — [0, 1] for each x € X, where C is a o-field of subsets of the action space A.

If Ais countable, then C could be the class of all subsets of A. For A = R¥ or some subsets
of R¥, C could be the Borel sets and (-|x) would have a density. The risk of a behavioral
decision rule §(-|x) is given by:

R(,8) = / / L, a) ds(alx)f (x,0) dx,
xJA
where fAL(G, a) ds(alx) =) ,ca L0, a)s(alx) if A is countable and
/L(O,a) ds(alx) = / L6, a)p(alx) da
A A
when A = R is some subset of R, p(-1x) being the pdf of 5(-|x).

Example 4.4.1. Estimating a Bernoulli parameter.
Let Xi,..., X, beiid with

Py(X;=x) =00 -0, x=0,1
A=1[0,11=0, L@®,a) =@ —a)?.
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This defines a statistical decision problem, which is the problem of estimating 6 under
squared-error loss. Consider a class of estimators (ie, functions of the data taking values
in ®) denoted by d,(x) = yX,0 < y < 1, where x = n-1 Z?:l x;. The usual estimator
d1(x) = x belongs to this class. Is there an estimator d,, - (x) in this class which is better than
all others?

Solution. Note that

R(6,dy) = Eg (vX = 0)°] = Varg [y X] + {Ea [y X] - 6}°
_ra-60 (v — 1)%62.
n

SoR(6,d,)/R(0,d1) = y*> + no(1 — y)z/(l —6), which is >, =, or < 1 according as 6 >, =,
or < (1+y)/[n(1 —¥)+ (1+y)]. For example, taking y = 3/4, d, is better or worse than
dy according as 0 < or > 7/(n+ 7). This shows that there is no clear winner in the class of
d,,0<y <l

Example 4.4.2. Choosing between two values of 6.

Let X ~ Py, ® = {6y, 01}, A = {ag, a1} where a; is to choose 6; as the true value of 9, and
let L(6o, ap) = L(61,a1) = 0 and L(6p, a1) = L(61,ao) = 1. A typical behavioral decision rule
is described by a function ¢: X — [0, 1], so that

Sp(a11x) = p(x) and 8y (aglx) = 1 — ¢(x),

that is, 8, chooses actions a1, ag with probabilities ¢(x) and 1 — ¢(x), respectively. Is there

a best decision rule in this class?
Solution. The risk function of §, is given by

R(60,5,) = /x [L(60, a0) {1 — ()} + L(do, a1 )0 ()]f (x p) dlx
= Egolp ()],
R(61,5,) = /x [L(61, ao){1 — ()} + L(61, a1 e )]f (x, 01) dx
— 1—Eg, [p(0].
The risk set S = {(R(6o,8y), R(61,8,)), ¢: X — [0, 1]} has the following features:

(i) (0,1) € S corresponding to ¢(x) = 0.
(ii) (1,0) € S corresponding to ¢(x) = 1.
(iii) Sis convex, because for any ¢1, g2, A1 + (1 — A)¢2 for 0 < A < 1, has the property:

(R(60 8101+ (1-1)p2 ) R(O1: S +(1-1)g))
= A(R(OO,SW),R(QLSW)) +0- )‘)(R(QO"SW)'R(@L‘SW))'

(iv) (o, B) € Simplies (1 —«,1 — B) € S (ie, S is symmetric about (1/2, 1/2)). (To see this,
consider y = 1 — ¢ for any ¢.)
(v) Scan be shown to be closed. We omit the proof.



74 THEORY AND METHODS OF STATISTICS

Consider any two points on the lower boundary of S. Among the ¢’s corresponding to
two such points, there is no clear winner. However, for any s € S, the point s* on the lower
boundary which is on the vertical strip through s is decidedly better than s. For this reason,
it is enough to restrict our attention to the ¢’s corresponding to the points on the lower
boundary of S.

4.5 Sufficient Statistics

Consider a problem of statistical inference in the framework of a parametric family with
pdf or pmf {f(x, 0), 6 € @} based on a random sample (Xj, ..., Xy). The unknown 6 € ©,
which we want to estimate or test a hypothesis about, is of a finite dimension, often of only
one or two dimensions, while the number of observations in the sample, n, may be quite
large. Do we really need to carry all the n observations in the data in our search for a good
estimate or test or whatever else to decide about?

Definition 4.5.1. A function T: X" — R of the sample observations is said to be a
statistic if

{(x1,...,xn): T(x1,...,xn) < a} e B" forallaeR,

where B” is the class of all Borel sets in X". A vector T = (Tl, R Tk) is said to be a k-dim
statistic.

If we could extract all the relevant information about 6 in a fixed-dimensional statistic
T = T(Xj,...,Xu), then we can concentrate our efforts in search of a good procedure
based on T without carrying the burden of the entire sample (Xj, ..., Xy). If we have such
a statistic, then it can rightly be called a Sufficient Statistic.

Definition 4.5.2. A statistic T = T'(Xj, ..., X}y) is said to be sufficient for 9 € ® in X if the
conditional distribution of X given T is independent of 6.

This means the following:

Discrete Case. Here the pmf of T is g(,0) = } ;. 7=/, 0), and the conditional
distribution of X given T = ¢ is given by

Py X=xT=t x, 0 t,0) ifT(xy,...,xn)=t¢
ho (1) = % - {g( gL othe(zr\}vise "

for all £ with g(¢,6) > 0. Sufficiency requires hy (x|f) = h(x|t), independent of 6.

Continuous Case. For simplicity of notations, suppose § € RandletT = T(Xj,...,Xy)
be a 1-dim statistic. (Generalization to higher dimension is routine.) Suppose that U; =
UiXa,...,Xn), 1 < i < n — 1 is any collection of n — 1 other statistics such that
o (X1,...,Xp) < (T, uy,..., Un_l) is one-to-one with continuous first partials. Then the
joint pdf of (T, Uy, ..., Up—1) is
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-1
f(QD_l(t,u]v.. y Up— l ‘](p tul,...,un_l))‘

From this, the pdf of g(¢,0) of T is obtained by integrating out u;,...,u,—1 and the
conditional pdf of (U, ..., Uy—1) given T = t is

-1
. flo Yt ur, ..., up1) ’](p tul,...,un_l))’
9(ulr~-~)un—1|t) - g(t 9)
Sufficiency of T requires hy(u, ..., us—1]t) to be independent of 6. Since J, (¢!
(t,u1,...,us—1)) does not involve # anyway, and since

f(fp_l(T(x), uy ), ..., un_l(x)),e) =f(x,0),

ho(u1, ..., un—1t) being independent of 6 is equivalent to f(x,6)/g(T(x),6) being inde-
pendent of 6. Thus in both the discrete and continuous case, T is sufficient for 6 in X if
fx,0)/8(T(x),0) is independent of 6.

If T(x) = (T1(x),..., Tx(x)) has the above property (using Uy, ..., U,_i to construct a
one-to-one map), then (11, .. ., Tj) are jointly sufficient for 6, usually when 8 = (61, ... ., 6).

Suppose T is sufficient for 6 in X and let ¢ be a real-valued function of X with
Eg[v(X)] finite. Let Uy, ..., Uy—1 be as described above, and y*(T, Uy,...,Up—1) = ¥ o
q)_l(T, uy,..., Un—l-) Then

Eg[y X)|T = t] = Eg[v*(T, U1,..., Up1)IT = 1]
= Eg[l/l*(t, u,..., Un,1)|T = t]
is independent of 6.
Now consider an arbitrary decision problem described by (©, A4, L) in the context of
(%, B, {Py, 0 € ®}). For simplicity of discussion, let X and A be countable and let §(-|x) be

an arbitrary behavioral rule. Suppose T is sufficient for 6 in X and let 7 = T(X) and
X ={x e X: T(x) = t}. Then therisk of § is

RO,8) =) (Z L@, a)a(mx)) [x,0)

xeX \acA

=> > (Z L(G'a)S(alx))g(t, 0)h(x|t)

teT xeX; \acA

=y {Z L6, a) ( > s@xhix, t))}g(n 6)

teT | acA xeX;

= Z (Z Lo, a)a*(mt)) g(t,0)

teT \acA
= R(6,6%),
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where §* is defined by

8§*(alx) = 8*(alt) = Z S(alx)h(x,t) forallx € Xy,
xE}:z

which depends on x only through T'(x) and so we write §*(a|x) = §*(alf). In other words,
8*(alt) = E[8(alX)|T = t]. We thus have for arbitrary §, an equivalent decision rule §* which
uses the data x only through the summary provided by the statistic T. This justifies the term
sufficient statistic. In any decision problem, a sufficient statistic is used for data reduction
without losing anything that could be achieved by the full data. We now state and prove
the key theorem about sufficient statistic.

Theorem 4.5.1 (Factorization Theorem). A statistic T = T(X) is sufficient for 0 in X iff
there exist functions g(t, 0) and h(x) so that

fx,0) =g(T(x),0)h(x) forallx,o,

where for every fixed t = T (x), the function h(x) is independent of 6.

The proof follows from our discussion above.

Example 4.5.1. In Section 2.2.11 we defined an exponential family of distributions of X
without specifying X in which X takes its values. We now let X = (Xj, ..., X;;) be arandom
sample from a k-parameter regular exponential family. Then

k n n
fx(@,0) = {c(6))" exp {Z QO > T,-(x,-)} [T7(x)-

j=1 i=1 i=1

Thus (T1, ..., Tx) = X5 (T1(x), . . ., Ti(xy) are jointly sufficient for 6 in X.

4.6 Optimal Decision Rules

Definition 4.6.1. A decision rule §; is said to be (i) as good as &2, (ii) better than §3, or (iii)
equivalent to 8, according as

(i) R(9,681) <R(®,8) forallb € O,
(i) R(9,681) < R(9,87) for all 6 € ®, with strict inequality for some 9,
(iii) R(9,81) = R(9, 82) forallo € ©.

If there exists a decision rule §p which is as good as any other §, then of course 8y is optimal,
but typically, such a §o does not exist as seen in Examples 4.4.1 and 4.4.2. The concept of
optimality therefore needs adjustment. Two general approaches are taken for this purpose:

(a) restricting the class of decision rule to choose from, or
(b) ordering the decision rules in a less stringent manner.
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4.6.1 Restrictions Used in the Estimation Problem

Unbiasedness
Restrict attention to only those estimators 6 = d(X) of 9, which satisfies

E@[é] =6 foralld € ®.

In the example of estimating a Bernoulli parameter, all d, with y # 1 are now ruled out. In
a large class of estimation problems with squared-error loss, there exists a best estimator
in the class of unbiased estimators. These are the uniformly minimum variance unbiased
estimators (UMVUE).

Equivariance

Suppose that f(x, 6) = g(x — 0) where g is a known pdf and we want to estimate 6, which
is called a location parameter, subject to L(6,a) = (a — 0)2. If X1, ..., X, are iid with pdf
f(,0),thenX; +c,..., X+ careiid with pdf f(,0 + ¢). Moreover, L(® + ¢,a+ c) = L(6,a) =
(a — 6)2. Thus the problem of estimating 6 4+ cfrom Xj +¢, ..., Xj + cis the same as that of
estimating 6 from Xj, . . ., Xj;; that is, the problem of estimating a location parameter under
squared-error loss is invariant under location, that is, under the transformations

gc: X — X and its corresponding g.: © — ©, ceR,

defined by g.(x) = x+cand g:(0) = 6 +c. It is therefore reasonable to restrict our estimator
by the requirement: d(x; +c¢,...,xp +¢) = d(x1,...,%x,) + ¢ for all x, c. Such estimators
are called equivariant under location. Among equivariant estimators in this, and many
more general invariant problems, there exists a best estimator, known as minimum risk
equivariant estimator (MRE).

Optimal estimators under these restrictions will be discussed in Chapter 5.

4.6.2 Restriction Used in the Two-Decision Problem

As mentioned earlier, the two-decision problem is treated as a problem of testing a
hypothesis Hy: 6 € ©g against Hi: § € ©; by introducing an asymmetry between the
two hypotheses. We are inclined to accept Hy unless there is significant evidence provided
by the data to reject Hy in favor of H;. For this reason, we call Hy the null hypothesis and the
error in rejecting Ho when it is true is called a Type I error, while H; is called the alternative
hypothesis and the error in accepting Hy when Hy is not true (ie, H; is true) is called a Type
Il error.

We illustrate the asymmetric nature of Hy and H; by the following example. Suppose
for a certain disease there is a drug on the market with an effectiveness of py = 0.40
established over a long period of time. Now a new drug which claims to be better has been
shown to be effective in p; = 0.45 in a clinical study based on n = 100 cases. To test the
validity of this claim, we have to choose between the actions:

ap = {p1 <0.40} and a; = {p1 > 0.40},
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where p; = the unknown effectiveness of the new drug. Here Hp: po = 0.40 is based on
a long record, while Hi: p1 > po = 0.40 needs to be substantiated by significant (ie,
overwhelming) evidence provided by the data in favor of H;. This is why Hy is called the
null hypothesis, giving it a special role, while H; is called an alternative hypothesis which is
to be accepted only if the evidence provided by the data in its favor is significant enough.
Therefore, we want to control the probability, Py, [Reject Ho] < o (preassigned) and with
that restriction, want to maximize Py, [Rej ect Ho]. We now introduce the restrictions in the
two-decision problem.

Prescribed Type | Error Probability
Recall the discussion about the lower boundary of the risk set in Example 4.4.2. Here if we
require

R(60,3¢) = Eg, [9(X)] = Pg,[Decided = 61] = a,

where 0 < « < 1 is given, then we are restricted to a vertical strip in the risk set, and in
this restricted set, the ¢* which corresponds to the point s* on the lower boundary in that
vertical strip is the best (ie, this ¢* minimizes the Type II Error Probability R(61,3,) = 1 —
Eg, [p(X)] = Py, [Decide 6 = 90] subject to the requirement that the Type I Error Probability
R(Qo, 8(p) = P00 [Decide 6= «91] = Ol).

Unbiased Tests

The problem of testing Hy: 6 € ©g against H;: 6 € ©1 where ©p and ©; are disjoint sets in
© is more complicated than testing Hy: 6 = 6p against H;: 6 = 6;. Here we restrict to those
8, for which

(i) SUPgep, Eolp(X)] = (these are tests of level «),
(ii) Eglp(X)] > o for all & € @; (these are unbiased tests of level ),

and then among tests satisfying (i) and (ii) search for ¢* in this class for which
(i) Eg[e*(X)] = Eolp(X)], forall ¢, and for all 6 € ©.

In many situations such a ¢* exists and is called the Uniformly Most Powerful (UMP)
Unbiased level « test.

Note. If a test ¢ does not satisfy condition (ii) for unbiasedness, then Ep, [¢(X)] = o« — ¢
for some 0; € ©; and some ¢ > 0, while Ey, [¢(X)] > o —¢ for some 6y € Oy, so that ¢ rejects
Hp when 6 = 6y and Hp is true with a larger probability than when 6 = 6; and Hp is not
true. The condition of unbiasedness does not allow such undesirable decisions.

Optimum tests under these restrictions will be discussed in Chapter 6.

4.6.3 Suitable Ordering of Decision Rules

The stringent ordering by the entire risk function can be replaced by invoking other
principles of ordering. The following are two such important principles.
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The Bayes Principle

Let 7 denote a probability distribution on the parameter space ©. Actually, we should
introduce a suitable class of events C in @ at this point, on which 7 is defined, but when
© = R* or a subset thereof (as in many situations), we shall simply use the events B
(introduced earlier) for this purpose. Moreover, with a slight abuse of notation, we shall
let v denote the pdf of this distribution and define the Bayes risk of a behavioral decision
rule § with respect to 7 as:

r(z,8) = / R, 8)t(0) db
e

with R(8, 8) as defined in Section 4.4.
Definition 4.6.2. The probability distribution t is called the prior distribution of 6. A
decision rule §, is said to be Bayes with respect to the prior distribution 7 if

r(t,80) = 1181f r(z,d).

There may be many Bayes rules with respectto a z.

Sometimes it is useful to work with a function r on © which is not a pdf and define
r(z, 8) for such a 7 in a formal way, and then minimize it with respect to .

Definition 4.6.3. A decision rule §g is said to be

(a) generalized Bayes if there exists 7(6) > 0 but |, o T(0) db = oo (ie, T is not a pdf), and
/ R(0,80)7(0) db < / R(0,8)t(0) do foralls,
2) 2)

(b) e-Bayes with respect to 7 if r(z, 8p) < infs r(z,8) + ¢,& > 0, and
(c) extended Bayes if & is ¢-Bayes for every ¢ > 0 (ie, for every ¢ > 0, there exists a prior
distribution 7, such that §p is e-Bayes with respect to .).

The Minimax Principle
Definition 4.6.4. A decision rule §y is said to be minimax if

sup R(6,8¢) = infsup R, 5).
0 5 9

There may be many minimax rules.

The minimax principle summarizes the performance of each § by sup, R(9, 5) (ie, judges
arule § by its worst performance). A minimax rule may, therefore, have quite weak overall
performance.

Admissibility
Finally, we introduce another property of a decision rule which requires that it cannot be
improved upon.

Definition 4.6.5. A decision rule § is said to be inadmissible if there is a rule §; which
is better than gy (ie, R(0, 81) < R(6, o) for all & € © with strict inequality for some 6 € ©).
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A decision rule § is said to be admissible if there is no decision rule that is better than
3o, that is, for every rule §, R(61,8) < R(61,80) for some 6; € ® implies that there exists
62 € © such that R(82,8) > R(62, 8o).

Admissibility is in no sense an indicator of high performance of a decision rule. It
merely says that there is none that is uniformly better. On the other hand, inadmissibility
indicates that there is a uniformly better rule that we may want to search for. However,
there are rules with many nice properties which are inadmissible. A prime example is
the sample mean vector X, as an estimator of the mean vector of Np(n, I) with the loss
function

Lw,a) = la—pl* = @-w'@-p
for p > 3, which is strictly improved upon by the shrinkage estimator
- p— 2 -
seX)=Xp— —=———=(Xn—rc), RP
cX) n IIXn—CIIZ( n C) ce

due to Stein [11]. Unfortunately, §. is also inadmissible, because it can be improved upon
by (see [3, p. 302-3])

_ _2 -
ST =X —min{l,_pi} X, —c).
¢ X =Xn 1Xy — c|l2 (%n )

But §/ is also inadmissible.

4.6.4 Finding Bayes Rules: Prior to Posterior

The idea in the Bayes Principle is to judge a § by its average performance with weights
assigned by 7, which reflects the likelihood of various values of 6 in the statistician’s
assessment based on prior experience (before obtaining the data). The key step in the
calculation of the Bayes rules is to incorporate the data X = x in the prior distribution 7 to
obtain the posterior distribution of 6, which is the continuous analog of the Bayes Formula
in Chapter 1, Proposition 1.6.1. Write f(x, 0) = f(x|0), treating f (x, 6) as the conditional pdf
of X given 6. Then proceeding as in Section 1.10, we have

r(r,d) = /@ / L(6,dx))f (x|6) dx]r(@) de

f(x10)z(6) }(/ )
) L. d0) 1 eyee) a6 0)r(0) do ) d
/36 / ®) fof(x|9)7:(9) Ao @f(xl )T(6) I

=/ / L 0, d(x) g(9|x) d@]f(x) dx
xXL/O

/ E[L(F,d(x))IX = x]f(x) dx,

where f(x) = [, f(x|0)T(©) db is the marginal pdf of X, and g@|x) = [fxI6)r(6)]/
Jo f(x16)T(®) db is the posterior pdf of 6 given X = x. The minimization of r(z, d) with
respect to d is achieved by choosing d(x) = d*(x) € A for each x so that
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E[L(9,d*(X))|X = x] < E[L(,a)| X =x] forallac A.

Interchanging the order of integration over ® and X is justified if L(6, a) is bounded below.
The case when X is discrete is treated in exactly the same way, replacing [, dxby > y.
Example 4.6.1. Estimating the mean of N (6, 0?) under squared-error loss.
Our data consists of X1, . . ., X, iid as N (0, 0?) with 6® known, and ® = A =R, L(9,a) =
(a — 0)?. Since X, is sufficient for 6 in X, it is enough to restrict attention to decision rules
based on X, having pdf

Jn

_ n _ 2 . S (72
f(Xn,e)zma exp|:—20—2(xn—9) i|, 1e, Xn’\‘N 9,7 .

First consider the prior t:

70) =

! ex[ 1(0 )2]
Vamy Lzt )

that is, & ~ N(u,y?), and X410 ~ N (9, "—j) Using the properties of bivariate normal
distribution (see Section 2.2.10), we have

_ X 1
9|Xn~N(w1M+w2 n )

wy+wy wy+ wo

as the posterior distribution, where w1 = 1/y? and w» = n/o?, that is, E[0|X,] is the
weighted average of the mean . of the prior and the sample mean X,, with weights
inversely proportional to the variance of the prior distribution for 6 and the conditional
variance of X;, given 6 for Xj,.

Remark 4.6.1.

1. This effect of the prior distribution on X, is called: “a shrinkage of the sample mean
toward the prior mean.”

2. On the other hand, we can also interpret this as “overcoming a prior belief by observed
data.”

3. Note that the weight 1/y? attached to the prior remains fixed, but the weight n/o?
attached to X, keep increasing with n and 1/02 determines the rate of increase. Thus a
bad prior cannot hurt much once the sample size gets large.

Finally, the Bayes estimator of & under squared-error loss, using this prior is:

”WzXn +0?p

o] = L

For the special case of 6> = 1, n = 1,and 1 = 0, E[0|X] = %X.
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4.6.5 Solving for Minimax Rules
In this section we discuss two methods of finding minimax rules.

Definition 4.6.6. A prior distribution 7y is said to be least favorable if

infr(zp, 8) = supinfr(z, 8).
$ 8

Next note that

V =supinfr(r,8) <infsupr(r,8) =V,
T 8 I 1

where V and V are, respectively, the lower and upper value of the statistical decision
problem which is viewed as a game between nature who chooses 6 randomly according
to the distribution r and the statistician who chooses a decision rule §, resulting in a pay-
off by the statistician of the quantity r(z, §). Also note that

sup R0, 8) = supr(z,s) foralls.
) T

We say that the game of a statistical decision problem has a value if V = V.

We now describe the first method for finding a minimax rule which involves guessing a
10 as least favorable, finding a rule o which is Bayes with respect to g and checking that &g
is indeed minimax. The actual procedure is described in Theorem 4.6.1.

In many situations, our guess of the least favorable 1 is not a pdf (ie, [ t(0) d6 = o0),
in which case &g , which is formally Bayes with respect to 7y, is not really a Bayes rule. This
needs a modification of the above method, which is described in Theorem 4.6.2.

Theorem 4.6.1. If§y is Bayes with respect to 1o and

R(9,80) < r(t0,80) forallo,

then 8y is minimax and 1y is least favorable.
Proof. Note that

V= iralfsup r(z,8) = iralfsupR(Q,S) < supR(9,8¢) < r(10,30)
T 6 0
= irélfr(ro,a) < sup ilalfr(‘[,5) =V.
T

Therefore, all inequalities are equalities and therefore,
infr(zg, 8) = supinfr(z, §),
§ 8
that is, 7¢ is least favorable, and
sup R(6, 89) = infsup R, 5),
0 5 9
which proves that §p is minimax. O
Theorem 4.6.2. Let {1,} be a sequence of distributions of 6 and let §,, be Bayes with respect

to Ty If
R(6,80) < limpr(ty, 8n) foralle,

then 8y is minimax.
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Proof. For arbitrary § and for all n,
/R(9,3)fn(9) do = r(tn,8) = r(tn, én),

implying sup, R(9, §) > r(tpn, 8n). Therefore, for all 5,

sup R0, 8) > limur(zn, 85) > sup R(9,50),
(% 0

proving that §p is minimax. O

Remark 4.6.2. Often ¢ = limy, r(ty, 8,) exists, in which case we simply have to check that
R, 80p) < cforall 8.

Definition 4.6.7. A decision rule is an equalizer rule if R(#, §¢) is constant for all 6.

The second method of finding a minimax rule is to look for an equalizer rule that is
Bayes or extended Bayes.

Theorem 4.6.3. If an equalizer rule is extended Bayes, then it is minimax.

Proof. Since R(6, é0) = ¢ (constant) for all 9, r(z, o) = c for all t, and since §p is extended
Bayes, there exists a sequence {z,} with Bayes rules {§,} such that

c=r(tn,80) < r(tn,8n) + 1/n forall n.
Hence for all 6,
R(8,80) = ¢ < limur(tn, 8n).

It now follows from Theorem 4.6.2 that §;y is minimax. O

4.6.6 Conditions for Admissibility

The simplest (and obvious) condition for admissibility is the following.

Theorem 4.6.4. If§y is unique Bayes with respect to some t, then &y is admissible.
Proof. Since § is unique Bayes with respect to t, r(z, §o) < r(z, 81) for all §; # 8. Hence

there exists 6 for any 81 # §o such that R(9, §p) < R(9, 81). O

The requirement of uniqueness in the above theorem can be dispensed with if the risk
function R(9, §) for every § is continuous in 6 and if the t with respect to which &y is Bayes
has plenty of support.

Theorem 4.6.5. Suppose © is an interval in R, the risk function R(0, 8) for every decision
rule § is continuous in 0 and < is a probability distribution on © such that t(I) > 0 for all
nondegenerate intervals I C ©. Then a Bayes rule 8y with respect to t is admissible.

Proof. If §y is inadmissible, then there is a rule §; such that R(0, 8;1) < R(6, o) forall 6 e
©, and R(0o, §1) < R(bo, 8o) for some 0y € ©. Since R(9, §p) and R(0, 1) are both continuous,
there exist ¢ > 0 and a neighborhood I of 6y such that R, o) — R(6,51) > ¢ forallo e I.
Hence

r(z,80) — r(z,81) = /[R(G,So) —R(6,81)]z(6) @8 > ex(I) > 0,
I

contradicting the hypothesis of §o being Bayes with respect to t. O
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This theorem is now extended to cover some familiar situations where §; is extended
Bayes and has constant risk.

Theorem 4.6.6. Suppose that a decision rule 8y satisfies the following conditions in
relation to a sequence of probability distributions {t,} on ® C R with respect to which {8,}
are Bayes rules:

(i) R(®,80) = c (constant) for allo,
(i) lim,, r(zy, 8n) = ¢,
(iii) R(0,8) is continuous in 6 for all s,
(iv) ©,(I) > O for all nondegenerate intervals I C © , and
(v) lim, tn)/[c — r(tn, 8n)] = oo.

Then 8¢ is admissible.
Proof. Note that

¢ —1(tn, 8n) = 1(tn, 80) — r(tn, 6n) = 0 forall n.

If equality holds for some n, then §y is Bayes with respect to that t;, which makes it
admissible by Theorem 4.6.5. Therefore, assume that ¢ — r(zy, §,) > 0 for all n and suppose
that §¢ is inadmissible. Then there is a rule §’ such that ¢ = R(8, §p) > R(Q, 8 ) forallo € ©,
and R(0g, 8¢) > R(@o, 8’) for some 6p € ®. We can now find ¢ > 0 and a neighborhood I of 8y
so that ¢ — r(rn, 8’) > ¢1,(I) as in the proof of Theorem 4.6.5. Thus

c— r(rn, 3/) etn)
¢ — 1(tn, dn) ¢ —1(tn,0n)

> 1 forlargen,

since by Condition (v), the middle quantity in the last display tends to oo as n — oo. This
contradicts the hypothesis that §,, is Bayes with respect to t;,. O
Theorems 4.6.5 and 4.6.6 depend on the key condition that the risk R(9, 8) is continuous
in 6 for all decision rules §, so the applicability of these theorems depends on the
verification of this condition. The following theorem from Ferguson [1] serves that purpose
for one-parameter exponential families.
Theorem 4.6.7. Let ® be the real line. Suppose that

(a) there exist nonnegative functions By (01, 62) and By (01, 62) bounded on compact sets of
® x O such that

IL(62,a)| < B1(61,62)IL(61,a)| + B2(61,62), foralla e A;

(b) L(6, a) is continuous in 6 for each a € A; and
(0 f(x,0) =c@O)h(x) exp[Q(O)T(x)] where Q(0) is a continuous increasing function.

Then for all nonrandomized decision rules d, the risk function R(@, d) is continuous in 6.
Proof. See Ferguson [1, p. 139-40]. O

Other methods of proving admissibility have been developed by Hodges and Lehmann
[12], Karlin [13], and Stein [14].
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Example 4.6.2. An admissible minimax estimator of a Bernoulli proportion under
squared-error loss.

Let X be the number of successes in n independent Bernoulli trials with probability
of success 6. We want to estimate 6 under squared-error loss from the data X. Here ® =
(0,11 =Aand L, a) = (a— 0)>.

Solution. We shall apply Theorem 4.6.3, looking for an equalizer rule which is Bayes.
This will give us a minimax rule. We look among Bayes rules with respect to 7, =
Beta(a, b), that is, Beta distributions with parameters a, b with pdf

r'(a+Db)

a—1.1 _ p\b-1
F(a)I‘(b)e 1-0) 1(0'1)(9).

Ta,bp(0) =
The Bayes rule with respect to 7, is d,;  (x) = (x + a)/ (n + a + b) (the verification of which
is left as an exercise), with risk function

R(6, dgp) = Eg[dap () — 0]° = Varg[dy ,(X)] + {Eg[dg p(X)] — 0}
. n9(1-9) [ no +a 9]2

(n+a+b? Lntath
[(a + b)2 - n:|02 — [2a(a + b) — n]o + a®
B (n+a+ b)* '

To make this a constant in 6, take (a + b)2 = 2a(a+ b) = n;leading to a = b = /n/2. The
resulting Bayes rule d /; » 7 »(X) = (X + /n/2)/(n + /n) is minimax.

Since this rule is unique Bayes with respect to Beta(./n/2,/n/2), it is admissible by
Theorem 4.6.4. Thus § = (X + +/n/2)/(n + /n) is an admissible minimax estimator of 6.

Example 4.6.3. Admissibility of X,, as an estimator of mean ¢ of N(¢,0?) under
squared-error loss.

Under squared-error loss, the Bayes estimator of  based on a random sample X =

X1, ..., Xy) from N(0, 02), with respect to 7y = N(0, k) is

n
X,, whereX,, =n"! ZX,-.

nk
dp(X) =
n i=1

k+o2
This result is derived in Section 4.6.4. The Bayes risk of dy. is r(ty, di) = (ko'?)/(nk + 02),
the proof of which is left an exercise. We shall use Theorems 4.6.6 and 4.6.7 to show that

the decision rule dy(X) = X,, is admissible.
Solution. Since

R(@,d()) = az/n = lim F(Tk,dk)
k— 00
is constant, and 7x(I) > 0 for all nondegenerate intervals, Conditions (i), (ii), and (iv) of

Theorem 4.6.6 are satisfied, while Theorem 4.6.7 provides justification for Condition (iii)
that R(6, d) is continuous for all d. So we only need to check Condition (v). Now
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w(ab]) <D(b/«/%)—¢<a/«/%) ~ n(nk+(72>
c—r(te,dy)  o2/n—(ko?)/(nk+02) ot

[q) (b/\/E) —o (a/ﬁ)].

Since ® (b/«/%) - (a/\/E) = bsz [1+4 o(1)] as k — oo (see Section 2.2.4), the above tends

to co as k — oo, justifying Condition (v). This proves the admissibility of X;,.

Exercises

4.1. Suppose that X is distributed with a pdf f (x, 6) where 6 is an unknown real
parameter. Consider the two-decision problem of choosing between the
hypotheses Hy: 6 < 6y and Hi: 6 > 6y (for a given 6p) with the loss function

L(6,a0) = (6 —60),, L(6,a1) = (60—0),,

where for any real number x, x4 denotes max(x, 0), and a; is the action to accept H;,
i = 0, 1. Show that the Bayes rule with respect to a prior cdf G of 6 rejects Hy if and
onlyif Eg[0|X = x] > 6.

4.2. Under 0 — 1 loss function in the problem of testing Hy: 0 = 6y vs Hy: 6 = 01, the risk
set is

S={(R(60,¢),R(61,9)): $ maps X — [0,1]}
= {(Eg,[¢(X)], 1 — Ep, [$(X)]): ¢ maps X — [0,1]},

where X denotes the data. Let f(x, ) = (£)6(1 — )>~%, x = 0, 1, 2, and consider
Hy:0=1/2vsHy: 60 =2/3.
(a) Plot the risk set S.
(b) Find a minimax test.
4.3. Let X follow a binomial distribution Bin(n,8),0 < 8 < 1.
(a) Show that dy(x) = x/n is a minimax estimator of # with constant risk 1/n under
the loss function L, a) = (6 — a)?/{6(1 — 6)}.
(b) Show that dy(x) = x/n is not minimax under the loss function L(9, a) = (6 — a)?.
[Consider &} defined as: §7 (x) = dp(x) = x/n with probability 1 — ¢ and
8} (x) = d1(x) = 1/2 with probability ¢. Examine the risk function of §} with
e=m+ 171
(c) Show that dy(x) is not a Bayes rule, but it is an extended Bayes rule (ie, ¢-Bayes
for every ¢ > 0). [Try Beta priors.]
(d) Show that dj is Bayes with respect to Unif (0, 1) prior under L(9, a) given in (a).
4.4. Let X follow the binomial Bin(n, 6) distribution with pdf

£, 0) = <:>9x(1 —o" %, x=0,1,...,n,

where 6 € ® = (0, 1) is to be estimated in the action space A = [0, 1] under the loss
function L(9, @) = (a — 6)%.
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(a) Show that the estimator dy(x) = x/n is admissible.

(b) If the parameter space is ©® = [1 /3,2 /3] and everything else is the same as
above, then show that dy(x) = x/n is inadmissible. [Hint: Think of a sensible
estimator.]

4.5. Let X be an rv with pdf

f(x,0) =6 Lexp(—x/6), x>0,6=1or2.

Consider the two-decision problem with action space A = {a1, az} with a; = i and

the loss function L(9,a) = I (9 #* a), based on a single observation X.

(a) Let S denote the risk set consisting of points (R(1, §), R(2, §)) corresponding to
all behavioral rules §. Determine the function S(«) describing the points
(a, B (a)) on the lower boundary of S.

(b) Find a minimax rule.

(c) Consider a prior g; with probabilities 7 for &6 = 1 and 1 — t for 6 = 2. Show that
the Bayes rule with respect to the prior g; will always take action ap
(irrespective of the observed values of X) if t < 1/3.

4.6. Show that the sample mean X is an admissible estimator of the mean 6 of a normal
distribution N (6, 0%) under the absolute error loss.

4.7. Suppose we have one observation X from N (9, 1) on the basis of which we have to
take action ap to decide 6 = 0 or a; to decide 6 # 0 subject the loss function

L(0,a9) =0, L(6,a1)=0for6 #0,
L(0,a1) =1, L(6,a9) =1for6 #0.

Consider a prior distribution v which assigns probability p to {6 = 0} and
distributes the remaining probability 1 — p on (—o0, c0) according to N (i, o'2),
that is

10 =0)=pandr[f € B] =(1—p)/a*1¢((9—m/0) do ifo ¢ B,
B

where ¢ is the pdf of the standard normal distribution. Find the Bayes rule with
respect to T based on a sample X of size 1. Give a common sense interpretation of
the Bayes rule.

4.8. LetXj,..., X, bearandom sample from Unif (0, 6), 6 > 0 and the prior of 9 is
7(#) =60 exp(—0),0 > 0.
(a) Find the posterior distribution of 6 given Xj, . . ., Xj,.
(b) Find the Bayes estimators of 6 under the loss functions L; (¢, a) = |6 — a| and

Lx(0,a) = (6 — a)®.

4.9. We want to estimate the mean 6 of a Poisson distribution on the basis of a random
sample X1, . . ., X, subject to the loss function L6, a) = (¢ — a)?,0 € ©® = (0, 00) and
a € A = [0, 00). Assume that 6 has a Gamma(w, 8) prior (ie, it has the pdf)

10,5(0) = {[(@p*} 0% L exp(—6/B),0 > 0, with
Ea,s(0) = ap, Fa,p(67) = alw + DB2
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4.10.

4.11.

4.12.

4.13.

(a) Find the posterior distribution of 6 given Xj, . . ., X;, and the Bayes rule with
respect to 7q,g.
(b) Show that dy(x) = X,, is not a Bayes rule with respect to any prior on
® = (0, 00). However, d is a Bayes rule if ©® = [0, 00).
(c) Show that dj is
(i) a limit of Bayes rules, (ii) a generalized Bayes rule with respect to
7(0) = 61,0 > 0, which is not a pdf, and (iii) an extended Bayes rule.
Let X and Y be independent binomial Bin(n, 61) and Bin(n, 62) rv’s. We want to
estimate 67 — 62 subject to the squared error loss L((01, 62), a) = ((61 — 62) — a)?,
la| < 1. Find the Bayes rule with respect to the prior with pdf
7(01,62) = L0,1)(01)1(0,1)(62) (ie, 01 and 6> have independent uniform distributions on
(0, 1)).
Suppose that X has a pdf f(x, 0), T is a sufficient statistics for 6, and that the
factorization theorem holds. Show that all Bayes rules are functions of 7.
Let Xj, ..., Xy be arandom sample from a Weibull distribution with pdf

fx,0) = ax®! exp(—6x%), x>0, 6>0,

where a > 0 is known. Find a sufficient statistic for 6.
Let Xi, ..., Xy be arandom sample from a distribution with pdf

f(x,o) = a(0)h(x)[(91 <x< 92), 6= (91,92), —00 < 01 <6 < 00,

where h(x) > 0 is a known function with [ h(x) dx = 1and a(f) = 1 / f:lz h(x) dx
for @ = (01, 62). Find a two-dimensional sufficient statistics for # and apply your
result to the special case of uniform distribution on [0, 62].



Point Estimation in Parametric
Models

5.1 Optimality Under Unbiasedness, Squared-Error Loss,
UMVUE

In the general framework of statistical decision theory (see Section 4.4), the estimation
problem is described by the triple ({Ps,6 € ©}, A, L) where A = {g(0):6 € ©} and
L6,a) = loss due to estimating g(f) by a. For a decision rule d, which is an estimator
T =T(X,...,X,) based on the data X = (Xj, ..., Xy), the risk is

R(6,T) = Eg[L(6, T(X))] =/ L®, Tx)f (x;0) dx
X

in the continuous case and analogously in the discrete case.

The concept of unbiasedness in estimation has been introduced in Section 4.6.1. In
a parametric family {(X, A, Py), 6 € ©}, a statistic T based on a random sample X is an
unbiased estimator of g(9) if Eo[T(X)] = g(0) forall6 € ©.

Example 5.1.1. Let (Xi,...,X,) be a random sample from Bernoulli(6) and let g(6) =
01 —0).Let T = X1 (1 — X2). Then

Eg[T] =Eg[X1(1 - X2)] =01 —6) = g(0).

Example 5.1.2. Let (Xj, ..., X;) be a random sample from Unif () and let g(9) = 6. Let
T =2X;.Then

N D

Eg(T] = Eg[2X1] =2Eg[X3] =2 - = =0 =g(0).

Example5.1.3. Let (X, . . ., X;;) be arandom sample from N (u, 0%), and let g (1, o) = p,
andg(u,0) =02 LetTi =X=n"'Y"  Xjand b = (n— D' Y30 (X - }_()2. Then

n
Euo[T1]=n'Euo |:ZX{| =n"'nu = p, and
i=1

n
Buo[T2] = (0= 17"Epo |:Z(Xi - X)Z}
i=1

Theory and Methods of Statistics. http://dx.doi.org/10.1016/B978-0-12-802440-9.00005-9 89
Copyright © 2016 Elsevier Inc. All rights reserved.
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Thus in these examples, X;(1 — X») is an unbiased estimator of 6(1 —6), 2X; is an
unbiased estimator of 9, and X and (n — 1)"' Y7 (X; — X)Z are unbiased estimators of
n and o2, respectively.

Theorem 5.1.1 (Rao-Blackwell Theorem). Let A be a convex set in R¥, L9, a) convex in
a € Aforeach 6 € © and T sufficient for 6 in X. Then for any nonrandomized decision rule
d, the nonrandomized decision rule d* based on T, defined as

a* (1) = HdX)|T = t], @

assuming that the expectation exists, is at least as good as d (ie, R(6, d*) is either < R(6, d)
or= R(9,d) forall0).

Proof. Sufficiency of T makes d*(T) = E[d(X)|T] free of 6 so that d*(T) is a bona fide
estimator. By Jensen’s inequality (see Section A.2), for fixed ¢,

E[L(6,dX))|T = t] = L(6, E[dX)|T = t]) = L(9,d*(r)) forallo.
Hence, for each 6,

R(0,d) = Eg[L(6,d(X))] = EE[L(9, d(X))|T]
> Eg[L(9,d*(T))] = R, d")

showing that d* is “at least as good” as d. O
Remark 5.1.1. If d is an unbiased estimator of g(6) (ie, Es[d(X)] = g(6) forall 6 € ©),
then

Eg[d*(T)] = Eg[E(d(X)|T)] = Eg[d(X)] = g(6) forallé.

Thus, d* is also an unbiased estimator of g(9).
Remark 5.1.2. If d is an unbiased estimator of g(0) then, for L0, a) = {a — g6 }2,

R®,d) = Ey [{d(X) - g(@)}z] = Varg[dX)],

and R(9, d*) is also Vary [d*(T)]. Hence, if d is an unbiased estimator of g(9), then d* is also
an unbiased estimator of g(6), the variance of which is uniformly bounded above by the
variance of d.

The Rao-Blackwell Theorem is often stated in this form.

Theorem 5.1.2 (Rao-Blackwell Theorem for Squared-Error Loss). If d is an unbiased
estimator of g(0) based on a sample X from Py, 6 € ©, and if T is sufficient for 6 in X,
then d*, defined by

d*(t) = EdX)|T = 1],
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is also an unbiased estimator of g(6), and
Varg[d*(T)] < Varg[d(X)] forallo € ©.

(See [15, 16].)

Under squared-error loss, the Rao-Blackwell Theorem provides us with a method for
“improving” upon an unbiased estimator, using a sufficient statistic, by constructing an
unbiased estimator with uniformly smaller (or equal) variance. However, we do not know
whether there is an unbiased estimator with even smaller variance than this “improved”
estimator. More to the point, among many sufficient statistics, which one should we use in
the Rao-Blackwell formula to find the best unbiased estimator? Such an estimator will be
called the Uniformly Minimum Variance Unbiased Estimator (UMVUE).

Before searching for the UMVUE, we shall first show that it is unique and find a
characterization for the UMVUE.

Theorem 5.1.3. The UMVUE is unique.

Proof. Suppose T1 and T> are two distinct UMVUE:s of g(0), that is

Eg[Tl] = E@[Tz] = g(0), and
Vary [Ty ] = Varg[T2] := o2(0) foralld.

Then, by Cauchy-Schwartz,
Covg[Ty, Tz] < {Varg [Ty [Varg[T2]}'/% = 62(6).
Nowlet T = (T} + T»)/2. Then, T is also an unbiased estimator of g(9) and

Varg[T] = —[Varg[T1] + Varg[T2] + 2Covy [Ty, T2 ]} < 0%(6) = Varg [T} ].

==

If this inequality is strict, then the UMVUE property of T; is violated. On the other hand,
equality holds only if we have equality in the Cauchy-Schwartz, for which we need T, =
a(®) + b®) T, but then,

o%(6) = Covy[ Ty, T»] = Covg[ Ty, al®) + b®)T1] = b®)o? @),

so b(®) = 1 and a(®) = 0 since Ey[T1] = Eg[T2] = g(0). Thus, T1 = T» showing that T; is
unique. O

Definition 5.1.1. Let ¢/ denote the class of estimators U with Eg[U] = 0 and Ey[U?] <
oo for all 6.

Theorem 5.1.4. If T is an unbiased estimator of g(0), then a necessary and sufficient
condition for U to be the UMVUE of g(0) is Covg[T, U] = Eg[TU] =0 forall U € U.

Proof (Necessity). Let T be UMVUE of g(0). Then, for arbitrary U e Y and A € R, T + AU
is also an unbiased estimator of g(9). Hence,

Vary [T] < Varg [T + AU] = Vary[T] + AZVarg[U] + 21Covy[T, U] forall 2,
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that is, f(1) = A®Vary [U] + 21Covg [T, U] > 0 for all 1. But if Covy [T, U] # 0, then

_ {CovyT, U1
Varg [U]

In)\inf()») = < 0.

To avoid contradiction, we therefore need Covy [T, U] = 0.

(Sufficiency). Suppose Covy[T, U] = Eg[TU] = 0 for all U € U. We shall show that T is
UMVUE of g(6). Let T" be an arbitrary unbiased estimator of g(¢) with Vary [T’] < 00. Then,
T—T eU,sothat Bo[T(T — T')] = 0 (ie, EQ[TZ] = E¢[TT’]). Since Ey[T] = g(0), it follows
that

Vary[T] = Bg [ 72] - {g@)}* = Bo[1T'] - {g(®)}?
= Covg[T, T'] < {Var[T]Vars[T']}'/2,

which implies Varg [T] < Vary[T'].
The main steps in finding the UMVUE of g(9) are

(i) finding an unbiased estimator of g(0), and
(ii) using an appropriate sufficient statistic T to use in Eq. (1), the Rao-Blackwell formula
d*(T) = E[dX)|T].

The following example will illustrate these issues.

Example 5.1.4. Let X = (Xj, ..., X;;) be arandom sample from Bernoulli(9), 0 < 6 < 1.
We want to estimate g(0) = 6°.

It is easy to see that d(X) = X1 X» is an unbiased estimator of 02

Eg[X1X2] = Eg[X1]Eg[X2] = 6% foralle.

In many situations, as in this example, finding an unbiased estimator of g(#) is easy. Getting
into the question of the choice of a sufficient statistic (Step (ii)), first note that there are
many sufficient statistics of which we consider the following three:

T =X +X2, X3 +---+Xn), T2 = Xg +Xpn, Xo +--- + X,_1), and

It is easy to see that they are all sufficient statistics, which we leave as exercises. We now
use the Rao-Blackwell formula, conditioning d(X) = X1 Xz by T1, T», T3 given above:

(a) We first note that
E[dX)|T1] = E[X1 X2|X] + X2, X3, ..., Xn]
=E[X1X2/X1 + X2] = X1 X2,
because

E[X1X2 X1+ X5 = 0] =0=X7Xp,
E[X1X2|X1 +Xo = 1] =0=X;Xy, and
E[X1X2|X1 +Xp = 2] =1=X1X>.
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(b) To find E[d(X)|T2], we first note that

E[XiXo| X1 +Xpn=1Xp + -+ Xp_1 =]
—PX1 =X =1X; +Xn=1,Xp 4+ Xp_1 = 5]
= Prs.

Obviously, Prs = 0ifr = 0and/ors = 0. Next,forr=1,2ands=1,...,n—2,
PX1=Xo=1Xp=r—1,X3 4+ + X1 =5 —1]
PXi+Xn=1Xo+ - +Xp_1=5|
0297’—1(1 _ 9)2—7’(?:?)98—1(1 _ 9)}’1—5—2

(g)gr(l _ 9)2—r(";2)9su — g)n—s—2
_ rs
T 2(n-2)

Prs =

after simplification, since (%) =2/rforr=1orr = 2. Thus,

X1+ Xn)(Xo + -+ + X

(c) Note that

E[dX)|T3 =t]=P[X; =Xp =1|1X; +--- + Xpn = 1]
PXi=Xp=1LX3+ +Xpn=1-2]
PIX| -+ Xn = 1]

62 (15 - e
(1ora—eoyn=t
_ (D) _ -

(’;) T an-1

Thus,

O X)) (i Xi — 1).

E[dX)|T3] = T

In applying the Rao-Blackwell method on d(X) = XjX5, using the sufficient statistics
Ti, T», and T3, we have seen that E[d(X)|T1] = d(X), so the method provides an “im-
provement” in a trivial sense. On the other hand, E[d X)| Tz] provides a real improvement,
because d(X) is not a function of T», so the conditional distribution of d(X) given T is
nondegenerate. Also, by direct calculation, we can verify that
2(

917__20)){1 + (n— 16} < 6%(1 — )% = Varg[d(X)]

Varg E[dX)| o] = -

for n > 3. Since d(X) is not a function of T3, the estimator E[d(X)ng] also provides a
real improvement over d(X), although a direct calculation of the variance of E[d(X)|T3]
is somewhat messy.
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Finally, we use the Rao-Blackwell method on the estimator E[d(X)|T2], using the
sufficient statistic T3. This leads to

gl &K1+ X)X + - + Xp1)
2(n—2)

rt—nNPXi+Xn=rXo+ -+ X1 =t—7]
2(n—2)(7)ora —o)n-t

X1+-~-+Xn=t]

Il
M

r=1

r(t — 1 (30" — 0)27T ("72)p!=r (1 — g)n-tHT-2
2(n—2)(})ota —o)n-t

Il
M~

w
Il
—

rt-n@QG) _ -1
20-2)()  nn-1

Il
MN

r=1

since the numerator simplifies to 2(n — 2) (’;:22)

In summary, we have seen that starting with an unbiased estimator d(X) = X1X» of
g) = 92 and using the Rao-Blackwell method with sufficient statistics 71 = (X1 + X2, X3 +
e+ X)), To =X + X, X0 + - -+ X,-1),and T3 = X; + - - - + X, we obtained:

(@) E[d(X)|T1] = d(X), which is an “improvement” in a trivial sense,

(b) E[dX)|T2] = (X1+X”)2(f%f2'i'+x”*l),which is a real improvement,

(d) E[d(X)|T3] = (Zizl)i)(gﬁlx"_l) , which is also an improvement, and moreover,

(d) E[E[dX)|T>11T3] = E[d(X)|T3].

Thus, E[d(X)|T>] and E[d(X)|T3] are successive improvements on d(X).

The question still remains: can E[d(X)|T3] be further improved? The key property of
a sufficient statistic addressing this question is the property of completeness, as defined
below.

Definition 5.1.2. A sufficient statistic T for a parameter 6 € © is said to be com-
plete (or boundedly complete) if for every real-valued (bounded real-valued) function ¢,
Eglp(T)] = 0 for all 6 implies ¢(t) = 0for all ¢ ¢ N where Py[T € N] = 0.

Completeness requires the family of distributions {P!'} of T to be sufficiently rich, so
that the condition Ey[¢(T)] = 0 for all 6 forces ¢(¢) to be identically zero for all practical
purposes. One can think of it as a condition on the pdf’s {fr(-,6),6 € ®} of T having full
rank, so that

Eglo(D)] = /gD(t)fT(t, 0) dt =0 forallg,

that is, ¢(-) is “orthogonal” to fr(-,0) for all6 € ® = ¢(-) must be a zero function with
probability 1.
How to check that a sufficient statistic is complete?

1. If a convergent power series ), a,z" = 0 for all z in some open interval, then each
coefficient a, must be zero. This fact can be used to prove completeness of some
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important families of discrete distributions such as {Bin(n, p), nfixed, 0 < p < 1},
{Poi(6), 6 > 0}, etc.

2. IfXy,..., Xy areiid as Unif(0,0), then T = max{Xj, ..., X,} is sufficient for 6 in
X =(Xj,...,Xn). The pdf of T corresponding to 9 is

fr@,0) =no™" tn_ll(o,e) ().

Hence, Eg[¢(T)] = 0 for all 6 implies fg o)1 dt = 0for all 6. If ¢ is continuous, then
¢(#) = 0 for all £ by the Fundamental Theorem of Calculus, but even without
continuity, the result holds with probability 1, of which the proof needs more

advanced analysis. This shows that T = max{Xj, ..., X;} is a complete sufficient
statistic for 6 in X.
3. IfXj,..., Xy is arandom sample from a regular k -parameter exponential family:

k
fx,0) =exp LZ 0;T;j(x) + S(x) + d(9):| Ip(x),
=1

where A is the support of the distribution, then

n
Ti=) Tix), j=1...k
i=1

are jointly sufficient for 6 in X = (Xj, ..., X;;) and the joint distribution of

T = (T, ..., T}) also belongs to a regular k-parameter exponential family. If

O = {0 € Rk: v f(x,0) dx < oo} contains a k -dimensional open rectangle, then T is a
complete sufficient statistic for # in X. This takes care of many important situations.

With the concept of completeness, we now know how to choose the appropriate sufficient
statistic in the Rao-Blackwell formula (1) that will lead to the UMVUE.

Theorem 5.1.5 (Lehmann-Scheffé). If d(X) is an unbiased estimator of g(0) and T is a
complete sufficient statistic for 6 in X, then

d*(T) = E[dX)|T]

is the (essentially unique) UMVUE of g(0).

Proof. For any other unbiased estimator d; (X) of g(0), consider the unbiased estimator
d;(T) = E[d: (X)|T] which must have variance < that of d; by the Rao-Blackwell Theorem,
but by completeness, dj(T) = d*(T) with probability 1. Therefore,

Vary[dy (X)] > Vary[d] (T)] = Vary[d*(T)]. O
In the above example, T3 = Z?:l X; is a complete sufficient statistic. Hence,

X X)X — 1)

E[dX)|T3] = oD
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is the UMVUE of g(9) = 62. Also, note that the sufficient statistic T» = (Xj + X, Xo + - - +
Xn—1) is not complete, because the expectation of

1 1
o(T?) = E(Xl +Xn) — m(XZ +-+X51)

is 0 for all & € (0, 1). We end this section with a very interesting property of completeness.

Ancillarity and Completeness
Definition 5.1.3. A statistic whose distribution does not depend on 6 is called an ancillary
statistic.

Theorem 5.1.6 (Basu’s Theorem [17]). Suppose that the distribution of X belongs to the
family {Py,0 € ©}. If T = T(X) is a complete sufficient statistic for 0 and if V = V(X) is an
ancillary statistic, then V is independent of T.

Proof. The probability pa = P»[V € A] is independent of 6 for all A by ancillarity of
V. Let na(t) = P[V € A|T = t], which is also independent of 6 since T is sufficient, and
Eg[na(T)] = E¢P[V € A|T] = Py[V € A] = pa. Thus

Eg[na(T) —pa] =0 foralle.
Since T is complete, this implies that for all A, na(T) = pa, that is
P[V € A|T] = P[V € Alw.p. 1.

Hence, V is independent of T. O

5.2 Lower Bound for the Variance of an Unbiased Estimator
5.2.1 The Information Inequality: Cramer-Rao Lower Bound
For brevity of notation, we shall write

af (x,0) 9% (x,0)

90 =f(x) 9)) 892 =f(x,9),
(x,0) 2e(x,0) .
logf(x,0) = £0x,0), — = ={(x0), — 75— =Ix0).

These notations will also be used in all subsequent discussions.
Regularity conditions on {f(x,6), 6 € ©® C R}:

1. The parameter space © is an open interval and the set S = {x: f(x,6) > 0} does not
depend upon 6.

2. Forallx e Sand 6 € O, {(x, 0) exists and is finite.

3. For any statistic T such that E4[|T|] < coforall6 € O,

d
%/T(x)f(x,e) dx

- / T(x)f (x, 6p) dx
6 =06

_ / TW)(x, 60)f (x, fp) dx
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whenever the right-hand side is finite. In other words,

d ,
—Eo[T(X)] = Eg,[T(X)€(X, 60)].
do 0 = 6

These conditions are satisfied in a regular exponential family.
Remark 5.2.1. Write Eo[T(X)] = g(©) + b(0), where b(0) is the bias of T at 6§ as an
estimator of g(0). Then, Condition 3 becomes

g (0) + b'0) = Bg[TX)L(X, 0)].
Remark 5.2.2.
(a) Taking T(x) = 1 in Condition 3, we have Ey [é(X, 6)] =o.
(b) Sometimes (as in regular exponential families), a stronger version of Condition 3,
2

d
W/T(x)f(x,@) dx

- / T@)f (x,0p) dx
6 =6

holds for T'(x) = 1, so that f f (x,0) dx = 0. Since
Fx,0) = [Z(x, 0) + (i, 6))}2]f(x, 9),
this implies that
Varg [((X, 6)] = B[ {£X,0)) ] = - Eg[£(X,0)].
Definition 5.2.1 (Fisher-Information). Condition 2 allows us to define
1(00) = Egy | { (X, 60}, @

which is called the Fisher-Information in X for the family {f(x,6), 6 € ©} at 6.
Remark 5.2.3. Note that 0 < () < oo. By Condition 3,

1(9) = Varg[{(X,0)],

and the stronger version of Condition 3 implies
16) = By {£0X,0)}?] = Varg [{(X, 6)] = B [-F(X, 6)]

Theorem 5.2.1 (Cramér-Rao Inequality [15, 18]). Suppose T = T(X) has Ey[T] = g(0) +
b(0) and Vary[T] < oco. Then, under the regularity Conditions 1, 2, and 3, we have

[g©®) +b©)

Vary [T] > 0

The right-hand side of this inequality is known as the Cramér-Rao lower bound.
Proof. Fix0 € ® and let S = S(X,0) = (X, 0). By Remark 5.2.2, Eg[S] = 0 and Vary[S] =
1(6). Hence,

Covg[T,S] = Eg[TS] = Eg[TX){(X, 0)] = g'(6) + b/ (6),
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as shown earlier. But Cov? [T, S] < Varg[T]Vary[S]. Thus,

Cov3[T,S] {g'® +b©®)
Vaelll= rsr =7 1@ 0

Remark 5.2.4.

(a) IfX = (X, ...,X,) is arandom sample of size 7 from a population with pdf (or pmf)
f(x,0), then {(X,0) = Z?:l £(X;, 6). Hence, the Fisher-information in X = (X3, ..., Xy
for the family {f(x,60): 6 € O} is

n
Vary {Zé(x,-, 9)} = nVarg[((X1,6)] = nI().
i=1

Thus the information inequality for Vary[T] of an estimator T based on a random
sample of size n from f (x, 0) is

[g'©) + 1)

Vary[T] > )

(b) If Tis an unbiased estimator of # based on a random sample of size n, then

VarQ[T] > F(e).

5.2.2 Effect of Reparametrization on Fisher-Information
in Exponential Families

Consider the exponential family of pdf’s (pmf’s):
fx,0) = exp[cO)T(x) + d(©) + h(x)]1a(x),

where c is one-to-one and twice differentiable. If f (x, 0) is reparametrized by n = c(6) and
rewritten as

gx,n) = exp[nTx) + do(n) + h(x)]I4(x)

with do(n) = d[c™'(n)], then the Fisher-Information for the family {g(x,n): n € ¢(©)} is
Ig(n) = —dgj(n). How does this I, relate to the Fisher-Information I;(6) = Eg [—Z(X, 9)] for
the original family? The answer is:

11(0) = (dg )| y=c(e) [ ©))7,

the proof of which is left as an exercise.
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5.2.3 Information Inequality in Multiparameter Families

We now consider the multiparameter case in which we observe a random variable X
following a distribution with pdf (or pmf) belonging to a family { f(x,0):0 € (~)}, where
0 = 61,...,0) and ® C RK. Our aim is to estimate a function g(0) of the parameter
vector # such as g(@) = 0, or, as in the pdf of N(61,6,) with 6; # 0, g(0) = 02/61,
the coefficient of variation. For a statistic T = T(X), estimating g(f) with a bias b(0) (ie,
Eo[T(X)] = g(0)+b(0)), we now look for alower bound of Vary[T]. The notations introduced
earlier are now extended as:

.0 _ f(x,0) -
20, = fr(x,0), W = frs(x,0),
X0 e, 0) .
logf(x,0) = £(x, ) as before, 6 = ir(x,0), o0 = Vrs(x,0)

forr,s=1,...,k.

The Cramer-Rao Information Inequality is simply a restatement of the inequality
p2(U,V) < 1, where p(U, V) is the correlation between U and V with U = T(X) and
V ={(X,0).

In the multiparameter case, we extend the concept of correlation between U and
V to the

“correlation” between U = T(X) and V' = (61(X,0),...,6r(X,0))

which we shall call the multiple correlation of U on V.
LetVT = (vy,..., Vi) be a k-dim random vector with covariance matrix

% = Cov[V, V] = E[{V —EM}{V - EW)}T],
and let U be a random variable with finite second moment,
yi=COV[U,Vl~], i=1,...,k andyT = (yl,...,yk).

Definition 5.2.2. If ¥ = Cov[V, V] is positive definite, then the multiple correlation of
U on V is defined as:

k T
* * — . . . a y
pe=Puv= d{?%k COI‘I‘{U, ;alvli| - u?}%k {Var[U] . aTza}l/Z'

Note that

(i) when X is singular and is of rank r, we can always find a r-dim random vector V*,
which is a linear function of V, whose covariance matrix is positive definite, and
(ii) we can assume without loss of generality that a'Ya=1.

Justification of (i). By spectral decomposition, ¥ = QAQ" where Q is an orthogonal matrix
with columns ¢q,, . . ., ;. (the eigenvectors of ¥) and A is a diagonal matrix whose diagonal
elements 11 > --- > A are the eigenvalues of X. If ¥ is of rank r < k, then only the first
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r diagonal elements of A are nonzero and the rest are zeros. Let V* = [q{V, o qIV]T =
Q) V, where Q, = [4:,-..,q,]is a k x r matrix. Then,

—— Tv Tl _ Ty |2 i=]
o] = coaTv.av] ~alza - [ (2]
Since ¥ isof rank r, A1 > --- > A, > Oand Ar41 = --- = A = 0. Consequently, the
covariance matrix ¥* of V* = QgV is a diagonal matrix with diagonal elements A1, ..., A

(ie, X* is positive definite).
Justification of (ii). Correlation coefficient is invariant under scale change. Hence, for
any vectora € R, if we take ag = a/~a'Xa, then

Var[agV:I =1land Corr[U, aTV] = Corr[U, agV].
Proposition 5.2.1. Let U and (V1,..., Vi) have finite second moments and let y; =
CovlU,V;l,i=1,...,k and ¥ = Cov[V, V]. Then,

g2 Y=y
Var[U] ~

Proof. Since p* = maxg,,...q; Var[U] and a' ¥a = 1, we need to maximize a'y subject to
the condition a’ Xa = 1. Using Lagrange’s undetermined multiplier, we maximize

1
aTy - EAaTEa

and then find A using a' Xa = 1. To this end,

{Z aryr — —k Z Z arasar{|

r=1s=1

k
1
=Yr— 5)» |:2dr0rr +2 Z dsUrsi|

r#s=1
k

=yr_)\zas(7rs, r=1,...,k
s=1

implies Xa =171y (ie,a=21"1X"1y).
To find A, we now have the equation

l=a'Xa=1220"x HxE1y) =12yTx L,
with solutions: A = +(yT¥~1y)1/2, Hence,

+x-1
at=213x"1y = =2 Y and

Tz ly
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Ty-1
b3
I S 40 e R
VT 1y

are the maximizers of aTy subject to a' Xa = 1. Hence,

*2 2 a'y
P = max Corr U,E a;V; | = max
{a1,...a;},a" Za=1 |: ‘ L ai,...,ai \ /Var[U]

3 (a*Ty)Z 3 yTE—ly
" Var[U] =~ Var[U] ’

O

Getting back to U = T(X) and vl = (él(X,0), .. .,ék(x,o)), and recognizing that the
multiple correlation J like a correlation lies between —1 and +1, so that

p*2 = <1, ie Var[U]>yp'xly,

we arrive at a lower bound for Var[U] = Var[T(X)]. To make this lower bound ex-
plicit, we need to find yT = (y1,...,¥r), where Yi = COV@[T(X),Zj(X,a)], and ¥ =

((Cove|1rx,0, Ls(x, 0 ]) ).
As in the single-parameter case, here also we assume that the following regularity
conditions hold for the family { f(x,60),0 0 C Rk}:

1. The parameter space ® is an open interval and the set S = {x: f(x,0) > 0} does not
depend upon 6.

2. Forallx € Sand 0 € O, ¢,(x, 0) exists and is finite forr = 1, .. ., k.

3. For any statistic T such that E¢[|T|] < oo forall@ € O,

a
%, Tx)f (x,0) dx

= / T@)fr(x,00) dx
0=0,
= / T(x)¢r(x, 00)f (x,00) dx
forr =1,..., kwhenever the right-hand side is finite. In other words,
d .
—Ey [T(X)]‘ =B, [TX)r(X,00)], r=1,...,k
00y 0=0,

As in the single-parameter case, these conditions are also satisfied in a regular k-parameter
exponential family.
Condition 3 becomes

, 9
Eg[T(Or (X, 0)] = - -[8(6) + b)),
r
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when T(X) is an estimator of g(@) with bias b(#). Taking T'(x) = 1 in Condition 3, here we
have Ey [ér(X , 0)] =0,r =1,...,k, and a stronger version of Condition 3 (which holds in
exponential families), namely,

92

M/T(x)f(x,()) dx

= / T(X)frs(x, 0) dx
0=0o

holds for T(x) = 1, so that f ﬂs (x,0) dx = 0. Since
Frs(x,0) = [Ers(x,0) + £r(x, 0)E5(x, 0)]f (x, ),
this implies
Covg[¢r(X,0),E5(X,0)] = Eg[¢r(X, 0)(5(X,0)] = —Eg[{rs(X, 0)].
Definition 5.2.3 (Information Matrix). By Condition 2, ¢,(x,0) exist and is finite for

r = 1,...,k so we can define the k x k matrix I(80) = ((I;s(80))) where I5(80) =
Eoo[é,(x,eo)és(x,oo)], which is called the Information Matrix in X for the family

if(x,O), 0ecoC Rk} at 6y.

By Condition 3, I;5(6) = Covy [ér(X, 0), (X, 0)] and the stronger version of Condition 3
implies I15(0) = Eg [—er (X, 6)] as shown above.
We now go back to the inequality Var[T(X)] > yTZ *1;/, where

yT = (Covp[T(X), £1(X,0)],..., Covg[T(X), {1(X,0)])
) a
_ <EE0 (TGO, 5 Fo [T(X)])
=v'[8® + b®)].

by Condition 3. We thus arrive at the following theorem.
Theorem 5.2.2 (Information Lower Bound in Multiparameter Case). Suppose T = T(X)
is an estimator of g(0) with bias b(9) and finite variance, that is, Eg[T] = g(0) + b(0) and

Varg[T] < oo where the family {f(x,0), 0ecOC Rk} satisfies regularity Conditions 1, 2,
and 3. Then,

Varg [T) > {VT[g(é’) + b(0)]}1(0)_1{v[g(0) + b©6)]}.
Example 5.2.1. In a random sample (X, ..., X};) from N(u, a?), let
n n
X=n1Y"X; W=n"'Y0G-w? and
i=1 i=1
n
S=mn-n71Y x-%2

i=1

We want UMVUEs of 02 and o when p is known and when p is unknown.
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Solution. When p is known, W is a complete sufficient statistic for o2, and when p is
unknown, (X, S?) is a complete sufficient statistic for (u,o?) in (X1, ..., Xy). Therefore, it
is enough to find unbiased estimators of 02 and o, which are functions of W when p is
known and functions of (X, $2) when u is unknown, because these estimators would then
be UMVUEs by the Lehmann-Scheffé Theorem. We now obtain such unbiased estimators.

When u is known,

(@) W is an unbiased estimator of o2, since E, [ (X; — 1)?] = 0’2, and
(b) starting with +/W as a natural estimator of o, we find

J2r(nl
Eo[VIW] = on 2B ()'2] = i;_fgééL)'
so that
Ty = cnvW, with ¢y = gf?%)
is the UMVUE of 0.

When u is unknown,
(a) recall from Proposition 2.2.5 that

(n—1)82

1 o 52 2
S T
i=1

so that B, [$2] = -2 E[x2_,] = 0%, making S? the UMVUE of 02, and
(b) starting with S as an estimator of o, we see that

Eo[S] = ———E[(2_p"?] = —— var(s)
Jn—1 L7n-l \/n—1p<nT—1>
so that
1
. 2
Ty = cp1S, withey 1 = \/ 1<, E)),
(2
is the UMVUE of o.

In summary, we have

1. W and Ty = ¢,,~/W are the UMVUEs of 02 and o, respectively, when p is known, and
2. S?2and Ty = ¢;,_1S are the UMVUEs of 02 and o, respectively, when p is unknown,

where
RS
n = EF(I’I-FI)

2
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Example 5.2.1 (Continuation). Find the Information Lower Bounds for the variances
of unbiased estimators of o2 and ¢ when p is known and when p is unknown. Do the

variances of the UMVUEs obtained above attain these lower bounds?
Solution. To find these lower bounds when p is known, we write log f (X; o?) as

0(X;0) = _%log(zﬂ)_%loge_%(x_ﬂ)z With@:(rz
~1log2m) —logh — 5L, (X — w?  witho =0
leading to
. piz[ X = w2 6] fore =02
X;0) =19 s o .
Llox—w?-6?] foro=o
Hence,
1 1 2
: 57 =57 forf=o
10) =By[2060)| =1 %° 2" ,
2=z for6 =o

so the information lower bounds for variances of the unbiased estimators of o2 and ¢ are,

respectively,
1 204 1 o

= — a = .
nl(c2) n nl(c) 2n

When p is unknown, we write log f(X; u, o?) as
—5 log(2m) — 51062 — 5= (X —61)?  with (61,62) = (n,0%)

KX,O ,00) = . ’
(X361, 62) {—%log(zn)—logez—%(X—el)z with (61, 62) = (&, 0)

leading to
2
T X 61, 6) %[X—Gl]v _ﬁ + 261)22 [X —61] ) for (61, 02) = (11, 0'2)
y01,02) = .
2
2 2

Hence, the information matrix
16) = By | £X; 61,007 (61, 6) |

is obtained as

a0 Lo
=g 1 =[gz 1i|f0r(91;92)=(:“’(72)’ and
202 0 1
1
A I
1) = o 21=1% =2 for (61,02) = (1, 0),
02 o?
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with inverses

12
I
) := [121 122]

where

B 20%  for (61,62) = (1, 02)

122 _ )
o?/2 for (61,62) = (1, 0)

Thus the information lower bounds 11?2 for variances of unbiased estimators of o2 and
o are 20*/n and 02/(211), respectively.

We now compare these lower bounds with the variances of the UMVUEs obtained
above:

Vary, [W] = n~!Var, [(Xi — ,u)z:l
=n B [ - 0] - B2 0 - w?]

2 4
=n! [304 — 04] -2 ,
n

which equals the information lower bound for this case.

Varg [T ] = C%Varg [«/W] = c%[Eg W] — Eg [«/W]]

2 2 o 2 2.2
=cy|o —<a> =0°(c; = 1),

, while the corresponding lower bound is o?/(2n).

where ¢, = /5

Next, we have

204
n—1

Var, [82] = Var[(n — 1)_102)(,21_1] =

’

which is greater than the corresponding lower bound 2%4 Finally,

Varg [T1] = 6571Varg [S]

- CEH{EG [52] —E2 [s]}

2 2 o \? 2,2
=Cp_110°— ( ) =0 (cn71 —-1),
Cn—1

while the corresponding lower bound is o2 /(2n).

Thus the variance of the UMVUE of 62 when p is known (ie, Var, 2 [W] attains the infor-
mation lower bound), whereas the other three UMVUEs do not attain their corresponding
lower bounds. In particular,
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2
Vara [S ] _ n Varg [TO] _ Zn(C,Zl _ 1) and

204/n  n-1" o2/2n)
Varg [T ] B 2
02/(2n) = 2n(cn_1 —-1).

However, all three of these ratios are nearly equal to 1 for moderately large n. For example,
for n = 20,
n

- = 1.0526, 2n(c; — 1) = 1.0144, and 2n(cj,_; — 1) = 1.0630.

5.3 Equivariance

Like unbiasedness, equivariance is another property which narrows down the class of
estimators to only those with constant risk functions, allowing us to look for the best
among them.

We first briefly discuss equivariance in the general context of a decision problem
specified by

(X,B,{Pg,6 € O}, A, L

in the light of a group G of one-to-one transformations of X °0° X, the group operation

being composition, that is,
& g1 =g[s1@].

The identity transformation is e(x) = x for all x, the inverse of g is the usual inverse
transformation g~! defined by g~![g(x)] = x for all x. We assume that the family P =
{Py,0 € ®} isidentifiable (ie, if & # 6’, then Py # Py/).

The family of probabilities P = {Py, 0 € ©} is said to be invariant under G if for every
g € Gand for every6 € O, there exists 8’ € ® such thatif X ~ Py, then g(X) ~ Py . Since the
family {Py, 6 € ®}is identifiable, such ¢’ is unique and we denote it by g(6). Thus for any B,

Py [g*l (B)] =Py [X € g*l(B)] = Py[g(X) € B] = Pg(g)[B].

LetG = {g: g € G}. Then G is a group of transformations from ® — ©, all g € G being one-
to-one and onto. [To check t}itg_ is a group, verify (i) & - g1 = g - g1, (ii) e is the identity
element of G, and (iii) g~! = g~1.]

Definition 5.3.1. A statistical decision problem specified by

(X,B,{Pg,0 € ®}), A, L
is said to be invariant under a group G of transformations from X — X if

(i) P = {Py,0 € O©}is invariant under G with the associated group of transformations G
from ® - ©, and



Chapter 5 » Point Estimation in Parametric Models 107

(ii) foreveryge G and for every a € A, there is a unique a’ € A denoted by a’ = g(a) such
thatforallo € ®

L, a) = Lg©),a) = LEg®), g@).

Remark 5.3.1. If for a given g € G and a € A, (ii) is satisfied by more than one @', then
we can remove all such candidates except one and call this @’ = g(a), thereby achieving
uniqueness of @’ as specified in (ii).

LetG = {&: g € G}. Then G is a group of transformations from A — A. All g are one-to-
one and onto. [Verify that (i) & - 81 = m, (i) e is the identity transformation of G, and
(i) g ' =g 1]

Definition 5.3.2. If a decision problem is invariant under G, then
(i) anonrandomized decision rule d is equivariant under G if forallx € X and g € G,

d(g(x)) = g(d(x)), and
(ii) a behavioral decision rule § is equivariant under G if 5(S|g(x)) = § (g*1 (S)|x) for all
“events” S C A, forallx e X and g € G.

Definition 5.3.3.

(a) For6y, 6, € ©, we say 0 = 6, if there exists g € G such that 6, = g(61), = being an
equivalence relation;

(b) let ©* denote the collection of equivalence classes of ®; and

(c) the equivalence classes are called orbits, ©®* being the set of all orbits.

For the rest of this section, we consider only nonrandomized decision rules.

Theorem 5.3.1. For any (nonrandomized) equivariant decision rule d, the risk function
is constant on each orbit.

Proof. Note that

RO, d) = Bg[L©6, d(X))] = B¢ [LE®), §(d(X))]
= E5[L@(0), d(g(X)))] = Eze)[LE(©6), d(Y))] = RE(6), d),

using (i) L9, a) = L(g(0), g(@), (ii) g(d(x)) = d(g(x)) since d is equivariant, and (iii) X ~ Py
implies Y = g(X) ~ Pz ). O

This theorem shows how equivariance simplifies the search for an optimal rule. If there
is a single orbit, then there is an optimal equivariant rule, which is called the Minimum
Risk Equivariant (MRE) estimator.

5.3.1 Location Equivariance in a Location Family

Suppose X = (Xj,...,Xy) has pdf f(x;0) = f(x1 — 6,...,x, — 0) where 6 is the unknown
location parameter to be estimated.

LetY = g.(X) = Xi+c, ..., Xn+c) := X+cl) where 1"=qQ,..., 1), andletg.(9) = 6+c.
Then Y has pdf

f(rr—c]—=06,....[yn—c]—0) =fly—[6 +cl) = f(y:8(9)).
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For a € R, taking g.(a) = a + ¢, suppose
L(gc(0),8@) =LEO +c,a+c)=L0e,a) forallb, a, c
Then with ¢ = —6,
L®,a) =L00,a—0) :=pla—10).

Thus the problem is invariant under G = {gc, ¢ € R} and a location equivariant rule d must
satisfy: d(x + c1) = d(x) + c. All the usual estimators of a location parameter such as mean,
median, etc., are location equivariant.

In this set-up, there is only one orbit in ® = R and therefore, the risk function is
constant in 0 for equivariant rules d satisfying d(x + c1) = d(x) + c. Indeed, for such a
rule,

RO, d) = /L(O,d(x))f(x—@l) dx
=/L(0,d(y+01))f(y) dy
_ / L6, dy) + O)f o) dy

= /L(O, dy)f ) dy = R(0, d).

We now find the MRE estimator of 6. We first characterize a location equivariant
estimator.

Lemma 5.3.1. d is location equivariant iff d(x) = dy(x) + u(x) where dy is an arbitrary
location equivariant estimator and u(x + c1) = u(x) for allx and c € R.

Proof. If d is of the above form, then

dx +cl) =dyx+cl) + ulx + cl)
= {do) +c} + u)
={do@) + u®)} +c=d® +c

showing that d is equivariant. Conversely, if d is equivariant, then taking u(x) = d(x)—dp(x),
we have d(x) = dy(x) + u(x) and

ux+cl) =dx+cl) —dy(x +cl)
= {dx) + c} — {do@®) + ¢}
=dx) — dy(x) = ux). O

To find the MRE estimator,
1. For n = 1, take dy(x) = x which is location equivariant, and

ux+c) =ux) forallxandceR
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implies u(x) = constant := — b. Hence, all location equivariant estimators are of the
form: d(x) = x — b := dj(x). Now the MRE estimator is obtained by minimizing

R0, dy) = Eg[p(X — b)]

with respect to b.
2. Forn>2lety=0n,...,¥n-1) = X1 — Xp, ..., Xn—1 — Xn). Then u(x + c1) = u(x) for all
x and ¢ € Riff u(x) = v(y) for some function v.

Proof. u(x) = v(y) means u(xi, ..., x,) = V(X1 —Xp, ..., Xnp—1 — X). Therefore, u(x+cl) =
V(X1 — Xn, ..., Xn—1 — Xp) = u(x). Conversely, if u(x + c1) = u(x), then with ¢ = —x,,
ux) = ulxy —Xn, ..., Xp—1 —xn,0) = uQ@1,...,¥n-1,0) = vy). O

Thus location equivariant estimators are of the form d(x) = do(x) — v(y), so choose v
so that

R(0,d) = Eg[p(do(X) — v(Y))] = EoEg[p(dp(X) — v(Y))|Y]

is minimum, which is achieved by minimizing Eo[ p(do(X) — v(y))|Y = y] for each y. There-
fore, to find the MRE estimator, choose v(y) = v*(y) for each y, so that

Eo[p(doX) — v* ()Y = y] < Eo[p(do(X) — b)|Y =y] forall b.

The above development is summarized in the following theorem.
Theorem 5.3.2. For n = 1, the MRE estimator of a location parameter is given by X — b*
where

Eo[pX — b")] < Eo[p(X — b)] forallb.

Forn=>2letY = (Y1,...,Yn-1) = X1 — Xp,..., Xn—1 — Xp) and let do(X) be an arbitrary
location equivariant estimator with finite risk. Then the MRE estimator is given by do(X) —
v*(Y) where for each y,

Ep[p(doX) — v* ()Y =y] < Eo[p(do(X) — D)|Y =y]| forallb.
In particular, for squared-error loss L(6, a) = (a — #)?, the MRE estimator is:

d*(x) = x — Eg[X] forn = 1 and
d*(x) = do(x) — Eg[do(X)|Y = y]forn > 2,

because Eo[(X — b)?] and Eo[{do(X) — b’y =y] are minimized at b = Eo[X] and b =
Eo[do(X)|Y = y], respectively.
Likewise, for absolute error loss L(0, a) = |a — 6|, the MRE estimator is:

d*(x) = x — mediang[X] forn = 1 and
d*(x) = dp(x) — mediang[do(X)|Y = y] forn > 2.
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Suppose L(6,a) = p(a — 0) where p is convex and even. Suppose further that f is
symmetric about 0. Then for n = 1, the MRE estimator is d*(x) = x. This is because

Eolptx ~ ] = [

0 oo
px — b)f(x) dx + /0 p(x —b)f (x) dx
o

o (0.¢]
=/(; ,0(—x—lo)f(—x)dx+/0 plx —b)f(x) dx

o0
= fo [p(x + b) + px — b)]f(x) dx,

so that
ori
Eo[p(X — b)] — Eglp(X)] = 2/0 [E{p(x +b)+px—b)} - p(x)]f(X) dx>0
for all b.
Example 5.3.1. Let (X1, ..., X;) be a random sample from A (9, 2) where o2 is known.

Take dy(X) = X which is complete sufficient, while
Y =X —Xn, .., Xn—1 — Xn)

is an ancillary statistic (ie, its distribution does not depend on 6). By Basu’s Theorem 5.1.6,
it follows that dy(X) = X is independent of Y. Hence, for each y,

Eo[p(dyX) — D)|Y =y] = Eo[p(X — D)|Y =y] =Eg[p(X — D)].

For 6 = 0, the pdf of X is symmetric about 0, so that for all convex and even p, Eg [p(X — b)]
is minimized for b = 0. Thus the MRE estimator is d*(X) = dy(X) — 0 = X.
Theorem 5.3.3. Under squared-error loss, the MRE estimator

d*(x) = do(x) — Ep[do(X)|Y =]
can be expressed as

oo ufer — ..., xp — u) du

[~y xp—wdu

d*x) =

In this form it is known as the Pitman estimator of 6 [19], which is also the generalized Bayes
estimator with respect to the “improper prior having uniform distribution over the entire
real line.”

Proof. Take dy(X) = X, and compute Eg[do(X)|Y] = Eo[X,|Y] by augmenting the
transformation x — y in the following manner:

Y1I=X1—Xn,--¥n-1=%Xn—1—Xn, Yn=Xn.

The Jacobian of this transformation is 1 and the joint pdf of
Yi=M,...,Y_1,Y)

foro =0is

o oY1y =01+ Yn-1 + ¥ Yn)
=f01+Yn - Yn—1+Ynyn
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The conditional pdf of Y, = X, given Y = (Y1, ..., Y1) is

freOr-oym)  fO14Yn - Yn1 4 Ynyn) .
ooy [ f0 . ype1 80 dr

Hence, fory = (x1 — xn, ..., Xn—1 — Xn),

EO[Xn|Y =J’] = EO[Yn|Y =}’]

Sttt yp H D dE
oy ) dt

oot —Xn+ 1., Xp_1 — Xn+1,0) dt
N oo — X+t .. Xy —Xp+ 1, 1) dt

,withx, —t=u

b = Wf o — . X1 — U xn — W) du

SO fer =ty Xy — U, xp — u) du

oo ufer —u, ..., xn — u) du

s [ fCe =ty .., X —u) du

showing that d*(x) = x,, — Eg[X,|Y = y] has the desired form. O

5.3.2 Scale Equivariance in a Scale Family
Suppose X = (Xj, ..., Xp) has pdf f(x;0) = %f(%, ..., %) where o € R* is the unknown
scale parameter to be estimated.
LetY = g.(X) = cX and g:(0) = co. Then Y = g.(X) has pdf
1
(co)
thatis, Y = g.(X) has pdf f (y; g:(0)).
Fora € A = R™, taking g:(a) = ca, suppose

() =1 @igelo),

L(gc(0),8c(@) = L(co,ca) = L(o,a) forallo, a, c.

Thenwithc =1/0, L(o,a) = L(1,a/c) := p(a/o).

Thus the problem is invariant under G = {g, ¢ € R} and an equivariant rule d must
satisfy: d(cx) = cd(x). As in the case of location family, here also there is only one orbit in
©® = R™ and therefore, the risk function is constant for equivariant rules.

A rule d is scale equivariant iff d(x) = u(x)do(x), where dy is an arbitrary scale
equivariant estimator and u(cx) = u(x) for all x and ¢ € R*. The proof is similar to the
location case.

We now find the MRE estimator of o, proceeding as in the location case:

(i) Forn =1, take dyp(x) = x which is scale equivariant. So any scale equivariant d must
be of the form: d(x) = u(x)dy(x) = u(x)x, where u(cx) = u(x) for all x and ¢ € R™.
Hence, u(x) = b~ ! (constant) for all x. Thus all scale equivariant estimators are of the
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form dj,(x) = x/b. To obtain the MRE estimator, we therefore have to minimize the
constant risk of dj, namely,

R(1,dp) = R(1,x/b) = E1[p(X/D)]

with respect to b.
(i) Forn>2lety=(0n1,...,¥n-1) = x1/Xn, ..., Xn—1/%n). Then

u(cx) = u(x) forallxandc e Rt & u(x) = v(y) for some v,

the proof of which is analogous to the corresponding result in the location case. Thus
the scale equivariant estimators for n > 2 are of the form: d(x) = dp(x)/v(y). So
choose v so that

R(1,d) = E1[p(doX)/v(Y))] = E1E1[p(do(X) /v(Y))|Y]
is minimized. To find the MRE estimator, choose v*(y) for each y so that
E1[p(do(X)/v* W)Y =y] < E1[p(doX)/D)|Y =y] forall b.
The above development is summarized in the following theorem.
Theorem 5.3.4. For n = 1, the MRE estimator of a scale parameter is given by X /b* where
E1[p(X/b")] < E1[p(X/D)] forallb.

Forn > 2, letY = (1,..., Y1) = X1/Xn, ..., Xn—1/Xn) and let dy(X) be an arbitrary
scale equivariant estimator with finite risk. Then the MRE estimator is given by do(X) /v*(Y)
where for eachy,

E1[p(doX)/v* WY =y] < E1[o(doX)/D)|Y =y] forallb.

5.4 Bayesian Estimation Using Conjugate Priors

(I) In Section 4.6.3 we have introduced the Bayes Principle in the general context of a
statistical decision problem described by the triple ({Py, 6 € ©}, A, L). According to
this principle, we choose a decision rule d for which the risk R(9, d) averaged with
respect to a prior distribution = over ® is minimum.

(I1) In Section 4.6.4 the general scheme of finding Bayes rules was outlined, which
consists of choosing d(x) = d. (x) for each observed data x for which the posterior risk
is minimized, that is

/ L(®, d: (x))g@|x) do < / L©®,a)g®|x) dé
e) e)
for all a € A, where

g01x) =f(xy9)f(9)//of(X, Wt (W) du

is the posterior pdf of 6 given x.
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(1) The method described above is quite straight forward. However, the key step in the
method is calculating the posterior distribution g(0|x) given the data, from the prior
7(0) over O in a family of pdf’s { f(x,0),06 €® }, which may become very messy. This
task becomes very simple in some cases by selecting 7 () from a family
{r (0, a),x € £2} which matches with the family {f(x, 0),0 € @} in a manner described
below.

Let F = {f(x,0),0 € ©} be a family of pdf’s on X and let T = {t (9, @), « € 2} be a family
of priors on . Let

fx,0)76,a)
Jo f(x,0NT(0, ) Ao’

8u(01x) =

be the posterior pdf of 6 given X = x corresponding to the prior 7(9, «). If there exists
¢: 2 x X — 2 such that g, (01x) = (6, ¢(a, X)) = (0, ¢x()), then 7 is said to be a family
of conjugate priors for 6. The calculation of posterior from prior in such a situation can be
described by the scheme:

Prior t(9, @) |+| Datax =| Posterior 7 (0, ¢x()) |

Consider the special case of a k-parameter regular exponential family:

k n n
F= {f(xﬂ) = exp |:/Z ¢j(©) Z Tj(x;) + ZS(xi) + nd(@)i|IA(x),0 €O },

j=1 i=1 i=1

where ® = {9 € Rk: Jrif(x,0) dx = 1}. Define

k
@y, ..., o @) =/0 )eXp|:/ZajCj(9)+ak+1d(9):| ds,
€6 .
=1

and 2 = {(al,...,ak,otk+1) tolar, ..., 0, Oy) < oo}.Let

k
T0;a1,...,0, 1) = €xp |:/Zajcj(9) + o, 1d(0) —logw(ay,. .. ,ak,ak+1)i|
=1

eXpI:ZJI-Czl ajCj(Q) + dk+1d(9)]
o1, ..., Ay Ay 1)

) 3)

sothatt(0; a1, ..., 0, o) is apdf for every (o, ..., a5y 1) € 2. Then
T = {f(@;al,...,korl), ((Xl,...,otk,o{k+1) S .Q}
is a family of conjugate priors for the exponential family . This is because

8ai,..., Ofet 1 (9|x) = t(eyd)x(a]w”vakJr]))v (3a)
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where
n n
pxlar, o) = e+ Y T, + > T,y + 1|, (3b)
i=1 i=1

as can be easily verified.
Example 5.4.1. Let (X, ..., X;;) be arandom sample from Bernoulli(6).
Then

Fx,0) = 01 %i(1 — )12 N, (x)

= exp {log< o ) le +nlog(l — 0):|IA(x),
where A = {0,1}" and 0 < 8 < 1. From this we obtain

1
wlag,an) = / exp[al log< o 9) + ap log(1l — 9)]
0

Z/ 61(1 — 9)%2—1 g
0

=T+ DIM(ap —a1 + 1)/ (a2 +2),
where o1 +1 > 0and ap — a1 + 1 > 0. Thus we take

_ B Tay +2) 0 -
(05 a1, a2) = Tt DI — a1+ D) exp[al log< 9) + ap log(1 9)]

_ I(op +2)
T T+ DIr(ay —a;+1)

90(1 (1 _ 9)0(271

on0 < @ < 1, whichis Beta(e; + 1, oo — o1 + 1) := Beta(a, b) distribution, where a = o7 +1
and b = ap — a1 + 1. Then

i=1

n
Goy o 01%) = T (9; a1+ Y Xj o+ n)
n n
= Beta a1+2xi+1, o2 +1n—ay —in—i—l
i=1

i=1
n
= Beta a—f—Zx,-, b+n—x;]|.
i=1
Hence, for the squared-error loss, the Bayes estimator with respect to the prior 7(6; a1, a2)

is the mean of the distribution Beta(a + Y"1, X;, b+ n— Y, X;) which is

Z?:l Xi+a

I=I1X®=="ur
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5.5 Methods of Estimation

We have so far discussed the Rao-Blackwell method of finding UMVUEs and two methods
of estimation in the general decision theoretic framework following the Bayesian principle
and the principle of equivariance. Three other methods, such as,

(i) the method of maximum likelihood;
(ii) the method of moments; and
(iii) the method of minimum x?,

will now be discussed, which are applicable in the context of parametric families.

The method of maximum likelihood was introduced by Fisher [20] who also laid the
foundation of the theory of estimation and demonstrated the superiority of this method
over the method of moments which was widely used for a long time until then. The method
of minimum x? has limited use only in the context of multinomial data to estimate the
parameters on which the cell probabilities depend.

5.5.1 The Method of Maximum Likelihood

For arandom sample X = (Xj, ..., Xy) from a population with pdf/pmf f(x; 01, ..., 6;), the
joint pdf/pmf of the data is:

n
fo501,..,00 =[] f 61,00,
i=1

treating x as variable and 0 = (01, .. ., 6;) as fixed. We now treat 8 as the variable, since we
are searching among all possible # € ©, and the data x as fixed, because that is what we
have in our search for 6. This defines the likelihood function of 6 for the data x as:

n
LO1x) = L0y, ..., 0lx1, ..., xn) = [ [ Fx501,...,0p).
i=1

Definition 5.5.1. The maximum likelihood estimate  (x) for a given data x is defined as
the value of # € ® at which L(#|x) attains its maximum, that is

0(x) = argmaxgcpL(@|x) foreachx.

The maximum likelihood estimator (MLE) of 6 for a random sample X is é(X).

The maximization of the likelihood function L(@|x) with respect to # € © for a given x
is quite straightforward in many situations. Most often, this maximization is achieved by
solving the equation:

d

LOx)=0, i=1,...,k
50, 01x)
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and making sure that the extremum is indeed the maximum. In many situations arising
in the context of exponential families, it is easier to work with log L(#|x), called the log
likelihood.

However, various complications may be encountered in the process of maximization of
L(#|x) or log L(#|x) such as:

(i) 3%‘ logL@@|x) =0,i=1,..., kmay have several solutions, in which case we have to
search for the global maximum among these solutions,

(ii) the parameter space ® may be restricted and the solution of the likelihood equations
may fall outside the restricted part of ® , in which case we have to modify such a
solution appropriately, and

(iii) the equations 8%’ logL#|x) =0,i=1,...,kmaynot have a closed form solution, so
the equation may have to be solved iteratively.

Complications like (i) and (ii) will be dealt with in some examples to be discussed in the
sequel and (iii) will be discussed in Chapter 7.

The MLEs have an important property known as invariance. This means thatif n = g(6),
then the MLE of  based on x is 7(x) = g(A(x)) where 4 (x) is the MLE of 6 based on x. The
proof of this fact is straightforward if g: ® — % is one-to-one, but it needs a little more
care if g is not one-to-one.

For given data x, the likelihood function of 6 is L(6|x) = f(x,0). When g is one-to-one
and onto, then 6 = g~1(») is well defined for all n € H and we define L*(n|x) = L(g~' (n)|x).
In general, when g is onto but not one-to-one, we define L* (n|x) = sup {6: g6)=n} L(O1X).

The proof of 7(x) = g(6(x)) is now given for the two cases: g is one-to-one or not.

(i) g is one-to-one and onto. If 7)(x) is the MLE of n based on x, then

L*(Hx)|x) = sup L*(n]x) <= L(g 1 (H(x))|x) = sup L(g~ ' (n)|x),
neH neH

ie, Lig~ ' (H(x))|x) = sup L(0|x).
fe®

But then g~ (7(x)) = A(x), and so 7(x) = g6 (x)).
(ii) g is onto but not one-to-one. In this case, if 77(x) is the MLE of n based on x, then

sup L@|x) =sup sup L(f|x) =sup L@O|x),
{0: g@)=n(x)} neHt {6: g0)=n} He®

since UneH{G: g) = n} = ©. Hence ) € {6: g(6) =A%)}, and so g6 (x) = Hx).

The asymptotic properties of the MLEs will be discussed in Chapter 7 along with
those of the Likelihood Ratio Tests motivated by the likelihood principle in the context
of Hypothesis Testing.

The MLEs are “asymptotically efficient” on one hand, but in finite samples, they may be
excessively influenced by a few “outliers.” Methods which modify the MLEs against such
weakness will be discussed in Chapter 10.
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Here we shall only present a heuristic argument to justify the method of maximum
likelihood and in the single-parameter context point out a key feature in the model
{f,0), 6 € R} which determines how well the MLE performs.

To emphasize what happens when the sample size n — oo, we let the log likelihood
log L be subscripted by n and averaged over n to define

n
L) = n~ M ogLn01X1,..., Xn) = n~ 1Y logf(X;,6),
i=1

which is maximized with respect to 6.

Let 6y denote the true value of 6 and suppose that Eg, [log X, 9)] is finite for all 0 in a
neighborhood of 6p. Then as n — oo,

n
L;6) = n~ 1> logf(X;,6) 5 Eg [log f(X,6)] := L*(6)
i=1

at each . The MLE én at which L} (0) attains its maximum should, therefore, converge in
probability to the value of 6 at which L*(#) attains its maximum.

Assume that the family {f(x,6),6 € ©} satisfies the identifiability condition which
requires that for 6’ # 6, f(-,0’) is essentially different from f(-,0). Then for 6 # 6y, due
to strict concavity of the function log(-), it follows from Jensen’s inequality that

Eg, [log f(X, 0) — logf(X, 69)]

fX,0) fX,0)
= Eg, [logf(X' 90)} < logEg, [f(X, 90)}

:10/ (x,0)/f(x,00)|f (x,09) dx
g {x:f(x,90)>0}[f /£ (x, 60)f (x, 60

=log/ f(x,0) dx <logl =0.
{x: f(x,60)>0}

Thus for 6 # 6, L*(6) = Eg,[logf(X,0)] < Eg,[logf(X,60)] = L*(60) (e, the function L*(6)
has a unique maximum at 6y).

Now by the WLLN, the graph of L} (0) converges to the graph of L*(9) at each 0 with
probability tending to 1 as n — oo. So it seems reasonable that the peaks of the two graphs
should approach one another as n — oo (ie, én — 6p in probability).

Now for ® = R, suppose that the graph of L*(9) has a large curvature at 6 = 6y. Then
it falls off sharply as & moves away from its peak at 6p. This increases the tendency of the
peak of L (6) to stay close to the peak of L*(6). The geometry of the graph of L*(6) and the
convergence property of L} (9) together suggest that

~ P
1. 0, > 6pas n — oo, and
2. the precision of 9, in estimating 6y increases with the curvature of L*(0) at 6 = 6.
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The curvature of L*(0) at & = 6y is the Fisher-information 1(6p) of the family
{f(x,0),6 € R} at 6y (defined in Eq. (2)):

2

d
= /{logf(x 0)}f(x, 60) dx

do?
=8, do

2
— - / (78 log/ (x'90)>f(x,00) dx

962
[32 logf (X, 90)}

d?
———L*6
202 @)

6=>06

362

3log f(X,6p) \ 2
()

under regularity conditions. Note that the Cramér-Rao lower bound is also determined by
this curvature, which is an intrinsic measure of how well 6y can be estimated.

We now pursue this heuristic argument to examine the asymptotic distribution of
V16, — 6p). Assume that the MLE 0, satisfies

Z alogf(Xl,Qn) _o, @

and expand the left-hand side of this equation around 6, to see that

= Z alogf(x,,eo) G o Xn: 321ogf(X,,9n>
362

with 6, lying between 0, and 6y. Thus

A n-1/25n  3logf(Xibo)
Vn(n —6p) = 12121 ;E )
9<log f( Xi,6n
1\

B R A

of which the numerator £> N(0,1(6p)) by the CLT and the denominator £> I(6o) by the
WLLN. Hence, /716, — 6o) £ NO,1 /1(60)) by Slutsky’s Theorem.

Remark 5.5.1. The condition that the MLE @, satisfies Eq. (4) is essential for the
asymptotic normality of \/7(6, — 6o). To see what happens otherwise, let X = (X1, ..., Xy)
be a random sample from Uniform(0, ). Then the MLE Op of 0 is Xpp = max(Xy, . .., Xp)
and Py, [én < t] = (t/6p)" for 0 < t < 6p and = 1 for t > 6.

In Chapter 7, the results indicated above by heuristic arguments will be proved more
systematically.
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5.5.2 The Method of Moments
In arandom sample X = (Xj, ..., Xy) from a population with pdf/pmf f(x; 61, . . ., 6¢), let

. n .
wiOn,....60 =Eq gk[Xl].] andmy=n 'YX, j=1,...k
i=1

denote, respectively, the jth population and sample moments. The method of moments
estimators (MOME) of 6y, ..., 6; are obtained by equating each of the first k population
moments to the corresponding sample moments and solving the system of equations:

p,j(@l,...,Qk)=mnj, j=1,...,k
for 6y, ..., 0. Suppose these equations have unique solutions and let
énjzgj(mnl,...,mnk), j:l,...,k

denote the solutions of these equations. If the population distribution has finite 2k

moments, then n(my,; — i), j = 1,...,k will be asymptotically jointly normal and
consequently, ﬁ(énj -0),j=1,..., k will also be asymptotically jointly normal, provided
that the functions g1, . . ., gk are sufficiently smooth.

Example 5.5.1. X, ..., X}, are iid Bernoulli(6).
Here k = 1, u(0) = 0 and m,, = n~! Y1 X; = X,,. So we equate 1(9) = m,, to obtain 6, = X,
which is the same as the MLE.

Example 5.5.2. Xi, ..., X}, are iid Uniform(6).
Here also k = 1, u(6) = 6/2 and m,, = X,;; so we equate u(f) = m,, to obtain 6, = 2X,.
Since E¢[X;] = 6/2 and Varg[X;] = 6%/12, we have E»[2X,,] = 6 and Vary[2X,,] = 62/3.

Hence, (0, — 6) £> N (0,6?/3) which is quite different from the behavior of the MLE. It
is left as an exercise to compare the rates at which |9, — 6| < ¢ converge to 1 for the MOME
and the MLE and to note that the convergence is much faster for the MLE.

Remark 5.5.2. Two major drawbacks of the method of moments are:

1. The MOME:s are less efficient than the MLEs in many situations as illustrated in
Example 5.5.2.

2. The method is inapplicable if the required number of moments do not exist, as in the
case of estimating the median of Cauchy(6).

5.5.3 The Method of Minimum 2

Consider a multinomial distribution in m classes with probability ni0),1 <j<m for
the jth class where 71(-),...,m,(-) are known functions of an unknown k-dimensional
parameter vector @, satisfying 7j(0) > 0 for all j and ij=1 nj0) = 1. Letny, ..., npy denote
the observed frequencies in the m classes in a random sample of size n.

In order to put this in a framework suitable for pursuing maximum likelihood esti-
mation of 9, let ej denote the m-dimensional vector with 1 for the jth coordinate and 0
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for all other coordinates. Then X; = ej means that in the multinomial sampling, the ith
observation is in the jth class. The random vectors Xj, ..., X, are iid with probabilities
Py[X; = ej] = f(ej,0) = 7;(6), that is, the pmf of X; is

nj(()) 1fx_e], j=1...,m
0 otherwise

fx,0) =
‘We now have for x = ej,

dlogf(x,0) ologmi®) 1 9m;(0)
00r  —  06r  m(®) 96y

and

n . n dlogm;(t
St = 30 MO 5231 = )

i=1 l:lj:l
_ i Xn: [ ] 1 37tj(t) _ i n; 37tj(t)
pard st mj&) 86y = m(e) 86y '
since ) i, I[X; = ;] = {number of observations X; = ¢;} = n;.

The MLEs of 6y, . .., 6 are obtained by solving the likelihood equations: Sy, (8,) = 0,
1 <r <k, thatis

i n; aﬂ](én)
j=1 (en) a0y

These equations do not have a closed form solution in a typical problem, so they have to
be solved iteratively. This issue will be discussed in Chapter 7.
For frequency data described above, one can try to estimate # by minimizing a measure

=0, 1<r<k.

of discrepancy between (nw1(0;), ..., nm,(6;)) which are the expected frequencies for
(m1063), ..., mm(6})) and the observed frequencies (n1, . . ., ny) given by
2 (nj— nmiO))? O ;
2%y _ ] n
X" 6n) = Z nj( 0*) Z nw 0*)
j=1 j=1

with respect to 6. Such a procedure is known as the method of minimum x?. The
minimizing equations for this method are

whereas the likelihood equations are
m n; aﬂ](én) _
mj(6n) 06

j=1
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The two sets of equations can be shown to be asymptotically equivalent so 6;; has the same
asymptotic distribution as that of 0,,. Thus the estimator 0;; obtained by the method of
minimum x? is asymptotically efficient.

However, for moderate sample sizes, the MLE én and the minimum x? estimator o
have been known to perform quite differently. The asymptotics being discussed here do
not take into account what happens in respect of terms which are of order of magnitude
less than 1/4/n in probability. What happens beyond this order of magnitude can cause
differences in the precision of two estimates which are both “asymptotically efficient” as
measured by “first-order efficiency.” These concerns have led to several approaches to
develop a measure of “second-order efficiency” [21].

Exercises

For all the problems below, when there are observations Xj, .. ., Xj, it is understood that

n n

Xp=n"1 ZX,-, s% =n-17! Z(Xi - Xn)?,
i=1 i=1

Xn:1 = min(Xl, e ,Xn), Xn:n = maX(Xl, oo an)

5.1. LetXj,..., X, be arandom sample from a population with pdf
f(x,0) =6exp(—0x), x>0, 6>0.

Find the UMVUE of y (8) = exp(—0) = Py[X; > 1].
5.2. LetXj,..., X, bearandom sample from

fx,0) =exp(—(x—0)), x>6.

(a) Show that T = min(Xj, ..., X}) is a complete sufficient statistic for 6. [For
completeness, you may restrict attention to continuous functions ¢ with
Ey[¢p(T)] = 0forall 6.]
(b) Calculate Ey[T] and find a UMVUE of 4.
5.3. LetX),..., X, bearandom sample from N(u, o2). Find the UMVUE of o.
54. LetXj,..., X, bearandom sample from Unif (01, 62). We want to estimate the mean
y = (01 +62)/2. .
(a) Show that (X1, Xy.,) is complete and sufficient for (91, 62), and X}, is an
unbiased estimate of y.
(b) Find the UMVUE of y.
5.5. LetXj,..., X, bearandom sample from N (9, 1). Find the UMVUE of
Py[X > 0] = @(0), where @ is the cdf of the standard normal distribution. [Hint:
I10,00) (X1) is unbiased for @ (9) and (X1, X,,) is bivariate normal.]
5.6. Let X ~ Bin(n,0). Show that X(n — X)/{n(n — 1)} is UMVUE of y = 6(1 — 0).
5.7. Suppose that 71 and T» are two UMVUEs of g(0) with finite variance. Show that
Ty = T». [Hint: (T1 + T2)/2 is also unbiased; use the correlation inequality.]
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5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

5.14.

Show that for an exponential family (in natural form)
g, n) =exp(nT(x) + do(n) + S(x))a(x),

the Fisher-information is Ig(n) = —d(n).
Consider the exponential family

f(x,0) =exp(CO)T(x) + d©®) + S(x))14(x),

where C is one-to-one and twice differentiable. Then we can reparametrize f(x, 6)
by letting n = C(#) and rewrite f(x, 0) in the form g(x, n) given in Exercise 5.8 above.
Show that the Fisher-information in the family {f(x, 6)} is

Ip(0) = —dy(C0) = —dg(rl)ln:C(e){C/(Q)}z = Ig(C(O)){C/(Q)}2~
Suppose that Xj, ..., X, is a random sample from the pdf
fx,60) = cx"loexp(—6x°), x>0, c>0(known), 6> 0 (unknown).

Show that T = n~! }"i | X{ is the UMVUE of 1/6.
Let X be a random sample from the Cauchy distribution with pdf

-0 < X < Q.

f(xre) = mr

We want to estimate the median of  under the loss function L@, a) = p(a — 0),
where p(f) = I¢,00)(|f]). Find the MRE estimator of 6 based on X.

LetXj,..., X, bearandom sample from Unif(® — 1/2,60 + 1/2). Find the MRE
estimator of  under the loss function L(#, a) = |a — 0.

Let X, ..., X, be arandom sample from the half-normal distribution with pdf

fx,0) =2/x exp[—(x - 9)2/2]1(0,00) ().
Show that the Pitman estimator of 6 is

eXp[—n(Xn;l — X2 /2]

dx) = Xy — ol
N = X = (Vs — Xm)2)

where @ is the cdf of N(0, 1).
Let (X, ..., X;) have a joint distribution with pdf

X1, .., xn30) =0""g(x1/6,...,x,/6)

for some function g which vanishes unless all coordinates are positive, and 6 > 0is

an unknown scale parameter. Suppose that the loss function is L6, a) = p(a/6).

(a) Find the MRE estimator of # analogous to the MRE estimator in the location
problem. [Take Y = (X1 /Xy, ..., Xn—1/Xn).]



5.15.

5.16.

5.17.

5.18.
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(b) For the loss function L(9, a) = (a/0 — 1)2, show that the MRE estimator is the
following analog of the Pitman estimator:

JeS 072 (x1/6,...,xn/0) db

JoC 0 3f(x1/6,...,xn/0) dO

dx) =

(a) Express the family of beta distributions Be(01, 62) as a two-parameter
exponential family and find a family of conjugate priors for this family.

(b) Find the prior-to-posterior formula for these conjugate priors. [Use Egs. (3),
(3a), and (3b)]

Consider the joint pdf f (x, #), of a random sample X, ..., X, from N (61, 1/62),

where 8 = (61, 62).

(a) Express F; = {f(x,B): —00 <0 < 00,00 = 1} as a one-parameter exponential
family and find a family of conjugate priors for 7.

(b) Express Fy = {f(x,ﬂ): 9 =0,0 <6y < oo} as a one-parameter exponential
family and find a family of conjugate priors for Fo.

(c) Express F2 = {f(x,60): — o0 <61 < 00,0 < 62 < oo} as a two-parameter
exponential family and find a family of conjugate priors for F>.

(d) In each of the cases above, find the prior-to-posterior formula. [Use Egs. (3),
(3a), and (3b).]

Let Xj, ..., X,; be arandom sample from a distribution with pdf

f,6) =0x0 1 o)), 6> 2.

(a) Find the method of moment estimator 6,, of 6.
(b) Determine which of the following is true
i) 6, is an unbiased estimator 6,
ii) 6, has an upward bias (ie, Ey 6, > 0),
iii) 6, has a downward bias. [Write 6, in terms of X, — 1, find E¢[X,, — 1] and
use Jensen’s inequality.]

(c) Find the asymptotic distribution of O (suitably normalized) as n — oo.
LetXj,..., X, be arandom sample from a log normal distribution with pdf

fx,0) = ﬁ exp[—(logx — 9)2/2], x> 0.

This means Y; =logX;,i=1,...,n, areiid N(9, 1), so that X; 2 exp(Z; + 0) where

Zi,...,2Zy are iid N (0, 1). We want to estimate 4 based on (Xi, ..., X;).

(a) Find the MOME @, and its asymptotic distribution.

(b) Find the MLE 6, and its asymptotic distribution.

(c) Leto? and o be the asymptotic variances of f, and 6y, respectively. Find the
asymptotic relative efficiency 0% /o? of 6, with respect to 6, and comment.



Hypothesis Testing

6.1 Early History

Hypothesis testing at its early stage, from the 19th to the early 20th century, was concerned
with hypotheses suggested by scientific theories in anthropometry, genetics, etc. The
scientists in these disciplines wanted to evaluate the evidence provided by the data in
support or against such hypotheses, called the null hypotheses.

The extent of departure from such a null hypothesis evidenced by the data was
measured by a test statistic chosen on an ad hoc basis, which was considered significant
at level « if the tail probability “beyond” its observed value, under the null hypothesis,
called the p-value, fell below «. Whether to use the right tail or the left tail, or both tails for
this purpose would be determined by the nature of the problem in a “supposedly obvious”
manner. There was no formal basis for the choice of the test statistic or the direction of its
tail probability, and the question of optimality of the commonly used test procedures was
not addressed until [22] came up with the concept of an alternative hypothesis Hy against
which the null hypothesis Hy was to be tested. This naturally led to the definitions of two
types of error which are

(i) deciding in favor of H; when Hy is true (Type I error), and
(ii) deciding in favor of Hy when H; is true (Type II error).

Thus the problem of maximizing the

Power = The probability of correctly rejecting Hy
= 1 — the probability of Type II error

subject to the condition of the probability of Type I error not exceeding « was defined and
the solution to this problem was the Neyman-Pearson Lemma.

6.2 Basic Concepts

Let {Py, 0 € ®)} be a family of probabilities on (X, A), of which an unknown element P,
generates a random sample X. We consider two hypotheses, Hyp: 0 € ©®¢ and H;: 6 € 61,
where ® and ©; are disjoint subsets of ®. Based on the observation X, we want to take one

Theory and Methods of Statistics. http://dx.doi.org/10.1016/B978-0-12-802440-9.00006-0 125
Copyright © 2016 Elsevier Inc. All rights reserved.
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of two actions, agp: Accept Hy (ie, decide 6 € ©y) or a;: Reject Hy and accept H; (ie, decide
0 € ©1). The problem of hypothesis testing was introduced in Chapter 4. In this chapter
we shall develop the methods of constructing optimal tests, mostly within the framework
of exponential families, subject to the restrictions mentioned in Section 4.6.2.

A nonrandomized decision rule is described by a function d: X — {aop, a1}, or equiva-
lently by C = {x: d(x) = a1} which is called the critical region or rejection region for Hy. The
complement of Cis A = {x: dx) = ao} which is called the acceptance region for Hp.

A behavioral decision rule is described by a function ¢: X — [0, 1], where for an x, ¢(x)
is the probability of taking action a; (ie, rejecting Hy when the observed value of X is x).
Such a function ¢ is called a critical function. Anonrandomized decision rule d with critical
region C is equivalently described by a behavioral decision rule ¢ = I¢.

The critical region C of a nonrandomized decision rule and the sets {x: ¢(x) < ¢} for
¢ € [0, 1] of the critical function ¢ of a behavioral decision rule must belong to .A.

We consider the 0 — 1 loss function, that is

0 ifoe®g
1 ifeeo’

1 ifoeoy

L, ao) = { 0 ifoedr

and LO,ay) = {

Then the risk of a behavioral decision rule ¢ is

Eg[¢(X)] := Probability of Type I Error if 6 € ®

R, ¢) = {1 — Eg[¢(X)] := Probability of Type Il Error if0 € 1"

Thus the risk function is described in terms of the function
By (0) = Eg[p(X)].

On 0y, B, () is a measure of weakness of the test ¢ (probability of Type I error) and on 1y,
B, (0) is a measure of strength of the test ¢ (1 — probability of Type II error) which is called
the power.

In the theory of hypothesis testing, the hypotheses Hy: 6 € ©®p and H;: 6 € ©; are given
asymmetric roles, because the Type I error receives more serious consideration than the
Type Il error. Optimization of ¢ is formulated as a problem of choosing ¢ so as to maximize
By (0) for 6 € ©1 subject to the condition

sup By (0) < «,
fe®y

where a € [0, 1] is given. This « is called the level of significance and sup,.g, B, (0) is the
size of the test ¢.

We call “Hp: 6 € ©g” the null hypothesis and “H;y: 6 € ©1” the alternative hypothesis. If
©p (and/or ©1) is a singleton set, then we call the null hypothesis Hy (and/or the alternative
hypothesis H;) a simple hypothesis, otherwise Hy (and/or H;) is composite.
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6.3 Simple Null Hypothesis vs Simple Alternative:
Neyman-Pearson Lemma

Let Py and P; be two distinct probability distributions on (X, .4) with pdf’s/pmf’s pg and
p1, respectively. Let E; denote Ep,, i = 0, 1.

Definition 6.3.1. A test ¢ is said to be most powerful (MP) atlevel « for testing Hy: P = Py
against Hy: P = P if
(@) Eolp(X)] < ; and
(b) if any test ¥ satisfies (a), then E1[¢(X)] > E;[¥ (X)].

Theorem 6.3.1 (Neyman-Pearson Lemma). Suppose we are testing Hy: P = Py against
Hi:P=Piandlet0 <a < 1.

(i) Existence. There exists a test ¢ and a constant k such that Ey[¢(X)] = a and

|1 ifpi(x) > kpo(x)
vl = {0 ifp1(x) < kpo(x)”

(ii) Sufficiency. If a test ¢ satisfies the above conditions for some k, then it is MP at level «

for testing Hy: P = Py against Hy: P = Pj.
(iii) Necessity. If ¢ is MP at level « for testing Hy: P = Py against Hy: P = Py, then ¢(x) is of

the form given in (i) for some k.

Proof.
(i) TakeO < o < 1 since the proofs for « = 0 and 1 are straightforward. Let
F(c) = Polp1(X) < cpo(X)] = Polp1(X)/poX) < c]

be the cdf of the likelihood ratio T'(X) = p1(X)/po(X), which is a bona fide rv under Py
because Py[po(X) > 0] = 1. Since F is a cdf, there exists ¢y such that

Flcg—0) <1 —a < F(c).

Now define

1 ifp1(x) > copo )
p(x) =1y ifp1(x) = copox)

0 ifp1(x) < copo),
where y can be assigned any value in [0, 1], say y = 1, if F is continuous at ¢y, or else
we take

)= F(cp) — (1 — )

Flcg) — F(cg—0)
Thus part (i) of the N-P Lemma holds with k = ¢y and 0 < y < 1 as defined above,
because in case of a jump in F(-) at cp,

Eole(X)] = Po[p1(X) > copo(X)] + v Polp1(X) = copo(X)]
= {1 — F(co)} + y{F(cp) — F(co — 0)} = a,
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and the same equality is obvious when « is continuous at cp.
(ii) Let ¢ be a test satisfying the conditions in (i) and let ¥ be another level « test for Hy
(ie, Eg[¥ (X)] < ). Let

St = {x: px) —¥(x) >0}and S~ = {x: p(x) — ¥ (x) < 0}.

Then for x € ST, p(x) > 0, so p1(x) > kpo(x) and forx € S7,9(x) < 1, so
p1(x) < kpo(x). Thus

{px) — ¥ @) Hp1(x) — kpo(x)} = Oforallx € ST US™ and
= 0 for all other x.

Hence

B 0001~ 1@ (0] = [ (900 — w@)p1 ) de
=/{tp(x) — U {p @) — kpo()) dx

+k/wm—wmmmwm
>0+ k{Eple(X)] — Eo[¥ (X)]} = 0.

(iii) Suppose that ¥ is MP at level & for testing Hy: P = Py vs H1: P = P1, and let ¢ be a test
satisfying the conditions in (i) with k = k*. Define ST and S~ as in the proof of part
(ii). Then ¥ (x) # ¢(x) for x e ST US™. Let

S=ESTuUS)N{x: p1) # k*pox)}
= {x: ¥(x) # ¢(x) and p; (x) # k*py(x)}.

Then Py(S) = P1(S) = 0 implies ¥ (x) = ¢(x) w.p. 1 under Py and P; whenever

p1(x) # k*po(x), showing that ¥ satisfies condition (i) for k = k* w.p. 1 under Py and
Py, proving part (iii) of the lemma. To prove Py (S) = P1(S) = 0, itis enough to show
that fs dx = 0. Since (¢ — ¥)(p1 — k*po) > 0 on Sand = 0 on S,

/(§0 — W) (p1 — k*po) = /S(§0 —¥)(p1 — k*po) > 0, ie,

/w—mm>W/W—Wm'

implying E;[¢(X)] > E;[¥ (X)], which is a contradiction.

Corollary to the N-P Lemma

Let 8 = Ej[¢(X)] where ¢ is the MP test for Hy: P = Py vs Hy: P = P; atlevel « < 1. Then
B> «a.

Proof. Consider the test ¢g(x) = « for all x. Then Eo[po(X)] = E1[¢o(X)] = « . Since ¢y is
a level o test which does not satisfy the necessary condition for an MP test (given by part
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(iii) of the N-P Lemma) it is not an MP level « test, whereas ¢ is. Hence

B =Ei1le(X)] > E1[po(X)] = a. m

Note. ¢y (x) = « for all x may satisfy the necessary condition if p; (x) = kpo(x) for some
k; but then k = 1, contradicting Py # P;.

Remark 6.3.1. For two probabilities Py, P; on (X, .4), we call p; (x)/po(x) the likelihood
ratio of P; to Py at x. The N-P Lemma expresses the MP level « test for Hy: P = Py vs
H;: P = P in terms of the likelihood ratio, or equivalently, in terms of the log likelihood
ratio L(x) = log(pi (x)/po(x))

0 ifLx) <k
ox) =13y ifLx)=k
1 ifL(x) >k,

where k and 0 < y < 1 are determined by the condition Eg[¢(X)] = «.

Although the N-P Lemma can be used to construct MP level « tests for arbitrary Py vs
P; such as testing whether the data came from N(0, 1) or from Cauchy(0, 1), our interest
mostly lies in testing for one value of the parameter against another within a parametric
family. We illustrate the use of the N-P Lemma with two examples, namely, testing for the
mean 6 of Poi(9) and the mean 6 of N(6, 1).

Example 6.3.1. Let X = (X, ..., X;) be arandom sample from Poisson(6), where 6 > 0
is unknown. We want the MP level « test for Hy: 0 = 09 vs Hy: 0 = 6.

Solution. Here the log likelihood ratio is

Po, ) .

lo = —n(@; —6y) + (logh; —logby)ty,, where t,; = X;.
gpeo(x) (61 — 6p) + (log 6y g00)tn n l;z

(i) Hence the MP level « test for Hy vs H is

01 (X)) =131 ift, = c1
1 lftn > Cy,

where ¢; and 0 < y; < 1 are determined by Py, [T}, > c1] + y1Pg, [T = 1] = « if
61 > 6y and

0 ifth>c
@2 (x) = {Vz ifth =cp

1 ifty < ¢,
where ¢z and 0 < y, < 1 are determined by Py, [T, < c2]+ y2Pg,[Th = c2] = «,
if 6; < 6.

(ii) We illustrate the determination of ¢; and y; in the first case by considering

Hp: 60 =69 =0.5and Hy1: 0 =61 = 1.0 for n = 5and o = 0.5. Under Py,
T= 2?21 X; ~ Poisson(2.5) (ie, pg, () = e 25(2.5)/1!, t = 0, 1,2, ...). Calculating
these probabilities, we have Py, [T > 5] = 0.0420 and Py, [T = 5] = 0.0668 and then
solve the equation:
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(iii)

(iv)

Pyo[T > 5] + y Py, [T = 5] = 0.05.

Thus c¢; = 5and y; = 0.12, so the MP test for Hy: § = 0.5 vs Hy: 6 = 1.0 at level
o =0.05is

0 if Y3x; <5
p10) =1{0.12 if Y3x =5.
1 if Y3x;>5

The power function of ¢ is

o
B1(®) = Py[T > 5]+ 0.12P5[T =5] = Y e *A'/11 +0.12¢*2> /5!, where
t=6

At AS
A =56 and g (6) = 5e* [0.12$ + 0.88§i| > 0.

The MP level « test ¢1 for Hy: 6 = 6y vs Hy: 6 = 01(> 6p) does not depend on 61, so
long as 61 > 6p. Therefore, the MP level « test for Hy: 6 = 6y vs H1: 6 = 61(> 6p) is the
Uniformly Most powerful (UMP) level « test for Ho: 6 = 6p vs H}': 6 > 6. Again, since
B1(6) > 0, B1(Ap) = « implies B1(6) < « forall & < 6y. Thus the UMP level « test ¢; for
Hy: 0 = 6 vs Hy: 0 > 6y is the UMP level « test for the composite null hypothesis
H;: 6 < 6p vs the composite alternative H{: 6 > 6p.

In the same way ¢ can be shown to be a UMP level « test for Hg: 6 > 6 vs
Hikl 0 < «90.

Example 6.3.2. Let X = (Xj,...,X;) be a random sample from N(6,0?) where 6 is
unknown but 62 > 0 is known. We want the MP level « test for Hy: 6 = 6y vs Hy: 6 = 6y.
Solution. Here the log likelihood ratio is

01 —0y) . nO2 —62)
08Py, 0Pty 0 ) = " 5, — L0

n
7 ,  where x;; = n1 in.
i=1

Hence the MP level « test for Hy vs Hj is

_ 0 Xn <C .

§01(x)—{1 fcnzcl'lf91>90' and
_ 0 .in >Cy .

@2(x) = {1 n < Cy’ if 61 < 6y,

where c; is determined by Py, [X,, > c1] = « and c; is determined by Py [X,, < c2] = . The
constants ¢; and ¢, are

1 =00+ /vn® (1 -—wandc, =6y — (6/vVm® 11 —a),

where @ is the cdf of N(0, 1).
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The power function of ¢ is

B1(6) = Py[Xn = 6 + (0/Vm@ (1 — )] = (@ (@) + V10 — 6p) /o), and
B10) = (Vn/o)®' (@ (@) + V1@ — 6p) /o) > 0.

Using the same argument as in Example 6.3.1, we see that the MP level « test ¢; for Hp:
0 = 6p vs Hy: 0 = 61(> 0p) is also the UMP level « test for the composite null hypothesis
Hg: 0 < 6p vs the composite alternative Hy: 6 > 6p.

The MP level « test ¢ for Hy: 0 = 6y vs H1: 6 = 01 if 1 < 6y, in the same way.

6.4 UMP Tests for One-Sided Hypotheses Against One-Sided
Alternatives in Monotone Likelihood Ratio Families

We begin this section with the definition of UMP tests.
Definition 6.4.1. A test ¢ is a UMP test at level o for Hy: 0 € @y vs Hy: 0 € O if

(i) supycg, Eolp(X)] < o, and
(ii) Eglp(X)] = Eg[v(X)] for all # € ®;, whenever v satisfies (i).

Although requirement (ii) is very stringent, UMP tests do exist in certain types of
situations. In the previous section we have seen that for Poisson(9), the MP test at level
o for Hy: 6 = 6p vs Hi: 6 = 61(> 6p) has the stronger property of being the UMP level «
test for the composite hypothesis Hy: 6 < 6y vs the composite alternative H;: 0 > 6. This
actually holds in a much wider context.

Definition 6.4.2. Let {Py, 0 € @} be a family of probabilities on (X, .A) and let py denote
the pdf or pmf corresponding to Py where ® = R or © is an interval in R. Such a family
{ps} is said to be a monotone likelihood ratio (MLR) family if there exists a real-valued
statistic T'(x) such that for any 6; < 62 in ©, py,(x)/ps, (x) is a nondecreasing function
of T(x). [If pp, (x) = 0 < py, (x), define py, (x)/pp, (x) = +00.]

Example 6.4.1. Let py(x) = c(0)exp[QO)T(x)]1h(x) where Q(f) is a nondecreasing
function. Then {py} is an MLR family. This includes

(@) pox) = 2ro?)~M? exp[—gl2 S — 9)2], x; € R, 0 € R, o2 fixed.
(b) pox) = (2m6)~"? exp[—% Yl — M)Z],xi eR, 0 € RT, u fixed.
() pox) = e ™oXi1 %/ ["x;!, x; € {0,1,2,...},0 € RT.

(d) po(x) = 0X1%(1 — 9)"~21%, x; € {0,1},6 € (0,1).

Example 6.4.2. The hypergeometric distribution #(n, N, 8) with py(x) = (i) (]ij) / (IZ),
x =max(0,0 +n — N),...,min(n, ).

Example 6.4.3. The family of Cauchy distributions C(9, 1) with pg(x) =
x € R, 6 € Ris not an MLR family.

1
7 [1+(x—6)2]’
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Theorem 6.4.1. Suppose that the family of pdf’s or pmf’s {py,6 € R} has MLR property
in T(x). Then

(i) There exists a UMP level o test for Hy: 0 < 6y vs Hy: 6 > 6y given by

0 ifTx)<c
ox) =3y ifTx)=c,wherecand0 <y < 1 aredetermined by Eg,[¢(X)] = «a.
1 ifTx) >c

(ii) The power function B(0) = Egle(X)] is strictly increasing at all 6 for which 8(0) < 1.
(iii) Forall¢’, this ¢ is UMP at level o’ = B(0') for H): 0 < 0" vsH}: 0 > 0.
(iv) This test minimizes Eo[y (X)] at all & < 6y among all tests  for which Eg, [y (X)] = .

Proof. Parts (i) and (ii). First consider the simple vs simple case with Hj: 6 = 6o vs
Hj: 6 = 6, where 61 > 6 is fixed. Then by the N-P Lemma, the MP level « test for Hy vs Hy
rejects Hy for large values of py, (x)/pg, (x) (ie, for large values of T'(x)) by the MLR property.
Moreover, by the existence part of the N-P Lemma, there exist cand 0 < y < 1 such that
the test

(X) = I(c,00) [TX)] + v () [T(X)] satisfies Egy[¢(X)] = a.

Since the forms:

0, Tx)<c

_ 0, pyr(x) < kpg (x)
o) = {1, Tk) > ¢

and ¢(x) = {1' Por (x) > kpg: (x)

are equivalent for any 6’ < 6”, this test is UMP at level o’ = B(¢’) for testing H*: 6 = 6’ vs
H{*: 6 = 0" whenever ¢’ < 0" (by the sufficiency part of the N-P Lemma). Next, note that
by the corollary to the N-P Lemma, 8(6”) > o’ = ,3(9’) ifa’ < 1, which proves that 8(9) is
strictly increasing, so long as itis < 1. This proves part (ii).

Now note that for this test, 8(0) = Eg[¢(X)] < « for all & < 6y, which makes ¢ a level o
test for Hy: 0 < 6g. Let

¥, = jalltests ¢ such that sup Ey[¢(X)] <« ¢ and
6<6y

v = {all tests ¥ such that Egy [y (X)] < «}.

Then ¥, C ¥}. We have shown that

¢ € ¥y and Eg, [p(X)] > Eg, [y (X)) forall y € ¥

Hence Eg, [¢(X)] > Eg, [y (X)] for all ¢ € ¥,.

This makes ¢ the MP test at level « for Hy: 6 < 6y vs Hy: 6 > 6. Finally, since ¢ does not
depend on 6; > 6y, it is UMP at level « for Hp: 0 < 6y vs Hy: 0 > 6.

The proof of part (iii) is analogous, and part (iv) is proved by observing that power is
minimized if all inequalities are reversed in the N-P Lemma. O
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6.5 Unbiased Tests

A behavioral test with critical function ¢ is said to be an unbiased test at level « for Hy: 0 €
®gvs Hy: 0 € ©1if (i) Eglp(X)] < aforall & € ©g and (ii) Ey[p(X)] > a forall® € ©;. An
unbiased test rejects the null hypothesis with at least as much probability when it is false
as when it is true.

Definition 6.5.1. A test ¢ is said to be UMP unbiased test at level o for Hy: 6§ € ®g vs
H;: 0 € © if ¢ is an unbiased test at level « for Hy vs Hy, and if Eg[¢(X)] > Eg[v(X)] for all
0 € ©; whenever v is also an unbiased level « test for Hy vs Hj.

For a large class of problems, a UMP test does not exist, but a UMP unbiased test
does exist.

Example 6.5.1. Let X ~ N'(9, 1), Hp: 0 = 6p and H;: 6 # 6y. Here the tests

9100 = Iigy 101 (1—a),00 ) a0 9200 = L6 9 -1(1-)) ),

where @ is the cdf of V'(0, 1), are, respectively, the UMP level « tests for Hyp: 6 = 6 Vs
H1+: 6 > 6o and H: 6 < 6. Moreover, it follows from Theorem 6.4.1, part (ii) that
Eglp1(x)] < « for all § < 6y and Eg[p2(x)] < « for all & > 6y (because the family A9, 1)
has the MLR property), which shows that a UMP level « test for Hy: 6 = 6y vs Hy: 6 # 6p
does not exist.

For testing Hy: 6 = 6 vs H: 6 # 6p atlevel o, an unbiased test ¢ must satisfy: Eg,[¢(X)] <
a and Eg[p(X)] > « for all 6 # 0y, so neither ¢ nor ¢, in the above example is an unbiased
test. If we restrict to the class of unbiased level « tests then ¢j, g2 would not qualify, but in
the restricted class a UMP test does exist.

Suppose that the power functions 8,(0) = Eg[¢(X)] of all tests ¢ are differentiable at
6o (as in the case of exponential families). Then an unbiased level « test for Hy: 6 = 6p vs
Hj: 0 # 6p must satisfy

Eglp(X)]=a and f;6) = 0. 6))

Let Cp denote the class of unbiased level « tests for Hy: 6 = 6y vs Hy: 0 # 6p and let C;
denote the class of all tests satisfying Eq. (1). Then Cy C C; and therefore, if a test ¢g € Cp is
UMP among all tests in Cy, then it is a UMP unbiased level « test for Hy vs Hj.

We now examine the case of a single-parameter exponential family {Py, 6 € ® C R} with
pdf/pmf given by

px (x5 0) = Cy(0) exp[0Tx)1hy(x), x€ X, (2)

and X = (X, ..., Xy) being a random sample from Pyg. Then T = Y"1 | T(X;) is sufficient for
0in (Xi,...,Xy) and is distributed with pdf/pmf

pr(5;0) = C6) exp[0tIh(r), teT. 3)

We know that for all tests ¢, the power functions

Bp(0) = C(G)/ga(t) exp[0t1h(t) dt (4)
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are differentiable at all interior points of the natural parameter space, which is an interval,
and if 6y is such a point, then the differentiation can be carried out under the integral,
that is

By, (60) = C'(60) / (1) exp[fot]h(?) dt + C(6p) / to(t) exp[Oot]h(r) dt

_ C'6p)
= Tlo) Egole(T)] + Egy[To(T)].

Moreover, for ¢(f) = «, we have 8,(0) = « for all 6, and therefore, /6(; (@p) = 0. Thus the

above expression becomes: 0 = %((gg))a + aEg,[T]. Hence C'(6p)/C(60) = —Eg,[T], and the

formula for g, (6p) for an arbitrary level o test becomes:

By (00) = —aEgy[T] + Egy [Te(T)]. ®)

The problem of finding the UMP unbiased level « test for Hy: 6 = 6y vs Hi: 0 # 6p in a

single-parameter exponential family, where 6, is an interior point of the natural parameter

space, now leads to the following restatement of Eq. (1), using the formula (5) for g, (6o).
Among all tests ¢ € C; satisfying

Egyle(T)] = /(p(t)fl(t) dt =, and (6)
Egy[To(T)] = /fp(t)fz(t) dr = aBy)[T] @
with
fi(®) = C(6o) exp[6pt]h(D), (8)
f2(t) = C(6o)t exp[bpt]h(t) )

find o which maximizes Eg, [¢(T)] = [ ¢(£)f3(t) dt with
f3(8) = C61) exp[01£]h(2) 10)

for a fixed 6; # 6.

If this ¢ is in the smaller class Cy of unbiased level « tests for Hy: 6§ = 6y vs Hy: 6 # 6y
and if g does not depend on the specific 61 # 6p used in the above optimization problem,
then ¢g is a UMP unbiased level « test for Hy vs Hj.

We next look at the problem of testing Ho: 61 < 6 < 62 vs Hi: 6 ¢ [01,62] in an
exponential family, where 61, 62 are interior points of the natural parameter space. More
generally, first consider the problem of testing Ho: 6 € ®g vs H1: 6 € ©1, where &y and
©1 have a common boundary w. Since the power functions 8,(6) = Eg[¢(X)] of all tests
are continuous in 6, Ey[¢(X)] = « for all # € » must hold for all unbiased level « tests for
H() vs H 1.

Definition 6.5.2. A test ¢ satisfying Ey[¢(X)] = « for all 0 € w is said to be similar of size
o onow.

Since the class of similar tests of size @ on w includes the class of unbiased level « tests
for Hy: 6 € ©g vs H;: 6 € ©1, the following holds.
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Lemma 6.5.1. If the power functions of all tests are continuous in 6 and if a test g is
UMP among all similar tests of size « on the common boundary o of ®y and ©1, then gq is
UMP unbiased level « test for Hy: 0 € ©g vs Hy: 0 € ©1 provided that g is a level « test.

Proof. Clearly, o is UMP on ®; among all unbiased level « tests. Therefore, we only
need to verify that ¢ is an unbiased level « test. For this, we compare ¢g with ¢*(x) = «
(which is a similar test of size « ), to see that Eg[¢o(X)] > Eg[¢*(X)] = a for all 6 € ©;. O

We now consider the problem of testing Ho: 61 < 60 < 62 vs Hi: 6 ¢ [61,0-] in an
exponential family {Py,6 € ©® Cc R} with pdf/pmf px(x;0) given by Eq. (2), based on a
random sample X = (Xj,...,X;) inwhich T = Z?:l T(X;) is sufficient for 6 with pdf/pmf
given fr(t;0) given by Eq. (3). We also know that for all tests ¢, the power function g, (0)
given by Eq. (4) is continuous in 6.

To find a UMP unbiased level « test for Hy: § € ©g = [01,02] vs H1: 0 € @1 = [01,02]¢, we
note that ®p and ©; have a common boundary o = {61, 62}, and all tests have continuous
power functions. So the above Lemma is applicable and we only need to look among
tests which are similar of size « on w = {61, 62} (ie, among tests satisfying Eg,[¢(T)] = «,
i = 1,2). This leads to the problem of maximizing [ ¢(¢)f3(¢) dt subject to the conditions
[o®fi(®) dt = o, i = 1,2, where

fi(©) = C©)) exp[6;t]h(n), i=1,2, and (1D
f3(0) = CO) explotlh(r) for6 ¢ [61,62]. (12)

Thus, our search for UMP unbiased level « tests for Hy: 6 = 6y vs Hy: 0 # 6p and Hy: 6; <
0 < 6vs Hy: 6 ¢ [61,0-] in a single-parameter exponential family, both lead to the problem
of maximizing fcp(t)fg(t) dt with respect to ¢ subject to the conditions fcp(t)f,-(t) dt = ¢,
i = 1,2, where the constants are ¢; = «, ¢ = aEg[T] and f1, f2, f3 given by Egs. (8), (9),
and (10) in the first problem and ¢; = ¢2 = « and fi, f>, f3 given by Eqgs. (11) and (12) in the
second problem. This calls for a generalization of the Neyman-Pearson Lemma [23].

6.6 Generalized Neyman-Pearson Lemma

Theorem 6.6.1. Letfi, ..., fm, fm+1 be real-valued functions defined on an Euclidean space
(X = R", A) for which [ fi(x) dx (or Y, x fi(x) in the discrete case) exist and are finite for
i=1,...,m+1. Let F denote the class of all critical functions (ie p: X — [0, 1]). Suppose that
for given constants cy, . .., cm , there exists ¢ € F such that [ ¢fidx=c,i=1,...,m. Let

Cz{gae}": /(pfidxzci, i:l,...,m}

which is nonempty.
(i) Ifthere exists ¢ € C such that for some constants ky, . . . kpy,

0 iffinr1(0) < X7 kifi0)

QD(.X') = { . m
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then [ ¢fms1 dx > Yfini1 dx for ally € C. This provides a sufficient condition for
maximization of [ ¢fmi1 dx inC.
(ii) Ifthere exists ¢ € C such that for constants ki, . . ., km > 0, ¢(x) is of the form given in

(), then [ ¢fimt1 dx > [Vfmpr dxforally e C' ={p e F: [ofidx<c¢; i=1,...,m}.
This is an extension of (i).

Proof. Let ¢ € C be of the form given in (i) and ¥ € F. Let

i=1 i=1

m m
St = {x:fm+1(x) > Zkif,-(x)} and S~ = {x:fm+1(x) < Zkifi(x)}-

Forx € St,p(x) — ¥ (x) =1 — ¢(x) > 0and fi41 — Z;ﬁl kifi(x) > 0 and for x € S7, both of
these inequalities are reversed. Hence

m

{p(x) — I/f(X)}{an-](X) - Zkifi(x)} >0 forallxeSTuUS™.
i=1

Thus,

m
/sms— (@ —¥) (fm+1 —~ Zkif,-) dx > 0, ie,

i=1
m
[0t dx= Y ki [0 v, ax.
i=1

Ify e C then 1" ki [(9p — ¥)fi dx = 0;if ¢y € C’ and ky,...,km > O, then > 1%, k;
[ (¢ — ¥)f; dx > 0. Hence

/game dxz/wfmﬂ dxify e C, orify e C'and ky, ..., km > 0. O

6.7 UMP Unbiased Tests for Two-Sided Problems

We now apply the Generalized N-P Lemma to find unbiased level « tests for the two
problems under discussion.

6.7.1 UMP Unbiased Test for Hyg: 6 = 0y vs H1: 0 # 6
in a Single-Parameter Exponential Family

By the Generalized N-P Lemma, the UMP unbiased level « test for this problem is given by:

0 iffg(l’) < klfl 1) + szz(t)
o) = v (@) iff3() = k1f1(2) + kofo (1)
1 iff3(6) > k1fi(8) + kofo (1),

where fi, f>, and f3 are given by Eqgs. (8), (9), and (10) and k1, k2, and 0 < y(#) < 1 are such
that
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Egolpo(T)] =« and Egy[Teo(T)] = aEg,[T],

as in Egs. (6) and (7).

The inequality f3(£) < kifi(t) + kz2f>(t) is equivalent to e?’ — a; — axt < 0, where a; =
kic(6p)/c(61),i = 1,2, and b = 61 — 6p with a fixed 01 # 6y. If the resulting ¢o () does not
depend on the specific 6; # 6y, then it is the desired solution to the problem.

The function e’ —a; —ast has positive second derivative and is therefore convex. Hence
{t: eP' — a; — axt < 0} is either (¢, ) , or (—00,¢’), or (c1, ¢2). In the first two cases, ¢g
is a one-sided test having monotone power, which contradicts the property of B,,(0) =
Egl[go(T)] being minimized at 6. Hence

0 ifcg<t<c
wo@®)=13y; ift=¢c, i=1,2
1 ift<ciort>cy,

where c; < coand 0 < y; < 1,i = 1,2 are such that Egy[¢o(T)] = o and Eg[To(T)] =
aEg, [T].

To see that ¢g is an unbiased level « test of Hy: 6 = 6y vs H1: 8 # 6y, note that
Eg,[¢0(T)] = « by construction, and since ¢*(¢) = « is in the class in which ¢y maximizes
B(0) for 6 # 6y, we must have Eg[¢po(T)] > Eg[p*(T)] = « for all 6 # 6y, showing that ¢ is
UMP unbiased at level « for Hy vs H.

Remark 6.7.1. If T is symmetrically distributed about ¢ under Py, then choosing a test
¢ so that Eg,[¢(T)] = « and ¢ is symmetric about c, the condition Eg,[T¢(T)] = aEg,[T] is
automatically satisfied.

Proof. Since T is symmetrically distributed about c under Py,,

Pgy[T — ¢ < —u] = Pgy[T — ¢ > u] forall u € R, so that

Egy[T — c] =0, ie, Eg)[T] =c.

Since ¢ is symmetric about c, thatis, o(c — 1) = ¢(c + v) forall u € R, letting T* = T — ¢,
we have

Egy[To(T)] = Egy[(T — )p(T)] + cle(T)] = Egy[T*o(T* 4 ¢)] + ca
= / up(u + pr+(u; 00) du + aEg)[T] = aEp,[T]
due to symmetry of ¢ and pr+(-; 6p). O

Thus ¢ is obtained by takingc; = ¢ — k, c2 = ¢+ k, y1 = y2 = y, and choosing k and
0 <y < 1so that Egy[o(T)] = .

6.7.2 UMP Unbiased Test for Hy: 61 <0 < 0> vs H1: 6 ¢ [61, 65]
in a Single-Parameter Exponential Family

Since all tests have continuous power functions in the context of exponential families, we
can use Lemma 6.5.1 to narrow down our search among tests which are similar of size «
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on the common boundary of [61, 62] and [61, 62]° which is @ = {01, 62} (ie, among all tests
satisfying Eg,[p(T)] = o, i = 1, 2).
This leads to the problem of maximizing f (D)f3(t) dt with respect to ¢ € F subject to
the conditions f e(O)f;(t) dt = a, i = 1,2, where fi, f>, and f3 are given in Egs. (11) and (12).
Again by the Generalized N-P Lemma, the UMP unbiased level « test for Hy vs H; in this
problem is found to be of the same form as the UMP unbiased level « test for Hp: 6 = 6 vs
H;y: 6 # 6y, but here c1, ¢2 and 0 < y; < 1 are determined by Eg,[¢o(T)] = o, i =1, 2.

6.7.3 Examples

Example 6.7.1. Let X = (X, ..., X;) be a random sample from N(u,o?) with o known.
The goal is to find UMP unbiased level « tests for (a) Ho: © = wo vs Hi: & # po, and (b)

Ho: p1 < < povs Hy: o ¢ [u1, p2l.
Solution.

(a) Denote T = /n(X — uo)/o. Then the UMP unbiased level « test is

0 ifiTI<o11-a/2)
o) = {1 if|T) > 11 — a/2),
because X is sufficient, E,;,[¢(X)] = @ and E,;;[(X — no)¢X)] = 0 holds since X — g is
symmetrically distributed about 0.

(b) Transform (i1, u2) to (2, A) = ((u1 + r2)/2, (w2 — u1)/2) and let & = u — jz. Also let
Yi=X;—i,i=1,...,n. Then the problem can be equivalently expressed as that of
testing Hy: — A <60 < Avs Hy: [0] > AbasedonYy,..., Y, which are iid N (0, 02), and
T=Y=n1YP, Y issufficient for 6 in (Y3,..., Yp).

Then the UMP unbiased level « test for Hy vs Hj is

0 ifci<t<c
pol) = {1 ift<cport>cy,

where ¢, ¢z are such that Eg—_[¢o(T)] = Eg=aleo(T)] = .
Since T ~ N(¢,02/n), choosing ¢; = —c and ¢, = ¢, we have

Eg—_Alpo(T)] = P_AlT < —c]+ P_A[T = ¢]
=& (/n(—c+ 4)/o) + {1 — &(Vnlc+ 4)/0)}
={1-@/nlc— 2)/0)} + & (n(—c— A)/0)
= PA[T = c]+ PAlT < —c] = Eg—algo(T)].

Thus, if we choose ¢; = —cand ¢ = cin ¢y (t) and let ¢ be such that Eg—_ A[¢o(T)] = «,
then Eg—A[¢o(T)] = « is automatic.

Example 6.7.2. Let X = (X1, ..., X};) be arandom sample from Exp(0). We will find the
UMP unbiased level « test for Hy: 6 = 6y vs Hy: 0 # 0.
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Solution. Here T = Z?:l X; is sufficient for 6 in X with T | 89 ~ Gamma(n, 1) under Hy.
The UMP unbiased level « test is

0 = 0 ifc; <t/6p<co
YW= ift/0g < cport/fy > co,

where c; and ¢, are determined by

(i) fcclzfn(y) dy=1-a,and

(ii) fcclz V@) dy = n(1 — «), where f,(y) = y" e ?/I'(n),y > 0, is the pdf of
Gamma(n, 1) with mean n. Condition (ii) can be equivalently expressed in any of the
following two ways, using integration by part and (i):

(i) [ fur1() dy = 1 — asince yfu(y) = nfus1(y), or
(ii))” e “cf! = e ¢} since

C
/C 12 V() dy = (e"“cf — e 2cy) /T () +n(l - ).

For moderately large n and for 6y neither too large nor too small, CLT provides a
reasonable approximation for ¢, ¢z determined by

1 00
/ fny) dy =f ) dy = a/2.
0 Co
Example 6.7.3. Let X be a random sample of size 1 from Geom(p) with pmf

fe,p) =pg*t, x=1,2,..., whereg=1—p.

We wish to find UMP unbiased test at level « for Hy: p = po vs H1: p # po.
Solution. The UMP unbiased level « test for Hy vs H; is

0 ifC] <X <0

oo(x) = 3 ¥; ifx:c,-, i=1,2

1 ifx<corx>cy,
where ci, ¢2, y1, and y» are determined by

Epol1 = 00 (X1 = pody [Sep—1 = Ser + (1 = 71 + (1 = 1)
=1—«, and
Ep, [X{1 — 0o (X)}] = pody 1[ 1= Sk + A —yDaqy + 1 - V2)6267(C)2]

=1-ap,’,

with

r

.
Sr=>qh=qop, (1 —qp and Sf =" igh = qopy*[1 — (1 + rpo)ay].
i=1 i=1



140 THEORY AND METHODS OF STATISTICS

6.8 Locally Best Tests

We have seen so far that UMP tests exist for one-sided problems of testing Hy: 6 < 6p vs
Hiy: 6 > 6y (or vice versa) in MLR families, and UMP unbiased tests exist for two-sided
problems of testing Hy: 6 = 6y vs Hy: 6 # 6 or for testing Hy: 01 < 0 < 02 vs Hy: 0 ¢ [61, 02]
in single-parameter exponential families. In subsequent developments, we are also going
to construct UMP unbiased tests for one-sided and two-sided problems concerning any
one parameter in multiparameter exponential families when other parameters (called nui-
sance parameters) are unknown but are of no concern. However, UMP or UMP unbiased
tests are not available outside the MLR or the exponential families, so in more general
situations, we would have to lower our expectation and settle for some more modest
criterion of optimality.

In the one-sided problem, suppose that for every test ¢, the power function 8,(0) has a
continuous derivative which can be obtained by differentiating under the integral. In the
context of a random sample X = (Xi, ..., X,) from f(x; 6), this means

d d
By (6) = 79 BoleX)] = %/fp(x)f(x;é)dx

_ af (x;0)
—/w(x) 26 dx

n

al ;0
=/(p(X) (Z 70%{0@ ))f(x; 0)dx

i=1

n
= Eg {(p(X) > o 9)} :
i=1
where i(x;0) = W is the partial derivative of the log likelihood I(x;6) = logf(x;6)
with respect to 6 as in Section 5.2.1.

We shall use the other notations introduced in Section 5.2.1, assuming that the reg-
ularity conditions introduced there holds here and use the results obtained under those
conditions.

We now formulate our criterion for local optimality in the one-sided problem in a
single-parameter family.

Definition 6.8.1. A test ¢ is said to be a locally most powerful (LMP) test at level « for
Hy: 0 <6yvs Hy: 0 > 6 if

(i) By, (00) = Eglp(X)] = @, and
(i) By, (©0) = B, (60), that is,

n n
Eg, {fﬂo X) > I(x;; 90):| > Eg, {w(X) > i 90):|

i=1 i=1

for all tests ¢ satisfying (i).
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Applying the Generalized N-P Lemma with m = 1, filx) = f(x;6p) and fox) =
{Z?zl I(x;; 60) }f(x; 0o), we see that any test of the form:

y iffolx) = kfi ()
1 iff2 x) > kfl (x)

is an LMP test at level « for Hy vs H; provided that

Eg, [(po(X)] = Py, {il‘(xi;&)) > k:| + v Py, {il‘(xi;&)) = k:| =a.

i=1 i=1

0 ifHpw) < kfitx)ie, Y ikx;600) < k
po(x) =

For large n, we can find the approximate value of k for a given « by the CLT. Recall that
under the regularity conditions in Section 5.2.1,

E90 I:Z(Xi;Qo):l =0 and Val‘@0 [Z(Xi; 90)] = 1(6p),
where I(6p) is the Fisher-information. Thus
n
n= V237X 00) £ N(0,1(69)) under Pg,.-
i=1
Therefore, for large n, the critical value k for a given « can be approximated by
k=kng~/nl)® 11 —a).

For testing Ho: 0 = 6p vs Hi: 6 # 6p, we assume that the power function 8,(6) of every
test ¢ has two continuous derivatives which can be obtained by differentiating under the
integral. Thus for a test ¢ based on a random sample X = (X, ..., Xy) from f(x; ), we have
B,(0) = Eglp(X) Y"1, 1(X;; 6)] as before, and

2 .
0 f(x'e)dx
92

By (6) =/<p(x) >

2
n n
=By | ¢X) ZZ’(X,-;GH(Zi(Xi;e)) :

i=1 i=1

using the identity:

82f(x;9) . azlogf(x;e) dlogf(x;6) 2
362 362 +< 36

2
n n
= ZZ‘(x,-;eH(Zl'(x,-;e)) fx:6),
i=1 i=1

wherei(x; ) andl(x; 6) are the first two partial derivatives of I(x; 6) = log f (x; 6) with respect
to 6.
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Definition 6.8.2. A test ¢p is said to be an LMP (locally) unbiased test at level « for
Hy: 0 = 6y vs Hy: 0 # 6y if

(i) By, ©0) = EgylpoX)] = a,
(i) B, (60) = Eay [0 X) L1, I(X;;60) | = 0, and
(iii) B, (©0) = B, (60), that s,

i=1

2
Eg, | 90X) ZZ(Xi?QO)“'(ZZ'(Xi;@O))

2
n n
> Egy | 901 D 1(X;560) + (Zi(x,-;eo))

i=1
for all tests ¢ satisfying (i) and (ii).

We can now apply the Generalized N-P Lemma with m = 2, fi(x) = f(x;60), f2(x) =
Uf (x; 00), f3(x) = Vf(x; 6p), where

2
n n n
U= lx;00) and V=> l(x;60) + (Zl'(x,-;eo)) )

i=1 i=1 i=1
to see that any test of the form:

0 ifV<iki+kU
Py, X)) =y HV =k +kU
1 ifV>k +kU
is an LMP unbiased test for Hy vs H; at level o, provided that k; and k; are chosen so as to
satisfy (i) and (ii).
Finding ki, k; for a given « is difficult in general, but in the special case when (U, V) D
(—U, V) under Py,, the problem is simplified because we can take k, = 0.
Proposition 6.8.1. If (U, V) D (=U, V) under Py,, then for any ki, condition (ii) holds iff
ko = 0.
Proof, If (U, V) 2 (~U, V) under Py, , then for k, = 0,
Ego Uk ,0X) ] = Bay [Ulk; 00 (V)] = Bop [~ Ul ,00) (V)]
= _E00[U‘Pk1,0(X)]~

Hence Eg,[ Ugy, 0(X)] = 0. Conversely, if k > 0, then

o]

o0
Ego Uk, £, X)] = / / uf (1, v; 6) dut d
=—o0 Jv=k1+kou

3
= Z// uf (u, v; 6g) du dv
=175

=11 + 1, + I3, say
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where

S1={wv):u>0k +ku<v< oo},
So ={(w,v): u<0,k; —kyu<v< oo}, and
S3={,v): u <0,k +kyu<v<k —koul.

Since (u,v) € S; < (—u,v) € S and (U, V) 24 (—=U, V) under 6, it follows that
L= // uf (u, v;6g) du dv = — // (—w)f (—u, v;6p) du dv
Sg 52
= —// uf (u, v;00) du dv =—1.
S1

Hence

Eoo [Ugk, k, X)] =13 = //S uf (u, v;6p) du dv < 0
3

because u < 0 on S3. Hence in order to satisfy E[Ugy, i, (X)] = 0, we must have Pg,[S3]
= 0. However, if Py)[S3] = 0, then Eg[¢k, ik, X)] = Egyl@k,,0(X)]. Thus both (i) and (ii) are
satisfied with k2 = 0. The case of k2 < 0 is treated in the same way. O

Example 6.8.1. Let X = (Xj,...,Xy) be a random sample from a logistic distribution
with location parameter 6, that is, from

fx,0) = exp[—(x — 0)]/{1 + exp[—(x — O)]}%, —o0 <X < 0.

We wish to find the locally best

(a) testfor Hy: 9 =0vs H;: 0 > 0 atlevel « , and
(b) unbiased test for Hyp: 0 = 0 vs H;: 6 # 0 at level «.

Solution. Note that
I(x,0) = logf(x,0) = —(x — ) — 21og[1 + exp{—(x — 0)}],
i(x,0) = %l(x, 0) = [exp(x — 0) — 1]/[exp(x — 0) + 1],

) 2
I(x,0) = ;TZl(x,G) = —2exp(x—0)/(expx —6) + 1)2.

Thus we have

n n
U= X0 =) " -1/ +1,
i=1 i=1

2
n n n
V=7 IX;0) + {Zz‘(xi, 0)} =-2) i/ +eX)? 4+ U

i=1 i=1 i=1
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(a) The LMP test atlevel o for Hy: 0 = 0vs H1: 0 > 0 is

0 ifU<k
px)=1y ifU=k
1 ifU >k,

where Py[U > k] + yPo[U = k] = a.
(b) The LMP (locally) unbiased test at level « for Hy: & = 0 vs Hy: 6 # 0 is

y fV=k +kU

0 ifV<iki+kU
po(x) =
1 ifV>k +kU,

where 0 < y < 1 and ki, k» are determined by (i) Eo[¢o(X)] = « and (ii)
Eplpo(X)U] = 0.

However, by virtue of symmetry of f (x, 0), (U, V) D (—=U, V). Hence k» can be taken to be
equal to 0 and it is enough to choose 0 < y < 1 and k; to satisfy (i), since (ii) automatically
holds.

The condition (U, V) D (—U, V) under Py, is satisfied in a number of situations such as

(i) X ~ Cauchy®,1) with f(x;0) = %m, x €R,

(ii) X ~ Double Exponential(9) with f(x;6) = 1 exp[—|x — 6]], x € R, etc.

6.9 UMP Unbiased Tests in the Presence of Nuisance
Parameters: Similarity and Completeness

In many situations, the distribution of the observed X depends on several parameters and
we want to test a null hypothesis Hp against an alternative H; concerning only one of these
parameters. The other parameters are called nuisance parameters.

Example 6.9.1. Let X = (Xj, . .., X;) be arandom sample from N(u, o%), where both p,
o2 are unknown. We want to test Hi: 1 = 0 vs H: u # 0. Here o2 is a nuisance parameter.

Example 6.9.2. Let (X1, ..., X)) and (Y3, ..., Y;) be independent random samples from
Poisson()) and Poisson(u), respectively. We want to test Hyp: © < ax vs Hi: u > ah for a
given a . To see how this problem involves testing for one parameter in the presence of a
nuisance parameter, first consider the joint distribution of the sufficient statistic (X, Y) =

(i Xi, 201, Vi) given by:

gy (MA ()Y

, x=012,...,y=0,12,....
xiy!

fxyxyrau) =e

Now reparametrize: # = nu/(mir + nu), § = mi + nu and transform the data: U = Y,
T = X + Y. Then the joint distribution of (U, T) is

furw,t;m,8) = {(;):r”(l - n)f*u}{efégf/tg},
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t=0,1,2,...andu=0,1,...,t. Now Hyp: u < ar < 7 < na/(m+ na) and Hy: u >
a)r < 7m > na/(m+ na) while ¢ is a nuisance parameter.

Let {P), 6 € ©} be a family of probabilities on (X, A), where ® Rkl and@isa (k+1)-
dim vector denoted by

6= (91,92,...,9k+1) =00,1,...,7) == 6, t) with
0=61andt = (0,...,0k41).

Based on a random element X generated by an unknown element P, of this family, we
want to find unbiased level « tests in three situations where the null and the alternative
hypotheses are given as:

Problem 1. Hig: 0 < 60y vs Hy1: 6 > 6 (testing 0 > 0y vs 6 < 6p is analogous),
Problem 2. Hyy: 0 =6y vs Ho1: 0 ;ﬁ 6o,
Problem 3. H3p: 01 <9 <6y vsHs31: 0 ¢ [61, 021,

in each case, 7 being the nuisance parameter.
A more careful description of the null and the alternative hypotheses in these three
problems are

Hjp: (0,7) € ®jgvs Hjp: (9, 7) € ©;1, where
O10={0,7):0 <6y, T € 2}, O11 ={6,7):0 > 6y, T € 2},
O =1{6,1):0 =0y, T € 2}, O21 ={6,71): 0 #0y, T € 2},
O30 ={(0,7):01 <0 <0, T € 2},

©31 = 16,7):0 ¢ [61,62], T € 2}, where 2 c RF,

Now in each of these cases, the null hypothesis and the alternative hypothesis sets ®;y and
©; have a common boundary w;, where

wl=wp ={0p} x 2 and wg = {61,602} x 2.

In the sequel, we assume that the power functions 8, (9, ) of all tests ¢ are continuous
in (6, 1), so that all unbiased level « tests are similar tests of size « on the boundary w; of
Oy and ©;1, i = 1, 2, 3 in each of the three problems under consideration.

We now omit the subscript i from the boundary w; of ®;y and ©;;, and continue the
development in some generality. Restrict attention to the family of distributions PX =
{ngr, (0,7) € o} and suppose that T is a sufficient statistic for the family Pa)f (ie, the
conditional distribution of X given T is the same for all (9,t) € w). Indeed, we should
be looking for a sufficient statistic T for T = (11, e rk) since 6y in Problems 1, 2 and 6y, 6
in Problem 3 are fixed and known.

Definition 6.9.1 (Tests of Neyman Structure). Tests satisfying E[p(X)|T = t] = « for
almost all £ under Pf (ie, for all ¢ N, where Py[T € N] = 0 for all € w) are called tests of
Neyman-structure with respect to the sufficient statistic T.
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If a test is of Neyman-structure, then
Eglo(X)] = EgE[o(X)|T] = Egla] =« forallf € w,

that is, ¢ is similar of size « on w. Thus all tests of Neyman-structure are similar on w.

A sufficient statistic T for Pa)f is complete iffg(t)fT(t; f)dt=0foralld e w=g) =0
for almost all £ under 735 (ie,g(t) = 0forall £ ¢ N where Py[T € N] =0forall 6 € w). The
property of completeness of a sufficient statistic has already been used in connection with
UMVUE in Section 5.1.

A sufficient statistic T for Pa)f is boundedly complete if f g)fr(t;0) dt =0forall 6 € w,
g bounded = g(#) = 0 for almost all ¢ under PZ . [If T is complete, then it is boundedly
complete, but the converse is not true.]

We now have the following theorem.

Theorem 6.9.1. Suppose that there exists a sufficient statistic T for PX. If T is boundedly
complete, then every test which is similar on w, is of Neyman-structure with respect to T.

Proof. Let ¢ be a similar test of size « on w. Then

EgloX)]=a forallfd e w &
Eglp(X) — a] = EgE[p(X) —«|T] =0 foralld € w.

Since ¥ (t) = E[p(X) — «|T = t] is a bounded function of z,
Eg[v () =0] foralld € w

= () = 0 for almost all £ under 735 < E[pX)|T = t] = « for almost all f under 735 , that
is, ¢ is a test of Neyman-structure with respect to 7. O

The converse (ie, if T is not boundedly complete, then there exists a test which is similar
on « but is not of Neyman-structure with respect to T) is also true (see [3, p. 134]), but we
do not need it for our purpose.

LetX = (X, ...,X,) be arandom sample from a (k + 1)-parameter exponential family
with pdf/pmf:
k
fx(0,t) =Cy0, ) exp| OU (x) + erTj(x) hy(x), O,7)€0BO,
j=1

where © is a convex set in R¥1,

We shall now use the above theorem to find UMP unbiased level « tests in the three
problems listed above.

Restrict attention to tests based on

n n n
U=> UX) and T=(Ty,...,T) = (Z Tl(X,-),...,ZTk(X,-)),
i=1 i=1

i=1



Chapter 6 » Hypothesis Testing 147

since (U, T) is sufficient for (9, t) in X. The joint pdf/pmf of (U, T) is of the form:

k
furwt6,7) = CO, 1) exp {eu +y rjt]} h(u,t), 6,1)€O.
=1

We assume that:

(@) ® =1 x 2 where I is an interval in R and £ is a convex set in R¥, and recall that the
boundaries of the null and the alternative hypotheses in the three problems are

w1 = w2 = {(fp, T): T € 2} in Problems 1 and 2, and
w3 = w31 Uwsp = {(01,7): T € 2}U{(02,7): T € 2} in Problem 3.

(b) In Problems 1 and 2, 6y is an interior point of I and in Problem 3, 6; and 6, are interior
points of I.
(c) £ contains a nondegenerate k-dim rectangle in Rk,

In each of the three problems under consideration, the statistic T is sufficient for 73;’5
on the common boundary » of the null and the alternative hypotheses (ie, for Pa"fi in
Problems 1, 2, and 3). Also, the marginal distribution of T and the conditional distribution
of U given T = t are described by their pdf’s/pmf’s which are of the form:

k

frt6,7) = CO, 1) exp [Z rjtj:| hg (8), and
j:l

JuitW; 6) = Ce(6) explOulhy (u).

(In the discrete case, hy(t) = >_, exp[0ulh(u, t), C¢(8) = 1/hy(t), he(w) = h(u, t).]

Note that in all three cases, the sufficient statistic T for PX is complete by virtue of
Assumption (c) and is, therefore, boundedly complete. Hence all tests which are similar
on w;, i = 1,2,3 are of Neyman-structure with respect to T, which suggests the following
strategy:

(i) For each ¢, restrict attention to the family { fuew,0), 6 el } and find the UMP level «
test for Hyg: 6 < 99 vs Hy: 0 > 6y in Problem 1, and the UMP unbiased level « tests for
H: 0 = 6p vs Ho1: 6 # 6p and for H3p: 61 < 6 < 62 vs H31: 0 ¢ [01,02], respectively, in
Problems 2 and 3. [We have already obtained the solutions to these problems in
Sections 6.4, 6.7.1, and 6.7.2.]

(ii) Put these piecewise optimal tests together and show that the resulting test is an
unbiased level « test in each problem.

We now go through the details of each problem.
Problem 1 (UMP Unbiased Level @ Test for Hyg: 6 < 6y vs Hy1: 0 > 6p). We want a test ¢
such that

(i) Eoz[oU, DT =t] =« forall 0, 1) € w1, ie, Eg [ (U, )|T = t] = « for almost all ¢
under Pgl (written as: a.e. Pgl ), and
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(ii) Eg:[¢(U,T)] > Eg.[v (U, T)]forall 8 > 6y and 7 € £2 and for every test y satisfying (i).

[(i) is the condition of Neyman-structure with respect to T and (ii) ensures the UMP
property in this class.]

For every ¢, {fU|t(u;9) = Cs(0) exp[Oulhe(u), 6 € I} is an MLR family, so invoking the
result in Section 6.4, the piecewise solution to the problem is seen to be

0 ifu<c(f)
o1, ) ={n@® ifu=c@®
1 ifu > c(8),

where ¢ () and 0 < y;(£) < 1 are determined by Eg, [¢1 (U, 8)|T = £] = «.

To show that ¢; is a UMP level « test for Hig: 0 < 6p vs Hi1: 6 > 0y, it is enough to check
that ¢ is alevel « test for Hip vs Hi1, using Lemma 6.5.1. By the monotone power property
of ¢ in the conditional problem (using part (ii) of Theorem 6.4.1) and the MLR property of
{fure@;0), 6 e 1},

Eg, [¢1(U, OIT = t] < Egy[¢1 (U, OIT = t] = o, a.e. PL forall6; < 6.

Hence Ey, :[¢1(U, T)] < « for all 61 < 6y, showing that ¢; is alevel & test for Hyg vs Hij.
Problem 2 (UMP Unbiased Level o Test for Hag: 8 = 6y vs Ho1: 0 # 6p). We want a test ¢
such that

() EorloWU,T)|T =t] =aforall (6, 7) € wy,ie, Eglp(U, 0)|T = t] = o, a.e. PL (asin
Problem 1),
(i) 75Eo,:[¢(U, T)] = 0onwy, ie, #Es:l¢(U, Dl|,_, ..o =0 and
(iii) Eo[@(U,T)] > Eg.[v (U, T)] forall 0 # 6y and = € 2, whenever v is a test satisfying
(1) and (ii).

[(i) is the condition of Neyman-structure with respect to T, (ii) is implied by unbiasedness,
and (iii) ensures the UMP property in this class.]

Since 6y is an interior point of I, %Eeyt[go(U , T)] exists on {6y} x £2 and can be calculated
by differentiating under the integral. Thus

a
£Ee,r[<ﬂ(U, Nl

ko4
=5 | v 1C©, vy’ L= Gl hw, 1) du dt

aC(o, ko4 ko4
= /gg(u, t)[%em”z!:l kL + C@, r)ueerZJ:1 Tftf]h(u, t) du dt
aC,1)

— a6
- C(e, T) E@,T[(p(U, T)] + E@,T[U(p(U, T)],

so condition (ii) amounts to the last expression evaluated at & = 6y being 0 for all T € £2.
Since ¢*(u, ¥) = « is an unbiased level « test for Hyg vs Hoj, it follows that

9C(6o,7) 9C(bo,7)

a6 : a6
E U] =0, ie, = —E Ul].
C(@O,‘[)a +a 90,1’[ ] 1€ C(QO,T) 90,1’[ ]
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Condition (ii) thus becomes Eg,[Up(U,T) — «U] = 0 for all t € £, that is,
[ Eg[Up(U,t) — aU|T = tifr(t; 6o, T)dt = 0, which implies:

Ego[Up(U, 8)|T = t] = aBg, [U|T = t], a.e. PL

w’

since T is complete.
Conditions (i) and (ii) thus become

Egol¢(U, B)|T = ] = « and Eg,[Up(U, )] = aEg [U|T = t], a.e. P,

and subject to these conditions, we now maximize Eo[p(U, £)|T = t] for each ¢, where
0 # 6.

This conditional problem has already been solved in Section 6.7.1, since for each ¢,
{fuie(w; 0) = C(0) explOulhe(u), 6 € I} is an exponential family. The maximizing test is
given as

0 ifco1(8) < u < cpa(D)
oo, ) = { yoi(®) ifu=co(t), i=1,2
1 ifu < cpp(t) oru > coo(t),

where ¢,;(f) and 0 < y»;(8) < 1,i= 1,2, for each ¢ are determined by
Egolo2(U, )|T = t] = o« and Egy[Ugo (U, 0| T = t] = aEg, [U|T = t].
To show that ¢, is a UMP level « test for Hyg vs Hz1, we only need to verify that ¢, is a level
o test, as shown below:
Egylp2(U, BIT = t] = a, ae, PL,
= Egy,[92(U, T)] = Egy + By, [92(U, T)|T] = Eg r[0] = forallz € wp.

Problem 3. UMP Unbiased Level o Test for H3g: 61 <6 < 62 vs H31: 0 ¢ [01, 02].
Here we maximize Eq[@(U, H)|T = t], 0 ¢ [61,62], subject to Eg,[(U,D|T = t] = «,
i = 1,2 for each t. As seen in Section 6.7.2, this results in the test:

0 ifcg1 () < u < c32(t)
3, t) = Jy3;(8) fu=c3;®), i=1,2
1 ifu < c31(8) oru > c32(8),

where c3;(f) and 0 < y3;(f) < 1,71 = 1,2 for each t is determined by

Egles(U,OIT =t =a, i=1,2.

Examples of Conditional Tests

Example6.9.3. LetX = (Xj,...,Xp)and Y = (Y3,...,Y,) beindependent random samples
from Poisson(r) and Poisson(u), respectively. We want to test Hy: u = ai vs Hy: p # ai
where a > 01is given. Here (X, Y) = (32, X;, YL, Y;) is sufficient for (A, u) in (X, Y). As in
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Example 6.9.2, reparametrize and transform the data as:
7 =npu/(mr+np), E=mr+nu,andU=Y, T=X+Y,

to arrive at
t
furu,t;m, &) = <u>n“(1 —miTte gl ),

t=0,1,...andu=0,1,...,¢t.
To put the problem in the framework of a two-parameter exponential family, we further
reparametrize:

6= log<£) = log(%) and t = log(&(1 — ) = log(ma)

to write the joint pmf of (U, T) as:

1

. — _(aT O+ty | DUttt -
fU,T(u,t,G,r)_exp[ (et +e )]e TR

The hypotheses Hy and H; now become Hy: 6 = 6p and H;: 6 # 0y, where 6y = log(na/m).
The UMP unbiased level « test for Hy: 6 = 6y vs Hi: 6 # 6p (v being a nuisance
parameter) is

yit) fu=c®, i=1,2
1 ifu<cy(®)oru=> cy(t),

0 ife1 (1) < u < cy(r)
¢(uy t) =
where c;(t) and 0 < y;(t) < 1,i =1, 2, are determined by:
Eg,[9(U, D)|T = t] = « and E 4, [Ugp(U, 1)|T = t] = aEg, [U|T = 1.

These equations can be written explicitly, using

t na \“ m t-u
u;0g) = , u=0,1,...,¢, and
fue(w;60) (u)(m—i—na) <m+na>

By, [U|T = 1] = r( na )

m+ na

The problems of finding unbiased level « tests for testing Hp: ¢ < ai vs Hy: u > aX and
for testing Hp: a1A < u < apA vs Hy: o ¢ [a1A, ax)r] for given a or given a; < ay are treated
analogously using the methods developed for Problems 1 and 3 of Section 6.9.

Example 6.9.4. Let X ~ Binomial(m, m1) and Y ~ Binomial(n, n2) be independent. We
want UMP unbiased level « test for Hy: 71 = 72 vs Hy: 71 # 2. Here,
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fx,y &,y 71, m2) =<r;z> (;) (1 —m)"A - )"

m1(1 — o) 1—m
Reparametrizing
_ 7'[2(1 — 7'[1) _ Tl
0 _logﬂl(1 Y T _logl_ﬂ1

and transforming the datato U = Y, T = X + Y, the model is equivalently expressed as:
furw,60,7) =Cl,t)expldu+rtt] and n] =mp <60 =0.

The UMP unbiased level « test for Hy: &8 = 0 vs Hi: 6 # 0 is of the form as in
Example 6.9.3 with
(7)) ()

(™"

fuit@0 =0) = Prycy[Y = ulX + Y = 1] =

which is hypergeometric, and Eg—o[U|T = t] = (m’ﬁn) t.

Example 6.9.5. A and B are events in a probability space. The frequencies of AB, A°B,
ABS, and A°BC in n trials are given in Table 6.1, known as a 2 x 2 contingency table:

Table 6.1 Frequency
Distribution in n Trials

Events A A®  Subtotal

B X V4 T
B¢ Y w T
Subtotal S s n

Based on this data, we want to test: Hy: A and B are independent or negatively dependent
(ie, pap < paps) vs Hi: A and B are positively dependent (ie, pap > papp). Let A =
(PAB<PAB) /(pABPAc Bc). Then the problem can be equivalently described as that of testing
Hp: A > 1vs Hi: A < 1. Reparametrize by transforming

(PAB> PAB<) PAcB) — (10, T1, 2) — (6, 71, T2),
where
10 = log(pap/pacpe),  T1 =108(PaBc/Pacpe),
72 = log(pacp/pacpe), and 6 = 19 — 11 — 10 = —log A.

Also transform the datafrom (X, Y,2) - X, X+ Y, X+2) = (X,S, 7). Interms of (0, 1, 72),
we can write

Dacge = 1+ e@+1’1+r2 +ell 4 erz)fl, PAB = e6+rl+T2pACBC;
pape = €™ pacge, and  pape = e pacpe.
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The multinomial pmf of (X, Y, Z) can now be rewritten, using Y =S—X,Z=T—-X and
the above formulas for pag, papc, pacs, and pacp: to express the pmf of (X, S, T) as:

fX’S’T(xy S, t; 9, 71, fZ) = C(ev 71, fZ) eXp[Gx + 718 + ‘L'zt]h(x, S, t)y
where C(9, 71, 72) = [1 + /711172 + el 4 e™2] and h(x, s, t) is the multinomial coefficient
n!/{x!s—x)!t—x)!(n—s—t+x)!}.

Now the UMP unbiased level « test for Hy: A > 1vs Hi: A < 1 (ie, for Hy: § < 0 vs
Hj: 6 > 0) is given by

0 ifx <c(s,t)
x5, =13yt ifx=c(st)
1 ifx > c(s,p),

where c(s, t) and 0 < y (s, t) < 1 are determined by
y($,DPg—oX=¢c(5,0|S=5T=1t]+Pyg—g[X >c(5,0S=sT=1t] =a.
Note that Py_o[X = x|S=s, T = {]

_ {(fc) (=5/(5), max(0,s+t—n) <x < min(n,s)
otherwise

is the hypergeometric distribution.

The UMP unbiased level « test for Hy: pap = paps (independence) vs Hi: pap # paps
(ie, Hp: 6 = 0 vs H1: 6 # 0) is obtained by the same approach. This is known as the
Fisher-Irwin test (also called the “Fisher exact test”), which is formally the same as the
test obtained in Example 6.9.2.

Simplified Versions of Conditional Tests

The conditional tests ¢ (1, t) for Hyg: 6 < 6g vs Hi1: 60 > 0p, w2(u, t) for Hyp: 0 = 6y vs
Hj1: 6 # 6y and ¢3(u, t) for Hzp: 01 < 6 < 62 vs H31: 0 ¢ [0, 62] are inconvenient in many
applications. However, in some situations which include testing problems in the family of
normal distributions, these tests can be equivalently expressed in terms of a single statistic
V = g(U, T), as shown in the following theorem.

Theorem 6.9.2.

A. SupposeV = g(U, T) is such that
(a) V isindependentof T when 6 = 6y, and
(b) g(u,?t) isincreasing in u for each t.
Then the UMP unbiased level « test ¢1 for Problem 1 becomes
0 ifv<c
i =13y ifv=c
1 ifv>cg

wherec and 0 < y < 1 are determined by Eg[¢] (V)] = a.
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B. SupposeV = g(U, T) is such that
(a) V isindependent of T when 6 = 6y, and
(b) g(u,t) = a(®)u+ b(t) with a(t) > 0.
Then the UMP unbiased level o test g2 for Problem 2 becomes

0 ifci<v<oe
;W) =1y ifv=c, i=12

1 ifv<corv>cy,
where c; and 0 < y; < 1, i = 1, 2 are determined by Ep,[¢; (V)] = a and
Egy[Vp; (V)] = aEpy[V].

C. SupposeV = g(U, T) is such that

(a) V isindependent of T when 6 = 6) and when 6 = 63, and
(b) g(u,t) is increasing in u for each t.
Then the UMP unbiased level o test 3 in Problem 3 becomes ¢} having the same form
as ¢; (in part B of the theorem), but ¢; and 0 < y; < 1, i = 1, 2 are determined by
Eolpt(V)]=a,i=1,2.

Proof of Part A. The UMP unbiased level « test ¢; in Problem 1 can be equivalently
expressed in the form of ¢} by condition (b), but the quantities c and 0 < y < 1 may
depend on t and are determined by

Y (O)Pg[V = c(O)IT = 1] + Py, [V > c(t)IT = tl=a forallt.

By condition (a), V is independent of T when 6 = 6p, so ¢(¢f) and 0 < y(f) < 1 do not
depend on ¢ and are determined by Eg,[¢] (V)] = a. O
The proof of part C is analogous.
Proof of Part B.Here also, by condition (b), the UMP unbiased level « test ¢ in
Problem 2 can be equivalently expressed in the form ¢3, but ¢;(f) and 0 < y; < 1,i = 1,2
may depend on ¢ and are determined by

(i) Egole;(V,0|T =] =« and
(ii) Eg[Ugs(V, 0T = t] = aEq,[U|T = t] for all .

Substituting V = a(t)U + b(¢) (ie, U = (V — b(¢))/a(¢) in (ii)), we have
a® " Eg[{V — b(O}5(V, OIT = t] = aa(t) 'Eg [V — b(t)|T = 1] forallt
& Egy[Vp3 (V, DT = £] — b(t)Egy 95 (V, )| T = t] = aEgy[V|T = t] — ab(t) forallt
& By [V3 (V, DT = t] = aEgy[VIT = 1] forallt,

since Egy[e;(V,1)|T = t] = a forall £ by (i). Now using condition (a), we see that ¢;(¢) and
0 < yi(f) < 1,i = 1,2 do not depend on ¢ and are determined by: Eg[¢; (V)] = « and
Ego[V3 (V)] = aEg [ V]. O

In actual applications, condition (b) of this theorem is verified in an obvious manner.
The verification of condition (a) often follows from V being an ancillary statistic (ie, one

whose distribution does not depend on the nuisance parameter r) and T being a complete
sufficient statistic for z, using Basu’s Theorem 5.1.6.
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Examples: Hypothesis Testing With Nuisance Parameters
in the Context of Normal Distribution

In each of the following examples, we go through the following steps:

The data which is a random sample from the population(s) under consideration are:
X,...,X),or (X1,...,Xn) and (Yy,..., Y, or (X1, Y1),..., Xy, Yy)). Also state Hy and
Hj in terms of the population parameters.

. The sufficient statistics are (U, T). The conditional distribution of U given T = ¢ is

complicated, so the conditional test described earlier in Section 6.9 are impractical.

. Reparametrize from (u, 0%) or (11, u2,02), etc., to (9, t) and restate Hy and H, in

terms of 6, treating ¢ as the nuisance parameter. In each example, the pdf/pmf of
(U, T) belongs to the exponential family with natural parameters (9, 7).

Transform (U, T)to V =g(U, T) or (V =g1(U,T), W = g(U, T) ) as needed to use
Theorem 6.9.2, verifying the conditions.

Express the UMP unbiased level « test in terms of V or (V, W) using the distributions
of V and W under Hjy.

Example 6.9.6.
Testing for u of N(u, o) with 0% unknown.

On the basis of the data (X, ..., X,) test (i) Hy: u < o vs Hy: u > uo and (ii)
Hy: v = po vs Hyi: u # o where o = 0 (otherwise, replace i by u — o).

. The sufficient statistics are (U, T) = (31, X;, Y11 X?).
. Reparametrize § = /0%, v = —1/(202) . In (i), test Ho: & < 6y vs Hy: 6 > 6 where

0o = juo/o? and in (i), test Hy: 0 = 6y vs Hy: 6 # 6o, T being the nuisance parameter.
Express the UMP unbiased level « tests ¢1 (U, T) for (i) as ¢ (V) and ¢2(U, T) for (ii) as
@5 (W), where

V=T =,/nn IX/T—UiUZ/n = \/?X and W =g (U, T) = U/VT.
Verify conditions (a) and (b) of Theorem 6.9.2A for Vand W.
The test for (i) is ¢} (v) = Ij¢,0) (V), Where ¢ satisfies P,L:o[\/ﬁ)_(/s >c]=a.Underu =0,
VnX/s ~ tp_1,50 ¢ = t,_1(e) where P[t,—1 > ty_1(@)] = a.
The test for (ii) is ¢5 (W) = Ij¢,00) (|w]), using the fact that under 4 = 0, W' is
symmetrically distributed about 0, and c satisfies P,,—o[|W| > c]=c. Finally, note that

n—1 -
V= W [\J1-W2/n =nX/s~ tp_1 when u =0
vV h / /n =~/nX/s~ ty_1 when u

and | V] is an increasing function of |W|. Thus ¢; becomes ¢35 (v) = Ij1,_;(a/2),00) (IV]).

Example 6.9.7. Testing for o2 in N(, 02) with 1« unknown.

On the basis of the data (X1, ... ., Xy) test (i) Ho: 02 < of vs Hy: 02 > of and (ii)
Hy: 02 = og vs Hp: o2 #* 002.

Here (U, T) = (X7 X?, Y1 X;) are the sufficient statistics.
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ll. Reparametrize 6 = —1/(202) and t = u/o. In (i), test Hy: 6 < 6 vs Hy: 6 > 6y where
6o = —1/(20¢) and in (ii), test Ho: 6 = 6 vs Hy: 6 # 6.

IV. Express the UMP unbiased level « tests ¢1 (U, T) for (i) as ¢7 (V) and ¢2(U, T) for (ii) as
@5 (V), where

"X —X
V=gWU,T) =Q0/c))U—T?/n) = Z( lao ) )
i=1

Verify conditions (a) and (b) of Theorem 6.9.2A for V.

V. Since V ~ x,%_ , under 0% = 002, the UMP level « test for (i) is ¢} (v) = Ij¢,o0) () where
c=x2_ (@), Plx2_; > x2_1(@)] = and for (ii), 95 ) = I0,¢;1(®) + Iic,,00) () Where
1 < ¢ satisfy

C2 [&]
/ fno1®) dy:l—aand/ V1 dy=mn-101 - a),
C1 C1

fn—1 being the pdf of x2_,. The second condition in the display above can be
expressed in any of the following two ways (as in Example 6.7.2):

C2
f Fr1@) dy = 1—asinceyfy_1() = (1 — Dfyar (), or
C1

e,cl/gcgn—l)/Z = e*CZ/Zcén_D/2 since

2 _ 1 —c1/2,(n=1/2 _ _cp/2 (n—1)/2
/Cl Y1) dy = 2(=3)/2 (1 — 1)/2) (e ‘ —e€ ) )

+nn-11A-a),

using integration by parts and condition (i). For moderately large n and 6 neither too
small nor too large, CLT provides a reasonably good approximation for c¢; and c;
determined by

C1 o0
[ ay= [ g0y dy = a2
0 (%)

Example 6.9.8. Testing for u; = p2 of N(u1,02) and N(u2,0?) with uy, pa, o2
unknown.

I. On the basis of the data (X1, ..., Xp) and (Y1, ..., Yy) from N(u1,02) and N(u2, 02),
respectively, test
(i) Ho: p2 — 1 <0vs Hy: po — 1 > Oand
(ii) Ho: pu2 — 1 =0vs Hy: up — py # 0.

ll. The sufficient statistics and their one-to-one transforms are

n m m n
(2w 23+ 37 and
1 1 1 1

m n
(U, T, T) = (Y—X, mX +n¥,y XZ + ZYE)
1 1
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IV, V.

Reparametrize

K2 — K1 mii) + np _L)
m=1+n o2 m+no2’ 202

6,11,12) = <

In (i), test Hy: 8 < 6p vs Hy: 0 > 6y where 8y = 0 and in (ii), test Hy: § = 6y vs
Hj: 0 # 6y, 71, T2 being the nuisance parameters.
For testing Hp: 6 < 0vs Hy: 6 > 0, thatis, Hp: 2 < w1 vs Hy: u2 > ug, take

Imnim+n—2)
m+n \/Tg — (12 + anZ)/(m+ n)

Y-
—+ \/Z”X’ 2+Zl1YtY) \/%Jr

m+n—

<

N

Then V satisfies both conditions of Theorem 6.9.2A, and the UMP unbiased level «
test for Hp: 6 < 0vs Hy: 0 > 01is ¢ () = Ij¢,00) (), Where ¢ = i 1p-2(a).
For testing Hp: 6 = 0 vs Hi: 6 # 0, take

U

‘/TZ—TIZ/(WH—n)
Y-X

O EEXE AV (S X+ Y )

Then W satisfies both conditions of Theorem 6.9.2B, and the UMP unbiased level o
test for Hp: 6 = 0vs Hy: 0 # 01is @5 (w) = Ij¢,00) (|wl]), where c satisfies

Pu—u,[IW] > c] = a. Nowlet V = W//1 — mnW?2/(m + n), which is the same as V
defined for problem (i) and | V| is an increasing function of |W|. Thus the UMP
unbiased level « test for Ho: 11 = 2 vs Hy: n1 # 2 becomes ¢35 (v) = Ij¢,00) (|V]),
where ¢ = ti4n-2(/2).

W =

Example 6.9.9. Testing for 02 = o7 of N(u1,07) and N(u2,05), all parameters are
unknown.

On the basis of the data (Xi, ..., X;») and (Y1, . .., Yy) from N(u1, 02) and N(u2, 02),
respectively, test (for a given k > 0):

() Ho: 02 < ko? vs Hy: 0% > ko? and

(ii) Ho: 022 = kalz vs H: 022 # kalz.

. The sufficient statistics and their one-to-one transforms are

n m n m
(2572002 3 ne
1 1 1 1
n m n n m
(U, TI!TZV TB) = (Zylzylez"‘k_lzylzvzyl!le)
1 1 1 1 1
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lll. Reparametrize

071,10 73) — (_; BRI Y ﬂ)
) ) ) - 2 2? 2) 2? 2 )
205 chf1 207 o5 of
71, T2, 73 being the nuisance parameters. In (i), test Hp: 6 < 0vs H;: 6 > 0 and in
(ii), test Hp: 0 = 0vs H1: 6 # 0.

IV, V. Take

Am=DRTIY (G- 1)?
C m-DTIY G - X2

in problem (i). Then both conditions of Theorem 6.9.2A are satisfied and the UMP
unbiased level « test in problem (i) is ¢} (V) = Ij¢,00) (V), where P[Fp_1,m—1 > ¢] = a.
In problem (ii), for testing Ho: 02 = ko? vs Hy: 04 # ko?, proceed with

n m n
W=k (v - Y)Z/{Z(X,- X2+ kY - Y)Z}

i=1 i=1 i=1
to set up the test and then transform to V which increases with W.
Example 6.9.10. Testing for the slope parameter in Simple Linear Regression Model.

I. On the basis of the data ((x1, Y1), ..., (xn, Y»)) where x1, . . ., X, are given constants
and Y; = o + Bx; + €;, €1, ..., €, being iid N(0, 0%), with o, B, 0 all unknown, we
want to test

() Ho: B < Povs Hi: B > fo and
(i) Ho: B = Bo vs Hi: B # Po.
Without loss of generality, let 8y = 0 (otherwise, replace Y; by Y; — Box;).

1. Transform the data to reduce the model to its canonical form: Let Y* = Y; —a — Bx;,
i=1,...,nandletal = (a;,...,a;),i=1,...,nbe n-dim vectors which form an
orthonormal basis for R” (ie, ala; = 1 for all i and a]a; = 0 for all i # j). In
particular, choose the first two vectors as

a-{ =n12a,...,1 andag =S;xl/2(x1 —X,...,Xn — X),

where ¥ = n71 Y7 x;and Sy = Y, (x; — ©)2. Let Y*' = (Y7,...,Y;), and define

n n
Wy =alY*, Wy =alY*and W3 = Y ag;V,..., Wy, = > ay Y}
i=1 i=1

Then Wi, ..., Wy are iid N(0,02) and 37 W2 = Y7 Y¥*. Define
Sy = Y1, (x; — 0 Y;and Syy = Y 1, (V; — V)2, It follows that
(@ Y =n"1Y1Y;~N(x+ BX,0?/n) because Wi ~ N(0,0?),
(b) W, ~ N(0,0?) (ie, B = Sey/Sxx ~ N(B,02/Sxx)),
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IV, V.

(O R= Yy W2 = X0, V7 — WP~ W2 = Sy — 82y /S ~ 0213y,
(d) Y, B, and R are mutually independent.

. The sufficient statistics and their one-to-one transforms are

(B,Y,R) and (U, T}, T») = (B, Y, n¥? + SxxB?> + R).
Reparametrize
0 = SxxB/o?, 11 = nla + pR)/o?, T2 = —1/(207)

Starting from the joint distribution of (Y,B,R), using (a)-(d) in Step I, the joint pdf
of (U, T1, T») can be seen to be of the form

fu,n,nWn,60;0,1,1) =CO, 11, 12) exp[@u + 1181 + ‘Egtz]h(u, 1, £2),

and the null and the alternative hypotheses can be restated as Hyp: 6 < 0 vs
Hi: 6 > 0in problem (i) and Hy: 6 = 0vs Hy: 6 # 0 in problem (ii).
In problem (i), take

n—2U0 n—2B

V=gUT,T) = - .
J @ —nTD /S~ U2 VR/Su

Then V satisfies the conditions of Theorem 6.9.2A and it is distributed as t,,_» under
Hj. Hence the UMP unbiased level « test for Hy: 0 < 0vs Hy: 8 > 01is

01 (W) = Iit,_y(a),00) (V).
In problem (ii), first take

Vi=gWU, T, T = U/,/(Tz —nT?)/Sxx = B/,/B2 + R/Sxx.

Then V; satisfies the conditions of Theorem 6.9.2B. Hence the UMP unbiased level
o testfor Hy: 0 = 0vs Hi: 0 # 01is (V1) = Ij¢,0)([v1]), where c satisfies
Py—o[|Vi| > c] = . Finally, let

_~n=2Vy  /n-2B

V= =
\/I—Vlz VR/Sxx

as in problem (i). Then V ~ t,,_» under # = 0 and | V| is an increasing function of
[V1l, s0 p(v1) is the same as ¢* (V) = Ijs,_,(a/2),00) ([V]).

Remark 6.9.1. 1f By # 0, then Sxy and Syy are calculated from (x;, Y; — fox;), i=1,...,n
and become

S;y = Syy — BoSxx and Sﬂf/y = Syy + ﬁ(%sxx —2B0Sxy,

respectively, and B and R are replaced by

B* = B— fpand R* = S}y — (S%y)?/Sxx = Syy — Sky/Sxx = R.

As aresult, the statistic V is replaced by V* = «/n — 2(B — Bo)/+/R/Sxx-
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6.10 The p-Value: Another Way to Report the Result of a Test

In Example 6.7.1(a) of Section 6.7.2, let Hy: . = o = 10 vs Hy: o # 10 with known o2 = 4,
and suppose that in a random sample of size n = 25, the observed sample meanis x = 10.8
Then the test statistic T = ﬁ(f( — uo) has observed value

Tx) = V1 — pug)/o = 5(10.8 — 10)/2 = 2.0.

Whether to accept or reject Hy, now depends on the choice of . For o = 0.05, & (1 —«/2) =
1.96 and for ¢ = 0.01, & (1 — «/2) = 2.575; so for the same data we should reject Hy at level
a = 0.05 but accept Hy at level « = 0.01. This raises two concerns:

(i) The choice of « is subjective, contrary to the aim at objectivity in the theory of
hypothesis testing.

(ii) Even for a choice of chosen «, the test procedure only tells us whether to “accept Hy”
or “reject Hy” without any indication of how strongly the data favors the decision.

To address these concerns, it would be desirable to report not only whether Hy is
rejected or accepted at a preassigned level « by the observed value of the test statistic T(x)
but also the smallest level of significance at which T'(x) would reject Hyp, which is called the
p-value of T (x).

Definition 6.10.1. For a problem of testing Hy vs Hi, if T(x) is the appropriate test
statistic based on the observed data x, then p-value of T = minimum « for which Hy would
be rejected by T'(x).

For a one-sided level « test ¢ (x) = Ij¢,,o0) (T (X)),

p-value of T = rrbin{T(x) > Cq} = Py,y[T = T)],
and for a symmetric two-sided test level « test ¢ (x) = 1 — I(_¢,,c,) (T(x)),
p-value of T' = min{|T(xX)| = ca} = Ppy[T = |T()[] + Phy [T < =IT]].
In Example 6.7.1(a) discussed above,
T=+nX-pug)/o and T(x) =2.0.
Since T ~ N(0, 1) under Hy,
p-value of T = Py, [|T| > 2.0] = 2{1 — ®(2)} = (2)(0.0228) = 0.0456.
This statement is more informative than the one saying that Hy is accepted atlevel « = 0.01
but rejected at « = 0.05.

6.10.1 Pearson’s P, Statistic

The p-value of a statistic T has so far been discussed in the context of T'(x) for an observed
sample x. We now look at the p-value as a random variable:



160 THEORY AND METHODS OF STATISTICS

p-value of T = Py, [T > T(X)]

considering a one-sided test for convenience of discussion.
Let Fr denote the cdf of T under Hy. Then

PyyT = TX)] =1 - Fr(TX) ~1-U 2 U,

where U ~ Uniform(0, 1) as seen in Section 1.11.
In problem 16(a) of Chapter 2, we have seen that

W = -2logU ~ Exp(1/2) s Xzz-

Thus the p-value of T for a random sample X being P = Py, [T > T(X)], W = —2logP is
distributed as x3.

Now suppose that a certain study, such as a trial on the effectiveness of a drug, is
carried out independently by several investigators. These studies, being designed dif-
ferently and based on different sample sizes, may have been analyzed by different test
statistics aimed at testing the same null hypothesis Hp, the rejection of which would
indicate effectiveness of the drug. Suppose that the results of these studies are summarized
by test statistics T1,..., Ty with observed values T;(x1),..., Tk(xk), and let the observed
p-values of these tests (using right-tail tests for simplicity) be denoted by

P(x)) = PyylTj = Tj(xpl, j=1,....k
Then these p-values are sample realizations of
P; = P, [T = Tj(X;)]

and therefore, wj = —2 log P(xj) are sample realizations of W; = —2log P, which are iid as
xZ under Hp.

Now define P, = Z};l[—Zlong] as a test statistic combining the results of all the k
tests, which is distributed as X22k under Hy, and can be used as a test statistic based on the
combined evidence provided by the results of all the k investigations.

6.11 Sequential Probability Ratio Test

Traditional statistical inference deals with analysis of a set of data (Xi,...,Xy) to draw
some conclusion about a parameter 6 involved in the joint pdf (or pmf) f,(x1, ..., xn; 6).
The observations Xj, ..., Xy are often iid with individual pdf f(x;6) (although they need
not be so), in which case, f,(x1,...,x5;0) = ]_I?Zlf(x,-;e). But the main thing is that n is
fixed and the functional form f;, is fixed (ie, the sample size and the sampling design are
predetermined). However, some samples provide more conclusive evidence than others,
so it makes sense to take samples gradually (ie, sequentially), and examine the evidence
gathered at each stage of sampling to determine whether any more samples are needed,
and if not, to draw a final conclusion. This is known as Sequential Analysis.
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Here we shall only discuss the problem of testing a simple null hypothesis Hy: 6 = 6
against a simple alternative H;: 6 = 6; based on iid samples Xj, X»,... observed
sequentially. For this, we need a procedure of the following form:

Step 1. Start with observing Xj. Let S10, S11, and C; be a partition of the sample space
X1 = X of Xj such that S19US1; UC; = X). If the observed value x; € Sjp, stop sampling
and accept Hp; if x; € Si1, stop sampling and accept Hi; if x; € C; (continuation
region), take another observation X,.

Step 2. Now the observed data are (x1,x2) € C; x X = X2. Let Sy, S21, and C» be
a partition of X». If (x1,x2) € Szo, stop sampling and accept Hy; if (x1,x2) € Soi,
stop sampling and accept Hj; if (x1,x2) € C (continuation region), take another
observation X3.

Step n. At the nth stage of sampling, the observed data are (x1,...,Xn—1,Xn) € Cp—1 X
X = Xj. Let Spo, Sn1, and Cy, be a partition of &j,. If (x1,...,x,) € Sno, stop sampling
and accept Hy; if (x1,...,xn) € Su1, stop sampling and accept Hy; if (x1,...,%5) € Cy,
observe X, 1.

Sequential Probability Ratio Tests, which we shall refer to as SPRT, are due to Wald [24].
The SPRT is based on the following idea. For a fixed sample size n, the MP test for Hy vs H;
at a given level «, accepts Hp or H; according as

_ falxr, ., x0;601)

An = is < kor >k,
"7 falxr, .., Xn; 60)

where k = k, (o) depends on the sample size and the level of significance. [For given «,,
we can also determine the smallest sample size N(«, 8) such that for n > N(«, 8), the MP
level « test based on a sample size n will have the probability of Type II error < g8]. In the
sequential setting, at the nth stage of sampling, we modify the MP test described above by
accepting Hy if the likelihood ratio A, < B, accepting H; if 1, > A, and observing X, if
B < )\, <A

Definition of SPRT(A, B), B < 1 < A, Based on iid Observations

LetZ; = log[f Xi, 00 /f (X;; 90)], so that the log likelihood ratio at the nth stage of sampling
is Y"1, Z;. The procedure at the nth stage of sampling is: accept Hp if > i ; Z; < logB,
accept Hy if )L, Z; > logA, continue sampling iflogB < YL, Z; < logA, where 0 < B <
1 < A < oo are such that

Pgy[Accept Hi] = and Py [ Accept Hy] = .

Note that the actual sample size needed for the SPRT to stop and reach a terminal decision
to accept Hy or H; is a random variable. We have to think of this random variable in the
context of the sample space of infinite sequences

w=(21,22,...), z;=1og[f(x;61)/f(x;60)]
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For each w the stopping sample size of SPRT is: N(w) = n iflogB < 211:21 z; < logA for
j<n-—1landY i, z;iseither < logBor > logA.

To facilitate discussion, let us also define the following events in the sample space of w:

J n
Sy = {(zl,zz,...): Y "z e (logB,logA), j<n—1land) z < IOgB},
i=1 i=1

and

J n
S = i(zl,ZZ, R Zzi € (logB,logA), j<n-1 andei > logA}
i=1 i=1

forn =1,2.... These events have the following properties:

(i) Sy, S5, n=1,2,... aredisjoint.
(i) For each n, the events S}, and S}, are determined by (71, ..., Z,) only.
(iii) SPRT(A, B) stops with exactly n observations with acceptance of Hy if w € S}, or with

acceptance of Hy ifw € S},
We now ask the following questions:

1. Does the SPRT stop with probability 1, ie, is Pg[N < oo] = 1?

2. How are the error probabilities «, g related to the boundaries A, B?

3. The function L(0) = Ps[Accept Hol = Y ;- ,,—o0 Po (S;O), called the operating
characteristic (OC) function, which is simply 1— power function. Obviously,
L(0g) =1 — «a and L(#;) = 8. How to calculate L(#) for other values of 62

4. The stopping sample size N is a random variable. It is important to know its average
value Ey (N) for a given 6. This average value, as a function of 6, is called the average
sampling number (ASN) function. How to evaluate the ASN function for a given 6?

5. Is the SPRT optimal in any sense?

We now deal with above issues.

6.11.1 SPRT Stops With Probability 1

Theorem 6.11.1. If Py[Z; = 0] < 1, then there existc > 0 and 0 < r < 1 such that Py[N >
n] < cr’. In such a case, Py[N < oo] = 1.
Remark 6.11.1. Note that

PylZ; =0]1=1 <= Py[fX,6p) =f(X,01)] =1.

If o and 6, are distinguishable, then Py [f(X,00) = f(X,61)] < 1 and Py [f(X,00) =
fX,01)] < 1.

Proof. Since Py[Z; = 0] < 1, there exist ¢ > 0 and § > 0 such that either Py[Z; > ¢] = §
or Py[Z; < —e] = 5. We consider the former case (the other case is treated similarly).
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Let k be an integer such that ke > log A—log B. We now show that the desired inequality
holds with ¢ = (1 — 6%)~! and r = (1 — §¥)!/k. The idea of the proof is given below

N>n < Zﬁzl Z; € (logB,logA) foralll < n—-1— ‘Zle Z,-‘, .. l (] Dkt ‘
are all < logA — log B < ke, where jk is the largest multiple of k which is < n — 1. Thus for
jk+1 < n < (j+ 1k, using the iid property of the Z;’s, we have

P = = H : k} ]j - {pg {ijzi : k} ]j

= (1 -8 = a—shH~Ha - shVHTEDE < o,

k

> Zi

i=1

because Zle Z; < ke = {71 > ¢,...,Z; > €)%, so that

k
P9|:2Zi<ke:| <1-Py[ >s,...,Zk>s]=l—8k.
i=1

Finally,
00 n—1
Py[N < ool =Y PyIN =k] = lim > PyIN = kI
k=1 k=1
=lim[1-PyN=>n]=lim(1-c™=1
n—o00 n—o0o
since0 <r < 1. O

6.11.2 Error Probabilities of SPRT(A, B): Relation Between (A, B)
and («, )

We will use Theorem 6.11.1 to get

a = Pyy[Accept Hi]

= Z Py, [ Stop with n observations and accept Hj]
n=1

ZPQO[S 1= Z/ ]_[f(xl,eo) dxy -

= Vlll]

n

-1
n
=Z / {Hf(xivel)/f(xiveo)] [ /@i, 61) dxi - daxn
n=1 nl

i=1 i=1
wwzfﬂmmm
S i=1

1-—
= (1/A) Py, [Accept H1] = (1/A){1 — Py, [ Accept Hyl} = T’B
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Similarly, using the fact that 1, = []i_, f(x;, 61/f (x;,600) < Bon S, for all n, we have

oo
1 — o = Pgy[Accept Hyl = Y Py [Sio]
n=1

e¢] n
= Z /* k;l l_[f(xl-,el) dxy - - dxp
n=1"%0 izl
> (1/B)Py, [Accept Hyl = B/B.
Thus the Type I error probability «(4, B) and Type II error probability 8(A, B) satisfy:

«(A,B) <[1-B(A D)]/Aand 1 — (A, B) > B(A, B)/B, ie,
Aa(A,B) + B(A,B) < land «(4,B) + (A, B)/B < 1.

Suppose for given o*, *, we choose A’ = (1 — g*)/a* and B' = */(1 — a*).

If the above inequalities were equalities, then we would have «¢(4,B) = o* and
B(A',B)) = B* for the resulting SPRT(A’, B'). This would be the case if SPRT(A’, B) always
terminated with Ay = A or Ay = B at the stopping time N. But in reality, Ay will be either
>A or <Bwhen the likelihood ratio sequence {Ay} first goes out of the continuation region
(B, A). Taking these inequalities as equalities amounts to an approximation in which excess
over the boundaries is neglected. Comparing (o, ) = («(4,B), (A, B)) with (a*, *),
we see

() Aa(A,B)+ BA,B) <1 1—-pNa+a*p <a*
(ii)a(A’,B’)+,B(A’,B’)/B’51} ,B*oz+(1—cx*),3§,3*}

= a+p <o+ p"

Hence at most one of the error probabilities «(A’, B') or 8(A’, B') may exceed its intended
value o* or g* with the above choice of boundaries. Moreover, by (i), « < 1/A =
a*/(l - ,B*), sox—a* <a*/(1-B%)—a* = a*ﬂ*/(l — ,8*), and by (ii), 8 < B < ,8*/(1 — a*),
so B —p* < B*/(1 —a*) — B* = a*p*/(1 — ).

Summary. If for given o*, g*, we take A’ = (1 — g*)/o* and B = g*/(1 — «*), then at
most one of (4, B') or B(A’, B') may exceed o* or B*. If «(A’, B) > o*, thena(A’, B) — a* <
a*B*/(1 — p*) and if B(A',B) > B*, then B(A,B) — p* < o*B*/(1 — *). For example, if
a* = B* = 0.05, then « — «* and B — B* are both < 0.002632 and at most one of them is
positive.

In what follows, we shall use the approximate formulas: A ~ (1 — 8)/a, B~ /(1 — a),
a~(1-B)/A—-B),and 8~ (A—1)B/(A — B).

6.11.3 OC Function

We first prove two lemmas.
Lemma 6.11.1. Let M(t) be the mgfofanrv Z and let T = {t: M(t) < oo}. Then T is an
interval containing 0 and M (ty) = E[Z¥e?] for all ty lying in the interior of T.
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Proof. Since M(0) = 1, 0 € T and by Hélder’s inequality, #; and t; in T implies 11+
(1 -2t € Tforall0 < A < 1. Nextnote that by Lebesgue Dominated Convergence,

%E[etz]lt:m = 51190(1/8)15[ / 025, (7) dz — / e%fz(2) dz}

(¥4

= | lim ea—_lefozfz(z) dz = / ze0%f,(z) dz = E[Ze"%],

§—0

the dominating function being g such that (% —1)/8| < g(z) for all z and § # 0 and
f g(2)e™* f;(z) dz < oo. Such a function exists, because for |§| < &,

o0 o0
€% — 1)/l = Y188 izl jjt = Y I izl /jt < el = g(2), say
j=1 j=1

and

E[g—les|Z|etoZ:| 55‘1{E[e(’0+5)z] +E[e(t0—s)Z]] <00

if ¢ is such that #y + ¢ and ty — ¢ are both in T. The proof for the higher derivatives is by
induction. 0
Lemma 6.11.2. Suppose that Z satisfies the following conditions:

(a) ElZ] #0,
(b) M(t) = E[e?} < oo forallt,
(c) Ple’ >1+5] > 0andP[e’ <1—8] > 0 forsomes > 0.

Then there exists a unique nonzero solution of the equation M (t) = 1 (ie, there is a unique
h # 0 such that M(h) = 1).

Proof. By condition (b) and Lemma 6.11.1, M"(t) = E[Z%¢'4] > 0, by condition (a).
Hence M is a strictly convex function. Now use condition (c) to see that: since M(f) >
(14+8)P[eZ > 1+8]fort > 0, lim;_, o M(f) = 0o, and since M () > (1 —8§)*P[eZ < 1 —§] for
t <0, limy, _oo M(t) = co. Hence M(¢) has a unique minimum at some #. If {5 = 0, then
0 = M’(0) = E[Z] would contradict condition (a). Thus M (¢) has the following properties:

(i) MO =1,
(ii) M(?) is strictly convex,
(iii) M () has a unique minimum at #p # 0.

From these properties it follows that there exists a unique minimum % # 0 such that
M(h) = 1. O

Now consider the OC function L(#) = Py[Accept Hy] of SPRT(A, B) for Hy: 6 = 6o
vs Hi: 6 = 6y, assuming that the distribution of Z = log[f(X, 61)/f(X, 6p)] satisfies the
conditions of Lemma 6.11.2. Then we have the unique h(9) # 0 corresponding to 6, such
that



166 THEORY AND METHODS OF STATISTICS

= f [F 000 /£ (X3 60)) " P (x, 0) dx

which makes

FE@) =4, 0) = (FX, 01)/fX; 0010 f (x, 0)

d
a pdf. Now let f (x) = f(x, 6) and consider the SPRT (Ah(e), Bh(9)> for testing Hjj: X Yy fvs

Hy: X" f 18 h6) > 0, then

h(6)
n n
=TTV G /fg Gy = {H{f(xirel)/f(xi, 90)}}
i=1 i=1

is <B"® or >A"® or inside (Bh(e),Ah(e)) according as A, = [[i1{f (x;, 01)/f (x;, 60) is <B or
>A or inside (B, A). Hence

Py [SPRT (A", B"©)) accepts H] = Pg[SPRT(A, B) accepts Hyl = L(6).
Thus for h(0) > 0, neglecting excess over boundaries,

L©) =1 - (A", B®) =1 _ (1 — ") ,4h® _ ph)y
_ @ah®) _1y,ah® _ ghe))

The same formula also holds for h(0) < 0. To show this, consider the correspondence
between SPRT(Bh(G),Ah((’)) for testing H} vs H} and SPRT(A, B) for testing Hy vs H.

6.11.4 ASN Function

Theorem 6.11.2 (Fundamental Identity of Sequential Analysis). Let S, = Y i, Z; and
suppose that Py[Z; = 0] < 1 and Py[|Z;| < oo] = 1. Then Ey[e®NM(1)™N] = 1 forall t
at which M (t) < oo, where N is the stopping sample size of SPRT (A, B).

Remark 6.11.2. For each n,

Egle"] = {E[e1])* = M(D", so0Eg[e’SrM(t)™"] = 1.

The fundamental identity asserts this fact also for the random stopping time N. We
shall see that the proof depends on two properties of N, namely, Py[N < oo] = 1
(Theorem 6.11.1) and the fact that the event {V = n} depends only on 73, ... ., Z,.

Remark 6.11.3. Note that Z; = oo if f(X;,61) > 0 and f(X;,00) = 0, and Z; = —oo if
f(X;,61) = 0and f(X;, 6p) > 0. If such Z; are replaced by logA — log B and —(logA — log B),
respectively, then the crossing behavior of each sample sequence remains unaltered. We
can, therefore, assume Py[|Z;| < oo] = 1, without loss of generality.

Proof. (This proofis due to Bahadur [25].)
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Let T = {t: M(t) < oo} and foreach t € T, define p(z|t) = e*M(t)~'f;(z|0), where fz(z|0)
is the pdfof Z = log[f X, 00)/f(X; 90)] induced by the distribution corresponding to f(x, ).
Then

/p(z|t) dz=M@®)~! / e f,(20) dz = M(H) " Eg[e?] =1,

showing that p(z|f) is a pdf for each ¢ and p(z|0) = fz(z|9). Since Z is nondegenerate under
fz(z|0) by virtue of the condition Py[Z = 0] < 1, it now follows that Z is nondegenerate
under p(z|f) for all £ € T. Hence by Theorem 6.11.1, P;{[N < co] = 1forallt € T.

We now have, using the fact that the event {V = n} depends only on (71, ..., Zy),

Egle™SNM@) N =

M2

E[efSNM(r)—N IN = n)]

3
I
—

||P”ﬂ8

]‘[[eszM(t) Yt/ (zi10)1 dzy - - dzn
i1

n

e
by

l_[ p(z;|t) dzy - -

Mg 1 M8

PN =n] = P¢[N < oo] = 1.

n=1

O
Remark 6.11.4. It can be shown that for ¢ lying in the interior of 7, differentiation can
be carried under the expectation any number of times in the fundamental identity.
Theorem 6.11.3. Assume Py[Z; = 0] < 1, Py[|Zi| < oo] = 1 and that M(t) = Eg[e"4] < oo
in a neighborhood of zero. Then

(a) Es[Sn] = n@Es(N),
(b) Es[{Sn — Nu(6)}?] = 62(0)Es (N),

where 1(0) = Eg[Z] and 0%(0) = Vary (Z).
Proof. Differentiating the fundamental identity two times under the expectation sign,
we have

_d T Svvn-N] M'(®) | Lisy—NlogM()
0= EEg[e M) ]t=0 = Ep| {SN ~ N e

= Ey[Sn — NEp(Z)] = Eg[Sn1 — n(0)Eg[N], and

t=0

o= Spmfesrmmo]

5 H (SN B NM/(t)>2  MOM 0 - M0 }etsNNlogM(t):|

2
M) M@ o

= B[ [(Sn — NE§(2)2] = NVary ()] = Egl(Sn — Nu(@)}*] - > @) Ey N1,
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The ASN function is now seen to be

Ep[Sn] _ L) logB+ {1 — L(9)}logA
Ey[Z] Ey[Z] '

Ey[N] = ifEg[Z] # 0,
where the approximation is obtained by neglecting excess over boundaries at the stopping
time. Finally we state the Optimally Property of SPRT without proof.

Among all sequential tests with Type I and Type II error probabilities not exceeding the
corresponding error probabilities of SPRT(A, B), the ASN function of SPRT(A, B) has the
smallest values at 6p and at 0;.

Example 6.11.1. Suppose Xi, X, ... are iid N(6,02); Hop: 0 = 6p and Hy: 6 = 61 > 6.
Then

01— 6 02 — 62
Z; =log[f(X;,00)/f (X;:60)] = 102 2 X; — 12020

At the nth stage,

2

% [%
o ]0gB+ gn'
01 — 6o 2

n
accept Hy if ZXl- <

i=1

n 2
6 %
accept Hj if ZXI' > el(rq logA + mn,

‘ 2
i=1
and continue sampling if Z?:l X; lies within these boundaries. Here, for 6 # (6 + 61)/2,

Eg[Z;1 # 0, h(0) = (01 + 69 — 26) /(61 — 6p) # 0,

AO1+60—26)/(61—60) _ |
61+60—260)/(01—60) _ B61+60—20)/(61—60)’

L) = o

whereas, by LHospital’s rule, L((90 + 91)/2) = logA/(logA — log B).

Example 6.11.2. Suppose Xi, X, ... are iid taking values 0 and 1 with probabilities 6
and 1 — 9, respectively; Hp: 6 = 6p and H;: 6 = 61 > 6p. Using the notations r; = 01/6p and
r» = (1 —01)/(1 — 6p), we have

Z; = X;log[r1/r2] + logro.

At the nth stage of sampling, accept Hy if Y i, X; < cologB + cin, accept Hy if ) 1L X; >
cologA + c1n and continue sampling if Y ; X; lies within these boundaries, where ¢y and
c) are easily determined. Here

EglZi] # 0for 0 # —logra/log[r1/r2];

1—rl
Egle%i] = 6rll + (1 —0)r} = 1foro = 2

T h

1 2

_4h
Plot (9, L(9)) = (%, %), using h as a parameter to obtain the OC-curve.
1 2
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6.12 Confidence Sets

Let {Py: 6 € 2} be a family of probability distributions on (X, A) and let X be an observable
rv whose distribution belongs to this family. Let C be a mapping from X into the class of
all subsets of £2, that is, for each x € X, C(x) C £2. We call C measurable if for each 6 € £,
{x: 0 € C(x)} € A. [If C is measurable, then “C(X) covers #” is an event for each 6 € £2, so
Py[C(X) covers 8] = Py[0 € C(X)] is defined.]

A measurable C is said to be a confidence set with confidence coefficient 1 — « if

Pyl e CX)=Py[{x:0 e Cx)}]>1—a foralld e £2,

that is, C(X) covers the true value of 6 with a probability of at least 1 — «.

In particular, if @ is real and if C is such that C(x) = [6(x), 00) or C(x) = (—o0,6(x)] for
each x, then 6 (x) and 6 (x) are called lower and upper confidence bounds, respectively, for 6
with confidence coefficient 1 — « and we write: Py[6 € C(X)] = Py[60 > 6(X)] > 1 — « forall
0eR,0rPyl0e CX)]=Py[0<0(X)]>1—aforalld e .

A lower confidence bound 0 (X) is said to be uniformly most accurate (UMA) with
confidence coefficient 1 — « if

(i) Ps[6 >0(X)]>1—aforalld € £2,and
(i) Py[6 > T(X)]>1—«foralld € 22 implies Py[0' > 6(X)] < P[0’ > T(X)] forallo’ < 9,

that is, among all lower confidence bounds with confidence coefficient 1 — «, [8(X), c0)
includes 6’ < 6 with smallest probability.

UMA upper confidence bounds analogously includes 8" > 6 with smallest probability
among all upper confidence bounds with the same confidence coefficient.

A systematic theory of confidence sets was introduced by Neyman [26]. We now discuss
two methods for constructing confidence sets. Of these, the first is based on the concept of
pivotal functions and the second uses a duality between acceptance regions of level « tests
and confidence sets with confidence coefficient 1 — «.

6.12.1 Methods Based on Pivotal Functions

Definition 6.12.1. A known function T: X x £2 — Ris a pivot if the distribution of T'(X, 0)
does not depend on @ (ie, for everya € R, Py[T(X,0) < a] is the same for all 6 € £2).

If T(X,0) is a pivot, then its distribution is known. This allows us to find ¢; < ¢, for a
given« € (0, 1) so that Py[c1 < T(X,0) <c2] > 1 —« forall 6.

Now define C(x) = {0 € 2: c1 < T(x,0) < ¢2}. Then C is a confidence set for 8 with
confidence coefficient 1 — «, because 8 € C(x) <= c¢; < T(x,60) < ¢z, and therefore,

Pyl6 e CX)]=Pylc; < TX,0) <c2]1>1—a foralld.

For real-valued 6, if T'(x, #) is monotone in 6 for each fixed x, then C(x) = {0: c; < T(x,0) <
c»} is an interval of the form [0(X), 6 (X)].

Remark 6.12.1. So far we have considered single-parameter families of probabilities.
If the probabilities depend on other nuisance parameters t in addition to 9, then C is a
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confidence set for 6 with confidence coefficient 1 — « if Py ;[0 € C(X)] > 1 — « for all
@, 1) € $2.

In such cases, a pivot T'(x, #) should depend on 6, but not on r and its distribution must
be the same for all (9, 7) € £2 . Then we can find ¢; < ¢z so that Py .[c1 < T(X,6) < c2] >
1 —« forall (0,7) € £2, from which C(x) constructed as above is a confidence set with
confidence coefficient 1 — «.

Remark 6.12.2. If T1,..., T} are pivots which are independent under each Py in the
family {Py: 6 € £2}, then any function g(T1, ..., Tj) is also a pivot.

Example 6.12.1 (Location-Scale Family). LetX = (Xj, ..., X;) be arandom sample from
o~ 1f(071(x — w)) where 1 € R, 0 > 0 and f is a known pdf.

(a) Ifo is known and 0 = u is the parameter of interest, then X; — u,i=1,...,nare
p
pivots. So X — u is also a pivot, from which a confidence interval for x is obtained as:

CX)={ue<X-p<ol={uX-c<np<X-c}
=[X—-c,X—01]

(b) If u is known and 6 = o is the parameter of interest, then (X; — u)/o,i=1,...,nare
pivots and many other pivots can be constructed as functions of these. In particular,
S/o is a pivot where $? = (n — 1)~! 3%, (X; — X)? is the sample variance. Now a
confidence interval for ¢ is obtained as:

CX)={o:c1 <S/o ¢} ={0:5/cp <0 <§/c1} =1[S/¢c2,S/c1l-

Here S/o is still a pivot if ¢ is unknown and the above confidence interval for o is still
valid.

(c) If0 = p is the parameter of interest and o is also unknown, then #(X) = VX —w)/S,
which is called the Studentized Version of /n(X — u) /o, is a pivot, from which a
confidence interval for . is obtained as

CX) ={u:c; <vV/nX —pn/S < cz}
={wX—-cS/Vn<u<X-cS/Vn
= [X — 28/v/n, X — ¢1S/v/nl.

When f is symmetric about 0, one may take c; = —c2 = —c and C(X) is then of the
form [X — ¢S//n, X + ¢S//nl.

Example 6.12.2 (Ratio of Means in Bivariate Normal (Feller’s Theorem)). Let X =
{(X11, X12), ..., (X5n1, Xn2)} be a random sample N»(u, X¥), where w' = (u1,p2) and ¥ =
2
[:1 2122:|. The parameter of interest is & = u2/u1, 1 # 0. Let Y;(0) = X — 0Xj1.
12 2
Then Y;(0),i = 1,...,n, are iid N(0, 0% — 20012 + 6%02), The “sample mean” and “sample
variance” of Y1(0), ..., Y,(6) are Y(0) = Xo — 6X; and

n
S20) = (n— 1)1 Y (¥;(0) — Y(©)* = S5 — 20815 + %S5,
i=1
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where S2, S5, and Si» are the sample estimates of 07,07, and o012, respectively. Hence
JnY(0)/S®) ~ t,_1 and is therefore a pivot and a confidence set for 6 is C(X) =
{0: nY(0)*/$?(0) < t;_, ). The actual determination of C(X) depends on a quadratic
equation in 6.

6.12.2 Inverting Acceptance Regions of Tests

This method is based on a duality between hypothesis testing and confidence sets.
Theorem 6.12.1. For each 0/, let Hy(0'): 6 = ¢’ € 2 and H(0)): 0 € $2,(0') where
£21(0") C 22 — {0'}. Then the following hold:

(a) Ifforeacht’ € 2, A(0') is the acceptance region of a test for Hy(0') at level a, then
C(x) = {0: x € A(9)} is a confidence set for 6 with confidence coefficient 1 — a.

(b) Ifforeacho’ € 2, A(9") is the acceptance region of a UMP test for Hy(0') vs H (¢) at
level a, then among all confidence sets for 6 with confidence coefficient 1 — «, C(x)
minimizes Py[6’ € C(X)] forall6 € 21(0).

Proof. Part (a) follows easily since
Pyl0 e CX)] = Py[X € AB)] > 1 -« foralld e 2.

Now suppose that Ci(-) is also confidence set for 6 with confidence coefficient 1 — «, and
let A1 (0) = {x: 6 € C1(x)}. Then for each 6 € 2, A1(0) is the acceptance region of a level o
test for Hy(0), because

Py[X € A1(0)] = Pyl0 e Ci(X)] > 1—«a forallé.
Now,
Pyl0' € C(X)] = Py[X € A(@")] = Type Il error of A(6) at @,
Pylo’ € C1(X)] = Py[X € A1 (#")] = Type Il error of A1 (9') at 6.

Since A(6’) is the acceptance region of a UMP test for Hy(¢'): 6 = 0’ € £2 vs H1(0'): 6 €
£21(¢), it follows that for all 6 € 21(¢'),

Py[0' € COO] < P[0 € C1 (X)),

and this proves part (b). O
Corollary. If {Py} is an MLR family in T(x) and if Fy is the continuous cdf of T under
Py, then the UMA lower confidence bound for 6 with confidence coefficient 1 — « is given by
0(x) = 60*(x) where 6*(x) is the unique solution (in 6) of the equation Fg(T(x)) = 1 — .
Proof. For each 0’, the UMP level « test for Hy(6): 6 = 6’ € 2 vs H1(0'): 6 > 0 has
acceptance region A(6") = {x: T'(x) < k(6")} by the MLR property, where

Py[TX) < k(6")] = Fyr (k(6') = 1 —a.

This defines a function k(-) by the equation Fy (k(0)) = 1—«. The MLR property also implies
that for each k, Fy(k) is a strictly decreasing function of 6, because Fy (k) is the Type II
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error of an acceptance region {T < k} for a left-sided null hypothesis against a right-sided
alternative. Hence for each k, the set {0: Fy (k) < 1 —«}is an interval [9*(k), oo), where 6* (k)
is the unique solution of the equation Fy(k) = 1 — o. Now let

C(x) = {6: x € A(B)} = {6: T(x) < k(6)}
={0: Fo(T(x)) < Fg(k(©))} ={0: Fg(T(x)) <1 —a}.

Then C(x) = [Q (x), oo), where 6 (x) is the unique solution of the equation Fy(T'(x)) = 1 — «.
By part (b) of the above theorem, it now follows that ¢ (x) is UMA lower confidence bound
for 6 with confidence coefficient 1 — «. O
Example 6.12.3. Let X = (Xj, ..., X,) be random sample from Unif (0, 0) . We want to
construct a UMA confidence set for & with confidence coefficient 1 — «.
Solution. We know that the acceptance region of the UMP level « test for Hp: 6 = 6p vs
Hi1(0): 0 # 6y is

ABo) = {x: par/™ < xpen < o),

where x;., = max(xy, ..., X,).
Now

1/n

XEAWB) = 0V <xpp <0 = xpn<0<a Y.

It therefore follows from the above theorem that C(x) = [X.n, & Y"Xp.,] is the UMA
confidence interval for # with confidence coefficient 1 — «.

We now consider the construction of confidence sets for one parameter when there are
other nuisance parameters.

Suppose that the distribution of X belongs to the family {Py .} where 6 is real. A
confidence set for 6 with confidence coefficient 1 — « must satisfy: Py ;[0 € C(X)] > 1 —«
forall 9 and .

Definition 6.12.2.

(i) Anunbiased lower (or upper) confidence bound 6 (x) (or (x)) for & with confidence
coefficient 1 — « must satisfy:
Py [0>0X)]>1—«aforallo,r and
Py, [0 >0X)] <1—aforald’ <6andr,
Py.[0 <6(X)] > 1—aforallg,r and
Py.[0' <0(X)]<1—aforalld’ > 6andr.
(ii) An unbiased confidence interval [0 (X), 8(X)] for 6 with confidence coefficient 1 — o
must satisfy:
Py.[0(X) <6 <6(X)]>1—aforalld,rand
Py [0(X) <0 <0(X)]<1—aforall #6andr.
Subject to these conditions, we minimize
Py [0’ > 6(X)]forall¢’ <6 and 7, or
Py ([0 <6(X)]forall®’ > 0 and 7, or
Py [0(X) <60’ <06(X)]foralld’ # 6 and ,
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for a UMA unbiased lower confidence bound, or a UMA unbiased upper confidence
bound, or a UMA unbiased confidence interval, respectively, for 6 with confidence
coefficient 1 — «.

Theorem 6.12.2. If for each 0, A(9) is the acceptance region of a UMP unbiased level o
test for Hy: 6 = 0’ vs Hy: 6 # 0/, then C(x) = {0: x € A(0)} is a UMA unbiased confidence
interval for 6 with confidence coefficient 1 — a.

[Analogous correspondence holds between acceptance regions of UMP unbiased level «
tests for Hy: & < 0’ vs Hy: & > 0’ and UMA unbiased lower confidence bounds with
confidence coefficient 1 — «, and similarly for UMA unbiased upper confidence bounds.]

Example 6.12.4. Let X = (X3,...,X;p) and Y = (¥3,...,Y,) be independent random
samples from N (1, 02) and N (u1, 02), respectively, where 1, iz, o2 are all unknown. We
want to construct a UMA unbiased confidence interval for § = u; — u2 with confidence
coefficient 1 — a.

Solution. Using the notations of Example 6.9.8 in Section 6.9, note that the acceptance
region of the UMP unbiased level « test for Hy: 6 = 6 vs Hy: 6 # 60y is
xX—=y)—6o

A(6y) = {(x,y): SE

= tm+n—2,a/2}v

where SE = SE(X — Y) = s,/T/m + 1/n. Since (x,y) € A(f) is equivalent to
(X =J) = tmin—2a/2SE <0y < (X =) + tmin—2,4/2SE,
the UMA unbiased confidence interval for & with confidence coefficient 1 — « is

Cx,y) =[x =) — tmyn—20/2SE, (X =) + timin—2,0/2SE]-

Exercises

6.1. Letf(x,0) = ]_[?:1[c(@)h(xl-)l(,ooyg)(x,-)] and define x;.; = max (x1, ..., X,).
(a) Show that {f(x,0): 6 € R} is an MLR family.
(b) Express the joint pdf of a random sample X = (X, ..., X,;) from Unif (0,6) as a
special case of this family.
(c) Show that the test

o) = {0 if xp:n < 6

is a UMP level « test for Hy: 6 < 6y vs Hy: 6 > 6p, but that ¢ is inadmissible
under the 0 — 1 loss function (ie, there exists a test v whose risk function under
the 0 — 1 loss function satisfies R(9, ) < R(9, ¢) for all 6), with strict inequality
holding for some 6.

(d) Show that

_ 1 if.x”;n > 90 oI Xp:n < b
¢(x)_ {0 ifb<Xn;n§00,

where b = fpa!/" is a UMP level « test for Hy: 0 = 6 vs Hy: 6 # 6.
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6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

Let X be the number of successes in n independent trials with P[success] = 6. Let

¢(x) be the UMP level « test for Hy: 6 < 6y vs Hy: 0 > 6.

(@) Forn =6,6yp = 0.25and a = 0.05,0.10, 0.20, find ¢ and y for ¢ and find the
powers of these tests at 6 = 0.40.

(b) Use normal approximation in order to find the smallest 7 required for the UMP
test atlevel « = 0.05 for Hy: 6 < 0.25 vs Hj: 6 > 0.25 to attain power
£(0.4) = 0.90.

Let Xi, ..., X, be arandom sample from an exponential distribution with mean 6.

(@) For n =5, find the UMP test for Hy: 6 < 1vs H;: 6 > 1 atlevel« = 0.1. [The

exponential rv with mean 2 is the same as a x2 with 2 df)]

(b) For the test obtained in part (a), calculate the power 8(2) at6 = 2.

(c) Find the smallest # so that the UMP test at level « = 0.1 has 8(2) = 0.8.

[For parts (b) and (c), use integration by parts to show that

[ x" exp(—x) dx/n! = PIW < n], where W ~ Poi(c).]

A box contains N manufactured items of which an unknown number 6 are

defective and the other N — 6 are good. Let X denote the number of defective items

in a random sample of n items drawn without replacement from the box. Then X

has pmf

O\ /N -6 N X
f(x,@):Pg[sz]=<)( )/( ), x =max(0,n+6 —N),...,min(n,8).

X n—x n

(a) Show that {f(x,0):0 =0,1,...,N}is an MLR family. [For 6; < 6, write
f(x,02)/f(x,61) = ]‘[?i;ll{f(x,j—i— 1)/f(x,j)} and examine how f(x,j + 1)/f(x, )
changes with x.]

(b) For a specified integer 6y, write down the UMP test at a given level « for
Hy: 6 <6y vs Hy: 6 > 6p . Explain how the constants involved in the UMP test
are determined.

Let Xy, ..., X, be arandom sample from Unif (0,6 + 1).

(a) Show that (T1, T2) = (Xj:1, Xn:n) are jointly sufficient for 6 and find the joint

distribution of (T4, T»).
(b) Show that the UMP test at level « for Hy: 8 < 0vs Hy: 0 > 01is of the form

0 ifty <kandp <1

— 1/n
Pl 1) = {l otherwise

, Wherek=1—a"/".

Let Py and P; be two probability distributions with pdf’s pp and p1, respectively.
Suppose that under Py, the likelihood ratio T = p1 (X)/po(X) has a pdf which is
everywhere positive. For 0 < « < 1, let {x: T'(x) > k(¢)} denote the critical region of
an N-P test of size « for Hy: P = Py vs Hy: P = P; and let B(«) = P1[T > k(a)]. Show
that 8'(a) = k(a).

Suppose Py # Pj are probabilities on (X, A) and X, . . ., X, are independent
samples from (X, A, P) where P is either Py or P;. We want to test Hy: P = Py vs

Hi: P = P;. Show that there exists a sequence of tests {¢,}, each based on

(X1, ..., Xy) such that



6.8.

6.9.

6.10.

6.11.

6.12.

6.13.

6.14.
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lim Epy[¢n(X1,...,Xn)]=0and lim Ep, [¢n(X],...,Xn) =1,
n— o0 n—oo

that is, the Type I error probability converges to zero and the power converges to 1.
[Hint: Let p; denote the pdf/pmf corresponding to P;, i = 0, 1. Then for any «, the
MP test at level « for Hy vs Hy based on (X3, .. ., Xj) is roughly (except for
discreteness) of the form:

n
on Xty Xn) = I o) {nl 3 log(p1 (X)/po (X,-))},
i=1

where k;, is chosen according to «. Let
m; = Ep,[log(p1(Xy)/po (X)), i=0,1.

Use Jensen’s inequality to show that my < 0 < mj, choose k;, = (mg + m1)/2 in the

definition of ¢;. Now use the SLLN.]

Let X ~ Bin(n, p) with n = 10 and p unknown. Find the UMP unbiased tests at level

a = 0.10 for

(@) Hy: p=0.2vsH;: p#0.2,(b) Hy: p=05vs Hi: p#0.5,(c) Hy: 0.4 < p < 0.6 vs
Hy:p ¢ [0.4,0.6].

Let X and Y be independent Poisson rv’s with means A and p, respectively.

Construct UMP unbiased tests at level « = 0.1 over the set {(x, y): x + y = 8} for

(@) Ho: A < uvsHy: A > u, (b) Hp: A = wvs Hy: A # L.

Let Xj, ..., X, be arandom sample from an exponential distribution with mean 6.

Find the UMP unbiased level « test for Hy: 6 = 2 vs Hj: 6 # 2.

Let X be a random sample of size 1 from the beta distribution Be(6, 1) with the pdf

f(x,0) =6x°1,0 < x < 1. Find the UMP unbiased test at level & = 0.1 for Hy: 6 = 1

vs Hy: 6 # 1 and determine the critical value.

Use Basu’s Theorem to show the following:

(a) IfXy,..., X, is arandom sample from N(0,5?), then }_ X;/ ZXl.Z and )_ X? are
independent.

(b) If (X3, Y1),..., Xy, Yy) are iid No(u, X), where p = (1, 12) and X is a diagonal
matrix with diagonal entries o7 and o7, then }_(X; — X»)?, > (V; — ¥,)? and the
sample correlation r are mutually independent.

LetX = (Xj, ..., Xy) be arandom sample from Unif (01, 62). Sufficient statistic for

(61,02) in X is (T1, T2) = (Xn:1, Xnen)-

(a) Show that Ty given T, = 1 is distributed as Uy,_1.1 where (Uy, ..., Uy—1)isa
random sample from Unif (01, t2).

(b) Construct a UMP level « test for Hy: ; < 0 vs Hy: 61 > 0 conditionally, given
T> = t,. Call this test ¢y, (11).

(c) Show that ¢(#1, t2) = ¢, (t1) is unconditionally a UMP level « test for Hy vs Hj.

Let X and Y be two independent exponential random variables with means 1/A and

1/, respectively. Find UMP unbiased tests at level « = 0.2 for
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6.15.

6.16.

6.17.

6.18.

6.19.

6.20.

6.21.

6.22.

(@) H: A <pu+1vsHyi:A>pu+1,(b)Hy: A =puvsHy: A # u, () Hy: A > 2u Vs
Hi: » < 2u.
Let X1, X> be independent rv’s with pmf’s

fx,(6,0) = 6;(1—6p*1, x=1,2,..., where 0 < 6; < 1.

Find UMP unbiased tests at level « = 0.2 for

(a) H(): «91 < 92 \'A) H]Z 91 > «92, (b) H(): «91 = 92 VS H12 «91 7!5 92.

LetX = (Xi,...,Xm)and Y = (Y3,...,Y,) be independent samples from

N(p1,0% = 1) and N(u2, 0% = 2), respectively. We want to test Ho: 1 < o Vs

Hj: 1 > po. Derive the UMP unbiased level « test for Hy vs H by first expressing it

in a conditional form (in terms of appropriate sufficient statistics), and then

unconditionally in terms of X;;, — Y;,.

Let (X1, Y1), ..., Xy, Yy) be arandom sample from a bivariate normal distribution

with E[X1] = E[Y1] = u, Var[X;] = Var[Y7] = o2 and Cov[Xj, Y1] = 02/2, with u and

o2 unknown. Find the UMP unbiased level « test for Hy: u = 0 vs Hy: u # 0.

[Transform: U; = (X; + Y;)/+/3 and V; = X; — V;.]

Let Xi, X, . .. be sequentially observed independent samples from a normal

distribution with unknown mean 6 and known SD o = 5. We want to test Hy: § = 0

vs Hy: 0 = 2 atlevel « = 0.01, holding the probability of Type II error probability at

B = 0.05.

(a) Find the approximate values of A, Bin SPRT (A, B) needed for this purpose and
describe the procedure in terms of cumulative sums Z?:l X,n=12,...

(b) Evaluate the OC function L(9) = Py[accept Hp] for 6 = 3.

(c) Evaluate the ASN function Ey (N) for& = 0and 0 = 2.

(d) Find the smallest sample size n(«, 8) needed for a fixed sample size test with
« = 0.01 and B8 < 0.05 in this problem, and compare n(«, 8) with the numbers
obtained in (c).

Do problem 18 when the X;’s are sequentially observed independent samples from

(i) Exponential distribution with mean 6,

(ii) Poisson distribution with mean 6, and we want to test Hy: 0 = 1 vs H;: § = 2 at
level « = 0.05, holding 8 = 0.10.

Let Xj, ..., X10 be arandom sample from an exponential distribution with mean 6.

Find the UMA lower confidence bound for 6 with confidence coefficient

1 —a = 0.95based on (X1, ..., X)0), using the table for the x2-distribution.

Let Xj, ..., X, beiid following the Weibull distribution with the pdf

fx,A) = rcxLexp(—rx6), x>0,

where c is known but A is unknown. Show that the UMA upper confidence bound
for & = 1/ with confidence coefficient 1 — « is given by § = 2" X¢/x3, (o) where
Plx3, < x3,()] = «. [Hint: Find the distribution of X{']

Let X and Y be independent exponential random variables with means 1/A and
1/, respectively. Construct a UMA unbiased confidence interval with confidence
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coefficient 1 — « for & = A/u by inverting the acceptance regions of UMP unbiased
level « tests for Hy: 6 = 6y vs Hy: 6 # 6, 69 > 0.

Four independent experiments were carried out to test whether a new method of
irrigation would provide better yield of a certain crop. The data from all four
experiments were analyzed to test the same hypothesis Hy that the new method is
no better than the old vs the alternative H; that the new method is better. The
results of these experiments are summarized by four ¢-statistics given below with
their respective df’s

t1 = 1.50,df = 10; tp = 2.15,df = 16; t3 = 1.80,df = 19; t4 = 1.30,df = 25.
(a) Calculate the p-values of the four statistics

(b) Calculate the P, -statistic combining the results of all four experiments.
(c) Comment.



Methods Based on Likelihood and
Their Asymptotic properties

7.1 Asymptotic Properties of the MLEs: Consistency
and Asymptotic Normality

On a historical note, the maximum likelihood estimators (MLEs) were introduced by
R.A. Fisher in early 1920s, which he claimed to be “better” than the method of moments
estimators used widely, especially by K. Pearson. To justify the superiority of the MLEs,
Fisher used the concepts of consistency (converging to the true parameter in probability),
sufficiency (capturing everything relevant in the sample), and efficiency (attaining the
smallest possible variance among all unbiased estimators, which led to the definition of
Fisher-information). This led to the foundation of the theory of statistical inference in the
area of estimation. Asymptotic properties of the MLEs will be discussed in this section.
Let Xi,..., Xy, ... be iid with pdf/pmf f(x; 6p) in the family {f(x;0): 6 € ©}, where 6y,
the unknown value of the parameter is an interior point of ©. All probability statements

(including —P>, £>, op, Op) and all expectations, variances, and covariances are with respect
to f(, 6p), unless stated otherwise. We assume throughout that the family {f(x,0): 6 € ©}
satisfies the identifiably condition introduced in Section 5.5.1.

The MLE of g based on (Xj, .. ., X;) is denoted by

n n
On = argrtré%xi_l_[lf(Xi, 1) = argrtré%x; 1(X;, 1), €8]

where I(x, 1) = logf(x, t).

Using the notations of Section 5.2.1, we write log f (x, £) = I(x, t) as in the above paragraph
and also

ifx, o) f(x,0) -
= ,0), = ,0),
30 F &0 =52 ft.0)
A, 0) 32l(x,0) -
(;9 ) _i(x,0)and %) —i(x,0) (2a)
in the single-parameter case when ® C R and
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of x,6) . f(x,0)
20, =fr(x,0), 36,96, = frs(x,6),
alx,0) ?x,0)
20, —lr(xr 0) and m —lrs(xr 0) (2b)

in the multiparameter case when ® c Rk,
The following conditions were essentially introduced by Cramér [18, p. 500-501].
Regularity conditions (Cramér): single-parameter case.
In the notations of Egs. (2a) and (2b):

1. f (x,0), f(x, 1) exist fqr all (x, 1) aI}_d there exists a nonnegative function g(x) with
f g < oo such that |f(x, £)| and |f (x, t)| are bounded above by g(x) for all (x, 1).
2. There exist nonnegative functions H(x, 6p) and ¢(¢) such that

sup [iCx, ) —1(x,60)| < H(x,6p)¢(e),
[t—6p|<e

where li{ns_)o ¢(e) = 0and E[H (X, 6y)] < oo.
3. 0 < —E[(X,60)] = I(6y) < oo.

By dominated convergence, Condition 1 allows differentiation of [ f(x, #) dx twice with
respect to 6 under the integral. Since [ f(x,6) = 1 for all 9, we have

d .
0= %/f(x,e) dx|g=g, =/f(x,90) dx

= / I(x, 60)f (x, 60) dx = E[i(X, 6p)], and

a2 ..
0= W/f(x,@) dx|g—g, =/f(x,60) dx

= Eli(X, 60)] + EL(X, 6p)}*1.
Thus
E[i(X, 6p)] = 0 and I(6p) = E[-I(X, 6p)] = Var((X, 6)). (3a)

Regularity conditions in the multiparameter case: Condition 1 should hold for f;(x, £) and
frs(x, 1) for all (x, ) and for all 7 and s, Condition 2 should hold forlys(x, ) for all 7 and s, and
in Condition 3 we need all elements of the information matrix I (8y) = ((I;s(0p))) to exist and
1(6p) to be positive definite.

By the same argument as in the single-parameter case, it follows from Condition 1 by
dominated convergence, that

Eli; (X, 69)] = 0 and
Irs(60) = E[rs(X, 6)] = Covir(X, 6p),Ls(X, 69)) 3b)

for all r and s.
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Theorem 7.1.1. Under regularity Condition 1, the MLE én is consistent (ie, én —P> 6y as
n— o0o).

Proof. As shown in Section 5.5.1, the identifiably condition implies that E [/(X, #)] has a
unique maximum at ¢ = 6. In the single-parameter case, we therefore have for any § > 0

E[I(X, 60)] > max{E[/(X, 6y — 8], E[I(X, 6p + 8)1}.
Hence for a given § > 0, there exists ¢ > 0 such that

E[I(X,0)] — E[I(X, )] > 2¢ for ¢ =6y £ 6.

Since n=! Y I(X;, 1) £ E[I(X, 1)] for all ¢, it follows that

nlLrIgoP[n’l 31X, 60) - 010G, 1) > s] —1 fort=0y=+s.
But i(x, 1) exist in a neighborhood of 6y, so with probability tending to 1 as n — oo, the
equation

n
gn(®) =n"13"10G,0 =0

i=1
has a solution in the intervals (6p — 8, 6o + §) for arbitrary § > 0; that is, there is a sequence
of solutions {6} of the equation g,(f) = 0 needed for (1) converges to 6y in probability as

n — oo. The MLE is consistent in this sense.

In the multiparameter case, we modify the above proof by replacing 6o 46§ with S(6y, 8) =
{t: |t — 6p]l < 8} and argue in the same way, assuming that the regularity conditions hold.
O
Theorem 7.1.2 (Asymptotic Normality of MLEs: Single-Parameter Case). Under reg-

ularity Conditions 1, 2, 3, the MLE 6, is asymptotically normal (ie, ~/n(, — 6o) £
N(0,1/1(60))).

Proof. Let {#,} be the sequence described in the proof of Theorem 7.1.1 with 8, = 6y +
op(1) and 3", I(X;, 6,) = 0. Then

n n n
0=n"Y23"10, 0n) = V21X, 60) + V10 — B)n ! Z'l'(xi,én),
i=1 i=1 i=1

where 8,, = 6y + A(én —6p),0 <X <1.Hence

n—1/2 Zl’.lzl l(Xi,eo)
_n,1 Z?:l.l.(xi’ én)
n-1/2 Z;l:li(Xi,Qo)

- - . 4)
—n= LY U(X;, 600) + 1 L Rn(X;)

ﬁ(én - 90) =
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On the right-hand side of this expression, the numerator n-1/2 Z?Zli(Xi, 6o) AN ((0, I(60))
since l(X;,00), i = 1,2,... are iid with mean 0 and variance I(9p) by Eq. (3a), while in the
denominator,

n
— n7 VX, 60) S E-IX, 00)] = 16
i=1
Finally,
|Rn(X)| = [(X;, 60 + 1On — 60)) —1(X;, 60)]

< sup X0 —10G,00) < ¢(I6n — 6D H(X;, 6p),
16" —60|<|6n—00|

by Condition 3, so
~ n
< ¢(0n — o1 Y " H(X;, 6p)
i=1

= op(D{O(1) + 0p(1)} = op(1),

n
n by Ru(Xp)
i=1

since |én — 6ol = op(1) implies (/’(|én —6o)) = op(1) and n! Z;Ll H(X;, 00) = E[H(X, 6p)] +
op(1) = O(1) + op(1). Putting all this together in Eq. (4), we see that

n 1230 1,60 ¢

0y, — ) = N(0,1/I6p)).
V/1l6n = o) {G0) + op(D] +op( VO 1/10)

O

Suppose a sequence of unbiased estimators T;; = T;(Xj,...,Xn) of 6y has Var[T;;] =

1/{nl(6p)} which is the Cramér-Rao lower bound for unbiased estimators (under regularity
conditions). If for a sequence of unbiased estimators, we define

C-R Lower Bound _ 1/{nl(6p)}
Var[Ty] = Var[Ty]

en(Ty) =

as the efficiency of Ty, then T, described above has efficiency 1.

The large sample analog of this is to make comparison among all consistent estimators
in terms of their asymptotic variance. Since the MLE én has variance 1/{nl(6p)} in an
asymptotic sense, we can say that the asymptotic efficiency of the MLE is 1, or simply that
the MLE is asymptotically efficient. However, the justification of the last statement needs
much deeper analysis as will be seen later.

Definition 7.1.1. Any estimator Ty, with v/7i(T, — 60) - N(0,1/I1(6)) is said to be a best
asymptotically normal (BAN) estimator. (This is because of asymptotic normality and the
property of asymptotic efficiency.)
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Finding a BAN Estimator by the Newton-Raphson Method

In some situations, the likelihood equation does not have a closed form solution, so we
cannot obtain the MLE én explicitly. However, in such a case, we can often find an estimator
which is consistent. Starting with such an estimator On0 = 60 + op(1) as an initial estimator
we can use the Newton-Raphson method. After one iteration, we have

n LY 10X, no)

é 1= é o+ = = .
BT 1y 0(XG, 6n0)

By argument given in the course of the proof of Theorem 7.1.2, it can be shown that if
Ty, = 6p+o0p(1), then ‘n*l YLK, T) — Y1, 90)‘ = op(1). Since B9 = 6+ 0p(1),
we then have

n n n
0=n"1"1G,0n) = n1 Y 106G, 0p0) + O — Bpo)n 1Y _1(X;, 6n0)
i=1 i=1 i=1
+0p(1)Gn — bpo),
so that
n! Z?:ll'(xi, Ono)

On = 0,0 + P 4 op(W)n — Ono) = 031 + 0p(1)Bn — Op0).
—n—1 er-l:ll(Xi,Qno)

Hence
V1l — 60) = Vnlbn — 6p) + op()N1Gn — Opo) = V/nOn — 6p) + op(1)

under additional condition that «/72(6;, — 6,0) = Op(1) (ie, 6o — 6o = Op(n~'/2)). In such a
case, «/11(0n1 — 6p) has the same asymptotic distribution as that of Jﬁ(én — 0p), SO By is a
BAN estimator.

In the multiparameter case, 8 and ¢ are k-dim column vectors with 6y, and ¢, as their
rth coordinates, and

I, =G 0,.. L 0), lxt) = sk 1).
By regularity conditions, E[l}(X ,00)] = 0 and
E[Ir5(X,80)] = Covlir(X, 8¢),i5(X, 00)] = Irs(80)
as shown in Eq. (3b). In matrix notation,
E[i(X,80)] = 0 and E[—({5(X, 00))] = (Urs(00))) = I(8).

Let

n
Anr =172 31 (X;,00) and A} = (Apy, .., Apg).
i=1

ThenAn = n~2 " i(X;,00) 5 Ni(0, I00)).
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Next let Bys(t) = —n~ ! Y7, Is(X;, ). Then

n
Bu(®) = (Burs(@) = -1~ ' 3 (s, 1) 5 —El(lrs (X, )],
i=1

By Condition 2, arguing in the same manner as in the single-parameter case, we see that
T, = 69 + op(1) implies B, (T,;) = B, (o) + op(1). [For vectors and matrices, the op(1) and
Op(1) notations apply to each coordinate of the vectors and each entry of the matrices.]

By WLLN, we now have B, (T;) = I(0o) + op(1) if T;, = 69 + op(1).

Theorem 7.1.3 (Asymptotic Normality of MLEs: Multiparameter Case). Under reg-
ularity Conditions 1, 2, 3, the MLE én is asymptotically normal (ie, Jﬁ(én — 09) £>
Ni(0,1(69)71)). A

Proof. The MLE 6, of 6 is the solution of the k equations

n
> X800 =0, r=1,..k
i=1

Expanding, as in the single-parameter case,

n
0=n"1/2 Zir(Xi,én)
i=1

n n k
=n V230X, 00) + n 2" " (6ns — 009)rs (X, 00 + A6 — 09))

i=1 i=1s=1

n
=n"12Y " 1r(X;,00)
i=1

k n
- Z n'/? (6ns — 905)”71 Z{—Z.rs(Xi, 0o + )‘(é" —00))}

s=1 i=1

k
= Anr — Z nl/z(éns — 0os)Bnrs(0¢ + )»(én —0p), 0=<ic<l1,
s=1
k A
ie, Z nl/z(éns — 005)Brrs0g + 100 —00)) =Apr, T=1,...,k.

s=1

Putting these k equations together in matrix notation, we get
Bu(6o + A0 — 00))v/n@Bn — 69) = Ay, and hence
Vn@n —80) = Bn(®o + A6, — 00)) ' An

= [I(00) + op(1)]'An 5 10¢)"'W, where W ~ N;(0,1(8¢)).
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Now consider the situation where the likelihood equations do not have a closed
form solution. Here again, as in the single-parameter case, we use the Newton-Raphson
method, starting with an initial estimator 6,9 to calculate the next iterate 6,; by the
formula

n
0~n1 =0n + Bn(ono)_ln_1 Zl(Xiv0n0)~
i=1

If the initial estimator @ no is 4/n -consistent, then ] »1 would be a BAN estimator.
Remark 7.1.1. We have seen that under some regularity conditions on {f(x,0),0 € ©},
the likelihood equation based on iid observations on f(x, 6p) has a consistent sequence of

solutions 8, of 6 if fy is an interior point of ® and for such a sequence, v/71(6, — o) L4
N(0,1/1(6p)). However, these are local properties of the likelihood function, and such a
sequence of solutions of the likelihood equation need not be the sequence of actual MLEs.
On the other hand, globally, under another set of regularity conditions (due to Wald [27]),
the actual MLE 6, converges almost surely to 6 (strong consistency). There is another
aspect of the results about 4, discussed above. Due to the fact that the asymptotic variance
of 8, is the same as the information lower bound of an unbiased estimator, some sort of

asymptotic efficiency is suggested. Is it true that if /n(T, — 6o) £> N(0, V(8p)) for some
estimator Ty, then V(6g) > 1/1(6p)?

The following examples illustrate how each of these properties of the MLE can be
violated. In each of these examples, we describe f(x,0) from which iid observations
Xi, ..., Xy yield 6, or 0y,. Example 7.1.2(a) is of a different nature.

Example 7.1.1. MLE is not asymptotically normal. Let f(x, 8) = I¢)(x). Here the MLE
On = Xn:n = max(Xy, . .., X,) and

Py[n(@ — Xn:n) < t]—>1 — exp(—t/6) as n — oo.

(See Example 7.1.4)
Example 7.1.2 (MLE Is Not Consistent).

(a) Neyman and Scott [28]
Let (X;, Y;),i=1,2,...beindependent with (Xj, Y;) ~ Na((u;, ©1), o2I). The parameter
of interest is 02 which is to be estimated, while u1, 42 . . . are nuisance parameters.
The log likelihood based on (X1, Y1), ..., (Xu, Yy) is

n
logL = — nflog27 +logo?] — (26271 Y [(X; — up)? + (V; — py)?]

i=1

n
= — nflog2m +logo?] — (4o®) ™1 Y 122 + 4{0G + Y /2 — uih?),
i=1
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(b)

(c)

where Z; = X; — Y;. Obviously, the MLE for each p; is /i; = (X; + ¥;)/2 and it follows
that the MLE of 0% is 62 = (4n)~! 31| Z2. Now the Z;s are iid N(0, 20), so that

. . . .o P
2n)~1 Y%, Z2is a consistent estimator of 2. Hence 62 — ¢2/2.

Basu [29]
Let A be the set of all rational numbers in [0, 1] and B any (known) countable set of
irrational numbers in [0, 1]. The iid observations (X1, ..., X};) are 0-1 valued rv’s which

are Bernoulli(®) for & € A and Bernoulli(1 — 0) for 6 € B. We
therefore find

M = max92Xi(1 — 9)"2Xi = max L(0) and
6eA 6eA

M, = max(1 — 6)=%ig"=2Xi — max L(9).
0eB 6eB

Thus the MLE of 9 is
4, — largmaxpeq X Xi(1 —o)"=2XXi  if My > M»
"7 largmaxgep(l — 0) X2 Xigh=2XXi  if My < My,
taking either one if M; = M.
Now maxyeo,1] QZXi(l — Q)n—ZX- = (Z xi/n)ZXl(l — ZXi/n))n_ZXi and the
maximizer ) X;/n € Abecause it is rational. Hence

M; = maxL(9) = max L(0) > maxL(9) = Mo.
0eA 6¢€[0,1] 6eB

A A P . A P . .
Thus 6, =Y X;/n.Butg, — 0 if0 € Aand 6, — 1 — 6 if 6 € B, and is therefore
inconsistent. So far we have not used the fact that B is countable. However, when B is
countable, one can construct a consistent estimator.

Ferguson [30]
Let
f,0)=10-0)fix,0)+0f2(x,0), 66 =]0,1],
where
1 [x — 0]
filx,0) = @[l - W]I[e—sw),ew(e)](x)

is a triangular density with base [0 — §(0), 6 + §(6)] and height §(9), and

fo(x,6) = (1/2)]j-1,1;(x) is a uniform pdf on [—1, 1]. The function §(0) is a continuous
decreasing function of6 on 0 < 0 < 1withé(0) =1and0 <80) <1—-6.AsH
increases from 0 to 1, the triangle’s base in fj (x, 6) becomes shorter and shorter, its
height becomes larger and larger, and it receives less and less weight. In this way,
f(x, 0) continuously changes from the triangular to the rectangular density. Now
suppose §(0) — 0as & — 1 at a sufficiently fast rate so that

n-! log[(1 — Xj:n) /8 (Xi:n)] — oo with probability 1 for & = 0 (triangular case) and
hence for all 8. Then the MLE 4, &3 1, whatever the true value 6y < [0, 1]

may be.
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Remark 7.1.2 (Super Efficiency). The MLE 6, has asymptotic variance 1/I(6p). The
possibility of estimators with asymptotic variance V(6p) < 1/1(6p) will be discussed in
Section 7.1.2, Example 7.1.7.

Example 7.1.3. Let (X, ..., X;) be arandom sample from Cauchy(6, 1) with pdf

1

)= ——
T8 = o

Find a BAN estimator of § and its asymptotic distribution.
Solution. Here

I(x,0) =logf(x,0) = —lognm —log[l + (x — 9)2],

Lo 2x—0) s 2x—0)% —1]
l(.x, 0) = m and l(.x, 0) = 7[1 n (x — 9)2]2 .
Then
) o0 4(x — 0)2 dx
16 = E"[Z (X'e)] - /_oo 1+ (c— 027 71+ (x — 6)2]

8 [ y2d
=—f A AV
wJo A4y

Start with initial estimator 6,0 = Sample Median = Xy.(»/2] which is /7-consistent (as

will be shown in Chapter 8). Then a BAN estimator is

Y IXG, o)
(X, 0n0))

- O 20X — Gp0)? 5| 2% — 0n0)® — 1)
= 9 + R R—— T 5~ 9.9 |
o ;[1 + (X; — 6n0)? ; {1+ (X; — 0r0)2)?

énl = énO +

and 7@ — 60) 5 N(0,2).

Example 7.1.4. Let (X, ..., X}) be a random sample from Unif (0, 6) with pdf f(x,6) =
6~ 1j0,6)(x), & > 0. Find the MLE of § and its asymptotic distribution.

Solution. Here

n
0 6 < Xp:p = max(Xy, ..., X
LO) =[]0 = {9_n < Xnin . Xn'(n-l n)
i=1 ’

It is easy to see that L(6) has a unique maximum at Xj;.,,. Hence the MLE 0, = Xp:n. To find
the distribution of 6,,, note that

/0" 0<tr<6
1 t>60 "’

P[n(6 —6p) < t]=Pglln > 6 — t/n] =1 — Pyl < 0 — t/n]

_ n n
=1—<w> =1—<1—i> —1—e /0,
0 no

P[én§t]=P9[Xl~§t,i=1,...,n]={ and
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Example 7.1.5. Let X1, ..., X, beiid Ni(u, ¥) where X is positive definite. Find the MLE
of (u, X).

Solution. The MLEs for p and ¥ are X = n ! Y7, X;and £ = n ' Y7 (X; — X)
X; - X7 A proof is given later in the chapter on multivariate analysis.

Example 7.1.6. Let

f(x,0) = CO) exp[QO)T(X)]r(x), 6 €O

be a pdf/pmf belonging to the single-parameter exponential family, where ® =
{6: [exp[QO)T(x)]r(x) dx < oo}. Find the MLE of 6 from a random sample (Xi,...,X,)
from f(x, 9).

Solution. The log-likelihood and the likelihood equation are

n n
1(X,0) = nlog C0) + Q) > T(Xy) + Y _logr(X;), and
i=1 i=1

n
IX,6) = n(C'©)/C©6) + Q0) Z TX;) =0.
i=1
The MLE 6, is the solution of

CO) Iy
- CO0® = n ;T(X,).

We can now find the MLEs of 6 for some distributions as special cases of this result.

(a) Bernoulli() with
fx,0)= %1 — 9)1795 =(1-6) exp|:xlog<10%9>:|, x=0,1.

Here
c')

0
CO)=1-90, QO) = log(m>, and T(x) = x, so — cCOQ®)

’

and the likelihood equationis = n~! "7 | X; = X. Thus the MLE of 6 is §,, = X.
(b) Poisson(p) with

fx,0) =exp(—0)6*/x!, x=0,1,....

Here

. ')
— 9 = = T o000
COY=e", Q) =logh, T(x) =x, 50— covmGy =0

and the likelihood equationis § = n~! "I | X; = X. Thus the MLE of 6 is §,, = X.
(c) Gammal(a,6) with

fx,0)= exp[—x/@]x""l, x> 0.

o
T (@)06?
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Here

C'©)

1
ClO) = ———, QB) =-1/9, T(x) = x, so — W =

, ad,
I' ()%

and the likelihood equation is w0 = n~! "% | X; = X. Thus the MLE of 6 is §,, = X /a.

7.1.1 Almost Sure Convergence (Strong Consistency) of MLEs

Let 6p be the true value of the unknown parameter 6 and all probability statements are with
respect to 6p.

Notations
(i) Foreveryd € ©,letNy;={g: ¢ — 0| < j~!} be a decreasing sequence of
neighborhoods of & converging to {6}, and let

Z(00, Ny,j) = ‘pg{]f loglf (X, 00)/f (X, )],  Z(6p,0) = loglf (X, 60)/f (X, 0)].
0.

(i) Let Ny = {0: 16|l > j}, which can be thought of as a decreasing sequence of
neighborhoods of co, converging to ¢, and let

Z(00, Noo,j) = inf [f(X,00)/f(X, ¢)].
‘PENoo,j

We assume that the following Regularity Conditions (Wald) hold

1. The parameter space © is a closed subset of R,
2. Identifiability Condition. For 6 # 6y, {x: f(x,6) # f(x, 6p)} has positive probability
under 6.
3. (a) Forall 9, limg, ¢ f(x,6,) = f(x,0) for all x.
(b) limy,—, o f(x,6,) = 0 for all x.
4. (a) Foreachd, I(6y,8) = E[Z(60,0)] exists.
(b) Foreacho, 160, Ny j) = E[Z(60, Ny ,j)] > —oo for some j = jo.
(0) 160, No,j) = E[Z (60, Neo j)] > —oc for some j = jo.

Theorem 7.1.4 (Wald). Under Conditions 1-4, én &3 6.

The proof will be accomplished by first considering the case of finite ® = {0, 61, . . ., 6;}
and then extending to the case of © being an arbitrary closed subset of R¥.

We start with the following lemma.

Lemma7.1.1. 1(6y,0) > 0 for all 0 # 6.

This result has already been proved in Section 5.5.1, using the Identifiability Condition.



190 THEORY AND METHODS OF STATISTICS

In the case of finite ®, we now have

.
Plon # 6pio] < Zp[én =06;i0]

—

~

=

-

n n
P{n1 Zlogf(Xi, 0o) < nl Zlogf(Xi,Qj) i.o.:|

1 i=1 i=1

J

M-

n
P{nl > Z;(60,6) <0 i.o.:| =0

1 i=1

J

by SLLN, because E[Z (00,01 = 1(60,60) > 0 for all j by Lemma 7.1.1. This proves the
theorem for finite ©.

For the case of ® being an arbitrary closed subset of R¥, we need to show that for an
arbitrary neighborhood Ny of 6y, P[0, ¢ Npi.o.] = 0. To extend the proof for the finite case
to this generality, we shall cover ® — Nj by a finite collection of sets S, . . ., S; such that

160, S)) = ELZ(6, S))] = E[ inf log{f (X, 6)/f (X, ga)}} >0
PESj

forj=1,...,r. It then follows that

P[6y, ¢ Npi.o] < P[f,, € Sj io.forsomej=1,...,1]

.
< ZP[én € Sji.ol
=

IA
™M~
.

B n n
nl Zlogf(Xi, 6y) < sup nl Zlogf(Xi, ) i.o.:|

i=1 (pESj i=1

~.
Il
—

I
™M~
o

B n
inf n1Y " log{f(X;, 60)/f (X;, @)} < 0 i.o.:|

_(pES' i=1

~.
Il
—

IA
™M~
.

n
n-1 Z lnsf: log{f (X;,00)/f (X5, )} <0 10:|
i=1 9

~.
Il
—

I
™M~
o

B n
n 1> 760, 8) < 0 i.o.:| =0
i=1

~.
Il
—_

by SLLN because E[Z (0, S;)] > 0forj=1,...,T.
We now construct Sy, . . ., Sy with the above-mentioned properties.
Lemma7.1.2.

(a) Foreach® # 6y, there is a neighborhood Ny j such that I(0o, Ny j) = E[Z (60, Ng ;)] > 0.
(b) There exists a neighborhood N, j of oo such that 1(6o, Noo,j) = E[Z (60, Noo,j)] > 0.
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Proof. Fix 6 # 6 and let
gj(x)={ inf log(f(x,90)/f(x'<p))}f(x'90)
€Ny, j

— { inf log(f (x, 80)/f (x, 9)) }f(x, o)
9ENp j

for j > jo, where jo is chosen by Condition 4(b). Since {Np,;} is decreasing, {g;} is increasing

and are clearly nonnegative for j > jo. Moreover, by Condition 3(a),

jlim gj(0):=gx) = {log(f (x, 60) /f (x, 0)) } f (x, 6p)
— 00

—{ inf log(f(x,90)/f(X,§0))}f(x'90)
(pENg,jO

for all x. Hence by the Monotone Convergence Theorem,

lim E[Z (69, Np j)] — E[Z(60, Np,j,)] = lim / gj(x) dx = / g(x) dx
]—)OO ]—)OO
= E[Z(6p, 0)]1 — E[Z(0p, Ny j,)]1.
Since E[Z (6, Ny j,)] > —o0, we cancel it from both sides of the above equality to obtain

lim E[Z(Q(),Ng'j)] = E[Z(6p,0)] > O,
j—>o0

so that E[Z (6, Nyl >0 for sufficiently large j . This proves (a).

The proof of (b) is exactly the same, using Conditions 4(c) and 3(b) instead of Condi-
tions 4(b) and 3(a). O

Proof of Theorem 7.1.4. First choose a set Neo,j such that E[Z(00, No,j)] > 0. Now
consider ® N Ng N Ngo’j* (for an arbitrary neighborhood Ny of 6p), which is a closed and
bounded set in R¥ and therefore has the Heine-Borel property (compactness) of having a
subcover for every open cover.

Now for every 6 € ® N N§ N Ngo,j*, choose Ny j such that E[Z(6p, Ny ;)] > 0. These sets
Ny,jforo e ©n Ng N Ngo’j* form an open cover of ® N N§ N Ngo,j* and by the Heine-Borel
property, there is a finite subcover Ny, ;,, ..., Ng,_, j,_, - Let

S1 = Ny,

. -’Sr—l = Ngr—l and Sr = Noo,j*'

g1 Jr-1

Then Sy, ..., S, cover Ng and E[Z (0, S >0,j=1,...,r, and the theorem is proved by the
argument given above. O

7.1.2 Asymptotic Efficiency of MLE

What is the connection between the information bound 1/I(0) = 1/E, [iZ(X)] for the
variance of an unbiased estimator of 6 and the fact that the MLE of 6,, of 8 has the
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asymptotic distribution Jﬁ(én —0) £> N(0,1/1(6))? [For simplicity, we are considering the
case of a 1-dim parameter 6.]
We have seen that

(i) under regularity conditions on the pdf/pmf and restrictions on estimators,
nVarg[T,] > 1/1(0) for all unbiased estimators T, of #, and

(ii) the MLE 6, of 6 has the property: NG £ N(0,1/1(6)).

From (i) and (ii), one may be tempted to hope that if \/n(T;,, — 0) £ & under f(-,0),
then & must be at least as much dispersed as N(0,1/1(¢)) and in particular, 62(f) =
Ey [592] > 1/1(9) if & is Gaussian. Can there be a situation in which Ey [592] < 1/1(0) 2 If
so, then such an estimator would be called “superefficient.” The following example shows
that superefficient estimators do exist.

Example 7.1.7 (Hodges). Let Xi,..., Xy, ... be iid as N, 1). Then the MLE Op = X, =

n 13" Xjand Z = /n(X, — 6) D N(0, 1). Also the information I(8) = 1. Nowfor 0 < a <
1, let

Xn if |Xn| > n71/4
n= _ _
aXy, if|Xn| < n V4.

Then /n(T;,, — 0) is distributed as Z if | Z + «/n6| > n'/* and as aZ + (a — 1)/n6 otherwise.
From this it follows that /n(T, — 6) £> N(0,V(#)), where V(0) = 1if0 £ 0and V(¥) = a? <
1if 6 = 0. This defines a superefficient estimator (see [31]).

Let us examine the behavior of {T},} in the above example under {P,,} where 6,, = h//n.
In the above proof, taking 6 = 6,, we have

AT — 6m) 2 ZINZ + h| > nM*) + (aZ + (a— DWINZ + hl < nV/4)
Y az+@a-Dh

Hence under {Py,}, v/n(Ty, — 6p) £ N((a — 1)h, a?), although for 6 = 0, \/n(T, — 0) £
N(0, a?). Thus we have a situation in which the asymptotic distribution of /n(T, — 6p)
under {Py,} with 8, = h//n — 0as n — oo, depends not only on Py but actually on the
particular sequence {Py,} — Po.

Hdjek recognized this as the reason behind superefficiency and introduced the concept
of regular estimators (or more precisely, locally regular estimators at a particular 6p) to
prevent superefficiency.

Definition 7.1.2. A sequence of estimators {T} of 6 is regular at P = Py, if for every
sequence {P,} = {Py,} with 6, = 0y + h//n + o(1//n) for some h € R,

L(V/n(Ty — 6y)) — L(P) under {Pp},

where £(P) depends on P = Py, but not on the particular sequence {P,} (ie, not on h).
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Theorem 7.1.5 (Hdjek-Inagaki Decomposition Theorem) [See 67, 68]. Suppose that {T}
is a regular estimator of 6 at P = Py,. Then for every sequence 6, = 6y + h//n + o(1//n)
with h € R,

LTy — 6n)) — L(P) = N(0,1/I) x £1(P) under Pp,

where L1(P) depends only on P (ie, on 6y), but not on the particular sequence {6,}, and *
denotes convolution.

By this theorem, the asymptotic distribution of any regular estimator is more dispersed
than N(0, 1/1), which is the asymptotic distribution of the MLE. Thus the MLE is asymptot-
ically efficient among all regular estimators.

7.1.3 MLE of Parameters in a Multinomial Distribution

Consider a multinomial distribution in m classes with probability ni@),j=1,....,m for
the jth class, where 71 (), ..., 7, (-) are known functions of an unknown k-dim parameter
vector 0. Let ny, ..., n,; denote the observed frequencies in the m classes in a random
sample of size n. The following table summarizes this.

| Class | 1 || |+« | m | Total |
| Probability | 7@ | - | m@®) | - | mm@® | 1|
| Obs.frequency | ny | - | np | - | tm | |
Here the data consist of a random sample X = (X3, ..., X}) where the X;s are iid with

n
PIX; =ejl=f(ej,0) =7;0), j=1,...,mand n; = Y I[X; = ej],
i=1

ej being the m-dim jth coordinate vector. Hence

1 ami0)  70)

. ] ad
Ir(e;,0) = 3_9r logf(e;,0) = 3_9r lognj(()) = nj(()) %6, = 71j(0) , and
n n m . m
. ﬂrj(t) nj .
Sur(®) = IrXin8) =3 ) I1X; = ¢j] i > -
i=1 i=1j=1 7 Jj=1 ]
Thus the likelihood equations are
. UL ¥ .
Snr@n) =0, ie, Y ——,i@n) =0, r=1,...,k
j=1 T[j n

In a typical context, these equations would not have a closed form solution, so we obtain a
BAN estimator by the Newton-Raphson method. First note that

7rj(6)
7;(6)

P{l’,(X,()): i|=P9[X= =m0, j=1,...,m
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For 6 =0,

m

77,(00) 3 &

] .

Eg, lir(X, 80)] —]Zn,(oo) B0 =D _j00) = a—erjzlnjw) =0,
- = = =0

as it should be because Zj"il 7j(9) = 1 for all 6. Next,

Irs(89) = Covp, lir (X, 00),1s(X,00)] = Eg, lir (X, 80)is(X, 8)]
m
=Y 7j(00) {7 (00)/7j(B0)Hrtgj(B0) /7 (B0))
j=1

3

= 3" j(00)5j(00) /7 60). ©
1

If T, = 6p+o0p(1), then I;5(y) is estimated by I;5(T5), which can be used in place of By @0
in the Newton-Raphson formula.

7.2 Likelihood Ratio Test

The theory of hypothesis testing, discussed in Chapter 6, based on N-P Lemma for simple
Hy vs simple H; and extended to some composite Hy vs composite H; in exponential
families, also in the presence of nuisance parameters, using the Generalized N-P Lemma,
covered a limited range of problems. For testing a composite Hy: 6 € ©®g vs a composite
Hi: 0 € O in a general setting, we modify the likelihood ratio [T, f(X;, 01)/ [T, £ (X, 60)
based on X = (Xj,...,Xy) in the simple vs simple problem by replacing 6y and 6; by
6; = MLE of 6 restricted to @;, i = 0, 1, respectively, or equivalently by
supge, [1i1 /X0 0)  f(X;, )

A, = _ 4O (6a)
" supgeo [T F X0 0) £ 0n)

where 6y, is the restricted MLE in ®g and 6y, is the unrestricted MLE in the entire parameter
space ©® = R*. The null hypothesis Hj is rejected for small values of A, or equivalently, for
large values of

—2log Ap = 2[2 log f(X;, 6n) — 3 log f(Xl-,én)]. (6b)

This is known as the likelihood ratio test (LRT). The asymptotic properties of LRT will be
discussed in this section.

Hypothesis testing was discussed in Chapter 6, mostly within the very restricted
framework of exponential families of distributions. Here we take up the testing problem
again in much broader context. Let (X, ..., X;;) be a random sample from f(x, 8),6 € RE.

We now consider the problem of testing Hy: 8 € ©g vs Hi: 0 € R* — ©), where
Oy is a d-dim hyperplane in R¥ with d < k. Without loss of generality, let @) = {# =
(91,...,«9k)2 9d+1 == Qk = 0}.
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The Neyman-Pearson simple-vs-simple likelihood ratio would generalize to the
composite-vs-composite case as

supgco, [1i2, f(Xi, 0)

A¥ = ,
SUPgcgk_g, [ 121/ (Xi, 0)

and reject Hy if A* < critical value c. However, since determining the MLE of 6 restricted
to RF — @y causes complication, it is more convenient to modify the denominator and use
the test statistic

Su o n_ X,0 n Xvé
Poco, [ li=1 /X 0) — iz f&i A") asin Eq. (6a),

supgerk [T fXi0) T, £(X;,00)

n=

where én is the MLE of @ restricted to ©y, 5n is the unrestricted MLE of # based on
(Xi,...,Xn) and Hy is rejected if A, < critical value c. Clearly, A, = A}, < 1if6, RF —
and A, = 1 < A% if0, € ©p. Thus A, is a nondecreasing function of A* and therefore,
rejecting Hy for small values of A is equivalent to rejecting Hy for small values of A3.

We are thus led to the LRT: Reject Hy for small values of A, defined above, or

equivalently, reject Hy for large values of

n n
—2log Ap = 2[2 1X:,60) = l(X,-,én):| as in Eq. (6b).
i=1 i=1

To construct a large-sample test of Hy at a prescribed level of significance, we need the
asymptotic distribution of —2log A, under Hp. Without loss of generality, let the true
parameter g = 0 (ie, 61 = --- = 6y = 0). Since 67,1 is the MLE of 0 restricted to @y,
we must pave 67n = O, - ..,énd, 0,...,0). y

Thus 8, — 00 = On1, - - -, 0na Opasts - - 0nx) and 8, — 0o = @1, . .., 0,4,0, ...,0).

We use the notations of Section 5.2.3 and assume that the regularity conditions
introduced for proving Theorem 7.1.2 hold. We also write

iy, 0T = (1. 0), ... 1400, 00), iy = G . O,
e - fyxe - Iy
I (x,0) = : © |and Iy =| L,
'l.d1 (x,0) - 'l.dd(x,O) Iy - Iy

that is, I (x, 8) and 6,4 are d-dim vectors consisting of the first d elements ofI(x, #) and
0n, respectlvely, andl(d (x,0) and I 4 are d x d matrices consisting of the upper left-hand
elements ofl(x, ) and I, respectively.

Theorem 7.2.1. Under regularity Conditions 1, 2, 3 (multiparameter), —2log A;, £>
2
Xk—d-
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Proof. Expanding Y, I(X;,6,,) and Y7, I(X;,#,) around 8 = 0, we have

n n n
DU, 6m) =) 106,00 + (Vb)Y HX;, 0)

i=1 i=1 i=1

i=1

n
+(1/2) (ﬁén)T{nl > 1X;,0) + Ry } (Vnbn)

n n
=D 106,00 + (Vi) T n 12 Y 1K, 0) — (1/2)(Vnbn) TT0) (Vb n) + 0p(1),
i=1 i=1

treating the remainder term Rj, using Condition 2 as in Section 7.1.1.
Similarly,

n n n
D 106G, 00) =) 106G, 0) + (Vb ) TS Nl (X, 0)
i=1 i=1 i=1

n
+(1/2) (V78 ) T { nt Y g (X;,0) + Ry ] W1 (a)

i=1

n n
= 103, 0) + (V1bq) 2y L) (X, 0)
i=1 i=1

— (1/2)(W718 @) " 1) 0) (Vb)) + 0p(1).

In the above expression, we now substitute (as seen in the proof of Theorem 7.1.3),
~ ~ n .
by = /nn — 89) = [10) + op()]~'n~1/2 Y "1(X;, 0) + 0p(1), and similarly
i=1

n
V) = V10 i) — 00) = gy (0) + op(W] 012 14 (X;,0) + 0p(1)
i=1

to obtain after simplification,

n n
—2log Ap = 2{2 l(X,-,én) — Z l(Xirén):|

i=1 i=1

n r n
= {nl/Z > i, 0); 10)7! {nl/z Y i, 0)}

i=1 i=1

T

n n

- {”_1/2 > L X, 0 ; Igy@7! {”_1/2 2 %0 ; +op(l).
i=1 i=1
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By multivariate CLT,

n n
237X, 00 5 ¥ ~ Np(0,10) and 2 3 i (X, 0 5 ¥ g,
i=1 i=1

where Y 4 is the d-dim random vector consisting of the first d coordinates of Y. Hence
L _ _
—2logAn 5 YTIO) 'Y = Y[ 11507 'Y ).

Using a suitable linear transformation, Y"I(0) 'Y and Y {,1(4)(0)~'Y ) can be simultane-
ously reduced to Zle Zl.2 and Z?:l Zl.z, respectively, where 71, . . ., Z are iid N(0, 1). Thus

k d k
c
—2logAn 5 Y ZF-3"ZF= > ZF~xE 4
i=1 i=1 i=d+1

o
An important property, essential for all desirable tests, is that the probability of type
II error of the test at any level « tends to 0 (ie, the power tends to 1), as n — oo for all
departures from the null hypothesis. This property of a test is called Consistency.
Theorem 7.2.2. The LRT is consistent, ie, for ¢ > 0,

nli)ngoPgo[—ZlogAn <c]=0if0y ¢ O,

under regularity conditions (Cramér and Wald).
Proof. Suppose that the true 6y ¢ ©¢. Then arguing as in the proof of Theorem 7.2.1

- . -
—2logAp =—2| Y 1X;,6,) — Y UX;,60)
i=1 i=1

— n n b
+2] 31X, 60 - > 10X;,600)
i=1 i=1

— n n =
_i:l i=1 .

T
n n
+ {n_l/z Zi(xi,oo)] I(oo)‘l{n‘l/zzi(xi”’o)} +¥n

i=1 i=1
n - n
i=—2| ) IX;0n) — ) UX;,00) | + b5+ Yn,
i=1 i=1
where Y;, = op(1).

Since

(i) PIXn+ Y+ b2 <]l <PXp+ Yy <cl <P[Xy < ¢+ |Yal] < P[Xy < 2¢]+ P[|Ya] > cl,
(ii) lim;,—.o P[X; <c] =0forallc > 0, and
(i) Y, =op(1)



198 THEORY AND METHODS OF STATISTICS

together imply lim,_, o P[Xy, + Yy, + b% < c] = 0 for all ¢ > 0, it is enough to show that for
allc >0,

n n
Jlim Py, [— D UK, 00) + Y 1X;,00) < c:|

i=1 i=1

_ -1 _
= lim Py, |:0g1f n Zlog{f(Xl, 00)/f(X;,0)} < c/ni| =
to prove the theorem.

Referring to the notations introduced in Section 7.1.1 and the proof of Theorem 7.1.4,
define iid rv’s

Zi(09,S) = ;relglog{f(Xi, 00)/fX;,0)}, i=1,2,...

for any set S c R¥ so that 6 ¢ S. Then under Wald’s conditions, there exist a finite number
of sets Sp, S1, . . ., Sy such that

(i) © C U]LO Sj and (ii) for 8¢ ¢ ©¢, 1(0, Sj) = Eg,[Z(00, Sj)] >0,j=0,...,r
We demonstrate the existence of such sets by the following steps

(a) Choose a neighborhood N+ of 0o such that
E[Z(OO,NOO,]'* N Og)] > E[Z(OO,NOOJ-*)] > 0.

(b) Ngo,j* N Oy is a closed bounded set in R¥ and therefore, has the Heine-Borel property
of having a finite subcover for every open cover.

(c) Foreveryf e Ngo,j* N ©, choose Ny j such that E[Z(0o, Ny ;)] > 0. These sets form an
open cover of Ny, j« N O, from which we now choose a finite subcover
Npyji» -+ No,j,-

(d) Call these sets S; = Ny, j;,...,Sr = Ny, j, and let So = N j» N @g. Then Sy, S1,..., S¢
cover ©g and satisfy (i) and (ii) above. The choice of Noo,]* and Nj ; for every
0 e N, N6 with these properties is ensured by Wald’s regularity conditions.

It now follows that

01€nf n 1Zlog{f(Xl,«‘)o)/f(Xl,6’)}

> min inf n71Y 1 X;, 0 X:, 0
2 min_ inf n iX;Og{f(z 0)/f(X;, 0)}

- -1 f log{f (X;, 00)/f (X;, 8)} = 1Y Zi6o, S
= min n Z:m og{f (X;,00)/f (X, 0)) JBin ; ©0, S))-
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Thus

n
Py, |:0inf n by " loglf (X, 00) /f (X, 0)} < c/ni|
i=1

ISON

n r n
=Py, Lrg_ign—l > Zi80,Sp < c/ni| <Y Py, {n—l > Zi80,Sp) < c/ni|,

i=1 Jj=0 i=1

which tends to 0 as n — oo, because

n
n1Y " Zi(80,S)) % Egy[Z(80, )] = 160, S)) > 0.

i=1
o
Example 7.2.1 (Homogeneity of Exponential Distributions). Let (X;1,...,X,,), i =
1,..., k, be independent random samples from Exponential(®;), i = 1, ..., k, respectively.

Find the LRT for Hy: 6; = - - - = 63 against all possible departures from Hyp.
Solution. Let 6,; and 0, be, respectively, the unrestricted MLE and the restricted MLE
under Hy of ;. Then

k k
bpi = T; = T;/n; and Oy = T=ZT,' Zni, where
i=1 i=1
n;
T =Y Xj.
j=1
Now the LRT statistic is
k n; k n;
AN = 1_[ Hf(X,'j,@N) 1_[ Hf(X,-j,Om-)
i=1j=1 i=1j=1

[ 1 ; ko 5 k(6. \"
_ —T/01v:|/ =Ti/bni | — | |<_m)
= € e = = .
N I I AT

On i=1 Oni i=1 \ON

Since ém-/G_N = 1+ op(1) under Hp and since log(1 + Yny) = Yy — (1/2)Y]%,{1 + op(1)} if
Yn = op(1) , it follows that

k
—2log Ay = —2 ) _ n;log(6y;/0n)
i=1
k A~ _ A~ _
= 2 mil@i/Oy — 1) — (1/2)@i/By — D2(1 + 0p(D)]
i=1
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under Hy. It is easy to check that Zle n;(0ni/9n — 1) = 0. Hence

k
—2log Ay = Z[ni(ém- _ éN)Z/é]%,]{l +op()} 5 2,

i=1

under Hy by Theorem 7.2.1. Moreover, since \/ﬁi(éni —6)/6 AN (0,1) independently for
each i and since 6y = 6 + op(1), we can argue more directly, that

k
> [ — 00?163 )11+ 0p (1)
i=1

>

A g c
=Y nillpi — N)?/6% + 0p(1) > x_,.
i=1

Example 7.2.2 (Homogeneity of Multinomial Probabilities). Consider m mutually ex-
clusive and exhaustive categories and let

m
wi= (T, mm), i=1,...,k, n,-j>0and Z]Tij=l
=1

be the probability distributions over these categories in k populations. These probability
vectors are called multinomial probabilities. Let (n;1, ..., n;;,;) be the frequencies in the
m categories in independent random samples of sizes n;, i = 1,...,k, from these
populations. Find the LRT for Hy: m1 = --- = mj against all possible departures
from Hj.

Solution. The unrestricted MLEs and restricted MLEs under Hy of x; are

#i= @i, and 20 = @9, .., 7)),

. N . . k k
respectively, where 7;; = n;;/n; and ni‘]’. = noj/N, with ng; = > ;7. njjand N = ) ;. n;.
For notational convenience, we also let n; = Zj"il njj = njp. The LRT statistic can now be
written as

k k
Ay = [f s onim), 2D [ T i, i), 729
i=1 i=1

k m
=TT T@g/ap",

i=1j=1

canceling the multinomial coefficients from the numerator and denominator. Again, using
ﬁg/ﬁij = 1+ op(1) and the property of log(1 + Y) for ¥, = op(1) as in Example 7.1.1,
we have
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k m

—2logAn =-2) "> "n; log(ﬁ?j/ﬁij)
i=1j=1

k m 70— Ay 20— 7\
N J y
=233 mpdy ”nT—u/z) | {1+ 0p)

i=1 j:l iy

@) — #)?

= —222"10% — #) +ZZ”:0 g {1+ 0p(D)
i=1j=1 i=1j=1 ]
under H. Since Y5, nio(#)} — ftyj) = 0 for each j, and

k m (ﬁ-o-—ﬁij) ngj — (nionoj/N)Y?

Ty

(45 — (nignoj/N)?
(njpngj/N)

{1+ 0p(1)}

25
»

under Hy, we finally have

N (n,-oan/an L o,

7.3 Asymptotic Properties of MLE and LRT Based on
Independent Nonidentically Distributed Data

In this section, we shall briefly indicate the behavior of MLE and LRT when the observa-
tions are independent but nonidentically distributed.

Suppose that (Xi1,...,X1n,), Xo1,...,Xon,), -+, X1, - .., Xmn,,) are independent ran-
dom samples from distributions with pdf/pmf fi(x,0), ..., fin(x, @), respectively, and let
n = ny + --- + ny be the total sample size.

We assume that the regularity conditions stated earlier, hold for each {f;(x,8),0 € ©® C
R¥} and let

I 5(00) = B[ 15X, 00)],  Li(00) = (Uj1500)), j=1,...,m

Let 6, be the MLE of 8 based on the pooled data consisting of all Xj;, i = 1,...,n;,j =
1,...,m.

Ifm, ..., nm — ooinsuch away that nj/n — 1; > Oforallj (of course A1 +- - -+Am = 1),
and if I(0g) = Zj"il 1jI;(80) is positive definite (even if some of the individual I;(6o) is
singular), then

il —00) 5 W ~ NL(0,100) D).
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Asymptotic properties of the LRT discussed eatrlier for the iid case, also hold in the non-iid
case described above.

7.4 Frequency x?

An important class of hypothesis testing problems arises in the context of the multinomial

distribution Multi(n; 7y, ..., mm), where 7; > 0 with } 7; = 1 are the probabilities of a
random sample belonging to the classes (1, ..., m). The data consist of a random sample
(X1, ...,X,) where the X;’s are m-dim iid rv’s with

f(ej,n)=P(X,'=ej)=7tj, j=1...,m,

where e; is the m-dim vector with 1 at the jth coordinate and 0 for the rest of the
coordinates, and #7 = (ry, ..., 7). Asin Section 7.1.3, let

n
(nI) L] rnm)T = ZXL)
i=1

n
nj = ZI(X,- = e;) = observed frequency in the jth class.
i=1

For testing Ho: j = mjo, j = 1,...,m, with mjo > 0 with Zj"il mjo = 1, against all possible
alternatives satisfying these constraints, the test statistic
m 2
(n] — nnjo)
Ton = _, 7a
= = (7a)
j=1 J

known as the frequency x?, introduced by K. Pearson, is widely used. In many problems
of practical importance such as testing for independence in r x s contingency tables, the
null hypothesis value for the jth class is 7o 01, ..., 0k) where m19(), ..., Tmo(-) are known
functions of an unknown k-dim parameter 8 = (64, ..., 0:)T. The test statistic used to test
such a composite hypothesis Hi: = mjp@®),j=1,...,m for given functions no(-) =
(m100), ..., Tmo()T of an unknown @ € ® c R¥ against all possible alternatives is

[nj — nxj (0n)]2' 7b)

m
Tip = S
! ]:Zl njo @)
where 6, = @1, ...,0,07 is the MLE of @ = (61, ...,0,)7. In both the above problems,
we reject the respective null hypotheses if Ty, or T1, is too large. Our goal is to find the
asymptotic distribution of Ty, under Hy and of T7,, under H; so that the critical values co,
and c;,, for level « tests can be determined so that

Ppy[Ton > coo] ~ a and P [T, > C1o] = a,
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for large n. This will be accomplished in two steps:

1. Simplifying To, given by Eq. (7a) and T1, given by Eq. (7b) to forms more convenient
for asymptotics.
2. Deriving the asymptotic distributions of these simplified forms of Ty, and T15,.

The statistic To, is called the frequency x? because its null distribution follows the x?
distribution with m — 1 df and the statistic 71, also has a x 2 distribution but with m — k — 1
df. These asymptotic distributions will be derived in this section.

We first define some vectors and matrices which will be useful in handling Ty, and T15,.
In dealing with Toy, let

aj=JT0, 4" = @1, qm), Aq = diag((q)), A1/q = Ag" = diag((1/q))).
Then diag((rjp)) = Aé, mo = Agq, and under Hy,
E[X] =g = Agqand ¥ = E[X — no) X — o) 1 = AqU — qq") A4 ®)

after some simplification. Next let

n
Zn=n"Y2mny —nmo, ..., nm — name) T =n" Y2 Z(X,' — ).
i=1

Then

n
Zp=n"12)"X; - EX)) £ Z ~ Ny (0, %) under Hy. 9)
i=1

Lemma 7.4.1. Under Ho, Ton > UTU, where U ~ Ny (0,1 — qq7).
Proof. Using Eq. (8) Ty, can be written as

m m
Ton = Z{(ﬁqj)—l(nj - nnjo)]z - Z(l/q]?)[n—l/z(nj - nnjo)]z
j:l j:l

c
= (A1/gZn) (A1)qZn) = U U, 5 UTD,

where Uy, = Ay/¢Zy £> A1/gZ = U ~ Ny (0,1 — qq") , because the covariance matrix of U
iSAygX A1 g=1- qq” after some simplification. O

In dealing with T1,,, we continue to use the above notations with o (0¢) instead of rjo.
The problem with T3, is the presence of 0 » in both the numerator and the denominator.
Replacing 0 by 6y in the denominator is relatively easy and will be taken care at first.
Handling 6, in the numerator will take more work. We start with Ty, and after algebraic
re-arrangements, write
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m
Tin = Z[nj - nﬂjo(én)]z/(nﬂjo(én))
j=1
m ~
= D _[nj — nmjo@n))?/(nmjo@o)){1 — Ryj) := T, + Rn, where
j=1

m
Tf, = > [ — nmjo@n)1?/(nmjo(80)) and
1

* o T
(Rl < Ty max. [Ryj| = T5,0p(1),

because under regularity conditions, Tjo (én) — mjo(@0) = op(1). We shall now show that
17, 5 T} (to be determined), so that T},, = Op(1) which would imply R, = Op(1)op(1) =

op(1), proving that Ty, = T}, + 0p(1) 5 T?.
We now work on

m
Tf, = > _[nj — nrjg@n)1?/(nmjo 80))

j=1

N 2
ﬁ{nj —njp@0) @) — njo(oo)}
j=1

nnjo(oo) 1/Tl’j()(o())

Un—-Wp) (U, —Wp), (10)

where Uy, = A1,4Z5 as in Eq. (9) and the proof of Lemma 7.4.1 with (o) in place of mo,
and

Wl — ﬁ<n10(én) ~71000)  Tmo@n) — nmo(oo))

V000 T Vamo(@0)

Assuming regularity conditions including existence of d7j/360; = 7ryjforl < r < k, 1 <
j < m and positive-definiteness of 1(69) = ((Irs(00)), let d,j = 7,i/q; , D = ((d;}))kxm and
Irs(00) = Z]ril drjdsj = (r, s)th element OfDDT.

In these notations,

k
Tjo@n) — mjoB0) = Y 7j@nr — O0r) + 0p(1), 1<j<m,
r=1
and now WY can be expressed as
" T
Wl =vnln—00TD+o0p) = {100) 'n~V2 Y iX;,00) } D+o0p(1)

i=1
={100)'DUL D+ 0p(1), ¢8))
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using the expression for V16, — 60) obtained in the course of the proof of Theorem 7.1.3,
because

D UX;,00) =) Y IIX; = ejli(ej, 00) = Y _ n;llej, )
i=1 i:lj:l j:l

“ey

2 nj [m60) 7kj(00) g
a qj

= 00
™ i — o (6o) (frlj(oo) z'rkj(oo))T
o | mmieo

qj qj
m
=) Upjldyj,...,dij) = VnDUp,
j=1

3

since Zj"il mjo(fo) = 1 implies Zj"il 700 =0,r=1,...,k
From Eq. (11), it now follows that under H,

Vin=Un—Wpn=U,-DT{I60)"'DU,} = I - DT (DDT)"'DIU,
L v —1- D" D) DU ~ Ny (0, Zy), where
>y =U- D' D) DU - q¢")1 - DT (DDT)" D)

=I1-qq" - D" (DD")"'D.

Lemma 7.4.2. Under Hy, Tin 5> VTV where V ~ Ny(0,I — qq" — DT(DDT)~'D).
Proof. As shown in Eq. (10)

Ti, = Un—-WoTWw,-wy=vlv,

S T1r=vv.
Hence
Tin =T}, + Ry 5 TF = VTV,
because |Ry| < T;; max<j<m, |Ryj| = op(1) as observed earlier. O

The distributions of U7 U and V'V are obtained by using the following two lemmas.

Lemma 7.4.3. If Y ~ Nj(0,C), then Yly D Z}Zl Ajéj.z where \i,..., Ay are the
eigenvalues of Cand &1, . . ., &m are iid N(0, 1).

Proof. Let A = [a1,...,ap] and A = diag((kj)), where ay, ..., a; are orthonormal
eigenvectors and A1, . . ., A, the corresponding eigenvalues of C. Then ATA = AAT = I and
C = AAAT Let W = ATY. Then W/'W = Y'Y and W ~ N,,,(0,AT (AAAT)A) = N,,(0, A),
so that
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m m m
vy =wiw=3Y w?= ij(Wj/\/A»j)z =) Mk
j=1 j=1 J=1

where &1, ...,&y are iid N(0, 1). O

Lemma 7.4.4. (i) The matrixI1—qq" has m—1 eigenvalues equal to 1 and one eigenvalue
equal to 0. (ii) The matrix I — qq” — DT (DD")~'D has m — k — 1 eigenvalues equal to 1 and
k + 1 eigenvalues equal to 0.

Proof. First note that A1, ..., A, are the eigenvalues of C iff 1 — Aj,...,1 — Az, are the
eigenvalues of I — C, because (I — C)a = (1 — A)a <= Ca = )a. Therefore, we need to
consider eigenvalues of gq” and gq” + DT (DD")~'D. First, (qq7)q = q(q"q) = q (since
q'q= erll mjo = 1), so 1 is an eigenvalue of qq" with eigenvector q. Now let ay, . .., @n_1
be the other m — 1 eigenvectors of gq’. Then g’a; = 0,i = 1,...,m — 1, so (qqD)a; =
q(g"a;) = 0 for all i, showing that the other m — 1 eigenvalues of gq” are 0. This proves
(i). Similarly, we can verify that g and the k row vectors of D are the eigenvectors of gg” +
DT (DDT)~! D with corresponding eigenvalues all equal to 1 and other eigenvalues all equal

to 0. This proves (ii). O
Theorem 7.4.1. Under Ho, Ton = U'U ~ x2, | and under Hy, Tin 5 VIV ~ 12 .
Proof. Use Lemmas 7.4.1 and 7.4.4. O

Example 7.4.1. The number of flight cancelations between 6 am and noon at a certain
airport was recorded for each day between the months of March and June. The data are
summarized below with k = number of cancelations and n; = number of days with k
cancelations between 6 am and noon.

Test at level « = 0.05 whether the number of flight cancelations follows a Poisson
distribution.

Solution. Under the null hypothesis Hp that the number of cancelations follows a
Poison distribution with an unspecified mean 6, the MLE of 6 is

0n =" kni/n=1.074and e " = 0.3417.
k

The expected frequencies under Hy with Poisson(én) are given below, together with the
observed frequencies. Since the frequency x? test is a large sample test and in the data,
the frequency n; = 2 for k = 4 is too small, we have pooled the classes k = 3 and
k = 4. (As a rule of thumb, we need the expected frequency in each class to be at
least 5.)
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k 0 1 2 >3  Total |

|
| Observed frequency: ny 35 55 22 10 122 |
|

Expected frequency: nf(k,6p) 41.69 4477 2404 1152 122 |

From the observed and expected frequencies, the test statistic is obtained as

=1.07+4+2.34+0.18 4 0.19 = 3.78.

X2 _ Z (observed — expected)2
expected

Under Hy, the test statistic is (asymptotically) distributed as x? with

df = number of classes — number of parameters estimated — 1 =4 —-1—-1=2.

From the table of x distribution we have the critical value x5 , o5 = 5.99 (ie, P[x5 > 5.99] =
0.05). Since the observed value of x? is smaller than the critical value, we accept Hy at level
of significance « = 0.05. In other words, atlevel « = 0.05, the data indicate that the Poisson
model is an acceptable fit.

Remark 7.4.1. Strictly speaking, having pooled some classes, one should calculate the
MLE of the unspecified parameter(s) from the data after pooling. Since the calculation of
MLE from pooled data is complicated, this issue is overlooked in practice. However, the use
of MLE of ¢ from original data in calculating the Frequency x? statistic from pooled data
results in the asymptotic distribution of the test statistic to be stochastically larger than a
x2 with prescribed distribution. This error is not serious in fitting a Poisson distribution,
but may be so in fitting a normal distribution based on frequencies in class intervals and
using MLEs of 1 and o2 from raw data (see [32]).

Example 7.4.2 (Test for Independence in a Contingency Table). Let (41, ...,Ay) and
(B1,...,Bm) be two classifications (into mutually exclusive and exhaustive categories) of
a population with P(4;) = mj > 0, Yi_ mjp = 1 and P(B) = mp; > 0, 1%, o = 1.
Also let P(A; N Bj) = mjj. Ina random sample of N observations from this population, the
frequency distribution over such a cross-classification is called a contingency table having
the following layout in which the frequency of A;B; is n;;.

Contingency Table

| | B1 | | Bj | | Bm | Subtotal |
| A | [ g | im0 mo |
A [ | im0 e
A ma T [ | oo |
| Subtotal | no1 | . | noj | . | Nom | N |
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In this model, we need to test Ho: 7;; = mjo7; for all (i, ) (ie, the classifications {A;} and
{B;} are independent), against all possible departures from Hp.

Solution. In this cross-classification, there are altogether km classes with observed
frequencies n;; and expected frequencies Nrjomo; under Hp. Since Hp involves unknown
parameters mj, i = 1,...,k, and ng;, j = 1,..., m, we use their MLEs 79 = nj/N and
7toj = ngj/N. However, due to the constraints Zle mTio=1= Zj"il moj, only (k—1)+(m—1)
parameters are actually estimated to find the expected frequencies N7jg7to; = njonoj/N.
Thus the frequency x? test statistic is

2= Xk: i [ — niongj/N12
nypngi/N '

i= j:l
which is asymptotically distributed under Hy as a x2 with

df = number of classes — number of parameters estimated — 1
—km—{k—1)+m-1)}—-1=(k—1)(m-1).

Note that conditionally, given (n19, . . ., 1xp), the problem is the same as the one discussed
in Example 7.2.2, where the LRT statistic is the same as the frequency x? test statistics here,
with the same asymptotic null distribution.

Exercises

7.1. LetX,..., X, beiid with pdf f(x,0) = x93 o) (x), 6 > 2.

(a) Find the method of moments estimator 6, of 6.

(b) Find the MLE 6, of 6.

(c) Find the asymptotic distributions of \/7(d, — 6) and V6, — 6).
7.2. Repeat Exercise 7.1 for the pdf f(x,0) = 0(0 + 1)x*~1(1 — x)I;0,1)(x), 6 > O.
7.3. LetX,..., X, beiid with pdf

f(x,0) = 0I10,1/3) (X) + 201[1/32/3) (x) +3(1 — O)][2/311(x), 0 <6 <1.

(a) Find the MLE é,, of # and its asymptotic distribution. Is 6, unbiased?
(b) Isthere a UMVUE of 6? If so, find it.

7.4. letX,..., X, beiid with pdf f(x, 6) = exp[—(x — 6)1][g,00) (). Find the MLE én of o
and the asymptotic distribution of 6,, after appropriate normalization.

7.5. Let (Xj,...,X,) be arandom sample from a log normal distribution with pdf

exp[—(logx — 9)2/2]1(0,00) ().

1
,9 =
fx,0) N

This means, ¥; =logX;,i=1,...,n, areiid N(9, 1) so that

X1, ..., Xy 2 @449, e%t9) where Z1, ..., Z, are iid N(0, 1).
(a) Find the method of moments estimator §, and the MLE §,, of @ based on
Xl, - ,Xn.



7.6.

7.7.

7.8.

7.9.

7.10.
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(b) Find the asymptotic distributions of v/n(6, — 6) and /n(@, — 6).

(c) What is the asymptotic efficiency of 6,2

Suppose that we observe Ujj = I(—x,q4;)(Xj),j = 1,...,m;and i = 1,.. ., k, where

a < --- < ay are known and X;; are independent N(u, 02). Let 07 = (1, o2).

(a) Let#, be the MLE 6 based on the observations {Ujj}. Find the asymptotic
distribution of Jﬁ(én — 0) where n = n1 + - - - 4+ ng — oo in such a way that
nij/n — A; € (0,1).

(b) How would you calculate 6, or an estimator asymptotically equivalent to 6,2
[Let p; = 2;;"1 Ujj/n;. Then /n(p; — m;) = Op(1), where ; = @ ((a; — p)/0).]

A discrete distribution with pmf

exp(—0) 0*

o0 = o) ="

x=12,...

is called a truncated Poisson distribution with parameter 6. Consider 6;, = 2v, /vy,
where v; and vy are observed frequencies of X = 1 and X = 2 in a random sample
of n observations from f'(x, ) as an initial estimator 6 and construct a BAN
estimator 6,, of 6. Find the asymptotic distribution of 0.

Consider the multinomial distribution Multi(4, = (9)), where 6 = (p, q), 7o(0) = r2,
7A0) = p? + 2pr, ng(0) = g° + 2qr, map(®) = 2pq, p > 0, g > 0, and

r=1-p— g > 0.Suppose that in a random sample of size 7, the cell frequencies
are no, na, np, and nyp. Set up the formulas for computing a BAN estimator of 6.
Let Xj, ..., X, beiid with pdf

fx,6)=01- e*C/G)fl(1/9)e’x/el(oycl(x), with a known c,

and let §,, be the MLE of  based on Xj, . . ., X;, . Since the likelihood equation does
not have a closed form solution here, we try to obtain a BAN estimator, starting
with an initial estimator 6;,. For this let

~ c

n
0o = ———, here py, = n~ 1 I ) and an — 1 — po.
"= 2logpaian) 2 lo,c/21X) and gn P

i=1

Show that 6,9 = 6 + op(1) and find the BAN estimator using Ono. [Hint:

Let ¢ = e~“/?%)_ Then p,, is a sample proportion, estimating
p=(0-¢)/0—¢?)=1/1+¢).

(Mixture of distributions.) Suppose that U is a Bernoulli(p(6)) rv and conditionally,
given U, X is distributed with pdf fi7(x, 0). Then the joint distribution of (U, X) is

g, x,0) = (PO — pO)) “fu(x,0), u=00rl, xeR 0€®CR,

where fo(x, 0) and fi (x, 6) are pdf’s/pmf’s on R. Assume that the usual regularity
conditions hold for fy, fi and assume differentiability conditions on p(6) as
needed. Let (U1, X1), .. ., (Upn, X)) be iid, as (U, X) and let 6,, denote the MLE of ¢
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based on (U;, X;),i =1, ..., n. Allow for the possibility for fy being discrete and f;
continuous.
(a) Show that

dlogg(U, X;0)
Fo 20

} =0, and

32logg(U, X, ) dlogg(U, X,0)\2
e e R (G el
v (L8101
{(r'(6))?

= PO @)®) + (1— p@) ), wh
SO poy TPOO) + 1 - p@ILE), where

2
8logfu(Xr9)) : =0'1

I,0) = E0< 20

(b) How would you calculate the MLE 6,, of  and what is the asymptotic
distribution of 6,,2

(c) LetTy,..., T, beiid exponential rv’s which are right-censored at c, giving rise
to observations X; = Til(,¢)(T}) + clic,00)(T3). Here U; = Ip ) (T;) and
conditionally on Uj, X; is degenerate at {c} if U; = 0 and had pdf
(1/6)e=*/?(1 — e~</?) on (0, ¢) if U; = 1. Discuss the maximum likelihood
estimation of & from such data.

7.11. LetXj,..., X, beiid with pdf/pmf f(x, 0) and let 6, denote the MLE of # based on
Xi,i=1,...,n.Under regularity conditions in Section 7.1.1 show that the
remainder terms in the expansion

n n n
0=n"Y23"1X;,0) + Vn(ln — 0) {n—l > ix;,0) +n! ZRn(Xi):|

i=1 i=1 i=1

satisfies n~1 Z?:l R, (X;) = op(1). Extend this result to the case when 6 is k-dim.
7.12. Let (Xy,...,X;) and (Yq,..., Y,) be independent samples from N(u1, o2) and
N(uz,02), respectively. Let m, n — oo so that m/(m+ n) — o € (0, 1).
(a) Find the MLE of (i1, 2, 02) and its asymptotic distribution.
(b) Find the MLE of (u1, w2, %) under the restriction 1 = uo.
(c) Derive the LRT statistic Ay, , for Hy: 1 = po vs Hi: n1 # o, reduceit to a
suitable form and find the asymptotic distribution of —2log A, , under Hy,
(i) using the general properties of LRT statistics, and
(ii) from elementary considerations.
7.13. Suppose that in Section 7.1.1, the regularity condition

sup |i(x,0) —I(x, 60)| < H(x, 6p)¢(¢) with
|6—6p|<e

lin}) ¢(e) = 0and E[H(X, 6p)] < o0
£—



7.14.

7.15.

7.16.
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is strengthened by requiring
li(x, 6)| < H(x) with E[H(X)] < co.
Show that the BAN property of
On1 = Ono — Y _1(X3, 6n0)/ Y _1(X;, On0)

then holds if n1/4@,0 — 6p) = op(1).

Let (Xj, ..., Xy) be arandom sample from a distribution with pdf/pmf f(x, ) where
0= ,..., Qk)T € ® which is an open interval in Rk, and 09 = (01, .. ., ekO)T is an
interior point of ®. Suppose that the family {f(x, 8): 8 € ®} satisfies the usual
regularity conditions. We want to test Hp: 8 = 6¢ vs H1: 0 € ® — {6p}. Show that the
following test statistics are equivalent (ie, differ from one another by

op(1)) under Hy:

(a) Likelihood ratio statistic: 71, = —2log A, where

n n
Ap = l_[f(Xl-,Oo)/{sup Hf(X,-,());,

i=1 0O i=1

(b) Wald’s statistics: T»; = DIII (0,)D,,, where I(0,,) is the Fisher-information
matrix evaluated at the MLE 6, of § and D,, = /n(0,, — 00),

(c) Rao’s statistic: Tz, = V1I(09) 'V, where V,, = n=1/2 Y I(X;, 69).

Let (Xj1, . .., Xin,) be independent outcomes of Bernoulli trials in which X;; takes

values 1 or 0 with probabilities 6; and 1 — 9;, respectively, i = 1, ..., 4. We want to

test Hp: 0;,2/6;11 = 0;11/0;, i = 1,2, against the alternative H;: 0;,2/60;,1 # 0;11/0;

for at least one i. In this situation, computation of the LRT statistic —2log A,

becomes messy. The following approach based on Wald’s statistic involves only the

unrestricted MLEs 6; = S;/n; of 6; where S; = > <j<n; Xij» but leads to a test
criterion which is asymptotically equivalent to —2log A, under Hy (see Exercise

7.14 above). For the asymptotics, let 1, . . ., By — oo in such a way that

ni/ Y ng — ¢; > 0,i=1,...,4.Since 62 — 6163 = 62 — 620, = 0 under Hy, large

values of |97 — 6163] and |#2 — 6,04 would indicate departure from Hp.

(a) Show thatunder Hy, h(@)T = ﬁ(ézz — 6,05, é§ — 626,) is asymptotically
bivariate normal with mean vector 0 and find the covariance matrix X (@) of
this limiting distribution.

(b) Find the asymptotic distribution of T}, = h(8)” ¥ (6) 1 h(0) under Hyp and justify
your answer.

(c) Explain how you would find the critical value of a test for Hy based on T}, at

level a.
Let (Xj1, ..., Xj;) denote independent samples from Poi(6;),i =1, ..., k. We want
to test Hy: 6 = - - - = 0 against all possible alternatives in (0, co)*. Let

T,' = ZlfjfniXij’ T,' = T,-/ni, n= Z n;, T = Z Tl', and T = T/I’l, then (Tl, ey Tk)
and (T, ..., T) are, respectively, the unrestricted MLE and the restricted MLE of
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7.17.

(61, ...,0;) under Hy. [T = 0 causes some difficulties which we shall ignore for
large sample purposes.]
(a) Show that the conditional distribution of (77, ..., Ty) given T is
Multi(T, ny/n, ..., ng/n).
(b) Justify the use of Wy, = Y [(T; — n;T)?/(n;T)] as a test statistic for testing Hy.
What should be the rejection region of such a test at level « when n
is large?
(c) Let A, denote the LRT statistic for Hy. Show that

—2logAn =2 n;T;log(Ty/ D).

What is the asymptotic distribution of —2log A, under Hy?
(d) Show that under Hy, —2log A, = W, + op(1). [Notice the similarity with
Example 7.2.1 at the end of Section 7.2.]
The number of flies (X3, X2, X3) in three categories, resulting from certain crossings
is distributed as Multi(n, ). According to the Hardy-Weinberg formula, the
probabilities of this multinomial distribution are

71(0) = (1 — )%, m2(0) = 26(1 — 0), 73(0) = 62,

for some 0 < 6 < 1. In an experiment, the observed frequencies in the three
categories are x1 = 45, xo = 58, and x3 = 22, in a random sample of size n = 125.
Test whether the data support the above model at a level of significance « = 0.05.



Distribution-Free Tests for
Hypothesis Testing in
Nonparametric Families

8.1 Ranks and Order Statistics

We start with the general case in which X = (Xi,...,X;)” is a random vector with the
joint pdf f(x) on R”, and in this setting derive the joint distribution of the vector of order
statistics X = Xp:1,-- - , X)) T where X, < --- < Xy, and the vector of ranks R;, =

(Ru:1, ..., Run)T where R,.; = 1 + Z]'-;izl 1(0,00) (X; — X;j) is the rank of X; among X1, . .., Xp.
Theorem 8.1.1. If (X1, ..., Xy) has joint pdff on R", then

(i) thepdfofXmis

f(YI,-..,Yn)=Zf(yrl,...,yrn), y1<<yn’

r

where the sum is over all n! permutationsr = (r1, ..., )T of (1,...,n), and
(i) PIR=rXwy=y]=Ff(yr-- V) [F (Y1, -, V).
Proof. ForAC {y:y1 <+ <yn},

P[X(n) © A] - /x(n) fo) de= Z/(x) =rXm)€ f(x) %,

where it is understood that | in the above expressions refer to an n-dimensional integral
and dx = dx;---dx,. On {x: r(x) = r}, transform (yl, . ,yn) = (Xn:1,..., Xn:n) Which is
one-to-one with Jacobian equal to 1, and r(x) = r < ¥y, = Xp.; = x;. Thus

P[X(n) € A] = Z/fyrlr---,J’rn dy = /{nyrl""’yrn }dy,

which proves (i). Moreover,

P[R=r,X@n €A] =/r(x)_rx( )EAf(x) dx=/Af(Yr1v---vJ’rn) dy

f(J/rlr~-~,J/r )‘
= | =———=f(v,--..yn) dy,
A f(y1,--- ym)
proving (ii). O
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Corollary 8.1.1. Iff (yr, .- -, ¥ra) =f(¥1,. .., yr) forallr, then
(i) the pdfof X equals nf (y1,...,¥n), Y1 <+ <Y
(i) P[R=r|Xu =y|=1/n!forallrandy, so PR =r| = 1/n! for allr, and X ;) and R are
mutually independent.

In particular, if X1, . .., X, are iid with common pdf f, then the pdf of X is n'[ 11, f(vi),
Y1 < --- < ynasalready proved in Section 1.11.

For the next result, restrict to Xj, ..., X, which are iid with common pdf f. With slight
abuse of notation, we shall write the joint pdf of (X3, ..., Xy) as f(x) = ]_[?:1 [ ).

Suppose that the common pdf of f of Xj, .. ., X}, is symmetric (ie, f(—x) = f(x) for all x).
Consider

S = (sign(Xy), .. .,sign(Xn))T, IX| = (1X11, . ..,|Xn|)T, and let
Xl = (Xlnts - X en) "

denote the vector of order statistics and R}, = (R},,...,R;.n) denote the ranks of |X;|

nl’ -
among |Xi|, ..., |Xu|. Then

(i) for each i, |X;| and sign(X;) are independent,
P[S;=1]=P[S;=-1]=1/2,

and |X;| has pdf 2f(x), x > 0.

(ii) since Xj, ..., X, are independent, Sy, ..., S, and |Xi], ..., |X,| are all mutually
independent,

(iii) also, the ranks R, and the order statistics |X|(;) are independent, having
distributions obtained in the Corollary of Theorem 8.1.1.

We thus have
Theorem 8.1.2. If X3, ..., X, are iid with common pdf f which is symmetric about 0,
then

(i) the vectors S, R}, and |X| ) are mutually independent,
(i) P[R} =r]=1/n!forallr,
(iii) X\ has joint pdfn'2" TTiL, f(7:), 0 <y1 <+ < Yn,
(iv) P[S=s]=1/2"foralls = (£1,...,+£1).

The following rank-related lemma is for future use.
Lemma8.1.1. Let t(Xi, ..., Xy) be a function of iid rv’s X1, . . ., X, and suppose t(X) has
finite expectation. Then

E[t(le . an)lR = r] = E[t(Xn:rl yoee. ,Xn:rn)lR}’l = r]
= E[t(Xn;rl yooe ;X}’l:rn)]’

because X ) and Ry, are independent.
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Application: Permutation Test
Let Py be a family of pdf’s on R" defined by

N
Po=p:p(x1,...,xN) = l_[f(xi) where f is an arbitrary pdfon R ¢ .
i=1

On the basis of a random sample from a distribution with pdf p, we want to test Hy: p € Py
vs Hi: p = q ¢ Py for a specified g.

Since (Xi, . .., Xy) is in one-to-one correspondence with (X, Ry ), the vectors of order
statistics and ranks, we consider tests ¥ (X (), Rav) ).

From Chapter 6, recall that a test ¥ is a similar region test of size « for Hy: p € Py if

Ep[¥ (XN, RN)] = o forall p € Py.

Since the conditional distribution of (Xi, ..., Xy) given X is uniformly distributed over
the set of N! permutations of (X3, . . ., Xy) irrespective of p € Py, X () is sufficient for p € Po
in (Xi,..., Xn). It can also be shown that Xy, is complete, that is, E,[g(X(n))] = 0 for all
p € Po implies g(xa)) = 0, a.s. Py. By virtue of complete sufficiency of X, the
similar region property of ¥ holds iff ¥ has Neyman-structure with respect to X, by
Theorem 6.9.1, ie, for almost all xn;),

Epo [¥ (X vy, RN)IX (V) = Xy ] = @

Moreover, since X and Ry are independent under Hp, the last expression can be
rewritten as

(1/N1) Z ¥ (x(\), r) = « for all almost x (), 1)
r

and the problem of finding the most powerful test at level « for Hy: p € Povs Hi: p =
q ¢ Po; that is, the problem of maximizing E,4[¥ (X(v), Rv)] subject to Eq. (1) is solved by
maximizing

Eq[¥ (X, Bn) X () = %] = Eq[¥ (xv), Rv) I X () = %) ]

subject to Eq. (1) for each xy.
The optimal ¥ is obtained by using the N-P Lemma conditionally, given X (n) = xqv). By
Theorem 8.1.1 and its Corollary, the conditional likelihood ratio

Pg[RN = rnIX(n) = X |/Pp[RN = N IX(v) = X(v) ]
can be equivalently expressed as
NIG(XN:pys - - XNy ) /9% )-
The optimal ¥ is therefore given by

¥ (x(\), rN) =0, or y(x(n)), or 1, according as
A(XNrys - - XNiry) <, OF =, o > k(X))

where k(xv)) and 0 < y (x(v)) < 1 are determined by the size o condition.
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To find k(x(v)) and y (x(v)) for a given x(v), we arrange the N! values of

qo(xNy, TN) = G(XNry s - - XNy

for all permutations ry of (1, ..., N) in ascending order of magnitude and let r}; be such
that

VN = #{I'N : qo(x(N), I‘N) > qo(x(N), r}"v)} > Nla, but
v& = #{rN : qo(x(N),rN) > qo(x(N),r}"V)} < Nla.
Then
k(.XJ(N)) = qo(x(N), r}k\,) and )/(.XJ(N)) = (N!O{ — v&)/(vN — v&)

Example 8.1.1. For N = 4, let g(x1, X2, X3, Xa) = f(x1)f (x2)f (x3)g(x4), where f(x) = 1,
0 <x <1landg(x) =2x,0 <x <1, and let p denote the unknown joint pdf of (X, ..., Xs).
We want to test Hy: p € Py vs Hy: p = g atlevel« = 0.1 based on observations (xi, ..., X1) =
0.2,0.7,0.4,0.9).

Solution. The vectors of ranks and order statistics in the observed data are ry =
(1,3,2,4) and x(4) = (0.2,0.4,0.7,0.9). The values of (x4, . . ., X4.r, ) are

dxgx4 = 4(0.4)(0.9) = 1.44 forry = (1,2,3,4),(1,2,4,3), (2, 1,3,4), (2,1,4,3),
4x1x = 4(0.2)(0.7) = 0.56 forry = (3,4,1,2),(3,4,2,1), (4,3,1,2), 4,3,2, 1),
4xpx4 = 4(0.7)(0.9) = 2.52 forry = (1,3,2,4),(1,3,4,2),3,1,2,4), (3,1,4,2),
4x1x3 = 4(0.2)(0.4) = 0.32 forry = (2,4,1,3),(2,4,3,1), 4,2,1,3), 4,2,3,1),
4xpx3 = 4(0.7)(0.4) = 1.12 forry = (1,4,2,3),(1,4,3,2), 4,1,2,3), 4, 1,3,2),
4x1x4 = 4(0.2)(0.9) = 0.72 forry = (2,3,1,4),(2,3,4,1), 3,2,1,4), (3,2, 4, 1).

These values of g(-) are arranged as

0.32 <056 <0.72 < 1.12 < 1.44 < 2.52,

each value repeated four times, and Nl = (24)(0.1) = 2.40.
Hence

qo(x@),r}) = 2.52, vy =4, and v, =0, so
kn = 2.52and y = 2.40/4 = 0.60.

For the observed data, r4 = (1,3, 2,4) and qo = 2.52, so we randomize and reject Hy with
probability y = 0.60.

Remark 8.1.1. The main problem in implementing a permutation test is that we cannot
use standard tables. The critical value of go (x(v), 7v) must be determined in every instance
by the observed data.

8.1.1 Nonparametric Tests in Three Basic Problems

1. Test for symmetry in the one-sample problem.
Let Xi, ..., X, beiid with common continuous cdf F (Unknown). We want to test
Hp: F(—x) = 1 — F(x) for all x (ie, the distribution is symmetric about zero), vs H; the
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distribution is not symmetric about zero, or vs H, : F(—x) < 1 — F(x) for all x with strict
inequality for some x(or [ _[1 — F(—x)] dF(x) > 1/2).

Let S; = sign(X;) and R;i = rank of |X;| among |Xi|, ..., | Xxl-

Under Hy, high ranks and low ranks among {R; ;} will be equally associated with
S; =1 or —1, but under H., the observations with S; = 1 will tend to have higher RZ;;'
and those with S; = —1 will tend to have lower RZ: ;- This leads to the consideration of
the Wilcoxon signed-rank statistic:

n
Tn ={nn— 1)}_1 Z SiRZ:i or equivalently, Z RZ:i =n+Ty)/2.
i=1 {i: X;>0}

We reject Hy in favor of H, (or Hy) if T, (or | T,|) > critical value.

2. Test for homogeneity in the two-sample problem.
Let Xj, ..., X;; be iid with common continuous cdf F and let Y3, .. ., Y;; be iid with
common continuous cdf G, the two samples being mutually independent. We want
to test

Hy:F = Gvs H: PF,G[Xi > Yj] - /OO G() dF(x) £ 1/2, or
—00
Hy :PF'G[XZ- > Yj] ~1/2.
For notational convenience, write the combined sample as
Xt X Y1 = Xt 1o -0 Y = Xintn.

The average ranks of the X-observations and the Y-observations in the combined
sample are m~' Y 7' ) Ry ypjand n=t Y0 L Ry, g, respectively. Since the average
ranks of the two samples would tend to be equal under Hy, the difference between the

average ranks, known as the Wilcoxon two-sample rank-sum statistic defined as

m m+n
Winn = m~! ZRm+n:i —n! Z Ry n:i» oOr equivalently
i=1 i=m+1

m
Whn = Z Ry 4 n:i (Which is a linear function of Wiy, »)
i=1
is an indicator of departure from Hy. Moreover, by algebraic rearrangement, we
can write

m n
Winn = (m+ n)(Tm,n — 1/2), where Ty,n = (mm) ™ > 3" Ig,0) (Xl- - Yj>
i=1j=1
which is called the Mann-Whitney statistic. Thus the three statistics Wi, , Wy, ,,, and
Tim,n are linear functions of one another and any of them can be used as a test statistic
for testing Hy vs H; or Hy vs H... In particular, with the Mann-Whitney statistic, we can
reject Hy if favor of H,. (or Hy) if Tjp,p (01 | T, n]) > critical value.
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3. Test for independence in a bivariate distribution.

Let (X1, Y1),..., Xy, Y3,) beiid as (X, Y). We want to test Hyp: X and Y are independent
vs Hy: X and Y are dependent, or Hy: X and Y are positively dependent. Let U, V, Z
be independent rv’s with unknown pdf’s f, g, h. Then the alternative hypothesis can be
formulated as (X,Y) = (U + AZ,V 4+ AZ), and then take Hy: A #0and Hy: A > 0.

Let Ry;; = rank of X; among Xj, ..., X, and R, .; = rank of Y; among Y1, ..., Y;,. Then
replacing (X, Y1), ..., (Xn, Yp) by their ranks (Rp:1, R,.1), - - ., (Ru:ns Rpy.py), the
Spearman’s rank correlation defined as

. . N
ps = correlation coefficient between {(R,.;, R}.,), i=1,..., n}

= 12{n(n* - 1)}_1 Xn:Rn:iR;,ui —3(n+1)/(n-1)
i=1

(using Ry = R, = (n+1)/2and Y0, (Rui — Rn)* = Y11, (R, — R,)® = n(n? —1)/12)
is an obvious candidate for testing Hy vs H; or H, . One can use either pg or
> im1 Rn:iR),; as a test statistic.

Another test statistic for this problem is based on the simple idea that if we compare
(X;, Y;) with (X], Y]), then X; — X; being positive or negative is independent of Y; — Y;
being positive or negative if X, Y are independent. An overall comparison between all
pairs of data-points leads to

n n
T = [nn-— 1)]_1 Z Z sign(Xi —Xj)sign<Yi — Y]>,
i=1j#i,j=1

known as Kendall’s tau statistic. We reject Hyp in favor of Hy (or Hj) if ty, (or |7]) >
critical value.

The statistic pg differs from a linear function of ¢, by op(1) as n — oo under Hy, so a
test based on pg is carried out analogously (see [4]).

8.1.2 Exact Distribution of Rank Statistic Under Hy

Exact distributions of rank statistics under Hy can be obtained by combinatorial argu-
ments, using the properties of ranks under Hy. We illustrate this with the example of Mann-
Whitney statistic in the two-sample problem.

Under Hy, therv’s X1,..., X, Y1,...,Y, are iid. Let v, (1) be the number of arrange-
ments of m X’s and n Y’s in which exactly u pairs have X > Y (ie, I(p,00) (X — Y) = u). Since
these arrangements are equally likely under Hyp, we have

m n m+n
Py, ZZI(O’OO)(Xi_Yj>=u =Vm,n(u)/< m >

i=1j=1
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The main thing is to find a formula for v, (1), which is obtained from the difference
equation

vm,n() = vy p—1(U) + vip—1,n© — n),

where vy, »—1(1) corresponds to sequences ending with Y and vy,—1,,(# — 1) corresponds
to sequences ending in X. Using this difference equation with initial conditions
1 u=0 1 u=0
vm,0(t) = {0 U£0 and vy, (u) = {0 U0
we can compute vy, ,(u) recursively.

Tables of exact tail probabilities are available for this and many other rank statistics for
small to moderate sample sizes.

8.1.3 Asymptotic Distribution of Rank Statistics Under Hy
by U -Statistic Approach

One-sample U-statistic. Let Xi, . . ., X; be iid with a common continuous cdf F. Many one-
sample rank statistics are of the form

Un = <l/n(r)) ;g(xll’ . "Xir)’

where Zn’, denotes sum over all distinct ii,...,i in {1,...,n} and n® = nn — 1)
ce(n—r+1).

Assume without loss of generality that g is symmetric in its coordinates. [If not, replace
g by g* obtained by averaging over all permutations of its coordinates, which leaves U,
unchanged.] A statistic of this form is called U-statistic [33].

Suppose that Er[g?(Xi, ..., X;)] < oo, and let

0 =0(F) =Ep[g(X1,....Xr)], h(X1,...,Xr) = g(X1,...,Xr) — 6 and
he(Xy,...,Xc) = Ep[h(X1, ..., Xe, Xe41 .-, Xr) X1, ..., Xe] forc=1,...,r, and
o = £c(F) = B[ W2 (X1,..., Xe) |.

Then the mean and variance of U, are

2 T
E[Uy] = 6 and Var[Uy] = (nm) ZNCEC, where
c=1

Np = #{(i1,...,ir), (j1, .- ., jr) with exactly ¢ elements in common}

=< n ) @2r—o)! (r!)2= (n) (r) (n—r)(r!)z.
2r—c/cl(r—ol(r—o)! r)\c/\r—c

Suppose that & > 0. Since N.11/N, — 0as n — oo, limy,_.o nVar[Uy] = r?£; > 0.
Actually, U, is asymptotically normal.

Theorem 8.1.3. If&, > 0, then /A(U, — 0) 55 Z ~ N(0, %))
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Postponing the proof of Theorem 8.1.3, we look at Two-sample U-statistics. Let X =
X1,...,Xm)and Y = (Y1, ..., Yy) be mutually independent random samples from distri-
butions with cdf’s F and G, respectively, and define

-1
Umn = [m(r)n(S)] Zzg<Xi1"“’Xir’ le,...,YjS), where
m,r n,s
g(xil,...,xir,yjl,...,yjs> =g(x1,..., xny1, ., ¥5)
for all permutations (i1, ..., ir) of (1,...,7) and (j1,...,js) of (1,...,s).
Suppose that E[g*(X, ..., X, Y1, ..., ¥5)] < oo and define
0 =0(F,G) =Epg[gX, V)], h(X,Y) =g(X,Y) — 6
andforc=0,1,...,randd =0,1,...,s, let
Eog= E[hid(Xl,...,Xc, Yl,...,Yd)],
where
hcyd(xl, e Xe Y1 ,yd) = E[I’l(X, iXy,...,.Xe, Y1,..., Yd]
if min(c, d) > 1 and ho,0 = 0. The mean and variance of Uy, ;, are
E[Um,n] =0, and
m\ (n\] 2 <= < [P\ (m—1\(s\[(n—s
R 1 e o 9
c=0d=0
= (rz/m)élyo + (sz/n>$0,1 + 0(1/ min(m, n)) as m, n — oo.

Thus if m, n — oo in such a way that m/(m + n) — 1 € (0, 1), then
pim_m+ m)Var[Up,n] = r261,0/h + %60,/ (1 = 1),

and Uy, ,, is asymptotically normal.
Theorem 8.1.4. Under the above conditions,

AU —60) 5 Z ~ N(o, €1 0/h + s%60.1/(1 — x)).

The proofs of Theorems 8.1.3 and 8.1.4 are accomplished by the Hdjek Projection
Method of approximating an arbitrary function of independent rv’s by a sum of functions
of individual rv’s.

LetZ,...,Z,beindependent rv’s. Consider all rv's ¢ (71, . . ., Z,) with E[<p2(Z)] <ooasa
vector space 7 with inner product (T1, T2) = Cov[T1, T2]. In 7, let Jp denote the subspace
of all rv’s of the form S = Y ; ¥;(Z;). We want to approximate an arbitrary T € J with
E[T] = 0byanrv S € Jy with the smallest E[(T — 5)2] = ||T — S|? (ie, the projection of
T on Jy).

Theorem 8.1.5 (Hdjek Projection Theorem). If E[T] = 0 and E[T?] < oo, then the
projection of T on Jy is T* = Y i, E[T|Z;] w.p. 1.
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Proof. Let ¢7(Z;) = E[T|Z;] and consider an arbitrary S = YrivilZ) € Jo. To
prove the theorem, it is enough to show that E[(T — T*)(T* — S)] = 0, because then we
would have

E[(T - 9] = E[(T - 7] + B[ (T* - )] z E[(T - T%)%], )

;

n
E|:{1//,-(Zi) — v} (Z)) {E(T|Zi) -y (Z) - Z E(t//j*(Zj)) ”
J#ij=1

with equality holding iff S = T* w.p. 1. Now

E[(S—T*)(T—T*)]=iEE{{wi<zi>—wr<zi>}{T—wf(zi>— ) w;‘wﬂ}

i=1 J#=1

Il

i=1

[
NE

E[{vi(@) —vi @ viZ) — v (Zp -0}] =0,
1

~.

since Z; is independent of Z; for j # i, and

E[w]fk(Zj)] - EE[Tle] — E[T] = 0. O

Corollary 8.1.2.
(a) TakingS = 0in Eq. (2), we have
(T = )| = E| %] - {| 2], ie, Var[T — T] = Var(T) - Var[T*],
(b) ifEIT] = u, then T' = T — u has mean 0 and the projection of T' on Jy is
Y E[TZ;] = YL, EIT|Z;] — nu. Hence the projection of T = T' + on Jo is
T* =Y E[T|Z] — (n — DE[T].
Proofs of Theorems 8.1.3 and 8.1.4.

We shall find the Hajek projections of the U-statistics and then apply the CLT.
In the one-sample problem, the Héjek projection of Tj, = /n(U, — 0) is

n

T =Y E[TnlX;] = ﬁ{n(r)}_l Xn:E[Z h(X;,,- .. ,Xl-r)IX,-i|
i=1 i=1 nr

n
=12y Xy,
i=1

because for every (i1,...,ir) inthesum )", ,

hl(Xi) ifie{il,...,ir}
E[h(X; X; )] =0 otherwise,

ir

E[h(Xl'l, - rXir)|Xi] = {

1
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so that

Z E[h(X;,, ..., X;,)1X;] = r(n — DYV hy (X) and

«/ﬁ(l’l -1 rfl)/n(r) — nfl/Z.

Hence
n
W T = m Y2y mo) 5 N(0,%),
i=1
(i) Var[T;] = r2g,,
(iii) Var[Ty] = nVar[Uy] = rzél + o(1) as already shown, and
() E[(Tn — T3;)?] = Var(Ty] - Var[ T;] = o(D),

so that T, = T} + op(1).

Thus T, = /n(U, —6) AN (0, 72&1) by Slutsky’s Theorem, completing the proof of
Theorem 8.1.3.

Similarly, in the two-sample problem, the Hajek projection of Ty, = m+n
(Umyn — 0) is

rim—1)r=D — 16D

Tr*n,n=~/m+”|:7mzhlo(X)+ — Zh01(Y)i|

m
=Jm+n |:rm1 Z hy,0X) + sn—1 Z ho,l(Yj):|~

i=1 =1

Now arguing as in one-sample problem, Theorem 8.1.4 follows. O

Examples
1. The Wilcoxon signed-rank statistic T, can be written as

n n n
Ty = (ntn =)7L Y SR, = (1/n?) {Z Si+ Y Silio,eo (Xl - |X,-|)}

i=1 i=1 i#ji=1
= (1/n®) Y- /2)[Silio,00 (1Xil = 1Xj1) + Sjl0,00 (X1 = 1Xi1) | + O /m)
n,2
= Uy + O(1/n), where
n=(1/n?) Zg 0 Xiy), 81, %2) = Lj,00) (¥1 + X2) = 1/2.
It is now easy to see that for this U statistic,

o0
0(F) = Ep[l0,00) (X1 + X2) — 1/2] = / [1-F(—x)] dF(x) —1/2
—0Q
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sounder Hy: F(—x) = 1 — F(x) for all x, 6 = 0 and h(x1, x2) = g(x1, X2).
The variance of b (X1) = E[h(X1, X2)1X1] = (1/2) — 6(F) — F(—X1) is

£(F) = /[1/2 —0(F) — F(=0]* dF(x) > 0

iff F(—X) is not constant with probability 1. For continuous F, this holds iff
0 < Pr[X < 0] < 1. Under this condition

JA[Tn/(n(n — 1) - 6(F)] 5 N(0, 41 (F).

In particular, let the common cdf of X3, ..., X,, be F(- — 8) where F has a pdf which is
symmetric about 0. Then

(@) = 6(F) = /[1 —F(—x—0)] dF(x — 6) — 1/2

= /F(x+20) dF(x) —1/2, and
2
02(0) = 4&(F) =4|:/F2(x+29) dF(x) — {/F(x+29) dF(x)} }

2. The Mann-Whitney statistic Um,n = (mm) =" 312, 3L Lo,00) (X; — ;) based on
independent 1v’s (X1, ..., Xn), (Y1, ..., Ys), where the X;’s have a common cdf F and
the Y;’s have a common cdf G is a two-sample U -statistic with

6 =6(F,G) = Pr,g[Xi < Vj] = /ch = 1/2if F=G.

It is also easy to check that
hio(x) =1 — G(x) — Ep[1 — GX)], ho1(y) = F(y) — EGIF(Y)],

so that &9 = Varp[G(X)] and &y = Varg[F(Y)]. If F = G, then &9 = & = 1/12. Thus
under Hy: F =G,

ST (U —1/2) 5 N(0, 1701241 — 1)),

if m,n — oo sothat m/(m+ n) — A € (0, 1). On the other hand, if G(x) = F(x — 0), then
n(®) = 6(F,G) and 02(0) = A~1&10 + (1 — 1)~ '&p are given by

w(®) =/F(x+0) dF (x) and
2
o20) = rl[/Fz(x—e) dF(x) — {/F(x—@) dF(x)} }

2
+ —A)—{/Fz(xw) dF(x) — {/F(x+6) dF(x)} }
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8.1.4 Asymptotic Comparison of Tests: Pitman’s Approach

Let 6 be a numerical characteristic of a population (or a combination of populations), for
which we want to test Hyp: 6 = 0 vs Hy: 6 > 0. Typically, a test statistic T, based on a
sample of size n would reject Hp in favor of H, atlevel « if T}, > ¢, («). Here we look into
the problem of comparing the asymptotic powers of two sequences of tests based on { TV }
and ’T,%Z)} with critical values {cgll)(a)] and [c,(f) (a) ], respectively, with same asymptotic
Type I error probability at the same alternative. The following approach due to Pitman
[See 69] attempts to make such a comparison by means of a measure of asymptotic relative
efficiency (ARE) of one-test sequence with respect to the other. Since all reasonable tests
are consistent (ie, having power at any 6 > 0 tending to 1 as n — oo with Type I error
probability fixed at 0 < o < 1), we shall consider asymptotic powers of two-test sequences
at alternatives {6,} converging to the null hypothesis value § = 0 at the rate of 1/{/n. The
following theorem provides a formula for computing such asymptotic powers.
Theorem 8.1.6 (Pitman). Suppose that {T,} and {c,} are such that

(i) limy—. o Po[/1(Ty — n(0)) /0 (0) < t] = (1) uniformly in a neighborhood of 6 = 0, (")
is differentiable at 0 and o (-) is continuous at 0 with o (0) > 0 (here @ denotes the cdf of
the standard normal),

(i) im0 Po—o[Tn =>cCnl =

Then
lim Py s mlTn = cnl = (071 @) + 81/ (0)/0 (0).

n—oo

Proof. For fixed 0, the convergence in (i) is uniform in ¢ by Polya’s Theorem (Chapter 3,
Theorem 3.2.5(VIII)), which will be used in the proof. Note that

a = lim Po[vn(Tn — 1(0)/00) = Vn(cn — 1n(0)/o (0)]
=1-o( lim valen - 1(0)/o @) = (= lim_ven — 1(0)/0(0)).
Hence
JlimVn(en = p(0)/0(0) = 7 (@.
Now
lim Py iy = cal = im Py, m[Vn(Tn — n(6/v/m)/o(8/5/n) < vn(en = u(/v/m) /o (8/v/n)]

= 1—o( lim Va(en - n6/V/m)/o(5/Vn))

=& (= lim Vn(en — n@/v/m)/o (5/V7n)).
Finally,

= Jim /n(cn — n(8/v/n)) /o (8/v/n) = = lim {V/n(cn — 1(0)/o 0 }{o (0)/o(8/v/n)}
+ Hm {(1(6/v/n) = 11(0))/(8/5/n) {8/ (8//n)}
= o V(@) + 81/ (0)/0 (0). 0
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In view of this theorem, if T,g?, i = 1,2 have the same asymptotic power at §;/./n;, i =
1,2, and if §1//m1 = 82//n2 = 0, (say), then

im_ B On) = @ (&7 @) +5p0)/0(0)), =12,

must be equal, that is

W, (0) /o1 (0)
15(0)/02(0)°

Vh2/ny =382/81 =
The ratio n,/n; is a measure of relative efficiency of {T 1) } in comparison with {T,(,Z) } For
this reason, the ratio

{1, ©)/01 (0}

€12 =
{15(0)/02(0)}?

is called the asymptotic relative efficiency (ARE) of ’T ,(ll)} with respect to [T}f)]. The

quantity {4;(0)/0;(0) }2 is called the asymptotic efficacy of the sequence ! TY }

Example 8.1.2. Let F be an unknown cdf with pdf f = F’ which is symmetric about 0
and let G(x, 0) = F(x — 0). Based on a random sample (Xi, ..., X;) from G(x, ), we want to
test Hy: 6 = 0vs Hy: 6 > 0. Consider three test statistics

n
T3 = Xn/sn, TP =8y, and TP = (n(n — 1)1 Y SR}

n:i’
i=1

for the z-test, the sign test, and the Wilcoxon singed-rank test. Then all three sequences
HT,(P :j=1,2, 3} satisfy the conditions of Theorem 8.1.6 with

110) = 0/0 (F), 52(0) = 1 + 62h(0) where h(9) = [u4(F) - 04(F)]/{4(76(F)] for TSV,
12(6) = 1 — 2F(—0), 65(0) = 4F(60){1 — F(9)) for T.?), and

us(6) = / F(x +20) dF(x) — 1/2, 02 (0) = 4Varp[F(X + 20)], where

o2(F) = EF[(X - 9)2] and juq (F) = EF[(X - 9)4].
Thus the asymptotic efficacies of [ T,gl) }, ’T,(f) }, and {T,(l?’) ] are

[140) /01 0} = 1/02(F), {115(0)/02(0)}* = 4£2(0), and

00 2
(15(0)/o30)}* = 12{/ 20 dx} :
—00
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If f is the pdf of N (0, 1), then the AREs of ’ T? } and {T,(l?’) ] with respect to {T,(ll) ] are

00 2
es1 = 4f2(0)0%(F) = 2/mw and e3 ) = 12{/ 2 dx} o%(F) = 3/x.
—00

An Outline of Contiguity Theory

Let Sy be a test statistic based on observations X, ..., Xy , iid as X distributed with
pdf/pmf f(x, 0) to test Hyp: 6 = 0 vs Hy: 0 > 0. In the next example, we shall illustrate the
use of Contiguity Theory in deriving the asymptotic distribution of Syy under f (x, §/vN )
from its asymptotic distribution under f(x, 0) (see [4, 34]).

For N = 1,2,..., let Py and Qu be probabilities on (X, An). The sequence {Qn7} is
said to be contiguous to {Py} if for any sequence Ay € A, limy_, oo PN(An) = 0 implies
limpy_ 00 Qn(An) = 0. Let Ly denote the likelihood ratio of Qp to Py.

For our purpose, Xy is the sample space of a dataset (Xi,...,Xn), An is a family of
events in Xy, and Py, Qu are joint distributions of (X, ..., Xy) under two models such as
a null hypothesis and a sequence of alternatives. For each N, let Sy be a test statistic based
on (Xi, ..., Xy) and suppose that we know the asymptotic distribution of {Sy’} under {Px]}.
The aim is to find the asymptotic distribution of {Sy} under {Qn} from this by using {Lx}
as a link between {Py} and {Qu}. Operationally, this is achieved by finding the asymptotic
joint distribution of {(Sy, log Ly) } under {Py} when {Qx} is contiguous to {Py}.

The following results due to LeCam (LeCam’s First and Third Lemma) provide the main
tools:

I IflogLy A N(—02/2,0?) for some o > 0 under {Py}, then {Qn} is contiguous to {Py}.

SN L U1 012 o12 . _ 2
. If <logLN) = Nz([uz} [012 022 with p = —03 /2 under {Py}, then

L
Sy — N(/Ll + 0‘12,012) under {On}.

Example 8.1.3. Let Xj, ..., Xy be iid as X distributed with pdf/pmf f(x; 6) and let Py,
Qn denote, respectively, the joint distribution of (Xj, ..., Xy) under f(x; 0) and f (x; 3/ ﬁ)
The log-likelihood ratio of Qy to Py is

logLy = %[logf(Xi; S/x/ﬁ) —logf(X;; 0)]
i=1

Under Py, subject to regularity conditions,

N
logly = (8/W> Z?(Xi; 0) — (SZ/Z)I(f) +op(1), as N — oo, where
i=1

Z(x; 0) = % logf(x; 9)‘ with Eg — 0[?(X; 0)] =0, and
6=0
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Eg— o [l(X; 0)2] = I(f) (Fisher-information) [see Chapter 5, Section 5.2].

Suppose that S](\l,) and Sﬁ) are two statistics based on (X, ..., Xy), which under Py, are
asymptotically of the form

. N
518) =N—1/2 ij(Xi) +op(1), j=1,2,as N - oo, where
i=1

B = o 40| = 0, By = o[ 4200 ] = o7, and 8By — o [10X; 0)yj(X)] = 1.

(a) Find the asymptotic joint distribution of (SI(\’?, log LN>, j =1,2,under Py. What do
these asymptotic distributions imply?

(b) Find the asymptotic distribution of 51((1) under Qy ,j=1,2.

(c) Find the Pitman ARE of Sj(\}) with respect to 81(\2,).

Solution. We shall use the Contiguity Theory.

(a) By the bivariate CLT and Slutsky’s Theorem, for j = 1, 2, and denoting
1j = 8Eq = o 1000,

0 0 2 ;
I R e
j = 8Fg | 1(X530) ;0.

(b) Since log Ly £ N(—(8/2)I(f), 82I(f), {Qn} is contiguous to {Py} by LeCam’s First
Lemma, so LeCam’s Third Lemma applies, by which

) L : .
sY 5 N(o n Mj,a]?) - N(SEQ _ O[I(X; 0)1//]-(X):|,0j2), j=12.
(c) The Pitman ARE of Sﬁ) with respect to S](\l,) is

Eo[ 106 0)92(X) | /03

€2,1 = B .
Eo[ 106 091 (0) | /o

8.2 Locally Most Powerful Rank Tests

Tests discussed in the last section were proposed on an ad hoc basis, on intuitive grounds,
without any kind of optimality criterion in mind. Although some of these tests have
good asymptotic properties under normality in terms of Pitman’s ARE, their performances
under other models will vary.
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It should be mentioned that for data which one suspects to be normally distributed
without being sure about it, Fisher and Yates [35] proposed the test statistic

m+n
> E[WI(UN:RN;I-)]’ N=m+n
i=m+1

for the two-sample problem, where Un:1 < --- < Un:n are the order statistics in a random
sample of size N from Unif (0, 1) and @ is the cdf of N(0, 1). Further investigations on this
and related problems were carried out by Hoeffding [36] and Terry [37].

The material presented in this section is mainly based on the development by Héjek
and Sidék [4] aiming at construction of rank tests with a local optimality property for a
general class of nonparametric hypotheses.

Definition 8.2.1. Let P and {g, A > 0} be families of pdf’s on RY, so that go € P but
{ga, A > 0} is distinct from P, and suppose that pis the joint pdf of rv’s (X1, ..., Xy). Arank
test ¥* is a locally most powerful (LMP) rank test at level « for Hy: p € P vs Hi: p = qa,
A > 0based on (X1, ..., Xn) if

(i) Ep[¥*(Rn)] < « forall P € P where Ry is the vector of ranks of (Xi, ..., Xy) and
(ii) there exists ¢ > 0 such that E,[¥*(Rn)] > Ep[¥ (Rn)] for all ¥ satisfying (i) and for all
pef{qga0<Ac=<el

In this section, we shall construct LMP rank tests for several nonparametric hypothesis
testing problems. These problems will involve the following families of probabilities

N
Po=3p:px) = Hf(x,-), fis an unknown pdf on ]R},
i=1

N
P1=1p:px) = Hf(x,-), f is an unknown symmetric pdf on R} ,

i=1

N
Py = p:pxy) = l_[f(xi)g(y,-), f and g are unknown pdf’s on R;.
i=1

The problems of testing p € Py or P; or P vs various alternatives {qA, A > 0} will be taken
up in the following.

8.2.1 Testing Ho: p € Po Against a General Alternative

Regularity Conditions A. Let {f(x,0),60 € J} be a family of pdf’s on R where J is an open
interval in R containing 0 and the following hold:

(i) f(x,0)is absolutely continuous in 6 for almost all x (see Section 2.1 of Chapter I of
Héjek and Sidék [4]),
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(ii) for each 6 in a neighborhood of 0, the partial derivative
fe,0) = lim {f(x,0 +h) = fx, 0}/

exists for alrnpst all x, _
(iii) limg_o [ If (x,0)| dx = [ |f(x,0)| dx < oo.

Theorem 8.2.1. Let p denote an unknown joint pdfof (X1, ..., Xn) andlet qa(x1, ..., XN)
= ]_[é\i1 f(xi, ciA), where the family {f(x,0),6 € J} is specified and satisfies the regularity
conditions A. Then the LMP rank test at level o for Hy: p € Povs Hi: p = ga, A > 0is
given by

¥ (r) =0, ory, or1according as

N
ZciaN(r,-,f) <, or =, or > k, where
i=1

an(if) = Fag [jﬁ (X o)}

and 0 < y < 1and k are determined by Ey[¥ (R)] = « for all p € Po.
Before going into the proof, we shall look into some special cases of the family {f(x, 6)}
which determines the score function ay (i, f).

Location and Scale Families

Definition 8.2.2. The family { f(x,0) = f(x — 6), —00 < 6 < oo} is called a location family

and the family { f(x,0) = e ?f((x — w)e™), —oco < 6 < oo} is called a scale family.
Lemma8.2.1. Let f be an absolutely continuous pdf. Then

(a) the location family satisfies Condition A if ffooo If ()| dx < oo, and
(b) the scale family satisfies Condition A if [ |xf’(x)| dx < oco.

In the location family with f(x, 6) = f(x — 6), we have

fx,6) = —f'(x — 6) and }: (X4, 0) = —’%(XN;I-)

Let F(x,0) = F(x — 6) where F is the cdf corresponding to f. Then

Flue)=0+F 1w, 0<u<l, and

;(F—l(u, 0),0) = —]% (Fw) =o(wf).

Thus an (i, f) = E[¢(Un:i, f)] where Un:1 < --- < Un:n are the order statistics in a random
sample (Uy, ..., Un) from Unif (0, 1).
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In the scale family,
Foo0) = e (- me™) — (x = e #f(x— we™)
=f(x,0) [—1 - (x— u)e’gj% ((x - u)e’e)], and
X (x—p)e—?
F(x,6) = / e’gf((y - M)e*") dy = / o) dy = F((x - M)e*).
—0Q —0o0
Then F~'(1,0) = u +e’F1(w),0 < u < 1,and

;(Fl(u, 0),0) — 1ol

T(u) =1(.f).

The score function an/(i, f) in this case is now denoted by
ain (i, f) = E[e1(Un:i. f)]-

The above results are summarized below.

Let F denote the cdf corresponding to the pdf f by means of which the location and
scale families are defined and let Uy.; denote the ith-order statistic in a random sample of
sine N from Unif (0, 1). Then the score functions in the location and the scale family are,
respectively,

an(0.f) = Elo (Ui )] where o0 ) = - (5 0), ®

ain (i.f) = E[¢1(Un:; f)] where ¢y (1, f) = 1 — Fﬁl(u)j% (Ffl(u)). @)

Next consider the important case when
cp=--=cp=0andc¢yy;=---=cy=1,

which corresponds to the two-sample problem in which (Xi, ..., X;) and (Xmnt1, ..., Xn)
are independent random samples from two populations and we want to test where they
have the same pdf, or whether their pdf’s differ in location (or scale). The test criterion for
the LMP rank tests in the two-sample location problem and the two-sample scale problem
are, respectively,

N N
Z an(r;,f) and Z ain(ri.f),
i=m+1 i=m+1

where the score functions are given by Eqgs. (3) and (4).

We now give an outline of the proof of Theorem 8.2.1. The proofs of three subsequent
theorems dealing with LMP rank tests in which Py is replaced by P; or P2 in Hy and ga
have other forms, will be concerned with the likelihood ratio of Ry or (R;, S), etc., namely,

Pg,[Rn =r]/Pgy[RN =T], etc.,
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which will be written as

1+ N![Pg, (RN =T) — Pgy(Rn =T1)]
N N
=1+N!A/ Al{nf(xi,Aci)—l_[f(xi,O) dx
Ry=ry i=1 i=1

in the proof of Theorem 8.2.1 and similarly in the other proofs. The integral in the
expression above is an N-dimensional integral. The integrand is a difference of two
products, which will be simplified by the identity

N N k — N
T UR o) O g
i=1 i=1 k=1 : :k-‘rl

resulting in a sum of k integrals. The crucial step is taking lim 4 | o under the integrals, where
the regularity conditions come into play. The proof is then completed by some routine
simplifications, using Lemma 8.2.1.

Proof of Theorem 8.2.1. By N-P Lemma, it is enough to show that there exists ¢ > 0
such that for all A € (0, €], the likelihood ratios

Py, [RN =r]/Pg[Ry =r] forallr

are in the same ascending order as the numbers Zﬁil ciaN(ri, f ) Since Pgy[Ry = 1] = 1/N!
for all r, the likelihood ratio equals

N N N
1+N! -/;?Nzr{i:l_[lf(Xi, Aci) — i:l_llf(x,-, 0); dx=1+N!'A ]gl ciInk(r. f; 4), where
ek Ack) — f (x5, 0 al
Ing = ./RN:r{ Ac } Hf(x], Ac])jzglf(xj, O)dx, (6)

by Eq. (5). Hence the theorem will be proved by showing that

lim Ik (r.f3 4) = an (1. f) = Eqo B (Xn:k O) IRy = r}

= qu [; (XN:k’ 0):| ’

using Lemma 8.1.1, and because N! ]_[]]i 1 f(x;,0) is the conditional pdf of X given Ry = r
under qp.

The justification for taking lim,o under the integral is provided by the regularity
conditions on { f(x,6),6 € J}. We omit the technicalities of this demonstration, referring
to Hdjek and Sidak [4]. O
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8.2.2 One-Sample Location Problem, Assuming Symmetry

Here we shall consider rank-sign tests based on (Rj(,, S), the properties of which under
symmetry are given in Theorem 8.1.2, and a rank-sign test has been discussed in Sec-
tion 8.1.1.

Theorem 8.2.2. Suppose that (X, . .., Xn) have joint pdfp(x) on RN. Then the LMP rank-
sign test at level o for Hy: p € P1 vs Hi: p(x) = ga(x) = ]_[i-\ilf(x,- —A), A > 0, wheref isa
specified symmetric absolutely continuous pdfon R with [ |f'(x)| dx < oo, is given by

¥ (r,s) =0, ory, or 1 according as
N
Zsia;\“,(ri,f) <, or = or >k,
i=1

the constant k and 0 < y < 1 being determined by Ep,[¥ (RY,S)] = o and the score
function is
A !
at(i.f) = Eqo [J% (1| N:i)} — Eqy [J} (F' (/2402 UN;,-)>]
= Ego[e ™t (Uniir f)]-

Proof. We need to show that the likelihood ratios
(20 (1) = ]

for the 2VN! different (r, s) are ordered in the same way as YN | s;a;(r;, f) for all suffi-
ciently small A. As indicated earlier, we write these likelihood ratios as

N
1+ (ZNN!)A i;lNk(r, s,f; A)

using Eq. (5) where the integrals Iy, have the same form as in Eq. (6) except that the
integration is over the set {(Ry, S) = (r,s)}. By Lemma 8.2.1(a), the conditions on f allow
taking lim s o under these integrals, showing that

lim Ing(r, s, f, A =/
Al0 Nk(r ./, 4) (RY,S) = (1,9

{ —]% (xx) }f(x) dx.

Finally, since f is symmetric,

I .
— (x) = sign(x)—(|x]).
7 g 7 x|

Hence

. D I
Ay . 4) = s /(RN,s)= (r,s){ f (kal)}f(x) o

!

S
= ZN—’;V‘E% [—T(|Xk|)|R;{, =rS= s]



Chapter 8  Distribution-Free Tests for Hypothesis Testing in Nonparametric Families 233

)

s /
= ZN—IEV!EqO [—]%(|X|N:rk)i| & Ska;\»[(rk,f)
by Lemma 8.1.1 and since |Xj| is independent of § under gp. This concludes the proof,
leaving the verification of af; (i, f) = E[¢ " (Un:;, f)] as an exercise. O

8.2.3 Two-Sample Scale Problem, Assuming Symmetry

Theorem 8.2.3. Let p(x) be the joint pdf of (X, ..., XN). Then the LMP rank test for Hy: p €
P1vs Hi: p®) = qa®) = [17, f00) [T i1 fCi, A), where | f(x,0) = e°f(xe?)}
is a scale family with a specified symmetric absolutely continuous pdf f on R having
Lo IXf' ()| dx < oo, is given by

¥(r) =0, ory, or1 according as

N

Z afN(r,-,f) <, or =, or >k,
i=m+1

the constants k and 0 < y < 1 being determined by Ep,[¥ (RY)] = o and the score
function is

/

QTN(l,ﬂ = Eq() |:_1 - |X|lef(|X|Nl)i|

- E[—l —F Y172+ 1/2UN:i)]% (F*l(l/z + 1/2UN;,~))]
= E[‘Pi’_(UN:i’f)}

Proof. This is a special case of Theorem 8.2.1withc; =---=¢n=0,¢cpp1=---=cn =
1,and f(x,0) = e ?f(xe~?). Lemma 8.2.1(b) and the conditions on f imply Condition A for
the validity of Theorem 8.2.1. We have already seen that for this f(x, 9),

fe0)/fx0) =-1- xe’eji(xe’e), so

f
A
j—c(x, 0)=-1 —x]i(x).

f f

Also, since f is symmetric,

f I
x = sign(x)|x| and ?(x) = sign(x)= (|x).

f

Hence the score function is

4

ai“N(l,f) = E6I() |:_]- - |X|lef_‘(|X|Nl)i|
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The verification of afy (i, f) = E[¢] (Un:i, f)] is left as an exercise. [

8.2.4 Test for Independence in a Bivariate Population

Theorem 8.2.4. Let p(x,y) be the joint pdfof {(X;, Y)): i = 1,..., N} and Ry, Ry the vectors of
ranks of (X1, ...,Xn) and (Y1, ..., Yn), respectively. Then the LMP rank test at level o based
on Ry and Ry, for Hy: p € P> vs Hi: p(x,¥) = qa(x,y) = [Iy ha(x1, 1), A > 0, where
ha(x,y) = [ f(x — A2)g(y — Az) dM(2) with specified pdf’s f and g on R having continuous
f', & and specified cdf M on R with finite variance o, is

¥(r,r') =0, ory, or 1 according as
N
> an(ri.f)an (7}, g) <, or =, or >k,

i=1
the constants k and 0 < y < 1 being determined by Ey,[¥ (RN, R),)] = o and the score
functions an (i, f), an (i, 8) are as in Eq. (3).
Remark 8.2.1. Under g4, the (Xj, Y;)’s are iid as (X, Y) = (X* +AZ,Y* + AZ) where X*
with pdf f, Y* with pdf g, and Z with cdf M are mutually independent.
In the proof of this theorem, we shall use

N
p(xy) = 1_[ {faxpgayp} with

i=1
falx) = /f(x — Az) dM(z) and ga(y) = /g(y — Az) dM (2).

Note that this p(x,y) € P2 and call this distribution Qo, .
Lemma 8.2.2. limx 0 A~2[ha(x,y) — a8 )] = f/ )8 ()os;.
Proof. By algebraic rearrangements, we can write

haGo,y) —fa(x)ga®)
= //[f(x— AZ)g(y — Az) — f(x — A2)g(y — AZ')] dM(z) dM(Z)
—1/2) / / [fox— A2) — f(x — AZ))[g(y — A2) — g(y — A7)} dM(2) dM(Z).
Hence

A7 [ha(,y) — fa08 2 D))
_ // {f(x - AAZE —f(x - AZ) } {g(y — Az) —g(y— A7) }(1/2)(2 2 aM@ am(2)

z—2) Alz—2))

Let A(4, 8) be the part of this integral over {|z], |z'| < §/A} and let R(4, §) be the remainder.
Then A(4, §) can be made arbitrarily close to

f(0g'11/2) / (z—2)* aM(z) dM(2)
lzl<8/4 J|Z'|<8/A
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by making § > 0 sufficiently small, and then this tends to f'(x)g'(y)oi; as A — 0. Finally,
with [|f ], ]l as sup norms of f, g and C = {|z,|2/| < S/A}c,
R0 = [21f11g1/2%) [ av@ av (@)
= 41181752 |(6/2)*Pu[121 = 5/4]
<[anigns?] [ 2 ame@ o
|2/>56/A

for arbitrary § as A — 0. O
Proof. Asin the proofs of Theorems 8.2.1-8.2.3, we consider the likelihood ratio

Qa(R=r,R =7)
Qoa(R=r,R =T)

N N
—1+(N‘)2A2/ / LA {l_[ (%2, 1) l_[{fA(xi)gA(Yi)}} dx dy

i=1

L(r,7) =

= 1+N!A221Nk (r,7.f g A)

k=1
using Eq. (5), where
A0 V) — Fatga o) © N
Ing _/R ,// / A2 1_[ hA( ]’y]) [1 [fA(xj)gA(yj)] dxdy.
Jj=k+1

Since the likelihood ratios L(r, r’) are ordered as Z]IX=1 Ink(r, 7, f, & A), the theorem will be
proved by showing that for each (V, K),

(N)? i Ik (r.r'.f, 8 4) = an 0. Na (1} §)-
By Lemma 8.2.2, for each (N, k) the integrand of Iny(r, ', f, g A) converges to (as A — 0)

f/ /
?(xk)—(yk)jl‘{{f(x])g(y] J

Now taking lim 4 o under the integral in Iy, for the justification of which we refer to Hajek
and Sid4k [4], we have
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N2 lim I (r, 7, f, g; A
( )Anf(l]Nk(rrfg )

N
L, roog T repeep)
B UM /R:r / ’:r’ f (xk) g (yk) (I/N')Z dx dy

2 -f/ g/ / /
= opEqo T(Xk)E(Yk)lRN =rRy=r

r £/

= o2 Eq, f%(xk)mN - r]EqO [%(Yk)lR}V - r’]

r £/ /

= onEao| 7 (XN:rk)]qu [gg (YN:r;c>i| = ofan(re f)an (1o 8),

using Lemma 8.1.1.

8.2.5 Specific Rank Tests Using Approximate Scores

First, note that the scores aN(i, f), ain(i, f), ... can only be obtained from tables (if avail-
able) due to their complicated expressions. For example, there are tables for E[dfl (UN;,-)].
However, since E[Uy;] = i/(N + 1) and Var[Uy.;] = i(N — i+ 1)/{(N + 1)>(N + 2)} — Oas

N — oo, the distribution of Uy; is concentrated near i/(N + 1); so
an (G, f) = E[e(Un:i, )] = ¢ (E[Un:i].f) = ¢(i/(N + 1), )

if ¢ is sufficiently smooth near u = i/(N + 1).
We now look at a number of specific problems.

I. Two-sample location
(@) Normal: ¢(u,f) = @1 (w), an(i, f) = E[@ 1 (Un.)] ~ @71(i/(N + 1)).
(b) Logistic: ¢(u,f) =2u— 1, an(,f) = E[2Uy:;; — 1] = 2/(N + 1))i — 1, or
equivalently, i (Wilcoxon test).
(c) Double exponential: ¢ (u, f) = sign(2u — 1),
an (i, f) = E[sign2Uy.; — 1)] ~ sign(2i/(N + 1) — 1) = sign(i — (N + 1)/2).
The test statistic Y., | sign(r; — (N + 1)/2), or equivalently,
Zé\;mH(I/Z) [sign(ri — (N +1)/2) + 1] can be expressed as
# observations in the second sample exceeding the pooled median (Median
test).
Il. Two-sample scale
(a) Normal: 1+ aw(i,f) = E[ (&~ (Un:}*] = {1/ 0V + ).
(b) Cauchy-type tail: f(x) = m; 1+ o1, f) =212u — 1|,
1+ ain(i, f) = 2E[|2Uy-; — 1] has led to several statistics.
lll. One-sample location, assuming symmetry.
(@) Normal: aj;(i,f) = E[®~1(1/2 + (1/2)Un:)] ~ @ 1(1/2 + (1/2)i/(N + 1)).
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(b) Logistic: o(u,f) =2u—1,¢%(w,f) =¢(1/2+ 1/2)u,f) = u,
ay,(i, f) = E[Uny] = i/(N + 1). Test statistic is Y X0 RY.;/(N + 1), or equivalently,
>_x,~0 Ry.; (Wilcoxon signed-rank test).
IV. Bivariate independence: For f and g both logistic, test statistic is Spearman’s rank
correlation pg.

The verification of these scores and resulting test statistics are left as exercises.

8.2.6 Asymptotic Distribution of Test Statistics for LMP Rank Tests

We need the distribution under Hy of the test statistic of an LMP rank test in order to find
the critical value at a given level «. In some cases, these statistics have special forms (at
least approximately), for which exact distributions may be manageable (see Section 8.1.2),
while in some other cases, asymptotic distributions can be derived by the U-statistic
approach (see Section 8.1.3).

We first state without proof the following theorem from Hajek and Siddk [4], providing
the asymptotic null distributions of a large class of rank statistics such as those constructed
in Theorem 8.2.1.

Theorem 8.2.5. Suppose that ¢ is a square-integrable function on [0,1] with ¢ =
fol ¢(u) du and that the sequence {cn} satisfies

N - \2 N
Y (eni—¢ )
lim Liz i N} = o0, wherety = N~1 Z CNi-
N=00 max; <;<n(cni — EN) i1

Let S¢), = Z{il cnial (Ry:), where Ry is the rank vector of (X, ..., Xn) having joint pdf
p(x) € Po and a%,(i) = Elp(Un:1)). Then (Sey — ttey)/0ey — N(0,1), where

N N 1
ey =cn Y a () andol, = (cni — 6N)zf0 {p(w) — ¢y du,
i=1 i=1

which is assumed to be positive.

In the two-sample case with cy1 = -+ = cmy = 0, CN,my+1 = -+ = CN,my+ny = CNN =
1, ¢y = ny/N = 1 — Ay, the condition on {cy} holds if my/N — 1 € (0,1). Here S¢, =
SN 1 A BN, ey = = An) TN a% (), and 02 = Nan (1 — An) fy {o @) — ¢} du.

We now discuss a different approach by Chenoff and Savage [38] for deriving the
asymptotic distribution of the LMP rank statistic in the two-sample location problem
under the null hypothesis as well as under location-shift.

Let (X1,...,Xm») and (Y3,...,Y,) be independent random samples from populations
with cdf’s F and G, respectively, on R and let the empirical cdf’s of the two samples be
denoted by

m n
Fn@) =m™ ') I oo X)) and Gu(y) = n 1Y " oo 1 (V7).
i=1 i=1
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Next let
H(x) = ANF(x) + (1 — An)G(x) and Hy (x) = ANFn (%) + (1 — An)Gn (%),

where N = m + nand m/N = Ay. Finally, let {/i} be a sequence of functions on [0, 1] by
suitably extending /y(i/N) = an(i), i = 1,..., N (eg, as a step function), which converges
to a function J obeying certain conditions to be stated later.

The main idea of the Chernoff-Savage approach is to recognize that

Hpy(X;) = empirical cdf of the combined sample evaluated at X; = Ry.;/N is the rank
statistic of interest,

where Ry.; = rank of X; in the combined sample, so if /i (i/N) = an(i), then

m
Ty = /]N[HN(x)] dFm(x) = m~ 1> " an(Ry:y).
i=1

To find the asymptotic distribution of Ty, write
In - /][H(X)] dF(x)
= /{][HN(X)] —JIH(x)]} dFm(x) + /I[H(x)]d[Fm(X) —Fx)]
+ / Un[HNn 0] — J[Hy (0]} dFm () @)
On the right-hand side of Eq. (7), expand the integrand of the first term as

{Hy(0) — HOY'[H®)] + (1/2){Hy(x) — H@)YT [anHy 00 + (1 — an)HE®)],

0 < oy < 1 and make rearrangement of all the terms. Thus
Ty — /][H] dF :/[AN(Fm — B+ (1-n)(Gn - G))'(H) dF
+ [ JaDdEn~ P+ By + Rz + Rog, ®)

where

Ryt = / (Hy — H)J (H)d(Ep — F),

Ry = (1/2) / (Hy — B)J' (e Hy + (1 — ag)H) dFy, and

Rn3 = /{]N(HN) —J(HN)} dFm.
Integrating by parts, the main terms of Eq. (8) become

/[AN(Fm —B) + (1 - N)Gn — G)J'(H) dF

- /(Fm — B)J (H)d[ANF + (1 - AN)G]
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— _(1-2y) /(Fm _B)J(H) dG + (1 - i) /(Gn — G)J'(H) dF.
Now letting
JIHE)] dGw) = dB(), J'[H®) dF () = dB*(v),

and integrating by parts, we are led to
In - /][H(X)] dF (x)
= —(1-xn) /[Fm(x) — F)] dB() + (1 - Ay) /[Gn(x) — G(x)] dB*(x) + Ry

=(1-2n) / B()d[Fp(x) — F(x)] — (1 — An) / B*(0d[Gn(x) - GO)] + Ry

m n
=(1-xn) |:m_1 > {BX) —EBX)} —n~ 'Y {B*(Y) — EB*(Y,-)}} + Ry.
i=1 i=1

The remainder term Ry = Ry1 + Rn2 + Ry3 can be shown to be 0p(N‘1/2) under the
following conditions:

1. J(uw) = limpy_, o Jn(u) exists for 0 < u < 1 and is not a constant.
2. f{x: 0<HN(x)<1}{]N[HN(x)] _][HN(X)]} dFm(X) = OP(N_I/Z)-
3. Jn(1) = O(N~1/2).

4. o) = |44

ui| < constantju(l — w)|~i-1/248 i = 0,1,2 for some § > 0.

Also, since H = MnF + (1 —-An)G depends on N, so do the iid sequences
{BX)),i=1,...,m} and {B*(Y;),i=1,...,n}. The asymptotic normality of VN[Tn—
[JIH(x)] dF(x)] would, therefore, have to be justified for this triangular array situation.
This justification is also provided by the above conditions.

We now arrive at the following theorem.

Theorem 8.2.6 (Chernoff-Savage). Under Conditions 1-4, if0 < Ao < AN <1—2p < 1
forall N, then

VN[Tn = [23 JIH () dF ()]

£ N, 1.
\/(1 =) { (522 ) var{Bx)] + var{ B (7))

To make the statement of the above theorem explicit, we need Var[B(X;)] and
Var[B*(Y1)]. Let Fi (x) = I(Xj < x) and G1(y) = I(Y1 <y). Then

E[F (0)] = F(x), Cov[F (%), F1())] = min{F(x), F()} = F®F()

and likewise for E[G; (x)] and Cov[ G (x), G1()]. Using these, we have

Var[B(X))] = 2 / / FW{1 - Fo) [ IH@V' [H)] dGx) dG(y) 9)
—OO<x<y<OO
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and Var[B* (Yl)] is obtained by interchanging F and G in the above formula for Var[B(X)].
The asymptotic variance

Vn = (1-An) { (1 ;;N>Var[B(X1)] + Var[B*(Yl)]}

can now be written in an explicit form.

In the two-sample problem, with G(x) = F(x — 6y) and F’ = f, the asymptotic normality
holds uniformlyin 0 < A0 < Ay < 1— g < 1 and 6y in some neighborhood of 0. If 6y — 0,
then

( n )VN -2 / / F1 - FO IF@VU'[F()] dF (x) dF(y)
1—2An x<y

= 2// u(l — v)J W] ) du dv
O<u<v<l

22//.// J' W] (v) du dv ds dt
O<s<u<v<t<l

= / / [12 (s) +J2(0) — 2](8)](7?)] ds dt
O<s<t<l

1 1 2
=/ J2 ) dt—{/ Jj® dt} . (10)
0 0

Verifying the details of the derivations of Egs. (9) and (10) are left as exercises.
Going back to the original problem with

ING/N) = an(i) = EI:K_I(UN:I')]’

K being a strictly increasing absolutely continuous cdf, we need ] = K~! to satisfy

Condition 4 of Theorem 8.2.6 and Ay — A € (0,1). Then V' N[Tn — u(0)]/o () £ N1,
where 1.(9) and 02(6) are obtained by letting ] = K~! in [ J[H(x)] dF(x) and the formula
for Vi using Eq. (9) and its counterpart for Var[B*(Y1)]. From these, we get

0 I
W (©0) =—-(1- A)/ (K_1> [F(x)]f (x) dF(x), and
—00

0= (122) [ [lerf ac [ o d” ~(2)e2

if 0'12< = Varg [X] < co. Hence the Pitman asymptotic efficacy of Ty is

21— A)
2
oK

00 2
(W @)% /52(0) = { f K VFWIf ) dF(x)} :
—00
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Now take ] = K~! = ¢ L If F(x) = @ ((x — a)/b) and we take K = @ in Ty, then

/ - K V[FWIf(x) dF(x) = b~} / = o VioWp) do(t)
—00 —00
o0
= b*lf do@ =b 1,
—00

50 {1/(0)}7/02(0) = A(1 — 2) /b2

For F(x) = &((x—a)/b), the two-sample t-test has the same asymptotic efficacy.
Thus the Pitman ARE of the LMP rank test with score function @~! with respect to the
t-test = 1.

8.3 Tests Based on Empirical Distribution Function

Let Xj,..., Xy, ... be a sequence of iid rv’s with common cdf F which we assume to be
continuous and strictly increasing. The random function

n
Fp) =n 1Y I oo (Xp), —00 <x <00,
i=1
called the empirical distribution function (edf) based on Xj,..., X, has already been
defined in Chapter 3.

Theorem 8.3.1 (Glivenko-Cantelli). sup, |F,(x) — F(x)| — 0 a.s., asn — oo.
Proof.

(i) If |F(a) — F(a)| < &/2, |Fy(b) — F(b)| < ¢/2 and F(b) — F(a) < ¢/2 for a < b, then
|Fr(x) — F(x)| < eforalla < x < band

(ii) there are only a finite number of points at which F has a jump bigger than ¢/2. From
these facts it follows that for every ¢ > 0, there exists a constant C and another
constant « such that

P[sup |Fpn(x) — F(x)| > s:| < Cexp (—anez) for all n.
X

[By a result due to Dvoretzky et al. [39], this probability inequality holds with « = 2.]
The theorem now follows from the Borel-Cantelli Lemma. The details of the proof are
left as an exercise. O

8.3.1 Test Statistics

There are some well-known tests for the nonparametric hypothesis Hy: F = Fy (where Fj
is specified continuous cdf) against Hy: F # Fy which are based on the random function
{VnlFu(x) — Fy(x)]: x € R}. Test statistics for two such tests are
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Kolmogorov-Smirnov statistic: D, = sup, v/7n|F,(x) — Fo(x)|, and
Cramér-von Mises statistic: W2 = n [_[F,(x) — Fo(x)]? dFo(x).

An important fact is the distribution-free property of these test statistics. To see this,
suppose that Fy is strictly increasing (a condition which can be removed if we argue a little
more carefully), and let U; = Fy(X;). In Section 1.11 we have seen that Xj, ..., X are iid
with cdf Fy < Uj, ..., Uy areiid Unif (0, 1), so that

{«/ﬁ[Fn(x) — Fo(x)]: —00<X< oo} 2 {ﬁ[Gn o Fy(x) —Fo(x)], -0 <X < oo}, an

where G, (t) = n71 Y1 Iio,q(Uy) is the edf of (U3, ..., Up).
Now letting ¢ = Fy(x), the statistics D,, and W72 can be expressed as

Dy = sup /n|Gp(t) — t| and W2 = n/l[Gn(t) — i ar. 12)
0<r<1 0
This shows that the distribution of D,, and W,% under Hy: F = F, is the same for all F.
The statistic D,, can also be used to construct a confidence band for an unknown
continuous cdf. Since D, is distribution-free, we can find a constant ¢, for a given
0 < a < 1 such that for all F we have

l—a= PF[sup Vn|Fp(x) — Fy)| < Ca]
X
= PF[Fn(x) —n12¢, < F(x) < Fp(x) + n~/2¢, for all x].

Consequently, {Fy(x) £ n~" 20y, —00 < X < oo} is a confidence band for F with confidence
coefficient 1 — a.
One-sided versions of the test statistic D,, namely,

D} = sup vn[Fn(x) — Fo(x)] and D}, = sup v/n[Fo(x) — Fr(x)] (13)
X X

can be used to test Hp: F = Fj against one-sided alternatives.

The above ideas extend to two-sample problems as follows.

Let Xi1,...,Xim, ... and Xo1,...,Xo,, ... be two independent iid sequences with com-
mon cdf’s 1, F», respectively, and let

m n
Fim) = m™ Y I oo(X1) and Fop(0) = 171 Y " I, x(X2))
i=1 i=1

be the edf based on Xi1, ..., X1, and Xz, ..., Xop, respectively. Then the two-sample ex-
tensions of the Kolmogorov-Smirnov and the Cramér-von Mises statistics are, respectively,

mn
Dmyn = F - F d
mn =\ = Sl)lcp| 1m(X) — F2p(x)| an

mn o 2 . MmFy;(x) + nFpy, (x)
Wr%n - m+n ﬁoonlmu) a an(X)] d( = m+n = ), D

which can be used to test Hy: F1 = F> vs Hy: F1 # Fo.
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We now examine the distribution of the stochastic process {\/ﬁ[Fn(x) — Fy(x)], —o0
< X < oo} under Hy: F = Fy or equivalently, the process {/n[Gn(t) — t],0 < t < 1} where
Gy (1) is the edf of a random sample Uy, ..., U, from Unif (0, 1) given in Eq. (11). Although
exact results for small sample are available for the statistics D;} and D, we shall only give
an outline of the asymptotic property of {/n[G,(f) — t],0 <t < 1} as n — oo.

First note that

n
Vi[Gn(0) — t] = n= 123 1,4 (U;) — £], and
i=1
E[lj0,1(U;)] = t, Var[Ijo,n(U)] = t(1 — 1),
Cov|[Ijo,5) (U, Ij0,1)(Up)] = min(s, ) —st =s(1 —1) for0<s<t<1.

By multivariate CLT, it follows that for all sets of finite points 0 < 1 < --- < fx < 1,

(VA[Gn(t) = 1], .., VA[Gultp) — t])T 5 N(0, 1,,._.z,), where

nl—-un) nd-n) - nl-g)
Hl-n) nd-1t) - Ad-1)

El’],m,l’k = : . . : . (15)
nd—t) -t - HA-15)

From this, it seems plausible that the entire stochastic process {/n[Gn(t) — t],0 < t < 1}
should converge (in some sense) to a Gaussian process with mean value function 0 and
covariance function p(s,#) = s(1—1), 0 < s < t < 1, that is, a stochastic process
{X(1:0<t<1}suchthatforany0 <t <--- <t <1, (X(t1),...,X (%)) follows a k-dim
normal distribution with mean vector 0 and covariance matrix Xy, given by Eq. (15).
This was conjectured by Doob [40]. For a formal description of this phenomenon, we shall
first review some basic facts about Brownian Motion and Weak Convergence.

8.3.2 Brownian Motion: Some Basic Facts

A standard Brownian Motion (B.M.) is a stochastic process {X(¢), ¢ > 0} (ie, a collection of
rv’s on some probability space) with the following properties:

(i) X(0) =0wp.1.

(ii) Forallkand0=1f < #1 < --- < tg, X(t;}) — X(t;_1), 1 < i < k, are mutually
independent and X (#;) — X(t;_1) ~ N(0, t; — t;_1). Equivalently,
(X(t), ... ,X(tk))T ~ Ny(0, ((min(t;, £7)))). [This is the property of independent and
stationary increments in a Gaussian Process.]

Wiener showed that it is possible to construct a probability distribution on a suitable o -
field of continuous functions on R such that {X(#) = X(f, w), t > 0} defined on continuous
functions o would have properties (i) and (ii). For this reason, the probability distribution
of a standard B.M. is called the “Wiener Measure.” From now on, we assume that the
sample paths of a B.M. are continuous w.p. 1.
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In general a B.M. {Y(¢), t > 0} with mean  and variance o2 per unit time is Y (f) = ut +
o X (t), where {X(t), t > 0} is a standard B.M.
We now state some properties of a standard B.M.

() If{X(2), t > 0} is a standard B.M., then so are
(a) {—X(9),t > 0} (Symmetry).
(b) {X(s+ 1) — X(s), t > 0} for fixed s. Moreover, the process is independent of

{X(1),0 < 7 < s} (Markov Property).

(o) {tX(1/p),t > 0} (Inversion).
(d) {«"V2X(at), > 0} for @ > 0 (Scale Change).
(e) {X(tp) —X(tp —1),0 <t < 1y} (Time Reversal).
For proofs of the above, it is enough to check that the covariance function of the
processes in (a)—(e) is min(fy, ).
The next three properties involve the concept of martingales. In Section 3.3, we have
mentioned the martingale property of the stochastic process
[Sk = Zle X, k=1,2,.. } where {X;} is a sequence of independent rv’s with mean
zero. More generally, a stochastic process {X(#), t > 0} on a probability space (£2, A, P)
is a martingale if E[|X(#)|] < oo for all # and E[X(#)|{X(7),0 < t < s}] = X(s) for all
s<t.

(I (a) From the Markov Property, it follows that for s < ¢,

EX(O|X(z), T < s] = E[X(#) — X(s) + X ()X (z), T < 5]
= EB[X(#) — X(s)] + X(s) = X(s),

thatis, {X(#), t > 0} is a martingale.
(b) Itis also easy to verify that {X(£)? — 1, t > 0} is a martingale.
(c) Let(r) = e”XW/E[e?X0] = e?XW-0"1/2 gince
E[eexm] =mgfof N(0,1) at6 = eezt/z.
Fors<t
EIE(IE(), 7 = 5] = E[exp(0X(5) +0(X() — X(5)) — 0%¢/2) (1), 7 <]
= exp(eX(s) - 92t/2>E[eXp(0(X(t) —X))ET), T <5]
— exp (9X(s) - 92::/2) exp (92(t —9) /2)
= exp(OX(s) — 92s/2> = £&(s),

showing that {£(¢), £ > 0} is a martingale.
(1) Stopping Time.
For a continuous time stochastic process {X (), t > 0},let T > 0 be an rv defined in
such a manner that the event {T < ¢} depends only on {X(7),t < ¢t}. Such anrvis
called a stopping time. Examples are T, = inf{t: X(¢) = a}, Ty, = inf{t: X (1) ¢ (a, b)}
fora <0 < b.
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If T is a stopping time, then min(7, f) is also a stopping time. Suppose that
{X(), t > 0} is a martingale with continuous sample paths and let T < co be a
stopping time with E[|X(T)|] < co. Then under integrability conditions,
E[X(T)] = E[X(0)]. See Freedman [41] Brownian Motion and Diffusion, p. 193 and
Breiman [42] Probability, Generalization of Corollary 5.31, p. 98 and 274 for details.
The martingale {£(¢), t > 0} defined in II(c) above satisfies these conditions, so

E[¢(min(T, 1)) ] = E[£(0)]. (16)

8.3.3 Weak Convergence of {Y,(t) = /n(Gn(t) —t),0 < t < 1}

The random functions Yj(-) are not in CJ0, 1] due to jumps in G,(f) given in Eq. (11).
However, we can take care of this difficulty by a minor adjustment of G,(¢). Let Uy.1 < -+ <
Up:n denote the order statistics of the random sample (U, . . ., Uy) from Unif (0, 1). The edf
Gy, has jumps of 1/n at each of the order statistics. Now define G,, by linear interpolation
between the points:

0,0), (Up:1,1/(n+ 1), (Un2,2/(n+ 1), ..., (Upp,n/(n + 1)), 1, 1), ie,

Gn(t) =(n+ 1)71[(1. -+ (t - Un:i—l)/(Un:i - n:i—l)] for Up:;j_1 <t < Up;

letting Upo = 0 and Uppy1 = 1. Then |Gu(t) — Gu(t)] < 1/n for all t € [0,1], and
’?n(t) = ﬁ(@n(t) - t), 0<t=< 1} is in C[0, 1]. We can, therefore, use the theory of weak
convergence in C[0, 1] outlined in Section A.5 to find the weak limit of {Y},(-)} which is the
same as the weak limit of { ¥,,(-) |, because Supg<;< | Yn(0) — V()| < n V2,

As mentioned at the end of Section 8.3.1, the natural candidate for the weak limit
of {Y,(t) = V/n(Gn(t) —t),0 <t <1} is a Gaussian process on [0,1] with mean value
function 0 and covariance function {p(s,t) =s(1 — 1), 0 <s <t < 1}. Now the process
{Y() = X(®) — tX(1),0 < t < 1} where {X(£)} is a standard B.M. fits this description, be-
cause {Y ()} is a Gaussian process with E[Y (£)] = 0 for all ¢ and for s < ¢,

Cov[Y(s), Y(1)] = Cov[X(s), X ()] — sCov[X(t),X(1)] — tCov[X(s),X(1)] + stVar[X(1)]

=s—st—st+st=s(1—1).

To accomplish the actual proof of Y,,(-) - Y (-) via weak convergence of {Yn(-)}, we invoke
Theorem A.5.2 in Section A.5, of which Condition (i) regarding convergence of fdd’s is
already seen, Condition (iia) that Y,(0) = Op(1) is trivial and Condition (iib) is verified
by a lengthy analysis (see [43, p. 105-108]).

The process {Y(#) = X(¢) — tX(1),0 < ¢ < 1} where {X(#)} is a standard B.M. is called a
Brownian Bridge because it connects the points (0, Y(0)) = (0,0) and (1, Y(1)) = (1,0) by a
continuous sample path.
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8.3.4 Asymptotic Distributions of D}, D, and W?
All three statistics

D} = sup Vn[Gp(t) —t] = sup Yn(1)
0<t<1 0<t<1

1
Dp = sup |Yn(f)]and W32 = / Yn(0)? dt
0<r<1 0
given by Egs. (12) and (13) are continuous functions of {Y;(-)}. It therefore follows from the
Continuous Mapping Theorem A.5.1, Section A.5 that

Theorem 8.3.2. D 5 supg.,; Y(0), Dy 5 supy_,; [Y(1)], and W2 5 [1yY(0)? dr,
where {Y (t)} is the Brownian Bridge on [0, 1].

We first find the asymptotic distribution of D;}.

Theorem 8.3.3. Let {Y(t) = X(t) — tX(1),0 <t < 1}, where {X(t)} is a standard B.M.
Then

Pl sup Y(©) >y | = efzyz, y>0.
0<r<1

Proof. Note that
sup Y(1) >y <= supY(s/(1+s) >y

O0=<t=<1 $>0

= X =0+9)Y(s/A+5) = (1 +9y

for some s > 0. Now {X*(f) = (1 + )Y (¢/(1 + 1)), t > 0} is a standard B.M., because it is a
Gaussian process with E[X*(#)] = 0 and

Cov[X*(s), X* (] =1+ )A+0[s/A1+9)][1 —t/01 -] =s, fors<t.

Hence

P| sup Y(#) >y |=P[X(s) >ys+y forsomes> 0], a7
0<r<1

where {X(t)} is a standard B.M.
We shall now find P[X(t) > at + b for some ¢ > 0] by a martingale approach.
Consider the stopping time

T = min{t: X(t) = at + b} if X(¢) = at + b for some ¢ > 0 and
T=oc0ifX(t) <at+bforallt > 0.

Then
P[X(t) = at + bforsome t > 0] = P[T < oc]. (18)

Recall that for each ¢, T A t = min(T, ) is a stopping time, and {&(¢) = e?X() /E[e?X(")]
— efX(1-6%1/2

holds.

} is a martingale (property II(c) of a standard B.M.). Consequently, Eq. (16)
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For6 =2a > 0,
E(TAL) = exp[OX(T AL) —62(T A t)/2]

exp [exm —92t)2

<explo(at+b)—0%t/2],  t<T
B exp[OX(T) — 02772 = exp

6(aT +b) —62T/2], t=T

= exp[6{a(T A 0+ b} = 6*(T 7 1)/2]
= exp|2a{a(T A 1) + b} - (T A 1)/2] = . (19)
Next note that
£ = eXp[GX(t) - 021,‘/2] S 0as.ast — oo, 20)
because if {Z;} are iid N(0, 1) and X(n) = Y"1, Z;, then 6X(n) — 6°n/2 = on(Z, —0/2) —

—oo a.s.
Now consider

lim (T A D) = lim [ < T) + (DT < 1],
—00 —00
of which the first term is 0 a.s. by Eq. (20) and the second term is & (T) lim;—, o I(T < 1) =
E(MI(T < o0). Thus
lim §(T A =&(MI(T < 00), a.s.
t—o00

Hence by dominated convergence, using Eq. (19),
tlim E[&(T A 8] = EBIE(DI(T < o0)]
— 00
- E[exp[e(aT +b) — 02T /2]I(T < oo)]
- E[exp[za(aT +b) — 2a)2T/2]I(T < oo)]
= e2ab P[T < o0]
for 6 = 2a. But by Eq. (16), E[£(T A )] = 1forall ¢, so
lim E[E(TAD)] =1 =e*®PP[T < .
t—o00
Thus P[T < o0] = e 2% forg > 0 and b > 0. Takinga = b = y > 0 in this formula and
using Eqgs. (17) and (18), the theorem follows. O
The distribution of sup,_,.; |Y(#)| is obtained by lengthy analysis of the joint behavior
of the maximum and the minimum of a standard B.M. We state the result in the following

theorem, referring to Billingsley [43, p. 77-80 and 83-85] for a proof.
Theorem 8.3.4. Let {Y(#),0 < t < 1} be a Brownian Bridge on [0, 1]. Then

o0
Plsup|Y(t)| <y|=1+2 Z(—l)ke*ZkzyZ’ y> 0.
0=t k=1
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The distribution of fol Y (£)? dt is obtained by using an orthogonal expansion of a stan-
dard B.M. in terms of an infinite sequence of iid N (0, 1) 1v’s {Yp, Y1, ...} due to Wiener [44].
We sketch the derivation of this distribution, referring to Breiman [42], Section 12.7, and
Hajek and Sidék [4], V3.3 Theorem C for details.

Let {X(t)} be a standard B.M. on [0, 7]. Then Cov[X(s), X(#)] can be expressed by the
following identity:

(sin ks)(sin kt)/lc2 =min(s,t) for0<s,t <. 21

K

st/m + (2/7t)

k=1

Hence {X(t)} has the representation:

X(@) = (1/v7)tYo + V2/m Y _{(sinkt)/k}Yy, 0<t=<um, (22)
k=1

where Yy, Y7, ... are iid N(0, 1) rv’s, because the right-hand side of Eq. (22) is a Gaussian
process with E[X(#)] = 0 and Cov[X(s), X(#)] is the same as in Eq. (21).

Rewrite Eq. (21), replacing s/x, t/m by s*, t*, respectively, and rewrite Eq. (22) by scale
change to obtain

o
X*0) = (1/vm)X(wt) = Yo + V2 )_{(sinknt)/(km)}Yy, 0<t<1

k=1
and
o
s 42 Z(sin krs*)(sin km‘*)/(kn)2 =min(s*, "), 0=<s%r" <1 23)
k=1

Hence {X*(#)} is a standard B.M. on [0, 1], because COV[X* (s),X*(t)] = min(s, t) by Eq. (23).

Since X*(1) = Y, it follows that

oo
Y(0) = X*(0) — 1X*(1) = V2 Y_{(sinkrt)/(kn)} Y 24)
k=1

is a Brownian Bridge on [0, 1]. We thus arrive at the following theorem.
Theorem 8.3.5. [; Y (1% dr = Y32, (kx) "°Y2, which is a mixture of x's.
Proof. By Eq. (24),

1 00 00 1 1 00 )
/ Y02 dr=23" :(jknz) Yij/ sinjresinkredt = Y (kn) *YZ,
0 . 0

j=1k=1 k=1

since 2 || (sinjmt)(sinkxt) df = 1 when j = kand = 0 when j # k. O
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Finally, we consider the two-sample statistics D, and W2, given by Eq. (14) under the
null hypothesis F; = F» = F (unknown).

For m,n — oo insuch awaythatm/(m+n) = m/N — randn/(m+n) =n/N —- 1 -
for0 < 1 < 1, write

Dyn = .| m”;”ﬂ Sup [(Fim () — F() ~ (Fan(x) = F@)

- \/”:77 sup |m V2 [Vm{Gip(t) — )] — ”_I/Z[ﬁ{GZ"m -]

+ 1 o<t<1
K ad=n sup V20— (-0~ V2v0)
0<t<l1
= sup |V1—2aYi(t) — VAaYa(t)],
0<t<l1

where {Y1(#)} and ({Y2(f)} are independent Brownian Bridges on [0,1]. Since
[Y(t) =41-AY1(t) — «/XYz(t)} is a Gaussian process with mean value function 0 and

CovlY(s), YOl =0 -MsA—-0+rs1—-H=s1—-1 for0<s1r<1,

Din £> supg<;<; 1Y (#)| and {Y (1)} is a Brownian Bridge on [0, 1]. Thus the asymptotic dis-
tribution of Dy, is the same as that of the one-sample statistic D, under null hypothesis.
For W?2,,, analogous argument holds with the additional observation that (m + n)~!

[mGlm(t) + nG2n(t)] — t, a.s. uniformly by Glivenko-Cantelli Lemma. Hence W,%m £>
J3 Y02 at.

Exercises

8.1. Let pbethejointpdfofXi,..., Xm, Xn+1,- .., Xim+n . We want a UMP similar region
test atlevel o for Hy: p € Py vs H1: p = qa, A > 1, where

m n+m
qA(xl,...,xn+m)=(2n)(m+")/2A"/Zexp{—(l/Z)lez—(ZA)1 > xlz:|
i=1 i=m+1

(a) Show that the UMP similar region test at level « for Hy vs H; is of the form:
¢(Xm-+n), Tam+m) = 0, 0OF ¥ (Xgn4m), OF 1
according as Y "1 | x7 <, or =, or > k(X(nin))-

(b) Form =6,n=9,and A = 2, generate (x1, ..., Xm4+n) from g, and apply the
above test at level « = 0.05 by determining k(x;+x) and y (Xy45) from
(i) the permutation distribution of }7*7" | x7,
(i) arandom sample of 100 combinations.
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8.2. The Mann-Whitney statistic, properly normalized, is

8.3.

8.4.

8.5.

8.6.

ny np

nznlnzzz OOO) Yl _9},

i=1j=1
=[ma,np=[n1-1], 0<ir<l,

where {X;} and {Y;} are independent iid sequences from F and G, respectively, and
0 = [ G(x) dF(x). Find

(a) the Héjek projection T}; of T, when G = F,

(b) the asymptotic distribution of T};, and

(c) the asymptotic distribution of T}, with proper justification.

The Kendall’s tau statistic based on a random sample (Xj, Y1), ..., Xy, Yn) from a
continuous bivariate distribution is

N N

= N(Nl_ 5 Z Z szgn(X X)szgn( Y]>

i=1j#i=1

(a) Find the Hdjek projection y; of ry and the asymptotic distribution of VN TN
under Hy: X and Y are independent.
(b) Use (a) and the property of Var[rN — tj\k,] to derive the asymptotic distribution
of /Nt under Hyp.
LetXq,..., Xm, Y1 = Ximy1, ..., Yo = Xingn be independent rv'’s, N = m + n.
(a) Under Hp: X; ~ N(0,1),i=1,..., N and under contiguous alternative
Hy: X; ~N(©,1),i=1,...,mand X; ~ N((S/m, 1), i=m+1,...,N, find the
asymptotic distributions of the following:
/2
Sn1 = Two-sample ¢-statistic = (X — Y)/[(% + %)W} ,
Sn2 = Wilcoxon statistic = m~1 37", Ry, — n= 1 Y1 1 Rv.i, or equivalently,
Sn2 = Y1 Rnis
Sn3 = Fisher-Yates normal scores rank statistic = ;" | E[®¢ ! (Un:ry,))], using
usual notations.
(b) Find the Pitman AREs of Sy and Sy3 with respect to Sy.
Let Xj, ..., X, be arandom sample from a distribution with mean p, variance o2,
and finite fourth central moment 8 = E[(X pL)4]. We want the asymptotic
distribution of the sample variance 52 = (n — 1)~! Y7, (X; — Xn)°.
(a) Show that s2 = {n(n— 1)}~} 7, Y7, (X; — X;)°, which is a U-statistic.
(b) Use this U-statistic form to find the Hijek projection of 23,21 and then the
asymptotic distribution of \/n(s? — o2).
Let (X1, Y1),..., Xn, Yn) beiid as (X, Y) following the bivariate normal distribution
with E[X] = E[Y] = 0, E[X?] = E[Y?] = 1, and E[XY] = 6 . For testing Hy: 6 = 0 vs
Hj: 6 > 0 (ie, independence vs positive dependence), find the Pitman ARE of
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8.7.

8.8.

Sn1 = /N1y with respect to Sy2 = V/Nry, where 7y is Kendall’s tau and ry is the
product-moment correlation based on (X, Y1), ..., (Xn, Yn) as in Example 8.1.3.
Use the Hajek projection of v and its asymptotic property obtained in Exercise 8.3
and show that vNry = N2 YN | X;¥; + op(1). Now find I(x, ; 0) and I, express
log Ly, Sn1, and Sn2 in the desired form. [Hint: If @ and ¢ are the cdf and pdf of
N(0,1), then [% x®(x) d®(x) = [ [ [T, o) dt]xp(x) dx = [
[/° x¢(x) dx]¢ (1) dt. Evaluate this.]
In this problem, Kendall’s tau and Spearman’s rank correlation are used in a
different context. Let X; = 0d; + Z;,i =1, ..., n, where 71, ..., Z, are iid with a
continuous cdfand d, . . ., d,, are equally spaced constants in increasing order,
which can be taken to be 1, ... ., n, without loss of generality. The following statistics
can be used to test Hy: 0 = 0vs H;: 6 > 0.
() Moore-Wallis Difference-Sign Statistic: D, = Y"1, I0,00) (Xi — Xi—1),
(ii) Difference-Sign Correlation Coefficient (Kendall):
v = [4nn — DIV YE Y Toe (X — X)),
(iii) Rank Correlation Coefficient (Spearman):
pn=1=[6n(n* = )] T Y7 (- )1 + sign(X; - X)),
(iv) The ¢-statistic: T, = Z?:1<d,- - c_ln> (X; — Xn)/ S Xn)z.

We now ask the following questions, regrading the asymptotic properties of these

statistics:

(a) Express Kendall’'s tau and Spearman’s rank correlation coefficient in the form
given in (ii) and (iii).

(b) Express the t-statistic in the form given in (iv). [This is the test statistic for
Hp: 6 = 0in the linear model X; = u + d;60 + Z;, where 73, ..., Z, are iid
N(0,0?), obtained from the least squares estimator and the residual sum of
squares. See Example 6.9.10.]

(c) Find the asymptotic distribution of Dy, t5, pn, and T;, (properly normalized)
under Hp and under Hj, assuming that the Z;’s are iid as N (0, 02). For Hy,
consider contiguous alternatives.

(d) Calculate the Pitman AREs of the tests based on Dy, t5, and p,, with respect to
the test based on Tj,.

[Hint: The statistic 7, is a U-statistic, but p; is not; so find the Héjek projection

(adjusting for the mean) and check that the Hdjek projection differs from the

- \2
original statistic by op(1). Express Ty, in terms of b, = />, (di - dn) ,

Vo= Y1 (di = dn)Zi/bu ~ NO, 1), and W = X1y (Z = Zn)? = Y2 ~ x2_,, and in
the nonnull case use 6 = 6, = §/b;, . For D;;, use Theorem 3.3.3 of Chapter 3 for
m-dependent processes.]

Let Un = (1/n") Y, . &1(Xi, ..., X;,) and Upz = (1/n9) Y, c&2(Xi,, ..., X;;) be
two U-statistics based oniid rv’s Xj, ..., X;, both g1 and g» being symmetric in their
arguments. Let 0; = E[g1(X1, ..., X;)], 62 = E[g2(X, . .., Xy)| and assume that
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8.9.

8.10.

8.11.

8.12.

E[gZ(X1,..., X)), and E[gZ(Xi, ..., X,)] are finite. We want the asymptotic
distribution of «/n[p(Un1, Un2) — ¢(61, 62)], where ¢ has continuous first partial
derivatives at (01, 62). Let

hy(x1,...,xr) = g1(X1,...,xr) — 01, ho(x1,...,%s5) = g1(%1,...,Xs) — 02,
R (X1) = E[h (X, ..., Xr)IX1], h3(X1) = E[h2(Xa, ..., Xs)1X1],

- E[h’fz (Xl)], - E[hf (Xl)], o12 = B[R (X)) (X)), and

o011 012
o12 022
(a) Find two-dimensional Hajek projection (V},, V%) of
(Vi1, Vo) = («/ﬁ(Unl - 01), «/ﬁ(UnZ - 92))-
(b) Show that (V7 V) — (Va1, Vi2) = 0p(1).
(c) Find the asymptotic distribution of (V};1, V;;2).
(d) From (c), find the asymptotic distribution of v/n[¢(Un1, Un2) — ¢ (61, 62)], using
the delta method.
Let Xj, ..., Xy beiid positive-valued rv’s with cdf F having mean p and variance o2,
Let

suppose that ¥ = [ } is positive-definite.

A= Eel ~Xol] = [[ 1x1 - x21 dF () dF () and

¢ =Ep[X11X1 — Xz|] = //xllxl — x| dF(x1) dF (x3).

The statistic G, = D,/(2X,), where X, = n=! 31 | X; and
Dp=I[nn-D]I"'31, Z};i:l |X; — X;| is known as Gini’s coefficient of
concentration.

Use the result of Exercise 8.8 to find the asymptotic distribution of
\/ﬁ(Gn - A/(ZM))-

Verify that the score functions

aji (i, f) = Eqq [—’%(|X|N;,-)] = E[¢" (Un.;,f)] and

ain () = Eq [—1 — |X|N:,-’}(|X|N:i)} = E[sof (UN:irf)]

are as stated in Theorems 8.2.2 and 8.2.3.

Verify that the scores and the resulting test statistics for the specific problems in
Section 8.2.5 are as stated in the text.

Let p be the joint pdf of (Xl, . ,Xm+n). We want to test Hy: p € Po vs H1: p = qa,
A > 0. Show that if the joint cdf Q4 corresponding to g, is given by (Lehmann
Alternative)
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8.13.

8.14.

8.15.

8.16.
8.17.

8.18.

m m+n
Qal[Xi =xi1 si=m+n] =[[[a - AF@) +aF)] [T Fo,
i=1 i=m+1

where F is an arbitrary absolutely continuous cdf, then the LMP rank test of
Hy: pe Pyvs Hi: p = qa, A > 0, has a critical region of the form
> Ryin:i > constant.

In the set-up of Exercise 8.12, suppose that the joint cdf Q, is given by

m m+n
Qu[Xi=xpl<izm+n]=[]Fap'™ T] [1 -{1 —F(xi)}HA]r
i=1 i=m+1

where F is an arbitrary absolutely continuous cdf. Show that the LMP rank test of
Hy: P e PyvsHi: p=ga, A > 0,has a critical region of the form .
> ie1 an(Rmyn:i) = constant, with ay (i) = Z};(l) VN =) =35 /(N =)
N = m + n. [Hint: Fir§t show that E[—log(1 — Un.)] = Z]‘.;(l) 1/(N — j) and
E[—log Un:i] = Zj]\;f)’ 1/(N — j), where Uy:1 < --- < Un:y is an ordered random
sample from Uniform(0, 1).]
Verify the formula for Var[B(X)] given in Eq. (9) and the limit of Ax (1 — AN) 1V as
6n — 0 given by Eq. (10).
Suppose that Xj, ..., Xy are iid rv’s and let Ry; be the rank of X; among Xj, ..., Xn.
Consider the scores

an(i) = i 1<i<N-1
N N2 2 i=N

and let Sy = Y %) an(Ry:i), m + n = N. Show thatif N — oo, m — oo, and
m/N — 0, then

@) {E[Smn] — mN/2)?/(mnN/12) — oo,

(b) Var[Sy,]/(mnN/12) — oo, and

(© (Smn — mN/2) 5 N, 1).

Give a detailed proof of the Glivenko-Cantelli Theorem using the outline in the text.

Let {X(1),0 < t < 1} be a collection of rv’s such that

(i) X(0) = 0 with probability 1,

(ii) forany0 =1 <#1 <--- <ty <1, the increments X(t;) — X(ti_l) are
independent N(0, t; — t;_1).

Show thatforany 0 < <--- < fr < 1 (X(t1), ..., X(t)) follows the k-dim normal

distribution with mean vector 0 and covariance matrix ((o (;, £))) = ((min(t;, t))).

Let U Uy, . .. beiid Uniform(0,1) rv’'s and F,,(t) = n=1 37| Ijo,n(Uy). Let

Y (t) = /n[F,(f) — t]. Show that forany 0 < f; < --- <t < 1,

(Yu@), ..., Yu(tx)) 5 (Y(21), .., Y(t)), where ¥(5) 2 X(5) — £X(1) and
{X(®):0 <t < 1}isanin Exercise 8.17.



Curve Estimation

9.1 Introduction

This chapter is concerned with three problems:

Problem 1. Let Xj, ..., X, be arandom sample from a cdf F with pdf f = F’. We want to
estimate the function f.

Problem 2. Let (X3, Y1),..., (X, Y,) be a random sample from a bivariate distribution
with regression function

o
mx) =E[Y| X =x] = / Vfrix (V1x) dy = o(x)/f (x), where
o0

o0
px) = / Vixy(xy) dy
—00

and f is the pdf of X. We want to estimate the function m.

Problem 3. Let (T, C) be independent positive-valued rv’s, where T is the survival time
of sample unit with cdf F and pdf f, observations on which may be stopped at time C.
We want to estimate the survival function S(¢) = 1 — F(¢) and the hazard function A(¢) =
f(®)/S(t) based on iid observations on (T, C).

We shall develop methods for estimating the functions f and m, and look at the
asymptotic properties of these estimators as n — oco. Methods for estimating the survival
function and integrated hazard function will also be constructed.

9.2 Density Estimation

Since the empirical cdf F,(x) = n=! 37| I _oox (X)) is a natural estimator of F, we can
attempt to estimate f = F’ via the estimator F;, of F, using the relation

ﬂm=g%W4F@+W@—F@—ma]

~ h~[F(x+ h/2) — F(x — h/2)]

Theory and Methods of Statistics. http://dx.doi.org/10.1016/B978-0-12-802440-9.00009-6 255
Copyright © 2016 Elsevier Inc. All rights reserved.
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for small & > 0. This leads to the estimator

n
-1
= (nhn) ™" Y I hy 2,0 hy21(X0)
i=1

-1 “ x—X,-
= (nhn) ™" Y Icazaa( = )- 1)
n

i=1

The data distribution is a discrete distribution with mass 1/n at each X;. If we spread the
discrete mass uniformly over an interval of length h, centered around X;, then the mass
1/n at X; is replaced by a histogram of height (nhn)_1 on the interval (X; — h,/2, X; + hy/2].
Putting all these histograms around Xj, . . ., Xj, together, we obtain f;,(x) defined by Eq. (1).
In this intuitive description, we could spread the mass 1/n at each X; by an arbitrary pdf
h,'K ((- = X3)/hy) instead of the uniform pdf h;ll(_l/z,l/g] ((- — X3)/hy). This would define
a general class of estimators of the form

n
fn@) = (i)™ ST K((x = X3) /), @
i=1
where K is a pdf (ie, K(#) > 0 and ffooo K(u) du = 1). Such an estimator is called a
kernel estimator with kernel K and bandwidth h;,. Since h,, serves the purpose of spreading
discrete masses over the support of K, it is called a smoothing parameter of the estimator
fn ().
Note that f;, is itself a pdf, because f;,(x) > 0 for all x and it is easy to check that
[T ) dx = 1.
The kernel K and the bandwidth A&, are chosen by the user. The following kernels are
often used:

Uniform: K(u) = Ij_1/2,1/2) W),
Logistic: K(u) = e"/(1 + e”)z,
Epanechnikov: K(u) = (3/4)(1 - ?)Ij_1,1@).

Actually, the estimators are not very sensitive to the choice of K, but they are very
sensitive to the choice of h;,.

For early work on kernel estimators of density functions and regression functions
(discussed in the next section), we refer to Rosenblatt [45], Parzen [46], and Nadaraya [47].

Properties of Kernel Estimators of Density Functions
We first look at the effect of h,, on the estimator f;, in terms of its mean and variance.

It should be intuitively clear that the bias increases as &, increases (eg, with uniform
kernel, f,,(x) estimates h;,'[F(x + hy/2) — F(x — h,/2)] instead of limy, o h™'[F(x + h/2)
—-F (x - h/2)]), and the variance increases as h, decreases (because fewer observations
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make appreciable contributions as the bandwidth shrinks). Therefore, we should choose
h,, appropriately to strike a balance between bias and variance in order to achieve the best
rate at which the mean-square error (MSE) — Bias® + Variance tends to 0 as n — oo,
remembering that &, | 0 as n — co anyway.

E[fn(0)] = B[l K (6 = X)/hn) | = f_ hy 'K ((x = y)/hn)f (v) dy
= /oo KWw)f (x — hnu) du, (3)
letting u = (x — y)/hy, and similarly,

o
Var[fu()] =n""! [h,;l / K2(Wf (x — hpu) du
—00

_{f_o; K@wf (x — hnu) du}2i|. (4)

We make the following assumptions:

1. (a) K is a symmetric pdf (ie, K(—u) = K(u) for all u), (b) 012< - fjooo W2K (1) du < oo, and
(©) K2 = [2 K?(w) du < oc.
2. f” is bounded and continuous.

Assumption 1 poses no problem, because K is chosen by the user. If Assumption 2 is
replaced by other smoothness conditions of F, then the results we now derive, will change
accordingly.

Expand f(x — hyu) in the expressions (3) and (4) of E[f;,(x)] and Var[f, (x)]:

F(x = hpu) =f(0) — hpuf' @) + (1/2) U2 f" (x)
+ (1/2)R2 W {f" (~rhnu) — f'()}, 0<ir <L 5)

Since ffooo uK (1) du = 0 by Assumption 1(a) and

lim OO {f"(x — hnu) —f”(x)}uzK(u) du=0

=00 J o0
by Assumption 2 and Dominated Convergence, using Eq. (5) we have
Bias[fu(0)] = E[fa(0)] - f0) = (1/2) k3| o f" (x) + o(1) | and
Var[fu()] = (nhn) ' [IKIP () + 0(D)]:
Combining the above two formulas, we have
MSE[fa(0] = () [0t @?/4 + oD)] + (nhn) ™ [IKIPf () + 01)],
so that

/5 MSE[fu(0)] = <n1/5hn)4[a;§f”(x)2/4 + o(l)] + (n1/5hn>_l [||K||2f(x) + 0(1)]. ©)
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On the right-hand side of Eq. (6), the first term — oo if n'/5h,, — oo and the second term
— oo if n'/5h, — 0. Thus n*>MSE[f,(x)] — oo if n'/5h, either tends to 0 or to oo, and
remains bounded if &, is of the order of magnitude n~'/°. Taking h;,, = /5, we have

nYPMSE[fn(0)] = thogf" 0% /4 + LK) + o).
Finally, t*a + r~'bwith a, b > 0 is minimized at ty = (b/(4a))1/5.

Using this, we see that n*/MSE[f,(x)] is minimized with h, = n~'/5t where f, =
[{IKI2F @)}/ {obf 2],

For example, if K is the uniform kernel on [~1/2,1/2], then with |K||? = 1 and 0% =
1/12, we have fo = [144f (0 /f" (0)2]"/°.

Since %y involves the unknown f(x) and f”(x), one way to implement this in practice
would be to obtain initial (consistent) estimates of f(x) and f”(x) from the data and then
“plug in” these estimates in the formula for 7.

So far we have considered the estimation of f(x) at a specific x. However, we are
often interested in estimating the entire function f, in which case, one would like to use
the same bandwidth for all x. For this, the integrated mean-square error IMSE (fn) =

[ MSE[f,(x)] dx or integrated square error [[f,(x) —f (x)]2 dx would be a reasonable
criterion to minimize. There is a huge literature on the issue of bandwidth choice in density
estimation and regression estimation, some of which will be discussed at the end of this
chapter.

We shall now establish the following asymptotic properties of f;;:

Theorem 9.2.1 (Strong Uniform Consistency). In addition to Assumptions 1(a, b) and 2,
suppose that the kernel K is of bounded variation on (—oo, 00). Then sup, |fn(x) — f(x)] - 0
a.s., provided that nh? /logn — oo as n — oc. [In particular, this holds for h, = O(n='/5).]

Theorem 9.2.2 (Asymptotic Normality). Under Assumptions 1(a, b, c) and 2, with h,, =
n-1/5¢,

r23fu0) — 0] 5 N((1/2) 203" 0, 17 K12 ).

We now prove the strong uniform consistency property. The asymptotic normality of
fn(x) will be proved together with that of the regression estimator m,(x) of m(x) to be
discussed later.

We first state a result from Real Analysis and a probability inequality to be used in the
proof of Theorem 9.2.1 before proving the theorem.

Theorem 9.2.3. If K is of bounded variation on (—oo, o0) and [ |K(u)| du < oo, then
limy_ 100 K(u) = 0.

Theorem 9.2.4 (Dvoretzky-Kiefer-Wolfowitz). If F,, is the empirical cdf of a random
sample of size n from F, then there exists a constant C so that

P[sup |Fp(x) — F(x)| > a] < Cexp(—Znaz).
X
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Proof of Theorem 9.2.1. Note that sup, |fn(x) — f(x)| < An + By, where

By = sup [E[fn(0)] —fx)| = sup / K@){f(x — hpu) — fx)} du

/_ [=hntf’ () + (/2 H3Pf" (x = ) [K () du

= sup
X
< (1/2)h,21012< sup |f” (x)| = O(h%) = o(l),
X
using Assumptions 1(a, b) and 2, and

An = sup [fnx) — E[fn@)]|

= sup
X

(nhy) ! Xn:K((x — X;)/hn) —E {(nh,,)l Xn:K((x - X,-)/hn):|

i=1 i=1

= h;l sup
X

[ K=y mmdlat) - F0))

[ 1) = FOIK (= 3) ) R (x = ) )
< (u/hn) sup |Fn(x) — F()l,

= h;l sup
X

where 1 = \/*_ K is the total variation of K on (—oo, 00), having used integration by
parts and observing that limy_, 1 1y, 'K((x — ¥)/hn) {Fa(y) — F(y)} = 0, all this by using
Theorem 9.2.3. We shall now show that for arbitrary ¢ > 0, Y7, P[sup, |fn(x) — E[fp(x)]| >
s] < oo and then A;;, — 0 a.s., will follow by the Borel-Cantelli Lemma. To this end, we use
Theorem 9.2.4 to see that

P[SL;p [fn(x) — E[fn(x)]| > 8] < P[(M/hn) st;p [Fn(x) — F(x)| > 5}
= P[SUP |Fn(x) — F(x)| > hng/l/-]
X

< Cexp[—Zn(hns/u)z] = Cexp[—z(e/u)znhﬁ].

Since nh?/logn — oo asn — oo, (s/u)znhfl > logn (ie, exp[—z(s/,u)znhfl] < 1/n? for
large n) and Y0 ; 1/n? < oc. O
Functions of bounded variation, Stieltjes integral and integration by parts are discussed
in Appendix A.3.
Remark 9.2.1. Strong uniform consistency of f;, holds under milder conditions than
stated above. It is enough to assume:

1*. K is a pdf of bounded variation.
2*. fis uniformly continuous (and is therefore bounded).
3*. h, | 0and nh?/logn — coasn — ooc.
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To prove Theorem 9.2.1 under these conditions, note that only 1* and 3* are used in
proving A, — 0 a.s. in the above proof, so we only need to modify the proof of the fact that
By = sup, | E[fu(®)]—f(x)| - 0asn — oo using [*° K(u) du < oo and 2*. The main points
to note are that under these conditions, for every ¢ > 0,

(i) we can choose M such that f‘u|>MK(u) < ¢/{4sup, f(x)}, so that
/ If (x — hpu) — f(X)|K(u) du < /2 forallx, and
lul>M

(ii) we can choose §, > 0 such that

|h| < 8¢ = sup |f(x — h) — f(x) < ¢&/2.
X

The details of the proof is left as an exercise.
Remark 9.2.2. For rates of convergence of kernel estimators of density functions and
their derivatives, see Bhattacharya [48]. An estimator of Fisher-information of a location
family of unknown form has also been constructed in this paper.

9.3 Regression Estimation
The regression function Y on X is m(-), where

o0
mx) = ¢(x0)/fx(x), p(x) = / Vfxy (x,y) dy.
o

Since fx(x) is estimated by f,(x) given in Eq. (2), the main thing is to estimate ¢(x).
Analogous to f(x) = F'(x), ¢(x) can be expressed as

d X o
px) = d—/ / yixy (t,y) dy | dt
X Jt=—c0| Jy=—0c0

x+h/2

o0
=limh ! / t,y) dy dt
L M :_oonyY( y) dy

o0 o
= lim ht / / Tx—ny2,0n/2) O¥fxy (t,y) dy dt
10 —00 J—00

. -1 . -1
= }11?8 E[h Tix—hy2,x+hy2)(X) Y] = lﬁ% E[h 12,172 ((x = X)/h) Y],
so a natural estimator of ¢(x) is

n
on@) = (nhn) "3 111 )212) (X = X3)/hn) Vi

i=1
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with small &, > 0, or more generally,

n
on(@) = (nhp) "3 K((x — X3)/hn) Vi, @)
i=1

using a pdf K as the kernel.

This leads to the kernel regression estimator

(nhn) ™" S K((x = X) /1) Y;  pn(x)

W = _ nl0)
T ) TS K (- X)) T

8)

where h;,, | 0asn — oc.

The estimator m,(-) also has the strong uniform convergence property, which we state

below without proof.

2,
3.

Theorem 9.3.1. Suppose that the following conditions hold:

. (@ Pla<X <bc<Y=d|=1forsomea<bandc <d,

(b) fx(x) is bounded away from 0 on [a, b),

(© fxy(x1,¥) — fxy(x2,¥)| < M|x1 — x2| for some M and for all x,, x> € [a, b] and
y € [c d].

K is a bounded symmetric pdfon [-1, 1].

h, — 0 and nhy/logn — ocoasn — oo.

Then sup,,<p |Imu(x) — m(x)| — 0 a.s. at the rate of r, = hy + \/logn/(nhy) (e,

r;l SUP ;< <p |Mn(x) — m(x)| is bounded with probability 1).

We now state a theorem on the asymptotic normality of the bivariate sequence

(fn(x),<pn(x)) given by Egs. (2) and (7). In particular, this will establish the asymptotic
normality of f,(x), proving Theorem 9.2.2, and the asymptotic normality of m,(x) =
@n(x)/fn(x) given in Eq. (8), will follow by the delta method.

We shall make the following assumptions:

. The second derivative fy/, m”, and v”, where v(x) = Var[Y|X = x] exist, and are

bounded and continuous.
The kernel K is a symmetric pdf with 0% = [ #?K (1) du < oo and
IKII? = [ K?(u) du < oo.

Theorem 9.3.2. Under Assumptions 1 and 2, with h, = n~1/5,

Pn(x) — @(x)

iNzetzal%[f”(x)],r—1||K||2f(x)[1 e D

@ (%) m) v +m?x)

22/ [fn @) —f ]
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Corollary 9.3.1. Convergence of the first coordinate gives us Theorem 9.2.2, and using
the delta method with g(u, w) = w/u, we have

n?/®[mp(x) — m(x)] £ N(B(x), ¥ (x)), where

— " (x)m(x)

"
B = (1/2) 202 &Y and w(x) = 1~k 2 2

f) f

Verification of the formulas for 8(x) and ¥ (x) is left as an exercise.
Proof of Theorem 9.3.2. We shall use the Cramér-Wold device, namely,

arUp + ap Wy, £ ayU + apW for all (ay, az) = (Un, Wp) £ (U, wy.
Let us, therefore, consider

Eni = arhy ' K((x — X;)/hn) + azhy, ' K((x — X;) /hn) Y;
= h 'K ((x = X;)/hn) (a1 + a2Y5).

Then for each n, {§,,;,i =1, ..., n} areiid. Let
n n
tni = E[&ni]s Grzzi = Var[&,;], An = Zum' = nup1, and B%l = Zarzzi = norzll.
i=1 i=1

Letting m(x) = E[Y|X = x] and v(x) = Var[Y|X = x], we have
Ini = // hy 'K ((x = 0)/hn) (a1 + azy) frix (v10)fx (0) dy dt
= / K)(a1 + azy)fyix (v1x — hnu)fx (x — hnu) dy du
= /K(u){al + azm(x — hnu) }fx (x — hnu) du,
and similarly;,
a,%i = h,_l1 / Kz(u)[{al + aym(x — hnu)}2 + a%v(x — hnu)]f(x — hpu) du — M%i'

Assumptions 1 and 2 allow us to expand f (x — hyu), m(x — h,u), and v(x — hyu) to second-
order terms about x in the above expressions. After algebraic manipulations, this leads to

tini = {a1 + aam))f (x) + (1/2)h3]a(x) + o(1)] and
o2 = hy' [y +o()], By = no2) = nhy' [y () + o(1)] 9)
where
a(®) = of[arf" @) + ax{fOm" (x) + f )m) + 2f ()m 0)}],
7 () = IKI2[ (@1 + am(0)? + aGv) | o). 92)
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To establish asymptotic normality of Y 7, (&ni — 1tni)/Bn, we now check the Lindeberg
Condition:

n
nlggo B;z ZE[I@B”’OO)(@M - ,U«ni|)($ni - Mni)z] =0,
i=1

the verification of which is left as an exercise.
We thus have Y7L (65 — ini)/Bn 5 NO, 1.
Using Egs. (9) and (9a), Z?zl(sm- — Wni)/Bp simplifies to

nhn
y (%) + o(1)

+az{en(x) — () - (1/2) Koy 1+ o)} ],

[ fut0 = f0 = (1/2) B30} 001 + 001

which £> N(0,1) for all (a1, az).
Writing

_ 1 m(x) a; 2
y@ = (a dz)[m(x) V) + 2 (x)] <a2> IKI2f ),

this implies

Vnha{fa) = f0)} = (1/2)/ nh30gf" ()1 + o(1)
Vinhp{on(x) — @)} — (1/2)y/ nhyoge” (x)(1 + o(1))

L 0 2 1 m(x)
g N2<|:0i|’ “K“ f(x) |:m(x) v(x) + m2(x)]>

Taking hy, = n~'/5t, we arrive at the desired result. O

9.4 Nearest Neighbor Approach

Consider the uniform kernel with bandwidth #;,. In both density estimation and regression
estimation, the methods discussed will suffer from the drawback that for those x where f (x)
is small, very few datapoints will have their X-values falling in the window x £ h;/2. As a
result, very few datapoints will contribute to the construction of f;,(x) or ni,(x) where f(x)
is small.

To overcome this difficulty, one may decide to let the data determine the bandwidth #,.
The idea is to choose h;, large enough so that exactly k = kj, of the X;’s are included in the
window x + h;/2 . Clearly, this would put the burden of MSE more on the bias when f(x)
is small (causing /i, to be large) and more on the variance when f(x) is large (causing &, to
be small).
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Letd, = inf{h: Z?:l I[xfh,erh] X > kn} Then Z?:l I[xfdn,erdn] (X;) = k. Now if we
let d), play the role of h;/2 in the kernel estimation procedure with uniform kernel, then

n

Fa@ = (b)Y Iy 2, 2) (X1)
i=1

1 < kn
X)) = 2.
n(2d) ;I[xfd"’xm”]( )= 2,

This dj, is called the k,-nearest neighbor (k,,-NN) distance from x and f;,(x) = ky/(2ndy,) is
called the k,-NN estimator of f(x).

Here kj, is the smoothing parameter and the optimal rate at which k;, - coasn — oo
is O(n*®) (ie, we choose k, = [n*/°t]), where [] is the greatest integer function. This is
under the second-order smoothness condition assumed earlier.

Analogous argument in regression estimation leads to the k,-NN regression estimator

(n2dn) ™" S Iy e dy] (X0) Vi
(n2dn)71 Z;lzl I[x—dn,x+dn] (Xl)

n
=k Y pdpxra X Yi=kt Y Y,
i=1 {i: |1 X;—x|<dn}

Mmp(x) =

that is, m,(x) is the mean of those k;, values of Y; corresponding to the X;’s which are kj
nearest neighbors of x.
Another way to express this is to

(i) replace (X;, ;) by (IX; —x[,Y)) :=(Z;, V), i=1,...,n,
(ii) rank Z; = |X; — x|,i=1,...,nas0 < Z,1 < -+ < Zp. (strict inequality w.p. 1),
(i) let Y;,,; be the Y-value associated with Z,,.;, ie, Y., = V; <= Zy; = Z;.

Then the k;-NN estimator of m(x) is m,(x) = k;l Zfﬁl Y.

9.5 Curve Estimation in Higher Dimension

Let X be a d-dim rv with pdf f and Y be a real-valued rv whose regression on X is
m(x) = E[Y|X = x]. So far, we have discussed the problems of estimating the pdf f from
iid observations on X and of estimating the regression function from iid observation
(X1, 11),..., Xy, Yy) when d = 1. We now consider these problems for d > 2. For this,
the kernel and NN methods and the theoretical results for their asymptotics described so
far, extend in a straightforward manner to higher dimensions. However, the actual sample
size n needed for these estimators to perform reasonably well, increases rapidly with d.
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For d-dim Xj,...,X,, we work with d -dim kernel K; which is symmetric in each
coordinate and define

fnx) = (nhg>_l ZKd((x —X;)/hn) and
i=1

n
Mp(x) = (nhg)‘l 3" Ka((x — X3)/hn) Y/ 0).
i=1
In particular, we may choose K (u1, ..., ug) = ]_[]‘-i=1 K (uj) where K is a pdf on R which is
symmetric about 0.

To understand the difficulty of high dimensionality, let K; be the uniform kernel on
[-1/2,1/ Z]d. Then the only datapoints contributing to the construction of f;;(x) and m, (x)
are those with X; —x € [—hn /2, hy/ Z]d, the number of which is of the order of nhﬁ. Without
going into detailed calculations, it is easy to see that the bias of f;,(x) or m,, (x) will still be of
the order of hf, (as in the case of d = 1), but their variances will be of the order of 1/ (nh‘,f).
This will result in mean square error of the form

A(x)h‘,ll + B(x)/(nhg) + Ru(x).

Neglecting the remainder term, we see that
4 —d
n/ (@4 MSE ~ Ax) (nl/ @) + B (nl/ (d+4) hn) ,

which blows up if n1/(@+4)p,, either — 0 or cc. Thus the optimal h, = n~'/(@+4¢ with
a suitable t, resulting in MSE = O(n_4/ (d+4)). This shows how the rate at which the
MSE converges to 0 slows down as d increases. In the Curve Estimation literature, this
phenomenon is called “Curse of Dimensionality.”

For example, if the X;’s are sampled from N;(0, I), then in order to estimate this density
at x = 0 by the kernel method using normal kernel and optimal bandwidth, the sample
size n needed for

Relative MSE[fy(%)] = E[{fn(x) —f(x)}z]/fz(x)

to be <0.1 increases from n = 4 ford = 1ton = 67 ford = 3ton = 10,700 for d = 7 (see
[49]).

9.6 Curve Estimation Using Local Polynomials

Let us first briefly review the result on the kernel estimator m,(x) of the unknown
regression function m(x) as given in Corollary 9.3.1, where asymptotic normality of the
estimator m,, (x) is established after suitable renormalization. Asymptotic bias is

" _
asymptotic bias: <h%/2)al%w,
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where h, = n=1/5¢, t > 0. Since ¢(x) = m(x)f(x), we get ¢” (x) — f’(@X)m(x) = m" (x)f (x) +
2m’ (x)f’ (x). From Corollary 9.3.1 we get the asymptotic bias and asymptotic variance of
my(x) as

asymptotic bias: (h% /2)01%[1?1” (x) 4+ 2m' (0)f' (0 /f (x)], and
asymptotic variance: (nhy) “IKIPv /f (),

where v(x) = Var[Y|X = x]. Note that the bias term involves f’(x) (ie, it depends on the
smoothness of the marginal density of X). In other words, the design of the X;’s enters the
picture in regression estimation. Moreover, the estimator m,(x) has another aspect which
makes it difficult to use in practice. Suppose that f is supported on a compact interval
which we take to be [0, 1] without loss of generality. The bias of the estimator #1,(x) at or
near the boundary points 0 or 1 is of order h, and not k2. Thus the regression estimate is
less reliable at or near the boundary points. The local polynomial method seeks to remove
these negative aspects of the kernel estimator m;,.
In order to simplify notations let us denote

K((x — Xl)/hn)

o K((x =) hn)
Thus we may rewrite the kernel estimator as m,(x) = Z?:l w;(x)Y;. Since w;(x) > 0 for all
i, and Z?:l w;i(x) = 1, my(x) is a weighted average of Y;’s with weights w;(x). If the kernel K
is compactly supported, say on [—1 /2,1 /2], then w;(x) = 0 whenever |X; — x| > h;,/2. Note
that a regression model for (Xj, ;) is of the form Y; = m(X;) +¢;, where {¢;} are independent
with E[e;|X;] = 0 for all i. If X; is in the neighborhood Ny,(x) = {u:|u—x| < hy,/2}
(ie, |X; — x| < hy,/2) and we approximate m(X;) by a constant 8y = m(x), then the regression
model takes the approximate form Y; = 8y +¢; when X; is in N, (x). If we obtain an estimate
of By from a weighted least squares criterion of the form ;' (V; — ﬁo)zwi(x), which is
minimized with respect to By, then m,,(x) is that value of 8y which minimizes this local
weighted least squares.

Now if we approximate m(X;) by a straight line instead of a constant when X; is in N, (x),
then a simple Taylor series expansion yields

) = fo-+ 1 0512 + 0% ).

w;i(x) =

where By = m(x) and g1 = m/(x). Thus the regression model described in the last
paragraph can be approximately expressed as Y; = fo + p1(X; — x) + ¢ when X; is in
N, (x). The parameters 8y and g; can be estimated by using the method of weighted least
squares. If the estimate of gy is Bo, then our estimate of m(x) is By. More formally, we
seek to minimize Q = YL, [Y; — fo — B1(X; — x)]zwi(x) with respect to By and g;. If we
differentiate Q with respect to 8y and 8; and equate the derivatives to 0, we are led to the
equations

Bo + Z w;(x)(X; —x)p1 = Z w;x)Y;,
> w0 (X = x)Bo + Y wid) (X; - x)*B1 = Y wi(0(X; — x)Y;.
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We can get an explicit expression for the estimate of 8y from these equations after some
tedious algebra. Let us simplify some notations by denoting

cs(x) = Z w;(x)X; —x°5 s=1,2,3.
Then the estimate of gy is

s Y wi[e2(x) — e )(X; — x)]Y;
T SN wim [c2(0) — 10 (X; —x)]

'ﬁ:<

Thus the local linear estimate of m(x) is given by

mD () = Y wi)[c2x) — 1) (X; — x)]Y;
Y wi[e2(x) - c1 () (X; x)
witolea) ~ @i -] _ wilew ~aw( - )
> wjlx) [cz x) —c (x)< x>] co(x) — 1 (x)?

Z l;(x)Y;, where

lix) =

The local linear estimate of m(x) is also a linear combination of Y; ’s with weights
l;(x), and the weights sum to 1 (ie, Y_;(x) = 1). These weights also have the property
> Li(x)(X; — x) = 0. This is unlike the regular kernel estimate m,(x) = ) w;(x)Y; where
the weights w;(x) do not necessarily satisfy the equation ) w;(x)(X; — x) = 0. Why is this
property important? It provides a correction term in the bias part. In order to see this, let
us write

myP @) — me) = " L[Y; - m(X;)] + D Lo [m(X;) — m@)].

The first sum in the last expression contributes toward the asymptotic variance of m' (x),
whereas the second sum contributes toward the asymptotic bias. We now examine the
second sum in some detail. Let us assume that K is supported on a compact interval, say
[-1/2,1/2], and it is symmetric about 0, m is twice differentiable, " is continuous on the
compact interval [a, b] on which m is being estimated and f is continuous on [, b]. Under
these conditions it can be shown that inf; /;(x) > 0 with probability converging to 1. Since
m’” is continuous on a compact interval, it is also uniformly continuous. Since w;(x) = 0
whenever |X; — x| > hj,/2, using a two-term Taylor expansion of m(X;) around m(x), we
have

> La[m(x) - me] = Y L[ (% - x m(x)+(l/2)( —2)2m )] + 0p (1)
1/2 Zl (x) m (x)+0p(h%l),

because the sum involving the linear term with X; — x is exactly equal to zero (ie,
> L;(x)(X; — x) = 0). Asimilar argument for the bias part for m, (x) (ie, > w;(x)[m(X;) — m(x)])
would involve a term of the form ) w;(x) (X; — x). In order for this term to be of order hfl, it
is required that f is differentiable and f” is continuous. Such a condition is not needed for
the local linear estimate.
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Let us now examine the bias term for the local linear estimator m%LL) (x) a bit more

closely and establish that ) [;(x)(X; — x)? = hfl [012( + 0p(1)]. Then the bias term would be
(1/2)h202m” (x) + op(h3).
Using the expression for /;(x) we get

w9 [c2 () — c1(0) (X; — x)] (X; — x)
c2(x) — c1(0)?

YW -x)° =Y

_ W? - a@ea®
c2(x) — e1(1)?

For any nonnegative integer r, using Chebychev’s inequality, it can be established that

(nhiﬁ_l)_l ZK((X - Xl)/hn) (Xl' — x)s
= (nhn) "V SO K((x — X5) /) { (X — ) /) S /uSK(u) du f ).

Noting that [ u*K(u) du = 0 for s = 1 and s = 3 (since K is symmetric about 0), we have

c1(x) = hn /uK(u) du + 0p(1)] = op(hn),

cox) = h% / uzK(u) du + 0p(1):| = h%[af( + Op(l)], and

c3(x) = h% /u3K(u) du + Op(l)] = 0p<h?,).

Plugging in these approximations for c¢;(x), c2(x), and c3(x) in the expression for
3 1i(x)(X; — x)?, we have

2
L)X — x)2 = C2(x) — c1(¥)cz(x)
2= ) = w2

B h‘,*,[a,% n 0p(1)]2 — oP(h;g)

B h%[a,% + Op(l)] —op(13)

= h,%[af( + 0p(1)].

Using arguments similar to the ones in proving Corollary 9.3.1, we can also get a similar
result for the local linear estimate mﬁlLL) (x).

Theorem 9.6.1. Assume that

(a) onacompact interval [a, b], m is twice differentiable, and m', v, and f are continuous,

(b) the kernel K is a bounded pdf on a compact interval [—c, c] and is symmetric about
zero, and

(¢) SUpPycpqp) E[Y*1X = x] < oo
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Taking hy, = n=Y/5t, it can be shown that for x € [a, b],

n2/5 [mﬁf” (x) — m(x)] £> N (ﬁ(LL) (%), w (D (x)), where

2V

@ = (172)Fofm’ ) and w ) = N IKIP £

Note that the asymptotic variances of m;,(x) and mﬁlLL) (x) are the same, but their

asymptotic biases are different.
Remark 9.6.1. In this section, a few aspects of local polynomial method have been high-
lighted. More applications and details can be found in the book by Fan and Gijbels [50].

1. Instead of the local linear method for estimating m(x), one may consider local
polynomial estimation by minimizing Q = >[V; — Bo — 1 (X; —x) — -+ - —

BpXi — x)p]zwi(x) with respect to By, f1, . . ., Bp- Then the local polynomial estimate of
m(x) is my" (x) = fo.

2. Ifthe independent variable X is vector valued, one can obtain a local linear (or more
generally a local polynomial) estimate of m(x). In this case, one minimizes
Q=Y[Yi—Bo- BT X; - x)]zwl-(x) with respect to o and 8, and as before the
estimate of m(x) is given by So.

3. Itis also possible to carry out density estimation using the local linear or local
polynomial method.

4. The choice of bandwidth h;, is crucial as in any other curve estimation problem.

A cross-validation method can also be employed to obtain an appropriate value of #;,.
The method of cross-validation is described in the next subsection in the context of
kernel density and regression estimation problems.

9.6.1 Choice of h, in Density Estimation

Ideally, we would choose h,, which minimizes the Integrated Square-Error

/(fn—f)2=ff,$—2ffnf+/f2,

in which the last term does not depend on f,. So the aim is to minimize R(f,) = [f? —
2 [ fuf - The first term [ f2 is calculated directly from f;,. So the main thing is to estimate
the second term from the data. The idea of “leave-one-out” is used for this purpose. Let

n
fo—il®) = |:{(n - 1)hn}_1 Z K((x —X])/hnﬂ foreachi=1,...,n. (10)
j#i=1

Then
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E |:n_1 an,—i(Xi):| = E[fn,—n(Xn)] = EE[fn,—n(Xn) X1, ... )Xn—l]
i=1

=E f fn—n(x)f(x) dx =E / fn@)f(x) dx,

because

E[fn,—n(0)] = E{{(n — Dhp) ! nf K((x - Xj)/hn):|

= E|:(nhn]_l Xn:K((x —)(J-)/hn)} = E[fn(x)].

=1

Thus the estimator

R(fn) = / fi—(2/n) anfn,_i(Xi) an
i=1

has the property: E[f?( fn)] =E[R(f»)]-
Hence minimizing E[R( fn)] is equivalent to minimizing E[R(f)], so a choice of h;,

which minimizes R(f;,) will, hopefully, approximate the optimal /1, which minimizes R(f;)
itself.

We now describe the actual cross-validation procedure. First, for computational facility,
we express

/ 2 () 23 / K((X; — 2)/ln)K ( (x = X;) /n) dix

i=1j=1
- (nzhn>fl i Xn:/K(Xl-/hn — WK (u—Xj/hn) du
i=1j=1
- <n2hn>—1 Zl 21/K<(Xz —Xj)/hn _ (u —Xj/hn))K<u —Xj/hn) du
i=1j=
= () 3K () ),
i=1j=1

where K@ is the convolution of K with itself, that is

K®(z) = / K(z — wK(u) du = pdfof Z; + Z»,
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where Z; and Z, are iid with pdf K. Next rewrite the term n~! Z;’Zl fn—i(X;) with a minor
modification to obtain

nl Xn:fn,,i(xi) - Xn:[(n — Dhy] ™ Zn: K((X, - Xj>/hn)
i=1 i=1 jAi=1
~ (nzhn)il Xn:iK((X, — X;)/hn) = (nhn) " K(©).
i=1j=1
Putting the two terms together in Eq. (11), we have
R(fn) ~R1 (fn)
() 03K (% - ) )
i=1j=1
— 23 (n?hn) liiK((X — X;)/hn) = (nhn) "' K(©
i=1j=1
:(nzhn)_l i iK*((Xi ~ X;)/h) + 2(nhn) " K(0),
i=1j=1

where K*(-) = K@ () — 2K ().

The least squares cross-validation procedure is to choose the bandwidth as the value of
h,, which minimizes R; (fn) (see [49, 51]).

Let I(fu; hn) = [(fn — f)z, where f; is given by Eq. (2) and let h,(CV), h,(opt) denote,
respectively, the h;, obtained by minimizing R (fn) and the unknown optimal &, which
minimizes I(fy; hy) for the given data. Then the following optimality property holds for
hu(CV) whenever f is bounded and K satisfies some mild conditions:

i 1 n(CV))

——— £ =1 with probability 1.
n=25% T{fy; inopt)) PRI

The above discussion was for d = 1. All of this goes through for d > 2, by replacing &, by
h¢ in the formula for R, (fn)-

9.6.2 Regression Estimation
In regression estimation, analogous to density estimation, our goal may be to minimize
d(mn; hn) = /(mn - m)wa

=/m§lwf—2/mnmwf+/mZWf,
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where f is the pdf of X and w(x) > 0 is a weight function. Again, the last terms does not
depend on my,, while the first two terms involve the unknown m and f and therefore, need
to be estimated.

To motivate the proposed procedure, let (Xp, Yp) be an observation on (X, Y) which is
independent of the data (X1, Y1), ..., (X5, ¥3,) and then rewrite the two terms as

/mflwf—Z/mnmwfz E ’mn Xo) — 2mu(Xo)E (Y0|XO)]w(X0)|Dam]

E

[

E[E(’mn Xo) — 2mn(Xo) Yo ] w(Xo)|Xo, Dam) |Data]
[{mfl Xo) 2mn(X0)Y0} (Xo)lDam]

{

= E[{Yo - ma(Xo) }w(Xo) IData] — E [ Y§w(Xo) .

Since E[Yozw(Xo)] does not depend on the choice of &, we only need to estimate
E[{Yo — mp(Xo) Pw(Xop) |Data] and then choose h;, to minimize this estimate.
Again using the “leave-one-out” method, we construct the estimate

dy (mn; hp) = n! Z:{Yi — my, (X)) w(X;)

for E[{Yo — my, (XO)}Zw(X0)|Dam], where

n
M) = [0 = Dha] ™" Y2 K((x = X}) /) Yj/f, -0
j#i=1

with f, _;(x) as in Eq. (10).

Then the cross-validated choice £,(CV) and the optimal choice hy(opt) of hy, are,
respectively, the minimizer of d, (my; hy) and d(my; hy). However, for technical reason, the
choice of h;, is restricted to [Cln“s, Cz] for some constants C;, C, and § > 0. This technical
condition is also in conformity with the practice. To see this, assume that the kernel K
is supported on [—1/2, 1/2]. Then the nonparametric regression estimate at x is simply a
weighted average of Y;’s for which X; is in the interval [x —hp/2,x+ hy /2]. Now, if hy, is
too small and x is not one of the X;’s, then this interval may not have X-observations, thus
there are no observations to average on and one cannot get a nonparametric estimate of
m at x.

Suppose that f is supported on a compact set in R, on which it is bounded away from
0, and that f and m are continuous on this set. Then under assumption of boundedness of
conditional moments of all orders of Y given X, the following property holds for h,(CV):

d(mp; hu(CV))

S At =7)) B
d(mp; hn(opt)) ’
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9.7 Estimation of Survival Function and Hazard Rates
Under Random Right-Censoring

Let (T1,C1), ..., (Tn, Cpn) be iid pairs of positive-valued rv's where for each i, T; and C;
are independent. For each i, T; is the survival time (ie, the time until death of a sample
subject or the failure time of a sample equipment) and C; is the censoring time (ie, time
at which observation is stopped for this sample unit). Thus the observed data consist of
(Y1,81), ..., (Yn, 8,) where Y; = T; A C;and §; = I(T; < G;), so (Y;,8;) = (y,0) means that
the observation on the ith unit was censored at time y and (Y, ;) = (y, 1) means that the
observation continued until death or failure which occurred at time y. This is random right
censoring of survival time. Foe simplicity, we shall assume that there are no ties.

Let F denote the common cdf of the T;’s and let f denote the corresponding pdf.

Definition 9.7.1. The function S(¢) = 1 — F(t) = P[T > t] is called the survival function
and A(t) = f(t)/[1 — F()] is called the hazard function or the hazard rate of therv T.

Since A(f) dt ~ P[t <T <t+dt|T > t], it is also called the instantaneous failure rate.

The survival function S(#) and the hazard function A(t) are related by the formula

t
St = exp[f/ A1) du] (12)
0

the proof of which is left as an exercise.

Estimation of the Survival Function

We now consider the problem of estimating the survival function S(¢) from randomly right-

censored data {(Y;,6;), i=1,...,n}. Let Y1 < --- < Yy, denote the order statistics of

Y1,...,Ypandlet 8.1, ..., 8pn be defined by 8,,,; = §; <= Yy,; = Y. Ateach Yy, either a

death or a censoring occurs, depending on whether §,,.; = 1 (death) or §,,; = 0 (censoring).
Consider the intervals I; = (Y;.;_1, Y], taking Y;.0 = 0, and let

R(t) = Risk set at time ¢ consisting of those who are still alive at time ¢—,
n; = #R(Yy;) = number alive at time Y,,;;—,

d; = number dying at time Yy,.; = §,,.;,

pi=P[T > Yyl T = Ypi1]and g; = 1 — p;.

The natural estimates of g; and p; are

R . L [1=1/my 8, =1 S
Cli=di/niandl’i=1—qi={1 i jfaz:z-zo}:(l_l/ni) g

The Product-Limit (PL) estimator of S(¢) due to Kaplan and Meier [52] is
S(t) = l_[ i?l' = l_[ (1 - l/ni)a’”, (13)

Y.<t Y.<t
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because n; = #R(Yy:i_1) = n — #{dead or censored before Y,,,;_1} =n—i+ 1.

Remark 9.7.1. On the interval (Y},.;_1, Yy:i1, S(¢) remains unchanged if the observation
at Yy,; is censored and it is reduced by a factor of (n —i)/(n — i + 1) if Y, is uncensored
(death).

Variance of 5(t)
Since n;p; ~ Bin(n;, p;),
Var[log p;] ~ Var[p;](dlog pi/dpi)* = (pidi/ "i)(l/l’?) = qi/(nip;)
by the delta method. Hence
i i i
Var[log S(Yn:i)] = Var |:/Zl log fyji| = ]21 Var[log faj] ~ ]Zl 6]j/<nji7j>,

assuming log p1,log p2, . . . are independent. Using the delta method again, we have
Var[S(Yn:i)] = Var [exp (log Sn:i)] ~ exp (2 log Sn:,->Var[log Sn:i]
R i
~ 8 (V) Y 6Ij/(nji?j)-
j=1
Thus

Var[S(t)]%32(t) Yo ai/ (i) =S*® Y S/ {ni(ni - 1)}

Y.<t Y <t

Redistribute-to-the-Right Algorithm

This is another method, due to Efron [53], of calculating the PL estimator 3(t) given by
Eq. (13). If we start with a sample of size n,

(i) first put a probability of 1/n at each Yy,;

(i) if Y},.;, is the first censored observation, redistribute the probability 1/n assigned to
Yy, equally to Yy.i 41, . .., Yun, so that each of these observations now carries a
probability of (1/n)(1 + 1/(n — ir));

(iii) if Y., is the second censored observation, distribute the probability on Y,.;, equally
to Yyip11, - - -» Yun, 50 that each of these observations now carries a probability of
(1/n)(1 +1/(n—1i1))(1 + 1/(n — i2)), and so on.

A proof that this method leads to the same estimator as the one given by Eq. (13) is left
as an exercise.
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Estimation of the Integrated Hazard Function

Estimation of the hazard function from censored data would involve estimation of the pdf
of T from censored data, which is difficult. On the other hand, estimating the integrated
hazard function A(f) = fot A(w) du is straightforward, since S(t) = exp[—A(?)] by Eq. (12).
We therefore estimate A(f) by the estimator of — log S(¢) , that is,

A1) = —logS) = — > log(1 — b/ (n—i+1))
Yii<y

because (1 —1/(n—i+ 1))8”” =1-6p:i/(n— i+ 1).Also since —log(l — x) ~ x for small x,
we have another estimator

Ap()= )" Spi/(n—i+1)

Ypi<t

which is approximately the same as A.

Exercises

9.1. Show that a sufficient condition for a kernel estimator f;,(x) of f(x) with bandwidth
h,, to be a consistent estimator is that #,, | 0 and nh;, — oo.

9.2. Suppose that f is m times differentiable and f"” is bounded. Drop the condition
that the kernel K is a pdf, but satisfies the conditions:

JKwdu=1, [uU'Kw)du=0,r=1,...,m—1, [ |u"K(u) du < oo, and

i K2%(u) du < oo.

(a) Find the asymptotic bias and variance of the estimator
fax) = (nhn)_1 i1 K((x — X)/hy) using such a kernel K.

(b) Determine the optimal rate at which &, should tend to 0 and the corresponding
rate of convergence of the MSE of f;, (x).

9.3. Let my(x) be a kernel estimator of the regression function m(x) of Yon X at X = x
based on a random sample of size n. Verify the formula for the mean g(x) and the
variance ¥ (x) of the asymptotic distribution of n%/°[m,,(x) — m(x)] given in the text.

9.4. Give a detailed proof of Theorem 9.2.1 under the milder conditions 1%, 2*, and 3*.

9.5. Find the formulas of bias and variance of the k,-NN estimators of a pdf f(x) and a
regression function m(x), and verify that the optimal rate at which k;, — oo as
n — oo is O(n*/?).

9.6. Prove formula (12) on the relation between the survival function S(¢) and the hazard
function A ().

9.7. Prove that the redistribute-to-the-right algorithm leads to the same estimator as the
one given by Eq. (13).



10:::
Statistical Functionals and Their Use
iIn Robust Estimation

10.1 Introduction

Let Fo be a family of cdf’s in R%. Then T: Fo — R is called a statistical functional. Most
statistical problems involve inference about such a T'(F) for an unknown F € Fy based on
T (Fp), where F,, is the empirical distribution function of a random sample Xi, ..., X, from
F.The behavior of T'(F,) — T'(F) is, therefore, of interest. Study of statistical functionals was
introduced by von Mises [54].

Examples
In these examples, for simplicity, d = 1.

1. T(F) =Er[gX)] = [g(x) dF(x) on Fy = {F: Ep[Ig(X)|] < oo}, T(Fp) = n~ 1 Y 1L, g(X)).
2. T(F) = EF[(X - g(F))k] on Fo = {F: E plX|F < oo}, where & (F) = Ep[X],

TF)=n1Y0 (X — Xn)k where X, = n=! 31 | X;.
3. T(F) =F1(p) =inf{x: Fx) > p},0 < p < 1,on Fy = {all cdf’s on R}, T(F,) = X,,. (np]-
4. T(F) = Ef[g(Xy,..., X;)] where g is symmetric in its coordinates,
Fo={F:Er[lgXa,..., X)|] < oo}, TFp) =n" 3 1y 201 8(Xiy» -, Xi,).

In the last example, T'(F,) is called a V-statistic which differs from a U-statistic by its
inclusion of all (i1, . . ., i;) rather than only those for which i} # - -- # i, and then dividing
the sum by n” instead of n) = n(n—1)--- (n — r + 1.

In Section 10.2, we shall introduce an expansion of /n[T(F,) — T(F)] by means of
“differentials” of T'(F), analogous to the expansion of ﬁ[T(én> - T(@)]. The leading term
of this expansion will provide a functional delta method subject to the remainder term
being op(1). Postponing the issue of remainder terms, Sections 10.3-10.5 will be devoted
to the L- and M-estimators. These estimators are called “robust” because their properties
hold for a wide class of distributions, unlike estimators focused on squared-error loss or
the maximum likelihood estimators which are susceptible to distributions with heavy tails.
Finally, the issue of remainder terms is taken up in Section 10.6.

Theory and Methods of Statistics. http://dx.doi.org/10.1016/B978-0-12-802440-9.00010-2 277
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10.2 Functional Delta Method

We shall assume that Fy is a collection of cdf’s such that

(i) Fe Fo = F, € Fpand
(i) Fois convex (ie, F, G € Fy implies F + (G — F) € Fy forany 1 € [0, 1]).

First consider a k-dim parameter # = 6(F) being estimated by 6, and a real-valued

function T'(#) of 6 being estimated by T(én). For large n, taking the leading term in the
expansion of ﬁ[T(én) — T(O)], we have

ﬁ[T(én) - T(e)] — (VT ®), Jﬁ(én - 9)) + Ry,

where R, = op(l) if ﬁ(én — 9) £> W, a random vector, and T is continuously differ-
entiable. In that case, the asymptotic distribution of ﬁ[T(én) — T(G)] is the same as

that of the leading term in the expansion (ie, ﬁ[T(én> - T(Q)] A (VT (), W)). This is
commonly called the delta-method (see Theorem 3.2.6, Chapter 3). For a similar analysis
of \/n[T(F,) — T(F)], we need an analogous expansion which involves differentiation of a
functional T at F.

To understand the meaning of differentiation of T at F, let us again look at T: R¥ — R
and examine the one-term Taylor expansion of T'(6 + A) — T'(0) for small A:

k
TO+A4)-T0O) = Z T'(r;0)Ar + o(| A, 1

r=1

k 2 172 /
where [|A]| = (Zr=1 A,) or max, <, |A,], and T'(r;0) = 9 T(w) /0ty | u—p-
The leading term is the differential Ly (A) := ZI;:I T'(r;0) Ay, which is linear in A.
Replacing # by F, 6 + A by G, rby x, YX_, by Jrera» and A, by dA(x) = d[G(x) — F(x)],
the expansion (1) would take the form
T(G) — T(F) = Lp(G — F) + o(|lAllp)
= / T'(x; F) d[G(x) — F(x)] + o([l Allp)-

Such an expansion would be valid if there exists a linear functional Lr on D =
{¢(G—F):ce Rand F, G € Fy} which is not identically 0 and satisfies

. T(G]-) —T(F) — LF<G]- - F)

= 0’
jo G, —Fll,
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whenever {G;} is a sequence in 7 with ||G; — F||, = p(Gj,F) — 0asj — co. Here pisa
distance such that

p(F,F + (G~ F)) = [tlp(F,G) <= 1t(G;—F)I =1111G; - Fl,

holdsforalltinRand F, G € Fp.

In general, existence of Lr with this property depends on how the sequence {G;j} is
allowed to approach F in the metric p. Three such schemes are described below. In each
scheme, the linear functional L, if it exists, is called the differential.

A. Gateaux differentiability. T is Gateaux differentiable if the differential exists for every
sequence Gj = F + ;A € Fo, where A = G — F € Dis fixed and #; — 0. Here
o(Gj,F) = IGj — Fll, = lItjAll, = |tj| || All, — 0 irrespective of the metric p.

B. p-Hadamard differentiability. T is p -Hadamard differentiable if the differential exists
for every sequence G; = F + tjAj € Fo, where |[Aj — A, — 0 forafixed A € D and
tj— 0.

C. p-Fréchet differentiability. T is p-Fréchet differentiable if the differential exists for
every Gj € Fo with p(Gj, F) — 0.

Since these differentiability conditions are increasingly stringent, p-Fréchet
differentiability = p-Hadamard differentiability = Géateaux differentiability, but the
reverse implications do not hold. Moreover, in the expansion

T(G) — T(F) = Lp(G—F) +0(p(G,F)) asp(G,F)—0,

if the differential Lr in C exists, it is the same as Lr in A and B, and if Lr in B exists, it is the
same as in Lr in A.

We now examine the nature of the Gateaux differential Lr of T by the following
heuristics. Due to linearity of L

T(F + 1) — T(F) ~Lp(td) _

lim
t—0 l£A||
. T(FA+1tA)—T(F)—tLr(4)
< lim =0
t—0 t
T(F+tA)—T(F
<« lim M = Lp(4), ie,
t—0 t

d
Lp(G—F) = %T((l — OF + 1G)|=o.

Let 8x be the cdf with its entire mass at x (ie, §x(1) = Ijx,00) (49)). Then for every u,

/{Sx(u) — F(u)} dG(x) =f

X=

dG(x) — F(u) = G(u) — F(u) and
u

/{5x(u) —Fw)} dF(x) =0, ie,

A=G-F= /(sx —F) d[G(x) — F(x)]. 2)
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Thus, if we let
T'(x,F) = %T((l — DF + t6x)|y=0 = Lr(6x — F),
then by linearity of Lr, using Eq. (2), we should have

Lp(G—-F)=Lp /(ax —F) d[G(x) — F(x)]

:fLF(Sx—F) d[G(x) — F(x)] =/T/(x;F) d[G(x) — F(x)].

The first-order differential expansion of T'(G) can now be written as
T(G)—TF) = / T'(x; F) dG(x) + Rem
= / T'(x; F) d[G(x) — F(x)] + Rem,

where the remainder term — 0 as G — F.
Letting F), play the role of G, we now have

JAIT(En) — T(F)] = v f T'(6 F) dF() + Ry

n
i=1

3)

4

Since /n||F; — Fllo = Op(1), following the analogy of the parametric delta method, we
would expect R, to be op(1) and then the asymptotic distribution of /n[T(F,) — T(F)]
would be the same as that of n=/2 3" | T'(X;; F). Interchanging the order of operations

Lr and the integration as in Eq. (3) (which needs justification), we would expect

Ep[T'(X;F)] = / T'(x; F) dF (x) = /LF(Sx — F) dF(x)
= Lp [ 6x— F) dF () = Lr(0) =0,
and if we let
o2(F) = Varg[T'(X; F)] = /{T/(x; P} dF ),

assuming that it exists, then we would have

n
VAIT(Ey) = TE)) = 172 3T (X F) + 0p(1) 5 N(0,02(P)).

i=1
This is known as the functional delta method.
Remark 10.2.1.

1. Inthe robustness literature [55, 56], T'(x; F) is called the influence function and it is

denoted by

IF(;F, T) =T (x;F) = %T((l — 0F 4 t8y)|z—0.
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The function IF (x; F, T) measures the rate at which T'(F) changes when F is
contaminated by §, with a small probability. The contamination §y is called gross-error
and

A =sup |IF(x; F, T)|
X

is called the gross-error sensitivity of T at F.

2. Since Gateaux differentiability is too weak, there is no guarantee that R, = op(1), as
seen in the following example [57]:
Define T'(F) = er[(),l] [F(x) — F(x—)]*, « > 1, as ameasure of jumps of F on R. For
F = U (uniform distribution on [0, 1]) which has no jumps,

d d
T’ U) = 2 T = OU + 189 |i0 = ye%ju t“[8x(y) — 8x(y=)]"le=o0

d
= g =at® g =0fora > 1,
a lt=0 lt=0

because U has no jump and é,(y) has exactly one jump of magnitude 1 at y = x. Now
F;, has n jumps of 1/n each with probability 1, so T'(F,) = n(l/n)a = n'~® Hence
VAIT(Fn) = TU)] = v/a[n!~* — 0] = n¥/2~

with probability 1. Thus the expansion

n
VAIT(Fp) = T(F)] = n~ Y23 " T'(X;; F) + Ry
i=1

becomes 132~ = 0 + R, and for 1 < « < 3/2, R, = op(1) is false.
We now summarize the “potential” of the Gateaux differentiability approach based on

the above heuristics:

Let T'(x; F) = £ T((1 — O)F + t8;)|1=o. Then

n
VAT (Fp) — T(F)]) = n~ 2 " T'(X;; F) + Ry
i=1
If Ef[T'XGF)] = 0,0 < Varg[T'(X;F)] = 0%(F) < oo and if R, = op(1), then

VAIT(E,) — T(F)] 5 N(0,02(F)) as n — oc.
To put the above heuristics to work, the main thing is to demonstrate that R,, = op(1)
which can be attempted in one of the two ways.

I. Use the expansion given in Eq. (4) as a working formula and then carry out the

following steps:
(i) Calculate T’ (x; F) = %T((l — BOF + t8x)|t=0 which involves a simple one-variable
differentiation.

(i) Check the condition Ef[T'(X; F)] = [ T'(x; F) dF(x) = 0.
(iii) Check the condition R, = op(1) by examining the particular case.
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(iv) Calculate o?(F) = [{T(x; F)}2 dF (x).
Il. Obtain conditions on T in terms of p-Hadamard or p -Fréchet differentiability, so that
R;, = op(1).

We first illustrate the first approach by the examples listed in Section 10.1 of this chapter
and then go into some theoretical considerations needed to pursue the second approach.

Example 10.2.1 (The Mean). Here T(F) = [u dF(w), T(F,) = n~' 37, X; = X;. The
influence function is

T (x;F) = %/u dl(1 — t)F(u) + t8x(u)]|4=0 = x — f u dF (u)

=x—Ep(X) :=x - &(F).

In this case, the first-order approximation is an identity, because the function T'(F) is
already linear. If the sample space is R, then the influence function is unbounded, so X, is
not robust.

Example 10.2.2 (The kth Central Moment). Let ;. = T(F) = [[u — £(F)1* dF (1), where
&(F) = Er(X). The influence function is

d
T'x F) = ET((I — OF + t3x) =0

d
=i /[u — £(F) — t(x — EFNIAIF W) + 1(8x(w) — Fu)]]—o

= —k(x — EFPN gy + & — EENF — oy,
which is unbounded. By routine calculations, we have
Ep[T'(X;F)] = 0 and
o2 (F) = pog — g — 2kpge_1 s + K pg_1 2.

Finally, the remainder term of this one-term expansion of «/n[T(F,) — T(F)] is

n
Rn = V/n[T(Fp) = TE)] = n~ V23 T (X5 F)
i=1
n
n Y (% - Xn)* -
i=1

n

—n—l/ZZ[ — £ (P — g — kg (X §(F))]
i=1

— 12

M-

[ = %a)* = (X = €)] + gy V(% — £(P))
1

n
) ([ L P ”
i=1
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with Y; = X; — &£(F). Then Ep[Y;] = 0 and Ep[Yik_j] = ju_j. Now expand the last
expression in Eq. (5), make some algebraic rearrangements and note that JnY, = Op(1),
n-1 Z?:l Yl.k_] = pg—j+op(1) forj=2,..., k. This shows that R, = op(1).

Example 10.2.3 (The p-Quantile). For 0 < p < 1, the p-quantile of F is

T(F) = F_l(p) = inf{x: F(x) > p}, so thatF(F_l(p)) =p.
Let F; = (1 — t)F + t3, for a give x. Now differentiating both sides of the identity
p=F(F'p) = - 0F(F 1) + i5:(F (1))

with respect to ¢, evaluated at 0, we have.

0= [{=r(rr o) + 0 =0 (5 w) G )+ {oe(E @) + e o 0]

= —F(F'(p) +f(F‘1(p))%FFI(P)‘ + Io0) (F71(p)) +0

=0 B {p - I[—OO,F*I(p))(x)}_

P =10, p1(p) )
f(F~Y(p)

d
TG F) = 2 F (p)limo = (6)

and the leading term of the expression of \/n[T(F,) — T(F)] is

12 X _ 1 2P = Lmoo,p-1 (o)) (X0)
n ; T (Xz; F) «/ﬁ ; f(F_l(p))

- N(O' e (pp))))'

provided that the remainder term R, = op(l). Indeed, R, = Oa_s_(n‘l/ 4log n), ie, there
exists C such that P[|R,| > Cn~1/*logni.o.] = 0. For a proof, Bahadur [58].
Remark 10.2.2.

1. The expression (6), rewritten as

_ 1 &P~ oo 1) (Xi)
Xn:[np]:F l(p)+ﬁz (—o0 215k 4R,

= fFER)
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is known as Bahadur representation of a sample quantile.

2. Since [p - I(iooyF—l(p)](Xi):I/f(F_l (p)),i=1,...,nareiid with mean zero and variance
P(1=P)/F*(F(p)), Xutp) = F7(p)-

3. The Bahadur representation can be obtained by a simple heuristic argument. Let F;, be
the edf of Xi, ..., X,. Then Fy,(Xy.(np)) = [1p]/n. Now note that if § < X;.(,p), then

(Xn [np] — )f(f) (Xn'[np]) —F@§)~ Fn(Xn'[np]) — Fu(&)

[np]—nlzf(oosj 1217 I—o0,1(Xi)]
i=1

and similarly, for X;.(np) < &,

n
(& = Xppnp))f &) ~ n~ Zl( 00t1(Xi) = p]-

In both cases,

n

Xnfnp) = € + 071 [P = Icooe1 (X)) /£ (&),
i=1

where & = F~1(p).

4. Asymptotic joint distributions of several sample quantiles can be obtained similarly.

Example 10.2.4 (The V-Statistic). Let g: R” — R (or more generally, g: R? x ... x
R? — R) be such thatg(y;,...,y;,) = §01,...,yr) forall (y1,...,yr) and all permutations
(iv,...,0) of (1,...,r). Then T(F) = [---[g,....yr)[l}z1 dF(yi) for F € Fy =
{F: Er[lg(11,..., Y)|] < oo} is called a V-functional and its corresponding V-statistic is

n n
TED)=n"T"Y > g(Xp,....X;)

i1=1 ir=1

based on a random sample Xj, ..., X}, from F. Since g is symmetric in its coordinates,

T((l—t)F—l—th)—/ /g V1o Vr Hd (1 = OF(y;) + t8x(i)]
i=1

.
=A-0'TE+ Y A - crd
c=1

.
></.../g(x,...,x,yc_,_l,...,yr) l_[ dr(y;)
i=c+1

which is a polynomial in ¢, so its derivative with respect to ¢, evaluated at 0 is the coefficient
of t. Thus
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) d
TG F) = 2T = OF + t89)li=0

.
=r/---/g(x,y2,...,yr)1_[ dF(y;) — rT(F)
i=2

= r{Ep[g(X1, X2, ..., X7) X1 = x| — T(F)} = rhy (x), where
hi(x) = Ep[g(X1,X2,..., Xr) | X1 = x] — T(F).
Clearly,
rER[T'(0G F)] = 0and o%(F) = r*Ep[ (0]

Hence subject to the verification of the remainder term
n
Ry = VnIT(Fn) — TE)] — rn= 23" hy (X;)
i=1

being op(1), we have
VAIT(E) = TEN 5 N(0,0%(F).

Examine the discrepancy between the V-statistic and the corresponding U -statistic to see
that this result is what one would expect.

10.3 The L-Estimators

Let F(- — 0) be a cdf with pdf f(- — ) where f is symmetric about 0 and 6 € R is unknown.
Then 6 is alocation parameter which is the point of symmetry of the unknown distribution,
which is the median of F(- — 0) and also the mean if it exists. If Xj,..., X}, is a random
sample from F(- — 6), then the sample mean X, being the UMVUE and the MLE of @ if
F(- — 0) is normal with mean 0, is a very good estimator, but it is not so good if F(- — 0) is
Cauchy with median 6. The median Ny, [,,/2] is no good in case of normal distributions, but
does not break down like X;, for Cauchy distributions.

The reason for X,, performing so poorly for the Cauchy distribution is due to its heavy
tails. The Cauchy pdf tends to 0 at the rate of 1/x2 as x — oo as opposed to the e=*"/2 rate
for the normal pdf. This makes the extreme-order statistics unstable. The sample mean
can also be viewed as n! Z?:l X,.i, where X1 < --- < Xj., are the order statistics in
(X1,...,Xp). To protect X,, from being drastically affected by possibly heavy tails of the
underlying distribution, it would seem reasonable to redistribute the weights on the order
statistics so that the extreme ones are de-emphasized. This leads to the consideration
of estimators which are linear functions of order statistics. These estimators include the
sample mean, the sample median, and also a class of estimators called & -trimmed means
with 0 < a < 1/2 defined by Xj,) = (n — 2[an]) ™! Z?;[L"‘n'ﬂl X,,.;, which fall between the
sample mean and the sample median.
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Definition 10.3.1. An L-functional T: 7y — R is defined as
00 1
T(F) = / XJ[F(x)] dF (x) = / FlwJ(w du,
—00 0

FeFgpand]J: [0,1] — R,

and if X, ..., X, is arandom sample from F € Fy with edf F;,, then

00 n
T(Fp) = / X [Fn(@)] dFp(x) = n 1Y " J(i/n)Xp:;

- i=1

is called the L-estimator of T(F). The function J is called the score function.
We now calculate the influence function and the remainder R(G, F) in the expansion

T(G)—T(F) = / T'(x; F) d[G(x) — F(x)] + R(G, F).

Differentiating
TF+1t6éx—F) = / uJ[F(u) + t(8x(u) — F(w)]d[F (w) + t(6x(u) — F(w))]

with respect to f at t = 0, we have
T'( F) = / u@x(w) — Fw)J'[Fw)] dF (u) + / WIFw) d(8x(w) — F(w).
Integrate the second integral by parts and make some algebraic rearrangements to get
T'(x; F) = —/(8x(u) — FW)JIF ()] du
X o0
= / JIF(w)] du — / (1 = Fw)J[Fw)] du.
—00 —00

The remainder term is
R(G,F) =T(G) — T(F) — / T'(x; F) d[G(x) — F(x)],

where
! 1 rG'w
Ho=Th= f (6710 —F~ o [y du / [/ dx}f(u) du

° 0 |JFlw
1 roo

- / / I[F—l(u),c—l(u)](X)](u) dx du
0 J—oo
ool

- / / [[G(x),F)] (W] (W) du dx
—o0 JO
00 Fx) 00 G

=/ [/ Jaw du} ar=- | [/ Jw du:| dx, and

G —oo | JF()
/T/(x; F) d[G(x) — F(x)] [ JIF(u)] du} d[G) — F)] -

/ [Gx) — FW)]J[F(x)] d
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Thus

F(x)

o0
R(G,F) = —/ [
—00

=_ foo We@)[G) — F(x)] dx, where (7
—00

G(x)
/ J(u) du — (G(x) — F(x))](F(x)):| dx

1 G(x)
W) = (G) — F(x)) /F J(W) du —J(F(x)).

()

Now letting F;, play the role of G, we have

n
VAT (Fp) = T(F)] = n~ /2" T'(X;; F) + Rn, where
i=1

T'x;F) =— /(Bx(u) — F(w)J[F(w)] duand Ry, = R(Fp, F). 8

We now verify that Er[T(X; F)] = 0 and obtain a formula for o (F) = Varg[T'(X; F)]. This
will then give us the asymptotic distribution of the L-estimator, namely,

JAIT(Fy) — T 5 N(0,0%()

subject to R, = R(Fy, F) = op(1).
First,

Ep[T' G F)] = - / [ / (6x() — Fa)J [F()] du} dF (x)
- f [ / (6x(w) — F(w) dF(x)]](F(u)) du =0,

because f(8x(u) — F(u)) dF(x) = 0 for all u.

Next,
o?(F) = Varg[T' (X; F)]
= /[/(Mu) — Fw)JF(w] du]2 dF(x)
= 2//;<V|:/(5x(u) — Fu)(6x(v) — F(v)) dF(X)]](F(u))](F(v)) du dv
= 2//;<UF(M)(1 — F)J(Fu)J(F(v)) du dv
= //[F(min(u, v)) — FW)F())J (Fw)J (F(v)) du dv, 9)
because

/(5x(u) —Fw)(6x) — F()) dF(x) = (1 = F(w)(1 — F())F(u)

—Fwl-FW)FW —Fuw) + F)F)(1 - F))
=FWw((1 - F)).
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An alternate formula for o2(F) can be obtained by first replacing (u, v) by (x,y) and then
letting F(x) = uand F(y) = vin Eq. (9). Thus

o2(F) =2 / / FO(1 — F()J(Fx)J (Fny)) dx dy
x<y

= 2//11 ) u(l — U)[](u)/f(F_l(u))]’](U)/f(F—l(U))] du dv

=2 // u(l — v)A' (WA (v) du dv, where
u<v

“oojm

Aw = [ 29
Yo FE )

dt+c

where c is such that A(1) = 0, making A'(u) = ](u)/f(F*I(u)). Thus

1 1 1,1
o2(F) = 2/ |:/ A ) dv:| uA'(u) du — / / uvA' (WA (v) du dv
u=0| Jv=u 0 JO
1 1 2
= 2/ [0 — A(w)]uA (1) du — (/ aA (u) du)
0 0

1 1 2 1 1 2
=—f udAz(u)—</ udA(u)) =/ Az(u)du—</ Aw) du), (10)
0 0 0 0

using integration by parts in both integrals.

10.3.1 Asymptotic Distribution of a-Trimmed Mean When f Is Symmetric
About 60

The L-functional for o-trimmed mean is: T(F) = (1 — 2«a) "} /, If:]l(s)_“) x dF(x) (ie, the score
function is J (¢) = (1 — 2a) ™ jy,1-0)(1)). Since f = F’ is symmetric about§, F~1(1 —a) — 0 =

0 — F (@), so that

Fl1-a) Fl-w)
/ (x—6) dF(x) = 0and T(F) = (1 —2a)—1/ x dF(x) = 6.
F1l(@ —L(a)
Next,
U (1 —20) Uiy, 1) (0)
Au) =/ ’ dt
0 f(F1(@)
0 f0<u<o

_la- Za)_l[F_l(u) - F—l(a)] fo<u<l—a
Q-20)" Y Fla-a)-Fl)] ifl-a<u<l.

To calculate [;} A(f) dt and [, A(¢) dt, use that due to symmetry of f = F' about 0, F~'(1 —
«) — 60 =0 — F~1(a). Using these facts, we obtain, after algebraic simplifications,
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1 1 2
aZ(F):/ A2 (u) du—(/ Au) du)
0 0

F1l(l-a)
- % [201(9 - F_l(a))z +/ (x — )2 dF(x):|,
(1 - 2a) F1l(a)

by Eg. (10).

10.4 The M-Estimators

The method of maximum likelihood is based on the fact that subject to identifiability of
the family { f(-, )}, if X has pdf f(x,6) , then the function Es[logf(X,t)] has t = 6 as its
unique maximizer. The MLE of 6 based on a random sample Xj, ..., X, is the maximizer
of n=! YL, log f(X;; ) which is a natural estimate of Eg[log f(X, 1) ]. Equivalently, the MLE
of 0 is a solution of Y7, ¥ (X;, 1) = 0, where ¥ (x,t) = dlogf(x, r)/dt, assuming that f is
smooth. In the location problem,

U(x,t) =0dlogf(x—1)/ot = —]%(x— 1,

so the MLE of a location parameter is the solution of > 7, ¥ (X; — 1) = O where ¥ = —f'/f.

The MLEs have good properties under the correct model, but if not, then ¥ (x, f) may
be very unstable for some x, as in the location problem in which — ( f/f ) x) =xfor N(O, 1)
and X; — ¢ for extreme observations are unstable if the true distribution is heavy-tailed.

The M-estimators attempt to overcome this weakness of MLEs by using a function
p(x — 1) in the location problem instead of, but somewhat similar to log f(x — 1), and then
solving for ¢ in the equation } 7' | ¥ (X; — t) = 0, where ¥ = p’ instead of —f’/f. In general,
we replace —logf(x, f) by p(x, ) and solve for ¢ in the equation Z?:l ¥ (X;, t) = 0, where
V(x,t) =adp(x,1)/0t.

We now formally define an M-functional T'(F), of which T(F,) will be an M-estimator.

Definition 10.4.1. Let p: R4 x R — R and let ® be an open subset of R, Then

T(F) = argrtni(glfp(x, 1) dF(x), FeFy
c®
is an M-functional, and if F;, is the edf of a random sample Xj, ..., X;, from F, then

n
T(Fp) = arg rtrellg)l Zl o(Xj, 1)
i=

is the M-estimator of T'(F).
IfW¥(x, ) = dp(x, t)/dt exists and if

Ap(f) = / ¥(x,t) dF(x) = %/p(x, 1) dF (x), (11)

then T'(F) is a solution of Ag(¢) = 0, and so
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Ap(T(F)) = / ¥(x, T(F)) dF(x) =0 forall F e Fy. (12)

The M-estimator T(F,) of T(F) can be equivalently be expressed as a solution of the
equation ) ', ¥ (X;, 1) = 0.
To calculate T’ (x; F) = %T((l — BF + t8y)|s=0, Start with

0 = A1—nF+5, (1 — OF + 16y)
= / W (u, T((1 — 0F + t8x)) d[(1 — )F(u) + £8x(x)]
=1-1 / U, T((1 — OF + 18y)) dF(w) + t¥ (x, T((1 — F + t8x)),

and differentiate both sides with respect to t at ¢ = 0 to obtain

0= —fW(u, T(F)) dF(u) + % / Y(u, T((1 — OF + t8x)) dF (W) |¢=0
+¥x,TEF)+0
= —Ap(T(F) + %AF(T((I — OF + 18:))li=0 + ¥ (T (F))
=04+ Ap(T(PNT (x; F) + ¥ (x, T(F)),

using Egs. (11) and (12).
Assuming A (T (F)) # 0, we thus have

T'(x; F) = =¥ (x, T(F)) /A (T(F)). (13)
We now check that
Ep[T'(X; )] = —Ep[¥ (X, TEN)/AR(T(F) = —rp(T(F)/Ap(T(F)) =0
by Egs. (11) and (12), and

2
o2(F) = o2 (F, ) = Varg[T'(x; )] = L0 TED dF0) (14)

(T}

We can now conclude that

n
VAT = T = 1V 3 T (X5 F) + Ry 5 N(0,02(F, w),
i=1
subject to the verification R;, = op(1).
The MLE is also an M-estimator with ¥ (x, t) = —dlogf(x, t)/dt, and letting Fy = F(-,6),
T(Fy) = 6. Now

, 3% logf(x, 1)
g, (T(Fp)) = A, ) = /(_aﬂ) ef(m) dx = I¢(9), and

=
2

/llfz(x, T(Fy)) dFy(x) = /(m%ft(xn) fx,0) dx = I;0),
=0
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where I (0) is the Fisher-information of the family { fx, 1), te @} att = 6. Thuso?(Fy,¥) =
1/1r(9) by Eq. (14).
In the location problem, f(x, 0) = f(x — 0) where f is a symmetric (about 0) pdf. Here

dlogf(x—1) :_f’(x—e) an

at (=0 f(x—@)
Ir(0) = /{f/(x—e) }Zf(x—e) dx = /{f/(x) }Zf(x) dx for all 9
A AV AN '

10.4.1 A Minimax Approach to the Choice of ¥

For robust estimation of a location parameter 6, instead of assuming F to be a known cdf,
we work within the model

F=F(Ge)= {F = (1 —¢')G+ ¢'H: H is a cdf symmetric about 0, ¢’ € [O,s]},

where G is a specified cdf which is symmetric about 0 and ¢ is a specified positive number
(ie, we assume F to be a symmetric cdf lying “within ¢ distance” of a specified symmetric
cdf G). For given G and ¢, we now look for ¥y = ¥ (G, ¢) such that

sup o%(F,%(G,e)) < sup o?(F,w) forally.
FeF(G,s) FeF(Ge)

Then the M-estimator with ¥ = ¥(G, ¢) is minimax for the family 7 (G, ¢) in the sense of
minimizing the maximum possible asymptotic variance.

For G = @, the cdf of N(0, 1), the solution of this minimax problem lies in the class of
“Huber Functions”:

-k x<-k
Yox) =43 x |x| <k
k x>k

where k is given in terms of ¢ by the formula

k
/ k¢(x) dx+ /) =1/ —¢), ¢ =& = pdfof N(0,1).

See Huber [56].

An Alternative Derivation of the Asymptotic Distribution of
M-Estimators When the Score Function ¥ Is Monotone

Let 6, be an M-estimator of the location parameter 6 of a family of pdf’s {fx,0) =fx—0),
0 € R} where f is symmetric about 0 and suppose that the score function is antisymmetric
and monotone increasing.

Since 6y, is the solution of Y"1, ¥ (X; — £) = 0 and Y"1, ¥ (X; — ) is monotone decreas-
ingint, Y, w(X; — 1) <Oforallt > ,and Y., ¥ (X; — £) > 0 for all £ < §,,. Hence
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Py [ﬁ(én - 0) < a] =Py [0 +a/Vn> én]

=Py |:n1/2 i w(X; -6 —a/vn) < 0}

i=1

i=1

=Py [nl/z Y w(X;—a/vn) < 0}.

Now write

n n "
w2 W (X - ajvm) = VS w(X) —ant S W (X) + R,
i=1

i=1 i=1

Since Eg[¥ (X;)] = 0 due to ¥ being antisymmetric,

1/22:1/ ) 5 N(0, Vare[ (X;)])
provided that Varg[¥ (X))] = [ %2 (x)f(x) dx < oc. Also,
n! zn: '(X;) = Bo[¥/(X;)] + op(1)
i=1
provided that Eg[¥'(X))] = [ ¥/ (X)f (x) dx exists.
Thus if R;, = op(1) by regularity conditions on F and ¥, then

*1/22q/ i — a/vn) 5 N(—aEo[¥'(X)], Varg[¥ (X)]).

Consequently,

n
A Po [*/ﬁ@” - 0) = “] = Jim_Po {”_l/z D v(Xi—a/Vn) < 0}

i=1

_¢<aE0[w 0] >_¢ a
V/Varg [¥ (X)] \/Val‘o[lI’(X)]/E(z) [W/(X)] ’
provided that Eg[¥'(X)] # 0, that is,

ﬁ(én - 9) £ N(O,UZ(F, np)), where

Varg[¥ (X)) [ ¥2)f(x) dx

2
(F,w) = = .
7 Ej[w'X)]  [fv'@fw dx]*

In the above, ¥ is assumed to be strictly increasing.
If ¥ is merely nondecreasing, then the equation Y |, ¥ (X; — t) = 0 may be satisfied on
an entire interval. In that case, the above argument would need minor modification.



Chapter 10 » Statistical Functionals and Their Use in Robust Estimation 293

10.5 A Relation Between L-Estimators and M-Estimators

Let F be a cdf, symmetric about 0 and let f = F’ be the pdf. For simplicity, assume F to be
strictly increasing.

Consider an M-estimator of 6 based on iid observations Xj, ..., X, from F(x — 0), with
score function ¥ having ¥(—x) = —W¥(x) for all x. Note that nothing changes if ¥ is
multiplied by a constant, so we normalize ¥ to make [¥'(x)f(x) dx = 1 (assuming
that [ ¥/ (x)f(x) dx # 0). Then the asymptotic variance of the M-estimator with score
function ¥ is

_ JYPf () dx

o2 (F,w) = = 5
[/ ¥ @0)f (x) dx]

= / w2 (x)f (x) dx.

Now consider an L-estimator with score function

Jo (W) = w’(F—l(u)), 0<u<l.

Then the asymptotic variance of this L-estimator is the same as 0% (F, ¥). To see this, note
that here

Ay @) = Jo @/fF ) = ' (F a0 )/ (F @),

so that
t t
_ / _ -1 —1
Ay (D) = /I/ZA,I,(M) du = /1/2{11/ (F @)/ (Fw)) du
F 1@ F 11
= / {¢'(x)/f(0)} dF(x) = / v/ (x) dx
F-1(1/2) 0

- lI/(F_l(t)> — W) = W(F_l(t)).

Hence

1 1 [ee)
f Ay @®) dt:/ lI/(F_l(t)> dt:/ W (0)f(x) dx = 0 and
0 0 00

/OlAle,(t) dt:fol{w(ﬁl(t))}z dt:/_o;w(zx)f(x) dx.

Thus the asymptotic variance of the L-estimator with score function Jy is

1 1 2 %
/Afp(t) dt—(/ Ay (1) dt) :/ w2 (f (x) dx = o?(F, ¥).
0 0 00
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10.6 The Remainder Term R,

Throughout, we consider the case of d = 1, that is, Xj, ..., X;, are real-valued iid rv’s with
cdf F and F,, is the edf of X1, ..., X, .
We shall consider the following distances in

F = collection of all cdf’s on R, and
F1 = collection of all cdf’s on R with finite mean:
Sup-norm distance: po (F1, F2) = sup, |F1 (x) — F2(x)| for all F; and F» € F.
Lp-distance: oL, (F1, F2) = [fR |F1(x) — Fo(x)|P dx]l/p, p>1lforall F; and F, € 7.
Lemma 10.6.1. (i) poo(Fn, F) = Op(n~'/2), (ii) pr,,(Fy, F) = Op(n~'/?) if either 1 < p < 2

and [[F(x)(1 — F(x))]P/? dx < oo orp = 2.
Proof. By the DKW Theorem (See Theorem 9.2.4),

o0
[V n, Y] = [ P[Viipse(Fn P) > y] dy

o 2
< / Cexp[—Zn(y/\/ﬁ) ] dy
0
o
= C/ exp[—Zyz] dy foralln.
0
Now by Markov inequality,

P[V/npoo(Fn, F) > M] < M~ 'E[V/npoc (Fn, F)]

o
< CM_I/ exp[—2y2] dy—>0 asM — oo,
0

proving that v/1oeo (Fn, F) = Op(1) (i€, poc (Fn, F) = Op(n~/?)).
The proof of (ii) is longer and we omit it. O
The following theorem provides conditions under which the remainder term

n
Ry = VAT (Fy) — TB)] = n~ 23 " T'(X;; F) = op(1).
i=1

Theorem 10.6.1.

(i) If T is poo-Hadamard differentiable at F, then R, = op(1).
(ii) If T is pso-Fréchet differentiable at F and if /np(Fy, F) = Op(1), then R, = op(1).

Proof. Part (i) is proved by advanced techniques, for which we refer to Fernholtz [57].
To prove part (ii), note the following:
By definition of p-Fréchet differentiability, o(F,, F) — 0 implies

T(Fp) = T(F) = Lp(Fp — F) _ ¥/AlT(Fp) = T(F)] = VnLp(Fn — F)
p(Fn, F) Vnp(Fn, F)
=__fn
~ V/np(Fn, F)

)
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because if Lr(F,, — F) exists as a p-Fréchet differential, then it is the same as the Gateaux
differential which also exists, so that /nLg(F, — F) = n=/2 Y"1 T'(X;; F). Thus for every
¢ > 0, there exists § > 0 such that

o(Fn, F) < 8 implies |Ry| < e/np(Fy, F) for all large n.
Hence for arbitrary n > 0,
P[|Rn| > n] < P[p(Fn, F) > 8] + P[v/np(Fn, F) > n/¢]
for large n, so

lim sup P[|Ry| > n] < limsup Plp(Fp, F) > §] + limsup P[v/np(Fn, F) > n/e].
n n n

Now (i) «/np(Fy, F) = Op(1) implies p(Fp, F) = op(1), limy,_, o Plo(Fy, F) > 8] = 0 and
(ii) v/np(Fy, F) = Op(1) also implies P[/np(Fy, F) > n/¢] can be made arbitrarily small by
choosing /¢ sufficiently large (ie, by making ¢ sufficiently small).

This completes the proof. O

We now examine the remainder terms of the L- and M-estimators.

Theorem 10.6.2. Let T(G) = [ xJ(G(x)) dG(x) be an L-functional.

(i) If] is bounded, J(u) = 0 forallu ¢ («, B) for some0 < a < B < 1, and ] is continuous at
F(x) for almost all x, then T is po.-Fréchet differentiable at F with T'(x; F) bounded and
continuous.

(ii) If)J(w) —J)| < Clu— v|p‘1f0rsome C>0andp>1,thenTis ,oLp-Fréchet
differentiable at F.

Proof.

(i) Let {G;j} satisfylim;_, o p(Gj, F) = 0. Choose ¢ < d such that F(c) <« < 8 < F(d).
Then for x ¢ [¢,d], Fx) ¢ («, B),s0J(F(x)) = 0forallx ¢ [c,d]. Since ps(Gj, F) = 0,
for sufficiently large j, Gj(x) is also ¢ (a, ,B) forx ¢ [c, d], s0J(Gj(x)) =0 for all
x ¢ [¢, d]. Hence for sufficiently large j and for x ¢ [c, d], J(u) = 0 for u = F(x) and for

all u lying between F(x) and Gj(x), and therefore, f I%C(;C ) Uu) — J(F(x)] du = 0 and
WGj (x) =0.
Hence for large j,

IR(Gj F)| = ’/Cd We,00[ G0 — F)| dx| < poo( G, F) /Cd W, ()] dx.

Now use the continuity of J at F(x) for almost all x to see that WGj (x) - Oa.e., and is

bounded since J is bounded. Hence f Cd |WG]~ (x)| dx — 0 by dominated convergence.
Thus lim;_,  |R(Gj, F)|/pso(Gj, F) = 0 showing that T is po.-Fréchet differentiable at
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F. Again, fory ¢ [c,d], F(y) ¢ [, B] so J(F(y)) = 0. Thus

d
TG F) = — / [5:0) — FO)V(F) dy

is bounded and continuous. This proves (i).
(ii) Let {G;} satisfylim;_, o PI,, (Gj, F) = 0 and note that

Gjx)

R(GF)i = |[| [7" 0w - 1)) du| dx
F(x)

-f|

/|

< cf 1Gi(x) — F)IP dx = C[pr<Gj,F)]p.

F(x)

Gj(x) 1
/ Clu—Fx)P~ ! du| dx
F(x)

Gj(x)
f J(w) —J(F(x)| du | dx

Hence
IR(Gj, F)| -1
lim M <C lim {pr (Gj,F)}p =0 forp>1,
Jj—oo oL, (Gj,F) Jj—o0
showing that T is p,,-Fréchet differentiable at F. O

Corollary 10.6.1. In the expansion

n
VRIT(Fn) = TE)] = n~ 123" T'(X;; F) + Rp
i=1

of the L-estimator T(Fy) of T(f) = [xJ(F(x)) dx, the remainder term R, = op(1) if the
function ] satisfies the conditions of Theorem 10.6.2(i) or (ii).

Proof. Under the condition of Theorem 10.6.2(i), T is poo-Fréchet differentiable at F and
by Lemma 10.6.1(i), poo (Fn, F) = Op(n~1/2). Therefore, Theorem 10.6.1(ii) applies, proving
Rn = Op(l).

Under the condition of Theorem 10.6.2(ii) with p > 1, T is ,oLp-Fréchet differentiable
and by Lemma 10.6.1(i), p,, (Fu, F) = Op(n~Y/2) provided that [[F(x)(1 — F(x))P/? dx < oo
also holds for the case 1 < p < 2. Hence Theorem 10.6.1(ii) applies, proving R, = op(1).

O]

Theorem 10.6.3. Let T be an M -functional with score function ¥ (x, t) which is bounded
and continuous, and suppose that the function Ar(t) = [W¥(x,t) dF(x) is continuously
differentiable at T'(F) while Ay (T (F)) # 0. Then T is po-Hadamard differentiable at F.

Proof. Let Gj = F + tjAjwhere [|[Aj — Allooc — 00onD = {c(F1 — F2),c > 0}and ; — 0.
We argue through the following steps:



0}

(i)

(iii)

(iv)

(v)
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Since the po-Hadamard differential, if it exists, is the same as the Gateaux
differential,

L (G~ F) = / T'(6 F) d|Gjx) - F)| = —/ %d[qm - F@),

using the formula for T'(x; F) given in Eq. (11). It will, therefore, be enough to show
that
T(Gj) = T() + {2 (TED} ! [ W, T(F) dGj) — Fx) |
lim

; (15)
Jj—oo 1 Ajlloo

= lim R;/||t;A{llco,
Jlim Ry/1t410c

where Rjis the numerator of Eq. (15).
Since Ap(T(F)) = AGj(T(Gj)) = 0by (12),

AF(T(Gj)) —Ap(T(F) = AF(T(Gj)) - AGj(T(Gj)>
_ / v (x T(G) d[ G ~ Fu)]
= —/W(x, T(Gp) d[fjaj)] > o,

because tj — 0, [|[Aj — Allc — 0and ¥ is bounded.
Since A (T'(F)) # 0, the inverse function A;l (-) of Ar(-) exists and is continuous in a
neighborhood of A (T (F)) = 0. Hence Ar(T(Gj)) — Ar(T(F)) — 0 implies

1(G)) = 7 =25 (2 (7(65)) ) = 2" (o (TED) — 0
Use (i) to write
7(Gj) - T(F)
re(T(Gp) = Ap(T(F)

T(Gj) ~TE) = — f w(x, T(Gj)> d[tjAj(x)].

From (i) and (@iv),

R = L/wx T(F) d[ 1400
1= T @) ’ 7

) T(G]—) —T(F)
1e(T(GD) = e (T(F)

/q/(x, T(Gj)) d[tjAj(x)]

1e(T(GD) = p(T(F)
/ W (x, T(F)) dAj(x)

T(Gj) —T(F)

= | {pTED) T - i
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, T(Gj> — T(F)
"3 (TGp) — ap (T )

/[w (x, T(Gj)) e T(F))] dAj(x)

= tj(le + sz).

(vi) By (iii), T(G;) — T(F) — 0, so

; — REn} T >0,

1e(T(GD) = e (T(F)
T(Gj) — T
which together with boundedness of ¥ and [|Aj — A[oc — 0 implies Ry; — 0.
Also T(Gj) — T(F) — 0 implies
T(Gj) ~ T

— (Mp(TF)}) ! and
1E(T(GD) = e (T(F)

f[w(x, T(G))) - ¥ (x, T(F)] daj(x) — 0,

because ¥ is bounded and continuous, and [|Aj — Al — 0. Thus Rp; — 0. Putting
all this together, we have

R; (R Ry) Ryj+Ry;

1 - ’
j=oo ltjdjlleo  j—oo  IIEj4jllco j—oo 14jlleo
showing that Eq. (15) holds. O
Corollary 10.6.2. If T(F) is an M-functional with score function ¥ (x, t) satisfying the
conditions of Theorem 10.6.3 and if T(Fy) is the corresponding M-estimator, then in the
expansion

n
VAT (Fp) = T(F)] = n /2" T'(X;; F) + Ry,
i=1
the remainder term R, is op(1).
Proof. Under the conditions of Theorem 10.6.3, T is p»-Hadamard differentiable at F,
so Theorem 10.6.1(i) applies. O

10.7 The Jackknife and the Bootstrap

In this section we will briefly deal with two well-known resampling methods — the
jackknife and the bootstrap. These methods can be used to obtain approximate bias,
variance, and distribution of estimates without having to obtain their analytic expressions
which may be quite complicated in many cases (see Efron and Tibshirani [59]). At the
beginning of this chapter, some examples of statistical functional were given, and in



Chapter 10 » Statistical Functionals and Their Use in Robust Estimation 299

Examples 10.2.1-10.2.3, the first derivatives (influence functions) were explicitly obtained
for three functionals. It is important to add that there are many more useful functionals
for the univariate case as in Exercises 10.5-10.11 or in the multivariate case such as the
correlation coefficient, multiple correlation, etc. In this section, the discussion will be
informal, starting with the concept of second derivative of a functional. Extending the
definition given in Section 10.2 (for the first-order expansion of a statistical functional),
T" (x1, x2; F) is the second derivative if

T(F+tA) —T(F) — t/ T' (5 F) dA(x) — 12 / T"(x1,X2; F) dA(x1) dA(x2)

o)

as t | 0. We ignore the issue of whether the convergence is uniform in A. This has been
discussed in the previous sections. We now examine the bias and the variance of the
estimate T'(Fy) of T(F), where Fy, is the empirical cdf on the basis of iid sample Xi, ..., X.
If we write A, = /n(F, — F) and t = n~'/?, under appropriate conditions we have

T(Fp) = T(F) + n~1/2 / T (G F) dAy(x)

e f T (x1,%2: F) dAn(x1) dAn(x2) + Rn
= T(F) + Ln(F) + Qu(F) + Rn, (16)

where we assume that the remainder term is 0p(1 / n) However, we should point out that,
usually for many functionals, R, = Op(n~3/2).

We now discuss the concepts of asymptotic bias (ABias) and asymptotic variance (AVar)
of a statistical functional. In all our subsequent discussions in this section, we ignore the

remainder term R, and assume that T(F,)) = T(F) + L,(F) + Q(F), and that E[{ T'(X; F) }2],

E[{T" X, X; F)}*], and E[{T" (X1, Xe; P) | | are finite.
Note that L,,(F) has mean zero and variance

Var[L,(F)] = n~WVar[T'(X; P)].
A tedious calculation, whose justification will be given later, shows
Var[Ly(F) + Qu(F)] = Var[Ln(F)] + O(n~%).
The expected value of Q,(F) is
E[Qu(F)] = n™[E{T"(X,X; F)} — E{T" (X1, X2; F)}], and hence
E[Lu(F) + Qu(F)] = E[Qu(F)] = n ' [E{T" (X, X; )} — E{T" (X1, X; F) }].
We define the asymptotic bias and asymptotic variance of T'(F,,) as

ABias(T (Fp)) = E[Qn(F)]
= nfl[E{T”(X,X; F)} —E {T//(Xl,Xg;F)}] = nilb(F), 17)
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AVar([T(Fp)] = Var[Ln(F)] = n~WVar[T'(X; F)] := n~1v(F). (18)

In some cases, it is possible to find explicit expressions for ABias and AVar, and in such
cases, we may simply replace b(F) and v(F) by b(F,) and v(F,). However, in many others,
explicit expressions for ABias and AVar are quite complicated, and it is useful to have
simple sample-based methods for estimating these quantities. We now discuss estimation
of these two quantities: asymptotic bias and asymptotic variance.

Remark 10.7.1. Itis important to note that T'(F,;) may not have finite mean and variance
in many cases. For instance, let Xj, . . ., X;, be iid discrete random variables taking values in
N ={0,1,2,...}. Let u(F) = E[X] and 02(F) = Var[X], and we are interested in estimating
T(F) = log(u(F)) or the coefficient-of-variation T(F) = o (F)/u(F). Note that if P[X = 0] >
0, then T(F,) in each of these cases does not have finite mean and the variance is not
defined. However, in statistical applications, the issues of interest are estimation of T'(F)
and construction of its confidence interval. Hence if P[T'(F};) = co] — 0 as n — oo, we may
bypass the problem of estimating the actual bias and variance (may not exist) by assuming
that the expression for T'(F,) is given by the expression on the right-hand side of Eq. (16)
without the remainder term R;,.

10.7.1 Estimation of Asymptotic Bias and Asymptotic Variance

Let F,;; be the empirical cdf of F on the basis of X, ..., X;_1,Xj.11,..., X, (ie, Fy; is based on
n — 1 observations, deleting X;). Let T(Fy;) be the estimate of T(F) based on F,;. Tukey’s
pseudo values are defined to be

V;=nT(Fp) — (n— DT (Fy), i=1,...,n.

These pseudo values are approximately iid with mean T(F) and variance v(F)/n. As a
matter of fact, the following turn out to be true

E[V]=Tw®),
n
E|:(n ~pY (vi- 1‘/)2} =v(F) +0(n"),
i=1

where V = n=! 31" | V. Since E[T(F,) — V] = E[T(Fy)] — T(F), the Jackknife estimates of
ABias(T (Fp)) is given by

ABias) (T(Fy)) = T(Fp) — V = (n — D[Tn — T(Fw)],

where T, = n71 31| T(Fy))-
The Jackknife estimate of AVar(T'(F;)) is

n n
AVar (T(Fy)) = (n(n - D171 Y (v, - 7

i=1 i=1

nl) - Tl’l

The bootstrap method is conceptually simple: it basically seeks to replace by (F) by its
empirical estimate b, (F,). However, it does so without having to obtain any analytic ex-
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pression for b, (F). The method described here is known as the “nonparametric” bootstrap.
Let X, ..., X}, beiid with cdf F,, then the bootstrap estimate of ABias is given by

ABias®/(T(Fp)) = E[{T(F}) — TED}IX, ..., Xn),

that is, the (conditional) expectation is taken over the random sample X7,...,X;. In
practice, it is calculated as follows. Draw a random sample of size n with replacement from

the data {X), ..., X,} and repeat this N times. Let F,;, be the empirical cdf on the basis
of the tth sample {Xf(t)’ ... 'X;(t) ], and let T(F;‘;m) be the estimate of T'(F) based on FZ(t)'
Then, one calculates the quantity

N %[T(Fﬁ(zﬂ - T

t=

—

which, by the weak law of large numbers, converges to ABias'® (T'(F,,)) as N — oo.
The bootstrap estimate of the asymptotic variance is

AVar® (T(F,)) = Var[T(F;)IX,. .., Xn],

where the conditional variance is over the bootstrap sample (X7, ..., X}).

The bootstrap procedure may also be used to obtain an estimate of the sampling distri-
bution Q,(z) = P[ﬁ{T(Fn) —-TWFE)} < z], z real. Even though such sampling distributions
are approximately normal under appropriate conditions when the sample size n is large,
one may nonetheless use the bootstrap method in such cases. A bootstrap estimate of
Qn(2) is given by QY (2) = P[Vn|T(F%) — T(Fn)} < 2IX1, ..., Xn], where the (conditional)
probability is over the bootstrap sample (X7, ..., X;). In general if there is a functional of
the form T'(F,, F) and one wishes to estimate E[T(Fy, F)], then its bootstrap estimate is
E[T(E}, F)IX1, ..., Xn)-

Remark 10.7.2. 1t is important to point out that the jackknife and bootstrap procedures
may not always work. For instance, the jackknife estimate of bias cannot provide consis-
tent estimates for the ABias and AVar when estimating a quantile F~!(p). Success of the
jackknife method depends on the smoothness of the functional (ie, on the validity of the
expansion given in Eq. (16)). Bootstrap works well for quantile estimation as long as p is
away from 0 or 1. However, it cannot provide consistent estimates for ABias and AVar when
estimating extreme quantiles (ie, when p is close to 0 or 1).

10.7.2 Heuristic Justification for the Jackknife and the Bootstrap

Let us first justify the validity of the bootstrap estimate. In the arguments given here we
denote n~'/2A, = F, — F by D, and F}; — F,, by D%. We can simplify notations by writing
[ T'(x; F) dDp(x) by Lp(Dy) and [ T”(x1,x2; F) dDn(x1) dDp(x2) by Qr(Dp). If we expand
T(F;) about Fy, then we have

T(FZ) — T(Fp) = LFn (DZ) + QFn (D;Z)
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Conditional expectation (given Xj, . . ., X;) of the first term on the right-hand side of the last
expression equals zero, and the conditional expectation of the second term is n=1b,(Fy).

The result follows once we note that |b,(F,,) — b, (F)| £ 0 as n — oo. The justification for
the bootstrap estimate of the variance is similar.
Let us now look at the jackknife estimate. The validity of the bias estimate is fairly easy
to establish since
E[V;] = E[nT(Fn) — (n — DT(Fy;)] = b(F) — b(F) = 0.

Thus E[V] = 0.
Justification for the validity of the jackknife estimate of the variance requires a bit of
work. Simple algebra tells us

n

Yi-vy=en 3 (vi-vi)’
i=1 1<i#i'<n
=en 'm-1% Y [T(Fu) - T(Fu)]* (19)
1<i#i'<n
We will work with T'(F,,;) — T(F;) for the proof.

For notational simplicity, we suppress F in the notations of 7" and T”. We also
assume that T” is symmetric in its arguments. Since if it is not, we can symmetrize it
by using [T (x1, x2) + T"(x2,x1)]/2, and such symmetrization does not alter the value of
[ T"(x1,x2) dH(x1) dH (x2), where H is a cdf or a difference of two cdfs. For any x, x1, and
X2, define

T1(x) = T'(x) — E[T'(X)],
Tz(xl,XQ) = T”(xl,xg) — E[T//(xl,Xz)] — E[T”(X],Xz)] + E[T”(Xl,Xz)].

Then
n
Ln(P) = [ 709 dDu) = [ 1100 dFat0 =n71 3" 13 (X)),
j=1
QulF) = [ 17 (x1,%2) dDa(x1) dDa(x2)
= / Tz(xl,xz) an(xl) an(.Xz) =n2 Z Tg(Xj,Xk).
1<jk<n
Thus

n
T =TE +n YT (X)+n72 Y To(X X).
j=1 1<jk<n

The two sums in the last expression are not uncorrelated. A simple argument can be used
to create two uncorrelated sums. Note that b(F) = E[T> (X, X)] and let

Uj = T (X)) + n™ ! [T2(X;, X)) - b)),
Wik = To(X, Xp)-

Then T(F,) can be rewritten as
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n
T(Fn) =TE) +bF)/n+n" 'Y Ui+n? Y W (20)
j=1 1<j#k<n

It is easy to see that U; and Wik J # k, have zero means, Cov[Ui, W]k] = 0 whenever j # k,
and Cov[Wj, r,, Wj, k, | = 0 except when (j1, k1) = (j2, k2) or (j1, k1) = (k2, j2). We therefore
have

E[T(Fn)] = T(F) + b(F)/n,

n
Var[T (Fy,)] = Var |:n1 Z U{| + Var |:n2 Z W]k:|
j=1 1<j#k<n
= n~ar[Up] + O<n72)
=n"! {Var[Tl X))+ O(nfl)} + O(n’2>
=n"lvF) + O(n_z).
Applying the equality in Eq. (20) for T(Fy;) and T (F,y) for i # i’, we have
T(Fpi) — T(Fp) = n = DUy = U] +2(n— 172 Y [W,-,,j - Wl-,j].
JALAY
Thus

Ef Y [T(Ew) - T(Fm-/)]z} = ZE{(n -7 Uy - U,~]}2

1<i#i'<n il
2
+ ZEHZ(n —072 Y Wy - Wiy
i1 A
=2nn— 1)71Var[U1] + O(n’1>
=2nn—1"1 {Var[Tl x]+ O(n’1>} + O(nfl)
=2n(n — )" Var[T 0] + O(n ).

From Eg. (19), we thus have
n —
E[ Y (Vi - V) | = (0 — DVar[ T ()] + O) = (n — Du(F) + O(1).
i=1

This shows that E[AVar?) (T (F,))] = n~1v(F) + O(n=?).

Exercises

In the following problems, Xj, ..., X, is a random sample from a population with cdf F
and pdf f, X,, and sfl are the sample mean and sample variance, X;;;; < --- < Xj;.; are the
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order statistics, and Qin = Xy:[n/a]» Mn = Xip:[n/2], and Q3n = Xy [3/4] are, respectively, the
sample first quartile, the sample median, and the sample third quartile.

10.1. Let F be the cdf of N (/L, 02). Consider two tests with critical regions 71, > c¢1, and
Ton > cop for testing Ho: w = 0vs Hy: u > 0, where Ty, = VnXy/sn,
Ton = Q1 + Q3p, and ¢y, c2,, are chosen so as to control the Type I error
probability at a given level «, approximately for large n. For alternatives of the
order 1/4/n, calculate the Pitman ARE of the test based on T», with respect to the
one based on Tij,.
10.2. IfF is the cdf of N(u, 0'?), find the asymptotic joint distribution of (X, M),
properly normalized.
10.3. Let & and &3 denote the first and the third quartiles of F (ie, £ = F~1(1/4) and
£ =F~1(3/4)).
(a) Write down the Bahadur representation of Q;, and Qs, stating conditions on
F for their validity.
(b) Let F be the cdf of N(u, 02). Find the asymptotic distribution of the
inter-quartile range Dy, = Q3 — Q.
(c¢) Find a constant ¢ such that T), = cD,, is a consistent estimator of . What can
you say about the asymptotic efficiency of T;,? [If ¢ is the pdf and @ is cdf of
N(0,1), then ®~1(3/4) = 0.6745 and ¢ (@~ 1(3/4)) = 0.3178.]
10.4. Suppose the pdfinvolves a parameter 6 and

F06,6) = (1/2 = 6)€*I_ 00,0y (x) + (1/2)e/(1520)

(1/2 —6)e x<0
(1/2 4 0) igge V1420 x> 0.

For # = 0, the pdf f(x, 0) = (1/2)e ™, —00 < x < oo is symmetric with

mean = median = 0. For 6 # 0, none of this is true. To test Hy: § = 0vs H1: 0 # 0
we can, therefore, test for symmetry on the basis of the mean or the median.
Another possibility is to test whether the MLE 6, of 6 exhibits distributional
property that it should have under Hy. With this in mind, consider the following
test statistics:

Ton = én, Tn= Xn» Top = Mp,
T35, = Q3 — 2My + Q1 (a measure of asymmetry).

(a) Find the asymptotic distributions of Ty, T1,, T2n, and T3, (properly
normalized).

(b) Consider tests with critical regions Tin = ¢jn, j =0,1,2,3, each Cin being
chosen to control the Type I error probabilities at a given level «
approximately, for large n. For alternative 6 > 0 of the order 1/4/n, calculate
the Pitman AREs of the tests based on Tij,, T2n, T3, with respect to the one
based on Ty;,.
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10.8.

10.9.

10.10.

10.11.

10.12.
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(a) Let 71 and T> be statistical functionals of a family of cdf’s Fy having finite third
moments. Express the influence function T’ (x; F) of T = T1/T> in terms of
T (F), T>(F) and their influence functions T (x; F) and T} (x; F).

(b) Let T(F) = Ep[(X — £(F)3]/{Er[(X — £(F))2]}*'?, where & (F) = Er[X]. Use the
result of (a) and the formula for the influence function of EF[(X —&(F ))k]
given in Section 10.2 to derive the influence function of this T'(F).

() Verify for this T(F) that Ef[T'(X; F)] = 0, Ry = /n[T(F,) — T(F)] — n~1/2
Y T'X; F) = op(1), and then find the asymptotic distribution of
V[T (Fy) — T(F)] for arbitrary F € Fy and when F is the cdf of N(, o'2).

Let Fo be the set of all cdf’s on R with finite mean.

(a) Find T(F) on Fy such that T(F,) = n=1 Y} 1L, |X; — Xl

(b) Find the influence function of T'(F).

(c) Specializing to the case of symmetric F, indicate how you would show that
Ry = Vn[T(Fy) — T(F)] —n~12Y L, T'(X; F) = op(1).

Let T'(F) = Ep[|X — X'|], where X, X" are iid with cdf F.

(a) Find the influence function of T'(F).

(b) Write down the expression for T'(F,;) and derive the asymptotic distribution of

V[T (E,) — T(F)].

Let T(F) = (f x dF(x)) '~ = &(F)!/? for F having finite mean & (F) > 0.

(a) Find the influence function of T’ (x; F).

(b) Verify that Ex[T'(X; F)] = 0,

Ry = Jn[T(Fy) — T(F)] —n~ V2L, T'(X;; F) = op(1), and then find the
asymptotic distribution of «/n[T (F,) — T(F)].

Let T(F) = [ [ (x — £(F))? dF(x)]"/* for a cdf with mean E¢[X] = £ (F) and finite

second moment. Find the influence function of T'(F) and the asymptotic

distribution of \/n[T (F,) — T(F)].

For cdf’s on R with nonzero mean & (F), define T'(F) = 1/£(F). Find the influence

function of T(F) and the asymptotic distribution of «/n[T(F,) — T(F)].

For cdf’s on R with positive mean & (F) and finite second moment, let

T(F) =[[tx— £(F))? dF (x)]l/ 2 /&(F) denote the coefficient of variation. Find the

influence function of T(F) using the results of Exercises 10.5(a), 10.9, and 10.10,

and then find the asymptotic distribution of «/n[T (F,) — T(F)].

The pdf f(x, 6) of X is of the form

1/2

B 1/4 lx—0] <1
fx,0) = {(1/4) exp[—|lx—06|+1] |x—0]>1,

which is uniform in the middle and double-exponential in the tails.
(a) Find formulas for the «-quantile and the (1 — «)-quantile of this distribution
for0 <o <1/4andforl/4 <o < 1/2.
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10.13.

10.14.

10.15.

(b) Let Xy = (n—2[an])™! Zl’.’:_[&“n’ﬂrl X,,.; denote the a-trimmed mean based on
X1, ..., Xp. Find the asymptotic distribution of /71[ X« — 6].

(c) Plot the asymptotic variance 012 () obtained in (b) for« = 0.1,0.2,0.3, 0.4 to
determine the best choice of trimming among these.

(d) Let M, (k) denote the M-estimator of # obtained by solving
Z?Zl ¥ (X; — t) = 0, using the Huber function
¥ (x) = xI(|x| < k) + k sign(x)I(|x| > k). Find the asymptotic distribution of
V[My (k) — 6],

(e) Plot the asymptotic variance o2 (k) obtained in (d) for suitably chosen values
of k (starting with k = 0.5, 1.0, 1.5, 2.0) to determine as good a choice of k you
can.

(f) Compare the performances of X;,) with « chosen in (c) and My, (k) with k
chosen in (e).

In the following two problems, the population cdf and pdf are, respectively,

Fy(x) = F(x — 0) and fp (x) = f(x — 0), where f is symmetric about 0.

(a) Suppose that T is an L-functional with score function J. Show that if J is
symmetricabout 1/2 with folj(u) du =1, then T(Fy) = 6.

(b) Let X, denote the «-trimmed mean. Find the asymptotic variance of
VN[ Xn@ — 6] when o = 1/4 and f (x) is the pdf of the standard Cauchy
distribution.

Let T'(F) be the solution of the equation f W (x — ) dF(x) = 0 and let §,, be the

corresponding M-estimator. Make the following assumptions as needed:

(i) differentiation under the integral sign is valid,
(ii) xf(x) is of bounded variation,
(i) [ |¥@)|f'(x) dx < oo and # 0,
(iv) [¥2?(x)f(x) dx < oo.
(@) Show thatif ¢ (—x) = —¥ (x) for all x, then T'(Fy) =6 .
(b) Let0 < I = [ {fx)/f (x)}zf (x) dx < oo denote the Fisher-information of
the location family {f(x — 6),6 € R} and let 0®(F, ¥) denote the

asymptotic variance of ﬁ(én - 9). Show that ¢ (F, ¥) > If_ ! [Hint: Use

integration by parts to rewrite the denominator of o (F, ¥) and then
apply Cauchy-Schwarz inequality.]
(c) Calculate o2(F, ¥) when f is the pdf of the standard Cauchy distribution
and ¥ (x) = —xIj_¢ (). [Hint: Show that [£(1 +x2) ' dx = arctan c and
Cx2(1+x2) ! dx = c—arctanc.]
The sample mean in a random sample from a Cauchy distribution can be
stabilized by excluding just one- or two-order statistics at each end. Let
Xy, =m—2n"1Y """ X, Show that X} is an unbiased estimator of the
Cauchy median 6 if r > 1 and that Xj; , has finite variance if r > 2.
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Calculate the ARE of the M-estimator with score function ¥ (x) = —xI|_¢,¢ (x) of
the median 6 of a Cauchy distribution, comparing o2(F, W) with If_ 1 Use the
results of Exercise 10.14(c) with ¢ = 1.

Let Fy(x) = F(x — 0) be a cdf with pdf fy (x) = f(x — 6), where f(x) = (1/2)e=™ 0 is
unknown and we want to estimate 6. Let T'(Fy) be a solution to the equation

1/2
/2

||
_|x

x<0

)\Fg(t)zf‘lf(x—t) dF@(x)zowherelI/(x):{ o1

Then the influence function of T(Fy) is T (x; Fy) = —¥ (x — T(Fg))/)JFe (T(Fyp)).

(@) Show that T'(Fy) = 6.

(b) Express the corresponding M-estimator 6, = T(F,) in terms of (X1, ..., Xp) of
which Fj, is the edf.

(c) Write down one-term Taylor expansion of /n (én — 9). Assume that the
remainder term is op(1).

(d) Show that E¢[T'(X; Fy)] = 0 and evaluate o' (Fy, ¥) = Var[T'(X; Fy)].

(e) Find the asymptotic distribution of /n (én — 9). [Hint: To find
A%G (T(Fy)) = drrg,(t)/ dt|;—e, differentiate under the integral and use
w'(x) = —(1/2)|x|~ /2 for x # 0. Although ¥’ does not exist at x = 0, this
calculation is still valid. Also note that [;° x~!/2e™ dx = I"'(1/2) = /7]

Let fy (x) = f(x — 0) be the pdf of a double exponential distribution with mean 6

(ie, fy (x) = (1/2)e~*~?1) having cdf Fy and let F,, the empirical cdf of a random

sample from Fy. Let T'(F,) be the L-estimator of 6 with score function

Jw) =4ul(0 <u<1/2)+4(1 - wI(1/2 <u<1).

(a) Express T(Fy) as a linear function of the order statistics X;;.1 < -+ < Xy,
using coefficients J(i/(n + 1)) instead of J(i/n) , with n even.

(b) Show that T'(Fy) = 6 for the corresponding L-functional.

(c) Find the asymptotic distribution of «/n[T(Fy,) — 0]. [Hint: The asymptotic
variance o2(F, J) of /n[T(F,) — T(F)] involves F~1. If F is the cdf
corresponding to f(x) = (1/2)e~ ™!, then F~!(u) = log(2u) if 0 < u < 1/2 and
=—log21 —w)if1/2 <u<1.]
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Linear Models

11.1 Introduction

Linear models are widely used in statistical data analysis when the dependent or the
response variable is quantitative, whereas the independent variables may be quantitative,
qualitative, or both. It can also be used for some types of nonlinear modeling as an example
given below will show. A few well-known classes of linear models are

(i) regression: all the variables are quantitative,
(ii) analysis of variance (ANOVA): all the independent variables are qualitative, and
(iii) analysis of covariance (ANCOVA): some of the independent variables are quantitative
and some qualitative.

An obvious example of a linear model is simple linear regression with one independent
variable. If the observations are (Y;, X;), i = 1,...,n, where {Y;} are the values of the
dependent variable and {X;} are the values of the independent variable, then the simple
linear regression model is

Yi=po+P1Xi+e, i=1,...,n

where By is the intercept, 8 is the slope, and {¢;} are mutually uncorrelated random errors
with mean 0 and common variance o2. This model may also be written as ¥ = X8 + ¢,
where

Yl ]. Xl 81
. . ﬁ()) .
Y = ], X=|- -1, = , e=| -1,
: - g (ﬂl :
Yl’l 1 Xn &n
where E[e] = 0 and Cov [e] = ¢°I. In the linear model terminology, X is called the design
matrix and the goal is to obtain estimates of the unknown parameters g and o2, and carry
out inferences on them.

It turns out that all the models mentioned in (i)—(iii) can be rewritten in the framework
of a Gauss-Markov model which is

Y=XB+e, Ele]=0, Covle] =2l 6))

Theory and Methods of Statistics. http://dx.doi.org/10.1016/B978-0-12-802440-9.00011-4 309
Copyright © 2016 Elsevier Inc. All rights reserved.



310 THEORY AND METHODS OF STATISTICS

where Y is n x 1 vector of observed response values, the design matrix X is of order n x p
and B is a p x 1 vector of unknown parameters. In standard applications, the errors are
often taken to be iid N (0, 02). In this chapter, the columns of X will sometimes be referred
to as independent variables.

Important Assumptions

Throughout this chapter, we assume that the design matrix X is nonrandom, or if it is
random all the calculations such as E[-], Cov[-], etc., are carried out conditionally on X.
We also assume that n > p and X has full rank (ie, rank(X) = p). For the Gauss-Markov
model,

E[Y] = XB and Cov[Y] = o2I.

The problems of inference involve estimation of 8 and o2, construction of confidence
intervals, and hypotheses tests for g and its linear functions, deciding if some columns of X
can be deleted from the model, prediction of Y at a future set of values of the independent
variables, etc.

11.2 Examples of Gauss-Markov Models

Even though the description of the Gauss-Markov in Eq. (1) requires only the mutual
uncorrelatedness of the random errors, this assumption is too general to be useful in
applications. Therefore, following the standard practice, we assume that these random
errors are iid with mean 0 and variance o2 in all the examples below.

Example 11.2.1 (Linear Regression). Suppose that we have n observation vectors
(Yi, Xi1,..., Xip-1), i = 1,...,n, where the response for the ith case is ¥; and values of
the independent variables are X; 1, .. ., X; ,_1. Then a linear regression model is

Yi=Bo+ bA1Xi1 + -+ Bp—1Xip-1 + i

where {¢;} are iid with mean 0 and variance o . The statistical analysis involves estimation
of the unknown constants fo, f1, ..., By—1 and o2 from the data (V;, Xj1,...,Xip-1), i =

1,...,n. This model can be expressed in the Gauss-Markov framework given in Eq. (1) with
n I X1 - - - Xip-
v=| | x=|. - . |
2 A
Bo €1
. . L :
ﬂp.—l &n




Chapter 11 » Linear Models 311

Example 11.2.2 (Nonlinear Regression). The structure given in the last example is
quite general as it can accommodate nonlinear cases. For instance, if we have only one
independent variable but it is believed that the relation between the independent variable
and the dependent variable is nonlinear, then we may fit a polynomial model to account
for the nonlinearity. If a polynomial of degree p — 1 is considered, when the observations
are {Y;, X;},i=1,..., n, then we may consider the model

-1
Yi=Bo+PiXi+ BoXP 4+ Bp1 X! +e

This is clearly of the form given in the last example if we take X;; = X;, X;» = Xl.z, R

Xip-1 = Xf ~!. It is worthwhile to point out that in actual data analysis one may not
use the powers of X; to create independent variables since it may lead to the problem
of very strong correlation among independent variables (also called the problem of high
multicollinearity), which leads to instability (high variance) in the parameter estimates,
especially when p is not small. In such cases, one may employ orthogonal polynomials to
create the independent variables instead of using the powers of the independent variable
to form the columns of the design matrix X.

Remark 11.2.1. The last two examples show that any linear regression model can
be reexpressed in the Gauss-Markov framework. In order to show that the ANOVA and
ANCOVA models are in the Gauss-Markov setup, it will be enough to show that they can be
written as linear regression models and this is the approach taken in the examples below.

Example 11.2.3 (One-Factor Analysis of Variance (ANOVA)). The superintendant of a
school district may be interested in comparing the mathematical aptitudes of the students
in k different schools in a city. In order to achieve this, n; students are selected at random
from the ith school, i = 1, ..., k, and the score of each of the n = n; +- - - + n; studentson a
standardized mathematics test is recorded. This is an example of a one-factor study where
“school” is called a factor with klevels. Thus there are k populations and r; iid observations
are available from the ith population. A typical assumption is that the populations may
have different means {x;} but the variances are the same. If Yj; is the score of the jth student
in the ith school, then the one-factor ANOVA model can be written as

Yl'j::ui‘i'sij’ j=1...,n; i=1,...,k

where {Eij} are iid with mean 0 and variance o2. This model is called balanced if n;’s are the
same (ie, n; = ng for all 7).

If u is an overall (weighted) average of {u;} (e, n = Zf-czl w;u; where w; > 0 and
> w; = 1), then the factor effect for the ith school is defined to be «; = p; —  and {«;}
satisfy the constraint ) w;e; = 0. In practice, the weights are often taken to be w; = 1/k
or w; = n;/n, i = 1,...,k, though other choices are also possible. The one-factor ANOVA
model may also be written as a factor-effects model

Yij=ll+0li+8ij» j=1,...,l’ll’, i=1,...,k.

Note that E[Y,]] = u + o; = u;, irrespective of how u and «; are defined.
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We now examine how this model may be recast in the regression setup. If the main
effects satisfy the constraint } «; = 0 (ie, w; = 1/k), and if oy, . .., af_; are known, then
o = —a1 — - - - — aj_1 is known. Thus there are really k free parameters in the factor-effects
model and they are p, o, . . ., ar_;. Define k — 1 variables as follows

1 j=1 1 j=2
X,-j,lzi—l j=k , Xjo=1-1  j=k ...,
0 otherwise 0 otherwise
1 j=k-1
Xij,k—l = I_l j=k

0 otherwise.
Then the ANOVA model can be expressed in the regression framework
Yij = Bo + B1Xjj1 + - + Br—1Xjj k1 + €ijp With
Bo=n Br=oa1,...,Bk_1 =01
Note that when j = k,
Ao X+ o1 Xijr—1 = #— (01 + -+ o) = p+ o
Example 11.2.4 (One-Factor ANOVA Continued). As mentioned in the last example,
there are many ways to define the overall mean p and the factor effects {«;}. If the overall
mean yu is defined to be u = Y w;u; with w; = n;/n and @; = u; — u, then the constraint
on the factor effects is Z(ni/n)ai = 0 (ie, Y_n;e; = 0). In this case one may define the
X-variables as
1 i=1 1 i=2
Xij,1= —ny /N i=k , Xij,2= —ny /Ny i=k ,...,
0 otherwise 0 otherwise

1 i=k—-1
Xijk—1=~"M—1/M  i=k
0 otherwise.

Then the ANOVA model can be rewritten as

Yij = Bo + P1Xjj1 + - + Br—1Xij k—1 + &jj> With

Bo=u, Br=ai,...,Br_1 =1
A one-factor ANOVA model may also be written as a regression of Y on the following k — 1
indicator variables as defined below

Sin=lo izae M=o (2K

Example 11.2.5 (Two-Factor ANOVA). If in Example 11.2.3, ethnicity/race of each
student is recorded, then we have a two-factor study with factors “school” and “ethnicity.”
Changing the notations a bit, suppose that there a levels of factor A (school) and b levels of
factor B (ethnic group). Assume that a random sample of nij students is taken from the ith
school with the jth ethnic background and the observed scores are {Yijk: k=1,..., n,-j}. If



Chapter 11 » Linear Models 313

wij is the mean score of the students in the ith school with the jth ethnic background, then
the cell means model is
Yiij,U,ij—}-eijk, k= 1,...,n,~j, j: 1,...,b, i=1,...,a,
where {e;;} are usually assumed to be iid random errors with mean 0 and variance o?.
A two-factor study is called balanced if n;; = no for all i and j.
In order to rewrite the two-factor model as a factor-effects model, let us define

a a
= (ab)”~ ZZ Wip ki =D~ Z“l]r mj=a Z“U’
j=1i=1

o = pi. — p, Bj=pnj—un, and
(O‘ﬂ)ij = Wi T Mg T Bej = g (M +aj+ ﬂj>, and hence
wij =+ ai+ i+ (eB);
Here . is the overall mean, {«;} are called the main effects of factor A, { ﬁj} the main effects

of factor B, and {(aﬂ) l.].} the interaction effects. The main effects and the interactions
satisfy the constraints

Z o = 0, Z ’3] = 0,
Z(aﬁ)ij =0 foranyi, and Z(aﬂ)ij =0 foranyj.
7] 1
Thus the two-factor ANOVA model may be written as a factor-effects model
Yijk =+ o+ B+ (aﬂ)i]- + &jjk-
If it turns out that the interaction effects are zero, then we end up with an additive model
(ie, additive in factor effects)
Yijk = n+ i+ Bj + €jji-

In order to express the two-factor ANOVA model in the regression framework, we need to
define variables for factors A and B. We can create a — 1 factor A variables as

@ 1 i=1 @ 1 i=2
Xijk,1: -1 z:a' , Xz]kz_ -1 zza. ey
0 otherwise 0 otherwise
n 1 i=a-—1
Xijka1=1-1 i1=a
0 otherwise.

Similarly, the b — 1 factor B variables are

5 1 j=1 ® 1 j=2
lek1 -1 j=b . Xgh=1-1 j=b ..,
0 otherwise 0 otherwise
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" 1 j=b-1
Xijgp1 =11 Jj=b
0 otherwise.

Then the two-factor ANOVA model can be expressed as

-1 b-1
A B
Yije =1+ ale(]k)l + 5sz(]k)m
=1 m=1
a—1 b—1 -
+20 20 (@)X l]k le]k m T Eijk-
=1 m=1
It is of interest to note that the interaction effects are the coefficients associated with the
product terms of XY and X&)
The additive model (ie, when the interactions are not present) can be written as

a—
= A ”
Yl]’C =n+ Zale]kl+ Z BmX, l]km+£l]k'

=1

Example 11.2.6 (Analysis of Covariance). Analysis of covariance models come up when
some of the independent variables are quantitative and others are qualitative. Let us first
discuss a case with one qualitative variable (factor) and one quantitative variable. If in
Example 11.2.3, family income level of each student in the sample is recorded, then any
modeling should take into account the school effect (factor) and the income levels { ]} A
simple model in this case is

Yjj = n +«a; + yZjj + &jj, or more generally
Vii=u+ej+viZij+ej j=L...,n, i=1,...k

where {Eij} are iid with mean 0 and variance o2. The first is an additive model, whereas
the second model contains an interaction between the qualitative and the quantitative
variables. In the first model, there are k parallel regression lines, whereas the second model
allows for k separate regression lines with possibly different intercepts and different slopes.
In both cases, it is assumed that Y «; = 0. In order to write these two models in the Gauss-
Markov framework, we may define the indicator variables Xj; 1, ... » Xij k for k schools as in
Example 11.2.4, that is,

Xij1 =

1 ifi=1 1 ifi=k
0 otherwise’’ ik 0 otherwise.

Then the first model can be written as

Z BiX; j, i+ YZij + &ij,
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where 8; = 1 + «;. The second model (ie, the model with interactions) can be written as
k k
Yij =Y BiXiji + Y viXijaZij + e
I=1 =1

with 8 = 1 + .

Example 11.2.7 (Analysis of Covariance). A researcher wishes to investigate the effects
of k different diets on the growth (weight) of animals. Let Y;; be the growth of the jth subject
on the ith diet and let Z;;; and Z;j; be the initial weight and age of the subject. Analysis of
covariance model may be written as

Yl-j=u+a,-+y12ijl+y22,-j2+e,~j, j=1,...,n; i=1,...,k

where {¢;;} are iid with mean 0 and variance 0. If {X;;;: [ = 1,..., k} are created as in the
last example, then we may write this model as
k 2
Yii =Y BiXii+ > viZiji + €ij-
I=1 I=1

If the researcher wishes to consider, in addition to the diet (factor A, a levels), the effect of
gender (factor B), then she may have n;; subjects of gender j assigned to diet i. If Yy is the
growth rate of the kth subject with gender j and diet i, we may consider the model

Yijk =p+oi+pi+ (O{ﬂ)l] + 12k + VZZiij + ik k=1,... » Nijs j=12,i=1k

where {a;}, {8;} are the main effects of the factors and [ (ozﬂ)l.j} the interaction effects, and
they satisfy the constraints stated in Example 11.2.5.
Remark 11.2.2. In the last example, the first model with diet as the factor, and initial

weight and age as the covariates, may be written as
Y=XB+Zy +e,

where Z is an n x 2 matrix whose columns consist of {Z;; } and {Z;j,}. The first component
on the right-hand side is X and this consists of information on the factor levels. The
second component Zy consists of information on the covariates. Note that this follows
the Gauss-Markov framework with the n x (k + 2) design matrix [X Z] and the unknown

vector of parameters g = (,31, e s B> V1 )/2) T The same representation holds for the model
with interaction in Example 11.2.6 (which allows for regression lines with different slopes
and intercepts), except that Z is now an n x k matrix whose Ith column has {Xij'lZl-j},
I=1,...,k

11.3 Gauss-Markov Models: Estimation

This section is devoted to estimation of the unknown parameters of a Gauss-Markov model
as given in Eq. (1) (ie, to estimate 8 and o> when Y and X are observed). The method of
least squares is a standard procedure for obtaining an estimate of g and it is done by
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minimizing the quantity G(b) = ||Y — Xb||*> with respect to b in RP. It turns out that G
has a unique minimum and if the minimum is attained at b = B, then 8 is taken to be an
estimate of 8 and an estimate of the unknown mean vector X8 is ¥ = XB. The vector of
residuals &8 = Y — ¥, which is an estimate of the error vector &, can be used to estimate o2.
The column space of X is M(X) = {Xb: b € R”} and the (orthogonal) projection on it is

given by Qx = X (X TX)_IX T (Section B.6). Note that Qx is symmetric and idempotent (ie,
Q% = Qx), and I — Qy is the projection on M(X)*, the orthogonal complement of M (X).
11.3.1 Estimation of 8 and o2
We begin with the discussion on estimation of 8. Note that
G(b) = YTy —2b"XTY + bTXTXD.
The gradient and Hessian of G are
3G/ob = —2XTY + 2XTXb, 9°G/obob = 2X"X.

If 8 is a solution of 9G/db = 0, then clearly X" X8 = XTY. Since rank(X) = rank(X"X) = p,
the Hessian 92G/(dbab) = 2X Tx is positive definite and the function G is strictly convex.
Therefore, G has a unique minimum at b = ﬁ .

The estimated mean vector and the vector of the residuals are

Y

n -1
X4 :X(XTX) xTy = QyxY, and
E=Y-Y=Y-XB=(I-Qx)Y.
Since V = X ﬁ isin M(X) and & is in M(X)*, Yis orthogonal to the vector of residuals. Thus

we are led to the following important result on the least squares method for estimating g.
Theorem 11.3.1. Consider the function G(b) = ||Y — Xb||?, b € RP.

(a) The function G has a unique minimum and denote by B the vector at which G achieves
its minimum. Then we have X' XB = XY (ie, p = (XTX)leTY).
(b) Lete =Y — X ﬁ be the vector of residuals. Then X Te =o.

A A AT
(c) The vector of residuals is orthogonal to the estimated mean vectorY = X (ie, Y & = 0).

A few important properties of the least squares estimate B of B, the estimated mean
vector Y = X, and the residual vector & can be derived rather easily using some basic

algebra. Since g = (X TX)_lX Ty, we have

s

]
cOv[ﬁ]
£[x]

]

COV[X

(X ) 'XTE[y] = (XTX)_IXTX/S -y

(XTX) XTCOV[Y]X(XTX>1 02<XTX)_1,

XE[ ] X8,

XCOV[ ] (XTX) 'XT Z 52y.
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Since I — Qy is symmetric and idempotent, we have

E[¢] = (I — Qx)E[Y] = (I — Qx)XB =0,
Cov[&] = (T - Qx)CovIY1(I — Qx)"
= (- Qx)(I - Qx)" = o*(I- Qx)* = o*(I - Qx),
E[||€-||2] = trace(Cov[&]) = o2 trace(I — Qx)
= o%[n - trace(Qx)] = o*(n - p),

the last step is justified since the rank of the projection matrix Qx equals its trace. The
last result indicates that an unbiased estimator of o2 is given by 6% = [|8]|?/(n — p). In the
literature,

(i) |&|? is usually called the residual sum of squares and is denoted by SSE,
(ii) degrees of freedom (df) of the SSE is defined to be n — rank(X) = n — p,
(iii) mean square error (denoted by MSE) is defined to be MSE = | &]1/(n — p).

For any linear function 1"y of Y, 1l € R"?, we have
Cov[1¥,8] = Cov[1TQxY, (I - Qx)¥ | = 21 Qx (I - Qx) = 0.

Thus any linear function of the estimated mean vector Y is uncorrelated with the vector
of residuals &. This observation is crucial in inference since under the assumption of
normality of &, uncorrelatedness implies independence and thus X8 is independent of &.
The discussion above leads to the following result.

Theorem 11.3.2. Let Y = X be the fitted mean vector and & be the vector of residuals as
in Theorem 11.3.1. Then the following hold:

(a) E[#] =8, Cov[B] = s2(x"X) "

(b) E[¥|=x8, Cov¥] = s2Qx.

(c) E[¢] =0, Cov[&] =o*(I — Qx).

(d) The residual vector & is uncorrelated to any linear function of the estimated mean

vectorY = Xﬁ.
(e) E[MSE] = o2, where MSE = |&||*/(n — p).

11.3.2 Estimation of Linear Functions of g8

Often it is of interest to estimate linear functions of the unknown parameter g. If [} is an
unbiased for B8, then a linear function aTﬁ, a < RP, is also unbiased for aTﬂ. Let L be a
known p x m matrix of rank m < p, and consider the problem of estimating the linear
function @ = LT 8. Least squares estimate of @ is defined to be equal to 6 = LT B, where g
is the least squares estimate of 8. The following simple result shows that 9 is an unbiased
estimate of .
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Lemma11.3.1. E[#] =6, Cov[d] = o?L7 (x"X) 'L

11.3.3 Best Linear Unbiased Estimation

We begin with a definition.
Definition 11.3.1. A linear function g of Y is called a best linear unbiased estimator
(BLUE) of g if

(i) B isan unbiased estimator of 8, and
(ii) foranya € R?, Var[aTﬁ] < Var[lTY] for all linear unbiased estimators I’ Y of a’ 8,
leR"

It is clear from this definition that g is a BLUE of 8 if a’ 8 is BLUE of a’ 8 for any a € R”.
The following argument will show that the BLUE exists, it is unique and it is equal to the
least squares estimate B. It will be enough to show that, if for any @ € RP, I' Y is a BLUE for
a’B, thenl'Y = a .

If 1Y is an unbiased estimator of a’B, thena’p = E[lTY] =1"x B for all B and hence
X'l = a. 1f1"Y is a BLUE of a’B, then for any linear unbiased estimator mlY of 0 (ie,
E[m'Y] = 0forall B), (I+ tm)TY is also unbiased for a’ 8, where ¢ is a real number. Let

h(t) = Var[(l + tm)TY] — 02|l + tm)|?.

Since 1"Y is a BLUE, the function & achieves a minimum at ¢ = 0, thus 0 = #/(0) = 2621'm
(ie, I"'m = 0). Since m”Y is an unbiased estimator of 0, we have m’Xg = 0 for all 8
and thus X"m = 0. Since I'm = 0 for all m satisfying the condition X"m = 0 (ie, for
allm € MX)7T), it follows that I must be in M (X). Thus I = Xc for some ¢ € RP. Since
I'Y is unbiased for a’ 8, we have a’g = I'Xp = ¢"XTXp for all B. This implies that
c= (XTX)_la and hence I = X(XTX)_la. Thus if Y is a BLUE of a” 8, then

Ty = aT<XTX)_1XTY —alB.

Uniqueness is clear since any BLUE must have this form.
Thus we are led to the following important result.
Lemma 11.3.2. The BLUE of B is unique and it is equal to the least squares estimate p.

11.4 Decomposition of Total Sum of Squares

In each of the examples given in Section 11.2 of this chapter, the design matrix X has a
column consisting of 1’s. In regression, it corresponds to the intercept term and in ANOVA
models, it corresponds to the overall mean. Let us assume without loss of generality that
the first column of X consists of 1’s and the vector of parameters is § = (ﬂo, Bi,..., ﬁp_l)T.
A model which only has the first column (and ignores the last p— 1 columns) is ¥; = Bo+¢;,
i = 1,...,n. Clearly the least squares estimate of gy is Y =nl Z;’Zl Y; and the residual
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AN\2 _
sum of squares of this simple model Z(Y - /30> => (Vi - Y)2 is usually called the total

sum of squares (SSTO). Let ¥ = X be the least squares estimate of the mean X8 for the
full model ¥ = XB + &. We already know that the residual vector 8 = ¥ — Xg = Y — Y is
orthogonal to any vector in M (X) and hence to Y1, where 1 is an n x 1 vector of 1’s. Then

SSTO = (Y;— V)" = |Y - V1| = |XB — V1| + | Y — XB|?
N N2
BT
N N\2
- Z(Yi - Y) + SSE.
Since SSTO is the residual sum of squares for the model Y; = B9 +¢;, i = 1,...,n, the

A~ \2
quantity Z(Yi — Y) is the reduction in the residual sum of squares when we go from the
simple model Y = g1 + ¢ to the full model Y = X8 + ¢ and

R? = Z(f/,- - 1?)2 /SSTO = 1 — SSE/SSTO

is the proportional reduction in the residual sum of squares. It is also called the coefficient
of determination and is widely used in practice. Clearly, R? is between 0 and 1, and if R?
is close 1, it is taken as an indication that the full model ¥ = XB + ¢ explains the data

A N\2
well. The reduction Z(Yi — Y) is called the “regression sum of squares” in the regression

model and “treatment sum of squares” in the one-factor ANOVA model.

Even though R? is popular as a descriptive measure it has some flaws. If there is a true
model Y = X, B8, + ¢ with rank(X,) = p, and it is nested in the model under consideration
Y = XB + ¢, where M(X,) € MX) and rank(X) = p > p., then clearly the SSE for the
latter model is smaller than that of the former (ie, the true lower dimensional model), and
thus the latter model has a higher RZ?. As a matter of fact, for any class of nested models,
the value of R? will always increase as we consider higher dimensional models, and this is
true regardless of what the true model is. In order to remedy this, we first need to identify
a parameter p? that R? is trying to estimate. It turns out that a descriptive measure called
the adjusted R?, denoted by Ridj, is a better estimate of p? than R? is. Before we go any
further, let us first state a simple lemma and then define the concept of degrees of freedom
associated with residual sums of squares for any linear model.

We consider here a general structure for the n x 1 observation vector Y with mean
such that

Y=p+e withEle] =0 and Covle] = oI

If X is n x p of rank p, then the minimum of |x — XB|?, B € RP?, is attained at B* =
(XTX)ile[L, and the projected mean is Xp* = X(XTX)ilXT[L = Qxn. So when a model
Y = XB + ¢ is fitted to the data, then QY is estimating the projected mean Qxu and the
model is a true description of the data if u = Qxp.

Lemma 11.4.1. Assume thatY = u + ¢, where Y is n x 1 observation vector, E[e] = 0,
Covle] = o*I, and a model of the form Y = X + e, where X is n x p of rank p, is fitted to the
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data. A measure of deviation of Y from the projected mean Qxp is D = E[||Y — Qxp|?] and
an estimate of D is SSE = |Y — QxY||%. The following hold:

(a) D=no?+ (I — Qx)nrl?
(b) E[SSE] = (n—p) + (I - Qx)nl*

Definition 11.4.1. If a model of the form Y = X + ¢, where X is n x p matrix of rank
p, is fitted to the observation vector Y where Y = u + ¢, E[¢] = 0, Cov[e] = %I, then Qxn
is called the projected mean of the model. The degrees of freedom (df) of the residual sum
of squares SSE = ||Y — QxY||? is n — p, and the mean square error is MSE = SSE/(n — p).

For the simple model Y; = 8o + ¢;, i = 1, ..., n, the residual sum of squares is SSTO and
its mean square error is MSTO/ (n — 1). The adjusted R? is defined as

2
Ry = 1 — MSE/MSTO.

For the model Y = Bol + ¢, let Qyu be the projection of u on 1 (ie, Qo = Bol with
Bo = 17 u/n). Noting that ¥ estimates gy and SSTO estimates E[|Y — Qyul|?], the deviation
of Y from QuXB = Bol. Similarly, SSE is an estimate of E[||Y — Qxp[?], when the model
Y = XB + e (where the first column of X consists of 1’s) is fitted to the data. We may thus
define the proportional reduction in the true deviation of Y from the projected mean when
we go from the model ¥ = Byl + ¢ to the model Y = X8 + ¢ as

p? = 1—E[I¥ - Qxul?| /E[I¥ - Qonl?]
no? + II(I - Qx)ll«Hz
no? + H(I - Qo)ILHZ
__I(Qx ~ Qo)ul®
no? +[|(I — Qo)ml?’

using the results in the lemma above. Note that R? is an estimate of p?, but it has a serious
flaw as discussed above.

Under the assumption of normality of the error terms, | Y —Qou?/o? ~ x2_,(83), where
the noncentrality parameter is §5 = (1/2)]/(I — Qy)nl?/o?. Similarly, |Y — QxY|?>/o? ~
Xi—p(8%) with 82 = (1/2)[|(I — Qx)p|*/o®. 1f n is large, it can be shown that

MSE =Y - QxY|*/(n~ p)
=o? +n7 V(I - Qg)nl? + Op(n1/2), and
MSTO = |[Y — QoY1 /(n — 1)
= o+ n7 V(1= QoI + Op(n1/2),
assuming that the quantity n=!||(I — Q)ul* stays bounded as n — oo. These results

are generally true under reasonable technical conditions even if the error terms are not
normally distributed. Thus
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MSTO — MSE
MSTO

n1(Qx — Qo)nll?

- +op(n172
o2 +n~ (I - Qo)rl? p(r)

o 0p(n )
Clearly, R gisa /1 consistent estimate of p2.

Example 11.4.1. In the multiple regression case with p — 1 independent variables, the
normal equations X' Xg = XY are

2
Ry =1 — MSE/MSTO =

n > Xin e X Xip Bo Y XY
> Xin Y X7 e XX Xip1 || B 2 Xi2Y;
ZXi,p—l ZXi,p—IXi,l e Xiz,p—l ﬂp—l ZXi,p—IYi
where all the sums are over i from 1 through n. When p = 2 (ie, there is only one

independent variable), the solutions are
hr=Y (X1 -X)(vi-7) /> (X1 -%)% bo=7-hKi,

where X; = n7!'Y 7 X;1and Y = n71 Y1, V;. When p > 2, there are no such simple
expressions for the estimates of gy, 81, etc. Typically, solving these equations require
computing packages, which are widely available. If Y = Xﬁ (e, Vi = Bo + BlX,-J + -+
ﬁp_lXi'p_l, i = 1,...,n), then the quantity Z(ffl — Y) is called the “regression sum of
squares” and thus R?> = SSR/SSTO.

Example 11.4.2. In the one-factor ANOVA case as in Example 11.2.3, it is fairly easy to
get the least squares estimate of u;

The residual sum of squares is SSE = ;> (Vy — 171)2 and MSE = SSE/(n — k) is an
unbiased estimate of o2, where n = nj + --- + ny is the total number of observations.
The estimates of the overall mean u = ) w;u; and o; = u; — u are obtained by substituting
{1i} by {/1;}. For instance, if w; = n;/n, then

A=Y (ny/m)¥i. =33 Yj/n:=Y. and &=V, Y.
ij
N R N _ . _\2 _ _
As before if we denote Y = X, then Y;; = Y. and } ; Zj(Yij — Y) = > ni(Y; — Y..)2

is called the “treatment sum of squares” (SSTR) or the “between group sum of squares.”
For this case, the SSE is sometimes called the “within group sum of squares.” The
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decomposition of the total sum of squares is

SSTO =" Z(Yij — 1?..)2 =Y " na? + SSE, ie,
i
SSTO = SSTR + SSE.

In this case R> = SSTR/SSTO. The quantity SSTR/(k — 1) is usually called MSTR, mean
square for the treatment. It can be shown that (left as an exercise)

E[MSTR]/o? =1+ (k- 1)*1 Z ni(wi — u)z/cfz.

The quantity (k — 1)71 3" ni(u; — w)?/o? is a unit-free measure of the variability of {u;}.
This measure equals 0 if and only if u;’s are all the same. Thus the ratio F = MSTR/MSE,
which fluctuates about 1 if and only if u; = - - - = u, is used for testing the hypothesis that
the means are the same. Under the assumption of normality (ie, {¢;;} are iid N(0, o'2)),

SSE/o? ~ x2_,, SSTR/o? ~ X%_l(az), where
8% = (1/2) Y nja? /o?,

and F = MSTR/MSE ~ Fy_1,_k(8%). Hence the F-statistic can be used to test Ho: o1 =
-+ =ag = 0,since F ~ Fy_; ,_ under Hp.

If the overall mean y is defined as k=! " u;, then the estimates of x and «; are i =
k=13 Y; and &; = ¥;. — /i. Note that E[Y;] is always equal to u; irrespective of how y and
{a;} are defined, f/l-j = Y; and &ij = Y — Y;., and hence the residual sum of squares also
remains the same.

Example 11.4.3. In general ANOVA models (one- or multifactor), one may first obtain
the estimates of the means of all the factor combinations and then use them to estimate
the overall mean, factor effects, interactions, etc. For instance, in the two-factor ANOVA
model, the estimate of j;; is fi; = 17,-]-., where Yl] = n;l ZZZI Yijx, and this can be used

to estimate u, i ., u.j, the factor effects {«;}, {8;}, and the interactions {(a,B)l.j}, which are
all linear functions of {;;}. The residual sum of squares is SSE = 37, >°; > "¢ (Yijx — 17,7.)2,

and MSE = SSE/(n — ab), where n = }_; 2_j hij is the total number of observations, is an
unbiased estimate of 0. Thus

po=(ab) " 303 hg = (ab) " 3V
J

i i
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Example 11.4.4. In the balanced two-factor ANOVA model (ie, nij = no), the estimates
are much simpler when one uses the following notations

= (noab)” ZZZYuk’
= (ngb)~ ZZYIJ’C’ . = (noa)” ZZYIJ’C’ and
Vj = ny ZYiﬂc-
k

With these notations

(aﬂ)l = Y -¥. - Y_j, +7Y., and
Yijk — i = &; + By + (B) ; + &t
where { Eijk = Yijk — Y,]} are the residuals. If both sides are squared and summed over i, j,

and k, all the cross-product terms vanish to yield the following decomposition of the total
sum of squares

SSTO = ZZZ(YU,C - Y..)Z
i ]k
_ ZZ?(YU -~ 4 ZZ;(YW ~7;)
i i
= (nob) 383 + (noa@) 3" A% + 1o 3 3 (wh) ; + SSE
i

:= SSA + SSB + SSAB + SSE.

SSA, SSB, and SSAB are called the sums of squares due to the main effects of factor A, main
effects of factor B, and the interactions, respectively. It is important to point out that this
decomposition of SSTO is no longer valid for the unbalanced case.

It can also be shown that (left as an exercise)

E[SSA] (@—1)o? + nob Zal , SSB] (b — 1)02 + (noa) Zﬁjz’
E[SSAB] = (a—1)(b—1)o® +ng y_ Y (aB)7
ij

E[SSE] = (n — ab)c?
How do we view these results in matrix terms? Consider the following (sub)models
Yijk = 1 + &jjj (model 0),
Yijk = i+ a; + gjji (model 1),
Yijk =un+ ,3] + &ijk (model 2),
Yijk = n+a; + Bj + &k (model 3), and
Yig =n+a;j+ B+ (otﬂ) + &jj (model 4),
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where model 4 is the full (true) model and the rest are submodels of the full model. The
fitted values (or estimated means) of these models are

7(0) _ ~ (1)

Yijk M_Y,Yl.jk_Y, =+ a;

VO =V, =p+4, V) =¥, +7; - V.. =i+a;+p; and
ijk =Yg = H TP ijk_ R e R

For each of the five linear models above, the postulated mean belongs to a linear space
and the vector of fitted values is a projection of ¥ on this column space. If Q;Y denotes the
projection of Y for modelj,j =0, ..., 4, then the decomposition Yijk — o =a;+ Bj + (&E) i +
&jx can be written in the matrix form as

(I-Q)Y =(Q1 — Q)Y + (Q2— Q)Y + (Q4 — Q3)Y + (I — Q4)Y, or
(I— QO)Y=M1Y+M2Y+M3Y+M4Y,

where M1 = Q; — Qy, M2 = Q; — Qp, M3 = Q, — Q3, and M, = I — Q,. It is fairly easy to
check that M i»J =1,2,3,4, are projection matrices. Moreover, for the balanced two-factor
ANOVA model, M;M; = 0,1 < i # j < 4. When {Sijk} are iid N(O,oz), using the results in
Section B.7 we have

ssA/o? = M Y% /o? ~ x5 (1), o} = (1/2)(n0b) 3 o?/o?,
SSB/o? = IM2Y 1% /o ~ xf_ (3), 83 = (1/2) (noa) Y B?/0?,

SSAB/o? = |M3Y 1% /0% ~ x2,_1, (5 1)< ) —(1/2)p 3 a,g)l?-j/az,
i

SSEjo” = |MsY | /0? ~ xZ_.p»

and SSA, SSB, SSAB, and SSE are independent.

Example 11.4.5 (Estimation in One-Factor ANOVA). In one-factor ANOVA or multifac-
tor models, one is often interested in comparing the means or comparing the factor effects.
For instance, in a one-factor model, it is of interest to estimate the pairwise differences of
the means u; — uy = @; — oy, i # 7. In general, one may be interested in estimating a
linear combination of the means 6 = ) c;ju;, where {c;} are known constants. A linear
combination 8 = Y c;u; is called a contrast if ) ¢; = 0. Thus, any pairwise difference of
the means is a contrast.

The least squares estimate of 6 = > c;u; is 6 = Y ¢;Y;. It is fairly easy to see that its
mean, variance, and the estimated variance are

E[@] =90, Var[ ]—(J’ZZC /n;, and s ( ) \;[\] MSEZC /n;.

Since 4 is a function of the estimated mean vector, it is independent of SSE and hence of
MSE. Under the assumption of normality (é — 9) s(é) ~ t,_k, and this result can be used
for constructing confidence intervals or for testing hypotheses.
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Example 11.4.6 (ANCOVA With One Factor and One Covariate). Consider the following
model with one factor and one covariate

Yii=p+oaj+vZj+e; j=lL...m i=1,...,a

If y were known then we could rewrite the model as Y;]“ = +a;+ej, where Y; =Yii—vZj
and the estimates of u and «; would be

p=Y'=Y.—-yZ, and a;=Y -V =Y, -Y.-y(Z. - Z.).
When y is unknown (which is usually the case in practice) and it is estimated by y, then we
may plug in the estimate of y in the above expressions in order to obtain the estimates of
and «;. It turns out that this reasoning is valid and it will be discussed in a separate section
later.

We now outline a simple strategy for obtaining the least squares estimate of . Rewriting
the ANCOVA model as

Yii —,bL—|—Ol —I—yZ-—I—sij,

where Zjj = Z;; — Z; and o} = a; + yZ;, the least squares criterion is
N2 o
Z Z(Yl] —n—af - )/Zij) = Z Z Y,? + Z Z(M + oe;k)z + Z Z(yZij)
i J 1 1 i j
_ZZZ i+ o) ZZZE‘]'(VZU)
i

since the cross-product term involving u +«} and yZij equals 0. This allows for estimation
of y and p + o separately. Thus

=S [T
i j i j

=Y. - ]72, &i = Yl -y - )Q(Zl 721'-)’ and f/l] =Y + ]721]

Details on ANCOVA models appear in a later section.

11.5 Estimation Under Linear Restrictions on B

In Section 11.4 of this chapter, a simple submodel Y = Bgl + ¢ of Y = XB + & was
considered when discussing the concept of R?>. However, more general submodels can
also be considered, and an analogous result on the decomposition of the residual sum
of squares for the submodel can be obtained. The details will be given later, but the result
is as follows. If ¥ = XA is the estimated mean vector for the full model ¥ = X8 + ¢ and
Y = X§ is the estimated mean vector under a submodel (reduced model) of the full model,
where § is the least squares estimate of g in the submodel, then it turns out that

IY = Y2 = |V - Y%+ Y - Y|
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Thus if we write SSEr = ||Y — Y| and SSEg = |¥ — Y2 as the residual sum of squares
under the full and reduced models, then

SSER = |Y — Y||? + SSEF.

Analogous to R?, we can obtain the proportional reduction (also known as the coefficient
of partial determination) in the residual sum of squares when going from the submodel to
the full model

SSEg — SSEf
SSEg

Let us now see when and how the above results hold. Suppose we wish to estimate the
mean vector X8 in the Gauss-Markov model under the restriction LTﬁ = 60y, 8¢ known,
where L is a p x m matrix of rank m < p. Such a problem usually comes up in hypothesis
testing where the null is Hy: LTﬂ = 0y against the alternative H;: LTﬂ # 6. For such a
testing problem, we need to obtain the residual sums of squares for the full model and
reduced model (ie, the submodel model with the constraint LTﬂ = 0y), and then use them
to carry out the test which will be described later.

The restricted least squares estimate of 8 has a complicated expression and some
notational simplifications make the arguments clearer. Since the design matrix X may not
have orthogonal columns, it helps to reexpress Xg as Xy so that the columns of X, are

orthonormal. Let (X Tx ) "2 be a symmetric square root of X’ X and define

Xo :X(XTX)_I/ 2= (XTX)I/ 28 Ly = (XTX)_I/ ’L so that
XB=Xoyando =LTg=Lly.

With these notations, let us note the following:

() Xixo=1,
(ii) theleast squares estimate of y in the full model is y = (X TX)I/ 2 g = xly,
(iii) E[p] =y ,Cov[p]= oI,
(iv) E[é] =0 and Cov[é] =o?L} Ly, where§ = LT8 = Ll'y,and
(v) theleast squares estimate of the mean vector p = X8 in the full model is

i =XB =Xoy.
For the restricted least squares case, we now find the estimate of Xf. We minimize
|Y — XB|> = |Y — Xoy||> with respect to y subject to the constraint Lgy = 0g. The

method of Lagrangian multiplier is useful for a constrained optimization problem, and
we minimize

1Y = Xoy 1> + 1T (Lfy — 60)
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with respect to y where A is the Lagrangian multiplier vector. Differentiating the last
expression with respect to y and A, and equating the derivatives to 0, we have

7=XJY - (1/2)Lor and LIy =4o.

Premultiplying the first equation with L} we get Ll 7 = LIXI'Y — (1/2)L{ Lyx. Since L] 7 =
8o, thenx = 2(L] Lo)_1 [LEXTY — 60]. Thus we get a solution to the restricted least squares
problem as

7=x'y - L0<Lng)_1 (LOTXgY - 00)
-5 LO(LgLO)_l (L§% - 80), and
g = (XTX)_I/Z;?.
The estimated mean vector and the vector of residuals & for the restricted least squares are
Xf = XoF = Xop — XoLo(LJLo)  (L}5 ~00)
—x8 —XOLO(LgLO)_1 (é - 00),

E—Y-XB=¢ +X0L0(LOTL0)_1<5 - 00).

Since XoLg (LgLo)71 ((5 — 00> is in M(X) and & is orthogonal to M (X), we have

812 = 1212 + 1XoLo (L5 Lo) (8 - 00) 1
— 1812 + (é - oo)T(LgLo)fl(é — 00).
Therefore,
SSER = SSEf + (é - 00>T<LgL0)_l<é - 00), or
SSER — SSEp = (é - 00>T(LOTL0)_1 (o“ - 00). @)

The discussion above leads to the following important result.
Theorem 11.5.1. Let B be the least squares estimate of B in the Gauss-Markov model
in Eq. (1) under the restriction LTﬁ = 0¢, where 0 is known, and let X8 be the estimated

mean vector under the restriction. Let 0 = LTB, Ly = (X TX)_I/ ZL, and @ = LT B, where B

is the unrestricted least squares estimate of B. Denote the residual vectors & = Y — XB and
¢ =Y — XB. Then:

(a) XB =X — XoLo(L{Lo) " (6 - 60),
(b) & =&+ XoLo(L{Lo) ' (6 - 60),
a T 1/~
(0 1212 = 1212 + (0 — 60) (LTLo) ' (0 - 60).
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11.6 Gauss-Markov Models: Inference

Throughout this section we assume a Gauss-Markov model with normal errors (ie, & ~
Ny(0,02I)). Theorem 11.5.1 can be used for constructing confidence regions and hypothe-
ses testing. If § = LTﬁ, where L is a p x m matrix of rank m < p, then its least square
estimateisd = LT B, where ,3 is the least square estimate of 8. Since 6 is a linear function of
the estimated mean vector ¥ = X4, it is uncorrelated with the residual vector & = ¥ — X8
(Theorem 11.3.2). Thus, under the assumption of normality, 8 is independent of & and
hence of MSE = | Y — XB|%/(n — p). Note that

-1/2

(i) 6 ~ Nyu(0,0%LY Ly), where Ly = (X"X)™ /°L, and

A T -1 /4 T
(0 - o) (L({Lo) (o - o) Jo? ~ y2,
(i) SSE/o? =¥ — XBI?/0 ~ x2_,,
(iii) 6 and SSE are independent.

The F-ratio

g (0-0) (1f0) "(0-0)'/(om)

B 1% - XA1° /(02 (n - p))

_ (6 - a)T(LOTLO)_l(é - o)T/m

MSE

— (é - a)T[s2 (é)]_l(é - 0>/m, where

s*(0) = mse[L§ LO]_l,

has an F-distribution with df = (m, n — p).
If Lis avector (ie, m = 1), then8 = LTﬁ isareal number and (é — 9)/5(9) ~ tp—p. Then

a confidence interval for 8 with confidence coefficient 1 — « is 6 = t,,— P /2s< ) Similarly, if
we want to test Hy: 0 = 6 against the alternative Hj: 6 # 6, then one may reject the null
hypothesis if’(é - 90>/s<é)‘ > In—pa/2-

If L is a matrix of order p x m with rank m < pand § = LTﬂ, and it is desired to
carry out a test Hy: @ = 6g against Hy: 6 # 0y, then there are two equivalent ways to

express the F-statistic for this test. One expression involves SSEr and SSEg, whereas the
other involves § = LTﬂ (where 8 is the least squares estimate under the full model) and

s (é), the estimate of Cov[é]. For a particular application, one may use the form that is

more convenient to obtain the F-statistic. If MSEF is the mean square error under the full
model, then the F-statistic can be written in the two equivalent forms
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_ (SSEg — SSEp)/m
e (3a)

(i) [#(0)] G0

Since § ~ N, (0, azLT(XTX)_1L>, using Theorem 11.5.1, we have

[SSER — SSEp]/0® = (é - 00)T[L({L0]71(é - 00)/02 ~ X%(ﬁ),

where §% = (1/2)(6 — 00)T[L0TL0]‘1(0 —69)/0. Since B is independent of the residual
vector Y — X ﬁ, SSER — SSEF, which is a function of /§, is independent of SSEf, a function
of Y — XB. Thus SSEp /o2 ~ Xi_p» and under Ho, (SSEg — SSEF) /o ~ x%,(8%), where 6% is
given above. Therefore

_ (SSER — SSEF)/m _ (SSER — SSEF)/m
- SSEp/(n-p) MSEF

600 [0 (o) ().

Thus we reject Hy: @ = 6 in favor of H;: @ # 0 if the value of the F-statistic given above
is higher than the critical value obtained from the F-distribution with df = (m, n — p).
A few important facts come out from the above discussions:

(a) Any linear hypothesis about g induces a reduced model.

(b) There are two alternate ways to derive the F-statistic for testing Hyp: § = 6 vs
Hy: 6 #0g.

(c) SSERr — SSEF depends on Y only through 0 = LTﬂ Since X ﬂ is uncorrelated with
e=Y-X ﬂ ,B is independent of ¢. Consequently, SSEr — SSEF (a function of ﬂ) is
independent of SSEr (a function of &).

(d) df(SSEF) =n-p, df(SSER) =n—p+m, df(SSER) — df(SSEF) =m

(e) Under Hy: @ = 0, the F-statistic as given in Egs. (3a) and (3b) has an F-distribution
withdf = (m,n—p).

We will summarize the above discussion in the following result.

Theorem 11.6.1. Assume the Gauss-Markov setup as in Eq. (1) with e ~ Ny(0,0I). Let
L be a known matrix of order p x m with rank m < p, and denote 8 = L . We wish to test
Hy: 0 = 0y against Hi: 0 # 0. Let,@ be the least squares estimate of and 6 = LTﬁ. Let
SSEr = ||Y — XﬂA||2 and SSEg = |Y — XB|12, where ﬁ is the least squares estimate of  under
the restriction L' B = 0. Then

(a) 0 is independent of SSEF,
(b) SSEp/o* ~ xj_,, and SSEr — SSER is independent of SSEF,
(c) (SSEg — SSEr)/a? ~ x2,(8%) where the noncentrality parameter is

= (1/2)(8 — 80) "[LILo] (6 — 80) /0% with Ly = L(X"X) "%, and
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(d) for the F-statistic in Egs. (3a) and (3b), F ~ Fp, - p( ) where 82 is as given in part (c),
and F ~ Fy, n_p under Hy.

Example 11.6.1 (Deleting a Variable From the Regression). Let us consider a regression
model with p — 1 = 4 independent variables. Suppose we wish to find out if variable
Xj should be dropped from the model. This is equivalent to testing Hyp: g1 = 0 against
Hi: B1 # 0. In this case, we can write L as a row vector of length p = 5 whose second
element is 1 and the rest are zeros. In such a case, clearly, § = LT 8 = ;. We can carry out
either a t-test or an F-test for this purpose. The reduced model (ie, the model under Hp)
has p—2 independent variables instead of p— 1. If we call the original model the full model,
then we have

Y = Bo + B1X1 + B2Xo + B3X3 + BaXy + e (full)
Y = By + BoXo + B3X3 + B4 Xy + ¢ (reduced).

In this case, we may obtain the residual sums of squares for the full and the reduced models
and df (SSEr) = n — 5, df (SSEr) = n — 4. The F-statistic for this test

_ SSEg — SSEf
~  MSEp

is exactly equal to [,31 /s(ﬁ1>]2. Thus we may simply use the t-statistic t = B /s(&) for
testing Hy: 81 = 0 against H;: 1 # 0 and avoid calculating SSEg.

Example 11.6.2 (Deleting More Than One Variable From the Regression Model).
Suppose the set-up is the same as the last example, but now we wish to know if we can
delete the first two independent variables from the model. This is equivalent to testing
Hy: B1 = B2 = 0 against H;: atleast one 1, B2 is nonzero. In this case, L can be written as a
p x 2 matrix which has all zeros except for 1’s at the second element of the first column and
at the third element of the second column. We need to test Hy: @ = 0y against Hy: 0 # 6y,

A T N1 /A
where 8y = (0,0)7. The F-statistic for this test is F = (0 — 00) [s2 (0)] (0 - 0())/2.
However, we can derive this same test statistic in a different way. The full and the reduced
(under the null) models are

Y = Bo + B1X1 + B2Xo + B3X3 + BaXy + & (full),
Y = By + B3X3 + BaXy + ¢ (reduced).

Here, df (SSEr) = n — 5, df (SSER) = n — 3, and we can write
_ (SSEg — SSEF) /2
- MSEp

and F ~ F» ,_5 under Hyp.

Example 11.6.3 (One-Factor ANOVA Model). Consider a one-factor model with k levels.
If it is desired to test Hy: oy = --- = a; = 0 vs Hy: not all o;’s are 0, then the full and the
reduced models are

Yij = u+aj+¢jj(full), Yy = u+ e (reduced).
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In this case,

ssEp= Y3 (Y- %) df(sSEr)=n—k
G

SSER = Z Z(YZJ — Y.)z, df (SSEg) = n— 1, and
ij

SSRp — SSEp = Y > (¥; — ¥.)* = m;a? := SSTR.
i

The F-statistic is

. [SSRr — SSEF]/(k—1)  SSTR/(k—1)  MSTR

MSEp ~ MSEg

~ MSE’
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where MSE = MSEf. Denoting 6* = (1/2) 3" nja? /o2, we get the result F ~ Fy_; ,,_(8?)

and F ~ Fy_; ,_ under Hp.

Example 11.6.4 (Balanced Two-Factor ANOVA). In the two-factor balanced ANOVA
model, we have seen in Example 11.4.4 that SSTO, the total sum of squares, can be
decomposed as the sum of SSA, SSB, and SSAB. If we want to test Hy: (a,B) i = 0 for all

iandj, vs Hy: at least one (aﬂ) i is not zero, the full and reduced models are

Yijk = 1+ o+ Bj + (aB) ; + ek (Fulb),
Yijk = i+ a; + Bj + ¢k (reduced).

Estimated mean values for the full and reduced models are

N =

Vije = Vig. = L+ & + By + (@B) 5

Yije =i +a;+ Bj,

where [, @;, and Bj are as given in Example 11.4.4. The sums of squares for the full and the

reduced models are

SSEp = Z Z Z(Yijk - i’,’j.)z, df(SSEF) =n—ab,
i j k

sSEp =Y (Y — i~ — fy) » dAf(SSER) =n— (a+b-1),
i j k

SSER — SSEp =) ) Z(Yij. —f—a;— Bj)z
i j ok
=g 33 (aB);; = SSAB.
i

Thus the F-statistic for this testing problem is

P SSAB/(ab—a—b+1)  MSAB
N MSEgp ~ MSE’

where MSE denotes MSEr. Under Ho, F ~ Fiq_1)(p—1),n—ab-
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Even though it may not be a standard practice to test for the main effects in the presence
of interactions, we can still formulate the statistical problem and describe the test statistic.
Let Hy: a1 = --- = g = 0 vs Hy: not all ;’s are zero. Then the full and reduced models are

Yijk = n+ej+ Bj + (aB); + &g (fuld),
Yijk = 1+ Bj + (@B); + & (reduced).
Estimated mean values for the full and reduced models, and their sums of squares are
f/i]'k =Q+a;+ 3j + (“ﬁ)i]" f/ijk =i+ /§j + (Otﬂ)l-j,

SSEp = ZZZ( ik — ])2, df (SSEF) = n — ab,
SSER—ZZZ( o= ii— B - @B)y) » dAf(SSER) = n—[1+a(b-1)],

SSER — SSEf = SSA,

and the F-statistic is
SSA/(a—1)  MSA
MSEp  MSE’

where MSE = MSEg. Under Hy, F ~ F,_1 ;_ap-

Example 11.6.5 (Two-Factor ANOVA: One Observation per Cell). Consider a two-factor
ANOVA model as in the previous example with n;; = 1 for all i and j. If Y}; is the response
when factor A is at level i and factor B is at level j, then a model without interactions is

F =

YVii=u+ej+Bi+ej j=1...b i=1...,a

where } a; =0, ) 8 =0, and {sl]} are iid N(O o ) Estimates of u, «;, and g; are exactly
the same as before (je, i = Y., &; = Y; — Y., and ﬂ] = Y — Y.). In this case, the fitted Y
values, residuals, and the residual sum of squares are

Vyj=i+ai+hy s5=Yy— (i+a+h)
A\ 2
SSE:ZZ(YU*/Q*&rﬂj) , and
i
df(SSE) =ab— (a+b—1) = (a—1)(b—1), and
MSE = SSE/[(a— 1)(b—1)].

One can then carry out inferences on {¢;} and { ,3]-} such as construction of simultaneous
confidence intervals or tests such as Hy: a1 = - -- = a4 = 0 vs Hy: not all «; are 0.

Now if it is desired to investigate if the interaction effects are present, one may think of
the usual model in the two-factor case

Y;i j=Hn+ao;+ B+ (0(/3) T+ g j=1...,b i=1,...,a

with the usual constraints on {o;}, {8;}, and {(a,B)ij]. For this model, the number of

unknown parameters (excluding 2) is n = ab, the estimated mean is Vj; = Y;j and the
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residuals are Y;; — f/ij = 0. Thus there is no way to estimate o2 as there are too many in-
teraction parameters, and we cannot use this model to determine if the interaction effects
are present. One way to approach this issue is to consider a more restrictive type of the
interaction of the form 6«;g;, 6 real. This leads to the consideration of Tukey’s interaction
model

l/l'j':u+oti+ﬂj+9aiﬂj+8ij, j=1...,b, i=1,...,4

where " o; = 0, Y gj = 0, and {¢;;} are iid N (0, o'2). For this model, absence or presence
of interaction effects can be judged by testing Hy: 6 = 0 against H;: 6 # 0. This is known
as “Tukey’s one degree of freedom test for nonadditivity”, details of which are described
below.

Now Tukey’s model is no longer a linear model, but if one estimates 4, &;, and Bj as in

. A2 - A
the additive model, then minimizing ) ; Z]-(Yl-j - Y — G&iﬂj> , where Yj = i + &; + Bj,
with respect to 0 leads to an estimate

i Y EijdiB;
sasﬁ ’

e,]_ l]' Sa_Zal,andSﬂ—Zﬂ .

6 = where

Since {&;;} are independent of {17,]] , E[é,-jlff] = E[&;] = 6a;B;, where Y is the vector of
f’ij’s, and

X ZjE[giﬂl?]&iBj X Zj(9ail3j)&i/§j

E[Q|Y | = =
[ | ] SaSg SaSg
S 0BG B
_ g ZiXyeibeidy
SaSg
For two sequences of constants {e;,i=1,...,a} and {]j-,j: 1,...,b} satisfying the

constraints ) e; =0and ) _fj =0,
Z Zéijei};- = Z Z jeif;, and
i
Var [Z Z 5l~jeg;~‘1?} - Var|:Z Z éijeiﬁ-i|
ij i
| £ X v | - £ T
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Thus
Var[élf/] = 02/[Sa8/3].

A

In order to carry out a test on #, we need an estimate of 2. If we write Y= 17,7 + A&iﬁj and
&gij =Y — ﬁ-j =&jj — é&iﬁj, then a simple calculation will show that

SSER = ZZgl?j =Y 285 +6284Sp = SSEE + 62S4Sp.
i i j

Conditionally on ¥,
(i) [SSEr — SSEF]/0? = 6254,Sp/0? ~ x%(5?),
~ ~712
where §2 = (1/2){E[9|Y” Jo? = (1/2)624% /52,
(i) SSEg/c? ~ X(Za—l)(b—l) (%), where 82 = 6>, 3", a7 p7 /o?, and
(iii) SSEr is nonnegative.

Hence by an application of Lemma B.7.2 in Appendix B, we can conclude that,
conditionally on Y, SSEgp/o? ~ x(zafl)(bfl)fl((Sz — 8%) and SSErp/o? is independent of
[SSER - SSEF]/O’Z. This allows us to construct a test for Hy: 6 = 0 vs Hi: 0 # 0 using the
F-statistic

_ SSER—SSEp _ 6%S.Sg
~  MSEr = MSEr

MSEf = [Zzgfj —ézsasﬁ}/[(a— D(b-1)-1],
i

and F ~ Fy (4_1)(p—1)—1 under Hy.

Example 11.6.6 (Nested ANOVA). Let us begin with a simple example. The school
superintendent has asked every school in a town to try a pilot training program in order
to improve the quantitative aptitude of the students. The town has a schools and each
school has its own b designated teachers for this training program. A random sample of
n;; students is chosen in the ith school (factor A), i = 1,...,a, and assigned to the jth
teacher in that school, j = 1, ..., b, and after 6 months of training, the students are given
a standardized test to evaluate their performances. Note that the teachers in different
schools are entirely different and thus the teacher effect (factor B) is nested in the school
(factor A). If Yj;;. is the score of the kth student assigned to teacher j in the ith school, then
areasonable model is

Yijk:ll“‘kai"‘ﬂj(i)“‘gzjkr k=1,...,nij, j=1...,b i=1,...,a,

where {«;} are the factor A (school) effects, { ,Bj(i)} are the factor B (teacher) effects nested

in factor A, and {e;;;} are iid N(0, 0%) errors. This is an example of a simple nested ANOVA
model. For this model, it is assumed that
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b
@ Y =0, (b) Y Bj;y=0 foreachi=1,...,a.
j=1

Let Y., Y;., etc., be as in the two-factor ANOVA model. Then estimates of u, «;, ,Bj(i),
fitted Y values, and the residuals are

A= (ab) " Y3 Wy i =b Y V-, By = Yy — -y
ij J

N - -

Yijk = Yij., &ijk = Yij — Yy, and

SSE=) > > &
i j ok

As usual, SSE/o0? ~ X,Zl_ab,

n is the total number of observations. One can obtain variances of /i, {&i}, and H ,éj(i) }, but

and MSE = SSE/(n — ab) is an unbiased estimate of o2, where

they are a bit cumbersome in the unbalanced case. In the balanced case (ie, nij = N for all
i and j), the expressions of /i, {&;}, and {Bj(i) } are simpler

A=Y, &=Y. -V, By =Y —n—-&=Y; -V,
and
Var[i] = Var[Y..] = o?/n,
Var[&;] = Var[¥;. — ¥..] = o%(a— )/n,
Var[Bj(i)] = Var[f/ij‘ - Yl] =o%(b - 1)/(nob).
Since /1, {&;}, and { ﬁj(l-) } are functions of the fitted mean vector ¥, they are independent of

SSE and hence of MSE, and this fact can be used to carry out inferences such as hypotheses
testing and construction of confidence intervals.

If we wish to test the hypothesis of no teacher effect (ie, test Ho: j;) = 0 for all j and
i) against the alternative Hi: not all g;(;) are zero, then the full and reduced models and
fitted Y values are

Yijk = i+ i+ Bj(i) + il Vijie = Vij. = A+ & + By (full),
Yijk = n+ i + €jks ffijk = [t + @; (reduced).

The residual sums of squares are
SSEF = Z Z Z(Yl]k - 71']3)2’ df(SSEF) =n—ab,
i j ok
SSEr=Y"Y" Z(Yijk —a- &i)z, df(SSEg) =n —a,
i j ok

SSER —SSEp =) > nl-ijz(i) := SSB(A).
i
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The quantity SSB(A4) is the sum of squares due to teachers (factor B) nested in school
(factor A). The test statistic is

5 SSBA/(ab—a) _ MSB(A)

MSER MSE '
where MSB(A) = SSB(A)/(ab — a) and MSE = MSEr. Under Hy, F ~ Fap_qn—ab-
In order to test the hypothesis of no school effect (ie, Hp: @1 = -+ = a4 = 0 vs Hj: at

least one ¢; is not zero), the full and reduced models along with the fitted values are
Yijk = i+ i+ Bj() + eijer Yije = Yij. = &+ &; + By (ful),
Yijk = 1+ Bj(i) + €ijir ﬁ'jk =0+ ﬁj(i) (reduced).

The residual sum of squares are
N2
SSEF = Z Z Z(Yijk - Y,‘j.) , df (SSEF) = n — ab,
i j ok

N2
sser =323 3 (Vi — 7= By
i j ok
df (SSEg) =n—1—a(b-1), and
SSER — SSEp =Y | Y nyja? := SSA.
Thus the F-statistic

p_ SSA/@—1) _ MSA
T MSEp  MSE’

where MSE = MSEF, follows an F-distribution with df (a — 1, n — ab) under Hy.
For the balanced case, the total sum of squares admits the following decomposition

SSTO = SSA + SSB(A) + SSE.

11.6.1 Simultaneous Inference

We now address the issue of constructing simultaneous confidence intervals for § =
LTﬂ and its linear functions, where L is a matrix of order p x m of rank m < p. The
main ingredients are the basic distributional results on the least squares estimate B of
B and 0 of 0, as outlined in this section. Recall that the estimate of the error variance
0?2 in the Gauss-Markov model Y = XB + & is given by MSE = |Y — X/§||2/(n - p).

Thus for a real-valued parameter 6 = L7, (é — 9)/5(@) ~ ty—p where 6 = LT and

s (é) = MSE {LT(X TX)flL} 1. Hence § + th—pa /zs(é) is a confidence interval for 6 with
confidence coefficient 1 — «. Now if @ is vector valued (ie, L is a p x m matrix), then there
are different methods for constructing simultaneous confidence intervals for 6, ..., 0,
the components of #, and for the linear combinations of 4. In the literature, there are
many methods for simultaneous inference, but the discussion below will be for only three



Chapter 11 » Linear Models 337

well-known methods: Bonferroni, Scheffé, and Tukey. Even though we only discuss the
problem of constructing simultaneous confidence intervals, these can also be employed
for simultaneous hypotheses testing.

Bonferroni Method

According to the Bonferroni method, simultaneous confidence intervals with a family
confidence coefficient of at least 1 — « are given by

9]': é] ﬂ:BS(éj), j=1,...,m, withB= tnfp,a/(Zm)r

where s? (éj) is the jth diagonal element of the matrix s> ((3) Even though this method is

valid for any m, its usefulness is questionable when m is not small since the multiplier
In—p,/(2m) associated with the confidence intervals increases as m increases. Mathemati-
cally, the multiplier converges to co as m — oo. In reality, the Bonferroni method is an inef-
ficient method for constructing simultaneous confidence intervals when m is larger than
3 or 4. The Scheffé procedure is more appropriate when m is large. Before describing the
Scheffé method, let us briefly see why the Bonferroni method leads to a simultaneous con-

fidence of at least 1 —a. Let A; denote the random event [9]-: 0; € [éj — Bs (9}), éj + Bs(@})] },
i=1,...,m. NowP(A]C.) — o/mand

P(jﬁAj) —1 —P(ICJA]?) >1 —iP<A]€) =1-a.

It shows that the probability that 6; is inside éj + Bs(éj) forallj=1,...,m,isatleast1 —q,
which justifies the Bonferroni approach. This leads to the following lemma.

Lemma 11.6.1. The confidence intervals éj + Bs(é’}) foro;,j=1,...,m, have a simulta-
neous confidence of at least 1 — «, where B = ty_pa/2m)-

Scheffé Method

This method obtains simultaneous confidence intervals for all linear combinations a9,
a < R™. Note that the least squares estimate of a’ 0 is a’0 = a’ LT 8, where g is the least

squares estimate of g. It is also clear that E aTé] =ale, Var[aTé] = aTCov[é]a, and an
estimate of Var[aTé] is given by s? (aTé> =als? (5) a.

This method states that simultaneous confidence intervals for all linear combinations
of # with an overall confidence level of 1 — « are given by

alo:a’o + Ss(aTé), a cR"™, where S = /mFmn—pa-
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The Scheffé method is closely related to a procedure for obtaining a confidence region for
0, known as the confidence ellipsoid, which is given by

a=foerm: (o-8) [2(5)] " (0-8)/m = Fnnpal,

Note that Py[A] = 1 — « and thus the confidence ellipsoid provides a confidence region for
0 with confidence 1 —«. However, this is not a useful method in practice as it is not possible
to visualize the region when m > 3.

There is a connection between Scheffé’s simultaneous confidence intervals and the
confidence ellipsoid, and it is through the following equality

sup (a’d - a6)"/2(a"d) = (0 -0)" [(8)] " (0 - ),

acR™m

which basically follows from the Cauchy-Schwarz inequality (Section B.1) since

(aTé — aT0)2/32 (aT§> = [aT(é — 0)]2/[aT32 (é)a].
Thus we have

Vo= B[ (0-0) [#(0)] (- 0)/m = o]

=Py [ sup <aT§ — aTo)z/[aTs2 <§)a] < Szi|

| acR™

=Py -(aTé — uTt‘)>2/[aTs2 (é)a] < S%foralla e Rm]
=Py [aTé — Ss(aT5> <alo<a’d + Ss(aTé) foralla e ]Rm].

This justifies the validity of the Scheffé method and we have the following result.

Theorem 11.6.2. Let 0 be a linear function of  of the form L' B where L is a p x m matrix
of rank m < p. Then simultaneous confidence intervals for all linear combinations of 6 with
an overall confidence coefficient of 1 — « are

a’0:a’f + Ss(aT§>, acR™, whereS = /mFmn—pa-

Tukey Method

The basic argument behind Tukey’s method is given below and it will be clear from an
example (given below) how the method can be used. Let W; ~ N(@,-, 12), i=1,...,t be
independent random variables and let S?> be an unbiased estimate of t2 such that

(i) $? is independent of Wy, ..., W, (ii) vSZ/r2 ~ xf.
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Consider the following rv, called the studentized range variable,
Q= {max(Wl —6;) — min(W; — 9,-)}/8.
1 1

The distribution of Q is known as the studentized range distribution (denoted by Q(z, v))
and it is available in statistical packages. Many statistics textbooks also have the table
of this distribution. Tukey simultaneous confidence intervals with family confidence
coefficient 1 — « for all pairwise differences 6; — 6; is

Wi - W] =+ Qt,v,ots’

where Q;,, is the (1 — «)-quantile of the studentized range distribution with degrees of
freedom (¢, v).

Application of Tukey’s Method to One-Factor Balanced ANOVA Models

LetYj = pu+oj+e5j=1,...,ni=1,...,k where {;} are iid N(0,0%) and let u; =
uw+a;,i=1,...,k Suppose that we want to construct simultaneous confidence intervals
for u; — puy = a;j —ay, i # i, with a family confidence coefficient of 1 —«. Take W; = /noY;.,
0; = /noui, S> = MSE, 1> = 6%, t = k,and v = n — k, where n = kny is the total number
of observations. Then simultaneous confidence intervals for 6; — 6y = /no(a; — ay), i # 7,
with family confidence coefficient 1 — « are given by

Vio(Yi. = Yir.) £ Qg pk o MSE.
Consequently, simultaneous confidence intervals for 6; — 6y, i # 7/, are
(Vi — Yp) £ T5(Y;. - Yy),

where T = Qk,n,k,a/\/i.

11.6.2 Prediction Intervals
If we rewrite the Gauss-Markov model as
Yl'=ﬂTxi+8i, i=1,...,n,

where xl.T is the ith row of the design matrix, it is sometimes of interest to predict Yp at a
vector xg of values in RP where Yy = ﬁTxo + e and gy ~ N (O, 02) is independent of the
observation vector Y. If 8 were known, the best predictor of Yy would be 87 x. Usually, g is

A AT A
unknown and the predicted value of Yy is Yo = B8 xo, where B is the least squares estimate
of B. Noting that ¢ is independent of 8 and hence of Yy , we have

E[?O B YO] = E[ﬁTxo —BTxo - 80] =0, and
N T T T T
Var[Yo - YO] =Var|B xo— B x9—eo | =Var| B xo— B xo | + Var[e]

A -1
= ngov[ﬂ]xo +0%= azxg<XTX) X0 + o2,
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Thus an estimate of Var[f/o - Yo] is
. -1
SZ(YO - Y0> = MSE x! (XTX) xq + MSE := s2 (pred).

Since Yy — Yy is normally distributed with mean 0 and variance given above, and is
independent of sz(f’o — Yo), the random variable (170 - Yo) /s(pred) ~ ty_p. Thus a

prediction interval for Yy with confidence coefficient 1 — « is given by Yo+ In—p,as2S(pred).

Simultaneous prediction intervals for m different Y values at k different x vectors can
be constructed using the Bonferroni method by taking the multiplier associated with the
prediction intervals to be equal to B = t;,_po/2m)-

11.7 Analysis of Covariance
As we have discussed in Remark 11.2.2, the ANCOVA model can be written as
Y=XB+Zy+e, 4)

where Y is n x 1 vector of observations, X is a known n x p matrix of rank p, Z is a known
n x g matrix of rank ¢, and & is N,(0, 02I). We further assume that M(X) N M(Z) = {0},
and hence the rank of the augmented matrix [X Z] is p 4+ g. Here  and y are vectors of
unknown parameters to be estimated.

Here we will be concerned with estimation of 8 and y, and inference on them. For
instance, in Example 11.2.7 we may be interested in testing that diet has no effect on the
growth rate (ie, Hp: @1 = --- = o = 0 vs Hy: not all ¢;’s equal 0). We may be interested
in testing that age has no effect on growth (ie, Hy: y» = 0 vs H;: y» # 0). Or we may be
interested in finding out neither initial weight nor age has any effect on the growth rate,
Hy: y1 = v» = 0vs Hy: not both of y; and y» are zero.

Here we discuss the following issues:

(i) estimation of B and y, and their linear functions § = L' and » = MTy,
(ii) testfor Hyp: 0 = 6y vs Hy: 6 # 09, ¢ known, and
(iii) test for Hy: y = 5o vs Hi: n # ng, 7o known.

11.7.1 Estimation of g and y

If W = [XZ] and 6 is the (p+ g)-dim vector obtained by stacking g and y vertically,
T T
then the normal equations would be W' W@ = W'Y. The matrix W/ W = (;(T; )Z(T§>
is not necessarily block diagonal. It would help in obtaining a simple estimate of y if
we could rewrite the model in order to get a block diagonal matrix on the left-hand

side of the normal equations. In order to achieve this, we can argue as follows. Let Qx
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1

be the orthogonal projection on the column space of X (ie, Qx = X(X'X) X' and

Z = (I - Qx)Z). Then we can rewrite the ANCOVA model as
Y=X8+Zy+e,

where § = B+ (X TX)_IX TZy. Since XTZ = 0, the least squares method produces the

normal equations
xTx o0 (3 ) xTy
~T ~ =\|-~7_ ]
0 Z Z]\Y ZY

From the second set of equations we get
7= (2'2) 2.
From the first set of equations we get
xTy = xTx5 = XTX<B + (XTX)_IXTZ)?> —xTx8 +x7z5, and
xTxg =xT(v - zp).

The discussion above leads to the following simple result.
Lemma 11.7.1. The least squares estimates of B and y for the ANCOVA model are

@39 = (Z’Z)_IZTY, ) § = (XTX>_1XT(Y —Zp).

The following lemma states a few basic results on the least squares estimates and its
proof is left to the reader.

Lemma 11.7.2. If B and y are least squares estimates of B and y, respectively, then we
have

() Conf5] =0*(2'Z) ",
(© COU[ A] =o* (XTX)il + (XTX)AXTDX(XTX)A]’ where D = Z(ZTZ)ilZT,
(d) COU[X'é] = 0%(Qx + QxDQx),

(e) cOu[ﬁ,x,é] - —02<ZTZ>71ZTQX.

Remark 11.7.1. Here is an intuitive way to view the matrix Z. Suppose that the columns
of Z are Z,, ..., Z,. Then the ith column vector for the matrix ZisZ ;= (I — QX)Z ;. Now
for any column of Z, say Z;, we can view QxZ; as the vector of fitted values when fitting
the model Z; = X + error, and hence the vector of residuals is (I — QX)Zl. Similar
interpretation holds for all the columns of Z.
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11.7.2 Residual Sum of Squares
The vectors of fitted values and the residuals for the ANCOVA model are
Y=XB+2Zp=Qx(Y-Zp)+2Zp = QxY + Zp,
E=Y-Y=(I-Qx)Y -2Zp.
Since ¢ is orthogonal to any linear combination of X and Z, and hence to Z y, we have
I(I - Qx)Y|* = |2 + Zp|* = |1* + | Z|*, and hence
SSE = [1811* = (I - Qx)YII* - IZp|I*.

Since the rank of the matrix [X Z] is p + g and df (SSE) = n — p — g, an unbiased estimate
of 62 is

MSE = SSE/(n—p — q).

11.7.3 Inference for y and B

We first discuss inference on y and its linear functions.

Inference for y

If we want to estimate y = M'y, where M is a g x s matrix of rank s < g, then the least
squares estimate of 5 is given by 4 = M} , where 7 is the least squares estimate of y.
If e ~ Nu(0,0%I), then i ~ Ns(n,02M" Cov[p]M), where Cov[7] is as in Lemma 11.7.2

T\ —1
and it can be estimated by s?(4) = MSE [M T (Z TZ) M ] We can now easily handle all

the inferential issues regarding » such as construction of confidence intervals and tests of
hypotheses. In particular, suppose we want to test Hyp: n = 5o vs Hi: 5 # 159, where p; is
known. A test statistic is

-1

F=(ii—n0)" [£(@)] (- no)/s
Degrees of freedom associated with this F-test are (s,n — p — q).
Inference for B

If we want to estimate = L’ 8, where Lis a p x r matrix of rank r < p, then its least squares
estimate is given by = LT 8 and the distribution of § is an r-dim normal with mean # and

covariance matrix LTCov[ﬁ]L, where the expression for Cov[ﬁ] is given in Lemma 11.7.2.

An estimate of Cov[é] is

(6) = msE LT[(XTX>_1 + (XTX>_1XTDX<XTX>_1]



Chapter 11 » Linear Models 343

In order to carry out a test Hy: 8 = 6o vs Hy: 0 # 69, 89 known, we can use the following

test statistic
F= (é - 00)T[sz(é)]_1(é - 00)/r.

The degrees of freedom for this F-test are (r,n — p — q).

We should point that we can also carry out tests for 6 or 5 using the alternate expression
for the F-statistic which involves obtaining SSEr and SSEF, the residual sums of squares
for the reduced and full models, as described in Section 11.6.

Example 11.7.1. Consider the following model with one factor and one covariate

Yij=li+05i+VZij+5ijr j=1...,n; i=1,...,k.

In Example 11.4.6, estimates of u, «;, and y are given. Here Z has only one column, QxZ is
the vector of fitted values when fitting the model Z;; = u + o; + error, and Z = (I — QX)Z
is the _Vector of r_esiduals. Hence Zij = Zjj — Z;., where Z; = Z]";l Zij/n;. Similarly, let Yij =
Yij — Y;, where Y;. = Z]";l Yij/n; . Consequently,

(2'2) 2"y - (Z Zzimj) / (Z ZZ?,)

v

=22 Y- (Zzz,-jfnj) /(2223)

Note that df (SSE) = n — k — 1, where n = }_ n; is the total number of observations. So an
estimate of o2 is MSE = SSE/(n — k — 1).

If we want to test Hy: @1 = - - - = o = 0vs Hy: not all &;’s are equal to zero, then we need
to obtain the residual sum of squares SSEf of the reduced model.

The reduced model (under Hy) is Yj; = u + y Z;j + ¢; and

ssEr = inf 3 5[ ¥ e~ 2]
i j

= Z Z[(YU — Y..) — )’*(Zij - Z.)]Z, where
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V—ZZ i~ lJ/ZZ i~ )
df (SSEg) = n — 2.
So the test statistic is

_ (SSEp — SSEF)/(k — 1)
- MSE ’

where MSE = MSEr and the degrees of freedom for this test are (k — 1,n — k — 1).
If we wish to construct a confidence interval for 8 = «; — aj, i # i/, then its estimate is
6 =Y, — Yy — (Zi — Zp.). 1tis left to the reader to verify that

Cov[Y;,7]=0 foranyi=1,...,k.

Fairly simple calculations will show that

E ]zeand

] = oz[l/n,- +1/ny + (Z;. —Z,-/.)Z/SZ], where

82:2225
]

Var

G
[0

Thus an estimate of Var[ ] is given by

s (0) - MSE[l/ni +1/ny + (Zi — Zi/,)z/sz].

Since (é — 0) /s(é) ~ t,—k—1, we can construct a confidence interval for . As a matter of

fact, we can carry out many pairwise comparisons «; — «y, [ # ', using the Bonferroni or
Scheffé methods.

11.7.4 Application of ANCOVA to Missing Data

Suppose that we have the usual linear model Y = X + ¢, where Yisn x 1 and X is n x p.
However, the last r observations on the response (ie, Y values) are missing. Let Y, and Y,
denote the vectors of n—r available observations and the vectors of r missing observations,
respectively. Similarly, let X, and X, denote the submatrices of X corresponding to the
available and missing cases. Note that X, is (n —r) x p and X, is r x p. The basic idea
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here is to formulate an ANCOVA by introducing one unknown parameter for every missing
observation. Consider the ANCOVA model

(5= (e

where I, is the r x r identity matrix, and the r x 1 vector of unknown parameters y is
introduced here for the missing cases. If we carry out a straightforward least squares with

. . 0). .
the design matrix ( * ) in order to estimate the unknown parameters <B ), then the

r Iy
normal equations are

(Xl X. +xI'x, xT ) (ﬂ) _ (XI Y. +XrTYr)

X, . )\3)~ Yr

The two sets of equations (obtainable from the normal equations above) are
XX B+ XX B+XIp =xTy, + X!y,
Xr,é +y =Y.

Premultiply the second equation above by X! and then subtract it from the first equation
to obtain

XzX*ﬁ :X}[Y*, and hence
p=Yr—X/B.

We now have explicit expressions for B and 7. The vectors of fitted values and residuals are
< (X \s (0. X.pB X, ,3”)
Y= B = ,
(Xr>’3 N (1r>y (Xrﬂ + ;?) ( Y
v (Y _ X*Ié _ Y*—X*.é
voi= () (%)= ()
Consequently, the residual sum of squares is given by
SSE = ||V — X:B11°.

Note that this residual sum of squares turns out to be identical to that for the model
(Y* =X+ e*) with only available observations. The degrees of freedom for the SSE is
n—p—r. Thus, the degrees of freedom of the SSE is the same as the one that can be obtained
from an analysis of the available observations assuming that rank(X) = rank(X,).

11.8 Model Selection

In the Gauss-Markov setup one is often concerned with selecting a model from an
appropriate class of candidate models. There are a number of methods for model selection
and properties of these methods have been investigated by many authors, but we focus on
afew of them instead of describing all. Consider the general framework Y = p+¢, where Y
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is the n x 1 response vector, u is the mean vector, and ¢ is the vector of iid errors with mean
0 and variance o2. We assume that there is a class of candidate models {X WBrk=1,...,K }
for describing n, where Xy is a known n x pj matrix of rank py and g, is unknown.

11.8.1 An Overview of Various Model Selection Criteria

For the kth model, if i = X}, is the estimated mean vector, where g is the least squares
estimate of 8, then the residual sum of squares is SSE; = || Y — ji||%. Note that the residual
sum of squares SSE;. = ||Y — X kﬁ «|? decreases for a nested class of models (where for each
k, the kth model is contained in the k + 1-st model) and the minimum of {SSE}} is attained
for the model with the largest number of parameters. Thus one cannot hope to select
an appropriate model by minimizing SSE}. over k. A reasonable measure of how well ji;
estimates p is given by Dy = E[||u — ;lk||2], the expected squared distance between g and
L. Ideally, one would choose the model for which Dy, is the smallest, but Dy, is unknown
as it depends on the unknown populatlon parameters. Therefore, one then first obtains a
good estimate Dy of Dy, then minimizes Dy over k = 1,.. ., K. If the minimum is attained

atk = k, then {X B ic} is considered the most appropriate estimate of the mean vector u.

Akaike’s FPE and Mallows’ criteria seek to obtain an unbiased (or nearly unbiased) estimate
Oka.

Cross-validation (CV) and generalized cross-validation (GCV) seek to estimate the
prediction error of the kth fitted model. In this setup, it is assumed that (Y;,xx;), i =

1,...,n, where the observed values of the covariates Hx,{i} are the rows of Xy, are iid

and (Y41, Xk 1) is an independent copy of (Y, xy,;). If B is the least squares estimate
of By, then the error for predicting Y,;; using the estimated kth model is PE(k) =

AT 2
E[Yn+1 - B kxk'nﬂ] . Both CV and GCV obtain nearly unbiased estimators of this pre-

diction error. Thus one chooses the model for which ISTE(k) (as given by the CV or GCV
criterion) is the smallest.

Both Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are
likelihood-based methods, which seek to model the joint pdf f of ¥ = (V1,...,Y,)T.
Suppose there is a class of candidate probability models {fi(,0x): k=1,...,K} for f
under consideration. In the case of linear models, f; may be the pdf of Nj(XBy, o%I)

and 0 = <gk>. As in the case of residual sum of squares, —2 logf(Y, ék), where 6. is
k

the MLE for 0, will always decrease if we take a sequence of nested models and thus it is
not possible to select an appropriate model by trying to minimize —2 log f (Y, ) k) over k,
since the minimum is always attained at the model with the largest number of parameters.
A true measure of how good the kth fitted model is can be judged by how well it performs
for a dataset that is independent of the data Y and this is what is done in the arguments
involving the AIC. The AIC seeks to obtain an estimate of 2 times the Kullback-Leibler
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divergence KL(k) = E[log f (17) / fk(ff, ) k)], where Y has the same distribution as Y, but

is independent of it. The model corresponding to the smallest value of AIC is considered
the most appropriate one.

As the name suggests, the BIC is based on Bayesian considerations. In this setting,
there is an “index of model” variable J which takes values in {1, ..., K} so that the prior
probability of choosing model k is r (ie, P[J = k] = mx). Given J = k, the pdf of Y is
fi(-, 0x), where 6 has a prior gi. The goal to find the model for which the conditional prob-
ability P[J = k|Y] is maximized or —2log P[J = k|Y| is minimized. Since these conditional
probabilities are unknown, the BIC obtains an estimate of —2log P[J = k|Y] for each k.

For the kth linear model, let SSE;, = ||Y — Xkﬁkll2 and 6 = SSEi/n, where ﬁk is the
least squares estimate of 8. Under normality (ie, & ~ N,(0, 0°I)), the MLE of 62 is &]f. The
various model selection criteria mentioned above are

n+ pk
FPE(k) = - — or SSEe

MAL(k) = SSEy. + 2py62,
AIC(k) = nlog&,f + 2pp,
BIC(k) = nlog&,f + log(n)py,
—_~ n AT 2
PE(CU)(IC) =n! Z(Yl — ﬂky(_i)xk',) , and
i=1
BB (k) = ™' SSE /(1 - pi/n)’.

For Mallows’ criterion, it is assumed that 2 is a consistent estimate of ¢2. In the

cross-validation criterion, it is understood that, for the kth model, the rows of X

are {x,{i, i=1, ,n} and ﬁk,(_i) is the least squares estimate of 8; based on n — 1

observations, deleting (V;, xx;).

Remark 11.8.1. Both AIC and BIC have forms which are more general than what are
written above. More general versions are given below and they are described in detail. It
can be shown that FPE, Mallows’, CV, GCV, and AIC criteria are equivalent in an asymptotic
sense as n — oo. The BIC is different from the others as its use may lead to models
with fewer parameters. If the correct model is in the candidate class, then mathematical
arguments, under appropriate conditions, show that BIC selects the correct model with
probability converging to 1. The other model selection criteria given above tend to choose
the “best” predictive model. It is important to keep in mind that the correct model (if it
exists) is not necessarily the best predictive model.

11.8.2 Akaike's FPE and Mallows’ Criteria

Suppose B & is the least squares estimate of B and fi;, = X B - A measure of divergence
between x and i is given by Dy = E[H[L — ﬁ,k||2], and the goal is to obtain a reasonable
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estimate of Dy. Now we can write fi; = Q;Y, where Q; = Xy (X} X k)‘lx,{ is the projection
on the column space of X and rank(Qy.) = trace(Qy) = py. Moreover,

=R =n— QY = (I - Q) — Qre = Qru — Qe,

where Q = I — Q. Since Qi and Qe are orthogonal, [|u — fix[|* = | Qg + | Qcel)* and
taking expectation on both sides, we have

Dy = Bl — gl = 1Qel? + pro.
Let us now exa{nine the residual sum of squares SSEj. = ||Y — fi;||%>. We can write Y — ji; =
Q.Y = Q,.1 + Qie. Hence
SSEx = 1@l + 1Qgel? +2(Qun) ' (Qpe), and
E[SSE] = 1Qerl® + (n = pr)o?,
This shows that
Dy = E[SSE] — (n — 2py)o? = E[SSEx] + 2po? — no?.

The last term no? does not depend on k and hence there is no need to estimate it. So if we
have an estimate 613 of o2, then we can get a criterion

Dy = SSE + 2p6% — no”.

The criteria given in Section 11.8.1 ignore the no? term. How one estimates o> depends on
the type of problem at hand. If 2 is estimated by MSE; = SSE;/ (n — pk), then one ends up
with Akaike’s FPE criterion given above. Another possibility is to take a large enough model
(maybe the largest model in the candidate class) so that the model bias is low and use the
mean square error of that model to estimate o2. In such a case, the estimate of 02 does not
depend on k and the resulting Dy is a special case of Mallows’ criterion.

11.8.3 AlC and BIC

Let f be the joint pdf of Y = (Y7,. ., Y)T and the goal is to find a suitable approx-
imation for f among a class of candidate probability models. Let the kth model be
{fe(y, 0k), 0k € 2}, k = 1,..., K, where £2 is a nonempty open subset of RPx. If 0, is the
MLE of 8}, for the kth model, then the AIC and BIC are

AIC(’C) =-2 lngk(Y, ék) + Zpk,
BIC(k) = —210gfk<Y, ék> + log(n)py.-

If a criterion is minimized at k = k, then [ is declared to be the most appropriate model

according to that criterion. Note that in both the criteria, —21log fk<Y, ) k) are penalized

by a constant times the number of parameters estimated. However, the BIC has a higher
penalty than the AIC and thus it may select a model with fewer parameters than the AIC.
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In the case of linear models with normal errors, if one has a sequence of models
{X B Br € Rpk}, then there are simple expressions for these criteria. Let 8 = (5 k) be
k

the vector of parameters for the kth model, then the MLE are
3 Ty \ 'xTy 22 A2
Be=(XIxy) XL, &2 =Y - XiBel?/n,

and thus we have

fe(¥.6x) = ( \/%01) exp[ ¥ - Xyl / (267) |

n
1
=|——] exp|—-n/2|, and
<’~/27“A7k) p[—n/2]
—210gfk<Y, ék) = nlog&lg + n+ nlog(2n).

The last two terms in the last expression do not involve k, and after ignoring them we
arrive at

AIC(k) = nlog&,? +2pr and BIC(k) = nlog&,? + log(n)py.

Theoretical arguments used in deriving these criteria are different. The arguments given
here are heuristic, but they can be made rigorous at the expense of fairly cuambersome
calculations. The AIC is obtained by trying to approximate a predictive likelihood, whereas
the derivation of the BIC involves approximating the probability of choosing a model given
thedata Y.

Mathematical Settings
I. Suppose ¥ has the same distribution as ¥ but is independent of it. AIC is obtained by

an approximation of E[—Z logf (l?, 0 k)], where 6. is the MLE based on the available
data.

Il. Suppose J is a discrete rv taking values 1, .. ., K, and P[] = k] = 1. Also assume that
given J = k, the pdf of the model is f(-, %), where 6 has a prior g, (-). Then the goal
is to find the value of k which maximizes P[J = k|Y ] or minimizes —2log P[] = k|Y].
The BIC is obtained by finding an approximation to —2log P[J = k|Y]. It turns
out that as long as the priors {7} and { gk(~)} are reasonably “flat” on the parameter
spaces (ie, they are not degenerate or close to being degenerate), the dominant
terms in the asymptotic expansion of —2log P[J = k|Y] do not depend on the priors.

Heuristic Derivation of AIC

Let us assume that there exists a unique 64, € 2, when E[logf(Y,6y)] is maximized over
0 € 21, where the expectation is over the true pdf f of Y. Let f; be the pdf of Y; and fi. ; (-, 0 )
be the pdf of Y; under the kth model and denote
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&,i(-0k) = —10gfii(- 0k), & (v 0x) = Z%‘kz Yir0),
. 32
Eri(0k) = 905 i1, B 08) = TR ———&i(- 0k),

AN Zéklyp"k and £(y,0;) = Zékzyn(’k

In these notations, f(y, 0) = exp[—&x (¥, 0x)]. Let
Ii(f) = E{”_l > k(Y Ox0)d i (Vi BkO)T:|’ Te(f) = E[n7"Ek(Y,00) ]
i=1

where the expectations are taken over the true pdf f(-) of ¥. Suppose that 0 is the MLE of
0 based on the data Y, Y is an independent copy of Y, and the following hold (heuristic
justifications given below)

E[ec(V,0c) ] = B[e(¥. i) | + (1/2)race(Te(r) 1)) 11 + 01, (5a)
B[ (Y. 6x)] = E[ec(¥.0k) | - (1/2)trace(Te() ™ 1e(F) ) 11 + 0(1)1. (5b)

Then a reasonable estimate of E[Ek(f/, 6 k)] is given by

6 (V) + mace(Te(1) (1))

Since trace(i k(f)&I k(f)) is unknown, it needs to be estimated. If it is assumed that
fie(- 0xo) is reasonably close to f, then we may replace ik(f) and I(f) by fk(fk(-,ﬂko))

and I(fi(- 0x0)), respectively. Nothing that I;(fi(- 0x0)) = It(fi( 0x0)) (using Egs. (32)
and (3b) in Section 7.1, and & is the negative of the log-likelihood), we may estimate

tmce(fk(f)fllk(f)) by

tmce<ik(fk("0k0))_11k(fk("0k0))> = trace(I) = py.

Thus an estimate of E[Ek(f/, ] k)] is given by

Sk(Y» ék) +pr= _Ingk(Y’ ék) + Pk

The AIC is two times the quantity given above.
What remains to be shown is that the approximate expansions given in Egs. (5a) and

(5b) are valid. The MLE ék satisfies the likelihood equation ék<Y, ék> = 0. Since 6y

maximizes E[logf(Y,0)], E [“;‘ w(Y,0 ko)] = 0. For notational convenience, we denote Iy (f)
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and I, (f) by I and I.. Arguments used in obtaining the asymptotic properties of the MLE
(Chapter 7) can be employed to conclude the following

1z = P
n 1Ek-(Yy0k0) —I; -0,
_ —-1/2;. D
Zy =120 PE(Y,000) = Z) ~ Np,(0,1), and

B — 0x0 = —E1 (Y, 0k0) "€ (Y, 00)[1 + 0p(D)]

_1/25-1.1/2
= V2 1?2, 1+ 0p()].

Now
anE sk(?,oko) + (8 —0k0)Ték(fr,ok0)
+(1/2) (B - 0k0)T'g’k(f/, 6k0) (Ok — 810 [1 + 0p(D].
Since Y is independent of ¥ and hence of 6,
E[gk(f/,oko)] = E[£:(Y,040)], E[ék(?,oko)] - E[é(y,oko)] —0.
Noting that n—1& k(ff, 0 ko) — 1, 5 0, we have

(ék - 0ko) Ték(f’, 9ko) (ék - 0ko)

~—1 1 ~ ~—1
=20 LT [ 6 (Y 000) [T 122 i1+ 0p )]

=1
= Z;Z,klllc/zlk Ii/zzn,k[l +op(1)].
Since Zj,,k z Zy and E[Zkzlz] = I, ignoring the op(1) term we have

E[(ék - 9k0)T§k(1?, 010) (6 - ako)] = B[z} 1/° T 122, 0+ o))
= trace(I}/ hor/ 2E[Zez]]) 1+ 001
- tmce(i,;llk>[1 +o(1)], and
E[ec(V,61) | = Elee(v,00)] + (1/2)tmce<i;11k)[1 + o).

This shows that Eq. (5a) holds. The above argument assumes that the op(1) term can be
turned into an o(1) term when taking the expectation. Such a step requires the concept of
uniform integrability which we ignore here for the sake of simplicity of discussion.

In order to verify Eq. (5b), expand & (Y, 6 k) about £ (Y, 80) to get

6c(Y.8k) = (Y, 6x0) + (8 — 6x0) e

+ (1/2)(6 - 0k0)Ték(Yr0k0)(ék —0x0)[1 + 0p(1)].
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Since 0 — 0,9 = —Ek(Y, 0k0)‘1ék(Y, 010)[1 + op(1)], we have
. . T. .
Ek(Yr"k) =& (Y, 0k0) — (1/2) (9k - 9ko> Ek(Y’okO)(ok - 9ko)[1 +op()].

Using the same argument as in the expansion of & (f/, ] k)» we get

E[gk(Y, ék)] = E[£(Y,05)] — (1/2)rmce(i,§11k)[1 +o(D)].

Heuristic Derivation of BIC
Recall that in the Bayesian setting, the goal is to find k for which P[J = k|Y] is maximized
where the discrete variable J can take values 1, . .., K with probabilities r1, ..., 7x. Now

PJ=kY=y]= ff?kfk(y’ol})z,k)(ak)nk dak’

where f(-) is the marginal pdf of Y. Since the denominator of f(y) does not depend on k,
we may simply ignore it as it plays no role in optimization of P[J = k|Y] over k. We outline
the basic arguments in approximating the integral in the numerator when gy is taken as a
noninformative prior (ie, gk(e) = 1). When £2;, is not compact, the use of such a prior can
be justified by taking a uniform prior on a compact region Ay ; C §2y and letting Ay ; — 2
asj — oo in an appropriate manner.

Let &, &k etc., be the same as in the derivation of the AIC. Then fi(Y,0;) =

exp[—&x(Y,0x)]. The MLE 0 of 0 is a solution to the equation (Y, 0;) = 0 and assume

2 - P = .o . . A
that n‘lgk(Y,ek) — I, a positive definite matrix. Reexpress 0} as ;. + n~'/?u where

U= ﬁ(é’k - ék) and hence

/ fi(Y,0p) dby. = n_pk/Z/ fk(Y,ék + n_1/2u> du
k972 'Ql/c

=nP/? /9,’6 exp[—ék(Y,ék + n_1/2u>] du,

where 2} = {ﬁ(z -0 k): ze .Qk}. If it can be shown that (heuristic details given below)

/gz’ exp[—ék(Y, ék + rfl/zu)] du = exp[—gk(Y, 6A’k)](«/ﬂ>pk ik _1/2[1 + 0p(1)],

k

then we have

/Qkfk(y,ak) d8; = n~Pk/? exp|:—§k<Y, ék>]<«/27)p")ik‘_1/2[1 +op()].
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Since fi(Y,0;) = exp[—§k<Y, ék)], keeping only the dominant terms, —2 times the
logarithm of [ 2 fi(Y,0) db is approximately equal to

2$k<Y, ék) +log(npy = —Zlogfk(Y,5k> + log(n)py.,
which is the BIC.

Let us now outline the heuristic arguments involved in the approximation of the
integral fg;c exp[—$k<Y, 0 + nfl/zu)]du. Assuming that § is in a compact set with
probability converging to 1, £; — RPk as n — oo. Since 0 is the MLE, we have
ék<Y, ék) = 0. Expanding Ek(Y, 0 + n*1/2u> about ék(Y, ék), we have (under reasonable
regularity conditions on f;)

gk(Y, 0+ n_l/zu) - gk(Y, ék) + (172)u Teu[1 + 0p(1)].
Thus
/Q,’C exp[—$k<Y, ék + n_l/zu)] du
- /912 exp[ & (¥, 6) — (1/2)u" Tu(1 + 0p(1)) | du
= exp[—gk(Y, ék)] /Q, exp[—(l/Z)uTiku(l + Op(l))] du
k

= exp| & (¥, 1) | /Rpk exp| — (1/2)u" Tyu] du[1 + 0p(1)].

This kind of approximation of an integral is known as the Laplace approximation. We have
omitted a lot of details in the above approximation including how the integral over £,
can be approximated by the integral over RP¢, how the op(1) terms can be brought out of
the exponential term, etc. However, all the calculations can be justified using appropriate
mathematical conditions.

The integrand in the last integral is proportional to the pdf of a py -dim normal random
vector with mean 0 and covariance matrix I ~!. Thus

./Rk eXP[_(l/Z)quku] du — (\/E)pk

—-1/2
|

Thus an approximation to [, fi(Y,6x) dfy is given by

oo -a(160)) (V2"

-1/2
k .

11.8.4 Cross-Validation and Generalized Cross-Validation

Recall that the kth model under consideration is Y = X8, + &, where Xj is an n x py
matrix of rank py, and assume that the rows of X are x] ., i = 1,...,n, and that (Y;, xi;),
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i=1,...,n areiid. If (Yu41, Xk ,41) is a future copy of (V;, xy;), which is independent of
the data {(Y;, %), i = 1,..., n}, then the mean square error in predicting Y, by ﬁ,{xkynﬂ
is PE(k) = E[Yn+1 — ﬁ,{xk'nﬂ]z, where g, = (X,{Xk)_lXIZY is the least squares estimate
of B.. Cross-validation method seeks to estimate this prediction error PE(k). The method

is as follows. Obtain the least squares estimate f k,(~i) of B; based on n — 1 observations
deleting the ith case. Then an estimate of the prediction error is given by

— & AT 2
PE (k) = n IZ<YZ —ﬁk,(_i)xk,i> .
iz1

As will be shown below, there is no need to calculate all the n different estimates of ;.. Let
Q. = X; (X,{X k)_lX,{ be the projection matrix which projects on the columns of Xj. . Let

A AT A
Y; = Brx;and §; = Y; — Y;. It will be shown that
R R . S
Br,(—i) = Bk — (1 — ar,ii) <X]€Xk> X, i€ (6a)
AT AT
Yi — Bk, (—iy¥k,i = (Yz - ﬂkxk,i>/(1 — dpii)> (6b)

where g ;; is the ith diagonal element of Q. So PE(Y) can be written as
Brlcv) -1 T \° 2
PE™" (k) =n Z(Yz - kai) /(1= i)™
i

If any or some of the values of gy ;; is/are close to 1, then the cross-validated estimate of
PE(k) may become unstable. For this reason, it has been proposed to replace gy ;; by its
average

ax = ) qk,ii/n = trace(Qx)/n = pg/n.

1

This leads to what is known as the generalized cross-validation estimate
57(gev) 1 a7\ 2
PE¥ (k) =n Z(Y, —ﬂkxi> /(1= pi/n)”.
i

It should be noted that the expression of the PE (cv) (k) is almost proportional to Akaike’
FPE criterion. More precisely,

PES (k) = = [1 4 O(pi/m)? | FPEL,

assuming that py/n — 0 as n — oo.

We now verify the identities given in Egs. (6a) and (6b). For notational convenience we
suppress k in the expressions for Xy, By, X, etc. Let X(_;) be the matrix obtained from
X by deleting its ith row. Thus X_; has n — 1 rows. Similarly let Y_; be the vector with
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n — 1 rows after deleting the ith row from Y. Note that the normal equations for the least
squares estimate of B after deleting the ith observation (Y}, x;) is given by the solution of

T T .
X(T_l.)X(_,-) =XTX - xx! and X(T_i) Yy =X"Y-x;Y;
using the Sherman-Morrison formula (Section B.1), and denoting (X TX)_1 by D, we have
-1
(XCoXea) = ("X —xxf)
_ _ -1
= (x"x) g [1 —x (x"x) lx,-] (x"x) 1xlx (x"x) !

=(XTX)_1+(1—q,-,-)‘1(XTX) LxT (x"x) '

=D + (1 — qii)_leixiTD,

-1

where the ith diagonal element of Q is g;; = x7 (X”X) ' x; = x/ Dx;. Thus
Ben = (XL oXin) XY
=D+ (1- i)' Dxix] D|[X"Y - x,7;]
=[1+ (1~ qa) ' Dxix] |[ DX"Y - Dx;Y;
=[1+ (1~ qa) ' Dxix] ][ - Dx;}]
=B —Dx;V;+ (1—q;)” Dxi[xiTB - xiTDxiY,-]
=B - Dx;Y; + (1 - qa) ' Dxi[ ¥ — 4]
~hDx[r— (1 a (-]
. Dxl[(l —gii)” I(Yi _ Yl)] =B - (1-q;) ' Dx;é;.

This show that equality (6a) holds. In order to verify Eq. (6b), note that

-1 A
ﬂ( )*i = - dij) x'TDxiSi

=
=

1- 5/1'1') q;ié;, and

—1.

B
AT P 1.
Yi—B(pxi= ( +(1—ai) " quts
=8+ (1—au) it = (1 —ai) 4
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11.9 Some Alternate Methods for Regression

In a regression setting with p — 1 independent variables, in some cases, Y is related to
only k < p — 1 independent variables, and thus it makes sense to remove some of the
independent variables from the model. Stepwise regression, all subsets regression, or a
penalty method such as lasso may be used for this purpose. In some cases, another situa-
tion may be true where Y is related to all the independent variables and the independent
variables are well correlated among themselves. In such cases, it may be reasonable to
regress Y on a few (say k < p — 1) appropriately created linear combinations of the in-
dependent variables. Partial least squares (PLS) or principal components regression (PCR)
may be used for this purpose. The phenomenon of all or some of the independent vari-
ables being well-correlated among themselves is called multicollinearity. Another method
that has been proposed in the literature for multicollinear cases is known as the ridge
regression.

Theoretical properties of some of the procedures described above are either nontrivial
or not well-understood. For this reason, only outlines of these procedures will be given. It
is also important to point out there are other regression procedures in addition to the ones
mentioned above.

For all the methods to be discussed here, we assume the Gauss-Markov setup given in
Eq. (1) is true with ¢ as the vector of iid variables with mean 0 and variance o2, and the goal
is to estimate the mean vector X on the basis of the observation vector Y. Even though
the typical assumption is that {g;} are iid, in some cases, such as stepwise regression, the
typical assumption is & ~ N, (0, o).

11.9.1 All Subsets Regression

All subsets regression consists of fitting all possible submodels and choosing an appropri-
ate (sub)model using a criterion such as AIC, Mallows’ or BIC (ie, choose the model with
the smallest value of the criterion). If there are p — 1 independent variables then there are
2P~1 possible submodels. When p is not small, then the number of submodels 2P~ is quite
large and, in such cases, carrying out all subsets regression may not be feasible. For this
reason, one may use a computationally feasible method such as stepwise regression which
is described below.

11.9.2 Stepwise Regression

Let us first discuss the simplest versions of this method: forward selection and backward
elimination.

In the forward selection method, one builds up a model beginning with no independent
variable and adding one variable at a time till it is not possible to add any more. It is typical
to start with the model Y = By + ¢ and then try each of the p — 1 regression models,
Y=8+BXj+tej=1...,p—1 When comparing the models Y = By + ¢ (reduced)
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to Y = o + BjX; + ¢ (full), one can test Hp: p; = 0 against H;: f; # 0. This leads to an
F-statistic and, since there are p—1 models, there are p—1 such F-values. The variable with
the largest F-value is the best candidate for inclusion. If this largest F-statistic is larger than
a preselected threshold (called F-to-enter), then the corresponding independent variable
is entered in the model. If the value of the largest F-statistic is smaller than the threshold,
then no variable can be added and it is declared that Y = gy + ¢ is the most appropriate
model.

Suppose that variable X»> has been selected in step 1, then one considers p — 2 models,
Y = Bo+ X2+ BjXj+e,1 < j#2 < p—1.Now there are p — 2 testing problems Hy: g; = 0
against H: Bj # 0,1 < j # 2 < p — 1. Thus there are p — 2 F-values and the variable with
the largest F-value is entered if it is larger than the threshold. Otherwise Y = 8y + f2Xo + ¢
is considered the most appropriate model. In this manner, independent variables can be
added one at a time till it is not possible to enter any more.

Remark 11.9.1. In each step, instead of using the F-values, one may use p-values and
enter a variable if the corresponding p-value is the smallest, and it is smaller than a
threshold p-value (called p-to-enter).

The selected model depends on the threshold F-value (often taken to be equal to 3.5
or 4) or the threshold p-value (often taken to be equal to 0.05 or 0.10). Changing the
threshold value may lead to a different model. For this reason, sometimes it is considered
appropriate to look at the best candidate’s AIC or BIC value at each step. The model with
the smallest value AIC or BIC is considered the most appropriate.

In the backward elimination method, one starts with the full model and then deletes
variables one at a time using the F-values and a threshold called F-to-delete till no variable
can be dropped. As in the forward selection method, one may use p-values instead of F-
values or use a criterion such as AIC to carry out this procedure.

Stepwise regression can be done in a forward or in a backward manner. In the forward
stepwise regression, variables are added as in the forward stepwise regression. However,
in each step it also has the option of deleting a variable that is already in the model.
So forward stepwise regression is basically a forward selection method which includes
a backward elimination step. For this reason, a forward stepwise method needs two
threshold values: one for forward selection and the other for backward elimination.

Similarly, backward stepwise regression is basically a backward elimination method
with the option of reentering a variable that is outside the model. As in the forward
stepwise method, it needs two threshold values.

11.9.3 Penalty Methods

Penalty-based approaches to regression seek to minimize the least squares criterion
G(b) = ||Y — Xb||?> with restrictions on b. This can usually be achieved by minimizing G(b)
plus a penalty term as given below

G(b, ) = G(b) + Ap(b),
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where the penalty parameter A is nonnegative and the penalty function p(b) > 0 is equal to
0 at b = 0. There are many possible choices for the penalty function, but we will mention
only two: p(b) = > ¢;|bj| and p(b) = Y c]?b]?, where c]? is the jth diagonal element of X’ X.
For the first case, also known as lasso, there is no explicit expression for the minimizer.
However, for the second case, known as the ridge regression, there is an explicit expression

for the minimizer (1) = (X X + /\C)_IX Ty, where C is a diagonal matrix with diagonal

elements [cjz ] When the penalty term A = 0, both methods are the same as the ordinary

least squares. In general, the penalty parameter can be chosen by cross-validation or its
modified versions.

Ridge regression works well in estimating the mean response when the independent
variables are well correlated among themselves. However, if the independent variables are
mutually uncorrelated, its performance may not be satisfactory. With appropriate choice
of A and under regularity conditions, lasso can recover the regression model when some of
the beta parameters are nonzero and the rest are zeros. However, the ridge estimates will
typically result in nonzero estimates for all the beta parameters.

The penalty methods mentioned above can be motivated by a Bayesian consideration
where the true parameters are assumed to randomly distributed. If all the variables have
been standardized, then there is no need for an intercept term and the penalty term can
be taken to be equal to A ) ﬁjz = A||B||?. If the true regression coefficients { /3,-} are assumed

to be iid N (0, ‘Ifz), then ignoring the terms that do not depend on Y or 8, —2 times the
logarithm of the joint pdf of ¥ and B is

1Y = XBI2/o? + 1BI/72 = o2 [I1Y —XBIZ + 21BI2], % =0?/c?.

Minimizing the above with respect to B leads to the ridge estimate of g. If instead of
assuming normal distribution of {8}, one assumes {;} to be iid double exponential with
the pdf (7)1 exp[—|u|/r], —00 < U < 00, T > 0, then the argument above leads to a lasso
estimate of 8.

It can be shown that there exists » > 0 such that the ridge estimate X /§ (A) is a superior
estimate of p = E[Y] = X than the least squares estimate X ﬁ of . We write down the
result for the case when all the variables have been standardized so that the penalty term
is A|| 8|2 and the ridge estimate of 8 is (1) = (XTX + AI)_IXTY.

Lemma 11.9.1. Let us assume that all the variables have been standardized in a regres-
sion model and the ridge estimate of B is (1) = (X'X + /\I)le Ty, » > 0. Let D(A) =

[||X/§ (A) —Xﬂ||2] be the expected value of the squared distance between Xﬁ (A) and XB.

There exists .. > 0 such that D().) < D(0), ie, there exists a rldge estimate X /3 (A), A > 0, which
is a superior estimate of X8 than the least squares estimate X B = XB0).
Proof of Lemma 11.9.1. Clearly,

B = E[ﬁ(k)] - (XTX + u)_lXTXﬁ . )\(XTX+ u>_lﬂ.
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Hence, writing A, = X TX + I for notational convenience, we have
XB() — XB =XA0) — XB() + XBG) — XB
- X(XTX n u)flee - AX(XTX + )\I)il/}
=XA; 'XTe —2XA !B, and
DG = E[IX() — X812 | = E[1X4; ' X e)1?] + 32 )x4; 1 112
:= Dy (A) + Dp(2).

We may regard Dy (1) and Dg()) as the variance and the bias-squared terms. Since Cov|e] =
o2, we have

Dy () = E[ XA X" &|2] = trace(Xa; ' x" Covie1xa; !XT
=o? trace(M;lXTM;lXT>
2
=o? tmce(XTXA;lXTXA;l> =o? tmce([XTXA;l] >
Let the spectral decomposition of X7 X be Z;’Zl )LjujujT with 1 > .- > 1), and denote
Yj = ujTﬂ. Then

1

-1 _ X T
A= Z(A] +A) uju;
-1
Tya—1 T
X XA, = ij(kj +A) uju;, and
-2
—15T 1 T
ST =304 0) Twud

Therefore

Dy(\) = o2 tmce([XTXA;l]2> = Z[Aj/()»j + A)]Z,
D) = 22| XA; ' )| = 22 ij(xj n A)_zij.

It is fairly easy to see that Dy (1) is a decreasing function of &, but Dp(%) is increasing in A.
As a matter of fact

Dy () = —202 Y22 (Aj n x) - DANESIS I (Aj + x)_sy]?,
D'(\) = Dy () + D)
— 202 ZA]?(AJ- + ,\)_3 +20 Y477 (Aj + A)_3yj2, and
D'(0) = —20? ijfl

Thus D(1) is decreasing in a neighborhood of 0 and hence D(%) < D(0) for some A > 0. O
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11.9.4 Partial Least Squares and Principal Components Regression

The main idea behind PCR and PLS is to create a design matrix Z from X whose columns
are mutually orthogonal. Thus if an n x p matrix Z = [Xul, .. ,Xup] is created so that

T
22 = (Xuj) (X)) = uf X Xup =0, j#k

then Z'Z is a diagonal matrix. If we write U = [u1,...,up], then XB = XUU ' = Za,
with « = U~!'B. So we have a new Gauss-Markov model Y = Za + ¢ and the least
squares estimate of o is & = (ZTZ)AZTY, and &; = Z].TY/Z].TZ]- is the estimate of «;,
the jth component of «. It is important to note that in this formulation, estimate of «;
depends only on Z; and Y, Cov[&] = UZ(ZTZ)A, and whenever j # k, Cov[aj,ar] = 0
since Z'Z is a diagonal matrix. Model selection now involves choosing a few of the newly
created independent variables Z1, ..., Z, and this can be carried out by using stepwise
regression with an appropriate model selection criterion described in the last section.
Since B = Ua, once we have an estimate & of a (and this includes the case when some
«; are set be zero if we decide to delete the corresponding Z; ’s), we can get the estimate of
Basp =Ua = Y aju;.

PCR and PLS differ in the way the vectors u, ..., u, are created or the new mutually
orthogonal vectors Z, ..., Z, are created. In PCR, {u]} are taken to be the orthonormal
eigenvectors obtained from the spectral decomposition of X TX Thusif A, ..., Ap are the
eigenvalues of X TX with the corresponding orthonormal eigenvectors uy, ..., up, then Z i
is taken to be Z; = Xu;, j = 1, ..., p, then clearly {Z;} are mutually orthogonal.

In the presence of multicollinearity, it is of interest to create the mutually uncorrelated
variables economically so that a linear combination of a few of them can model the
response variable Y well. It is thus desirable to have a method which creates the vectors
{u;} using both Y and X. PCR uses only information from X, whereas PLS uses both X and
Y. It should be pointed out that PLS is basically what is known as the Conjugate Gradient
Method in Numerical Analysis. It is an iterative method for obtaining the minimum of a
quadratic form B7SB — 2b” B over B € R?, where Sis a p x p positive definite matrix.

Remark 11.9.2. Tt is generally advisable to standardize all the variables for the PCR and
the PLS so that there is no need to include an intercept term in the model and all the
variables are on the same scale.

There are many equivalent ways of describing PLS, including a version with statistical
interpretation. This procedure generates u;, uy, ... in a recursive manner along with the
estimated coefficients @1, &2, ... and the corresponding estimates of 8. Here is a version
which follows the numerical analyst’s description. For notational convenience, let § =
n XX, b = n~'X"Y so that the normal equations can be written as S8 = b. The
following iterative scheme describes how the columns of the matrix Z, and &3, &, . . .etc.,
are generated recursively.

A(1
Step 1. Take u; = b. Then Z1 = Xuy, 6 = Z1Y/ZFZy = ulbjulSuy, and f*° = a1,
A(1
Denote the remainder b — Sﬂ( ) by ry.
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We will describe how to carry out this recursion. Suppose that uy, . .., #; has been
. . . ~(1) ~(k .
generated with the corresponding estimates 8, ..., ﬂ( ) and the remainders
~(1) ~(k
rn=b-S8B8 ,....,rr=b— Sﬂ( ), and we now want to create uy. .

Step k + 1. Let uy, = ri — cxuy, where ¢y is such that Zy, ; = Xuy.,; is orthogonal to
Z). = Xuy.. This leads to ¢ = u] Sri./ul Suy. So we have

Uy, =T — Cly, Zi 1 = Xuy withcp = u,{Sr,dr,{Srk,
~ T T T T
ar1 =2y 1Y/ Z 1 Zy = w b/ug Sup, and
A1) . . 2k |~
B = QU+ Qe+ Gy Uiy = B+ OBy

A (k+1
and the remainderisry,, = b — Xﬂ( " ).

Remark 11.9.3.

(a) It can be shown that for the procedure described above Z; = Xu;,Z> = Xup, . .. are
orthogonal.
(b) If Sis a diagonal matrix, the iteration stops after the first iteration. If X is n x p, then

the procedure stops after p iterations and ﬁ(p)

of B.

(c) How do we decide when to stop the iterations? One may use a criterion such as AIC or
cross-validation and terminate the iteration when the value of the AIC stops
decreasing.

equals the least squares estimate S

11.10 Random- and Mixed-Effects Models

Random-effects models come up in many situations of practical interest. Consider a
simple example. Suppose in a state, it is desired to know the average performance of
children in some standardized mathematics test. Since the state has many schools and
the student performance may vary from school to school, it may be desirable to choose
k schools at random and, for each selected school, the standardized test is given to some
randomly selected children. Thus if Yj; is the performance of the jth child in the ith school,
one may write a one-factor ANOVA model as Yj; = i +«; + €55, where p is the overall mean,
«;is the school effect, and ¢;; is the random error. Since the schools are randomly selected it
is reasonable to assume that, for this one-factor model, {«;} are iid N (0, 012). This is perhaps
the simplest of all random-effect models.
Example 11.10.1 (One random factor). Suppose we have observations {Yij j=1,...,

n,i=1,..., k} where the random factor has k levels and the model is

Yl'jsz-i-Oti—F&‘ij, j=1,...,n; i=1,...,k

where p is a constant,
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(i) {e;} areiid N(0, 0?), {a;} are iid N(0,0%), and
(ii) {o;} and {¢;;} are mutually independent.

Thus, we have
E[Y,J] _ Var[Y,-j] = ol 402,

COV[Yij, Yt]’] = 012, j?éj/, and

COV[Yij, Yl'/j/] =0, i ;é i

Now the variability of Yj; has two components: variability among schools and the error
variance. For this reason, o and o? are also called the components of variance of Y.
The observations {Yil, ces Ymi} in a particular school are correlated, unlike in the fixed
factor case. The correlation between Yj; and Yjy, j # j', which equals o2/(0? + o?),is called
the intraclass correlation. The goal is often to estimate x and the intraclass correlation
coefficient.

Example 11.10.2 (Two Random Factors). Suppose we have observations {Yl-]-k: k=1,...,
nijpj=1,..., bi=1,, a} where factor A has a levels, factor B has b levels, and both factors
are random. Thus it can be written as

Yije = n+ai+ Bj+ (@B);; + eije

where it is assumed that . is a constant; {«;} are iid N(0, o); {B;} are iid N(0, 03); [(aﬁ)ij}

are iid N(0,03); {eijic} are iid N(0,02); and {a;}, {B;}, [(aﬂ)ij], and {g;}, are mutually
independent. Here

E[Yijk] = p and Var[Yijk] = 012 + (722 + a?? +02.

So the components of variance are o2, 02, 02, and 2. The goal is often to estimate these
variance components along with the overall mean u.
Example 11.10.3 (Mixed-Effects Model: One Factor Fixed and One Factor Random). In

the last example, if factor A is fixed but factor B is random, then the model is the same
except that 1 and o; are constants with Y «; = 0, but {8}, {(aﬂ)ij} are {e;i} are iid
N(0,0%),N(0,0%) and N(0, 0'2), respectively. It is also assumed that { 8;}, [(O"B)ij] and {e;j;}
are mutually independent. Thus

E[Yl]] =p+a; and Var[Yijk] = 012 + 022 +02.

This is a mixed-effects model with the variance components o7 , 03, and o’2.

Example 11.10.4 (Mixed-Effects Model: One Random Factor With a Covariate). We can
also have a mixed model in which some factors are random, some fixed, and there are
one or more covariates. Consider a case with one random factor and one covariate. Thus
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if (Yl-j,X,-j), j =1,...,n; are the observed values of the response and the covariate for the
factor at level i, then a model can be written as

Y,-j:ﬂo—i—ﬂlXij+zxi+a,-j, j=1...,n; i=1,...,k

where By, 1 are unknown constants, {e;} are iid N (0, 0%), {¢;;} are iid N(0, 0?), and {«;} and
{s,-j} are mutually independent. In this case, we have

E[YU] — By +A1X; and Var[Yij] = ol + 02

Example 11.10.5 (Mixed Model: Growth Model With Random Slopes). Suppose we have
k children whose heights (growths) are measured at various ages. Let Yj; be the height of the
ith child at age ;, j = 1,..., ng, and let X;; be the vector of covariates (available nutrition,
parents’ heights, family income, etc.). If we model the height as a polynomial of degree r in
age with random slopes, then a reasonable model is

’
T ! , .
Y,-j=/30+ﬂ1Xl~j+Zyﬂtj+eij, j=1,...,n9, i=1,...,k,

=1

where o, A1 are nonrandom, {y;:i=1,...,k} are iid N(0,0?) for each I, {;} are iid
N(0,02), and {y;} and {e;;} are mutually independent. This is an example of a growth
model which allows different rates of growths for different children.

In Example 11.10.4 we can create k indicator variables {Z;,.. .Zl-]-k} as follows. Let
Zj = 1ifi = I and 0 otherwise. If we denote the random effects by {y;} instead of {«;},
then

Yij = Bo + B1Xij + Zippn1 + - Zijivk + €4

We can express this model in a matrix form. Let n = n; + - - - + ng be the total number of
observations. Let X be the n x 2 matrix whose first column has only ones and its second
column consists of values of the covariate. Let Z be an n x k matrix whose first column
consists of the values of Z;;;, second column consists of the values Z;j», etc. Then we may
rewrite the last model as

Y=XB+Zy +e,

where y is the k x 1 vector of yy,...,y,. Here X and Z are known matrices, g is the
vector of unknown parameters, y ~ Ni(0, 0121), e ~ Nn(O,UZI), and y and e are
independent.

One-factor random-effects model can also be written in this form. In order to accom-
modate the two-factor random- and mixed-effects models, which have more than two
variance components, we consider a more general model

Y=XB+Ziy1+ +Zry,+e )
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where X, Z1, ..., Z; are known matrices of orders n x p, n x qi1,...,1n X gy, respectively,
B is a vector of unknown parameters, y; ~ N (0, aj?l),j =1,...,r,e ~ Nn(O,UZI), and
Y1, ..., 7k and e are all independent. In this framework

E[Y] = XB and Cov[Y] = 02 Z\Z] + -+ 02 Z:Z] + oI

Two-factor mixed- and random-effects models (Examples 11.10.2 and 11.10.5) can also
be expressed in this form and it is left as an exercise. It is often useful to express the
above model by taking Z = [Z\,...,Z] and y as a column vector with y1,..., y stacked
vertically. Thus Zisn x gand y isg x 1, where g = g1 + - - - + g. Thus

Y=XB+Zy +e¢, (8)

where y ~ Nj(0,D), where D is a block diagonal matrix with the diagonal blocks
Cov[y,], ..., Cov[y,].

Assumption

For the model in Eq. (8) we assume that rank(X) = p, rank(Z;) = q;,j = 1,...,T.

11.10.1 Estimation of g8 and Prediction of y

We now discuss estimation of § and prediction of y assuming all the variance components
to be known. Since y is random, its estimation (or linear function of it) is called prediction.
Definition 11.10.1.

(i) Alinear function ﬁ of Y is called a BLUE of g if it is an unbiased estimator of 8, that is,
E[ﬁ] = B, and, for any a € RP, Var[aTﬁ] < Var[lTY] for all linear unbiased estimators
1Y of aB.

(ii) Alinear function y of Y is called a best linear unbiased predictor (BLUP) of y ifit is an
unbiased predictor of y, thatis, E[p — y] = 0, and for any b € RY,

2 2
E[bT)? — bTy] < E[ITY — bTy] for all linear unbiased predictors 1"y of bTy.

According to the definition given above, f is a BLUE of B if a” 8 is the BLUE of a” 8 for
any a € R”. Similarly, $ is BLUP for y if b’ is the BLUP of b” y for any b € RY.

For the mixed model, the BLUE of g is no longer equal to (X TX)_IX Ty. As a matter of
fact, it now depends on the unknown matrix D and o2. Let ¥ = Cov[Y] = ZDZ Ty o2].
Then, if we multiply both sides of the mixed model by X~!/?, where X!/2 is a symmetric
square root of ¥, it leads to a reexpression of the mixed model as Y = Xﬁ + &, where
Y =312y, X = ¥ 12X, and & = ¥ 1/2 (Zy + €). Thus the reexpressed mixed model is
in the standard Gauss-Markov setup since E[¢] = 0 and Cov[é] = I, and the BLUE of g

~ AT~ LT~ _
is B = (X X) XY= (X"z"1X) 'XTx-1y. We leave it to the reader to verify that the
BLUE of g8 is unique.
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Let us first find out what the BLUP of bTy would be if 8 were known. The best linear
predictor of b’y can be obtained by a linear regression of b’y on Y. So the best linear
predictor ho + h] Y has the form

hy = [COV(Y)]_ICOV[Y, bTy] — >~ 17Db,
ho = E[b"y | - hE(Y] = ~h{XB, and thus
ho +hl'y = nl (v — xp).
If B were known, the BLUP of b’ y would be
I (v —xg) =b"Dz" (v - XB).

Since B is unknown, it therefore makes sense to replace it by its BLUE. Thus the BLUP of
b”y should be b"DZT 5~ (Y - Xﬁ) and the BLUP of y should be = DZT £~ (Y — Xﬁ)
(proof given below). We leave it to the reader to show that the BLUE of y is unique.

We now write down expressions for the BLUE and BLUP of 8 and y in the following
result.

Theorem 11.10.1. The BLUE of B and the BLUP for y in the mixed linear model are
given by

= (XTE_IX)_IXTE_IY, 5= D_IZTE_1<Y—X/§).

Remark 11.10.1. Unlike in the Gauss-Markov model discussed in Section 11.3 of this
chapter, the normal equations for estimating 8 are no longer of the form X’ X8 = X'v.
Except in some balanced random- and mixed-effects models, as an example given below
will show, the BLUE of 8 now depends on ¥, the unknown covariance matrix of Y. Similarly
prediction of y also requires the knowledge of X. In practice, however, ¥ is not known and
has to be estimated from the data. In order to obtain the approximate BLUE g of 8 and the
BLUP 7 of y, we need to use the estimate ¥ of X in the formulas for 8 and 7. The problem
of estimating ¥ which involves estimation of the variance components will be discussed
later.

The following result gives necessary and sufficient conditions for y to be BLUP of y. Its
proof is left as an exercise.

Lemma 11.10.1. For the mixed model, y is BLUP for y if and only if for any b € R™,

i) E[bT;? - bTy] — 0 and
(ii) Cov[bT)? —bly, lTY] = 0 for any l € R" satisfying the condition X'1 = 0.

Now let us check if = DZTx~! (Y — Xﬁ), where ﬁ is the BLUE, is indeed the BLUP
of y. Since ,l? is unbiased for B, Condition (i) of Lemma 11.10.1 holds. If Condition (ii)
of this lemma also holds, then y is the BLUP of y. Denoting X = RY where R =
X(XTE*X)*IXTE*I, we have p = DZ'¥~1(I — R)Y. Therefore for any I € R” with
X'1 =0, we have
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cOv[bT;? — b7y, lTY] - cOv[hTﬁ, lTY] - COV[bTy, lTY]
= cOv[bT;?, lTY] —b'DZTI
- Cov[bTDZTE_l (I — XR)Y, lTY] AN
=b'DZTx 10 -xR)>1-b"'DZT1= -b"DZT 3" 1XR>]I.

Since X”1 = 0, we have
—1 —1
R>1 =X<XTE’1X> xTs-lx1= (XTzflx) xT1=o.

This shows that Condition (ii) of Lemma 11.10.1 holds and hence y is the BLUP of y.

11.10.2 Mixed Model Equations

We have already seen that the expressions for the BLUE $ of 8 and the BLUP § of y
involve the inverse of Cov[Y] = ¥, which is an n x n matrix, where 7 is the total number
of observations. In many cases, ¥ does not have a simple expression, and, if » is large,
calculation of X~! may be quite time consuming even on a modern computer. Are there
some simpler formulas for obtaining B and $? The answer is yes and it turns out that
B and y can be obtained by solving the so-called Mixed Model Equations, which require
inversions of matrices whose dimensions are much smaller than that of X. Let us first see
what these equations are, provide intuitive arguments which lead to them, and then show
that their solutions are the BLUE and the BLUP.
Mixed model equations take the form (assuming that D = Cov[y] is positive definite)

xTx x'z B\ _(X'y ©)
z'x ofp'+2%z)\y) ~\ZTv)
Theorem 11.10.2.

(a) The mixed model equations have a unique solution.
(b) Let B and y be the solution to the mixed model equations. Then B is the BLUE for B and
y is the BLUP fory.

The proof of this theorem is postponed to Section 11.10.3. We now give a simple
example to show how the mixed model equations can be used in the one-factor random-
effects model.

Example 11.10.6. Consider a one-factor random-effects model described in
Example 11.10.1. Here X is an n x 1 vector of 1’s, where n = n; + --- + ny is the total
number of observations. If 7; = n; /(02 /012 + n,-), then we show below that the BLUE and
BLUP for i and y; are given by (denoting the random effects by {y;} instead of {«;))

a=Y(-mnT [3 (1= m)ni, 5 =T - ).
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For a balanced model, we have i = Y. and y; = n(Y; — V) with 7 = no/(0?/0? + ny),
where np = n; = --- = ng. In this case, the BLUE of 1 does not depend on the
variance components o and o2. Also note that for a balanced fixed-effects model with
the constraint »_ y; = 0, the least squares estimate of y; is ¥;. — Y... The BLUP of y; in the
random-effects model is obtained by shrinking Y; — Y. toward zero (since 0 < = < 1). If
o1 — o0, then # — 1 and the BLUP is then the same as the BLUE of y; for the fixed effects
case. In a sense then, the mixed model is the same as the fixed-effects model when o; = oo.

Let us now see how we can obtain the estimates given above using the mixed model
equations. Denote Y.. = nY.,and Y¥; = n;Y;, i = 1,...,k. Note that in this case, ¥ =
02ZZ" + oI with D = 621. So we have X'X = nl, X' Z = (n1,...,ng), andZTZisak x k

diagonal matrix with diagonal elements ny, .. ., . So the mixed model equations are
n nm e ny "w Y.
n 02/012 +n; O 0 Y1 Y.
. 0 0 -
2,2 Y,
ny 0 0 ooy +nr) \Vk k-
or

np+niyr + -+ ngy =Y., and
nip + ((72/012 +”i>)’i =Y, i=1,...,k
The last k equations can be written as
min+yi =Yg, e, p=mi(Vy —p), i=1,... k.

Substitute y; by ni(f’ii - /L) in the first equation and solve for x to obtain

p=) (1- ﬂi)niYi./Z(l —m)n; and p; = m;(Y;. — ).

11.10.3 Motivation for Mixed Model Equations

We now provide a motivation for the mixed model equations under the assumption of
normality. Let us assume that y ~ Ny(0,D), & ~ Nn(O,UZI), and that ¢ and y are
independent. The main idea is to treat y as a parameter even though it is random. Note
that conditionalon y, Y ~ N, (Xﬂ +Zy, 021). The joint pdf of Y and y can be written as

fry 0 ¥) =friy W)y (v)
= cexp|-lly — X8 — Zy|?/(20%) | exp(—y "Dy 2),

where the constant ¢ depends on ¢ and D. If we treat y as nonrandom, and try to estimate
B and y, then the likelihood function is

L(8,7) = cexp[ 1Y - XB - Zy|?/(20%) |exp(~» "Dy 2).
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Maximizing L with respect to § and y is equivalent to minimizing —2 log L with respect to
B and y. Differentiating —2 log L with respect to g and y and equating the derivatives to
zero lead to the following equations

3(~2logL)/ap =0, ie, X' XB + X Zy = X'y, and
d(~2logL)/dy =0, ie, ZTX + (ZTZ n GZD_1>y =77y,

and these are the mixed model equations given in Eq. (9).
The proof of Theorem 11.10.2 requires the following result which can be derived from
the Sherman-Morrison formula (Section B.1). The proof of this lemma is left as an exercise.
Lemma 11.10.2.

(@ 2 =02[1-2(2"Z+0?D") 27|
(b) 27! =0722(2"Z +02D7) 'D,
(0 (Z'Z+02D) 2" =pz"x" .

Proof of Theorem 11.10.2. Part (a) is not difficult to check and it is left as an exercise.

In order prove part (b), it is enough to show that the solutions of ﬁ and y of the mixed
model equations are the same as those in Theorem 11.10.1.

If [3 and y are the solutions of the mixed model equations, then

ZTXB + (ZTZ + UZD—I)ﬁ — zTy, and hence
5= (ZTZ + oZD_1>_1ZT(Y —XB) —pzTs-1 (Y —XB),

using part (c) of Lemma 11.10.2. Thus, y has the same form as in Theorem 11.10.1 and
hence this would be the BLUP if we can show that the solution ﬁ of the mixed model
equations is indeed the BLUE of g.

The first set of equations in the mixed model equations are

XTxp+xTzp =xTy.

Substituting the expression of y in this equation we have

xTxg +xTzpzT 5! <Y - XB) =xTy, or

XT[I - ZDZTrl]Xﬁ - XT[I - ZDZTZ*l]Y.
Since

1-zDZTx 1—1— [z - 021]2*1 —o2x7]
we have

xXTo251x3 = xTo257 1Y, or f = (XTx—lx)_lez—ly.

The expression is the same as in Theorem 11.10.1. Thus the solution # of the mixed model
equations is the BLUE of 8. a
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11.10.4 Estimation of Variance Components
For the model given in Eq. (7)

E[Y] = XB, and
¥ =CoviY] =02Z12T + ...+ 022, 2] + 5?1

Note that we have changed the notations a bit and now o2 is denoted by 0. We now
focus on the problem of estimating the variance components 03,02, . .., 02.
There are a number of well-known methods for estimating the variance components

including

(i) Henderson’s method I1I,
(ii) Maximum likelihood,
(iii) Restricted maximum likelihood (REML), and
(iv) MINQUE (minimum norm quadratic unbiased estimation).

Here we discuss only the first three methods. Computer packages such as R can be used
to estimate the variance components using these procedures. Henderson’s method and
MINQUE do not require any distributional assumptions, whereas the maximum likelihood
and the REML methods require the assumptions of normality. It should be pointed out
that these methods may not produce the same estimates of the variance components. In
unbalanced cases, the estimates obtained by employing any of these procedures usually
do not have explicit expressions. Detailed discussion on all these methods can be found in
the book “Linear Models” by Searle [60] (Chapters 9-11).

Henderson’s Method il

Suppose that we want to estimate one of the variance components, say o2. Let Q be the
projection on the column space of the augmented matrix (X, Z1,...,Z;] and let Q, be the
projection on the column space of the matrix [X,Z,...,Z,_1] . Then QY is the vector of
fitted values when we fit the model Y = XB + Z1y; + --- + Z,y, + ¢ pretending that
Y1 --.,¥,are nonrandom unknown parameters. Similarly Q,Y is the vector of fitted values
when we fit the model Y = X8 + Z1y; +---+Z,_1y,_1 + ¢ pretending that y¢,...,y,_;
are nonrandom parameters. Note that an unbiased estimate of o is given by 67 = ||Y —
QY||?>/(n — rank(Q)). Henderson's estimate of o/? is given by

62 = [||QY —Q,Y|? — trace(Q — Q,—)é’é]/l’deé‘(Z,T(I - Qr)Zr). (10)

Since o7 > 0, its estimate is usually taken to be max(62, 0).
Let us now see how this estimate is derived. First of all note that (Q — Q,)X B = 0and
(Q-Q,)Z;=0,i=1,...,r— 1.Hence

Q-Q)Y=(Q-Q)XB+Z1y1+--+Zry,+e)
= (Q - Qr)ZT)’r + (Q_ Qr)€~
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Then
E[1QY - @, YI?| =E[1(@- @)Zry, + (@- Q)el’]
E[1(Q - @)Zy /12| + E[1(Q - @)el?]
= of trace((Q - Q) ZZ (@- @))") + of trace((@- @) (@~ @)")
= of trace(2] (@ - @) (@ - @,)2/) + of trace((@ - @;)(@ - @))").

Now use the facts that Q and Q, are symmetric and Q — Q, is also a projection, and
T T
consequently, (Q—Q,) (Q—Q,) =Q—Q,and (Q— Q,)(Q - Q,;) = Q— Q,.So we have
E[HQY - QrY||2] = o2 tmce(z,T Q- Q,)Z,) +of trace(Q — Q;)
=o? trace(Zf(I - Qr)Zr> + og trace(Q — Qy).
The last step is justified since Z/ QZ, = Z'Q'QZ, = Z!Z,. From the last expression we
now see that an unbiased estimate of 2 is of the form given above.
Except in the case of balanced models, Henderson’s estimates for the variance compo-
nents do not have nice forms. Here we give an example for the one-factor case.

Example 11.10.7. Consider a one-factor (random) ANOVA model as in Example 11.10.6.
Here

1Y - Qv)2 = 3 Y (vy - ¥i)” = SSE, and
i
QY — QY2 =Y S (¥ - ¥.)? = ny(¥; — ¥.)* = SSTR.
i

Assuming that n = n; +- - - 4+ ny is the total number of observations, we have n— mnk(Q) =
n — k and trace(Q — Q,) = rank(Q) — rank(Q,) = k — 1. So an unbiased estimate of o is
given by

5¢ = |Y — QY||?/(n — rank(Q)) = SSE/(n — k) = MSE.
Now let y = " n;y;/n. Then
E[||QY - Q1Y||2] = E[SSTR]
= E[Z ni(yi—v +&. - €-~)2]
= (n=Y_n2/n)of + (k—1)o.
So an unbiased estimate of o? is given by

ot = [SSTR= (k= 1)5§] /[~ Y_ n?/n]
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= [SSTR— (k- 1)MSE] /[n~ Y n/n]
= (k= 1)[MSTR — MSE] /[n— 3" n?/n].

In the balanced case, n = ngpa where n; = ng for all i. It is easy to check that the Henderson’s
estimate of o2 is then given by 67 = [MSTR — MSE]/ny.

Maximum Likelihood

The maximum likelihood method (under the assumption of joint normality of y4,...,»,
and ¢) jointly estimates 8 and the variance components. We rewrite the mixed linear model
given in Eq. (7) as

.
Y=XB+> Ziyi (11a)
i=0

E[Y] = X8, and X(¢) = Cov[Y ZUZZ Z!, (11b)

where Zy = I, y, = ¢,and § = (oo,af,...,af)T. So we have Y ~ Ny(XB, X(9)). The
likelihood therefore is

L(B,0) = c[1/|z(0)|1/2] exp[—(Y ~xp) "z (v —Xﬂ)/z},

where | X (0)| = det[Z(G)] and ¢ > 0 is a constant that does not depend on 8 and 6.
Maximizing the likelihood with respect to 8 and 6 is equivalent to minimizing —21log L
with respect to § and 6. Note that

—2logL(8,0) = —2log(c) + (Y — XB) " £®) " (Y — XB) + log(1Z(®)]).

We need to differentiate —2log L with respect to g and 0;, i = O, ..., r, and equate the
derivatives to zero. Calculations will show that

3(-2logL)/0B =0, ie, X' £(0)"'xp =xTx®)"'Y, and
d(—2logL)/36; = 0, ie,

(Y —Xﬁ)T[az(o)—l/aei](Y —XB) + d(log|X(6)])/86; =0, i=0,...,r.
Note that the first set of equations are the same as the normal equations (for estimating f)

described in Section 11.10.1. The second set of equations need simplifications. Noting that
0X(0)/00; =Z l-ZlT and using results from Section B.5, we have

IxO) 1/90; = —2©0) [02(0)/06;]Z(®) "
=-3©0)"'z,;z'2@6)7!, and
8(log |E(0)|)/39,~ = tmce([(ﬂ)_laz(())/aei)

= tmce(ZiTZ(G)*lZi).
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Thus the likelihood equation involving derivative with respect to 6; turns out to be
0= (¥ -x8)"[0x@®)" /06| (Y - XB) + d(log | 2 ®)])/96;
= (Y- XxB)" 2®)'2,2] £O)7 (Y - XB) + trace(z] £®)7'Z;)
=127 z@0)" (Y - XB) 1% + tmce(Zl-TE(B)_IZ,).
So the likelihood equations are
X'z 'xp=x"x0)"y, (12a)
trace(Z] £©0)7'2;) = 1Z] @)1 (Y - XB)I%, i=0,...,r. (12b)
These equations have no explicit solutions except in some balanced cases and iterative

methods are used to solve them numerically.

Restricted Maximum Likelihood
REML is a variant of the maximum likelihood method whereby the issue of estimation of

B is entirely bypassed and the focus is entirely on estimating the variance components. In

this method, the estimate of § = (og, e, orz) T is obtained by solving the equations

trace(2] 207N (1 - M(6))Z;) = 12] 2@ (1 - M)V, i=0,...,7, (13)
-1
where M(0) = X (X TE(O)_1X> X TZ(O)_I. These equations usually have no explicit so-

lutions and iterative methods are employed in numerical computations. Once an estimate
0 of 6 is available, § can be estimated by solving the approximate normal equations

XTZ(5>_1Xﬂ :XTE(é)_lY.

We will provide a justification for the REML equations. Since rank(X) = p, we can find a
matrix B of order (n — p) x n which has rank n — p and it satisfies the equation BX = 0. Let
Y = BY, Zi =BZ;i=0,...,r, premultiplying both sides of Eq. (11a) leads to a modified
model

Since Y ~ Ny,_, (0, f?(())), the likelihood (based on Y) is

1(0) = [1/1Z(0) /2] exp[ -V £(0) ' 7/2],

where the constant ¢ > 0 does not depend on 6. In order to obtain the MLE for 6 in this
case, we differentiate —2 log L with respectto ;, i = 0, ..., r, and equate the derivatives to
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zero. Then, as in Eq. (12b), we have
tmce(Zin(o)_IZi) =1z $(0)"'71%, i=o0,...,r
Since Z; = BZ; and 2(0) = B> (0)B”, the ith equation is

-1 -1
trace(ZlTBT(BE(O)BT) Bzi>=||ziTBT(Bz(a)BT) BY|?.

The important fact is that the matrix BT(BZ(G)BT)JB does not depend on the choice B
as long as BX = 0 and rank(B) = n — rank(X). The following result turns out to be true.
Lemma 11.10.3. Assume that BX = 0 and rank(B) = n — rank(X). Let M() =

-1
X(x"x(8)"'X) X"x(8)"". Then
-1
B (Bx@)B") B=1x0)"'(1-M(®)).
Using Lemma 11.10.3, we can show that the REML equations are
trace(2] @)1 (1 - M(6))Z;) = 12] 2@ (1-M@)YI i=1,..,r

Proof of Lemma 11.10.3. Simplifying the notations, writing ¥ instead of X(#) and
denoting R = X'/2B”, where X'/2 is a symmetric square root of X, we have

BT(BEBT)AB - 2—1/ZR(RTR)71RT2—1/2.

Now note that R(RTR)_IRT is a projection matrix. Where does this matrix project
onto? Since BX = 0 and rank(B) = n — rank(X), M(R) is the same as the orthogonal
complement of the column space of the matrix ¥ ~!/2X. Now the expression of the matrix

that projects on the column space of X~1/2X is given by E_I/ZX(XTE_IX)_IXTE_I/Z.
So I — E‘I/ZX(XTE‘IX)_IXTZ‘U2 projects on the orthogonal complement of ¥~1/2X.
Hence we must have

R(RTR)_IRT I 271/2X<XT271X>_1XTZ—1/2'
Consequently,
BT(BEBT)_IB: 2*1/2R<RTR)_1RT2*1/2
=x~1/2 (1 - z*l/ZX(XTzflx)_lezfl/2>271/2
=z la-m,

where M = X(XTZ_IX)_IXTZ_l. This completes the proof. o
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11.11 Inference: Examples From Mixed Models

Here we present estimation methods in a few balanced models since the expressions
for the estimates in the unbalanced cases involve complicated and cumbersome no-
tations. Except in Example 11.11.3, where the maximum likelihood method is consid-
ered, Henderson’s method is used throughout to obtain the estimates of the variance
components.

Example 11.11.1 (One-Factor Random Effects). We consider one-factor balanced
ANOVA random-effects models as in Examples 11.10.1, 11.10.6, and 11.10.7, except now
we assume that {y;} are iid N(0,07) and {e;} are iid N(0,0Z). We have already see in
Examples 11.10.6 and 11.10.7 that the BLUE for nis i = Y.,

E[SSE] = (n — k)ag, where n = nyk,
E[SSTR] = (k — 1)ngo? + (k — 1)oZ,

E[MSE] = 0%, E[MSTR] = ngoi + of,
and unbiased estimate of 0% and o are
56 = MSE and 6% = (MSTR — MSE)/ny.

Direct calculation will show that i = Y. ~ N(u,(noo + o3)/n). So an estimate of
Var[] is then given by s?(2) = MSTR/n. Note that SSTR/(noof +o¢) ~ x?_, and

(L — 1)/ (noof +0Z)/n ~ N(0,1). Since 2 = Y. is independent of SSTR and hence of
MSTR,

(A— ) noalz—i—az /n
sy - N )

35T /[(moo? +o8) (k= 1)]

and this fact now can be used to construct a confidence interval for x. Unlike in the fixed-
effect case, MSTR is being used to estimate Var[] and, consequently, the df for the ¢-
distribution is now k — 1 instead of n — k.

In some cases one may want to test if Hy: oi’- = 0vs H;: 012 # 0. The F-statistic for this
is F = MSTR/MSE and F ~ Fj._; ,,_i under Hp.

Example 11.11.2. Consider the one-factor random-effects model as in the last example
and we want to construct a confidence interval for the intraclass correlation coefficient
p = o2/(cf +of), which is also the proportion of variability in the response explained
by the random factor. Clearly an estimate of p is given by p = 62/(62 + 6%), where the
expressions for 62 and 6¢ are as given in the last example. Let us denote MSTR/MSE by F*.
A confidence interval for p with confidence coefficient 1 — « is given by [L*, U*], where
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L*=L/Q+1L),U* = U/(1 + U), and
F* F*
L=(1/ng)| =——— —1|and U = (1/ng)| =——— - 1.
( O)|:Fk—1,n—k,oc/2 } ( 0)|:Fk—1,n—k,1—a/2 }

Let us see why this is indeed a confidence interval of p with confidence coefficient
1 — a. Note that SSTR/(noof + 0§) ~ x2_,, SSE/o§ ~ x2_,, and that SSTR and SSE are
independent. Hence the random variable

F_[SSTR/(noaf+a§)]/(k—1)_ I T
- [SSE/ag]/(n_k) _[00/(01 0)]

has an F-distribution with df = (k—1,n— k). Denote ¢; = Fj_1 k12 and ¢z =
Fr_1,n—ka/2- Then

c/F* < a&/(noolz + 002> < cz/F*]

F*/cy < ngo /ol +1 < F* /cl]

| e B e N e T e e—

Example 11.11.3 (One-Factor Random-Effects Model). The setup here is the same as in
the last two examples, but the estimates of the variance components are obtained using the
maximum likelihood method. Here X is n-dim vector of 1’s, 8 = u is a scalar, Zy = I, and

10 --- 0
01 --- 0

thematrixZ; = | . . . | is 7 x k, where 1 is the ro-dim vector of 1’s. Since X (¢) =
00 --- 1

02Z1ZT + 0?1, it can be checked using the Sherman-Morrison formula (Section B.1) that

z(0)”

= 00_2 [I — nnglzlz{], where 7 = n0012/<n()0‘12 + crg),
xT2(6)7'X = 05 2n(1 - n), and
XTx(0)7' (Y - XB) = 05 2(1 — m)(Y.. — np).

Thus the first likelihood Eq. (12a)

x"x(0)"'x =xTx(6) " (Y — XB), ie,

0y 21 = m)(Y.. — np) = o5 *n(l — )
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leads to the usual estimate of u (ie, i = Y..). In order to obtain the maximum likelihood
estimates of 002 and 012, more calculations are needed. The following can be checked (left

as an exercise)
trace(ZgE(O) :a(;zn(l —nnal),

)
tmce(ZlTE(O)_IZ1> =0y 2n(1 — ),
2

= 05 *[SSE+ (1 - m)SSTR], and
127 2(8) 7" (¥ = XB)I? = 0 *no(1 — m)2SSTR,
Using the above-simplified expressions, the likelihood Eq. (12b) in this case are
o5 2n(1-7ng") = oy {[SSE+ (1 - m)*SSTR], and
oy 2n(l — n) = a4 *ng(1 — 7)2SSTR.

Solutions to these equations lead to the maximum likelihood estimates of the variance
components

- k — 1)/k|MSTR — MSE
52=MSE and &%= SSTR/’; MSE _ [(k—1)/ ]n '
0 0

This estimate of o? is slightly different from Henderson’s estimate given in

Example 11.10.7.

Example 11.11.4 (Two-Factor ANOVA, Both Factors Random). The setup here is the
same as in Example 11.10.2, but we now assume that it is a balanced ANOVA (ie, n;; = no
for all i and j). It can be checked that the BLUE of u here is i = Y.... Recall that the sums of
squares are (Example 11.6.4)

SSA=ngb (¥;. - ¥..)?, SSB= nan(f’_j. - 1?...)2,
‘ i

1
$5AB = no 0 3Ty — V5. — ¥y, + ¥..)", and
i
- \2
SSE =323 3 (Vi — Vi)
i j ok

It can be shown that

E[MSA] = nobalz + ngasg + O’g,
E[MSB] = noaazz + ngo?? + 03,
E[MSAB] = ngo% + ¢, and E[MSE] = a3.



Chapter 11 » Linear Models 377

So the unbiased estimates of the variance components are

00 = MSE, &% = (MSAB — MSE)/ny,
62 = (MSA — MSAB)/(ngb), and 6% = (MSB — MSAB)/(nya).

Note that o = Y... is unbiased for ¢ and
Var[i] = (nobal2 + npacg + noog + 002)/71,

where n = ngab. So an unbiased estimate of Var[4] is given by s*(i) = (MSA+ MSB—
MSAB)/n.

Example 11.11.5 (Two-Factor ANOVA: Factor A Fixed, Factor B Random). We now
consider a two-factor balanced mixed-effects model as in Example 11.10.3.

For this model,

E[Y,-jk] =p+e; and Var[Yijk] = 012 + 022 + ag.

It can be shown that the expected values of the mean squares are

E[MSA] = nob > (e; — &) /(@ — 1) + ngo% + of,
E[MSB] = npac? + ngog + of,
E[MSAB] = ngog + 0§, and E[MSE]=of.

So the unbiased estimates of the variance components are

00 = MSE, 42 = (MSAB — MSE)/ng, and
&2 = (MSB — MSAB)/(noa).

If we want to test the null hypothesis of no effect of factor A (ie, Hy: a1 = - - - = a4 vs Hj: not
all os are equal), then the test statistic is F* = MSA/MSABwithdf = (a— 1, (a —1)(b - 1)).
For this model, the BLUE of 11; = u + o; is given by Y;... It can be shown that E[Y ] =
u + «a; and
Var[Y;.] = <n0012 + ngos + ag)/(nob).

So an unbiased estimate of Var([Y;. ] is given by

s*(¥;..) = [(MSB — MSAB) /a + MSAB]/(ngb).
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Note that
(MSB — MSAB) /a + MSAB = (1/a)MSB + (1 — 1/a)MSAB.

The last quantity is nonnegative since it is a weighted average of MSB and MSAB. Also note
that

(MSB — MSAB)/a+ MSAB = (1/a)MSB + (1 — 1/a)MSAB
= [(b—1)MSB+ (a— 1)(b — 1)MSAB]/[a(b - 1)]
= [SSB + SSAB]/[a(b—1)]

= o Y3V — 12.) fa(b— ).

We denote the sum of squares ng Zizj(f/ij. - 17,)2 by SSB(A) (nested ANOVA case in

Example 11.6.6). This sum of squares has df = a(b — 1) and we denote SSB(A) /[a(b — 1)]
by MSB(A). Hence we have

s%(¥;.) = MSB(A)/(nob).

Since Y;. is independent of SSB(A) and hence of MSB(A), (V. — ui)/s(Y;..) ~ typ-1) and
this fact can be used to construct a confidence interval for ;.

If we want to estimate a contrast & = _ ¢;; of {;}, then the BLUE is 6 = 3 ¢;Y;.. It can
be shown that

E[é] =6 and Var[é] = (Z clz) (HOUZZ + a&)/(nob).

An unbiased estimate of Var[é] is

2(0) = (3 ¢ )MsaB/ (nob),

and since {Yl, i=1,..., a} are independent of SSAB and hence of MSAB, 9 is also inde-
pendent of MSAB. Consequently, (é - 6) / s(é) ~ la—1)(b—1), and this fact can be used to

construct a confidence interval for 6.
Remark 11.11.1. An alternative modeling scheme for the interactions in the last exam-
ple assumes that

(i) for anyj, Z?zl(aﬁ)ij =0,
(ii) foranyi, (aB),,. .., («B),, areiid N(0, 0%),
(iii) Cov[(aB)ij, (@B)ij] = —0%/(@—1),foranyi=i,j=1,...,b.

In this framework { (aB) l.j} are no longer iid and the estimates of the variance components
may be different from what are given above.
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Exercises

11.1.

11.2.
11.3.

11.4.

11.5.

11.6.

11.7.

Consider a one-factor study with k levels as in Example 11.2.3.

(a) Express the ANOVA model in a regression setting by creating k — 1 indicator
variables for the factor levels. Relate the parameters of this regression model
to those of the ANOVA model.

(b) Obtain the parameter estimates of the regression model in part (a) and their
standard errors.

Verify the expression of E{MSTR] given in Example 11.4.2.

Consider the two-factor ANOVA model given in Example 11.4.4.

(a) Verify the expressions for E[SSA], E[SSB], and E[SSAB] as given in
Example 11.4.4.

(b) Check that E[MSAB] = o if and only if («f) ;j = 0forall iand j. Similarly,
check that E[MSA] = o2 if and only if ; = 0 for all i, and E[MSB] = o if and
only if g; = 0 for all j.

Consider a real-valued response variable Y and two independent variables X; and

Xo.Let L(Y|X1), L(Y|X>), and L(Y|X3, X») be the best linear predictors of Y given X,

Y given X5, and Y given X, X, respectively. Partial correlation between Y and X,

given Xj is defined as pyx,x; = Corr[Y — L(Y|X1), Xo — L(X2|X1)].

Show that ,o%XZ x, = [E(Y — L(Y|X1)}* — E{Y — L(Y|X1, X2)}*]/E{Y — L(Y|X1)}*.

Suppose a Gauss-Markov model is of the form Y = X1 8; + X28, + ¢,

e~ Ny (O, o2l ), where X and X are of full rank, and the augmented matrix

[X X>] is also of full rank. Let Q; = XIT(XlTXl)_leT and X, = (I-Q))Xo.
R N
(a) Show that the least squares estimate of 8, is given by g, = (XZT X2> X,Y.

(b) Find the distribution of /§2 and use this to test Hy: 8, = 0vs Hy: B, # 0.
Consider a Gauss-Markovmodel Y = X 81 + X28, + &, &€ ~ N,(0,02I). We are
interested testing Hy: B, = 0 vs Hy: 8, # 0. Let SSEr and SSER be the residual
sums of squares for the full and the reduced model (ie, the model under Hp). The
coefficient of partial determination is defined to be R§/X2I X = (SSER — SSEF)/SSER.
(a) Express R%,Xz x, asa function of the F-statistic for testing Hp: 8, = 0 vs
Hi: B, #0.
(b) Use the result in part (a) to describe the distribution of R%le X under Hy.
[Hint: If U ~ Xr%’ VvV~ X§ and U and V are independent, then
U/(U+ V) ~ Beta(p/2,q/2).]
Assume that for a two-factor study with one observation for all treatment
combinations, the appropriate model is Yj; = u + «; + B; + &;; with the usual
constraints on {«;} and {;}. Here { Y} are the observations and {¢;} are iid
N (0, 02).
(a) Use the Scheffé method to obtain simultaneous confidence intervals for all
contrasts in {«;}.
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11.8.
11.9.

11.10.

11.11.

(b) Use Tukey’s method to obtain simultaneous confidence intervals for all
pairwise difference of {«;}. How would you obtain simultaneous confidence
intervals for all pairwise differences of {«;} and all pairwise differences of { ,Bj},
using Tukey’s method, so that the family confidence is at least 1 — «?

Prove Lemma 11.7.2.

For the ANCOVA model with one factor and one covariate as given in

Example 11.7.1, use the Scheffé method to obtain simultaneous confidence

intervals for all contrasts of {«;}, where {«;} are the factor effects.

Let Y be n x 1 observation vector and assume that Y = u + &, where the vector &

consists of iid observations with mean 0 and variance o2. Consider a model of the

form Y = X8, + ¢, where Xj. is a n x py matrix of rank py, which is being fitted to
the data Y and let i, = X8, where g « is the least squares estimator §;.. The
expected value of the squared distance between u and ji;. is Dy = E[|| n— i k||2].

(@) Let Dy = FPE (k) — no?, where the expression of Akaike’s FPE is given in
Section 8.1 of this chapter. Is Dy an unbiased estimate of D2 If not find its
bias and find the condition under which {E[Dk] — Dk] /Dy — 0asn — oc.

(b) Let Dk = MAL(k) — no?, where the expression of Mallows’ criterion is given in
Section 8.1. Suppose we have a class of models Y = X8, +¢,k=1,...,K,
where all the K — 1 models are nested in the Kth model (ie, M (X}) C MXx)).
In Mallows’ criterion let 52 be the MSE of the Kth model. Is Dy an unbiased
estimate of D;? If not find its bias and find the condition under which
{E[Dk] - Dk}/Dk ~ 0asn — oo

(c) In this part assume that e ~ N, (0, 0°I). Then the MLE of 0% under the model
Y =X;B+eis &,3 = ||Y — X;B,|1?/n. If Y is an independent copy of Y but is
independent of it, then the AIC is an estimate of —2E [log f (17, 0 k)]» where the

expectation is over Y and ¥, and 6 is the vector of 8  and 6,3 stacked
vertically. Recall that AIC(k) = —2logf (Y, 0 ©) + 2py, and denote
—2logf(¥, 1) by L. If p = X8 for some ;. (ie, the model being fitted is the
correct one), then using asymptotic expansion as n — oo and pi/n — 0,
obtain an approximation of E[AIC(k)] — E[Ly], which is the bias of AIC(k) in
estimating E[Ly].
Consider amodel Y = Z]K:l BiZj+ e, where Y is n -dim observation vector, the
vectors {ZJ-} are mutually orthogonal with ||Zj||2 =n,and e ~ Ny (O, 021). Assume
thatg; #0,j=1,...,k* <n,and ; =0,j = k* +1,...,K. Consider the
submodels Y = X8 + &, where Xy = [Z1,...,Z] and By = (b1, .. ., ,Bk)T,
k=1,...,K. Consider a model selection criterion of the form
Fi = |IY — XjBil2 4 cké2,¢ > 0,k = 1,...,K, where §, is the least squares
estimate of ;. for the kth model and 42 is the MSE of the largest model under
consideration (ie, the Kth model). The values of Fy, F», . . . are calculated
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11.13.
11.14.

11.15.

11.16.

11.17.
11.18.
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sequentially and let k be the index so that Fr — Fry1 pecomes nonnegative for the

first time (ie, F}, is strictly decreasingin k, k=1, ..., kand ch+1 > Fp).

(a) Ifwe test Hyg: B = 0vs Hyq: B # 0, k =1,..., K, then consider the ¢-statistic
I = 3k/s(;§k), where f; = Z1 Y/nand s? (Bk) = 2 /n. Then given a critical
value, Hyy is rejected or accepted depending on whether |f| is larger than the

critical value or not. Show that |f;| > ¢'/2 for 1 < k < k and ‘ < cl2 if

b
model selection is done by using the criterion function {Fy}.

(b) If c = logn, then prove that P[lAc = k*] — las n — oo. [This proves that a
BIC-type criterion is capable of consistent model selection.]

Prove Lemma 11.10.1.

Prove Lemma 11.10.2.

In a one-factor random-effects model, compare the BLUP &; of «; to the naive

predictora; = V;. — Y.

(a) Obtain the distributions of &@; — @1 and &1 — o3.

(b) Compare the errors E[(&l - al)z] and E[(&l - al)z].

(c) Obtain the proportional reduction in the errors, that is,
0 = [E[(&l — al)z] — E[(&l — al)z] ]/E[(&l — 051)2] and examine it as 012 -0
or oo (assuming o2 to be fixed).

In a repeated measures design each of the randomly selected m subjects (factor A)

is assigned to k levels of a treatment (factor B). A reasonable model is thus

Yijzu,-l—ai-f—ﬂj-f—&‘ij, j=1...,k i=1,...,m,

where the subject effects {«;} are iid N (O, 03), treatment effects { ﬂj} are
nonrandom with 3 B; = 0, {¢;;} are iid N(0, 0%), and {«;} are independent of {e;;}
Define SSA=m Y (Y; — Y.)Z, SSB=kY (Y;— Y.)z, and
SSE=Y Y (V- Vi — ¥+ 7.)%
(a) Find the mean, variance, and covariances of {Yij}.
(b) Obtain E[SSA], E[SSB], and E[SSE].
(c) Use the results in part (b) to obtain unbiased estimates of o2 and o(f.
(d) If someone ignores the subject effect and uses a model of the form
Yij = n + Bj + &jj and obtains an MSE based on this model. Is this MSE an
unbiased estimate of 022 If not find its bias.
Consider the repeated measures design as in the previous exercise. It is of interest
to obtain a BLUP of «; . The structure of the Mixed Model Equations suggest that
the BLUP is a linear function of {¥;.} and {Y;}.
(a) Assuming that o2 and o2 are known, find the BLUP &; of ;.
(b) Find the distribution of &; — «;.
Verify the expressions for E[SSTR]| and E[MSTR] given in Example 11.11.1.
Verify the expressions of E[MSA], E[MSB], and E[MSAB] in Example 11.11.4.
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11.19. Verify the expressions of E[MSA], E[MSB], and E[MSAB] in Example 11.11.5.
11.20. Consider a balanced two-factor ANOVA model in which factor A is fixed and factor
Bisrandom as in Example 11.11.5. Let u;, 6, 1, and 6 be as in that example.

(a) Prove that (; — 14)/5(f1i) ~ ta(p—1), where s*(i1;) = MSB(A)/(nob).

(b) Prove that (é - 9)/5(@) ~ t(a_1)(p-1), Where s* (é) = (X c?)MSAB/(nob).



Multivariate Analysis

12.1 Introduction

Multivariate analysis is an area of statistics which deals with observations that are vector
valued. Almost all univariate statistical methods have their multivariate counterparts. For
instance, when comparing two species of the same animal, various measures such as
height, length, tail length, etc., may be measured. One can then compare these two species
using a multivariate version of two-sample t-test. Fisher’s famous Iris data set contains
four measurements for each of the three species: petal length, petal width, sepal length,
and sepal width. In order to compare the three species, a multivariate analog of analysis
of variance has been developed. If there is a new observation vector (of unknown species)
with four measurements, then allocation of this observation vector to one of the species is
known as the problem of classification.

Another class of procedures has been developed for multivariate data which deal with
dimensionality reduction. If many measurements are taken on children where each mea-
surement is a measure of intelligence, then it is often the case that these various measures
are correlated with each other. If there are 20 measurements for each child, it may be
reasonable to look for a few summaries which contain most of the information. These
summaries are often expressed as appropriate linear combinations of the measurements.
This class of methods is known as principal components and factor analyses.

We describe these methods in a systematic manner starting with a few technical results
on the Wishart distribution, which is a multivariate generalization of the chi-squared
distribution.

12.2 Wishart Distribution

If Yy,..., Yy are iid Ny(0,X) and M = Zle YiYiT, then we say that M has a (central)
Wishart distribution with df = k and the scale matrix ¥, and we write M ~ W)(k, X).
If the means {u;} of {Y;} are not necessarily equal to 0, then M is said to have a non-
central Wishart distribution W,(k, X, A), where A = (1/2)X~1/2 Yk, win] X2 is the
noncentrality matrix. Here we discuss only the central Wishart distribution and some of
its properties. Some of the results stated below will be proved later in this chapter and
further details on the theory can be found in the book by Mardia et al. [61]. In multivariate

Theory and Methods of Statistics. http://dx.doi.org/10.1016/B978-0-12-802440-9.00012-6 383
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384 THEORY AND METHODS OF STATISTICS

analysis, we often deal with positive definite matrices and, for brevity of notation, we
sometimes abbreviate “positive definite” by “pd.”

(1) IfM ~ Wy(k, X), then BMB ~ W, (k, BEBT) for any m x p matrix B.

(2) IfM; ~ Wy(ky, X), M2 ~ Wy(kz, ¥), and M, and M are independent, then
M1 + My ~ Wy(ky + k2, X).

(3) If M ~ Wy(k, ¥) and X is pd, then P[M is pd] = 0if k < p, and P[M is pd] = 1 if
k> p.

(4) IftM ~ W) (k, X), thena’Ma/a” Xa ~ xE ifa’ Xa +# 0, where a is in RP.

(5) IfM ~ Wy(k, X), k > p,and X is pd, thena’ X ~la/a"M'a ~ X,f_pﬂ, where a
isin RP,

(6) LetYy,...,Y,beiid Ny(u, X). Define

- 1 1 - -7
Y:EZYi, S:ﬁZ(Y,-—Y)(Yi—Y).

Then Y and S are independent, and
Y ~Npu,n'%), (n—-1DS~Wyn-1,2).

(7) LetYy,..., Yy beild Ny(u,, X), Z, ..., Zp, beiid Ny(n,, ¥), and assume that the
samples {Y;} and {Z;} are independent. Define

1 - T
S = nlilZ(Yl-—Y)(Yi—Y) ,
1 _ _
S, = o Y zj-2)zj-2)", and

1
= -1 —1)S,].
Spooled g — Sl =181 + (12 — 1DS3]

Then Y — Z and Spooleq are independent, and

Y —Z ~ Np(py — po, (1/ny + 1/n2) %),
(ny +no — Z)Spooled ~ Wp(l’ll +ny—2,%).

(8) LetYy,...,Y,, Y, and S be the same as in Property (6) above. The rv
T2 = n(Y — n)TS~1(Y — p) is called Hotelling’s T?-statistic and it is distributed as
(’Z,L__lpf F, \n—p» where F), ,_, has an F-distribution (central) with df = (p, n — p).
(9) LetY — Z and Spooleq be the same as in Property (7), and consider the following
two-sample Hotelling’s T2-statistic

T? = (1/my +1/mp) " (¥ = Z = (1 = 12)) 80 10q (¥ = Z — (1 — p2)-

This two-sample Hotelling’s T2 is distributed as %anﬁnz,p,l.
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(10) If k > pand X is pd, the Wishart distribution has the pdf

\M|k=p=1)/2 exp[—tmce(z_lM)/Z]

f) = -
2kp/2Pp=D/4 2 (k/2 [0 Pk +1-i)/2]

where M varies over pd matrices.

12.3 The Role of Multivariate Normal Distribution

We write Y ~ (u, ¥) to mean that the p-dim random vector Y has a mean x and covariance
matrix ¥. Note that Y is not necessarily normally distributed in this notation.

12.3.1 Mahalanobis Distance

IfY ~ (u, X), then the Mahalanobis distance between ¥ and u is defined to be A2(Y, u) =
(Y —w)T2~1(Y — w). Similarly, if Y1 ~ (u;, X) and Y2 ~ (u,, X), then A%(Y1,Y>2) = (Y] —
Y2)TX~1(Y; — Y>). Note that A? is well defined only if ¥ is pd. It may be worthwhile to
point out that the positive square root of A? is a distance on R” (and not A?).

An important property of A? is that it is invariant under nonsingular linear transforma-
tions. Let X; = a+ BY 1, X» = a + BY3, where ais p x 1, Bis p x p and is nonsingular.
Then A%2(X;,X,) = A2(Y;, Y2). Mahalanobis distance comes up naturally in multivariate
analysis. For instance, if Y1, ..., Y, areiid (u, X), then A%2(Y, u) = n(Y — )T X~ 1(Y — p). If
we want to test Hp: i = pg, then we may use the Mahalanobis distance between Y and ),
thatis, A2(Y, pg) = n(Y — ug) T2~ 1(Y o), as a test statistic (assuming that X is known).
If ¥ is unknown and an estimate X of ¥ is available, then A2(Y, Ito) can be approximated
by n(Y — o) '3~ "y - o)

In the univariate case we often assume normality. However, except for prediction inter-
vals, almost all the inference are approximately valid without normality of the population
as long as the sample size 7 is large. The same is also true in the multivariate case as long
as n is large relative to p.

12.3.2 Multivariate Central Limit Theorem

IfYy,..., Y,areiid with mean g and covariance matrix ¥, then by the multivariate central
limit theorem (Section A.4),

V¥ — 1) B Ny, X) as n — oo,
A consequence of this result is that

n¥-wliz Yy -p 2 X,% asn — oo.
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The sample covariance matrix § = ﬁ S (Y; — Y)(Y; — V)T is an unbiased estimate of X.
Since S is a consistent estimator of ¥, we have

— 1< D
T2 =n¥-wIs ¥ -pw > x5

Property (8) in Section 12.2 states that when the population is normal,

(n—-1p
T2 ~ —p-
n—p PP

Since the rv Fj, ,_p can be written as

F __Mm/p
PP Wy /(n—p)’
where W; ~ X,%, Wy ~ X%—p’ and W and W5 are independent, we have

(n—1p _n-—1 Wi
n—p T n—pWy/n-p)

Whenn — oo, mn—1)/(n—p) - 1and Wo/(n — p) —P> 1, and therefore

(n—1)p D

2 2

12.3.3 Checking Normality

A simple indication of multivariate normality is normality of each of the p component
variables. Even though this may be enough in most cases, it is important to note that
the normality of the marginal distributions does not imply multivariate normality. We
now discuss a strategy for checking multivariate normality when we have iid p-dim
observations Y71, ..., Y, from a population.

If the population is indeed normal, then the quantities d]? = (Yj—l_/) rg—1 (Yj—Y) should
be approximately iid X;Z;- So for a given data set, we can calculate these deviances {d]?} and

plot them against the corresponding quantiles of the X,% distribution. If the population is
multivariate normal, we expect the plot to be approximately linear. Here are the steps.

(m)*
(b) Obtain the chi-squared plot, that is, plot {dfj)} against { Xr%((i —0.5)/ n)}, where
Xﬁ((j — 0.5)/n) is the (j — 0.5)/n-quantile of the X,% distribution.

(a) Order d]? from the smallest to the largest: d(21) <...<d?

We recommend the following steps for checking multivariate normality on the basis of a
data set.

Step I. Check if each of the individual p variable is univariate normal.
Step Il. Check if the chi-squared plot of the deviances { d]?} is linear.
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Steps I and II do not guarantee multivariate normality. However, for practical purposes,
these two steps are often enough for checking normality.

12.3.4 Sampling From a Normal Population

LetYy,...,Y, beiid Ny(u, X). As before, let § (Property (6) in Section 12.2) be the sample
covariance matrix. Then Y and S are unbiased estimates of g and ¥, respectively. It turns
out the maximum likelihood estimate (MLE) of u is Y. However, the MLE of X (proved
below) is

n—1
S,

- 1 — —
§=2 ;i -N; - V=

which is not an unbiased estimator for X. We summarize the above and a bit more in the
following result, the proof of which is given in Section 12.3.5.

Theorem 12.3.1. Let Y and S be the sample mean and sample covariance matrix based
on n independent observations from Ny(u, X). Then:

(a) The MLE of w and X areY and S, respectively.
(b) Sufficient statistics for (u, X) are (Y, S).

12.3.5 Sampling Distributions

Results given in the following theorem are important for inference when sampling from a
multivariate normal population.
Theorem 12.3.2. Let Y1, ..., Y, beiid from Ny(u, X). Then the following are true:

(a) V(Y — ) ~ Np(0, %).

(b) (n—1DS~Wyn-1,%).

(c) Y and S are independent.

(d) n(Y — )" 271 (Y — ) ~ x}.

(e) T2 =n(¥ — wTS(¥ - w) ~ GLFpnp.
Proof of Theorem 12.3.1.

(a) The likelihood function L = L(p, X¥) is given by
L= (1v2x) " (120" exp[-1/2) D - T2V - )]

Maximizing L with respect to ¢ and X' is equivalent to minimizing —2log L with
respect to 4 and X. Since

Ywi-w'zlvi-w=> ;- ;-
+n¥ -wlz 1Y -p
=ntrace(X18) + n(Y - w2 1(Y - ),



388 THEORY AND METHODS OF STATISTICS

we have
—2logL = ntrace(X718) + n(Y — )T =71(Y — p) + nlog(| =) + nplog2n).
Clearly, if we minimize —2 log L with respect to u, the minimum occurs at g = Y. So
—2logL(Y, X) = ntrace(X~'8) + nlog(|X|) + nplog(2r).

In order to show that § is indeed the MLE of ¥, it is enough to show that the quantity
trace(¥18) + log(| ¥|) is minimized at ¥ = S. Now

trace(X718) + log(|X|) = trace(X~18) — log(|= 1))
= tmce(Sl/ZE_lSl/z) - log(‘sl/zz_lgl/zb + log<|S|)

= trace(R) — log(|R|) + log(S)),

=12, . = =12 =12
where §"7 is a symmetric square rootof Sand R = § Zy-1gt

eigenvalues of R. Then

.LetAy,...,Apbethe

trace(R) — log(|R)) +1og(IS)) = > " 1; — Y _logx; + log(|8)).

The last quantity is minimized when A; = --- = 1, = 1, that s, R = I. Consequently,
»=8
(b) Follows from the factorization theorem.
O
Proof of Theorem 12.3.2. The proof of part (a) is obvious. The proofs of parts (b) and
(c) mirror their univariate counterparts. Part (d) follows from part (a). We now present the
proof of the result in part (e).
NotethatR; = n(Y — )T 21 (Y —p) ~ X,%- Letd = /n(Y — p). Now we will use Property
(5) of Wishart distribution from Section 12.2. Since Y and § are independent, conditionally
onY,
Ry=d"z7la/[d" (n -1l ~ x4y

Since this conditional distribution does not depend on Y, we conclude that R, ~ X%—p
unconditionally, and, R; is independent of Y and hence of R;. Therefore,

(n-VUp Ri/p (n-1p
n—p R/n-p) n-p

Ry
T2 =(n-1)— = b
(n )R2 p.n—p

12.4 One-Sample Inference

Let Yy,...,Y, be iid Ny(u, X). It is of interest to obtain the estimates of u, X, and
confidence regions for . In some cases we may be interested in testing
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I. Ho: p = pgagainst Hy: p # pg (pg known).
Il. Ho: ¥ = ¢¥yagainst Hy: ¥ # ¥y, where ¥ = Du, Dis an m x p matrix of rank m < p,
and D and ¥ are known.

There are many examples of the second testing problem. A particular characteristic
of the precision instruments produced by a company is considered to be important and
the company takes a random sample of n instruments. The characteristic is measured
by four engineers and thus there is a vector of four measurements for each instrument.
Ifu = (u1,...,04)7 is the mean vector, we may be interested in testing if these four
measurements are same on the average, that is, Hy: 1 = u2 = pu3 = p4. This can be
restated as a testing problem given in (II) with

1 0 0 -1\ (" 1 — g 0
v=10 1 0 —1||"®|=u2—ss|andyy=]0].
o0 1 —1/|" 1 — i 0

1a

12.4.1 Confidence Ellipsoid for u

Consider the random ellipsoid
A={w:n¥ -wls 'Y -w <cy),

where ¢, = ('Z__l)p Fyn-—po and Fyp_p is the (1 — a)-quantile of the F-distribution with

df = (p,n — p). This method has been already discussed in the context of Linear models
(Section 11.6.1in Chapter 11). Since Py, 5 [pt isin A] = 1—«, the set Ais called the confidence
ellipsoid for u with confidence coefficient 1 — «. When p = 2 or 3, it is not difficult to get
a plot of this ellipsoid. However, it is not possible to visualize this ellipsoid when p > 4. In
order to obtain confidence intervals for the individual components of u, one can consider
the confidence shadows. However, this may sometimes lead to an inefficient method for
simultaneous inference. We discuss two methods for constructing confidence intervals for
linear combinations of u.

12.4.2 Simultaneous Confidence Intervals

Following the ideas given in Section 11.6.1 of Chapter 11, we present two methods for
constructing simultaneous confidence intervals for linear combinations of the mean
vector p. Proofs are not given since they are the same as in Chapter 11.

(i) Scheffé method: Simultaneous confidence intervals for all linear combinations I” u, [
in RP, with a family confidence coefficient of 1 — « are

T 177 + JeqsUTY),

where s2(1"Y) = 17Sl/n and ¢, = (';illzp Fon—pa-
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(ii) Bonferroni method: Simultaneous confidence intervals for m linear combinations
llT;L, e l,Tnu with a family confidence coefficient at least 1 — « are

P 'y +Bs0I'Y), i=1,...,m,
where B = t_1,0/2m)-

As discussed in Chapter 11, the Bonferroni method may be inefficient if m is not small
since the multiplier B increases as m increases.

12.4.3 Hypothesis Testing

We now consider the two hypothesis testing problems involving the mean vector p
mentioned at the beginning of this section.

I. Suppose we want to test Hy: p = pg against Hi: p # py (g known). Then the test
statistic is Hotelling’s T2 statistic introduced earlier: T? = n(Y — ug) 7S~ 1(Y — py).
Under Hy, T? ~ %Fp,n_p. We may reject Hy at level « if T2 > ¢, where

_ (m—Dp
@ p—p FP’”—PrO"

Il. Lety = Du, where D is a known m x p matrix of rank m < p. Suppose we want to test
Hy: ¥ = ¢ against Hy: ¢ # ¥, where ¢ is known. Then the appropriate test statistic
is

T2 = n( — ¥o) T (DSDD) L (G — yg).
Under Hy, T2 ~ %Fm,n_m. So we reject Hy at level « if T? > %Fm'n_m,a.

The second testing problem is the same as the first if we take the observation vectors to
be W, = DY4,...,W,, = DY,.Note thaty = W = DY ~ N,,(Du, DXDT”) and an unbiased
estimate of DX D' is DSD”, where S is the sample covariance matrix based on the sample
Yi,....Y,

12.4.4 Likelihood Ratio Test
Let us denote (g, X¥) by 0. The likelihood function is
10) = (1327) " (1)1 2)" exp[-01/2) Y - wT 27 ¥ - w)],

The likelihood ratio statistic for testing Hy is

_ maxgin y, L)  max{L(#): 0 in the reduced model}
T maxpL®) = max{L(#): # in the full model}

where the “reduced model” is the same as the “model under Hy.” Asymptotic theory for
likelihood ratio tests tells us, under Hy,

—2logi B x2
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as n — oo, where

t = (# of parameters estimated under the full model)
— (# of parameters estimated under Hp)

:p,

For large n, we reject Hy at level « if —2log 2 > Xz%,a' It should be noted that the chi-square
approximation for —2log is valid asymptotically, and it is possible to obtain the exact
distribution of —2 log A using Theorem 12.4.1 stated below.

What is the relation between the likelihood ratio test statistic and Hotelling’s 722 The
following result provides the answer when the true mean p is in a small neighborhood
of MO-

Theorem 12.4.1. Consider the problem of testing Hy: p = o vs Hi: u # po on the basis
ofan iid sample Yy, ..., Y, from Ny(n, X).

(a) The likelihood ratio test statistic for this testing problem is » = |S|"/? /|So|"/?, where
So=n"1Y(Y; — o) (Y; — wo) ' and 8 is as given in Theorem 12.3.1.

(b) Let T?> = n(Y — up) TS 1 (Y — o). Under P, 5, where p is in the set
Ap={w |lu—poll <cn},cn—> 0asn — oo,

—2logh = T? + op(1).

Remark 12.4.1. An examination of the proof of Theorem 12.4.1 shows that if ¢, is of
order n~1/2, then the op(1) in the last theorem can be replaced by Op(1/n). Hence, under
Hp: p = pg, or under a contiguous alternative of the form u = uy + n~'/25, we have
—2logi = T2 + Op(1/n).

The following important identity will be used in the proof of Theorem 12.4.1

So =8+ —u)¥ —np)7,

where Sy is as given in the theorem.
Proof of Theorem 12.4.1.

(a) We use the expression for the likelihood function L(u, X¥) given in the proof of
Theorem 12.3.1. Note that the MLEs of p and ¥ are obtained by maximizing L(u, X)
over u and X. Since the MLEs of p and ¥ are Y and S, respectively, we have

maxL(n, ) = L(Y, §)
wx

= (yv2x) " (118) " exp -1/ Y0 - DTS (7, - D]
= (yv2=) " (1/18)" exp-pny2.

When g = pg, we may write the likelihood as
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Lo, ) = (1/v/27) " (1/121)"? exp[ -(1/2) 3 (Vi — mo) T Z71 (¥ = o)
- (1/«/%)npnp(1/|z|)”/2 exp[—(n/Z)tmce(E’lSO)].

The arguments (Proof of Theorem 12.3.1) employed in obtaining the MLE of ¥, when
1 is unknown, can be used when p = u,. Basically the same arguments show that
L(pg, ¥) is maximized at ¥ = Sy where

1 Y. Y: T
SO—nE ( l_M’O)( l_l"'()) .
Consequently,

max_L(u, X) = max L(pg, X)
n=po, % P

= <1/«/ﬂ>np(l/|so|)n/2 exp(—(n/Z)tmce(SaISo)>
- (1/J§)"’0(1/|so|)’1/2 exp(—np/2).
Hence the likelihood ratio statistic for the testing problem is

maxy—y,, » L, X) 18"/2
max, y L(g, )  |So|"/2’

(b) Using the identity stated before the beginning of the proof of this theorem, we can
express the likelihood ratio statistic A as
1 1
3_1/2803_1/2 I+ bbT|

A=

where b= 8§ /*(¥ - o).

It is not difficult to check that the matrix I + bb” has an eigenvalue equal to 1 with
multiplicity p — 1, and the remaining eigenvalue is 1 + || b||?. Since the determinant of a
matrix is the product of its eigenvalues, we get

— 1 — 1
I4+bbT =1+ b2 =1+ —po)'8 (T —pug) =1+ T
Since S = X + op(1) and Y = u+O0p(n—1/2) (as n — o0),

2 . 7 2 % 2
T2 < nI[¥ = wolISI = nIF = Wil + 1w = ro)ll | IS = 0p(m)

onthesetA, = {u: || — poll < cn}, and this implies T?/(n—1) = op(1) on the set A,,. Hence

—2loga = nlog(l + T?/(n— 1)) = T? + op(1).
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12.5 Two-Sample Problem

Suppose that we have two independent samples from two multivariate normal popula-
tions with different mean vectors, but the same covariance matrix. Let Yy, j = 1,...,m,
be iid Ny(py, ¥) and Yy;, j = 1,..., n2 be iid Np(u,, X). We assume that the samples {Y;}
and {Y;} are independent. We address the following two issues:

(a) testfor Ho: pq = pp against Hy: py # po.
(b) confidence statements for p; — 5.

12.5.1 Estimation
The MLEs for u; and u, are

A=Y =(0/n)) Yyj and iy = Ya. = (1/n2) Y _ Yy,
An unbiased estimate of X is

S = Spooled = (11 + 12 — 27 [(n] — D81 + (n2 — DSy],

where 8; and S, are the sample covariance matrices on the basis of {Y; fi=1...,m} and
(Yo j=1,...,m2}, respectively, that is,

Si=n— DY (¥ -V Y, i=12
J

As in the univariate two-sample problem, the § = Spoleq is @ better estimator of ¥ than §;
orS,.

The following result is useful for inference in two-sample problems.

Theorem 12.5.1. Let us denote u; — p» and its MLE ji, — fi, by § and 3, respectively. The
following hold:

(a) (i1, 15, S) is sufficient for (uy, po, X). .

(b) ji, ~ Np(py, 1/n) X)), Ly ~ Np(py, (1/n2)X), and § ~ Np(8, (1/n1 + 1/n2) X).
(c) (n1+n2—2)8~ Wy +nz—2,%).

(d) [i1, ito, and S are independent.

(e) The two-sample Hotelling T2 statistic

T2 = (1/n; +1/np) L@ - 8T8 15 -9

(n1+n2—2)p

has the same distribution as n1+n2_p_1Fp,m+n2,p,1.

When ny + np — oo, the two-sample Hotelling’s 72 z X,§~
Proof of Theorem 12.5.1. We only provide a proof of parts (c) and (e) since the rest are
not difficult to establish.
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(c) Note that (n; — 1)8; ~ Wy(n1 — 1, %), (n2 — 1)S2 ~ Wy(n2 — 1, ¥) and that §1 and S
are independent. Hence

(m +np—2)8 =g — )81 + (n2 — 1)S2 ~ Wp(ny +np — 2, X).
(e) We will argue as in the one-sample case. Let
d=(1/m +1/n)~ V25 - ),
R =1/n;+1/np) 16 -8)Tx1(@§ - 6), and
Ry =dT'xYd/d” (ny + n» — 2)8)71dj.

From part (a), Ry ~ Xl%' From part (d), it; and ji, are independent of S and hence
conditionally on ji; and fi,, Ry ~ Xﬁl trp—p—1 (by Property (5) in Section 12.2). Since
this conditional distribution does not depend on ji; and ji,, we conclude that

Ry~ x2, +ny—p—1 unconditionally, and Ry and R; are independent.

Therefore,

2 _ R
T =N +np—2)—
Ry

_ (m+mn-2p Ri/p
m+ny—p—1Ry/(m+ny—p—1

(ny +n2 —2)p
n+ng—p—1 pmtn=p-l

12.5.2 Hypothesis Testing

We want to test Hy: pq = p, against Hi: pq # p, at a level of significance . Consider the
following Hotelling’s T? -statistic
T2 = (1/my +1/n2) "Ly — ) TS L@y — ).

(n1+n2—2)p

Under Hy, T? has the same distribution as I —p—T

Fp ny+n,—p-1. So we reject Hy at level
o if T? > ¢, where

_ (m+n-2p

g =— " ——F, —p-la-
o n1+n2—p—1 p,m+nz—p—1l,a

12.5.3 Confidence Ellipsoid for u; — u,
Consider the ellipsoid
A=(8:(1/n1+1/n) Yy —fio — 0TS iy — o — 8) < cal-

Since Py, u, x[m1—n isin A] = 1—a, Ais a confidence ellipsoid for u; —p, with confidence
coefficient 1 — «.
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12.5.4 Simultaneous Confidence Intervals

(a) Scheffé method: Simultaneous confidence intervals for all linear combinations 1"s 1
in R” and § = pu; — p,, with a family confidence coefficient 1 — « are given by
175 + \/GS(ITS), where § = fi; — fi, and s2(178) = (1/n1 + 1/n)17 SL.

(b) Bonferroni method: Simultaneous confidence intervals for llTS, e l,TnS with a family
confidence coefficient of at least 1 — « are

1;5: lng + tn1+n2—2,a/(2m)5(llrg)» i=1,...,m.

12.6 One-Factor MANOVA

Suppose that we have k multivariate normal populations with possibly different mean
vectors, but the same covariance matrix. Let {Y;;:j = 1,...,n;} beiid Np(u;, X),i=1,..., k.
We may write the one-factor MANOVA model as

Yij=[l,i+€ij, j= 1,...,ni, i=1,...,k,
where {e;;} are iid Ny, (0, X). We can also rewrite the above as a factor-effect model
Yii=n+a;+e

where p =Y (n;/n)p;, ¢; = p; — pand n = ny + - - - + n is the total number of observation
vectors.
The following issues are of interest:

(a) test Hy: pq = --- = p against Hy: notall u;’s are the same.
(b) confidence statements about u;’s and «;’s.

12.6.1 Estimation

MLEs for pq,...,uiare fi; = Y;. = (1/n;) Zj Y, i=1,...,k An unbiased estimate of the
covariance matrix X is

1
S = p— k[(nl — 181 + -+ + (g — 1)S;], where
1 - 5.\ T
Si= =7 2 Wi~ Y ¥y = ¥)
j
is the sample covariance matrix on the basis of the ith sample,i = 1, ..., k. The MLEs for u

and «; are
ﬁ,: Y., &i = Ai—[iZYi, -Y..
As in one- and two-sample cases, the MLE of ¥
~ 1
S= ;[(nl - DS+ -+ (ng — 1)Sg]

is a biased estimator.
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The following result is useful for inference in one-factor MANOVA.

Theorem 12.6.1. Let iy, ..., iy be the sample means based on independent random
samples from Ny(iy, X), . .., Np(py, X), and let S be the pooled covariance matrix. Then the
following hold:

(a) (_;11,...,ﬂk,S) is sufficient for (uq, ..., g, X).

(b) Y ~ Np(u;, (1/n)X).

() it ~ Npp,(1/n)X).

(d) &; ~ Np(a;,(1/n; —1/n)X).

(e) iiy,..., i andS are all independent.

(f) (n—kS~Wy(n—k, 2.

(9) Whenpy = =pp, Y m(¥; =Y. )Y = Y.)I ~ Wyk—1,%).

The proof of this theorem is not given. The results in it can be obtained using arguments
similar to one- and two-sample cases given above, and by borrowing appropriate results
from univariate analysis of variance.

12.6.2 Hypothesis Testing in One-Factor MANOVA

Suppose we wish to test Hy: p; = --- = pj against Hy: not all u;’s are the same. This is
equivalent to testing Hp: 1 = - - - = o = 0 against H;: not all «;’s are equal to 0. We define
a few matrices analogous to the various sums of squares in the univariate case. Total sum
of squares and products (SSP), between group SSP and within group SSP, as well as their
corresponding degrees of freedom are given below

T=YY(v;-Y.)¥;-Y)!, df=n-1,
ij
B= Zl’li(?i, —?)(171 —7..)T, df =k— 1, and
W= 3w -Y)w;-Y)!, df=n-*
ij
It is fairly easy to check that T = B+ W.

Theorem 12.6.2. Consider the problem of testing Hy: o1 = - - - = oy = 0 against Hy: not
all a;’s are equal to 0, in one-factor MANOVA. The likelihood ratio test statistic is

N LA S
*—{m} =4

where A = % is called Wilks' lambda.

The proof of this result will be given below in Section 12.6.4, but we describe the
inference procedures first. The exact distribution of the likelihood ratio statistic A is
complicated even under Hy. In some cases we know the exact distributional results as
given below. However, for the general case, we may use the asymptotic theory. From the
theory of likelihood ratio tests, under Hy,

D 2
—2logxr = —nlogA = Xp(k—1)
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as n — oo. In order to obtain a better asymptotic approximation, Bartlett made a suitable
modification to the test statistic. According to his modification, under Hy,
1 k)/21log A 3 2
_[n_ _(p+ )/ ] Og g Xp(k—l)’
as n — oo. If a is the given level of significance, we may reject Hy at level « if

—[n-1-—(p+k)/2]logA > XS(k—l),a'

12.6.3 Simultaneous Confidence Intervals

If we are interested in constructing simultaneous confidence intervals for o;;, [ = 1,..., p,
i=1,...,k, then the Bonferroni method yields the intervals

aji @ity gy epk)S@in),

where &;; is the Ith component of &; and s?(&;;) = (1/n; — 1/n)sy; and sy is the Ith diagonal
element of S. Similarly if we want to construct simultaneous confidence intervals for all
pairwise differences oy — oy, 1 < i # 17 < k, I = 1,...,p, with a family confidence
coefficient of at least 1 — «, then the intervals are

o — ot &g — Gy E by ko ipk(k—115 @i — &),
where &;; — &;; is the Ith component of &; — &y = Y;. — Y., and
2@y — ) = (1/n; + 1/np)sy.

Clearly, the Bonferroni method may lead to wide intervals if p (and/or k) is not small. If k
is not large, we may use one-factor ANOVA models to construct Scheffé- or Tukey-type (in
the balanced case) confidence intervals for oj; — oj;, 1 <i#1i < k,foreach/=1,...,p, so
that the family confidence coefficient is at least 1 — «.

12.6.4 Exact Distributions of Wilks’ Lambda

In general it is not easy to obtain the exact distribution of Wilks’ A statistic and one usually
uses the asymptotic distribution with Bartlett corrections. However, there are some special
cases where exact distributions have been obtained and some of these are presented in
following table:

| p=1] k=2 | EE152 ~ Ay

1
|,O:2 | k>2 | n—k=11-vA

|
|p31 | k=2 | DPNIA R |

_ n—p=2 1—vA
|p2'| | k=3 | o T ~ Fap,2(n—p-2)
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Proof of Theorem 12.6.2. Note that the likelihood is

pn _
Lpy, i B) = (1/¥27) 7 (1/121)"2 EXP{_ZZ(YU'_IH)TE I(Yij_ﬂi)/2:|-
i

Under Hy: pq = - - - = i, the MLE for the common mean p is fi = Y.. and the MLE for X is

So=1/mY > (V;-Y.)(¥;—-Y.)"
i
For the general case, the MLE for p; is fi; = Y;. and the MLE of X is
S=/my > (W -Y;-¥)
i

Following the argument similar to the one- and two-sample cases, we can show that

max  L(py,...,mp X) =L(Y., S

= <1/«/§>pn(l/|so\)n/2 exp(—pn/2), and

max L(;Ll,...,uk,z):L(Yl_,...,Yk,,S)
ATRN 799

_ (1/«/5)”"(1/|S|)”/2 exp(—pn/2).

So the likelihood ratio test statistic for testing equality of the means is

=\ n/2
o Gy 3 LR ke B) (181 <W|)”/2
maxy, . up,» Ly, g X) [Sol |T|

The last equality holds since Sy = (1/n)T and S=1(1 /MW,

12.6.5 More Tests for One-Factor MANOVA

In Section 12.6.2, we have discussed the likelihood ratio test for Hy: a1 = -+ = a =
0 against Hj: not all ;s are 0. There are three other well-known tests, and computer
packages routinely report them. These are

(a) Lawley-Hotelling trace: trace(BW1),
(b) Pillai’s trace: trace(BT~1), and
(c) Roy’s largest root: the largest eigenvalue of BT !,

For each of these tests, we reject Hy if the corresponding statistic is larger than a
threshold value. It turns out that all these four test statistics can be written as functions
of the eigenvalues of BT !. Let i > --- > ip be the eigenvalues of B with respect to T (ie,
the eigenvalues of T~!/2BT~1/2, where T~'/? is symmetric). Then we have
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1. . p ~ 12
(a) likelihood ratio: {ni=1(1 — Ai)} ,
(b) Lawley-Hotelling tface: Zle ri /(1 — x),
(c) Pillai’s trace: Zle A)Ll-, and
(d) Roy’s largest root: 1.

Remark 12.6.1. Since the rank of the matrix Bis s = min(p, k—1), the number of nonzero
generalized eigenvalues of B with respect to T is equal to s. Thus ij >0,j=1,...,s,and

the remaining A j's are 0.

Interpretation of Tests in MANOVA

When testing Hp: o1 = - - - = oy = 0, the reduced and the full MANOVA models are
Y;j = n + ¢;j (reduced),
Yj=p+o;+ e (full).

Now if we look at {eTYl-]-}, e € RP, then we get the reduced and full models for the one-factor
ANOVA case

eTyl.]. —elp+ eTsl-j (reduced),
eTY,-j = eTIL + eTal' + eTelj (full).
Since the coefficient of determination R?(e) is the proportional reduction in the residual

sum of squares from the reduced to the full model (following the terminology used in
Chapter 11), we have

SSEp — SSEp Y. ni(e'¥; —e'Y.)?  e'Be

R%(e) = = —_— = : o)

SSER Yiyjely;; —elY.)? el'Te
Letiy > -+ > ip be the generalized eigenvalues of B with respect to T, that is, A1, ..., ip
are the eigenvalues of T~/?BT~'/2 with the corresponding eigenvectors i, ..., ity

(Section B.4). If we denote &; = T~ '/?ii;, then R%(&;) = A;, i=1,...,p.

Clearly, R?(e) is maximized at e = &; and R%(é;) = A,. The next largest value of R(e)
is obtained by maximizing it over e subject to the constraint e/ Té; = 0. This maximum is
attained at e = &, and R?(é») = A, . This argument can be carried out further and it shows
that {R?(e;)} are the same as the generalized eigenvalues {%;} of Bwith respectto T.

We can now express the four test statistics given above for the one-factor MANOVA in terms
of R(e1),...,R*(ep),

- ) ~ 12
(a) likelihood ratio: {Hf’zl(l —R? (ei))} )
(b) Lawley-Hotelling trace: Y7 R?(&;)/[1 — R%(&))],
(c) Pillai trace: Zf’zl R?(&)), and
(d) Roy’s largest root: R%(e;).
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12.7 Two-Factor MANOVA
Let us consider a two-factor balanced MANOVA model

Yijk =n+o;+Bj+ @B)jj + &jj
k=1,...,n0,j=1,...,b,i=1,...,a,where {g;;} are iid Ny(0, X),

dai=0, 3 f;=0,

Z(“ﬂ)ij =0forallj, and Z(“ﬂ)ij = 0 forall i.
i J

For notational simplicity we write y ij for (@B);j. The vectors {a;}, {8 i and {y ij} are the main
effects of factor A, main effects of factor B, and interaction effects, respectively. The total
number of observation vectors is n = npab.

12.7.1 Estimation
The MLEs of g, «;, B, and yijare

~I

B] = Y] —Y..,and

=

.y i

=Y, Y.,
i~ Y.j. +Y...

~I
<l &

-

Vij=

We now write down the sums of squares and products matrices along with their degrees of
freedom,

S§SPiot = ZZZ(YU]C _?"')(Yijk — 7...)T, df =n-1
i j K

SSPy=ngh> &a!, df =a-1,
ssPg=npay BiBj, df=b-1,
SSPap=noy_ Y pypl, df =(@-Db-D),

rJ
8§8Pres = Z Z Z(Yijk - ?ij‘)(Yijk - ?i]z)T, df = n—ab.
i j k

The following lemma lists some useful facts.
Lemma 12.7.1. For a two-factor MANOVA, the following hold:

(a) SSPyt = SSP4 + SSPg + SSP4p + SSP;es.

(b) df (SSPot) = df (SSPa) + df (SSPg) + df (SSPag) + df (SSPres) .
(c) SSP4, SSPp, SSP g, and SSP.¢s are independent.

(d) SSPies ~ Wy(n — ab, X).

(e) An unbiased estimate of X is ﬁSSPreS.
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12.7.2 Hypothesis Testing in Two-Factor MANOVA

We will write down here only the likelihood ratio tests. However, as in the one-factor
MANOVA case, there are other tests such as those by Pillai, Lawley-Hotelling, and Roy, and
computer packages routinely report them.

Test for Interactions
Suppose we wish to test Hy: y; = 0 for all i and j, against H;: notall y; are zero.

Wilks’ lambda for this test is A = i3kl and the likelihood ratio test statistic is
|SSPsp+SSPres|

A = A™?2 Under Hy, using Bartlett’s modification we have

p+l—(@-1Db-1) D o
- {ab(no -1 - 2 log A — X(a—l)(b—l)p’

as n — oo. We can use this result to obtain the critical value or the p-value in order to carry
out the test.

Test for the Main Effects of Factor A
If we wish to test Hp: «; = 0 for all i, against H;: not all «; are zero, Wilks’ lambda criterion
isA= lss};q& and the likelihood ratio test statistic is A = A™/2.
A+SSPres|
Once again, we can use the following asymptotic result to carry out this test. Under Hy,

using Bartlett’s approximation we have

p+1l—(a-1)

— {ab(no -1 - 5

D 2
}logA = Xa—1)p’

as n — oQ.

Test for the Main Effects of Factor B
If we wish to test Hy: = 0 for all j, against H;: not all 8 ; are zero, Wilks’ lambda criterion

. — |SSPyes] R T ) .
is A = rg5p, e8P and the likelihood ratio is » = A’/2. It turns out that under Hy (using

Bartlett’s modification),

p+1—(b-1)

- {ab(ng —1) - 5

D 2
}IOgA — X(b—l)p’

as n — oQ.

12.7.3 Simultaneous Confidence Intervals

Simultaneous confidence intervals with a family confidence coefficient of at least 1 — « for
all the pairwise differences in the main effect of factor A are given by

aj —apy &l'l _&i’l +BS(&il —&i/l), 1<i# i'<a I= 1,...,p

where, B = t,,_ap,a/[paa—1)1, S(@ii—&i1) = +/2s1/(nob), and sy is the [th diagonal element of .
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Simultaneous confidence intervals with a family confidence coefficient of atleast 1 — «
for all the pairwise differences in the main effect of factor B are given by

Bit — By Bir— B+ BsBi — By, 1<j#j <b, I=1,...,p,

where B = t,_ap o /pbr—1)) a0 $(Bj1 — Bjr)) = ~/2851/(noa).
Simultaneous confidence intervals with a family confidence coefficient of at least 1 — «
for all the pairwise differences in the mean response are given by

ijl = B Bjp — g+ B — ),
l<i#i<a 1<j#j<b G)#0GJ) I=1...,p

where B = tnfab,a/[pab(ubfl)] and S(ﬂijl — ,al'/j/l) = \/m [Note that ﬁl] = Yl]]

The simultaneous confidence intervals given above are expected to be wide. Therefore,
we may use Tukey’s method for pairwise comparisons for each of the p univariate ANOVA
models with a confidence level of 1 —«/p so that the overall confidence level is atleast 1 —«.

12.8 Multivariate Linear Model

In the usual linear model framework, the response for each of the n observations is real
valued. Thus the observed vector of responses Y is n-dim, and if the design matrix X is
nx k, then the Gauss-Markov model is written as Y = X8+, where 8 is an unknown vector
of parameters and ¢ is an n x 1 vector of mutually uncorrelated random errors with mean
zero and common variance o2 (Section 11.1 in Chapter 11). If each of the n observations
is p-dim, then we have an n x p matrix Y of observed responses which can modeled by
a generalization of the framework described in Section 11.1 of Chapter 11 resulting in a
multivariate linear model. We have also seen in Chapter 11 that the Gauss-Markov setup
and its extensions include regression, analysis of variance, analysis of covariance, random-
and mixed-effect models as special cases, and the same is true for their multivariate
counterparts.

In the multivariate case, we have p columns of n x 1 observation vectors Yy, ..., Y, and
for each observed vector of responses, the model is

Yj:Xﬂj-i—é‘j, j=l,...,p,

where ; is a k-dim unknown vector of parameters and ¢; is an n-dim vector of mutually
uncorrelated mean zero random errors. Thus we have

(Y1, Ypl=X[Br,. . Bp| +[e1, .. ep), 0

Y=XB+e,
where Y is n x p with columns Y,..., Yy, Xisn x k, B is k x p with columns B,..., B,
and ¢ is n x p with columns ey, .. ., &p. This is the multivariate linear model and it has the

same formal structure as in Eq. (1) in Chapter 11. It is possible to analyze each of the p
linear models separately, but this strategy has a drawback since the p observations in each
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row of the response matrix may be correlated, that is, the p elements in each row of ¢ may
be correlated, and a procedure which analyzes the p linear models separately, fails to take
into account this dependence. A joint analysis of these p models is therefore preferable. In
the subsequent discussion we assume that X’ X is nonsingular.

In the multivariate linear model, we often assume that the rows of & are iid Ny (0, X).
The goal is to estimate the matrices of unknown parameters g and ¥, carry out inferential
procedures such as tests of hypotheses and construction of confidence intervals, and make
predictions whenever necessary. We do not discuss random- and mixed-effect cases here.
We write down a few basic results on the estimation of g and ¥, and the distributions of
the estimates.

12.8.1 Estimation of g and ¥

The normal equations and least squares estimate of 8 are similar to those in the univariate
case, and they are

xTxp=xTy, p=uTx)"xTy.
In order to see why the same equations come up, we may consider rewriting the model.
Postmultiplying both sides of the multivariate linear model by X1/ leads to
[Ri,.... Ryl =X[y1,.ovp] + 61, 6p), or
R=Xy +3,
whereRj = Y; X ~1/2, Y= ﬂjz_l/z, 8;=¢;X71/2,j=1,..., p.Under normality (ie, the rows
of e are iid Ny(0, X)), the error vectors 8y, . . ., §, are mutually independent, and each §; has

n entries which are iid with mean 0 and variance 1. Even if the assumption of normality is
not valid, 1, ..., §, are mutually uncorrelated, and we can minimize

Y IR — Xyjl?

with respect to yq,...,y p in order to get the least squares estimates, which lead to the
following p normal equations

xTxy;=x"R;, e xTxp;x712=xTy;x"12, ie,
xTxp;=xTy;, j=1,...,p or
X'xp=xTy, iep=x"x)"xTy.
Since
> IR — Xy}l = trace(R — Xy)T (R — Xy))
= trace(Y —XB)T (¥ —=Xp) =z~ 1),

it follows that the normal equations are obtained by minimizing trace(Y — Xg)T
(Y — XB)x 1) with respect to 8.
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An unbiased estimate of ¥ is given by
1 Cea Ty va
§=_— ¥ -Xp)" ¥ —XB).

As in the univariate case, the estimated response Y =X ﬁ and the residuals ¢ = ¥ — X /?
are uncorrelated, and are independent when the rows of & are iid N, (0, X), in which case,

Sand g are independent as well.

12.8.2 Properties of the Estimates of g and ¥

For the rest of this section, we assume that the rows of & are iid N, (0, X). We have the
following result which can be used for tests of hypotheses and construction of confidence
intervals.

Theorem 12.8.1.

(a) The MLEs of B and X are
f=u"07xTY, S -xpTW - xP.

(b) (ﬁ, S) are sufficient for (8, X).

(c) Y = Xﬁ ande =Y — Xﬁ are independent.

(d) /3 and S are independent.

(e) Forany vector binRP, Bb ~ Ni(Bb, b' Tb(X"X)~1).
() (n—Kk)S~ Wyn—k X).

12.9 Principal Components Analysis

Principal components analysis is a widely used method in multivariate analysis, and its
goal is to reduce the dimensionality of the data with as little loss of information as possible.
We first describe the basic ideas behind principal components, and discuss estimation
issues later. Let Y be a p-dim random vector with mean x and covariance matrix X¥. In
some cases we assume that the diagonal elements of ¥ are 1 which means that ¥ is a
correlation matrix.

If {e1, ..., ep} is an orthonormal basis of R”, then
p
Y—p= Z[ejT(Y - ;L)]ej, and
j=1
P 2
1Y — ) = .Zl["fT(Y_ w]
=

Note that el (Y — p) is a random variable with mean 0 and variance ejTEej. The total
variability of Y is
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P P P
ZVarwﬂ=2E[Yj—uj]2=ﬁ{2wj—uﬂ2}
j=1

j=1 j=1
= E[|lY — pl|?] = trace(X).

On the other hand
p p 2 2
" Varl¥jl = ENY — l?) = Y Ele] (¥ = )| = )" Varle ¥1.
= j=1 j=1

Now if it happens that for some k < p (and hopefully k is small),

k
E[lY — nl?] = ZE[ejT(Y - m]z, and

j=1
P . 2
Z E[ej (Y — [,L)] is small,
Jj=k+1
then the total variability of Y is explainable (to a large extent) by the variability of k
random variables elTY, cey e,fY. Ideally, the reduction in dimensionality is substantial if k
is small in comparison to p. Let .1 > --- > 1, be the eigenvalues of X with uy, ..., u),,

the corresponding orthonormal eigenvectors. From the properties of eigenvalues and
eigenvectors (Section B.2) we have that

max[elTEel 4+ 4 e,fEek: el,...,e orthonormal] =i+ F+ A
and the maximum is attained at e; = uy, ..., er = uy. So
max[Var[elTY] ++ Var[e,{Y]: ey,..., e orthonormal]
= Var[u] Y]+ -+ Var[ul Y] = hy + - + ..
Remark 12.9.1.

(a) The random variable ulT(Y — ) is called the first principal component of Y,
uzT (Y — p) is the second principal component, and so on. The vectors u1, up, ... are
sometimes called the loading vectors.

(b) Principal components and the eigenvalues are not unit free. For this reason, in many
cases one may prefer to carry out principal components analysis on the standardized
variables which means that X is the correlation matrix.

() Notethatmy = (A1 +--- 4+ Ag)/(A1 + - - - 4+ Ap) is the proportion of the total variability of
Y explained by the first k principal components. We can expect k to be small when
the variables are strongly correlated. When the variables are mutually uncorrelated,
principal components analysis is not useful.

Here is a summary of the properties of principal components.
Lemma 12.9.1. Let Z; = ul (Y — p), s = 1,2,... Then:
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(a) E[Zs]=0.

(b) Var(Z;] = As.

(c) CovlZs, Zgl =0ifs #.

(d) CorrlYy, Zs] = /Asuys/ /oy, where Y is the lth component of Y, g is the Ith element of
the vector us and oy is the Ith diagonal element of X.

12.9.1 Regression Interpretation of Principal Components

LetZ; = e Tty —p),... AR e,{(Y — n) be k linear functions of the random vector Y such
that the random variables Zj, . . ., Z; are mutually uncorrelated. Now consider the problem
of predicting Y}, the jth componentof Y, from 73, .. ., Z; using a linear regression and let ‘L'jz

2

be the prediction error. Then Zp is the total prediction error for predicting Y1, ...,Y),

(each separately) using 71, . .., Z. If Z]’;l rj is quite small, then we may conclude that the
information in the vector ¥ can be well summarized by 71, . . ., Z. It turns out that Z]’.’ZI r]?
is minimized when 71, . . ., Z; are the first k principal components of Y.

Let us now justify this regression interpretation. Note that Y; — uj, Z1, ..., Z have zero
means, and hence the intercept term for the regression of Y; — u; on 73, ..., Z; is zero.
Clearly,

2
2
7= min E E BisZs ¢ -
J ﬁ]l: vﬁ]k [ » S}

Since Zi, ..., Zy are assumed to be mutually uncorrelated, the solution to this minimiza-
tion problem is given by ﬂ]?; = CovlYj}, Zs]/Var[Z], 1 < s < k, and consequently

k
rjz = Var[Yj] — ) CovY}, Zs]* /Var[Zs].
s=1
Letoy,...,0)p be the column vectors of the covariance matrix ¥, thatis, ¥ = [01,...,0p].

Then CovlY}, Zs] = el ¢}, Var[Z;] = el Xe;, and we have
(e v])2

r _Var[Y] Z Ee
S

Hence

14 ) p k (e‘z"o.j)z
T8 = Var[Y;] —
Yof = Yvarii- Y3 5

j=1 j=1 j=ls=1

=

(el's)?
ZVar[Y] ZZ 5;2]85

j=1 s=1j=1
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Since 2}11 Var[Yj] = trace(¥) and

p p
Xj(esTcrj)2 = eSTZajajTes = eSTEZes,
j=1

j=1
we have
p k T2
e. X-e
2 = trace(%) — Z S s,
J el'ye
j=1 s=1 ©§ =5
Minimizing Z]P:l ‘L'jz with respect to ej,...,e; subject to the constrains esTZes/ =

Cov(Zs, Zy1=0,1 < s £ § < k, is equivalent to maximizing

k esTEZes
> =7 2)
=1 8 Yeg
with respect to ey, . . ., e, subject to the constraints esTEes/ =0,1 <s#s < k.Thisagen-

eralized eigenvalue problem described in Section B.4. If 11 > A2 > - .. are the generalized
eigenvalues of A = ¥? with respect to B = X, the maximum value of Eq. (2) is given by
A+ Ag. Since A1, Az, . .. are the eigenvalues of B-V/2AB~V/2 = x-12x25 12 _ ¥ with
the corresponding orthonormal eigenvectors u;, uy, . . ., the maximum of Eq. (2) occurs at
es=u;,s=1,...,k.

This proves that among all the k mutually uncorrelated linear functions of Y, the
principal components Z; = u] (Y — p),...,Z = u). (Y — p) are the best linear predictors
0fY1,...,Yp.

12.9.2 Estimation of Principal Components

Till now we have discussed the concept of principal components for a random vector from
a theoretical standpoint. We now take up the issue of estimating them from the data. Let
Y1,..., Y, beiid with mean vector x and covariance matrix X¥. Note that we have made no
assumption on the distribution of ¥; (such as normality).

Even though the covariance matrix of the standardized variables is the correlation
matrix, for notational simplicity, we use ¥ to denote both the covariance and correla-
tion matrices. Similarly we use S to denote both the sample covariance and correlation
matrices. Note that if we want to find the principal components of ¥ — u, then we deal
with the covariance matrix of Y. Whereas if we want to find the principal components
of [diag(E)]_l/ 2(Y — ) (ie, the standardized variables), we deal with the correlation
matrix.

Asbefore, let A1 > A2 > - -- be the eigenvalues of ¥ with u;, uy, . . . as the corresponding
orthonormal eigenvectors. Similarly, let A > A2 > --- be the eigenvalues of § with the
corresponding orthonormal eigenvectors i, i, . . .. It is easy to guess that Xj estimates A;
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and u; estimates tu;, j = 1,..., p. The reason for “+” is that if u; is an eigenvector of X
with the eigenvalue 1}, then —u; is also an eigenvector of ¥ with the same eigenvalue A;.
Estimated principal components are Zs = ﬁST(Y -Y),s = 1, ..., p- Recall that the
population (or theoretical) principal components have zero means and are uncorrelated.
The estimated (sample) principal components have similar properties. Define the scores
of the sth principal component to be Z;; = itsT(Yi —Y),i=1,...,n Aresult analogous
to Lemma 12.9.1 holds for the sample principal components when E[-], Var[-], etc., are
replaced by the sample mean, sample variance, etc., and this is left as an exercise. In
particular,

M=

n
Zis/n=0, ZZiZS/(n —1) = ks, and
1 i=1

AiSZis’/("— 1)=0, s#5¢.

M=

1

Scree Plot

Theratio A/ 3" 4 = Ar/trace(S) estimates the proportion of total variability of ¥ explained
by the kth principal component. For this reason, it is useful to plot i/trace(S) against
k. This plot graphically displays how the eigenvalues decay. It is also useful to plot the
cumulative ratio 77 = Oa+-+ )A»k) / a4+ /A\p) against k. This gives us an idea of how
much dimensionality reduction is possible since 7y is an estimate of rp. = (A1 + -+ +
)/ (A1 + --- + Ap), the proportion of the total variability of ¥ explained by the first k
principal components.

12.9.3 Asymptotic Results in Principal Components Analysis

Asymptotic distributions of sample eigenvalues and sample eigenvectors are somewhat
complicated. It is important to point out that the asymptotic distributions depend on the
distribution of the multivariate population from which the observations are taken. This is
quite unlike the limit theorems for the estimated mean vectors and associated statistics.
Here we only deal with the case when the eigenvalues of the population covariance
matrix ¥ are distinct. When some of the eigenvalues have multiplicities larger than 1, the
asymptotic distributions of the sample eigenvalues and sample eigenvectors are not even
normal (they are mixtures of normals). We do not discuss such cases here.
As before, let the spectral decompositions of ¥ and sample covariance matrix S be

p p
Y= Z}‘ju]u]T and S = Zijﬁ]AJT,
=1 =1

where A; > A2 > --- and A1 > Ap > ---. We assume all the eigenvalues are distinct (ie, A1 >
A2 > --- > Ap). For continuous distributions, it can be shown that the sample eigenvalues
A1, ..., Ap are distinct with probability 1.
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The jth principal component of Y is Z; = u].T(Y — n). We know that E[Z;] = 0 and
Var[Z;] = A;. We also know that Z, ..., Z, are mutually uncorrelated. If the population of
Y is normal then Z, .. ., Z, are independent and Z; ~ N(0,4j),j = 1,..., p.

We will write down the asymptotic distributions of the sample eigenvalues and sample
eigenvectors. These results can be proved using the perturbation theory of matrices which
is outside the scope of this book.

Theorem 12.9.1. Let Y4,...,Y, be iid with mean p and covariance matrix X, and
assume that the eigenvalues of X are distinct. All the results below are true assuming that
n— oo.

(@) vnk —2) B Ny (0, W), where element (j, k) of W is given by Cov[ij, Z,%], where A and A
are p-dim vectors of the eigenvalues A, . . . Ap and their estimates.

(b) If the population is normal (ie, {Y;} are iid Np(u, X)), then the matrix W in part (a) is a
diagonal matrix whose jth diagonal element is given by Zk]?.

(c) Foranyl <i <k, /n(@;+u;) z Np(0, R;), where

CovlZ;Z;, Z1.Z;] T
Ri=3% oo b
S b= )0 — 1)
(d) Ifthe population is normal, then the matrix R; in part (c) has the simplified form
)\' .
— . ] ol
j#i

The results given above allow us to construct confidence intervals for the eigenvalues.

Remark 12.9.2. Even though {Z;} are mutually uncorrelated, the same is not necessarily
true for {ij}. If the population is normal, {ij} are mutually independent, and hence
mutually uncorrelated. Thus, under normality, Cov[ij,Z]%] =0,j # k, and Cov[ij,Z]%] =

Var[ij] = ZA]? when j = k. Therefore, part (b) of the last result follows from part (a). When
j#iand k # i,
CovlZiZ;, ZiZi) = ElZZy ZE) — E | ZiZ;\E 2 Z;) = E[ZjZ Z2).

Under normality, when j, k, and i are all distinct, E[ZjZkZl.z] = 0. When j = k # i, then
B(ZiZ}Z?] = E[Z].Z]E[Zl.z] = Aj;. This shows that part (d) of the last theorem follows from
part (c).

When the population is normal, estimation of W or R; is rather easy since W is a

diagonal matrix with diagonal elements 232, . . ., 23»’27, and
b
D._3. J il
l—MZ G — a2 U -
J#L

However, if the population is not normal, then we need to estimate these matrices (W and
R;) using the principal component scores. For the ith principal component, the scores are
(Zii = uiT(YI —Y):t=1,...,n}. Estimate of element (j, k) of W is
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W, = sample covariance of{(Z2 22 ):ir=1,...,n}

J
=mn-17"! {szjsz ni Ak}
Similarly
ST e
H&lk#l(/\ )G —Ap)
where v(j, k, i) is the sample estimate of Cov[Z;Z;, Z.Z;] and is given by

n
v ki) = -0 22, 22
=1

Confidence Interval for i,
An approximate confidence interval for A; with a confidence coefficient 1 — « is given by

ij + Zo/24/ Wjj/ n, where z,,» is the (1 — «/2)-quantile of the standard normal distribution.

Note that V\/]j = Zi]? for the normal case, whereas Wjj is the sample variance of {ij: t =
1,...,n} in the general case. Sometimes it may be preferable to construct a confidence
interval for log A;. By the delta method,

N D
Vn(logi; —logaj) = N(, W]j/x]?).

If the population is normal, then the natural logarithm is a variance stabilizing transfor-
mation since Wj; /)L]? = 2, and in such a case, an approximate confidence interval for log

with confidence coefficient 1 — « is given by log Xj + z4/2+/2/n. In the general case, an
approximate confidence interval for log A; is log4; & 242,/ Wj;/ (nX]?).

Estimation of mg = (A1 + - -+ + A) /(A1 + -+ + Ap)
Recall that m; is the proportion of variability of Y explained by the first k principal
components. An estimate of 7. is

Fe=0a++i)/G + -+ 4p)
= (1 + - + Ap)/trace(S).

In order to obtain a confidence interval for n, we need to find the asymptotic distribution
of 7. Let

g = (1 +  + ARG+ +Ap)

and let g, (1) be the vector of partial derivatives of g. By the delta method,

Vil — 1) 2 N0, g, )T Wg () as n — oo.
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12.10 Factor Analysis

Let Y be a p-dim vector with mean g and covariance matrix ¥. A factor model with k
common factors (k < p) is

Y-—p=Lf+eorY=pn+Lf +e, 3

where L is a p x k matrix of factor loadings (nonrandom), f is a k x 1 vector of common
factors (random), and ¢ is a p x 1 vector of specific factors (random). We assume that

E[f] =0, Cov[f] =1, E[e] =0, Cov[e] = ¥, and Cov[f,e] = 0.

Here ¥ is assumed to be a diagonal matrix with positive diagonal elements y1, ... ., Y.
Note that if the factor model s correct, then E[Y] = u and Cov{Y] = LL” +W. The goal of
factor analysis is to approximate the covariance matrix ¥ by a matrix of the form LL” + v,
where Lis p x k and ¥ is a diagonal matrix with positive diagonal elements. In other words,
factor analysis can be viewed as a dimensionality reduction method, and, in order for this
method to be useful, k should be as small as possible (at least in comparison to p).
Let Y; be the ith component of Y. If the factor model is correct, then E[Y;] = u; and

Var[Vl =B + -+ B +y;=hi+v;, i=1,...,p,

where hl2 = llzl +o 4t ll?k is called the “communality” and y; is called the specific variance.
It is important to note that the factor model in Eq. (3) is not identifiable. f Gisa k x k
orthogonal matrix and L = LG, then we can write

Y-pu=Lf +e=Lf +e,
where f = G”f. Note that E[f] = 0 and Cov{f] = I, and

CoviY]=LLT + v = iil + w.

12.10.1 Estimation of L and ¥

LetY,,..., Y, bearandom sample from a population with mean x and covariance matrix
Y. As usual the mean vector is estimated by the sample mean. The goal is to estimate
L and ¥ from the data assuming that the factor model given in Eq. (3) is appropriate
(ie, Cov[Y] = LLT + w). The following two methods are widely used for estimating
Land ¥:

(a) principal components,
(b) maximum likelihood.

Principal Factor Analysis

Let Ay > --- > )A»p be the eigenvalues of the sample covariance matrix § with
the corresponding orthonormal eigenvectors itl,...,ilp. Then the p x k matrix
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L = [)AL}/ i, .. .,i}c/ zilk] is taken to be an estimate of L, that is, the columns of L are
s 1A N ~a
lj = A}/zuj,] =1,...,k,and hence LL = Z};l Ajuju];r. Here

72 _ 32 52 » ~2
hi =0+ +15, vi=si—hi

where s;; is the ith diagonal element of the sample covariance matrix S. An estimate of
the proportion of total variability of ¥ explained by the first factor is A |2/ trace(S) =
A1/trace(S). In general, an estimate of the proportion of total variability of ¥ explained by
the jth factor is ij/trace(S),j =1,... k.

If the sample correlation matrix is used in the analysis instead of the sample covariance

matrix, then L = [ii/zﬁl, .. .,illc/zitk], where A; > A» > .- are the eigenvalues of the
sample correlation matrix with the corresponding normalized eigenvectors iy, ity, . . .. In

this case, lez = 2121 +A~ . '+2z?k' Ui=1-— lez, and the proportion of the total variability explained
by the jth factoris A;/p,j=1,2,....

Maximum Likelihood

This method typically assumes that Y7, ..., Y, are iid Ny(u, ¥). The maximum likelihood
estimates of L and ¥ are obtained by maximizing the likelihood under the constraint that
LY 'L is a diagonal matrix. This constraint eliminates the problem of nonuniqueness
of the factor loading matrix L. Explicit expression for the estimates are not available.
However, computer packages such R or MATLAB can be used to obtain the estimates of
L and v¥. Estimate of the proportion of the total variability explained by the jth factor is
||2]~||2/tmce(S),j =1,...,k where 21, ce ik are the columns of L.

If the correlation matrix is used in the analysis, the estimate of the proportion of the
total variability explained by the jth factor is ||2j||2 /pji=1,...,k.

How Many Factors

Since we are trying to estimate ¥ by a matrix of the form LL” + W, a reasonable way to

determine k is to examine the residual matrix § — (I:I:T + ¥). If all the elements of the
residual matrix are small, then we may assume that LL” + ¥ is a good approximation to X.
A more formal way to decide the number of factors is to minimize an AIC-type criterion
over k. However, we do not address that issue here.

Factor Rotation

If L is an estimate of the factor loading matrix L and L, = LG, where Gis a k x k orthogonal

. N Y - . .

matrix, then LL + ¥ = L,L, + ¥. So we may take L, to be also a valid estimate of L .
It has been suggested that one should choose L, so that for each column of L., some of
the elements are relatively large and the rest are small. Kaizer’s Varimax Rotation tries to
achieve this. The procedure is described below.
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Let L,-j = L,y-/fz,-,j =1,...,k,i=1,...,p, where Lij is the j* element in the i’
of L. Now consider the p x k matrix L, whose elements are given by Lijj’s. Note that each

row of L, has length 1 since forany 1 < i < p, ZJ 1l*l] = 1. We consider a criterion
which maximizes the variability of the squares of the elements in each column of L,. For
1 <j < k, consider a measure of the variability of {El i lip]}

2
(l/p)z i (Zl*,] ) :

Now add these measures over j = 1, ..., k, to obtain the following criterion

Q= Z(l/P)Z *ij (le )

j=1 i=1

Xk:[vananceof{ i i=1,‘..,p]].

j=1

We can maximize Q in order to obtain L, which is a rotated version of L. There is no explicit
expression for the rotated matrix, but one can obtain this estimate by using a computer
package.

12.10.2 Prediction of Common Factors

Prediction of common factors in a factor analysis setting is similar to prediction in a
random- or mixed-effect model discussed in Section 11.10 of Chapter 11. Assume that the
factor model in Eq. (3) holds, u, L, and ¥ are known (or estimated using past observations),
then the goal is to predict f when Y is observed. We restrict ourselves to predictors which
are linear functions of Y. A predictor f of f is called unbiased if E[f— f1 = 0.In the following
discussion we assume that L has rank k, and the diagonal elements of ¥ are positive. Since
we can center Y by subtracting the mean p, we assume that ¢ = 0 in the subsequent
discussion.

If we ignore that f is random and minimize the ordinary least squares criterion | Y — Lf||
with respect to f, we get a predictor of the form f = (L'L)~'LTY. Similarly, we may try
to obtain a weighted least squares predictor of f as follows. If we premultiply both sides of
Eq. (3) by w1/2, we get model of the form ¥ = Lf + & where ¥ = w12y, [ = w~1/2[,
and & = w~1/2¢. Noting that E[§] = 0 and Cov[é] = I, we may minimize |[¥ — Lf||? =
Y — Lf)TlII_l(Y — Lf) with respect to f, and this leads to another linear predictor f @ =

~) ~2)
(LTw-'L)"'LTw-1Y.Bothf "andf are unbiased linear predictors of f, but they are not
the best in terms of prediction error.
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As in Section 11.10 of Chapter 11, we may define the concept of best linear unbiased
predictor as follows. .
Definition 12.10.1. A linear function f of Y is called a best linear unbiased predictor of

fif
(i) f is an unbiased predictor of f, that is, E[f‘ —f] =0.

R 2 2
(ii) Foranya € RF, E[qu - qu] < E[lTY - an] for all linear unbiased predictors
Iy of a’f, I € RP.

Arguments used in Sections 11.10.1 and 11.10.2 lead to the following best linear
predictor

= (LT-II—lL + I)_lLTII/_lY.

We leave it to the reader to prove that the best linear unbiased predictor of f is unique and

. 23 .
isequaltof  as given above.

12.11 Classification and Discrimination

Suppose that we have k populations (each p-dim) with means uq,..., ;. and the same
covariance matrix ¥. If we have an observation vector y from one of these populations,
then the goal of the classification problem is to guess which population y comes from. If y is
closer to u; than all other means, then a reasonable guess is that y comes from population
i. It turns out that this intuition is also mathematically valid. Recall that Mahalanobis
distance between y and u; is A%(y,n;) = (y — u;)T X1 (y — n,). So a reasonable rule is:
allocate y to population i if

Ay, mi) < A%y, pp), forallj# i, ie, 4)
- 2u?2_1y+ ;LlTE_I;Ll- < —Z;LJTE_Iy—I— M]TE_IIL]‘» forallj #i.

This is called a linear discriminant rule since the criterion for discrimination between the
populations depends linearly on y.

In some cases, the prior probabilities {1, ..., 7} of the populations need to be taken
into account. For such a case, the rule given above is modified: now we allocate y to
population i if

A%(y, ) — 2logm; < A%(y, uj) — 2logmj, forallj# i. (5)

Note that the rule defined by the inequalities given in (5) is also a linear discriminant rule,
and the rule in (4) is a special case of the rule in (5) when the prior is noninformative, that
is, whenm; =m =--- =m = 1/k.

Note. If the k populations have different covariance matrices, then the rules defined by
the inequalities in (4) and (5) need to be modified, and, in such a case, we are led to what
is known as a quadratic discriminant rule. We discuss this issue below.
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12.11.1 Bayes’ Rule for Classification

Let us assume that the chance that the random vector Y is from population i (with pdf f})
iswj,i=1,...,k wherem; +---+ m = 1. Let ] be a discrete variable taking values 1, .. ., k,
with P[J = i] = =;. In this framework, the conditional pdf of Y given J = iis f;. The marginal
pdfof Yis f(y) = mfi(®) +- - - + 7 fx (), and the conditional probability of ] = igiven Y =y
is P[J = i|Y = y] = =ifi(y)/f (¥). Given an observation vector Y = y, the decision rule is to
allocate y to population i if

PU:llY:y]>PU=]|Y:y], forallj7gi’ ie,
ﬂ,fl(y) > ﬂ]f}(y), for all] 75 i. (6)

This is known as the Bayes’ rule for classification, and it is the “best” rule as will be
discussed below.

12.11.2 The Normal Case

We now discuss the case where the populations are N, (n;, ¥;)i = 1,..., k. If the popula-
tions have the same covariance matrix, thatis, ¥; = --- = ¥ = ¥, then we are led to the
linear discriminant rule. Otherwise, we have a quadratic discriminant rule.

Casel: X1 =--. =X, =2%.

The pdf of the jth population is

0 = (1v27) /1212 expl[ - (/2 - wp =Ny - )
According to the Bayes' rule given in Eq. (6), allocate y to population i if, for all j # i,
mifiy) > 7if;(y), ie,
—2logfi(y) — 2logm; < —2logf;(y) — 2logn;, ie,
Y- 2y —np) —2logm; < v — )" Ty — uj) — 2log ;.
This is precisely the rule defined by the inequalities given in (5). If 71, ..., 7} are

unknown, one often assumes that the prior is noninformative, that is, 73 = --- =
7 = 1/k. In such a case, we are led to the rule given in (4).

Casell: ¥y,..., X} not the same.
The pdf of the jth population is
£ = (1v2r)" (112192 expl - (1720 - pT 25 oy - ]
According to the Bayes’ rule given in Eq. (6) allocate y to population i if, for all j # i,
Tifi®) > 7if; (), ie,
—2logfi(y) — 2logn; < —2logfi(y) — 2logm;, ie,
o= w)" 7y - wi) +log | Xy - 2log
<(y- ,Lj)sz—l(y — ) +log|X;| — 2logm;.
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This is called the quadratic discriminant rule. Note that unlike the case ¥} = --- =
X'k, the quadratic terms involving y do not cancel out.

12.11.3 Sample Estimates

Suppose that we have n; observations from population i, i = 1,...,k . Then we can
estimate the population means u, ..., pi. Let §; be the sample covariance matrix on the
basis of n; observations from population i.

Linear Discriminant Rule
In order to apply the linear discriminant rule, we need an estimate of ¥ in addition to the
estimates of up, . .., u. Recall that an unbiased estimate of ¥ is given by

1
S= Spooled = m[(nl - 18§+ -+ (np — DS,

where n = nj + - - - 4+ ng is the total number of observation vectors.
If 71, ..., 7 are known (or if they are estimated), then the discriminant rule is: allocate
y to population i if, for all j # i

- )" y— &) —2logm; < - &)TST - &) — 2log, ie,
—2i] STy + ] $Vii; — 2logm; < —2i] STy + ji] S itj — 2log ;.

This rule is simplified when the prior is noninformative since the terms involving {log r;}
cancel out.

Remark 12.11.1. In some cases it may be possible to estimate 7, ..., 7. Suppose the
observations in the sample are (J;, Y;), t = 1,...,n, where J; are iid. In such a case, n; =
{# of J; = i} is random, and (n, ..., ny) is Multinomial(n; 1, . .., ;). We can then use the
estimate frj = nj/n (or J%j = (nj+1/2)/(n+1/2)) of mjin the classification rule.

Quadratic Discriminant Rule
The quadratic discriminant rule is: allocate y to population i if, for all j # i,

- TSy — iy +log|S; — 2log;
<@y- ;l]-)TS]._l(y — i) +1og|S;j| — 2log ;.

One big drawback of the quadratic discriminant rule is that we need to estimate Xy, ..., X
which is equivalent to estimating kp(p + 1)/2 parameters of the covariance matrices.
This can lead to inefficiencies especially if p(p + 1)/2 is not small in comparison to
min{n;, ..., ng}. A plausible remedy is to estimate X; by shrinking S; toward S, the pooled
estimate constructed in the linear discriminant rule (ie, estimate X; by ¥ = (1—a)Si+a;S,
0 < o; < 1). One can then carry out a quadratic discriminant rule using {¥} instead of
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{S;}. The constants {¢;} need to be estimated from the data, and methods for doing this
include:

(i) minimizing an AIC-type criterion, and
(ii) minimizing a cross-validation type criterion.

12.11.4 Probability of Misclassification

Let Y be a p-dim random vector which comes from one of the k populations with pdf’s
fi,. .., fx- As before assume that =1, ..., are the prior probabilities which may or may
not be noninformative. If d(Y) is a function from RP” to the set {1, ..., k}, then it is called
a classifier or a classification function. If d(Y) = i, then the classifier d allocates Y to
population i. Now if Y is actually from population i, but the classifier allocates it to
population j (ie, d(Y) = j, j # i), then there is a misclassification. Given that Y is from
population i, the probability of misclassification is

PlA(Y) #il] =il = ) _PlA(Y) = jIJ = il.
J#
So the total probability of misclassification for the classifier is

k
PlA(Y) #]1=Y_Pld(Y) # il = iIP] = i]
i=1

k
=Y PlAY) # il] = ilx;.
i=1
The following result states that the classification rule defined by the inequalities given in
(6) has the smallest total probability of misclassification among all classifiers.
Theorem 12.11.1. Let d* be the Bayes’ rule for classification defined by the inequalities
given in (6) that is,

d*W) = i ifnifiy) > mfio) forallj# i i=1,....k.

If D is the set of all classifiers from RP to {1, . . ., k}, then ming.p P[d(Y) # J] = P[d*(Y) # J1.
Remark 12.11.2. Note that when 7;f;(y) = 7;f;(y) for some i # j, there may be an ambi-
guity in how to classify y. If ¥ has a continuous distribution, then P[7;f;(¥) = 7;f;(¥)] = 0
for anyj # i. For this reason, the definition of d* as given above is adequate for continuous
distributions.
Proof of Theorem 12.11.1. Since P[d(Y) # J] = 1 — P[d(Y) = J], itis enough to show that
for any classification rule d,

Pld(Y) =]] < Pld*(Y) =]].
Note that P[d(Y) = J] = E[P{d(Y) = J|Y}]. We will show that for classification rule d
Pld(Y) =]|Y] < P[d*(Y) =]|Y].
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In the calculation of the conditional probability P[d(Y) = J|Y], we may assume that d(Y)
is fixed since Y is fixed. Hence
k
Pld(Y) =]|Y] = Zl(d(Y) =P[J =ilY],
i=1
where [ is the indicator function such that I(# = v) = 1 if u = v and = 0 otherwise. Assume
that the maximum of P[J = i|Y], overi = 1,...,k, is attained at i*. Hence by definition,
d*(y) = i*. So I(d*(Y) = i) is equal to 0 or 1 depending on whether i # i* or i = i*. Hence
k
PlA(Y) =]|Y] =) _I(d(Y) = )P[J = i|Y]
i=1
k
< 1dY) = )PY = i*|Y] = PU = i*|Y]

i=1
k

=Y I(d*(Y) = DP[J = i|¥] = P[d*(¥) =]].
i=1

This concludes the proof of this result.

12.11.5 Classification: Fisher's Method

This method does not require the normality assumption and is flexible enough to provide
nonlinear classification rules. Suppose that we have n; observations vectors {Y;;: j =
1,...,n;} from population i,i = 1,..., k. If e is in RP, then we have a one-factor ANOVA
model

eTYij:eTu,-—i—eTe,-j, j:l,...,l’li, i=1,...,k
and R2(e), the coefficient of determination (given in Eq. (1)), is
g q

R(e) — e’ Be B e’ Be . (e’ Be)/ (e We)
elTe  e'Be+elWe (e'Be)/(eTWe)+1’

where B, W, and T are the between group, within group, and total SSP matrices, re-
spectively. Maximizing R?(e) with respect to e leads to a generalized eigenvalue problem
(Section B.4). Now maximizing R?(e) is equivalent to maximizing the ratio e’ Be/e’ We
which in turn is equivalent to maximizing e’ Be/e’ Se, where S = (n — k) ~'W is the pooled
covariance matrix (n = ny + - - - 4+ ng).

Let A1 > A2 > --- be the eigenvalues of B with respect to S (ie, these are the
eigenvalues of S~'/2BS~1/2). Let i1, ito, . . . be the corresponding orthonormal eigenvectors
of STV/2BS™V/2 Ife; = §7V/%@;, j = 1,2.. ., then é]-TSéj — 1 forall j, and &; S&; = 0 whenever
i # j. Since s = rank(B) = min(k — l,p),il > >0 > OandisH =...= ip = 0. We will
call Z; = élTY the first discriminant, 7, = éZT Y the second discriminant, and so on. The



Chapter 12 » Multivariate Analysis 419

vector of discriminants Z is given by (&] Y, ..., & ¥)7. If we write Z ii= @ Yij,..., &l YT,
then we can write an approximate MANOVA model

Zij:éi+8ij! j=1,...,}’li, i=1,...,k

where §; = (élTu,-, ces ésTu,-)T, and for each i, sample means and sample covariance matrix
of {Z;;} are {#;} and I, respectively.

Method of Classification
Suppose y is from one of the k populations and we need to classify it. Let z =
@1y,...,e. 7T be the vector of discriminant scores of y. Let 6; = (& f;,...,e. )7

Allocate y to population i if
lz— 61 < llz— 61> forallj+# i.

If it is decided to use g discriminants (g < s), then we create a vector z = (élTy, ces é;y)T

using the first ¢ discriminants and let §; = (éleLi, e é;ﬁi)T be the corresponding sample
means. Then the rule is: allocate y to population i if

lz— 61 < llz— 61> forallj+# i.

In practice, the decision to use the first g discriminants is usually based on how close the
ratiog = (A1 +---+44)/(A1+- - -+As) isto 1, and this approach makes intuitive sense since
74 is an estimate of the proportion of variability in ¥ explained by the first g discriminants.

Connection to Linear Discriminant Rule
The linear discriminant rule is not necessarily the same as Fisher’s. These two rules are the
same if all the discriminants are used (ie, number of discriminants is equal to s = rank(B))
in Fisher’s method and the prior is noninformative.

Lemma 12.11.1. Fisher’s classification rule with s = rank(B) discriminants is equivalent

to the linear discriminant rule with a noninformative prior (ie, 1y = - - - = . = 1/k).
Proof of Lemma 12.11.1. Recall that A1 > i > ... are the eigenvalues of $~/2BS~1/2
with the corresponding orthonormal eigenvectors ity, @t, . ... Set & = S~ Y2iy, 1= 1,...,p.

Sinceil=0f0r12s+ 1,we haveforany /> s+1

0=it] STV2BS™V2iy =&[Bey= > ni(e] Y — e[ ¥.)%

1<i<k
Hence, élTI_/i_ = élTl_/.. whenever [ > s+ 1. For 1 < i < k, and any y in R?,
y-Y)Is ly-Y;)
=I5y - Y2

p
= Z{itlTS_l/z(y ~Y)¥ (..., itp} is an orthonormal basis of RP)
=1
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p
=Y o-Y= Y G o-Yrk+ Y (¢ o-Y)?

1 1<l<s s+1<l<p

~
I

p
Bl u-YrP+ > (6 -1
I=s+1

Il
M-

~
Il
—

P
—lz -2+ Y @ ¢ - Y02
I=s+1

wherez = (&1y,...,e.y)T and6; = (&] ji;,...,é. i;)T. Note that the second sum in the last
expression does not depend on i. So comparing (y — ¥;) 'S~ (y = Y;) to (y — ¥;.) 'S (y —
Y:.),i# #,is equivalent to comparing ||z — 6;]| to |z — 8|2

This argument shows that, for the noninformative prior, the linear discriminant rule is
equivalent to Fisher’s rule if the number of discriminants used by Fisher’s method is equal
to rank(B).

[

12.12 Canonical Correlation Analysis

Canonical correlation analysis is a descriptive method that seeks to obtain measures of
association between two sets of multivariate observations. Let X be g x 1 and Y be p x 1
random vectors with means px and py, respectively. Assume that the covariance matrix of

()= 2)
Y Yo Xn)
%11 = CovX], Z22 = Cov[Y], and X1 = CoviX, Y] = Z1,.

Assume that ¥; and X, are nonsingular.

The goal is to find linear functions a’X and b'Y, a € RY and b € RP, which
maximize the correlation between a’X and b’'Y. Clearly, we can rescale a and b so that
Var[aTX] = Var[b"Y] = 1 (ie, a’ £11a = b" X5,b = 1). In such a case, Corr[a’X, b’ Y] =
aTE 12b.

If Corr[a’X,b"Y] < 0, then the correlation between —a’X and b'Y is nonnegative.
This shows that maximizing the absolute value of Corr[a’X, bTY] is equivalent to maxi-
mizing Corrla’X, b’ Y.

Let A1 > A2 > --- be the eigenvalues of the matrix 2;11/221222_2122121_11 with uy, uy, . ..
as the corresponding orthonormal eigenvectors. Let

1/2

~1/2 1w
S5 ey = ) / u;, and b; = p; 122212216!1', (7

pi =2 i= “11

i=1,...,k = min(p,g). Then p; > p» > --- are called the canonical correlations, alTX,
alX, ... are called the canonical variates of X, and by, bly,... are called the canonical
variates of Y. Detailed arguments are given in Section 12.12.4.

The following result summarizes the key ideas.
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Theorem 12.12.1. Let {p;}, {a;}, and {b;} be as given in Eq. (7). Then the following
hold:

(a) VarlalX)= Varlb]Y]1=1,i=1,...,k
(b) Wheni+# j, Cov[al.TX, ujTX] =0, Cov[bl-TY, bjTY] =0, and Cov[al.TX, bjTY] =0.
(c) CorrlalX, bl'YI=p,i=1,...,k

Proof of this result is given in Section 12.12.4. We now write down two more results on
canonical correlations.
Theorem 12.12.2. Let {p;}, {a;}, and {b;} be as in Theorem 12.12.1. Then:

(@) max,ry ) pTx,p-1 Corrla™X,b"Y] = CorrlalX, blY] = p1.
(b) Under the constraintsa’ Xn1a;,i=1,...,r—1,

MaX, 15 o1 b 5,b-1 Corrla”X,b"Y] = Corrla’X,b Y] = p,, 1 =2,..., k.

Proof of Theorem 12.12.2 is not given since it is basically a restatement of Theorem B.4.1
given in Appendix B. The following result on invariance of canonical correlations under
nonsingular linear transformations is left as an exercise.

Lemma 12.12.1 (Invariance). Iff( —c+UXandVY =d + VY, where U is q x q and
nonsingular, V is p x p and nonsingular, and ¢, d, U, and V are nonrandom, then the
canonical correlations between X and Y are the same as those between X anc~l Y. Moreover,
if {a;} and {b;} are the canonical vectors of X and Y, then a; = (U Y a;andb; = {V-1}Tb,
are the canonical vectors 0f)~( and 17, respectively,i=1,...,k.

12.12.1 Sample Estimates

Let (X;,Y:),t = 1,...,n, be the n pairs of vector observations, and let S;; and S»» be the
sample covariance matrices of {X;} and {Y;}, respectively. Set S§1» = ﬁ > X —X) Y -YV)T
and 821 = S{z.

Let i1 > A» > --- be the eigenvalues of the matrix 81_11/281282_2182181_11 with @1, U, . .. as
the corresponding orthonormal eigenvectors. Let

~ ~21/2 ~ —1/2 ~ 2 el o—1 ~
piz)»l-/ , al'=SH/ u;, and bi:pi 822 So1a;,

i=1,...,k=min(p,g). Then

01 > p2 > --- are the estimated canonical correlations,
AT AT . . .
a, X, a,X,...are the estimated canonical variates of X, and

AT AT
b,Y,b,Y,...are the estimated canonical variates of Y.

12.12.2 Test for X1, =0

Are X and Y uncorrelated? The likelihood ratio statistic for testing Hp: ¥12 = 0 against
Hi: X1 #0is
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b= 11— 85, S8 S1a2l? = (1 = p) - (1L = SN2 = A"V2,

where A = (1 — 5%) -+ (1 — p2) is Wilks' lambda. Under Hy,

— - (p+q+3)/2lloga 2 12,

asn — oo.

If we want to test that only m < k of the population canonical correlations are non-
negative, then the test is based on the statistic A = (1 — 2,,,)--- (1 — 42). Then under
Ho: pmy1=---=0,

D
—[n—(P+q+3)/21108 A = x{, yig—my

asn — oo.

Example 12.12.1. Scores of n = 88 students in five subjects are given in Mardia
et al. [61]. The subjects are Mechanics (C), Vectors (C), Algebra (O), Analysis (O), and
Statistics (O).

Here “C” and “O” stand for closed- and open-book examinations. The goal is to
find canonical correlations between open- and closed-book scores. Let X be the vector
closed-book marks and Y be the vector of open-book marks. The sample covariance
matrix is

302.3 125.8 100.4 105.1 116.1
1709 842 936 979

S = 111.6 110.8 120.5].
2179 153.8
294.4

Here g = 2 and p = 3, and so k = min(q, p) = 2.
The canonical correlations are o7 = 0.6630 and p» = 0.0412. The first canonical
scores are

. ~T
alX =0.0260X; +0.0518X,, and  b; ¥ = 0.0824Y; + 0.0081Y, + 0.0035Y5.

12.12.3 Cross-Classified Data and Canonical Correlation

Consider the 5 x 5 contingency table given below on the occupational status of n =
3497 father-son pairs. Data sets of this type have been analyzed by many authors in
order to investigate issues of intergenerational mobility. Note that occupational status is
a qualitative variable and its numbering of 1 through 5 is purely descriptive. Can we assign
numerical values for father’s and son’s status so that they can be treated as “quantitative”
variables? This issue will be addressed here using canonical correlation analysis.

Suppose that we have an r x ¢ contingency table with cell counts {rn;;} and the total is
n=>57>mnjFori=1,..randj=1,...,c create the following indicator variables,
t=1,...,n,
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¥ 1 ifindividual ¢ belongs to the ith row category
"7 1o otherwise
1 ifindividual ¢ belongs to the jth column category
Y= )
0 otherwise.
Thus the observations are (X, Y;) , t = 1,...,n where X; = Xu,...,Xs)7T and
Y; = (Ys,...,Y)T. Suppose the numerical values for father’s status and son’s status
are ay,...,ar and by, ..., b, respectively (here r = ¢ = 5). We wish to find {a;} and {b;}

so that the correlation between father’s and son’s status is maximized and this is done by
employing canonical correlation analysis. Since X has only one nonzero component, a’ X
takes one of the r values ay, . . ., a,. Similarly, b’ Y takes one of the c values by, . . ., b.. Thus
a father-son pair has a bivariate score (a;, bj), if the father is in the ith row category and the
son is in the jth column category. We can now find a = (ay, .. ., a)Tandb = (by,...,bo)T
to maximize Corr[a’X, b'Y].

Social mobility data: n = 3497

| Father’s Status | Subject’s Status | Total | Percent |
| [ 2345 | |
| 1 | 50 | a5 | 8 | 18 | 8 | 129 | 37 |
| 2 | 28 | 174 | 84 | 154 | 55 | 495 | 142 |
| 3 | 11 ] 78 | 110 | 223 | 9 | 516 | 148 |
| 4 | 14 | 150 | 185 | 714 | 447 | 1510 | 432 |
| 5 | o | 42 | 72 | 320 | 411 | 845 | 242 |
| Total | 103 | 489 | 459 | 1429 | 1017 | 3497 | |
|  Percent | 29 | 139 | 13.1 | 409 | 29.1 | | |
Classes: 1 = professional, 2 = intermediate, 3 = skilled, 4 = semiskilled, 5 = unskilled.

The first canonical correlation is p; = 0.504. The canonical scores are given below

|Father'sStatus |1 | 2 | 3 | 4 | 5 |

| | 0] 315|412 | 455 | 496 |

| Son’s Status 1

2 | 3[4 |5 |

|1
| 0|

334 | 449 | 487 | 526 |

Scores seem to be increasing for both the father and the son. Father’s scores seem to be
correlated to son’s scores. Social Classes 1 and 2 seem to be more distinct from one another
than other adjacent social classes, both for the son’s and the father’s.
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12.12.4 Technical Notes

Derivation of Canonical Correlations
The following lemma is useful and it is similar to a result in Section B.1.

Lemma 12.12.2. Let w be in R™. Then maxq=1 w a = |w|, and the maximum is
attained ata = w/||w||.

Now let us find the canonical correlations and the corresponding canonical vectors.
Since a’ ¥1,a = szggb = 1, we have

Corr[aTX, bTY] = Cov[aTX, bTY] = uTzlgb.

Making a change of vector v = Eéézb, we have

max Corrfa’X,bTY) = max aTzlzz 1/2,,

szgzb— [lv|=1
2
=125, ? al = @ 21255 Enw)/?,

and this maximum occurs at v = 22_21/ Egla/||22_2 Ezmll, that is, at b = 22_2122151/
-1/2

125, En1al.
Now making a change of vector u = E}{Za, we get

max a'Z,%5)} a= max ul 272125 50127 %u
al’ ¥ 1a=1 lluell=

Let Ay > A2 > --- be the eigenvalues of 21_11/221222’2122121_11/2 with uy, uy, ... as the
corresponding orthonormal eigenvectors. So

2

1 —-1/2 — —1/2
pi =X a; =37 %u;, and b= X5, Fa1a;/12,5, " Eo1a4.

Note that
1252 En1ai1? = a] £1235; Tora; = u] 272 515 55) 201 57 Py = o2,
Thus we have b; = pi—lzz—zlzzmi.
Proof of Theorem 12.12.1.

(a) Itis easy to see that Var[a] X] = a! X114; = ul u; = 1.
Note that

Var[b] Y] = b} X2b; = p; 2al X155, X100
= o 2ul 27 P22 2o 2 P = o200 = 1.
(b) Itis fairly easy to see that an and a].TX are uncorrelated for i # j since
Ty T T T
Covla; X, a; Xl=a; X11a;=u; u;=0.
Note that when i # j, we have
Covib]Y, bjTY] =b] ¥ob; = pflp]flalezzgzlzﬂaj

1 1, T—1/2 -1 -2 _
=p; b u; X" X025, X012y u]_O.



Chapter 12 » Multivariate Analysis 425

The last step follows from the fact that the eigenvectors u;, uy, . . . are orthonormal.
Similarly

Cov[aiTX, b]TY] = al.Tzlgbj = p].’laiTEuEngEmaj =0.

The last step follows from the intermediate step in the proof for Cov[biTY, bjTY] =0.
(c) Note that

Corr[alTX, bl-T Y] = Cov[al.TX, bl-TY]
=al X15b; = pi_laiTEuEg_glEzlai

1, T 172 -1 ~1/2 12
=p; U X222 XXy U = oy = P

Exercises

12.1.

12.2.

12.3.

12.4.

For this question, you may use the following facts: if X ~ x2,, then E[X] = m and

E[1/X]=1/(m—2),m>2

(a) Show that E[F, ,] = UTUZ where F,, , has an F-distribution with df = (u, v),

v > 2. [Hint: F,, = fg—%, where Ry ~ x2, R, ~ x2,and R; and R; are
independent.]

(b) LetM ~ Wy(k, X), where X is positive definite and k > p + 1. Show that
E[M] = kX.

(c) Let M be as in part (b). Show that E[M 11 = ¢¥~! for some constant ¢ > 0,
and find an explicit expression for this constant. [Hint: Use Property (5) of
Wishart distribution given in Section 12.2].

Consider a repeated measures study in which, for each of the n randomly

selected subjects, an attribute (such as growth) is recorded at times #1, . . ., tp.

Thus for the ith individual, the vector of measurementsis Y; = (Yj, ..., Yjp) T

For each of the three popular models given below, gy is a constant, {«;} are iid

N(0,02), {8;} are iid N(0, o):

(i) Yij = Bo + a; + 1j + 8jj, 7j’s are time effects (fixed) with ) 7; = 0.

(i) Yj; = Bo +a; + B1tj + 8y, 1 is the slope (constant).

(iii) Yi; = Bo + a; + Birtj + 8, {Bi1} are iid random slopes with g;; ~ N (81, ag).

It is understood that {«;}, {8:1}, {67} are all mutually independent. For each of the

three models above, Y7, ..., Y, are iid Ny(u, X). Explicitly obtain the elements of

n and X in each of the three cases.

LetY ~ Np(u, ¥) and uis avectorin RP. Let Z = ul (Y — p)/vulzu.

(a) If uis nonrandom, then show that Z ~ N(0, 1).

(b) Now assume that u is a random vector which is independent of ¥ and
Plu’ Yu = 0] = 0. Show that Z ~ N(0, 1) and Z is independent of u.

Suppose that the growth of n randomly selected children are observed at p

different time points and let Y; be the p -dim vector of observed growths for the

ith child. Assume that &; = Y; — E[Y;] are iid N,(0, ¥), ¥ unknown. It is also
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12.5.

12.6.

assumed that the mean growth at time ¢ can be modeled by o + B1£ + - - - + B4t%,

where {g;} are unknown and need to be estimated.

(a) If growth of each of the n children are observed at times #, . . ., #p, then
E[Y;] = DB and obtain an explicit expression for the matrix D. Explicitly
write down —2 x log-likelihood.

(b) If the observation time points for these children are not necessarily the
same, that is, the growth of the ith child is measured at times tpj=1,...,p
then E[Y;] = D;$ and obtain an explicit expression for D;. Explicitly write
down —2 x log-likelihood.

(c) Show that the likelihood equations (ie, the minimizers of
—2 x log-likelihood) for part (a) are

g=m"'x D)7 D727y, x=n"'Y (v;-Dp¥;-Dp.

[Estimates of 8 and ¥ are obtained by iterations starting with some
reasonable estimates of g and X. For instance one may start with an initial

~0 _

estimateof Bas B8 = (DTD)~'DTY and use this in the expression of ¥ (in
A0

the likelihood equations) to get an intial estimate ¥ of X'.]

(d) Show that the likelihood equations (ie, the minimizers of
—2 x log-likelihood) for part (b) are

=(Tof>"'p) " (Tofz77),
T=n1Y (¥;-DpY;-Dip)".

LetYy,..., Y, beiid Ny(u, X), but assume that ¥ is known. The statistic

T2 = n(Y — po)" 21 (Y — po) may be used for testing Ho: p = pq against

Hi: p # po.

(a) Find the distribution of Tg under Hy. If Hy is not true, what is the
distribution of T2?

(b) Show that E[T3] = p+ n(p — no)T X1 (n — o), when the true mean is .

LetYy,..., Y, beiid Ny(u, X). Consider the problem of testing Hy: o = pg

against H: p # juo. Then the Hotelling’s T2 statistic is T2 = n(Y — puq)”

Sy - Io), where § is the sample covariance matrix. For a in RP, we denote

Y@ =a'Y,u(@) =a’u, c(a) = a’e, uo(a) = a’ ny, and s(a)? = a’ Sa.

(a) Consider the univariate model Y;(a) = u(a) + ¢;(a). Then for the problem of
testing Hy: u(a) = po(a) against Hy: u(a) # pno(a), we may use the ¢-statistic
ta) = vyn¥(a) — ,uo(a))/s(l_/(a)), where s2(Y (a)) = a’ Sa/n. Show that

maxgo t(a)* =
(b) Show that E[Tz] Z(”p U when Hj is true.
(c) Show that E[T?] = nfp 1% (e — po y'2=tu — o) + p(" D . Show that

E[T?] = p(” 1) > when and only when Hj is true.



12.7.

12.8.

12.9.
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LetYy,..., Y, beild Ny(u, X). Let6; = pip2 — 2pjp1 +uipyi=1,...,p— 2.

Suppose that we are interested in testing Hy: § = 0 against H;: 6 # 0, where 6 is

the (p — 2)-dim vector consisting of elements 61, . .., 6,_». [This kind of testing

may be important in growth analysis where we may want to test if 1;’s are linear

ini.]

(a) Express 6 as a linear function Dy of g by finding a matrix D explicitly.

(b) Find the MLE 6 of 8. Obtain the distribution of this estimate. Obtain an
unbiased estimate of the covariance matrix of 6.

(c) Obtain an appropriate statistic for testing Hy against Hj, and find the
distribution of this statistic under Hy.

LetYy,..., Y, beiid Nop(pn, X). Let p = (Z;) where p; and u, are p-dim. We are

interested in inference on # = u; — p,. This type of issue comes up in the case of

, . . DS EEPAY)
paired observations. Assume that X is of the form , Where X1, ¥ 1o,

21 X2
X1, and ¥y are p x p matrices. Similarly the sample covariance matrix

S11 Si2
S can be written as , where 811, S12, S21, and Sy, are p x p matrices.

8§21 S22

(a) Express 8 in the form Dy and find the matrix D explicitly. Find the MLE
of  and then find the distribution of this estimate. Obtain the parameters
of this distribution explicitly in terms of 8, X171, X12, X921, and X .

(b) Suppose you want to test Hy: § = 0 against H;: # # 0. Find the appropriate
Hotelling’s T?-statistic and obtain its distribution under Hy. Modify this test
statistic appropriately if X were known. Find the distribution of this modified
statistic under Hy.

(c) Obtain simultaneous confidence intervals for 6y, . . ., 6, with family
confidence of at least 1 — & using the Bonferroni approach. Obtain an explicit
expression for the standard error of the estimate of each 6; as a combination
of the elements of the matrices S;1, S12, S21, and Syp.

(d) Insome cases it is of interest to test Hy: 61 + - - - + 6, < 0 against Hy: 61 + - - -
+ 0, > 0 at alevel of significance «, where m < p. Obtain an appropriate
statistic for this testing problem and state the decision rule.

Consider a one-factor MANOVA model Y;j = u;+ei5, j=1,...,n; i=1,...,k

where {e ij} are iid Np(0, X). Let B, W, and T denote the between group, within

group, and total SSP matrices, respectively.

(a) Show that the matrices B, W, and T are nonnegative definite.

(b) Show that |[W| < |T)|.

(c) Assume that T is positive definite with probability 1. Show that |[W| = |T)|
when and only when I_/,-. =Y fori=1,...,k [Hint for parts (b) and (c):
Look at T~Y2wT~1/2 ]

(d) Letpu =) (n;/n)p; and a; = u; — u, where n = ny + - - - + ng. Let
&;=Y; —Y..Showthat Y. ~ Np(p,n1%) and &; ~ Ny(e;, (ni_1 —n~hx:.
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12.10.

12.11.

12.12.

(e) Let® = c;a; be a contrast, that is, {c;} are real numbers and they satisfy

the constraint 3" ¢; = 0. Let§ = 3 ¢;&;. Show that § ~ Np(8,> cz/n; X).

(f) FirstprovethatE[B] = (k—1)X + > miaiaiT.

Then show that E[B] = (k — 1) ¥ when and only when u; = --- = p.
Consider a one-factor MANOVA model as in Exercise 12.9. Consider the
transformed data Z;; = a + AY;;, where a is a vector in R” and A is a nonsingular
matrix of order pxp.

(a) Write down a one-factor MANOVA model for {Z;;}, thatis, Z;; = 0; + §;;,
where é;;'s have zero means. Find the distribution of {d;;}. Express #; and

the parameters of the distribution of §;; explicitly in terms of u;, @, A, and X.
(b) Show that the between group, within group, and total SSP matrices

for the transformed data {Z;;} are ABA”, AWA”, and ATA”, respectively.

(c) Consider the problem of testing Hy: #; = - -- = 0 against Hy: notall §;’s

are the same. Show that the Wilks’ lambda, Pillai trace, and Roy’s largest root

statistics obtained on the basis of the data {Z;;} are the same as those for {Y;;}.
(d) When k = 2, show that the Lawley-Hotelling statistic trace(BW ')

is equal to cT?, for some constant ¢ > 0, where T? is the two-sample

T?-statistic for testing Hy: ; = py vs Hi: i # p,. Find the constant c.
LetYy,..., Y, beiid p-dim random vectors with mean vector u and covariance
matrix ¥ whose eigenvalues are A; > Az > - - - with the corresponding
orthonormal eigenvectors u;, uy, . . .. Let A > As > ... bethe eigenvalues
of the sample covariance matrix S with the corresponding orthonormal
eigenvectors iy, &L, . . .. The sample values of the jth principal component are
Zi=ij (Y, -Y),t=1,...,n
(a) Show that the sample mean and sample variance of {Zt]-: t=1,...,n}are

zero and Xj, respectively.

(b) Show that the sample correlation of {(Zn-,th): t =1,...,n},i#j,isequal

to zero.
For parts (c) and (d) assume that the population is normal and that the
eigenvalues 11, .. ., A, are distinct.

(0) Letmp= (A + -+ rp)/trace(X) and 7y = (A + - - - + Ay) /trace(S), k < p.
Let X = S5, ajujul . Show that /7. — i) £ N(0,22), where
r,? = [ - mp)? tmce()?i) + n]% trace{(X — X)?}]/trace(X)?.

(d) Let6 and 6 be the geometric means of {11, ...,Ap} and {A1,..., Ap},
respectively. Show that /(6 — ) B N(©,26%) p).

Consider the factor model given in Eq. (3) and assume that L and ¥ are known and

1 = 0. Suppose it is desired to predict the vector of common factors f when Y is

A1) ~2) ~3)

given and this problem examines the three predictors f ,f ,andf givenin

Section 12.10.2.(3)

(a) Show thatf  isthe bestlinear unbiased predictor of f.



12.13.

12.14.

12.15.
12.16.
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2 2
~(1) ~(2)
(b) For any a € R, explicitly calculate E|:an — an] , E|:an - an] ,
SNC I b . NORNC) ~3)

andE|a'f —a'f| ,andrank these three predictorsf ,f ,andf

from the worst to the best.
Let Y ~ Ny(u, X¥) and assume that the factor model given in Eq. (3)
holds, thatis, Y = p + Lf + &, where Lis p x k, k < p, f ~ N(0,1), e ~ N,(0, ¥),
where ¥ is diagonal, and f and ¢ are assumed to be independent. Suppose
it is desired to predict f when Y is given and the matrices L and ¥ are known
and u = 0.
(a) Find the conditional distribution of f given ¥ and show that the mean of

~(3)

this conditional distributionis f = as given in Section 12.10.2.
(b) Using the joint distribution of ¥ and f, obtain an analog of the mixed

model equations given in Section 11.10.2 of Chapter 11 (assuming that L and

¥ are known and g = 0) and show that f @ is the solution of this equation.
Let Y be from one of the populations Ny(u;, ¥) (population 1) or Ny (u,, X)
(population 2) with probabilities 1 and 7, respectively, with 71 + 72 = 1.
Consider a linear discriminant rule with prior probabilities 7; and 7». Assume
that ut;, sy, X, and m; are known. Denote (u; — )T X1 (1, — p,) and log(ry /72)
by 62 and c, respectively.
(@) LetR= (u; — u)TX~1(Y — ), where it = (p; + p,)/2.

Show that the linear discriminant rule allocates Y to population

1if R > —c, and allocates Y to population 2 if the inequality is reversed.
(b) Show that Ris N(82/2,52) if Y is from population 1, and R is N(—82/2, §2)

if Y is from population 2.
(c) Show that the probability of misclassification is equal to @ (—3§/2 — ¢/§)

if Y is from population 1, and is equal to ¢ (—3§/2 + ¢/§) when Y

is from population 2. [Here @ is the cdf of the standard normal distribution.]
(d) IfY is from one of the two populations (with probability 7 from population 1

and with probability 7> from population 2) and it is classified using a linear

discriminant rule, find the probability of misclassifying Y, in terms

of §, 71, and .
Prove Theorem 12.12.2.
Prove Lemma 12.12.1.



Time Series

13.1 Introduction

In the previous chapters, except for random-effects models in Chapter 11, all the different
types of statistical modeling and procedures are concerned with data sets consisting of
independent observations. In practice, however, there are many cases when the assump-
tion of independence is not tenable and this is particularly true when the observations
are recorded over time and/or over space (geographical locations). A simple example
for such a data set is daily records of average levels of ozone concentration in the air
at various locations in a particular geographical region. This chapter is only concerned
with data sets consisting of observations recorded over time and such observations are
usually dependent. For instance, when unemployment rates are recorded over months,
observation in a particular month depends on the employment levels in the previous
months. Methodologies developed for the investigation of such data sets are called time
series methods. Here are a few examples of time series data:

(a) Annual precipitation at Lake Michigan in the last 75 years.

(b) Annual temperature anomalies (ie, average yearly temperature minus a base value)
in the last 150 years.

() Monthly unemployment in the United States in the last 50 years.

(d) Monthly electricity sales to the residential sector in the United States in the last 50
years.

(e) EEG data (used in diagnosing patients) at a particular skull location.

We may denote the observations as {Y;: ¢ = 1,...,n} where the time unit may be
a year or a month or a week or even fraction of a second depending on the particular
problem at hand. An actual examination of the data in the first example indicates that
the annual precipitation {Y;: £ = 1, ..., n = 75} tends to fluctuate around a constant value.
In the second example, there is an overall increase in the annual temperature anomalies
{Yi: t = 1,...,n = 150} over the last 150 years and thus it is reasonable to model Y; as
a smooth part (trend) plus a rough part (random errors which are identically distributed,
but not necessarily independent). An examination of the monthly electricity sales series
{Yi:t=1,...,n = 12 x 50 = 600} would reveal an overall increase over time. Moreover,

Theory and Methods of Statistics. http://dx.doi.org/10.1016/B978-0-12-802440-9.00013-8 431
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there is a seasonal factor (ie, January sales in consecutive years tend to be similar, February
sales in consecutive years tend to be similar, and so on). There may also be a cyclical
factor (about 9-12 years) as the sales may dip a little after economic recessions. Thus Y;
may be modeled as a sum of the trend, the seasonal effect, the cyclical effect, and a mean
zero random error. Thus a general model for Y; for three of the five examples given above
may be

Example (a): Yr = u + Xz,
Example (b): Yy = pur + Xt,
Example (d): logY; = us + St + C + Xy,

where u; is the trend, {S;} are the seasonal effects, {C;} are the cycles, and {X;} are the
random errors which are identically distributed but may not be independent. Note that in
Example (d), the series is transformed by the natural logarithm in order achieve constant
variability over time and this will be discussed below. The trend can be modeled as a
smooth function by nonparametric methods. Seasonals {S;} may be modeled by various
methods including linear combination of sines and cosines. If the period of cycles are
known, they may also be modeled by sines and cosines. Apart from the above-mentioned
methods for modeling the trend, the seasonals, and the cycles, there are also probabilistic
modeling schemes. Forecasting is one of the important goals in time series analysis.
Forecasting at time ¢ + h, h > 1, requires estimates of Ktthy, Stin Ct+h, and X;,, which
can be added to get a forecast value of Y;, 5, as Yt+h = fprn + St+h + Ct+h + Xt+h

In the fifth example above, the observations are combination of waves (alpha, beta,
theta, delta, etc.), and the weights of the combinations vary depending on whether the
subject is normal or has a disease such as epilepsy. For instance, theta waves are in the
frequency range of 3-8 Hz and are present in diseased patients, whereas alpha waves
vary in the frequency range of 8-13 Hz and are present in normal individuals without
any external stimulus. The goal of the analysis here in not prediction, but to determine
the combination of different waves in the observed series for a particular patient and
this is done by using the spectral analysis which is described in the last section of this
chapter.

This chapter is concerned with understanding and analysis of the rough part {X;}.
The main assumptions are

(i) {X;}are identically distributed,
(ii) for any ¢, the correlation between X; and X;, 5, h > 0, depends only on &, and
(iii) the correlation between X; and X;, , is negligible when £ is large.

A series with properties (i) and (ii) is called stationary, and property (iii) is a statistical
necessity, which allows forecasting and consistent estimation for parametric models based
on observed data sets.
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Types of Nonstationary Series
There may be many sources of nonstationarity, but we briefly point out three of them:

(i) unequal means over time,
(ii) unequal variance over time, and
(iii) inappropriate time scale.

Often, a reasonable way to view unequal means is to treat it as a smooth function of
time (trend). For some series, such as daily records of sulfur dioxide levels in the air, sharp
changes may correspond to unusual events such as volcano eruptions, and may need to
be incorporated into the trend.

In the analysis of financial time series data such as rate of return on stocks, the main
focus of investigation is on modeling the variance which changes over time. In other cases,
unequal variance can sometimes be remedied by transforming the data using a Box-Cox
transformation

A
o= | A0
log (Yy) A=0.

If a transformation turns out to be useful, then analysis and modeling are done on the
transformed series. For instance, a logarithmic transformation for monthly electricity sales
(Example (d) above) is appropriate for achieving equal variance.

For some series, such as a signal from bird chirping, attempts are made to plot,
understand, and analyze the data on a time scale H(t) (a nonlinear function of time ¢)
on which the series may be stationary. Typically H is unknown and needs to be estimated.

A Simple Method for Extracting the Stationary Part

Consider a series of the form Y; = m; + S; + X;, where {m;} is the smooth trend,
{S;} are the seasonal effects with period s, and {X;} is the stationary part. As mentioned
above, in some cases approximate equal variance may be achieved by employing Box-Cox
transformations. When the seasonal effects are absent (ie, the model is Y; = m; + Xp),
a popular method for the analysis of such series employs the integrated autoregressive-
moving average (ARIMA) models. When both the trend and the seasonals are present,
then such a series can be analyzed by using what is known as the integrated seasonal
autoregressive-moving average (seasonal ARIMA) model. A good detailed description of
these models can be found in the book by Box et al. [62].

Here we briefly describe a simple regression method for estimating m; and S;, and
this procedure works well for some series. Since X; = Y; — (mt + St), we can obtain an
approximation of X; if we can obtain estimates of m; and S;. For the sake of identifiability,
let us assume that S;_,4+1 + - - - + S; = 0 for any ¢, where r is the seasonal order. In order to
simplify the discussion, let us assume that we are dealing with quarterly data (ie, r = 4). If
we model the trend m; by a polynomial of degree d, then
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my=po+Bit+ -+ Bat”.

In order to account for the seasonal effects, create variables, I;1, I;2, and I;3 as

1 iftime ¢ is Quarter 1 1 iftime ¢ is Quarter 2
Iy ={—1 iftimetisQuarter4, I;p =4—1 iftimetisQuarter4,
0 otherwise 0 otherwise

—1 iftime t is Quarter 4
0 otherwise.

1 iftime ¢ is Quarter 3
Iis =
Thus m; + S; can be modeled as
Bo+ Bit + -+ Bt + 6111 + 021 + 0313,

and the unknown parameters By, . . ., 87 and 61, 62, and 63 can be estimated by minimizing
the least squares criterion

NE

2
[Yz — Bo— Bt — - — Bt — 0111 — b2l — 931t3] .

-
Il

1

Once the estimates of these parameters are obtained, one can get estimates 7, and St of
m; and S;. Then an estimate of X; is given by X =Y — y + St).

Itis important to note that the seasonal fluctuations {S;} are assumed to be nonrandom
in this discussion, which may not always be appropriate.

13.2 Concept of Stationarity

In order to develop an appropriate mathematical framework, it is usually assumed that
the data {Xi,...,X,} is a finite section of an infinite series {X;: — o0 < < ool
Throughout this chapter, we use the terms “series” and “process” to mean a sequence of
random variables. A series {X;} is called strictly stationary if {X;, ..., X;,x} has the same
distribution as {X;ip,..., X¢inik) for any £ and 2 > 0. This notion of stationarity is
usually too strict to be useful in applications since it is difficult to verify it in practice.
A weaker version, also known as covariance stationarity, assumes that Cov[X;, X;, ;] de-
pend only on h. It is easy to see that strict stationarity implies weak stationarity. From
now on, we assume that {X;} has mean x and y(h) = Cov[X;, X;,j] for any ¢ and h.
Since y(—h) = Cov[X;yp, X¢] and Cov[X;, X;ipn]l = Cov[Xpyp, X], it thus follows that
y(—h) = y(h) for any integer h. The correlation between X; and X;,, can be easily seen
to be p(h) = y(h)/y(0) and this quantity also does not depend on ¢. The sequences
{y (h)} and {p(h)} are called the autocovariance function and the autocorrelation function,
respectively.

A time series is stationary Gaussian if the joint distribution of {X;,1, ..., X1}, for any ¢
and p > 1, has a p-dim multivariate normal distribution with the mean vector (..., w’
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and covariance matrix I', with elements y(k — j), 1 < j, k < p. It can be shown that a
covariance-stationary Gaussian time series is also “strictly” stationary.

Definition 13.2.1. A series {X;} is called (weakly) stationary if, for any ¢, E[X;] = ¢ and
Cov[X;, Xy, ;] depends only on h. Its autocovariance {y (h)} and autocorrelation functions
{o(h)} are y (h) = Cov[Xy, X, p] and p(h) = Corr[Xy, X4 4] = v (h) /¥ (0).

We now present a few examples of stationary series and one example of a nonstationary
series.

Example 13.2.1 (White Noise). Let {X;} be iid with mean x and variance o2, then it is
stationary with

o? ifh=0 1 ifh=0
V(h):{o ith 0 24 p(h)z{o ith£0"

If {X;} are iid with u = 0, then such a series is called white noise. Some authors dispense
with the iid assumption and call a series white noise if {X;} have zero mean, identical
variances, and are mutually uncorrelated.

Example 13.2.2 (Moving Average Process). If a series {X;} can be written as

Xy —pu=¢r+0e_7q,

where {¢,} are iid with mean 0 and variance o2, then it is called a moving average process
of order 1. For such a series, E[X;] = u, and the autocovariances are

y(0) = Var[X;] = Var[e;] + Var[0s;_1] = (1 + 6%)0?,
y(1) = Cov[Xs, Xy_1] = Covler +0e_1,6¢-1 + e 2]

= Cov[fes_1,&1-11 = 902, and
y(h)=0, h=>2.

Clearly, the autocorrelations are
p()=6/(1+6), p()=0, h=2

A process more general than the above is
Xt—pn=¢er+0101+---+ Oget—q
where {¢;} are mean 0 iid variables with common variance o2. This is known as a moving
average process of order g and is denoted by MA(q). For this series, E[X;] = u, and the
autocovariances and autocorrelations are
q—h
y(h) = o? Z 0i0jyp 0= h < g, withgg =1,
j=0
y(h) =0, h>qg+1,
q—h q
p(h) =" 00 29].2, 0<h<g and
j=0 j=0

ph) =0, h>qg+1.
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Example 13.2.3 (Autoregressive Process). If a series {X;} is representable as
Xi—pn=0¢X—1 —u) +ep,

where {¢;} are iid with mean 0 and variance o2, then it is called an autoregressive process
of order 1. For this series, E[X;] = w. In order to obtain the variance of X;, note that
Cov[X;_1, €] = 0, and hence

y(0) = Var[X;] = Var[¢X,_1] + Var[e;] = $?y (0) + 0’2, and
y(0) =(1-9¢3"1o
The condition y (0) = Var[X;] > 0 requires that ¢*> < 1 (ie, |¢| < 1) and this will be shown
later to be the condition for the series to be stationary. Autocovariances of this series can
be obtained by using a recursive procedure. Since X;_; is uncorrelated with ¢;, we have
y(1) = Cov[X, Xp 1] = CovlpXy 1 + &1, Xp1]
= ¢pCov[X;_1, X;—1] = ¢y (0).

Similarly, noting that ¢; is uncorrelated with X;_j, for h > 1, we have

y(h) = Cov[Xy, X;_p] = Cov[epX;_1 + &1, X;_p]
= ¢pCov[Xy_1,X;_pl =y (h —1).

Thus for h = 2, .. ., we have

y(2) = ¢y (1) = %y (0),
y(3) = ¢y (2) = 3y (0),....

This argument shows that for any & > 0
y(h) = ¢"y (0) with y(0) = (1 — $*) 710, and p(h) = ¢".

Since |¢| < 1, p(h) converges to zero exponentially as iz — oo.
A general version of the simple autoregressive process is

Xp—pn=01 X1 — )+ + dpXe—p — ) + &,

where {¢;} are iid with mean 0 and variance o2. This is an autoregressive process of order
p with mean E[X;] = u and it is denoted by AR(p). Conditions on ¢, ..., ¢, needed for
the process {X;} to be stationary will be discussed later. In the AR(p) case, it is not possible
to obtain explicit expressions for the autocovariance or autocorrelation functions though
computer packages such as R can be used to obtain them for given values of ¢4, . .., ¢, and
o2. It should be pointed out that, under the condition of stationarity, the autocorrelation
function p(h) converges rapidly (exponentially) to zero as h — oo.

Example 13.2.4 (Autoregressive-Moving Average Process). A series {X;} which has
both AR(p) and MA(q) parts is called an ARMA(p, q) process, and is representable in
the form
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Xe—pn=01 (X1 — )+ + dpXe—p — 1)
+ &+ 9181‘,1 + -+ Oqet_q,

where {g;} are iid with mean 0 and variance o2. Conditions on ¢y, ... , ¢p are needed to
guarantee stationarity as in the AR(p) case. In general there are no explicit forms for the
autocovariances and autocorrelations even though computer packages can be used to
obtain them. As in the AR(p) case, under appropriate conditions, the autocorrelation p(h)
converges to zero exponentially as 1 — oo. The error terms {;} in AR, MA, or ARMA series
are sometimes called innovations.

Example 13.2.5 (Random Walk). A mean zero AR(1) series with ¢ = 1is called arandom
walk and it has the form X; = X;_1 + ¢, t = 1,2,..., where {g} are iid with mean 0 and
variance o2. It is easy to see that X; = Xy 4 &1 + --- + & and assuming that E[Xy] = p,
we have

E[X;] = u and CoviXy,X;,p,] = Var[Xo] + to?, h>0.

Clearly this series is not stationary since Cov[X;, X;, ;] depends on ¢. Random walks are
sometimes used for modeling the trend of a nonstationary time series.

13.2.1 Representation of the Autocovariance Function

We begin with an important result on the representation of the covariance function
{y(h): —oo < h < oo} of a stationary series. Under the assumption that Zzoz_oo|y(h)| < 00,
the function

oo

h=—00

is well defined on [—1/2, 1/2], where i = +/—1. This function f is called the spectral density
function of the series {X;} with the autocovariance function {y(h)}. It is periodic with
period 1 (ie, f can be defined for any real w and f(w) = f(w+ 1)). More detailed discussion
on spectral density function will be given in a later section.
Since y (h) = y(—h) and exp[—2rihw] + exp[2n ihw] = 2 cos(27 hw), we have
-1 00
fw) = Z exp[—2nihw]y (h) + y (0) + Z exp[—2xihw]y (h)
h=—00 h=1

o0
=y(0) + Y _{expl2rihw] + exp[—27ihw]}y (h)
h=1

o
=y(0)+2 Y cosrhw)y(h).
h=1
Thus the spectral density function is a trigonometric series with autocovariances
{y (h)} as the coefficients. It is symmetric about 0 (ie, f(—w) = f(w)), and is nonneg-
ative (to be shown below). What is the connection between the autocovariance function
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{y (h)} and the spectral density function? If we know the spectral density function f, then
we can get the autocovariances as

1/2
y(h) = / exp[2rxihw]f (w)dw, h > 0.
-1/2

In order to verify that f is nonnegative, consider the arguments given below. The discrete
cosine and sine transforms of {X; — u,t =1, ..., n} are

n
Xc,n(lﬂ) =n1/2 Z(X; — ) cos(2rwt), and
=1

n
Xsnw) = n~ V23" (X — p) sin@mwr),
t=1

where |w| < 1/2. Then

E[f(c,n(w)}2 + E[f(s,n(w)]z =n"! > cos2wws) cos(2m wr)Cov[Xs, Xi]

1<s,t<n

+n! Z sin(27 ws) sin(27 wt)Cov[Xs, X¢]

1<s,t<n

=n! > cosmuw(t — s)w)Cov[Xs, X¢]

1<s,t<n

=n! Z cosrw(t —s)w)y(t —s).
1<s,t<n

It is not difficult to check that, for any —(n — 1) < h < n— 1, the number of (s, ) pairs when
t—s=h1<s,t<n,equalsn— |h , and therefore

) 9 y 9 n—-1
E[Xen(w)] + E[Xsn(w)] =n*1h Z+1(n—!h})cos(2”hw)y(h)
=—"N
n—1
= Y (- |h|/n)cos@rhw)y h).
h=—n+1

Clearly, the last sum is nonnegative, and since ) |y(h)| < oo, this sum converges to
Y e cos(2rhw)y (h) = f(w) by the Dominated Convergence Theorem. Thus f(w) > 0
for any |w| < 1/2.

Example 13.2.6. Let {X;} be iid with mean 0 and variance o2. Then y(h) = ¢?if h = 0
and y(h) = 0if h # 0. For this case, the spectral density function is f(w) = o2 for any
we[-1/2,1/2].
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Example 13.2.7. Let {X;} be a mean zero MA(1) series, that is, X; = ¢; 4+ 0¢;—1 where {&;}
are iid with mean 0 and variance o2. We have already seen that
1+4+6%0% h=0
V(h) = 902 h=1.
0 h>2

Since y (h) = y(—h) for any integer h, the spectral density function is

o0

fw)=y0)+2 Z cosmhw)y (h)
h=1

= (1 +6%)02 + 2002 cos2rw)

- 02[1 162420 cos(271w)].

Example 13.2.8. Let {X;} be a stationary AR(1) series as described in Example 13.2.3. We
have already seen that for this sequence y (h) = ¢"y (0), h > 0, and y (0) = (1 — ¢?)~'o2. So
the spectral density function of the AR(1) series is

o0
fw)=y(0)+2 ) cosrhw)y(h)
h=1

o0
=y(0) 42 Z ¢hy(0) cos(2m hw)
h=1

o
=y(0) |:1 +2 Z ¢h cos(Znhw):|.
h=1

Denoting z = exp(—2 iw) and noting that 2 cos(27 hw) = z" + z", where z = exp(2riw) is
the complex conjugate of z, we have

s 00
1+2) ¢l cos@rhw) =1+ ) ¢,h(zh i Zh)
h=1 h=1

o o

=Y "+ Y " -1=0-¢2 ' +0-¢ ! -1
h=0 h=0

2 1

=1 -¢%

1+ ¢2 —2¢cosrw)’

where the last step is obtained after some simple algebra. Hence we have

1
¢2 — 2¢ cos(2rw)

_ _ 42
fw)=yO)(1-¢ )1+

) 1
=0 ,
1+ ¢2 — 2¢ cosrw)

where the justification of the last step follows from the fact that y (0) = (1 — ¢?)~lo?.
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Remark 13.2.1. There is a more general result on the representation of the autocovari-
ance function which does not require a restrictive condition like Z]y(h)| < oo. It can
be shown (Bochner’s Theorem) that there exists a nonincreasing function F (called the
spectral distribution function) on [—1/2, 1/2] such that y (h) = f_l{iz exp(2rihw)dF (w) for
any integer h. When F is differentiable, its derivative f is the spectral density function.
Further details can be found in the books by Brockwell and Davis [63] and Gikhman and
Skorokhod [64].

13.2.2 Linear Time Series

In this book we only consider linear time series, which, as the same suggests, are linear
combinations of mean zero variables {¢;} of the form

o]

Xe=p+ D ajerj,

j=—o0

where ) a]? < 00, and {¢;} are mutually uncorrelated with mean 0 and variance o2. For this
series, the mean and the autocovariance function are

o0
E[X:]=u, y(h) =02 Z ajajp.

j=—o0

Such a representation exists if the spectral density f is integrable. If {X;} is stationary
Gaussian, then {¢;} are iid N (0, o2) variables.
A stationary series {X;} is said to have a causal representation if it can be written as

o0

Xe=n+2 ajerj,
=0

where {e;} are mutually uncorrelated mean zero rv’'s with common variance o2. If
f_lﬁz log(f (w))dw > —oo, then the series admits a causal representation. As before, if {X;}
is stationary Gaussian, then {¢;} are iid N(0, o2) variables. A detailed discussion on these
representations can be found in Chapter 5 of the book by Gikhman and Skorokhod [64].
In practice, it is usually assumed that {e;} are iid with mean 0 and variance o2 even
if they are not normally distributed. Particular examples of linear time series are ARMA

processes. There are other time series that are nonlinear such as the bilinear series

o0
Ke=p+ D eyt ) bperjerk

Jj=—00 —oo<j,k<oo

with }"|a;| < oo and _|bji| < oo, but such series are not discussed in this chapter.
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From now on, it will be assumed that {X;} is a linear time series with {;} iid mean zero
rv’s with finite variance o2, that is,

00 00
Xt =u—+ Z ajst,j, with Z ’a]‘ < 00, (2)
fam. j==o0

{e;}iid, E[e;]=0, and Var[e;] = o'2.

This series {X;} is stationary as discussed above.

Notations

The following notations will be used throughout this chapter. For any stationary series
with autocovariance function y and for any positive integer h, I'j, will denote the i x h
matrix whose element (j, k) is given by y (j — k) and y;, will denote the & x 1 vector with
elements y (1), ...,y (h). Similarly, I';, and , will denote the estimates of I', and y;, when
the autocovariances are estimated based on the available data. We note that I';, is the
covariance matrix of (X1, ..., X;, 1) and it is nonnegative definite.

13.2.3 Time Reversibility for Linear Prediction

If {X;} is stationary with autocovariance function y, then we show below that the coeffi-
cients associated with the best linear predictor (forecast) of X; based on X;_1,...,X;_j are
the same as those of the best linear predictor (backcast) of X;_;_; basedon X;_j, ..., X;—1.
This result is true for any i > 1. In order to simplify the notations, we assume that {X;} has
zero mean, since we can always subtract the mean u from X; to achieve this.

A linear predictor ¢1X;_1 + --- + ¢,X;_, of X; has the prediction error PEV) =
E[X; — ¢1X;—1 — - - — ¢pX;_p]%. Since X;, X;_1, . .., X;_j, have zero means, there is no need
to include an intercept term in the formula for the predictor. The best linear predictor can
be obtained by minimizing PEY) with respect to ¢1, . . ., ¢y,. As in the case of linear models,
we can differentiate PE() with respect to #j,j =1,..., h, and equate the derivatives to zero,
which leads to the normal equations. When the derivative of PE() with respect to #j is set
to 0, we have

—2EX; — 1 Xy — - — opXp_p1Xpj =0, ie,
—yN+o1yG—D+---+opy(i—h) =0, ie,
Y-+ +opy(i—h =v({,

j=1,..., h. These normal equations can be written in the matrix form as

g =vyp 3)

where ¢ = (41, ..., ¢p,)T, and they are also known as the Yule-Walker equations. Moreover,
the prediction error of the best linear predictor with coefficients ¢, ..., ¢y, satisfying the
Yule-Walker equations is given by
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E[X; — ¢1X;1 — - — ¢pXy_p1? =EIX?1 — 2E[X¢ (@1 X1 + - - + X p)]
+E[p1 Xp—1 4+ ¢th—h]2
=y 20"y, +0"Tpe=v©0) — 9Ty,

=y(0) —¢1y(Q) —--- — opy(h).
Alinear predictor ¢1X;_p+¢2X;_pi1+- - -+¢pXe—1 of X;_p_ ;1 has the prediction error PE b) —
E[X;_p_1 — 01 X;_p — - - - — ¢pX;_11%. In order to obtain the best linear predictor we need to

differentiate PE®) with respect to ¢1, ..., ¢, and equate the derivatives to 0. Setting the
derivative of PE®Y) with respect to ¢; to 0, we have

—2B[X;_p1 =01 X — = opXem )X _po1441 =0, e,
-y +o1yG—1D+--+opyG—h =0, ie,
o1y —D+-+opy(i—h=v(Q,

j = 1,...,h. These normal equations in the matrix form are exactly the same as in
Eq. (3). Since the normal equations for forecasting (ie, linear prediction of X; based on
Xt—1,...,X;_p) and backcasting (ie, linear prediction of X;_j_; based on X;_p,..., X;—1)
are the same, the vectors of coefficients I‘;ly , are also the same. Using the arguments
given above, it is fairly easy to verify that the prediction error for the best linear predictor
for backcasting X;_j,_; is exactly the same as that for forecasting X;. Thus we arrive at an
important result.
Lemma 13.2.1. Let {X;} be a mean zero stationary series.

(a) For any positive integer h, iff(t(f ) = 01 Xe—1 + - -+ + dpXi_y, is the best linear predictor of
Xt basedon X;_1,...,X;_y, then Xz@hfl =01 Xen+ 02X pi1 + -+ dpXe—1 is the best
linear predictor of X;_j,_1 based on X;_p, ..., X—1.

(b) The vector of coefficients ¢ of the best predictor described in part (a) is given by the
solution of the normal equations (ie, the Yule-Walker equations) I ¢ = y .

o (N2 o) 1
(c) The prediction errors E[Xt - X; ] and E[Xt, n-1— X~ h—l] are the same and they are
given by y (0) — p1y (1) — - - — ¢y (h).
13.3 Estimation of the Mean and the Autocorrelation
Function
Suppose that Xj,...,X, are observations from a stationary series with mean u and
covariance function y. Some useful descriptive statistics for an initial analysis involve

estimation of the mean, the autocovariance function y, the autocorrelation function p,
etc. These are the topics of discussion in this section.

13.3.1 Estimation of the Mean

An estimate of x is given by & = X, = n~! Y7 | X;. It is fairly easy to see that £ is an
unbiased estimator of w. In order to obtain the standard error of this estimate, one needs
to calculate the variance of i. Note that
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n n
Var([ji] = n—2 Z Cov[Xs, X¢] = n—2 Z y(s—1).
s,t=1 s,t=1

The argument used in Section 13.2.1 to demonstrate the nonnegativeness of the spectral
density function can be employed to show that

n—1 n—1
d=nVarlgl=n"" > m—|hhyt= Y Q- |n/nyH
h=—(n-1) h=—n+1
o0
— Z y(h) = 1:2,
h=—00

assuming that }"|y (h)| < oo. Since y (—h) = y (h), we may also rewrite 72 and 72 as

n—1 n—1
v=nVarlpl= )" (= [hl/my ) =y +2 )1 - h/n)yh),
h=—n+1 h=1
o0 oo
2= yW=yO+2) yh.
h=—c0 h=1

Ifitis assumed that y (h) converges rapidly to zero as i1 — o0, a condition satisfied by many
series such as ARMA(p, q), then one may ignore y (h), h > L, for a suitably chosen integer L
which may depend on n (eg, L ~ 4/n). In such a case, a reasonable estimate of ‘L'% is

L L
f%:n—W«n+2§:u-Jumﬁm)%n”{ﬁw%+2§:?m@,
h=1 h=1

where y (h) is an estimate of y (h). It turns out that the central limit theorem (CLT) holds for
[ = X, under reasonable conditions.
Theorem 13.3.1. Assume that Xy, . .., X, are observations from a linear stationary series

{X;) as given in Eq. (2). Thenas n — oo, \/n(jt — 1) z N(0, 72), where t% = lim,_, o nVar{f1].

This result now can be used to construct an approximate confidence interval for u. Let
7, be as given above. Assuming that 7,,/t, — 1 £ 0, an approximate confidence interval for
w with confidence coefficient 1 — « is /i + zq/270/+/1.

A proof of the above result on the asymptotic normality of i = X, uses the CLT
for the sample mean of m-dependent rv’s (Theorem 3.3.3) and it involves careful details
as it requires verifying technical conditions, and the details are given in Brockwell and
Davis [63]. However, the basic idea behind the proof is simple and can be summarized
in the following steps. Let W,, = /n(X;, — ).
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I. The truncated rv’s {X;; ¢}
m
Xmyr =1+ Z ajer—j,
j:—m
are 2m-dependent with mean u where m is a positive integer.

Il LetXy,n,=n"1 Y7 X and Wiy = V/1(Xin,n — i). Since {Xp, ¢} is 2m-dependent,
the CLT holds for Wy, , (Theorem 3.3.3). Thus Wy, », 3 Zm ~ N(0, 7(m)?), where
t2(m) = limp,, o0 Var[ Wy, n]-

lll. Show that for any é§ > 0,

lim sup P[|Wipy,n — Wn| > 8] > 0
n— oo
as m — oo. A sufficient condition for this, via Chebychev’s inequality, is
lim sup E[|Wmn - Wnyz] -0
n—oo

as m — oQ. I
IV. If 2(m) = lim,_, o Var[Wp, ] — 2 > 0, then W, > Z ~ N(0, t2).

The four steps given above can be written down in a general framework which does not
require {X;} to be alinear stationary series. The general framework is useful since this result
can also be applied for obtaining asymptotic normality of estimates of the autocovariances
and autocorrelations.

Theorem 13.3.2. Let Xy, ..., Xy, be observations from an infinite sequence {X;} of rv’s with
common mean p and let W, = n(X, — w), where X,, = n=' 3" | X;. Assume that for any
positive integer m, there exists an m-dependent series {X;,,:} with common mean u,, and
let Winn = vnXmn — tm), where X = n=1 31| Xy i Then Wy, B 72 <N, 12 if the
following conditions hold

(i) for every positive integer m, Wy, , 2) Zm ~ N(0, t(m)?), where
t2(m) = limy— o0 Var{ Wi, ),
(ii) foranys > 0,limsup,,_, o, P[|Wmn — Wy| > 8] » 0asm — oo,
(iii) t2(m) converges to a constant t> > 0 as m — oo.

Let us briefly examine why this theorem is true. For any real number z and é > 0,

P[anz]=P[WnSZy Wn — Win 55]
+P[Wn <z Wn — Wm,n| > 8]
< P[Wmn < z+ 8]+ P[|Wn — Win,n| > 8].

Denoting A(m, §) = limsup,,_, ., P[|W;, — Wiy,u| > §], we have

lim sup P[Wy, < z] < limsup P[Win,n < z+ 8] + A(m, 5)

n— oo n—oo

=P[Zm <z+ 81+ A(m, ).
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Since t(m)? — 12, letting m — oo we have

limsup P[Wy, < z] < P[Z < z+ §], and thus
n—oo

limsup P[W), < z] < P[Z < z],
n—oo

since § > 0 is arbitrary.
A similar argument will show that

lim sup P[Wy, > z] < P[Z > z], and hence

n—o00

liminf P[W,, < z] > P[Z < z].
n— o0

Since

P[Z < z] <liminfP[W, < z] < limsup P[W;, < z] < P[Z < 7],
n— 00 n— 00

we conclude that lim,,_, ., P[W,, < z] = P[Z < z].

13.3.2 Estimation of Autocovariance and Autocorrelation Functions
Estimates of y (h) = Cov[X;, X, ] and p(h) = Corr[X;, X;yp], h=0,1,... are

n—h
P =n1 Y X - XX, —X) and p(R) = p(h)/7(0). 4)
=1

This estimate of y (h) is not unbiased as will be clear soon. For notational convenience, we
assume that E[X;] = 0 since X; — X is the same as Y; — Y, where Y; = X; — u is the centered
X;. Simple algebra shows that

n—h
Py =n"1 Y X = XXy — X)
=1
n—h n—h n—h
=n 'Y XeXppn —Xn Y Xy X0t Y X+ nm - X2
=1 =1 =1

n—h h n
=n1 Y XXy — A+ h/mX? +)_(|:n_1 Y Xe4nt Y Xt:|.
=1 =1 t=n—h+1

We have already seen from the last section that Var[X] = t2/n = O(n~!) assuming that
Yly(m)| < oc. Since E[X;] = 0, E[X?] = Var[X] . It is not difficult to verify that the
expectation of the last term in the last displayed equation is O(n=3/?). Since E[X;X;,] =
y (h), we have
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E[y(W] =n"tn—hyh) +2/n+ 0n=3/?
=y (h) — (h/n)y (k) + t2/n+ O(n=3/?),

Expression for 1,21 /n given in the last section shows that (h/n)y (h) is not cancelled by tg /n
and thus the bias of y (h) is O(h/n).

From the preceding arguments, we get the following simple result.

Lemma 13.3.1. Let {X;} be stationary with the autocovariance function {y (h)} which
satisfies the condition y_|y (h)| < oc. Then

n—h
P =n" 3 X — )Xy — ) — (X = p)* + Ry
=1

n
=n 1Y (X — ) Kypp — 1) + Ry,
=1
where E|R;| = O(n~%/2) and E|R;| = O(n™Y).

Why is the biased estimate of y (h) used in practice? The reason is that the n x n matrix
r, = (PG —K)) v Which is an estimate of the covariance matrix I'y, is nonnegative
definite. Had we used an unbiased estimate of y (h), then this nonnegative definiteness
property is not guaranteed to be preserved. An unbiased estimate of y (h) is

n—h
) =m—h-1D"1>" (X — X)Xy, — Xo), with
t=1
n—h n
Xi=tm-m1'Y XandX=mn-m~" Y X.
t=1 t=h+1

Asymptotic distributions of the estimated autocovariances and autocorrelations are
known. We first write down the joint distribution of (1), ..., p(h).

Theorem 13.3.3. Let {X;} be a linear stationary series as given in Eq. (2) with the extra
assumption E[s‘t‘] < o0o. Let py, be the h x 1 vector with elements p(1), ..., p(h), and similarly
let py, be the h x 1 vector with elements p(1), ..., p(h), where p(j)’s are as in Eq. (4). Then

Jnp — p) E NL(0, W) as n — oo, where element (j, k) of the matrix W is
o0

wy = Y e(,Delk, D, with

l=—0c0

e, = [pU+ )+ pl =) = 20()p (D] / V2.

If {Xy} are iid, then p(j) = 0 for anyj > 1, W is the h x h identity matrix, and, /np(j),
j=1,..., h, are asymptotically iid N (0, 1) variables.

Note that if the series {X;} are iid, then e(j, ) is equal to 1 if [ = j and is 0 otherwise. In
such a case, the matrix W in the above theorem the identity. So if {X;} are iid, then /n4()),
j = 1,2,... are asymptotically iid N(0, 1) rv’s. The estimated autocorrelation function is
widely used to check if a series is white noise, that is, to check if p(h) = 0 when & # 0. In
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practice, one usually plots 5 (h) against h to check if 5(h) is outside the range 0 + 2/,/n to
investigate if p(h) # 0. Such a plot is called the ACF plot.

The proof of the above theorem on the asymptotic distribution of the estimated
autocorrelations follows from the asymptotic normality of the estimated autocovariances
and this is stated below.

Theorem 13.3.4. Let {X;} be a linear stationary series as given in Eq. (2) with the extra
assumption E[e}] < oo. Let 8y, be the (h + 1)-dim vector with elements y (0), ...,y (h) and,

similarly, let §;, be the vector of y(0),...,y(h). Then Jn@,—85) z Np1(0, V) where element
(G, k) of Vis

o
[E(S?)—304]y(i)y(k)+ > FGDfGe D, with

I=—00

o? = Hef) fG. ) = [yU+)+vU-j]/V2.

The proof of the above result uses the following steps and Theorem 13.3.2 given above.
The details are quite long, and are given in the book by Brockwell and Davis [63].

As in the analysis of bias of y(h), we may use the centered variable X; — u, but we
continue to denote it by X; with the understanding that E[X;] = 0.

I. Define () =n~1 Y1, XiX;4j. Then, by Lemma 13.3.1, p(j) = 7(j) + Op(n~1) since
X = Op(n~1/2).

Il. Itis enough to prove the CLT for Z]}'l:o cj? (j) where cy, . . ., ¢y, are constants
(Cramér-Wold device). Since 7 (j) = 7 (j) + Op(n™1, j=0,...,h,itis enough to prove
the CLT for Y-/ ¢;7 ().

lll. Denoting S; = X;(coX; + - - - + ¢y Xy ), we have

h n n
Yip()=n"1 > XeleoXe + -+ epXpyp) =0ty S
j=0 t=1 t=1
IV. Let Xp,: = erifm aje;_j, where m is a positive integer and
Sm,t = Xmt(coXm,t + - + X 1 1)-

Note that {X,;} and {Sp, } are 2m- and (h + 2m)-dependent sequences of rv’s,
respectively. Moreover, E[S;] is the same for all  and the same is true for E[S,, /]. Let

n n
Sn=n"1>"8 Smn=n"1Y Smr
=1 =1
0 =EStl, 0m = ElSm,],

Wy = ﬁ(én - 9), and Win = Jﬁ(Sm,n - em).
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V. For any positive integer m, show that W, ,, 3 Zm ~ N(O, v,zn) asn — oo
(Theorem 3.4.3).
VI. Show that lim;,_.o A(m, §) = 0, where A(m, §) = limsup,,_, ., P[|Wy — Wiy n| > §].
VII. Show that v, — v% as m — oo, where v2 = Y 0<jk<h CiCkVjk Wik is element (j, k) of the
matrix V).

13.3.3 Diagnostics

Diagnostic tools are often employed for an observed series Xj, . . ., X;; in order to investigate
if there is trend, if the assumption of equal variance is reasonable, if the sequence is iid, if
the assumption of normality is reasonable, etc. Before we discuss the diagnostic methods,
let us introduce another descriptive measure called the partial autocorrelation function
(PACF) which is commonly used in the analysis of stationary time series data. PACF of
order his the partial correlation between X; and X;_j given X;_1, ..., X;_p.1. More formally,

if Xt(f ) is the best linear predictor of X; based on X;_1,...,X;_p.1 and Xt(f )h is the best linear
predictor of X;_j based on X;_j.1,...,X;—1, then the partial autocorrelation between X;
and X;_p is w(h) = Corr[Xt —Xt(f),X,,h —Xt(ﬁ)h], h > 2. By definition, 7 (1) = p(1). Ina
later section, partial autocorrelations will be discussed in detail along with appropriate
formulas that can be used for computations. If a series is AR(p), then n(h) = 0 when
h > p+ 1, and if 7 (h) is the estimator of 7 (h), then /n7 (h) is approximately distributed
as N(0, 1) for large n.
We now discuss some graphical and formal diagnostic procedures.

(a) Plot of the series against time reveals if there is a trend or if the assumption of equal
variance (across time) is reasonable. In some cases, the problem of unequal variance
can be remedied by an appropriate Box-Cox transformation of the observed series.

(b) In order to check if {X;} are iid, one may plot the estimated autocorrelations (the ACF
plot) along with 0 + 2/./n bars in order to assess if the autocorrelations are close to
zero. ACF plot of the estimated residuals {£;} after fitting an ARMA model can also be
used to assess appropriateness of the model. For instance, if an AR(p) model is fitted,
the estimated residuals are

p
Br=X—-X-) ¢jXj—-X), t=p+1,...,n
j=1

where X is the sample mean, and <;31, . qup are the estimated autoregressive
parameters. If AR(p) provides an appropriate description of the data, then {&;} are
approximately iid and its ACF plot would indicate this. Similar logic can be used when
fitting an MA(q) or an ARMA(p, q) model to check its adequacy.

(c) There are a number of formal tests for checking if the observations are iid. We may
want to test, for a given positive integer h, Hy: p(1) = - -- = p(h) = 0 against H;: at
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least one of p(1), ..., p(h) is nonzero. We mention two tests: Portmanteau and
Ljung-Box. The test statistics are

h h
Q=n) p()* and Qp=nmn+2)Y_ p{H*/(n—}j,
j=1 j=1

where {6(j)} are the estimated autocorrelations as given in Eq. (4). Under Hy, each of
the two statistics (Q and Q) has an approximate chi-squared distribution with h
degrees of freedom. So we can reject the null hypothesis at level « if Q > Xfm or
Q13 > X;ZW» where Xflya is the (1 — «)-quantile of the chi-squared distribution with h
degrees of freedom. These tests are based on the asymptotic result given in
Theorem 13.3.3. According to this theorem, if the series consists of iid observations,
then «/np(j), j = 1,..., h, are approximately iid N (0, 1) for large n. Ljung-Box test
provides a small sample correction to the Portmanteau test by obtaining a better
estimate of the asymptotic variance of 5(j). In Portmanteau test, Var[4(j)] is
approximated by 1/n, whereas Ljung-Box uses the approximation

(n—j)/In(n + 2)].

(d) One can examine the histogram of the data to check if the assumption of normality is
justifiable.

(e) A plotof 7 (h) against h along with 0 & 2//n bars is known as the PACF plot and it can
be used to make an assessment if 7 (h) is substantially different from zero. This plot is
useful in guessing the order of an autoregressive model sincew(h) =0, h > p+ 1, for
an AR(p) model. It is a common practice to use ACF and PACF plots in the initial
analysis of the data.

It is useful to keep in mind that for an MA(g) model, autocorrelations of lag g + 1 or
higher are all zero. Similarly, for an AR(p) model, partial autocorrelations of order p + 1
or higher are zero. So the ACF plot is useful for an initial guess of the order of a moving
average model and the PACF plot is useful in guessing the order of an autoregressive model.
For instance, if the autocorrelations of lag 3 or higher are all negligible, then an MA(2)
model may provide a reasonable description of the data. If the partial autocorrelations
of lag 3 or higher are negligible, then AR(2) may be a reasonable model for the data. It
should be pointed, however, out that if the true model is MA(qg), the asymptotic mean of
p(h) is 0 for h > g + 1, but the asymptotic variance of g(h) is Z;.’:_q o()?/n and not 1/n
and thus the +2/./n bounds are not necessarily equal to +2SE[p(h)]. Nevertheless, the
ACF plot can be a useful graphical method for assessing if some moving average model is
reasonable.

The ACF of a stationary autoregressive series, and under the condition of invertibility
(discussed later), the PACF of a moving average series decrease rapidly with lag h. In
general, for an ARMA series both the ACF and PACF decrease rapidly. The following table
provides a summary.
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| Model | AR(p) | MA(q) | ARMA(p.q) |
| ACF | Tails off | Cuts off after lag g | Tails off |
| PACF | Cutsoffafterlagp | Tails off | Tailsoff |

In order to get a good predictive model, one should use a criterion such as AIC to select an
appropriate model. Nevertheless, the use of ACF and PACF plots may sometimes lead to a
reasonable predictive model.

13.3.4 Notation of Backshift Operator

The notation of backshift operator makes the description of ARMA processes convenient.
The backshift operator Bis defined as BX; = X;_;. Note that X;_; = BFX, for any k with the
understanding that B°X; = X;. A mean zero AR(1) process can be written as

Xr = ¢1BXy + &1, or Xy — ¢1BXy = &1, or (1 — ¢1B) Xy = &t
Similarly, a mean zero AR(p) process can be written as
(1 —¢1B—--- —¢pB) Xt = &1, or p(B) Xy = &,
with ¢(B) =1 — ¢1B—--- — ¢pBP.
If a series {X;} with mean u is AR(p), then
¢(B)(X; — w) = &1, where $(B) =1 — ¢1B—--- — ppB.
Similarly, an MA(q) series {X;} with mean p can be expressed as
Xt —w=er+6180_1+ - +0get—q = 0(B)er, where
0B)=1+0,B+---+64B7.
An ARMA(p, q) series {X;} with mean u can be written as
¢(B)(Xy — ) = 6(B)ey.

As mentioned earlier, the error terms {g;} are often called innovations in the time series
literature.

13.4 Partial Autocorrelation Function (PACF)

As discussed in the last section, the partial autocorrelation (PACF) plot is widely used in
the analysis of stationary data as it aids in the preliminary identification of autoregressive
models. Let us recall that, for any 2 > 2, partial autocorrelation 7 (h) of order h of a
stationary series {X;} is defined to be the partial correlation between X; and X;_j; given
Xi—1,..., X¢_pr1-When h = 1, 7(1) is defined to be Corr[X;, X;_1]. Iff(gzu is the best linear

predictor (forecast) of X; based on X;_1, ..., X;_,,1 and )A(}(lb_) is the best linear predictor

L,t—h
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(backcast) of X;_p basedonX;_jy1,...,X;—1, thenforany i > 2, the partial autocorrelation
of order h is

w(h) = Corr[Xt - X(f)

o (b)
h—t1,0 Xt—h = X~

L)
In this section, we discuss partial autocorrelations in some detail. We show that 7 (h) =
én,n, Where ¢y, j, is the coefficient associated with X;_j, in the expression of the best linear
predictor of X; based on X;_1, ..., X;_j. As a by-product of the discussion, we also obtain
an important recursion formula (known as Durbin-Levinson recursions) which relates the
autoregressive coefficients of the AR(h) fit to those of AR(h — 1) fit.

We first write down a basic result.

Lemma 13.4.1. If {X;} is a stationary AR(p) series, then w(h) = 0 forh > p + 1.

It is fairly easy to see why this lemma is true. Assume that E[X;] = 0. Since the series is
assumed to be AR(p) with autoregressive coefficients ¢, ..., ¢p, forany h > p + 1, the best

linear predictor of X; based on X;_1,..., Xy py1 is )A(;(lf_)l ;=0 X+ pXip and X; —

)A(;lf_)l’t = &t IfX}(lb_)Lt_h is the best linear predictor of X; j based on X;_j,,...,X;—1, then
the remainder X;_;, — }A(',(lb_)ll ;_p s alinear function of X;_1, ..., X;_,. Since ¢, is uncorrelated
with X;_1,...,X;_,, we can conclude that X; — Xh_u = g is uncorrelated with X,_; —
X%(fi)l,tfh and thus = (h) = 0.

13.4.1 Expression for 7 (h) and Durbin-Levinson Iterations

Let {X;} be a mean zero stationary series which is not necessarily an autoregressive series of
any finite order. Let ¢y, 1, . . ., ¢p, ;, be the coefficients of the best linear predictor of X; based
on X;_1,...,X;_p (e, )A(]if; = ¢p1Xi—1 + -+ + dppX—p). The arguments here are given in
terms of the theoretical autocovariances which can be replaced by their sample estimates
for numerical computations based on the available data.

By Lemma 13.2.1

()

Xy 1= n-11X-1+ o1 n 1 Xy
&(b)
Xn_1,0—n = Pn—1,1%—pp1 + -+ Sp_1 1 X1,
ok
Xp_1,t
This common prediction error is

and the mean square error in forecasting X; by
(b
Xi—n by X;(l,)

is the same as the error in backcasting

Lt-h'
PE(h—1) = E[ X, - X,(lf;r = E[X,_p - 5(,(117_)“_,1]2

=y(0) — [fp-117 D + -+ by p1y (D]

The identity 7 (h) = ¢y, and Durbin-Levinson iterative formula follow by equating the
coefficients of two different but equivalent expressions of the best linear predictor of X;
based on X;_1, ..., X;_,. This basic idea is detailed the following observations.
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(i) Anylinear predictor of X; based on X;_j, ..., X;_j, can be expressed as
L=ayXp1+- +ap1Xe—py1 + apdp_1,0-n

(b)
where 8,1 ;- = Xpp — Xh—l,t—h'

(ii) Since 8;,_1,_j, is uncorrelated with X;_1, ..., X;_p 1, the prediction error E[X; — L]?,
where L is as in (i), is minimized at

aT = ¢]’l—1,1’ e ’aZ—l = ¢h—1,h—1’ and
aj, = Cov[ Xz, 8p_1,¢—n]/Var[sp_1,;—n]

A

= Cov[Xt — X}(zle,t’Xt*h — X}(zli)l,tfh]/varl:X[*h - X}(zbf)l,tfh]

= Corr[Xt - X(f)

(b
o Xen =X ==,

—1,t—h
where the last two steps follow from the fact that

& 2 N 2
x50, =o[x - 52, ]

(iii) The coefficients of the best linear predictor f(;(lf g are given in (ii) above, and using
Lemma 13.2.1 we have

X = a X+ X R e
=11 X1+ + Op_1 1% na1
+ 7 (W[ X = Sh-11X—p1 + -+ 1, -1 Xe-1]
=[¢p_11 —7Wdp_1p-11X—1+ -
+n—1,n-1 — T (MPp_111Xs_py1 + (WX

(iv) The expression for the best linear predictor )A(}(lf ; of Xy basedon X;_1,...,X;_jis

PpaXe—1+ -+ Opp1Xe—hp1 + P pXi—n

and this should be the same as )A(}(Lf g in (iii). Equating the coefficients of X;_1,..., X;_p
in these two expressions, we have

¢h,h =n(h) = CZZ

= Cov[Xt,8p—1,¢—n)/Var[8p_1,¢—n]

v =dpayh=1) = —p_y p_1v(1)

T O =y = —p_rpy(h— 1)’
bhj=Pn-1,j =~ Phh®h-1,h—jp J=1...,h—1L

and

From Step (iv), we have ¢y, ;, = 7 (h). The expressions in (iv), which relate the AR(h)
coefficients to AR(h — 1), provide a recursion formula for calculating the autoregressive
coefficients, which is known as the Durbin-Levinson algorithm. In order to obtain the
estimate 7 (h) of n(h), it is enough to fit an AR(h) model and solve the Yule-Walker
equations with {p(j)} in place of {y(j)}. Also note that the Durbin-Levinson algorithm
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provides an iterative scheme for solving the Yule-Walker equations starting from AR(1).
We thus arrive at the following important results.

Theorem 13.4.1. If {X;} is a mean zero stationary series, and if ¢ 1 Xi—1 + - - - + dpnXe—p
is the best linear predictor of X; based on X;_1, . . ., X;_p, then the partial autocorrelation of

order h > 2 is given by n(h) = ¢ . If {X;} is stationary AR(p), then Jna(h) 2 N(@,1) as
n—ooforh>p+1.

Theorem 13.4.2 (Durbin-Levinson Iterations). For a mean zero stationary series {X;},
if pp1Xe—1 + -+ + dppXe—p is the best linear predictor of X; based on X;_1,...,X;_p, then
the coefficients ¢y 1, .. ., ¢p 1, are related to those of the best linear predictor of X; based on
Xi—1,...,Xs_p_1 as given in observation (iv) above.

We now provide a justification of the result on the asymptotic normality of 7 (h). We will

see in Section 13.8.1 that when {X;} is AR(p), then \/ﬁ(qah —épn) E Ny (0, 021'];1), h>p+1,
where ¢, = F;llyh and q§ n, is the solution of the Yule-Walker equations r nd = y;,. Thus,

Jn#@h) — 7 (h) z N(O, azl“gl(h, h)), where F;ll(h, h) is the last element of the matrix

r ;1. From matrix algebra it is known that

() r;'(h,h) =|Tj_1|/IT |, where |-| denotes the determinant,
. 'y v 1
(i) rp, = and |Ty| = |[Tp||y©@ —y! It v
)’11,;_1 )/(O) \ 1||: h—-1" h—1 h I:I
(i) 1 000 =1/[y(© — v}, T3 vy ] and
2
(N)ﬁmnmmmaBQJJMD—yLJ?Lyml:EP}—&%M].

If {X;} is stationary AR(p), then X}(lf_)1 ;= ng when i > p + 1 and
E[x - x? T —g[x - xD1 =y - yIr;!
[ t h—l,t] = [ t pvt] =V Ypip 7p
Stationarity of {X;} implies
y(0) = Var[X] = Var[¢1X;—1 + - + opXs—p + &1]
= Var[¢1 X;1 + - + ¢ppX;—p| + Varler]

= ¢~TFp¢ +o%= ygl“,;lyp + o2, and hence

% =y(0) — ygl‘glyp, and

o1y =0 [[y© ] Ty ] =1

for any h > p + 1. This shows that /n7 (h) 2 N@O,1)asn — o forh > p+1.
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13.5 Causality and Invertibility

This section addresses a number of important mathematical issues and theoretical results,
but their proofs are not given. For theoretical details including proofs, the readers may
consult the book by Brockwell and Davis [63].

A series {X;} is called causal if it has an MA(c0) representation, that is

oo
X —p=7) Ve withyo =1, (5)
j=0

where {¢;} are mean zero iid with common variance ¢ and Z|¢j| < 00. Any causal series
is stationary since for any h > 0,

o
COV[Xt,XH_h] = (1'2 Z Wﬂ//]-ﬁ—h =y(h),
j=0

depends only on h. In general, explicit expressions for these iy weights are difficult
to obtain (unless it is an MA(g) model) even though iterative formulas are available.
Fortunately, packages such as R will calculate these v coefficients for an ARMA(p, q)
model.

A series {X;} is invertible if it can be written as an AR(co) series, that is, it has the
representation

o
Xt —pn= Zﬂj(thj_M) + e, 6)
j=1

where {¢;} are iid with mean 0 and common variance o2. Clearly, any AR(p) model is
invertible. However, an invertible model need not be stationary. For instance if X; = X;_; +
&1, where {g;} are iid mean 0 with variance o2, then {X;} is invertible but is not stationary
(Example 13.2.5). Except for autoregressive models, there are no simple expressions for {r;}
for MA(g) or ARMA(p, q) models. However, a computing package such as R can be used to
obtain them.

Mathematical conditions for invertibility and causality will be discussed later. An
invertible expression is useful for obtaining the forecast values, whereas a causal repre-
sentation makes it easy to obtain the variance of forecasts.

Example 13.5.1. A mean zero AR(1) series {X;} may be rewritten as

Xr=¢Xy 1 +er=0@Xs 2+ 1) +er
= ¢ X0 + der_1 + e
= ¢*(@Xr3 +r-2) + per1 + ot
= ¢°X;_3+ ¢%er_o + per_1 + .
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We may repeat this argument to get
X =¢"Xe—r+ ¢r71€t7r+1 +-+der e,

for any positive integer r. If |¢| < 1, then ¢" — 0 and hence ¢'X;_; £ 0asr — oo. Thus we
may reexpress X; as

o0

Xt = Z ¢j8t_j,
j=0

which is a causal representation of the series {X;} with ; = &
Example 13.5.2. A mean zero MA(1) series may be rewritten as

er=Xr —0ep_1 = Xp — 04— — O—2) = Xs — 0X;_1 + 0%e,_5.
Repeating this argument we have, for any positive integer r,
st =Xt —0Xp 14+ (=) Xe—r + (=) er 1.
P . . .
If 6] < 1, then (—6)"Tl¢;_,_; — 0asr — oo and thus we have an invertible representation
for the MA(1) series
et =Xy —0Xi_1 + 92Xt_2 + ---, and hence
o0
Xr=0X;_1 — 92Xt72 +-- 4= anXt—j + ¢&¢,
j=1

with 7 = (—1)/~1e/.
Example 13.5.3. Consider an ARMA(2, 2) model with ¢; = 0.8, ¢» = —0.15, 6; = 0.6,
62 = 0.08. Using R, we have obtained the first 12 values of {y;} starting with yr; = 1.400 are

[1.400, 1.050, 0.630, 0.347, 0.184, 0.094, 0.050, 0.024, 0.012, 0.006, 0.003, 0.002].

Note that the values of y; become small for large j and this is typical for any ARMA series
satisfying the condition of stationarity as will be seen later. Using R, we can get an invertible
expression, and the first 12 values of {;} starting with 71 = 1.400 are

[1.400,—-0.910, 0.434, —0.188,0.078, —0.032, 0.013, —0.005, 0.002, —0.001, 0.0003, —0.0001].

The values of r; rapidly approach 0 as j increases.

13.5.1 Usefulness of Invertible Representation

If we know the weights {x;}, then it is easy to do the forecasting from the data {Xj, ..., Xy}
assuming that 7; — 0 as j — oo, which is generally true for ARMA processes under
appropriate conditions. For notational simplicity let us assume that x = 0. Then we can
write this series as

Xe=er+mXp1+mXe2+---.
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If we have the entire past {X;: — oo < t < n}, then the forecasted value of Xj,11 is
Xpp1 =mXn +moXp_1 +m3Xn_2+ -+,
If X,,+1 were known, then forecast of X;,.» would be
71 Xp1 + 2 Xn + 13X 1+

Since X,,1 is unknown, then we can substitute it by X,; (justification given in
Lemma 13.6.1), leading to the forecasted value of X;,;» as

Xnt2 = mXpg1 + moXn + 73Xp1 + -

This method can now be replicated to forecast X;,+3, X;;+4, etc.
Typically u is not equal to zero, but obtaining the forecasts is not difficult with the
known 7 values. For instance, the forecasting formula for X, is given by

X1 —n=mXn — ) +m2Xp_1 — ) + m3Xn_p — ) + - .

These expressions for forecasts assume that the entire past {X;: — oo < ¢ < n} is known.
However, if 7; — 0 rapidly as j — oo, which is the case for ARMA processes under
the condition of invertibility, then the terms involving X;, ¢ < 0, may be ignored since
the associated r-coefficients are negligible and thus the approximate forecasts are linear
functions of the available data X, ..., X,.

13.5.2 Usefulness of Causal Representation

Any practical approach to forecasting is incomplete without addressing the issue of predic-
tion limits (or prediction intervals) of these forecasts. If the observed series is {X1, ..., X},
then the & step ahead forecast is denoted by X, j,. The forecast error is X, , — X;,..,, which
is not known since X, , is unknown. For all the cases we consider in this chapter, the mean
of the forecast error is equal to zero (or close to zero when the parameters of the model are
estimated). The mean square error of the forecast error is denoted by

o?(h) = VarlX,,1, — X o) 1X1, - -, Xnl
= El(Xyyh — X2 1X1, - ., Xnl.
Thus a prediction interval for X, ;, with confidence coefficient 1 — « is Xn+1 + zo 00 (h) if
the series is assumed to be stationary Gaussian.
13.5.3 Important Technical issues

Here is a summary of the technical issues for AR(p), MA(q), and ARMA(p, q) models which
will be discussed in this section.

1. For AR(p) models, we need conditions on the autoregressive coefficients ¢y, ..., ¢p in
order to guarantee stationarity.
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2. Moving average models are not in general identifiable. Thus for MA(g) models, we
need conditions on the moving average coefficients 6y, . . ., 64 in order to guarantee
identifiability.

3. For ARMA(p, g) models,

(i) the coefficients in the AR part must satisfy constrains to guarantee stationarity (as
in (1) above),
(ii) the MA coefficients must satisfy constraints in order to guarantee identifiability of
the model (as in (2) above),
(iii) conditions on the AR and the MA coefficients are needed in order to guarantee
“nonredundancy.” This issue will be discussed in soon.

Nonuniqueness of Moving Average Models

Moving average models are not unique. For instance, consider an MA(1) series X; — pu =
& 4+ 0e;_1, where {g;} is white noise with variance o2. Under the assumption of normality
(ie, {e;} are normally distributed), any stationary series is completely characterized by the
mean and autocovariances. Thus if two sequences have the same mean and autocovari-
ance functions, they are equally good descriptions of the data, that is, they provide the
same fit and they have the same predictive performances. Consider the following two
models

Xe—p=er+0e1, Xe—p=er+1/0)e;_q,

where 6 # 0, {&;} is white noise with variance o2, and {¢}} is white noise with variance 6%02.
Note that we only observe the data {X;}, not {e;} or {¢}}. Both models have the same mean
w. All the autocovariances of lag 2 or higher are zero for both models. For the first model

y(©0) = (1 + 6202, y(1) =002, and0=y(2) = y(3) =--- .
For the second model,

y(0) =1+ (1/0)21(6%02) = (1 + 6?02,
y@) = (1/6)(6%02) =002, and 0= y(2) = y(3) = - - - .

So both the models have identical mean and autocovariance structures. Hence they will
provide identical fits and predictions. This nonuniqueness, or lack of identifiability, is
problematic since there are multiple “correct” models.

How is this issue resolved? If the value of 6 is larger than 1 in magnitude and Var[e;] =
o2, then we may as well consider the second model for which coefficient associated with
er—1 is 1/0 whose magnitude is less than 1. Similarly if the moving average coefficient (1/6)
of the second model is larger than 1 in magnitude, then we may decide to use the first
model for which the coefficient would be smaller than 1 in magnitude. Thus we can always
choose a model whose moving average coefficient is no larger than 1 in magnitude and this
is what is done in practice.
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The same issue of nonidentifiability comes up for general MA(g) models. One can
restrict attention to those models with appropriate conditions on the MA parameters
61,...,04 needed for identifiably and this is what is usually done.

Redundancy Issue for ARMA(p, q) Models

If a series {X;} is white noise (ie, X; = &, where {¢;} is white noise), then subtracting
0.5X;_1 = 0.5¢;_; from this series we have

Xy —05X;_1 =6 —0.5e4_1, ie, Xp =0.5X;_1+¢er—0.5¢4_1.

Now it seems that the series {X;} is ARMA(1, 1), whereas in reality it is a white noise. As a
matter of fact we can rewrite X; as

Xr=¢Xp1+er— per1,

for any —1 < ¢ < 1. Once again it looks as if {X;} is ARMA(1, 1); however, there is a
redundant parameter ¢. Also note that the number of such redundant models is infinite.
In general if 6 = —¢ in an ARMA(1,1) model X; = ¢X;—1 + & + 0¢;-1, then there is
redundancy. When 6 # ¢ then this redundancy is no longer present. The same issue needs
to be addressed for general ARMA models and constraints on the parameters are needed
in order to avoid any redundancy.

Condition for Stationarity for AR(p) Models

If {X;} follows an AR(p) model, then it is stationary (and causal) if it can be written in
the form Eq. (5). Conditions on the autoregressive coefficients ¢, ..., ¢, are needed to
guarantee that the series can be written in this form. Let ¢(z) = 1 — ¢1z2 — --- — ¢p2” be
a polynomial in z, where z is complex. This polynomial has p roots which can be real or
complex valued.

Lemma 13.5.1. If the absolute values of all the roots of the polynomial ¢(z) of an AR(p)
series are larger than 1, then the series is stationary.

When p = 1, the root of the polynomial is 1/¢;. The condition that the absolute
value of 1/¢, is larger than 1 is equivalent to the condition —1 < ¢; < 1. In this case,
the autocorrelation function is p(h) = q){’, h = 0,1,..., and p(h) converges to zero
exponentially fast as h increases (Example 13.2.3).

For p = 2, the condition on ¢; and ¢, for stationarity is a bit more complicated. The
condition is: —1 < ¢2 < 1 and —1 < ¢1/(1 — ¢2) < 1, that s, (¢1, ¢2) is inside the triangle
A= {(u,u): —1 <u <1, =1 < u3/(1 — u2) < 1}. The roots of ¢(z) are reciprocals

of the roots of g(z) = z> — $1z — ¢». The roots of g(z) are (1/2) |:¢1 =+, /qbf + 4¢2}, and they

must be smaller than 1 in magnitude for the AR(2) series to be stationary. In the AR(2)
case, it can be shown that p(h) = ¢1p(h — 1) + ¢op(h — 2), h = 2,3,.... When the roots
r1 and r,» of g(z) are real and distinct, the theory of difference equations tells us that the
autocorrelations p(h) behave like c; r? +c rél, where c; and ¢, are real. When r; = r», that
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is, qbf + 4¢p = 0, then p(h) = 1 r{’ + czhr{“, c1, ¢ real. Thus the autocorrelation function
{p(h)} decays exponentially in & when the roots of g(z) are real.

When r; and r, are complex, the AR(2) can model series with pseudo-cyclical behavior.
In this case, ¢f+4¢2 < 0, r» is the complex conjugate of r; and p (k) is of the form ¢; r?+cz ré’,
where c; and ¢, are complex. Calculations show that p(h) = |r; |h[sign(¢1)]h sin(2r Ch+D)/
sin(D), where sign(¢1) = 1if¢; > 0 and = —1if ¢; < 0, and C and D are constants. Since
Ir1| = |r2] < 1, p(h) decays exponentially in a sinusoidal fashion.

In general, the autocorrelations of an AR(p) process decay as a mixture of exponentials
or as damped (sinusoidal) exponentials.

Identifiability of MA(q) Models

Consider the polynomial 6(z) = 1461z + - - - 4 6429, where 6y, . . ., 0,4 are the parameters of
the MA(g) model. This polynomial has g roots which can be real or complex valued.

Lemma 13.5.2. If the absolute values of all the roots of the polynomial 6 (z) of an MA(q)
series are larger than or equal to 1, then the series is identifiable.

For the MA(1) model, this translates into the condition that —1 < 6; < 1. For MA(2) this
condition is equivalent to the condition that (—6;, —6,) is in the triangle A as in the AR(2)
case, except that (—6;, —62) is allowed to be on the boundaries of the triangle.

Lemma 13.5.3. If for an MA(q) or ARMA(p, q) series, the absolute values of all the roots
of the polynomial 6 (z) are larger than 1, then the series is invertible.

For the MA(1) model, the conditions for identifiability and invertibility are —1 <
01 < land —1 < 0; < 1, respectively. For MA(2) the model is invertible if (—6;, —6>)
is in the triangle A as in the AR(2) case. Thus the condition for invertibility guarantees
identifiability.

Stationarity, Invertibility, and Nonredundancy of ARMA(p, q) Models

We have already seen that for an ARMA(1, 1) series, there is no redundancy when 6 # —¢.
For this case the roots of ¢(z) and 0 (z) are 1/¢ and —1/0, respectively. Thus nonredundancy
is achieved when ¢(z) and 6(z) have no common root. This same condition is true for the
general ARMA model.

Lemma 13.5.4. For an ARMA(p, q) series, if ¢(z) and 6(z) have no common root, then the
model is nonredundant.

For the general ARMA model we need the following:

(a) roots of ¢(2) are larger than 1 in magnitude (condition for stationarity),
(b) roots of #(z) are larger than or equal to 1 (condition for identifiability), and
(c) theroots of ¢(z) are distinct from the roots of (z) (condition for nonredundancy).

These are summarized in the following result.
Lemma 13.5.5. An ARMA(p, q) series is stationary, identifiable, and nonredundant if the
following conditions hold:



460 THEORY AND METHODS OF STATISTICS

(a) theroots of ¢(2) are larger than 1 in magnitude,
(b) the roots of 6(z) are larger than or equal to 1 in magnitude,
(c) ¢(z) and 0(z) have no common roots.
For invertibility, in addition to stationarity and nonredundancy, condition (b) needs
to be replaced by the stronger condition
(b') the roots of 0(z) are larger than 1 in magnitude.

13.6 Forecasting

This section deals with the issues of forecasting, and obtaining prediction intervals for
an ARMA series {X;}. Here the parameters associated with the ARMA model are assumed
to be known, but they need to be estimated in practice, and the issue of estimation
will be discussed later. Suppose that observations are Xj, ..., X, and we wish to forecast
Xn+1, Xnt2, . .., then alinear predictor of X, j, is of the form ap + a1 X1 + - - - + a, X, If all the
variables are centered (ie, they are subtracted by their means), then we may take ay = 0.
For notational convenience, we consider the issue of forecasting a centered series and we
continue to denote the centered series as {X;}.

If we wish to predict X, using a linear predictor based on X,, = (X3,...,X;)” for the
AR(1) case which is modeled as X;,+1 = ¢X; + en+1, the best linear predictor of X,,y; is
Xn+] = ¢Xp. If X511 were available, then the best linear predictor of X, » based on X}, 11 =
(X1,...,Xn, Xn+1) would be ¢X;,11. Now X;,4; is unobserved, but a predicted value Xn+1 of
Xp41 is available. Thus substituting Xn+1 in place of X;,1, we can obtain a linear predictor
of X,,+2 based on X, as X,Hz = ¢Xn+1 = $2X,,. We can similarly obtain a linear predictor of
X,ipbasedon Xy, ..., X, as Xn+h = ¢"X,. Is Xn+h = ¢"X,, the best linear predictor of X, n
based on Xj, ..., X;? The answer is yes.

Let Xn+h denote the best linear predictor of X;,,;, based on Xj, ..., Xj,. In general, it is
easy to obtain an expression for the best predictor of X,,,, based on X1, ..., X;;1 ;1 and in
this expression we can substitute Xntt, ... ,Xn+h_1 for X;+1, ..., X151 in order to obtain
the best linear predictor of X, based on Xj,...,X,. This is based on a rather simple
argument as outlined below.

If Y is arvand Wi, W, are two random vectors, then the best predictors of Y given
W1, and given W, and W are E[Y |W1} and E[Y |W,, W], respectively. The law of iterative
expectations tells us E[Y |W;] = E[E{Y |W,, W1} |W]. Is this result true for best linear
predictors? The answer is yes if Y, W1, W are jointly normally distributed, since the best
predictor is the same as the best linear predictor. However, the result is true more generally
in the sense described in the result below. Let the best linear predictors of Y given W1, and
Y given W1, W5 be denoted by L(Y |[W1) and L(Y |W5, W), respectively. We can then write
the following result.

Lemma 13.6.1. Let L(- |-) be the best linear predictor as described above.

(a) Lislinear in the response in the sense that for any rv's Y1 and Y»,

L(Y1 4+ Yy |[Wy) = L(Y7 |[Wq) + L(Yp [W7).
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(b) L satisfies the iterative formula L(Y |W1) = LIL(Y |W,, W1) |[W].
(c) IfWy and W, are uncorrelated, that is, Cov[W1, W,] = 0, then

LILY|W2) (W11 =0 and L(Y W, W1) = L(Y [W3) + L(Y [W1).

This proof of this lemma is left as an exercise. It can be used to justify replacing

Xnt1y -, Xnin_1 by Xnits .o, Xn+h_1 in the expression for the best linear predictor of X, , j,
given Xi, ..., X, ;1 in order to obtain the best linear predictor of X, ;, given Xj, ..., Xj,.

13.6.1 Forecasting an AR(p) Series

Forecasting with an AR(p) model with autoregressive coefficients ¢, . . ., ¢y is quite simple
asit has aregression form. Suppose that observations are Xj, . . ., X;; and we wish to forecast
Xn+1,Xn+2, . ... The best linear predictor of X, based on Xj, ..., X, will be denoted by
Xn+ - Since

Xe=p1Xp 1+ +¢pXe—p + &1,

where {g;} are iid with mean 0 and variance o2, the best linear predictor of X;,;; based on
XI, e ,Xn iS

Xn+1 =¢1Xn+ -+ opXnt1-p-

If X;,+1 were known the best linear predictor based on X, ..., Xp+1 is 91Xp+1 + 92 Xp +- -+
¢pXni2—p. InLemma 13.6.1, use Y = Xy 42, W1 = (X, ... ,X,)T and W» = X,,,1 to obtain

Xpyo = LY |W1) = LIL{Y W, W1} W]
= L[¢p1Xn41 + $2Xn + - + dpXni2_p W]
= 1LXp 1 IWD) + @2 Xn + -+ ¢pXni2—p
= 1K1+ G2 Xn + -+ PpXnt2-p-
We have used linearity of L (part (a) of Lemma 13.6.1) and the fact that L(X; |[W;) = X; for
anyt=1,...,n.

If we denote Xt = X;, t = 1,...,n, then the argument used above can be employed to
show thatforany 2 > 1,

Xnih =01 Xnyn1+ -+ opXninp-

13.6.2 Forecasting an MA(q) Series

For a mean zero MA(q) series with coefficients 0y, . . ., 64, X, j, is uncorrelated with X;, when
h>q+1.Thus X,,, = 0forh = g+ 1,9 + 2,.... We discuss below how to find the
formula for forecasting X, 1, . . ., X4 4. As will be clear in the subsequent discussion, unlike

in the AR(p) case where the forecasted value X, ;, depends onlyon Xy, . .., X, 1 p» here the
forecasted value of X,,, ,, 1 < h < g, depends on the entire available past X, ..., Xi.



462 THEORY AND METHODS OF STATISTICS

For an invertible series given in Eq. (6), the forecasting formula is simple if the entire
past {X;: — oo < t < n} were available. Absolute summability of {z;} guarantees that
i > 0asj — oo, and for an invertible MA(g) model, mj decays exponentially fast as j
increases. So when predicting X,,,, based on Xj, ..., X;, we may simply truncate the =
series at j = n thus approximating the process by an AR(p) sequence with p = n, and
then use the methods associated with forecasting an autoregressive process as given in
Section 13.6.1.

We now discuss how to carry out forecasting without having to obtain the values of {r;}
assuming that the series is invertible. Note that

Xnt+1=¢épt1+016n+ - +0gen11—g-

For the moment assume that in addition to the observations X, = (X,...,X,) we
also have e9 = (e_g4+1,.. .,€0)T, and we predict X,;1 based on &g and X,. Any linear
combination of &9 and X, can be rewritten as a linear combination of ¢_441,..., &5, and

vice versa. Thus the best linear predictor of X;,;1 based on &9 and X}, is given by
Xn-',-l =01en + -+ 0gept1—q-
In order to forecast X;,. 2, note that
Xnt2 = ént2 +016p41 +02en+ - +0g0n42-g

and (e,+2, ex+1) is uncorrelated with W, = (eg X1, ...,X,)T. Thus the best linear predictor
of X;,4» given W is

X2 = bO2en+ -+ 0gbpi2_g.
A similar argument will show that
Xyyg =0Ogen+ -+ Ogent3—q»
Xpih =Open+ - +0genin_q 1<h<g, and
Xn+h =0, h>gq.
The forecasts Xn+h, h =1,...,q, depend on knowing e;, ep_1, ..., eny1-g. We now point
out how to obtain these from ¢¢ and X,,. We may obtain ¢; and ¢3 as
e1 =X — (B180 + - +0ge1—¢), and
g2 =Xp — (0161 + -+ ge2—¢).
Continuing this way, once we have ¢1, .. ., &; , we may obtain

8t+1=Xt+1_(618t+"'+66]8t+1—q)V t=1,...,n—1.

It is important to note that only the data X, = (X, ..., X,) is available and not (. Even
though &y, ...,e411-4 are linear combinations of ¢9 and Xj,, often one takes eg = 0
since the coefficients associated with ep in these linear combinations are negligible if
the assumption of invertibility is valid. Without the assumption of invertibility, it is still
possible to obtain the forecasts, but that issue will not be discussed here.
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Example 13.6.1. Consider a mean zero MA(1) series with the moving average coeffi-
cient 0. Assuming ¢y to be known, we can get

g1 =X1 —0eg, e2=Xp—0¢1,..., en=Xp—0¢e,_1.
Using the arguments given in Example 13.5.2, we have

en=Xn —0Xp_1 +0°Xp_o + -+ (=110 1X) 4 (=1)"0",.

The forecasted value XnH of X;,11 based on g¢, X1, ..., Xy is
X}’l+1 = (98;1

- e[xn Xy + 02 Xpgp -+ (—1)"—19"—1)(1] F (=D g,

The term 0"ty is negligible if |0] < 1 (ie, the series is invertible) and thus Xn+1 is
approximately a linear combination of X, ..., Xj,.

13.6.3 Forecasting an ARMA Series

If {X;} is mean zero ARMA(p, q), then the method for forecasting X,,,;, based on X, =
(X1,...,Xn)T combines the methods given for AR and MA models. If the series in invertible,
then we can obtain, in principle, the (approximate) best linear predictors of X, .5, h =
1,2,...,based on Xj, ..., X, by approximating {X;} by an AR(p) process with p = n.

For the moment assume that e, = (gp11-¢,-- .,sp)T is known. Then we can obtain
€p+1,---,€n as linear combinations of e, and X, as will be shown below.
Since

Xnt1 =®1Xn+ -+ OpXnt1-p +ent1 + 0160+ +0gent1—q
=01 Xn+ -+ opXnt1-p+01&n+ - +0gen11-g + ent1,

the best linear predictor )A(n+1 of X, 41 is given by
X1 =1 Xn+ -+ pXny1-p+01en + -+ 0gent1—g-
Since

Xnt2 = 01 Xny1 + 2 Xn+ -+ opXni2p
+018n41 +026n+ -+ 0gent2—q + ent2

the best linear predictor of Xj,;2 would be
A1 Xnt1 + G2 Xn + -+ PpXnto—p +016p41 +2en + - +0gen12—¢g

if X541, eny1 were known. Following Lemma 13.6.1 we can now replace X, by Xnﬂ
and e;,41 by 41 = 0 (since e,41 is uncorrelated with ¢, and Xj, ..., Xp,). The best linear
predictor of X, » given e, and Xj, ..., X; is

Xpso = $1X01 + b2 Xn + - + OpXnt2—p +026n+ -+ 0geny2—q-
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A similar argument will show that
Xn+h = ¢1Xn+h_1 +--+ ¢p5(n+h—p +0pen+ -+ 9q8n+h_q, h=1,...,q
Xprh=01Xpop1+--+ ¢PXn+h—pr h > g,

with the understanding that X, =X, fort=1,...,n.

The forecasts f(n+h, h > 1, depend on e,41-¢,...,en. We need to obtain their
values when ¢, and Xj, ..., X, are available, and this can be done iteratively starting
with g,41

Ep+1 = Xp+1 - ¢1Xp — = ¢pX1 — (91€p +---+ 9q8p+1—q)y
epr2 = Xpt2 — 01Xpr1 — - — dpXo — Orepy1 + -+ Ogepra_g),
and, when ey 1,...,&, t > p+ 1, are available, we can find
erl = Xpp1 — 01X — - — PpXey1-p — Or6r + - + Ogerr1-¢g)-
Thus ¢y, ..., en41-4 and hence Xn+h, h > 1, are linear combinations of ¢, and Xj, ..., X;.
Under the conditions of invertibility, the coefficients associated with ¢, ...,ep114 are
negligible. In practice, often ¢, . .., ey 14 are taken to be zeros.

Example 13.6.2. Let us assume that we have an ARMA(1, 1) process Xy = ¢pX;—1 + & +
Oer—1, ¢ # —0, and we want to predict X;,4+1, X412, . .. using the observations Xi, ..., Xj,. If
£1 were available, then generate ¢, ¢y, . .., &, as

g2 =Xo — (X7 +0¢e1), 63 = X3 — (X2 +0¢e2),...,en =Xn — (X1 +0e5_1)

Thus predicted values of X, ,, h > 1, are

Xn+1 = ¢Xp + Oen, Xn+2 = ¢Xn+1 +08p41 = ¢5(n+1r and
Xnth1 = X h= 2.

Remark 13.6.1. For the MA(q) and ARMA(p, g) cases, it is generally assumed that the
series is invertible. However, the condition of invertibility is more of a convenience than
necessity. Even without the condition of invertibility, it is still possible to forecast X;,, p,
h > 1, using the best linear predictor a; X;, + - - - + a,—1Xj, but unlike in the invertible case,
the coefficients {aj} may not converge to 0 rapidly. For instance, for the mean zero MA(1)

case if we have & = —1, then the best linear predictor of X;, is of the form
n—1
Xn1 = Z ajXy_j, wherea; = -1+ (j+1)/(n+1).
j=0

Note that the coefficients {a;} increase linearly fromay = —n/(n+1)toa,—1 = —-1/(n+1).
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13.6.4 Standard Error for Prediction

Calculations of standard errors of predictions are needed to construct confidence bounds.
Let 02(h) = E[(Xn — Xn+h)2 |X,] be the mean square error for predicting X,,,;, based
on the data X, = X1,...,X»)%. Once again we assume that the parameters of the
ARMA model are known and formulas for o2 (h) depend on the unknown parameters. In
practice these parameters are replaced by their sample estimates. Under the assumption
of normality, a prediction interval for X,,,;, with confidence coefficient 1 — « is given by
)A(,H_h + zo 20 ().
The formulas for o?(h) can be obtained easily for a series with causal representation

)
Xy = ijst,j, with ¥ =1,
=0

where {¢,} are iid with mean 0 and variance 0, and }_|;| < co. If we assume that the entire
past X, = {X;: — oo < t < n}is known, then it is equivalent to knowing the entire past of
{er: — oo < t < n} of the errors. If a predictor of X, 5, is a linear combination of {X;: — oo <
t < n}, then itis alinear combination of {¢;: — oo < ¢ < n}. Under appropriate conditions
of stationarity and invertibility, the dependence on {¢;: — co < ¢ < 0} is negligible. Since

o0
Xnt+1= Z ‘/fj8n+1—j +entls
j=1

the best linear predictor X1 of X4 is Zfil Vient1-j, and the mean square error of
prediction is

o2(1) = E|: (Xn+1 —Xn+1)2 X,,T - E[s%_H] =2

The best linear predictor of Xj,1» given X, is
Xn+2 = Yoen + Y381 +---, and
Xnso — Xnyo = [ent2 + Viens1 + Voen + -]
— [Yoen +v¥3ep—1+---1

=ént2 + ¥1én+1-

Hence the mean square error for predicting X;,42 by X,,42 is

o2@2) = E[ <Xn+2 - X’HZ)Z’X”} - E[ (ent2 + lplS"H)Z‘X"]
=% +ylo? = (1 + 1//12)62-

A very similar argument will show that the best linear predictor of X}, , based on the entire
past and the mean square error of prediction are

n+h = VYnén +¥ny18n-1 -+,
Xnvh — Xnph = Engph + V1€pqppn_1 + -+ ¥p_18n41, and
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o?(h) = E[ (Xn+h - Xn+h)2 Xn}
=(1+vf++vp)oR

Note that 02(h) — o2 Zfio V2 as h — oo, where ¥ = 1. The limit of 62(h) is a constant as
we assume that {y;} is absolutely summable.

13.7 ARIMA Models and Forecasting

If a series {Y;} is nonstationary in the mean in the sense that there is a trend, then the first
difference {X; = Y; — Y;_1} or the second difference {X; = Y; — 2Y;_; + Y;_»} may behave
like a stationary serles, and an ARMA model may be used for the differenced series {X;}.
Thus if the dth-order difference of the sequence {Y;} follows an ARMA(p, q) model, then
we say that the series {Y;} follows an ARIMA(p, d, q) model [ARIMA stands for “integrated
autoregressive-moving average”].

Let us briefly discuss forecasting when d = 1, which is often used in practice. Let X; =
Y; — Y;_;.If the observations are Y7, ..., Y}, then we have the differenced values X, = Y, —
Yi,..., X, = Y, — Y. If {X;} is modeled by ARMA(p, g), we can obtain forecasts )A(,Hh,
h=1,2,....Since

Yoirn =Xngn+ +Xny1 + Yo,

the forecast of Y, , is

Ypin = Xn+h +o+ Xyl + Yo

The formula for the mean square error for prediction is a bit more complicated in
comparison to the stationary case. Following the arguments in Section 13.6.4,

1
X1 — X1 = Z‘ﬁl—]%ﬂ’ where ¥ = 1, and
j=1

h
Vorn = Yoon = ) Kngr — Xugd)

~
—

Il
T Mx

! no(hej
Z Ljeni =D (Z W) Ent
j=1 =0

where {¢;} are the error terms in ARMA model for {X;}. Thus the mean square error for
predicting Y, p, is

ho(h=i\?
o2 (h) =E[(f/n+h—Y,Hh)ZIYl,...,Yn] =022(Zm) :
j=1\i=0
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Unlike in the stationary case (Section 13.6.4), o2(h) here increases linearly with h as the
expression above shows. Thus the prediction interval for Y, ,;, can be wide unless h is
small.

13.8 Parameter Estimation

We now discuss how to estimate the parameters of ARMA models based on the data
Xj, ..., Xn and write down the asymptotic distributions of the parameter estimates. For the
Gaussian series, the maximum likelihood method can be used to estimate the parameters.
However, the actual implementation may always not be easy due to the dependence of
the observations and, often appropriate approximations to the likelihood are used in
order ease the computation. Details can be found in the book by Box et al. [62]. Here
we will basically focus on the least squares type methods. We begin with estimation
of the parameters of AR models since it is simpler than the MA or ARMA models.
For the discussion below, we assume that the series {X;} is stationary, invertible, and
identifiable.

13.8.1 Parameter Estimation: AR(p) Models

If a series {X;} is AR(p), we may estimate the parameters by the method of least squares
since it can rewritten as

Xt =0+ o1X¢—1 + -+ + opXi—p + &1, where
$o=p—(Pp1+- -+ Ppu.

Thus one may minimize Z?=p+l (Xi—po—p1 Xe—1—-- ~—</>pXt_p]2 with respectto ¢y, ..., ¢pin
order to obtain their least squares estimates. However, numerically more stable estimates
are obtained via Yule-Walker equations. Recall that the theoretical Yule-Walker equations
rpyp =y p ¢ = (d1,...,0p) T as given in Eq. (3) are obtained by minimizing Q = E[(X;—u) —
D Xe1—p)— - —pXp—p— w)]? with respect to ¢, . . ., ¢p- If {y ()} in Yule-Walker equations
are replaced by their empirical estimates {y (j)}, then we get the empirical version of the
equations r pP =¥ p thatis, ()A) = f;lﬁ p- The Yule-Walker estimate ¢A> can also be obtained
by padding the data X, .. ., X}, as follows. Create X, t= —p+1,...,n+p, where X =X —X,

t=1,...,nand X; = 0 otherwise. Then one can minimize the least squares criterion
n+p
S K- i X1 — - brpXe_p)?
=1
with respect to ¢1,...,¢, and the normal equations are the same as the Yule-Walker

equations I'p¢ = 7,
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Theorem 13.8.1. LethS be the solution of the Yule-Walker equations fp¢ = ﬁp, where
I and y p are estimates of I', and y P based on the observations Xi, ..., X, from an AR(p)

process. Assuming that E[e}] < oo, Jn(d — ) X Np(0, 021";1).
Remark 13.8.1. The above result is also true if the true model is AR(p) but we fit an

autoregressive model of order higher than p. For h > p,let ¢, = <¢>, where ¢ is the vector

0
of autoregressive parameters of the AR(p) model and 0 is a (h — p)-dim vector of zeros. Let
q'i 1, be the solution of the Yule-Walker equations for estimating the parameters of an AR(h)
model, that is, ¢, = f;lﬁh. Then /7(¢), — ¢,) 2 Nh(O,angl) assuming that E[¢}] < oo.

This result can be used to carry out inferences on ¢y, ..., ¢, including construction
of confidence intervals and deciding if an autoregressive term can be dropped from the
model.

An outline of the proof will be given below. One may heuristically guess the asymptotic
result since the AR(p) model can be reexpressed as a Gauss-Markov model and one
may use the distributional results of the least squares estimates. However, applying the
distributional results of the Gauss-Markov model for the autoregressive case requires
justifications due to dependence of the observations. We provide an outline of the main
arguments used in the derivation of the asymptotic normality of ¢.

Since {X;} can be centered by subtracting the mean u, we assume that E[X;] = 0. The
main idea behind the proof is to decompose y, so that

pp="Tpp+n126+0pn™h,

where § is a p-dim vector whose jth element is §; = n=1/23" | X;e;. ;. For the moment

assume that § -3 Np(0,0%Tp,). Then

Fr@—9) =5, — Fpo=[Fpo+n"1 25+ 0pn™")] - Fpp

=n"Y25 + Op(n1).

It follows from Theorem 13.3.4 that y(h) — y (h) —P> 0,h =0,...,p—1, and hence fp—

A1
r, £ 0and r, - F;l £o. Therefore,

~ ~A—1 _ D —
n'2(p —¢) = I, 8+ 0p(n™'/%) = Np(0,0%I, ).

Let us briefly examine why the asymptotic normality of § is valid. It is fairly easy to
check that
)-o.

E[8j8k] =n1 Xn:E[XtXHk_j] =y(k—j), j<k and
=1

E[Bj

Covis] = T'p.
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In order to establish the asymptotic normality of §, use the Cramér-Wold device, that is,
establish the asymptotic normality of a linear function ¢18; + - - - + ¢,8, = ¢!'8 of §, where
c = (c,.. .,cp)T is a vector of constants. Now, denoting S; = X;(ci1er41 + -+ + CpEtip)
we have

n n
cls=n1/2 ZXt(018t+1 + -+ Cperyp) = n-1/2 ZSt
=1 =1

Since {X;} is stationary and has a causal representation, X; = Zf’io Vjer—j with ¥ = 0 and
Y |¥j| < oc. For any positive integer m, let X, = Zj”:’() Yier—j and Sy s = Xme(Crer41 +
--+ 4 Cperyp). Since {g;} are iid, the process {Sy, ¢} is (m + p)-dependent and we can use
Theorem 13.3.2 (details omitted) in order to establish asymptotic normality of §.

Let us now see why the decomposition of  , given above is valid. Since we are assuming
that E[X;] = 0, X; = ¢ X;_1 + &; where X;_1 = (X;_1, ... ,Xt,p)T. Using Lemma 13.3.1, the
jtheelementof p, is

n
P =n"1> " XiXpj+ Opnh)
t=1

n
= }’l71 ZXf<¢TXt+j—1 + €[+j> + Op(nil)
=1

[
M=

n n
o 'Y XXy Y Xeegj+ Opnh)
=1 =1

~
I

1

[
M=

#1[7G = D+ Op(n™1y] + 1125+ Op(n )

N
I
—_

[
M=

ovi—D+ n_l/zéj +0pn~hH, h=1,...,p.

~
Il
—_

In the matrix notations, these equations can be written as

Pp=Tpo+n"126+ 0p(n ).

13.8.2 Parameter Estimation: MA(q) Models

Parameter estimation for moving average models is more complicated in comparison to
autoregressive models and no closed form solution is available. If the series {X;} has mean
© and we have observations Xj, ..., X;, we can estimate p by the sample mean X and
then continue to do the analysis based on {X; — X}. For this reason, in order to make
the notations simple, we assume that the series has zero mean. We now describe the least

squares and the maximum likelihood methods for estimating 61, . . ., 6.
Let us follow the ideas used in forecasting MA(q) models. If &g = (e_g41, ..., e0)T were
known, given § = (61, ..., 64), we may calculate &;’s starting with

£1(0,e09) = X1 — (O180+ -+ Qqs_q+1),
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and then iteratively compute, when e_g41, ..., &, are available, &; as
er(0,e9) = Xy — (01641 +--~—|—9qé‘t_q), t=2,...,n.

It is important to note that each ¢; is a linear combination of X;,...,X; and e(. For the
MA(1) case, denoting 6; by 6, we have

e1(0,60) = X; — X1 + - + (=) 71X] + (—6) ey.

In the invertible case, that is, |#| < 1, dependence of ¢:(0, o) on ¢ is negligible when ¢ is
not small since (—60)! — 0 rapidly. For the general MA(g) case, the same is true when it is
invertible.

In order to obtain the estimate of #, we may minimize 2?21 10, £0)%, with respect to 6.
This estimate 6 depends on ¢, even though this dependence is negligible in the invertible
case as pointed out before. How can one implement this estimation method in practice?
The following are among many options:

(i) takeeg =0,
(ii) obtain the MLE, and
(iii) obtain a modified MLE.

The first option is often used and is reasonable in the invertible case. In order to see
the second and the third options let us note that the joint pdf of &9 and Xj, ..., X};, under
normality (ie, {g;} are iid N(0, 02)), is

—n=q 1 ¢ 2_ 1 2
f,0,6,0) = (vV2ro) exp|:—20225t(0,6‘0) - 5zlleol? |,

=1

where x = (x1,...,%,)". In order to obtain the MLE (option (ii)), one needs to maximize
the likelihood after ¢y has been integrated out, that is, maximize

f(X,a,O') = /f(Xy B)EO)U)g(EO)U)dSOr

where g is the marginal pdf of g and X = (X3, ..., X,,)". Clearly this integration is rather
difficult since Y}, (0, &0)? does not have a simple expression involving &9. Another
option is to approximate this integral f(X,#,c) by an average of M iid copies of &g, that
is, approximate f (X, 8, o) by

M
X, 0,0) =M1 " f(X,e0),0,0),
j=1

where ¢ are iid as 9. Mathematically fjs(x, 0, o) converges to f(x, 6, o) in probability as
M — oo. In practice, M = n should be adequate.

In the third option, one may try to maximize f (X, 0, g, o) with respect to 8, o, and &y,
an idea used in the derivation of mixed model equations in Chapter 11. Thus one may
minimize
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1 & 1
—2logf(X,0,60,0) = — Y &1(0,£0)* + — leoll* + (n + @) log2na?),
o —1 o

with respect to 0, o, and eg. Note that the first two terms in the last expression have
the same denominator and hence in order to obtain estimates of § and ¢y one needs to
minimize the penalized criterion

n
> er0,€0)* + lleol®
=1

with respect to # and .

For the least squares method, once we have obtained 6, the estimate of 62 can be
obtained as 62 = (n)~! Y. £;(8, £9)? , where either &g = 0 or it is estimated by optimizing a
penalized criterion as described above.

The following asymptotic result holds for the estimate  of 8. In order to describe
the covariance matrix of the asymptotic distribution of 8, we will adopt some simple
notations as in Brockwell and Davis [63]. Let {D;} be a mean zero AR(q) process of the form
0(B)Dy = 8¢, where0(B) =1+6B+---+ Gqu and {8} are iid with mean 0 and variance o2.
Let V = Cov[D;], where D; = [Dy, ..., Dg]".

Theorem 13.8.2. Let X}, ..., X, be observations from a Gaussian MA(q) series which is

invertible. Then as n — oo, ﬁ(é —0) 2 Ny (0, o2V, where V is as given above and 0 is
estimated using any of the methods described above.

This result makes it possible to obtain the standard errors of the estimates él, e éq and
construct confidence intervals for 6y, . . ., 6, or carry out tests of hypotheses.

13.8.3 Parameter Estimation: ARMA(p, q) Models

As in the MA(qg) case, parameter estimates for ARMA models do not have closed-form ex-
pressions. There are many methods for the estimation of parameters and many textbooks
on time series provide details of these methods. As in the MA(q) case, we can center the
observations by the sample mean so that we can assume the mean of the series to be zero.
Here we outline a simple least squares type method extending some of the ideas outlined
for the AR(p) and MA(q) cases. Details can be found in the well-known book on time series
by Box et al. [62].

We assume that {X;} is mean zero stationary Gaussian ARMA(p, q) series which is causal

and invertible. If e, = (ep_g11,..., €p) T were available, then for given values of ¢ and 0, we
can obtain

ept1(9,0,ep) = Xpt1 — $1Xp — -+ — PpX1) — Or6p + -+ + Ogep—g+1)-
Once spy1(9,0,€p),...,6.-1(9,0,)p) are obtained, then it is possible to calculate

ct(@,0,ep) = Xe — 1 Xp—1 — - — PpXe—p) — 01611 + -+ + Oge1—q),
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t =p+2,...,n Following the ideas in the MA(q) case, in order to obtain estimates é and
0 we may minimize Zt pl &9, 0, ep) , with e, = 0, with respect to ¢ and 6, or we may
minimize

n
D e, 0,ep)* + llepl?,
t=p+1
with respect to ¢, 8, and e,

As described in the AR(p) estimation case, we may also used the idea of padding the data
at the beginning and at the end to obtain {X;: t = —p + 1, ..., n + p} and then taking &g =
(e—g+1r---> g0)T, we can obtain (¢, 0, €¢), t = 1,...,n + p, and then obtain the estimates
$ and 6 by minimizing Z;’:p 1169, 0, €0)?, with &g = 0, or by minimizing the penalized
criterion

n+p

Y ee(8,0,60)” + lleoll?

=1
with respect to ¢, 8, and .

An estimate of o2 is
n
$2=m™ Y ed0,80)?
t=p+1

where & is 0 or is obtained by optimizing a penalized criterion as described above.

We now write down the asymptotic distribution of ((/3, 9). Let {Ct} and {D;} be mean zero
AR(p) and AR(q) series

¢B)Cy =8¢, 6(B)Dy = 6r,

where ¢(B) =1 —-¢1B—---—¢pBP,0(B) =1+ 61B+ - - -+ 60,87 and {8} are iid with mean 0
and variance o2. Let R=[Cy, ..., Cp, D1,...,Dy]l and V = Cov|[R].

Theorem 13.8.3. Let X1, ..., X, be observations from a stationary Gaussian ARMA(p, q)
series which is invertible and nonredundcmt Let B the (p + q) x 1 vector of ¢ and 6 stacked
vertically and, similarly, let B be the stacked vector of ¢ and ] whlch are obtained using any

of the least squares methods outlined above. Then \/ﬁ(ﬂ -B) —> Np4(0, o2Vv~Y), whereV is
described above.

Approximate standard errors of the estimates of é and 6 can be obtained using this
theorem.

13.9 Selection of an Appropriate ARMA model

As in any statistical method, model selection is an important part of time series analysis.
As in the case of linear models, it is possible to select an appropriate ARMA model by using
a criterion such as AIC or BIC. We also introduce another widely used criterion known as
AICC which provides a small sample correction to AIC. For an ARMA(p, q) model, the total
number of estimated parameters (excluding o?) is k = p + g + 1. As in the case of linear
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models (Section 11.8.3 in Chapter 11), the AIC, AICC, and BIC values withk = p+ g + 1,
can be written as

AIC(k) = —21og L(fif, dp, Ok, 63) + 2k,  BIC(k) = —2log L(jig, i, 0k, 6) + [log (m)1k,
AICC(k) = AIC(K) + 2k(k + 1)/(n — k — 1),

where L is the likelihood, and (i, qASk, 910 61) is the MLE of (u, ¢, 8, o) under the ARMA(p, q)
model. Statistical computing packages such as R or MATLAB can calculate the values of
these criteria for an ARMA model given a data set. As usual, an appropriate model is
selected by minimizing the criterion of choice.

13.10 Spectral Analysis
Analysis of time series has two important aspects

(a) model fitting and forecasting, and
(b) understanding of the hidden periodicities.

We have discussed the first aspect in the previous sections, and we now discuss
the second which involves a deeper analysis of the spectral density function defined
in Eq. (1).

The basis of spectral analysis is an important mathematical result which states that any
stationary time series (causal or noncausal) can be approximated by linear combinations
of sines and cosines with random coefficients. Toward this end, let us define an important
quantity: frequency. A frequency is a real number between 0 and 1/2. For the monthly
energy (electricity) data mentioned at the beginning of this chapter, once the trend is
estimated and subtracted from the data, the detrended series has a similar pattern of
behavior every 12 time points (months). Energy consumptions in January are similar,
energy consumptions in March are similar, and so on. In such a case, we can say that
energy consumption has an “important” frequency at w = 1/12. A plot of the annual
sunspots recorded over the last n = 313 years reveals that the peaks are occurring between
8 and 12 years. However, unlike in the energy data (which is seasonal), the times of the
peaks are not fixed in the sunspot series. There are 28.5 cycles in the series. So the series
tends to behave similarly every 313/28.5 = 10.98 years (on the average). Thus there is a
peak at frequency at w = 1/10.98 = 0.091.

Consider a series Xy = Acosnwt) + Bsin@2rwt), 0 < w < 1/2, where A and
B are mutually uncorrelated rv’s with mean 0 and variance 2. Then E[X;] = 0,
Var[X;] = o2, and the series {X;} is stationary since Cov[X;, Xy, ;] = o2 cos(2rwh)
depends only on h. Note that Corr[X;, X;,,] = cosmhw) = 1 whenever hw is a
positive integer. Thus if 1/w is an integer, then the series repeats itself at every 1/w
time points, that is, X; = X;,, when h is an integer multiple of 1/w. However, even if
1/w is not a rational number, the correlation cos(2rwh) is high whenever hw is close
to an integer. We call this series an elementary periodic series with frequency w and
variance o 2.
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Now consider a series X; which is a sum of M such elementary periodic series with

distinct frequencies wy, . .., wys and variances 012, e, 01%,1, that is,
M
X = Z{Aj cos(2w wjt) + Bj sin(2w wjt)}, (7)
j=1

where {A;}, {B;} are mean zero mutually uncorrelated rv’s with Var[A;] = Var[B;] = ajz. It
is also assumed that {A;} and {B;} are also uncorrelated to each other. Then it can be seen

that {X;} is stationary with
E[X;] = 0, Var[X;] = 0 + --- 4+ o}, and

M
CoviXt, Xpypl = ) of cos@mwih) = y (h). (8)
j=1

Remarks

(a) If X; has mean p, then the representation above is valid with X; — u on the left-hand
side of Eq. (7). From now on we assume the mean to be equal to zero since we can
always carry out spectral analysis after subtracting the mean from the series.

(b) For the monthly electricity consumption data {Y; = log(sales)}, we have briefly
discussed the model Y; = m; + S; + X;, where {X;} is stationary (Section 13.1). There
are many approaches to the analysis of such a data set. We may estimate the trend m;
and the seasonal effect S;, and then subtract them from Y; in order to get an estimate
of the stationary part {X;}. However, there is another way of modeling this. We can
subtract the trend only and the remainder, that is, S; + X; can be often considered
stationary, especially if {S;} is deemed to be stochastic. Thus if a sequence has no
trend, but has seasonality whose variance does not depend on time ¢, then the
sequence itself can be considered stationary.

(c) Insome trivial cases, M may be small. But in general M is large.

(d) The goal of spectral analysis is to find o;’s. Since Var[X;] = 012 + -4 01\2/1, the
contribution of the jth elementary periodic series to this variance (at frequency
wj) is ajz. It is of interest to find out which frequencies contribute more to this
variability than the others.

(e) If M islarge (mathematically M — oc) and almost all aj’s are not equal to zero, then
these oj’s need to be small so that Var[X;] = 012 + -+ 01%,1 remains finite as M — oo.
This can be done if ajz = O(1/M). In Section 13.2.1, it is written that if
> e _so|7 (M| < o0, then the spectral density is given by f(w) = >"5° _ v (h)
exp(—2rihw). However, for the series in Eq. (7), Z,ZO:_OO |y(h)| is not finite and hence
we may consider a truncated version fys(w) = Z];\l/[: _m v (W) exp(—2mihw). Itis left as
an exercise for the reader to verify that

fuw) =@M+ 120} fw=j/@M+1), j=1,...,M.
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In order for fis to be approximately equal to a bounded spectral density f for large M,
we need to have sz ~[2/(2M + 1)1f(wj) when wj=j/2CM+1) and one of the goals
of the spectral analysis is to obtain an estimate of the spectral density f based on the
available data X3, ..., X,.

13.10.1 Representation of a Stationary Series

If {X;} is a mean zero stationary series, can one approximate it as in Eq. (7)? The answer is
yes if the underlying spectral density function f as defined in Eq. (1) is square integrable.
The arguments given here are heuristic and detailed proofs can be found in Gikhman and
Skorokhod [64]. Consider the following random functions

M sin(2w sw) M 1 — cos(2msw)
Zim(w) = Z TXS and Zp pq(w) = Z T ons®
s=—M s=—M

with the understanding that when s = 0, sin(27sw) /(27 s) = wand [1 —cos2rzsw)]/(2ws) =
0. Then it is easy to check that for —M < ¢ < M,

1/2 1/2
Xt = 2/ cos2mtw)dZy p(w) + 2/ sin@2r tw)dZy pr(w).
0 0

Now consider the limiting random functions Z; of Z; yr and Z; of Z» 3y as M — oo

]

X sin2rsw) 1 — cos(2wsw)
Ziw) = Y Xy and Zw) = Yy —— X,

27s 2ms
s=—00 s=—00

which exist for 0 < w < 1/2 in the sense that E[.Z; (w)?] < oo and E[Z, (w)?] < oo. Let us
denote Ry = fol/ % cos(2r tw)dZ p(w). For any given ¢, the sequence {R; n} is Cauchy in
the mean square sense, that is, E[(R;n» — RLN)2] — 0and M, N — oo. Thus a limit of Ry
exists in the mean square sense as M — oo and the limit is denoted by

1/2
/ cosrtw)dZy (w).
0

A similar argument can be used to show that the limit of fol/ % sin(27 fw)dZy, v (w) exists in
the mean square sense as M — oo and the limit is denoted by

1/2
/ sin(2x tw)dZy (w).
0
Thus we can represent the time series {X;} as
1/2 1/2
X = 2/ cos(2w tw)dZ, (w) + 2/ sin(2x tw)dZ, (w). 9
0 0

The random function Z; has the orthogonal increment property, that is, if w; # wy,
then Z;(wy + 8) — Z1(wy) and Z1(ws + 8) — Z1(we), § > 0, are uncorrelated if the
intervals (w1, w; + 8] and (w», wo + 8] are disjoint. Moreover, E[{Z; (w + 8) — Z; (w)}?]
~ (§/2)f (w) when § > 0 is small enough. The random function Z, also has the same
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property as Z;. Additionally, Z;(w) is uncorrelated with Z(w») for any w;, w». The
representation of X; as given above in Eq. (9) is known as the Cramér Representation of
a stationary series.

Now consider approximating the integral 2 fol/ 2 cos(2rtw)dZ;(w) by a finite sum as
follows. For a positive integer M, denote w; = j/2M + 1), i = Wi, wyl, Z1U) =
Z1(w)) — Z1(wj—1), j = 1,..., M. Ignoring the integral over (wp, 1/2), which is reasonable
when M is large, we have

1/2 M
2/ cosrtw)dZ; (w) ~ 2 E / cosrtw)dZ; (w)
0 I;
j=1"1

M M
~ 2 cosRruw)Zi(I) =) Ajcos@rtw;),
j=1 j=1

with A; = 27;(1}). Due to the orthogonal increment property of the random function Z,
the rv’s {A;} are mutually uncorrelated and

Var[A;] = 4Var[Z, (I)] ~ 4[1/{2@2M + D}If w)) = [2/@M + DIf w)).

Similarly we can approximate
1/2 M
2 / sin(2z tw)dZy (w) ~ " Bj cos(2m twy),
0 j=1
where B; = 2Z,(I;). Here {B;} are also mutually uncorrelated with Var[B;] ~ [2/2M +
1)1f(wj). Moreover, {A;} and {B;} are also uncorrelated with each other. Thus combining
all the arguments above we have
M
X¢ ~ ) {Ajcos(2rw;t) + Bjsin@2mww;t)},
j=1
when M is large.
Remark 13.10.1. The Cramér representation of X; as given in Eq. (9) is true more gener-
ally under weaker conditions than given here (Chapter 5 in Gikhman and Skorokhod [64]),
but we will not concern ourselves with such mathematical details.

13.10.2 Periodogram

Consider the series in Eq. (7) with w; = j/n, j = 1,..., M, where M is the largest integer for
which M/n < 1/2. We can estimate A; and B; from the data {Xj, ..., X;,} using the method
of least squares

A Y11 Xi cosrw;t) B Yot Xi sin@rw;t)

J n 2 n ] i 2 ’
f—1 COS 2w wjt) ", sin @rw;t)

or

n n
Aj=(2/n) Y Xy cos@mwjt), By = (2/n) Y X; sin2m wj1).
=1 t=1
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The last equalities hold since it can be shown that

n n
Z cos2(2nwjt) =n/2 and Zsinz(anjt) =n/2.
t=1 t=1

The quantity P(w)) = A]? + ng is called the scaled periodogram and its rescaled version
I(wy) = (n/4)P(w;)

is called the periodogram. The main use of the periodogram I(wj) is as an estimator of
fwj), the spectral density function at frequency w;j = j/n. There is a related quantity called
the discrete Fourier transform of the data

n
dwyj) = n~1/2 ZX; exp(—2w iw;t)
=1

n n

=n /2 ZX; cos(2r wjt) — in~1/? ZX): sin(2w wjt)
=1 =1

= XC,}’I(W]) - lf{s,n(wj)

where i = +/—1 is the imaginary number, and chn(wj) and Xg,n(wj) are the discrete cosine
and sine transforms introduced in Section 13.2.1. The connection between the discrete
Fourier transform and the periodogram is

2 - -
Iw)) = |dawp|” = X2, + X2,

In the general case when the series {X;} may not have zero mean, the definitions of X ,,
Xsn, d, and I are based on centered observations {X; — X}, that s,

n
f(c,n(w]-) —n 12 Z(Xt -X) cos(2r wjt),
=1
~ n —_
Xonwj) = n 123" (X; — X) sin@rwjn),
t=1

- - 2 ~ ~
d(w)) = Xen(w)) — iXsn(wp), 1) = |dawp|” = X2, + X2,

and the periodogram values are obtained at frequencies w; = j/n,j =1, ..., M. We should
note that the periodogram values at frequencies {w;} as defined in the last displayed iden-
tities can be, and are usually, calculated when observations Xj, ..., X, from a stationary
series are available.

If {X;} is a mean zero Gaussian series, then clearly Xc,n(wj) and Xs,n(wj) are normally
distributed since each of them is a linear function of Xj, ..., X,;. However, asymptotic
normality of 5(0, n(wj) and Xs,n(wj) hold if the observations are from a linear process as given
in Eq. (2) using arguments outlined in the proof of Theorem 13.3.1.
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Theorem 13.10.1. Let {X;} be a mean zero linear process as given in Eq. (2) and assume
that0 < wj=j/m<1/2,j=1,...,M.Asn — oo,

(a) Xn(w)) = Kenwy), Xsnw)T 3 No(0, (1/2)fwpl), j=1,...,M, wherel is the 2 x 2

identity matrix, and X, (w), . . ., X,(wn) are asymptotically independent,
(b) I(wj) is approximately distributed as (§j/2)f (w;), where & ~ x2,j=1,...,M,and
I(wn), ..., I(wy) are approximately independent.

13.10.3 Estimation of the Spectral Density

Since I(wyj) is approximately distributed as &i/2) f (wy), where & ~ X22, and E[] (wy)] is
approximately equal to f (w;) (noting that E[§] = 2). Thus I (wy) is almost an unbiased es-
timator of f (wj). However, it is not a consistent estimator since Var[/ (wj)] is approximately
equal to Var[;/ 21f(wj)2 =f (wj)2 and this variance does not converge to zero as the sample
size n — oo. In order to construct a consistent estimator of the spectral density at any point
w € (0,1/2), we may use a weighted average of I (w)) for wjina small neighborhood of w.
Assuming that the spectral density function f is smooth, such a weighted average should
lead to a better estimate of f(w) since I (wy) 's are asymptotically independent. Toward this
purpose, we may use the kernel method for regression discussed in Chapter 9. Let K be a
pdfon[—1, 1] and, as in Chapter 9, assume that

(i) K is symmetric about 0, (ii) / zK(z2)dz = 0.

In the discussion below it is assumed that periodogram values at frequencies 0 and 1/2
are excluded, so the total number of frequencies M may be smaller than [n/2].

We can now obtain a nonparametric estimate of f(w), w € (0, 1/2), with kernel K and
bandwidth s, — 0 as

Y Ky w — wp)Iw))

faw) =
Zj]\il K(h;l(w - wj)

The bias and variance properties of the kernel estimate f (w) are similar to those in
Chapter 9. Writing Kj = K(h,;1 (w — wy) and Ky =) Kj, we have

Elf )] - fw) ~ Y KiELj/21f w)) /Ky — f(w)
=) Kfwp/Ks — fw) = Y Kjlf wp) — fFw))/Ky..
If f is twice differentiable and f” is continuous, then a two term Taylor expansion yields
Fwp) —fw) = wj — w)f W) + (1/2) (w; — wf" W),

where w]’. lies between w and w;. Employing arguments similar to the ones used in

Chapter 9, we get the bias of f(w) as
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E[f )] — fw) ~ > Kjlf w)) — fw)]/Ky
= (1/2)h,;2f”(w)/ZZK(z)dz[l +o0(1)]
= (1/2)h5f" (W) 2 (K[ + 0o(1)],

where 13 (K) = [ z2K (z)dz.
Approximate independence of I (wj)’s may be used to calculate the variance of f‘ (w) and
thus we have

Varlf w)] ~ Y K?Varlg;/21f w)? /K = Y KZfw)? /K3
~ [ KFKE |, (10)

where the last step is justified since f (wj) is approximately equal to f (w) by continuity when
|wj — w| < hy. Once again, employing arguments similar to the ones used in Chapter 9, we
have

Var[f (w)] ~ (nhy)~Lf (w)? f K?(2)dz = (Mhp) "1 fw)? | K12,

where |K||?> = [ K?(2)dz.
Since the mean square error of any estimator is the sum of its variance and square of its
bias, the mean square error of f(w) is approximately given by

(nhn) " f )2 KNI + (/8 hAf" (w)? up (K)?.

The last expression is convex in h, and it is minimized at b}, = ¢ n~15 where ¢; =
[f(LU)||K||/{f”(LU)M2(K)}]2/5. The minimum mean square error of f(w) (at h, = h) is
approximately equal to con~*/%, where ¢, is a constant that depends f(w), f” (w), | K||, and
w2 (K).

Remark 13.10.2.

(a) Itis possible to obtain asymptotic normality of f‘ (w) as given in Chapter 9 and the
results are similar.

(b) Asdiscussed in Section 9.6 of Chapter 9, a drawback of the kernel density or kernel
regression estimates is that near the boundary points of the independent variable, the
bias may be of order h, and not k2. However, in the case of spectral density
estimation, this does not pose a problem since the spectral density f is periodic and
symmetric about 0, so one can obtain a periodogram estimate at point —wj, where
0 <wj<1/2, by taking I(—wj) = I(wj). Even though 1(0) = 0 (follows from the
formula), we can obtain an estimate f (0) of £(0) using the kernel method since the
periodogram values at negative frequencies can be obtained as mentioned above. For
a frequency near zero, say at w = hy,/2, all the values of I(w)), |w; — w| < hy, are now
available (substituting f (0) for the periodogram at frequency 0) and we can obtain an
estimate f (w) of f(w) using the kernel method. Thus the bias of f‘ (w) is of order 12
when w is close to zero. However, it should be pointed out that when w is close to 0,
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the variance of f (w) is different from the formula given in Eq. (10) and it needs to be
recalculated since f (w) is no longer a weighted average of approximately
independent rv’s.

Similar strategies can be used to estimate f(1/2) and f(w) when w is close to 1/2.
Since f is periodic on [-1/2, 1/2] and symmetric about 0, forany 1/2 < w < 1,

fw) = f(w—1) = f(1 — w) and the same is also true for the periodogram values. For
any n/2 < j < n,wecangetI(j/n) = I(1 — j/n). Thus a kernel estimate of f (w) for w
near 1/2 does not have any inadequacy in terms of inflated bias, but its variance
needs to be recalculated as it is not the same as the formula given in Eq. (10).

(c) Asin any nonparametric method, one needs to obtain an estimate of the bandwidth
in a data dependent manner. One may apply the method of cross-validation as
outlined in Chapters 9 and 11 for this purpose. It should be pointed out that in the
context of kernel regression discussed in Chapter 9, the theoretical justification of the
method of cross-validation relies on the assumption that the data consist of iid
observations Y, Xp),j=1,...,n.A kernel estimate of the spectral density f(w) is
based on the data {Uwp), wy), j=1,...,M}, which are not iid. Even though wj’s are
nonrandom, the use of cross-validation does not pose a problem since w;’s are
equally spaced.

13.10.4 Linear Filtering

For a series {X;}, it is sometimes of interest to study the behavior of the first difference or a
running weighted average of the series such as

(@) Zy = Xt — X1,
(b) Zy = (1/2)X¢ + (1/2)X;—1, and
(© Zr = (1/3)Xe + (1/3) X1 + (1/3)X;—».

For each of the three cases above, {Z;} is a linear combination of {X;}. A linear combination
of {X;} is called a filtered series of {X;}. It turns out that there is a nice formula connecting
the spectral density of the original series to that of the filtered series when {X;} is stationary.
Denoting the spectral density functions of {X;} and {Z;} by fx and fz, respectively, the
spectral density functions for {Z;} for (a) and (b) are (justifications given below)

(a) fz(w) =[2—2cosrw)] fx(w), and
(b) fz(w) = (1/2)[1 + cos(2rw)] fx(w).

In each case, the spectral density of Z; is equal to the spectral density of X; times a weight
function. Note that in (a), the weight function is zero at w = 0 and it monotonically
increases to the value of 4 at w = 1/2. In other words, the higher the frequency, the higher
is the weight, indicating that the first difference of {X;} is a rougher series than {X;}. For
the second case, the weight function (1/2)[1 + cos(2rw)] equals 1 at w = 0 and then
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it decreases to zero at w = 1/2. This indicates that the running average {Z;} of {X;} is
smoother than {X;} since, for this case, higher frequencies have lower weights.
Consider the filtered series of a mean zero stationary series {X;},

(0.¢]
Zi= ) ViXep
Jj=—00

where {/;} are constants satisfying the condition Z}’i_oo | Wj‘ < oo. If yx is the autocovari-
ance function of the series {X;}, then

EIZF 1= ) vk CoviXp_j, X;_¢]
—oo<j,k<oo
= Y Yjerx( -k <o,
—oo<j,k<oo

since yx is bounded and Zf’i_oo ’1//j| < oo. The fact that {Z;} is stationary follows from the
fact that

CoviZe, Zeypl = Y, ¥jiCoviX,_j, Xp i
—oo<j,k<oo
= Y. Yix(h+j-k
—oo<j,k<oo

depends only on h. Thus we conclude that {Z;} is stationary with the autocovariance
function

vz = Y Yirrx(h+j- k. (11)

—oo<j,k<oo

Now let us look at the spectral density function of the series {Z;} which is

o0

fzw) =Y exp(—2rihw)yz(h)

h=—00
00

= Z exp(—2rihw) Z Vivkyx(h+j— k)

h=—0c0 —oo<j,k<oo

o0
=2 > [ expRruijw)l[Yy exp(—2mikw)]

h=—00 —oco<j,k<oo
x [exp(=2mi(h+j — Dw)yx(h+j— k)]
= Z [vj exp (2 ijw)][yy exp(—2m ikw)]

—oo<j,k<oo

o
x Y lexp(=2mith+j— Hw)yx(h +j— k).

h=—o0
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Writing [ = h + j — k, we see that

o0
Z [exp(—2ni(h+j— Kw)yx(h+j— k)]

h=—00
o0

= Z exp(—2milw)yx (D) = fx(w).

I=—00

Hence

fz(w) = Z [vj exp (2 ijw)][yy exp(—2m ikw)fx (w)
—oo<j,k<oco
2

o0
> vjexp(-2xijw)| fx(w)

j=—o0

= | (w)|*fx (w), where

oo
v (w) = Z ¥j exp(—2m iwj) 12)

j=—oa

is called the frequency response function. Thus we arrive at the following important result.

Lemma 13.10.1. Let {X;} be a mean zero stationary series with autocovariance function
yx and spectral density function fx. Consider the filtered series Z; = Z]?’i oo ¥iXi—j where
(v} are constants satisfying the condition 32 || < oo.

(a) The series {Z;} is mean zero stationary with the autocovariance function {yz(h)} given
inEq. (11).

(b) The spectral density function of {Z;} is fz(w) = |¥ (w) |*fx (w), where ¥ (w) is the
frequency response function given in Eq. (12).

Example 13.10.1. Let Z; = X; — X;_1, where {X;} is mean zero stationary. In this case

Yo = 1,y1 = —1,and ¢; = O when j # 0 and j # 1. Then the frequency response
function is

o
Ww) = Y yjexp(—2riw))

Jj=—00
= (1) exp(—27iw0) 4 (—1) exp(—27iw)
=1-—exp(—27iw) = 1 — cosrw) + isin(2rw), and

& w)|? = [1 — cos@rw)]? + sin® Crw) = 2 — 2 cos2rw).
Hence the spectral density of {Z;} is

fz(w) = [2 — 2 cosrw)] fx (w).
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Example 13.10.2. Let Z; = (1/2)X;+(1/2)X;_1, where {X;} is mean zero stationary. Then
Yo = Y1 = 1/2 and y; = 0 otherwise. The frequency response function is

o0
v(w) = Z Vj exp(—2m iwj)

Jj=—00
= (1/2) exp(—27iw0) + (1/2) exp(—27iw)
= (1/2)[1 + exp(—27iw)]
= (1/2)[1 + cos@rw) — isin(2rw)], and
& w)|? = (1/4)[1 + cos@rw)]? + (1/4) sin® 27 w)
=(1/4)[2 + 2cosrw)] = (1/2)[1 + cos2rw)].

Thus the spectral density function of {Z;} is
fz(w) = (1/2)[1 4 cosrw)]fx(w).

Example 13.10.3. Let Z; = (X;+---+X;_1+1)/L, where {X;} is mean zero and stationary.
Then ¢; = 1/L when j = 0,...,L — 1, and = 0 otherwise. The frequency response
function is

00 L—-1
W)= Y yjexp(—2riwj) = (/L) ) exp(—2miw))
Jj=—o00 j=0
1- —2miwL
_ qplzepzZrivl)
1 — exp(—2nriw)
Since
11 — exp(—27iwL)|> = |1 — cos2rwL) + isin(2rwL)|?
= |1 — cos(rwL)|? + |sin@rwL)|?
=2 — 2 cos(2nwL), and similarly
[1— exp(—Zm'u/)l2 =2 —2cos2rw),
we have

- —27iwl)|?
@ w2 = (1/L2)|1 exp(—2miwl)|

11 — exp(—27iw)?

_ 2,2 —2cos@rwl) 2.1 —cos(2rwlL)
= (/1% 2 —2cosCrw) (/19 1—cosrw)
The spectral density function of {Z;} is
_ 2. 1 —cos(2mrwL)
fzw) = /L% 1 — cos(2rw) fxw.

13.10.5 Spectral Density for ARMA

In this section we use Lemma 13.10.1 to obtain an explicit expression of the spectral
density function of an ARMA(p, q) series. As in the previous sections, let ¢1,...,¢, be
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the AR parameters and let 6y, ..., 6, be the MA parameters of the ARMA(p, q) series. The
polynomials used in the discussion on stationarity, invertibility, etc., in Section 13.5 are

0@ =1+01z+--+0q29, ¢@)=1—¢1z2—-- — ¢pzP.

Let us first consider a mean zero MA(q) series which is of the form X; = ¢, + 27:1 Oier—j,
where {¢,} are iid with mean 0 and variance 2. So {X;} is a filtered series of {¢;} with yo = 1,

Vvi=0;j=1,...,q,and y; = 0 otherwise. Hence the frequency response function of {X;} is
00 q
v(w) = Z yjexp(—2miwj) =1+ Zej exp(—2n iwj)
J=—o0 j=1

= 0(z), with z = exp(—27iw).
Since the spectral density function of {¢;} is f;(w) = o? for all w, the spectral density
of {X;} is
fxw) = W W)%f. w) = o2|6(2)|, with z = exp(—2 iw).

Let us now find the spectral density function of an AR(p) series. For this series

Xt =p1Xe—1+ -+ opXe—p + &1, de,

e =Xt — 91 Xp—1 — - — dpXi—p.
Thus {&;} is a filtered series of {X;} with yo = 1, Vi=—¢pj=1,...,p, and V=0 otherwise.
The frequency response function is

o0 p
¥U(w) = Z 1//]- exp(—2wiwj) =1 — quj exp(—2miwj)
j=—o0 =

= ¢(2), with z = exp(—2niw).
It then follows that
fe (W) = |¢p(w)*fx(w), and hence

fxw) = UZW;)P, with z = exp(—27iw).
z

Now let us look at the ARMA(p, g) series

Xr=P1Xe 1+ +opXe—p+er+ 0161 + - - +0ger—q, i€,
Xe— 1 Xe1 — - — pXe—p =6t + 0161 + - - - + Ogé1—q-

The left-hand side of the last expression is a filtered series of {X;} with the frequency
response function ¥; (w) and the right-hand side is a filtered series {¢;} with frequency
response function ¥ (w), where ¥, (w) = ¢(z) and ¥»(w) = 06(2) with z = exp(—2r7iw).
Since the spectral density function of the filtered series on the left equals the spectral
density function on the right-hand side, we have
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W1 (W) fx (W) = W2 (W) fe (W) = o2 |¥ W) ]?, ie,
16(2) 1 fx (W) = 62102 |*f: (w).

Therefore, the spectral density function of an ARMA(p, g) series is

@ .
(W) = o2 , with z = exp(—2niw).
! 62 P
Since
q
0(2) =1+ 0jexp(-2mijw)
j=1
q q
=1+ Zej cos(2mjw) — iZej sin(2wjw),
=1 j=1
14
pl2)=1-— Zdbj exp(—2nijw)
j=1
14 14
=1- Zd)j cos(2rjw) + iZd)j sin(2wjw),
j=1 j=1

the spectral density function fx of an ARMA(p, g) series can be written as

2 2
q . q . .
) [1 + 2519 cos(anw)] + [ijl 0; Sln(ZJTjw)] '

fxw) =0
p . p . . 2
1-30 9 COS(Z]T]LU):| + [ijl }; sm(2n]u1)]

Some Special Cases
I. Spectral density of AR(1).
When z = exp(—27iw), we have

16(2)|% = 1+ ¢% — 2¢ cos2r w).

Hence we get

1

_ 2
fxw) =o 1+ ¢2—2pcosCrw)’

Il. Spectral density of AR(2).
Using some algebra, we have

(@)% = [1— ¢1 cos(2mw) — ¢ cos(4n w)]2 + [¢1 sin@rjw) + ¢ sin(4nw)]2
=14 ¢F + ¢35 + 241 (1 — ¢p) cos2rw) — 2¢ cos(dr w).
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Since cos@rw) = 2 cos?Rrw) — 1, substituting this in the last expression, we have
16@)[% = ¢2 + (1 + ¢2)? + 2¢1 (1 — ¢) cos2rw) — 4 cos® 2 w),

which is a quadratic polynomial in cos(27 w). Thus the spectral density function is

1
¢ + (1 + ¢2)2 + 2¢1 (1 — ) cos2rw) — 4¢pp cos? (2 w)

fxw) =o?
lll. Spectral density of MA(1).
Here
10(2)]* = 14 62 + 26 cos(2rw), with z = exp(—27iw),
and hence the spectral density is
fxw) = o?[1 + 67 + 26 cosrw)].

IV. Spectral density of ARMA(1, 1).
If the parameters of an ARMA(1, 1) series are ¢ and ¢, then

10(2)|2 = 1 + 6% + 26 cos(2rw), and
|<¢>(z)\2 =1+ ¢2 — 2¢ cos(2nw), with z = exp(—2riw).

Thus the spectral density of an ARMA(1, 1) series is

5 1462 + 20 cos2rw)
1+ ¢2 —2pcosrnw)’

fxw)=o

Exercises

In all the problems below, the autocorrelations and autocovariances of stationary series
are denoted by {y (h)} and {p(h)}, respectively. For any ARMA series, it is understood that
the mean and variance of the innovations {¢,} are 0 and o2, respectively.

13.1. Let {Xj},..., {Xi} be k independent stationary series with autocovariance
functions yy, . .., ¥x. Then show that Wy = 1 Xy + - - - + ¢ Xy, Where cy, . . ., ¢ are
constants, is also stationary. Find the autocovariances and autocorrelations of the
series {W;} in terms of the autocovariance and autocorrelation functions of the
series {Xis}, ..., {Xir}-

13.2. For each of the following models, determine if it is stationary and invertible. It is
understood that {;} are iid with mean 0 and variance o2.

(I) Xt =6+ &+ 1.28t_1.
(II) Xt =-5+ &t + 0.68[_1 + 0.78t_2.
(iii) X; =34+ 0.5X;1 + & = 0.4e4_1.
(iv) X, =9+0.7X;_1 + 0.6X;_1 + &.
(v) X, =2-05X;_17 —04X;_ o+ &+ 0.3e/-1 + 0.66;_2.



13.3.

13.4.

13.5.

13.6.

13.7.

13.8.
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Assume that {X;} follows a stationary ARMA(1, 1) model with the autoregressive
and moving average parameters ¢ and 6, respectively, with ¢ # —6.
(a) Show that for any positive integer r, one may write X; as

r—1
X =¢'Xe—r+ Z Vier—j+ ¢ 05—y,
Jj=0

where yo = 1 and ; = (¢ +9)¢7’1,j =1,...
(b) Use the result in part (a) to argue that X; = Z]?io Vjer—j, where {y;} are as
given in part (a).
(c) Show that Var[X;] = [1+ (¢ + 6)*(1 — ¢*)"!]o.
(d) Show that the autocovariance function of {X;} is
y(h) =@+0)1+¢0)1—9¢») 0% h=12,...
Let {X;} be a stationary ARMA(1, 1) series with mean u. Assuming that ¢, 9, and o
are known, use the results in Exercise 13.3 to obtain an estimate of 1,21 = Var[1] in
terms of ¢, 0, o2, and n, where i = n=! 37" | X; is an estimate of 1 based on the
available data X1, ..., X,,.
Let {X;} be stationary (not necessarily AR(p)) with mean n. Denote p(1) by ¢.
(a) Show that the best linear predictor (forecast) of X; from X;_; is
X = p+ 01 — .
(b) Show that the best linear predictor (backcast) of X;_» from X;_; is
X% = p+ X — ).
() Show that Var[Xt - X}f)] — (1 +¢?)y(0) — 20y (D).

(d) Show that Var[ X, — X, | = (1 + ¢?)y (0) — 26y (1.

(e) Show that COVI:Xt —xV x5 - X[@z] = 7(2) — 26y (1) + ¢2y (0).
(f) Show that the partial correlation between X; and X;_» given X;_; is given by
[y (2) — 29y (1) + ¢y (0)]1/[(1 + $*)y (0) — 2¢y (1)].

Suppose that when fitting an AR(p) model to the data Xj, ..., X}, from a stationary
series {X;} with mean p, the data are expanded by padding with 2p extra values the
sample mean X at the beginning and at the end. In particular, let
X t= —p+1,...,n+ pbesuch that X; = X; if 1 < t < nand X; = X otherwise.
Show that the normal equations obtained by minimizing

"jp(Y[ - Y —— qbth_p)z, where ¥; = X; — X, with respect to ¢1, ..., ¢
are the same as the Yule-Walker equations.
For an invertible MA(1) model obtain the partial correlation function {x (h)} and
express it as a function of the moving average parameter 6.
Let {X;} be a stationary, invertible, and nonredundant ARMA(1, 1) series with zero
mean, and AR and MA parameters ¢ and 6.
(a) Obtain an invertible representation of {X;} as Eq. (6) by finding {+;} explicitly

in terms of ¢ and 6.

2
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13.9.

13.10.

13.11.

13.12.

13.13.

13.14.

13.15.
13.16.

(b) Ifthe ARMA(1, 1) series {X;} has mean zero and its invertible representation is
Xiv1 = Zj:() niX;_j + &1, then consider predicting X; 1) using
?A(n+1 =mXy, + - - - + 7, X1. Find the mean square error of prediction
ElXns1 — Xns11%
In Section 13.5 (after Lemma 13.5.1), it has been pointed out that the
autocorrelation function of a stationary AR(2) series is representable in terms of
the roots z1, z, of the equation g(z) = 0, where g(z) = z> — ¢1z — ¢». Condition of
stationarity requires that (¢1, ¢2) is inside the triangular region
A = {(uy, up): luz| < 1, u1 /(1 — up)| < 1}.
Show that (¢1, ¢2) is inside A if and only if |z1| < 1 and |z,| < 1.
Let {X;} be an AR(2) series with autoregressive coefficients ¢; and ¢».
(a) Show that |¢,| < 1.
(b) Show that p(1) = ¢1/(1 — ¢2).
(© 0% =1 —¢f - ¢3)y(0) — 21927 (D).
(d) Show that p(h) = ¢1p(h — 1) + ¢2p(h —2), h > 2.
For an AR(1) series {X;} with autoregressive coefficient —1 < ¢ < 1, show that the

prediction error for predicting X, , ,, by its best linear predictor based on Xj, ..., Xy,
is o2(h) = o2 120"
iso“(h) =0 7

(a) Let {X;} be a mean zero time series following an MA(1) model. Let Xt be the
forecasted value of X; based on the past X;_1, X;_», ..., and XH 1 be the
forecasted value of X, based on the past X;, X;_1, ... Show that
Xt+1 =0(X; — f(t). [Here 6 is the moving average parameter.]

(b) The series {Y;} follows an ARIMA(0, 1, 1) model and assume that the series
{X;}, the first difference of {¥;}, has zero mean. Let ¥; be the forecasted value
of Y; based on the past Y;_1, Y;—», ..., and f/tﬂ be the forecasted value of Yy
based on the past Yz, Y;_1, .. .. Show that fGH = Y; +6(Y; — V), where
—1 < 6 < 1is the moving average coefficient.

If {X;} follows an MA(g) model, then show that the asymptotic variance of o(h) is

Z‘.]:_q o()?/n,forany h > q + 1.

(a) If {X;}is stationary AR(1) and the parameter ¢ is estimated using the
Yule-Walker method based on a sample Xj, ..., Xj,. Obtain the asymptotic
distribution of /7(¢ — ¢) and explicitly obtain the parameters of this
distribution in terms of ¢ and o2.

(b) Repeat part (a) for the parameter estimate 6 of 6 for an MA(1) series.

(c) If {X;} is stationary ARMA(1, 1) and it is invertible and nonredundant. Let é
and @ be the estimates of ¢ and 6 using the methods in Section 13.8.3. Find
the joint asymptotic distribution of «/71(¢ — ¢) and /n( — 6), and explicitly
obtain the parameters of this distribution in terms of ¢, 6, and o2

Prove Lemma 13.6.1.

Let {X;} be as in Eq. (7). Show that {X;} is stationary with the autocovariance

function {y (h)}, where y (h) = Zjl\il sz cos(2rwih).



13.17.

13.18.
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Let {X;} be stationary and define W; = (X;_2 + 2X;_1 + 3X; + 2X;4+1 + Xr42).

(a) Find the frequency response function ¥ (w).

(b) Obtain the spectral density function of {W;} in terms of the spectral density
function of {X;}.

(c) Plot the square of the absolute value of the frequency response function.

For a stationary series {X;}, its second difference is W; = X; — 2X;_1 + X;_».

(a) Find the frequency response function ¥ (w).

(b) Obtain the spectral density function of {W;} in terms of the spectral density
function of {X;}.

(c) Plot the square of the absolute value of the frequency response function.



Appendix A
Results From Analysis and Probability

A.1 Some Important Results in Integration Theory

Theorem A.1.1 (Lebesgue Dominated Convergence). Let {f,,} be a sequence of integrable
functionson X. If

(i) lim,_ o fn(x) = f(x) a.e. in X, that is, for all x ¢ S where fs dx =0, and
(ii) thereis an integrable function g on X such that | f,(x)| < g(x) for all n and forall x € X,

then

nll)néo /X fn(x) dx = /X nll)néo fn(x) dx = /X f) dx.

Proof. See Royden [65, p. 88]. O

The nest two theorems follow from the Dominated Convergence Theorem in a straight-
forward manner.

Theorem A.1.2 (Monotone Convergence). Let {f,} be a sequence of nonnegative func-
tionson X suchthat0 < fi(x) < fo(x) < --- and letlim,_, « f,(x) = f(x) wheref is integrable
on X. Then

Am /X fnlo) = /Xf (x) dx.
Theorem A.1.3 (Differentiation Under Integration). Let f (x, t) for (x, t) € [a, b] x [c, d] be
such that

(i) f(x, 1) isan integrable function of x on [a, b] foreach t € [c, d],
(ii) the partial derivative df /9t exists and is bounded on [a, b] x [c, d].

Then

d (b bafex, 0
%/L‘l fx, 0 dx:/a Y dx.

491
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Theorem A.1.4 (Fubini). Iff(x, y) is integrable on X x ), then

f/Xxyﬂx,y) dx dy=/Xny(x,y) dy] dx:/y[/xf(x,y) dx] dy,

that is, the double integral can be evaluated interactively either way.

A.2 Convex Functions

Definition A.2.1. A real-valued function f on an interval (a, b) C R, or more generally on
(ay,by) x - x (ag, by) C R*, is said to be convex if for any xi, Xz in its domain and for any
0<A<l,

fOxy + A —Mx2) < Af(xy) + (1 — A)f (x2).

The function is strictly convex if the above inequality is a strict inequality for all such x;, x»
and A.

Geometrically, a function is convex if the straight line joining any two points on its
graph lies entirely above the graph.

A twice differentiable function f on (a, b) C R is convex iff f”(x) > 0 foralla < x < b.
More generally, a function f on (aj, b1) x --- x (ag, bg) C R¥ for which all second partial
derivatives exist and are finite, is convex iff the Hessian (ie, the matrix of second partial
derivatives) is nonnegative definite.

From the above definition it follows by induction, that if X is an rv taking values
X1,...,xrin(a,b) with P[X = x;] = A;,i=1,...,rwith }_, A; = 1, then

r r
fEIXD =f (Z xl-xl-) <Y 2if () = ELF (X))

i=1 i=1

Obviously, this inequality also holds for a random vector X taking values in (a;, b1) x - -- x
(ax, by) C Rk,

The following theorem asserts that this inequality holds for arbitrary random vector X
with finite expectation.

Theorem A.2.1 (Jensen’s Inequality). If f is a convex function on I = (aj, b1) x --- X
(ay, by) C R* and X is a k-dim random vector with P[X € I] = 1, and with finite expectation,
then

FEXD < E[fX)].

Moreover the above inequality is strict if f is strictly convex, unless X is a constant with
probability 1.

Proof. The proof depends on the Supporting Hyperplane Theorem for convex sets. See
Ferguson [1, p. 76]. O



Appendix A » Results From Analysis and Probability 493

An Application

Consider the function f(x,y) = —x”ylfp, x>0,y > 0,and 0 < p < 1, which can be
shown to be convex on the first quadrant on R? by verifying that its Hessian is nonnegative
definite. The following theorem is now proved by an application of Jensen’s Inequality.

Theorem A.2.2 (Holder’s Inequality). If X and Y are positive rv's with finite means and
0<p<l,then

E[xnylfp] < (BEIXDP(ELYD!P.

Taking X = U? and Y = V? and p = 1/2, the Cauchy-Schwarz inequality follows as a
special case.

A.3 Stieltjes Integral

Let f and g be real-valued functions on an interval [a, b]. The Stieltjes integral of f with
respect to g on [a, b], denoted by | ;’ f) dg(x) or simply [ ab [ dg is a generalization
of the Riemann integral [ ;’ f(x) dx. As in Riemann integration, we need the concept of
partitions.

Definition A.3.1.

(i) A partition of [a, b] is a finite set of real numbers P = {xy, x1, ..., X} where
a=Xxp <X <---<Xp=Db,of which [x;_1, x;] are segments with length
AX; = X; — Xj_1, and AP = max{Ax;,i = 1,..., n}is the norm of P.

(ii) A partition Q = {yo, 1, -.,¥m} is arefinement of P = {xp, x1, ..., x,} if P C Q, in
which case, AQ < AP.

(iii) A partition Q = {&1, ..., &} is an intermediate partition of P = {xg, x1, ..., x5} if
Xi_1 <& <x;foralli.
(iv) For real-valued functions f and g on [a, b], a partition P = {xg, x1, . . ., X} of [a, b] and

an intermediate partition Q = {1, ..., &,} of P, the Stieltjes sum of f with respect to g
on [a, b] corresponding to P and Q is defined as

n
S(f,8P,Q) = Z fENAg;, where Ag; = g(x;) — gx;_1).
i=1
[This generalizes the Riemann Sum 7' | f(&;) Ax;, where Ax; = x; — x;_1.]
(v) The Stieltjes integral of f with respect to g on [a, b] is defined as a number
f ab f(x) dg(x) having the property that for every ¢ > 0 there exists a § > 0 such that

<é&

b
a

for all P with AP < § and for all intermediate partitions Q of P.
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[Definition (v) is a formal way of saying, f f fdg =1limusp_oS(f,g P, Q).

As in Riemann integration,

a b
/ fdg = — / fdg, foralla <b, and
b a

a
/ fdg =0, by convention.
a

Existence

The Stieltjes integral [ : [ dg exists if f is continuous and g is nondecreasing on [a, b]. More

generally, [ f exists if f has at most a finite number of discontinuities, g is of bounded
variation (as defined below) and f and g have no common discontinuity on [a, b]. For
practical purposes, this generality will suffice.

Definition A.3.2 (Functions of Bounded Variation). The variation of f on [a, b] corre-
sponding to a partition P = {xg, x1, ..., X}

n
VPN =D 1) = flxi)l.

i=1

Obviously, if Qis a refinement of P, then VP (f) < VQ(f). If the set {V(f): Pis a partition of
[a, b]} is bounded, then f is called a function of bounded variation on [a, b] and ylabl( )=
supp VP( f) is the total variation of f on [a, b].

If f is differentiable on [a, b] with |f'(x)|] < M for all x € [a, b], then f is of bounded
variation on [a, b] and V14! (f) < M(b—a). More generally, f is of bounded variation iff it is
the difference of two nondecreasing functions. Indeed, for a function of bounded variation
if we let

v(x; ) = VI@¥(f) fora <x <bandv(gf) =0,

then the function v(x;f) called the total variation function of f and the function
r(x; f) = vix;f) — f(x) called the residual function of f, on [a, b], are both nondecreasing
andf=v-—r.

Properties of Stieltjes Integrals

1. Iff is Riemann integrable and g has continuous derivative g’ on [a, b], then the
Riemann integral | f f0g (x) dx and the Stieltjes integral [ f f(x) dg(x) both exit and
are equal.
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2. (a) If f:fl- dg, i = 1,2, exist, then so does f:(klfl + kof>) dg for k) and k, constants
and

b b b
/ (kifi + kafy) dg = ky / fi dg+ Ky / £, dg,
a a a

and (@) if [, f fdgi, i = 1,2, exist, then so does |, f fd(k\g1 + kogo) for ki, ko constants
and

b b b
f fdtkyg) + kago) = ky [ £ dgi + ks / fdg.
a a a

(b) Iffff dg exists, thenfora < ¢ < b, [ f dg and fcbf dg exist and

/abfdg=/:fdg+/cbfdg-

(o If [ f f dg exists, then fcd f dg exists for any [c, d] C [a, b].
Theorem A.3.1 (Integration by Parts). If [ f f dg exists, then | ab g df also exists and

b b
/ fdg =fbgh) — f@ga) — / g df.
a a

4. Change of variable. Suppose that | (f f dg exists, h is a strictly increasing and
continuous function on [p, g] with h(p) = a and h(q) = b. Then for F = f o h and
G=gohonlp,ql, f’jF dG exists and is equal to fff ag.

Riemann-Stieltjes (R-S) integral. If in the Stieltjes Sum S(f, g, P, Q) we replace f(§;)
by m; = infyejx;_,,x1f(®) or M; = sup,c(y, | x,f (%), then the resulting sums, denoted
by RS(f, g, P) and RS(f, g, P), respectively, are called the Lower and the Upper R-S
sums which are generalizations of the Lower and Upper Riemann Sums. Since
RS(f, g, P) < RS( f, g Q) for all partitions P, Q of [a, b], we have

b B —b
/ f dg := supRS(f, g, P) < infRS(f,g, P) 1=/ fdg.
Y a P p a

If iz f dg and 72 f dg, called the lower and upper R-S integrals are equal, then the
common value is called the R-S integral of f with respect to g on [a, b].

The Stieltjes integral and the Riemann-Stieltjes integral both exist and are equal if f
has at most a finite number of discontinuities, g is nondecreasing, and f and g do not
have any common discontinuity on [a, b].

Expected value of a random variable. The expected value of an rv with cdf F is
defined as

Er[X] = /xdF(x).
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More generally, Er[g(X)] = f g(x) dF(x) where g has at most a finite number of
discontinuities.

If F is differentiable, F’ = f is the pdf of X, and f x dF(x) = f xf (x) dx. If F increases
only by jumps at x1, x2, . . . with jump size f(x;) at x;, then X is discrete with pmf
f),i=1,2,...,and [x dF(x) = }_; x;f (x;).

If P[X > 0] = 1, then we have the following alternative expression for Ef[X] < oo,
using integration by parts:

o0 o
Er[X] = [ x dF(x) = —/ xd[1 - Fx)]
0 0

o o0
= / [1-Fx)]dx= / P[X > x] dx,
0 0

because x[1 — F(x)] < fxoo yF(y) which converges to 0 as x — oo by virtue of Ef[X] < oo.
Empirical cdf. For arandom sample (Xj, ..., X,) from F, the function

n
Fp0) =n! D oo X)),
i=1

which increases by jumps of size 1/n at Xj, . . ., X, is called the empirical cdf. It follows
that

n
/g(x) dFy(x) =n~! Zg(Xi) = Sample mean of g(Xj),...,gXn).
i=1

We often want to deal with n—! Z?zl g(X;) — Ep[g(X)], the difference between the
sample mean of g(Xj), ..., g(Xy) and its expected value. This can be represented as

n
n! Zg(Xi) —EplgX)] = / g(x) dFp(x) — / g(x) dF (x)
i=1

=/g(x)d[Fn(x) —F(x)].

A.4 Characteristic Function, Weak Law of Large Number,
and Central Limit Theorem

Theorem A.4.1 (Helly-Bray Theorem). X, £> X implies E[g(X,,)] — E[g(X)] for all bounded
and a.e. continuous functions g.
Proof. See Breiman [42, p. 160]. O
Note. Let Dg denote the set of discontinuity points of g. If P[X € Dg] = 0, then g is a.e.
continuous.
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Characteristics Function

Definition A.4.1. The characteristic function (cf) of an rv X with cdf F, or the cf of F is
defined to be

. %)
e™ dr(x) = / cos(tx) dF(x) + i[ sin(tx) dF (x),

—00

o(1) = px () = Ble’™] = /

—0o0

where ¢ is real and i = +/—1. In general, ¢(t) is complex-valued, with
o
0(0) = 1,|p()] < / dF(x) = 1forallt, and ¢(—1) = ¢(#) forallt,
where z denotes the complex conjugate of a complex number z.
If f is symmetrically distributed (about 0) (ie, X 2 —X), then

o0 = g(—1) = E[e! 0% = B0 = Ee/X] = o(r).

Thus the cf of a symmetric rv is real-valued function of .
By dominated convergence, ¢(f) is continuous and if m; = E [X¥] exists, then ¢(f) is
k-times differentiable; moreover, we can differentiate under the integral sign, that is,

o
oM @) = ir/ x"e™ dF(x) for0 < r < k, and
—0o0

o
") = i’/ x"dF(x) =i"EX"1=im;,, O0<r<k
—00
In the neighborhood of ¢ = 0, we have the McLaurin Series
k
o(t) =1+ (my/mE" +o(tk), ast— 0.

r=1

Special Cases
1. Let @ denote the cdf of N(0, 1). Then the cf of @ is

oo . 2
o) = / e do(x) = e 1/2,
—00

2. Let F denote the cdf of an rv X with P[X = c] = 1 (ie, F(x) = 0 for x < cand F(x) = 1 for
x > ¢). Then the cf of Fis ¢(f) = e'’c .

Properties of cf
1. If px is the cfof X, then ¢ x5 (f) = e”b<pX (at) for constant a, b.
2. IfXy,..., X, are independent, then oy x, () = [Th; ox, (0).
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In particular, if Xj, . . ., X, are iid as X, then
e x om0 = {ox/vm)".

We now state the following two fundamental theorems in the theory of characteristic
functions, for the proof of which we refer to Cramér [18, p. 93-8].

Theorem A.4.2 (Uniqueness of Characteristic Functions on R). If (a — h,a + h) is a
continuity interval of a cdf F (ie, a &= h are continuity points of F), and if ¢ is the cf
of F, then

F(a+h) — Fla—h) = lim 1 /T Me_im(p(t) dr.
T—oom J_T t
Consequently, the cf ¢ determines the cdf F.

Theorem A.4.3 (Continuity of Characteristic Functions on R). If {F,} is a sequence of
cdf’s and {¢y} is the corresponding sequence of cf’s, then F,, — F (at all continuity points of
F) iff there exists a ¢ which is continuous at t = 0, such that ¢,(t) — ¢(t) for all t. Moreover,
if there is such a ¢, then it is the cf of F.

Note. The Uniqueness and Continuity Theorems for Characteristic Functions also
extend to R¥. See Cramér [18, p- 100-3].

Remark A.4.1. Combining the Helly-Bray Theorem with the Continuity Theorem for
Characteristic Functions, we now conclude that the following are equivalent:

X, 5 X.

Fp(x) — F(x) at all continuity points of F.

E[g(Xn)] — E[g(X)] for all bounded and a.e. continuous functions g.
on(1) = E[e!®n] — ¢(1) = E[e/X] for all ¢.

PWN=

Applications of the Continuity Theorem for Characteristic Functions

Theorem A.4.4. If X, £ X and g is a a.e. continuous function, then g(X,) A gX).
Proof. Since cos(tg(x)) and sin(zg(x)) are a.e. continuous functions of x for every ¢, it
follows from the Helly-Bray Theorem that

0g0x,) (1) = E[ e8| = E[cos(ig(Xn)] + iElsin(ig (Xn))]
— E[cos(ig(X)] + iElsin(g(X)] = E[e™™) ] = g0 (1)
Hence g(X,) £ g(X) by the Continuity Theorem. O

We now prove Theorems 3.2.1-3.2.3 of Chapter 3.
Theorem A.4.5 (Weak Law of Large Numbers (Khinchine)). If X1, Xo, .. . areiid as X with

EX]=u, thenXy, =n"'Y 1 | X; i .
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Proof. The cf of X, is
9%, =gp-1yn x, () = {ox(t/m)" = [1+it/mp+o01/m]"
by McLaurin’s series expansion of ¢x(¢/n) about 0. Hence
. ~ BERT . n _ itu
nhﬁn;o ox, (1) = nhﬁrr;o[I +it/mu+o(1/m)]" = e'H,
which is the cf of an rv Xy which takes the value 1 with probability 1. Hence X, A Xp by

the Continuity Theorem, so that for all ¢ > 0,

PXp <pu—¢e]— PXp<p—e]=0and
PiXp<pu+el—PXop<p+el=1

Thus, for any ¢ > 0,
lim P[|X; —pul <el= lim PXp <p+el— lim PXp<pu—¢e]=1=0=1.
n— o0 n—oo n—oo

O
Theorem A.4.6 (Central Limit Theorem (Lindeberg-Lévy)). If X1, X, . . . areiid as X with
E[X] = p and Var[X] = o2, then

1 < c . 1 <& c )
Zn ]Z;(X,-—m»zwwo,n, ie, ﬁg(xj—m»azw\mo,o).

=i

Proof. Let Xj—w)/o =Y. Then Y7, Ys,...areiidas Y = (X — u)/o with E[Y] = 0 and
E[Y?] = 1. Then

02,0 =9y O = Loy t/Vm)"
= [1+ e/ vmo + 22/ + o(1/n)]"

=[1-/en+ o(l/n)]n — e 2 = g (0,

Hence 7, £z by the Continuity Theorem. O
Theorem A.4.7 (The Cramér-Wold Device). Let {X,} be k-dim random vectors such that

a’X, A a’X foralla € R¥. Then X, £ x
Proof. Since a’X,, £ aTX foralla e RF,

Parx, (1) = Elel@ Xn)7] _, Parx () = E[ei@X)]  forallf € Rand a e R¥.
But {ta: t € R, a € RF} = {s: s € R¥}, and therefore,

vx,(s) = E[eisTX"] — E[eiSTX] =px(s) forallse R,

Hence X, £x by the Continuity Theorem for Characteristic Functions on R, O
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Theorem A.4.8 (Multivariate Central Limit Theorem). If X1, Xo, ... are iid as X in R¥
with the mean vector E[X] = p and the covariance matrix E[(X — p) (X — n)T] = X which is
positive definite, then

n
n V23X — ) Aw~ Ni(0, 3).
j=1

Proof. For a € RF, let Yj=a'Xjand Y = a’X. Then Y1, Y>,. .. areiid as Y where E[Y] =
a’p and Var[Y] = a’ ¥a, so that

n
VST, T £ Za N30
j=1

by the univariate Central Limit Theorem. On the other hand, if W ~ N;(0, X), then a'w ~
N(,a” Xa) . Thus

n
uTHn_l/2 Z(Xj - ;L)} L a™w forallac RF,
j=1

and so the theorem follows by the Cramér-Wold device. O

A.5 Weak Convergence of Probabilities on C[O, 1]

A metric on a nonempty set S is a function d: S x S — R such that (i) d(x,y) > 0 and
dx,y) =0iffx =y, (ii) d(x,y) = d(y, x), (iii) d(x,y) < d(x,2) + d(y,z) forallx, y, z € S. We
call (S, d) a metric space.

For each x € Sand ¢ > 0, the set S.(x) = {y: d(x,y) < ¢} is the open sphere of radius ¢
centered at x. Aset G C Sisopen <= foreachx € G, S;(x) ¢ Gforsomee >0 <— G
is a union of open spheres.

In S, a sequence {x;} converges to x if lim;,_,» d(x;,x) = 0. The boundary of A C Sis
dA = {x € S: x is a limit point of sequences in both A and A¢}.

A collection of open sets {G,: . € A} is an open covering of A C Sif A C U,c4Gy. A set
K c Sis compact if for every open covering of K, there is a finite subcovering.

Let {P,} and {P} be probabilities on (S,S) where S is the Borel o-field, that is, the
smallest o -field of subsets of S which includes all open sets and let C(S) be the set of all
bounded continuous functions f: S — R.

The sequence {P;} converges weakly to P iff [f dP, — [f dP for all f € C(S). This
is denoted by Py, % p. Equivalently, P, X piff P,(A) — P(A) for all A € S for which
P(8A) = 0. The weak limit is unique (ie, if P, X pand P, il Q),then P = Q.

A transformation g: (S, S) — (5, S’) is measurable if g‘l(B) e Sforall B € &, in which
case, for {P,} and Pon (S, S), {Pngfl} and Pg*1 are induced probabilities on (', S’), where

Png ' (B) = Pu(g ' (B) and Pg~ 1 (B) = P(g"'(B)) forallBe S'.

A function g: (S,d) — (5, d') is continuous iff x;, — xin S = g(x,;) — gx)in §'.
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Theorem A.5.1 (Continuous Mapping Theorem). If P, Z Pon(s,S) and ifg: (S,d) —
(S, d) is continuous, then P,g~! = Pg~! on (S,S’). More generally, the theorem holds if
P(Dg) = 0 where Dy is the set of discontinuity points of g.

The continuous mapping theorem stated above is a generalization of Theorem 3.2.5(III)
dealing with probability distributions of k-dim rv’s.

Let C = C[0, 1] be the set of all continuous functions on [0, 1] with the metric d(x,y) =
SUpg;<; X(¢) — y(#)| and let C denote the Borel o -field in C. On (C, C), we now consider the
Weak_cZ)nvergence of {P,} to P, which holds under two conditions, namely, convergence of
finite-dimensional distributions (fdd) and “tightness” of the sequence {P;}. For notational
simplicity, we describe these conditions in terms of random elements X, (-) of (C, C, P,;) and
X() of (C,C, P).

Definition A.5.1. For each positive integer k and #; < - -- < t; in [0, 1], the distributions
of Xn(t1), ..., X,(ty)) and (X (), ..., X(#)) are called fdd of X;,(-) and X(.), respectively.

Definition A.5.2. A family of probabilities IT on (S, S) is tight if for every ¢ > 0, there
exists a compact set K such that P(K) > 1 — ¢ for all P € [1. In particular, a sequence of
probabilities {P,} on (C, C) is tight if for every ¢ > 0, there exists a compact set K in C such
that P[X,,(1) € K] > 1 — e forall n.

Notation

We are writing P[X,,(-) € K] for P, (K).
Theorem A.5.2. Let {X,,(-),n = 1,2,...} and X(-) denote random elements of (C,C, Py,)
and (C,C, P), respectively. Then Py, X Por equivalently, X, £x if
(i) thefdd’s of {X,(-)} converge to those of X(-),
(iia) {X;(0)} is tight (ie, X,,(0) = Op(1)), and
(iib) there exist constantsy > 0 and « > 1 and a nondecreasing, continuous function F on
[0, 1] such that

1
P[1Xn(t2) — Xn(t1)| > 1] < 7 |Fl2) = Fap|®

holds for all t, t, and n, and all » > 0 (see [43, p. 95-6]).
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Basic Results From Matrix Algebra

This appendix lists some basic definitions, formulas, and results for vectors and matrices
which are used in this book. We begin with some simple definitions and elementary results.

B.1 Some Elementary Facts

It is known from the theory of matrices that the number of linearly independent rows of a
matrix A equals the number of linearly independent columns, and the rank of A (denoted
by rank(A)) is defined to be the number of linearly independent rows of A (or the number
of linearly independent columns). For any vector x, x’x will be denoted by |x||?, which
equals the square of the length of x. A matrix A of order n x m is said to have a full rank if
rank(A) = min(n, m).

For any n x n matrix A4, its quadratic form is defined to be g(x) = xT Ax, where x € R". If
A is not symmetric, then g(x) may also be written as xTZIx, where A = (1/2)(A + A7) is the
symmetrized version of A.

Definition B.1.1. All the matrices in this definition are assumed to be square of order n
(ie, the matrices have n rows and » columns).

(a) Trace of a matrix is defined to be the sum of its diagonal elements (ie,
trace(A) = Y 1| aip).

(b) The determinant A (denoted by |A|) is defined to be ) __(—1)" a; »(;), where the sum is
over all permutations  of {1, ..., n}, and (—1)" equals 1 or —1 depending on whether
7 is a positive or a negative permutation.

(c) Asymmetric matrix A is called nonnegative definite if its quadratic form x7Ax > 0
for any x € R”. If xTAx > 0 for all 0 # x € R”, then A is called a positive definite
matrix.

(d) A matrix A is said to be orthogonal if its rows are orthonormal (ie, the row vectors are
orthogonal to each other and each has unit length). Consequently, AA” = I. It is easy
to check that A is nonsingular, A” = A~! and ATA = I. Since ATA = I, columns of A
are orthonormal.

Here are some important results on rank and trace of matrices.

503
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Lemma B.1.1.

(a) For any matrix A of order n x m, rank(AAT) = rank(A).
(b) IfA and B are of order n x m, then rank(A + B) < rank(A) + rank(B).
(c) IfA and B are of order n x m and m x k, respectively, then

rank(AB) < min[rank(A), rank(B)].
(d) IfA and B are of order n x n, then trace(A + B) = trace(A) + trace(B).
(e) IfA and B are of order n x m and m x n, then trace(AB) = trace(BA).
(f) IfA and B are of order n x n, then |AB| = |A| |B|.

A class of formulas known as the Sherman-Morrison Formulas are quite useful in
inverting matrices.
Theorem B.1.1.

(a) IfacR", then(I+aa’)"' =1— (1 + |a|®>) 'aa’.

(b) IfacR", ||a| #1, thenI —aa’)™' =1+ (1 — ||a||®>) 'aa’.

(c) IfAisofordern x m, then (I + AAT)~1 =TI — A(I + ATA)~1AT,

(d) IfAisn x mand B is a positive definite matrix of order n x n, then
(B+AAT)"1 =B 1 - B lA0+ATB'A)1ATB .

The following is the Cauchy-Schwarz inequality for the matrices.
Theorem B.1.2. Let a be an n-dim vector and A be a positive definite matrix of order
n X n.

(a) Foranyx € R", |a’x|?> < |a|?||x|?>. Moreover, sup{|la’x|?/||x|?: x € R"} = | a|? and
this supremum is attained at x = a.

(b) Foranyx e R", |a”x|?> < [a" A~ 'a][xT Ax]. Moreover,
sup{|a’x|?/[xTAx]: x € R"} = aT A" a and this supremum is attained atx = A ' a.

B.2 Eigenvalues and Eigenvectors

For a square matrix A of order n, if there exists a scalar (may be complex) and a vector x

(may be complex) such that Ax = Ax, then A is called an eigenvalue of A with the corre-

sponding eigenvector x. The following result lists some basic properties of eigenvalues.
Lemma B.2.1.

(a) IfAis symmetric, then all its eigenvalues and eigenvectors are real.

(b) IfA is nonsingular, then all its eigenvalues are nonzero.

(c) If ) is an eigenvalue of symmetric matrix A with the corresponding eigenvector x, then
for any positive integer r, " is an eigenvalue of A" with eigenvector x

(d) The nonzero eigenvalues of AT A, where A is a matrix of order n x m, are the same as
those of AAT .

(e) The eigenvalues of a nonnegative definite (positive definite) matrix A are nonnegative
(positive).
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The following is an important result that is widely used in Linear Models and Multivari-
ate Analysis.
Theorem B.2.1 (Spectral Decomposition Theorem). If A is a symmetric matrix of order

n x n, then there exist an n x n orthogonal matrix U with columns w,,...,u, (ie, U =
[u1, ..., u,)) and a diagonal matrix A of order n x n with diagonal elements 11, ..., Ay Such
that

n
A=UAU" = .
j=1
Here {A;} are the eigenvalues of A with the corresponding orthonormal eigenvectors {u;}.

Is there an analog of the Spectral Decomposition Theorem for an arbitrary matrix A is
of order n x m? The answer is yes. Positive square roots of the eigenvalues of A” A are called
the singular values of A. Since A’ A is nonnegative definite, its eigenvalues are nonnegative
and thus the square roots of the eigenvalues of A7 A are real. Clearly, if A is symmetric, then
ATA = A? with eigenvalues {A]?}, where {1} are the eigenvalues of A, and the singular values
of Aare {|2;]}.

Theorem B.2.2 (Singular Value Decomposition). Let A be a matrix of order nxm, m < n.
There exist an n x m suborthogonal matrix U (ie, the columns of U are orthonormal), an
m x m orthogonal matrix V, and an m x m diagonal matrix A with nonnegative diagonal
entries A1, . . ., .y, Such that

m
_ TN uw?
A=UAV" =3 ],
j=1

where {u;} and {v;} are the columns of U and V, respectively.

It is important to note that {4;} in the Singular Value Decomposition of A are the
singular values of A, and {A]?} are the eigenvalues of the matrix A”A.

We finally write down two important formulas for the trace and determinant of
matrices.

Lemma B.2.2. Let A be a symmetric matrix of order n x n with eigenvalues {};,j =
1,...,n}). Then,

n n
trace(A) = ij and Al = l_[ Aj.
= j=1

The following result on the optimization of quadratic forms involves the eigenvalues
and eigenvectors.

Theorem B.2.3. Let Ay > --- > A, be the eigenvalues of a symmetric matrix A of order
n x n with the corresponding orthonormal eigenvectors u,, ..., uy. It is understood that x,
X1, ... written below are in R". Then the following hold:

(a) sup{xTAx: x| = 1} = SUP,4 ’%Tf;—x = M1, and this supremum is attained at x = u,.

(b) inf{xTAx: 2l = 1} = infyxxo x;écx = Ap, and this infimum is attained at x = uy,.
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(c) Forl < m < n, we have

sup{xlTAxl + o+ x,anm: X1,...,Xm are orthonormal}

T T
x; Ax; X, AX
= sup IT R "; m:x1#0,...,xm;£0areorth0gonal
x| X1 XipXm
and this supremum is attained atx; = wy, ..., Xy, = Up,.

B.3 Functions of Symmetric Matrices

If A is a symmetric matrix of order n x n, then for any real-valued function f whose domain
contains the eigenvalues of A, it is possible to define the corresponding function of A using
the Spectral Decomposition Theorem. More formally, let f be a real-valued function with
domain D C R, and let {A;: j = 1,..., n} be the eigenvalues of A with the corresponding
orthonormal eigenvector {u;}. If the eigenvalues of A are inside the set D, then the matrix
function f(A) is defined to be f(4) = Z]'f:l f (Aj)ujujT. Here are some examples that are
useful in Linear Models and Multivariate Analysis.

I. (Square root of a matrix) Let A be nonnegative definite and let f (1) = u'/?

D = [0, 00)). Then

y u =0 (e,
n - n 12
1/2 T
A2 = fa) = Y fOpuuf = Z,\j ujuj .
j=1 j=1
Clearly, A/? is symmetric and it is fairly easy to check that A1/24'/2 = A.

Il. (Inverse of a matrix) If A is nonsingular, then all its eigenvalues are nonzero and let
fw) =u"',u#0(e D=R—{0}). Then

n
-1 _ _ -1 T
A _f(A)_Xikj ;.
]:

It is fairly easy to check that A~! is indeed the inverse of the matrix A.
lll. (Inverse of square root of a matrix) Let A be positive definite and let f(u) = u~1/2,
u > 0 (ie, D = (0, 00)). Then

n
-1/2 _ _ =12 T
A /_f(A)_Z;Aj wj; .
]:

It is clear that A~'/2 is symmetric, and it is easy to verify that A=1/2471/2 = A~1,
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B.4 Generalized Eigenvalues

Let A and B be symmetric matrices of order n x n where B is positive definite. We say that
A is a (generalized) eigenvalue of A with respect to B if there is a vector I in R” such that
Al = ABI. Premultiplying both sides by B~! we get B"'Al = 1l In other words, if 2 is an
eigenvalue of A with respect to B, then  is also an eigenvalue of B~'A, and the converse
is also true. Similarly we can show that if A is an eigenvalue of A with respect to B, then 1
is also an eigenvalue of AB~! and of B"1/2AB~!/2, where B~!/? is symmetric. The following
result summarizes these observations.

Lemma B.4.1. Eigenvalues of AB~', B~'A, and B-Y/>AB~/2 are the same.

LetA; > --- > A, be the generalized eigenvalues of A with respect to B. By Lemma B.4.1,
A1,...,Ap are also the eigenvalues of B~1/2AB~1/2, By the Spectral Decomposition Theo-
rem, we have

n n
—1/2 ap—1/2 _ A ul —
B AB = le]u]uj , and ;u]uj =1,
J= =

where {u;} are the orthonormal eigenvector of the matrix B~ 12AB~1/2 corresponding to
the eigenvalues {A;}. We now write down an analog of Theorem B.2.3 for the generalized
eigenvalues.

Theorem B.4.1. Let A and B be symmetric n x n matrices, and assume that B is positive

definite. Let A\, > --- > Ay be the eigenvalues of B-Y>?AB~'/? with the corresponding
orthonormal eigenvectors uy, . . ., Uy. It is understood that x, x1, . . . written below are in R™.
Then the following hold:

T . . . _
(a) sup,oi3% = i, and this supremum is attained at x = B~'/*u,.

(b) infy.o ;‘;—g; = An, and this infimum is attained at x = B2y,
(c) Forl < m < n, we have

T T
x1 Ax X7, AX

sup{ =L Ly Im MoxIBx;=0,1<i#j<mx;#0,i=1,...,m
T T i l
xi Bx; X Bxm

=i+t Aim
. , . _ p-1/2 —_Rp-1/2
and this supremum is attained at x, = B uy,...,x, =B Up,.

B.5 Matrix Derivatives

In many cases one needs to differentiate the quadratic form or the trace or the determinant
of a matrix. There are a number of useful formulas for such purposes. For any function
[ : R" — R, the column vector of its first order partial derivatives and the n x n matrix of
second order partial derivatives (also known as the Hessian) will be denoted by % f(x) and
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% f(x), respectively. Let A be a symmetric matrix of order n x n, and let I(x) = Ax and
qx) = xTAx, x € R",
Lemma B.5.1. Let l(x) and q(x) be defined as above. Then,
2

ad a a
al(x) =A, aq(x) = 2Ax, mq(x) = 2A.

For the result given below, it is assumed that the square matrix A(x) of order n is a
function of a real variable x and element (i, j) of A(x) is a;j(x). Let A(x) denote the matrix
obtained by differentiating all elements A(x) with respect to x (ie, A(x) = ((é;(x))), where
a;j(x) = da;j(x)/dx). The following result presents expressions for the derivatives of Al (x)
and |A(x)| with respect to x.

Lemma B.5.2. Let A(x) be an n x n symmetric nonsingular matrix whose elements
depend on a real variable x, and let A(x) be the matrix obtained by differentiating the
elements of A(x) with respect to x. Then,

a1 = —a~ wawa ),
dx

a |A(x)| = |A(X)|trace(A(x)A™ ! (x)).
dx

It is fairly easy to check the first equality. Since I = A Y 0A®X), differentiating both sides
with respect to x, we have

_ 4y 4
0= 1= A" WA

- [; A_l(x)}A(x) +A_1(x)[ d A(x)]
= [iA*I(x)}A(x) + A LAW).
dx

Postmultiply by A~! (x) on both sides to get the result.

The proof of the second equality is a bit more involved than that of the first. We outline
a proof via spectral decomposition of A(x) = Z}‘zl kj(x)uj(x)ujT(x), where for each x,
{uj(x): j = 1,...,n} are orthonormal. Denote the derivatives of 4;(x) and u;(x) by ij(x)
and e;(x), respectively. Since |A(x)| = A1(x) - - - 1, (x), we have

d n
L1401 = L@ - 2] = Y0100 i [30/]
j=1

n
=AW Y 4j0)/2j (0.
j=1
The second equality would hold if we can establish that

n
traceA)A™ (x) = Y 4;(x)/2;(x).
j=1
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Since A(x) = ZJ’-L 1 Aj(0)u;(x) ujT (x), differentiating both sides with respect to x we have

n n n
AW =Y kw0 + Y 4@igou] )+ Y x@ui] ()
j=1 j=1 j=1
= B1(x) + B2(x) + B3(x).

The result now follows nothing that

n
AT W =Y 00 g @u] (),
j=1

n
trace(B; (0)A(x) 1) = Zij(x)/kj(x), and
=1

n
trace(By (x)A(x) ) = trace(Bs()A) 1) =) u]T W)it;(x) =0,
j=1

where the last step is justified as ujT(x)itj(x) = 0 for all j, which can be verified by
differentiating both sides of the identity ujT(x) uj(x) =1 with respect to x.

B.6 Orthogonal Projection

For a matrix A of order n x m, we denote its column space {Ax: x € R™} by M(A). The
orthogonal complement of M(A) , denoted by M(A)L, is the set {y € R™: yTu = 0 for
any u € M(A)}. A square matrix A of order n is called idempotent if A2 =AA symmetric
matrix A is called a (orthogonal) projection matrix if it is symmetric and idempotent. It is
fairly easy to see that if A is a projection matrix, then so is I — A. Since I — A) A=A — A% =
A — A = 0, it follows that M(A)+ = M — A). If A is an eigenvalue of A, then A? is an
eigenvalue of A%. Since A = A%, we have A = A% and thus A = 0 or 1. The following lists a
few important properties of a projection matrix.

Theorem B.6.1. Let A be a n x n projection matrix. Let M(A) = {Ax: x € R"} be the
column space of A. The following hold:

(a) I — Aisa projection matrix.

(b) Allthe eigenvalues of A are either 0 or 1.

(c) trace(A) = rank(A).

(d) M@A)*L =M - A).

(e) IfBisann x n projection matrix and M(B) C M(A), then A — B is a projection on
M(A) N M (B)* and AB = B (ie, I — A)B = 0).

Suppose that A is of order n x m, with rank m < n. Given a vector y € R”, how do we
find a vector in M (A) that is closest to y? Clearly, this is equivalent to minimizing ||y — Ax||?
with respect to x € R™, and if a minimum is attained at x = x*, then y = Ax* is the
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element in M (A) that is closest to y. It is fairly easy to verify that x* = (ATA)~'A”y and
y = AATA)1ATy = Q,y, where Q4 = A(ATA)~'AT. It is also easy to check that Q4 is a
projection matrix and M(A) = {Qu : u € R"}.

B.7 Distribution of Quadratic Forms

In this section, all the matrices A, A;, etc., associated with quadratic forms of Y, where
Y ~ Ny(p, I), are assumed to be symmetric of order n x n. If A is a projection matrix of rank
p < n, then it has exactly p eigenvalues equal to 1 (and the rest are 0), and let uy, .. ., u, be
the corresponding orthonormal eigenvectors. Then

p p
jaY|? = yTay = Z(ufy)z =Y W2
j=1 j=1

Since {u;} are orthonormal, {W; = u].TY,j =1,..., p} areindependent with W; ~ N(ujTu, 1).
Results from Section 2.2.9 in Chapter 2 tell us ||AY||?> = Zle sz ~ x2(8%), where 8% =

p
2
(1/2) Zf:1<ujTIL) = (1/2p"Ap = (1/2)|Ap||?.

It turns out that the converse is also true, that is, if YAY ~ Xr% (62), then A must be a
projection matrix of rank p. In order to see this, let us assume that A has rank g and its
nonzero eigenvalues and the corresponding normalized eigenvectors are Ay, ...,14 and
ui, ..., ug respectively. Then

q

Tav _ 72

viay =3 xw?,
=1

where {W; = u].TY,j =1,...,q} are independent with W; ~ N(ujTu, 1). Since Wj2 ~ XIZ(SJ.Z)

2
with 5].2 =(1/2) <u]T;L> ,and {(Wj:j=1,...,q}are independent, the characteristic function
(cf) of YTAY is the product of the cf’s of ij\/J-Z,j =1,...,4q. And this product of cf’s must be

equal the cf of X;% (62), since YTAY ~ X,z; (%) by assumption. An examination of this equality
of the characteristic functions shows (details not given here) that p must be equal to g and
A1 = --- = Aq = 1. This proves that A is a projection matrix of rank p and we have the
following result.

LemmaB.7.1. If Y ~ Ny,(u,I), then YTAY ~ Xl% (6) ifand only if A is a projection matrix
of rank p.

We now discuss a more general result. Let A; and A, be two projection matrices of ranks
p1 and p», respectively, and AjA> = 0. We can therefore find orthonormal vectors {u;: j =
1,...,p1 + p2} such that
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b1 p1+p2
_ Tl _ Tl
Ay = Zujuj and Ay = . Z uju; .
j=1 j=m+1

Since {W; = ujTY,j = 1,...,p1 + po} are independent with W; ~ N(ujTu, 1), we can
conclude that

P1
Y2 =Y A Y =Y WP~ xF 67,

j=1
p1+p2
1A2YI? =Y AY = 37 W}~ x3,65),
j=p1+1
and that Y’A;Y and Y'A,Y are independent, where 62 = (1/2)u"Ajp and 82 =

(1/2)nT Az . Moreover, YT (A1 + A2)Y ~ x2 ., (6% + 83).

It turns out that a converse of this is also true as given in the following result. The proofs
of the next two results use ideas similar to the ones given above and details can be found
in Rao [66].

LemmaB.7.2. Let A = A; + Ay and assume that

(i) YTAY ~ x7(82),
(i) YTALY ~ x5 (63), and
(ii) PIYTAY > 0] = 1.

Then A; is a projection matrix of rank p — p; and AjAy = 0. Consequently, YT AyY ~
Xr%—pl (6% — 82) and YTA,Y is independent of YTA,Y.

Lemma B.7.3. Assume that YT A Y ~ X51 ©62),...,YTAY ~ Xl%r (8].2). Then a necessary

and sufficient condition that YTA1Y, ..., YTA,Y are independent is that AjA; = 0 for all
J # k, inwhich case, Y (A1 + -+ + ADY ~ x5 4, 03+ +87).
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Acceptance region, 126

ACE See Autocorrelation function (ACF)

Additive model, 314

Akaike information criterion (AIC)

heuristic derivation, 349-352
predictive likelihood, 349
uniform integrability, 350-351

Almost sure convergence, 189-191

Alternative hypothesis

hypothesis testing, 71, 125
null hypothesis, 77-78
simple hypothesis, 126
two-decision problem, 77

Analysis of covariance

(ANCOVA)
application of, 344-345
B and y estimation of, 340-341
y and g inference for, 342-344
residual sum of squares, 342

Analysis of variance (ANOVA), 309, 311,
318-319

Ancillary statistic, 96, 110, 153

ANCOVA. See Analysis of covariance (ANCOVA)

ANOVA. See Analysis of variance (ANOVA)

ARIMA. See Integrated autoregressive-moving
average (ARIMA)

ARMA. See Autoregressive-moving average
(ARMA)

ARMA(p, g) models. See
Autoregressive-moving average
(ARMA(p, q)) models

AR(p) models. See Autoregressive process
(AR(p)) models

Asymptotic bias (ABias), 265-266, 299-301

Asymptotic distributions, 191-192, 408-410

a-trimmed mean, 288-289
delta method, 278, 280-281

L-estimator, 286-287

M -estimator, 291-292
Asymptotic efficacy, 116, 225
Asymptotic normality, 181, 258, 261
Asymptotic properties, MLEs

consistency and asymptotic normality,

179-194
frequency x2, 202-208
independent nonidentically distributed
data, 201-202

likelihood ratio test, 194-201
Asymptotic relative efficiency (ARE), 224
Asymptotic variance (AVar)

asymptotic bias, 265-266, 299-300

consistent estimators, 182

estimation of, 300-301
Augmented matrix, 340, 369
Autocorrelation function (ACF), 434,

442-450

autocovariance functions, 445-448

backshift operator, notation, 450

infinite sequence, 444

linear stationary series, 443, 447

mean, 442-445

PACE 449-450
Autocovariance function, 434, 437-440
Autoregressive-moving average (ARMA)

ACE 449-450

appropriate selection, 472-473

AR(p) models, 458-459

diagnostics, 448-449

forecasting, 463-464

MA(q) models, 459

PACE 449-450
Autoregressive-moving average

(ARMA(p, q)) models
invertibility, 459-460
nonredundancy, 459-460
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Autoregressive-moving average
(ARMA(p, q)) models (Continued)

parameter estimation, 471-472
redundancy issue, 458
stationarity, 459-460
technical issues, 457

Autoregressive process (AR(p)) models
condition for, 458-459
forecasting, 461
parameter estimation, 467-469
stationarity, 436

Average sampling number (ASN) function,

162, 166-168

B
Bahadur sample quantile, 283-284
Balanced two-factor ANOVA,
323-324, 331
Bandwidth, 256-257
Bayes formula, 6, 80-81
Bayesian estimation, 112-114
Bayesian information criterion (BIC)
discrete variable, 352
Laplace approximation, 353
positive definite matrix, 352-353
Bayes principle, 79
Bayes’ rule, 80-81, 415
Behavioral decision rule, 72, 126
Bernoulli parameter, 72
Bernoulli (p) rv, 25-26
Bernstein’s inequality, 63
Best asymptotically normal (BAN), 182,
193-194
Best linear unbiased estimator (BLUE),
318, 364
Best linear unbiased prediction (BLUP),
364-365
Beta distributions, 34-36
Beta functions, 33-34
Bias-squared terms, 358
Bivariate distribution, 218, 255
Bivariate normal, 170
Block diagonal matrix, 340-341
Bochner’s theorem, 440
Bonferroni method, 337

confidence intervals, 397
one-sample inference, 390
two-sample problem, 395
Bootstrap resampling method, 298-303
asymptotic bias, 300-301
asymptotic variance, 300-301
heuristic justification, 301-303
Borel-Cantelli Lemma, 57, 241, 259
Bounded variation, 259-260, 494
Box-Cox transformation, 433

C
Calculus, fundamental theorem of, 95
Canonical correlation analysis, 420-425
cross-classified data, 422-423
sample estimates, 421
social mobility data, 423
technical notes, 424-425
test for, 421-422
Cauchy distribution, 45-46, 131, 285-286
Cauchy-Schwarz inequality, 12, 493, 504
Causal time series, 454-460
invertible representation, 455-456
moving average models, 457-458
technical issues, 456-457
usefulness of, 456
Censored data, 255, 273, 275
Censoring time, 273
Central Limit Theorem (CLT)
asymptotic normality, 66-67
characteristic function, 496-500
Lindeberg-Lévy, 56
multivariate, 385-386, 500
Change of variable, 495
Characteristic function, 496-500
continuity theorem, 498-500
Helly-Bray theorem, 496, 498
properties of, 497-498
special cases, 497
uniqueness of, 498
Chernoff-Savage approach, 238-239
Chi-squared distribution, 40-41, 390-391
Classification function
Bayes' rule, 417
Fisher’s method, 418-420



method of, 419
probability of, 417-418
CLT. See Central Limit Theorem (CLT)
Coefficient of determination, 318-319
Communality, 411
Composite hypothesis, 131-132
Conditional distribution, 147, 154
Conditional expectation, 300-301
Conditional probability, 347
Conditional tests, 149-152
Confidence coefficient, 169-171
Confidence ellipsoid
one-sample inference, 389
two-sample problem, 394
Confidence intervals, 170, 328
Bonferroni method, 390, 395
confidence coefficient, 410
Scheffé method, 389, 395
simultaneous, 397, 401-402
Confidence sets
inverting acceptance regions, 171-173
pivotal functions, 169-171
Conjugate gradient method, 360
Consistency and asymptotic normality
almost sure convergence, 189-191
efficiency, 191-193
multinomial distribution, parameters in,
193-194
Consistent estimators, 182
Continuation region, 164
Continuity theorem, 498-500
Cramér-Wold device, 499
Helly-Bray theorem, 498
Khinchine weak law of large numbers, 498
Lindeberg-Lévy theorem, 499
multivariate central limit theorem, 500
Continuous distributions
beta distributions, 34-36
beta functions, 33-34
Cauchy distribution, 45-46
Chi-square distribution, 40-41
exponential distribution, 36
exponential family, 49-51
F distributions, 42-45
gamma distributions, 34-36
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gamma functions, 33-34

multivariate normal distribution, 46-49

noncentral x2, 43-45

normal distribution, 36-42

sample mean, 41-42

sample variance, 41-42

t distributions, 42-43

uniform distribution, 34
Continuous mapping theorem, 501
Convergence modes, 55-60

in law, 56

in probability, 56

in quadratic mean, 56
Convex function, 492-493
Correlation coefficient, 12, 16
Correlation matrix, 412
Covariance

ANCOVA, application of, 344-345

B and y estimation of, 340-345

y and B inference for, 342-344

residual sum of squares, 342
Covariance matrix, 11
Covariance stationarity. See Strictly stationary
Cramér-Rao inequality, 97
Cramer-Rao information inequality, 99
Cramer-Rao lower bound, 96-98
Cramér-Wold device, 468-469
Critical function, 126, 135
Critical region/rejection region, 126
Cross-product term, 323, 325
Cross-validation method, 269, 353-355
Cumulative distribution function (cdf), 7
Curve estimation

density, 255-260

higher dimension, 264-265

local polynomials, 265-272

nearest neighbor approach, 263-264

regression, 260-263

survival function and hazard rates,

273-275

D

Decision functions, 71-74. See also Optimal
decision rules

Degrees of freedom (df), 317, 319-320
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Delta method E
Bahadur sample quantile, Eigenvalues, 205-206, 504-506
283-284 singular value decomposition, 505
differentiability condition, 279 spectral decomposition theorem, 505
gross-error gy, 280 Eigenvectors, 505-506
influence function, 280, 282-285 Elementary facts
kth central moment, 282 Cauchy-Schwarz inequality, 504
mean, 282 Sherman-Morrison formula, 504
partial derivatives, 60 symmetric matrix A, 503
p-quantile, 283 Empirical distribution function
Taylor expansion, 278 asymptotic distributions, 246-249
variance of, 274 Brownian motion, 243-245
V-statistic, 277, 284 test statistics, 241-243
De Moivre-Laplace theorem, weak convergence, 245
37-40 Empirical distribution function (edf), 55
DeMorgan’s rules, 2, 58 Equivariance, 106-112
Density estimation Equivariant under location, 77
bandwidth choice, 269-270 Error probabilities, 163-164
cross-validation procedure, Error vector, 315-316
270-271 Estimation
integrated square-error, 269-270 B and T, 403-404
leave-one-out, 269-270 canonical correlation analysis, 421
optimality property, 271 factor analysis, 411
Design matrix, 309, 318-319 MANOVA model, 395-396
Diagnostics, 448-450 principal components, 407-408
Differential conditions properties of, 404
p-Fréchet differentiability, 279 two-factor MANOVA, 400
Gateaux differentiability, 279 two-sample problem, 393-394
p-Hadamard differentiability, 279 Euclidean space, 135
Differentiation under integral, 491 Exact distributions, 397-398
Discrete distribution, 255-256 Expected value, random variable, 495
binomial distribution, 25-26 Exponential distributions, 36, 199
geometric distribution, 27-28 Exponential family, distribution, 49-51, 98
hypergeometric distribution, 29-30 Extracting stationary part, 433-434
multinomial distribution, 26-27
negative binomial distribution, F
28-29 Factor analysis, 411-414
poisson distribution, 30-33 estimation of, 411
Discrete Fourier transform, 476-477 maximum likelihood, 412
Disjoint subsets, 125-126 prediction of, 413-414
Distribution-free property, 242 principal, 411-412
Dominated convergence theorem, 491 Factor-effect smodel, 311-313
Double exponential, 358 Factorization theorem, 76, 388
Durbin-Levinson iterative, 451-453 F-distribution, 42-45, 329

Durbin-Levinson recursions, 450-451 Feller’s theorem, 170



Finite expectation, 214
Finite sample space, 4-5
Fisher-information
Cramér-Rao bound, 118
exponential families, 98
information inequality, 97
M-estimator, 290-291
Wald'’s statistics, 211
Fisher-Irwin test, 152
Fisher’s method, 418-420
Fitted mean vector, 317, 335
p-Fréchet differentiability, 279, 294-295
Frequency distribution, 207
Frequency response function, 481-483
Frequency x2,202-208
F-statistic, 328-329
Fubini theorem, 492
Fundamental identity, 167

G
Gamma distributions, 34-36
Gamma functions, 33-34
Gateaux differentiability, 279-280, 297
Gaussian stationary, 434-435
Gauss-Markov models, 402, 468
B and o2 estimation of, 316-317
Bonferroni method, 337
inference, 328-340
linear functions, estimation of, 317-318
linear unbiased estimation, 318
one-factor balanced ANOVA model, 339
prediction intervals, 339-340
Scheffé method, 337-338
simultaneous, 336-337
Tukey method, 338-339
Generalized cross-validation (GCV), 346
Generalized eigenvalues, 507
Gross-error 8y, 280

H

p-Hadamard differentiability, 279
Héjek projection method, 220-221
Héjek-Rényi inequality, 64
Hardy-Weinberg formula, 212
Hazard function, 275
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Heine-Borel property, 191
Helly-Bray theorem, 496, 498
Higher dimension
bias, 265
curse of dimensionality, 265
iid observation, 264
kernel method, 265
optimal bandwidth, 265
regression function, 264
variance, 265
Histogram, 255-256
Hoeffding’s inequality, 62
Holder’s inequality, 165, 493
Homogeneity distributions, 199
Homogeneity probabilities, 200
Hotelling’s T2-distribution, 384
Hypergeometric distribution, 131, 152
Hypothesis testing
conditional tests, 149-152
confidence sets, 169-173
empirical distribution function, 241-249
generalized Neyman-Pearson lemma,
135-136
locally best tests, 140-144
MANOVAmodel, 396-397
one-sample inference, 390
one-sided hypotheses, UMP tests for,
131-132
p-value, 159-160
ranks and order statistics, 213-227
rank tests, 227-241
sequential probability ratio test, 160-168
simple null hypothesis vs. simple
alternative, 127-131
two-factor MANOVA, 401
two-sample problem, 394
two-sided problems, UMP tests for, 135-136
unbiased tests, 133-135

|

Identifiability condition, 117, 189

Independent nonidentically distributed data,
201-202

Independent variable, 309-310

Influence function, 280, 282-285
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Information inequality
Cramer-Rao lower bound, 96-98
in multiparameter families, 99-106
Information lower bound, 102
Information matrix, 102
Initial estimator, 185-189
Instantaneous failure rate, 273
Integrated autoregressive-moving average
(ARIMA)
forecasting, 466-467
stationary part, 436
Integrated square error, 258
Integration theory, 491-492
Interaction effects, 313-314
Intraclass correlation, 362-363
Invariant under location, 77
Inverse of matrix, 506
Invertible time series. See Causal time series

J
Jackknife, 298-303
asymptotic bias, 300-301
asymptotic variance, 300-301
heuristic justification, 301-303
Jensen'’s inequality, 492-493
Joint distribution, 144, 213-214

K

Kendall’s tau statistic, 218

Kernel estimator, properties of, 256-260
Kolmogorov’s inequality, 63

«th central moment, 282
Kullback-Leibler divergence, 346-347

L

Lagrangian multiplier, 326-327

Lasso method, 357-358

Law of large number, 496-500

Least square estimate, 328, 358-359

Leave-one-out, 269-270

Lebesgue dominated convergence, 165

Left-sided null hypothesis vs. right-sided
alternative, 171

Lehmann-Scheffé theorem, 103

L-estimators, 285-289

«o-trimmed mean, 288-289
asymptotic distribution, 286-287
Cauchy distribution, 285-286
M-estimators, 293
score function, 293
Level of significance, 126
Likelihood equation, 188
Likelihood function (L), 115, 387, 390-391
Likelihood ratio statistic, 211
Likelihood ratio test (LRT), 194-201, 390-392
factor A main effects, 401
factor B main effects, 401
for interaction test, 401
Lindeberg condition, 262
Lindeberg-Feller theorem, 67
Lindeberg-Liapounov theorem, 67
Linear discriminant rule
Fisher’s method, 419
sample estimates, 416-417
Linear filtering, 480-483
Linear functions, 317-318
Linear models, 402-404, 414
B, linear restrictions, 325-328
covariance analysis, 340-345
Gauss-Markov models, 310-315
inference, 374-378
model selection, 345-355
random and mixed-effects, 361-373
regression, methods for, 356-361
total sum of squares, decomposition of,
318-325
Linear prediction, 441-442
Linear regression model, 309, 311
Linear time series, 440-441
Ljung-Box test, 448
Loading vectors, 405
Local linear estimate, 266-268
Locally best tests
Fisher-information, 141-142
locally most powerful, 140
logistic distribution, 143
multiparameter exponential families, 140
random sample, 140-142
regularity conditions, 140
UMP unbiased tests, 140



Locally most powerful (LMP), 140, 228

Local polynomials
asymptotic bias, 265-267
asymptotic variance, 265-267
cross-validation method, 269
density estimation, 269-271
local linear estimate, 266-268
regression estimation, 271-272
regression function, 265-266
regression model, 266-267

Location-scale family, 170

Logistic distribution, 143

Log likelihood ratio, 161-162

Loss function, 72

Lower bound
Cramer-Rao lower bound, 96-98
Fisher-information, 98
multiparameter families, 99-106

Lower confidence bound, 169

M
Mahalanobis distance, 385, 414
MA(g) models. See Moving average (MA(q))
models
Mann-Whitney statistic, 217-218
MANOVA model
confidence intervals, 397
estimation, 395-396
hypothesis testing, 396-397
one-factor tests, 398-399
of test interpretation, 399
Wilks’ lambda, 397-398
Marginal distribution, 147
Markov inequality, 60
Martingale property, 64
Matrix algebra
distribution of quadratic forms, 510-511
eigenvalues and eigenvectors,
504-506
elementary facts, 503-504
generalized eigenvalues, 507
matrix derivatives, 507-509
orthogonal projection, 509-510
symmetric matrix function, 506
Matrix derivatives, 507-509
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Maximum likelihood estimators (MLEs)
M-estimator, 289
method of, 115
normal population sampling, 387
variance components, 371-373
Wilks’ lambda, 398
Mean, 442-445. See also Autocorrelation
function
forecast error, 456
influence function, 282
Mean-square error (MSE)
bias and variance, 256-257
Mallows’ criterion, 347-348
unbiased estimator, 317
M-estimator, 289-292. See also Maximum
likelihood estimators (MLESs)
asymptotic distribution, 291-292
Huber functions, 291
L-estimators, 293
L-functional, 295
minimax problem, 291
monotone score function, 291-292
score function, 293
Method of maximum likelihood, 115-118
Method of minimum x, 119-121
Method of moments estimators (MOME), 119
Minimax principle, 79
Minimax rules, 82-83
Minimum norm quadratic unbiased
estimation (MINQUE), 369
Minimum risk equivariant (MRE) estimator.,
107-108
Mixed-effects models, 413
equations, 366-367
inference, 374-378
variance components, estimation of,
369-371
Mixed model equations
assumption of normality, 367-368
likelihood function, 367-368
motivation for, 367-369
one-factor random effects model, 366-367
Sherman-Morrison formula, 368-369
MLEs. See Maximum likelihood estimators
(MLEs)
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MLR. See Monotone likelihood ratio (MLR)
Model selection
AIC and BIC criteria, 348-353
Akaike’s FPE, 347-348
cross-validation, 353-355
Mallows’ criterion, 347-348
Monotone convergence theorem, 191, 491
Monotone likelihood ratio (MLR), 131-132
Monotone power, 137
Most powerful (MP), 127-128
Moving average (MA(g)) models
forecasting, 461-463
identifiability of, 459
nonuniqueness of, 457-458
parameter estimation, 469-471
MSE. See Mean-square error (MSE)
Multinomial coefficient, 26-27, 152
Multinomial distribution, 193-194,
202-203, 212
Multinomial probabilities, 200
Multiple linear regression model, 15
Multivariate analysis
bonferroni method, 390
canonical correlation analysis, 420-425
central limit theorem, 385-386
classification and discrimination,
414-420
confidence ellipsoid, 389
confidence intervals, 389-390
factor analysis, 411-414
hypothesis testing, 390
likelihood ratio test, 390-392
linear model, 402-404
mahalanobis distance, 385
MANOVA model, 395-399
normality, 386-387
normal population, sampling, 387
one-sample inference, 388-392
principal components analysis, 404-410
sampling distributions, 387-388
two-factor MANOVA, 400-402
two-sample problem, 393-395
wishart distribution, 383-385
Multivariate normal distribution, 46-49
Multivariate normality, 386-387

N
Natural parameter space, 133-135
Nearest neighbor approach

density estimation, 263

kernel estimation procedure, 264

MSE, 263

regression estimation, 263-264

second-order smoothness condition, 264
Nested ANOVA model, 334
Newton-Raphson method, 183-189, 193-194
Neyman-Pearson lemma

corollary, 128-131

Euclidean space, 135

likelihood ratio, 129

MP level, 129-131

parametric family, 129-131

uniformly most powerful, 130
Noncentral xz, 43-45
Noncentrality parameter, 320-322
Nonlinear regression, 311
Nonparametric estimate, 272
Nonparametric models, 70
Nonrandomized decision rule, 126
Nonstationary series, 433
Normal distribution, 36-42
Nuisance parameters

alternative hypotheses, 147

exponential family, 146

joint distribution, 144

Neyman-structure, 145

normal distribution, context of, 154-158

null hypothesis, 144-145

similarity and completeness, 144-158

sufficient statistic, 145-146

three problems, 145
Null hypothesis

alternative hypothesis, 77

consistency, 197

hypothesis testing, 71

(0]

One-factor ANOVA model, 311-312
One random factor, 361
One-to-one transforms, 156, 158



Operating characteristic (OC) function, 162,
164-166
Optimal bandwidth, 265
Optimal decision rules
Bayes rules, 80-81
conditions for admissibility, 83-86
estimation problem, 77
minimax rules, 82—-83
suitable ordering of, 78-80
two-decision problem, 77-78
Optimality under unbiasedness, 89-96
Optimally property, 168
Orthogonal columns, 326
Orthogonal polynomials, 311
Orthogonal projection, 316, 340-341,
509-510
Orthonormal basis, 404-406
Orthonormal eigenvectors, 205, 360

P
PACE See Partial autocorrelation function
(PACF)
Parameter estimation
ARMA(p, g) models, 471-472
AR(p) models, 467-469
MA(g) models, 469-471
Parametric and nonparametric models, 70
Parametric family, 129-131
Partial autocorrelation function (PACF),
450-453
ACE 449-450
Durbin-Levinson iterative, 451-453
Durbin-Levinson recursions, 450-451
Partial least squares (PLS), 360-361
Penalty function, 357-358
Penalty methods, 357-359
Penalty parameter, 357-358
Penalty term, 357-358
Periodogram, 476-478
Permutation test, 215-216
Poison distribution, 206-207, 209
Polya’s theorem, 57-58
Polynomial model, 311
Pooled data, 201, 207
Portmanteau test, 448
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Positively dependent, 151
Power function, 132
Prediction, 364
error, 353-354
intervals, 339-340
standard error, 465-466
Principal components analysis,
404-410
asymptotic results, 408-410
estimation of, 407-408
orthonormal basis, 404-406
regression interpretation, 406-407
Principal components regression (PCR),
360-361
Probability analysis
central limit theorem, 496-500
characteristic function, 496-500
convex functions, 492-493
integration theory, 491-492
Stieltjes integral, 493-496
weak convergence of, 500-501
weak law of large number, 496-500
Probability, axiomatic definition of, 3
Probability density function (pdf), 8
Probability distributions, 69, 169. See also
Continuous distributions, Discrete
distributions
Probability inequalities, 60-66
Probability mass function (pmf), 8
Probability space, 3
Probability theory

conditional probability and independence,

5-7

correlation coefficient, 10-13

covariance, 10-13

expected value, 10-13

moment generating function (mgf), 13

moments, 13

random experiments, 1

set theory, 1-2

transforms, 17-21

variance, 10-13
Product-Limit (PL), 273-274
Projection matrix, 316-317, 353-354
Proportional reduction, 320, 325-326
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p-Value
accept Hy/reject Hyp, 159
hypothesis testing, 159
Pearson’s P statistic, 159-160
test statistic, 159

Q
Quadratic discriminant rule, 414-417
Bayes’ rule, 415
normal case, 415-416
Quadratic forms distribution, 510-511
p-Quantile, 283

R
Random-effects model, 361-362
Random errors, 310-311
Random right-censoring
integrated hazard function, 275
right algorithm, redistribute to, 274

survival function, estimation of, 273-274

variance, 274
Random stopping time, 166
Random variables, transforms of
extension, 20
linear transformation, 21
order statistics, joint distribution of, 20
Random walk model, 437
Ranks and order statistics
asymptotic distribution, 219-223
contiguity theory, 226-227
exact distribution under H0, 218-219
permutation test, 215-216

Pitman’s approach, asymptotic comparison

of, 224-226

three basic problems, nonparametric tests

in, 216-218
Rank tests
approximate scores, 236-237
bivariate population, 234-236
general alternative, 228-231

LMP, asymptotic distribution of, 237-241

one-sample location problem, 232-233

two-sample scale problem, 233-234
Rao-Blackwell formula, 92-93
Rao-Blackwell method, 94, 115

Rao-Blackwell theorem, 90
Rao’s statistic, 211
Real-valued function, 278, 497
Rectangular density, 186
Regression
partial least squares, 360-361
penalty methods, 357-359
stepwise, 356-357
subsets, 356
Regression analysis, 406-407
Regression estimation
conditional moments, 272
cross-validated choice, 272
leave-one-out cross-validation, 272
nonparametric estimate, 272
optimal choice, 272
Regression function, 255
Regression model, 15
Regression sum of squares, 318-319, 321
Regular estimators, 192-193
Regularity conditions, 180-181, 228-229
Remainder term Ry, 294-298
Residual sum of squares, 317-319, 342
Residual variance, 15
Restricted maximum likelihood (REML),
372-373
Ridge regression method, 357-358
Riemann-Stieltjes integral, 493-496
Right algorithm, 274
Right-tail tests, 160
Risk function, 72

S

Sample covariance matrix, 387

Sample eigenvalues, 408-410

Sample mean, 41-42, 170

Sample variance, 41-42, 170

Sampling distributions
factorization theorem, 388
likelihood function (L), 387

Scheffé method, 389, 395
Cauchy-Schwarz inequality, 338
confidence coefficient, 338
confidence ellipsoid, 337-338
simultaneous confidence intervals, 337



Score function
asymptotic distribution, 291, 293
L-estimator, 286, 291, 293
M-estimator, 293
M-functional, 296
Sequential analysis, 160. See also sequential
probability ratio test (SPRT)
Sequential probability ratio test (SPRT)
ASN function, 166-168
definition of, 161-162
error probabilities of, 163-164
OC function, 164-166
stops with probability 1, 162-163
Set theory, 1-2
Sherman-Morrison formula, 354-355, 504
Simple hypothesis, 126
Simple linear regression model, 157, 309
Simple null hypothesis vs. simple alternative
distinct probability distributions, 127-128
existence, 127
necessity, 127
Neyman-Pearson lemma, 127
sufficiency, 127
Simple propositions, 3-4
Simple vs.simple likelihood ratio, 195
Simultaneous confidence intervals, 336-337
Single-parameter exponential family, 133, 135
Singular value decomposition, 505
SLLN. See Strong law of large numbers (SLLN)
Slutsky’s theorem, 57-58
Smoothing parameter, 255-256
Spearman’s rank correlation, 218
Spectral analysis, 473-486
linear filtering, 480-483
periodogram, 476-478
remarks, 474-475, 479
spectral density, 478-480, 483-486
stationary series, 475-476
Spectral decomposition theorem, 505
Spectral density function
ARMA, 483-486
autocovariance function, 437-440
estimation of, 478-480
frequency response function, 483-485
special cases, 485-486
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Spectral distribution function, 440
SPRT. See Sequential probability ratio test
(SPRT)
Squared-error loss, 89-96
Square root of a matrix, 506
Standard deviation, 11
Standard normal distribution, 36
Stationarity
ARIMA, 436
autocovariance function, 437-440
autoregressive process, 436
Cramér representation, 475-476
Gaussian, 434-435
linear prediction, 441-442
linear time series, 440-441
moving average process, 435
random walk model, 437
strict, 434
time reversibility, 441-442
weakly, 435
white noise, 435
Statistical data analysis, 309
Statistical functionals
bootstrap method, 298-303
delta method, 278-285
exercises, 303-307
jackknife method, 298-303
L-estimators, 285-289
M-estimator, 289-292
remainder term Ry, 294-298
Statistical inference
confidence sets, 71
hypothesis testing, 71
optimal decision rules, 76-86
parametric and nonparametric models, 70
point estimation, 71
population and random samples, 69
problems of, 70-71
statistical decision functions, 71-74
sufficient statistics, 74-76
Stepwise regression
backward elimination, 356-357
forward selection, 356
Stieltjes integrals, properties, 494-496
Stirling’s approximation, 43
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Strictly stationary, 434

Strong consistency, 185. See also Almost sure

convergence
Strong law of large numbers (SLLN), 56
Strong uniform consistency, 258, 261
Studentized version, 170
Subsets regression, 356
Sufficiency, 179
Sufficient statistic, 74-75
Sum of squares and products (SSP),
396-397
Superefficient estimators, 192
Supporting hyperplane theorem, 492
Survival function, 273-275
Survival time, 273
Symmetric matrix function, 506
inverse of a matrix, 506
inverse of square root of a matrix, 506
multivariate analysis, 506
square root of a matrix, 506

T
Taylor series, 278
Tchebyshev’s inequality, 57, 61
t distributions, 42-43
Test statistic, 125, 390
Time reversibility, 441-442
Time series
ARMA model appropriate, 472-473
autocorrelation function, 442-450
autocovariance function, 434, 437-440
causality, 454-460
forecasting, 460-466
invertibility, 454-460
mean, 442-450
PACE 450-453
parameter estimation, 467-472
spectral analysis, 473-486
stationarity, 434-442
Traditional statistical inference, 160
Treatment sum of squares (SSTR),
318-319
Triangular density, 186
Tukey method
application of, 339

studentized range distribution, 339
studentized range variable, 339
Two-factor ANOVA model, 313-314,
321
Two-parameter exponential family, 150
Two random factors, 362
Two-sided problems, 136-138
Two-term Taylor expansion, 266-267
Type I error, 125
Type I error probability, 78
Type Il error, 125
Type II error probability, 77-78

U
Unbiased confidence interval, 172-173
Unbiased estimators, 182, 191-192
Unbiasedness, 89-90
Unbiased tests, 78
behavioral test, 133
MLR property, 133
natural parameter space, 133-135
null hypothesis, 133
power functions, 133
single-parameter exponential family,
133
Uniform distribution, 34
Uniform integrability, 56, 350-351
Uniformly minimum variance unbiased
estimator (UMVUE), 89-96
Uniformly most powerful (UMP)
nuisance parameters, 144-158
one-sided hypotheses, 131-132
two-sided problems, unbiased tests,
136-139
Upper confidence bounds, 169
U -statistic, 277

\")
Variance components
Henderson’s method III, 369-371
maximum likelihood, 369, 371-373
MINQUE, 369
restricted maximum likelihood, 369
Variance-stabilizing transformations, 60
V-statistic, 277, 284



w

Wald’s statistics, 211

Weak convergence, probabilities,
500-501

Weak law of large numbers (WLLN), 56

Wilcoxon signed-rank statistic, 216-217

Wilks’ lambda, 396
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exact distributions, 397-398
factor B main effects, 401
Wishart distribution, 383-385
WLLN. See Weak law of large numbers (WLLN)

Y
Yule-Walker equations, 441-442, 452-453
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