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Preface

This book has grown out of lecture notes in courses in Mathematical Statistics, Linear
Models, Multivariate Analysis, and Time Series Analysis taught by the authors over many
years at UC Davis. Of these, Mathematical Statistics (Chapters 1–10) and Linear Models
(Chapter 11) are core courses for PhD students in Statistics and Biostatistics at most
institutions. Courses in Multivariate Analysis and Time Series Analysis are also taken by
many students in these programs. A good background in Advanced Calculus and Matrix
Analysis is a prerequisite for these courses.

Although most students in these courses would have taken an intermediate level course
in Probability Theory, we have included such material in Chapters 1 and 2 for a review.
Chapter 3 introducers various modes of convergence of an infinite sequence of random
variables, which may be deferred until the study of asymptotic theory begins in Chapter 7.
In Chapter 4, we outline the main problems of statistical inference and various approaches
to optimality in the decision theoretic framework before treating Point Estimation, Hy-
pothesis Testing, and Confidence Sets in Chapters 5 and 6. Methods based on Likelihood,
Distribution-free Tests, and Curve Estimation are treated in Chapters 7–9, and Chapter 10
deals with Statistical Functionals. Gauss-Markov Models, topics in Model selection and
Linear Mixed Models are the main focus of Chapter 11. Chapter 12 deals with Multivariate
Analysis covering many of the standard methods used in practice. An introduction to
Time Series Analysis is given in Chapter 13 covering aspects of ARMA modeling and
Spectral Analysis. These chapters mostly concentrate on asymptotic properties of these
methodologies, using the material in Chapter 3. Some technical results are included in
Appendices A and B.

Throughout the book we have restricted to discrete and absolutely continuous random
variables. Except for using the concept of a σ -field of subsets and in particular the Borel
σ -field in Euclidean spaces, we have avoided all technicalities of measure theory. On
the other hand, we have used Stieltjes integrals, providing a quick introduction to these
integrals in Appendix A. Basic results from matrix algebra and distribution of quadratic
forms are included in Appendix B.

We have not been able to cover everything in Chapters 1 through 10 and Appendix A in
a three-quarter course with three lectures and one discussion per week in Mathematical
Statistics. The following possibility of slightly trimming this material is suggested so as to
fit into a three-quarter framework.

xiii



xiv PREFACE

(i) Give a quick review of Chapters 1 and 2, leaving out most of the materials for
self-study.

(ii) Introduce as many topics as possible out of locally best tests (Section 6.8), SPRT
(Section 6.11), locally most powerful rank tests (Section 8.2), and curve estimation
(Chapter 9).

(iii) Leave the details of most of the proofs in Sections 6.7–6.9, 7.2, 7.4, and 10.6 for
self-study, going over only the main ideas in class-room presentation.

We also suggest the following outline for a full academic year Master’s level course in
Probability and Mathematical Statistics.

(i) Chapters 1–3 omitting Theorems 3.2.5 parts IX–XI; Theorems 3.2.3–3.2.5.
(ii) Omit the following: proofs in Sections 4.6.5 and 4.6.6; Ancillarity and Completeness;

proof in Section 5.2.3; Equivariance in its generality; Section 6.8 and Section 6.11;
proofs in Sections 6.12.2, 7.1.1, and 7.1.2; proofs of Theorems 7.2.1, 7.2.2, and 7.4.1;
Section 8.2; proofs in Section 8.3; proofs in Chapter 9 and the entire Chapter 10.

Chapters 5 and 6 are influenced by Ferguson [1] and Lehmann [2, 3], and Chapter 8
relies heavily on Hájek and Šidák [4].

The material in Chapter 11 can be fitted in a two-quarter course in Linear Models with
minor modifications; introduce as many topics as possible from Model Selection omitting
some of the proofs, using examples to clarify the concepts.

Most of the material in Chapter 12 should be accessible to doctoral students along with
the examples. An introduction to Time Series (Chapter 13) can be done by focusing on the
main ideas and examples. The material in these two chapters can be fitted in two one-
quarter courses for PhD students.

Chapters 11 and 12 use the material provided in Appendix B.
Our work on this book was initiated at the insistence of Jerome Braun, who took the

Mathematical Statistics course from one of us. Thank you Jerome! The authors are also
grateful to Ms Christine Cai for typing some parts of the book. We are indebted to the
National Science Foundation for a grant (DMS 09-07622) for support of research in writing
this book.

P.K. Bhattacharya, Prabir Burman
Davis, California



1
Probability Theory

1.1 Random Experiments and Their Outcomes
Probability theory is the systematic study of outcomes of a random experiment such as
the roll of a die, or a bridge hand dealt from a thoroughly shuffled deck of cards, or the
life of an electric bulb, or the minimum and the maximum temperatures in a city on a
certain day, etc. The very first step in such a study is to visualize all possible outcomes of the
experiment in question, and then to realize that the actual outcome of such an experiment
is not predictable in advance. However, from the nature of the experiment, or from our
experience with the past results of the experiment (if available), we may be able to assign
probabilities to the possible outcomes or sets thereof.

For example, in the roll of a balanced, six-faced die, the possible outcomes are
{1, 2, 3, 4, 5, 6} to each of which we may assign a probability of 1

6 (ie, in many repetitions of
the trial, we expect each of these outcomes to occur 1

6 of the times). From this, we can also
conclude the outcome to be an even number with probability 3

6 = 1
2 .

Similarly, the possible outcomes of a bridge hand dealt from a standard deck are all the(52
13

) = 52!
13!39! combinations of 13 cards from a 52-card deck, each carrying a probability of

1/
(52

13

)
.

The possible outcomes of the life of an electric bulb (in hours) is the set [0, ∞) and
the possible outcomes of the minimum and maximum temperatures in Philadelphia on
a certain day in future (in ◦C) is

{
(x, y): − 273 < x < y < ∞}

. In these last two examples,
the sets of possible outcomes may seem to be unrealistically large, but this is because we
cannot put an upper limit to the life of an electric bulb, or lower and upper limits to the
temperatures in a city. However, from the past performance of many electric bulbs of a
certain make, or from the meteorological records over many years in the past, we may be
able to assign probabilities to various outcomes in these two examples. Such probabilities
are empirical in nature.

1.2 Set Theory
The collection of all possible outcomes of a random experiment and various sub-
collections of these outcomes are the entities to which we want to assign probabilities.

Theory and Methods of Statistics. http://dx.doi.org/10.1016/B978-0-12-802440-9.00001-1
Copyright © 2016 Elsevier Inc. All rights reserved.

1



2 THEORY AND METHODS OF STATISTICS

These sub-collections are sets in the space of all possible outcomes. Our aim is to develop a
logical system which would enable us to calculate the probabilities of sets of complicated
nature from the probabilities of sets whose probabilities are more clearly understood.
For this, we need to have an understanding of some basic facts about the theory
of sets.

We denote by S the space of all possible outcomes of a random experiment, consisting
of elements (particular outcomes) s ∈ S. In S, we would be interested in various sets A ⊂ S
and their combinations of different types.

Definition 1.2.1.

(i) The entire space is S consisting of elements s ∈ S, and ∅ is the empty set which
contains no element of S.

(ii) Ac = {s ∈ S: s /∈ A} is the complement of A ⊂ S.
(iii) A1 ∩ A2 = A1A2 = {

s ∈ S: s ∈ A1 and s ∈ A2
}

is the intersection of A1 and A2.
(iv) A1 ∪ A2 = {

s ∈ S: s ∈ at least one of A1, A2
}

is the union of A1 and A2.
(v) A1 ⊂ A2 if s ∈ A1 implies s ∈ A2; A1 = A2 if A1 ⊂ A2 and A2 ⊂ A1.

The following are immediate from the above definitions:

(i) ∅ = Sc. (ii) A1 ∪ A2 = (
A1Ac

2

) ∪ (Ac
1A2

) ∪ (A1A2). (iii)
(
Ac)c = A.

(iv) (A1 ∪ A2)c = Ac
1 ∩ Ac

2 and more generally
(⋃n

i=1 Ai
)c = ⋂n

i=1 Ac
i .

(v) (A1 ∩ A2)c = Ac
1 ∪ Ac

2 and more generally
(⋂n

i=1 Ai
)c = ⋃n

i=1 Ac
i .

(vi) A ∩ (B ∪ C
) = (A ∩ B) ∪ (A ∩ C

)
and A ∪ (B ∩ C

) = (A ∪ B) ∩ (A ∪ C
)
.

(vii) If A1 ⊂ A2, then A1 ∪ A2 = A2 and A1 ∩ A2 = A1.

Note. (iv) and (v) are called DeMorgan’s rules.
Definition 1.2.2. Sets A1, A2, . . . are disjoint (or mutually exclusive) if Ai ∩ Aj = ∅ for all

i 	= j.
Definition 1.2.3.

(i) If the sets A1, A2, . . . are such that
⋃∞

n=1 An = S, then the collection {A1, A2, . . .} forms a
covering of S.

(ii) If the sets A1, A2, . . . are disjoint and
⋃∞

n=1 An = S, then the collection {A1, A2, . . .}
forms a partition of S.

Note. To avoid triviality, the sets in a covering or a partition of S are nonempty.
From any covering {A1, A2, . . .} of S we can construct a partition {B1, B2, . . .} of S by

letting B1 = A1, B2 = Ac
1A2, . . . , Bn = Ac

1Ac
2 · · · Ac

n−1An, . . . .
Clearly, B1, B2, . . . are disjoint and ∪∞

n=1Bn = ∪∞
n=1An = S. In particular, if A1 ⊂ A2 ⊂

· · · ⊂ An ⊂ · · · and ∪∞
n=1An = S, then {B1, B2, . . .} forms a partition of S if B1 = A1, B2 =

Ac
1A2, . . . , Bn = Ac

n−1An, . . . .
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1.3 Axiomatic Definition of Probability
A probability space is described by a triple

(
S,A, P

)
where S is an arbitrary space consisting

of elements s ∈ S,A is a collection of sets A ⊂ S, called events, with the properties:

(Ei)S ∈ A. (Eii) A ∈ A ⇒ Ac ∈ A. (Eiii) A1, A2, . . . ∈ A ⇒ ⋃∞
n=1 An ∈ A,

and P: A → [0, 1] is a function on A with the properties:

(Pi)P
[
S
] = 1. (Pii) for disjoint sets A1, A2, . . . ∈ A, P

[⋃∞
n=1 An

] = ∑∞
n=1 P[An].

A collection of sets of S with properties E(i, ii, iii) is called a σ -field of subsets of S and a
function on A with the property P(ii) is called a a countably additive set function. The
property P(i) makes such a set function a Probability.

Proposition 1.3.1 (Continuity Property of Probability). From the axioms P(i, ii), it
follows that

(Piii) if A1 ⊃ A2 ⊃ A3 ⊃ · · · ⊃ An ⊃ · · · and limn→∞ An = ⋂∞
n=1 An = ∅, then

limn→∞ P[An] = 0, or equivalently,
(Piv) if A1 ⊂ A2 ⊂ A3 ⊂ · · · ⊂ An ⊂ · · · and limn→∞ An = ⋃∞

n=1 An = S, then
limn→∞ P[An] = 1.

Conversely, either P(i, iii) or P(i, iv) implies P(i, ii).
Proof of the equivalence of P(i, ii), P(i, iii), and P(i, iv) is left as an exercise.

1.4 Some Simple Propositions
Proposition 1.4.1.

(i) P
[
Ac] = 1 − P[A], P[∅] = 0.

(ii) If A ⊂ B, then P[A] ≤ P[B].
(iii) P[A ∪ B] = P[A] + P[B] − P[AB].
(iv) P

[⋃n
i=1 Ai

] ≤ ∑n
i=1 P[Ai].

Proof.

(i) A and Ac are disjoint and A ∪ Ac = S. Hence
1 = P[S] = P

[
A ∪ Ac] = P[A] + P

[
Ac], so P

[
Ac] = 1 − P[A].

In particular, ∅ = Sc and therefore, P[∅] = 1 − P[S] = 1 − 1 = 0.
(ii) If A ⊂ B, then B = A ∪ (AcB

)
, where A and AcB are disjoint. Hence

P[B] = P[A] + P
[
AcB

] ≥ P[A], because P
[
AcB

] ≥ 0.
(iii) A = (AB) ∪ (ABc), B = (AB) ∪ (AcB

)
, A ∪ B = (

ABc) ∪ (AcB
) ∪ (AB), and the sets

ABc, AcB, AB are disjoint. Thus

P[A ∪ B] = P
[
ABc]+ P

[
AcB

] + P[AB]
= {

P[AB] + P
[
ABc]}+ {

P[AB] + P
[
AcB

]} − P[AB]
= P[A] + P[B] − P[AB].
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(iv) Let B1 = A1, B2 = A c
1 A2, . . . , Bn = A c

1 · · · Ac
n−1An. Then

(a)
⋃n

i=1 Ai = ⋃n
i=1 Bi,

(b) B1, B2, . . . , Bn are disjoint, and
(c) Bi ⊂ Ai, i = 1, . . . , n.
Hence P

[⋃n
i=1 Ai

] = P
[⋃n

i=1 Bi
] = ∑n

i=1 P[Bi] ≤ ∑n
i=1 P[Ai] by (ii).

Proposition 1.4.2.

P[A1 ∪ · · · ∪ An] =
n∑

i=1

P[Ai] −
∑

1≤i1<i2≤n

P
[
Ai1 Ai2

]

+ · · · + (−1)r+1
∑

1≤i1<i2<···<ir≤n

P
[
Ai1 Ai2 · · · Air

]

+ · · · + (−1)n+1P
[
A1A2 · · · An

]
The proof, which follows by induction, starting from Proposition 1.4.1(iii), is left as an

exercise.
Proposition 1.4.3 (Bonferroni’s Inequality). P[A1A2 · · · An] ≥ P[A1] + P[A2] + · · · +

P[An] − 1.
For n = 2, P[A1A2] ≥ P[A1] + P[A2] − 1 is proved as follows: 1 ≥ P[A1 ∪ A2] = P[A1] +

P[A2] − P[A1A2]. Hence the result.The proof of the general case follows by induction, and
is left as an exercise.

This inequality may be useful in some situations to get some idea about P[A1A2 · · · An]
where actual evaluation may be difficult.

1.5 Equally Likely Outcomes in Finite Sample Space
Suppose that S consists of N elements, S = {s1, . . . , sN }, which are equally likely. Then the
total probability of 1 is shared equally by these N elements, so that P[{si}] = 1

N for each i.
Consequently, for any event A = {

si1 , . . . , siK

}
, P[A] = K

N = #(A)
#(S) , where #(E)

.= number of
elements in E.

Evaluation of probabilities of events in such a setting, essentially reduces to counting
problems which are often of a combinatorial nature.

Example 1.5.1. Two balanced dice with 1, 2, 3, 4, 5, 6 on the six faces are rolled. Find
the probabilities of the events: (a) the numbers on the two dice are equal, (b) the sum
of the numbers on the two dice is 10, (c) the number on at least one die is 6, and (d) none
of the numbers is a 6.

Solution.

(a) #(S) = 6 · 6 = 36 and if we let A1 be the event in question, then
A1 = {(1, 1), (2, 2), . . . , (6, 6)} and #(A1) = 6. Thus P[A1] = #(A1)

#(S) = 6
36 = 1

6 .

(b) Here the event A2 = {(4, 6), (5, 5), (6, 4)}, so #(A2) = 3. Thus P[A2] = #(A2)
#(S) = 3

36 = 1
12 .
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(d) We answer (d) first. None of the numbers is a 6, means no 6 on the first, with
probability

(
1 − 1

6

)
and no 6 on the second, with probability

(
1 − 1

6

)
. Hence the

probability of no 6 on any of the two dice is the probability of the event
A4, P[A4] = (1 − 1

6 )(1 − 1
6 ) = 5

6 · 5
6 = 25

36 , because the roll of the first die has nothing to
do with the roll of the second die, that is, they are “independent,” which is a concept
to be introduced in the sequel. In a direct counting approach,
A4 = {

(x, y): x = 1, 2, 3, 4, 5 and y = 1, 2, 3, 4, 5
}

. Thus #(A4) = 5 · 5 = 25, so
P[A4] = #(A4)

#(S) = 25
36 , which agrees with our calculation based on the concept of

independence.
(c) “At least one 6” is the complement of “no 6”. Hence

P[A3] = P[Ac
4] = 1 − P[A4] = 1 − 25

36 = 11
36 .

Example 1.5.2. What is the probability that a bridge hand dealt from a well-shuffled
standard deck of cards will contain 2 Aces and 2 Kings?

Solution. Here #(S)
.= number of ways to choose 13 cards from a deck of 52 cards =

(52
13

)
,

and if A denotes the event in question, then #(A)
.= number of ways to choose 2 out of 4

Aces, 2 out of 4 Kings, and 9 out of the remaining 44 cards =
(4

2

)(4
2

)(44
9

)
. Thus

P[A] =
(4

2
)(4

2
)(44

9
)

(52
13
) � 0.04.

1.6 Conditional Probability and Independence
Definition 1.6.1. For events A and B with P[A] > 0, the conditional probability of B given
A is defined to be

P[B|A] = P[AB]
P[A] . (1)

This is the probability that we assign to the event B if we know that the event A has
occurred. Now if the knowledge of occurrence of A does not change the probability of B
(ie, if P[B|A] = P[B]), then we say that B is independent of A. But this holds if P[AB] =
P[A]P[B]. Now if P[B] > 0, then P[AB] = P[A]P[B] also implies

P[A|B] = P[AB]
P[B] = P[A],

so that A is independent of B. This leads to the following definition.

Definition 1.6.2. Events A, B are independent if

P[AB] = P[A]P[B]. (2a)

More generally, events A1, . . . , An are independent if for every subset {i1, . . . , ir} of
{1, 2, . . . , n}, 2 ≤ r ≤ n,

P[Ai1 Ai2 · · · Air ] = P[Ai1 ]P[Ai2 ] · · · P[Air ]. (2b)
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From the definition of P[B|A] in Eq. (1), we have

P[AB] = P[A]P[B|A]. (3a)

More generally, we have

P[A1A2 · · · An] = P[A1]P[A2|A1]P[A3|A1A2] · · · P[An|A1 · · · An−1]. (3b)

This is proved by applying the above formula repeatedly to the right side to see that

P[A1]P[A2|A1]P[A3|A1A2] · · · P[An|A1 · · · An−1]
= P[A1A2]P[A3|A1A2] · · · P[An|A1 · · · An−1]
= P[A1A2A3] · · · P[An|A1 · · · An−1]
= · · · = P[A1A2 · · · An].

Formulas (2a) and (2b) are special cases of Eqs. (3a) and (3b) when the events are
independent.

Proposition 1.6.1. [Bayes Formula] If the collection of events {A1, A2, . . .} forms a parti-
tion of S, that is, if A1, A2, . . . ∈ A are disjoint and

⋃∞
j=1 Aj = S, then

P[Ai|B] = P[AiB]
P[B] = P[Ai]P[B|Ai]∑∞

j=1 P[Aj]P[B|Aj]
.

Proof. We only have to observe that by virtue of A1, A2, . . . being a partition of
S, B = ⋃∞

j=1 AjB, and the events A1B, A2B, . . . are disjoint. Hence P[B] = ∑∞
j=1 P[AjB] =∑∞

j=1 P[Aj]P[B|Aj] by P(ii) and Eq. (3a).
For any event B with P[B] > 0, P[A|B] as a function of A ∈ A is a probability, that is,

0 ≤ P[A|B] ≤ 1 for all A ∈ A and P[·|B] satisfies P(i, ii). The verification of these facts and
the proof of the following proposition are left as exercises.

Proposition 1.6.2. If A and B are independent, then the pairs A and Bc, Ac and B, Ac and
Bc are also independent.

Example 1.6.1. There are 20 balls in a bag, of which 8 are white and 12 are black. We
draw three balls at random from the bag. Find the probability that all three of these balls
are white if (a) each ball drawn is replaced before the next draw, (b) the balls are drawn
without replacement.

Solution.

(a) Here the outcomes of the three draws are independent events, because the
composition of the bag is unchanged after a draw due to replacement. Let Ai denote
the event of a white ball in ith draw, i = 1, 2, 3. Then P[Ai] = 8

20 for each i and
A1, A2, A3 are independent. Hence P(All three balls are white) = P[A1A2A3] = P[A1]
P[A2]P[A3] =

(
8

20

)3 =
(

2
5

)3 = 8
125 .

(b) When the draws are without replacement, the events A1, A2, A3 are not independent.
Here we can approach the problem in two ways:
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(i) By direct counting, we have #(A1A2A3) = (8
3

) = 56 and #(S) = (20
3

) = 1140. Hence
P[A1A2A3] = 56

1140 = 14
285 .

(ii) Arguing with conditional probabilities, by looking at the composition of the bag
conditional upon the outcomes of previous draws we have
P[A1] = 8

20 , P[A2|A1] = 7
19 , P[A3|A1A2] = 6

18 .
Hence P[A1A2A3] = P[A1]P[A2|A1]P[A3|A1A2] = 8

20 · 7
19 · 6

18 = 14
285 .

Example 1.6.2. There are three boxes of which Box 1 contains tickets numbered
1, . . . , 5; Box 2 contains tickets numbered 1, . . . , 10; and Box 3 contains tickets numbered
1, . . . , 20. One of the three boxes is chosen at random and then a ticket is drawn at random
from the chosen box. Find the probability that the ticket is from Box 2 if (a) the number on
the ticket is 4, (b) the number on the ticket is 7.

Solution. Let Ai be the event that Box i is chosen, B the event that the number on
the ticket is 4 and C the event that the number on the ticket is 7. Then P[Ai] = 1

3 , i =
1, 2, 3; P[B|A1] = 1

5 , P[B|A2] = 1
10 , P[B|A3] = 1

20 ; P[C|A1] = 0, P[C|A2] = 1
10 , P[C|A3] = 1

20 .

(a) Here we need P[A2|B]. By Bayes’ formula,

P[A2|B] = P[A2]P[B|A2]∑3
j=1 P[Aj]P[B|Aj]

=
1
3 · 1

10
1
3 · 1

5 + 1
3 · 1

10 + 1
3 · 1

20

= 2
7

.

(b) Here we need P[A2|C]. By Bayes’ formula,

P[A2|C] = P[A2]P[C|A2]∑3
j=1 P[Aj]P[C|Aj]

=
1
3 · 1

10
1
3 · 0 + 1

3 · 1
10 + 1

3 · 1
20

= 2
3

.

1.7 Random Variables and Their Distributions
Definition 1.7.1. A real-valued function X : S → R on a probability space (S,A, P) is a
random variable (rv) if for all a ∈ R,

{s ∈ S: X(s) ≤ a} ∈ A. (4a)

More generally, X = (X1, . . . , Xk): S → R
k on a probability space (S,A, P) is a k-dimensional

(k-dim) random vector (rv) if for all (a1, . . . , ak) ∈ R
k,{

s ∈ S: X1(s) ≤ a1, . . . , Xk(s) ≤ ak
} ∈ A. (4b)

Definition 1.7.2. The cumulative distribution function (cdf) of a 1-dim rv X is de-
fined as

FX (a) = P[X ≤ a] = P[{s: X(s) ≤ a}] for all a ∈ R. (5a)

Note. We shall use P as a set function P: A → [0, 1] as in P(i, ii) as well as in a more
informal way as in P[X ≤ a] to indicate the probability of X ≤ a.
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Remark 1.7.1. We are using the abbreviation rv to indicate both a random variable and
a random vector. The meaning of one or the other should be clear in the context.

Proposition 1.7.1 (Properties of a cdf FX (x)).

(i) FX (a) ≤ FX (b) for all a ≤ b.
(ii) limh↓0 FX (x + h) = FX (x) for all x.
(iii) limx→−∞ FX (x) = 0.
(iv) limx→∞ FX (x) = 1.

Property (i) says that FX is monotone nondecreasing (because (−∞, a] ⊂ (−∞, b] for all
a ≤ b) and Property (ii) says that FX is right continuous. Properties (ii), (iii), and (iv) follow
from the continuity property of probability, the proofs of which are left as exercises.

For any rv X ,

P[X = a] = P[X ≤ a] − P[X < a] = FX (a) − lim
h↑0

FX (a + h)

= magnitude of jump of FX at a (if any).

We shall consider only two types of rv’s, discrete and continuous. A rv X is discrete if its
cdf FX is a step-function (ie, increases only by jumps and stays constant elsewhere) and is
continuous if its cdf FX is differentiable everywhere. Since a cdf FX can have only a finite
or a countably infinite number of jumps, a discrete rv can have only a finite or countably
infinite number of possible values {xi}.

Definition 1.7.3. The probability mass function (pmf) of a discrete rv X is defined as

fX (xi) = P[X = xi], i = 1, 2, . . . and fX (x) = 0 for all x /∈ {xi
}
. (6a)

For any set B ⊂ R, P[X ∈ B] = ∑
x∈B fX (x) and

∑∞
i=1 fX (xi) = P[X ∈ R] = 1.

Definition 1.7.4. The probability density function (pdf) of a continuous rv X is de-
fined as

fX (x) = F ′
X (x) ≥ 0 for all x ∈ R. (7a)

Clearly, P[X ≤ a] = FX (a) = ∫ a
−∞ fX (x) dx, and

∫∞
−∞ fX (x) dx = limx→∞ FX (x) = 1.

Note. Since the cdf of a continuous rv X is differentiable everywhere, it has no jumps.
Hence P[X = a] = 0 for all a.

On the real line R, the smallest σ -field of subsets which includes all intervals, is called
the σ -field of Borel sets and is denoted by B. For each B ∈ B,

P[X ∈ B] =
∫

B
fX (x) dx,

when this integral is defined in an appropriate manner.
The cdf of a k-dim rv X = (X1, . . . , Xk) is defined as

FX (a1, . . . , ak) = P
[
X1 ≤ a1, . . . , Xk ≤ ak

]
for all (a1, . . . , ak) ∈ R

k. (5b)

The marginal cdf of Xi is obtained as FXi (a) = FX (∞, . . . , ∞, a, ∞, . . . , ∞), that is, by taking
ai = a, and aj = ∞ for all j 	= i in FX (a1, . . . , ak). Again we consider the discrete and
continuous cases, and define
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fX (x1, . . . , xk) (6b)

=
{

P
[
X1 = x1, . . . , Xk = xk

]
if (x1, . . . , xk) ∈ set of possible values of X

0 otherwise

as the pmf of X in the discrete case, and

fX (x1, . . . , xk) = ∂k

∂x1 · · · ∂xk
FX (x1, . . . , xk) (7b)

as the pdf of X in the continuous case.
The various marginal pmf’s and pdf’s are obtained by summing or integrating over the

other variables in Eq. (6b) or (7b).
For random variables defined by (4a, b), the cdf defined by (5a, b), the pmf/pdf defined

by (6a, b) or (7a, b) contain all the information.
Example 1.7.1. Players 1 and 2 each rolls a balanced six-faced die. Let (s1, s2) be the

outcome of the rolls, si the number on the die rolled by Player i. On the sample space of
{(s1, s2): si = 1, 2, 3, 4, 5, 6, i = 1, 2}, we define X(s1, s2) = s1 −s2 as the amount which Player
1 wins from Player 2, a negative win being interpreted as a loss. Find the pmf of X .

Solution. The possible values of the rv X are 0, ±1, ±2, ±3, ±4, and ±5. For x ≥
0, #{(s1, s2): s1 − s2 = x} = #{(1 + x, 1), . . . , (6, 6 − x)} = 6 − x, each carrying a probability of
1

36 . Hence for x ≥ 0,

fX (x) = P[X = x] = 6 − x
36

, x = 0, 1, . . . , 5.

Again for x < 0, #{(s1, s2): s1 − s2 = x} = #{(s1, s2): s2 − s1 = |x|} = #{(1, 1 + |x|), . . . ,
(6 − |x|, 6)} = 6 − |x|, each carrying a probability of 1

36 . Hence for x < 0,

fX (x) = P[X = x] = 6 − |x|
36

, x = −5, . . . , −1.

Thus, fX (x) = 6−|x|
36 , x = 0, ±1, ±2, ±3, ±4, ±5.

Example 1.7.2. A point s is selected at random from the unit circle with center at the
origin (0, 0) and radius 1 and

X(s) = distance of s from the center.

Find the cdf and the pdf of X and the probability that 1
2 ≤ X ≤ 3

4 .
Solution. The cdf of X is

FX (x) = P[{s: X(s) ≤ x}]
= P

[
s ∈ a circle of radius x centered at origin

]
= Area of a circle of radius x

Area of unit circle

= πx2

π12
= x2, 0 ≤ x ≤ 1.

This is because, for a randomly selected point s from a set S in the plane,

P[s ∈ A] = Area of A
Area of S

, for all A ⊂ S
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assuming that the areas of S and of A are well-defined.
Now the pdf of X is

fX (x) = F ′
X (x) = d

dx
(x2) = 2x, 0 ≤ x ≤ 1.

Finally,

P
[

1
2

≤ X ≤ 3
4

]
= FX

(
3
4

)
− FX

(
1
2

)
=
(

3
4

)2
−
(

1
2

)2
= 5

16
.

Alternatively,

P
[

1
2

≤ X ≤ 3
4

]
=
∫ 3

4

1
2

fX (x) dx =
∫ 3

4

1
2

2x dx = x2
∣∣∣∣ 3

4
1
2

= 5
16

.

1.8 Expected Value, Variance, Covariance, and Correlation
Coefficient

Definition 1.8.1. The expected value or the mean of an rv X is defined as

μX = E[X ] =
{ ∑∞

i=1 xifX (xi) if X is discrete∫∞
−∞ xfX (x) dx if X is continuous,

provided that the sum or the integral exists and is finite. Otherwise, we say that E[X ] does
not exist.

More generally, we define

E
[
g(X)

] =
{ ∑∞

i=1 g(xi)fX (xi) if X is discrete∫∞
−∞ g(x)fX (x) dx if X is continuous.

Note. E[X ] exists if and only if E[|X |] < ∞.
For a k-dim random vector X = (X1, . . . , Xk), we define

E
[
g(X1, . . . , Xk)

]
=
{ ∑

all x1,...,xk
g(x1, . . . , xk)fX (x1, . . . , xk) if X is discrete∫∞

−∞ · · · ∫∞
−∞ g(x1, . . . , xk)fX (x1, . . . , xk) dx1 · · · dxk if X is continuous.

Note. The term Expectation is often used for Expected Value.
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Proposition 1.8.1 (Properties of Expectation).

(i) If P[X = c] = 1, then E[X ] = c.
(ii) If P[X ≥ 0] = 1 with probability 1, then E[X ] ≥ 0.
(iii) If IA(x) = 1 for x ∈ A and IA(x) = 0 for x /∈ A, then E[IA(x)] = P[X ∈ A].
(iv) E

[
aX + b

] = aE[X ] + b.

(v) E
[∑k

i=1 aiXi

]
= ∑k

i=1 aiE[Xi].

(vi) If P[X1 ≥ X2] = 1, then E[X1] ≥ E[X2].

The proof is omitted.
Definition 1.8.2. The variance of an rv X is defined as

σ 2
X = Var[X ] = E

[
{X − E[X ]}2

]
= E

[
X 2
]

− {E[X]}2.

The last equality follows by expanding {X − E[X ]}2 and then using the properties of
expectation in Proposition 1.8.1, remembering that E[X ] = μX is a constant. The standard
deviation of X is

√
Var[X ] = σX .

Definition 1.8.3. The covariance between rv’s X and Y is defined as

σXY = Cov[X , Y ] = E[{X − E[X ]}{Y − E[Y ]}] = E[XY ] − E[X ]E[Y ].

Again the last equality follows by expanding {X − E[X ]}{Y − E[Y ]} and using the properties
of expectation. Obviously,

Cov[X , X ] = Var[X ].

Note. If X T = (X1, . . . , Xk) is a k-dim rv, then Σ = ((Cov
[
Xi, Xj

]
i,j)) is called the

covariance matrix of X .
Proposition 1.8.2 (Properties of Variance and Covariance).

(i) Var
[
aX + b

] = a2σ 2
X .

(ii) Var
[∑k

i=1 aiXi

]
= ∑k

i=1 a2
i σ

2
Xi

+ 2
∑

1≤i<j≤k aiaj σXiXj .

(iii) Cov
[
aX + b, cY + d

] = ac σX ,Y .

(iv) Cov
[∑m

i=1 aiXi +∑n
j=1 bjYj

]
= ∑m

i=1
∑n

j=1 aibj σXiYj = aTΣb,

where aT = (a1, . . . , am), bT = (b1, . . . , bn), and Σ = ((σ(Xi ,Yj))).

(v) If X is a k-dim rv, then Cov[X , X ] = E
[
(X − μX )(X − μX )T].

(vi) If X is a k-dim rv and A is a k × k matrix, then Cov[AX , AX ] = ACov[X , X ]AT.

The proof is omitted.
Question. Why is the mean μX called the “expected value” of X?

The answer is statistical in nature. Suppose we want to predict the value of the rv X before it
is actually observed, by making a guess a and paying a penalty (X − a)2, which is the square
of the discrepancy between our guess a and the actual observation X . Then the average
penalty is
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E
[

(X − a)2
]

= E
[
{(X − μX ) − (a − μX )}2

]
= E

[
(X − μX )2

]
+ (a − μX )2 = σ 2

X + (a − μX )2,

(using the fact E[X − μX ] = 0), which is minimized by taking a = μX . Thus the mean μX is
the best guess for an unobserved X under the rule of squared-error penalty and that is why
μX = E[X ] is called the expected value of X . In a variation of the above game of prediction,
what would be the best guess if the penalty is the absolute error |X − a|? Here we want
to minimize E[|X − a|] by our choice of a. For simplicity, suppose FX is continuous and
strictly increasing and let m = mX = F−1

X ( 1
2 ) be the solution of the equation FX (m) = 1

2 .
Then under the rule of absolute error penalty, m is the best guess for an unobserved X . The
quantity mX is called the median of X , which has some advantages over the mean μX , as
will be seen later. For one thing, mX always exists even when μX may not.

We now prove an important inequality.
Proposition 1.8.3 (Cauchy-Schwarz Inequality). Let X , Y be rv’s for which E

[
X 2
]

< ∞
and E

[
Y 2
]

< ∞. Then

{E|XY |}2 ≤ E
[

X 2
]

E
[

Y 2
]
.

Proof. The function

h(t) = E
[

(tX − Y )2
]

= t2E
[

X 2
]

− 2tE[XY ] + E
[

Y 2
]

≥ 0 for all t,

so the quadratic equation h(t) = 0 can have at most one real root. But the roots of this
equation are

t =
2E[XY ] ±

√
4{E[XY ]}2 − 4E

[
X 2
]
E
[
Y 2
]

2E
[
X 2
] .

Hence the expression under the radical must be ≤ 0.
Replacing X and Y by X − μX and Y − μY , respectively, in the above inequality, we have

Cov2[X , Y ] ≤ Var[X ] Var[Y ], ie, σ 2
XY ≤ σ 2

X σ 2
Y .

Definition 1.8.4. The correlation coefficient between X and Y is defined as

ρXY = Cov[X , Y ]√
Var[X ]Var[X ]

= σXY

σX σY
.

From Cauchy-Schwarz inequality, it follows that ρ2
XY ≤ 1, that is, −1 ≤ ρXY ≤ 1. Moreover,

ρXY = +1 or ρXY = −1, that is, ρ2
XY = 1 iff the equation

h(t) = E
[
{t(X − μX ) − (Y − μY )}2

]
= 0

holds for exactly one real value of t. But

E
[
{t(X − μX ) − (Y − μY )}2

]
= 0

⇔ Y − μY = t(X − μX ) w.p. 1 for some t 	= 0.
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(t = 0 ⇒ Y − μY = 0 w.p. 1 ⇒ σ 2
Y = 0, and we exclude this degenerate case from our

consideration.) Thus ρXY = +1 or −1 iff Y is a linear function of X w.p. 1, the slope having
the same sign as ρXY .

1.9 Moments and the Moment Generating Function
Definition 1.9.1. The rth moment of an rv X is defined as

μr,X = E
[
X r], r = 1, 2, . . .

assuming existence, and μ0,X = 1. In particular, the mean μX = μ1,X , and σ 2
X = μ2,X −μ2

1,X .
Definition 1.9.2. The moment generating function (mgf) of X is defined as MX (t) =

E
[
etX
]
, provided that the expectation exists.

Differentiating under the integral,

μ
(r)
X (0) = dr

dtr MX (t)

∣∣∣∣
t=0

= E
[

X retX
]

t=0
= E

[
X r] = μr ,

MX (t) =
∞∑

r=0

tr

r! μr .

Hence the name moment generating function. For a linear function a + bX , Ma+bX (t) =
E
[

et(a+bX)
]

= eat MX (bt).

1.10 Independent Random Variables and Conditioning
When There Is Dependence

Random variables X1, . . . , Xk are said to be mutually independent if

FX1,...,Xk
(x1, . . . , xk) =

k∏
i=1

FXi (xi) for all x1, . . . , xk. (8a)

Equivalently, for mutually independent rv’s,

fX1,...,Xk
(x1, . . . , xk) =

k∏
i=1

fXi (xi) for all x1, . . . , xk, (8b)

holds for their joint pdf or joint pmf. The conditional pmf or pdf of Xr+1, . . . , Xk given
(X1, . . . , Xr) = (x1, . . . , xr) when fX1,...,Xr (x1, . . . , xr) > 0 is

f(Xr+1,...,Xk)|(X1,...,Xr)(xr+1, . . . , xk|x1, . . . , xr) = fX1,...,Xk
(x1, . . . , xk)

fX1,...,Xr (x1, . . . , xr)
.
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In particular, for (X , Y ) having joint pmf/pdf fXY (x, y),

fY |X (y|x) = fXY (x, y)
fX (x)

= fXY (x, y)∫∞
−∞ fXY (x, y) dy

, when fX (x) > 0.

On the other hand, from the marginal pdf fX of X and the conditional pdf fY |X of Y given X ,
the joint pdf of (X , Y ) is obtained as

fXY (x, y) = fX (x)fY |X (y|x). (9)

If X1, . . . , Xk are mutually independent rv’s, then

E
[
g1(X1) · · · gk(Xk)

] =
k∏

i=1

E
[
gi(Xi)

]

provided that E
[
gi(Xi)

]
, i = 1, . . . , k exist. This follows immediately from the definition of

independence (8a, b). It follows that if X , Y are independent, then σXY = Cov[X , Y ] = 0,
and ρXY = 0, and therefore,

σ 2
aX+bY = a2σ 2

X + b2σ 2
Y .

However, ρXY = 0 does not imply that X , Y are independent.
Suppose that X1, . . . , Xn are mutually independent and each Xi is distributed as X . We

then say that X1, . . . , Xn are independent and identically distributed (iid) as X , and if X̄ =
1
n

∑n
i=1 Xi, then

μX̄ = μX and σ 2
X̄

= σ 2
X

n
.

If X1, . . . , Xk are independent rv’s and if the mgf MXi (t) exists for each Xi, then

MX1+···+Xk
(t) = E

[
et
∑k

i=1 Xi

]
=

k∏
i=1

E
[

etXi
]

=
k∏

i=1

MXi (t).

Going back to the general case of (X , Y ) with joint pdf fXY (x, y), let

m(x) = E
[
g(Y )|X = x

] =
∫

g(y)fY |X (y|x) dy.

We now denote by m(X) = E
[
g(Y )|X] the conditional expectation of g(Y ) given X . This

conditional expectation is a function of the rv X and therefore, is itself an rv, which takes
the value m(x) when X = x. Hence

E
[
E
[
g(Y )|X]] = E[m(X)] =

∫
m(x)fX (x) dx

=
∫ [∫

g(y)fY |X (y|x) dy
]

fX (x) dx

=
∫

g(y)fY (y) dy = E
[
g(Y )

]
,
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because
∫

fY |X (y|x)fX (x) dx = ∫
fXY (x, y) dx = fY (y) using Eq. (9). Next consider

E
[
h(X)g(Y )|X = x

] =
∫

h(x)g(y)fY |X (y|x) dy

= h(x)
∫

g(y)fY |X (y|x) dy

= h(x) E
[
g(Y )|X = x

]
for each x.

Hence E
[
h(X)g(Y )|X] = h(X)E

[
g(Y )|X]. We thus have the following important results:

EE
[
g(Y )|X] = E

[
g(Y )

]
and E

[
h(X)g(Y )|X] = h(X)E

[
g(Y )|X].

We next consider the conditional properties of variance.

Var[Y ] = E
[
{Y − E[Y ]}2

]
= EE

[
{(Y − E[Y |X ]) + (E[Y |X ] − E[Y ])}2|X

]
= EE

[
(Y − E[Y |X ])2|X

]
+ EE

[
(E[Y |X ] − E[Y ])2|X

]
+ 2EE[(Y − E[Y |X ])(E[Y |X ] − E[Y ])|X ].

The three terms in the last expression are

EE
[

(Y − E[Y |X ])2|X
]

= E[Var[Y |X ]],

since E
[
(Y − E[Y |X ])2|X] = Var[Y |X ],

EE
[

(E[Y |X ] − E[Y ])2|X
]

= E
[

(E[Y |X ] − E[Y ])2
]

= Var[E[Y |X ]],

and the third term is 0, using E
[
h(X)g(Y )|X] = h(X)E

[
g(Y )|X].

Summary. Besides all the properties analogous to the properties of expectation, we
have proved the following important properties of conditional expectation.

Proposition 1.10.1.

(i) E
[
E
[
g(Y )|X]] = E

[
g(Y )

]
.

(ii) E
[
h(X)g(Y )|X] = h(X)E

[
g(Y )|X].

(iii) Var[Y ] = E[Var[Y |X ]] + Var[E[Y |X ]].

Definition 1.10.1. The function m(x) = E[Y |X = x] is called the regression function of
Y on X . In particular, if m(x) is a linear function of x, then we can represent Y as

Y = α + βX + ε with E[ε|X ] = 0,

and if ε is independent of X , then this is called the linear regression model and Var[ε], if
it exists, is the residual variance. More generally, if the dependence of Y on a k-dim rv
X = (X1, . . . , Xk) is such that m(x1, . . . , xk) = E[Y |X = x] is a linear function of (x1, . . . , xk),
then

Y = α + β1X1 + · · · + βkXk + ε with E[ε|X ] = 0,
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and (X , Y ) is said to follow a multiple linear regression model if ε is independent of X .
Example 1.10.1. The joint pdf of (X , Y ) is

fXY (x, y) =
{

C(x2 + 2y2) 0 < x, y < 1
0 otherwise.

Find the constant C, the marginal pdf’s of X and Y , the conditional pdf of Y given X = x
and then find the means μX , μY , the variances σ 2

X , σ 2
Y , the correlation coefficient ρXY and

the conditional expectation E[Y |X = x]. Also find P[X > Y ].
Solution.

1 = C
∫ 1

0

∫ 1

0
(x2 + 2y2) dx dy = C

[
1
∫ 1

0
x2 dx + 2

∫ 1

0
y2 dy

]
= C

[
1
3

+ 2
3

]
.

Thus C = 1 and fXY (x, y) = x2 + 2y2, 0 < x < 1, 0 < y < 1. Now

fX (x) =
∫ 1

0
(x2 + 2y2) dy = x2 + 2

3
, 0 < x < 1,

fY (y) =
∫ 1

0
(x2 + 2y2) dx = 2y2 + 1

3
, 0 < y < 1.

The conditional pdf of Y given X = x is

fY |X (y|x) = fXY (x, y)
fX (x)

= x2 + 2y2

x2 + 2
3

, 0 < y < 1 for 0 < x < 1.

Next, we evaluate the means, the variances, and the correlation coefficient:

μX =
∫ 1

0
xfX (x) dx =

∫ 1

0
x
(

x2 + 2
3

)
dx

= 1
4

+ 2
3

· 1
2

= 7
12

,

μY =
∫ 1

0
yfY (y) dy =

∫ 1

0
y
(

2y2 + 1
3

)
dy

= 2 · 1
4

+ 1
3

· 1
2

= 2
3

,

σ 2
X = E

[
X 2
]

− μ2
X =

∫ 1

0
x2
(

x2 + 2
3

)
dx −

(
7

12

)2

=
(

1
5

+ 2
3

· 1
3

)
−
(

7
12

)2
= 19

45
− 49

144
= 59

720
,

σ 2
Y = E

[
Y 2
]

− μ2
Y =

∫ 1

0
y2
(

2y2 + 1
3

)
dy −

(
2
3

)2

=
(

2
5

+ 1
3

· 1
3

)
−
(

2
3

)2
= 23

45
− 4

9
= 1

15
,

σXY = E[XY ] − μX μY =
∫ 1

0

∫ 1

0
xy(x2 + 2y2) dx dy − 7

12
· 2

3



Chapter 1 • Probability Theory 17

=
(

1
4

· 1
2

+ 2 · 1
2

· 1
4

)
− 7

12
· 2

3
= 3

8
− 7

18
= − 1

72
,

ρXY = σXY

σX σY
= − 1

72√
59

720 · 1
15

= − 1
72

√
10,800

59
= −0.1879.

The conditional expectation of Y given X = x is

E[Y |X = x] =
∫ 1

0
yfY |X (y|x) dy =

∫ 1

0
y

x2 + 2y2

x2 + 2
3

dy

= 1

x2 + 2
3

∫ 1

0
(x2y + 2y3) dy = x2 1

2 + 2 · 1
4

x2 + 2
3

= x2 + 1

2x2 + 4
3

.

Note that

EE[Y |X ] =
∫ 1

0
E[Y |X = x]fX (x) dx =

∫ 1

0

x2 + 1

2x2 + 4
3

(
x2 + 2

3

)
dx

=
∫ 1

0

1
2

(x2 + 1) dx = 1
2

(
1
3

+ 1
)

= 2
3

= μY , as it should be.

Finally,

P[X > Y ] =
∫ 1

0

[∫ x

0
(x2 + 2y2) dy

]
dx =

∫ 1

0

(
x2 + 2

x3

3

)
dx = 5

3
· 1

4
= 5

12
.

1.11 Transforms of Random Variables and Their Distributions
We start with some simple transforms. In our following discussion, we shall often work
with continuous rv’s and their pdf’s, of which (i), (ii), and (iii) will remain valid for discrete
rv’s and their pmf’s by replacing

∫
dx by

∑
x .

(i) For b > 0, Fa+bX (z) = P
[
a + bX ≤ z

] = P
[
X ≤ z−a

b

] = FX ( z−a
b ). Hence

fa+bX (z) = b−1fX ( z−a
b ). More generally,

for b 	= 0, fa+bX (z) = |b|−1fX

(
z − a

b

)
. (10)

In the discrete case, fa+bX (z) = fX
( z−a

b

)
.

(ii) FX2 (z) = P
[−√

z ≤ X ≤ √
z
] = FX (

√
z) − FX (−√

z) for z > 0. Hence

fX2 (z) = 1

2
√

z
fX (

√
z) −

(
− 1

2
√

z

)
fX (−√

z) (11a)

= 1

2
√

z

[
fX (

√
z) + fX (−√

z)
]

for z > 0.

If X is distributed symmetrically about 0, then fX (
√

z) = fX (−√
z), so that
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fX2 (z) = 1√
z

fX (
√

z), z > 0 (11b)

for symmetrically distributed X . In the discrete case,

fX2 (z) = fX (
√

z) + fX (−√
z)

and fX2 (z) = 2fX (
√

z) if X is symmetric.
(iii) If X1, X2 are independent, then

FX1+X2 (z) =
∫ ∫

x1+x2≤z
fX1 (x1)fX2 (x2) dx1 dx2

=
∫ ∞

x1=−∞

∫ z−x1

x2=−∞
fX1 (x1)fX2 (x2) dx1 dx2.

Differentiating under the integral, we have

fX1+X2 (z) =
∫ ∞
−∞

fX1 (x1)
[

d
dz

∫ z−x1

−∞
fX2 (x2) dx2

]
dx1

=
∫ ∞
−∞

fX1 (x)fX2 (z − x) dx.

If X1, X2 are nonnegative, then fX1 (x) = 0 for x < 0 and fX2 (z − x) = 0 for x > z. In this
case the above formula becomes

fX1+X2 (z) =
∫ z

0
fX1 (x)fX2 (z − x) dx. (12a)

For independent discrete rv’s,

fX1+X2 (z) =
∑

x
fX1 (x)fX2 (z − x). (12b)

(iv) If X1, X2 are independent with P[X2 > 0] = 1, then

F X1
X2

(z) =
∫ ∞

x2=0

[∫ x2z

x1=−∞
fX1 (x1) dx1

]
fX2 (x2) dx2

and differentiating under the integral, we have

f X1
X2

(z) =
∫ ∞

0
xfX1(xz)fX2 (x) dx. (13)

(v) For mutually independent X1, . . . , Xk, let Y = min(X1, . . . , Xk) and
Z = max(X1, . . . , Xk). Then

1 − FY (y) = P
[
min(X1, . . . , Xk) > y

]
=

k∏
i=1

P
[
Xi > y

] =
k∏

i=1

{
1 − FXi (y)

}
and

FZ (z) = P
[
max(X1, . . . , Xk) ≤ z

]
=

k∏
i=1

P
[
Xi ≤ z

] =
k∏

i=1

FXi (z).
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Hence

fY (y) = − d
dy

k∏
i=1

{
1 − FXi (y)

} =
k∑

i=1

fXi (y)
∏
j 	=i

[
1 − FXj (y)

]

fZ (z) = d
dz

k∏
i=1

FXi (z) =
k∑

i=1

fXi (z)
k∏

j 	=i=1

FXj (z).

We now consider a transformation of

X = (X1, . . . , Xk)
g→ (Y1, . . . , Yk) = Y

(ie, Yi = gi(X1, . . . , Xk)), where g is one to one with continuous partial derivatives and
a nonvanishing Jacobian of transformation in the continuous case. Let g−1 denote the
inverse transformation, that is,

g−1(y) = g−1(y1, . . . , yk):= (
h1(y1, . . . , yk), . . . , hk(y1, . . . , yk)

)
.

In the discrete case,

fY (y1, . . . , yk) = fX
(
h1(y1, . . . , yk), . . . , hk(y1, . . . , yk)

) = fX

(
g−1(y)

)
.

In the continuous case, for all events B, P[Y ∈ B] = P
[
X ∈ g−1(B)

]
, where g−1(B) ={

x: g(x) ∈ B
}

. Thus

∫
B

fY (y1, . . . , yk) dy1 · · · dyk

=
∫

g−1(B)
fX (x1, . . . , xk) dx1 · · · dxk

=
∫

g(g−1(B))
fX

(
g−1(y)

)
∣∣∣∣∣∣∣∣∣
det

⎡
⎢⎢⎢⎣

∂x1
∂y1

· · · ∂xk
∂y1

...
. . .

...
∂x1
∂yk

· · · ∂xk
∂yk

⎤
⎥⎥⎥⎦
∣∣∣∣∣∣∣∣∣

dy1 · · · dyk

=
∫

B
fX

(
g−1(y)

)
|Jg−1(y)| dy1 · · · dyk,

where Jg−1(y) = det

⎡
⎢⎢⎣

∂h1
∂y1

· · · ∂hk
∂y1

...
. . .

...
∂h1
∂yk

· · · ∂hk
∂yk

⎤
⎥⎥⎦, and note that Jg−1(y) = [

Jg
(
g−1(y)

)]−1
, so we

compute the one which is easier. Thus

fY (y) = fX

(
g−1(y)

)
|Jg−1(y)| = fX

(
g−1(y)

) 1∣∣Jg
(
g−1(y)

)∣∣ .
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An Extension

Let S1, . . . , Sl be disjoint open sets in R
k with

∑l
j=1 P

[
X ∈ Sj

] = 1. Let g:
⋃l

j=1 Sj → R
k, Y =

g(X ), where for each j, the restriction gj of g on Sj is one to one with continuous partial
derivatives and nonvanishing Jgj . Then for all events B,

∫
B

fY (y) dy = P[Y ∈ B] =
l∑

j=1

P
[

Y ∈ B, X ∈ Sj

]

=
l∑

j=1

P
[

X ∈ g−1
j (B), X ∈ Sj

]

=
l∑

j=1

∫
g−1B∩Sj

fX (x) dx

=
l∑

j=1

∫
B∩gj (Sj)

fX

(
g−1(y)

)
|Jg−1(y)| dy

=
∫

B

l∑
j=1

fX

(
g−1(y)

)
|Jg−1(y)|Ig(Sj)(y) dy,

where IA(y) = 1 if y ∈ A and = 0 if y /∈ A. Hence

fY (y) =
l∑

j=1

fX

(
g−1(y)

)
|Jg−1(y)|Ig(Sj)(y).

Joint Distribution of Order Statistics

Let X1, . . . , Xn be iid real-valued rv’s with common pdf f . Define

Yi = Xn:i, i = 1, . . . , n,

where Xn:1 < · · · < Xn:n are the order statistics, that is, the ordered values of X1, . . . , Xn. (The
X ′

i s are all distinct with probability 1.) The joint pdf of (X1, . . . , Xn) is fX (x) = ∏n
i=1 f (xi). For

the n! permutations (j1, . . . , jn) of (1, . . . , n), let

Sj1···jn =
{

(x1, . . . , xn): xj1 < · · · < xjn

}
and define Y = (Y1, . . . , Yn) = gj1,...,jn (X1, . . . , Xn) = (Xj1 , . . . , Xjn ) on Sj1,...,jn for each

(j1, . . . , jn). Then Y1 < · · · < Yn with probability 1 and gj1,...,jn is one to one with

∣∣∣∣Jg−1
j1,...,jn

(y)

∣∣∣∣ =
1 for each permutation (j1, . . . , jn) of (1, . . . , n). Hence

fY (y) =
∑

j1,...,jn

fX

(
g−1

j1,...,jn
(y)
)

= n!
n∏

i=1

f (yi) for y1 < · · · < yn

and fY (y) = 0 otherwise.
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Linear Transformation

As a special case of g: X → Y from R
k → R

k, consider a linear transformation Y = AX
where A is a nonsingular k × k matrix. Then the inverse transformation is X = A−1Y =
g−1(Y ), so |Jg−1 (y)| = | det(A−1)| = 1

| det(A)| . Hence

fY (y) = fX (A−1y)
1

| det(A)| . (14)

In particular, if A is orthonomial, that is, AAT = ATA = I , then | det(A)| = 1, so that fY (y) =
fX (A−1y).

Probability Integral Transform

Suppose X has cdf F which is continuous and strictly increasing. Then F−1 is uniquely
defined as

F−1(u) = x iff F(x) = u for 0 < u < 1.

Then the cdf of Y = F(X) at u ∈ (0, 1) is

FY (u) = P[F(x) ≤ u] = P
[

X ≤ F−1(u)
]

= F
(

F−1(u)
)

= u.

Thus fY (u) = 1 for 0 < u < 1 and fY (u) = 0 for u /∈ (0, 1), because 0 < Y = F(X) < 1
with probability 1. In other words, if X has a continuous and strictly increasing cdf F, then
Y = F(X) is distributed with pdf

fY (u) =
{

1 if 0 < u < 1,
0 otherwise.

A rv with this pdf is said to be a Uniform(0, 1) rv. Conversely, if U is Uniform(0, 1), then
X = F−1(U) has cdf F. This fact is useful in generating random samples (ie, iid rv’s) with
cdf F by first generating random samples U1, U2, . . . from Uniform(0, 1), which is easy, and
then transforming U1, U2, . . . to X1 = F−1(U1), X2 = F−1(U2), . . . .

Exercises
1.1. Prove that the axioms P(i, ii), P(i, iii), and P(i, iv) are equivalent.
1.2. Prove Proposition 1.4.2 by induction, starting from Proposition 1.4.1(iii).
1.3. Five cards with numbers 1, . . . , 5 are arranged in random order. A person claiming

psychic power, declares the arrangement. Assuming that the numbers are declared
purely at random, what is the probability that
(a) All are correct? (b) Exactly 4 are correct?

1.4. From a well-shuffled standard deck of cards, eight cards are dealt.
(a) What is the probability that the hand contains two trios (exactly three cards of

the same denomination such as three kings)?
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(b) What is the probability that the hand contains a run of five cards (exactly five
cards of consecutive denominations such as 8, 9, 10, J , Q irrespective of suits,
10, J , Q, K , A included)?

1.5. A poker hand consists of five cards dealt from a well-shuffled standard deck of
cards. A hand is a
(a) straight if the cards are of consecutive denominations (including A2345 and

AKQJ10), but not of the same suit,
(b) flush if all five cards are of the same suit but not a straight,
(c) full house if three cards are of the same denomination and the other two cards

are also of the same denomination such as three 10s and two Queens.
Find the probabilities of a hand being a straight, a flush, and a full house.

1.6. (The birthday problem) In an assembly of n people, what is the probability that no
two have the same birthday? Find the smallest n for which this probability is less
than 1/2. [For simplicity, ignore leap-years and assume that the birthdays are
equally likely to be any of the 365 days of a year.]

1.7. Show that for any event B with P[B] > 0, P[A|B] as a function of A ∈ A is a
probability.

1.8. Prove Proposition 1.6.2.
1.9. A couple has two children. If one child is a boy, what is the probability that the

other child is a girl?
1.10. Two shooters A and B can hit a target with probabilities 0.8 and 0.7, respectively.

They shoot alternatively and the one who first makes three hits wins. Find the
probability that A wins if
(a) A shoots first, (b) B shoots first, (c) the one who shoots first is decided by the toss
of a fair coin.

1.11. There are two dice in a bag both of which are balanced, but one has 1, 2, 3, 4, 5, 6
and the other has 1, 1, 2, 3, 4, 5 on the six faces. One of the dice is selected at random
and rolled.
(a) What is the probability that the outcome is an even number?
(b) If the outcome is an even number, what is the probability that the standard die

was rolled?
1.12. In a city, in the month of July, the maximum temperature reaches 100◦F or above

with probability 0.2 on any day and with probability 0.8 if the previous day was
100◦F or above. What is the probability that there will be exactly 5 consecutive days
of 100◦F or above starting on July 15?

1.13. Prove Proposition 1.7.1.
1.14. There are N tickets in a bag, numbered 1, . . . , N , from which n tickets are drawn. Let

X be the largest number drawn. Find the pmf and the cdf of X if the tickets are
drawn at random (a) with replacement, (b) without replacement.

1.15. The lifetime of an equipment (in hours) is a random variable X with pdf



Chapter 1 • Probability Theory 23

f (x) =
{

c 0 < x ≤ 50
c exp(−(x − 50)) x > 50.

Find (a) the constant c, (b) the cdf of X , (c) P[10 < X ≤ 100].
1.16. Let X be a random variable with pmf

f (x) = c/2x, x = 1, 2, . . . .

Find (a) the constant c, (b) the cdf of X , (c) P[X ≥ 5].
1.17. A game consists of tossing a fair coin and then drawing a random number from

0, 1, . . . , 9 with equal probabilities if head comes up, or spinning a wheel to choose a
random number in the interval (0, 10] if tail comes up. Let X be the outcome of this
game, which is either an integer between 0 and 9 or a number in the interval (0, 10].
(a) Find the cdf of X and P[3 ≤ X ≤ 5]. Note that the rv X is neither discrete nor

continuous, but a mixture.
(b) Express X as a mixture, X = αU + (1 − α)V , where U is discrete and V is

continuous, giving the pmf of U and the pdf of V . [Interpretation of mixture is
FX = αFU + (1 − α)FV .]

1.18. (Censoring: another example of a mixture) Let T be a nonnegative rv (life of an
equipment or survival time of a patient undergoing a certain treatment) and tc > 0
is a time at which observation stops. So we observe T if 0 ≤ T < tc and tc if T ≥ tc.
The resulting observation is Y = min(T , tc). Find the cdf of Y which is a mixture.

1.19. Verify (i)–(vi) of Proposition 1.8.1.
1.20. Verify (i)–(vi) of Proposition 1.8.2.
1.21. Let (X , Y ) be a two-dimensional rv with joint pdf

f (x, y) = c(x + 2y), 0 ≤ x, y ≤ 1.

(a) Find the constant c and P[X ≤ Y ].
(b) Find the marginal pdf’s fX of X and fY of Y .
(c) Calculate μX , μY , σ 2

X , and σ 2
Y . Also find the medians of X and Y .

(d) Find Cov[X , Y ] and ρXY .
1.22. The joint pdf of (X , Y ) is

f (x, y) = c(2x2 + xy), 0 ≤ x ≤ 1, 0 ≤ y ≤ 2.

Find
(a) the constant c, (b) the marginal pdf fX of X , (c) the conditional pdf fY |X (y|x) of Y

given X = x, (d) the regression function m(x) = E[Y |X = x].
1.23. The pdf of X and the conditional pdf of Y given X = x are given by

fX (x) = exp(−x), 0 < x < ∞, and fY |X (y|x) = x exp(−xy), 0 < y < ∞.

(a) Find the joint pdf of (X , Y ), the marginal pdf of Y , and the conditional pdf of X
given Y = y.

(b) Find the regression function m(x) = E[Y |X = x].
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1.24. The joint pdf of (X , Y ) is

f (x, y) = cx exp(−x), 0 < y < x < ∞.

Find
(a) the constant c and the marginal pdf’s fX and fY ,
(b) E[X ], Var[X ], E[Y ], Var[Y ], Cov[X , Y ], and ρXY ,
(c) the conditional pdf of Y given X = x, E[Y |X = x] and Var[Y |X = x], and
(d) verify: E[Y [= E[E(Y |X)] and Var[Y ] = E[Var(Y |X)] + Var[E(Y |X)].



2
Some Common Probability
Distributions

2.1 Discrete Distributions
We shall start with the simplest nontrivial rv X which can take only one of two values, say
0 and 1, with P[X = 0] = 1 − p = q and P[X = 1] = p where 0 < p < 1. This arises in the
context of a random experiment resulting in success or failure, such as the toss of a coin
resulting in head (success) or tail (failure), or a medicine having favorable effect (success)
or not (failure) on a patient, etc., with P[success] = p and P

[
failure

] = q = 1 − p. The rv X
takes the values 1 or 0 for the outcomes success or failure, respectively. Such an rv is called
a Bernoulli

(
p
)

rv and we write the pmf of X as

fX (x) = px(
1 − p

)1−x, x = 0, 1. (1)

2.1.1 Binomial Distribution Bin(n, p)

Suppose X1, . . . , Xn are independent Bernoulli(p) rv’s as described by Eq. (1) and let X =
X1 + · · · + Xn, that is, X = total number of successes in n independent experiments with
P[success] = p in each experiment. The pmf of X is obtained by noting that each sequence
of n outcomes with x successes and n − x failures has probability = px

(
1 − p

)n−x, and the
number of such sequences is the number of ways in which x trials (resulting in successes)
can be chosen from n trials, which is

(n
x

) = n!
x!(n−x)! . Hence the pmf of X is

fX (x) =
(

n
x

)
px(

1 − p
)n−x, x = 0, 1, . . . , n.

Since E[X1] = 1 · p + 0 · (
1 − p

) = p and

Var
[
X1

] = E
[

X 2
1

]
− (

E
[
X1

])2

=
[

12 · p + 02 · (
1 − p

)] − p2

= p − p2 = p
(
1 − p

)
,

we have

E[X ] = nE
[
X1

] = np and Var[X ] = n Var
[
X1

] = np
(
1 − p

)
. (2)

Theory and Methods of Statistics. http://dx.doi.org/10.1016/B978-0-12-802440-9.00002-3
Copyright © 2016 Elsevier Inc. All rights reserved.
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Example 2.1.1. An equipment with n components needs at least 3 to function properly
for its overall effectiveness. If each of these components function with probability 4/5,
independently of one another, what should be the minimum n for the equipment to
remain effective with probability 0.9 or more?

Solution.

P
[
Not Effective

] =
2∑

x=0

(
n
x

)(
4
5

)x(
1
5

)n−x

= 1
5n

[(
n
0

)
40 +

(
n
1

)
41 +

(
n
2

)
42

]

= 1
5n [1 + 4n + 8n(n − 1)]

= 1
5n

[
1 − 4n + 8n2

]
.

We want the smallest n so that 1
5n

[
1 − 4n + 8n2

] ≤ 1
10 .

n
(

1 − 4n + 8n2
)
/5n

3 (1 − 12 + 72)/53 = 0.488
4 (1 − 16 + 128)/54 = 0.1808
5 (1 − 20 + 200)/55 = 0.05792

so the minimum n to keep the equipment effective, nmin = 5.

2.1.2 Multinomial Distribution Multi(n; p1, . . . , pk)

Extending the concept of the Binomial
(
n, p

)
distribution from the outcomes of n indepen-

dent trials, each with two possible outcomes, consider n independent trials with k possible
outcomes 1, . . . , k with

P
[
ith outcome

] = pi > 0,
k∑

i=1

pi = 1.

Let X = (
X1, . . . , Xk

)
with Xi = number of trials resulting in the ith outcome. Then any

sequence of n outcomes with xi = number of trials with the ith outcome, i = 1, . . . , k has
probability

px1
1 · · · p

xk
k if xi ≥ 0,

k∑
i=1

xi = n and 0 otherwise,

and the number of such sequences is the number of ways in which such
(
x1, . . . , xk

)
can

be chosen from the n trials. This number is n!/(x1!, . . . , xk!), the multinomial coefficient.
Thus, the joint pmf of X = (

X1, . . . , Xk
)

is
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fX
(
x1, . . . , xk

) = n!
x1! · · · xk!px1

1 · · · pxk
k

if x1, . . . , xk ≥ 0 and
k∑

i=1

xi = n, and 0 otherwise.

The multinomial coefficient is obtained by multiplying the number of successive choices
of x1 out of n trials, followed by x2 out of n − x1 trials and so on, and finally, xk−1 out of
n − (

x1 + · · · + xk−2
)
. Thus, using xk = n − ∑k−1

i=1 xi, we have

(
n
x1

)(
n − x1

x2

)
· · ·

(
n − (

x1 + · · · + xk−2
)

xk−1

)

= n!
x1!(n − x1

)! ·
(
n − x1

)!
x2!(n − x1 − x2

)! · · ·
(
n − x1 − · · · − xk−2

)!
xk−1!xk! .

By cancellation, this yields the multinomial coefficient. To find E[Xi], Var[Xi], and
Cov

[
Xi, Xj

]
for any i �= j, note that each Xi ∼ Bin

(
n, pi

)
and Xj|Xi ∼ Bin

(
n − Xi, pj/(1 − pi)

)
.

Hence

E
[
Xi

] = npi, Var
[
Xi

] = npi
(
1 − pi

)
and

as in Eq. (2), and using Proposition 1.10.1,

Cov
[

Xi, Xj

]
= E

[
XiXj

]
− E

[
Xi

]
E
[

Xj

]
= E

[
XiE

(
Xj|Xi

)]
− n2pipj

= E
[

Xi
(
n − Xi

)
pj/

(
1 − pi

)] − n2pipj

= pj

1 − pi

[
n · npi −

{
npi

(
1 − pi

) + n2p2
i

}]
− n2pipj

= −npipj

by algebraic simplification.

2.1.3 Geometric Distribution Geom (p)

In a sequence of independent trials, each resulting in success with probability p or failure
with probability 1 − p = q, let X be the number of trials needed for the first success to
occur. Then the pmf of X is

fX (n) = P
[
Failures in the first n − 1 trials and success in the nth trial

]
= qn−1p, n = 1, 2, . . .

Then
∑∞

n=1 fX (n) = ∑∞
n=1 qn−1p = p

∑∞
s=0 qs = p

(
1 − q

)−1 = 1, and
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E[X ] =
∞∑

n=1

nfX (n) =
∞∑

n=1

nqn−1p = p
d

dq

∞∑
s=0

qs

= p · d
dq

(
1 − q

)−1 = p
(
1 − q

)−2 = 1
p

E
[

X 2
]

=
∞∑

n=1

n2fX (n) =
∞∑

n=1

n2qn−1p = p
∞∑

n=1

[n + n(n − 1)]qn−1

= p
∞∑

n=1

nqn−1 + pq
∞∑

n=1

n(n − 1)qn−2 = E[X ] + pq
d2

dq2

∞∑
s=0

qs

= 1
p

+ pq
d2

dq2

(
1 − q

)−1 = 1
p

+ pq · 2
(
1 − q

)−3 = 2

p2 − 1
p

.

Var[X ] = E
[

X 2
]

− (E[X ])2 =
(

2

p2
− 1

p

)
− 1

p2
= q

p2
.

Remark 2.1.1. Memoryless property of the Geometric distribution. If X ∼ Geom(p),
then P

[
X > k

] = p
∑∞

n=k+1 qn−1 = pqk ∑∞
s=0 qs = pqk

(
1 − q

)−1 = qk. More directly,
P
[
X > k

] = P
[
all failures in the first k trials

] = qk. So

P
[
X = k + n|X > k

] = P
[
X = k + n

]
P
[
X > k

] = qk+n−1p

qk
= qn−1p = P[X = n].

2.1.4 Negative Binomial Distribution N Bin(r, p)

In a sequence of independent trials resulting in success or failure with probabilities p and
q = 1 − p respectively, let X be the number of trials needed for the rth success to occur.
Then

fX (n) = P
[
(r − 1) successes in the first (n − 1) trials and success on the nth trial

]
=

(
n − 1
r − 1

)
pr−1qn−r , n = r, r + 1, . . .

Note that this X can be expressed as X = Y1 +· · ·+ Yr , where Y1, . . . , Yr are independent
Geom(p). Hence

E[X ] = rE
[
Y1

] = r/p and Var[X ] = r Var
[
Y1

] = rq/p2.

Note. A binomial rv is the number of successes in a given number of trials, whereas, a
negative binomial rv is the number of trials needed for a given number of successes.

Example 2.1.2. A target-shooter can hit the bull’s eye once in three attempts on average,
that is, with probability 1/3. In a tournament with an entry fee of $10, there are prizes of
$100, $50, and $20 if one can hit the bull’s eye three times in 3, 4, or 5 attempts, respectively.
Should our target-shooter enter this tournament paying the fee?

Solution. Let N = number of attempts needed to hit the bull’s eyes r = 3 times, where
the probability of a hit is p = 1/3 and the results of the attempts are mutually independent,
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and for N = n, let X = X(n) be the prize won. Then X(3) = $100, X(4) = $50, X(5) =
$20, X(n) = 0 for n > 5, and N is NB

(
r = 3, p = 1/3

)
. Since

P[N = n] =
(

n − 1
r − 1

)
pr(1 − p

)n−r =
(

n − 1
2

)(
1
3

)3(
2
3

)n−3
,

P[N = 3] =
(

2
2

)(
1
3

)3(
2
3

)0
= 1

27

P[N = 4] =
(

3
2

)(
1
3

)3(
2
3

)1
= 2

27

P[N = 5] =
(

4
2

)(
1
3

)3(
2
3

)2
= 8

81
.

So E[X ] = $100 · 1
27 + $50 · 2

27 + $20 · 8
81 = $ 760

81 ≈ $9.38. Since the entry fee of $10 is
greater than the expected value of prize to be won, which is $9.38, this game is not in favor
of our target-shooter, who (strictly speaking) should not enter unless for fun, because the
expected loss is very little.

2.1.5 Hypergeometric Distribution (n, N, m)

Suppose that from a box containing N balls of which m are white and N −m are red, n balls
are drawn at random without replacement. Then the number of white balls in the sample
is an rv X with pmf

fX (x) =
(

m
x

)(
N − m
n − x

)/(
N
n

)
, x = 0, . . . , n,

with the convention
(r

k

) = 0 for k < 0 or k > r. Thus the effective range of X is
max(0, m + n − N) ≤ x ≤ min(m, n). To find the mean and variance of X , we calculate
E
[

X k
]

for k = 1 and k = 2, using x
(m

x

) = m
(m−1

x−1

)
and n

(N
n

) = N
(N−1

n−1

)
as shown below.

E
[

X k
]

=
n∑

x=0

xk ·

(
m
x

)(
N − m
n − x

)
(

N
n

)

=
n∑

x=1

xk−1 ·
m

(
m − 1
x − 1

)(
N − m
n − x

)
N
n

(
N − 1
n − 1

)

= mn
N

n−1∑
x−1=0

xk−1 ·

(
m − 1
x − 1

)(
N − m
n − x

)
(

N − 1
n − 1

)
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= mn
N

n−1∑
y=0

(
y + 1

)k−1 ·

(
m − 1

y

)(
N − m

n − 1 − y

)
(

N − 1
n − 1

)

= mn
N

E
[

(Y + 1)k−1
]
,

where Y is Hypergeometric (n − 1, N − 1, m − 1). Hence

E[X ] = mn
N

E
[

(Y + 1)0
]

= mn
N

· 1 = mn
N

= np,

where p = m/N = proportion of white balls in the box, and

Var[X ] = E
[

X 2
]

− (E[X ])2

= np{E[Y ] + 1} − (
np

)2

= np
{

(m − 1)(n − 1)
N − 1

+ 1
}

− (
np

)2

= N − n
N − 1

np
(
1 − p

)
by algebraic simplification.

Remark 2.1.2.

1. If in the above set-up, n balls are drawn at random with replacement , then the
number of white balls in the sample is distributed as Bin

(
n, p

)
. In the without

replacement case, the mean of the hypergeometric rv remains the same as in Bin
(
n, p

)
,

but the variance is reduced by a factor of N−n
N−1 .

2. For any n, the factor N−n
N−1 → 1 as N → ∞, which agrees with the common sense that

for sampling from a very large collection with m
N = p, sampling with or without

replacement are practically the same.

2.1.6 Poisson Distribution Poi(λ)

The Poisson Distribution is an approximation of the Binomial Distribution Bin
(
n, p

)
,

where n is large, p is small, and np is of moderate magnitude. So let n → ∞, p → 0 in
such a manner that np → λ ∈ (0, ∞), and approximate the pmf of Bin

(
n, p

)
for such n, p as

follows:

fX
(
x; n, p

) = n(n − 1) · · · (n − x + 1)
x! px(

1 − p
)n−x

=
(
np

)x

x!
[(

1 − 1
n

)(
1 − 2

n

)
· · ·

(
1 − x − 1

n

)][
1 − p

]−x
[

1 − np
n

]n

:= A1nA2nA3nA4n,

where A1n → λx/x!, A2n → 1, A3n → 1 and since
(
1 − a

n

)n → e−a, which extends to(
1 − an

n

)n → e−a, if an → a, we see that A4n → e−λ. Thus the pmf of Bin
(
n, p

)
, as n → ∞
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and p → 0 in the above manner, tends to the following:

fX
(
x; n, p

) → fX (x) = λx

x! · 1 · 1 · e−λ = e−λ λx

x! , x = 0, 1, 2, . . .

This limiting pmf of Bin
(
n, p

)
as n → ∞, p → 0 so that np → λ ∈ (0, ∞) is the pmf of the

Poisson distribution Poi(λ):

fX (x) = e−λ λx

x! , x = 0, 1, 2, . . .

and
∞∑

x=0

fX (x) = e−λ
∞∑

x=0

λx

x! = e−λeλ = 1.

The mean and the variance of Poi(λ) are

E[X ] =
∞∑

x=0

xe−λ λx

x! =
∞∑

x=1

e−λ λx

(x − 1)!

= λ

∞∑
y=0

e−λ λy

y! = λ · 1 = λ and,

E[X(X − 1)] =
∞∑

x=0

x(x − 1)e−λ λx

x! =
∞∑

x=2

e−λ λx

(x − 2)!

= λ2
∞∑

y=0

e−λ λy

y! = λ2 · 1 = λ2, so

Var[X ] = E
[

X 2
]

− (E[X ])2 = E[X(X − 1)] + E[X ] − (E[X ])2

= λ2 + λ − λ2 = λ.

Some Properties of Poi(λ).

1. Let X1, X2 be independent, Xi ∼ Poi(λi). Then X = X1 + X2 ∼ Poi(λ1 + λ2), by Eq. (12b)
of Chapter 1,

fX (x) =
x∑

x1=0

fX1

(
x1

)
fX2

(
x − x1

) = e−(λ1+λ2)
x∑

x1=0

λ
x1
1

x1!
λ

x−x1
2(

x − x1
)!

= e−(λ1+λ2) ·
(
λ1 + λ2

)x

x!
x∑

x1=0

(
x

x1

)(
λ1

λ1 + λ2

)x1
(

λ2

λ1 + λ2

)x−x1

= e−(λ1+λ2) ·
(
λ1 + λ2

)x

x! · 1,

which is the pmf of Poi(λ1 + λ2). More generally, X1, . . . , Xk independent with

Xi ∼ Poi(λi) implies
∑k

i=1 Xi ∼ Poi
(∑k

i=1 λi

)
.
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2. If X1, X2 are independent with Xi ∼ Poi(λi), then conditionally, given
X1 + X2 = n, X1 ∼ Bin

(
n, λ1/(λ1 + λ2)

)
.

Proof.

P
[
X1 = x|X1 + X2 = n

] = P
[
X1 = x, X2 = n − x

]
P
[
X1 + X2 = n

]

= e−(λ1+λ2) λx
1

x!
λn−x

2
(n−x)!

e−(λ1+λ2) (λ1+λ2)n

n!

= n!
x!(n − x)!

(
λ1

λ1 + λ2

)x(
λ2

λ1 + λ2

)n−x
,

which is the pmf of Bin
(
n, λ1/(λ1 + λ2)

)
.

More generally, if Xi ∼ Poi(λi) i = 1, . . . , k are independent, then conditionally,
given X1 + · · · + Xk = n,

(
X1, . . . , Xk

) ∼ Mult
(
n; p1, . . . , pk

)
with pi = λi/

(
λ1 + · · · + λk

)
.

3. If N ∼ Poi(λ) and conditionally, given N = n, X1, . . . , Xn are independent Bernoulli(p),
then X1 + · · · + XN = X ∼ Poi

(
λp

)
.

Proof.

P[X = x] =
∞∑

n=x
P
[
N = n, X1 + · · · + Xn = x

]

=
∞∑

n=x

e−λλn

n!
n!

x!(n − x)!px(
1 − p

)n−x

= e−λ ·
(
λp

)x

x!
∞∑

n=x

{
λ
(
1 − p

)}n−x

(n − x)!

= e−λ

(
λp

)x

x! · eλ(1−p) = e−λp
(
λp

)x

x! .

Example 2.1.3. An insurance agent has sold fire insurance policies to 200 homeowners
in a town. If the probability of a fire in a house during a year is 1/250 in this town, what is
the probability that this agent will have to handle two or more claims in a year?

Solution. The number of policies n = 200 (large) and the probability of a fire is
p = 1/250 (small), so λ = np = 0.8. Assuming independence, X = number of claims =
number of fires, is approximately Poi(λ = 0.8). Hence

P[X ≥ 2] = 1 − (P[X = 0] + P[X = 1]) = 1 − e−0.8[1 + 0.8]

= 1 − 0.4493 · 1.8 = 1 − 0.8088 = 0.1912.

Example 2.1.4. If the number of tropical storms on the Gulf of Mexico during
September follows a Poisson distribution with mean λ = 5 and if each of these storms
can become a hurricane with probability p = 1/4, what is the probability of at least one
hurricane in September?

Solution. N = Number of storms ∼ Poi(λ = 5), and X1, . . . , XN given N are iid
Bernoulli

(
p = 1/4

)
, where Xi = 1 or 0 according as the ith storm becomes a hurricane

or not. Hence X = number of hurricanes = X1 + · · · + XN ∼ Poi
(
λp = 1.25

)
, and so
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P
[
At least one hurricane

] = P[X ≥ 1]

= 1 − P[X = 0] = 1 − e−1.25

= 1 − 0.2865 = 0.7135.

2.2 Continuous Distributions
2.2.1 The Gamma and Beta Functions

These two functions are essential in connection with many distributions and their proper-
ties discussed here.

Definition 2.2.1. The gamma function is defined as

Γ (α) =
∫ ∞

0
e−uuα−1 du, α > 0

and the beta function is defined as

Be
(
α1, α2

) =
∫ 1

0
tα1−1(1 − t)α2−1 dt, α1, α2 > 0.

Properties of the Gamma and Beta Functions.

(i) Γ (α + 1) = αΓ (α) for α > 0, so for a positive integer α, Γ (α + 1) = α!.
Proof. Integrating by parts,

Γ (α + 1) =
∫ ∞

0
e−uuα du = −

∫ ∞
0

uαd
(
e−u)

=
∫ ∞

0
e−ud

(
uα

) = α

∫ ∞
0

e−uuα−1 du

= αΓ (α),

because e−uuα = 0 at u = 0 and → 0 as u → ∞.
(ii) Γ

(
1
2

)
= √

π .

Proof. {
Γ

(
1
2

)}2
=

∫ ∞
0

∫ ∞
0

e−u+vu−1/2v−1/2 du dv

=
∫ ∞

0

∫ 1

0
e−s(st)−1/2{s(1 − t)}−1/2 · s ds dt,

with u + v = s, u/(u + v) = t, so that du dv = s ds dt. Next let sin2 θ = t, so that
dt = 2 sin θ cos θ dθ and {t(1 − t)}1/2 = sin θ cos θ . Hence{

Γ

(
1
2

)}2
=

∫ ∞
0

e−s ds ·
∫ 1

0
{t(1 − t)}−1/2 dt

= 1 ·
∫ π/2

0

2 sin θ cos θ

sin θ cos θ
dθ

= 2 · π

2
= π .
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(iii) Be(α1, α2) = Γ (α1)Γ (α2)
Γ (α1+α2) . This will follow as part of the proof of Proposition 2.2.1.

We now introduce some important continuous distributions and examine some of their
properties.

2.2.2 Uniform Distribution Unif (a, b)

Definition 2.2.2. X is a Unif
(
a, b

)
rv if fX (x) = I[a,b](x)/

(
b − a

)
.

Of course,
∫ b

a

(
b − a

)−1 dx = (
b − a

)−1(b − a) = 1.

E[X ] =
∫ b

a

x
b − a

dx = 1
b − a

· b2 − a2

2
= a + b

2
,

E
[

X 2
]

=
∫ b

a

x2

b − a
dx = b3 − a3

3(b − a)
= a2 + ab + b2

3
, and

Var[X ] = a2 + ab + b2

3
− a2 + 2ab + b2

4
=

(
b − a

)2

12
.

In particular, if X ∼ Unif (0, 1), then fX (x) = I[0,1](x), E[X ] = 1
2 , and Var[X ] = 1

12 .

2.2.3 Gamma and Beta distributions

Definition 2.2.3. X is a Gamma
(
α, β

)
rv if the pdf of X is

fX (x) = 1
Γ (α)βα

e−x/βxα−1I(0,∞)(x), α > 0, β > 0.

The mean and variance of a Gamma
(
α, β

)
rv are

E[X ] = 1
Γ (α)βα

∫ ∞
0

xe−x/βxα−1 dx = β

Γ (α)

∫ ∞
0

e−uuα du

= β

Γ (α)
Γ (α + 1) = αβ,

Var[X ] = E
[

X 2
]

− (
αβ

)2 = β2

Γ (α)

∫ ∞
0

e−uuα+1 du − (
αβ

)2

= β2

Γ (α)
Γ (α + 2) − (

αβ
)2

= α(α + 1)β2 − α2β2 = αβ2.

Proposition 2.2.1. If Xi, i = 1, 2 are independent Gamma
(
αi, β

)
rv’s, then X1 + X2 is a

Gamma
(
α1 + α2, β

)
rv.
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Proof. By Eq. (12a) in Chapter 1,

fX1+X2 (z) = 1

Γ
(
α1

)
Γ

(
α2

)
βα1+α2

∫ z

0
e−x/βxα1−1e−(z−x)/β (z − x)α2−1 dx

= e−z/βzα1+α2−1

Γ
(
α1

)
Γ

(
α2

)
βα1+α2

∫ z

0

(x
z

)α1−1(
1 − x

z

)α2−1 dx
z

= e−z/βzα1+α2−1

Γ
(
α1

)
Γ

(
α2

)
βα1+α2

∫ 1

0
tα1−1(1 − t)α2−1 dt

= e−z/βzα1+α2−1

Γ
(
α1

)
Γ

(
α2

)
βα1+α2

· Be
(
α1, α2

)
, z > 0.

But we must have

1 =
∫ ∞

0
fX1+X2 (z) dz

= Be
(
α1, α2

)
Γ

(
α1

)
Γ

(
α2

)
βα1+α2

∫ ∞
0

e−z/βzα1+α2−1 dz

= Be
(
α1, α2

)
Γ

(
α1

)
Γ

(
α2

)Γ
(
α1 + α2

)
.

Hence Be(α1, α2) = Γ (α1)Γ (α2)
Γ (α1+α2) as stated earlier, and therefore,

fX1+X2 (z) = 1
Γ (α1 + α2)βα1+α2

e−z/βzα1+α2−1I0,∞(z).

By induction, if Xi, i = 1, . . . , k are independent Gamma
(
αi, β

)
, then

∑k
i=1 Xi ∼

Gamma
(∑k

i=1 αi, β
)

.

Definition 2.2.4. T is a Be(α1, α2) rv if the pdf of T is

fT (t) = Γ
(
α1 + α2

)
Γ

(
α1

)
Γ

(
α2

) tα1−1(1 − t)α2−1I(0,1)(t), α1, α2 > 0.

The mean and variance of a Beta(α1, α2) rv are

E[T ] = Γ
(
α1 + α2

)
Γ

(
α1

)
Γ

(
α2

) ∫ 1

0
tα1 (1 − t)α2−1 dt

= Γ
(
α1 + α2

)
Γ

(
α1

)
Γ

(
α2

)Be
(
α1 + 1, α2

)

= Γ
(
α1 + α2

)
Γ

(
α1

)
Γ

(
α2

) · Γ
(
α1 + 1

)
Γ

(
α2

)
Γ

(
α1 + α2 + 1

)
= α1

α1 + α2
,

Var[T ] = E
[

T 2
]

−
(

α1

α1 + α2

)2
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= α1
(
α1 + 1

)
(
α1 + α2

)(
α1 + α2 + 1

) −
(

α1

α1 + α2

)2

= α1α2(
α1 + α2

)2(
α1 + α2 + 1

) .

Proposition 2.2.2. If Xi ∼ Gamma
(
αi, β

)
, i = 1, 2 are independent, then Z = X1 + X2

and T = X1/(X1 + X2) are independent, Z ∼ Gamma
(
α1 + α2, β

)
and T ∼ Be(α1, α2).

Proof. Rewrite the transformation as: X1 = TZ , X2 = (1 − T)Z . Then the Jacobian of the
transformation is |J| = z, and

fZ,T (z, t) = 1

Γ
(
α1

)
Γ

(
α2

)
βα1+α2

e−z/β(tz)α1−1{(1 − t)z}α2−1zI(0,∞)(z)I(0,1)(t)

= e−z/βzα1+α2−1

Γ
(
α1 + α2

)
βα1+α2

I(0,∞)(z) · Γ
(
α1 + α2

)
Γ

(
α1

)
Γ

(
α2

) tα1−1(1 − t)α2−1I(0,1)(t),

as was to be shown.

2.2.4 Exponential Distribution

Definition 2.2.5. A rv X is distributed as Exp(θ) if X has pdf

fX (x) = 1
θ

e−x/θ , θ > 0,

and cdf

FX (t) = 1
θ

∫ t

0
e−x/θ dx = 1 − e−t/θ .

Clearly, Exp(θ) is a special case of Gamma
(
α, β

)
with α = 1 and β = θ . Hence, E[X ] = θ and

Var[X ] = θ2.
The exponential distribution shares with geometric distribution, the memoryless

property:

P[X > t + s|X > t] = P[X > t + s]
P[X > t]

= e−(t+s)/θ

e−t/θ = e−s/θ = P[X > s].

2.2.5 Normal Distribution N
(
μ, σ 2

)
Definition 2.2.6. X is an N

(
μ, σ 2

)
rv if X has pdf

fX (x) = 1√
2πσ

e
− 1

2σ2 (x−μ)2
, −∞ < x < ∞.

We first verify that fX (x) is indeed a pdf. Since fX (x) ≥ 0, we only need to check that∫ ∞
−∞ fX (x) dx = 1. By symmetry,∫ ∞

−∞
fX (x) dx = 1√

2π

∫ ∞
−∞

e−z2/2 dz = 2√
2π

∫ ∞
0

e−z2/2 dz

= 2√
2π

∫ ∞
0

e−u · 1√
2

u−1/2 du

(
with u = z2

2
, dz = (2u)−1/2 du

)
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= 1√
π

∫ ∞
0

e−uu−1/2 du = 1√
π

· Γ
(

1
2

)

= 1, since Γ

(
1
2

)
= √

π .

The mean and variance of N
(
μ, σ 2

)
are

E[X ] =
∫ ∞
−∞

xfX (x) dx =
∫ ∞
−∞

(x − μ)fX (x) dx + μ · 1

=
∫ ∞
−∞

σz · 1√
2π

e−z2/2 dz + μ

= μ, because
∫ ∞
−∞

ze−z2/2 dz = 0 by symmetry.

Var[X ] = E[(X − μ)]2

=
∫ ∞
−∞

(x − μ)2 1√
2πσ

e
− (x−μ)2

2σ2 dx = 2σ 2
√

2π

∫ ∞
0

z2e−z2/2 dz

= 2σ 2
√

2π

∫ ∞
0

2ue−u · (2u)−1/2 du

(
with u = z2

2
as above

)

= 2σ 2
√

π

∫ ∞
0

e−uu1/2 du = 2σ 2
√

π
· Γ

(
3
2

)

= 2σ 2
√

π
· 1

2
Γ

(
1
2

)
= σ 2.

For this reason, N
(
μ, σ 2

)
is called a normal distribution with mean μ and variance σ 2. For

μ = 0 and σ = 1, N(0,1) is called the standard normal distribution.
Example 2.2.1. The life of a tire on freeway is a Normal rv with mean μ = 25,000 miles

and sd σ = 1,000 miles. If a car goes on a coast-to-coast round-trip in the United States,
which we can assume is 6000 miles, what is the probability that none of the four tires will
need replacement during the 6000 miles trip, given that the tires were already used for
17,500 miles?

Solution. Note that

P[min
(
X1, . . . , X4

)
> 23,500] = {P[X1 > 23,500]}4

=
{

P
[

X1 − μ

σ
= Z >

23,500 − 25,000
1000

]}4

= {P[Z > −1.5]}4 = {P[Z < 1.5]}4

= {Φ(1.5)}4 = {1 − 0.0668}4 = 0.7584,

using the normal table.
Strictly speaking, in this problem, we should have considered

P
[
min

(
X1, . . . , X4

)
> 23,500|Xi > 17,500, i = 1, . . . , 4

]
,
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but

P
[
Xi > 17,500

] = P
[

Z >
17,500 − 25,000

1000

]
= P[Z > −7.5] ≈ 1,

so this conditionality does not matter.
pdf and cdf of N(0, 1). Let Z ∼ N(0, 1). Then the pdf of Z is

fZ (x) = 1√
2π

e−x2/2

which we shall denote by ϕ(x). The cdf of Z is FZ (x) = ∫ x
−∞ ϕ(t) dt, which we shall denote

by Φ(x). Since ϕ(x) is symmetric about 0, we have

Φ(−x) = 1 − Φ(x) and P[|Z| > x] = 2[1 − Φ(x)].

The cdf Φ(x) cannot be calculated analytically. There are tables for Φ(x). However, the
following are useful upper and lower bounds for 1 − Φ(x) for all x > 0,

x−1
(

1 − x−2
)
ϕ(x) < 1 − Φ(x) < x−1ϕ(x).

By a change of variable y = x2/2,

1 − Φ(x) =
∫ ∞

x
ϕ(t) dt = (

1/2
)
π−1/2

∫ ∞
x2/2

y−1/2e−y dy.

For notational convenience use c = x2/2. The upper bound is obtained by noting that

(1/2)π−1/2
∫ ∞

c
y−1/2e−y dy < (1/2)π−1/2c−1/2

∫ ∞
c

e−y dy = (1/2)π−1/2c−1/2e−c = x−1ϕ(x).

To get the lower bound, use the integration by parts formula

(1/2)π−1/2
∫ ∞

c
y−1/2e−y dy = (1/2)π−1/2

[
c−1/2e−c − 1

2

∫ ∞
c

y−3/2e−y dy
]

> (1/2)π−1/2
[

c−1/2e−c − 1
2

c−3/2
∫ ∞

c
e−c

]

= (1/2)π−1/2
[

c−1/2e−c − 1
2

c−3/2e−c
]

= (1/2)π−1/2c−1/2
[

1 − 1
2

c−1
]

e−c

= x−1
(

1 − x−2
)
ϕ(x).

Normal Approximation to the Binomial Distribution: De Moivre-Laplace Theorem. If
Sn = X1 + · · · + Xn, where X1, . . . , Xn are independent Bernoulli

(
p
)
, that is, Sn ∼ Bin

(
n, p

)
,

then for large n and for any a < b,

P

⎡
⎣a ≤ Sn − np√

np
(
1 − p

) ≤ b

⎤
⎦ ≈ Φ

(
b
) − Φ(a).
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This is a special case of the Central Limit Theorem which holds for sums of iid rv’s Sn =
X1 + · · · + Xn with finite variance.

Some Properties of N
(
μ, σ 2

)
.

1. If X ∼ N
(
μ, σ 2

)
, then a + bX ∼ N

(
a + bμ, b2σ 2

)
follows by using Eq. (10) in Chapter 1.

In particular, Z = (X − μ)/σ ∼ N(0, 1).
2. If Xi ∼ N

(
μi, σ 2

i

)
, i = 1, 2 are independent, then X1 + X2 ∼ N

(
μ1 + μ2, σ 2

1 + σ 2
2

)
.

Proof. Zi = (Xi − μi)/σi, i = 1, 2 are independent N(0, 1), and

X1 + X2 = (μ1 + μ2) + (σ1Z1 + σ2Z2). Transform
(

Y1

Y2

)
=

(
σ1 σ2

σ2 −σ1

)
·
(

Z1

Z2

)
. Then∣∣∣∣det

[
σ1 σ2

σ2 −σ1

]∣∣∣∣ = σ 2
1 + σ 2

2 , and
[

Z1

Z2

]
= 1

σ 2
1 +σ 2

2

[
σ1 σ2

σ2 −σ1

]
·
[

Y1

Y2

]
, and the joint pdf of

Y1 = σ1Z1 + σ2Z2 and Y2 = σ2Z1 − σ1Z2 is

fY1,Y2

(
y1, y2

)

= 1

2π
(
σ 2

1 + σ 2
2

) exp

⎡
⎢⎣− 1

2
(
σ 2

1 + σ 2
2

)2

{(
σ1y1 + σ2y2

)2 + (
σ2y1 − σ1y2

)2
}⎤
⎥⎦

= 1

2π
(
σ 2

1 + σ 2
2

) exp

⎡
⎢⎣− 1

2
(
σ 2

1 + σ 2
2

)2

{(
σ 2

1 + σ 2
2

)
y2

1 +
(
σ 2

1 + σ 2
2

)
y2

2

}⎤
⎥⎦

= 1

2π
(
σ 2

1 + σ 2
2

) exp

⎡
⎣− y2

1

2
(
σ 2

1 + σ 2
2

) − y2
2

2
(
σ 2

1 + σ 2
2

)
⎤
⎦.

Thus Y1, Y2 are independent N
(
0, σ 2

1 + σ 2
2

)
, so

X1 + X2 = (
μ1 + μ2

) + (
σ1Z1 + σ2Z2

)
= (

μ1 + μ2
) + Y1

∼ N
(
μ1 + μ2, σ 2

1 + σ 2
2

)
.

By induction, if Xi ∼ N
(
μi, σ 2

i

)
, i = 1, . . . , k are mutually independent, then∑k

i=1 Xi ∼ N
(∑k

i=1 μi,
∑k

i=1 σ 2
i

)
. In particular, if X1, . . . , Xn are independent N

(
μ, σ 2

)
,

then
∑n

i=1 Xi ∼ N
(
nμ, nσ 2

)
, and X̄n = 1

n

∑n
i=1 Xi ∼ N

(
μ, σ 2/n

)
.

3. If Z ∼ N(0, 1), then W = Z2 has pdf

fW (w) = 1

21/2Γ
(

1
2

) e−w/2w−1/2I(0,∞)(w). (3)

Proof. W = Z2 has cdf (by Eq. (11b) in Chapter 1)

FZ2 (w) = P
[−√

w ≤ Z ≤ √
w

] = 2 · P
[
0 ≤ Z ≤ √

w
]
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= 2
∫ √

w

0

1√
2π

e−z2/2 dz,

so

fZ2 (w) =
√

2
π

e−w/2 · 1
2

w−1/2 = 1

21/2Γ
(

1
2

)e−w/2w−1/2, w > 0.

2.2.6 Chi-Square Distribution

If Z ∼ N(0, 1), then from the pdf of Z2 derived in Eq. (3) we see that Z2 is a Gamma
(

1
2 , 2

)
rv and from the additive property of independent Gamma rv’s with common β in Proposi-
tion 2.2.1, the following proposition is an immediate consequence.

Proposition 2.2.3. If Z1, . . . , Zk are independent N(0, 1), then W = ∑k
i=1 Z2

i is a
Gamma

(
k/2, 2

)
rv with pdf:

fW (w) = 1

2k/2Γ
(

k
2

)e−w/2wk/2−1I(0,∞)(w).

This rv is known as χ2 with k degrees of freedom (df), denoted by χ2
k . Clearly, the sum of

independent χ2 rv’s is a χ2 rv, the df of which is the sum of the df’s of its components.
Proposition 2.2.4. If χ2

k1
, . . . , χ2

kn
are mutually independent, then by the additive prop-

erty of independent Gamma rv’s derived in Proposition 2.2.1, χ2
k1

+· · ·+χ2
kn

is distributed as

χ2
k1+···+kn

.
Now suppose that X ∼ N(μ, 1), then by Eq. (11a) of Chapter 1,

fX2 (w) = 1

2
√

w
· 1√

2π

[
e− 1

2

(√
w−μ

)2 + e− 1
2

(−√
w−μ

)2
]

= 1

2
√

w
· 1√

2π
e− 1

2 μ2− 1
2 w

[
eμ

√
w + e−μ

√
w

]
.

Using the properties of Gamma function and remembering Γ
(

1
2

)
= √

π ,

ea + e−a = 2
∞∑

r=0

a2r

(2r)! = 2
∞∑

r=0

(
a2

)r

2rr![1 · 3 · · · (2r − 1)]

= √
π

∞∑
r=0

(
a2

)r
/22r−1

r!
[

1
2 · 3

2 · · ·
(

r − 3
2

)
·
(

r − 1
2

)]
Γ

(
1
2

)

= √
π

∞∑
r=0

(
a2

)r
/22r−1

r!Γ
(

r + 1
2

) .



Chapter 2 • Some Common Probability Distributions 41

We thus arrive at the Noncentral χ2 distribution with 1 df and noncentrality parameter
1
2μ2:

fX2 (w) = 1

2
√

w
· 1√

2π
e− 1

2 μ2− 1
2 w · √

π

∞∑
r=0

(
μ2

)r
wr/22r−1

r!Γ
(

r + 1
2

)

=
∞∑

r=0

⎛
⎜⎝ e− 1

2 μ2(
1
2 μ2

)r

r!

⎞
⎟⎠ · 1

Γ
(

2r+1
2

)
2

2r+1
2

e−w/2w
2r+1

2 −1.

Let N be a Poisson rv with mean 1
2μ2. Then the rth term in the above sum is

fN

(
r,

1
2

μ2
)

· f
χ2

1+2r
(w).

Hence, fX2 (w) = E
[

fχ2
1+2N

(w)
]

, where N is a Poi
(

1
2μ2

)
rv. This is the pdf of a noncentral χ2

rv with 1 df and noncentrality parameter 1
2 μ2 denoted by χ2

1

(
1
2 μ2

)
.

2.2.7 Sampling From a Normal Distribution, Sample Mean
and Sample Variance

Let X1, . . . , Xn be n independent rv’s, each distributed as N
(
μ, σ 2

)
. Such a collection of rv’s

will be called “a random sample of n observations from the normal population N
(
μ, σ 2

)
.”

The concepts of population and sample will be discussed in Chapter 4.
We have seen that μ is the mean and σ 2 is the variance of N

(
μ, σ 2

)
. The analogs of μ and

σ 2 in the sample (X1, . . . , Xn) are, respectively, the sample mean and sample variance

X̄ = 1
n

n∑
i=1

Xi and s2 = 1
n − 1

n∑
i=1

(
Xi − X̄

)2.

(The reason for the factor 1
n−1 instead of 1

n in s2 will be made clear later in Chapter 5). In
the following proposition we derive the joint distribution of X̄ and s2.

Proposition 2.2.5. Let X̄ and s2 be the sample mean and sample variance, respectively,
in a random sample (X1, . . . , Xn) from N

(
μ, σ 2

)
. Then

(i) X̄ ∼ N
(
μ, σ 2/n

)
,

(ii) (n − 1)s2/σ 2 ∼ χ2
n−1, and

(iii) X̄ and s2 are independent.

Proof. Let Wi = Xi − μ. Then W1, . . . , Wn are iid N
(
0, σ 2

)
, and letting W T =

(W1, . . . , Wn), wT = (w1, . . . , wn), the joint pdf of (W1, . . . , Wn) is expressed as

fW (w) = 1(√
2πσ

)n exp
[
− 1

2σ 2
wTw

]
.
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Transform Y = AW , where A = (
(aij)

)
with aT

i = (ai1, . . . , ain), i = 1, . . . , n satisfying

aT
1 = n−1/2(1, . . . , 1), aT

i ai = 1, and aT
i aj = 0 for all i �= j

so that A is orthonormal. (In particular,

aT
j = {

(j − 1)j
}−1/2(

1, . . . , 1, j − 1, 0, . . . , 0
)
, j = 2, . . . , n

will do.) Then

Y1 = aT
1W = n−1/2

n∑
i=1

Wi = √
nW̄ = √

n
(
X̄ − μ

)
,

where W̄ = n−1 ∑n
i=1 Wi, and Y TY = W T

(
ATA

)
W = W TW . Hence

n∑
i=2

Y 2
i = Y TY − Y 2

1 = W TW − (√
nW̄

)2 =
n∑

i=1

(
Wi − W̄

)2 =
n∑

i=1

(
Xi − X̄

)2.

Now by Eq. (14) of Chapter 1, the joint pdf of (Y1, . . . , Yn) is

fY
(
y
) = fW

(
A−1y

)
= 1(√

2πσ
)n exp

[
− 1

2σ 2

(
A−1y

)T(
A−1y

)]

= 1(√
2πσ

)n exp
[
− 1

2σ 2 yTy
]

,

that is, Y1, . . . , Yn are iid N
(
0, σ 2

)
. Thus

(i)
√

n
(
X̄ − μ

) = aT
1W = Y1 is N

(
0, σ 2

)
, that is, X̄ is N

(
μ, σ 2/n

)
,

(ii)
∑n

i=1

(
Xi − X̄

)2 = ∑n
i=1

(
Wi − W̄

)2 = ∑n
i=2 Y 2

i is σ 2χ2
n−1, that is, (n − 1)s2/σ 2 is χ2

n−1,
(iii) X̄ = μ + n−1/2Y1 and s2 = (n − 1)

∑n
i=2 Y 2

i are independent.

2.2.8 t and F Distributions

Definition 2.2.7. A rv tk = Z/
√

W/k, where Z ∼ N(0, 1) and W ∼ χ2
k are independent, is

called a t rv with k df. It follows from Proposition 2.2.5 that

√
n
(
X̄ − μ

)
s

=
√

n
(
X̄ − μ

)
/σ√{

(n − 1)s2/σ 2
}
/(n − 1)

is a t rv with (n − 1) df.
This rv is commonly referred to as Student’s t (“Student,” [5]).
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Proposition 2.2.6. If Z ∼ N(0, 1) and W ∼ χ2
k are independent, then T ∼ tk = Z/

√
W/k

has pdf

fT (t) = Γ
(
(k + 1)/2

)
Γ

(
1/2

)
Γ (k/2)

1√
k

(
1 + t2/k

)−(k+1)/2
, −∞ < t < ∞.

A distribution with this pdf is called the t distribution with k df.
Proof. The cdf of T ∼ tk is

FT (t) = P
[

Z/
√

W/k ≤ t
]

=
∫ ∞

w=0

∫ t
√

w/k

z=−∞
fZ (z)fW (w) dz dw, and

fT (t) =
∫ ∞

0
fW (w)

√
w/kfZ

(
t
√

w/k
)

dw (by Eq. (13) in Chapter 1)

=
∫ ∞

0

(
1

Γ
(
k/2

)2−k/2e−w/2wk/2−1

)√
w
k

(
1√
2π

e−(1/2)t2w/k
)

dw

=
(
1/2

)(k+1)/2

Γ (1/2)Γ (k/2)
1√
k

∫ ∞
0

e−(1/2)
(
1+t2/k

)
ww(k+1)/2−1 dw

= Γ
(
(k + 1)/2

)
Γ (1/2)Γ (k/2)

1√
k

(
1 + t2/k

)−(k+1)/2
, −∞ < t < ∞,

recognizing the last integral as Γ
(
(k + 1)/2

)
by appropriate normalization.

Using Stirling’s approximation, Γ (p) ≈ √
2πe−(p−1)(p − 1)p−1/2 for large p, we see that

the pdf fT (t) converges to the pdf of N(0, 1) at each t, as k → ∞.
Another important rv is

Fk1,k2
=

χ2
k1

/k1

χ2
k2

/k2
,

where χ2
k1

and χ2
k2

are independent χ2 rv’s with k1 df and k2 df, respectively.
To find the pdf of Fk1,k2 , we first use Eq. (13) and then Eq. (10) in Chapter 1 for the pdf of

the ratio of two independent rv’s and then for the pdf of the multiple of an rv. In this way,
we arrive at

fFk1,k2
(w) = Γ

((
k1 + k2

)
/2

)
Γ (k1/2)Γ (k2/2)

(
k1

k2

)k1/2 wk1/2−1[
1 + (

k1/k2
)
w

](k1+k2)/2
, w > 0,

the verification of which is left as an exercise.

2.2.9 Noncentral χ2 and F Distributions

In Section 2.2.5 we introduced the noncentral χ2 rv with 1 df and noncentrality parameter

μ2/2 as the rv X 2 where X ∼ N(μ, 1). The pdf of this rv was expressed as E
[

fχ2
1+2N

(w)
]

where

N is a Poi
(
μ2/2

)
rv. We now extend this by considering the distribution of

∑k
i=1 X 2

i where
X1, . . . , Xk are independent N(μi, 1).
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As in the proof of the Proposition 2.2.5, transform Y = AX where A = (
(aij)

)
with aT

i =(
ai1, . . . , aik

)
satisfying

aT
1 = 1

||μ||
(
μ1, . . . , μk

)
and aT

i aj =
{

1 if i = j

0 if i �= j
,

where ‖μ‖2 = ∑k
i=1 μ2

i . Then A is orthonormal and
∑k

i=1 X 2
i = ∑k

i=1 Y 2
i . Moreover, since

Y1 = aT
1X = ∑k

i=1 μiXi/‖μ‖, we have

(
A−1Y − μ

)T(
A−1Y − μ

)
= (X − μ)T(X − μ) =

k∑
i=1

(
Xi − μi

)2

=
k∑

i=1

X 2
i − 2

k∑
i=1

μiXi +
k∑

i=1

μ2
i =

k∑
i=1

Y 2
i − 2‖μ‖Y1 + ‖μ‖2

= (
Y1 − ‖μ‖)2 +

k∑
i=2

Y 2
i ,

and the joint pdf of
(
Y1, . . . , Yk

)
is

fY
(
y
) = fX

(
A−1y

)
= 1(√

2π
)n exp

[
−1

2

(
A−1Y − μ

)T(
A−1Y − μ

)]

= 1(√
2π

)n exp

⎡
⎣−1

2

(
y1 − ‖μ‖)2 − 1

2

k∑
i=2

y2
i

⎤
⎦.

It follows that Y1 ∼ N(‖μ‖, 1) and
∑k

i=2 Y 2
i ∼ χ2

k−1, which are independent. Now

k∑
i=1

X 2
i = Y 2

1 +
k∑

i=2

Y 2
i ∼ χ2

1+2N + χ2
k−1,

where the two χ2 rv’s are independent. Using additive property of independent χ2 rv’s, we
see that W = ∑k

i=1 X 2
i = χ2

k+2N has the pdf

fW (w) =
∞∑

r=0

fN

(
r, ‖μ‖2/2

)
f
χ2

k+2r
(w) = E

[
f
χ2

k+2N
(w)

]
,

N ∼ Poi
(‖μ‖2/2

)
. We denote this by writing W ∼ χ2

k

(‖μ‖2/2
)
, which is a χ2 rv with k df

and noncentrality parameter ‖μ‖2/2.
A rv of the form V = W1/m

W2/n , where W1 ∼ χ2
m

(
δ2

)
and W2 ∼ χ2

n are independent, is said to
be distributed as F with numerator df m, denominator df n and noncentrality parameter
δ2, denoted by Fm,n

(
δ2

)
.
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Since W1 ∼ χ2
m+2N with N ∼ Poi

(
δ2/2

)
, we can write V = Fm+2N ,n, where Fm+2r,n is F

with numerator df m+2r and denominator df n. In particular, if X1, . . . , Xn are independent
N

(
μ, σ 2

)
, then

T =
√

nX̄
s

=
√

nX̄/σ√{
(n − 1)s2/σ 2

}
/(n − 1)

is distributed as

N
(√

nμ/σ , 1
)

√
χ2

n−1/(n − 1)
,

the numerator and denominator being independent (by Proposition 2.2.5), so that

T2 ∼
χ2

1

(
nμ2/σ 2

)
χ2

n−1/(n − 1)
= F1,n−1

(
nμ2

σ 2

)
.

The noncentral χ2 and F distributions are used in evaluating “power properties” of tests
of significance of various hypotheses about means and variances of normal populations
and in tests of hypotheses in Linear Models, as will be seen later. The noncentrality param-
eter is a measure of departure from “null hypothesis,” and for fixed c, k, m, n, P

[
χ2

k

(
δ2

) ≥ c
]

and P
[
Fm,n

(
δ2

) ≥ c
]

are increasing functions of δ2. Proofs of these monotonicity properties
are left as exercises.

2.2.10 Cauchy Distribution

Definition 2.2.8. A rv X is distributed as Cauchy(θ) if X has pdf

fX (x) = 1
π

1

1 + (x − θ)2 , −∞ < x < ∞.

We first verify that fX is indeed a pdf. Since fX (x) > 0 for all x, we only need to check
∫ ∞
−∞

fX (x) dx = 1
π

∫ ∞
−∞

1

1 + (x − θ)2
dx = 1

π

∫ ∞
−∞

1

1 + y2
dy

= 2
π

∫ ∞
0

1

1 + y2 dy = 2
π

∫ π/2

0

1 + tan2 ϕ

1 + tan2 ϕ
dϕ

= 2
π

∫ π/2

0
dϕ = 1,

using the transformation ϕ = tan−1 y, that is, y = tan ϕ. To find the mean of X , note that
X = Y + θ where Y = X − θ has pdf

fY (y) = 1
π

1

1 + y2 , −∞ < y < ∞.
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Now

E[|Y |] = 1
π

∫ ∞
−∞

|y|
1 + y2

dy = 2
π

∫ ∞
0

y

1 + y2
dy

= 1
π

∫ ∞
1

1
t

dt
(

with t = 1 + y2
)
,

which diverges. Hence E[Y ] does not exist, and therefore, E[X ] does not exist.

2.2.11 Multivariate Normal Distribution

Definition 2.2.9. If X T = (
X1, . . . , Xp

)
is a p-dim rv which can be written as X = μ + BZ ,

where μ is a p-dim vector in R
p, B is a p × k matrix and Z is a k-dim vector of iid N(0, 1)

rv’s, then X is said to follow a p-variate normal distribution.

Since E[X ] = μ and Cov[X , X ] = E
[

(X − μ)(X − μ)T
]

= BBT := Σ , we call X a p-variate

normal rv with mean vector μ and covariance matrix Σ , and write X ∼ Np(μ, Σ).
We now list the important properties of p-variate normal distribution in the following

propositions.
Proposition 2.2.7. If X ∼ Np(μ, Σ) and Y = c + AX , where c is in R

r and A is a r × p

matrix, then Y ∼ Nr

(
c + Aμ, AΣAT

)
.

It follows that the vector formed by any subset of r coordinates, 1 ≤ r ≤ p − 1, follows
an r-variate normal distribution with appropriate mean vector and covariance matrix. In
particular, each Xi ∼ N(μi, σii).

Proof. Since X = μ + BZ , the transform

Y = c + A(μ + BZ) = (c + Aμ) + (AB)Z ,

and (AB)(AB)T = A
(

BBT
)

AT = AΣAT. Hence, Y ∼ Nr

(
c + Aμ, AΣAT

)
.

Proposition 2.2.8. If p ≤ k and rank(B) = p, then Σ = BBT is positive definite, and
X = μ + BZ has pdf

fX (x; μ, Σ) = 1

(2π)p/2|Σ |1/2
exp

[
−1

2
(x − μ)TΣ−1(x − μ)

]
, x ∈ R

p.

Conversely, if X has pdf fX (x; μ, Σ) given above, for some μ and positive definite Σ , then X
can be expressed as X = μ + BZ , ZT = (

Z1, . . . , Zp
)

with Z1, . . . , Zp iid as N(0, 1).
Proof. Since the rank of B is p ≤ k, BTa �= 0 for any a �= 0 in R

p, so that Σ = BBT is
positive definite. Next augment B and μ with a (k − p) × k matrix C and a k − p vector of
zeros, respectively, so that

B∗ =
[

B
C

]
and μ∗ =

[
μ

0

]
,

where the rows of C are of unit length, mutually orthogonal, and orthogonal to the rows of
B. Note that B∗ is a square matrix of order k and μ∗ is a k-dim vector. Then letting Y = CZ ,
we have
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X∗ =
[

X
Y

]
=

[
μ + BZ

CZ

]

as a one-to-one transformation from Z . We now find the pdf of X ∗ from the pdf of Z and
integrate out Y . The details are left as an exercise.

To prove the converse, find B so that Σ = BBT (B is not unique) and transform
Z = B−1(X − μ). Then Z has the desired property.

Remark 2.2.1. If X 1 and X 2 are p- and q-dimensional rv’s, then independence of X 1 and
X 2 implies Σ12 = Cov[X 1, X 2] = 0. However, the converse is not true in general. In the

case of normal distributions the converse is also true. More precisely, if X =
[

X 1

X 2

]
∼

Np+q(μ, Σ), then X 1 and X 2 are independent iff Σ12 = Cov[X 1, X 2] = 0. The proof can be
easily seen when Σ is positive definite. If Σ12 = 0, then Σ is a block diagonal matrix of the

form
[

Σ11 0
0T Σ22

]
and its inverse is also block diagonal. This results in the joint pdf of X 1

and X 2 being the product of the pdf’s of X 1 and X 2.
Proposition 2.2.9. Suppose X ∼ Np+q(μ, Σ) where Σ is positive definite. Let

X =
[

X 1
X 2

]
, μ =

[
μ1
μ2

]
, Σ =

[
Σ11 Σ12
Σ21 Σ22

]
,

where X 1, μ1 and X 2, μ2 denote the first p and last q coordinates of X and μ, respec-
tively, and Σ11 = Cov[X 1, X 1], Σ22 = Cov[X 2, X 2], ΣT

21 = Σ12 = Cov[X 1, X 2], where

Cov
[
X i, X j

] = E
[(

X i − μi
)(

X j − μj
)T

]
. Then the conditional distribution of X 2 given X 1 = x1

is Nq

(
μ2 + Σ21Σ

−1
11

(
x1 − μ1

)
, Σ22 − Σ21Σ

−1
11 Σ12

)
.

Proof. Write fX 2|X 1 (x2|x1) = fX 1,X 2 (x1, x2)/fX 1 (x1), where

fX 1,X 2

(
x1, x2

) = 1

(2π)(p+q)/2
∣∣∣∣ Σ11 Σ12

Σ21 Σ22

∣∣∣∣1/2

× exp

{
−1

2

[(
x1 − μ1

)T,
(
x2 − μ2

)T
][

Σ11 Σ12
Σ21 Σ22

]−1[
x1 − μ1
x2 − μ2

]}

and

fX 1

(
x1

) = 1

(2π)p/2|Σ11|1/2
exp

[
−1

2

(
x1 − μ1

)T
Σ−1

11
(
x1 − μ1

)]
.

To calculate the ratio of the last two terms, the main task is to find the inverse and
the determinant of the partitioned matrix involved in fX 1,X 2 (x1, x2). For this we need the
following argument. Let

A =
[

A11 A12
A21 A22

]
with A21 = AT

12 and B =
[

I 0
−AT

21A−1
11 I

]
.
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Then

D = BABT =
[

A11 0
0 A22 − AT

12A−1
11 A12

]
,

so D−1 =
⎡
⎣ A−1

11 0

0
(

A22 − AT
12A−1

11 A12

)−1

⎤
⎦. This implies A = B−1D

(
BT

)−1
and therefore,

denoting
(

A22 − AT
12A−1

11 A12

)−1
by H,

A−1 = BTD−1B =
[

A−1
11 + A−1

11 A12HAT
12A−1

11 −A−1
11 A12H

−HAT
12A−1

11 H

]
.

Finally,

|A| = |B|−1|D‖BT|−1 = |D| = |A11‖A22 − AT
12A−1

11 A12|,

because |B| = |BT| = 1. Using these results on
[

Σ11 Σ12

Σ21 Σ22

]−1

and

∣∣∣∣ Σ11 Σ12

Σ21 Σ22

∣∣∣∣,
we obtain after some algebraic simplification,

fX 2|X 1

(
x2|x1

) = fX 1,X 2

(
x1, x2

)
/fX 1

(
x1

)
= 1

(2π)q/2|Σ22.1|1/2
exp

[
−1

2

(
x2 − μ2.1

)T
Σ−1

22.1
(
x2 − μ2.1

)]
,

where μ2.1 = μ2 + Σ21Σ−1
11

(
x1 − μ1

)
and Σ22.1 = Σ22 − Σ21Σ

−1
11 Σ12. The expression

displayed above is the pdf of Nq
(
μ2.1, Σ22.1

)
.

Remark 2.2.2. Special Cases.

(i) For q = 1, write σ T
2(1) = (

σ1,p+1, . . . , σp,p+1
)

where σij = Cov
[
Xi, Xj

]
. Then

Σ22 − Σ21Σ−1
11 Σ12 = σ 2

p+1 − σT
2(1)Σ

−1
11 σ 2(1) := σ 2

(p+1)·(12···p), and

μ2 + Σ21Σ−1
11

(
x1 − μ1

) =
(
μp+1 − σT

2(1)Σ
−1
11 μ1

)
+ σT

2(1)Σ
−1
11 x1

:= α + β1x1 + · · · + βpxp,

where βT = (
β1, . . . , βp

) = σ T
2(1)Σ

−1
11 and α = μp+1 − (

β1μ1 + · · · + βpμp
)
. (Remember:

In the above, xT
1 = (

x1, . . . , xp
)

and μT
1 = (

μ1, . . . , μp
)
.) Thus the conditional

distribution of Xp+1 given
(
X1, . . . , Xp

) = (
x1, . . . , xp

)
is

N
(
α + β1x1 + · · · + βpxp, σ 2

(p+1)·(12···p)

)
where the conditional mean

α + β1x1 + · · · + βpxp and the conditional variance σ 2
(p+1)·(12···p) are given by the above

formulas.

(ii) For p = q = 1, Σ =
[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

]
and therefore,

|Σ |1/2 = σ1σ2

√
1 − ρ2 and Σ−1 =

(
1 − ρ2

)−1
[

1/σ 2
1 −ρ/

(
σ1σ2

)
−ρ/

(
σ1σ2

)
1/σ 2

2

]
.
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Thus for −1 < ρ < 1,

fX1,X2

(
x1, x2

) = 1

2πσ1σ2
√

1 − ρ2
exp

[
− 1

2
(
1 − ρ2

)
{(

x1 − μ1

σ1

)2

−2ρ

(
x1 − μ1

σ1

)(
x2 − μ2

σ2

)
+

(
x2 − μ2

σ2

)2
}]

,

which is the pdf of bivariate normal distribution N2
(
μ1, μ2, σ 2

1 , σ 2
2 , ρ

)
with mean

vector (μ1, μ2)T and covariance matrix
[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

]
. The marginal distribution

of Xi is N
(
μi, σ 2

i

)
and the conditional distribution of X2 given X1 = x1 is

N
(
α + βx1, σ 2

2.1

)
, where β = ρσ2/σ1, α = μ2 − βμ1, and σ 2

2.1 = σ 2
2

(
1 − ρ2

)
.

Conversely, if X1 ∼ N
(
μ1, σ 2

1

)
and the conditional distribution of X2 given X1 is

N
(
α + βX1, τ2

)
, then (X1, X2) ∼ N2

(
μ1, μ2, σ 2

1 , σ 2
2 , ρ

)
, where

μ2 = α + βμ1, σ 2
2 = τ 2 + β2σ 2

1 , and ρ = βσ1/

√
τ 2 + β2σ 2

1 .

Moreover, if (X1, X2) ∼ N2
(
μ1, μ2, σ 2

1 , σ 2
2 , ρ

)
and A =

[
a11 a12

a21 a22

]
is nonsingular, then

Y1 = a11X1 + a12X2 and Y2 = a21X1 + a22X2 are jointly bivariate normal with
appropriate parameters. In particular X1 + X2 and X1 − X2 are independent iff σ1 = σ2.

Proposition 2.2.10. Suppose X ∼ Np(μ, Σ) with positive definite Σ . Then (X − μ)TΣ−1

(X − μ) ∼ χ2
p .

Proof. Find B such that BBT = Σ and write X = μ + BZ with Z ∼ Np(0, I), as in the
proof of the converse part of Proposition 2.2.8. Then

(X − μ)TΣ−1(X − μ) = ZTBT
(

BBT
)−1

BZ = ZTZ =
p∑

i=1

Z2
i ∼ χ2

p .

2.2.12 Exponential Family of Distributions

A family of pdf’s or pmf’s is said to be an exponential family if it is of the form

f
(
x, θ

) = c
(
θ
)

exp

⎡
⎣ k∑

j=1

Qj
(
θ
)
Tj(x)

⎤
⎦r(x), θ ∈ Θ ,

where r(x) > 0, c
(
θ
)

> 0, and each Tj(x) is a real-valued function of x, while each Qj
(
θ
)

is a
real-valued function of θ .

Note. The set
{

x: f
(
x, θ

)
> 0

} = {x: r(x) > 0} does not depend on θ .
Many distributions including most of those discussed above belong to this family.
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Example 2.2.2. The pmf of the Binomial distribution Bin
(
n, p

)
is

f
(
x, p

) =
(

n
x

)
exp

[
x log(p) + (n − x) log(1 − p)

]
=

(
n
x

)(
1 − p

)n exp
[

x log
(

p
1 − p

)]
,

x = 0, 1, . . . , n. Thus f
(
x, p

)
is of the desired form with θ = p, c(θ) = (1 − θ)n, r(x) = (n

x

)
,

Q(θ) = log
(
θ/(1 − θ)

)
, and T(x) = x.

Example 2.2.3. The pmf of Poi(λ) is

f (x, λ) = e−λ λx

x! = e−λ 1
x! exp

(
x log λ

)
, x = 0, 1, . . .

This pmf is of the desired form with θ = λ, r(x) = 1/x!, c(θ) = e−θ , Q(θ) = log θ , and
T(x) = x.

Example 2.2.4. The pdf of N
(
μ, σ 2

)
is

f
(

x; μ, σ 2
)

= 1√
2πσ

exp
[
− 1

2σ 2 (x − μ)2
]

=
(

1√
2πσ

e−μ2/
(
2σ 2))

exp

[
μ

σ 2
x +

(
− x2

2σ 2

)]
.

This pdf is of the desired form with θ = (
μ, σ 2

)
, r(x) = 1, c

(
θ
) = 1√

2πσ
e−μ2/

(
2σ 2)

, Q1
(
θ
) =

μ/σ 2, T1(x) = x, Q2
(
θ
) = −1/

(
2σ 2

)
, and T2(x) = x2.

The pdf of Unif (0, θ) is f (x, θ) = I(0,θ)(x). Here, the set
{

x: f (x, θ) > 0
} = (0, θ) depends

on θ . Therefore, this family of pdf’s
{

f (x, θ), θ > 0
}

is not an exponential family.
Natural Parameters. In the form of f

(
x; θ

)
given in the definition of an exponential

family, if we reparameterize by letting

θj = Qj
(
θ
)
, j = 1, . . . , k, and let c

(
θ
) = c

(
θ1, . . . , θk

)
,

then the k-parameter exponential family of pdf’s or pmf’s is represented as

f
(
x; θ

) = c
(
θ
)

exp

⎡
⎣ k∑

j=1

θjTj(x)

⎤
⎦r(x) = c

(
θ
)

exp
[〈θ , T (x)〉]r(x),

where the parameters θ1, . . . , θk are called natural parameters and Θ∗ is called the natural
parameter space defined as

Θ∗ =
⎧⎨
⎩θ = (

θ1, . . . , θk
)
:

∫ ∞
−∞

exp

⎡
⎣ k∑

j=1

θjTj(x)

⎤
⎦r(x) dx < ∞

⎫⎬
⎭,

where X = R (and analogously for more general X ). Also, the constant c
(
θ
)

is given by

c
(
θ
) =

⎧⎨
⎩

∫ ∞
−∞

exp

⎡
⎣ k∑

j=1

θjTj(x)

⎤
⎦r(x) dx

⎫⎬
⎭

−1

.
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With the reparameterization θ1 = μ/σ 2, θ2 = −1/
(
2σ 2

)
, the pdf’s of the family of normal

distributions can be written as

f
(
x; θ1, θ2

) = c
(
θ
)

exp
[
θ1x + θ2x2

]
.

Proposition 2.2.11. The natural parameter space Θ∗ of a k-parameter exponential
family of distributions is a convex set in R

k; that is, if θ and θ ′ are in Θ∗ then αθ + (1 − α)θ ′∗
for all 0 ≤ α ≤ 1.

Proof. We shall use Hölder’s Inequality: if f and g are real-valued functions on R
n for

which
∫ |f |p and

∫ |g|q are finite for p > 1, q > 1 with 1/p + 1/q = 1, then
∫ |fg| ≤(∫ |f |p)1/p(∫ |g|q)1/q (see Section A.2).

To prove the proposition, let p = 1/α, q = 1/(1 − α) for 0 < α < 1, so that p and q are
larger than 1 with 1/p + 1/q = 1. Then by Hölder’s inequality,∫

exp
[〈θ , T (x)〉]r(x) dx < ∞ and

∫
exp

[〈θ ′, T (x)〉]r(x) dx < ∞

and hence ∫
exp

[〈αθ + (1 − α)θ ′, T (x)〉]r(x) dx

=
∫ {

exp
[
α〈θ , T (x)〉]rα(x)

}{
exp

[
(1 − α)〈θ ′, T (x)〉]r1−α (x)

}
dx

≤
[∫ {

exp
[
α〈θ , T (x)〉]rα(x)

}1/α dx
]α

×
[∫ {

exp
[
(1 − α)〈θ ′, T (x)〉]r1−α (x)

}1/(1−α)
dx

]1−α

=
[∫

exp
[〈θ , T (x)〉]r(x) dx

]α[∫
exp

[〈θ ′, T (x)〉]r(x) dx
]1−α

< ∞.

Exercises
2.1. A multiple choice exam consists of 20 questions, each with four possible answers

and carries four points. If a question is attempted, then the score is 4 for a correct
answer and 0 otherwise, while a score of 1 is awarded for a question which is not
attempted. A student knows the answers to eight questions, but has no idea about
six questions and is 50% sure about the answers of the other six questions. It takes
50 points to pass the exam. Find the probability of passing for each of the following
strategies and choose the best one.
(a) Answer the 8 sure ones and guess at random the answers of the other 12.
(b) Answer the 8 sure ones, choose the answers of the 6 that you are 50 sure about

and guess at random the other 6.
(c) Answer the 8 sure ones and do not answer the other 12.
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2.2. Samples from a large lot of manufactured items are being inspected to determine
whether the proportion of defectives p = 0.1 or less as claimed by the supplier. The
following sampling plan is under consideration:

Take a sample of 15 items and accept the lot if all are good, reject the lot if 2 or
more are defectives and take another sample of 15 items if there is 1 defective in the
sample. Accept the lot if all 15 in the second sample are good and reject the lot
otherwise.

Find the probabilities that this sampling plan will result in
(a) rejection of a lot with p = 0.1,
(b) acceptance of a lot with p = 0.15.

2.3. An insurance company writes automobile insurance policies in an area where 1 out
of 200 drivers causes accidents in a year according to past record. If the company
writes 500 policies, find
(a) the probability that there will be no more than two claims in a year,
(b) the expected amount of claims to be settled if the average claim is $1500.

2.4. On a certain segment of a freeway, accidents happen during the rush hour at the
rate of two per hour, following the Poisson distribution. Find the probabilities of
(a) at least one accident in an hour,
(b) if there was one accident in an hour, the accident occurred during the first half

hour.
2.5. A radioactive source emits particles at a rate of 0.4/s. Suppose that the number of

particles emitted per second is a Poisson rv.
(a) Find the probability that two or more particles will be emitted in 3 s.
(b) A counter registers an emitted particle with probability 0.75. What is the

probability that two or more particles will be registered on the counter in 3 s?
2.6. Three players A, B, and C will play a table tennis match. In each game, A defeats B

with probability 0.6, C defeats B with probability 0.6, and A and C are evenly
matched. First, A plays against B and the one who wins three games, plays against
C. Then the one who wins three games wins the match.
(a) Find the probability that A wins the first round and the probability that the first

round is settled in four games.
(b) Find the probabilities of A, B, and C winning the match and the probability that

the entire match is settled in nine games.
(c) Find the expected number of games to settle the match.

2.7. Find the moment generating function (mgf) of each of the following rv’s:
(a) X ∼ Poi(λ), (b) Y ∼ Geom(p), (c) T ∼ Exp(θ), (d) W ∼ Gamma

(
α, β

)
.

Also find the means and variances of these rv’s from their mgf’s.

2.8. Show that the pdf of Fk1,k2 =
(
χ2

k1
/k1

)
/
(
χ2

k2
/k2

)
where χ2

k1
and χ2

k2
are independent

chi-square rv’s with df’s k1 and k2, respectively, is as given in the text.
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2.9. As in Section 2.2.8, let χ2
k

(
δ2

)
and Fm,n

(
δ2

)
denote the noncentral χ2

k and Fm,n

rv’s with noncentrality parameter δ2. Show that for fixed c, k, m, n, P
[
χ2

k

(
δ2

) ≥ c
]

and P
[
Fm,n

(
δ2

) ≥ c
]

are increasing functions of δ2.
2.10. Verify the details of the proof of Proposition 2.2.8.

2.11. Let X1, . . . , Xn be independent N
(
0, σ 2

)
rv’s. Then Yn = (

X 2
1 + · · · + X 2

n
)1/2

is

distributed as σ

√
χ2

n . Find the pdf of Yn. [This distribution is called Raleigh
distribution for n = 2 and Maxwell distribution for n = 3.]

2.12. Let X1, X2 be independent N
(
0, σ 2

)
rv’s. Find the pdf’s of

Y1 = X1/X2, Y2 = X1/|X2|, Y3 = |X1|/|X2|.
2.13. Let V1, . . . , Vn+1 be independent Exp(1) rv’s and let Sk = V1 + · · · + Vk,

k = 1, . . . , n + 1. Let U(1) < · · · < U(n) be the order statistics in a random sample
(U1, . . . , Un) from Unif (0, 1).
(a) Show that the joint distribution of

(
U(1), . . . , U(n)

)
is the same as that of(

S1/Sn+1, . . . , Sn/Sn+1
)
.

(b) Use this result and Proposition 2.2.2 to find the pdf’s of
(i) U(k) and (ii) U(l) − U(k) for 1 ≤ k < l ≤ n.

2.14. Let X(1) < · · · < X(n) be the order statistics in a random sample (X1, . . . , Xn) from
Exp(1). Show that nX(1), (n − 1)

(
X(2) − X(1)

)
, (n − 2)

(
X(3) − X(2)

)
, . . . ,

(
X(n) − X(n−1)

)
are iid Exp(1).

2.15. (a) Show that if X has a continuous strictly increasing cdf F, then F(X) is Unif (0, 1).
(b) If T1, . . . , Tn are iid Exp(mean θ), then 2(T1 + · · · + Tn)/θ is χ2

2n.
(c) Let (Z1, Z2) = (

R cos θ , R sin θ
)

define a one-to-one map between (Z1, Z2) and
(R, θ). What is the joint distribution of (R, θ) when Z1, Z2 are independent
N(0, 1)?

(d) Let Z1, Z2 be independent N(0, 1) and let

X1 = a1 + b11Z1 + b12Z2, X2 = a2 + b21Z1 + b22Z2

Find the constants a1, a2, b11, b12, b21, b22 so that (X1, X2) follows a bivariate
normal distribution with mean vector (μ1, μ2) and covariance matrix[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

]
.

2.16. Suppose that you have a computer program to generate Unif (0, 1) rv’s U1, U2, . . ..
How would you use these rv’s to generate independent rv’s distributed as
(a) T ∼ Exp(1), (b) V ∼ χ2

10, (c) W ∼ Cauchy(0, 1), (d) Z ∼ N(0, 1),

(e) (X1, X2) ∼ N2(μ, Σ) where μ = (μ1, μ2) and Σ =
[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

]
Use the results in Exercise 2.15.
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2.17. Suppose that (X1, X2, X3) follows a 3-dim normal distribution with the mean vector
(μ1, μ2, μ3) and a positive definite covariance matrix Σ = ((

σij
))

. Let
X2·1 = X2 − E[X2|X1], X3·1 = X3 − E[X3|X1], and X3·12 = X3 − E[X3|X1, X2].
(a) Show that X1, X2·1 and X3·12 are mutually independent
(b) The partial correlation coefficient between X2, X3 given X1 is

ρ23·1 = Corr
[
X2·1, X3·1

] = Cov
[
X2·1, X3·1

]
√

Var
[
X2·1

]
Var

[
X3·1

]
Express ρ23·1 in terms of ρ12, ρ13 and ρ23 where ρij = Corr

[
Xi, Xj

]
.

(c) The multiple correlation of X3 on (X1, X2) is ρ3·12 = Corr[X3, E(X3|X1, X2)]. Show
that ρ3·12 ≥ 0 and Var[X3·12] = σ33

(
1 − ρ2

3·12

)
.

(d) Show that 1 − ρ2
3·12 = (

1 − ρ2
13

)(
1 − ρ2

23·1
)
.



3
Infinite Sequences of Random
Variables and Their Convergence
Properties

3.1 Introduction
Let T be a statistic based on the data consisting of rv’s X1, . . . , Xn. Most statistical methods
(such as estimation and hypothesis testing discussed in subsequent chapters) use a
statistic appropriate for the problem at hand. It is of interest to know how T behaves as we
have more and more data in order to understand the behavior of the procedures based on
T with large data sets. For a rigorous examination of this question, we need proper notation
for T based on (X1, . . . , Xn) as n → ∞ and the concept of how T behaves as n → ∞ should
be made more precise.

3.2 Modes of Convergence
Let T be a statistic based on the data consisting of rv’s X1, . . . , Xn. Most statistical methods
(such as estimation and hypothesis testing discussed in subsequent chapters) use a
statistic appropriate for the problem at hand. It is of interest to know how T behaves as we
have more and more data in order to understand the behavior of the procedures based on
T with large data sets. For a rigorous examination of this question, we need proper notation
for T based on (X1, . . . , Xn) as n → ∞ and the concept of how T behaves as n → ∞ should
be made more precise.

Definition 3.2.1. Let X1, . . . , Xn be iid rv’s with common cdf F ∈ F , where F is the class
of all cdf’s on R. Then the function

Fn(x) = n−1
n∑

i=1

I(−∞,x](Xi)

is called the empirical distribution function (edf).
Definition 3.2.2. Let T : F →R

k. Then T n = (Tn1, . . . , Tnk
) = T (Fn) is the k -dim statistic

T based on (X1, . . . , Xn), that is, T n = T (X1, . . . , Xn).
We now define various modes of convergence.

Theory and Methods of Statistics. http://dx.doi.org/10.1016/B978-0-12-802440-9.00003-5
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Definition 3.2.3. The various modes of convergence are defined as:

1. Convergence in Probability: Xn
P→ a if limn→∞ P[|Xn − a| > ε] = 0 for all ε > 0 and

Xn
P→ X if |Xn − X | P→ 0 , denoted by Xn = a + oP(1) and Xn = X + oP(1),

respectively.

2. Convergence in Law: Xn
L→ X if P[Xn ∈ A] → P[X ∈ A] for all A for which P[X ∈ ∂A] = 0

where ∂A is the boundary of A. For 1-dim rv’s, FXn (x) → FX (x) at all continuity points of
FX is enough.

3. Convergence in Quadratic Mean: Xn
q.m.→ a if E

[
(Xn − a)2]→ 0 and Xn

q.m.→ X if

E
[
(Xn − X)2]→ 0. More generally, Xn

r→ X if E
[|Xn − X |r]→ 0 for Xn, X such that

E
[|Xn|r] < ∞ and E

[|X |r] < ∞.
4. Bounded in Probability: {Xn} is bounded in probability, denoted by Xn = OP(1), if for

any ε > 0 there exists a positive constant Mε such that P[|Xn| ≤ Mε] > 1 − ε for all n.

5. Almost Sure Convergence: Xn
a.s.→ a if P

[
limn→∞ Xn = a

] = 1.
6. Uniform Integrability: {Xn} is uniformly integrable if

lim
k→∞

lim
n→∞E

[|Xn|I[k,∞)(|Xn|)] = 0.

Compare the stochastic order relations oP and OP with the usual order relations o and O
for sequence of real numbers:

1. If limn→∞ xn = 0, then xn = o(1).
2. If {xn} is bounded, then xn = O(1).

Extensions of the above definitions. Let {rn} be a sequence of real numbers. Then Xn =
oP(rn) iff Xn/rn = oP(1), Xn = OP(rn) iff Xn/rn = OP(1), xn = o(rn) iff xn/rn = o(1),
xn = O(rn) iff Xn/rn = O(1). For example, Xn = θ + OP

(
1/

√
n
)

iff
√

n(Xn − θ) = OP(1).
Convergence Properties of Sample Means of iid Random Variables and Random Vectors.

Suppose {Xn} is a sequence of iid rv’s and X̄n = n−1∑n
i=1 Xi.

Theorem 3.2.1 (Weak Law of Large Numbers (WLLN, Khinchine)). If E[X1] = μ exists,

then X̄n
P→ μ.

Theorem 3.2.2 (Central Limit Theorem (CLT, Lindeberg-Lévy)). If E[X1] = μ and
Var[X1] = σ 2 > 0 exist, then

√
n

X̄n − μ

σ

L→ Z ∼ N(0, 1).

Theorem 3.2.3 (Multivariate CLT). Let {Xi} be k-dim iid random vectors with mean μ

and covariance matrix Σ , then
√

n
(
X̄n − μ

) L→ Z ∼ Nk(0, Σ).

Theorem 3.2.4 (Strong Law of Large Numbers (SLLN, [6])). If E[X1] = μ exists, then

X̄n
a.s.→ μ.
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The proofs of Theorems 3.2.1–3.2.3 using characteristic functions, are given in
Section A.4.

Two proofs of Theorem 3.2.4 will be given in Section 3.3, one under a stronger condition
that X1 has a finite fourth moment and the other assuming finite variance.

We conclude this section with a number of basic facts which follow from the definitions
of various modes of convergence. We shall sketch the proofs of some of these, while the
proofs of others are left as exercises. These facts will be used in the sequel without further
explanation.

Theorem 3.2.5. The following are true.

I. Convergence in quadratic mean implies convergence in probability.

II. If Xn
P→ X and g is continuous, then g(Xn)

P→ g(X).

III. If Xn
L→ X and g is continuous (more generally, if P

[
X ∈ Dg

] = 0, where Dg is the set

of discontinuity points of g), then g(Xn)
L→ g(X).

IV. (a) Xn
L→ X implies Xn = OP(1).

(b) Xn
L→ 0 implies Xn = oP(1).

V. Xn
L→ X and Yn

P→ c implies Xn + Yn
L→ X + c, XnYn

L→ cX, and if c �= 0,

Xn/Yn
L→ X/c.

VI. (a) If Xn = OP(1) and Yn = oP(1), then XnYn = oP(1) and Xn + Yn = OP(1).
(b) If Xn = oP(1) and Yn = oP(1), then XnYn = oP(1) and Xn + Yn = oP(1).

VII. Slutsky’s Theorem: Xn
L→ X and Yn = oP(1) implies Xn + Yn

L→ X .
VIII. Polya’s Theorem: If Fn and F are cdf ’s, F is continuous, and Fn(x) → F(x) for all x,

then the convergence is uniform.

IX. Borel-Cantelli Lemma: If
∑∞

n=1 P[|Xn − a| > ε] < ∞ for all ε > 0, then Xn
a.s.→ a. (The

converse also holds under further conditions.)

X. (a) If Xn
a.s.→ a, then Xn

P→ a.

(b) If Xn
P→ a, then there exists a sequence

{
nj
}

such that the subsequence

Xnj

a.s.→ a.

Outlines of some proofs.

I. If E
[
(Xn − a)2]→ 0 as n → ∞ , then by Tchebyshev’s inequality (to be proved in the

next section), for any ε > 0,

P[|Xn − a| > ε] ≤ E
[|Xn − a|2]

ε2 → 0, as n → ∞.

II. (i) For δ > 0, there exists M > 0 such that P[|X | > M] ≤ δ.
(ii) For δ > 0, there exists a positive integer n(δ) such that P[|Xn − X | > ε] ≤ δ for all

n ≥ n(δ).
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(iii) By (i) and (ii), for δ > 0, there exist M > 0 and n(δ), so that for all n ≥ n(δ),

P[|X | ≤ M , |Xn − X | ≤ ε, |Xn| ≤ M + ε] ≥ 1 − 2δ,

(iv) g is continuous on R, so g is uniformly continuous on [−M − ε, M + ε].
Therefore, for ε1 > 0, there exists ε2 > 0, so that for x, x′ ∈ [M − ε, M + ε],
|x − x′| < ε2 implies |g(x) − g

(
x′)| < ε1.

(v) In (iii), choose ε = ε2 and choose δ accordingly. Then

P
[|g(Xn) − g(X)| < ε1

] ≥ 1 − 2δ for n ≥ n(δ).

III. The proof is in Section A.4.

IV. The proof of part (a) is in (iii) of II above. To prove part (b), note that Xn
L→ 0 means

Xn
L→ X where P[X = 0] = 1. Now taking A = (−ε, ε) in the definition of Xn

L→ X , we
have

P[|Xn| < ε] = P[Xn ∈ A] → P[X ∈ A] = P[|X | < ε] = 1.

V. For any constant a

P[Xn + Yn ≤ a] = P[Xn + Yn ≤ a, |Yn − c| ≤ ε] + P[Xn + Yn ≤ a, |Yn − c| > ε].

Hence as n → ∞,

P[Xn + Yn ≤ a] ≤ P[Xn ≤ a − c + ε] + P[|Yn − c| > ε] → P[X ≤ a − c + ε].

On the other hand

P[Xn + Yn ≤ a] ≥ P[Xn ≤ a − c − ε, |Yn − c| ≤ ε] + 0

≥ P[Xn ≤ a − c − ε] − P[|Yn − c| > ε]

→ P[X ≤ a − c + ε].

Thus for any ε > 0,

P[X ≤ a − c − ε] ≤ lim
n→∞ P[Xn + Yn ≤ a] ≤ P[X ≤ a − c + ε].

Hence

lim
n→∞ P[Xn + Yn ≤ a] = P[X ≤ a − c] = P[X + c ≤ a]

at all continuity points a of X + c. Hence Xn + Yn
L→ X + c.

VII. Slutsky’s Theorem is a special case of (V) for c = 0.
VIII. To prove Polya’s Theorem, choose x1 < · · · < xk such that F(x1) < ε/2,

1 − F
(
xk
)

< ε/2, and F
(
xi+1

)− F(xi) < ε/2, i = 1, . . . , k − 1. Now find N such that
|Fn(xi) − F(xi)| < ε/2, i = 1, . . . , k, for n ≥ N . The proof follows from these.

IX. Almost Sure Convergence
(

a.s.→
)

takes place in the context of infinite sequences

{Xn, n = 1, 2, . . .}. For this, the appropriate probability space is constructed by
extending the probability spaces of (X1, . . . , Xn), n = 1, 2, . . . in a suitable manner.
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Now limn→∞ Xn is to be thought of in the space (Ω ,F , P), where Ω is the space of all
infinite sequences ω = (x1, x2, . . .), F is a suitable σ -field consisting of all sets
Cn(Bn) = {ω: (x1, x2, . . .): (x1, . . . , xn) ∈ Bn}, n = 1, 2, . . . and all Borel sets Bn in R

n

with P
[
Cn(Bn)

] = P[(X1, . . . , Xn) ∈ Bn].

Almost sure convergence Xn
a.s.→ a has the following meaning in this space: for

every ε > 0 and for ω /∈ N where P[N] = 0, there exists n(ω, ε) such that
|Xn(ω) − a| < ε for all n ≥ n(ω, ε). If there is no such n(ω, ε), then the event
An(ε) = {ω: |Xn(ω) − a| ≥ ε} must occur infinity often (i.o.). Thus Xn

a.s.→ a, that is,
P
[
limn→∞ Xn = a

] = 1 if P
[
An(ε) i.o.

] = 0 for all ε > 0.
Now {An(ε) i.o.}c means that An(ε)c must occur for all n ≥ k, for some positive

integer k, that is,

{An(ε) i.o.}c =
∞⋃

k=1

∞⋂
n=k

Ac
n(ε), so

{An(ε) i.o.} =
⎡
⎣ ∞⋃

k=1

∞⋂
n=k

Ac
n(ε)

⎤
⎦

c

=
∞⋂

k=1

∞⋃
n=k

An(ε)

by De Morgan’s rule (Chapter 1). Since
{⋃∞

n=k An(ε)
}

is a decreasing sequence of sets,

P[|Xn − a| ≥ ε i.o.] = P[An(ε) i.o.] = lim
k→∞

P

⎡
⎣ ∞⋃

n=k

An(ε)

⎤
⎦ ≤ lim

k→∞

∞∑
n=k

P[An(ε)].

Hence
∑∞

n=1 P[|Xn − a| ≥ ε] =∑∞
n=1 P[An(ε)] < ∞ implies limk→∞

∑∞
n=k

P[An(ε)], so

P[|Xn − a| ≥ ε i.o.] = 0 for all ε > 0,

that is, Xn
a.s.→ a. This proves the direct part of Borel-Cantelli Lemma.

X(a). Note that Xn
a.s.→ a iff limk→∞ P

[⋃∞
n=k An(ε)

] = 0 for all ε > 0, which implies

limk→∞ P
[
Ak(ε)

] = limk→∞ P
[|Xk − a| ≥ ε

] = 0 for all ε > 0, that is, Xk
P→ a.

Algebra of oP, OP, o, and O. The properties (VIa, b) given above can be stated as:

OP(1) + oP(1) = OP(1), OP(1)oP(1) = oP(1),

oP(1) + oP(1) = oP(1), and oP(1)oP(1) = oP(1).

The following also hold

OP(1) + o(1) = OP(1), O(1) + oP(1) = OP(1), OP(1)o(1) = oP(1),

O(1)oP(1) = oP(1), oP(1) + o(1) = oP(1), and oP(1)o(1) = oP(1).
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Theorem 3.2.6 (Delta Method). Suppose that in R
k,

√
n(X n − μ)

L→ Z ∼ Nk(0, Σ) and
g: Rk → R has continuous first partial derivatives. Then

√
n
[
g(X n) − g(μ)

] L→ W ∼ N
(

0,
[∇g(μ)

]T
Σ
[∇g(μ)

])
.

The proof of this theorem is left as an exercise.
In many instances of asymptotic normality, the variance of the asymptotic normal

distribution is a function of its mean. This poses a problem in the construction of a large
sample confidence interval for the mean, which is the parameter of interest. In such cases,
it is convenient to make a transformation so that in the asymptotic distribution of the
transform, the variance is a constant. These are called variance-stabilizing transformations
of which some well-known examples are given below.

Example 3.2.1. If X is Poi(μ), then for large μ, (X − μ) is asymptotically N(0, μ). Here(√
X − √

μ
)

is asymptotically N
(
0, 1/4

)
.

Example 3.2.2. If X1, . . . , Xn are iid Bernoulli
(
p
)

and p̂n = n−1∑∞
i=1 Xi, then

√
n
(
p̂n − p

) L→ N
(
0, p
(
1 − p

))
. Here

√
n
(

arcsin
√

p̂n − arcsin
√

p
) L→ N

(
0, 1/4

)
.

Example 3.2.3. Let S2
n = (n − 1)−1∑∞

i=1

(
Xi − X̄n

)2
, where X1, . . . , Xn are iid N

(
μ, σ 2

)
.

Then
√

n
(
S2

n − σ 2
) L→ N

(
0, 2σ 4

)
. Here

√
n
(
log S2

n − log σ 2
) L→ N(0, 2).

Example 3.2.4. If (X1, Y1), . . . , (Xn, Yn) are iid bivariate normal with Corr[Xi, Yi] = ρ ∈
(−1, 1) and if rn is the sample correlation coefficient, then

√
n(rn − ρ)

L→ N
(

0,
(
1 − ρ2

)2)
.

Here
√

n
(

tanh−1 rn − tanh−1
ρ
) L→ N(0, 1)

(
recall that tanh−1 x = (1/2

)
log
[
(1 + x)/(1 − x)

])
.

Actually, using
√

n − 3
(

tanh−1 rn − tanh−1
ρ
)

as an asymptotically N(0, 1) rv for the

purpose of constructing confidence intervals for ρ results in a better approximation.

To prove these results, find a transformation g in each case, such that
√

n(Xn − μ)
L→

N
(
0, σ 2(μ)

)
leads to

√
n
[
g(Xn) − g(μ)

] L→ N
(

0,
{

g ′(μ)
}2

σ 2(μ)
)

, where
{

g ′(μ)
}2

σ 2(μ) is a
constant.

3.3 Probability Inequalities
In the previous section we have seen that the proofs of many “in probability” or “almost
sure” convergence results require good upper bounds for tail probabilities of deviations
of rv’s from their means, such P

[|X̄n − μ| ≥ a
]

where X̄n is the mean of iid X1, . . . , Xn with
mean μ. The following probability inequalities are useful for this purpose.

Theorem 3.3.1 (Markov Inequality). If X is an rv with P[X ≥ 0] = 1, then

P[X ≥ a] ≤ E[X ]
a

, for any a > 0.
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Proof. Note that for any a > 0, I[a,∞)(x) ≤ x/a and hence

P[X ≥ a] = E
[
I[a,∞)(X)

] ≤ E[X ]
a

.

(See Proposition 1.8.1(iii and vi).)
Tchebyshev’s Inequality. If X is an rv with mean μ and variance σ 2, then

P[|X − μ| ≥ t] ≤ σ 2

t2
, for any t > 0.

Proof. Using Markov’s inequality

P[|X − μ| ≥ t] = P
[
|X − μ|2 ≥ t2

]
≤ E

[|X − μ|2]
t2 = σ 2

t2 .

Generalization. It follows in the same way, that if X is an rv with mean μ and (2r)th central
moment μ2r = E

[|X − μ|2r
]
, then

P[|X − μ| ≥ t] ≤ μ2r

t2r
, for any t > 0.

Applications.

1. A simple proof of the WLLN assuming finite variance:
WLLN. If X̄n is the sample mean of iid rv’s X1, . . . , Xn with mean μ and finite variance
σ 2, then by Tchebyshev’s inequality

lim
n→∞ P

[|X̄n − μ| ≥ ε
] ≤ lim

n→∞
Var
[
X̄n
]

ε2 = lim
n→∞

σ 2

nε2 = 0.

2. A simple proof of the SLLN assuming finite fourth moment:
SLLN. If X̄n is the sample mean of iid rv’s X1, . . . , Xn with mean μ and finite fourth
central moment τ 4, then by generalized Tchebyshev’s inequality;

P
[|X̄n − μ| ≥ ε

] = P
[|Sn| ≥ nε

] ≤ E
[
S4

n
]

(nε)4 ,

where Sn =∑∞
i=1(Xi − μ) =∑∞

i=1 Yi, where Y1, . . . , Yn are iid with mean 0 and finite
fourth moment E

[
Y 4

i

] = τ 4. Therefore

E
[

S4
n

]
= E

[(
Sn−1 + Yn

)4] = E
[

S4
n−1

]
+ 6(n − 1)σ 4 + τ4 = · · ·

= E
[

S4
1

]
+ 6{1 + 2 + · · · + (n − 1)}σ 4 + (n − 1)τ4

= 3n(n − 1)σ 4 + nτ4.
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Thus

P
[|X̄n − μ| ≥ ε

] ≤ 3n(n − 1)σ 4 + nτ 4

(nε)4 <
3σ 4 + τ4

n2ε4 ,

so that
∞∑

n=1

P
[|X̄n − μ| ≥ ε

] ≤ 3σ 4 + τ4

ε4

∞∑
n=1

1
n2 < ∞,

and now X̄n
a.s.→ μ by the Borel-Cantelli Lemma.

This covers the case of many standard distributions where the SLLN holds. Another
proof of the SLLN, assuming only finite variance, will be given later in this section, using a
much stronger probability inequality.

We now obtain two more powerful inequalities which provide exponential bounds
for tail probabilities. Of these, the first holds for bounded rv’s and the second requires
some moment conditions, providing a sharper bound. However, the first inequality due
to Hoeffding has the advantage of simplicity and is very useful in many situations.

Theorem 3.3.2 (Hoeffding’s Inequality [7]). If X1, . . . , Xn are independent with
P[0 ≤ Xi ≤ 1] = 1 for all i, Sn = X1 + · · · + Xn, X̄n = Sn/n, and μ = E

[
X̄n
] = E

[
Sn
]
/n,

then for 0 ≤ t ≤ 1 − μ, P
[
X̄n − μ ≥ t

] ≤ e−2nt2
.

Proof. Note that

P
[
X̄n − μ ≥ t

] = P
[
Sn − nμ − nt ≥ 0

] = E
[
I[0,∞)

(
Sn − nμ − nt

)]
≤ E

[
eh(Sn−nμ−nt)

]
, for h > 0

= e−nh(μ+t)
n∏

i=1

E
[

ehXi
]

≤ e−nh(μ+t)
n∏

i=1

E
[(

1 − Xi
)
e0 + Xieh

]

= e−nh(μ+t)
n∏

i=1

[
1 − μi + μieh

]
≤ e−nh(μ+t)

⎡
⎣n−1

n∑
i=1

(
1 − μi + μieh

)⎤⎦
n

= e−nh(μ+t)
(

1 − μ + μeh
)n

= enL(h), with L
(
h
) = log

(
1 − μ + μeh

)
− h(μ + t),

using the convexity of ehx and because geometric mean is no larger than the arithmetic
mean. Next, we want to choose h > 0 so that L

(
h
)

< 0. This is possible because L′(0) = −t
and L′′(h) ≤ 1/4 for all h, as can be easily verified, so that

L
(
h
) = L(0) + hL′(0) + 1

2
h2L′′(h∗) = 0 − ht + 1

2
h2L′′(h∗)

≤ −ht + h2

8
= −2t2 for h = 4t.

Hence we get the inequality by taking h = 4t.
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Theorem 3.3.3 (Bernstein’s Inequality). If X1, . . . , Xn are independent with E[Xi] = 0,
E
[
X 2

i

] = bi, Bn = b1 + · · · + bn, and for r > 2,

E
[|Xi|r

] ≤ 1
2

r!bic
r−2, i = 1, . . . , n,

where c is a constant, then

P[|X1 + · · · + Xn| > t] ≤ 2 exp
[
− t2

2Bn + 2ct

]
.

Proof. For an outline of the proof, see Uspensky [8, p. 204–5].
Corollary. If P[|Xi| ≤ M] = 1, then for r > 2,

E
[|Xi|r

] = E
[

X 2
i |Xi|r−2

]
≤ biMr−2

<
biMr−2r!
2 · 3r−2 = 1

2
r!bi

(
M
3

)r−2
,

because r!/(2 · 3r−2
)

> 1. In Bernstein’s inequality we can now take c = M/3, resulting in

P[|X1 + · · · + Xn| > t] ≤ 2 exp
[
− t2

2Bn + 2Mt/3

]
.

In particular, if X1, . . . , Xn are iid Bernoulli
(
p
)
, then M = max

(
p, 1 − p

)
, and we have

P
[|X̄n − p| > t

] ≤ 2 exp

[
−1

2
· nt2

p
(
1 − p

)+ t
3 max

(
p, 1 − p

)
]

.

Finally we obtain two bounds for tail probabilities of the maximum of cumulative sums of
independent rv’s. For this reason, they are called maximal inequalities.

In what follows, X1, . . . , Xn, is a sequence of independent rv’s with E[Xi] = 0, E
[
X 2

i

] = σ 2
i ,

Sk = X1 + · · · + Xk, and ε > 0.
Theorem 3.3.4 (Kolmogorov’s Inequality).

P
[

max
1≤k≤n

|Sk| ≥ ε

]
≤ 1

ε2

∑
1≤k≤n

σ 2
k .

Proof. In the space of infinite sequences ω = (x1, x2, . . .), let A1 = {ω: |X1| ≥ ε} and
Ar
{
ω: |Sk| < ε, k = 1, . . . , r − 1, |Sr | ≥ ε

}
, for r ≥ 2, that is, Ar is the set of all ω for which

the cumulative sums S1, S2, . . . go beyond ±ε for the first time. Then A1, A2, . . . are mutually
exclusive and

{
ω: max

1≤k≤n
|Sk| ≥ ε

}
=

n⋃
k=1

Ak so P
[

max
1≤k≤n

|Sk| ≥ ε

]
=

n∑
k=1

P
[
Ak
]
.
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Now
n∑

k=1

σ 2
k = E

[(
X1 + · · · + Xn

)2] ≥
n∑

k=1

P
[
Ak
]
E
[(

X1 + · · · + Xn
)2|Ak

]

=
n∑

k=1

P
[
Ak
]⎧⎨⎩E

[(
X1 + · · · + Xk

)2|Ak

]
+ E

[(
Xk+1 + · · · + Xn

)2|Ak

]

+2
k∑

i=1

n∑
j=k+1

E
[

XiXj |Ak

]⎫⎬
⎭

≥
n∑

k=1

P
[
Ak
]{

ε2 + 0 + 0
}

= ε2
n∑

k=1

P
[
Ak
] = ε2P

[
max

1≤k≤n
|Sk| ≥ ε

]
.

Hence the inequality follows. In the above argument,

(i) E
[(

X1 + · · · + Xk
)2|Ak

]
≥ ε2 because Ak is defined that way, and

(ii) for 1 ≤ i ≤ k, k + 1 ≤ j ≤ n,

E
[

XiXj

∣∣∣Ak

]
= E

[
E
(

XiXj

∣∣∣X1, . . . , Xk

)∣∣∣Ak

]
= E

[
XiE
(

Xj

∣∣∣X1, . . . , Xk

)∣∣∣Ak

]
= E

[
XiE
(

Xj

)∣∣∣Ak

]
= 0,

since the Xi’s are independent and E
(
Xj
) = 0.

Remark 3.3.1. In this proof, independence is used only in (ii) which holds more
generally, so long as E

[
Xj|X1, . . . , Xk

] = 0 for j ≥ k + 1. Let Fk be the σ -field generated
by X1, . . . , Xk. Then F1 ⊂ F2 ⊂ · · · and E

[
Sj|Fk

] = Sk for j ≥ k + 1. This property of(
Sk,Fk

)
1≤k<∞ is called the martingale property, which is enough for this theorem (see

[9, p. 105]).
Theorem 3.3.5 (Hájek-Rényi Inequality). Let c1, c2, . . . be a nonincreasing sequence of

positive numbers. Then for any two positive integers m < n,

P
[

max
m≤k≤n

ck|Sk| ≥ ε

]
≤ 1

ε2

⎡
⎣c2

m

m∑
k=1

σ 2
k +

n∑
k=m+1

c2
kσ 2

k

⎤
⎦.

(For m = 1 and c1 = · · · = cn, this reduces to the Kolmogorov inequality.)
Proof. Generalizing the definition of {Ak} in the proof of the Kolmogorov inequality, let

Am = {ω: cm|Sm| ≥ ε} and Ar
{
ω: ck|Sk| < ε, m ≤ k ≤ r − 1, cr|Sr | ≥ ε

}
for r ≥ m + 1, and as a generalization of (X1 + · · · + Xn)2, let

Z =
n−1∑
k=m

(
c2

k − c2
k+1

)
S2

k + c2
n.
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Then

E[Z] =
n−1∑
k=m

(
c2

k − c2
k+1

)(
σ 2

1 + · · · + σ 2
k

)
+ c2

n

(
σ 2

1 + · · · + σ 2
n

)

=
n−1∑
k=m

c2
k

k∑
j=1

σ 2
j −

n∑
k=m+1

c2
k

k−1∑
j=1

σ 2
j + c2

n

n∑
j=1

σ 2
j

=
⎧⎨
⎩c2

m

m∑
j=1

σ 2
j +

n−1∑
k=m+1

c2
k

k∑
j=1

σ 2
j

⎫⎬
⎭−

⎧⎨
⎩

n−1∑
k=m+1

c2
k

k−1∑
j=1

σ 2
j + c2

n

n−1∑
j=1

σ 2
j

⎫⎬
⎭

+ c2
n

n∑
j=1

σ 2
j

= c2
m

m∑
k=1

σ 2
k +

n∑
k=m+1

c2
kσ 2

k , and

P
[

max
m≤k≤n

ck|Sk| ≥ ε

]
=

n∑
k=m

P
[
Ak
]
.

We now proceed as in the previous proof:

c2
m

m∑
k=1

σ 2
k +

n∑
k=m+1

c2
kσ 2

k = E[Z] ≥
n∑

k=m

P
[
Ak
]
E
[
Z|Ak

]

=
n∑

k=m

P
[
Ak
]
E

⎡
⎣n−1∑

j=m

(
c2

j − c2
j+1

)
S2

j + c2
nS2

n|Ak

⎤
⎦

≥
n∑

k=m

P
[
Ak
]
E

⎡
⎣n−1∑

j=k

(
c2

j − c2
j+1

)⎧⎨
⎩S2

k +
(

Sj − Sk

)2 + 2
k∑

r=1

j∑
s=k+1

XrXs

⎫⎬
⎭

+ c2
n

⎧⎨
⎩S2

k + (Sn − Sk
)2 + 2

k∑
r=1

n∑
s=k+1

XrXs

⎫⎬
⎭
∣∣∣∣∣∣Ak

⎤
⎦

≥
n∑

k=m

P
[
Ak
]⎡⎣n−1∑

j=k

(
c2

j − c2
j+1

) ε2

c2
k

+ c2
nε2

c2
k

⎤
⎦

= ε2
n∑

k=m

P
[
Ak
] = ε2P

[
max

m≤k≤n
ck|Sk| ≥ ε

]
.

Application of Hájek-Rényi Inequality. A simple proof of the SLLN assuming finite variance
is given here. Using the notations used in the above proof we see that for ck = 1/k, ck|Sk| =
|X̄k|. Hence by the H-R inequality,
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P
[

max
k≥m

|X̄k | = max
k≥m

ck|Sk | ≥ ε

]
= lim

n→∞ P
[

max
m≤k≤n

ck|Sk| ≥ ε

]

≤ lim
n→∞

1

ε2

⎡
⎣c2

m

m∑
k=1

σ 2
k +

n∑
k=m+1

c2
kσ 2

k

⎤
⎦

= 1

ε2

⎡
⎣c2

m

m∑
k=1

σ 2
k +

∞∑
k=m+1

c2
kσ 2

k

⎤
⎦

= 1

ε2

⎡
⎣m−2

m∑
k=1

σ 2
k +

∞∑
k=m+1

σ 2
k

k2

⎤
⎦.

Now suppose that E
[
X 2

k

] = σ 2 for all k, that is, X1, X2, . . . have finite variance σ 2. Then

lim
m→∞

⎡
⎣m−2

m∑
k=1

σ 2
k +

∞∑
k=m+1

σ 2
k

k2

⎤
⎦ = lim

m→∞ σ 2

⎡
⎣ m

m2 +
∞∑

k=m+1

1
k2

⎤
⎦ = 0.

Hence limm→∞ P
[
maxk≥m |X̄k| ≥ ε

] = 0.
But the events {

ω: max
k≥m

|X̄k| ≥ ε

}
=

∞⋃
k=m

{
ω: |X̄k| ≥ ε

} =
∞⋃

k=m

Bk(ε)

are nonincreasing as m increases. Therefore

0 = lim
m→∞ P

[
max
k≥m

|X̄k | ≥ ε

]
= P

⎡
⎣ ∞⋂

m=1

∞⋃
k=m

Bk(ε)

⎤
⎦

= P
[
Bk(ε) i.o.

] = P
[|X̄k | ≥ ε i.o.

] = P
[
X̄k � 0

]
.

Thus X̄k
a.s.→ 0 if {Xk} is a sequence of independent rv’s with mean 0 and finite

variance σ 2.

3.4 Asymptotic Normality: The Central Limit Theorem
and Its Generalizations

The basic Lindeberg-Lévy CLT has been stated in Theorem 3.2.2 and its proof, using
characteristic functions is given in Section A.4. The Lindeberg-Lévy CLT is restricted to
sample means of iid rv’s with finite variance. However, in statistical inference based on
large samples, we often have to deal with sample means of independent but nonidentically
distributed rv’s and in some situations, even the distribution of the n independent rv’s
changes from one n to another, as well as the sample size n. In the following, we state
two generalizations of Theorem 3.2.2 without proof which address theses generalities.
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Theorem 3.4.1 (Lindeberg-Feller Theorem). Let X1, X2, . . . be independent rv’s with
E[Xi] = μi, Var[Xi] = σ 2

i < ∞, and suppose B2
n = σ 2

1 + · · ·+σ 2
n satisfies limn→∞ Bn = ∞ and

limn→∞
(
σ 2

n/B2
n
) = 0. Then

B−1
n

n∑
i=1

(
Xi − μi

) L→ Z ∼ N(0, 1) iff

lim
n→∞ B−2

n

n∑
i=1

E
[

I(εBn,∞)
(|Xi − μi|

)(
Xi − μi

)2] = 0 for all ε > 0.

Triangular Arrays. Here we think of a double array of rv’s in which each row consists of
independent rv’s

{(
X11, . . . , X1k1

)
,
(
X21, . . . , X2k2

)
, . . . ,

(
Xn1, . . . , Xnkn

)
, . . .

}

with E[Xni] = μni, Var(Xni) = σ 2
ni < ∞, and B2

n = σ 2
n1 + · · · + σ 2

nkn
.

Theorem 3.4.2 (Lindeberg-Liapounov Theorem). The Lindeberg condition

lim
n→∞ B−2

n

kn∑
i=1

E
[

I(εBn,∞)(|Xni − μni|)(Xni − μni)
2
]

= 0 for all ε > 0

implies B−1
n
∑

1≤i≤kn
(Xni − μni)

L→ Z ∼ N(0, 1). The above convergence in law is also
implied by the Liapounov condition

lim
n→∞

ρ3
n

B3
n

= 0, where ρ3
n =

kn∑
i=1

E
[
|Xni − μni|3

]
< ∞ and B3

n =
⎛
⎝ kn∑

i=1

σ 2
ni

⎞
⎠

3/2

.

Finally, we state another generalization of Theorem 3.2.2 for sequences of rv’s with
limited dependence.

Definition 3.4.1. A sequence of rv’s {X1, X2, . . .} is said to be m-dependent if (X1, . . . , Xr)
is independent of

(
Xs, Xs+1, . . .

)
whenever s − r > m.

Let Ai = 2
∑m−1

j=0 Cov
[
Xi+j, Xi+m

]+ Var
[
Xi+m

]
.

Theorem 3.4.3 (Hoeffding and Robbins [10]). If for an m dependent sequence {Xi} with
E[Xi] = 0, Var

[|Xi|3
] ≤ K < ∞, and limr→∞ r−1∑r

j=1 Ai+j = A > 0 exists uniformly for all i,

then n−1/2∑n
i=1 Xi

L→ N(0, A).
In particular, if {Xi} is stationary m-dependent sequence with E[Xi] = μ, E

[|Xi|3
]

< ∞
and A = Var[X1] + 2

∑m+1
i=2 Cov[X1, Xi] > 0, then

√
n
(
X̄n − μ

) L→ N(0, A).
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Exercises
For all the problems below, when there are observations X1, . . . , Xn, it is understood that

X̄n = n−1
n∑

i=1

Xi, s2
n = (n − 1)−1

n∑
i=1

(
Xi − X̄n

)2,

Xn:1 = min
(
X1, . . . , Xn

)
, Xn:n = max

(
X1, . . . , Xn

)
.

3.1. Prove VI(a,b) of Theorem 3.2.5.
3.2. Prove X(b) of Theorem 3.2.5.
3.3. Prove Theorem 3.2.6, the Delta Method.
3.4. Prove the results stated in the examples on applications of the Delta Method.
3.5. Let X1, . . . , Xn be iid with E[Xi] = μ �= 0 , Var[Xi] = σ 2 and E

[
X 4

i

]
< ∞. Find the

asymptotic distribution of
√

n
(
sn/X̄n − σ/μ

)
as n → ∞.

3.6. Let Bm,n denote a Beta(m, n) rv. Show that if m, n → ∞ in such a way that
m/(m + n) → α ∈ (0, 1), then

√
m + n

(
Bm,n − m/(m + n)

)
/
√

α(1 − α) converges in
distribution to Z ∼ N(0, 1). [First show that if X1, . . . , Xm, Y1, . . . , Yn are iid Exp(1),

then Rm,n
(
1 + Rm,n

)−1 D= Bm,n, where Rm,n = (mX̄m
)
/
(
nȲn

)
.]

3.7. Let {Xi} be a sequence of rv’s with E[Xi] = 0, Var1Xi] = 1 and Cov
[
Xi, Xj

] = 0 for

|i − j| ≥ k, where k is a fixed positive integer. Show that X̄n
P→ 0.

3.8. Let {Xn} be a sequence of rv’s’ with E[Xn] = μn and Var[Xn] = σ 2
n . Show that if

μn → 0 and σ 2
n → 0 as n → ∞, then Xn

P→ 0.
3.9. Let {Xn} be a sequence of rv’s such that Xn is distributed as Z with probability pn

and as σnZ with probability 1 − pn where Z ∼ N(0, 1), pn → p ∈ [0, 1] and σn → ∞.

(a) Show that Xn
L→ X if and only if p = 1 . What is the distribution of X?

(b) limn→∞ Var[Xn] is not necessarily the same as Var[X ]. Find the possible values
of limn→∞ Var[Xn].

3.10. Let {(xni, Yni), i = 1, . . . , n}∞n=1 be a triangular array following a simple linear
regression model Yni = α + βxni + Zni, where Zn1, . . . , Znn are iid with mean 0 and
variance σ 2. Assume that the common distribution of Zni’s is the same for all n. Let

β̂n =
n∑

i=1

(
xni − x̄n

)
Yni

/
n∑

i=1

(
xni − x̄n

)2, x̄n = n−1
n∑

i=1

xni

denote the least squares estimator of β. Use Lindeberg’s condition to establish the

asymptotic normality of
√

n
(
β̂n − β

)
, making appropriate assumptions on {xni}.



4
Basic Concepts of
Statistical Inference

4.1 Population and Random Samples
The term “Statistics” is commonly used as a synonym for data, but “Statistical Infer-
ence” is the science of analyzing data to probe into where the data came from. The
data is a “sample” and where the data came from is the “population” having some
unknown characteristics in which we are interested. The sample has to be a “random
sample” for the sake of objectivity and thus randomness brings probability into the
picture.

A population can be thought of as a concrete, finite collection, such as individuals in
a city, from which a random sample is drawn and some characteristic of each of these
individuals, such as opinion on a certain issue, or income, etc., is recorded. This is the
data, from which a summary measure of the characteristic in the entire population must
be inferred. This is the framework of Survey Sampling.

Here, on the other hand, we think of a population consisting of observations on the
outcomes of infinite repetitions of an experiment, such as survival times of cancer patients
on a certain drug, or the number of defective items in lots of N items coming out of a
production line, or the number of accidents during certain hours on a particular stretch
of a freeway. Clearly, these observations vary from one experiment to another and they
vary in a random manner. The collection of possible outcomes of such an experiment
is a probability space

(
S,A, P

)
and the observation on an outcome, X = X(s) is a

random variable or more generally, a random vector. From n independent repetitions
of such an experiment, we observe independent random variables X1, . . . , Xn. This is
the data.

The probability distribution of X should be denoted by PX in strict notation (to
distinguish it from the set function P: A → [0, 1] in the basic probability space), defined as
PX [(−∞, a]] = P[{s: X(s) ≤ a}] and more generally by PX [B] = P[{s: X(s) ∈ B}] for all Borel
sets in R. However, to keep the notation simple, we shall use P instead of PX to denote the
probability distribution of X when there is no chance of confusion. These notations will
extend to the case of multidimensional rv’s in an obvious manner. We can now say that
our observations X1, X2, . . . are independent rv’s with common probability distribution P
which is an unknown element of a family of distributions P.

Theory and Methods of Statistics. http://dx.doi.org/10.1016/B978-0-12-802440-9.00004-7
Copyright © 2016 Elsevier Inc. All rights reserved.
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4.2 Parametric and Nonparametric Models
Instead of leaving the family P wide open, we shall assume that P is either a parametric
family

P = {
Pθ , θ ∈ Θ},

where θ = (θ1, . . . , θk) is a k-dim parameter vector belonging to the parameter spaceΘ and
Pθ is known for any given θ ∈ Θ, or a nonparametric family P whose members cannot be
identified by a finite number of parameters.

Examples of parametric family are

P(i) Bernoulli (θ), 0 < θ < 1,
P(ii) Poisson (λ), λ > 0,
P(iii) Normal

(
μ, σ 2

)
, −∞ < μ < ∞ and σ 2 > 0,

P(iv) Gamma
(
α,β

)
, α > 0 and β > 0,

P(v) Linear Regression Model
(
α,β, σ 2

)
, etc.

The families P(i)–P(iv) have been discussed in Chapter 2 and P(v) has been introduced
in Chapter 1, Section 1.10. In P(v), the distributions of X and ε are not fully specified, but
we still can do a lot within the model as it is and much more conditionally given X = x if
ε ∼ N

(
0, σ 2

)
.

Examples of nonparametric family are

NP(i) All probability distributions on the real line.
NP(ii) All probability distributions on the real line with pdf’s satisfying some smoothness

conditions.
NP(iii) The family described in NP(ii) with the further restriction that the pdf’s are

symmetric about some θ ∈ R.
NP(iv) All probability distribution of X1 and X2 on the real line which are independent

and

fX2 (x) = fX1 (x − θ) for all x and for some θ ∈ R.

NP(v) All probability distributions of
(
X1, . . . , Xk, Y

)
on R

k+1 with fX1,...,Xk and
m
(
x1, . . . , xk

) = E[Y |X = x], satisfying some smoothness conditions.

4.3 Problems of Statistical Inference
Based on observed data consisting of random samples (X1, . . . , Xn) or

(
X11, . . . , X1n1;

X21, . . . , X2n2

)
or ((X1, Y1), . . . , (Xn, Yn)), etc., from an unknown probability distribution

P ∈ P in a parametric or nonparametric model, we have to make inference about some
unknown features of P. The three main types of inference that the statistical science has
been concerned with from its very inception are Point Estimation, Hypothesis Testing, and
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Confidence Sets. We briefly describe these three types here by means of some examples
before taking them up in more details in subsequent chapters.

Point Estimation

Here we want to make a guess about a function g(θ) of the unknown θ ∈ Θ in a parametric
model, or construct a pdf or a regression function with prescribed properties as our guess
for an unknown pdf f or an unknown regression function m in a nonparametric model.
In a parametric model, we may want to estimate the mean λ of a Poisson distribution or
the slope β of a linear regression function or P[X ≤ a] of X distributed as N

(
μ, σ 2

)
.

Hypothesis Testing

In a parametric model, this involves deciding whether θ ∈ Θ0 or θ ∈ Θ1 where Θ0 and Θ1

are disjoint sets in the parameter space Θ, such as deciding in the context of N
(
μ, σ 2

)
with

σ 2 known or unknown, whether μ ≤ 0 or μ > 0. We call H0: θ ∈ Θ0 the null hypothesis
which we are inclined to believe unless the data provides significant evidence in favor
of H1: θ ∈ Θ1 which we call the alternative hypothesis. So there is an asymmetry in this
problem due to our attitude toward H0 and H1. For this reason, this is a problem of testing
H0 against H1. An example in a nonparametric model is to decide whether or not θ = 0 (ie,
testing H0: θ = 0 against H1: θ �= 0) in the nonparametric family NP(iv).

Confidence Sets

Unlike point estimation, here we want to construct a set in the parameter space to which
we guess the unknown θ to belong. In a parametric model, this may be an interval which
includes the mean μ of a normal distribution N

(
μ, σ 2

)
with σ 2 known or unknown, while

in a nonparametric model this may be a band in which we guess that an unknown cdf F
belongs.

These three problems will be treated in Chapters 5 and 6 within parametric families and
in Chapter 8 within nonparametric families.

4.4 Statistical Decision Functions
Problems of statistical inference in a parametric model such as Point Estimation, Hypothe-
sis Testing, and many others can be fitted in a general framework of decision making based
on a random sample X from (X,B, Pθ ) with unknown θ ∈ Θ. The decision consists of taking
an action a ∈ A, where A is the set of available actions which we call the action space. This
action has to be a function of the observed value x of X . We call this function a Decision
Function or Decision Rule:

d: X → A with d(x) = a ∈ A when X = x.
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Now there are good decisions and bad decisions for any given θ ∈ Θ, and for making
a bad decision one has to pay a penalty, or take a loss, which is the consequence of taking
the action a = d(x) when the observed value x of X was generated from Pθ . This leads
to the definition of a Loss Function: L: Θ × A → R with L(θ , a) := loss due to action a
when θ is the true value of the parameter. Then for X = x, L

(
θ , d(x)

) = loss due to action
d(x) when X = x is generated by P(θ).

Since the data is the rv X , we should be thinking of the loss as an rv L
(
θ , d(X)

)
where

X ∼ Pθ . Note that the θ in Pθ and the θ in L
(
θ , d(X)

)
is the same unknown element ofΘ (ie,

the true value of the parameter).
A statistical decision problem is thus described by the triple ({Pθ : θ ∈ Θ}, A, L), and the

overall performance of a decision function d is measured by its risk

R
(
θ , d

) = Eθ
[
L
(
θ , d(X)

)]
=
{∫

X L
(
θ , d(x)

)
f (x, θ) dx in the continuous case,∑

x∈X L
(
θ , d(x)

)
f (x, θ) in the discrete case,

assuming that the
∫

or the
∑

defining R
(
θ , d

)
exists. This holds if X is finite and more

generally, if L(·, ·) is bounded below, although the
∫

or the
∑

may be +∞.
Definition 4.4.1. The function R

(·, d
)

is called the risk function of the decision rule d.
Ideally, we should be using a decision rule d∗ for which R

(
θ , d∗) ≤ R

(
θ , d

)
, for all θ ∈ Θ

and for all decision rules d.
Unfortunately, such a decision rule does not exist (except in some trivial cases). This is

illustrated by the following examples. Before introducing these examples, we enlarge the
class of decision rules by allowing randomization over a ∈ A for each x.

Definition 4.4.2. A behavioral decision rule δ consists of a probability distribution
δ(·|x): C → [0, 1] for each x ∈ X, where C is a σ -field of subsets of the action space A.

If A is countable, then C could be the class of all subsets of A. For A = R
k or some subsets

of Rk, C could be the Borel sets and δ(·|x) would have a density. The risk of a behavioral
decision rule δ(·|x) is given by:

R(θ , δ) =
∫
X

∫
A

L(θ , a) dδ(a|x)f (x, θ) dx,

where
∫

A L(θ , a) dδ(a|x) = ∑
a∈A L(θ , a)δ(a|x) if A is countable and
∫

A
L(θ , a) dδ(a|x) =

∫
A

L(θ , a)p(a|x) da

when A = R
k is some subset of Rk, p(·|x) being the pdf of δ(·|x).

Example 4.4.1. Estimating a Bernoulli parameter.
Let X1, . . . , Xn be iid with

Pθ
(
Xi = x

) = θx(1 − θ)1−x, x = 0, 1

A = [0, 1] = Θ , L(θ , a) = (θ − a)2.
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This defines a statistical decision problem, which is the problem of estimating θ under
squared-error loss. Consider a class of estimators (ie, functions of the data taking values
in Θ) denoted by dγ (x) = γ x̄, 0 ≤ γ ≤ 1, where x̄ = n−1 ∑n

i=1 xi. The usual estimator
d1(x) = x̄ belongs to this class. Is there an estimator dγ ∗(x) in this class which is better than
all others?

Solution. Note that

R
(
θ , dγ

) = Eθ
[(
γ X̄ − θ

)2] = Varθ
[
γ X̄

]+ {
Eθ
[
γ X̄

]− θ
}2

= γ 2θ(1 − θ)
n

+ (
γ − 1

)2
θ2.

So R
(
θ , dγ

)
/R
(
θ , d1

) = γ 2 + nθ
(
1 − γ

)2
/(1 − θ), which is >, =, or < 1 according as θ >, =,

or <
(
1 + γ

)
/
[
n
(
1 − γ

)+ (
1 + γ

)]
. For example, taking γ = 3/4, dγ is better or worse than

d1 according as θ < or > 7/(n + 7). This shows that there is no clear winner in the class of
dγ , 0 ≤ γ ≤ 1.

Example 4.4.2. Choosing between two values of θ .
Let X ∼ Pθ , Θ = {θ0, θ1}, A = {a0, a1} where ai is to choose θi as the true value of θ , and

let L(θ0, a0) = L(θ1, a1) = 0 and L(θ0, a1) = L(θ1, a0) = 1. A typical behavioral decision rule
is described by a function ϕ: X → [0, 1], so that

δϕ
(
a1|x) = ϕ(x) and δϕ

(
a0|x) = 1 − ϕ(x),

that is, δϕ chooses actions a1, a0 with probabilities ϕ(x) and 1 − ϕ(x), respectively. Is there
a best decision rule in this class?

Solution. The risk function of δϕ is given by

R
(
θ0, δϕ

) =
∫
X

[
L
(
θ0, a0

){1 − ϕ(x)} + L
(
θ0, a1

)
ϕ(x)

]
f
(
x, θ0

)
dx

= Eθ0 [ϕ(X)],

R
(
θ1, δϕ

) =
∫
X

[
L
(
θ1, a0

){1 − ϕ(x)} + L
(
θ1, a1

)
ϕ(x)

]
f
(
x, θ1

)
dx

= 1 − Eθ1 [ϕ(X)].

The risk set S = {(
R
(
θ0, δϕ

)
, R
(
θ1, δϕ

))
, ϕ: X → [0, 1]

}
has the following features:

(i) (0, 1) ∈ S corresponding to ϕ(x) ≡ 0.
(ii) (1, 0) ∈ S corresponding to ϕ(x) ≡ 1.

(iii) S is convex, because for any ϕ1, ϕ2, λϕ1 + (1 − λ)ϕ2 for 0 ≤ λ ≤ 1, has the property:(
R
(
θ0, δλϕ1+(1−λ)ϕ2

)
, R
(
θ1, δλϕ1+(1−λ)ϕ2

))
= λ

(
R
(
θ0, δϕ1

)
, R
(
θ1, δϕ1

))+ (1 − λ)
(
R
(
θ0, δϕ2

)
, R(θ1, δϕ2 )

)
.

(iv)
(
α,β

) ∈ S implies
(
1 − α, 1 − β

) ∈ S (ie, S is symmetric about
(
1/2, 1/2

)
). (To see this,

consider ψ = 1 − ϕ for any ϕ.)
(v) S can be shown to be closed. We omit the proof.
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Consider any two points on the lower boundary of S. Among the ϕ’s corresponding to
two such points, there is no clear winner. However, for any s ∈ S, the point s∗ on the lower
boundary which is on the vertical strip through s is decidedly better than s. For this reason,
it is enough to restrict our attention to the ϕ’s corresponding to the points on the lower
boundary of S.

4.5 Sufficient Statistics
Consider a problem of statistical inference in the framework of a parametric family with
pdf or pmf

{
f (x, θ), θ ∈ Θ} based on a random sample (X1, . . . , Xn). The unknown θ ∈ Θ,

which we want to estimate or test a hypothesis about, is of a finite dimension, often of only
one or two dimensions, while the number of observations in the sample, n, may be quite
large. Do we really need to carry all the n observations in the data in our search for a good
estimate or test or whatever else to decide about?

Definition 4.5.1. A function T : Xn → R of the sample observations is said to be a
statistic if

{(
x1, . . . , xn

)
: T
(
x1, . . . , xn

) ≤ a
} ∈ B

n for all a ∈ R,

where B
n is the class of all Borel sets in Xn. A vector T = (

T1, . . . , Tk
)

is said to be a k-dim
statistic.

If we could extract all the relevant information about θ in a fixed-dimensional statistic
T = T(X1, . . . , Xn), then we can concentrate our efforts in search of a good procedure
based on T without carrying the burden of the entire sample (X1, . . . , Xn). If we have such
a statistic, then it can rightly be called a Sufficient Statistic.

Definition 4.5.2. A statistic T = T(X1, . . . , Xn) is said to be sufficient for θ ∈ Θ in X if the
conditional distribution of X given T is independent of θ .

This means the following:
Discrete Case. Here the pmf of T is g(t, θ) = ∑

{x: T(x)=t} f (x, θ), and the conditional
distribution of X given T = t is given by

hθ (x|t) = Pθ [X = x, T = t]
Pθ [T = t]

=
{

f (x, θ)/g(t, θ) if T
(
x1, . . . , xn

) = t,
0 otherwise

for all t with g(t, θ) > 0. Sufficiency requires hθ (x|t) = h(x|t), independent of θ .
Continuous Case. For simplicity of notations, suppose θ ∈ R and let T = T(X1, . . . , Xn)

be a 1-dim statistic. (Generalization to higher dimension is routine.) Suppose that Ui =
Ui(X1, . . . , Xn), 1 ≤ i ≤ n − 1 is any collection of n − 1 other statistics such that
ϕ: (X1, . . . , Xn) ↔ (

T , U1, . . . , Un−1
)

is one-to-one with continuous first partials. Then the
joint pdf of

(
T , U1, . . . , Un−1

)
is
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f
(
ϕ−1(t, u1, . . . , un−1

)
, θ
)∣∣∣Jϕ(ϕ−1(t, u1, . . . , un−1

))∣∣∣−1
.

From this, the pdf of g(t, θ) of T is obtained by integrating out u1, . . . , un−1 and the
conditional pdf of

(
U1, . . . , Un−1

)
given T = t is

hθ
(
u1, . . . , un−1|t) =

f
(
ϕ−1(t, u1, . . . , un−1

)
, θ
)∣∣∣Jϕ(ϕ−1(t, u1, . . . , un−1

))∣∣∣−1

g(t, θ)
.

Sufficiency of T requires hθ
(
u1, . . . , un−1|t

)
to be independent of θ . Since Jϕ

(
ϕ−1(

t, u1, . . . , un−1
))

does not involve θ anyway, and since

f
(
ϕ−1(T(x), u1(x), . . . , un−1(x)

)
, θ
)

= f (x, θ),

hθ
(
u1, . . . , un−1|t

)
being independent of θ is equivalent to f (x, θ)/g

(
T(x), θ

)
being inde-

pendent of θ . Thus in both the discrete and continuous case, T is sufficient for θ in X if
f (x, θ)/g

(
T(x), θ

)
is independent of θ .

If T (x) = (
T1(x), . . . , Tk(x)

)
has the above property (using U1, . . . , Un−k to construct a

one-to-one map), then
(
T1, . . . , Tk

)
are jointly sufficient for θ , usually when θ = (

θ1, . . . , θk
)
.

Suppose T is sufficient for θ in X and let ψ be a real-valued function of X with
Eθ
[
ψ(X )

]
finite. Let U1, . . . , Un−1 be as described above, and ψ∗(T , U1, . . . , Un−1

) = ψ ◦
ϕ−1

(
T , U1, . . . , Un−1.

)
Then

Eθ
[
ψ(X )|T = t

] = Eθ
[
ψ∗(T , U1, . . . , Un−1

)|T = t
]

= Eθ
[
ψ∗(t, U1, . . . , Un−1

)|T = t
]

is independent of θ .
Now consider an arbitrary decision problem described by (Θ, A, L) in the context of

(X,B, {Pθ , θ ∈ Θ}). For simplicity of discussion, let X and A be countable and let δ(·|x) be
an arbitrary behavioral rule. Suppose T is sufficient for θ in X and let T = T(X) and
Xt = {x ∈ X: T(x) = t}. Then the risk of δ is

R(θ , δ) =
∑
x∈X

⎛
⎝∑

a∈A

L(θ , a)δ(a|x)

⎞
⎠f (x, θ)

=
∑
t∈T

∑
x∈Xt

⎛
⎝∑

a∈A

L(θ , a)δ(a|x)

⎞
⎠g(t, θ)h(x|t)

=
∑
t∈T

⎡
⎣∑

a∈A

L(θ , a)

⎛
⎝∑

x∈Xt

δ(a|x)h(x, t)

⎞
⎠
⎤
⎦g(t, θ)

=
∑
t∈T

⎛
⎝∑

a∈A

L(θ , a)δ∗(a|t)

⎞
⎠g(t, θ)

= R
(
θ , δ∗

)
,
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where δ∗ is defined by

δ∗(a|x) = δ∗(a|t) =
∑

x∈Xt

δ(a|x)h(x, t) for all x ∈ Xt ,

which depends on x only through T(x) and so we write δ∗(a|x) = δ∗(a|t). In other words,
δ∗(a|t) = E[δ(a|X )|T = t]. We thus have for arbitrary δ, an equivalent decision rule δ∗ which
uses the data x only through the summary provided by the statistic T . This justifies the term
sufficient statistic. In any decision problem, a sufficient statistic is used for data reduction
without losing anything that could be achieved by the full data. We now state and prove
the key theorem about sufficient statistic.

Theorem 4.5.1 (Factorization Theorem). A statistic T = T(X) is sufficient for θ in X iff
there exist functions g(t, θ) and h(x) so that

f (x, θ) = g
(
T(x), θ

)
h(x) for all x, θ ,

where for every fixed t = T(x), the function h(x) is independent of θ .
The proof follows from our discussion above.
Example 4.5.1. In Section 2.2.11 we defined an exponential family of distributions of X

without specifying X in which X takes its values. We now let X = (X1, . . . , Xn) be a random
sample from a k-parameter regular exponential family. Then

fX (x, θ) = {c(θ)}n exp

⎡
⎣ k∑

j=1

Qj(θ)
n∑

i=1

Tj
(
xi
)⎤⎦ n∏

i=1

r
(
xi
)
.

Thus
(
T1, . . . , Tk

) = ∑n
i=1

(
T1(xi), . . . , Tk(xi)

)
are jointly sufficient for θ in X .

4.6 Optimal Decision Rules
Definition 4.6.1. A decision rule δ1 is said to be (i) as good as δ2, (ii) better than δ2, or (iii)
equivalent to δ2, according as

(i) R(θ , δ1) ≤ R(θ , δ2) for all θ ∈ Θ,
(ii) R(θ , δ1) ≤ R(θ , δ2) for all θ ∈ Θ, with strict inequality for some θ ,
(iii) R(θ , δ1) = R(θ , δ2) for all θ ∈ Θ.

If there exists a decision rule δ0 which is as good as any other δ, then of course δ0 is optimal,
but typically, such a δ0 does not exist as seen in Examples 4.4.1 and 4.4.2. The concept of
optimality therefore needs adjustment. Two general approaches are taken for this purpose:

(a) restricting the class of decision rule to choose from, or
(b) ordering the decision rules in a less stringent manner.
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4.6.1 Restrictions Used in the Estimation Problem

Unbiasedness
Restrict attention to only those estimators θ̂ = d(X) of θ , which satisfies

Eθ
[
θ̂
]

= θ for all θ ∈ Θ .

In the example of estimating a Bernoulli parameter, all dγ with γ �= 1 are now ruled out. In
a large class of estimation problems with squared-error loss, there exists a best estimator
in the class of unbiased estimators. These are the uniformly minimum variance unbiased
estimators (UMVUE).

Equivariance
Suppose that f (x, θ) = g(x − θ) where g is a known pdf and we want to estimate θ , which
is called a location parameter, subject to L(θ , a) = (a − θ)2. If X1, . . . , Xn are iid with pdf
f (·, θ), then X1 +c, . . . , Xn +c are iid with pdf f (·, θ + c). Moreover, L(θ + c, a + c) = L(θ , a) =
(a − θ)2. Thus the problem of estimating θ + c from X1 + c, . . . , Xn + c is the same as that of
estimating θ from X1, . . . , Xn; that is, the problem of estimating a location parameter under
squared-error loss is invariant under location, that is, under the transformations

gc : X → X and its corresponding ḡc : Θ → Θ , c ∈ R,

defined by gc(x) = x+c and ḡc(θ) = θ+c. It is therefore reasonable to restrict our estimator
by the requirement: d(x1 + c, . . . , xn + c) = d(x1, . . . , xn) + c for all x, c. Such estimators
are called equivariant under location. Among equivariant estimators in this, and many
more general invariant problems, there exists a best estimator, known as minimum risk
equivariant estimator (MRE).

Optimal estimators under these restrictions will be discussed in Chapter 5.

4.6.2 Restriction Used in the Two-Decision Problem

As mentioned earlier, the two-decision problem is treated as a problem of testing a
hypothesis H0: θ ∈ Θ0 against H1: θ ∈ Θ1 by introducing an asymmetry between the
two hypotheses. We are inclined to accept H0 unless there is significant evidence provided
by the data to reject H0 in favor of H1. For this reason, we call H0 the null hypothesis and the
error in rejecting H0 when it is true is called a Type I error, while H1 is called the alternative
hypothesis and the error in accepting H0 when H0 is not true (ie, H1 is true) is called a Type
II error.

We illustrate the asymmetric nature of H0 and H1 by the following example. Suppose
for a certain disease there is a drug on the market with an effectiveness of p0 = 0.40
established over a long period of time. Now a new drug which claims to be better has been
shown to be effective in p̂1 = 0.45 in a clinical study based on n = 100 cases. To test the
validity of this claim, we have to choose between the actions:

a0 = {
p1 ≤ 0.40

}
and a1 = {

p1 > 0.40
}

,
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where p1 = the unknown effectiveness of the new drug. Here H0: p0 = 0.40 is based on
a long record, while H1: p1 > p0 = 0.40 needs to be substantiated by significant (ie,
overwhelming) evidence provided by the data in favor of H1. This is why H0 is called the
null hypothesis, giving it a special role, while H1 is called an alternative hypothesis which is
to be accepted only if the evidence provided by the data in its favor is significant enough.
Therefore, we want to control the probability, PH0

[
Reject H0

] ≤ α (preassigned) and with
that restriction, want to maximize PH1

[
Reject H0

]
. We now introduce the restrictions in the

two-decision problem.

Prescribed Type I Error Probability
Recall the discussion about the lower boundary of the risk set in Example 4.4.2. Here if we
require

R
(
θ0, δϕ

) = Eθ0 [ϕ(X)] = Pθ0

[
Decide θ = θ1

] = α,

where 0 < α < 1 is given, then we are restricted to a vertical strip in the risk set, and in
this restricted set, the ϕ∗ which corresponds to the point s∗ on the lower boundary in that
vertical strip is the best (ie, this ϕ∗ minimizes the Type II Error Probability R

(
θ1, δϕ

) = 1 −
Eθ1 [ϕ(X)] = Pθ1

[
Decide θ = θ0

]
subject to the requirement that the Type I Error Probability

R
(
θ0, δϕ

) = Pθ0

[
Decide θ = θ1

] = α).

Unbiased Tests
The problem of testing H0: θ ∈ Θ0 against H1: θ ∈ Θ1 where Θ0 and Θ1 are disjoint sets in
Θ is more complicated than testing H0: θ = θ0 against H1: θ = θ1. Here we restrict to those
δϕ for which

(i) supθ∈Θ0
Eθ [ϕ(X)] = α (these are tests of level α),

(ii) Eθ [ϕ(X)] ≥ α for all θ ∈ Θ1 (these are unbiased tests of level α),

and then among tests satisfying (i) and (ii) search for ϕ∗ in this class for which

(iii) Eθ
[
ϕ∗(X)

] ≥ Eθ [ϕ(X)], for all ϕ, and for all θ ∈ Θ1.

In many situations such a ϕ∗ exists and is called the Uniformly Most Powerful (UMP)
Unbiased level α test.

Note. If a test ϕ does not satisfy condition (ii) for unbiasedness, then Eθ1 [ϕ(X)] = α − ε

for some θ1 ∈ Θ1 and some ε > 0, while Eθ0 [ϕ(X)] > α−ε for some θ0 ∈ Θ0, so that ϕ rejects
H0 when θ = θ0 and H0 is true with a larger probability than when θ = θ1 and H0 is not
true. The condition of unbiasedness does not allow such undesirable decisions.

Optimum tests under these restrictions will be discussed in Chapter 6.

4.6.3 Suitable Ordering of Decision Rules

The stringent ordering by the entire risk function can be replaced by invoking other
principles of ordering. The following are two such important principles.
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The Bayes Principle
Let τ denote a probability distribution on the parameter space Θ. Actually, we should
introduce a suitable class of events C in Θ at this point, on which τ is defined, but when
Θ = R

k or a subset thereof (as in many situations), we shall simply use the events B

(introduced earlier) for this purpose. Moreover, with a slight abuse of notation, we shall
let τ denote the pdf of this distribution and define the Bayes risk of a behavioral decision
rule δ with respect to τ as:

r(τ , δ) =
∫
Θ

R(θ , δ)τ (θ) dθ

with R(θ , δ) as defined in Section 4.4.
Definition 4.6.2. The probability distribution τ is called the prior distribution of θ . A

decision rule δo is said to be Bayes with respect to the prior distribution τ if

r(τ , δo) = inf
δ

r(τ , δ).

There may be many Bayes rules with respect to a τ .
Sometimes it is useful to work with a function τ on Θ which is not a pdf and define

r(τ , δ) for such a τ in a formal way, and then minimize it with respect to δ.
Definition 4.6.3. A decision rule δ0 is said to be

(a) generalized Bayes if there exists τ (θ) ≥ 0 but
∫
Θ τ (θ) dθ = ∞ (ie, τ is not a pdf), and∫

Θ
R(θ , δo)τ (θ) dθ ≤

∫
Θ

R(θ , δ)τ (θ) dθ for all δ,

(b) ε-Bayes with respect to τ if r(τ , δ0) ≤ infδ r(τ , δ) + ε, ε > 0, and
(c) extended Bayes if δ0 is ε-Bayes for every ε > 0 (ie, for every ε > 0, there exists a prior

distribution τε such that δ0 is ε-Bayes with respect to τε).

The Minimax Principle
Definition 4.6.4. A decision rule δ0 is said to be minimax if

sup
θ

R
(
θ , δ0

) = inf
δ

sup
θ

R(θ , δ).

There may be many minimax rules.
The minimax principle summarizes the performance of each δ by supθ R(θ , δ) (ie, judges

a rule δ by its worst performance). A minimax rule may, therefore, have quite weak overall
performance.

Admissibility
Finally, we introduce another property of a decision rule which requires that it cannot be
improved upon.

Definition 4.6.5. A decision rule δ0 is said to be inadmissible if there is a rule δ1 which
is better than δ0 (ie, R(θ , δ1) ≤ R(θ , δ0) for all θ ∈ Θ with strict inequality for some θ ∈ Θ).
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A decision rule δ0 is said to be admissible if there is no decision rule that is better than
δ0, that is, for every rule δ, R(θ1, δ) < R(θ1, δ0) for some θ1 ∈ Θ implies that there exists
θ2 ∈ Θ such that R(θ2, δ) > R(θ2, δ0).

Admissibility is in no sense an indicator of high performance of a decision rule. It
merely says that there is none that is uniformly better. On the other hand, inadmissibility
indicates that there is a uniformly better rule that we may want to search for. However,
there are rules with many nice properties which are inadmissible. A prime example is
the sample mean vector X̄ n as an estimator of the mean vector of Np(μ, I) with the loss
function

L(μ, a) = ‖a − μ‖2 = (a − μ)T (a − μ)

for p ≥ 3, which is strictly improved upon by the shrinkage estimator

δc(X ) = X̄ n − p − 2

‖X̄ n − c‖2

(
X̄ n − c

)
, c ∈ Rp

due to Stein [11]. Unfortunately, δc is also inadmissible, because it can be improved upon
by (see [3, p. 302–3])

δ+
c (X ) = X̄ n − min

{
1,

p − 2

‖X̄ n − c‖2

}(
X̄ n − c

)
.

But δ+
c is also inadmissible.

4.6.4 Finding Bayes Rules: Prior to Posterior

The idea in the Bayes Principle is to judge a δ by its average performance with weights
assigned by τ , which reflects the likelihood of various values of θ in the statistician’s
assessment based on prior experience (before obtaining the data). The key step in the
calculation of the Bayes rules is to incorporate the data X = x in the prior distribution τ to
obtain the posterior distribution of θ , which is the continuous analog of the Bayes Formula
in Chapter 1, Proposition 1.6.1. Write f (x, θ) = f (x|θ), treating f (x, θ) as the conditional pdf
of X given θ . Then proceeding as in Section 1.10, we have

r
(
τ , d

) =
∫
Θ

[∫
X

L
(
θ , d(x)

)
f (x|θ) dx

]
τ (θ) dθ

=
∫
X

[∫
Θ

L
(
θ , d(x)

) f (x|θ)τ (θ)∫
Θ f (x|θ)τ (θ) dθ

dθ
](∫

Θ
f (x|θ)τ (θ) dθ

)
dx

=
∫
X

[∫
Θ

L
(
θ , d(x)

)
g(θ |x) dθ

]
f (x) dx

=
∫
X

E
[
L
(
θ , d(x)

)|X = x
]
f (x) dx,

where f (x) = ∫
Θ f (x|θ)τ (θ) dθ is the marginal pdf of X , and g(θ |x) = [

f (x|θ)τ (θ)
]
/∫

Θ
f (x|θ)τ (θ) dθ is the posterior pdf of θ given X = x. The minimization of r

(
τ , d

)
with

respect to d is achieved by choosing d(x) = d∗(x) ∈ A for each x so that
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E
[
L
(
θ , d∗(X)

)|X = x
] ≤ E[L(θ , a)|X = x] for all a ∈ A.

Interchanging the order of integration overΘ and X is justified if L(θ , a) is bounded below.
The case when X is discrete is treated in exactly the same way, replacing

∫
X dx by

∑
X.

Example 4.6.1. Estimating the mean of N
(
θ , σ 2

)
under squared-error loss.

Our data consists of X1, . . . , Xn iid as N
(
θ , σ 2

)
with σ 2 known, and Θ = A = R, L(θ , a) =

(a − θ)2. Since X̄n is sufficient for θ in X , it is enough to restrict attention to decision rules
based on X̄n having pdf

f
(
x̄n, θ

) =
√

n√
2πσ

exp
[
− n

2σ 2

(
x̄n − θ

)2
]

, ie, X̄n ∼ N

(
θ ,
σ 2

n

)
.

First consider the prior τ :

τ (θ) = 1√
2πγ

exp
[
− 1

2γ 2 (θ − μ)2
]

,

that is, θ ∼ N
(
μ, γ 2

)
, and X̄n|θ ∼ N

(
θ , σ

2

n

)
. Using the properties of bivariate normal

distribution (see Section 2.2.10), we have

θ |X̄n ∼ N
(

w1μ+ w2X̄n

w1 + w2
,

1
w1 + w2

)

as the posterior distribution, where w1 = 1/γ 2 and w2 = n/σ 2, that is, E
[
θ |X̄n

]
is the

weighted average of the mean μ of the prior and the sample mean X̄n with weights
inversely proportional to the variance of the prior distribution for θ and the conditional
variance of X̄n given θ for X̄n.

Remark 4.6.1.

1. This effect of the prior distribution on X̄n is called: “a shrinkage of the sample mean
toward the prior mean.”

2. On the other hand, we can also interpret this as “overcoming a prior belief by observed
data.”

3. Note that the weight 1/γ 2 attached to the prior remains fixed, but the weight n/σ 2

attached to X̄n keep increasing with n and 1/σ 2 determines the rate of increase. Thus a
bad prior cannot hurt much once the sample size gets large.

Finally, the Bayes estimator of θ under squared-error loss, using this prior is:

E
[
θ |X̄n

] = nγ 2X̄n + σ 2μ

nγ 2 + σ 2
.

For the special case of σ 2 = 1, n = 1, and μ = 0, E[θ |X ] = γ 2

1+γ 2 X .



82 THEORY AND METHODS OF STATISTICS

4.6.5 Solving for Minimax Rules

In this section we discuss two methods of finding minimax rules.
Definition 4.6.6. A prior distribution τ0 is said to be least favorable if

inf
δ

r
(
τ0, δ

) = sup
τ

inf
δ

r(τ , δ).

Next note that

V = sup
τ

inf
δ

r(τ , δ) ≤ inf
δ

sup
τ

r(τ , δ) = V ,

where V and V are, respectively, the lower and upper value of the statistical decision
problem which is viewed as a game between nature who chooses θ randomly according
to the distribution τ and the statistician who chooses a decision rule δ, resulting in a pay-
off by the statistician of the quantity r(τ , δ). Also note that

sup
θ

R(θ , δ) = sup
τ

r(τ , δ) for all δ.

We say that the game of a statistical decision problem has a value if V = V .
We now describe the first method for finding a minimax rule which involves guessing a

τ0 as least favorable, finding a rule δ0 which is Bayes with respect to τ0 and checking that δ0

is indeed minimax. The actual procedure is described in Theorem 4.6.1.
In many situations, our guess of the least favorable τ0 is not a pdf (ie,

∫
τ (θ) dθ = ∞),

in which case δ0 , which is formally Bayes with respect to τ0, is not really a Bayes rule. This
needs a modification of the above method, which is described in Theorem 4.6.2.

Theorem 4.6.1. If δ0 is Bayes with respect to τ0 and

R
(
θ , δ0

) ≤ r
(
τ0, δ0

)
for all θ ,

then δ0 is minimax and τ0 is least favorable.
Proof. Note that

V = inf
δ

sup
τ

r(τ , δ) = inf
δ

sup
θ

R(θ , δ) ≤ sup
θ

R
(
θ , δ0

) ≤ r
(
τ0, δ0

)
= inf

δ
r
(
τ0, δ

) ≤ sup
τ

inf
δ

r(τ , δ) = V .

Therefore, all inequalities are equalities and therefore,

inf
δ

r
(
τ0, δ

) = sup
τ

inf
δ

r(τ , δ),

that is, τ0 is least favorable, and

sup
θ

R
(
θ , δ0

) = inf
δ

sup
θ

R(θ , δ),

which proves that δ0 is minimax.
Theorem 4.6.2. Let {τn} be a sequence of distributions of θ and let δn be Bayes with respect

to τn. If

R
(
θ , δ0

) ≤ limnr(τn, δn) for all θ ,

then δ0 is minimax.
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Proof. For arbitrary δ and for all n,∫
R(θ , δ)τn(θ) dθ = r(τn, δ) ≥ r(τn, δn),

implying supθ R(θ , δ) ≥ r(τn, δn). Therefore, for all δ,

sup
θ

R(θ , δ) ≥ limnr(τn, δn) ≥ sup
θ

R
(
θ , δ0

)
,

proving that δ0 is minimax.
Remark 4.6.2. Often c = limn r(τn, δn) exists, in which case we simply have to check that

R(θ , δ0) ≤ c for all θ .
Definition 4.6.7. A decision rule is an equalizer rule if R(θ , δ0) is constant for all θ .
The second method of finding a minimax rule is to look for an equalizer rule that is

Bayes or extended Bayes.
Theorem 4.6.3. If an equalizer rule is extended Bayes, then it is minimax.
Proof. Since R(θ , δ0) = c (constant) for all θ , r(τ , δ0) = c for all τ , and since δ0 is extended

Bayes, there exists a sequence {τn} with Bayes rules {δn} such that

c = r
(
τn, δ0

) ≤ r(τn, δn) + 1/n for all n.

Hence for all θ ,

R
(
θ , δ0

) = c ≤ limnr(τn, δn).

It now follows from Theorem 4.6.2 that δ0 is minimax.

4.6.6 Conditions for Admissibility

The simplest (and obvious) condition for admissibility is the following.
Theorem 4.6.4. If δ0 is unique Bayes with respect to some τ , then δ0 is admissible.
Proof. Since δ0 is unique Bayes with respect to τ , r(τ , δ0) < r(τ , δ1) for all δ1 �= δ0. Hence

there exists θ for any δ1 �= δ0 such that R(θ , δ0) < R(θ , δ1).
The requirement of uniqueness in the above theorem can be dispensed with if the risk

function R(θ , δ) for every δ is continuous in θ and if the τ with respect to which δ0 is Bayes
has plenty of support.

Theorem 4.6.5. SupposeΘ is an interval in R, the risk function R(θ , δ) for every decision
rule δ is continuous in θ and τ is a probability distribution on Θ such that τ (I) > 0 for all
nondegenerate intervals I ⊂ Θ. Then a Bayes rule δ0 with respect to τ is admissible.

Proof. If δ0 is inadmissible, then there is a rule δ1 such that R(θ , δ1) ≤ R(θ , δ0) for all θ ∈
Θ, and R(θ0, δ1) < R(θ0, δ0) for some θ0 ∈ Θ. Since R(θ , δ0) and R(θ , δ1) are both continuous,
there exist ε > 0 and a neighborhood I of θ0 such that R(θ , δ0) − R(θ , δ1) > ε for all θ ∈ I .
Hence

r
(
τ , δ0

)− r
(
τ , δ1

) ≥
∫

I

[
R
(
θ , δ0

)− R
(
θ , δ1

)]
τ (θ) dθ > ετ (I) > 0,

contradicting the hypothesis of δ0 being Bayes with respect to τ .
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This theorem is now extended to cover some familiar situations where δ0 is extended
Bayes and has constant risk.

Theorem 4.6.6. Suppose that a decision rule δ0 satisfies the following conditions in
relation to a sequence of probability distributions {τn} on Θ ⊂ R with respect to which {δn}
are Bayes rules:

(i) R(θ , δ0) = c (constant) for all θ ,
(ii) limn r(τn, δn) = c,
(iii) R(θ , δ) is continuous in θ for all δ,
(iv) τn(I) > 0 for all nondegenerate intervals I ⊂ Θ , and
(v) limn τn(I)/[c − r(τn, δn)] = ∞.

Then δ0 is admissible.
Proof. Note that

c − r(τn, δn) = r
(
τn, δ0

)− r(τn, δn) ≥ 0 for all n.

If equality holds for some n, then δ0 is Bayes with respect to that τn which makes it
admissible by Theorem 4.6.5. Therefore, assume that c − r(τn, δn) > 0 for all n and suppose
that δ0 is inadmissible. Then there is a rule δ′ such that c = R(θ , δ0) ≥ R

(
θ , δ′

)
for all θ ∈ Θ,

and R(θ0, δ0) > R
(
θ0, δ′

)
for some θ0 ∈ Θ. We can now find ε > 0 and a neighborhood I of θ0

so that c − r
(
τn, δ′

)
> ετn(I) as in the proof of Theorem 4.6.5. Thus

c − r
(
τn, δ′

)
c − r(τn, δn)

>
ετn(I)

c − r(τn, δn)
> 1 for large n,

since by Condition (v), the middle quantity in the last display tends to ∞ as n → ∞. This
contradicts the hypothesis that δn is Bayes with respect to τn.

Theorems 4.6.5 and 4.6.6 depend on the key condition that the risk R(θ , δ) is continuous
in θ for all decision rules δ, so the applicability of these theorems depends on the
verification of this condition. The following theorem from Ferguson [1] serves that purpose
for one-parameter exponential families.

Theorem 4.6.7. LetΘ be the real line. Suppose that

(a) there exist nonnegative functions B1(θ1, θ2) and B2(θ1, θ2) bounded on compact sets of
Θ ×Θ such that

|L(θ2, a
)| ≤ B1

(
θ1, θ2

)|L(θ1, a
)| + B2

(
θ1, θ2

)
, for all a ∈ A;

(b) L(θ , a) is continuous in θ for each a ∈ A; and
(c) f (x, θ) = c(θ)h(x) exp

[
Q(θ)T(x)

]
where Q(θ) is a continuous increasing function.

Then for all nonrandomized decision rules d, the risk function R
(
θ , d

)
is continuous in θ .

Proof. See Ferguson [1, p. 139–40].
Other methods of proving admissibility have been developed by Hodges and Lehmann

[12], Karlin [13], and Stein [14].
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Example 4.6.2. An admissible minimax estimator of a Bernoulli proportion under
squared-error loss.

Let X be the number of successes in n independent Bernoulli trials with probability
of success θ . We want to estimate θ under squared-error loss from the data X . Here Θ =
[0, 1] = A and L(θ , a) = (a − θ)2.

Solution. We shall apply Theorem 4.6.3, looking for an equalizer rule which is Bayes.
This will give us a minimax rule. We look among Bayes rules with respect to τa,b =
Beta

(
a, b

)
, that is, Beta distributions with parameters a, b with pdf

τa,b(θ) = Γ
(
a + b

)
Γ (a)Γ

(
b
)θa−1(1 − θ)b−1I(0,1)(θ).

The Bayes rule with respect to τa,b is da,b(x) = (x + a)/
(
n + a + b

)
(the verification of which

is left as an exercise), with risk function

R
(
θ , da,b

) = Eθ
[
da,b(X) − θ

]2 = Varθ
[
da,b(X)

]+ {
Eθ
[
da,b(X)

]− θ
}2

= nθ(1 − θ)(
n + a + b

)2 +
[

nθ + a
n + a + b

− θ

]2

=
[(

a + b
)2 − n

]
θ2 − [

2a
(
a + b

)− n
]
θ + a2

(
n + a + b

)2 .

To make this a constant in θ , take
(
a + b

)2 = 2a
(
a + b

) = n; leading to a = b = √
n/2. The

resulting Bayes rule d√
n/2,

√
n/2(X) = (

X + √
n/2

)
/
(
n + √

n
)

is minimax.
Since this rule is unique Bayes with respect to Beta

(√
n/2,

√
n/2

)
, it is admissible by

Theorem 4.6.4. Thus θ̂ = (
X + √

n/2
)
/
(
n + √

n
)

is an admissible minimax estimator of θ .
Example 4.6.3. Admissibility of X̄n as an estimator of mean θ of N

(
θ , σ 2

)
under

squared-error loss.
Under squared-error loss, the Bayes estimator of θ based on a random sample X =

(X1, . . . , Xn) from N
(
θ , σ 2

)
, with respect to τk = N

(
0, k

)
is

dk(X ) = nk

nk + σ 2
X̄n, where X̄n = n−1

n∑
i=1

Xi .

This result is derived in Section 4.6.4. The Bayes risk of dk is r
(
τk, dk

) = (
kσ 2

)
/
(
nk + σ 2

)
,

the proof of which is left an exercise. We shall use Theorems 4.6.6 and 4.6.7 to show that
the decision rule d0(X ) = X̄n is admissible.

Solution. Since

R
(
θ , d0

) = σ 2/n = lim
k→∞

r
(
τk , dk

)
is constant, and τk(I) > 0 for all nondegenerate intervals, Conditions (i), (ii), and (iv) of
Theorem 4.6.6 are satisfied, while Theorem 4.6.7 provides justification for Condition (iii)
that R

(
θ , d

)
is continuous for all d. So we only need to check Condition (v). Now
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τk
([

a, b
])

c − r
(
τk , dk

) =
Φ
(

b/
√

k
)

−Φ
(

a/
√

k
)

σ 2/n − (
kσ 2

)
/
(
nk + σ 2

) =
n
(

nk + σ 2
)

σ 4

[
Φ
(

b/
√

k
)

−Φ
(

a/
√

k
)]

.

SinceΦ
(

b/
√

k
)
−Φ

(
a/

√
k
)

= b−a√
2πk

[1 + o(1)] as k → ∞ (see Section 2.2.4), the above tends

to ∞ as k → ∞, justifying Condition (v). This proves the admissibility of X̄n.

Exercises
4.1. Suppose that X is distributed with a pdf f (x, θ) where θ is an unknown real

parameter. Consider the two-decision problem of choosing between the
hypotheses H0: θ ≤ θ0 and H1: θ > θ0 (for a given θ0) with the loss function

L
(
θ , a0

) = (
θ − θ0

)
+, L

(
θ , a1

) = (
θ0 − θ

)
+,

where for any real number x, x+ denotes max(x, 0), and ai is the action to accept Hi,
i = 0, 1. Show that the Bayes rule with respect to a prior cdf G of θ rejects H0 if and
only if EG[θ |X = x] > θ0.

4.2. Under 0 − 1 loss function in the problem of testing H0: θ = θ0 vs H1: θ = θ1, the risk
set is

S = {(
R
(
θ0, φ

)
, R
(
θ1, φ

))
: φ maps X → [0, 1]

}
= {(

Eθ0 [φ(X)], 1 − Eθ1 [φ(X)]
)
: φ maps X → [0, 1]

}
,

where X denotes the data. Let f (x, θ) = (2
x

)
θx(1 − θ)2−x, x = 0, 1, 2, and consider

H0: θ = 1/2 vs H1: θ = 2/3.
(a) Plot the risk set S.
(b) Find a minimax test.

4.3. Let X follow a binomial distribution Bin(n, θ), 0 < θ < 1.
(a) Show that d0(x) = x/n is a minimax estimator of θ with constant risk 1/n under

the loss function L(θ , a) = (θ − a)2/{θ(1 − θ)}.
(b) Show that d0(x) = x/n is not minimax under the loss function L(θ , a) = (θ − a)2.

[Consider δ∗ε defined as: δ∗ε (x) = d0(x) = x/n with probability 1 − ε and
δ∗ε (x) = d1(x) ≡ 1/2 with probability ε. Examine the risk function of δ∗ε with
ε = (n + 1)−1.]

(c) Show that d0(x) is not a Bayes rule, but it is an extended Bayes rule (ie, ε-Bayes
for every ε > 0). [Try Beta priors.]

(d) Show that d0 is Bayes with respect to Unif (0, 1) prior under L(θ , a) given in (a).
4.4. Let X follow the binomial Bin(n, θ) distribution with pdf

f (x, θ) =
(

n
x

)
θx(1 − θ)n−x, x = 0, 1, . . . , n,

where θ ∈ Θ = (0, 1) is to be estimated in the action space A = [0, 1] under the loss
function L(θ , a) = (a − θ)2.
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(a) Show that the estimator d0(x) = x/n is admissible.
(b) If the parameter space isΘ = [

1/3, 2/3
]

and everything else is the same as
above, then show that d0(x) = x/n is inadmissible. [Hint: Think of a sensible
estimator.]

4.5. Let X be an rv with pdf

f (x, θ) = θ−1 exp
(−x/θ

)
, x > 0, θ = 1 or 2.

Consider the two-decision problem with action space A = {a1, a2} with ai = i and
the loss function L(θ , a) = I

(
θ �= a

)
, based on a single observation X .

(a) Let S denote the risk set consisting of points (R(1, δ), R(2, δ)) corresponding to
all behavioral rules δ. Determine the function β(α) describing the points(
α,β(α)

)
on the lower boundary of S.

(b) Find a minimax rule.
(c) Consider a prior gτ with probabilities τ for θ = 1 and 1 − τ for θ = 2. Show that

the Bayes rule with respect to the prior gτ will always take action a2

(irrespective of the observed values of X) if τ < 1/3.
4.6. Show that the sample mean X̄ is an admissible estimator of the mean θ of a normal

distribution N
(
θ , σ 2

)
under the absolute error loss.

4.7. Suppose we have one observation X from N(θ , 1) on the basis of which we have to
take action a0 to decide θ = 0 or a1 to decide θ �= 0 subject the loss function

L
(
0, a0

) = 0, L
(
θ , a1

) = 0 for θ �= 0,

L
(
0, a1

) = 1, L
(
θ , a0

) = 1 for θ �= 0.

Consider a prior distribution τ which assigns probability p to {θ = 0} and
distributes the remaining probability 1 − p on (−∞, ∞) according to N

(
μ, σ 2

)
,

that is

τ (θ = 0) = p and τ [θ ∈ B] = (
1 − p

) ∫
B
σ−1φ

(
(θ − μ)/σ

)
dθ if 0 /∈ B,

where φ is the pdf of the standard normal distribution. Find the Bayes rule with
respect to τ based on a sample X of size 1. Give a common sense interpretation of
the Bayes rule.

4.8. Let X1, . . . , Xn be a random sample from Unif (0, θ), θ > 0 and the prior of θ is
τ (θ) = θ exp(−θ), θ > 0.
(a) Find the posterior distribution of θ given X1, . . . , Xn.
(b) Find the Bayes estimators of θ under the loss functions L1(θ , a) = |θ − a| and

L2(θ , a) = (θ − a)2.
4.9. We want to estimate the mean θ of a Poisson distribution on the basis of a random

sample X1, . . . , Xn subject to the loss function L(θ , a) = (θ − a)2, θ ∈ Θ = (0, ∞) and
a ∈ A = [0, ∞). Assume that θ has a Gamma

(
α,β

)
prior (ie, it has the pdf)

τα,β(θ) = {
Γ (α)βα

}−1
θα−1 exp

(−θ/β), θ > 0, with

Eα,β(θ) = αβ, Eα,β

(
θ2
)

= α(α + 1)β2.
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(a) Find the posterior distribution of θ given X1, . . . , Xn and the Bayes rule with
respect to τα,β .

(b) Show that d0(x) = X̄n is not a Bayes rule with respect to any prior on
Θ = (0, ∞). However, d0 is a Bayes rule ifΘ = [0, ∞).

(c) Show that d0 is
(i) a limit of Bayes rules, (ii) a generalized Bayes rule with respect to
τ (θ) = θ−1, θ > 0, which is not a pdf, and (iii) an extended Bayes rule.

4.10. Let X and Y be independent binomial Bin(n, θ1) and Bin(n, θ2) rv’s. We want to
estimate θ1 − θ2 subject to the squared error loss L((θ1, θ2), a) = ((θ1 − θ2) − a)2,
|a| ≤ 1. Find the Bayes rule with respect to the prior with pdf
τ (θ1, θ2) = I(0,1)(θ1)I(0,1)(θ2) (ie, θ1 and θ2 have independent uniform distributions on
(0, 1)).

4.11. Suppose that X has a pdf f (x, θ), T is a sufficient statistics for θ , and that the
factorization theorem holds. Show that all Bayes rules are functions of T .

4.12. Let X1, . . . , Xn be a random sample from a Weibull distribution with pdf

f (x, θ) = θaxa−1 exp
(−θxa), x > 0, θ > 0,

where a > 0 is known. Find a sufficient statistic for θ .
4.13. Let X1, . . . , Xn be a random sample from a distribution with pdf

f
(
x, θ

) = a
(
θ
)
h(x)I

(
θ1 ≤ x ≤ θ2

)
, θ = (

θ1, θ2
)
, −∞ < θ1 < θ2 < ∞,

where h(x) > 0 is a known function with
∫∞
−∞ h(x) dx = 1 and a

(
θ
) = 1

/∫ θ2
θ1

h(x) dx

for θ = (θ1, θ2). Find a two-dimensional sufficient statistics for θ and apply your
result to the special case of uniform distribution on [θ1, θ2].



5
Point Estimation in Parametric
Models

5.1 Optimality Under Unbiasedness, Squared-Error Loss,
UMVUE

In the general framework of statistical decision theory (see Section 4.4), the estimation
problem is described by the triple ({Pθ , θ ∈ Θ} , A, L) where A = {

g(θ) : θ ∈ Θ
}

and
L(θ , a) = loss due to estimating g(θ) by a. For a decision rule d, which is an estimator
T = T(X1, . . . , Xn) based on the data X = (X1, . . . , Xn), the risk is

R(θ , T) = Eθ [L(θ , T(X ))] =
∫
X

L(θ , T(x))f (x; θ) dx

in the continuous case and analogously in the discrete case.
The concept of unbiasedness in estimation has been introduced in Section 4.6.1. In

a parametric family {(X ,A, Pθ ), θ ∈ Θ}, a statistic T based on a random sample X is an
unbiased estimator of g(θ) if Eθ [T(X )] = g(θ) for all θ ∈ Θ.

Example 5.1.1. Let (X1, . . . , Xn) be a random sample from Bernoulli(θ) and let g(θ) =
θ(1 − θ). Let T = X1(1 − X2). Then

Eθ [T ] = Eθ

[
X1
(
1 − X2

)] = θ(1 − θ) = g(θ).

Example 5.1.2. Let (X1, . . . , Xn) be a random sample from Unif (θ) and let g(θ) = θ . Let
T = 2X1. Then

Eθ [T ] = Eθ

[
2X1

] = 2Eθ

[
X1
] = 2 · θ

2
= θ = g(θ).

Example 5.1.3. Let (X1, . . . , Xn) be a random sample from N
(
μ, σ 2

)
, and let g1(μ, σ ) = μ,

and g2(μ, σ ) = σ 2. Let T1 = X̄ = n−1 ∑n
i=1 Xi and T2 = (n − 1)−1∑n

i=1

(
Xi − X̄

)2
. Then

Eμ,σ
[
T1
] = n−1Eμ,σ

⎡⎣ n∑
i=1

Xi

⎤⎦ = n−1nμ = μ, and

Eμ,σ
[
T2
] = (n − 1)−1Eμ,σ

⎡⎣ n∑
i=1

(
Xi − X̄

)2

⎤⎦
Theory and Methods of Statistics. http://dx.doi.org/10.1016/B978-0-12-802440-9.00005-9
Copyright © 2016 Elsevier Inc. All rights reserved.
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= (n − 1)−1Eμ,σ

⎡⎣ n∑
i=1

(
Xi − μ

)2 − n
(
X̄ − μ

)2

⎤⎦
= (n − 1)−1

[
nσ 2 − n

σ 2

n

]
= σ 2.

Thus in these examples, X1(1 − X2) is an unbiased estimator of θ(1 − θ), 2X1 is an
unbiased estimator of θ , and X̄ and (n − 1)−1∑n

i=1

(
Xi − X̄

)2
are unbiased estimators of

μ and σ 2, respectively.
Theorem 5.1.1 (Rao-Blackwell Theorem). Let A be a convex set in Rk, L(θ , a) convex in

a ∈ A for each θ ∈ Θ and T sufficient for θ in X . Then for any nonrandomized decision rule
d, the nonrandomized decision rule d� based on T, defined as

d�(t) = E
[
d(X )|T = t

]
, (1)

assuming that the expectation exists, is at least as good as d (ie, R
(
θ , d�

)
is either < R

(
θ , d

)
or = R

(
θ , d

)
for all θ).

Proof. Sufficiency of T makes d�(T) = E
[
d(X )|T] free of θ so that d�(T) is a bona fide

estimator. By Jensen’s inequality (see Section A.2), for fixed t,

E
[
L
(
θ , d(X )

)|T = t
] ≥ L

(
θ , E

[
d(X )|T = t

]) = L
(
θ , d�(t)

)
for all θ .

Hence, for each θ ,

R
(
θ , d

) = Eθ

[
L
(
θ , d(X )

)] = Eθ E
[
L
(
θ , d(X )

)|T]
≥ Eθ

[
L
(
θ , d�(T)

)] = R(θ , d�)

showing that d� is “at least as good” as d.
Remark 5.1.1. If d is an unbiased estimator of g(θ) (ie, Eθ

[
d(X )

] = g(θ) for all θ ∈ Θ),
then

Eθ

[
d�(T)

] = Eθ

[
E
(
d(X )|T)] = Eθ

[
d(X )

] = g(θ) for all θ .

Thus, d� is also an unbiased estimator of g(θ).
Remark 5.1.2. If d is an unbiased estimator of g(θ) then, for L(θ , a) = {

a − g(θ)
}2,

R(θ , d) = Eθ

[{
d(X ) − g(θ)

}2
]

= Varθ
[
d(X )

]
,

and R(θ , d�) is also Varθ

[
d�(T)

]
. Hence, if d is an unbiased estimator of g(θ), then d� is also

an unbiased estimator of g(θ), the variance of which is uniformly bounded above by the
variance of d.

The Rao-Blackwell Theorem is often stated in this form.
Theorem 5.1.2 (Rao-Blackwell Theorem for Squared-Error Loss). If d is an unbiased

estimator of g(θ) based on a sample X from Pθ , θ ∈ Θ, and if T is sufficient for θ in X ,
then d�, defined by

d�(t) = E
[
d(X )|T = t

]
,
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is also an unbiased estimator of g(θ), and

Varθ
[
d�(T)

] ≤ Varθ
[
d(X )

]
for all θ ∈ Θ .

(See [15, 16].)
Under squared-error loss, the Rao-Blackwell Theorem provides us with a method for

“improving” upon an unbiased estimator, using a sufficient statistic, by constructing an
unbiased estimator with uniformly smaller (or equal) variance. However, we do not know
whether there is an unbiased estimator with even smaller variance than this “improved”
estimator. More to the point, among many sufficient statistics, which one should we use in
the Rao-Blackwell formula to find the best unbiased estimator? Such an estimator will be
called the Uniformly Minimum Variance Unbiased Estimator (UMVUE).

Before searching for the UMVUE, we shall first show that it is unique and find a
characterization for the UMVUE.

Theorem 5.1.3. The UMVUE is unique.
Proof. Suppose T1 and T2 are two distinct UMVUEs of g(θ), that is

Eθ

[
T1
] = Eθ

[
T2
] = g(θ), and

Varθ
[
T1
] = Varθ

[
T2
]

:= σ 2(θ) for all θ .

Then, by Cauchy-Schwartz,

Covθ

[
T1, T2

] ≤ {
Varθ

[
T1
]
Varθ

[
T2
]}1/2 = σ 2(θ).

Now let T̄ = (T1 + T2)/2. Then, T̄ is also an unbiased estimator of g(θ) and

Varθ
[
T̄
] = 1

4

{
Varθ

[
T1
]+ Varθ

[
T2
]+ 2Covθ

[
T1, T2

]} ≤ σ 2(θ) = Varθ
[
T1
]
.

If this inequality is strict, then the UMVUE property of T1 is violated. On the other hand,
equality holds only if we have equality in the Cauchy-Schwartz, for which we need T2 =
a(θ) + b(θ)T1, but then,

σ 2(θ) = Covθ

[
T1, T2

] = Covθ

[
T1, a(θ) + b(θ)T1

] = b(θ)σ 2(θ),

so b(θ) = 1 and a(θ) = 0 since Eθ [T1] = Eθ [T2] = g(θ). Thus, T1 = T2 showing that T1 is
unique.

Definition 5.1.1. Let U denote the class of estimators U with Eθ [U] = 0 and Eθ

[
U2
]

<

∞ for all θ .
Theorem 5.1.4. If T is an unbiased estimator of g(θ), then a necessary and sufficient

condition for U to be the UMVUE of g(θ) is Covθ [T , U] = Eθ [TU] = 0 for all U ∈ U .
Proof (Necessity). Let T be UMVUE of g(θ). Then, for arbitrary U ∈ U and λ ∈ R, T + λU

is also an unbiased estimator of g(θ). Hence,

Varθ [T ] ≤ Varθ [T + λU] = Varθ [T ] + λ2Varθ [U] + 2λCovθ [T , U] for all λ,
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that is, f (λ) = λ2Varθ [U] + 2λCovθ [T , U] ≥ 0 for all λ. But if Covθ [T , U] �= 0, then

min
λ

f (λ) = −{Covθ [T , U]}2

Varθ [U]
< 0.

To avoid contradiction, we therefore need Covθ [T , U] = 0.
(Sufficiency). Suppose Covθ [T , U] = Eθ [TU] = 0 for all U ∈ U . We shall show that T is

UMVUE of g(θ). Let T ′ be an arbitrary unbiased estimator of g(θ) with Varθ

[
T ′] < ∞. Then,

T − T ′ ∈ U , so that Eθ

[
T(T − T ′)

] = 0 (ie, Eθ

[
T2
] = Eθ

[
TT ′]). Since Eθ [T] = g(θ), it follows

that

Varθ [T ] = Eθ

[
T2
]

− {
g(θ)

}2 = Eθ

[
TT ′]− {

g(θ)
}2

= Covθ

[
T , T ′] ≤ {

Varθ [T ]Varθ
[
T ′]}1/2,

which implies Varθ [T] ≤ Varθ

[
T ′].

The main steps in finding the UMVUE of g(θ) are

(i) finding an unbiased estimator of g(θ), and
(ii) using an appropriate sufficient statistic T to use in Eq. (1), the Rao-Blackwell formula

d�(T) = E
[
d(X )|T].

The following example will illustrate these issues.
Example 5.1.4. Let X = (X1, . . . , Xn) be a random sample from Bernoulli(θ), 0 < θ < 1.

We want to estimate g(θ) = θ2.
It is easy to see that d(X) = X1X2 is an unbiased estimator of θ2:

Eθ

[
X1X2

] = Eθ

[
X1
]
Eθ

[
X2
] = θ2 for all θ .

In many situations, as in this example, finding an unbiased estimator of g(θ) is easy. Getting
into the question of the choice of a sufficient statistic (Step (ii)), first note that there are
many sufficient statistics of which we consider the following three:

T1 = (X1 + X2, X3 + · · · + Xn), T2 = (X1 + Xn, X2 + · · · + Xn−1), and

T3 = X1 + . . . + Xn.

It is easy to see that they are all sufficient statistics, which we leave as exercises. We now
use the Rao-Blackwell formula, conditioning d(X) = X1X2 by T1, T2, T3 given above:

(a) We first note that

E
[
d(X )|T1

] = E
[
X1X2|X1 + X2, X3, . . . , Xn

]
= E

[
X1X2|X1 + X2

] = X1X2,

because

E
[
X1X2|X1 + X2 = 0

] = 0 = X1X2,

E
[
X1X2|X1 + X2 = 1

] = 0 = X1X2, and

E
[
X1X2|X1 + X2 = 2

] = 1 = X1X2.
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(b) To find E
[
d(X)|T2

]
, we first note that

E
[
X1X2|X1 + Xn = r, X2 + · · · + Xn−1 = s

]
= P

[
X1 = X2 = 1|X1 + Xn = r, X2 + · · · + Xn−1 = s

]
:= Prs.

Obviously, Prs = 0 if r = 0 and/or s = 0. Next, for r = 1, 2 and s = 1, . . . , n − 2,

Prs = P
[
X1 = X2 = 1, Xn = r − 1, X3 + · · · + Xn−1 = s − 1

]
P
[
X1 + Xn = r, X2 + · · · + Xn−1 = s

]
= θ2θr−1(1 − θ)2−r(n−3

s−1
)
θs−1(1 − θ)n−s−2(2

r
)
θr(1 − θ)2−r

(n−2
s
)
θs(1 − θ)n−s−2

= rs
2(n − 2)

,

after simplification, since
(2

r

) = 2/r for r = 1 or r = 2. Thus,

E
[
d(X )|T2

] = (X1 + Xn)(X2 + · · · + Xn−1)
2(n − 2)

.

(c) Note that

E
[
d(X )|T3 = t

] = P
[
X1 = X2 = 1|X1 + · · · + Xn = t

]
= P

[
X1 = X2 = 1, X3 + · · · + Xn = t − 2

]
P
[
X1 + · · · + Xn = t

]
= θ2(n−2

t−2
)
θ t−2(1 − θ)n−t(n

t
)
θ t (1 − θ)n−t

=
(n−2

t−2
)(n

t
) = t(t − 1)

n(n − 1)
.

Thus,

E
[
d(X )|T3

] =
(∑n

i=1 Xi
)(∑n

i=1 Xi − 1
)

n(n − 1)
.

In applying the Rao-Blackwell method on d(X ) = X1X2, using the sufficient statistics
T1, T2, and T3, we have seen that E

[
d(X )|T1

] = d(X), so the method provides an “im-
provement” in a trivial sense. On the other hand, E

[
d(X )|T2

]
provides a real improvement,

because d(X ) is not a function of T2, so the conditional distribution of d(X) given T2 is
nondegenerate. Also, by direct calculation, we can verify that

Varθ E
[
d(X )|T2

] = θ2(1 − θ)
2(n − 2)

{1 + (n − 1)θ} < θ2(1 − θ)2 = Varθ
[
d(X )

]
for n ≥ 3. Since d(X) is not a function of T3, the estimator E

[
d(X )|T3

]
also provides a

real improvement over d(X ), although a direct calculation of the variance of E
[
d(X )|T3

]
is somewhat messy.
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Finally, we use the Rao-Blackwell method on the estimator E
[
d(X )|T2

]
, using the

sufficient statistic T3. This leads to

E
[

(X1 + Xn)(X2 + · · · + Xn−1)
2(n − 2)

∣∣∣∣X1 + · · · + Xn = t
]

=
2∑

r=1

r(t − r)P
[
X1 + Xn = r, X2 + · · · + Xn−1 = t − r

]
2(n − 2)

(n
t
)
θ t (1 − θ)n−t

=
2∑

r=1

r(t − r)
(2

r
)
θr(1 − θ)2−r(n−2

t−r
)
θ t−r(1 − θ)n−t+r−2

2(n − 2)
(n

t
)
θ t (1 − θ)n−t

=
2∑

r=1

r(t − r)
(2

r
)(n−2

t−r
)

2(n − 2)
(n

t
) = t(t − 1)

n(n − 1)

since the numerator simplifies to 2(n − 2)
(n−2

t−2

)
.

In summary, we have seen that starting with an unbiased estimator d(X ) = X1X2 of
g(θ) = θ2 and using the Rao-Blackwell method with sufficient statistics T1 = (X1 + X2, X3 +
· · · + Xn), T2 = (X1 + Xn, X2 + · · · + Xn−1), and T3 = X1 + · · · + Xn, we obtained:

(a) E
[
d(X )|T1

] = d(X ), which is an “improvement” in a trivial sense,

(b) E
[
d(X )|T2

] = (X1+Xn)(X2+···+Xn−1)
2(n−2) , which is a real improvement,

(c) E
[
d(X )|T3

] =
(∑n

i=1 Xi
)(∑n

i=1 Xi−1
)

n(n−1) , which is also an improvement, and moreover,
(d) E

[
E[d(X )|T2]|T3

] = E
[
d(X )|T3

]
.

Thus, E
[
d(X)|T2

]
and E

[
d(X)|T3

]
are successive improvements on d(X ).

The question still remains: can E
[
d(X )|T3

]
be further improved? The key property of

a sufficient statistic addressing this question is the property of completeness, as defined
below.

Definition 5.1.2. A sufficient statistic T for a parameter θ ∈ Θ is said to be com-
plete (or boundedly complete) if for every real-valued (bounded real-valued) function ϕ,
Eθ [ϕ(T)] = 0 for all θ implies ϕ(t) = 0 for all t /∈ N where Pθ [T ∈ N] = 0.

Completeness requires the family of distributions
{

PT
θ

}
of T to be sufficiently rich, so

that the condition Eθ [ϕ(T)] = 0 for all θ forces ϕ(t) to be identically zero for all practical
purposes. One can think of it as a condition on the pdf’s

{
fT (·, θ), θ ∈ Θ

}
of T having full

rank, so that

Eθ [ϕ(T)] =
∫

ϕ(t)fT (t, θ) dt = 0 for all θ ,

that is, ϕ(·) is “orthogonal” to fT (·, θ) for all θ ∈ Θ ⇒ ϕ(·) must be a zero function with
probability 1.
How to check that a sufficient statistic is complete?

1. If a convergent power series
∑

n anzn = 0 for all z in some open interval, then each
coefficient an must be zero. This fact can be used to prove completeness of some
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important families of discrete distributions such as
{

Bin(n, p), n fixed, 0 < p < 1
}

,
{Poi(θ), θ > 0}, etc.

2. If X1, . . . , Xn are iid as Unif (0, θ), then T = max{X1, . . . , Xn} is sufficient for θ in
X = (X1, . . . , Xn). The pdf of T corresponding to θ is

fT (t, θ) = nθ−ntn−1I(0,θ)(t).

Hence, Eθ [ϕ(T)] = 0 for all θ implies
∫ θ

0 ϕ(t)tn−1 dt = 0 for all θ . If ϕ is continuous, then
ϕ(t) = 0 for all t by the Fundamental Theorem of Calculus, but even without
continuity, the result holds with probability 1, of which the proof needs more
advanced analysis. This shows that T = max{X1, . . . , Xn} is a complete sufficient
statistic for θ in X .

3. If X1, . . . , Xn is a random sample from a regular k -parameter exponential family:

f (x, θ) = exp

⎡⎣ k∑
j=1

θjTj(x) + S(x) + d(θ)

⎤⎦IA(x),

where A is the support of the distribution, then

Tj =
n∑

i=1

Tj(xi), j = 1, . . . , k

are jointly sufficient for θ in X = (X1, . . . , Xn) and the joint distribution of
T = (T1, . . . , Tk) also belongs to a regular k-parameter exponential family. If

Θ =
{
θ ∈ Rk:

∫
X f (x, θ) dx < ∞

}
contains a k -dimensional open rectangle, then T is a

complete sufficient statistic for θ in X . This takes care of many important situations.

With the concept of completeness, we now know how to choose the appropriate sufficient
statistic in the Rao-Blackwell formula (1) that will lead to the UMVUE.

Theorem 5.1.5 (Lehmann-Scheffé). If d(X ) is an unbiased estimator of g(θ) and T is a
complete sufficient statistic for θ in X , then

d�(T) = E
[
d(X )|T]

is the (essentially unique) UMVUE of g(θ).
Proof. For any other unbiased estimator d1(X) of g(θ), consider the unbiased estimator

d�
1(T) = E

[
d1(X )|T] which must have variance ≤ that of d1 by the Rao-Blackwell Theorem,

but by completeness, d�
1(T) = d�(T) with probability 1. Therefore,

Varθ
[
d1(X )

] ≥ Varθ
[
d�

1(T)
] = Varθ

[
d�(T)

]
.

In the above example, T3 = ∑n
i=1 Xi is a complete sufficient statistic. Hence,

E
[
d(X )|T3

] =
(∑n

i=1 Xi
)(∑n

i=1 Xi − 1
)

n(n − 1)
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is the UMVUE of g(θ) = θ2. Also, note that the sufficient statistic T2 = (X1 + Xn, X2 + · · · +
Xn−1) is not complete, because the expectation of

ϕ(T2) = 1
2

(X1 + Xn) − 1
n − 2

(X2 + · · · + Xn−1)

is 0 for all θ ∈ (0, 1). We end this section with a very interesting property of completeness.

Ancillarity and Completeness
Definition 5.1.3. A statistic whose distribution does not depend on θ is called an ancillary
statistic.

Theorem 5.1.6 (Basu’s Theorem [17]). Suppose that the distribution of X belongs to the
family {Pθ , θ ∈ Θ}. If T = T(X) is a complete sufficient statistic for θ and if V = V (X) is an
ancillary statistic, then V is independent of T.

Proof. The probability pA = Pθ [V ∈ A] is independent of θ for all A by ancillarity of
V . Let ηA(t) = P[V ∈ A|T = t], which is also independent of θ since T is sufficient, and
Eθ

[
ηA(T)

] = Eθ P[V ∈ A|T] = Pθ [V ∈ A] = pA. Thus

Eθ

[
ηA(T) − pA

] = 0 for all θ .

Since T is complete, this implies that for all A, ηA(T) = pA, that is

P[V ∈ A|T ] = P[V ∈ A] w.p. 1.

Hence, V is independent of T .

5.2 Lower Bound for the Variance of an Unbiased Estimator
5.2.1 The Information Inequality: Cramèr-Rao Lower Bound

For brevity of notation, we shall write

∂f (x, θ)
∂θ

= ḟ (x, θ),
∂2f (x, θ)

∂θ2
= f̈ (x, θ),

log f (x, θ) = 
(x, θ),
∂
(x, θ)

∂θ
= 
̇(x, θ),

∂2
(x, θ)

∂θ2 = 
̈(x, θ).

These notations will also be used in all subsequent discussions.
Regularity conditions on

{
f (x, θ), θ ∈ Θ ⊂ R

}
:

1. The parameter space Θ is an open interval and the set S = {
x: f (x, θ) > 0

}
does not

depend upon θ .
2. For all x ∈ S and θ ∈ Θ, 
̇(x, θ) exists and is finite.
3. For any statistic T such that Eθ [|T |] < ∞ for all θ ∈ Θ,

d
dθ

∫
T(x)f (x, θ) dx

∣∣∣∣
θ = θ0

=
∫

T(x)ḟ (x, θ0) dx

=
∫

T(x)
̇(x, θ0)f (x, θ0) dx
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whenever the right-hand side is finite. In other words,

d
dθ

Eθ [T(X)]

∣∣∣∣
θ = θ0

= Eθ0

[
T(X)
̇(X , θ0)

]
.

These conditions are satisfied in a regular exponential family.
Remark 5.2.1. Write Eθ [T(X)] = g(θ) + b(θ), where b(θ) is the bias of T at θ as an

estimator of g(θ). Then, Condition 3 becomes

g ′(θ) + b′(θ) = Eθ

[
T(X)
̇(X , θ)

]
.

Remark 5.2.2.

(a) Taking T(x) ≡ 1 in Condition 3, we have Eθ

[

̇(X , θ)

] = 0.
(b) Sometimes (as in regular exponential families), a stronger version of Condition 3,

d2

dθ2

∫
T(x)f (x, θ) dx

∣∣∣∣∣
θ = θ0

=
∫

T(x)f̈ (x, θ0) dx

holds for T(x) ≡ 1, so that
∫

f̈ (x, θ) dx = 0. Since

f̈ (x, θ) =
[

̈(x, θ) + {


̇(x, θ)
}2
]

f (x, θ),

this implies that

Varθ
[

̇(X , θ)

] = Eθ

[{

̇(X , θ)

}2
]

= − Eθ

[

̈(X , θ)

]
.

Definition 5.2.1 (Fisher-Information). Condition 2 allows us to define

I(θ0) = Eθ0

[{

̇(X , θ0)

}2
]

, (2)

which is called the Fisher-Information in X for the family
{

f (x, θ), θ ∈ Θ
}

at θ0.
Remark 5.2.3. Note that 0 ≤ I(θ) ≤ ∞. By Condition 3,

I(θ) = Varθ
[

̇(X , θ)

]
,

and the stronger version of Condition 3 implies

I(θ) = Eθ

[{

̇(X , θ)

}2
]

= Varθ
[

̇(X , θ)

] = Eθ

[−
̈(X , θ)
]
.

Theorem 5.2.1 (Cramér-Rao Inequality [15, 18]). Suppose T = T(X) has Eθ [T] = g(θ) +
b(θ) and Varθ [T] < ∞. Then, under the regularity Conditions 1, 2, and 3, we have

Varθ [T ] ≥
{

g ′(θ) + b′(θ)
}2

I(θ)
.

The right-hand side of this inequality is known as the Cramér-Rao lower bound.
Proof. Fix θ ∈ Θ and let S = S(X , θ) = 
̇(X , θ). By Remark 5.2.2, Eθ [S] = 0 and Varθ [S] =

I(θ). Hence,

Covθ

[
T , S

] = Eθ

[
TS
] = Eθ

[
T(X)
̇(X , θ)

] = g ′(θ) + b′(θ),
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as shown earlier. But Cov2
θ

[
T , S

] ≤ Varθ [T]Varθ [S]. Thus,

Varθ [T ] ≥ Cov2
θ

[
T , S

]
Varθ [S] =

{
g ′(θ) + b′(θ)

}2

I(θ)
.

Remark 5.2.4.

(a) If X = (X1, . . . , Xn) is a random sample of size n from a population with pdf (or pmf)
f (x, θ), then 
̇(X , θ) = ∑n

i=1 
̇(Xi, θ). Hence, the Fisher-information in X = (X1, . . . , Xn)
for the family

{
f (x, θ): θ ∈ Θ

}
is

Varθ

⎡⎣ n∑
i=1


̇(Xi, θ)

⎤⎦ = nVarθ
[

̇(X1, θ)

] = nI(θ).

Thus the information inequality for Varθ [T] of an estimator T based on a random
sample of size n from f (x, θ) is

Varθ [T ] ≥
{

g ′(θ) + b′(θ)
}2

nI(θ)
.

(b) If T is an unbiased estimator of θ based on a random sample of size n, then

Varθ [T ] ≥ 1
nI(θ)

.

5.2.2 Effect of Reparametrization on Fisher-Information
in Exponential Families

Consider the exponential family of pdf’s (pmf’s):

f (x, θ) = exp
[
c(θ)T(x) + d(θ) + h(x)

]
IA(x),

where c is one-to-one and twice differentiable. If f (x, θ) is reparametrized by η = c(θ) and
rewritten as

g(x, η) = exp
[
ηT(x) + d0(η) + h(x)

]
IA(x)

with d0(η) = d
[
c−1(η)

]
, then the Fisher-Information for the family

{
g(x, η): η ∈ c(Θ)

}
is

Ig (η) = −d′′
0(η). How does this Ig relate to the Fisher-Information If (θ) = Eθ

[−
̈(X , θ)
]

for
the original family? The answer is:

If (θ) = (
d′′

0(η)
∣∣
η=c(θ)

){
c′(θ)

}2,

the proof of which is left as an exercise.
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5.2.3 Information Inequality in Multiparameter Families

We now consider the multiparameter case in which we observe a random variable X
following a distribution with pdf (or pmf) belonging to a family

{
f (x, θ): θ ∈ Θ

}
, where

θ = (θ1, . . . , θk) and Θ ⊂ Rk. Our aim is to estimate a function g(θ) of the parameter
vector θ such as g(θ ) = θr , or, as in the pdf of N(θ1, θ2) with θ1 �= 0, g(θ) = √

θ2/θ1,
the coefficient of variation. For a statistic T = T(X), estimating g(θ) with a bias b(θ) (ie,
Eθ [T(X)] = g(θ )+b(θ)), we now look for a lower bound of Varθ [T]. The notations introduced
earlier are now extended as:

∂f (x, θ )
∂θr

= ḟr(x, θ),
∂2f (x, θ)
∂θr∂θs

= f̈rs(x, θ ),

log f (x, θ) = 
(x, θ) as before ,
∂
(x, θ)

∂θr
= 
̇r(x, θ),

∂2
(x, θ)
∂θr∂θs

= 
̈rs(x, θ)

for r, s = 1, . . . , k.
The Cramèr-Rao Information Inequality is simply a restatement of the inequality

ρ2(U , V ) ≤ 1, where ρ(U , V ) is the correlation between U and V with U = T(X) and
V = 
̇(X , θ).

In the multiparameter case, we extend the concept of correlation between U and
V to the

“correlation” between U = T(X) and V T = (

̇1(X , θ), . . . , 
̇k

(
X , θ

))
which we shall call the multiple correlation of U on V .

Let V T = (V1, . . . , Vk) be a k-dim random vector with covariance matrix

Σ = Cov[V , V ] = E
[
{V − E(V )}{V − E(V )}T

]
,

and let U be a random variable with finite second moment,

γi = Cov
[
U, Vi

]
, i = 1, . . . , k, and γ T = (

γ1, . . . , γk
)
.

Definition 5.2.2. If Σ = Cov[V , V ] is positive definite, then the multiple correlation of
U on V is defined as:

ρ� = ρ�
U·V = max

a1,...,ak
Corr

⎡⎣U,
k∑

i=1

aiVi

⎤⎦ = max
a1,...,ak

aTγ{
Var[U] · aTΣa

}1/2
.

Note that

(i) when Σ is singular and is of rank r, we can always find a r-dim random vector V ∗,
which is a linear function of V , whose covariance matrix is positive definite, and

(ii) we can assume without loss of generality that aTΣa = 1.

Justification of (i). By spectral decomposition, Σ = QΛQT where Q is an orthogonal matrix
with columns q1, . . . , qk (the eigenvectors of Σ) and Λ is a diagonal matrix whose diagonal
elements λ1 ≥ · · · ≥ λk are the eigenvalues of Σ . If Σ is of rank r < k, then only the first
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r diagonal elements of Λ are nonzero and the rest are zeros. Let V ∗ = [
qT

1V , . . . , qT
r V
]T =

QT
0V , where Q0 = [

q1, . . . , qr

]
is a k × r matrix. Then,

Cov
[

V ∗
i , V ∗

j

]
= Cov

[
qT

i V , qT
j V
]

= qT
i Σqj =

{
λi i = j
0 i �= j

.

Since Σ is of rank r, λ1 ≥ · · · ≥ λr > 0 and λr+1 = · · · = λk = 0. Consequently, the
covariance matrix Σ∗ of V ∗ = QT

0V is a diagonal matrix with diagonal elements λ1, . . . , λk

(ie, Σ∗ is positive definite).
Justification of (ii). Correlation coefficient is invariant under scale change. Hence, for

any vector a ∈ Rk, if we take a0 = a/
√

aTΣa, then

Var
[

aT
0V
]

= 1 and Corr
[

U, aTV
]

= Corr
[

U, aT
0V
]

.

Proposition 5.2.1. Let U and (V1, . . . , Vk) have finite second moments and let γi =
Cov[U , Vi], i = 1, . . . , k, and Σ = Cov[V , V ]. Then,

ρ�2 = γ TΣ−1γ

Var[U]
.

Proof. Since ρ� = maxa1,...,ak
aTγ

Var[U] and aTΣa = 1, we need to maximize aTγ subject to

the condition aTΣa = 1. Using Lagrange’s undetermined multiplier, we maximize

aTγ − 1
2

λaTΣa

and then find λ using aTΣa = 1. To this end,

0 = ∂

∂ar

⎡⎣ k∑
r=1

arγr − 1
2

λ

k∑
r=1

k∑
s=1

arasσrs

⎤⎦
= γr − 1

2
λ

⎡⎣2arσrr + 2
k∑

r �=s=1

asσrs

⎤⎦
= γr − λ

k∑
s=1

asσrs, r = 1, . . . , k

implies Σa = λ−1γ (ie, a = λ−1Σ−1γ ).
To find λ, we now have the equation

1 = aTΣa = λ−2(γ TΣ−1)Σ(Σ−1γ ) = λ−2γ TΣ−1γ ,

with solutions: λ = ±(γ TΣ−1γ )1/2. Hence,

a� = λ−1Σ−1γ = ±Σ−1γ√
γ TΣ−1γ

and
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a�Tγ = ± γ TΣ−1γ√
γ TΣ−1γ

= ±
√

γ TΣ−1γ

are the maximizers of aTγ subject to aTΣa = 1. Hence,

ρ�2 = max
{a1,...,ak},aTΣa=1

Corr2

⎡⎣U,
k∑

i=1

aiVi

⎤⎦ = max
a1,...,ak

(
aTγ√
Var[U]

)2

= (a�Tγ )2

Var[U]
= γ TΣ−1γ

Var[U]
.

Getting back to U = T(X) and V T = (

̇1(X , θ), . . . , 
̇k(X , θ)

)
, and recognizing that the

multiple correlation ρ�
U·V , like a correlation lies between −1 and +1, so that

ρ�2 = γ TΣ−1γ

Var[U]
≤ 1, ie, Var [U] ≥ γ TΣ−1γ ,

we arrive at a lower bound for Var[U] = Var[T(X)]. To make this lower bound ex-
plicit, we need to find γ T = (γ1, . . . , γk), where γj = Covθ

[
T(X), l̇j(X , θ)

]
, and Σ =((

Covθ

[
l̇r(X , θ), l̇s(X , θ)

]))
.

As in the single-parameter case, here also we assume that the following regularity

conditions hold for the family
{

f (x, θ), θ ∈ Θ ⊂ Rk
}

:

1. The parameter space Θ is an open interval and the set S = {
x: f (x, θ) > 0

}
does not

depend upon θ .
2. For all x ∈ S and θ ∈ Θ, 
̇r(x, θ) exists and is finite for r = 1, . . . , k.
3. For any statistic T such that Eθ [|T |] < ∞ for all θ ∈ Θ,

∂

∂θr

∫
T(x)f (x, θ) dx

∣∣∣∣
θ=θ0

=
∫

T(x)ḟr(x, θ0) dx

=
∫

T(x)
̇r(x, θ0)f (x, θ0) dx

for r = 1, . . . , k whenever the right-hand side is finite. In other words,

∂

∂θr
Eθ [T(X)]

∣∣∣∣
θ=θ0

= E θ0

[
T(X)
̇r(X , θ0)

]
, r = 1, . . . , k.

As in the single-parameter case, these conditions are also satisfied in a regular k-parameter
exponential family.

Condition 3 becomes

Eθ

[
T(X)
̇r(X , θ)

] = ∂

∂θr

[
g(θ ) + b(θ )

]
,
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when T(X) is an estimator of g(θ ) with bias b(θ). Taking T(x) ≡ 1 in Condition 3, here we
have Eθ

[

̇r(X , θ)

] = 0, r = 1, . . . , k, and a stronger version of Condition 3 (which holds in
exponential families), namely,

∂2

∂θr∂θs

∫
T(x)f (x, θ) dx

∣∣∣∣∣
θ=θ0

=
∫

T(x)f̈rs(x, θ ) dx

holds for T(x) ≡ 1, so that
∫

f̈rs(x, θ) dx = 0. Since

f̈rs(x, θ ) = [

̈rs(x, θ) + 
̇r(x, θ )
̇s(x, θ)

]
f (x, θ),

this implies

Covθ

[

̇r(X , θ), 
̇s(X , θ )

] = Eθ

[

̇r(X , θ)
̇s(X , θ)

] = −Eθ

[

̈rs(X , θ)

]
.

Definition 5.2.3 (Information Matrix). By Condition 2, 
̇r(x, θ) exist and is finite for
r = 1, . . . , k, so we can define the k × k matrix I(θ0) = ((

Irs(θ0)
))

where Irs(θ0) =
Eθ0

[

̇r(X , θ0)
̇s(X , θ0)

]
, which is called the Information Matrix in X for the family{

f (x, θ), θ ∈ Θ ⊂ Rk
}

at θ0.

By Condition 3, Irs(θ) = Covθ

[

̇r(X , θ), 
̇s(X , θ)

]
and the stronger version of Condition 3

implies Irs(θ) = Eθ

[−
̈rs(X , θ)
]

as shown above.
We now go back to the inequality Var[T(X)] ≥ γ TΣ−1γ , where

γ T = (
Covθ

[
T(X), 
̇1(X , θ )

]
, . . . , Covθ

[
T(X), 
̇k(X , θ )

])
=
(

∂

∂θ1
Eθ [T(X)], . . . ,

∂

∂θr
Eθ [T(X)]

)
= 
T[g(θ) + b(θ)

]
.

by Condition 3. We thus arrive at the following theorem.
Theorem 5.2.2 (Information Lower Bound in Multiparameter Case). Suppose T = T(X)

is an estimator of g(θ ) with bias b(θ) and finite variance, that is, Eθ [T] = g(θ) + b(θ) and

Varθ [T] < ∞ where the family
{

f (x, θ), θ ∈ Θ ⊂ Rk
}

satisfies regularity Conditions 1, 2,

and 3. Then,

Varθ [T ] ≥
{

T[g(θ) + b(θ )

]}
I(θ )−1{
[g(θ) + b(θ)

]}
.

Example 5.2.1. In a random sample (X1, . . . , Xn) from N(μ, σ 2), let

X̄ = n−1
n∑

i=1

Xi, W = n−1
n∑

i=1

(Xi − μ)2, and

S2 = (n − 1)−1
n∑

i=1

(Xi − X̄)2.

We want UMVUEs of σ 2 and σ when μ is known and when μ is unknown.
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Solution. When μ is known, W is a complete sufficient statistic for σ 2, and when μ is
unknown, (X̄ , S2) is a complete sufficient statistic for (μ, σ 2) in (X1, . . . , Xn). Therefore, it
is enough to find unbiased estimators of σ 2 and σ , which are functions of W when μ is
known and functions of (X̄ , S2) when μ is unknown, because these estimators would then
be UMVUEs by the Lehmann-Scheffé Theorem. We now obtain such unbiased estimators.

When μ is known,

(a) W is an unbiased estimator of σ 2, since Eσ

[
(Xi − μ)2

] = σ 2, and
(b) starting with

√
W as a natural estimator of σ , we find

Eσ

[√
W
]

= σn−1/2E
[

(χ2
n)1/2

]
= σ√

n

√
2Γ

(
n+1

2

)
Γ
(n

2
) ,

so that

T0 = cn
√

W , with cn =
√

n
2

Γ
(n

2

)
Γ
(

n+1
2

) ,

is the UMVUE of σ .

When μ is unknown,

(a) recall from Proposition 2.2.5 that

(n − 1)S2

σ 2 = 1

σ 2

n∑
i=1

(Xi − X̄)2 ∼ χ2
n−1,

so that Eσ

[
S2
] = σ 2

n−1 E
[
χ2

n−1

] = σ 2, making S2 the UMVUE of σ 2, and
(b) starting with S as an estimator of σ , we see that

Eσ

[
S
] = σ√

n − 1
E
[

(χ2
n−1)1/2

]
= σ√

n − 1

√
2Γ

(n
2
)

Γ
(

n−1
2

) ,

so that

T1 = cn−1S, with cn−1 =
√

n − 1
2

Γ
(

n−1
2

)
Γ
(n

2
) ,

is the UMVUE of σ .

In summary, we have

1. W and T0 = cn
√

W are the UMVUEs of σ 2 and σ , respectively, when μ is known, and
2. S2 and T1 = cn−1S are the UMVUEs of σ 2 and σ , respectively, when μ is unknown,

where

cn =
√

n
2

Γ
(n

2
)

Γ
(

n+1
2

) .
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Example 5.2.1 (Continuation). Find the Information Lower Bounds for the variances
of unbiased estimators of σ 2 and σ when μ is known and when μ is unknown. Do the
variances of the UMVUEs obtained above attain these lower bounds?

Solution. To find these lower bounds when μ is known, we write log f (X ; σ 2) as


(X ; θ) =
⎧⎨⎩− 1

2 log(2π) − 1
2 log θ − 1

2θ
(X − μ)2 with θ = σ 2

−1
2 log(2π) − log θ − 1

2θ2 (X − μ)2 with θ = σ
,

leading to


̇(X ; θ) =
⎧⎨⎩

1
2θ2

[
(X − μ)2 − θ

]
for θ = σ 2

1
θ3

[
(X − μ)2 − θ2

]
for θ = σ

.

Hence,

I(θ) = Eθ

[

̇2(X ; θ)

]
=
⎧⎨⎩

1
2θ2 = 1

2σ 4 for θ = σ 2

2
θ2 = 2

σ 2 for θ = σ
,

so the information lower bounds for variances of the unbiased estimators of σ 2 and σ are,
respectively,

1

nI(σ 2)
= 2σ 4

n
and

1
nI(σ )

= σ 2

2n
.

When μ is unknown, we write log f (X ; μ, σ 2) as


(X ; θ1, θ2) =
⎧⎨⎩−1

2 log(2π) − 1
2 log θ2 − 1

2θ2
(X − θ1)2 with (θ1, θ2) = (μ, σ 2)

−1
2 log(2π) − log θ2 − 1

2θ2
2

(X − θ1)2 with (θ1, θ2) = (μ, σ )
,

leading to


̇T(X ; θ1, θ2) =

⎧⎪⎪⎨⎪⎪⎩
(

1
θ2

[
X − θ1

]
, − 1

2θ2
+ 1

2θ2
2

[
X − θ1

]2) for (θ1, θ2) = (μ, σ 2)(
1
θ2

2

[
X − θ1

]
, − 1

θ2
+ 1

θ3
2

[
X − θ1

]2) for (θ1, θ2) = (μ, σ )
.

Hence, the information matrix

I(θ) = Eθ

[

̇(X ; θ1, θ2)
̇T(X ; θ1, θ2)

]
is obtained as

I(θ) =
⎡⎣ 1

θ2
0

0 1
2θ2

2

⎤⎦ =
[

1
σ 2 0

0 1
2σ 4

]
for (θ1, θ2) = (μ, σ 2), and

I(θ) =
⎡⎣ 1

θ2
2

0

0 2
θ2

2

⎤⎦ =
[

1
σ 2 0

0 2
σ 2

]
for (θ1, θ2) = (μ, σ ),
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with inverses

I−1(θ) :=
[

I11 I12

I21 I22

]
,

where

I22 =
{

2σ 4 for (θ1, θ2) = (μ, σ 2)

σ 2/2 for (θ1, θ2) = (μ, σ )
.

Thus the information lower bounds n−1I22 for variances of unbiased estimators of σ 2 and
σ are 2σ 4/n and σ 2/(2n), respectively.

We now compare these lower bounds with the variances of the UMVUEs obtained
above:

Varσ [W ] = n−1Varσ
[

(Xi − μ)2
]

= n−1
{

Eσ

[
(Xi − μ)4

]
− E2

σ

[
(Xi − μ)2

]}
= n−1

[
3σ 4 − σ 4

]
= 2σ 4

n
,

which equals the information lower bound for this case.

Varσ
[
T0
] = c2

nVarσ
[√

W
]

= c2
n

{
Eσ [W ] − E2

σ

[√
W
]}

= c2
n

[
σ 2 −

(
σ

cn

)2
]

= σ 2(c2
n − 1),

where cn =
√

n
2

Γ ( n
2 )

Γ ( n+1
2 )

, while the corresponding lower bound is σ 2/(2n).

Next, we have

Varσ
[

S2
]

= Var
[

(n − 1)−1σ 2χ2
n−1

]
= 2σ 4

n − 1
,

which is greater than the corresponding lower bound 2σ 4

n . Finally,

Varσ
[
T1
] = c2

n−1Varσ
[
S
]

= c2
n−1

{
Eσ

[
S2
]

− E2
σ

[
S
]}

= c2
n−1

{
σ 2 −

(
σ

cn−1

)2
}

= σ 2(c2
n−1 − 1),

while the corresponding lower bound is σ 2/(2n).
Thus the variance of the UMVUE of σ 2 when μ is known (ie, Varσ 2 [W ] attains the infor-

mation lower bound), whereas the other three UMVUEs do not attain their corresponding
lower bounds. In particular,
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Varσ
[

S2
]

2σ 4/n
= n

n − 1
,

Varσ
[
T0
]

σ 2/(2n)
= 2n(c2

n − 1), and

Varσ
[
T1
]

σ 2/(2n)
= 2n(c2

n−1 − 1).

However, all three of these ratios are nearly equal to 1 for moderately large n. For example,
for n = 20,

n
n − 1

= 1.0526, 2n(c2
n − 1) = 1.0144, and 2n(c2

n−1 − 1) = 1.0630.

5.3 Equivariance
Like unbiasedness, equivariance is another property which narrows down the class of
estimators to only those with constant risk functions, allowing us to look for the best
among them.

We first briefly discuss equivariance in the general context of a decision problem
specified by

(X ,B, {Pθ , θ ∈ Θ}), A, L

in the light of a group G of one-to-one transformations of X onto→ X , the group operation
being composition, that is,

g2 · g1(x) = g2
[
g1(x)

]
.

The identity transformation is e(x) = x for all x, the inverse of g is the usual inverse
transformation g−1 defined by g−1

[
g(x)

] = x for all x. We assume that the family P =
{Pθ , θ ∈ Θ} is identifiable (ie, if θ �= θ ′, then Pθ �= Pθ ′).

The family of probabilities P = {Pθ , θ ∈ Θ} is said to be invariant under G if for every
g ∈ G and for every θ ∈ Θ, there exists θ ′ ∈ Θ such that if X ∼ Pθ , then g(X) ∼ Pθ ′ . Since the
family {Pθ , θ ∈ Θ} is identifiable, such θ ′ is unique and we denote it by ḡ(θ). Thus for any B,

Pθ

[
g−1(B)

]
= Pθ

[
X ∈ g−1(B)

]
= Pθ

[
g(X) ∈ B

] = Pḡ(θ)[B].

Let Ḡ = {
ḡ: g ∈ G}. Then Ḡ is a group of transformations from Θ → Θ, all ḡ ∈ Ḡ being one-

to-one and onto. [To check that Ḡ is a group, verify (i) ḡ2 · ḡ1 = g2 · g1, (ii) ē is the identity
element of Ḡ, and (iii) ḡ−1 = g−1.]

Definition 5.3.1. A statistical decision problem specified by

(X ,B, {Pθ , θ ∈ Θ}), A, L

is said to be invariant under a group G of transformations from X → X if

(i) P = {Pθ , θ ∈ Θ} is invariant under G with the associated group of transformations Ḡ
from Θ → Θ, and
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(ii) for every ḡ ∈ Ḡ and for every a ∈ A, there is a unique a′ ∈ A denoted by a′ = g̃(a) such
that for all θ ∈ Θ

L(θ , a) = L(ḡ(θ), a′) = L(ḡ(θ), g̃(a)).

Remark 5.3.1. If for a given ḡ ∈ Ḡ and a ∈ A, (ii) is satisfied by more than one a′, then
we can remove all such candidates except one and call this a′ = g̃(a), thereby achieving
uniqueness of a′ as specified in (ii).

Let G̃ = {
g̃: g ∈ G}. Then G̃ is a group of transformations from A → A. All g̃ are one-to-

one and onto. [Verify that (i) g̃2 · g̃1 = g̃2 · g1, (ii) ẽ is the identity transformation of G̃, and
(iii) g̃−1 = g̃−1.]

Definition 5.3.2. If a decision problem is invariant under G, then

(i) a nonrandomized decision rule d is equivariant under G if for all x ∈ X and g ∈ G,
d(g(x)) = g̃(d(x)), and

(ii) a behavioral decision rule δ is equivariant under G if δ(S|g(x)) = δ(g̃−1(S)|x) for all
“events” S ⊂ A, for all x ∈ X and g ∈ G.

Definition 5.3.3.

(a) For θ1, θ2 ∈ Θ, we say θ1 ≡ θ2 if there exists ḡ ∈ Ḡ such that θ2 = ḡ(θ1), ≡ being an
equivalence relation;

(b) let Θ∗ denote the collection of equivalence classes of Θ; and
(c) the equivalence classes are called orbits, Θ∗ being the set of all orbits.

For the rest of this section, we consider only nonrandomized decision rules.
Theorem 5.3.1. For any (nonrandomized) equivariant decision rule d, the risk function

is constant on each orbit.
Proof. Note that

R(θ , d) = Eθ

[
L(θ , d(X))

] = Eθ

[
L(ḡ(θ), g̃(d(X)))

]
= Eθ

[
L(ḡ(θ), d(g(X)))

] = Eḡ(θ)
[
L(ḡ(θ), d(Y ))

] = R(ḡ(θ), d),

using (i) L(θ , a) = L(ḡ(θ), g̃(a)), (ii) g̃(d(x)) = d(g(x)) since d is equivariant, and (iii) X ∼ Pθ

implies Y = g(X) ∼ Pḡ(θ).
This theorem shows how equivariance simplifies the search for an optimal rule. If there

is a single orbit, then there is an optimal equivariant rule, which is called the Minimum
Risk Equivariant (MRE) estimator.

5.3.1 Location Equivariance in a Location Family

Suppose X = (X1, . . . , Xn) has pdf f (x; θ) = f (x1 − θ , . . . , xn − θ) where θ is the unknown
location parameter to be estimated.

Let Y = gc(X ) = (X1+c, . . . , Xn+c) := (X +c1) where 1T = (1, . . . , 1), and let ḡc(θ) = θ+c.
Then Y has pdf

f
([

y1 − c
]− θ , . . . ,

[
yn − c

]− θ
) = f (y − [θ + c]1) = f

(
y; ḡc(θ)

)
.
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For a ∈ R, taking g̃c(a) = a + c, suppose

L
(
ḡc(θ), g̃c(a)

) = L(θ + c, a + c) = L(θ , a) for all θ , a, c.

Then with c = −θ ,

L(θ , a) = L(0, a − θ) := ρ(a − θ).

Thus the problem is invariant under G = {
gc, c ∈ R

}
and a location equivariant rule d must

satisfy: d(x + c1) = d(x) + c. All the usual estimators of a location parameter such as mean,
median, etc., are location equivariant.

In this set-up, there is only one orbit in Θ = R and therefore, the risk function is
constant in θ for equivariant rules d satisfying d(x + c1) = d(x) + c. Indeed, for such a
rule,

R(θ , d) =
∫

L(θ , d(x))f (x − θ1) dx

=
∫

L(θ , d(y + θ1))f (y) dy

=
∫

L(θ , d(y) + θ)f (y) dy

=
∫

L(0, d(y))f (y) dy = R(0, d).

We now find the MRE estimator of θ . We first characterize a location equivariant
estimator.

Lemma 5.3.1. d is location equivariant iff d(x) = d0(x) + u(x) where d0 is an arbitrary
location equivariant estimator and u(x + c1) = u(x) for all x and c ∈ R.

Proof. If d is of the above form, then

d(x + c1) = d0(x + c1) + u(x + c1)

= {
d0(x) + c

}+ u(x)

= {
d0(x) + u(x)

} + c = d(x) + c

showing that d is equivariant. Conversely, if d is equivariant, then taking u(x) = d(x)−d0(x),
we have d(x) = d0(x) + u(x) and

u(x + c1) = d(x + c1) − d0(x + c1)

= {
d(x) + c

}− {
d0(x) + c

}
= d(x) − d0(x) = u(x).

To find the MRE estimator,

1. For n = 1, take d0(x) = x which is location equivariant, and

u(x + c) = u(x) for all x and c ∈ R
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implies u(x) = constant := − b. Hence, all location equivariant estimators are of the
form: d(x) = x − b := db(x). Now the MRE estimator is obtained by minimizing

R(0, db) = E0
[
ρ(X − b)

]
with respect to b.

2. For n ≥ 2, let y = (y1, . . . , yn−1) = (x1 − xn, . . . , xn−1 − xn). Then u(x + c1) = u(x) for all
x and c ∈ R iff u(x) = v(y) for some function v.

Proof. u(x) = v(y) means u(x1, . . . , xn) = v(x1 −xn, . . . , xn−1 −xn). Therefore, u(x +c1) =
v(x1 − xn, . . . , xn−1 − xn) = u(x). Conversely, if u(x + c1) = u(x), then with c = −xn,

u(x) = u(x1 − xn, . . . , xn−1 − xn, 0) = u(y1, . . . , yn−1, 0) := v(y).

Thus location equivariant estimators are of the form d(x) = d0(x) − v(y), so choose v
so that

R(0, d) = E0
[
ρ(d0(X ) − v(Y ))

] = E0E0
[
ρ(d0(X ) − v(Y ))|Y ]

is minimum, which is achieved by minimizing E0
[
ρ(d0(X ) − v(y))|Y = y

]
for each y. There-

fore, to find the MRE estimator, choose v(y) = v∗(y) for each y, so that

E0
[
ρ(d0(X ) − v∗(y))|Y = y

] ≤ E0
[
ρ(d0(X ) − b)|Y = y

]
for all b.

The above development is summarized in the following theorem.
Theorem 5.3.2. For n = 1, the MRE estimator of a location parameter is given by X − b∗

where

E0
[
ρ(X − b∗)

] ≤ E0
[
ρ(X − b)

]
for all b.

For n ≥ 2, let Y = (Y1, . . . , Yn−1) = (X1 − Xn, . . . , Xn−1 − Xn) and let d0(X ) be an arbitrary
location equivariant estimator with finite risk. Then the MRE estimator is given by d0(X ) −
v∗(Y ) where for each y,

E0
[
ρ(d0(X ) − v∗(y))|Y = y

] ≤ E0
[
ρ(d0(X ) − b)|Y = y

]
for all b.

In particular, for squared-error loss L(θ , a) = (a − θ)2, the MRE estimator is:

d∗(x) = x − E0[X ] for n = 1 and

d∗(x) = d0(x) − E0
[
d0(X )|Y = y

]
for n ≥ 2,

because E0
[
(X − b)2

]
and E0

[{
d0(X ) − b

}2|Y = y
]

are minimized at b = E0[X ] and b =
E0
[
d0(X)|Y = y

]
, respectively.

Likewise, for absolute error loss L(θ , a) = |a − θ |, the MRE estimator is:

d∗(x) = x − median0[X ] for n = 1 and

d∗(x) = d0(x) − median0
[
d0(X )|Y = y

]
for n ≥ 2.
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Suppose L(θ , a) = ρ(a − θ) where ρ is convex and even. Suppose further that f is
symmetric about 0. Then for n = 1, the MRE estimator is d∗(x) = x. This is because

E0
[
ρ(X − b)

] =
∫ 0

−∞
ρ(x − b)f (x) dx +

∫ ∞
0

ρ(x − b)f (x) dx

=
∫ ∞

0
ρ(−x − b)f (−x) dx +

∫ ∞
0

ρ(x − b)f (x) dx

=
∫ ∞

0

[
ρ(x + b) + ρ(x − b)

]
f (x) dx,

so that

E0
[
ρ(X − b)

]− E0[ρ(X)] = 2
∫ ∞

0

[
1
2

{
ρ(x + b) + ρ(x − b)

}− ρ(x)
]

f (x) dx ≥ 0

for all b.
Example 5.3.1. Let (X1, . . . , Xn) be a random sample from N (θ , σ 2) where σ 2 is known.

Take d0(X ) = X̄ which is complete sufficient, while

Y = (X1 − Xn, . . . , Xn−1 − Xn)

is an ancillary statistic (ie, its distribution does not depend on θ). By Basu’s Theorem 5.1.6,
it follows that d0(X ) = X̄ is independent of Y . Hence, for each y,

E0
[
ρ(d0(X ) − b)|Y = y

] = E0
[
ρ(X̄ − b)|Y = y

] = E0
[
ρ(X̄ − b)

]
.

For θ = 0, the pdf of X̄ is symmetric about 0, so that for all convex and even ρ, E0
[
ρ(X̄ − b)

]
is minimized for b = 0. Thus the MRE estimator is d∗(X ) = d0(X ) − 0 = X̄ .

Theorem 5.3.3. Under squared-error loss, the MRE estimator

d∗(x) = d0(x) − E0
[
d0(X )|Y = y

]
can be expressed as

d∗(x) =
∫∞
−∞ uf (x1 − u, . . . , xn − u) du∫∞
−∞ f (x1 − u, . . . , xn − u) du

.

In this form it is known as the Pitman estimator of θ [19], which is also the generalized Bayes
estimator with respect to the “improper prior having uniform distribution over the entire
real line.”

Proof. Take d0(X ) = Xn and compute E0
[
d0(X)|Y ] = E0[Xn|Y ] by augmenting the

transformation x → y in the following manner:

y1 = x1 − xn, . . . , yn−1 = xn−1 − xn, yn = xn.

The Jacobian of this transformation is 1 and the joint pdf of

Y ∗ = (Y1, . . . , Yn−1, Yn)

for θ = 0 is

fY ∗ (y1, . . . , yn−1, yn) = fX (y1 + yn, . . . , yn−1 + yn, yn)

= f (y1 + yn, . . . , yn−1 + yn, yn).
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The conditional pdf of Yn = Xn given Y = (Y1, . . . , Yn−1) is

fY ∗ (y1, . . . , yn)
fY (y1, . . . , yn−1)

= f (y1 + yn, . . . , yn−1 + yn, yn)∫∞
−∞ f (y1 + t, . . . , yn−1 + t, t) dt

.

Hence, for y = (x1 − xn, . . . , xn−1 − xn),

E0
[
Xn|Y = y

] = E0
[
Yn|Y = y

]
=
∫∞
−∞ tf (y1 + t, . . . , yn−1 + t, t) dt∫∞
−∞ f (y1 + t, . . . , yn−1 + t, t) dt

=
∫∞
−∞ tf (x1 − xn + t, . . . , xn−1 − xn + t, t) dt∫∞
−∞ f (x1 − xn + t, . . . , xn−1 − xn + t, t) dt

, with xn − t = u

=
∫∞
−∞(xn − u)f (x1 − u, . . . , xn−1 − u, xn − u) du∫∞

−∞ f (x1 − u, . . . , xn−1 − u, xn − u) du

= xn −
∫∞
−∞ uf (x1 − u, . . . , xn − u) du∫∞
−∞ f (x1 − u, . . . , xn − u) du

showing that d∗(x) = xn − E0
[
Xn|Y = y

]
has the desired form.

5.3.2 Scale Equivariance in a Scale Family

Suppose X = (X1, . . . , Xn) has pdf f (x; σ ) = 1
σ n f

( x1
σ

, . . . , xn
σ

)
where σ ∈ R+ is the unknown

scale parameter to be estimated.
Let Y = gc(X ) = cX and ḡc(σ ) = cσ . Then Y = gc(X) has pdf

1
(cσ )n f

( y
cσ

)
= f (y; ḡc(σ )),

that is, Y = gc(X ) has pdf f (y; ḡc(σ )).
For a ∈ A = R+, taking g̃c(a) = ca, suppose

L(ḡc(σ ), g̃c(a)) = L(cσ , ca) = L(σ , a) for all σ , a, c.

Then with c = 1/σ , L(σ , a) = L(1, a/σ ) := ρ(a/σ ).
Thus the problem is invariant under G = {

gc, c ∈ R+} and an equivariant rule d must
satisfy: d(cx) = cd(x). As in the case of location family, here also there is only one orbit in
Θ = R+ and therefore, the risk function is constant for equivariant rules.

A rule d is scale equivariant iff d(x) = u(x)d0(x), where d0 is an arbitrary scale
equivariant estimator and u(cx) = u(x) for all x and c ∈ R+. The proof is similar to the
location case.

We now find the MRE estimator of σ , proceeding as in the location case:

(i) For n = 1, take d0(x) = x which is scale equivariant. So any scale equivariant d must
be of the form: d(x) = u(x)d0(x) = u(x)x, where u(cx) = u(x) for all x and c ∈ R+.
Hence, u(x) = b−1(constant) for all x. Thus all scale equivariant estimators are of the
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form db(x) = x/b. To obtain the MRE estimator, we therefore have to minimize the
constant risk of db, namely,

R(1, db) = R(1, x/b) = E1
[
ρ(X/b)

]
with respect to b.

(ii) For n ≥ 2, let y = (y1, . . . , yn−1) = (x1/xn, . . . , xn−1/xn). Then

u(cx) = u(x) for all x and c ∈ R+ ⇔ u(x) = v(y) for some v,

the proof of which is analogous to the corresponding result in the location case. Thus
the scale equivariant estimators for n ≥ 2 are of the form: d(x) = d0(x)/v(y). So
choose v so that

R(1, d) = E1
[
ρ(d0(X )/v(Y ))

] = E1E1
[
ρ(d0(X )/v(Y ))|Y ]

is minimized. To find the MRE estimator, choose v∗(y) for each y so that

E1
[
ρ(d0(X )/v∗(y))|Y = y

] ≤ E1
[
ρ(d0(X )/b)|Y = y

]
for all b.

The above development is summarized in the following theorem.

Theorem 5.3.4. For n = 1, the MRE estimator of a scale parameter is given by X/b∗ where

E1
[
ρ(X/b∗)

] ≤ E1
[
ρ(X/b)

]
for all b.

For n ≥ 2, let Y = (Y1, . . . , Yn−1) = (X1/Xn, . . . , Xn−1/Xn) and let d0(X) be an arbitrary
scale equivariant estimator with finite risk. Then the MRE estimator is given by d0(X )/v∗(Y )
where for each y,

E1
[
ρ(d0(X )/v∗(y))|Y = y

] ≤ E1
[
ρ(d0(X )/b)|Y = y

]
for all b.

5.4 Bayesian Estimation Using Conjugate Priors
(I) In Section 4.6.3 we have introduced the Bayes Principle in the general context of a

statistical decision problem described by the triple ({Pθ , θ ∈ Θ}, A, L). According to
this principle, we choose a decision rule d for which the risk R(θ , d) averaged with
respect to a prior distribution τ over Θ is minimum.

(II) In Section 4.6.4 the general scheme of finding Bayes rules was outlined, which
consists of choosing d(x) = dτ (x) for each observed data x for which the posterior risk
is minimized, that is ∫

Θ
L(θ , dτ (x))g(θ |x) dθ ≤

∫
Θ

L(θ , a)g(θ |x) dθ

for all a ∈ A, where

g(θ |x) = f (x, θ)τ (θ)
/∫

Θ
f (x, u)τ (u) du

is the posterior pdf of θ given x.
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(III) The method described above is quite straight forward. However, the key step in the
method is calculating the posterior distribution g(θ |x) given the data, from the prior
τ (θ) over Θ in a family of pdf’s

{
f (x, θ), θ ∈ Θ

}
, which may become very messy. This

task becomes very simple in some cases by selecting τ (θ) from a family
{τ (θ , α), α ∈ Ω} which matches with the family

{
f (x, θ), θ ∈ Θ

}
in a manner described

below.

Let F = {
f (x, θ), θ ∈ Θ

}
be a family of pdf’s on X and let τ = {τ (θ , α), α ∈ Ω} be a family

of priors on Θ. Let

gα(θ |x) = f (x, θ)τ (θ , α)∫
Θ f (x, θ ′)τ (θ ′, α) dθ ′

be the posterior pdf of θ given X = x corresponding to the prior τ (θ , α). If there exists
φ: Ω × X → Ω such that gα(θ |x) = τ (θ , φ(α, x)) = τ (θ , φx(α)), then τ is said to be a family
of conjugate priors for θ . The calculation of posterior from prior in such a situation can be
described by the scheme:

Prior τ (θ , α) + Data x = Posterior τ (θ , φx(α)) .

Consider the special case of a k-parameter regular exponential family:

F =
⎧⎨⎩f (x, θ) = exp

⎡⎣ k∑
j=1

cj(θ)
n∑

i=1

Tj(xi) +
n∑

i=1

S(xi) + nd(θ)

⎤⎦IA(x), θ ∈ Θ

⎫⎬⎭,

where Θ =
{
θ ∈ Rk:

∫
Rk f (x, θ) dx = 1

}
. Define

ω(α1, . . . , αk, αk+1) =
∫
θ∈Θ

exp

⎡⎣ k∑
j=1

αjcj(θ) + αk+1d(θ)

⎤⎦ dθ ,

and Ω = {
(α1, . . . , αk, αk+1) : ω(α1, . . . , αk, αk+1) < ∞}

. Let

τ (θ ; α1, . . . , αk+1) = exp

⎡⎣ k∑
j=1

αjcj(θ) + αk+1d(θ) − log ω(α1, . . . , αk, αk+1)

⎤⎦
=

exp
[∑k

j=1 αjcj(θ) + αk+1d(θ)
]

ω(α1, . . . , αk, αk+1)
, (3)

so that τ (θ ; α1, . . . , αk , αk+1) is a pdf for every (α1, . . . , αk+1) ∈ Ω . Then

τ = {
τ (θ ; α1, . . . , αk+1), (α1, . . . , αk, αk+1) ∈ Ω

}
is a family of conjugate priors for the exponential family F . This is because

gα1,...,αk+1 (θ |x) = τ (θ , φx(α1, . . . , αk+1)), (3a)
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where

φx(α1, . . . , αk+1) =
⎛⎝α1 +

n∑
i=1

T1(xi), . . . , αk +
n∑

i=1

Tk(xi), αk+1 + n

⎞⎠, (3b)

as can be easily verified.
Example 5.4.1. Let (X1, . . . , Xn) be a random sample from Bernoulli(θ).
Then

f (x, θ) = θ
∑n

1 xi (1 − θ)n−∑n
1 xi IA(x)

= exp

⎡⎣log
(

θ

1 − θ

) n∑
i=1

xi + n log(1 − θ)

⎤⎦IA(x),

where A = {0, 1}n and 0 < θ < 1. From this we obtain

ω(α1, α2) =
∫ 1

0
exp

[
α1 log

(
θ

1 − θ

)
+ α2 log(1 − θ)

]
dθ

=
∫ 1

0
θα1 (1 − θ)α2−α1 dθ

= Γ (α1 + 1)Γ (α2 − α1 + 1)/Γ (α2 + 2),

where α1 + 1 > 0 and α2 − α1 + 1 > 0. Thus we take

τ (θ ; α1, α2) = Γ (α2 + 2)
Γ (α1 + 1)Γ (α2 − α1 + 1)

exp
[
α1 log

(
θ

1 − θ

)
+ α2 log(1 − θ)

]

= Γ (α2 + 2)
Γ (α1 + 1)Γ (α2 − α1 + 1)

θα1 (1 − θ)α2−1

on 0 < θ < 1, which is Beta(α1 + 1, α2 − α1 + 1) := Beta(a, b) distribution, where a = α1 + 1
and b = α2 − α1 + 1. Then

gα1,α2 (θ |x) = τ

⎛⎝θ ; α1 +
n∑

i=1

xi, α2 + n

⎞⎠
= Beta

⎛⎝α1 +
n∑

i=1

xi + 1, α2 + n − α1 −
n∑

i=1

xi + 1

⎞⎠
= Beta

⎛⎝a +
n∑

i=1

xi, b + n − xi

⎞⎠.

Hence, for the squared-error loss, the Bayes estimator with respect to the prior τ (θ ; α1, α2)
is the mean of the distribution Beta

(
a +∑n

i=1 Xi, b + n −∑n
i=1 Xi

)
which is

T = T(X ) =
∑n

i=1 Xi + a

n + a + b
.
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5.5 Methods of Estimation
We have so far discussed the Rao-Blackwell method of finding UMVUEs and two methods
of estimation in the general decision theoretic framework following the Bayesian principle
and the principle of equivariance. Three other methods, such as,

(i) the method of maximum likelihood;
(ii) the method of moments; and
(iii) the method of minimum χ2,

will now be discussed, which are applicable in the context of parametric families.
The method of maximum likelihood was introduced by Fisher [20] who also laid the

foundation of the theory of estimation and demonstrated the superiority of this method
over the method of moments which was widely used for a long time until then. The method
of minimum χ2 has limited use only in the context of multinomial data to estimate the
parameters on which the cell probabilities depend.

5.5.1 The Method of Maximum Likelihood

For a random sample X = (X1, . . . , Xn) from a population with pdf/pmf f (x; θ1, . . . , θk), the
joint pdf/pmf of the data is:

f (x; θ1, . . . , θk) =
n∏

i=1

f (xi; θ1, . . . , θk),

treating x as variable and θ = (θ1, . . . , θk) as fixed. We now treat θ as the variable, since we
are searching among all possible θ ∈ Θ, and the data x as fixed, because that is what we
have in our search for θ . This defines the likelihood function of θ for the data x as:

L(θ |x) = L(θ1, . . . , θk|x1, . . . , xn) =
n∏

i=1

f (xi; θ1, . . . , θk).

Definition 5.5.1. The maximum likelihood estimate θ̂(x) for a given data x is defined as
the value of θ ∈ Θ at which L(θ |x) attains its maximum, that is

θ̂(x) = arg max θ∈ΘL(θ |x) for each x.

The maximum likelihood estimator (MLE) of θ for a random sample X is θ̂(X ).
The maximization of the likelihood function L(θ |x) with respect to θ ∈ Θ for a given x

is quite straightforward in many situations. Most often, this maximization is achieved by
solving the equation:

∂

∂θi
L(θ |x) = 0, i = 1, . . . , k
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and making sure that the extremum is indeed the maximum. In many situations arising
in the context of exponential families, it is easier to work with log L(θ |x), called the log
likelihood.

However, various complications may be encountered in the process of maximization of
L(θ |x) or log L(θ |x) such as:

(i) ∂
∂θi

log L(θ |x) = 0, i = 1, . . . , k may have several solutions, in which case we have to
search for the global maximum among these solutions,

(ii) the parameter space Θ may be restricted and the solution of the likelihood equations
may fall outside the restricted part of Θ , in which case we have to modify such a
solution appropriately, and

(iii) the equations ∂
∂θi

log L(θ |x) = 0, i = 1, . . . , k may not have a closed form solution, so
the equation may have to be solved iteratively.

Complications like (i) and (ii) will be dealt with in some examples to be discussed in the
sequel and (iii) will be discussed in Chapter 7.

The MLEs have an important property known as invariance. This means that if η = g(θ),
then the MLE of η based on x is η̂(x) = g(θ̂ (x)) where θ̂(x) is the MLE of θ based on x. The
proof of this fact is straightforward if g: Θ → H is one-to-one, but it needs a little more
care if g is not one-to-one.

For given data x, the likelihood function of θ is L(θ |x) = f (x, θ). When g is one-to-one
and onto, then θ = g−1(η) is well defined for all η ∈ H and we define L∗(η|x) = L(g−1(η)|x).
In general, when g is onto but not one-to-one, we define L∗(η|x) = sup{θ : g(θ)=η} L(θ |x).

The proof of η̂(x) = g(θ̂(x)) is now given for the two cases: g is one-to-one or not.

(i) g is one-to-one and onto. If η̂(x) is the MLE of η based on x, then

L∗(η̂(x)|x) = sup
η∈H

L∗(η|x) ⇐⇒ L(g−1(η̂(x))|x) = sup
η∈H

L(g−1(η)|x),

ie, L(g−1(η̂(x))|x) = sup
θ∈Θ

L(θ |x).

But then g−1(η̂(x)) = θ̂(x), and so η̂(x) = g(θ̂ (x)).
(ii) g is onto but not one-to-one. In this case, if η̂(x) is the MLE of η based on x, then

sup
{θ : g(θ)=η̂(x)}

L(θ |x) = sup
η∈H

sup
{θ : g(θ)=η}

L(θ |x) = sup
θ∈Θ

L(θ |x),

since
⋃

η∈H
{
θ : g(θ) = η

} = Θ. Hence θ̂(x) ∈ {θ : g(θ) = η̂(x)
}

, and so g(θ̂(x)) = η̂(x).

The asymptotic properties of the MLEs will be discussed in Chapter 7 along with
those of the Likelihood Ratio Tests motivated by the likelihood principle in the context
of Hypothesis Testing.

The MLEs are “asymptotically efficient” on one hand, but in finite samples, they may be
excessively influenced by a few “outliers.” Methods which modify the MLEs against such
weakness will be discussed in Chapter 10.
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Here we shall only present a heuristic argument to justify the method of maximum
likelihood and in the single-parameter context point out a key feature in the model{

f (x, θ), θ ∈ R
}

which determines how well the MLE performs.
To emphasize what happens when the sample size n → ∞, we let the log likelihood

log L be subscripted by n and averaged over n to define

L∗
n(θ) = n−1 log Ln(θ |X1, . . . , Xn) = n−1

n∑
i=1

log f (Xi, θ),

which is maximized with respect to θ .
Let θ0 denote the true value of θ and suppose that Eθ0

[
log f (X , θ)

]
is finite for all θ in a

neighborhood of θ0. Then as n → ∞,

L∗
n(θ) = n−1

n∑
i=1

log f (Xi, θ)
p→ Eθ0

[
log f (X , θ)

]
:= L∗(θ)

at each θ . The MLE θ̂n at which L∗
n(θ) attains its maximum should, therefore, converge in

probability to the value of θ at which L∗(θ) attains its maximum.
Assume that the family

{
f (x, θ), θ ∈ Θ

}
satisfies the identifiability condition which

requires that for θ ′ �= θ , f (·, θ ′) is essentially different from f (·, θ). Then for θ �= θ0, due
to strict concavity of the function log(·), it follows from Jensen’s inequality that

Eθ0

[
log f (X , θ) − log f (X , θ0)

]
= Eθ0

[
log

f (X , θ)
f (X , θ0)

]
< log Eθ0

[
f (X , θ)
f (X , θ0)

]
= log

∫
{x: f (x,θ0)>0}

[
f (x, θ)/f (x, θ0)

]
f (x, θ0) dx

= log
∫
{x: f (x,θ0)>0}

f (x, θ) dx ≤ log 1 = 0.

Thus for θ �= θ0, L∗(θ) = Eθ0

[
log f (X , θ)

]
< Eθ0

[
log f (X , θ0)

] = L∗(θ0) (ie, the function L∗(θ)
has a unique maximum at θ0).

Now by the WLLN, the graph of L∗
n(θ) converges to the graph of L∗(θ) at each θ with

probability tending to 1 as n → ∞. So it seems reasonable that the peaks of the two graphs
should approach one another as n → ∞ (ie, θ̂n → θ0 in probability).

Now for Θ = R, suppose that the graph of L∗(θ) has a large curvature at θ = θ0. Then
it falls off sharply as θ moves away from its peak at θ0. This increases the tendency of the
peak of L∗

n(θ) to stay close to the peak of L∗(θ). The geometry of the graph of L∗(θ) and the
convergence property of L∗

n(θ) together suggest that

1. θ̂n
P→ θ0 as n → ∞, and

2. the precision of θ̂n in estimating θ0 increases with the curvature of L∗(θ) at θ = θ0.
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The curvature of L∗(θ) at θ = θ0 is the Fisher-information I(θ0) of the family{
f (x, θ), θ ∈ R

}
at θ0 (defined in Eq. (2)):

− d2

dθ2
L∗(θ)

∣∣∣∣∣
θ=θ0

= − d2

dθ2

∫ {
log f (x, θ)

}
f (x, θ0) dx

∣∣∣∣∣
θ=θ0

= −
∫ (

∂2 log f (x, θ0)

∂θ2

)
f (x, θ0) dx

= −Eθ0

[
∂2 log f (X , θ0)

∂θ2

]

= Eθ0

[(
∂ log f (X , θ0)

∂θ

)2
]

= I(θ0)

under regularity conditions. Note that the Cramér-Rao lower bound is also determined by
this curvature, which is an intrinsic measure of how well θ0 can be estimated.

We now pursue this heuristic argument to examine the asymptotic distribution of√
n(θ̂n − θ0). Assume that the MLE θ̂n satisfies

n−1
n∑

i=1

∂ log f (Xi, θ̂n)
∂θ

= 0, (4)

and expand the left-hand side of this equation around θ0 to see that

0 = n−1
n∑

i=1

∂ log f (Xi, θ0)
∂θ

+ (θ̂n − θ0)n−1
n∑

i=1

∂2 log f
(

Xi, ˆ̂
θn

)
∂θ2

with ˆ̂
θn lying between θ̂n and θ0. Thus

√
n(θ̂n − θ0) = n−1/2 ∑n

i=1
∂ log f (Xi ,θ0)

∂θ

n−1 ∑n
i=1 − ∂2 log f

(
Xi,

ˆ̂
θn

)
∂θ2

,

of which the numerator
L→ N (0, I(θ0)) by the CLT and the denominator

P→ I(θ0) by the

WLLN. Hence,
√

n(θ̂n − θ0)
L→ N(0, 1/I(θ0)) by Slutsky’s Theorem.

Remark 5.5.1. The condition that the MLE θ̂n satisfies Eq. (4) is essential for the
asymptotic normality of

√
n(θ̂n − θ0). To see what happens otherwise, let X = (X1, . . . , Xn)

be a random sample from Uniform(0, θ). Then the MLE θ̂n of θ is Xn:n = max(X1, . . . , Xn)

and Pθ0

[
θ̂n ≤ t

]
= (t/θ0)n for 0 < t < θ0 and = 1 for t ≥ θ0.

In Chapter 7, the results indicated above by heuristic arguments will be proved more
systematically.
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5.5.2 The Method of Moments

In a random sample X = (X1, . . . , Xn) from a population with pdf/pmf f (x; θ1, . . . , θk), let

μj(θ1, . . . , θk) = Eθ1,...,θk

[
X

j
i

]
and mnj = n−1

n∑
i=1

X
j
i , j = 1, . . . , k

denote, respectively, the jth population and sample moments. The method of moments
estimators (MOME) of θ1, . . . , θk are obtained by equating each of the first k population
moments to the corresponding sample moments and solving the system of equations:

μj(θ1, . . . , θk) = mnj, j = 1, . . . , k

for θ1, . . . , θk. Suppose these equations have unique solutions and let

θ̂nj = gj(mn1, . . . , mnk), j = 1, . . . , k

denote the solutions of these equations. If the population distribution has finite 2k
moments, then

√
n(mnj − μj), j = 1, . . . , k will be asymptotically jointly normal and

consequently,
√

n(θ̂nj − θj), j = 1, . . . , k will also be asymptotically jointly normal, provided
that the functions g1, . . . , gk are sufficiently smooth.

Example 5.5.1. X1, . . . , Xn are iid Bernoulli(θ).
Here k = 1, μ(θ) = θ and mn = n−1 ∑n

1 Xi = X̄n. So we equate μ(θ) = mn to obtain θ̂n = X̄n

which is the same as the MLE.
Example 5.5.2. X1, . . . , Xn are iid Uniform(θ).

Here also k = 1, μ(θ) = θ/2 and mn = X̄n; so we equate μ(θ) = mn to obtain θ̂n = 2X̄n.
Since Eθ [Xi] = θ/2 and Varθ [Xi] = θ2/12, we have Eθ

[
2X̄n

] = θ and Varθ

[
2X̄n

] = θ2/3.

Hence,
√

n(θ̂n − θ)
L→ N (0, θ2/3) which is quite different from the behavior of the MLE. It

is left as an exercise to compare the rates at which |θ̂n − θ | < ε converge to 1 for the MOME
and the MLE and to note that the convergence is much faster for the MLE.

Remark 5.5.2. Two major drawbacks of the method of moments are:

1. The MOMEs are less efficient than the MLEs in many situations as illustrated in
Example 5.5.2.

2. The method is inapplicable if the required number of moments do not exist, as in the
case of estimating the median of Cauchy(θ).

5.5.3 The Method of Minimum χ2

Consider a multinomial distribution in m classes with probability πj(θ), 1 ≤ j ≤ m for
the jth class where π1(·), . . . , πm(·) are known functions of an unknown k-dimensional
parameter vector θ , satisfying πj(θ) > 0 for all j and

∑m
j=1 πj(θ) = 1. Let n1, . . . , nm denote

the observed frequencies in the m classes in a random sample of size n.
In order to put this in a framework suitable for pursuing maximum likelihood esti-

mation of θ , let ej denote the m-dimensional vector with 1 for the jth coordinate and 0
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for all other coordinates. Then Xi = ej means that in the multinomial sampling, the ith
observation is in the jth class. The random vectors X1, . . . , Xn are iid with probabilities
Pθ

[
Xi = ej

] = f (ej, θ) = πj(θ), that is, the pmf of Xi is

f (x, θ) =
{

πj(θ ) if x = ej, j = 1, . . . , m

0 otherwise

We now have for x = ej,

∂ log f (x, θ )
∂θr

= ∂ log πj(θ )

∂θr
= 1

πj(θ )

∂πj(θ )

∂θr
,

and

Snr(t) =
n∑

i=1

∂ log f (Xi, t)
∂θr

=
n∑

i=1

m∑
j=1

I
[

Xi = ej

]∂ log πj(t)

∂θr

=
m∑

j=1

⎧⎨⎩
n∑

i=1

I
[

Xi = ej

]⎫⎬⎭ 1
πj(t)

∂πj(t)

∂θr
=

m∑
j=1

nj

πj(t)

∂πj(t)

∂θr
,

since
∑n

i=1 I
[
Xi = ej

] = {
number of observations Xi = ej

} = nj.

The MLEs of θ1, . . . , θk are obtained by solving the likelihood equations: Snr(θ̂n) = 0,
1 ≤ r ≤ k, that is

m∑
j=1

nj

πj(θ̂n)

∂πj(θ̂n)

∂θr
= 0, 1 ≤ r ≤ k.

These equations do not have a closed form solution in a typical problem, so they have to
be solved iteratively. This issue will be discussed in Chapter 7.

For frequency data described above, one can try to estimate θ by minimizing a measure
of discrepancy between (nπ1(θ∗

n), . . . , nπm(θ∗
n)) which are the expected frequencies for

(π1(θ∗
n), . . . , πm(θ∗

n)) and the observed frequencies (n1, . . . , nm) given by

χ2(θ∗
n) =

m∑
j=1

(nj − nπj(θ
∗
n))2

nπj(θ∗
n)

=
m∑

j=1

n2
j

nπj(θ∗
n)

− n

with respect to θ∗
n. Such a procedure is known as the method of minimum χ2. The

minimizing equations for this method are

m∑
j=1

n2
j

π2
j (θ∗

n)

∂πj(θ∗
n)

∂θr
= 0, 1 ≤ r ≤ k,

whereas the likelihood equations are

m∑
j=1

nj

πj(θ̂n)

∂πj(θ̂n)

∂θr
= 0, 1 ≤ r ≤ k.
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The two sets of equations can be shown to be asymptotically equivalent so θ∗
n has the same

asymptotic distribution as that of θ̂n. Thus the estimator θ∗
n obtained by the method of

minimum χ2 is asymptotically efficient.
However, for moderate sample sizes, the MLE θ̂n and the minimum χ2 estimator θ∗

n
have been known to perform quite differently. The asymptotics being discussed here do
not take into account what happens in respect of terms which are of order of magnitude
less than 1/

√
n in probability. What happens beyond this order of magnitude can cause

differences in the precision of two estimates which are both “asymptotically efficient” as
measured by “first-order efficiency.” These concerns have led to several approaches to
develop a measure of “second-order efficiency” [21].

Exercises
For all the problems below, when there are observations X1, . . . , Xn, it is understood that

X̄n = n−1
n∑

i=1

Xi, s2
n = (n − 1)−1

n∑
i=1

(Xi − X̄n)2,

Xn:1 = min(X1, . . . , Xn), Xn:n = max(X1, . . . , Xn).

5.1. Let X1, . . . , Xn be a random sample from a population with pdf

f (x, θ) = θ exp(−θx), x > 0, θ > 0.

Find the UMVUE of γ (θ) = exp(−θ) = Pθ [Xi > 1].
5.2. Let X1, . . . , Xn be a random sample from

f (x, θ) = exp(−(x − θ)), x > θ .

(a) Show that T = min(X1, . . . , Xn) is a complete sufficient statistic for θ . [For
completeness, you may restrict attention to continuous functions φ with
Eθ [φ(T)] = 0 for all θ .]

(b) Calculate Eθ [T] and find a UMVUE of θ .
5.3. Let X1, . . . , Xn be a random sample from N(μ, σ 2). Find the UMVUE of σ .
5.4. Let X1, . . . , Xn be a random sample from Unif (θ1, θ2). We want to estimate the mean

γ = (θ1 + θ2)/2.
(a) Show that (Xn:1, Xn:n) is complete and sufficient for (θ1, θ2), and X̄n is an

unbiased estimate of γ .
(b) Find the UMVUE of γ .

5.5. Let X1, . . . , Xn be a random sample from N(θ , 1). Find the UMVUE of
Pθ [X ≥ 0] = Φ(θ), where Φ is the cdf of the standard normal distribution. [Hint:
I[0,∞)(X1) is unbiased for Φ(θ) and (X1, X̄n) is bivariate normal.]

5.6. Let X ∼ Bin(n, θ). Show that X(n − X)/{n(n − 1)} is UMVUE of γ = θ(1 − θ).
5.7. Suppose that T1 and T2 are two UMVUEs of g(θ) with finite variance. Show that

T1 = T2. [Hint: (T1 + T2)/2 is also unbiased; use the correlation inequality.]
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5.8. Show that for an exponential family (in natural form)

g(x, η) = exp(ηT(x) + d0(η) + S(x))IA(x),

the Fisher-information is Ig (η) = −d′′
0(η).

5.9. Consider the exponential family

f (x, θ) = exp(C(θ)T(x) + d(θ) + S(x))IA(x),

where C is one-to-one and twice differentiable. Then we can reparametrize f (x, θ)
by letting η = C(θ) and rewrite f (x, θ) in the form g(x, η) given in Exercise 5.8 above.
Show that the Fisher-information in the family

{
f (x, θ)

}
is

If (θ) = −d′′
0(C(θ)) = −d′′

0(η)|η=C(θ)
{

C′(θ)
}2 = Ig (C(θ))

{
C′(θ)

}2.

5.10. Suppose that X1, . . . , Xn is a random sample from the pdf

f (x, θ) = cxc−1θ exp(−θxc), x > 0, c > 0 (known), θ > 0 (unknown).

Show that T = n−1 ∑n
i=1 X c

i is the UMVUE of 1/θ .
5.11. Let X be a random sample from the Cauchy distribution with pdf

f (x, θ) = 1

π
{

1 + (x − θ)2
} , −∞ < x < ∞.

We want to estimate the median of θ under the loss function L(θ , a) = ρ(a − θ),
where ρ(t) = I(c,∞)(|t|). Find the MRE estimator of θ based on X .

5.12. Let X1, . . . , Xn be a random sample from Unif (θ − 1/2, θ + 1/2). Find the MRE
estimator of θ under the loss function L(θ , a) = |a − θ |.

5.13. Let X1, . . . , Xn be a random sample from the half-normal distribution with pdf

f (x, θ) = √
2/π exp

[
−(x − θ)2/2

]
I(0,∞)(x).

Show that the Pitman estimator of θ is

d(x) = X̄n −
exp

[
−n(Xn:1 − X̄n)2/2

]
√

2nπΦ(
√

n(Xn:1 − X̄n)2)
,

where Φ is the cdf of N(0, 1).
5.14. Let (X1, . . . , Xn) have a joint distribution with pdf

f (x1, . . . , xn; θ) = θ−ng(x1/θ , . . . , xn/θ)

for some function g which vanishes unless all coordinates are positive, and θ > 0 is
an unknown scale parameter. Suppose that the loss function is L(θ , a) = ρ(a/θ).
(a) Find the MRE estimator of θ analogous to the MRE estimator in the location

problem. [Take Y = (X1/Xn, . . . , Xn−1/Xn).]
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(b) For the loss function L(θ , a) = (a/θ − 1)2, show that the MRE estimator is the
following analog of the Pitman estimator:

d(x) =
∫∞

0 θ−n−2f (x1/θ , . . . , xn/θ) dθ∫∞
0 θ−n−3f (x1/θ , . . . , xn/θ) dθ

.

5.15. (a) Express the family of beta distributions Be(θ1, θ2) as a two-parameter
exponential family and find a family of conjugate priors for this family.

(b) Find the prior-to-posterior formula for these conjugate priors. [Use Eqs. (3),
(3a), and (3b)]

5.16. Consider the joint pdf f (x, θ), of a random sample X1, . . . , Xn from N(θ1, 1/θ2),
where θ = (θ1, θ2).
(a) Express F1 = {

f (x, θ): − ∞ < θ1 < ∞, θ2 = 1
}

as a one-parameter exponential
family and find a family of conjugate priors for F1.

(b) Express F0 = {
f (x, θ): θ1 = 0, 0 < θ2 < ∞}

as a one-parameter exponential
family and find a family of conjugate priors for F0.

(c) Express F2 = {
f (x, θ): − ∞ < θ1 < ∞, 0 < θ2 < ∞}

as a two-parameter
exponential family and find a family of conjugate priors for F2.

(d) In each of the cases above, find the prior-to-posterior formula. [Use Eqs. (3),
(3a), and (3b).]

5.17. Let X1, . . . , Xn be a random sample from a distribution with pdf

f (x, θ) = θx−θ−1I(1,∞)(x), θ > 2.

(a) Find the method of moment estimator θ̃n of θ .
(b) Determine which of the following is true

i) θ̃n is an unbiased estimator θ ,
ii) θ̃n has an upward bias (ie, Eθ (θ̃n) > θ),

iii) θ̃n has a downward bias. [Write θ̃n in terms of X̄n − 1, find Eθ

[
X̄n − 1

]
and

use Jensen’s inequality.]
(c) Find the asymptotic distribution of θ̃n (suitably normalized) as n → ∞.

5.18. Let X1, . . . , Xn be a random sample from a log normal distribution with pdf

f (x, θ) = 1√
2πx

exp
[
−(log x − θ)2/2

]
, x > 0.

This means Yi = log Xi, i = 1, . . . , n, are iid N(θ , 1), so that Xi
D= exp(Zi + θ) where

Z1, . . . , Zn are iid N(0, 1). We want to estimate θ based on (X1, . . . , Xn).
(a) Find the MOME θ̃n and its asymptotic distribution.
(b) Find the MLE θ̂n and its asymptotic distribution.
(c) Let σ 2

1 and σ 2
2 be the asymptotic variances of θ̃n and θ̂n, respectively. Find the

asymptotic relative efficiency σ 2
2 /σ 2

1 of θ̃n with respect to θ̂n and comment.



6
Hypothesis Testing

6.1 Early History
Hypothesis testing at its early stage, from the 19th to the early 20th century, was concerned
with hypotheses suggested by scientific theories in anthropometry, genetics, etc. The
scientists in these disciplines wanted to evaluate the evidence provided by the data in
support or against such hypotheses, called the null hypotheses.

The extent of departure from such a null hypothesis evidenced by the data was
measured by a test statistic chosen on an ad hoc basis, which was considered significant
at level α if the tail probability “beyond” its observed value, under the null hypothesis,
called the p-value, fell below α. Whether to use the right tail or the left tail, or both tails for
this purpose would be determined by the nature of the problem in a “supposedly obvious”
manner. There was no formal basis for the choice of the test statistic or the direction of its
tail probability, and the question of optimality of the commonly used test procedures was
not addressed until [22] came up with the concept of an alternative hypothesis H1 against
which the null hypothesis H0 was to be tested. This naturally led to the definitions of two
types of error which are

(i) deciding in favor of H1 when H0 is true (Type I error), and
(ii) deciding in favor of H0 when H1 is true (Type II error).

Thus the problem of maximizing the

Power = The probability of correctly rejecting H0

= 1 − the probability of Type II error

subject to the condition of the probability of Type I error not exceeding α was defined and
the solution to this problem was the Neyman-Pearson Lemma.

6.2 Basic Concepts
Let {Pθ , θ ∈ Θ} be a family of probabilities on (X, A), of which an unknown element Pθ
generates a random sample X . We consider two hypotheses, H0: θ ∈ Θ0 and H1: θ ∈ Θ1,
whereΘ0 andΘ1 are disjoint subsets ofΘ. Based on the observation X , we want to take one

Theory and Methods of Statistics. http://dx.doi.org/10.1016/B978-0-12-802440-9.00006-0
Copyright © 2016 Elsevier Inc. All rights reserved.

125



126 THEORY AND METHODS OF STATISTICS

of two actions, a0: Accept H0 (ie, decide θ ∈ Θ0) or a1: Reject H0 and accept H1 (ie, decide
θ ∈ Θ1). The problem of hypothesis testing was introduced in Chapter 4. In this chapter
we shall develop the methods of constructing optimal tests, mostly within the framework
of exponential families, subject to the restrictions mentioned in Section 4.6.2.

A nonrandomized decision rule is described by a function d: X → {a0, a1}, or equiva-
lently by C = {

x: d(x) = a1
}

which is called the critical region or rejection region for H0. The
complement of C is A = {

x: d(x) = a0
}

which is called the acceptance region for H0.
A behavioral decision rule is described by a function ϕ: X → [0, 1], where for an x, ϕ(x)

is the probability of taking action a1 (ie, rejecting H0 when the observed value of X is x).
Such a function ϕ is called a critical function. A nonrandomized decision rule d with critical
region C is equivalently described by a behavioral decision rule ϕ = IC .

The critical region C of a nonrandomized decision rule and the sets {x: ϕ(x) ≤ c} for
c ∈ [0, 1] of the critical function ϕ of a behavioral decision rule must belong to A.

We consider the 0 − 1 loss function, that is

L(θ , a0) =
{

0 if θ ∈ Θ0
1 if θ ∈ Θ1

, and L(θ , a1) =
{

1 if θ ∈ Θ0
0 if θ ∈ Θ1

.

Then the risk of a behavioral decision rule ϕ is

R(θ ,ϕ) =
{

Eθ [ϕ(X)] := Probability of Type I Error if θ ∈ Θ0
1 − Eθ [ϕ(X)] := Probability of Type II Error if θ ∈ Θ1

.

Thus the risk function is described in terms of the function

βϕ(θ) = Eθ [ϕ(X)].

OnΘ0, βϕ(θ) is a measure of weakness of the test ϕ (probability of Type I error) and onΘ1,
βϕ(θ) is a measure of strength of the test ϕ (1 − probability of Type II error) which is called
the power.

In the theory of hypothesis testing, the hypotheses H0: θ ∈ Θ0 and H1: θ ∈ Θ1 are given
asymmetric roles, because the Type I error receives more serious consideration than the
Type II error. Optimization of ϕ is formulated as a problem of choosing ϕ so as to maximize
βϕ(θ) for θ ∈ Θ1 subject to the condition

sup
θ∈Θ0

βϕ(θ) ≤ α,

where α ∈ [0, 1] is given. This α is called the level of significance and supθ∈Θ0
βϕ(θ) is the

size of the test ϕ.
We call “H0: θ ∈ Θ0” the null hypothesis and “H1: θ ∈ Θ1” the alternative hypothesis. If

Θ0 (and/orΘ1) is a singleton set, then we call the null hypothesis H0 (and/or the alternative
hypothesis H1) a simple hypothesis, otherwise H0 (and/or H1) is composite.
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6.3 Simple Null Hypothesis vs Simple Alternative:
Neyman-Pearson Lemma

Let P0 and P1 be two distinct probability distributions on (X,A) with pdf’s/pmf’s p0 and
p1, respectively. Let Ei denote EPi , i = 0, 1.

Definition 6.3.1. A testϕ is said to be most powerful (MP) at levelα for testing H0: P = P0

against H1: P = P1 if

(a) E0[ϕ(X)] ≤ α; and
(b) if any test Ψ satisfies (a), then E1[ϕ(X)] ≥ E1[Ψ (X)].

Theorem 6.3.1 (Neyman-Pearson Lemma). Suppose we are testing H0: P = P0 against
H1: P = P1 and let 0 ≤ α ≤ 1.

(i) Existence. There exists a test ϕ and a constant k such that E0[ϕ(X)] = α and

ϕ(x) =
{

1 if p1(x) > kp0(x)
0 if p1(x) < kp0(x)

.

(ii) Sufficiency. If a test ϕ satisfies the above conditions for some k, then it is MP at level α
for testing H0: P = P0 against H1: P = P1.

(iii) Necessity. If ϕ is MP at level α for testing H0: P = P0 against H1: P = P1, then ϕ(x) is of
the form given in (i) for some k.

Proof.

(i) Take 0 < α < 1 since the proofs for α = 0 and 1 are straightforward. Let

F(c) = P0[p1(X) ≤ cp0(X)] = P0[p1(X)/p0(X) ≤ c]
be the cdf of the likelihood ratio T(X) = p1(X)/p0(X), which is a bona fide rv under P0

because P0[p0(X) > 0] = 1. Since F is a cdf, there exists c0 such that

F(c0 − 0) ≤ 1 − α ≤ F(c0).

Now define

ϕ(x) =
⎧⎨
⎩

1 if p1(x) > c0p0(x)
γ if p1(x) = c0p0(x)
0 if p1(x) < c0p0(x),

where γ can be assigned any value in [0, 1], say γ = 1, if F is continuous at c0, or else
we take

γ = F(c0) − (1 − α)
F(c0) − F(c0 − 0)

.

Thus part (i) of the N-P Lemma holds with k = c0 and 0 ≤ γ ≤ 1 as defined above,
because in case of a jump in F(·) at c0,

E0[ϕ(X)] = P0[p1(X) > c0p0(X)] + γP0[p1(X) = c0p0(X)]
= {1 − F(c0)} + γ {F(c0) − F(c0 − 0)} = α,
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and the same equality is obvious when α is continuous at c0.
(ii) Let ϕ be a test satisfying the conditions in (i) and let Ψ be another level α test for H0

(ie, E0[Ψ (X)] ≤ α). Let

S+ = {x: ϕ(x) − Ψ (x) > 0} and S− = {x: ϕ(x) − Ψ (x) < 0}.
Then for x ∈ S+, ϕ(x) > 0, so p1(x) ≥ kp0(x) and for x ∈ S−, ϕ(x) < 1, so
p1(x) ≤ kp0(x). Thus

{ϕ(x) − Ψ (x)}{p1(x) − kp0(x)
} ≥ 0 for all x ∈ S+ ∪ S− and

= 0 for all other x.

Hence

E1[ϕ(X)] − E1[Ψ (X)] =
∫

{ϕ(x) − Ψ (x)}p1(x) dx

=
∫

{ϕ(x) − Ψ (x)}{p1(x) − kp0(x)
}

dx

+ k
∫

{ϕ(x) − Ψ (x)}p0(x) dx

≥ 0 + k{E0[ϕ(X)] − E0[Ψ (X)]} ≥ 0.

(iii) Suppose that Ψ is MP at level α for testing H0: P = P0 vs H1: P = P1, and let ϕ be a test
satisfying the conditions in (i) with k = k∗. Define S+ and S− as in the proof of part
(ii). Then Ψ (x) �= ϕ(x) for x ∈ S+ ∪ S−. Let

S = (S+ ∪ S−) ∩ {x: p1(x) �= k∗p0(x)
}

= {x: Ψ (x) �= ϕ(x) and p1(x) �= k∗p0(x)}.

Then P0(S) = P1(S) = 0 implies Ψ (x) = ϕ(x) w.p. 1 under P0 and P1 whenever
p1(x) �= k∗p0(x), showing that Ψ satisfies condition (i) for k = k∗ w.p. 1 under P0 and
P1, proving part (iii) of the lemma. To prove P0(S) = P1(S) = 0, it is enough to show
that

∫
S dx = 0. Since (ϕ − Ψ )(p1 − k∗p0) > 0 on S and = 0 on Sc,∫

(ϕ − Ψ )(p1 − k∗p0) =
∫

S
(ϕ − Ψ )(p1 − k∗p0) > 0, ie,∫

(ϕ − Ψ )p1 > k∗
∫

(ϕ − Ψ )p0,

implying E1[ϕ(X)] > E1[Ψ (X)], which is a contradiction.

Corollary to the N-P Lemma

Let β = E1[ϕ(X)] where ϕ is the MP test for H0: P = P0 vs H1: P = P1 at level α < 1. Then
β > α.

Proof. Consider the test ϕ0(x) = α for all x. Then E0[ϕ0(X)] = E1[ϕ0(X)] = α . Since ϕ0 is
a level α test which does not satisfy the necessary condition for an MP test (given by part
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(iii) of the N-P Lemma) it is not an MP level α test, whereas ϕ is. Hence

β = E1[ϕ(X)] > E1[ϕ0(X)] = α.

Note. ϕ0(x) = α for all x may satisfy the necessary condition if p1(x) ≡ kp0(x) for some
k; but then k = 1, contradicting P0 �= P1.

Remark 6.3.1. For two probabilities P0, P1 on (X,A), we call p1(x)/p0(x) the likelihood
ratio of P1 to P0 at x. The N-P Lemma expresses the MP level α test for H0: P = P0 vs
H1: P = P1 in terms of the likelihood ratio, or equivalently, in terms of the log likelihood
ratio L(x) = log(p1(x)/p0(x))

φ(x) =
⎧⎨
⎩

0 if L(x) < k
γ if L(x) = k
1 if L(x) > k,

where k and 0 ≤ γ ≤ 1 are determined by the condition E0[φ(X)] = α.
Although the N-P Lemma can be used to construct MP level α tests for arbitrary P0 vs

P1 such as testing whether the data came from N(0, 1) or from Cauchy(0, 1), our interest
mostly lies in testing for one value of the parameter against another within a parametric
family. We illustrate the use of the N-P Lemma with two examples, namely, testing for the
mean θ of Poi(θ) and the mean θ of N(θ , 1).

Example 6.3.1. Let X = (X1, . . . , Xn) be a random sample from Poisson(θ), where θ > 0
is unknown. We want the MP level α test for H0: θ = θ0 vs H1: θ = θ1.

Solution. Here the log likelihood ratio is

log
pθ1 (x)

pθ0 (x)
= −n(θ1 − θ0) + (log θ1 − log θ0)tn, where tn =

n∑
i=1

xi.

(i) Hence the MP level α test for H0 vs H1 is

ϕ1(x) =
⎧⎨
⎩

0 if tn < c1
γ1 if tn = c1
1 if tn > c1,

where c1 and 0 ≤ γ1 ≤ 1 are determined by Pθ0[Tn > c1] + γ1Pθ0[Tn = c1] = α if
θ1 > θ0 and

ϕ2(x) =
⎧⎨
⎩

0 if tn > c2
γ2 if tn = c2
1 if tn < c2,

where c2 and 0 ≤ γ2 ≤ 1 are determined by Pθ0[Tn < c2] + γ2Pθ0[Tn = c2] = α,
if θ1 < θ0.

(ii) We illustrate the determination of c1 and γ1 in the first case by considering
H0: θ = θ0 = 0.5 and H1: θ = θ1 = 1.0 for n = 5 and α = 0.5. Under Pθ0 ,
T = ∑5

i=1 Xi ∼ Poisson(2.5) (ie, pθ0 (t) = e−2.5(2.5)t/t!, t = 0, 1, 2, . . .). Calculating
these probabilities, we have Pθ0 [T > 5] = 0.0420 and Pθ0 [T = 5] = 0.0668 and then
solve the equation:
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Pθ0 [T > 5] + γPθ0 [T = 5] = 0.05.

Thus c1 = 5 and γ1 = 0.12, so the MP test for H0: θ = 0.5 vs H1: θ = 1.0 at level
α = 0.05 is

ϕ1(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if
∑5

1 xi < 5

0.12 if
∑5

1 xi = 5

1 if
∑5

1 xi > 5

.

(iii) The power function of ϕ1 is

β1(θ) = Pθ [T > 5] + 0.12Pθ [T = 5] =
∞∑

t=6

e−λλt/t! + 0.12e−λλ5/5!, where

λ = 5θ and β′
1(θ) = 5e−λ

[
0.12

λ4

4! + 0.88
λ5

5!

]
> 0.

(iv) The MP level α test ϕ1 for H0: θ = θ0 vs H1: θ = θ1(> θ0) does not depend on θ1, so
long as θ1 > θ0. Therefore, the MP level α test for H0: θ = θ0 vs H1: θ = θ1(> θ0) is the
Uniformly Most powerful (UMP) level α test for H0: θ = θ0 vs H∗

1 : θ > θ0. Again, since
β ′

1(θ) > 0, β1(θ0) = α implies β1(θ) < α for all θ < θ0. Thus the UMP level α test ϕ1 for
H0: θ = θ0 vs H1: θ > θ0 is the UMP level α test for the composite null hypothesis
H∗

0 : θ ≤ θ0 vs the composite alternative H∗
1 : θ > θ0.

In the same way ϕ2 can be shown to be a UMP level α test for H∗
0 : θ ≥ θ0 vs

H∗
1 : θ < θ0.

Example 6.3.2. Let X = (X1, . . . , Xn) be a random sample from N
(
θ , σ 2

)
where θ is

unknown but σ 2 > 0 is known. We want the MP level α test for H0: θ = θ0 vs H1: θ = θ1.
Solution. Here the log likelihood ratio is

log(pθ1,σ (x)/pθ0,σ (x)) = n(θ1 − θ0)

σ 2 x̄n − n(θ2
1 − θ2

0 )

σ 2
, where x̄n = n−1

n∑
i=1

xi.

Hence the MP level α test for H0 vs H1 is

ϕ1(x) =
{

0 x̄n < c1
1 x̄n ≥ c1

, if θ1 > θ0, and

ϕ2(x) =
{

0 x̄n > c2
1 x̄n ≤ c2

, if θ1 < θ0,

where c1 is determined by Pθ0 [X̄n ≥ c1] = α and c2 is determined by Pθ0[X̄n ≤ c2] = α. The
constants c1 and c2 are

c1 = θ0 + (σ/
√

n)Φ−1(1 − α) and c2 = θ0 − (σ/
√

n)Φ−1(1 − α),

where Φ is the cdf of N(0, 1).
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The power function of ϕ1 is

β1(θ) = Pθ [X̄n ≥ θ0 + (σ/
√

n)Φ−1(1 − α)] = Φ(Φ−1(α) + √
n(θ − θ0)/σ ), and

β′
1(θ) = (

√
n/σ )Φ′(Φ−1(α) + √

n(θ − θ0)/σ ) > 0.

Using the same argument as in Example 6.3.1, we see that the MP level α test ϕ1 for H0:
θ = θ0 vs H1: θ = θ1(> θ0) is also the UMP level α test for the composite null hypothesis
H∗

0 : θ ≤ θ0 vs the composite alternative H∗
1 : θ > θ0.

The MP level α test ϕ2 for H0: θ = θ0 vs H1: θ = θ1 if θ1 < θ0, in the same way.

6.4 UMP Tests for One-Sided Hypotheses Against One-Sided
Alternatives in Monotone Likelihood Ratio Families

We begin this section with the definition of UMP tests.
Definition 6.4.1. A test ϕ is a UMP test at level α for H0: θ ∈ Θ0 vs H1: θ ∈ Θ1 if

(i) supθ∈Θ0
Eθ [ϕ(X)] ≤ α, and

(ii) Eθ [ϕ(X)] ≥ Eθ [ψ(X)] for all θ ∈ Θ1, whenever ψ satisfies (i).

Although requirement (ii) is very stringent, UMP tests do exist in certain types of
situations. In the previous section we have seen that for Poisson(θ), the MP test at level
α for H0: θ = θ0 vs H1: θ = θ1(> θ0) has the stronger property of being the UMP level α
test for the composite hypothesis H0: θ ≤ θ0 vs the composite alternative H1: θ > θ0. This
actually holds in a much wider context.

Definition 6.4.2. Let {Pθ , θ ∈ Θ} be a family of probabilities on (X,A) and let pθ denote
the pdf or pmf corresponding to Pθ where Θ = R or Θ is an interval in R. Such a family
{pθ } is said to be a monotone likelihood ratio (MLR) family if there exists a real-valued
statistic T(x) such that for any θ1 < θ2 in Θ, pθ2 (x)/pθ1 (x) is a nondecreasing function
of T(x). [If pθ1 (x) = 0 < pθ2 (x), define pθ2 (x)/pθ1 (x) = +∞.]

Example 6.4.1. Let pθ (x) = c(θ) exp[Q(θ)T(x)]h(x) where Q(θ) is a nondecreasing
function. Then {pθ } is an MLR family. This includes

(a) pθ (x) = (2πσ 2)−n/2 exp
[
− 1

2σ 2

∑n
1 (xi − θ)2

]
, xi ∈ R, θ ∈ R, σ 2 fixed.

(b) pθ (x) = (2πθ)−n/2 exp
[
− 1

2θ

∑n
1 (xi − μ)2

]
, xi ∈ R, θ ∈ R

+, μ fixed.

(c) pθ (x) = e−nθ θ
∑n

1 xi/
∏n

1 xi!, xi ∈ {0, 1, 2, . . .}, θ ∈ R
+.

(d) pθ (x) = θ
∑n

1 xi (1 − θ)n−∑n
1 xi , xi ∈ {0, 1}, θ ∈ (0, 1).

Example 6.4.2. The hypergeometric distribution H(n, N , θ) with pθ (x) = (
θ
x

)(N−θ
n−x

)
/
(N

n

)
,

x = max(0, θ + n − N), . . . , min(n, θ).
Example 6.4.3. The family of Cauchy distributions C(θ , 1) with pθ (x) = 1

π[1+(x−θ)2] ,

x ∈ R, θ ∈ R is not an MLR family.
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Theorem 6.4.1. Suppose that the family of pdf ’s or pmf’s {pθ , θ ∈ R} has MLR property
in T(x). Then

(i) There exists a UMP level α test for H0: θ ≤ θ0 vs H1: θ > θ0 given by

ϕ(x) =
⎧⎨
⎩

0 if T(x) < c
γ if T(x) = c
1 if T(x) > c

, where c and 0 ≤ γ ≤ 1 are determined by Eθ0[ϕ(X)] = α.

(ii) The power function β(θ) = Eθ [ϕ(X)] is strictly increasing at all θ for which β(θ) < 1.
(iii) For all θ ′, this ϕ is UMP at level α′ = β(θ ′) for H ′

0: θ ≤ θ ′ vs H ′
1: θ > θ ′.

(iv) This test minimizes Eθ [ψ(X)] at all θ < θ0 among all tests ψ for which Eθ0 [ψ(X)] = α.

Proof. Parts (i) and (ii). First consider the simple vs simple case with H∗
0 : θ = θ0 vs

H∗
1 : θ = θ1 where θ1 > θ0 is fixed. Then by the N-P Lemma, the MP level α test for H∗

0 vs H∗
1

rejects H0 for large values of pθ1 (x)/pθ0 (x) (ie, for large values of T(x)) by the MLR property.
Moreover, by the existence part of the N-P Lemma, there exist c and 0 ≤ γ ≤ 1 such that
the test

ϕ(x) = I(c,∞)[T(X)] + γ I{c}[T(X)] satisfies Eθ0 [ϕ(X)] = α.

Since the forms:

ϕ(x) =
{

0, T(x) < c
1, T(x) > c

and ϕ(x) =
{

0, pθ ′′ (x) < kpθ ′ (x)
1, pθ ′′ (x) > kpθ ′ (x)

are equivalent for any θ ′ < θ ′′, this test is UMP at level α′ = β
(
θ ′) for testing H∗∗

0 : θ = θ ′ vs
H∗∗

1 : θ = θ ′′ whenever θ ′ < θ ′′ (by the sufficiency part of the N-P Lemma). Next, note that
by the corollary to the N-P Lemma, β(θ ′′) > α′ = β

(
θ ′) if α′ < 1, which proves that β(θ) is

strictly increasing, so long as it is< 1. This proves part (ii).
Now note that for this test, β(θ) = Eθ [ϕ(X)] ≤ α for all θ ≤ θ0, which makes ϕ a level α

test for H0: θ ≤ θ0. Let

Ψα =
{

all tests ψ such that sup
θ≤θ0

Eθ [ψ(X)] ≤ α

}
and

Ψ ∗
α = {

all tests ψ such that Eθ0 [ψ(X)] ≤ α
}

.

Then Ψα ⊂ Ψ ∗
α . We have shown that

ϕ ∈ Ψα and Eθ1 [ϕ(X)] ≥ Eθ1 [ψ(X)] for all ψ ∈ Ψ ∗
α .

Hence Eθ1[ϕ(X)] ≥ Eθ1[ψ(X)] for all ψ ∈ Ψα .
This makes ϕ the MP test at level α for H0: θ ≤ θ0 vs H1: θ > θ0. Finally, since ϕ does not

depend on θ1 > θ0, it is UMP at level α for H0: θ ≤ θ0 vs H1: θ > θ0.
The proof of part (iii) is analogous, and part (iv) is proved by observing that power is

minimized if all inequalities are reversed in the N-P Lemma.
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6.5 Unbiased Tests
A behavioral test with critical function ϕ is said to be an unbiased test at level α for H0: θ ∈
Θ0 vs H1: θ ∈ Θ1 if (i) Eθ [ϕ(X)] ≤ α for all θ ∈ Θ0 and (ii) Eθ [ϕ(X)] ≥ α for all θ ∈ Θ1. An
unbiased test rejects the null hypothesis with at least as much probability when it is false
as when it is true.

Definition 6.5.1. A test ϕ is said to be UMP unbiased test at level α for H0: θ ∈ Θ0 vs
H1: θ ∈ Θ1 if ϕ is an unbiased test at level α for H0 vs H1, and if Eθ [ϕ(X)] ≥ Eθ [ψ(X)] for all
θ ∈ Θ1 whenever ψ is also an unbiased level α test for H0 vs H1.

For a large class of problems, a UMP test does not exist, but a UMP unbiased test
does exist.

Example 6.5.1. Let X ∼ N (θ , 1), H0: θ = θ0 and H1: θ �= θ0. Here the tests

ϕ1(x) = I[θ0+Φ−1(1−α),∞)(x) and ϕ2(x) = I(−∞,θ0−Φ−1(1−α)](x),

where Φ is the cdf of N (0, 1), are, respectively, the UMP level α tests for H0: θ = θ0 vs
H+

1 : θ > θ0 and H−
1 : θ < θ0. Moreover, it follows from Theorem 6.4.1, part (ii) that

Eθ [ϕ1(x)] < α for all θ < θ0 and Eθ [ϕ2(x)] < α for all θ > θ0 (because the family N (θ , 1)
has the MLR property), which shows that a UMP level α test for H0: θ = θ0 vs H1: θ �= θ0

does not exist.
For testing H0: θ = θ0 vs H1: θ �= θ0 at levelα, an unbiased test ϕmust satisfy: Eθ0 [ϕ(X)] ≤

α and Eθ [ϕ(X)] ≥ α for all θ �= θ0, so neither ϕ1 nor ϕ2 in the above example is an unbiased
test. If we restrict to the class of unbiased level α tests then ϕ1, ϕ2 would not qualify, but in
the restricted class a UMP test does exist.

Suppose that the power functions βϕ(θ) = Eθ [ϕ(X)] of all tests ϕ are differentiable at
θ0 (as in the case of exponential families). Then an unbiased level α test for H0: θ = θ0 vs
H1: θ �= θ0 must satisfy

Eθ0 [ϕ(X)] = α and β′
ϕ(θ0) = 0. (1)

Let C0 denote the class of unbiased level α tests for H0: θ = θ0 vs H1: θ �= θ0 and let C1

denote the class of all tests satisfying Eq. (1). Then C0 ⊂ C1 and therefore, if a test ϕ0 ∈ C0 is
UMP among all tests in C1, then it is a UMP unbiased level α test for H0 vs H1.

We now examine the case of a single-parameter exponential family {Pθ , θ ∈ Θ ⊂ R} with
pdf/pmf given by

pX (x; θ) = C0(θ) exp[θT(x)]h0(x), x ∈ X, (2)

and X = (X1, . . . , Xn) being a random sample from Pθ . Then T = ∑n
i=1 T(Xi) is sufficient for

θ in (X1, . . . , Xn) and is distributed with pdf/pmf

pT (t; θ) = C(θ) exp[θt]h(t), t ∈ T . (3)

We know that for all tests ϕ, the power functions

βϕ(θ) = C(θ)
∫
ϕ(t) exp[θt]h(t) dt (4)
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are differentiable at all interior points of the natural parameter space, which is an interval,
and if θ0 is such a point, then the differentiation can be carried out under the integral,
that is

β′
ϕ(θ0) = C′(θ0)

∫
ϕ(t) exp

[
θ0t
]
h(t) dt + C(θ0)

∫
tϕ(t) exp

[
θ0t
]
h(t) dt

= C′(θ0)
C(θ0)

Eθ0 [ϕ(T)] + Eθ0 [Tϕ(T)].

Moreover, for ϕ(t) ≡ α, we have βϕ(θ) = α for all θ , and therefore, β ′
ϕ(θ0) = 0. Thus the

above expression becomes: 0 = C ′(θ0)
C(θ0) α + αEθ0 [T]. Hence C ′(θ0)/C(θ0) = −Eθ0 [T], and the

formula for β ′
ϕ(θ0) for an arbitrary level α test becomes:

β′
ϕ(θ0) = −αEθ0 [T ] + Eθ0 [Tϕ(T)]. (5)

The problem of finding the UMP unbiased level α test for H0: θ = θ0 vs H1: θ �= θ0 in a
single-parameter exponential family, where θ0 is an interior point of the natural parameter
space, now leads to the following restatement of Eq. (1), using the formula (5) for β ′

ϕ(θ0).
Among all tests ϕ ∈ C1 satisfying

Eθ0 [ϕ(T)] =
∫
ϕ(t)f1(t) dt = α, and (6)

Eθ0 [Tϕ(T)] =
∫
ϕ(t)f2(t) dt = αEθ0 [T ] (7)

with

f1(t) = C(θ0) exp
[
θ0t
]
h(t), (8)

f2(t) = C(θ0)t exp
[
θ0t
]
h(t) (9)

find ϕ0 which maximizes Eθ1[ϕ(T)] = ∫
ϕ(t)f3(t) dt with

f3(t) = C(θ1) exp
[
θ1t
]
h(t) (10)

for a fixed θ1 �= θ0.
If this ϕ0 is in the smaller class C0 of unbiased level α tests for H0: θ = θ0 vs H1: θ �= θ0

and if ϕ0 does not depend on the specific θ1 �= θ0 used in the above optimization problem,
then ϕ0 is a UMP unbiased level α test for H0 vs H1.

We next look at the problem of testing H0: θ1 ≤ θ ≤ θ2 vs H1: θ /∈ [θ1, θ2] in an
exponential family, where θ1, θ2 are interior points of the natural parameter space. More
generally, first consider the problem of testing H0: θ ∈ Θ0 vs H1: θ ∈ Θ1, where Θ0 and
Θ1 have a common boundary ω. Since the power functions βϕ(θ) = Eθ [ϕ(X)] of all tests
are continuous in θ , Eθ [ϕ(X)] = α for all θ ∈ ω must hold for all unbiased level α tests for
H0 vs H1.

Definition 6.5.2. A test ϕ satisfying Eθ [ϕ(X)] = α for all θ ∈ ω is said to be similar of size
α on ω.

Since the class of similar tests of size α on ω includes the class of unbiased level α tests
for H0: θ ∈ Θ0 vs H1: θ ∈ Θ1, the following holds.
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Lemma 6.5.1. If the power functions of all tests are continuous in θ and if a test ϕ0 is
UMP among all similar tests of size α on the common boundary ω of Θ0 and Θ1, then ϕ0 is
UMP unbiased level α test for H0: θ ∈ Θ0 vs H1: θ ∈ Θ1 provided that ϕ0 is a level α test.

Proof. Clearly, ϕ0 is UMP on Θ1 among all unbiased level α tests. Therefore, we only
need to verify that ϕ0 is an unbiased level α test. For this, we compare ϕ0 with ϕ∗(x) ≡ α

(which is a similar test of size α ), to see that Eθ [ϕ0(X)] ≥ Eθ [ϕ∗(X)] = α for all θ ∈ Θ1.
We now consider the problem of testing H0: θ1 ≤ θ ≤ θ2 vs H1: θ /∈ [θ1, θ2] in an

exponential family {Pθ , θ ∈ Θ ⊂ R} with pdf/pmf pX (x; θ) given by Eq. (2), based on a
random sample X = (X1, . . . , Xn) in which T = ∑n

i=1 T(Xi) is sufficient for θ with pdf/pmf
given fT (t; θ) given by Eq. (3). We also know that for all tests ϕ, the power function βϕ(θ)
given by Eq. (4) is continuous in θ .

To find a UMP unbiased level α test for H0: θ ∈ Θ0 = [θ1, θ2] vs H1: θ ∈ Θ1 = [θ1, θ2]c, we
note that Θ0 and Θ1 have a common boundary ω = {θ1, θ2}, and all tests have continuous
power functions. So the above Lemma is applicable and we only need to look among
tests which are similar of size α on ω = {θ1, θ2} (ie, among tests satisfying Eθi[ϕ(T)] = α,
i = 1, 2). This leads to the problem of maximizing

∫
ϕ(t)f3(t) dt subject to the conditions∫

ϕ(t)fi(t) dt = α, i = 1, 2, where

fi(t) = C(θi) exp
[
θit
]
h(t), i = 1, 2, and (11)

f3(t) = C(θ) exp[θt]h(t) for θ /∈ [θ1, θ2
]
. (12)

Thus, our search for UMP unbiased level α tests for H0: θ = θ0 vs H1: θ �= θ0 and H0: θ1 ≤
θ ≤ θ2 vs H1: θ /∈ [θ1, θ2] in a single-parameter exponential family, both lead to the problem
of maximizing

∫
ϕ(t)f3(t) dt with respect to ϕ subject to the conditions

∫
ϕ(t)fi(t) dt = ci,

i = 1, 2, where the constants are c1 = α, c2 = αEθ0[T] and f1, f2, f3 given by Eqs. (8), (9),
and (10) in the first problem and c1 = c2 = α and f1, f2, f3 given by Eqs. (11) and (12) in the
second problem. This calls for a generalization of the Neyman-Pearson Lemma [23].

6.6 Generalized Neyman-Pearson Lemma
Theorem 6.6.1. Let f1, . . . , fm, fm+1 be real-valued functions defined on an Euclidean space(
X = R

n,A) for which
∫
X fi(x) dx (or

∑
x∈X fi(x) in the discrete case) exist and are finite for

i = 1, . . . , m+1. LetF denote the class of all critical functions (ie ϕ: X → [0, 1]). Suppose that
for given constants c1, . . . , cm , there exists ϕ ∈ F such that

∫
ϕfi dx = ci, i = 1, . . . , m. Let

C =
{
ϕ ∈ F :

∫
ϕfi dx = ci, i = 1, . . . , m

}

which is nonempty.

(i) If there exists ϕ ∈ C such that for some constants k1, . . .km,

ϕ(x) =
{

0 if fm+1(x) <
∑m

i=1 kifi(x)

1 if fm+1(x) >
∑m

i=1 kifi(x),
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then
∫
ϕfm+1 dx ≥ ψfm+1 dx for all ψ ∈ C. This provides a sufficient condition for

maximization of
∫
ϕfm+1 dx in C.

(ii) If there exists ϕ ∈ C such that for constants k1, . . . , km ≥ 0, ϕ(x) is of the form given in
(i), then

∫
ϕfm+1 dx ≥ ∫

ψfm+1 dx for all ψ ∈ C ′ = {ϕ ∈ F :
∫
ϕfi dx ≤ ci, i = 1, . . . , m}.

This is an extension of (i).

Proof. Let ϕ ∈ C be of the form given in (i) and ψ ∈ F . Let

S+ =
⎧⎨
⎩x: fm+1(x) >

m∑
i=1

kifi(x)

⎫⎬
⎭ and S− =

⎧⎨
⎩x: fm+1(x) <

m∑
i=1

kifi(x)

⎫⎬
⎭.

For x ∈ S+, ϕ(x) − ψ(x) = 1 − ψ(x) ≥ 0 and fm+1 −∑m
i=1 kifi(x) > 0 and for x ∈ S−, both of

these inequalities are reversed. Hence

{ϕ(x) − ψ(x)}
⎧⎨
⎩fm+1(x) −

m∑
i=1

kifi(x)

⎫⎬
⎭ ≥ 0 for all x ∈ S+ ∪ S−.

Thus,

∫
S+∪S−

(ϕ − ψ)

⎛
⎝fm+1 −

m∑
i=1

kifi

⎞
⎠ dx ≥ 0, ie,

∫
(ϕ − ψ)fm+1 dx ≥

m∑
i=1

ki

∫
(ϕ − ψ)fi dx.

If ψ ∈ C, then
∑m

i=1 ki
∫

(ϕ − ψ)fi dx = 0; if ψ ∈ C ′ and k1, . . . , km ≥ 0, then
∑m

i=1 ki∫
(ϕ − ψ)fi dx ≥ 0. Hence∫

ϕfm+1 dx ≥
∫
ψ fm+1 dx if ψ ∈ C, or if ψ ∈ C′ and k1, . . . , km ≥ 0.

6.7 UMP Unbiased Tests for Two-Sided Problems
We now apply the Generalized N-P Lemma to find unbiased level α tests for the two
problems under discussion.

6.7.1 UMP Unbiased Test for H0: θ = θ0 vs H1: θ �= θ0
in a Single-Parameter Exponential Family

By the Generalized N-P Lemma, the UMP unbiased level α test for this problem is given by:

ϕ0(t) =
⎧⎨
⎩

0 if f3(t) < k1f1(t) + k2f2(t)
γ (t) if f3(t) = k1f1(t) + k2f2(t)
1 if f3(t) > k1f1(t) + k2f2(t),

where f1, f2, and f3 are given by Eqs. (8), (9), and (10) and k1, k2, and 0 ≤ γ (t) ≤ 1 are such
that
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Eθ0 [ϕ0(T)] = α and Eθ0 [Tϕ0(T)] = αEθ0 [T ],

as in Eqs. (6) and (7).
The inequality f3(t) < k1f1(t) + k2f2(t) is equivalent to ebt − a1 − a2t < 0, where ai =

kic(θ0)/c(θ1), i = 1, 2, and b = θ1 − θ0 with a fixed θ1 �= θ0. If the resulting ϕ0(t) does not
depend on the specific θ1 �= θ0, then it is the desired solution to the problem.

The function ebt −a1−a2t has positive second derivative and is therefore convex. Hence
{t: ebt − a1 − a2t < 0} is either (c, ∞) , or

(−∞, c′), or (c1, c2). In the first two cases, ϕ0

is a one-sided test having monotone power, which contradicts the property of βϕ0 (θ) =
Eθ [ϕ0(T)] being minimized at θ0. Hence

ϕ0(t) =
⎧⎨
⎩

0 if c1 < t < c2
γi if t = ci, i = 1, 2
1 if t < c1 or t > c2,

where c1 < c2 and 0 ≤ γi ≤ 1, i = 1, 2 are such that Eθ0 [ϕ0(T)] = α and Eθ0 [Tϕ0(T)] =
αEθ0[T].

To see that ϕ0 is an unbiased level α test of H0: θ = θ0 vs H1: θ �= θ0, note that
Eθ0[ϕ0(T)] = α by construction, and since ϕ∗(t) ≡ α is in the class in which ϕ0 maximizes
β(θ) for θ �= θ0, we must have Eθ [ϕ0(T)] ≥ Eθ [ϕ∗(T)] = α for all θ �= θ0, showing that ϕ0 is
UMP unbiased at level α for H0 vs H1.

Remark 6.7.1. If T is symmetrically distributed about c under Pθ0 , then choosing a test
ϕ so that Eθ0 [ϕ(T)] = α and ϕ is symmetric about c, the condition Eθ0 [Tϕ(T)] = αEθ0 [T] is
automatically satisfied.

Proof. Since T is symmetrically distributed about c under Pθ0 ,

Pθ0 [T − c < −u] = Pθ0 [T − c > u] for all u ∈ /R, so that

Eθ0 [T − c] = 0, ie, Eθ0 [T ] = c.

Since ϕ is symmetric about c, that is, ϕ(c − u) = ϕ(c + u) for all u ∈ R, letting T∗ = T − c,
we have

Eθ0 [Tϕ(T)] = Eθ0 [(T − c)ϕ(T)] + c[ϕ(T)] = Eθ0 [T∗ϕ(T∗ + c)] + cα

=
∫

uϕ(u + c)pT∗ (u; θ0) du + αEθ0[T ] = αEθ0[T ]

due to symmetry of ϕ and pT∗ (·; θ0).
Thus ϕ0 is obtained by taking c1 = c − k, c2 = c + k, γ1 = γ2 = γ , and choosing k and

0 ≤ γ ≤ 1 so that Eθ0 [ϕ0(T)] = α.

6.7.2 UMP Unbiased Test for H0: θ1 ≤ θ ≤ θ2 vs H1: θ /∈ [θ1, θ2]
in a Single-Parameter Exponential Family

Since all tests have continuous power functions in the context of exponential families, we
can use Lemma 6.5.1 to narrow down our search among tests which are similar of size α



138 THEORY AND METHODS OF STATISTICS

on the common boundary of [θ1, θ2] and [θ1, θ2]c which is ω = {θ1, θ2} (ie, among all tests
satisfying Eθi[ϕ(T)] = α, i = 1, 2).

This leads to the problem of maximizing
∫
ϕ(t)f3(t) dt with respect to ϕ ∈ F subject to

the conditions
∫
ϕ(t)fi(t) dt = α, i = 1, 2, where f1, f2, and f3 are given in Eqs. (11) and (12).

Again by the Generalized N-P Lemma, the UMP unbiased level α test for H0 vs H1 in this
problem is found to be of the same form as the UMP unbiased level α test for H0: θ = θ0 vs
H1: θ �= θ0, but here c1, c2 and 0 ≤ γi ≤ 1 are determined by Eθi [ϕ0(T)] = α, i = 1, 2.

6.7.3 Examples

Example 6.7.1. Let X = (X1, . . . , Xn) be a random sample from N
(
μ, σ 2

)
with σ known.

The goal is to find UMP unbiased level α tests for (a) H0: μ = μ0 vs H1: μ �= μ0, and (b)
H0: μ1 ≤ μ ≤ μ2 vs H1: μ /∈ [μ1,μ2].

Solution.

(a) Denote T = √
n(X̄ − μ0)/σ . Then the UMP unbiased level α test is

ϕ(x) =
{

0 if |T | ≤ Φ−1(1 − α/2)
1 if |T | > Φ−1(1 − α/2),

because X̄ is sufficient, Eμ0 [ϕ(X)] = α and Eμ0 [(X̄ − μ0)ϕ(X)] = 0 holds since X̄ − μ0 is
symmetrically distributed about 0.

(b) Transform (μ1,μ2) to (μ̄,Δ) = (
(μ1 + μ2)/2, (μ2 − μ1)/2

)
and let θ = μ− μ̄. Also let

Yi = Xi − μ̄, i = 1, . . . , n. Then the problem can be equivalently expressed as that of
testing H0: −Δ ≤ θ ≤ Δ vs H1: |θ | > Δ based on Y1, . . . , Yn which are iid N

(
θ , σ 2

)
, and

T = Ȳ = n−1∑n
i=1 Yi is sufficient for θ in (Y1, . . . , Yn).

Then the UMP unbiased level α test for H0 vs H1 is

ϕ0(t) =
{

0 if c1 < t < c2
1 if t ≤ c1 or t ≥ c2,

where c1, c2 are such that Eθ=−Δ[ϕ0(T)] = Eθ=Δ[ϕ0(T)] = α.
Since T ∼ N

(
θ , σ 2/n

)
, choosing c1 = −c and c2 = c, we have

Eθ=−Δ[ϕ0(T)] = P−Δ[T ≤ −c] + P−Δ[T ≥ c]
= Φ(

√
n(−c +Δ)/σ ) + {1 −Φ(

√
n(c +Δ)/σ )}

= {1 −Φ(
√

n(c −Δ)/σ )} +Φ(
√

n(−c −Δ)/σ )

= PΔ[T ≥ c] + PΔ[T ≤ −c] = Eθ=Δ[ϕ0(T)].

Thus, if we choose c1 = −c and c2 = c in ϕ0(t) and let c be such that Eθ=−Δ[ϕ0(T)] = α,
then Eθ=Δ[ϕ0(T)] = α is automatic.

Example 6.7.2. Let X = (X1, . . . , Xn) be a random sample from Exp(θ). We will find the
UMP unbiased level α test for H0: θ = θ0 vs H1: θ �= θ0.
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Solution. Here T = ∑n
i=1 Xi is sufficient for θ in X with T | θ0 ∼ Gamma(n, 1) under H0.

The UMP unbiased level α test is

ϕ(t) =
{

0 if c1 < t/θ0 < c2
1 if t/θ0 ≤ c1 or t/θ0 ≥ c2,

where c1 and c2 are determined by

(i)
∫ c2

c1
fn(y) dy = 1 − α, and

(ii)
∫ c2

c1
yfn(y) dy = n(1 − α), where fn(y) = yn−1e−y/Γ (n), y > 0, is the pdf of

Gamma(n, 1) with mean n. Condition (ii) can be equivalently expressed in any of the
following two ways, using integration by part and (i):

(ii)′
∫ c2

c1
fn+1(y) dy = 1 − α since yfn(y) = nfn+1(y), or

(ii)′′ e−c1 cn
1 = e−c2 cn

2 since

∫ c2

c1

yfn(y) dy = (
e−c1 cn

1 − e−c2 cn
2
)
/Γ (n) + n(1 − α).

For moderately large n and for θ0 neither too large nor too small, CLT provides a
reasonable approximation for c1, c2 determined by

∫ c1

0
fn(y) dy =

∫ ∞
c2

fn(y) dy = α/2.

Example 6.7.3. Let X be a random sample of size 1 from Geom(p) with pmf

f (x, p) = pqx−1, x = 1, 2, . . . , where q = 1 − p.

We wish to find UMP unbiased test at level α for H0: p = p0 vs H1: p �= p0.
Solution. The UMP unbiased level α test for H0 vs H1 is

ϕ0(x) =
⎧⎨
⎩

0 if c1 < x < c2
γi if x = ci, i = 1, 2
1 if x < c1 or x > c2,

where c1, c2, γ1, and γ2 are determined by

Epo [1 − ϕ0(X)] = p0q−1
0

[
Sc2−1 − Sc1 + (1 − γ1)qc1

0 + (1 − γ2)qc2
0

]
= 1 − α, and

Epo [X{1 − ϕ0(X)}] = p0q−1
0

[
S∗

c2−1 − S∗
c1

+ (1 − γ1)c1qc1
0 + (1 − γ2)c2qc2

0

]
= (1 − α)p−1

0 ,

with

Sr =
r∑

i=1

qi
0 = q0p−1

0 (1 − qr
0) and S∗

r =
r∑

i=1

iqi
0 = q0p−2

0
[
1 − (1 + rp0)qr

0
]
.
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6.8 Locally Best Tests
We have seen so far that UMP tests exist for one-sided problems of testing H0: θ ≤ θ0 vs
H1: θ > θ0 (or vice versa) in MLR families, and UMP unbiased tests exist for two-sided
problems of testing H0: θ = θ0 vs H1: θ �= θ0 or for testing H0: θ1 ≤ θ ≤ θ2 vs H1: θ /∈ [θ1, θ2]
in single-parameter exponential families. In subsequent developments, we are also going
to construct UMP unbiased tests for one-sided and two-sided problems concerning any
one parameter in multiparameter exponential families when other parameters (called nui-
sance parameters) are unknown but are of no concern. However, UMP or UMP unbiased
tests are not available outside the MLR or the exponential families, so in more general
situations, we would have to lower our expectation and settle for some more modest
criterion of optimality.

In the one-sided problem, suppose that for every test ϕ, the power function βϕ(θ) has a
continuous derivative which can be obtained by differentiating under the integral. In the
context of a random sample X = (X1, . . . , Xn) from f (x; θ), this means

β′
ϕ(θ) = d

dθ
Eθ [ϕ(X )] = d

dθ

∫
ϕ(x)f (x; θ)dx

=
∫
ϕ(x)

∂f (x; θ)
∂θ

dx

=
∫
ϕ(x)

⎛
⎝ n∑

i=1

∂ log f (x; θ)
∂θ

⎞
⎠f (x; θ)dx

= Eθ

⎡
⎣ϕ(X )

n∑
i=1

l̇(Xi; θ)

⎤
⎦,

where l̇(x; θ) = ∂ log f (x;θ)
∂θ

is the partial derivative of the log likelihood l(x; θ) = log f (x; θ)
with respect to θ as in Section 5.2.1.

We shall use the other notations introduced in Section 5.2.1, assuming that the reg-
ularity conditions introduced there holds here and use the results obtained under those
conditions.

We now formulate our criterion for local optimality in the one-sided problem in a
single-parameter family.

Definition 6.8.1. A test ϕ0 is said to be a locally most powerful (LMP) test at level α for
H0: θ ≤ θ0 vs H1: θ > θ0 if

(i) βϕ0 (θ0) = Eθ0[ϕ(X )] = α, and
(ii) β ′

ϕ0
(θ0) ≥ β ′

ϕ(θ0), that is,

Eθ0

⎡
⎣ϕ0(X )

n∑
i=1

l̇
(
Xi; θ0

)⎤⎦ ≥ Eθ0

⎡
⎣ϕ(X )

n∑
i=1

l̇
(
Xi ; θ0

)⎤⎦
for all tests ϕ satisfying (i).
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Applying the Generalized N-P Lemma with m = 1, f1(x) = f (x; θ0) and f2(x) ={∑n
i=1l̇(xi; θ0)

}
f (x; θ0), we see that any test of the form:

ϕ0(x) =
⎧⎨
⎩

0 if f2(x) < kf1(x) ie,
∑n

i=1 l̇(xi; θ0) < k
γ if f2(x) = kf1(x)
1 if f2(x) > kf1(x)

is an LMP test at level α for H0 vs H1 provided that

Eθ0

[
ϕ0(X )

] = Pθ0

⎡
⎣ n∑

i=1

l̇
(
Xi; θ0

)
> k

⎤
⎦+ γPθ0

⎡
⎣ n∑

i=1

l̇
(
Xi; θ0

) = k

⎤
⎦ = α.

For large n, we can find the approximate value of k for a given α by the CLT. Recall that
under the regularity conditions in Section 5.2.1,

Eθ0

[̇
l
(
Xi; θ0

)] = 0 and Varθ0

[̇
l
(
Xi; θ0

)] = I(θ0),

where I(θ0) is the Fisher-information. Thus

n−1/2
n∑

i=1

l̇
(
Xi; θ0

) L→ N(0, I(θ0)) under Pθ0 .

Therefore, for large n, the critical value k for a given α can be approximated by

k = kn,α � √
nI(θ0)Φ−1(1 − α).

For testing H0: θ = θ0 vs H1: θ �= θ0, we assume that the power function βϕ(θ) of every
test ϕ has two continuous derivatives which can be obtained by differentiating under the
integral. Thus for a test ϕ based on a random sample X = (X1, . . . , Xn) from f (x; θ), we have
β ′
ϕ(θ) = Eθ [ϕ(X)

∑n
i=1 l̇(Xi; θ)] as before, and

β′′
ϕ(θ) =

∫
ϕ(x)

∂2f (x; θ)

∂θ2
dx

= Eθ

⎡
⎢⎣ϕ(X )

⎧⎪⎨
⎪⎩

n∑
i=1

l̈(Xi; θ) +
⎛
⎝ n∑

i=1

l̇(Xi; θ)

⎞
⎠

2
⎫⎪⎬
⎪⎭
⎤
⎥⎦,

using the identity:

∂2f (x; θ)

∂θ2
=
[
∂2 log f (x; θ)

∂θ2
+
(
∂ log f (x; θ)

∂θ

)2
]

=
⎡
⎢⎣ n∑

i=1

l̈(xi; θ) +
⎛
⎝ n∑

i=1

l̇(xi; θ)

⎞
⎠

2
⎤
⎥⎦f (x; θ),

wherel̇(x; θ) andl̈(x; θ) are the first two partial derivatives of l(x; θ) = log f (x; θ) with respect
to θ .
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Definition 6.8.2. A test ϕ0 is said to be an LMP (locally) unbiased test at level α for
H0: θ = θ0 vs H1: θ �= θ0 if

(i) βϕ0 (θ0) = Eθ0[ϕ0(X )] = α,

(ii) β ′
ϕ0

(θ0) = Eθ0

[
ϕ0(X)

∑n
i=1 l̇(Xi; θ0)

]
= 0, and

(iii) β ′′
ϕ0

(θ0) ≥ β ′′
ϕ(θ0), that is,

Eθ0

⎡
⎢⎣ϕ0(X )

⎧⎪⎨
⎪⎩

n∑
i=1

l̈
(
Xi; θ0

)+
⎛
⎝ n∑

i=1

l̇
(
Xi; θ0

)⎞⎠
2
⎫⎪⎬
⎪⎭
⎤
⎥⎦

≥ Eθ0

⎡
⎢⎣ϕ(X )

⎧⎪⎨
⎪⎩

n∑
i=1

l̈
(
Xi; θ0

)+
⎛
⎝ n∑

i=1

l̇
(
Xi; θ0

)⎞⎠
2
⎫⎪⎬
⎪⎭
⎤
⎥⎦

for all tests ϕ satisfying (i) and (ii).

We can now apply the Generalized N-P Lemma with m = 2, f1(x) = f (x; θ0), f2(x) =
Uf (x; θ0), f3(x) = Vf (x; θ0), where

U =
n∑

i=1

l̇(xi; θ0) and V =
n∑

i=1

l̈(xi; θ0) +
⎛
⎝ n∑

i=1

l̇(xi; θ0)

⎞
⎠

2

,

to see that any test of the form:

ϕk1,k2
(x) =

⎧⎨
⎩

0 if V < k1 + k2U
γ if V = k1 + k2U
1 if V > k1 + k2U

is an LMP unbiased test for H0 vs H1 at level α, provided that k1 and k2 are chosen so as to
satisfy (i) and (ii).

Finding k1, k2 for a given α is difficult in general, but in the special case when (U , V ) D=
(−U , V ) under Pθ0 , the problem is simplified because we can take k2 = 0.

Proposition 6.8.1. If (U , V )
D= (−U , V ) under Pθ0 , then for any k1, condition (ii) holds iff

k2 = 0.

Proof. If (U , V )
D= (−U , V ) under Pθ0 , then for k2 = 0,

Eθ0

[
Uϕk1,0(X )

] = Eθ0

[
UI(k1,∞)(V )

] = Eθ0

[−UI(k1,∞)(V )
]

= −Eθ0

[
Uϕk1,0(X )

]
.

Hence Eθ0

[
Uϕk1,0(X )

] = 0. Conversely, if k2 > 0, then

Eθ0 [Uϕk1,k2
(X )] =

∫ ∞
u=−∞

∫ ∞
v=k1+k2u

uf (u, v; θ0) du dv

=
3∑

j=1

∫∫
Sj

uf (u, v; θ0) du dv

= I1 + I2 + I3, say
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where

S1 = {(u, v): u ≥ 0, k1 + k2u ≤ v < ∞},

S2 = {(u, v): u < 0, k1 − k2u ≤ v < ∞}, and

S3 = {(u, v): u < 0, k1 + k2u ≤ v < k1 − k2u}.

Since (u, v) ∈ S1 ⇐⇒ (−u, v) ∈ S2 and (U , V )
D= (−U , V ) under θ0, it follows that

I2 =
∫∫

S2

uf (u, v; θ0) du dv = −
∫∫

S2

(−u)f (−u, v; θ0) du dv

= −
∫∫

S1

uf (u, v; θ0) du dv = −I1.

Hence

Eθ0

[
Uϕk1,k2

(X )
] = I3 =

∫∫
S3

uf (u, v; θ0) du dv < 0

because u < 0 on S3. Hence in order to satisfy E[Uϕk1,k2 (X)] = 0, we must have Pθ0[S3]
= 0. However, if Pθ0 [S3] = 0, then Eθ0 [ϕk1,k2 (X )] = Eθ0[ϕk1,0(X )]. Thus both (i) and (ii) are
satisfied with k2 = 0. The case of k2 < 0 is treated in the same way.

Example 6.8.1. Let X = (X1, . . . , Xn) be a random sample from a logistic distribution
with location parameter θ , that is, from

f (x, θ) = exp[−(x − θ)]/{1 + exp[−(x − θ)]}2, −∞ < x < ∞.

We wish to find the locally best

(a) test for H0: θ = 0 vs H1: θ > 0 at level α , and
(b) unbiased test for H0: θ = 0 vs H1: θ �= 0 at level α.

Solution. Note that

l(x, θ) = log f (x, θ) = −(x − θ) − 2 log
[
1 + exp{−(x − θ)}],

l̇(x, θ) = ∂

∂θ
l(x, θ) = [exp(x − θ) − 1]/[exp(x − θ) + 1],

l̈(x, θ) = ∂2

∂θ2
l(x, θ) = −2 exp(x − θ)/(exp(x − θ) + 1)2.

Thus we have

U =
n∑

i=1

l̇(Xi, 0) =
n∑

i=1

(eXi − 1)/(eXi + 1),

V =
n∑

i=1

l̈(Xi, 0) +
⎧⎨
⎩

n∑
i=1

l̇(Xi, 0)

⎫⎬
⎭

2

= −2
n∑

i=1

eXi/(1 + eXi )2 + U2.
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(a) The LMP test at level α for H0: θ = 0 vs H1: θ > 0 is

ϕ1(x) =
⎧⎨
⎩

0 if U < k
γ if U = k
1 if U > k,

where P0[U > k] + γP0[U = k] = α.
(b) The LMP (locally) unbiased test at level α for H0: θ = 0 vs H1: θ �= 0 is

ϕ0(x) =
⎧⎨
⎩

0 if V < k1 + k2U
γ if V = k1 + k2U
1 if V > k1 + k2U,

where 0 ≤ γ ≤ 1 and k1, k2 are determined by (i) E0[ϕ0(X )] = α and (ii)
E0[ϕ0(X )U] = 0.

However, by virtue of symmetry of f (x, 0), (U , V ) D= (−U , V ). Hence k2 can be taken to be
equal to 0 and it is enough to choose 0 ≤ γ ≤ 1 and k1 to satisfy (i), since (ii) automatically
holds.

The condition (U , V )
D= (−U , V ) under Pθ0 is satisfied in a number of situations such as

(i) X ∼ Cauchy(θ , 1) with f (x; θ) = 1
π

1
1+(x−θ)2 , x ∈ R,

(ii) X ∼ Double Exponential(θ) with f (x; θ) = 1
2 exp[−|x − θ |], x ∈ R, etc.

6.9 UMP Unbiased Tests in the Presence of Nuisance
Parameters: Similarity and Completeness

In many situations, the distribution of the observed X depends on several parameters and
we want to test a null hypothesis H0 against an alternative H1 concerning only one of these
parameters. The other parameters are called nuisance parameters.

Example 6.9.1. Let X = (X1, . . . , Xn) be a random sample from N
(
μ, σ 2

)
, where both μ,

σ 2 are unknown. We want to test H1: μ = 0 vs H1: μ �= 0. Here σ 2 is a nuisance parameter.
Example 6.9.2. Let (X1, . . . , Xm) and (Y1, . . . , Yn) be independent random samples from

Poisson(λ) and Poisson(μ), respectively. We want to test H0: μ ≤ aλ vs H1: μ > aλ for a
given a . To see how this problem involves testing for one parameter in the presence of a
nuisance parameter, first consider the joint distribution of the sufficient statistic (X , Y ) =(∑m

i=1 Xi,
∑n

i=1 Yi
)

given by:

fX ,Y (x, y;λ,μ) = e−(mλ+nμ) (mλ)x(nμ)y

x!y! , x = 0, 1, 2, . . . , y = 0, 1, 2, . . . .

Now reparametrize: π = nμ/(mλ + nμ), ξ = mλ + nμ and transform the data: U = Y ,
T = X + Y . Then the joint distribution of (U , T) is

fU,T (u, t;π , ξ ) =
{(

t
u

)
πu(1 − π)t−u

}{
e−ξ ξ t/t!

}
,
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t = 0, 1, 2, . . . and u = 0, 1, . . . , t. Now H0: μ ≤ aλ ⇐⇒ π ≤ na/(m + na) and H1: μ >

aλ ⇐⇒ π > na/(m + na) while ξ is a nuisance parameter.
Let {PX

θ
, θ ∈ Θ} be a family of probabilities on (X,A), whereΘ ⊂ R

k+1 and θ is a (k + 1)-
dim vector denoted by

θ = (θ1, θ2, . . . , θk+1) := (θ , τ1, . . . , τk) := (θ , τ ) with

θ = θ1 and τ = (θ2, . . . , θk+1).

Based on a random element X generated by an unknown element PX
θ

of this family, we
want to find unbiased level α tests in three situations where the null and the alternative
hypotheses are given as:

Problem 1. H10: θ ≤ θ0 vs H11: θ > θ0 (testing θ ≥ θ0 vs θ < θ0 is analogous),
Problem 2. H20: θ = θ0 vs H21: θ �= θ0,
Problem 3. H30: θ1 ≤ θ ≤ θ2 vs H31: θ /∈ [θ1, θ2],

in each case, τ being the nuisance parameter.
A more careful description of the null and the alternative hypotheses in these three

problems are

Hi0 : (θ , τ ) ∈ Θi0 vs Hi1: (θ , τ ) ∈ Θi1, where

Θ10 = {(θ , τ ): θ ≤ θ0, τ ∈ Ω}, Θ11 = {(θ , τ ): θ > θ0, τ ∈ Ω},

Θ20 = {(θ , τ ): θ = θ0, τ ∈ Ω}, Θ21 = {(θ , τ ): θ �= θ0, τ ∈ Ω},

Θ30 = {(θ , τ ): θ1 ≤ θ ≤ θ2, τ ∈ Ω},

Θ31 = {(θ , τ ): θ /∈ [θ1, θ2
]
, τ ∈ Ω}, where Ω ⊂ R

k.

Now in each of these cases, the null hypothesis and the alternative hypothesis setsΘi0 and
Θi1 have a common boundary ωi, where

ω1 = ω2 = {θ0} ×Ω and ω3 = {θ1, θ2} ×Ω .

In the sequel, we assume that the power functions βϕ(θ , τ ) of all tests ϕ are continuous
in (θ , τ ), so that all unbiased level α tests are similar tests of size α on the boundary ωi of
Θi0 and Θi1, i = 1, 2, 3 in each of the three problems under consideration.

We now omit the subscript i from the boundary ωi of Θi0 and Θi1, and continue the
development in some generality. Restrict attention to the family of distributions PX

ω =
{PX
θ ,τ , (θ , τ ) ∈ ω} and suppose that T is a sufficient statistic for the family PX

ω (ie, the
conditional distribution of X given T is the same for all (θ , τ ) ∈ ω). Indeed, we should
be looking for a sufficient statistic T for τ = (

τ1, . . . , τk
)

since θ0 in Problems 1, 2 and θ1, θ2

in Problem 3 are fixed and known.
Definition 6.9.1 (Tests of Neyman Structure). Tests satisfying E[ϕ(X)|T = t] = α for

almost all t under PT
ω (ie, for all t /∈ N , where Pθ [T ∈ N] = 0 for all θ ∈ ω) are called tests of

Neyman-structure with respect to the sufficient statistic T .
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If a test is of Neyman-structure, then

Eθ [ϕ(X)] = EθE[ϕ(X)|T ] = Eθ [α] = α for all θ ∈ ω,

that is, ϕ is similar of size α on ω. Thus all tests of Neyman-structure are similar on ω.
A sufficient statistic T for PX

ω is complete if
∫

g(t)fT (t; θ) dt = 0 for all θ ∈ ω ⇒ g(t) = 0
for almost all t under PT

ω (ie, g(t) = 0 for all t /∈ N where Pθ [T ∈ N] = 0 for all θ ∈ ω). The
property of completeness of a sufficient statistic has already been used in connection with
UMVUE in Section 5.1.

A sufficient statistic T for PX
ω is boundedly complete if

∫
g(t)fT (t; θ) dt = 0 for all θ ∈ ω,

g bounded ⇒ g(t) = 0 for almost all t under PT
ω . [If T is complete, then it is boundedly

complete, but the converse is not true.]
We now have the following theorem.
Theorem 6.9.1. Suppose that there exists a sufficient statistic T for PX

ω . If T is boundedly
complete, then every test which is similar on ω, is of Neyman-structure with respect to T.

Proof. Let ϕ be a similar test of size α on ω. Then

Eθ [ϕ(X)] = α for all θ ∈ ω ⇔
Eθ [ϕ(X) − α] = EθE[ϕ(X) − α|T ] = 0 for all θ ∈ ω.

Since ψ(t) = E[ϕ(X) − α|T = t] is a bounded function of t,

Eθ [ψ(t) = 0] for all θ ∈ ω

⇒ ψ(t) = 0 for almost all t under PT
ω ⇔ E[ϕ(X)|T = t] = α for almost all t under PT

ω , that
is, ϕ is a test of Neyman-structure with respect to T .

The converse (ie, if T is not boundedly complete, then there exists a test which is similar
on α but is not of Neyman-structure with respect to T) is also true (see [3, p. 134]), but we
do not need it for our purpose.

Let X = (X1, . . . , Xn) be a random sample from a (k + 1)-parameter exponential family
with pdf/pmf:

fX (x; θ , τ ) = C0(θ , τ ) exp

⎡
⎣θU(x) +

k∑
j=1

τjTj(x)

⎤
⎦h0(x), (θ , τ ) ∈ Θ ,

where Θ is a convex set in R
k+1.

We shall now use the above theorem to find UMP unbiased level α tests in the three
problems listed above.

Restrict attention to tests based on

U =
n∑

i=1

U(Xi) and T = (T1, . . . , Tk) =
⎛
⎝ n∑

i=1

T1(Xi), . . . ,
n∑

i=1

Tk(Xi)

⎞
⎠,
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since (U , T ) is sufficient for (θ , τ ) in X . The joint pdf/pmf of (U , T ) is of the form:

fU,T (u, t; θ , τ ) = C(θ , τ ) exp

⎡
⎣θu +

k∑
j=1

τjtj

⎤
⎦h(u, t), (θ , τ ) ∈ Θ .

We assume that:

(a) Θ = I ×Ω where I is an interval in R and Ω is a convex set in R
k, and recall that the

boundaries of the null and the alternative hypotheses in the three problems are

ω1 = ω2 = {(θ0, τ ): τ ∈ Ω} in Problems 1 and 2, and

ω3 = ω31 ∪ ω32 = {(θ1, τ ): τ ∈ Ω} ∪ {(θ2, τ ): τ ∈ Ω} in Problem 3.

(b) In Problems 1 and 2, θ0 is an interior point of I and in Problem 3, θ1 and θ2 are interior
points of I .

(c) Ω contains a nondegenerate k-dim rectangle in R
k.

In each of the three problems under consideration, the statistic T is sufficient for PX
ω

on the common boundary ω of the null and the alternative hypotheses (ie, for PX
ωi

in
Problems 1, 2, and 3). Also, the marginal distribution of T and the conditional distribution
of U given T = t are described by their pdf’s/pmf’s which are of the form:

fT (t; θ , τ ) = C(θ , τ ) exp

⎡
⎣ k∑

j=1

τjtj

⎤
⎦hθ (t), and

fU|t (u; θ) = Ct (θ) exp[θu]ht (u).

[In the discrete case, hθ (t) = ∑
u exp[θu]h(u, t), Ct (θ) = 1/hθ (t), ht (u) = h(u, t).]

Note that in all three cases, the sufficient statistic T for PX
ω is complete by virtue of

Assumption (c) and is, therefore, boundedly complete. Hence all tests which are similar
on ωi, i = 1, 2, 3 are of Neyman-structure with respect to T , which suggests the following
strategy:

(i) For each t, restrict attention to the family
{

fU|t (u, θ), θ ∈ I
}

and find the UMP level α
test for H10: θ ≤ θ0 vs H1: θ > θ0 in Problem 1, and the UMP unbiased level α tests for
H20: θ = θ0 vs H21: θ �= θ0 and for H30: θ1 ≤ θ ≤ θ2 vs H31: θ /∈ [θ1, θ2], respectively, in
Problems 2 and 3. [We have already obtained the solutions to these problems in
Sections 6.4, 6.7.1, and 6.7.2.]

(ii) Put these piecewise optimal tests together and show that the resulting test is an
unbiased level α test in each problem.

We now go through the details of each problem.
Problem 1 (UMP Unbiased Level α Test for H10: θ ≤ θ0 vs H11: θ > θ0). We want a test ϕ

such that

(i) Eθ ,τ [ϕ(U , T)|T = t] = α for all (θ , τ ) ∈ ω1, ie, Eθ0 [ϕ(U , t)|T = t] = α for almost all t
under PT

ω1
(written as: a.e. PT

ω1
), and
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(ii) Eθ ,τ [ϕ(U , T )] ≥ Eθ ,τ [ψ(U , T )] for all θ > θ0 and τ ∈ Ω and for every testψ satisfying (i).

[(i) is the condition of Neyman-structure with respect to T and (ii) ensures the UMP
property in this class.]

For every t,
{

fU|t (u; θ) = Ct (θ) exp[θu]ht (u), θ ∈ I
}

is an MLR family, so invoking the
result in Section 6.4, the piecewise solution to the problem is seen to be

ϕ1(u, t) =
⎧⎨
⎩

0 if u < c1(t)
γ1(t) if u = c1(t)
1 if u > c1(t),

where c1(t) and 0 ≤ γ1(t) ≤ 1 are determined by Eθ0 [ϕ1(U , t)|T = t] = α.
To show that ϕ1 is a UMP level α test for H10: θ ≤ θ0 vs H11: θ > θ0, it is enough to check

that ϕ1 is a level α test for H10 vs H11, using Lemma 6.5.1. By the monotone power property
of ϕ1 in the conditional problem (using part (ii) of Theorem 6.4.1) and the MLR property of{

fU|t (u; θ), θ ∈ I
}

,

Eθ1

[
ϕ1(U, t)|T = t

] ≤ Eθ0

[
ϕ1(U, t)|T = t

] = α, a.e. PT
ω1

for all θ1 ≤ θ0.

Hence Eθ1,τ [ϕ1(U , T )] ≤ α for all θ1 ≤ θ0, showing that ϕ1 is a level α test for H10 vs H11.
Problem 2 (UMP Unbiased Level α Test for H20: θ = θ0 vs H21: θ �= θ0). We want a test ϕ

such that

(i) Eθ ,τ [ϕ(U , T)|T = t] = α for all (θ , τ ) ∈ ω2, ie, Eθ0 [ϕ(U , t)|T = t] = α, a.e. PT
ω2

(as in
Problem 1),

(ii) ∂
∂θ

Eθ ,τ [ϕ(U , T )] = 0 on ω2, ie, ∂
∂θ

Eθ ,τ [ϕ(U , T)]∣∣
θ=θ0,τ∈Ω = 0, and

(iii) Eθ ,τ [ϕ(U , T )] ≥ Eθ ,τ [ψ(U , T )] for all θ �= θ0 and τ ∈ Ω , whenever ψ is a test satisfying
(i) and (ii).

[(i) is the condition of Neyman-structure with respect to T , (ii) is implied by unbiasedness,
and (iii) ensures the UMP property in this class.]

Since θ0 is an interior point of I , ∂
∂θ

Eθ ,τ [ϕ(U , T)] exists on {θ0}×Ω and can be calculated
by differentiating under the integral. Thus

∂

∂θ
Eθ ,τ [ϕ(U, T )]

= ∂

∂θ

∫
ϕ(u, t)C(θ , τ )eθu+∑k

j=1 τj tj h(u, t) du dt

=
∫
ϕ(u, t)

[
∂C(θ , τ )
∂θ

eθu+∑k
j=1 τj tj + C(θ , τ )ueθu+∑k

j=1 τj tj

]
h(u, t) du dt

=
∂C(θ ,τ )
∂θ

C(θ , τ )
Eθ ,τ [ϕ(U, T )] + Eθ ,τ [Uϕ(U, T )],

so condition (ii) amounts to the last expression evaluated at θ = θ0 being 0 for all τ ∈ Ω .
Since ϕ∗(u, t) ≡ α is an unbiased level α test for H20 vs H21, it follows that

∂C(θ0,τ )
∂θ

C(θ0, τ )
α + αEθ0,τ [U] = 0, ie,

∂C(θ0,τ )
∂θ

C(θ0, τ )
= −Eθ0,τ [U].
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Condition (ii) thus becomes Eθ0,τ [Uϕ(U , T) − αU] = 0 for all τ ∈ Ω , that is,∫
Eθ0 [Uϕ(U , t) − αU|T = t]fT (t; θ0, τ )dt = 0, which implies:

Eθ0 [Uϕ(U, t)|T = t] = αEθ0 [U|T = t], a.e. PT
ω2

,

since T is complete.
Conditions (i) and (ii) thus become

Eθ0 [ϕ(U, t)|T = t] = α and Eθ0 [Uϕ(U, t)] = αEθ0 [U|T = t], a.e. PT
ω2

and subject to these conditions, we now maximize Eθ [ϕ(U , t)|T = t] for each t, where
θ �= θ0.

This conditional problem has already been solved in Section 6.7.1, since for each t,{
fU|t (u; θ) = Ct (θ) exp[θu]ht (u), θ ∈ I

}
is an exponential family. The maximizing test is

given as

ϕ2(u, t) =
⎧⎨
⎩

0 if c21(t) < u < c22(t)
γ2i(t) if u = c2i(t), i = 1, 2
1 if u < c21(t) or u > c22(t),

where c2i(t) and 0 ≤ γ2i(t) ≤ 1 , i = 1, 2, for each t are determined by

Eθ0 [ϕ2(U, t)|T = t] = α and Eθ0 [Uϕ2(U, t)|T = t] = αEθ0 [U|T = t].

To show that ϕ2 is a UMP level α test for H20 vs H21, we only need to verify that ϕ2 is a level
α test, as shown below:

Eθ0 [ϕ2(U, t)|T = t] = α, a.e., PT
ω2

⇒ Eθ0,τ [ϕ2(U, T )] = Eθ0,τ Eθ0 [ϕ2(U, T )|T ] = Eθ0,τ [α] = α for all τ ∈ ω2.

Problem 3. UMP Unbiased Level α Test for H30: θ1 ≤ θ ≤ θ2 vs H31: θ /∈ [θ1, θ2].
Here we maximize Eθ [ϕ(U , t)|T = t], θ /∈ [θ1, θ2], subject to Eθi [ϕ(U , t)|T = t] = α,

i = 1, 2 for each t. As seen in Section 6.7.2, this results in the test:

ϕ3(u, t) =
⎧⎨
⎩

0 if c31(t) < u < c32(t)
γ3i(t) if u = c3i(t), i = 1, 2
1 if u < c31(t) or u > c32(t),

where c3i(t) and 0 ≤ γ3i(t) ≤ 1, i = 1, 2 for each t is determined by

Eθi [ϕ3(U, t)|T = t] = α, i = 1, 2.

Examples of Conditional Tests

Example 6.9.3. Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn) be independent random samples
from Poisson(λ) and Poisson(μ), respectively. We want to test H0: μ = aλ vs H1: μ �= aλ
where a > 0 is given. Here (X , Y ) = (∑m

i=1 Xi,
∑n

i=1 Yi
)

is sufficient for (λ,μ) in (X , Y ). As in
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Example 6.9.2, reparametrize and transform the data as:

π = nμ/(mλ+ nμ), ξ = mλ+ nμ, and U = Y , T = X + Y ,

to arrive at

fU,T (u, t;π , ξ ) =
(

t
u

)
πu(1 − π)t−ue−ξ ξ t/t!,

t = 0, 1, . . . and u = 0, 1, . . . , t.
To put the problem in the framework of a two-parameter exponential family, we further

reparametrize:

θ = log
(

π

1 − π

)
= log

( nμ
mλ

)
and τ = log(ξ (1 − π)) = log(mλ)

to write the joint pmf of (U , T) as:

fU,T (u, t; θ , τ ) = exp
[
−(eτ + eθ+τ )

]
eθu+τ t 1

u!(t − u)! .

The hypotheses H0 and H1 now become H0: θ = θ0 and H1: θ �= θ0, where θ0 = log(na/m).
The UMP unbiased level α test for H0: θ = θ0 vs H1: θ �= θ0 (τ being a nuisance

parameter) is

ϕ(u, t) =
⎧⎨
⎩

0 if c1(t) < u < c2(t)
γi(t) if u = ci(t), i = 1, 2
1 if u < c1(t) or u > c2(t),

where ci(t) and 0 ≤ γi(t) ≤ 1, i = 1, 2, are determined by:

Eθ0 [ϕ(U, t)|T = t] = α and E θ0 [Uϕ(U, t)|T = t] = αEθ0 [U|T = t].

These equations can be written explicitly, using

fU|t (u; θ0) =
(

t
u

)(
na

m + na

)u( m
m + na

)t−u
, u = 0, 1, . . . , t, and

Eθ0 [U|T = t] = t
(

na
m + na

)
.

The problems of finding unbiased level α tests for testing H0: μ ≤ aλ vs H1: μ > aλ and
for testing H0: a1λ ≤ μ ≤ a2λ vs H1: μ /∈ [a1λ, a2λr] for given a or given a1 < a2 are treated
analogously using the methods developed for Problems 1 and 3 of Section 6.9.

Example 6.9.4. Let X ∼ Binomial(m,π1) and Y ∼ Binomial(n,π2) be independent. We
want UMP unbiased level α test for H0: π1 = π2 vs H1: π1 �= π2. Here,
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fX ,Y (x, y;π1,π2) =
(

m
x

)(
n
y

)
(1 − π1)m(1 − π2)n

× exp
[(

log
π2(1 − π1)
π1(1 − π2)

)
y +

(
log

π1

1 − π1

)
(x + y)

]
.

Reparametrizing

θ = log
π2(1 − π1)
π1(1 − π2)

, τ = log
π1

1 − π1

and transforming the data to U = Y , T = X + Y , the model is equivalently expressed as:

fU,T (u, t; θ , τ ) = C(θ , τ ) exp[θu + τ t] and π1 = π2 ⇔ θ = 0.

The UMP unbiased level α test for H0: θ = 0 vs H1: θ �= 0 is of the form as in
Example 6.9.3 with

fU|t (u; θ = 0) = Pπ1=π2 [Y = u|X + Y = t] =
( m

t−u
)(n

u
)

(m+n
t
)

which is hypergeometric, and Eθ=0[U|T = t] = ( m
m+n

)
t.

Example 6.9.5. A and B are events in a probability space. The frequencies of AB, AcB,
ABc, and AcBc in n trials are given in Table 6.1, known as a 2 × 2 contingency table:

Table 6.1 Frequency
Distribution in n Trials
Events A Ac Subtotal

B X Z T
Bc Y W T ′
Subtotal S S′ n

Based on this data, we want to test: H0: A and B are independent or negatively dependent
(ie, pAB ≤ pApB) vs H1: A and B are positively dependent (ie, pAB > pApB). Let Δ =
(pABc pAcB)/

(
pABpAcBc

)
. Then the problem can be equivalently described as that of testing

H0: Δ ≥ 1 vs H1: Δ < 1. Reparametrize by transforming

(pAB, pABc , pAcB) → (τ0, τ1, τ2) → (θ , τ1, τ2),

where

τ0 = log(pAB/pAcBc ), τ1 = log(pABc/pAcBc ),

τ2 = log(pAcB/pAcBc ), and θ = τ0 − τ1 − τ2 = − logΔ.

Also transform the data from (X , Y , Z) → (X , X +Y , X +Z) = (X , S, T). In terms of (θ , τ1, τ2),
we can write

pAcBc = (1 + eθ+τ1+τ2 + eτ1 + eτ2 )−1, pAB = eθ+τ1+τ2 pAcBc ,

pABc = eτ1 pAcBc , and pABc = eτ2 pAcBc .



152 THEORY AND METHODS OF STATISTICS

The multinomial pmf of (X , Y , Z) can now be rewritten, using Y = S − X , Z = T − X and
the above formulas for pAB, pABc , pAcB, and pAcBc to express the pmf of (X , S, T) as:

fX ,S,T (x, s, t; θ , τ1, τ2) = C(θ , τ1, τ2) exp
[
θx + τ1s + τ2t

]
h(x, s, t),

where C(θ , τ1, τ2) = [1 + eθ+τ1+τ2 + eτ1 + eτ2 ] and h(x, s, t) is the multinomial coefficient

n!/{x!(s − x)!(t − x)!(n − s − t + x)!}.

Now the UMP unbiased level α test for H0: Δ ≥ 1 vs H1: Δ < 1 (ie, for H0: θ ≤ 0 vs
H1: θ > 0) is given by

ϕ(x, s, t) =
⎧⎨
⎩

0 if x < c(s, t)
γ (s, t) if x = c(s, t)
1 if x > c(s, t),

where c(s, t) and 0 ≤ γ (s, t) ≤ 1 are determined by

γ (s, t)Pθ=0[X = c(s, t)|S = s, T = t] + Pθ=0[X > c(s, t)|S = s, T = t] = α.

Note that Pθ=0[X = x|S = s, T = t]

=
{(t

x
)(n−t

s−x
)
/
(n

s
)
, max(0, s + t − n) ≤ x ≤ min(n, s)

0 otherwise

is the hypergeometric distribution.
The UMP unbiased level α test for H0: pAB = pApB (independence) vs H1: pAB �= pApB

(ie, H0: θ = 0 vs H1: θ �= 0) is obtained by the same approach. This is known as the
Fisher-Irwin test (also called the “Fisher exact test”), which is formally the same as the
test obtained in Example 6.9.2.

Simplified Versions of Conditional Tests

The conditional tests ϕ1(u, t) for H10: θ ≤ θ0 vs H11: θ > θ0, ϕ2(u, t) for H20: θ = θ0 vs
H21: θ �= θ0 and ϕ3(u, t) for H30: θ1 ≤ θ ≤ θ2 vs H31: θ /∈ [θ1, θ2] are inconvenient in many
applications. However, in some situations which include testing problems in the family of
normal distributions, these tests can be equivalently expressed in terms of a single statistic
V = g(U , T), as shown in the following theorem.

Theorem 6.9.2.

A. Suppose V = g(U , T) is such that
(a) V is independent of T when θ = θ0, and
(b) g(u, t) is increasing in u for each t.
Then the UMP unbiased level α test ϕ1 for Problem 1 becomes

ϕ∗
1(v) =

⎧⎨
⎩

0 if v < c
γ if v = c
1 if v > c,

where c and 0 ≤ γ ≤ 1 are determined by Eθ0 [ϕ∗
1(V )] = α.
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B. Suppose V = g(U , T) is such that
(a) V is independent of T when θ = θ0, and
(b) g(u, t) = a(t)u + b(t) with a(t) > 0.
Then the UMP unbiased level α test ϕ2 for Problem 2 becomes

ϕ∗
2(v) =

⎧⎨
⎩

0 if c1 < v < c2
γi if v = ci, i = 1, 2
1 if v < c1 or v > c2,

where ci and 0 ≤ γi ≤ 1, i = 1, 2 are determined by Eθ0[ϕ∗
2(V )] = α and

Eθ0[Vϕ∗
2(V )] = αEθ0[V ].

C. Suppose V = g(U , T) is such that
(a) V is independent of T when θ = θ1 and when θ = θ2, and
(b) g(u, t) is increasing in u for each t.
Then the UMP unbiased level α test ϕ3 in Problem 3 becomes ϕ∗

3 having the same form
as ϕ∗

2 (in part B of the theorem), but ci and 0 ≤ γi ≤ 1, i = 1, 2 are determined by
Eθi[ϕ∗

3(V )] = α, i = 1, 2.

Proof of Part A. The UMP unbiased level α test ϕ1 in Problem 1 can be equivalently
expressed in the form of ϕ∗

1 by condition (b), but the quantities c and 0 ≤ γ ≤ 1 may
depend on t and are determined by

γ (t)Pθ0 [V = c(t)|T = t] + Pθ0 [V > c(t)|T = t] = α for all t.

By condition (a), V is independent of T when θ = θ0, so c(t) and 0 ≤ γ (t) ≤ 1 do not
depend on t and are determined by Eθ0[ϕ∗

1(V )] = α.
The proof of part C is analogous.
Proof of Part B. Here also, by condition (b), the UMP unbiased level α test ϕ2 in

Problem 2 can be equivalently expressed in the form ϕ∗
2, but ci(t) and 0 ≤ γi ≤ 1, i = 1, 2

may depend on t and are determined by

(i) Eθ0 [ϕ∗
2(V , t)|T = t] = α and

(ii) Eθ0 [Uϕ∗
2(V , t)|T = t] = αEθ0 [U|T = t] for all t.

Substituting V = a(t)U + b(t) (ie, U = (V − b(t))/a(t) in (ii)), we have

a(t)−1Eθ0 [{V − b(t)}ϕ∗
2(V , t)|T = t] = αa(t)−1Eθ0 [V − b(t)|T = t] for all t

⇔ Eθ0 [Vϕ∗
2(V , t)|T = t] − b(t)Eθ0 [ϕ∗

2(V , t)|T = t] = αEθ0 [V |T = t] − αb(t) for all t

⇔ Eθ0 [Vϕ∗
2(V , t)|T = t] = αEθ0 [V |T = t] for all t,

since Eθ0[ϕ∗
2(V , t)|T = t] = α for all t by (i). Now using condition (a), we see that ci(t) and

0 ≤ γi(t) ≤ 1, i = 1, 2 do not depend on t and are determined by: Eθ0[ϕ∗
2(V )] = α and

Eθ0[Vϕ∗
2(V )] = αEθ0[V ].

In actual applications, condition (b) of this theorem is verified in an obvious manner.
The verification of condition (a) often follows from V being an ancillary statistic (ie, one
whose distribution does not depend on the nuisance parameter τ ) and T being a complete
sufficient statistic for τ , using Basu’s Theorem 5.1.6.
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Examples: Hypothesis Testing With Nuisance Parameters
in the Context of Normal Distribution

In each of the following examples, we go through the following steps:

I. The data which is a random sample from the population(s) under consideration are:
(X1, . . . , Xn), or (X1, . . . , Xm) and (Y1, . . . , Yn) or ((X1, Y1), . . . , (Xn, Yn)). Also state H0 and
H1 in terms of the population parameters.

II. The sufficient statistics are (U , T). The conditional distribution of U given T = t is
complicated, so the conditional test described earlier in Section 6.9 are impractical.

III. Reparametrize from
(
μ, σ 2

)
or
(
μ1,μ2, σ 2

)
, etc., to (θ , τ ) and restate H0 and H1 in

terms of θ , treating τ as the nuisance parameter. In each example, the pdf/pmf of
(U , T) belongs to the exponential family with natural parameters (θ , τ ).

IV. Transform (U , T) to V = g(U , T) or (V = g1(U , T), W = g2(U , T) ) as needed to use
Theorem 6.9.2, verifying the conditions.

V. Express the UMP unbiased level α test in terms of V or (V , W ) using the distributions
of V and W under H0.

Example 6.9.6.
Testing for μ of N

(
μ, σ 2

)
with σ 2 unknown.

I. On the basis of the data (X1, . . . , Xn) test (i) H0: μ ≤ μ0 vs H1: μ > μ0 and (ii)
H0: μ = μ0 vs H1: μ �= μ0 where μ0 = 0 (otherwise, replace μ by μ− μ0).

II. The sufficient statistics are (U , T) = (∑n
i=1 Xi,

∑n
i=1 X 2

i

)
.

III. Reparametrize θ = μ/σ 2, τ = −1/
(
2σ 2

)
. In (i), test H0: θ ≤ θ0 vs H1: θ > θ0 where

θ0 = μ0/σ
2 and in (ii), test H0: θ = θ0 vs H1: θ �= θ0, τ being the nuisance parameter.

IV. Express the UMP unbiased level α tests ϕ1(U , T) for (i) as ϕ∗
1(V ) and ϕ2(U , T) for (ii) as

ϕ∗
2(W ), where

V = g1(U, T) =
√

n − 1
n

U√
T − U2/n

=
√

nX̄
s

and W = g2(U, T) = U/
√

T .

Verify conditions (a) and (b) of Theorem 6.9.2A for V and W .
V. The test for (i) is ϕ∗

1(v) = I[c,∞)(v), where c satisfies Pμ=0[√nX̄/s ≥ c] = α. Under μ = 0,√
nX̄/s ∼ tn−1, so c = tn−1(α) where P[tn−1 ≥ tn−1(α)] = α.

The test for (ii) is ϕ∗
2(w) = I[c,∞)(|w|), using the fact that under μ = 0, W is

symmetrically distributed about 0, and c satisfies Pμ=0[|W | ≥ c]=α. Finally, note that

V =
√

n − 1
n

W
/√

1 − W 2/n = √
nX̄/s ∼ tn−1 when μ = 0

and |V | is an increasing function of |W |. Thus ϕ∗
2 becomes ϕ∗

2(v) = I[tn−1(α/2),∞)(|v|).

Example 6.9.7. Testing for σ 2 in N
(
μ, σ 2

)
with μ unknown.

I. On the basis of the data (X1, . . . , Xn) test (i) H0: σ 2 ≤ σ 2
0 vs H1: σ 2 > σ 2

0 and (ii)
H0: σ 2 = σ 2

0 vs H1: σ 2 �= σ 2
0 .

II. Here (U , T) = (∑n
1 X 2

i ,
∑n

1 Xi
)

are the sufficient statistics.
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III. Reparametrize θ = −1/(2σ 2) and τ = μ/σ 2. In (i), test H0: θ ≤ θ0 vs H1: θ > θ0 where
θ0 = −1/

(
2σ 2

0

)
and in (ii), test H0: θ = θ0 vs H1: θ �= θ0.

IV. Express the UMP unbiased level α tests ϕ1(U , T) for (i) as ϕ∗
1(V ) and ϕ2(U , T) for (ii) as

ϕ∗
2(V ), where

V = g(U, T) = (1/σ 2
0 )(U − T2/n) =

n∑
i=1

(
Xi − X̄
σ0

)2

.

Verify conditions (a) and (b) of Theorem 6.9.2A for V .
V. Since V ∼ χ2

n−1 under σ 2 = σ 2
0 , the UMP level α test for (i) is ϕ∗

1(v) = I[c,∞)(v) where
c = χ2

n−1(α), P[χ2
n−1 ≥ χ2

n−1(α)] = α, and for (ii), ϕ∗
2(v) = I(0,c1](v) + I[c2,∞)(v) where

c1 < c2 satisfy

∫ c2

c1

fn−1(y) dy = 1 − α and
∫ c2

c1

y fn−1(y) dy = (n − 1)(1 − α),

fn−1 being the pdf of χ2
n−1. The second condition in the display above can be

expressed in any of the following two ways (as in Example 6.7.2):∫ c2

c1

fn+1(y) dy = 1 − α since y fn−1(y) = (n − 1)fn+1(y), or

e−c1/2c(n−1)/2
1 = e−c2/2c(n−1)/2

2 since∫ c2

c1

yfn−1(y) dy = 1

2(n−3)/2Γ ((n − 1)/2)

(
e−c1/2c(n−1)/2

1 − e−c2/2c(n−1)/2
2

)
+ n(n − 1)(1 − α),

using integration by parts and condition (i). For moderately large n and θ0 neither too
small nor too large, CLT provides a reasonably good approximation for c1 and c2

determined by ∫ c1

0
fn−1(y) dy =

∫ ∞
c2

fn−1(y) dy = α/2.

Example 6.9.8. Testing for μ1 = μ2 of N
(
μ1, σ 2

)
and N

(
μ2, σ 2

)
with μ1, μ2, σ 2

unknown.

I. On the basis of the data (X1, . . . , Xm) and (Y1, . . . , Yn) from N
(
μ1, σ 2

)
and N

(
μ2, σ 2

)
,

respectively, test
(i) H0: μ2 − μ1 ≤ 0 vs H1: μ2 − μ1 > 0 and
(ii) H0: μ2 − μ1 = 0 vs H1: μ2 − μ1 �= 0.

II. The sufficient statistics and their one-to-one transforms are( n∑
1

Yi,
m∑
1

Xi,
m∑
1

X 2
i +

n∑
1

Y 2
i

)
and

(U, T1, T2) =
(

Ȳ − X̄ , mX̄ + nȲ ,
m∑
1

X 2
i +

n∑
1

Y 2
i

)
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III. Reparametrize

(θ , τ1, τ2) =
(

μ2 − μ1

(m−1 + n−1)σ 2
,

mμ1 + nμ2

(m + n)σ 2
, − 1

2σ 2

)
.

In (i), test H0: θ ≤ θ0 vs H1: θ > θ0 where θ0 = 0 and in (ii), test H0: θ = θ0 vs
H1: θ �= θ0, τ1, τ2 being the nuisance parameters.

IV, V. For testing H0: θ ≤ 0 vs H1: θ > 0, that is, H0: μ2 ≤ μ1 vs H1: μ2 > μ1, take

V =
√

mn(m + n − 2)
m + n

U√
T2 − (T2

1 + mnU2)/(m + n)

= Ȳ − X̄√
1
m + 1

n

√∑m
i=1(Xi−X̄)2+∑n

i=1(Yi−Ȳ )2

m+n−2

:= Ȳ − X̄√
1
m + 1

n · · ·
.

Then V satisfies both conditions of Theorem 6.9.2A, and the UMP unbiased level α
test for H0: θ ≤ 0 vs H1: θ > 0 is ϕ∗

1(v) = I[c,∞)(v), where c = tm+n−2(α).
For testing H0: θ = 0 vs H1: θ �= 0, take

W = U√
T2 − T2

1 /(m + n)

= Ȳ − X̄√∑m
1 X 2

i +∑n
1 Y 2

i − {∑m
1 Xi +∑n

1 Yi
}2
/(m + n)

.

Then W satisfies both conditions of Theorem 6.9.2B, and the UMP unbiased level α
test for H0: θ = 0 vs H1: θ �= 0 is ϕ∗

2(w) = I[c,∞)(|w|), where c satisfies
Pμ1=μ2 [|W | ≥ c] = α. Now let V = W/

√
1 − mnW 2/(m + n), which is the same as V

defined for problem (i) and |V | is an increasing function of |W |. Thus the UMP
unbiased level α test for H0: μ1 = μ2 vs H1: μ1 �= μ2 becomes ϕ∗

2(v) = I[c,∞)(|v|),
where c = tm+n−2(α/2).

Example 6.9.9. Testing for σ 2
1 = σ 2

2 of N
(
μ1, σ 2

1

)
and N

(
μ2, σ 2

2

)
, all parameters are

unknown.

I. On the basis of the data (X1, . . . , Xm) and (Y1, . . . , Yn) from N
(
μ1, σ 2

1

)
and N

(
μ2, σ 2

2

)
,

respectively, test (for a given k > 0):
(i) H0: σ 2

2 ≤ kσ 2
1 vs H1: σ 2

2 > kσ 2
1 and

(ii) H0: σ 2
2 = kσ 2

1 vs H1: σ 2
2 �= kσ 2

1 .
II. The sufficient statistics and their one-to-one transforms are( n∑

1

Y 2
i ,

m∑
1

X 2
i ,

n∑
1

Yi,
m∑
1

Xi

)
and

(U, T1, T2, T3) =
( n∑

1

Y 2
i ,

m∑
1

X 2
i + k−1

n∑
1

Y 2
i ,

n∑
1

Yi,
m∑
1

Xi

)
.
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III. Reparametrize

(θ , τ1, τ2, τ3) =
(

− 1

2σ 2
2

+ 1

2kσ 2
1

, − 1

2σ 2
1

,
μ2

σ 2
2

,
μ1

σ 2
1

)
,

τ1, τ2, τ3 being the nuisance parameters. In (i), test H0: θ ≤ 0 vs H1: θ > 0 and in
(ii), test H0: θ = 0 vs H1: θ �= 0.

IV, V. Take

V = {(n − 1)k}−1∑n
i=1(Yi − Ȳ )2

(m − 1)−1∑m
i=1(Xi − X̄)2

in problem (i). Then both conditions of Theorem 6.9.2A are satisfied and the UMP
unbiased level α test in problem (i) is ϕ∗

1(v) = I[c,∞)(v), where P[Fn−1,m−1 ≥ c] = α.
In problem (ii), for testing H0: σ 2

2 = kσ 2
1 vs H1: σ 2

2 �= kσ 2
1 , proceed with

W = k−1
n∑

i=1

(Yi − Ȳ )2

/⎡
⎣ m∑

i=1

(Xi − X̄)2 + k−1
n∑

i=1

(Yi − Ȳ )2

⎤
⎦

to set up the test and then transform to V which increases with W .

Example 6.9.10. Testing for the slope parameter in Simple Linear Regression Model.

I. On the basis of the data ((x1, Y1), . . . , (xn, Yn)) where x1, . . . , xn are given constants
and Yi = α + βxi + εi, ε1, . . . , εn being iid N

(
0, σ 2

)
, with α, β, σ 2 all unknown, we

want to test
(i) H0: β ≤ β0 vs H1: β > β0 and
(ii) H0: β = β0 vs H1: β �= β0.
Without loss of generality, let β0 = 0 (otherwise, replace Yi by Yi − β0xi).

1. Transform the data to reduce the model to its canonical form: Let Y ∗
i = Yi − α − βxi,

i = 1, . . . , n and let aT
i = (ai1, . . . , ain), i = 1, . . . , n be n-dim vectors which form an

orthonormal basis for Rn (ie, aT
i ai = 1 for all i and aT

i aj = 0 for all i �= j). In
particular, choose the first two vectors as

aT
1 = n−1/2(1, . . . , 1) and aT

2 = S−1/2
xx

(
x1 − x̄, . . . , xn − x̄

)
,

where x̄ = n−1∑n
1 xi and Sxx = ∑n

i=1(xi − x̄)2. Let Y ∗T = (
Y ∗

1 , . . . , Y ∗
n
)
, and define

W1 = aT
1Y ∗, W2 = aT

2Y ∗and W3 =
n∑

i=1

a3iY ∗
i , . . . , W ∗

n =
n∑

i=1

aniY ∗
i .

Then W1, . . . , Wn are iid N
(
0, σ 2

)
and

∑n
1 W 2

i = ∑n
1 Y ∗2

i . Define
SxY = ∑n

i=1(xi − x̄)Yi and SYY = ∑n
i=1(Yi − Ȳ )2. It follows that

(a) Ȳ = n−1∑n
1 Yi ∼ N

(
α + βx̄, σ 2/n

)
because W1 ∼ N

(
0, σ 2

)
,

(b) W2 ∼ N
(
0, σ 2

) (
ie, B = SxY /Sxx ∼ N

(
β, σ 2/Sxx

))
,
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(c) R = ∑n
i=3 W 2

i = ∑n
i=1 Y ∗2

i − W 2
1 − W 2

2 = SYY − S2
xY /Sxx ∼ σ 2χ2

n−2,
(d) Ȳ , B, and R are mutually independent.

II. The sufficient statistics and their one-to-one transforms are

(B, Ȳ , R) and (U, T1, T2) = (B, Ȳ , nȲ 2 + SxxB2 + R).

III. Reparametrize

θ = Sxxβ/σ
2, τ1 = n(α + βx̄)/σ 2, τ2 = −1/(2σ 2).

Starting from the joint distribution of (Ȳ , B, R), using (a)-(d) in Step I, the joint pdf
of (U , T1, T2) can be seen to be of the form

fU,T1,T2 (u, t1, t2; θ , τ1, τ2) = C(θ , τ1, τ2) exp
[
θu + τ1t1 + τ2t2

]
h(u, t1, t2),

and the null and the alternative hypotheses can be restated as H0: θ ≤ 0 vs
H1: θ > 0 in problem (i) and H0: θ = 0 vs H1: θ �= 0 in problem (ii).

IV, V. In problem (i), take

V = g(U, T1, T2) =
√

n − 2U√
(T2 − nT2

1 )/Sxx − U2
=

√
n − 2B√
R/Sxx

.

Then V satisfies the conditions of Theorem 6.9.2A and it is distributed as tn−2 under
H0. Hence the UMP unbiased level α test for H0: θ ≤ 0 vs H1: θ > 0 is
ϕ∗

1(v) = I[tn−2(α),∞)(v).
In problem (ii), first take

V1 = g(U, T1, T2) = U
/√

(T2 − nT2
1 )/Sxx = B

/√
B2 + R/Sxx .

Then V1 satisfies the conditions of Theorem 6.9.2B. Hence the UMP unbiased level
α test for H0: θ = 0 vs H1: θ �= 0 is ϕ(v1) = I[c,∞)(|v1|), where c satisfies
Pθ=0[|V1| ≥ c] = α. Finally, let

V =
√

n − 2V1√
1 − V 2

1

=
√

n − 2B√
R/Sxx

as in problem (i). Then V ∼ tn−2 under θ = 0 and |V | is an increasing function of
|V1|, so ϕ(v1) is the same as ϕ∗(v) = I[tn−2(α/2),∞)(|v|).

Remark 6.9.1. If β0 �= 0, then SxY and SYY are calculated from
(
xi, Yi − β0xi

)
, i = 1, . . . , n

and become

S∗
xY = SxY − β0Sxx and S∗

YY = SYY + β2
0 Sxx − 2β0SxY ,

respectively, and B and R are replaced by

B∗ = B − β0 and R∗ = S∗
YY − (S∗

xY )2/Sxx = SYY − S∗
xY /Sxx = R.

As a result, the statistic V is replaced by V ∗ = √
n − 2(B − β0)/

√
R/Sxx.
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6.10 The p-Value: Another Way to Report the Result of a Test
In Example 6.7.1(a) of Section 6.7.2, let H0: μ = μ0 = 10 vs H1: μ �= 10 with known σ 2 = 4,
and suppose that in a random sample of size n = 25, the observed sample mean is x̄ = 10.8
Then the test statistic T = √

n
(
X̄ − μ0

)
has observed value

T(x) = √
n(x̄ − μ0)/σ = 5(10.8 − 10)/2 = 2.0.

Whether to accept or reject H0, now depends on the choice of α. For α = 0.05,Φ(1−α/2) =
1.96 and for α = 0.01,Φ(1 − α/2) = 2.575; so for the same data we should reject H0 at level
α = 0.05 but accept H0 at level α = 0.01. This raises two concerns:

(i) The choice of α is subjective, contrary to the aim at objectivity in the theory of
hypothesis testing.

(ii) Even for a choice of chosen α, the test procedure only tells us whether to “accept H0”
or “reject H0” without any indication of how strongly the data favors the decision.

To address these concerns, it would be desirable to report not only whether H0 is
rejected or accepted at a preassigned level α by the observed value of the test statistic T(x)
but also the smallest level of significance at which T(x) would reject H0, which is called the
p-value of T(x).

Definition 6.10.1. For a problem of testing H0 vs H1, if T(x) is the appropriate test
statistic based on the observed data x, then p-value of T = minimum α for which H0 would
be rejected by T(x).

For a one-sided level α test φ(x) = I[cα ,∞)(T(x)),

p-value of T = min
α

{T(x) ≥ cα} = PH0 [T ≥ T(x)],

and for a symmetric two-sided test level α test φ(x) = 1 − I(−cα ,cα)(T(x)),

p-value of T = min
α

{|T(x)| ≥ cα} = PH0 [T ≥ |T(x)|] + PH0 [T ≤ −|T(x)|].

In Example 6.7.1(a) discussed above,

T = √
n(X̄ − μ0)/σ and T(x) = 2.0.

Since T ∼ N(0, 1) under H0,

p-value of T = PH0 [|T | ≥ 2.0] = 2{1 −Φ(2)} = (2)(0.0228) = 0.0456.

This statement is more informative than the one saying that H0 is accepted at levelα = 0.01
but rejected at α = 0.05.

6.10.1 Pearson’s Pλ Statistic

The p-value of a statistic T has so far been discussed in the context of T(x) for an observed
sample x. We now look at the p-value as a random variable:
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p-value of T = PH0 [T ≥ T(X)]

considering a one-sided test for convenience of discussion.
Let FT denote the cdf of T under H0. Then

PH0 [T ≥ T(X)] = 1 − FT (T(X)) ∼ 1 − U
D= U,

where U ∼ Uniform(0, 1) as seen in Section 1.11.
In problem 16(a) of Chapter 2, we have seen that

W = −2 log U ∼ Exp(1/2)
D= χ2

2 .

Thus the p-value of T for a random sample X being P = PH0 [T ≥ T(X)], W = −2 log P is
distributed as χ2

2 .
Now suppose that a certain study, such as a trial on the effectiveness of a drug, is

carried out independently by several investigators. These studies, being designed dif-
ferently and based on different sample sizes, may have been analyzed by different test
statistics aimed at testing the same null hypothesis H0, the rejection of which would
indicate effectiveness of the drug. Suppose that the results of these studies are summarized
by test statistics T1, . . . , Tk with observed values T1(x1), . . . , Tk

(
xk
)
, and let the observed

p-values of these tests (using right-tail tests for simplicity) be denoted by

P(xj) = PH0 [Tj ≥ Tj(xj)], j = 1, . . . , k.

Then these p-values are sample realizations of

Pj = PH0 [Tj ≥ Tj(Xj)]

and therefore, wj = −2 log P
(
xj
)

are sample realizations of Wj = −2 log Pj, which are iid as
χ2

2 under H0.

Now define Pλ = ∑k
j=1[−2 log Pj] as a test statistic combining the results of all the k

tests, which is distributed as χ2
2k under H0, and can be used as a test statistic based on the

combined evidence provided by the results of all the k investigations.

6.11 Sequential Probability Ratio Test
Traditional statistical inference deals with analysis of a set of data (X1, . . . , Xn) to draw
some conclusion about a parameter θ involved in the joint pdf (or pmf) fn(x1, . . . , xn; θ).
The observations X1, . . . , Xn are often iid with individual pdf f (x; θ) (although they need
not be so), in which case, fn(x1, . . . , xn; θ) = ∏n

i=1 f (xi; θ). But the main thing is that n is
fixed and the functional form fn is fixed (ie, the sample size and the sampling design are
predetermined). However, some samples provide more conclusive evidence than others,
so it makes sense to take samples gradually (ie, sequentially), and examine the evidence
gathered at each stage of sampling to determine whether any more samples are needed,
and if not, to draw a final conclusion. This is known as Sequential Analysis.
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Here we shall only discuss the problem of testing a simple null hypothesis H0: θ = θ0

against a simple alternative H1: θ = θ1 based on iid samples X1, X2, . . . observed
sequentially. For this, we need a procedure of the following form:

Step 1. Start with observing X1. Let S10, S11, and C1 be a partition of the sample space
X1 = X of X1 such that S10 ∪S11 ∪C1 = X1. If the observed value x1 ∈ S10, stop sampling
and accept H0; if x1 ∈ S11, stop sampling and accept H1; if x1 ∈ C1 (continuation
region), take another observation X2.
Step 2. Now the observed data are (x1, x2) ∈ C1 × X = X 2. Let S20, S21, and C2 be
a partition of X2. If (x1, x2) ∈ S20, stop sampling and accept H0; if (x1, x2) ∈ S21,
stop sampling and accept H1; if (x1, x2) ∈ C2 (continuation region), take another
observation X3.
Step n. At the nth stage of sampling, the observed data are (x1, . . . , xn−1, xn) ∈ Cn−1 ×
X = X n. Let Sn0, Sn1, and Cn be a partition of Xn. If (x1, . . . , xn) ∈ Sn0, stop sampling
and accept H0; if (x1, . . . , xn) ∈ Sn1, stop sampling and accept H1; if (x1, . . . , xn) ∈ Cn,
observe Xn+1.

Sequential Probability Ratio Tests, which we shall refer to as SPRT, are due to Wald [24].
The SPRT is based on the following idea. For a fixed sample size n, the MP test for H0 vs H1

at a given level α, accepts H0 or H1 according as

λn = fn(x1, . . . , xn; θ1)
fn(x1, . . . , xn; θ0)

is < k or > k,

where k = kn(α) depends on the sample size and the level of significance. [For given α,β,
we can also determine the smallest sample size N(α,β) such that for n ≥ N(α,β), the MP
level α test based on a sample size n will have the probability of Type II error ≤ β]. In the
sequential setting, at the nth stage of sampling, we modify the MP test described above by
accepting H0 if the likelihood ratio λn ≤ B, accepting H1 if λn ≥ A, and observing Xn+1 if
B < λn < A.

Definition of SPRT(A, B), B < 1 < A, Based on iid Observations

Let Zi = log
[
f (Xi, θ1)/f (Xi; θ0)

]
, so that the log likelihood ratio at the nth stage of sampling

is
∑n

i=1 Zi. The procedure at the nth stage of sampling is: accept H0 if
∑n

i=1 Zi ≤ log B,
accept H1 if

∑n
i=1 Zi ≥ log A, continue sampling if log B <

∑n
i=1 Zi < log A, where 0 < B <

1 < A < ∞ are such that

Pθ0 [Accept H1] = α and Pθ1 [ Accept H0] = β.

Note that the actual sample size needed for the SPRT to stop and reach a terminal decision
to accept H0 or H1 is a random variable. We have to think of this random variable in the
context of the sample space of infinite sequences

ω = (z1, z2, . . .), zi = log
[
f (xi, θ1)/f (xi; θ0)

]
.
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For each ω the stopping sample size of SPRT is: N(ω) = n if log B <
∑j

i=1 zi < log A for
j ≤ n − 1 and

∑n
i=1 zi is either ≤ log B or ≥ log A.

To facilitate discussion, let us also define the following events in the sample space of ω:

S∗
n0 =

⎧⎨
⎩(z1, z2, . . .):

j∑
i=1

zi ∈ (log B, log A), j ≤ n − 1 and
n∑

i=1

zi ≤ log B

⎫⎬
⎭,

and

S∗
n1 =

⎧⎨
⎩(z1, z2, . . .):

j∑
i=1

zi ∈ (log B, log A), j ≤ n − 1 and
n∑

i=1

zi ≥ log A

⎫⎬
⎭

for n = 1, 2 . . .. These events have the following properties:

(i) S∗
n0, S∗

n1, n = 1, 2, . . . are disjoint.
(ii) For each n, the events S∗

n0 and S∗
n1 are determined by (Z1, . . . , Zn) only.

(iii) SPRT(A, B) stops with exactly n observations with acceptance of H0 if ω ∈ S∗
n0 or with

acceptance of H1 if ω ∈ S∗
n1.

We now ask the following questions:

1. Does the SPRT stop with probability 1, ie, is Pθ [N < ∞] = 1?
2. How are the error probabilities α, β related to the boundaries A, B?
3. The function L(θ) = Pθ [Accept H0] = ∑

1≤n<∞ Pθ
(
S∗

n0

)
, called the operating

characteristic (OC) function, which is simply 1− power function. Obviously,
L(θ0) = 1 − α and L(θ1) = β. How to calculate L(θ) for other values of θ?

4. The stopping sample size N is a random variable. It is important to know its average
value Eθ (N) for a given θ . This average value, as a function of θ , is called the average
sampling number (ASN) function. How to evaluate the ASN function for a given θ?

5. Is the SPRT optimal in any sense?

We now deal with above issues.

6.11.1 SPRT Stops With Probability 1

Theorem 6.11.1. If Pθ [Zi = 0] < 1, then there exist c > 0 and 0 < r < 1 such that Pθ [N ≥
n] ≤ crn. In such a case, Pθ [N < ∞] = 1.

Remark 6.11.1. Note that

Pθ [Zi = 0] = 1 ⇐⇒ Pθ [f (X , θ0) = f (X , θ1)] = 1.

If θ0 and θ1 are distinguishable, then Pθ0 [f (X , θ0) = f (X , θ1)] < 1 and Pθ1 [f (X , θ0) =
f (X , θ1)] < 1.

Proof. Since Pθ [Zi = 0] < 1, there exist ε > 0 and δ > 0 such that either Pθ [Zi > ε] = δ

or Pθ [Zi < −ε] = δ. We consider the former case (the other case is treated similarly).



Chapter 6 • Hypothesis Testing 163

Let k be an integer such that kε > log A− log B. We now show that the desired inequality
holds with c = (1 − δk)−1 and r = (1 − δk)1/k. The idea of the proof is given below.

N ≥ n ⇐⇒ ∑l
i=1 Zi ∈ (log B, log A) for all l ≤ n − 1 �⇒

∣∣∣∑k
i=1 Zi

∣∣∣, . . . , ∣∣∣∑jk
i=(j−1)k+1

∣∣∣
are all ≤ log A − log B < kε, where jk is the largest multiple of k which is ≤ n − 1. Thus for
jk + 1 ≤ n ≤ (j + 1)k, using the iid property of the Zi’s, we have

Pθ [N ≥ n] ≤
⎧⎨
⎩Pθ

⎡
⎣
∣∣∣∣∣∣

k∑
i=1

Zi

∣∣∣∣∣∣ < kε

⎤
⎦
⎫⎬
⎭

j

≤
⎧⎨
⎩Pθ

⎡
⎣ k∑

i=1

Zi < kε

⎤
⎦
⎫⎬
⎭

j

≤ (1 − δk)j = (1 − δk)−1{(1 − δk)1/k}(j+1)k ≤ crn,

because
∑k

i=1 Zi < kε �⇒ {Z1 > ε, . . . , Zk > ε}c, so that

Pθ

⎡
⎣ k∑

i=1

Zi < kε

⎤
⎦ ≤ 1 − Pθ [Z1 > ε, . . . , Zk > ε] = 1 − δk.

Finally,

Pθ [N < ∞] =
∞∑

k=1

Pθ [N = k] = lim
n→∞

n−1∑
k=1

Pθ [N = k]

= lim
n→∞[1 − Pθ (N ≥ n)] = lim

n→∞(1 − crn) = 1

since 0 < r < 1.

6.11.2 Error Probabilities of SPRT(A, B): Relation Between (A, B)
and (α, β)

We will use Theorem 6.11.1 to get

α = Pθ0 [Accept H1]

=
∞∑

n=1

Pθ0 [ Stop with n observations and accept H1]

=
∞∑

n=1

Pθ0 [S∗
n1] =

∞∑
n=1

∫
S∗

n1

n∏
i=1

f (xi, θ0) dx1 · · · dxn

=
∞∑

n=1

∫
S∗

n1

⎧⎨
⎩

n∏
i=1

f (xi, θ1)/f (xi, θ0)

⎫⎬
⎭

−1 n∏
i=1

f (xi, θ1) dx1 · · · dxn

≤ (1/A)
∞∑

n=1

∫
S∗

n1

n∏
i=1

f (xi, θ1) dx1 · · · dxn

= (1/A)Pθ1 [Accept H1] = (1/A){1 − Pθ1 [ Accept H0]} = 1 − β

A
.
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Similarly, using the fact that λn = ∏n
i=1 f (xi, θ1/f (xi, θ0) ≤ B on S∗

n0 for all n, we have

1 − α = Pθ0 [Accept H0] =
∞∑

n=1

Pθ0 [S∗
n0]

=
∞∑

n=1

∫
S∗

n0

λ−1
n

n∏
i=1

f (xi, θ1) dx1 · · · dxn

≥ (1/B)Pθ1 [Accept H0] = β/B.

Thus the Type I error probability α(A, B) and Type II error probability β(A, B) satisfy:

α(A, B) ≤ [1 − β(A, b)]/A and 1 − α(A, B) ≥ β(A, B)/B, ie,

Aα(A, B) + β(A, B) ≤ 1 and α(A, B) + β(A, B)/B ≤ 1.

Suppose for given α∗,β∗, we choose A′ = (1 − β∗)/α∗ and B′ = β∗/
(
1 − α∗).

If the above inequalities were equalities, then we would have α(A′, B′) = α∗ and
β(A′, B′) = β∗ for the resulting SPRT

(
A′, B′). This would be the case if SPRT

(
A′, B′) always

terminated with λN = A or λN = B at the stopping time N . But in reality, λN will be either
>A or<B when the likelihood ratio sequence {λN } first goes out of the continuation region
(B, A). Taking these inequalities as equalities amounts to an approximation in which excess
over the boundaries is neglected. Comparing (α,β) = (

α
(
A′, B′),β(A′, B′)) with

(
α∗,β∗),

we see
(i) A′α(A′, B′) + β(A′, B′) ≤ 1

(ii) α(A′, B′) + β(A′, B′)/B′ ≤ 1

}
⇐⇒ (1 − β∗)α + α∗β ≤ α∗

β∗α + (1 − α∗)β ≤ β∗
}

�⇒ α + β ≤ α∗ + β∗.

Hence at most one of the error probabilities α
(
A′, B′) or β

(
A′, B′) may exceed its intended

value α∗ or β∗ with the above choice of boundaries. Moreover, by (i), α ≤ 1/A′ =
α∗/

(
1 − β∗), so α−α∗ ≤ α∗/(1−β∗)−α∗ = α∗β∗/

(
1 − β∗), and by (ii), β ≤ B′ ≤ β∗/

(
1 − α∗),

so β − β∗ ≤ β∗/
(
1 − α∗)− β∗ = α∗β∗/

(
1 − α∗).

Summary. If for given α∗,β∗, we take A′ = (1 − β∗)/α∗ and B′ = β∗/
(
1 − α∗), then at

most one of α(A′, B′) or β
(
A′, B′)may exceed α∗ or β∗. If α(A′, B′) > α∗, then α(A′, B′) − α∗ ≤

α∗β∗/
(
1 − β∗) and if β

(
A′, B′) > β∗, then β(A′, B′) − β∗ ≤ α∗β∗/

(
1 − α∗). For example, if

α∗ = β∗ = 0.05, then α − α∗ and β − β∗ are both ≤ 0.002632 and at most one of them is
positive.

In what follows, we shall use the approximate formulas: A ≈ (1 − β)/α, B ≈ β/(1 − α),
α ≈ (1 − B)/(A − B), and β ≈ (A − 1)B/(A − B).

6.11.3 OC Function

We first prove two lemmas.
Lemma 6.11.1. Let M(t) be the mgf of an rv Z and let T = {t: M(t) < ∞}. Then T is an

interval containing 0 and M(k)(t0) = E[Zket0Z ] for all t0 lying in the interior of T.
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Proof. Since M(0) = 1, 0 ∈ T and by Hölder’s inequality, t1 and t2 in T implies λt1+
(1 − λ)t2 ∈ T for all 0 < λ < 1 . Next note that by Lebesgue Dominated Convergence,

d
dt

E[etZ ]|t=t0 = lim
δ→=0

(1/δ)E
[∫

e(t0+δ)zfZ (z) dz −
∫

et0zfZ (z) dz
]

=
∫

lim
δ→0

eδz − 1
δ

et0zfZ (z) dz =
∫

zet0zfZ (z) dz = E[Zet0Z ],

the dominating function being g such that |(eδz − 1)/δ| ≤ g(z) for all z and δ �= 0 and∫
g(z)et0z fZ (z) dz < ∞. Such a function exists, because for |δ| < ε,

|(eδz − 1)/δ| ≤
∞∑

j=1

|δ|j−1 |z|j/j! ≤
∞∑

j=1

εj−1|z|j/j! < eε|z|/ε = g(z), say

and

E
[
ε−1eε|Z|et0Z

]
≤ ε−1

{
E
[

e(t0+ε)Z
]

+ E
[

e(t0−ε)Z
]}
< ∞

if ε is such that t0 + ε and t0 − ε are both in T . The proof for the higher derivatives is by
induction.

Lemma 6.11.2. Suppose that Z satisfies the following conditions:

(a) E[Z] �= 0,
(b) M(t) = E

[
etZ
}
< ∞ for all t,

(c) P
[
eZ > 1 + δ

]
> 0 and P

[
eZ < 1 − δ

]
> 0 for some δ > 0 .

Then there exists a unique nonzero solution of the equation M(t) = 1 (ie, there is a unique
h �= 0 such that M(h) = 1).

Proof. By condition (b) and Lemma 6.11.1, M ′′(t) = E[Z2etZ ] > 0 , by condition (a).
Hence M is a strictly convex function. Now use condition (c) to see that: since M(t) ≥
(1 + δ)t P[eZ > 1 + δ] for t > 0, limt→∞ M(t) = ∞, and since M(t) ≥ (1 − δ)t P[eZ < 1 − δ] for
t < 0, limt→−∞ M(t) = ∞. Hence M(t) has a unique minimum at some t0. If t0 = 0, then
0 = M ′(0) = E[Z] would contradict condition (a). Thus M(t) has the following properties:

(i) M(0) = 1,
(ii) M(t) is strictly convex,
(iii) M(t) has a unique minimum at t0 �= 0.

From these properties it follows that there exists a unique minimum h �= 0 such that
M(h) = 1.

Now consider the OC function L(θ) = Pθ [Accept H0] of SPRT(A, B) for H0: θ = θ0

vs H1: θ = θ1, assuming that the distribution of Z = log
[
f (X , θ1)/f (X , θ0)

]
satisfies the

conditions of Lemma 6.11.2. Then we have the unique h(θ) �= 0 corresponding to θ , such
that
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1 = Eθ [eh(θ)Z ] = Eθ [{f (X , θ1)/f (X ; θ0)}h(θ)]
=
∫ {

f (X , θ1)/f (X ; θ0)
}h(θ)f (x, θ) dx

which makes

f ∗
1 (x) = f ∗(x, θ) = {f (X , θ1)/f (X ; θ0)}h(θ)f (x, θ)

a pdf. Now let f ∗
0 (x) = f (x, θ) and consider the SPRT

(
Ah(θ), Bh(θ)

)
for testing H∗

0 : X
pdf∼ f ∗

0 vs

H1: X
pdf∼ f ∗

1 . If h(θ) > 0, then

λ∗
n =

n∏
i=1

{f ∗
1 (xi)/f ∗

0 (xi)} =
⎡
⎣ n∏

i=1

{f (xi, θ1)/f (xi, θ0)}
⎤
⎦

h(θ)

is ≤Bh(θ) or ≥Ah(θ) or inside
(

Bh(θ), Ah(θ)
)

according as λn = ∏n
i=1{f (xi, θ1)/f (xi, θ0) is ≤B or

≥A or inside (B, A). Hence

PH∗
0
[SPRT(Ah(θ), Bh(θ)) accepts H∗

0 ] = Pθ [SPRT(A, B) accepts H0] = L(θ).

Thus for h(θ) > 0, neglecting excess over boundaries,

L(θ) = 1 − α(Ah(θ), Bh(θ)) = 1 − (1 − Bh(θ))/(Ah(θ) − Bh(θ))

= (Ah(θ) − 1)/(Ah(θ) − Bh(θ)).

The same formula also holds for h(θ) < 0. To show this, consider the correspondence

between SPRT
(

Bh(θ), Ah(θ)
)

for testing H∗
0 vs H∗

1 and SPRT(A, B) for testing H0 vs H1.

6.11.4 ASN Function

Theorem 6.11.2 (Fundamental Identity of Sequential Analysis). Let Sn = ∑n
i=1 Zi and

suppose that Pθ [Zi = 0] < 1 and Pθ [|Zi| < ∞] = 1. Then Eθ [etSN M(t)−N ] = 1 for all t
at which M(t) < ∞, where N is the stopping sample size of SPRT(A, B).

Remark 6.11.2. For each n,

Eθ [etSn] = {E[etZ1 ]}n = M(t)n, so Eθ [etSn M(t)−n] = 1.

The fundamental identity asserts this fact also for the random stopping time N . We
shall see that the proof depends on two properties of N , namely, Pθ [N < ∞] = 1
(Theorem 6.11.1) and the fact that the event {N = n} depends only on Z1, . . . , Zn.

Remark 6.11.3. Note that Zi = ∞ if f (Xi, θ1) > 0 and f (Xi, θ0) = 0, and Zi = −∞ if
f (Xi, θ1) = 0 and f (Xi, θ0) > 0. If such Zi are replaced by log A − log B and −(log A − log B),
respectively, then the crossing behavior of each sample sequence remains unaltered. We
can, therefore, assume Pθ [|Zi| < ∞] = 1, without loss of generality.

Proof. (This proof is due to Bahadur [25].)
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Let T = {t: M(t) < ∞} and for each t ∈ T , define p(z|t) = etzM(t)−1fZ (z|θ), where fZ (z|θ)
is the pdf of Z = log

[
f (X , θ1)/f (X ; θ0)

]
induced by the distribution corresponding to f (x, θ).

Then ∫
p(z|t) dz = M(t)−1

∫
etz fZ (z|θ) dz = M(t)−1Eθ [etZ ] = 1,

showing that p(z|t) is a pdf for each t and p(z|0) = fZ (z|θ). Since Z is nondegenerate under
fZ (z|θ) by virtue of the condition Pθ [Z = 0] < 1, it now follows that Z is nondegenerate
under p(z|t) for all t ∈ T . Hence by Theorem 6.11.1, Pt [N < ∞] = 1 for all t ∈ T .

We now have, using the fact that the event {N = n} depends only on (Z1, . . . , Zn),

Eθ [etSN M(t)−N ] =
∞∑

n=1

E
[

etSN M(t)−N I(N = n)
]

=
∞∑

n=1

∫
N=n

n∏
i=1

[etzi M(t)−1fZ (zi|θ)] dz1 · · · dzn

=
∞∑

n=1

∫
N=n

n∏
i=1

p(zi|t) dz1 · · · dzn

=
∞∑

n=1

Pt [N = n] = Pt [N < ∞] = 1.

Remark 6.11.4. It can be shown that for t lying in the interior of T , differentiation can
be carried under the expectation any number of times in the fundamental identity.

Theorem 6.11.3. Assume Pθ [Zi = 0] < 1, Pθ [|Zi| < ∞] = 1 and that M(t) = Eθ [etZ ] < ∞
in a neighborhood of zero. Then

(a) Eθ [SN ] = μ(θ)Eθ (N),
(b) Eθ [{SN − Nμ(θ)}2] = σ 2(θ)Eθ (N),

where μ(θ) = Eθ [Z] and σ 2(θ) = Varθ (Z).
Proof. Differentiating the fundamental identity two times under the expectation sign,

we have

0 = d
dt

Eθ
[

etSN M(t)−N
]

t=0
= Eθ

[{
SN − N

M ′(t)
M(t)

}
etSN−N log M(t)

]
t=0

= Eθ [SN − NEθ (Z)] = Eθ [SN ] − μ(θ)Eθ [N], and

0 = d2

dt2
Eθ
[

etSN M(t)−N
]

t=0

= Eθ

[{(
SN − N

M ′(t)
M(t)

)2
− N

M(t)M ′′(t) − M ′(t)2

M(t)2

}
etSN−N log M(t)

]
t=0

= Eθ
[[

{SN − NEθ (Z)}2
]

− NVarθ (Z)
]

= Eθ [{SN − Nμ(θ)}2] − σ 2(θ)Eθ [N].
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The ASN function is now seen to be

Eθ [N] = Eθ [SN ]
Eθ [Z] ≈ L(θ) log B + {1 − L(θ)} log A

Eθ [Z] , if Eθ [Z] �= 0,

where the approximation is obtained by neglecting excess over boundaries at the stopping
time. Finally we state the Optimally Property of SPRT without proof.

Among all sequential tests with Type I and Type II error probabilities not exceeding the
corresponding error probabilities of SPRT(A, B), the ASN function of SPRT(A, B) has the
smallest values at θ0 and at θ1.

Example 6.11.1. Suppose X1, X2, . . . are iid N
(
θ , σ 2

)
; H0: θ = θ0 and H1: θ = θ1 > θ0.

Then

Zi = log
[
f (Xi, θ1)/f

(
Xi; θ0

)] = θ1 − θ0

σ 2
Xi − θ2

1 − θ2
0

2σ 2
.

At the nth stage,

accept H0 if
n∑

i=1

Xi ≤ σ 2

θ1 − θ0
log B + θ0 + θ1

2
n,

accept H1 if
n∑

i=1

Xi ≥ σ 2

θ1 − θ0
log A + θ0 + θ1

2
n,

and continue sampling if
∑n

i=1 Xi lies within these boundaries. Here, for θ �= (θ0 + θ1)/2,

Eθ [Zi] �= 0, h(θ) = (θ1 + θ0 − 2θ)/(θ1 − θ0) �= 0,

L(θ) = A(θ1+θ0−2θ)/(θ1−θ0) − 1

A(θ1+θ0−2θ)/(θ1−θ0) − B(θ1+θ0−2θ)/(θ1−θ0)
,

whereas, by L’Hôspital’s rule, L
(
(θ0 + θ1)/2

) = log A/(log A − log B).
Example 6.11.2. Suppose X1, X2, . . . are iid taking values 0 and 1 with probabilities θ

and 1 − θ , respectively; H0: θ = θ0 and H1: θ = θ1 > θ0. Using the notations r1 = θ1/θ0 and
r2 = (1 − θ1)/(1 − θ0), we have

Zi = Xi log
[
r1/r2

]+ log r2.

At the nth stage of sampling, accept H0 if
∑n

i=1 Xi ≤ c0 log B + c1n, accept H1 if
∑n

i=1 Xi ≥
c0 log A + c1n and continue sampling if

∑n
i=1 Xi lies within these boundaries, where c0 and

c1 are easily determined. Here

Eθ [Zi] �= 0 for θ �= − log r2/ log
[
r1/r2

]
;

Eθ [ehZi ] = θrh
1 + (1 − θ)rh

2 = 1 for θ = 1 − rh
2

rh
1 − rh

2

.

Plot (θ , L(θ)) =
(

1−rh
2

rh
1 −rh

2
, Ah−1

Ah−Bh

)
, using h as a parameter to obtain the OC-curve.
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6.12 Confidence Sets
Let {Pθ : θ ∈ Ω} be a family of probability distributions on (X ,A) and let X be an observable
rv whose distribution belongs to this family. Let C be a mapping from X into the class of
all subsets of Ω , that is, for each x ∈ X , C(x) ⊂ Ω . We call C measurable if for each θ ∈ Ω ,
{x: θ ∈ C(x)} ∈ A. [If C is measurable, then “C(X) covers θ” is an event for each θ ∈ Ω , so
Pθ [C(X) covers θ ] = Pθ [θ ∈ C(X)] is defined.]

A measurable C is said to be a confidence set with confidence coefficient 1 − α if

Pθ [θ ∈ C(X)] = Pθ [{x: θ ∈ C(x)}] ≥ 1 − α for all θ ∈ Ω ,

that is, C(X) covers the true value of θ with a probability of at least 1 − α.
In particular, if θ is real and if C is such that C(x) = [θ(x), ∞) or C(x) = (−∞, θ(x)] for

each x, then θ(x) and θ(x) are called lower and upper confidence bounds, respectively, for θ
with confidence coefficient 1 − α and we write: Pθ [θ ∈ C(X)] = Pθ [θ ≥ θ(X)] ≥ 1 − α for all
θ ∈ Ω , or Pθ [θ ∈ C(X)] = Pθ [θ ≤ θ(X)] ≥ 1 − α for all θ ∈ Ω .

A lower confidence bound θ(X) is said to be uniformly most accurate (UMA) with
confidence coefficient 1 − α if

(i) Pθ [θ ≥ θ(X)] ≥ 1 − α for all θ ∈ Ω , and
(ii) Pθ [θ ≥ T(X)] ≥ 1 − α for all θ ∈ Ω implies Pθ [θ ′ ≥ θ(X)] ≤ Pθ [θ ′ ≥ T(X)] for all θ ′ < θ ,

that is, among all lower confidence bounds with confidence coefficient 1 − α, [θ(X), ∞)
includes θ ′ < θ with smallest probability.

UMA upper confidence bounds analogously includes θ ′ > θ with smallest probability
among all upper confidence bounds with the same confidence coefficient.

A systematic theory of confidence sets was introduced by Neyman [26]. We now discuss
two methods for constructing confidence sets. Of these, the first is based on the concept of
pivotal functions and the second uses a duality between acceptance regions of level α tests
and confidence sets with confidence coefficient 1 − α.

6.12.1 Methods Based on Pivotal Functions

Definition 6.12.1. A known function T : X ×Ω → R is a pivot if the distribution of T(X , θ)
does not depend on θ (ie, for every a ∈ R, Pθ [T(X , θ) ≤ a] is the same for all θ ∈ Ω).

If T(X , θ) is a pivot, then its distribution is known. This allows us to find c1 < c2 for a
given α ∈ (0, 1) so that Pθ [c1 ≤ T(X , θ) ≤ c2] ≥ 1 − α for all θ .

Now define C(x) = {θ ∈ Ω : c1 ≤ T(x, θ) ≤ c2}. Then C is a confidence set for θ with
confidence coefficient 1 − α, because θ ∈ C(x) ⇐⇒ c1 ≤ T(x, θ) ≤ c2, and therefore,

Pθ [θ ∈ C(X)] = Pθ [c1 ≤ T(X , θ) ≤ c2] ≥ 1 − α for all θ .

For real-valued θ , if T(x, θ) is monotone in θ for each fixed x, then C(x) = {θ : c1 ≤ T(x, θ) ≤
c2} is an interval of the form [θ(X), θ(X)].

Remark 6.12.1. So far we have considered single-parameter families of probabilities.
If the probabilities depend on other nuisance parameters τ in addition to θ , then C is a
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confidence set for θ with confidence coefficient 1 − α if Pθ ,τ [θ ∈ C(X)] ≥ 1 − α for all
(θ , τ ) ∈ Ω .

In such cases, a pivot T(x, θ) should depend on θ , but not on τ and its distribution must
be the same for all (θ , τ ) ∈ Ω . Then we can find c1 < c2 so that Pθ ,τ [c1 ≤ T(X , θ) ≤ c2] ≥
1 − α for all (θ , τ ) ∈ Ω , from which C(x) constructed as above is a confidence set with
confidence coefficient 1 − α.

Remark 6.12.2. If T1, . . . , Tk are pivots which are independent under each Pθ in the
family {Pθ : θ ∈ Ω}, then any function g

(
T1, . . . , Tk

)
is also a pivot.

Example 6.12.1 (Location-Scale Family). Let X = (X1, . . . , Xn) be a random sample from
σ−1f

(
σ−1(x − μ)

)
where μ ∈ R, σ > 0 and f is a known pdf.

(a) If σ is known and θ = μ is the parameter of interest, then Xi − μ, i = 1, . . . , n are
pivots. So X̄ − μ is also a pivot, from which a confidence interval for μ is obtained as:

C(X ) = {μ: c1 ≤ X̄ − μ ≤ c2} = {μ: X̄ − c2 ≤ μ ≤ X̄ − c1}
= [X̄ − c2, X̄ − c1].

(b) If μ is known and θ = σ is the parameter of interest, then (Xi − μ)/σ , i = 1, . . . , n are
pivots and many other pivots can be constructed as functions of these. In particular,
S/σ is a pivot where S2 = (n − 1)−1∑n

i=1(Xi − X̄)2 is the sample variance. Now a
confidence interval for σ is obtained as:

C(X ) = {σ : c1 ≤ S/σ ≤ c2} = {σ : S/c2 ≤ σ ≤ S/c1} = [S/c2, S/c1].
Here S/σ is still a pivot if μ is unknown and the above confidence interval for σ is still
valid.

(c) If θ = μ is the parameter of interest and σ is also unknown, then t(X ) = √
n(X̄ − μ)/S,

which is called the Studentized Version of
√

n(X̄ − μ)/σ , is a pivot, from which a
confidence interval for μ is obtained as

C(X ) = {μ: c1 ≤ √
n(X̄ − μ)/S ≤ c2}

= {μ: X̄ − c2S/
√

n ≤ μ ≤ X̄ − c1S/
√

n}
= [X̄ − c2S/

√
n, X̄ − c1S/

√
n].

When f is symmetric about 0, one may take c1 = −c2 = −c and C(X) is then of the
form [X̄ − cS/

√
n, X̄ + cS/

√
n].

Example 6.12.2 (Ratio of Means in Bivariate Normal (Feller’s Theorem)). Let X =
{(X11, X12), . . . , (Xn1, Xn2)} be a random sample N2(μ, Σ), where μT = (μ1,μ2) and Σ =[
σ 2

1 σ12

σ12 σ 2
2

]
. The parameter of interest is θ = μ2/μ1, μ1 �= 0. Let Yi(θ) = Xi2 − θXi1.

Then Yi(θ), i = 1, . . . , n, are iid N
(
0, σ 2

2 − 2θσ12 + θ2σ 2
1

)
, The “sample mean” and “sample

variance” of Y1(θ), . . . , Yn(θ) are Ȳ (θ) = X̄2 − θ X̄1 and

S2(θ) = (n − 1)−1
n∑

i=1

(Yi(θ) − Ȳ (θ))2 = S2
2 − 2θS12 + θ2S2

1,
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where S2
1, S2

2, and S12 are the sample estimates of σ 2
1 , σ 2

2 , and σ12, respectively. Hence√
nȲ (θ)/S(θ) ∼ tn−1 and is therefore a pivot and a confidence set for θ is C(X ) =

{θ : nȲ (θ)2 /S2(θ) ≤ t2
n−1,α/2}. The actual determination of C(X ) depends on a quadratic

equation in θ .

6.12.2 Inverting Acceptance Regions of Tests

This method is based on a duality between hypothesis testing and confidence sets.
Theorem 6.12.1. For each θ ′, let H0(θ ′): θ = θ ′ ∈ Ω and H1(θ ′): θ ∈ Ω1

(
θ ′) where

Ω1(θ ′) ⊂ Ω − {θ ′}. Then the following hold:

(a) If for each θ ′ ∈ Ω , A
(
θ ′) is the acceptance region of a test for H0

(
θ ′) at level α, then

C(x) = {θ : x ∈ A(θ)} is a confidence set for θ with confidence coefficient 1 − α.
(b) If for each θ ′ ∈ Ω , A

(
θ ′) is the acceptance region of a UMP test for H0

(
θ ′) vs H1

(
θ ′) at

level α, then among all confidence sets for θ with confidence coefficient 1 − α, C(x)
minimizes Pθ [θ ′ ∈ C(X)] for all θ ∈ Ω1

(
θ ′).

Proof. Part (a) follows easily since

Pθ [θ ∈ C(X)] = Pθ [X ∈ A(θ)] ≥ 1 − α for all θ ∈ Ω .

Now suppose that C1(·) is also confidence set for θ with confidence coefficient 1 − α, and
let A1(θ) = {x: θ ∈ C1(x)}. Then for each θ ∈ Ω , A1(θ) is the acceptance region of a level α
test for H0(θ), because

Pθ [X ∈ A1(θ)] = Pθ [θ ∈ C1(X)] ≥ 1 − α for all θ .

Now,

Pθ [θ ′ ∈ C(X)] = Pθ [X ∈ A(θ ′)] = Type II error of A(θ ′) at θ ,

Pθ [θ ′ ∈ C1(X)] = Pθ [X ∈ A1(θ ′)] = Type II error of A1(θ ′) at θ .

Since A
(
θ ′) is the acceptance region of a UMP test for H0

(
θ ′): θ = θ ′ ∈ Ω vs H1

(
θ ′): θ ∈

Ω1
(
θ ′), it follows that for all θ ∈ Ω1

(
θ ′),

Pθ
[
θ ′ ∈ C(X)

] ≤ Pθ
[
θ ′ ∈ C1(X)

]
,

and this proves part (b).
Corollary. If {Pθ } is an MLR family in T(x) and if Fθ is the continuous cdf of T under

Pθ , then the UMA lower confidence bound for θ with confidence coefficient 1 − α is given by
θ(x) = θ∗(x) where θ∗(x) is the unique solution (in θ) of the equation Fθ (T(x)) = 1 − α.

Proof. For each θ ′, the UMP level α test for H0(θ ′): θ = θ ′ ∈ Ω vs H1(θ ′): θ > θ ′ has
acceptance region A(θ ′) = {x: T(x) ≤ k(θ ′)} by the MLR property, where

Pθ ′ [T(X) ≤ k(θ ′)] = Fθ ′(k(θ ′)) = 1 − α.

This defines a function k(·) by the equation Fθ (k(θ)) = 1−α. The MLR property also implies
that for each k, Fθ (k) is a strictly decreasing function of θ , because Fθ (k) is the Type II
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error of an acceptance region {T ≤ k} for a left-sided null hypothesis against a right-sided
alternative. Hence for each k, the set {θ : Fθ (k) ≤ 1−α} is an interval

[
θ∗(k), ∞)

, where θ∗(k)
is the unique solution of the equation Fθ (k) = 1 − α. Now let

C(x) = {θ : x ∈ A(θ)} = {θ : T(x) ≤ k(θ)}
= {θ : Fθ (T(x)) ≤ Fθ (k(θ))} = {θ : Fθ (T(x)) ≤ 1 − α}.

Then C(x) = [
θ(x), ∞)

, where θ(x) is the unique solution of the equation Fθ (T(x)) = 1 − α.
By part (b) of the above theorem, it now follows that θ(x) is UMA lower confidence bound
for θ with confidence coefficient 1 − α.

Example 6.12.3. Let X = (X1, . . . , Xn) be random sample from Unif (0, θ) . We want to
construct a UMA confidence set for θ with confidence coefficient 1 − α.

Solution. We know that the acceptance region of the UMP level α test for H0: θ = θ0 vs
H1(θ): θ �= θ0 is

A(θ0) = {x: θ0α
1/n ≤ xn:n ≤ θ0},

where xn:n = max(x1, . . . , xn).
Now

x ∈ A(θ) ⇐⇒ θα1/n ≤ xn:n ≤ θ ⇐⇒ xn:n ≤ θ ≤ α−1/nxn:n.

It therefore follows from the above theorem that C(x) = [xn:n,α−1/nxn:n] is the UMA
confidence interval for θ with confidence coefficient 1 − α.

We now consider the construction of confidence sets for one parameter when there are
other nuisance parameters.

Suppose that the distribution of X belongs to the family {Pθ ,τ } where θ is real. A
confidence set for θ with confidence coefficient 1 − α must satisfy: Pθ ,τ [θ ∈ C(X)] ≥ 1 − α

for all θ and τ .
Definition 6.12.2.

(i) An unbiased lower (or upper) confidence bound θ(x) (or θ(x)) for θ with confidence
coefficient 1 − α must satisfy:
Pθ ,τ [θ ≥ θ(X)] ≥ 1 − α for all θ , τ and
Pθ ,τ [θ ′ ≥ θ(X)] ≤ 1 − α for all θ ′ < θ and τ ,
Pθ ,τ [θ ≤ θ(X)] ≥ 1 − α for all θ , τ and
Pθ ,τ [θ ′ ≤ θ(X)] ≤ 1 − α for all θ ′ > θ and τ .

(ii) An unbiased confidence interval [θ(X), θ(X)] for θ with confidence coefficient 1 − α

must satisfy:
Pθ ,τ [θ(X) ≤ θ ≤ θ(X)] ≥ 1 − α for all θ , τ and
Pθ ,τ [θ(X) ≤ θ ′ ≤ θ(X)] ≤ 1 − α for all θ ′ �= θ and τ .
Subject to these conditions, we minimize
Pθ ,τ [θ ′ ≥ θ(X)] for all θ ′ < θ and τ , or
Pθ ,τ [θ ′ ≤ θ(X)] for all θ ′ > θ and τ , or
Pθ ,τ [θ(X) ≤ θ ′ ≤ θ(X)] for all θ ′ �= θ and τ ,
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for a UMA unbiased lower confidence bound, or a UMA unbiased upper confidence
bound, or a UMA unbiased confidence interval, respectively, for θ with confidence
coefficient 1 − α.

Theorem 6.12.2. If for each θ ′, A
(
θ ′) is the acceptance region of a UMP unbiased level α

test for H0: θ = θ ′ vs H1: θ �= θ ′, then C(x) = {θ : x ∈ A(θ)} is a UMA unbiased confidence
interval for θ with confidence coefficient 1 − α.
[Analogous correspondence holds between acceptance regions of UMP unbiased level α
tests for H0: θ ≤ θ ′ vs H1: θ > θ ′ and UMA unbiased lower confidence bounds with
confidence coefficient 1 − α, and similarly for UMA unbiased upper confidence bounds.]

Example 6.12.4. Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn) be independent random
samples from N

(
μ1, σ 2

)
and N

(
μ1, σ 2

)
, respectively, where μ1,μ2, σ 2 are all unknown. We

want to construct a UMA unbiased confidence interval for θ = μ1 − μ2 with confidence
coefficient 1 − α.

Solution. Using the notations of Example 6.9.8 in Section 6.9, note that the acceptance
region of the UMP unbiased level α test for H0: θ = θ0 vs H1: θ �= θ0 is

A(θ0) =
{

(x, y):

∣∣∣∣ (x̄ − ȳ) − θ0

SE

∣∣∣∣ ≤ tm+n−2,α/2

}
,

where SE = SE(X̄ − Ȳ ) = s
√

1/m + 1/n. Since (x, y) ∈ A(θ0) is equivalent to

(x̄ − ȳ) − tm+n−2,α/2SE ≤ θ0 ≤ (x̄ − ȳ) + tm+n−2,α/2SE,

the UMA unbiased confidence interval for θ with confidence coefficient 1 − α is

C(x, y) = [
(x̄ − ȳ) − tm+n−2,α/2SE, (x̄ − ȳ) + tm+n−2,α/2SE

]
.

Exercises
6.1. Let f (x, θ) = ∏n

i=1[c(θ)h(xi)I(−∞,θ)(xi)] and define xn:n = max (x1, . . . , xn).
(a) Show that {f (x, θ): θ ∈ R} is an MLR family.
(b) Express the joint pdf of a random sample X = (X1, . . . , Xn) from Unif (0, θ) as a

special case of this family.
(c) Show that the test

φ(x) =
{

1 if xn:n > θ0
0 if xn:n ≤ θ0

is a UMP level α test for H0: θ ≤ θ0 vs H1: θ > θ0, but that φ is inadmissible
under the 0 − 1 loss function (ie, there exists a test ψ whose risk function under
the 0 − 1 loss function satisfies R(θ ,ψ) ≤ R(θ ,φ) for all θ), with strict inequality
holding for some θ .

(d) Show that

φ(x) =
{

1 if xn:n > θ0 or xn:n ≤ b
0 if b < xn:n ≤ θ0,

where b = θ0α
1/n is a UMP level α test for H0: θ = θ0 vs H1: θ �= θ0.
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6.2. Let X be the number of successes in n independent trials with P[success] = θ . Let
φ(x) be the UMP level α test for H0: θ ≤ θ0 vs H1: θ > θ0.
(a) For n = 6, θ0 = 0.25 and α = 0.05, 0.10, 0.20, find c and γ for φ and find the

powers of these tests at θ = 0.40.
(b) Use normal approximation in order to find the smallest n required for the UMP

test at level α = 0.05 for H0: θ ≤ 0.25 vs H1: θ > 0.25 to attain power
β(0.4) = 0.90.

6.3. Let X1, . . . , Xn be a random sample from an exponential distribution with mean θ .
(a) For n = 5, find the UMP test for H0: θ ≤ 1 vs H1: θ > 1 at level α = 0.1. [The

exponential rv with mean 2 is the same as a χ2 with 2 df.]
(b) For the test obtained in part (a), calculate the power β(2) at θ = 2.
(c) Find the smallest n so that the UMP test at level α = 0.1 has β(2) = 0.8.
[For parts (b) and (c), use integration by parts to show that∫∞

c xn exp(−x) dx/n! = P[W ≤ n], where W ∼ Poi(c).]
6.4. A box contains N manufactured items of which an unknown number θ are

defective and the other N − θ are good. Let X denote the number of defective items
in a random sample of n items drawn without replacement from the box. Then X
has pmf

f (x, θ) = Pθ [X = x] =
(
θ

x

)(
N − θ

n − x

)/(
N
n

)
, x = max(0, n + θ − N), . . . , min(n, θ).

(a) Show that {f (x, θ): θ = 0, 1, . . . , N} is an MLR family. [For θ1 < θ2, write
f (x, θ2)/f (x, θ1) = ∏θ2−1

j=θ1
{f (x, j + 1)/f (x, j)} and examine how f (x, j + 1)/f (x, j)

changes with x.]
(b) For a specified integer θ0, write down the UMP test at a given level α for

H0: θ ≤ θ0 vs H1: θ > θ0 . Explain how the constants involved in the UMP test
are determined.

6.5. Let X1, . . . , Xn be a random sample from Unif (θ , θ + 1).
(a) Show that (T1, T2) = (Xn:1, Xn:n) are jointly sufficient for θ and find the joint

distribution of (T1, T2).
(b) Show that the UMP test at level α for H0: θ ≤ 0 vs H1: θ > 0 is of the form

φ(t1, t2) =
{

0 if t1 < k and t2 < 1
1 otherwise

, where k = 1 − α1/n.

6.6. Let P0 and P1 be two probability distributions with pdf’s p0 and p1, respectively.
Suppose that under P0, the likelihood ratio T = p1(X)/p0(X) has a pdf which is
everywhere positive. For 0 < α < 1, let {x: T(x) ≥ k(α)} denote the critical region of
an N-P test of size α for H0: P = P0 vs H1: P = P1 and let β(α) = P1[T ≥ k(α)]. Show
that β ′(α) = k(α).

6.7. Suppose P0 �= P1 are probabilities on (X ,A) and X1, . . . , Xn are independent
samples from (X ,A, P) where P is either P0 or P1. We want to test H0: P = P0 vs
H1: P = P1. Show that there exists a sequence of tests {φn}, each based on
(X1, . . . , Xn) such that
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lim
n→∞ EP0 [φn(X1, . . . , Xn)] = 0 and lim

n→∞ EP1 [φn(X1, . . . , Xn)) = 1,

that is, the Type I error probability converges to zero and the power converges to 1.
[Hint: Let pi denote the pdf/pmf corresponding to Pi, i = 0, 1. Then for any α, the
MP test at level α for H0 vs H1 based on (X1, . . . , Xn) is roughly (except for
discreteness) of the form:

φn(X1, . . . , Xn) = I[kn,∞)

⎡
⎣n−1

n∑
i=1

log(p1(Xi)/p0(Xi))

⎤
⎦,

where kn is chosen according to α. Let

mi = EPi [log(p1(Xi)/p0(Xi))], i = 0, 1.

Use Jensen’s inequality to show that m0 < 0 < m1, choose kn = (m0 + m1)/2 in the
definition of φn. Now use the SLLN.]

6.8. Let X ∼ Bin(n, p) with n = 10 and p unknown. Find the UMP unbiased tests at level
α = 0.10 for
(a) H0: p = 0.2 vs H1: p �= 0.2, (b) H0: p = 0.5 vs H1: p �= 0.5, (c) H0: 0.4 ≤ p ≤ 0.6 vs

H1: p /∈ [0.4, 0.6].
6.9. Let X and Y be independent Poisson rv’s with means λ and μ, respectively.

Construct UMP unbiased tests at level α = 0.1 over the set {(x, y): x + y = 8} for
(a) H0: λ ≤ μ vs H1: λ > μ, (b) H0: λ = μ vs H1: λ �= μ.

6.10. Let X1, . . . , Xn be a random sample from an exponential distribution with mean θ .
Find the UMP unbiased level α test for H0: θ = 2 vs H1: θ �= 2.

6.11. Let X be a random sample of size 1 from the beta distribution Be(θ , 1) with the pdf
f (x, θ) = θxθ−1, 0 < x < 1. Find the UMP unbiased test at level α = 0.1 for H0: θ = 1
vs H1: θ �= 1 and determine the critical value.

6.12. Use Basu’s Theorem to show the following:

(a) If X1, . . . , Xn is a random sample from N
(
0, σ 2

)
, then

∑
Xi/

√∑
X 2

i and
∑

X 2
i are

independent.
(b) If (X1, Y1), . . . , (Xn, Yn) are iid N2(μ, Σ), where μ = (μ1,μ2) and Σ is a diagonal

matrix with diagonal entries σ 2
1 and σ 2

2 , then
∑

(Xi − X̄n)2,
∑

(Yi − Ȳn)2 and the
sample correlation r are mutually independent.

6.13. Let X = (X1, . . . , Xn) be a random sample from Unif (θ1, θ2). Sufficient statistic for
(θ1, θ2) in X is (T1, T2) = (Xn:1, Xn:n).
(a) Show that T1 given T2 = t2 is distributed as Un−1:1 where

(
U1, . . . , Un−1

)
is a

random sample from Unif (θ1, t2).
(b) Construct a UMP level α test for H0: θ1 ≤ 0 vs H1: θ1 > 0 conditionally, given

T2 = t2. Call this test φt2 (t1).
(c) Show that φ(t1, t2) = φt2 (t1) is unconditionally a UMP level α test for H0 vs H1.

6.14. Let X and Y be two independent exponential random variables with means 1/λ and
1/μ, respectively. Find UMP unbiased tests at level α = 0.2 for
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(a) H0: λ ≤ μ+ 1 vs H1: λ > μ+ 1, (b) H0: λ = μ vs H1: λ �= μ, (c) H0: λ ≥ 2μ vs
H1: λ < 2μ.

6.15. Let X1, X2 be independent rv’s with pmf’s

fXi (x, θi) = θi(1 − θi)x−1, x = 1, 2, . . . , where 0 < θi < 1.

Find UMP unbiased tests at level α = 0.2 for
(a) H0: θ1 ≤ θ2 vs H1: θ1 > θ2, (b) H0: θ1 = θ2 vs H1: θ1 �= θ2.

6.16. Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn) be independent samples from
N
(
μ1, σ 2

1 = 1
)

and N
(
μ2, σ 2

2 = 2
)
, respectively. We want to test H0: μ1 ≤ μ2 vs

H1: μ1 > μ2. Derive the UMP unbiased level α test for H0 vs H1 by first expressing it
in a conditional form (in terms of appropriate sufficient statistics), and then
unconditionally in terms of X̄m − Ȳn.

6.17. Let (X1, Y1), . . . , (Xn, Yn) be a random sample from a bivariate normal distribution
with E[X1] = E[Y1] = μ, Var[X1] = Var[Y1] = σ 2 and Cov[X1, Y1] = σ 2/2, with μ and
σ 2 unknown. Find the UMP unbiased level α test for H0: μ = 0 vs H1: μ �= 0.
[Transform: Ui = (Xi + Yi)/

√
3 and Vi = Xi − Yi.]

6.18. Let X1, X2, . . . be sequentially observed independent samples from a normal
distribution with unknown mean θ and known SD σ = 5. We want to test H0: θ = 0
vs H1: θ = 2 at level α = 0.01, holding the probability of Type II error probability at
β = 0.05.
(a) Find the approximate values of A, B in SPRT(A, B) needed for this purpose and

describe the procedure in terms of cumulative sums
∑n

i=1 Xi, n = 1, 2, . . ..
(b) Evaluate the OC function L(θ) = Pθ [accept H0] for θ = 3.
(c) Evaluate the ASN function Eθ (N) for θ = 0 and θ = 2.
(d) Find the smallest sample size n(α,β) needed for a fixed sample size test with

α = 0.01 and β ≤ 0.05 in this problem, and compare n(α,β) with the numbers
obtained in (c).

6.19. Do problem 18 when the Xi’s are sequentially observed independent samples from
(i) Exponential distribution with mean θ ,
(ii) Poisson distribution with mean θ , and we want to test H0: θ = 1 vs H1: θ = 2 at

level α = 0.05, holding β = 0.10.
6.20. Let X1, . . . , X10 be a random sample from an exponential distribution with mean θ .

Find the UMA lower confidence bound for θ with confidence coefficient
1 − α = 0.95 based on (X1, . . . , X10), using the table for the χ2-distribution.

6.21. Let X1, . . . , Xn be iid following the Weibull distribution with the pdf

f (x,λ) = λcxc−1 exp(−λxc), x > 0,

where c is known but λ is unknown. Show that the UMA upper confidence bound
for θ = 1/λwith confidence coefficient 1 − α is given by θ̄ = 2

∑
X c

i /χ
2
2n(α) where

P[χ2
2n ≤ χ2

2n(α)] = α. [Hint: Find the distribution of X c
i .]

6.22. Let X and Y be independent exponential random variables with means 1/λ and
1/μ, respectively. Construct a UMA unbiased confidence interval with confidence
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coefficient 1 − α for θ = λ/μ by inverting the acceptance regions of UMP unbiased
level α tests for H0: θ = θ0 vs H1: θ �= θ0, θ0 > 0.

6.23. Four independent experiments were carried out to test whether a new method of
irrigation would provide better yield of a certain crop. The data from all four
experiments were analyzed to test the same hypothesis H0 that the new method is
no better than the old vs the alternative H1 that the new method is better. The
results of these experiments are summarized by four t-statistics given below with
their respective df’s

t1 = 1.50, df = 10; t2 = 2.15, df = 16; t3 = 1.80, df = 19; t4 = 1.30, df = 25.

(a) Calculate the p-values of the four statistics
(b) Calculate the Pλ-statistic combining the results of all four experiments.
(c) Comment.



7
Methods Based on Likelihood and
Their Asymptotic properties

7.1 Asymptotic Properties of the MLEs: Consistency
and Asymptotic Normality

On a historical note, the maximum likelihood estimators (MLEs) were introduced by
R.A. Fisher in early 1920s, which he claimed to be “better” than the method of moments
estimators used widely, especially by K. Pearson. To justify the superiority of the MLEs,
Fisher used the concepts of consistency (converging to the true parameter in probability),
sufficiency (capturing everything relevant in the sample), and efficiency (attaining the
smallest possible variance among all unbiased estimators, which led to the definition of
Fisher-information). This led to the foundation of the theory of statistical inference in the
area of estimation. Asymptotic properties of the MLEs will be discussed in this section.

Let X1, . . . , Xn, . . . be iid with pdf/pmf f (x; θ0) in the family {f (x; θ): θ ∈ Θ}, where θ0,
the unknown value of the parameter is an interior point of Θ. All probability statements

(including
P→,

L→, oP, OP) and all expectations, variances, and covariances are with respect
to f (, θ0), unless stated otherwise. We assume throughout that the family {f (x, θ): θ ∈ Θ}
satisfies the identifiably condition introduced in Section 5.5.1.

The MLE of θ0 based on (X1, . . . , Xn) is denoted by

θ̂n = arg max
t∈Θ

n∏
i=1

f
(
Xi, t

) = arg max
t∈Θ

n∑
i=1

l
(
Xi, t

)
, (1)

where l(x, t) = log f (x, t).

Using the notations of Section 5.2.1, we write log f (x, t) = l(x, t) as in the above paragraph
and also

∂f (x, θ)
∂θ

= ḟ (x, θ),
∂2f (x, θ)

∂θ2
= f̈ (x, θ),

∂l(x, θ)
∂θ

= l̇(x, θ) and
∂2l(x, θ)

∂θ2
= l̈(x, θ) (2a)

in the single-parameter case when Θ ⊂ R and

Theory and Methods of Statistics. http://dx.doi.org/10.1016/B978-0-12-802440-9.00007-2
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∂f (x, θ)
∂θr

= ḟr(x, θ),
∂2f (x, θ)
∂θr∂θs

= f̈rs(x, θ),

∂l(x, θ)
∂θr

= l̇r(x, θ) and
∂2l(x, θ)
∂θr∂θs

= l̈rs(x, θ) (2b)

in the multiparameter case when Θ ⊂ R
k.

The following conditions were essentially introduced by Cramér [18, p. 500–501].
Regularity conditions (Cramér): single-parameter case.
In the notations of Eqs. (2a) and (2b):

1. ḟ (x, t), f̈ (x, t) exist for all (x, t) and there exists a nonnegative function g(x) with∫
g < ∞ such that |ḟ (x, t)| and |f̈ (x, t)| are bounded above by g(x) for all (x, t).

2. There exist nonnegative functions H(x, θ0) and φ(ε) such that

sup
|t−θ0|≤ε

|l̈(x, t) − l̈(x, θ0)| ≤ H(x, θ0)φ(ε),

where limε→0 φ(ε) = 0 and E[H(X , θ0)] < ∞.
3. 0 < −E[̈l(X , θ0)] = I(θ0) < ∞.

By dominated convergence, Condition 1 allows differentiation of
∫

f (x, θ) dx twice with
respect to θ under the integral. Since

∫
f (x, θ) = 1 for all θ , we have

0 = d
dθ

∫
f (x, θ) dx

∣∣
θ=θ0 =

∫
ḟ (x, θ0) dx

=
∫

l̇(x, θ0)f (x, θ0) dx = E[̇l(X , θ0)], and

0 = d2

dθ2

∫
f (x, θ) dx

∣∣
θ=θ0 =

∫
f̈ (x, θ0) dx

= E[̈l(X , θ0)] + E[{̇l(X , θ0)}2].

Thus

E[̇l(X , θ0)] = 0 and I(θ0) = E[−l̈(X , θ0)] = Var(̇l(X , θ0)). (3a)

Regularity conditions in the multiparameter case: Condition 1 should hold for ḟr(x, t) and
f̈rs(x, t) for all (x, t) and for all r and s, Condition 2 should hold forl̈rs(x, t) for all r and s, and
in Condition 3 we need all elements of the information matrix I(θ0) = ((Irs(θ0))) to exist and
I(θ0) to be positive definite.

By the same argument as in the single-parameter case, it follows from Condition 1 by
dominated convergence, that

E[̇lr(X , θ0)] = 0 and

Irs(θ0) = E[−l̈rs(X , θ0)] = Cov(̇lr(X , θ0),l̇s(X , θ0)) (3b)

for all r and s.
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Theorem 7.1.1. Under regularity Condition 1, the MLE θ̂n is consistent (ie, θ̂n
P→ θ0 as

n → ∞).
Proof. As shown in Section 5.5.1, the identifiably condition implies that E [l(X , t)] has a

unique maximum at t = θ0. In the single-parameter case, we therefore have for any δ > 0

E[l(X , θ0)] > max{E[l(X , θ0 − δ)], E[l(X , θ0 + δ)]}.

Hence for a given δ > 0, there exists ε > 0 such that

E[l(X , θ0)] − E[l(X , t)] > 2ε for t = θ0 ± δ.

Since n−1∑ l(Xi, t)
P→ E[l(X , t)] for all t, it follows that

lim
n→∞ P

[
n−1

∑
l(Xi, θ0) − n−1

∑
l(Xi, t) > ε

]
= 1 for t = θ0 ± δ.

But l̇(x, t) exist in a neighborhood of θ0, so with probability tending to 1 as n → ∞, the
equation

gn(t) = n−1
n∑

i=1

l̇(Xi, t) = 0

has a solution in the intervals (θ0 − δ, θ0 + δ) for arbitrary δ > 0; that is, there is a sequence
of solutions {θ̂n} of the equation gn(t) = 0 needed for (1) converges to θ0 in probability as
n → ∞. The MLE is consistent in this sense.

In the multiparameter case, we modify the above proof by replacing θ0±δ with S(θ0, δ) =
{t: ‖t − θ0‖ ≤ δ} and argue in the same way, assuming that the regularity conditions hold.

Theorem 7.1.2 (Asymptotic Normality of MLEs: Single-Parameter Case). Under reg-

ularity Conditions 1, 2, 3, the MLE θ̂n is asymptotically normal (ie,
√

n(θ̂n − θ0)
L→

N(0, 1/I(θ0))).
Proof. Let {θ̂n} be the sequence described in the proof of Theorem 7.1.1 with θ̂n = θ0 +

oP(1) and
∑n

i=1 l̇(Xi, θ̂n) = 0. Then

0 = n−1/2
n∑

i=1

l̇(Xi, θ̂n) = n−1/2
n∑

i=1

l̇(Xi, θ0) + √
n(θ̂n − θ0)n−1

n∑
i=1

l̈
(

Xi , θ̃n

)
,

where θ̃n = θ0 + λ(θ̂n − θ0), 0 ≤ λ ≤ 1. Hence

√
n
(
θ̂n − θ0

)
= n−1/2 ∑n

i=1 l̇
(
Xi , θ0

)
−n−1 ∑n

i=1 l̈
(

Xi, θ̃n

)

= n−1/2 ∑n
i=1 l̇

(
Xi, θ0

)
−n−1 ∑n

i=1 l̈
(
Xi , θ0

)+ n−1∑n
i=1 Rn

(
Xi
) . (4)
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On the right-hand side of this expression, the numerator n−1/2∑n
i=1l̇(Xi, θ0)

L→ N((0, I(θ0))
since l̇(Xi, θ0), i = 1, 2, . . . are iid with mean 0 and variance I(θ0) by Eq. (3a), while in the
denominator,

− n−1
n∑

i=1

l̈(Xi , θ0)
P→ E[−l̈(X , θ0)] = I(θ0).

Finally,

|Rn(Xi)| = |̈l(Xi , θ0 + λ(θ̂n − θ0)) − l̈(Xi, θ0)|

≤ sup
|θ ′−θ0|≤|θ̂n−θ0|

|̈l(Xi , θ ′) − l̈(Xi, θ0)| ≤ ϕ(|θ̂n − θ0|)H(Xi , θ0),

by Condition 3, so ∣∣∣∣∣∣n−1
n∑

i=1

Rn(Xi)

∣∣∣∣∣∣ ≤ ϕ(|θ̂n − θ0|)n−1
n∑

i=1

H(Xi , θ0)

= oP(1){O(1) + oP(1)} = oP(1),

since |θ̂n − θ0| = oP(1) implies ϕ(|θ̂n − θ0|) = oP(1) and n−1∑n
i=1 H(Xi, θ0) = E[H(X , θ0)] +

oP(1) = O(1) + oP(1). Putting all this together in Eq. (4), we see that

√
n(θ̂n − θ0) = n−1/2 ∑n

i=1 l̇(Xi , θ0)

{I(θ0) + oP(1)} + oP(1)
L→ N(0, 1/I(θ0)).

Suppose a sequence of unbiased estimators T∗
n = T∗

n(X1, . . . , Xn) of θ0 has Var[T∗
n] =

1/{nI(θ0)} which is the Cramér-Rao lower bound for unbiased estimators (under regularity
conditions). If for a sequence of unbiased estimators, we define

en(Tn) = C-R Lower Bound
Var[Tn] = 1/{nI(θ0)}

Var[Tn]
as the efficiency of Tn, then T∗

n described above has efficiency 1.
The large sample analog of this is to make comparison among all consistent estimators

in terms of their asymptotic variance. Since the MLE θ̂n has variance 1/{nI(θ0)} in an
asymptotic sense, we can say that the asymptotic efficiency of the MLE is 1, or simply that
the MLE is asymptotically efficient. However, the justification of the last statement needs
much deeper analysis as will be seen later.

Definition 7.1.1. Any estimator Tn with
√

n(Tn − θ0)
L→ N(0, 1/I(θ0)) is said to be a best

asymptotically normal (BAN) estimator. (This is because of asymptotic normality and the
property of asymptotic efficiency.)



Chapter 7 • Methods Based on Likelihood and Their Asymptotic properties 183

Finding a BAN Estimator by the Newton-Raphson Method

In some situations, the likelihood equation does not have a closed form solution, so we
cannot obtain the MLE θ̂n explicitly. However, in such a case, we can often find an estimator
which is consistent. Starting with such an estimator θ̃n0 = θ0 + oP(1) as an initial estimator
we can use the Newton-Raphson method. After one iteration, we have

θ̃n1 = θ̃n0 + n−1∑n
i=1 l̇(Xi, θ̃n0)

−n−1∑n
i=1 l̈(Xi, θ̃n0)

.

By argument given in the course of the proof of Theorem 7.1.2, it can be shown that if

Tn = θ0 +oP(1), then
∣∣∣n−1∑n

i=1l̈(Xi, Tn) − n−1∑n
i=1l̈(Xi, θ0)

∣∣∣ = oP(1). Since θ̃n0 = θ0 +oP(1),

we then have

0 = n−1
n∑

i=1

l̇(Xi, θ̂n) = n−1
n∑

i=1

l̇(Xi, θ̃n0) + (θ̂n − θ̃n0)n−1
n∑

i=1

l̈(Xi, θ̃n0)

+ oP(1)(θ̂n − θ̃n0),

so that

θ̂n = θ̃n0 + n−1∑n
i=1 l̇(Xi, θ̃n0)

−n−1∑n
i=1 l̈(Xi, θ̃n0)

+ oP(1)(θ̂n − θ̃n0) = θ̃n1 + oP(1)(θ̂n − θ̃n0).

Hence
√

n(θ̃n1 − θ0) = √
n(θ̂n − θ0) + oP(1)

√
n(θ̂n − θ̃n0) = √

n(θ̂n − θ0) + oP(1)

under additional condition that
√

n(θ̂n − θ̃n0) = OP(1) (ie, θ̃n0 − θ0 = OP(n−1/2)). In such a
case,

√
n(θ̃n1 − θ0) has the same asymptotic distribution as that of

√
n(θ̂n − θ0), so θ̃n1 is a

BAN estimator.
In the multiparameter case, θ0 and t are k-dim column vectors with θ0r and tr as their

rth coordinates, and

l̇(x, t)T = (̇l1(x, t), . . . ,l̇k(x, t)), l̈(x, t) = ((̈lrs(x, t))).

By regularity conditions, E[̇lr(X , θ0)] = 0 and

E[−l̈rs(X , θ0)] = Cov[̇lr(X , θ0),l̇s(X , θ0)] = Irs(θ0)

as shown in Eq. (3b). In matrix notation,

E[̇l(X , θ0)] = 0 and E[−((̈lrs(X , θ0)))] = ((Irs(θ0))) = I(θ0).

Let

Anr = n−1/2
n∑

i=1

l̇r(Xi, θ0) and AT
n = (An1, . . . , Ank).

Then An = n−1/2∑n
i=1 l̇(Xi, θ0)

L→ Nk(0, I(θ0)).
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Next let Bnrs(t) = −n−1∑n
i=1l̈rs(Xi, t). Then

Bn(t) = ((Bnrs(t))) = −n−1
n∑

i=1

((̈lrs(Xi, t)))
P→ −E[((̈lrs(X , t)))].

By Condition 2, arguing in the same manner as in the single-parameter case, we see that
T n = θ0 + oP(1) implies Bn(T n) = Bn(θ0) + oP(1). [For vectors and matrices, the oP(1) and
OP(1) notations apply to each coordinate of the vectors and each entry of the matrices.]

By WLLN, we now have Bn(T n) = I(θ0) + oP(1) if T n = θ0 + oP(1).
Theorem 7.1.3 (Asymptotic Normality of MLEs: Multiparameter Case). Under reg-

ularity Conditions 1, 2, 3, the MLE θ̂n is asymptotically normal (ie,
√

n(θ̂n − θ0)
L→

Nk(0, I(θ0)−1)).
Proof. The MLE θ̂n of θ0 is the solution of the k equations

n∑
i=1

l̇r(Xi, θ̂n) = 0, r = 1, . . . , k.

Expanding, as in the single-parameter case,

0 = n−1/2
n∑

i=1

l̇r(Xi , θ̂n)

= n−1/2
n∑

i=1

l̇r(Xi , θ0) + n−1/2
n∑

i=1

k∑
s=1

(θ̂ns − θ0s)l̈rs(Xi, θ0 + λ(θ̂n − θ0))

= n−1/2
n∑

i=1

l̇r(Xi , θ0)

−
k∑

s=1

n1/2(θ̂ns − θ0s)n−1
n∑

i=1

{−l̈rs(Xi, θ0 + λ(θ̂n − θ0))}

= Anr −
k∑

s=1

n1/2(θ̂ns − θ0s)Bnrs(θ0 + λ(θ̂n − θ0)), 0 ≤ λ ≤ 1,

ie,
k∑

s=1

n1/2(θ̂ns − θ0s)Bnrs(θ0 + λ(θ̂n − θ0)) = Anr , r = 1, . . . , k.

Putting these k equations together in matrix notation, we get

Bn(θ0 + λ(θ̂n − θ0))
√

n(θ̂n − θ0) = An, and hence
√

n(θ̂n − θ0) = Bn(θ0 + λ(θ̂n − θ0))−1An

= [I(θ0) + oP(1)]−1An
L→ I(θ0)−1W , where W ∼ Nk(0, I(θ0)).
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Now consider the situation where the likelihood equations do not have a closed
form solution. Here again, as in the single-parameter case, we use the Newton-Raphson
method, starting with an initial estimator θ̃n0 to calculate the next iterate θ̃n1 by the
formula

θ̃n1 = θ̃n0 + Bn(θ̃n0)−1n−1
n∑

i=1

l̇(Xi, θ̃n0).

If the initial estimator θ̃n0 is
√

n -consistent, then θ̃n1 would be a BAN estimator.
Remark 7.1.1. We have seen that under some regularity conditions on {f (x, θ), θ ∈ Θ},

the likelihood equation based on iid observations on f (x, θ0) has a consistent sequence of

solutions θ̃n of θ0 if θ0 is an interior point of Θ and for such a sequence,
√

n(θ̃n − θ0)
L→

N(0, 1/I(θ0)). However, these are local properties of the likelihood function, and such a
sequence of solutions of the likelihood equation need not be the sequence of actual MLEs.
On the other hand, globally, under another set of regularity conditions (due to Wald [27]),
the actual MLE θ̂n converges almost surely to θ0 (strong consistency). There is another
aspect of the results about θ̃n discussed above. Due to the fact that the asymptotic variance
of θ̃n is the same as the information lower bound of an unbiased estimator, some sort of

asymptotic efficiency is suggested. Is it true that if
√

n(Tn − θ0)
L→ N(0, V (θ0)) for some

estimator Tn, then V (θ0) ≥ 1/I(θ0)?
The following examples illustrate how each of these properties of the MLE can be

violated. In each of these examples, we describe f (x, θ) from which iid observations
X1, . . . , Xn yield θ̂n or θ̃n. Example 7.1.2(a) is of a different nature.

Example 7.1.1. MLE is not asymptotically normal. Let f (x, θ) = I(0,θ)(x). Here the MLE
θ̂n = Xn:n = max(X1, . . . , Xn) and

Pθ [n(θ − Xn:n) ≤ t]→1 − exp(−t/θ) as n → ∞.

(See Example 7.1.4)
Example 7.1.2 (MLE Is Not Consistent).

(a) Neyman and Scott [28]
Let (Xi, Yi), i = 1, 2, . . . be independent with (Xi, Yi) ∼ N2((μi, μi), σ 2I). The parameter
of interest is σ 2 which is to be estimated, while μ1, μ2 . . . are nuisance parameters.
The log likelihood based on (X1, Y1), . . . , (Xn, Yn) is

log L = − n[log 2π + log σ 2] − (2σ 2)−1
n∑

i=1

[(Xi − μi)2 + (Yi − μi)2]

= − n[log 2π + log σ 2] − (4σ 2)−1
n∑

i=1

[Z2
i + 4{(Xi + Yi)/2 − μi}2],
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where Zi = Xi − Yi. Obviously, the MLE for each μi is μ̂i = (Xi + Yi)/2 and it follows
that the MLE of σ 2 is σ̂ 2

n = (4n)−1∑n
i=1 Z2

i . Now the Zi’s are iid N(0, 2σ 2), so that

(2n)−1∑n
i=1 Z2

i is a consistent estimator of σ 2. Hence σ̂ 2
n

P→ σ 2/2.
(b) Basu [29]

Let A be the set of all rational numbers in [0, 1] and B any (known) countable set of
irrational numbers in [0, 1]. The iid observations (X1, . . . , Xn) are 0–1 valued rv’s which
are Bernoulli(θ) for θ ∈ A and Bernoulli(1 − θ) for θ ∈ B. We
therefore find

M1 = max
θ∈A

θ
∑

Xi (1 − θ)n−∑ Xi = max
θ∈A

L(θ) and

M2 = max
θ∈B

(1 − θ)
∑

Xiθn−∑Xi = max
θ∈B

L(θ).

Thus the MLE of θ is

θ̂n =
{

arg maxθ∈A θ
∑

Xi (1 − θ)n−∑Xi if M1 > M2
arg maxθ∈B(1 − θ)

∑
Xi θn−∑Xi if M1 < M2,

taking either one if M1 = M2.

Now maxθ∈[0,1] θ
∑

Xi (1 − θ)n−∑Xi = (∑
xi/n

)∑Xi(1 −∑
Xi/n)

)n−∑Xi and the
maximizer

∑
Xi/n ∈ A because it is rational. Hence

M1 = max
θ∈A

L(θ) = max
θ∈[0,1] L(θ) > max

θ∈B
L(θ) = M2.

Thus θ̂n = ∑
Xi/n. But θ̂n

P→ θ if θ ∈ A and θ̂n
P→ 1 − θ if θ ∈ B, and is therefore

inconsistent. So far we have not used the fact that B is countable. However, when B is
countable, one can construct a consistent estimator.

(c) Ferguson [30]
Let

f (x, θ) = (1 − θ)f1(x, θ) + θ f2(x, θ), θ ∈ Θ = [0, 1],
where

f1(x, θ) = 1
δ(θ)

[
1 − |x − θ |

δ(θ)

]
I[θ−δ(θ),θ+δ(θ)](x)

is a triangular density with base [θ − δ(θ), θ + δ(θ)] and height δ(θ), and
f2(x, θ) = (1/2)I[−1,1](x) is a uniform pdf on [−1, 1]. The function δ(θ) is a continuous
decreasing function of θ on 0 < θ ≤ 1 with δ(0) = 1 and 0 < δ(θ) ≤ 1 − θ . As θ

increases from 0 to 1, the triangle’s base in f1(x, θ) becomes shorter and shorter, its
height becomes larger and larger, and it receives less and less weight. In this way,
f (x, θ) continuously changes from the triangular to the rectangular density. Now
suppose δ(θ) → 0 as θ → 1 at a sufficiently fast rate so that
n−1 log[(1 − Xn:n)/δ(Xn:n)] → ∞ with probability 1 for θ = 0 (triangular case) and

hence for all θ . Then the MLE θ̂n
a.s.→ 1, whatever the true value θ0 ∈ [0, 1]

may be.
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Remark 7.1.2 (Super Efficiency). The MLE θ̂n has asymptotic variance 1/I(θ0). The
possibility of estimators with asymptotic variance V (θ0) ≤ 1/I(θ0) will be discussed in
Section 7.1.2, Example 7.1.7.

Example 7.1.3. Let (X1, . . . , Xn) be a random sample from Cauchy(θ , 1) with pdf

f (x, θ) = 1

π[1 + (x − θ)2] .

Find a BAN estimator of θ and its asymptotic distribution.
Solution. Here

l(x, θ) = log f (x, θ) = − log π − log[1 + (x − θ)2],

l̇(x, θ) = 2(x − θ)

1 + (x − θ)2
and l̈(x, θ) = 2[(x − θ)2 − 1]

[1 + (x − θ)2]2
.

Then

I(θ) = Eθ

[̇
l
2

(X , θ)
]

=
∫ ∞
−∞

4(x − θ)2

[1 + (x − θ)2]2
dx

π[1 + (x − θ)2]
= 8

π

∫ ∞
0

y2 dy

(1 + y2)3 = 1/2.

Start with initial estimator θ̃n0 = Sample Median = Xn:[n/2] which is
√

n-consistent (as
will be shown in Chapter 8). Then a BAN estimator is

θ̃n1 = θ̃n0 +
∑n

i=1 l̇(Xi, θ̃n0)∑n
i=1(−l̈(Xi , θ̃n0))

= θ̃n0 +
n∑

i=1

[
2(Xi − θ̃n0)2

1 + (Xi − θ̃n0)2

]/ n∑
i=1

[
2{(Xi − θ̃n0)2 − 1}
{1 + (Xi − θ̃n0)2}2

]
,

and
√

n(θ̃n1 − θ0)
L→ N(0, 2).

Example 7.1.4. Let (X1, . . . , Xn) be a random sample from Unif (0, θ) with pdf f (x, θ) =
θ−1I[0,θ](x), θ > 0. Find the MLE of θ and its asymptotic distribution.

Solution. Here

L(θ) =
n∏

i=1

f (Xi, θ) =
{

0 θ < Xn:n = max(X1, . . . , Xn)
θ−n θ > Xn:n.

It is easy to see that L(θ) has a unique maximum at Xn:n. Hence the MLE θ̂n = Xn:n. To find
the distribution of θ̂n, note that

P[θ̂n ≤ t] = Pθ [Xi ≤ t, i = 1, . . . , n] =
{

(t/θ)n 0 < t ≤ θ

1 t > θ
, and

P[n(θ − θ̂n) ≤ t] = Pθ [θ̂n > θ − t/n] = 1 − Pθ [θ̂n ≤ θ − t/n]

= 1 −
(

θ − t/n
θ

)n
= 1 −

(
1 − t

nθ

)n
→ 1 − e−t/θ .
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Example 7.1.5. Let X 1, . . . , X n be iid Nk(μ, Σ) where Σ is positive definite. Find the MLE
of (μ, Σ).

Solution. The MLEs for μ and Σ are X̄ = n−1∑n
i=1 X i and Σ̂ = n−1∑n

i=1(X i − X̄ )
(X i − X̄ )T . A proof is given later in the chapter on multivariate analysis.

Example 7.1.6. Let

f (x, θ) = C(θ) exp[Q(θ)T(x)]r(x), θ ∈ Θ

be a pdf/pmf belonging to the single-parameter exponential family, where Θ =
{θ :

∫
exp[Q(θ)T(x)]r(x) dx < ∞}. Find the MLE of θ from a random sample (X1, . . . , Xn)

from f (x, θ).
Solution. The log-likelihood and the likelihood equation are

l(X , θ) = n log C(θ) + Q(θ)
n∑

i=1

T(Xi) +
n∑

i=1

log r(Xi), and

l̇(X , θ) = n(C′(θ)/C(θ)) + Q′(θ)
n∑

i=1

T(Xi) = 0.

The MLE θ̂n is the solution of

− C′(θ)
C(θ)Q′(θ)

= n−1
n∑

i=1

T(Xi).

We can now find the MLEs of θ for some distributions as special cases of this result.

(a) Bernoulli(θ) with

f (x, θ) = θx(1 − θ)1−x = (1 − θ) exp
[

x log
(

θ

1 − θ

)]
, x = 0, 1.

Here

C(θ) = 1 − θ , Q(θ) = log
(

θ

1 − θ

)
, and T(x) = x, so − C′(θ)

C(θ)Q′(θ)
= θ ,

and the likelihood equation is θ = n−1∑n
i=1 Xi = X̄ . Thus the MLE of θ is θ̂n = X̄ .

(b) Poisson(θ) with

f (x, θ) = exp(−θ)θx/x!, x = 0, 1, . . . .

Here

C(θ) = e−θ , Q(θ) = log θ , T(x) = x, so − C′(θ)
C(θ)Q′(θ)

= θ ,

and the likelihood equation is θ = n−1∑n
i=1 Xi = X̄ . Thus the MLE of θ is θ̂n = X̄ .

(c) Gamma(α, θ) with

f (x, θ) = 1
Γ (α)θα

exp[−x/θ]xα−1, x > 0.
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Here

C(θ) = 1
Γ (α)θα

, Q(θ) = −1/θ , T(x) = x, so − C′(θ)
C(θ)Q′(θ)

= αθ ,

and the likelihood equation is αθ = n−1∑n
i=1 Xi = X̄ . Thus the MLE of θ is θ̂n = X̄/α.

7.1.1 Almost Sure Convergence (Strong Consistency) of MLEs

Let θ0 be the true value of the unknown parameter θ and all probability statements are with
respect to θ0.

Notations
(i) For every θ ∈ Θ, let Nθ ,j = {ϕ: ‖ϕ − θ‖ ≤ j−1} be a decreasing sequence of

neighborhoods of θ converging to {θ}, and let

Z(θ0, Nθ ,j) = inf
ϕ∈Nθ ,j

log[f (X , θ0)/f (X , ϕ)], Z(θ0, θ) = log[f (X , θ0)/f (X , θ)].

(ii) Let N∞,j = {θ : ‖θ‖ > j}, which can be thought of as a decreasing sequence of
neighborhoods of ∞, converging to ∅, and let

Z(θ0, N∞,j) = inf
ϕ∈N∞,j

[f (X , θ0)/f (X , ϕ)].

We assume that the following Regularity Conditions (Wald) hold

1. The parameter space Θ is a closed subset of Rk.
2. Identifiability Condition. For θ �= θ0, {x: f (x, θ) �= f (x, θ0)} has positive probability

under θ0.
3. (a) For all θ , limθn→θ f (x, θn) = f (x, θ) for all x.

(b) limθn→∞ f (x, θn) = 0 for all x.
4. (a) For each θ , I(θ0, θ) = E[Z(θ0, θ)] exists.

(b) For each θ , I(θ0, Nθ ,j) = E[Z(θ0, Nθ ,j)] > −∞ for some j = j0.
(c) I(θ0, N∞,j) = E[Z(θ0, N∞,j)] > −∞ for some j = j0.

Theorem 7.1.4 (Wald). Under Conditions 1–4, θ̂n
a.s.→ θ0.

The proof will be accomplished by first considering the case of finite Θ = {θ0, θ1, . . . , θr}
and then extending to the case of Θ being an arbitrary closed subset of Rk.

We start with the following lemma.
Lemma 7.1.1. I(θ0, θ) > 0 for all θ �= θ0.
This result has already been proved in Section 5.5.1, using the Identifiability Condition.
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In the case of finite Θ, we now have

P[θ̂n �= θ0 i.o.] ≤
r∑

j=1

P[θ̂n = θj i.o.]

≤
r∑

j=1

P

⎡
⎣n−1

n∑
i=1

log f (Xi, θ0) ≤ n−1
n∑

i=1

log f (Xi, θj) i.o.

⎤
⎦

=
r∑

j=1

P

⎡
⎣n−1

n∑
i=1

Zi(θ0, θj) ≤ 0 i.o.

⎤
⎦ = 0

by SLLN, because E[Z(θ0, θj)] = I(θ0, θj) > 0 for all j by Lemma 7.1.1. This proves the
theorem for finite Θ.

For the case of Θ being an arbitrary closed subset of Rk, we need to show that for an
arbitrary neighborhood N0 of θ0, P[θ̂n /∈ N0 i.o.] = 0. To extend the proof for the finite case
to this generality, we shall cover Θ − N0 by a finite collection of sets S1, . . . , Sr such that

I(θ0, Sj) = E[Z(θ0, Sj)] = E

[
inf
ϕ∈Sj

log{f (X , θ0)/f (X , ϕ)}
]

> 0

for j = 1, . . . , r. It then follows that

P[θ̂n /∈ N0 i.o.] ≤ P[θ̂n ∈ Sj i.o. for some j = 1, . . . , r]

≤
r∑

j=1

P[θ̂n ∈ Sj i.o.]

≤
r∑

j=1

P

⎡
⎣n−1

n∑
i=1

log f (Xi, θ0) ≤ sup
ϕ∈Sj

n−1
n∑

i=1

log f (Xi, ϕ) i.o.

⎤
⎦

=
r∑

j=1

P

⎡
⎣ inf

ϕ∈Sj

n−1
n∑

i=1

log{f (Xi, θ0)/f (Xi, ϕ)} ≤ 0 i.o.

⎤
⎦

≤
r∑

j=1

P

⎡
⎣n−1

n∑
i=1

inf
ϕ∈Sj

log{f (Xi, θ0)/f (Xi, ϕ)} ≤ 0 i.o.

⎤
⎦

=
r∑

j=1

P

⎡
⎣n−1

n∑
i=1

Zi(θ0, Sj) ≤ 0 i.o.

⎤
⎦ = 0

by SLLN because E[Z(θ0, Sj)] > 0 for j = 1, . . . , r.
We now construct S1, . . . , Sr with the above-mentioned properties.
Lemma 7.1.2.

(a) For each θ �= θ0, there is a neighborhood Nθ ,j such that I(θ0, Nθ ,j) = E[Z(θ0, Nθ ,j)] > 0.
(b) There exists a neighborhood N∞,j of ∞ such that I(θ0, N∞,j) = E[Z(θ0, N∞,j)] > 0.
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Proof. Fix θ �= θ0 and let

gj(x) =
{

inf
ϕ∈Nθ ,j

log(f (x, θ0)/f (x, ϕ))

}
f (x, θ0)

−
{

inf
ϕ∈Nθ ,j0

log(f (x, θ0)/f (x, ϕ))

}
f (x, θ0)

for j ≥ j0, where j0 is chosen by Condition 4(b). Since {Nθ ,j} is decreasing, {gj} is increasing
and are clearly nonnegative for j ≥ j0. Moreover, by Condition 3(a),

lim
j→∞

gj(x):= g(x) = {
log(f (x, θ0)/f (x, θ))

}
f (x, θ0)

−
{

inf
ϕ∈Nθ ,j0

log(f (x, θ0)/f (x, ϕ))

}
f (x, θ0)

for all x. Hence by the Monotone Convergence Theorem,

lim
j→∞

E[Z(θ0, Nθ ,j)] − E[Z(θ0, Nθ ,j0 )] = lim
j→∞

∫
gj(x) dx =

∫
g(x) dx

= E[Z(θ0, θ)] − E[Z(θ0, Nθ ,j0 )].

Since E[Z(θ0, Nθ ,j0 )] > −∞, we cancel it from both sides of the above equality to obtain

lim
j→∞ E[Z(θ0, Nθ ,j)] = E[Z(θ0, θ)] > 0,

so that E[Z(θ0, Nθ ,j)] > 0 for sufficiently large j . This proves (a).
The proof of (b) is exactly the same, using Conditions 4(c) and 3(b) instead of Condi-

tions 4(b) and 3(a).
Proof of Theorem 7.1.4. First choose a set N∞,j∗ such that E[Z(θ0, N∞,j∗ )] > 0. Now

consider Θ ∩ Nc
0 ∩ Nc

∞,j∗ (for an arbitrary neighborhood N0 of θ0), which is a closed and

bounded set in R
k and therefore has the Heine-Borel property (compactness) of having a

subcover for every open cover.
Now for every θ ∈ Θ ∩ Nc

0 ∩ Nc
∞,j∗ , choose Nθ ,j such that E[Z(θ0, Nθ ,j)] > 0. These sets

Nθ ,j for θ ∈ Θ ∩ Nc
0 ∩ Nc

∞,j∗ form an open cover of Θ ∩ Nc
0 ∩ Nc

∞,j∗ and by the Heine-Borel
property, there is a finite subcover Nθ1,j1 , . . . , Nθr−1,jr−1 . Let

S1 = Nθ1,j1 , . . . , Sr−1 = Nθr−1,jr−1 and Sr = N∞,j∗ .

Then S1, . . . , Sr cover Nc
0 and E[Z(θ0, Sj)] > 0, j = 1, . . . , r, and the theorem is proved by the

argument given above.

7.1.2 Asymptotic Efficiency of MLE

What is the connection between the information bound 1/I(θ) = 1/ Eθ [̇l2
(X)] for the

variance of an unbiased estimator of θ and the fact that the MLE of θ̂n of θ has the
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asymptotic distribution
√

n(θ̂n − θ)
L→ N(0, 1/I(θ))? [For simplicity, we are considering the

case of a 1-dim parameter θ .]
We have seen that

(i) under regularity conditions on the pdf/pmf and restrictions on estimators,
nVarθ [Tn] ≥ 1/I(θ) for all unbiased estimators Tn of θ , and

(ii) the MLE θ̂n of θ has the property:
√

n(θ̂n − θ)
L→ N(0, 1/I(θ)).

From (i) and (ii), one may be tempted to hope that if
√

n(Tn − θ)
L→ ξθ under f (·, θ),

then ξθ must be at least as much dispersed as N(0, 1/I(θ)) and in particular, σ 2(θ) =
Eθ [ξ2

θ ] ≥ 1/I(θ) if ξθ is Gaussian. Can there be a situation in which Eθ [ξ2
θ ] < 1/I(θ) ? If

so, then such an estimator would be called “superefficient.” The following example shows
that superefficient estimators do exist.

Example 7.1.7 (Hodges). Let X1, . . . , Xn, . . . be iid as N(θ , 1). Then the MLE θ̂n = X̄n =
n−1∑n

i=1 Xi and Z = √
n(X̄n − θ) D= N(0, 1). Also the information I(θ) = 1. Now for 0 < a <

1, let

Tn =
{

X̄n if |X̄n| > n−1/4

aX̄n if |X̄n| ≤ n−1/4.

Then
√

n(Tn − θ) is distributed as Z if |Z + √
nθ | > n1/4 and as aZ + (a − 1)

√
nθ otherwise.

From this it follows that
√

n(Tn − θ)
L→ N(0, V (θ)), where V (θ) = 1 if θ �= 0 and V (θ) = a2 <

1 if θ = 0. This defines a superefficient estimator (see [31]).
Let us examine the behavior of {Tn} in the above example under {Pθn} where θn = h/

√
n.

In the above proof, taking θ = θn, we have

√
n(Tn − θn)

D= ZI[|Z + h| > n1/4] + {aZ + (a − 1)h}I[|Z + h| ≤ n1/4]
a.s.→ aZ + (a − 1)h.

Hence under {Pθn},
√

n(Tn − θn)
L→ N((a − 1)h, a2), although for θ = 0,

√
n(Tn − 0)

L→
N(0, a2). Thus we have a situation in which the asymptotic distribution of

√
n(Tn − θn)

under {Pθn} with θn = h/
√

n → 0 as n → ∞, depends not only on P0 but actually on the
particular sequence {Pθn} → P0.

Hájek recognized this as the reason behind superefficiency and introduced the concept
of regular estimators (or more precisely, locally regular estimators at a particular θ0) to
prevent superefficiency.

Definition 7.1.2. A sequence of estimators {Tn} of θ is regular at P = Pθ0 if for every
sequence {Pn} = {Pθn} with θn = θ0 + h/

√
n + o(1/

√
n) for some h ∈ R,

L(
√

n(Tn − θn)) → L(P) under {Pn},

where L(P) depends on P = Pθ0 , but not on the particular sequence {Pθn} (ie, not on h).
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Theorem 7.1.5 (Hájek-Inagaki Decomposition Theorem) [See 67, 68]. Suppose that {Tn}
is a regular estimator of θ at P = Pθ0 . Then for every sequence θn = θ0 + h/

√
n + o(1/

√
n)

with h ∈ R,

L(
√

n(Tn − θn)) → L(P) = N(0, 1/I) ∗ L1(P) under Pn,

where L1(P) depends only on P (ie, on θ0), but not on the particular sequence {θn}, and ∗
denotes convolution.

By this theorem, the asymptotic distribution of any regular estimator is more dispersed
than N(0, 1/I), which is the asymptotic distribution of the MLE. Thus the MLE is asymptot-
ically efficient among all regular estimators.

7.1.3 MLE of Parameters in a Multinomial Distribution

Consider a multinomial distribution in m classes with probability πj(θ), j = 1, . . . , m for
the jth class, where π1(·), . . . , πm(·) are known functions of an unknown k-dim parameter
vector θ . Let n1, . . . , nm denote the observed frequencies in the m classes in a random
sample of size n. The following table summarizes this.

Class 1 ·· · j · ·· m Total

Probability π1(θ ) · · · πj(θ ) · · · πm(θ ) 1

Obs. frequency n1 · · · nj · · · nm n

Here the data consist of a random sample X = (X 1, . . . , X n) where the X is are iid with

P[X i = ej] = f (ej, θ) = πj(θ), j = 1, . . . , m and nj =
n∑

i=1

I[X i = ej],

ej being the m-dim jth coordinate vector. Hence

l̇r(ej, θ) = ∂

∂θr
log f (ej, θ ) = ∂

∂θr
log πj(θ) = 1

πj(θ)

∂πj(θ )

∂θr
:= π̇rj(θ)

πj(θ )
, and

Snr(t) =
n∑

i=1

l̇r(X i, t) =
n∑

i=1

m∑
j=1

I[X i = ej]
π̇rj(t)

πj(t)
=

m∑
j=1

nj

πj(t)
π̇rj(t).

Thus the likelihood equations are

Snr(θ̂n) = 0, ie,
m∑

j=1

nj

πj(θ̂n)
π̇rj(θ̂n) = 0, r = 1, . . . , k.

In a typical context, these equations would not have a closed form solution, so we obtain a
BAN estimator by the Newton-Raphson method. First note that

Pθ

[
l̇r(X , θ) = π̇rj(θ )

πj(θ)

]
= Pθ [X = ej] = πj(θ ), j = 1, . . . , m.
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For θ = θ0,

Eθ0 [̇lr(X , θ0)] =
m∑

j=1

πj(θ0)
π̇rj(θ0)

πj(θ0)
=

m∑
j=1

π̇rj(θ0) = ∂

∂θr

m∑
j=1

πj(θ )

∣∣∣∣∣∣
θ=θ0

= 0,

as it should be because
∑m

j=1 πj(θ) = 1 for all θ . Next,

Irs(θ0) = Covθ0 [̇lr(X , θ0),l̇s(X , θ0)] = Eθ0 [̇lr(X , θ0)̇ls(X , θ0)]

=
m∑

j=1

πj(θ0){π̇rj(θ0)/πj(θ0)}{π̇sj(θ0)/πj(θ0)}

=
m∑

j=1

π̇rj(θ0)π̇sj(θ0)/πj(θ0). (5)

If T n = θ0+oP(1), then Irs(θ0) is estimated by Irs(T n), which can be used in place of Bnrs(θ̃n0)
in the Newton-Raphson formula.

7.2 Likelihood Ratio Test
The theory of hypothesis testing, discussed in Chapter 6, based on N-P Lemma for simple
H0 vs simple H1 and extended to some composite H0 vs composite H1 in exponential
families, also in the presence of nuisance parameters, using the Generalized N-P Lemma,
covered a limited range of problems. For testing a composite H0: θ ∈ Θ0 vs a composite
H1: θ ∈ Θ1 in a general setting, we modify the likelihood ratio

∏n
i=1 f (Xi, θ1)/

∏n
i=1 f (Xi, θ0)

based on X = (X1, . . . , Xn) in the simple vs simple problem by replacing θ0 and θ1 by
θ̂i = MLE of θ restricted to Θi, i = 0, 1, respectively, or equivalently by

Λn = supθ∈Θ0

∏n
i=1 f (Xi, θ)

supθ∈Θ

∏n
i=1 f (Xi, θ)

= f (Xi, θ̃n)

f (Xi, θ̂n)
, (6a)

where θ̃n is the restricted MLE in Θ0 and θ̂n is the unrestricted MLE in the entire parameter
space Θ = R

k. The null hypothesis H0 is rejected for small values of Λn, or equivalently, for
large values of

− 2 log Λn = 2
[∑

log f (Xi, θ̂n) −
∑

log f (Xi , θ̃n)
]

. (6b)

This is known as the likelihood ratio test (LRT). The asymptotic properties of LRT will be
discussed in this section.

Hypothesis testing was discussed in Chapter 6, mostly within the very restricted
framework of exponential families of distributions. Here we take up the testing problem
again in much broader context. Let (X1, . . . , Xn) be a random sample from f (x, θ), θ ∈ R

k.
We now consider the problem of testing H0: θ ∈ Θ0 vs H1: θ ∈ R

k − Θ0, where
Θ0 is a d-dim hyperplane in R

k with d < k. Without loss of generality, let Θ0 = {θ =
(θ1, . . . , θk): θd+1 = · · · = θk = 0}.
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The Neyman-Pearson simple-vs-simple likelihood ratio would generalize to the
composite-vs-composite case as

Λ∗
n = supθ∈Θ0

∏n
i=1 f (Xi, θ)

supθ∈Rk−Θ0

∏n
i=1 f (Xi, θ )

,

and reject H0 if Λ∗
n ≤ critical value c. However, since determining the MLE of θ restricted

to R
k − Θ0 causes complication, it is more convenient to modify the denominator and use

the test statistic

Λn = supθ∈Θ0

∏n
i=1 f (Xi, θ)

supθ∈Rk
∏n

i=1 f (Xi, θ )
=
∏n

i=1 f (Xi, θ̃n)∏n
i=1 f (Xi, θ̂n)

as in Eq. (6a),

where θ̃n is the MLE of θ restricted to Θ0, θ̂n is the unrestricted MLE of θ based on
(X1, . . . , Xn) and H0 is rejected if Λn ≤ critical value c. Clearly, Λn = Λ∗

n < 1 if θn ∈ R
k − Θ0

and Λn = 1 ≤ Λ∗
n if θ̂n ∈ Θ0. Thus Λn is a nondecreasing function of Λ∗

n and therefore,
rejecting H0 for small values of Λn is equivalent to rejecting H0 for small values of Λ∗

n.
We are thus led to the LRT: Reject H0 for small values of Λn defined above, or

equivalently, reject H0 for large values of

− 2 log Λn = 2

⎡
⎣ n∑

i=1

l(Xi, θ̂n) −
n∑

i=1

l(Xi, θ̃n)

⎤
⎦ as in Eq. (6b).

To construct a large-sample test of H0 at a prescribed level of significance, we need the
asymptotic distribution of −2 log Λn under H0. Without loss of generality, let the true
parameter θ0 = 0 (ie, θ01 = · · · = θ0k = 0). Since θ̃n is the MLE of θ restricted to Θ0,
we must have θ̃n = (θ̃n1, . . . , θ̃nd, 0, . . . , 0).

Thus θ̂n − θ0 = (θ̂n1, . . . , θ̂nd, θ̂n,d+1, . . . , θ̂nk) and θ̃n − θ0 = (θ̃n1, . . . , θ̃nd, 0, . . . , 0).
We use the notations of Section 5.2.3 and assume that the regularity conditions

introduced for proving Theorem 7.1.2 hold. We also write

l̇(d)(x, θ )T = (̇l1(x, θ), . . . ,l̇d(x, θ)), θ̃
T
n(d) = (θ̃n1, . . . , θ̃nd),

l̈(d)(x, θ ) =

⎡
⎢⎢⎣

l̈11(x, θ) · · · l̈1d(x, θ)
...

...
l̈d1(x, θ) · · · l̈dd(x, θ)

⎤
⎥⎥⎦ and I(d) =

⎡
⎢⎣

I11 · · · I1d
...

...
Id1 · · · Idd

⎤
⎥⎦,

that is, l̇(d)(x, θ) and θ̃n(d) are d-dim vectors consisting of the first d elements of l̇(x, θ) and
θ̃n, respectively, and l̈(d)(x, θ) and I (d) are d × d matrices consisting of the upper left-hand
elements of l̈(x, θ) and I , respectively.

Theorem 7.2.1. Under regularity Conditions 1, 2, 3 (multiparameter), −2 log Λn
L→

χ2
k−d.
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Proof. Expanding
∑n

i=1 l(Xi, θ̂n) and
∑n

i=1 l(Xi, θ̃n) around θ0 = 0, we have

n∑
i=1

l(Xi, θ̂n) =
n∑

i=1

l(Xi, 0) + (
√

nθ̂n)T n−1/2
n∑

i=1

l̇(Xi, 0)

+ (1/2)(
√

nθ̂n)T

⎧⎨
⎩n−1

n∑
i=1

l̈(Xi, 0) + Rn

⎫⎬
⎭(

√
nθ̂n)

=
n∑

i=1

l(Xi, 0) + (
√

nθ̂n)T n−1/2
n∑

i=1

l̇(Xi, 0) − (1/2)(
√

nθ̂n)T I(0)(
√

nθ̂n) + oP(1),

treating the remainder term Rn, using Condition 2 as in Section 7.1.1.
Similarly,

n∑
i=1

l(Xi, θ̃n) =
n∑

i=1

l(Xi, 0) + (
√

nθ̃n(d))T n−1/2
n∑

i=1

l̇(d)(Xi, 0)

+ (1/2)(
√

nθ̃n(d))T

⎧⎨
⎩n−1

n∑
i=1

l̈(d)(Xi, 0) + Rn

⎫⎬
⎭(

√
nθ̃n(d))

=
n∑

i=1

l(Xi, 0) + (
√

nθ̃n(d))T n−1/2
n∑

i=1

l̇(d)(Xi, 0)

− (1/2)(
√

nθ̃n(d))T I(d)(0)(
√

nθ̃n(d)) + oP(1).

In the above expression, we now substitute (as seen in the proof of Theorem 7.1.3),

√
nθ̂n = √

n(θ̂n − θ0) = [I(0) + oP(1)]−1n−1/2
n∑

i=1

l̇(Xi, 0) + oP(1), and similarly

√
nθ̃n(d) = √

n(θ̃n(d) − θ0) = [I(d)(0) + oP(1)]−1n−1/2
n∑

i=1

l̇(d)(Xi, 0) + oP(1)

to obtain after simplification,

− 2 log Λn = 2

⎡
⎣ n∑

i=1

l(Xi, θ̂n) −
n∑

i=1

l(Xi, θ̃n)

⎤
⎦

=
⎧⎨
⎩n−1/2

n∑
i=1

l̇(Xi, 0)

⎫⎬
⎭

T

I(0)−1

⎧⎨
⎩n−1/2

n∑
i=1

l̇(Xi, 0)

⎫⎬
⎭

−
⎧⎨
⎩n−1/2

n∑
i=1

l̇(d)(Xi, 0)

⎫⎬
⎭

T

I(d)(0)−1

⎧⎨
⎩n−1/2

n∑
i=1

l̇(d)(Xi, 0)

⎫⎬
⎭+ oP(1).
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By multivariate CLT,

n−1/2
n∑

i=1

l̇(Xi, 0)
L→ Y ∼ Nk(0, I(0)) and n−1/2

n∑
i=1

l̇(d)(Xi, 0)
L→ Y (d),

where Y (d) is the d-dim random vector consisting of the first d coordinates of Y . Hence

− 2 log Λn
L→ Y T I(0)−1Y − Y T

(d)I(d)(0)−1Y (d).

Using a suitable linear transformation, Y T I(0)−1Y and Y T
(d)I (d)(0)−1Y (d) can be simultane-

ously reduced to
∑k

i=1 Z2
i and

∑d
i=1 Z2

i , respectively, where Z1, . . . , Zk are iid N(0, 1). Thus

− 2 log Λn
L→

k∑
i=1

Z2
i −

d∑
i=1

Z2
i =

k∑
i=d+1

Z2
i ∼ χ2

k−d .

An important property, essential for all desirable tests, is that the probability of type
II error of the test at any level α tends to 0 (ie, the power tends to 1), as n → ∞ for all
departures from the null hypothesis. This property of a test is called Consistency.

Theorem 7.2.2. The LRT is consistent, ie, for c > 0,

lim
n→∞ Pθ0 [−2 log Λn < c] = 0 if θ0 /∈ Θ0,

under regularity conditions (Cramér and Wald).
Proof. Suppose that the true θ0 /∈ Θ0. Then arguing as in the proof of Theorem 7.2.1

− 2 log Λn = − 2

⎡
⎣ n∑

i=1

l(Xi, θ̃n) −
n∑

i=1

l(Xi, θ0)

⎤
⎦

+ 2

⎡
⎣ n∑

i=1

l(Xi, θ̂n) −
n∑

i=1

l(Xi, θ0)

⎤
⎦

= − 2

⎡
⎣ n∑

i=1

l(Xi, θ̃n) −
n∑

i=1

l(Xi, θ0)

⎤
⎦

+
⎧⎨
⎩n−1/2

n∑
i=1

l̇(Xi, θ0)

⎫⎬
⎭

T

I(θ0)−1

⎧⎨
⎩n−1/2

n∑
i=1

l̇(Xi, θ0)

⎫⎬
⎭+ Yn

:= − 2

⎡
⎣ n∑

i=1

l(Xi, θ̃n) −
n∑

i=1

l(Xi, θ0)

⎤
⎦+ b2

n + Yn,

where Yn = oP(1).
Since

(i) P[Xn + Yn + b2
n < c] ≤ P[Xn + Yn < c] ≤ P[Xn < c + |Yn|] ≤ P[Xn < 2c] + P[|Yn| ≥ c],

(ii) limn→∞ P[Xn < c] = 0 for all c > 0, and
(iii) Yn = oP(1)
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together imply limn→∞ P[Xn + Yn + b2
n < c] = 0 for all c > 0, it is enough to show that for

all c > 0,

lim
n→∞ Pθ0

⎡
⎣−

n∑
i=1

l(Xi, θ̃n) +
n∑

i=1

l(Xi, θ0) < c

⎤
⎦

= lim
n→∞ Pθ0

⎡
⎣ inf

θ∈Θ0
n−1

n∑
i=1

log{f (Xi, θ0)/f (Xi, θ)} < c/n

⎤
⎦ = 0

to prove the theorem.
Referring to the notations introduced in Section 7.1.1 and the proof of Theorem 7.1.4,

define iid rv’s

Zi(θ0, S) = inf
θ∈S

log{f (Xi, θ0)/f (Xi, θ )}, i = 1, 2, . . .

for any set S ⊂ R
k so that θ0 /∈ S. Then under Wald’s conditions, there exist a finite number

of sets S0, S1, . . . , Sr such that

(i) Θ0 ⊂ ⋃r
j=0 Sj and (ii) for θ0 /∈ Θ0, I(θ0, Sj) = Eθ0 [Z(θ0, Sj)] > 0, j = 0, . . . , r.

We demonstrate the existence of such sets by the following steps

(a) Choose a neighborhood N∞,j∗ of ∞ such that

E[Z(θ0, N∞,j∗ ∩ Θ0)] ≥ E[Z(θ0, N∞,j∗ )] > 0.

(b) Nc
∞,j∗ ∩ Θ0 is a closed bounded set in R

k and therefore, has the Heine-Borel property
of having a finite subcover for every open cover.

(c) For every θ ∈ Nc
∞,j∗ ∩ Θ0, choose Nθ ,j such that E[Z(θ0, Nθ ,j)] > 0. These sets form an

open cover of N∞,j∗ ∩ Θ0, from which we now choose a finite subcover
Nθ1,j1 , . . . , Nθ r ,jr .

(d) Call these sets S1 = Nθ1,j1 , . . . , Sr = Nθ r ,jr and let S0 = N∞,j∗ ∩ Θ0. Then S0, S1, . . . , Sr

cover Θ0 and satisfy (i) and (ii) above. The choice of N∞,j∗ and Nθ ,j for every
θ ∈ Nc

∞,j ∩ Θ0 with these properties is ensured by Wald’s regularity conditions.

It now follows that

inf
θ∈Θ0

n−1
n∑

i=1

log{f (Xi , θ0)/f (Xi, θ )}

≥ min
0≤j≤r

inf
θ∈Sj

n−1
n∑

i=1

log{f (Xi, θ0)/f (Xi, θ )}

≥ min
0≤j≤r

n−1
n∑

i=1

inf
θ∈Sj

log{f (Xi, θ0)/f (Xi, θ )} = min
0≤j≤r

n−1
n∑

i=1

Zi(θ0, Sj).
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Thus

Pθ0

⎡
⎣ inf

θ∈Θ0
n−1

n∑
i=1

log{f (Xi, θ0)/f (Xi , θ)} < c/n

⎤
⎦

= Pθ0

⎡
⎣ min

0≤j≤r
n−1

n∑
i=1

Zi(θ0, Sj) < c/n

⎤
⎦ ≤

r∑
j=0

Pθ0

⎡
⎣n−1

n∑
i=1

Zi(θ0, Sj) < c/n

⎤
⎦,

which tends to 0 as n → ∞, because

n−1
n∑

i=1

Zi(θ0, Sj)
a.s.→ Eθ0 [Z(θ0, Sj)] = I(θ0, Sj) > 0.

Example 7.2.1 (Homogeneity of Exponential Distributions). Let (Xi1, . . . , Xini ), i =
1, . . . , k, be independent random samples from Exponential(θi), i = 1, . . . , k, respectively.
Find the LRT for H0: θ1 = · · · = θk against all possible departures from H0.

Solution. Let θ̂ni and θ̄n be, respectively, the unrestricted MLE and the restricted MLE
under H0 of θi. Then

θ̂ni = T̄i = Ti/ni and θ̄N = T̄ =
k∑

i=1

Ti

/ k∑
i=1

ni , where

Ti =
ni∑

j=1

Xij.

Now the LRT statistic is

ΛN =
k∏

i=1

ni∏
j=1

f (Xij , θ̄N )

/ k∏
i=1

ni∏
j=1

f (Xij , θ̂ni)

=
[

1

θ̄N
N

e−T/θ̄N

]/⎡
⎣ k∏

i=1

1

θ̂
ni
ni

e−Ti/θ̂ni

⎤
⎦ =

k∏
i=1

(
θ̂ni

θ̄N

)ni

.

Since θ̂ni/θ̄N = 1 + oP(1) under H0 and since log(1 + YN ) = YN − (1/2)Y 2
N {1 + oP(1)} if

YN = oP(1) , it follows that

− 2 log ΛN = −2
k∑

i=1

ni log(θ̂ni/θ̄N )

= −2
k∑

i=1

ni[(θ̂ni/θ̄N − 1) − (1/2)(θ̂ni/θ̄N − 1)2{1 + oP(1)}]
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under H0. It is easy to check that
∑k

i=1 ni(θ̂ni/θ̄N − 1) = 0. Hence

− 2 log ΛN =
k∑

i=1

[
ni(θ̂ni − θ̄N )2/θ̄2

N

]
{1 + oP(1)} L→ χ2

k−1

under H0 by Theorem 7.2.1. Moreover, since
√

ni(θ̂ni − θ)/θ
L→ N(0, 1) independently for

each i and since θ̄N = θ + oP(1), we can argue more directly, that

k∑
i=1

[
ni(θ̂ni − θ̄N )2/θ̄2

N

]
{1 + oP(1)}

=
k∑

i=1

ni(θ̂ni − θ̄N )2/θ̄2 + oP(1)
L→ χ2

k−1.

Example 7.2.2 (Homogeneity of Multinomial Probabilities). Consider m mutually ex-
clusive and exhaustive categories and let

π i = (πi1, . . . , πim), i = 1, . . . , k, πij > 0 and
m∑

j=1

πij = 1

be the probability distributions over these categories in k populations. These probability
vectors are called multinomial probabilities. Let (ni1, . . . , nim) be the frequencies in the
m categories in independent random samples of sizes ni, i = 1, . . . , k, from these
populations. Find the LRT for H0: π1 = · · · = πk against all possible departures
from H0.

Solution. The unrestricted MLEs and restricted MLEs under H0 of π i are

π̂ i = (π̂i1, . . . , π̂im) and π̂0
i = (π̂0

i1, . . . , π̂0
im),

respectively, where π̂ij = nij/ni and π̂0
ij = n0j/N , with n0j = ∑k

i=1 nij and N = ∑k
i=1 ni.

For notational convenience, we also let ni = ∑m
j=1 nij = ni0. The LRT statistic can now be

written as

ΛN =
k∏

i=1

f ((ni1, . . . , nim), π̂0
i )

/ k∏
i=1

f ((ni1, . . . , nim), π̂ i)

=
k∏

i=1

m∏
j=1

(π̂0
ij/π̂ij)

nij ,

canceling the multinomial coefficients from the numerator and denominator. Again, using
π̂0

ij/π̂ij = 1 + oP(1) and the property of log(1 + Yn) for Yn = oP(1) as in Example 7.1.1,
we have
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− 2 log ΛN = −2
k∑

i=1

m∑
j=1

nij log(π̂0
ij/π̂ij)

= −2
k∑

i=1

m∑
j=1

ni0π̂ij

⎡
⎢⎣ π̂0

ij − π̂ij

π̂ij
− (1/2)

⎛
⎝ π̂0

ij − π̂ij

π̂ij

⎞
⎠

2

{1 + oP(1)}
⎤
⎥⎦

= −2
k∑

i=1

m∑
j=1

ni0(π̂0
ij − π̂ij) +

k∑
i=1

m∑
j=1

ni0

(π̂0
ij − π̂ij)2

π̂ij
{1 + oP(1)}

under H0. Since
∑k

i=1 ni0(π̂0
ij − π̂ij) = 0 for each j, and

k∑
i=1

m∑
j=1

ni0

(π̂0
ij − π̂ij)2

π̂ij
=

k∑
i=1

m∑
j=1

(nij − (ni0n0j/N))2

nij

=
k∑

i=1

m∑
j=1

(nij − (ni0n0j/N))2

(ni0n0j/N)
{1 + oP(1)}

under H0, we finally have

− 2 log ΛN =
k∑

i=1

m∑
j=1

(nij − (ni0n0j/N))2

(ni0n0j/N)
+ oP(1)

L→ χ2
(k−1)(m−1).

7.3 Asymptotic Properties of MLE and LRT Based on
Independent Nonidentically Distributed Data

In this section, we shall briefly indicate the behavior of MLE and LRT when the observa-
tions are independent but nonidentically distributed.

Suppose that (X11, . . . , X1n1 ), (X21, . . . , X2n2 ), . . . , (Xm1, . . . , Xmnm ) are independent ran-
dom samples from distributions with pdf/pmf f1(x, θ), . . . , fm(x, θ), respectively, and let
n = n1 + · · · + nm be the total sample size.

We assume that the regularity conditions stated earlier, hold for each {fj(x, θ), θ ∈ Θ ⊂
R

k} and let

Ij,rs(θ0) = E[−l̈j,rs(X , θ0)], Ij(θ0) = ((Ij,rs(θ0))), j = 1, . . . , m.

Let θ̂n be the MLE of θ based on the pooled data consisting of all Xji, i = 1, . . . , nj, j =
1, . . . , m.

If n1, . . . , nm → ∞ in such a way that nj/n → λj > 0 for all j (of course λ1 +· · ·+λm = 1),
and if I(θ0) = ∑m

j=1 λjI j(θ0) is positive definite (even if some of the individual I j(θ0) is
singular), then

√
n(θ̂n − θ0)

L→ W ∼ Nk(0, I(θ0)−1).
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Asymptotic properties of the LRT discussed earlier for the iid case, also hold in the non-iid
case described above.

7.4 Frequency χ2

An important class of hypothesis testing problems arises in the context of the multinomial
distribution Multi(n; π1, . . . , πm), where πj ≥ 0 with

∑
πj = 1 are the probabilities of a

random sample belonging to the classes (1, . . . , m). The data consist of a random sample
(X 1, . . . , X n) where the X i’s are m-dim iid rv’s with

f (ej, π) = P(X i = ej) = πj, j = 1, . . . , m,

where ej is the m-dim vector with 1 at the jth coordinate and 0 for the rest of the
coordinates, and πT = (π1, . . . , πm). As in Section 7.1.3, let

(n1, . . . , nm)T =
n∑

i=1

X i,

nj =
n∑

i=1

I(X i = ej) = observed frequency in the jth class.

For testing H0: πj = πj0, j = 1, . . . , m, with πj0 ≥ 0 with
∑m

j=1 πj0 = 1, against all possible
alternatives satisfying these constraints, the test statistic

T0n =
m∑

j=1

(nj − nπj0)2

nπj0
, (7a)

known as the frequency χ2, introduced by K. Pearson, is widely used. In many problems
of practical importance such as testing for independence in r × s contingency tables, the
null hypothesis value for the jth class is πj0(θ1, . . . , θk) where π10(·), . . . , πm0(·) are known
functions of an unknown k-dim parameter θ = (θ1, . . . , θk)T . The test statistic used to test
such a composite hypothesis H1: πj = πj0(θ), j = 1, . . . , m for given functions π0(·) =
(π10(·), . . . , πm0(·))T of an unknown θ ∈ Θ ⊂ R

k against all possible alternatives is

T1n =
m∑

j=1

[nj − nπj0(θ̂n)]2

nπj0(θ̂n)
, (7b)

where θ̂n = (θ̂n1, . . . , θ̂nk)T is the MLE of θ = (θ1, . . . , θk)T . In both the above problems,
we reject the respective null hypotheses if T0n or T1n is too large. Our goal is to find the
asymptotic distribution of T0n under H0 and of T1n under H1 so that the critical values c0α

and c1α for level α tests can be determined so that

PH0 [T0n ≥ c0α] ≈ α and PH1 [T1n ≥ c1α] ≈ α,
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for large n. This will be accomplished in two steps:

1. Simplifying T0n given by Eq. (7a) and T1n given by Eq. (7b) to forms more convenient
for asymptotics.

2. Deriving the asymptotic distributions of these simplified forms of T0n and T1n.

The statistic T0n is called the frequency χ2 because its null distribution follows the χ2

distribution with m − 1 df and the statistic T1n also has a χ2 distribution but with m − k − 1
df. These asymptotic distributions will be derived in this section.

We first define some vectors and matrices which will be useful in handling T0n and T1n.
In dealing with T0n, let

qj = √
πj0, qT = (q1, . . . , qm), Λq = diag((qj)), Λ1/q = Λ−1

q = diag((1/qj)).

Then diag((πj0)) = Λ2
q, π0 = Λqq, and under H0,

E[X ] = π0 = Λqq and Σ = E[(X − π0)(X − π0)T ] = Λq(I − qqT )Λq (8)

after some simplification. Next let

Z n = n−1/2(n1 − nπ10, . . . , nm − nπm0)T = n−1/2
n∑

i=1

(X i − π0).

Then

Z n = n−1/2
n∑

i=1

(X i − E(X i))
L→ Z ∼ Nm(0, Σ) under H0. (9)

Lemma 7.4.1. Under H0, T0n
L→ UT U , where U ∼ Nm(0, I − qqT ).

Proof. Using Eq. (8) T0n can be written as

T0n =
m∑

j=1

{
(
√

nqj)−1(nj − nπj0)
}2 =

m∑
j=1

(1/q2
j )
{

n−1/2(nj − nπj0)
}2

= (Λ1/qZ n)T (Λ1/qZ n) := UT
n Un

L→ UT U ,

where Un = Λ1/qZn
L→ Λ1/qZ = U ∼ Nm(0, I − qqT ) , because the covariance matrix of U

is Λ1/qΣΛ1/q = I − qqT after some simplification.
In dealing with T1n, we continue to use the above notations with πj0(θ0) instead of πj0.

The problem with T1n is the presence of θ̂n in both the numerator and the denominator.
Replacing θ̂n by θ0 in the denominator is relatively easy and will be taken care at first.
Handling θ̂n in the numerator will take more work. We start with T1n and after algebraic
re-arrangements, write
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T1n =
m∑

j=1

[nj − nπj0(θ̂n)]2/(nπj0(θ̂n))

=
m∑

j=1

[nj − nπj0(θ̂n)]2/(nπj0(θ0)){1 − Rnj} := T∗
1n + Rn, where

T∗
1n =

m∑
j=1

[nj − nπj0(θ̂n)]2/(nπj0(θ0)) and

|Rn| ≤ T∗
1n max

1≤j≤m
|Rnj | = T∗

inoP(1),

because under regularity conditions, πj0(θ̂n) − πj0(θ0) = oP(1). We shall now show that

T∗
1n

L→ T∗
1 (to be determined), so that T∗

1n = OP(1) which would imply Rn = OP(1)oP(1) =
oP(1), proving that T1n = T∗

1n + oP(1)
L→ T∗

1 .
We now work on

T∗
1n =

m∑
j=1

[nj − nπj0(θ̂n)]2/(nπj0(θ0))

=
m∑

j=1

⎡
⎣nj − nπj0(θ0)√

nπj0(θ0)
− √

n
πj0(θ̂n) − πj0(θ0)√

πj0(θ0)

⎤
⎦

2

= (Un − W n)T (Un − W n), (10)

where Un = Λ1/qZn as in Eq. (9) and the proof of Lemma 7.4.1 with π0(θ0) in place of π0,
and

W T
n = √

n

(
π10(θ̂n) − π10(θ0)√

π10(θ0)
, . . . ,

πm0(θ̂n) − πm0(θ0)√
πm0(θ0)

)
.

Assuming regularity conditions including existence of ∂πj0/∂θr = π̇rj for 1 ≤ r ≤ k, 1 ≤
j ≤ m and positive-definiteness of I(θ0) = ((Irs(θ0)), let drj = π̇rj/qj , D = ((drj))k×m and
Irs(θ0) = ∑m

j=1 drjdsj = (r, s)th element of DDT .
In these notations,

π j0(θ̂n) − π j0(θ0) =
k∑

r=1

π̇rj(θ̂nr − θ0r) + oP(1), 1 ≤ j ≤ m,

and now W T
n can be expressed as

W T
n = √

n(θ̂n − θ0)T D + oP(1) =
⎧⎨
⎩I(θ0)−1n−1/2

n∑
i=1

l̇(X i, θ0)

⎫⎬
⎭

T

D + oP(1)

= {I(θ0)−1DUn}T D + oP(1), (11)
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using the expression for
√

n(θ̂n − θ0) obtained in the course of the proof of Theorem 7.1.3,
because

n∑
i=1

l̇(X i, θ0) =
n∑

i=1

m∑
j=1

I[X i = ej ]̇l(ej, θ0) =
m∑

j=1

nj l̇(ej, θ0)

=
m∑

j=1

nj√
πj(θ0)

(
π̇1j(θ0)

qj
, . . . ,

π̇kj(θ0)

qj

)T

= √
n

m∑
j=1

nj − nπj0(θ0)√
nπj(θ0)

(
π̇1j(θ0)

qj
, . . . ,

π̇kj(θ0)

qj

)T

= √
n

m∑
j=1

Unj(d1j, . . . , dkj) = √
nDUn,

since
∑m

j=1 πj0(θ0) = 1 implies
∑m

j=1 π̇rj(θ0) = 0, r = 1, . . . , k.
From Eq. (11), it now follows that under H1,

V n = Un − W n = Un − DT {I(θ0)−1DUn} = [I − DT (DDT )−1D]Un

L→ V = [I − DT (DDT )−1D]U ∼ Nm(0, ΣV ), where

ΣV = [I − DT (DDT )−1D](I − qqT )[I − DT (DDT )−1D]

= I − qqT − DT (DDT )−1D.

Lemma 7.4.2. Under H1, T1n
L→ V T V where V ∼ Nm(0, I − qqT − DT (DDT )−1D).

Proof. As shown in Eq. (10)

T∗
1n = (Un − W n)T (Un − W n) = V T

n V n

L→ T∗
1 = V T V .

Hence

T1n = T∗
1n + Rn

L→ T∗
1 = V T V ,

because |Rn| ≤ T∗
n max1≤j≤m |Rnj| = oP(1) as observed earlier.

The distributions of UT U and V T V are obtained by using the following two lemmas.

Lemma 7.4.3. If Y ∼ Nm(0, C), then Y T Y D= ∑m
j=1 λjξ

2
j where λ1, . . . , λm are the

eigenvalues of C and ξ1, . . . , ξm are iid N(0, 1).
Proof. Let A = [a1, . . . , am] and Λ = diag((λj)), where a1, . . . , am are orthonormal

eigenvectors and λ1, . . . , λm the corresponding eigenvalues of C. Then AT A = AAT = I and
C = AΛAT . Let W = AT Y . Then W T W = Y T Y and W ∼ Nm(0, AT (AΛAT )A) = Nm(0, Λ),
so that
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Y T Y = W T W =
m∑

j=1

W 2
j =

m∑
j=1

λj

(
Wj/

√
λj

)2 =
m∑

j=1

λjξ
2
j ,

where ξ1, . . . , ξm are iid N(0, 1).
Lemma 7.4.4. (i) The matrix I −qqT has m−1 eigenvalues equal to 1 and one eigenvalue

equal to 0. (ii) The matrix I − qqT − DT (DDT )−1D has m − k − 1 eigenvalues equal to 1 and
k + 1 eigenvalues equal to 0.

Proof. First note that λ1, . . . , λm are the eigenvalues of C iff 1 − λ1, . . . , 1 − λm are the
eigenvalues of I − C, because (I − C)a = (1 − λ)a ⇐⇒ Ca = λa. Therefore, we need to
consider eigenvalues of qqT and qqT + DT (DDT )−1D. First, (qqT )q = q(qT q) = q (since
qT q = ∑m

j=1 πj0 = 1), so 1 is an eigenvalue of qqT with eigenvector q. Now let a1, . . . , am−1

be the other m − 1 eigenvectors of qqT . Then qT ai = 0, i = 1, . . . , m − 1, so (qqT )ai =
q(qT ai) = 0 for all i, showing that the other m − 1 eigenvalues of qqT are 0. This proves
(i). Similarly, we can verify that q and the k row vectors of D are the eigenvectors of qqT +
DT (DDT )−1D with corresponding eigenvalues all equal to 1 and other eigenvalues all equal
to 0. This proves (ii).

Theorem 7.4.1. Under H0, T0n
L→ UT U ∼ χ2

m−1 and under H1, T1n
L→ V T V ∼ χ2

m−k−1.
Proof. Use Lemmas 7.4.1 and 7.4.4.
Example 7.4.1. The number of flight cancelations between 6 am and noon at a certain

airport was recorded for each day between the months of March and June. The data are
summarized below with k = number of cancelations and nk = number of days with k
cancelations between 6 am and noon.

k 0 1 2 3 4 Total

nk 35 55 22 8 2 n = 122

Test at level α = 0.05 whether the number of flight cancelations follows a Poisson
distribution.

Solution. Under the null hypothesis H0 that the number of cancelations follows a
Poison distribution with an unspecified mean θ , the MLE of θ is

θ̂n =
∑

k

knk/n = 1.074 and e−θ̂n = 0.3417.

The expected frequencies under H0 with Poisson(θ̂n) are given below, together with the
observed frequencies. Since the frequency χ2 test is a large sample test and in the data,
the frequency nk = 2 for k = 4 is too small, we have pooled the classes k = 3 and
k = 4 . (As a rule of thumb, we need the expected frequency in each class to be at
least 5.)
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k 0 1 2 ≥ 3 Total

Observed frequency: nk 35 55 22 10 122

Expected frequency: nf (k, θ̂n) 41.69 44.77 24.04 11.52 122

From the observed and expected frequencies, the test statistic is obtained as

χ2 =
∑ (observed − expected)2

expected
= 1.07 + 2.34 + 0.18 + 0.19 = 3.78.

Under H0, the test statistic is (asymptotically) distributed as χ2 with

df = number of classes − number of parameters estimated − 1 = 4 − 1 − 1 = 2.

From the table of χ2 distribution we have the critical value χ2
2,0.05 = 5.99 (ie, P[χ2

2 > 5.99] =
0.05). Since the observed value of χ2 is smaller than the critical value, we accept H0 at level
of significance α = 0.05. In other words, at level α = 0.05, the data indicate that the Poisson
model is an acceptable fit.

Remark 7.4.1. Strictly speaking, having pooled some classes, one should calculate the
MLE of the unspecified parameter(s) from the data after pooling. Since the calculation of
MLE from pooled data is complicated, this issue is overlooked in practice. However, the use
of MLE of θ from original data in calculating the Frequency χ2 statistic from pooled data
results in the asymptotic distribution of the test statistic to be stochastically larger than a
χ2 with prescribed distribution. This error is not serious in fitting a Poisson distribution,
but may be so in fitting a normal distribution based on frequencies in class intervals and
using MLEs of μ and σ 2 from raw data (see [32]).

Example 7.4.2 (Test for Independence in a Contingency Table). Let (A1, . . . , Ak) and
(B1, . . . , Bm) be two classifications (into mutually exclusive and exhaustive categories) of
a population with P(Ai) = πi0 > 0,

∑k
i=1 πi0 = 1 and P(Bj) = π0j > 0,

∑m
j=1 π0j = 1.

Also let P(Ai ∩ Bj) = πij. In a random sample of N observations from this population, the
frequency distribution over such a cross-classification is called a contingency table having
the following layout in which the frequency of AiBj is nij.

Contingency Table

B1 Bj Bm Subtotal

A1 n11 · · · n1j · · · n1m n10

...
...

...
...

Ai ni1 · · · nij · · · nim ni0

...
...

...
...

Ak nk1 · · · nkj · · · nkm nk0

Subtotal n01 · · · n0j · · · n0m N
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In this model, we need to test H0: πij = πi0π0j for all (i, j) (ie, the classifications {Ai} and
{Bj} are independent), against all possible departures from H0.

Solution. In this cross-classification, there are altogether km classes with observed
frequencies nij and expected frequencies Nπi0π0j under H0. Since H0 involves unknown
parameters πi0, i = 1, . . . , k, and π0j, j = 1, . . . , m, we use their MLEs π̂i0 = ni0/N and

π̂0j = n0j/N . However, due to the constraints
∑k

i=1 πi0 = 1 = ∑m
j=1 π0j, only (k−1)+(m−1)

parameters are actually estimated to find the expected frequencies N π̂i0π̂0j = ni0n0j/N .
Thus the frequency χ2 test statistic is

χ2 =
k∑

i=

m∑
j=1

[nij − ni0n0j/N]2

ni0n0j/N
,

which is asymptotically distributed under H0 as a χ2 with

df = number of classes − number of parameters estimated − 1

= km − {(k − 1) + (m − 1)} − 1 = (k − 1)(m − 1).

Note that conditionally, given (n10, . . . , nk0), the problem is the same as the one discussed
in Example 7.2.2, where the LRT statistic is the same as the frequency χ2 test statistics here,
with the same asymptotic null distribution.

Exercises
7.1. Let X1, . . . , Xn be iid with pdf f (x, θ) = θx−θ−1I(1,∞)(x), θ > 2.

(a) Find the method of moments estimator θ̃n of θ .
(b) Find the MLE θ̂n of θ .
(c) Find the asymptotic distributions of

√
n(θ̃n − θ) and

√
n(θ̂n − θ).

7.2. Repeat Exercise 7.1 for the pdf f (x, θ) = θ(θ + 1)xθ−1(1 − x)I(0,1)(x), θ > 0.
7.3. Let X1, . . . , Xn be iid with pdf

f (x, θ) = θI[0,1/3)(x) + 2θI[1/3,2/3)(x) + 3(1 − θ)I[2/3,1](x), 0 < θ < 1.

(a) Find the MLE θ̂n of θ and its asymptotic distribution. Is θ̂n unbiased?
(b) Is there a UMVUE of θ? If so, find it.

7.4. Let X1, . . . , Xn be iid with pdf f (x, θ) = exp[−(x − θ)]I[θ ,∞)(x). Find the MLE θ̂n of θ

and the asymptotic distribution of θ̂n after appropriate normalization.
7.5. Let (X1, . . . , Xn) be a random sample from a log normal distribution with pdf

f (x, θ) = 1√
2πx

exp[−(log x − θ)2/2]I(0,∞)(x).

This means, Yi = log Xi, i = 1, . . . , n, are iid N(θ , 1) so that

(X1, . . . , Xn)
D= (eZ1+θ , . . . , eZn+θ ), where Z1, . . . , Zn are iid N(0, 1).

(a) Find the method of moments estimator θ̃n and the MLE θ̂n of θ based on
X1, . . . , Xn.
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(b) Find the asymptotic distributions of
√

n(θ̃n − θ) and
√

n(θ̂n − θ).
(c) What is the asymptotic efficiency of θ̃n?

7.6. Suppose that we observe Uij = I(−∞,ai](Xij), j = 1, . . . , ni and i = 1, . . . , k, where
a1 < · · · < ak are known and Xij are independent N(μ, σ 2). Let θT = (μ, σ 2).

(a) Let θ̂n be the MLE θ based on the observations {Uij}. Find the asymptotic

distribution of
√

n(θ̂n − θ) where n = n1 + · · · + nk → ∞ in such a way that
ni/n → λi ∈ (0, 1).

(b) How would you calculate θ̂n or an estimator asymptotically equivalent to θ̂n?
[Let p̂i = ∑ni

j=1 Uij/ni. Then
√

n(p̂i − πi) = OP(1), where πi = Φ((ai − μ)/σ ).]
7.7. A discrete distribution with pmf

f (x, θ) = exp(−θ)
1 − exp(−θ)

θx

x! , x = 1, 2, . . .

is called a truncated Poisson distribution with parameter θ . Consider θ̃n = 2ν2/ν1,
where ν1 and ν2 are observed frequencies of X = 1 and X = 2 in a random sample
of n observations from f (x, θ) as an initial estimator θ and construct a BAN
estimator θ̂n of θ . Find the asymptotic distribution of θ̂n.

7.8. Consider the multinomial distribution Multi(4, π (θ)), where θ = (p, q), πO(θ) = r2,
πA(θ) = p2 + 2pr, πB(θ) = q2 + 2qr, πAB(θ) = 2pq, p > 0, q > 0, and
r = 1 − p − q > 0. Suppose that in a random sample of size n, the cell frequencies
are nO, nA, nB, and nAB. Set up the formulas for computing a BAN estimator of θ .

7.9. Let X1, . . . , Xn be iid with pdf

f (x, θ) = (1 − e−c/θ )−1(1/θ)e−x/θ I(0,c](x), with a known c,

and let θ̂n be the MLE of θ based on X1, . . . , Xn . Since the likelihood equation does
not have a closed form solution here, we try to obtain a BAN estimator, starting
with an initial estimator θ̃n0. For this let

θ̃n0 = c
2 log(pn/qn)

, where pn = n−1
n∑

i=1

I(0,c/2](Xi) and qn = 1 − pn.

Show that θ̃n0 = θ + oP(1) and find the BAN estimator using θ̃n0. [Hint:
Let φ = e−c/(2θ). Then pn is a sample proportion, estimating
p = (1 − φ)/(1 − φ2) = 1/(1 + φ).]

7.10. (Mixture of distributions.) Suppose that U is a Bernoulli(p(θ)) rv and conditionally,
given U , X is distributed with pdf fU (x, θ). Then the joint distribution of (U , X) is

g(u, x, θ) = {p(θ)}u{1 − p(θ)}1−ufu(x, θ), u = 0 or 1, x ∈ R, θ ∈ Θ ⊂ R,

where f0(x, θ) and f1(x, θ) are pdf’s/pmf’s on R. Assume that the usual regularity
conditions hold for f0, f1 and assume differentiability conditions on p(θ) as
needed. Let (U1, X1), . . . , (Un, Xn) be iid, as (U , X) and let θ̂n denote the MLE of θ
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based on (Ui, Xi), i = 1, . . . , n. Allow for the possibility for f0 being discrete and f1

continuous.
(a) Show that

Eθ

[
∂ log g(U, X ; θ)

∂θ

]
= 0, and

I(θ) = Eθ

[
−∂2 log g(U, X , θ)

∂θ2

]
= Eθ

[(
∂ log g(U, X , θ)

∂θ

)2
]

= Varθ

(
∂ log g(U, X , θ)

∂θ

)

= {p′(θ)}2

p(θ)(1 − p(θ))
+ p(θ)I0(θ) + (1 − p(θ))I1(θ), where

Iu(θ) = Eθ

(
∂ log fu(X , θ)

∂θ

)2
, u = 0, 1.

(b) How would you calculate the MLE θ̂n of θ and what is the asymptotic
distribution of θ̂n?

(c) Let T1, . . . , Tn be iid exponential rv’s which are right-censored at c, giving rise
to observations Xi = TiI(0,c)(Ti) + cI[c,∞)(Ti). Here Ui = I(0,c)(Ti) and
conditionally on Ui, Xi is degenerate at {c} if Ui = 0 and had pdf
(1/θ)e−x/θ (1 − e−c/θ ) on (0, c) if Ui = 1. Discuss the maximum likelihood
estimation of θ from such data.

7.11. Let X1, . . . , Xn be iid with pdf/pmf f (x, θ) and let θ̂n denote the MLE of θ based on
Xi, i = 1, . . . , n . Under regularity conditions in Section 7.1.1 show that the
remainder terms in the expansion

0 = n−1/2
n∑

i=1

l̇(Xi , θ) + √
n(θ̂n − θ)

⎡
⎣n−1

n∑
i=1

l̈(Xi, θ) + n−1
n∑

i=1

Rn(Xi)

⎤
⎦

satisfies n−1∑n
i=1 Rn(Xi) = oP(1). Extend this result to the case when θ is k-dim.

7.12. Let (X1, . . . , Xm) and (Y1, . . . , Yn) be independent samples from N(μ1, σ 2) and
N(μ2, σ 2), respectively. Let m, n → ∞ so that m/(m + n) → α ∈ (0, 1).
(a) Find the MLE of (μ1, μ2, σ 2) and its asymptotic distribution.
(b) Find the MLE of (μ1, μ2, σ 2) under the restriction μ1 = μ2.
(c) Derive the LRT statistic Λm,n for H0: μ1 = μ2 vs H1: μ1 �= μ2, reduce it to a

suitable form and find the asymptotic distribution of −2 log Λm,n under H0,
(i) using the general properties of LRT statistics, and

(ii) from elementary considerations.
7.13. Suppose that in Section 7.1.1, the regularity condition

sup
|θ−θ0|≤ε

|l̈(x, θ) − l̈(x, θ0)| ≤ H(x, θ0)φ(ε) with

lim
ε→0

φ(ε) = 0 and E[H(X , θ0)] < ∞
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is strengthened by requiring

|l̈(x, θ)| ≤ H(x) with E[H(X)] < ∞.

Show that the BAN property of

θ̃n1 = θ̃n0 −
∑

l̇(Xi, θ̃n0)/
∑

l̈(Xi, θ̃n0)

then holds if n1/4(θ̃n0 − θ0) = oP(1).
7.14. Let (X1, . . . , Xn) be a random sample from a distribution with pdf/pmf f (x, θ) where

θ = (θ1, . . . , θk)T ∈ Θ which is an open interval in R
k, and θ0 = (θ01, . . . , θk0)T is an

interior point of Θ. Suppose that the family {f (x, θ): θ ∈ Θ} satisfies the usual
regularity conditions. We want to test H0: θ = θ0 vs H1: θ ∈ Θ − {θ0}. Show that the
following test statistics are equivalent (ie, differ from one another by
oP(1)) under H0:
(a) Likelihood ratio statistic: T1n = −2 log Λn, where

Λn =
n∏

i=1

f (Xi, θ0)

/⎧⎨
⎩sup

θ∈Θ

n∏
i=1

f (Xi, θ )

⎫⎬
⎭ ,

(b) Wald’s statistics: T2n = DT
nI(θ̂n)Dn, where I(θ̂n) is the Fisher-information

matrix evaluated at the MLE θ̂n of θ and Dn = √
n(θ̂n − θ0),

(c) Rao’s statistic: T3n = V T
nI(θ0)−1V n, where V n = n−1/2∑l̇(Xi, θ0).

7.15. Let (Xi1, . . . , Xini ) be independent outcomes of Bernoulli trials in which Xij takes
values 1 or 0 with probabilities θi and 1 − θi, respectively, i = 1, . . . , 4. We want to
test H0: θi+2/θi+1 = θi+1/θi, i = 1, 2, against the alternative H1: θi+2/θi+1 �= θi+1/θi

for at least one i. In this situation, computation of the LRT statistic −2 log Λn

becomes messy. The following approach based on Wald’s statistic involves only the
unrestricted MLEs θ̂i = Si/ni of θi where Si = ∑

1≤j≤ni
Xij, but leads to a test

criterion which is asymptotically equivalent to −2 log Λn under H0 (see Exercise
7.14 above). For the asymptotics, let n1, . . . , n4 → ∞ in such a way that
ni/

∑
nk → ci > 0, i = 1, . . . , 4. Since θ2

2 − θ1θ3 = θ2
3 − θ2θ4 = 0 under H0, large

values of |θ̂2
2 − θ̂1θ̂3| and |θ̂2

3 − θ̂2θ̂4| would indicate departure from H0.

(a) Show that under H0, h(θ̂)T = √
n(θ̂2

2 − θ̂1θ̂3, θ̂2
3 − θ̂2θ̂4) is asymptotically

bivariate normal with mean vector 0 and find the covariance matrix Σ(θ ) of
this limiting distribution.

(b) Find the asymptotic distribution of Tn = h(θ̂ )T Σ(θ̂)−1h(θ̂) under H0 and justify
your answer.

(c) Explain how you would find the critical value of a test for H0 based on Tn at
level α.

7.16. Let (Xi1, . . . , Xini ) denote independent samples from Poi(θi), i = 1, . . . , k. We want
to test H0: θ1 = · · · = θk against all possible alternatives in (0, ∞)k. Let
Ti = ∑

1≤j≤ni
Xij, T̄i = Ti/ni, n = ∑

ni, T = ∑
Ti, and T̄ = T/n, then (T̄1, . . . , T̄k)

and (T̄ , . . . , T̄) are, respectively, the unrestricted MLE and the restricted MLE of
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(θ1, . . . , θk) under H0. [T = 0 causes some difficulties which we shall ignore for
large sample purposes.]
(a) Show that the conditional distribution of (T1, . . . , Tk) given T is

Multi(T , n1/n, . . . , nk/n).
(b) Justify the use of Wn = ∑[(Ti − niT̄)2/(niT̄)] as a test statistic for testing H0.

What should be the rejection region of such a test at level α when n
is large?

(c) Let Λn denote the LRT statistic for H0. Show that

− 2 log Λn = 2
∑

niT̄i log(T̄i/T̄).

What is the asymptotic distribution of −2 log Λn under H0?
(d) Show that under H0, −2 log Λn = Wn + oP(1). [Notice the similarity with

Example 7.2.1 at the end of Section 7.2.]
7.17. The number of flies (X1, X2, X3) in three categories, resulting from certain crossings

is distributed as Multi(n, π ). According to the Hardy-Weinberg formula, the
probabilities of this multinomial distribution are

π1(θ) = (1 − θ)2, π2(θ) = 2θ(1 − θ), π3(θ) = θ2,

for some 0 < θ < 1. In an experiment, the observed frequencies in the three
categories are x1 = 45, x2 = 58, and x3 = 22, in a random sample of size n = 125.
Test whether the data support the above model at a level of significance α = 0.05.



8
Distribution-Free Tests for
Hypothesis Testing in
Nonparametric Families

8.1 Ranks and Order Statistics
We start with the general case in which X = (X1, . . . , Xn)T is a random vector with the
joint pdf f (x) on R

n, and in this setting derive the joint distribution of the vector of order
statistics X (n) = (Xn:1, . . . , Xn:n)T where Xn:1 < · · · < Xn:n and the vector of ranks Rn =
(Rn:1, . . . , Rn:n)T where Rn:i = 1 +∑n

j �=i=1 I(0,∞)
(
Xi − Xj

)
is the rank of Xi among X1, . . . , Xn.

Theorem 8.1.1. If (X1, . . . , Xn) has joint pdf f on R
n, then

(i) the pdf of X (n) is

f̄
(

y1, . . . , yn
) =∑

r
f
(
yr1 , . . . , yrn

)
, y1 < · · · < yn,

where the sum is over all n! permutations r = (r1, . . . , rn)T of (1, . . . , n), and
(ii) P

[
R = r|X (n) = y

] = f
(

yr1 , . . . , yrn

)
/f̄
(

y1, . . . , yn
)
.

Proof. For A ⊂ {y: y1 < · · · < yn
}

,

P
[
X (n) ∈ A

] = ∫
x(n)∈A

f (x) dx =
∑

r

∫
r(x)=r,x(n)∈A

f (x) dx,

where it is understood that
∫

in the above expressions refer to an n-dimensional integral
and dx = dx1 · · · dxn. On {x: r(x) = r}, transform

(
y1, . . . , yn

) = (xn:1, . . . , xn:n) which is
one-to-one with Jacobian equal to 1, and r(x) = r ⇐⇒ yri = xn:ri = xi. Thus

P
[
X (n) ∈ A

] =∑
r

∫
A

f
(
yr1 , . . . , yrn

)
dy =

∫
A

{∑
r

f
(
yr1 , . . . , yrn

)}
dy,

which proves (i). Moreover,

P
[
R = r, X (n) ∈ A

] = ∫
r(x)=r,x(n)∈A

f (x) dx =
∫

A
f
(
yr1 , . . . , yrn

)
dy

=
∫

A

f
(
yr1 , . . . , yrn

)
f̄
(
y1, . . . , yn

) f̄
(
y1, . . . , yn

)
dy,

proving (ii).

Theory and Methods of Statistics. http://dx.doi.org/10.1016/B978-0-12-802440-9.00008-4
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Corollary 8.1.1. If f
(
yr1 , . . . , yrn

) = f
(
y1, . . . , yr

)
for all r, then

(i) the pdf of X (n) equals n!f (y1, . . . , yn
)

, y1 < · · · < yn,
(ii) P

[
R = r|X (n) = y

] = 1/n! for all r and y, so P[R = r] = 1/n! for all r, and X (n) and R are
mutually independent.

In particular, if X1, . . . , Xn are iid with common pdf f , then the pdf of X (n) is n!∏n
i=1 f
(
yi
)
,

y1 < · · · < yn as already proved in Section 1.11.
For the next result, restrict to X1, . . . , Xn which are iid with common pdf f . With slight

abuse of notation, we shall write the joint pdf of (X1, . . . , Xn) as f (x) =∏n
i=1 f (xi).

Suppose that the common pdf of f of X1, . . . , Xn is symmetric (ie, f (−x) = f (x) for all x).
Consider

S = (sign
(
X1
)
, . . . , sign(Xn)

)T , |X | = (|X1|, . . . , |Xn|)T , and let

|X |(n) = (|X |n:1, . . . , |X |n:n
)T

denote the vector of order statistics and R+
n = (R+

n:1, . . . , R+
n:n
)

denote the ranks of |Xi|
among |X1|, . . . , |Xn|. Then

(i) for each i, |Xi| and sign(Xi) are independent,

P
[
Si = 1

] = P
[
Si = −1

] = 1/2,

and |Xi| has pdf 2f (x), x > 0.
(ii) since X1, . . . , Xn are independent, S1, . . . , Sn and |X1|, . . . , |Xn| are all mutually

independent,
(iii) also, the ranks R+

n and the order statistics |X |(n) are independent, having
distributions obtained in the Corollary of Theorem 8.1.1.

We thus have
Theorem 8.1.2. If X1, . . . , Xn are iid with common pdf f which is symmetric about 0,

then

(i) the vectors S, R+
n , and |X |(n) are mutually independent,

(ii) P
[
R+

n = r
] = 1/n! for all r,

(iii) |X |(n) has joint pdf n!2n∏n
i=1 f
(
yi
)
, 0 < y1 < · · · < yn,

(iv) P[S = s] = 1/2n for all s = (±1, . . . , ±1).

The following rank-related lemma is for future use.
Lemma 8.1.1. Let t(X1, . . . , Xn) be a function of iid rv’s X1, . . . , Xn, and suppose t(X) has

finite expectation. Then

E
[
t
(
X1, . . . , Xn

)|R = r
] = E

[
t
(
Xn:r1 , . . . , Xn:rn

)|Rn = r
]

= E
[
t
(
Xn:r1 , . . . , Xn:rn

)]
,

because X (n) and Rn are independent.
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Application: Permutation Test

Let P0 be a family of pdf’s on R
n defined by

P0 =
⎧⎨
⎩p: p

(
x1, . . . , xN

) = N∏
i=1

f
(
xi
)

where f is an arbitrary pdf on R

⎫⎬
⎭.

On the basis of a random sample from a distribution with pdf p, we want to test H0: p ∈ P0

vs H1: p = q /∈ P0 for a specified q.
Since (X1, . . . , XN ) is in one-to-one correspondence with

(
X (N), RN

)
, the vectors of order

statistics and ranks, we consider tests Ψ
(
X (N), R(N)

)
.

From Chapter 6, recall that a test Ψ is a similar region test of size α for H0: p ∈ P0 if

Ep
[
Ψ
(
X N , RN

)] = α for all p ∈ P0.

Since the conditional distribution of (X1, . . . , XN ) given X (N) is uniformly distributed over
the set of N ! permutations of (X1, . . . , XN ) irrespective of p ∈ P0, X (N) is sufficient for p ∈ P0

in (X1, . . . , XN ). It can also be shown that X (N) is complete, that is, Ep
[
g
(
X (N )
)] = 0 for all

p ∈ P0 implies g
(
x(N)
) = 0, a.s. P0. By virtue of complete sufficiency of X (N), the

similar region property of Ψ holds iff Ψ has Neyman-structure with respect to X (N) by
Theorem 6.9.1, ie, for almost all x(N),

EH0

[
Ψ
(
X (N), RN

)|X (N) = x(N)
] = α.

Moreover, since X (N) and RN are independent under H0, the last expression can be
rewritten as (

1/N !)∑
r
Ψ
(
x(N), r

) = α for all almost x(N), (1)

and the problem of finding the most powerful test at level α for H0: p ∈ P0 vs H1: p =
q /∈ P0; that is, the problem of maximizing Eq

[
Ψ
(
X (N), RN

)]
subject to Eq. (1) is solved by

maximizing

Eq
[
Ψ
(
X (N), RN

)|X (N) = x(N)
] = Eq

[
Ψ
(
x(N), RN

)|X (N) = x(N)
]

subject to Eq. (1) for each x(N).
The optimal Ψ is obtained by using the N-P Lemma conditionally, given X (N) = x(N). By

Theorem 8.1.1 and its Corollary, the conditional likelihood ratio

Pq
[
RN = rN |X (N) = x(N)

]
/Pp
[
RN = rN |X (N) = x(N)

]
can be equivalently expressed as

N !q(xN :r1 , . . . , xN :rN

)
/q
(
x(N)
)
.

The optimal Ψ is therefore given by

Ψ
(
x(N), rN

) = 0, or γ
(
x(N)
)
, or 1, according as

q
(
xN :r1 , . . . , xN :rN

)
<, or =, or > k

(
x(N)
)
,

where k
(
x(N)
)

and 0 ≤ γ
(
x(N)
) ≤ 1 are determined by the size α condition.
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To find k
(
x(N)
)

and γ
(
x(N)
)

for a given x(N), we arrange the N ! values of

q0
(
x(N), rN

) = q
(
xN :r1 , . . . , xN :rN

)
for all permutations rN of (1, . . . , N) in ascending order of magnitude and let r∗

N be such
that

νN = #
{

rN : q0
(
x(N), rN

) ≥ q0
(
x(N), r∗

N
)} ≥ N !α, but

ν−N = #
{

rN : q0
(
x(N), rN

)
> q0
(
x(N), r∗

N
)}
< N !α.

Then

k
(
x(N)
) = q0

(
x(N), r∗

N
)

and γ
(
x(N)
) = (N !α − ν−N

)
/
(
νN − ν−N

)
.

Example 8.1.1. For N = 4, let q(x1, x2, x3, x4) = f (x1)f (x2)f (x3)g(x4), where f (x) = 1,
0 ≤ x ≤ 1 and g(x) = 2x, 0 ≤ x ≤ 1, and let p denote the unknown joint pdf of (X1, . . . , X4).
We want to test H0: p ∈ P0 vs H1: p = q at level α = 0.1 based on observations (x1, . . . , x4) =
(0.2, 0.7, 0.4, 0.9).

Solution. The vectors of ranks and order statistics in the observed data are r4 =
(1, 3, 2, 4) and x(4) = (0.2, 0.4, 0.7, 0.9). The values of q

(
x4:r1 , . . . , x4:r4

)
are

4x3x4 = 4(0.4)(0.9) = 1.44 for r4 = (1, 2, 3, 4), (1, 2, 4, 3), (2, 1, 3, 4), (2, 1, 4, 3),

4x1x2 = 4(0.2)(0.7) = 0.56 for r4 = (3, 4, 1, 2), (3, 4, 2, 1), (4, 3, 1, 2), (4, 3, 2, 1),

4x2x4 = 4(0.7)(0.9) = 2.52 for r4 = (1, 3, 2, 4), (1, 3, 4, 2), (3, 1, 2, 4), (3, 1, 4, 2),

4x1x3 = 4(0.2)(0.4) = 0.32 for r4 = (2, 4, 1, 3), (2, 4, 3, 1), (4, 2, 1, 3), (4, 2, 3, 1),

4x2x3 = 4(0.7)(0.4) = 1.12 for r4 = (1, 4, 2, 3), (1, 4, 3, 2), (4, 1, 2, 3), (4, 1, 3, 2),

4x1x4 = 4(0.2)(0.9) = 0.72 for r4 = (2, 3, 1, 4), (2, 3, 4, 1), (3, 2, 1, 4), (3, 2, 4, 1).

These values of q(·) are arranged as

0.32 < 0.56 < 0.72 < 1.12 < 1.44 < 2.52,

each value repeated four times, and N !α = (24)(0.1) = 2.40.
Hence

q0
(
x(4), r∗

4
) = 2.52, ν4 = 4, and ν−4 = 0, so

kn = 2.52 and γ = 2.40/4 = 0.60.

For the observed data, r4 = (1, 3, 2, 4) and q0 = 2.52, so we randomize and reject H0 with
probability γ = 0.60.

Remark 8.1.1. The main problem in implementing a permutation test is that we cannot
use standard tables. The critical value of q0

(
x(N), rN

)
must be determined in every instance

by the observed data.

8.1.1 Nonparametric Tests in Three Basic Problems

1. Test for symmetry in the one-sample problem.
Let X1, . . . , Xn be iid with common continuous cdf F (Unknown). We want to test
H0: F(−x) = 1 − F(x) for all x (ie, the distribution is symmetric about zero), vs H1 the
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distribution is not symmetric about zero, or vs H+: F(−x) ≤ 1 − F(x) for all x with strict
inequality for some x

(
or
∫∞
−∞[1 − F(−x)] dF(x) > 1/2

)
.

Let Si = sign(Xi) and R+
n:i = rank of |Xi| among |X1|, . . . , |Xn|.

Under H0, high ranks and low ranks among
{

R+
n:i

}
will be equally associated with

Si = 1 or −1, but under H+, the observations with Si = 1 will tend to have higher R+
n:i

and those with Si = −1 will tend to have lower R+
n:i. This leads to the consideration of

the Wilcoxon signed-rank statistic:

Tn = {n(n − 1)}−1
n∑

i=1

SiR+
n:i or equivalently,

∑
{i: Xi>0}

R+
n:i = (n + Tn)/2.

We reject H0 in favor of H+ (or H1) if Tn (or |Tn|) ≥ critical value.
2. Test for homogeneity in the two-sample problem.

Let X1, . . . , Xm be iid with common continuous cdf F and let Y1, . . . , Yn be iid with
common continuous cdf G, the two samples being mutually independent. We want
to test

H0 : F = G vs H1: PF ,G

[
Xi > Yj

]
=
∫ ∞
−∞

G(x) dF(x) �= 1/2, or

H+ : PF ,G

[
Xi > Yj

]
> 1/2.

For notational convenience, write the combined sample as

X1, . . . , Xm, Y1 = Xm+1, . . . , Yn = Xm+n.

The average ranks of the X-observations and the Y -observations in the combined
sample are m−1∑m

i=1 Rm+n:i and n−1∑m+n
i=m+1 Rm+n:i, respectively. Since the average

ranks of the two samples would tend to be equal under H0, the difference between the
average ranks, known as the Wilcoxon two-sample rank-sum statistic defined as

Wm,n = m−1
m∑

i=1

Rm+n:i − n−1
m+n∑

i=m+1

Rm+n:i, or equivalently

W ′
m,n =

m∑
i=1

Rm+n:i (which is a linear function of Wm,n)

is an indicator of departure from H0. Moreover, by algebraic rearrangement, we
can write

Wm,n = (m + n)
(
Tm,n − 1/2

)
, where Tm,n = (mn)−1

m∑
i=1

n∑
j=1

I(0,∞)

(
Xi − Yj

)

which is called the Mann-Whitney statistic. Thus the three statistics Wm,n, W ′
m,n, and

Tm,n are linear functions of one another and any of them can be used as a test statistic
for testing H0 vs H1 or H0 vs H+. In particular, with the Mann-Whitney statistic, we can
reject H0 if favor of H+ (or H1) if Tm,n (or |Tm,n|) ≥ critical value.
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3. Test for independence in a bivariate distribution.
Let (X1, Y1), . . . , (Xn, Yn) be iid as (X , Y ). We want to test H0: X and Y are independent

vs H1: X and Y are dependent, or H+: X and Y are positively dependent. Let U , V , Z
be independent rv’s with unknown pdf’s f , g, h. Then the alternative hypothesis can be
formulated as (X , Y ) = (U +ΔZ , V +ΔZ), and then take H1: Δ �= 0 and H+: Δ > 0.

Let Rn:i = rank of Xi among X1, . . . , Xn and R′
n:i = rank of Yi among Y1, . . . , Yn. Then

replacing (X1, Y1), . . . , (Xn, Yn) by their ranks
(
Rn:1, R′

n:1

)
, . . . ,
(
Rn:n, R′

n:n
)
, the

Spearman’s rank correlation defined as

ρS = correlation coefficient between
{(

Rn:i, R′
n:i
)
, i = 1, . . . , n

}
= 12
{

n
(

n2 − 1
)}−1 n∑

i=1

Rn:iR′
n:i − 3(n + 1)/(n − 1)

(using R̄n = R̄′
n = (n + 1)/2 and

∑n
i=1

(
Rn:i − R̄n

)2 =∑n
i=1

(
R′

n:i − R̄′
n
)2 = n

(
n2 − 1

)
/12)

is an obvious candidate for testing H0 vs H1 or H+. One can use either ρS or∑n
i=1 Rn:iR′

n:i as a test statistic.
Another test statistic for this problem is based on the simple idea that if we compare

(Xi, Yi) with
(
Xj, Yj

)
, then Xi − Xj being positive or negative is independent of Yi − Yj

being positive or negative if X , Y are independent. An overall comparison between all
pairs of data-points leads to

τn = [n(n − 1)]−1
n∑

i=1

n∑
j �=i,j=1

sign
(

Xi − Xj

)
sign
(

Yi − Yj

)
,

known as Kendall’s tau statistic. We reject H0 in favor of H+ (or H1) if τn (or |τn|) ≥
critical value.

The statistic ρS differs from a linear function of τn by oP(1) as n → ∞ under H0, so a
test based on ρS is carried out analogously (see [4]).

8.1.2 Exact Distribution of Rank Statistic Under H0

Exact distributions of rank statistics under H0 can be obtained by combinatorial argu-
ments, using the properties of ranks under H0. We illustrate this with the example of Mann-
Whitney statistic in the two-sample problem.

Under H0, the rv’s X1, . . . , Xm, Y1, . . . , Yn are iid. Let νm,n(u) be the number of arrange-
ments of m X ’s and n Y ’s in which exactly u pairs have X > Y (ie, I(0,∞)(X − Y ) = u). Since
these arrangements are equally likely under H0, we have

PH0

⎡
⎣ m∑

i=1

n∑
j=1

I(0,∞)

(
Xi − Yj

)
= u

⎤
⎦ = νm,n(u)

/(
m + n

m

)
.
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The main thing is to find a formula for νm,n(u), which is obtained from the difference
equation

νm,n(u) = νm,n−1(u) + νm−1,n(u − n),

where νm,n−1(u) corresponds to sequences ending with Y and νm−1,n(u − n) corresponds
to sequences ending in X . Using this difference equation with initial conditions

νm,0(u) =
{

1 u = 0
0 u �= 0

and ν0,n(u) =
{

1 u = 0
0 u �= 0

,

we can compute νm,n(u) recursively.
Tables of exact tail probabilities are available for this and many other rank statistics for

small to moderate sample sizes.

8.1.3 Asymptotic Distribution of Rank Statistics Under H0
by U -Statistic Approach

One-sample U-statistic. Let X1, . . . , Xn be iid with a common continuous cdf F. Many one-
sample rank statistics are of the form

Un =
(

1/n(r)
)∑

n,r
g
(
Xi1 , . . . , Xir

)
,

where
∑

n,r denotes sum over all distinct i1, . . . , ir in {1, . . . , n} and n(r) = n(n − 1)
· · · (n − r + 1).

Assume without loss of generality that g is symmetric in its coordinates. [If not, replace
g by g∗ obtained by averaging over all permutations of its coordinates, which leaves Un

unchanged.] A statistic of this form is called U-statistic [33].
Suppose that EF

[
g2(X1, . . . , Xr)

]
< ∞, and let

θ = θ(F) = EF
[
g
(
X1, . . . , Xr

)]
, h
(
X1, . . . , Xr

) = g
(
X1, . . . , Xr

)− θ and

hc
(
X1, . . . , Xc

) = EF
[
h
(
X1, . . . , Xc , Xc+1, . . . , Xr

)|X1, . . . , Xc
]

for c = 1, . . . , r, and

ξc = ξc(F) = EF

[
h2(X1, . . . , Xc

)]
.

Then the mean and variance of Un are

E[Un] = θ and Var[Un] =
(

n(r)
)−2 r∑

c=1

Ncξc, where

Nn = #
{(

i1, . . . , ir
)
,
(
j1, . . . , jr

)
with exactly c elements in common

}
=
(

n
2r − c

)
(2r − c)!

c!(r − c)!(r − c)! (r!)2 =
(

n
r

)(
r
c

)(
n − r
r − c

)
(r!)2.

Suppose that ξ1 > 0. Since Nc+1/Nc → 0 as n → ∞, limn→∞ nVar[Un] = r2ξ1 > 0.
Actually, Un is asymptotically normal.

Theorem 8.1.3. If ξ1 > 0, then
√

n(Un − θ)
L→ Z ∼ N

(
0, r2ξ1

)
.
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Postponing the proof of Theorem 8.1.3, we look at Two-sample U-statistics. Let X =
(X1, . . . , Xm) and Y = (Y1, . . . , Yn) be mutually independent random samples from distri-
butions with cdf’s � F and G, respectively, and define

Um,n =
{

m(r)n(s)
}−1∑

m,r

∑
n,s

g
(

Xi1 , . . . , Xir , Yj1 , . . . , Yjs

)
, where

g
(

xi1 , . . . , xir , yj1 , . . . , yjs

)
= g
(
x1, . . . , xr , y1, . . . , ys

)
for all permutations

(
i1, . . . , ir

)
of (1, . . . , r) and

(
j1, . . . , js

)
of (1, . . . , s).

Suppose that E
[
g2(X1, . . . , Xr , Y1, . . . , Ys)

]
< ∞ and define

θ = θ
(
F , G
) = EF ,G

[
g(X , Y )

]
, h(X , Y ) = g(X , Y ) − θ

and for c = 0, 1, . . . , r and d = 0, 1, . . . , s, let

ξc,d = E
[

h2
c,d

(
X1, . . . , Xc, Y1, . . . , Yd

)]
,

where

hc,d
(
x1, . . . , xc, y1, . . . , yd

) = E
[
h(X , Y )|X1, . . . , Xc , Y1, . . . , Yd

]
if min

(
c, d
) ≥ 1 and h0,0 = 0. The mean and variance of Um,n are

E
[
Um,n

] = θ , and

Var
[
Um,n

] = {(m
r

)(
n
s

)}−2 r∑
c=0

s∑
d=0

(
r
c

)(
m − r
r − c

)(
s
d

)(
n − s
s − d

)
ξc,d

=
(

r2/m
)
ξ1,0 +

(
s2/n
)
ξ0,1 + o

(
1/min(m, n)

)
as m, n → ∞.

Thus if m, n → ∞ in such a way that m/(m + n) → λ ∈ (0, 1), then

lim
m,n→∞(m + n)Var

[
Um,n

] = r2ξ1,0/λ+ s2ξ0,1/(1 − λ),

and Um,n is asymptotically normal.
Theorem 8.1.4. Under the above conditions,

√
m + n

(
Um,n − θ

) L→ Z ∼ N
(

0, r2ξ1,0/λ+ s2ξ0,1/(1 − λ)
)

.

The proofs of Theorems 8.1.3 and 8.1.4 are accomplished by the Hájek Projection
Method of approximating an arbitrary function of independent rv’s by a sum of functions
of individual rv’s.

Let Z1, . . . , Zn be independent rv’s. Consider all rv’s ϕ(Z1, . . . , Zn) with E
[
ϕ2(Z)

]
< ∞ as a

vector space J with inner product 〈T1, T2〉 = Cov[T1, T2]. In J , let J0 denote the subspace
of all rv’s of the form S = ∑n

i=1ψi(Zi). We want to approximate an arbitrary T ∈ J with

E[T] = 0 by an rv S ∈ J0 with the smallest E
[(

T − S
)2] = ‖T − S‖2 (ie, the projection of

T on J0).
Theorem 8.1.5 (Hájek Projection Theorem). If E[T] = 0 and E

[
T2
]
< ∞, then the

projection of T on J0 is T∗ =∑n
i=1 E[T |Zi] w.p. 1.
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Proof. Let ψ∗
i (Zi) = E[T |Zi] and consider an arbitrary S = ∑n

i=1 ψi(Zi) ∈ J0. To
prove the theorem, it is enough to show that E

[(
T − T∗)(T∗ − S

)] = 0, because then we
would have

E
[(

T − S
)2] = E

[(
T − T∗)2]+ E

[(
T∗ − S

)2] ≥ E
[(

T − T∗)2], (2)

with equality holding iff S = T∗ w.p. 1. Now

E
[(

S − T∗)(T − T∗)] = n∑
i=1

EE

⎡
⎣{ψi

(
Zi
)− ψ∗

i (Zi)
}⎧⎨⎩T − ψ∗

i (Zi) −
n∑

j �=i,j=1

ψ∗
j (Zj)

⎫⎬
⎭
∣∣∣∣∣∣Zi

⎤
⎦

=
n∑

i=1

E

⎡
⎣{ψi(Zi) − ψ∗

i (Zi)
}⎧⎨⎩E(T |Zi) − ψ∗

i (Zi) −
n∑

j �=i,j=1

E
(
ψ∗

j (Zj)
)⎫⎬
⎭
⎤
⎦

=
n∑

i=1

E
[{
ψi(Zi) −ψ∗

i (Zi)
}{
ψ∗

i (Zi) − ψ∗
i (Zi) − 0

}] = 0,

since Zj is independent of Zi for j �= i, and

E
[
ψ∗

j (Zj)
]

= EE
[

T |Zj

]
= E[T ] = 0.

Corollary 8.1.2.

(a) Taking S = 0 in Eq. (2), we have

E
[(

T − T∗)2] = E
[

T2
]

− E
[

T∗2
]

, ie, Var
[
T − T∗] = Var[T] − Var

[
T∗],

(b) if E[T] = μ, then T ′ = T − μ has mean 0 and the projection of T ′ on J0 is∑n
i=1 E
[
T ′|Zi
] =∑n

i=1 E[T |Zi] − nμ. Hence the projection of T = T ′ + μ on J0 is
T∗ =∑n

i=1 E[T |Zi] − (n − 1)E[T].

Proofs of Theorems 8.1.3 and 8.1.4.
We shall find the Haj́ek projections of the U-statistics and then apply the CLT.
In the one-sample problem, the Hájek projection of Tn = √

n(Un − θ) is

T∗
n =

n∑
i=1

E
[
Tn|Xi

] = √
n
{

n(r)
}−1 n∑

i=1

E

[∑
n,r

h
(
Xi1 , . . . , Xir

)|Xi

]

= rn−1/2
n∑

i=1

h1(Xi),

because for every
(
i1, . . . , ir

)
in the sum

∑
n,r ,

E
[
h
(
Xi1 , . . . , Xir

)|Xi
] = {h1(Xi) if i ∈ {i1, . . . , ir}

E
[
h
(
Xi1 , . . . , Xir

)] = 0 otherwise,
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so that ∑
n,r

E
[
h
(
Xi1 , . . . , Xir

)|Xi
] = r(n − 1)(r−1)h1(Xi) and

√
n(n − 1)(r−1)/n(r) = n−1/2.

Hence

(i) T∗
n = rn−1/2

n∑
i=1

h1(Xi)
L→ N
(

0, r2ξ1

)
,

(ii) Var
[
T∗

n
] = r2ξ1,

(iii) Var[Tn] = nVar[Un] = r2ξ1 + o(1) as already shown, and

(iv) E
[(

Tn − T∗
n
)2] = Var[Tn] − Var

[
T∗

n
] = o(1),

so that Tn = T∗
n + oP(1).

Thus Tn = √
n(Un − θ)

L→ N
(
0, r2ξ1

)
by Slutsky’s Theorem, completing the proof of

Theorem 8.1.3.
Similarly, in the two-sample problem, the Hájek projection of Tm,n = √

m + n(
Um,n − θ

)
is

T∗
m,n = √

m + n

⎡
⎣ r(m − 1)(r−1)

m(r)

m∑
i=1

h1,0(Xi) + s(n − 1)(s−1)

n(s)

n∑
j=1

h0,1(Yj)

⎤
⎦

= √
m + n

⎡
⎣rm−1

m∑
i=1

h1,0(Xi) + sn−1
n∑

j=1

h0,1(Yj)

⎤
⎦.

Now arguing as in one-sample problem, Theorem 8.1.4 follows. �

Examples
1. The Wilcoxon signed-rank statistic Tn can be written as

Tn = {n(n − 1)}−1
n∑

i=1

SiR+
n:i =

(
1/n(2)

)⎡⎣ n∑
i=1

Si +
n∑

i �=ji=1

SiI(0,∞)

(
|Xi| − |Xj|

)⎤⎦
=
(

1/n(2)
)∑

n,2

(1/2)
[

SiI(0,∞)

(
|Xi| − |Xj |

)
+ SjI(0,∞)

(
|Xj | − |Xi|

)]
+ O(1/n)

= Un + O(1/n), where

Un =
(

1/n(2)
)∑

n,2

g
(
Xi1 , Xi2

)
, g
(
x1, x2

) = I(0,∞)
(
x1 + x2

)− 1/2.

It is now easy to see that for this U statistic,

θ(F) = EF
[
I(0,∞)

(
X1 + X2

)− 1/2
] = ∫ ∞

−∞
[1 − F(−x)] dF(x) − 1/2
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so under H0: F(−x) = 1 − F(x) for all x, θ = 0 and h(x1, x2) = g(x1, x2).
The variance of h1(X1) = E

[
h(X1, X2)|X1

] = (1/2) − θ(F) − F(−X1) is

ξ1(F) =
∫ [

1/2 − θ(F) − F(−x)
]2 dF(x) > 0

iff F(−X) is not constant with probability 1. For continuous F, this holds iff
0 < PF [X < 0] < 1. Under this condition

√
n
[
Tn/{n(n − 1)} − θ(F)

] L→ N
(
0, 4ξ1(F)

)
.

In particular, let the common cdf of X1, . . . , Xn be F(· − θ) where F has a pdf which is
symmetric about 0. Then

μ(θ) = θ(F) =
∫

[1 − F(−x − θ)] dF(x − θ) − 1/2

=
∫

F(x + 2θ) dF(x) − 1/2, and

σ 2(θ) = 4ξ1(F) = 4

[∫
F2(x + 2θ) dF(x) −

{∫
F(x + 2θ) dF(x)

}2
]

.

2. The Mann-Whitney statistic Um,n = (mn)−1∑m
i=1
∑n

j=1 I(0,∞)
(
Xi − Yj

)
based on

independent rv’s (X1, . . . , Xm), (Y1, . . . , Yn), where the Xi’s have a common cdf F and
the Yj’s have a common cdf G is a two-sample U -statistic with

θ = θ
(
F , G
) = PF ,G

[
Xi < Yj

]
=
∫

F dG = 1/2 if F = G.

It is also easy to check that

h10(x) = 1 − G(x) − EF
[
1 − G(X)

]
, h01(y) = F(y) − EG[F(Y )],

so that ξ10 = VarF
[
G(X)
]

and ξ01 = VarG[F(Y )]. If F = G, then ξ10 = ξ01 = 1/12. Thus
under H0: F = G ,

√
m + n

(
Um,n − 1/2

) L→ N
(
0, 1/(12λ(1 − λ))

)
,

if m, n → ∞ so that m/(m + n) → λ ∈ (0, 1). On the other hand, if G(x) = F(x − θ), then
μ(θ) = θ

(
F, G
)

and σ 2(θ) = λ−1ξ10 + (1 − λ)−1ξ01 are given by

μ(θ) =
∫

F(x + θ) dF(x) and

σ 2(θ) = λ−1

[∫
F2(x − θ) dF(x) −

{∫
F(x − θ) dF(x)

}2
]

+ (1 − λ)−1

[∫
F2(x + θ) dF(x) −

{∫
F(x + θ) dF(x)

}2
]

.
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8.1.4 Asymptotic Comparison of Tests: Pitman’s Approach

Let θ be a numerical characteristic of a population (or a combination of populations), for
which we want to test H0: θ = 0 vs H+: θ > 0. Typically, a test statistic Tn based on a
sample of size n would reject H0 in favor of H+ at level α if Tn > cn(α). Here we look into

the problem of comparing the asymptotic powers of two sequences of tests based on
{

T (1)
n

}
and
{

T (2)
n

}
with critical values

{
c(1)

n (α)
}

and
{

c(2)
n (α)

}
, respectively, with same asymptotic

Type I error probability at the same alternative. The following approach due to Pitman
[See 69] attempts to make such a comparison by means of a measure of asymptotic relative
efficiency (ARE) of one-test sequence with respect to the other. Since all reasonable tests
are consistent (ie, having power at any θ > 0 tending to 1 as n → ∞ with Type I error
probability fixed at 0 < α < 1), we shall consider asymptotic powers of two-test sequences
at alternatives {θn} converging to the null hypothesis value θ = 0 at the rate of 1/

√
n. The

following theorem provides a formula for computing such asymptotic powers.
Theorem 8.1.6 (Pitman). Suppose that {Tn} and {cn} are such that

(i) limn→∞ Pθ
[√

n(Tn − μ(θ))/σ (θ) ≤ t
] = Φ(t) uniformly in a neighborhood of θ = 0, μ(·)

is differentiable at 0 and σ (·) is continuous at 0 with σ (0) > 0 (here Φ denotes the cdf of
the standard normal),

(ii) limn→∞ Pθ = 0[Tn ≥ cn] = α .

Then
lim

n→∞ Pθ = δ/
√

n[Tn ≥ cn] = Φ
(
Φ−1(α) + δμ′(0)/σ (0)

)
.

Proof. For fixed θ , the convergence in (i) is uniform in t by Polya’s Theorem (Chapter 3,
Theorem 3.2.5(VIII)), which will be used in the proof. Note that

α = lim
n→∞ P0

[√
n(Tn − μ(0))/σ (0) ≥ √

n(cn − μ(0))/σ (0)
]

= 1 −Φ
(

lim
n→∞

√
n(cn − μ(0))/σ (0)

)
= Φ
(
− lim

n→∞
√

n(cn − μ(0))/σ (0)
)

.

Hence

lim
n→∞

√
n(cn − μ(0))/σ (0) = −Φ−1(α).

Now

lim
n→∞ Pδ/

√
n[Tn ≥ cn] = lim

n→∞ Pδ/
√

n
[√

n
(
Tn − μ(δ/

√
n)
)
/σ
(
δ/

√
n
) ≤ √

n
(
cn − μ(δ/

√
n)
)
/σ
(
δ/

√
n
)]

= 1 −Φ
(

lim
n→∞

√
n
(
cn − μ(δ/

√
n)
)
/σ
(
δ/

√
n
))

= Φ
(
− lim

n→∞
√

n
(
cn − μ(δ/

√
n)
)
/σ
(
δ/

√
n
))

.

Finally,

− lim
n→∞

√
n
(
cn − μ

(
δ/

√
n
))
/σ
(
δ/

√
n
) = − lim

n→∞
{√

n(cn − μ(0))/σ (0)
}{
σ (0)/σ

(
δ/

√
n
)}

+ lim
n→∞

{(
μ(δ/

√
n) − μ(0)

)
/
(
δ/

√
n
)}{
δ/σ
(
δ/

√
n
)}

= Φ−1(α) + δμ′(0)/σ (0).
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In view of this theorem, if T (i)
ni , i = 1, 2 have the same asymptotic power at δi/

√
ni, i =

1, 2, and if δ1/
√

n1 = δ2/
√

n2 = θn (say), then

lim
ni→∞ β

T (i)
ni

(θn) = Φ
(
Φ−1(α) + δiμ

′
i(0)/σi(0)

)
, i = 1, 2,

must be equal, that is

√
n2/n1 = δ2/δ1 = μ′

1(0)/σ1(0)

μ′
2(0)/σ2(0)

.

The ratio n2/n1 is a measure of relative efficiency of
{

T (1)
n

}
in comparison with

{
T (2)

n

}
. For

this reason, the ratio

e1,2 =
{
μ′

1(0)/σ1(0)
}2

{
μ′

2(0)/σ2(0)
}2

is called the asymptotic relative efficiency (ARE) of
{

T (1)
n

}
with respect to

{
T (2)

n

}
. The

quantity
{
μ′

i(0)/σi(0)
}2 is called the asymptotic efficacy of the sequence

{
T (i)

n

}
.

Example 8.1.2. Let F be an unknown cdf with pdf f = F ′ which is symmetric about 0
and let G(x, θ) = F(x − θ). Based on a random sample (X1, . . . , Xn) from G(x, θ), we want to
test H0: θ = 0 vs H+: θ > 0. Consider three test statistics

T (1)
n = X̄n/sn, T (2)

n = S̄n, and T (3)
n = {n(n − 1)}−1

n∑
i=1

SiR+
n:i,

for the t-test, the sign test, and the Wilcoxon singed-rank test. Then all three sequences{
T (j)

n : j = 1, 2, 3
}

satisfy the conditions of Theorem 8.1.6 with

μ1(θ) = θ/σ (F), σ 2
1 (θ) = 1 + θ2h(θ) where h(θ) =

{
μ4(F) − σ 4(F)

}
/
{

4σ 6(F)
}

for T (1)
n ,

μ2(θ) = 1 − 2F(−θ), σ 2
2 (θ) = 4F(θ){1 − F(θ)} for T (2)

n , and

μ3(θ) =
∫

F(x + 2θ) dF(x) − 1/2, σ 2
3 (θ) = 4VarF [F(X + 2θ)], where

σ 2(F) = EF

[
(X − θ)2

]
and μ4(F) = EF

[
(X − θ)4

]
.

Thus the asymptotic efficacies of
{

T (1)
n

}
,
{

T (2)
n

}
, and

{
T (3)

n

}
are

{
μ′

1(0)/σ1(0)
}2 = 1/σ 2(F),

{
μ′

2(0)/σ2(0)
}2 = 4f 2(0), and

{
μ′

3(0)/σ3(0)
}2 = 12

{∫ ∞
−∞

f 2(x) dx
}2

.
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If f is the pdf of N(0, 1), then the AREs of
{

T (2)
n

}
and
{

T (3)
n

}
with respect to

{
T (1)

n

}
are

e2,1 = 4f 2(0)σ 2(F) = 2/π and e3,1 = 12
{∫ ∞

−∞
f 2(x) dx

}2
σ 2(F) = 3/π .

An Outline of Contiguity Theory

Let SN be a test statistic based on observations X1, . . . , XN , iid as X distributed with
pdf/pmf f (x, θ) to test H0: θ = 0 vs H1: θ > 0. In the next example, we shall illustrate the

use of Contiguity Theory in deriving the asymptotic distribution of SN under f
(

x, δ/
√

N
)

from its asymptotic distribution under f (x, 0) (see [4, 34]).
For N = 1, 2, . . ., let PN and QN be probabilities on (XN ,AN ). The sequence {QN} is

said to be contiguous to {PN } if for any sequence AN ∈ AN , limN→∞ PN (AN ) = 0 implies
limN→∞ QN (AN ) = 0. Let LN denote the likelihood ratio of QN to PN .

For our purpose, XN is the sample space of a dataset (X1, . . . , XN ), AN is a family of
events in XN , and PN , QN are joint distributions of (X1, . . . , XN ) under two models such as
a null hypothesis and a sequence of alternatives. For each N , let SN be a test statistic based
on (X1, . . . , XN ) and suppose that we know the asymptotic distribution of {SN } under {PN }.
The aim is to find the asymptotic distribution of {SN } under {QN} from this by using {LN }
as a link between {PN } and {QN}. Operationally, this is achieved by finding the asymptotic
joint distribution of

{(
SN , log LN

)}
under {PN } when {QN} is contiguous to {PN }.

The following results due to LeCam (LeCam’s First and Third Lemma) provide the main
tools:

I. If log LN
L→ N
(−σ 2/2, σ 2

)
for some σ 2 > 0 under {PN }, then {QN } is contiguous to {PN }.

II. If
(

SN

log LN

)
L→ N2

([
μ1

μ2

]
,
[
σ 2

1 σ12

σ12 σ 2
2

])
with μ2 = −σ 2

2 /2 under {PN }, then

SN
L→ N
(
μ1 + σ12, σ 2

1

)
under {QN }.

Example 8.1.3. Let X1, . . . , XN be iid as X distributed with pdf/pmf f (x; θ) and let PN ,
QN denote, respectively, the joint distribution of (X1, . . . , XN ) under f (x; 0) and f

(
x; δ/

√
n
)
.

The log-likelihood ratio of QN to PN is

log LN =
N∑

i=1

[
log f
(

Xi; δ/
√

N
)

− log f
(
Xi; 0
)]

.

Under PN , subject to regularity conditions,

log LN =
(
δ/

√
N
) N∑

i=1

l̇
(
Xi; 0
)− (δ2/2

)
I(f ) + oP(1), as N → ∞, where

l̇(x; 0) = ∂

∂θ
log f (x; θ)

∣∣∣∣
θ = 0

with Eθ = 0

[
l̇(X ; 0)

]
= 0, and
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Eθ= 0

[
l̇(X ; 0)2

]
= I(f ) (Fisher-information) [see Chapter 5, Section 5.2].

Suppose that S(1)
N and S(2)

N are two statistics based on (X1, . . . , XN ), which under PN , are
asymptotically of the form

S
(j)
N = N−1/2

N∑
i=1

ψj(Xi) + oP(1), j = 1, 2, as N → ∞, where

Eθ = 0

[
ψj(X)

]
= 0, Eθ = 0

[
ψ2

j (X)
]

= σ 2
j , and δEθ = 0

[
l̇(X ; 0)ψj(X)

]
= μj.

(a) Find the asymptotic joint distribution of
(

S(j)
N , log LN

)
, j = 1, 2, under PN . What do

these asymptotic distributions imply?

(b) Find the asymptotic distribution of S(j)
N under QN , j = 1, 2.

(c) Find the Pitman ARE of S(1)
N with respect to S(2)

N .

Solution. We shall use the Contiguity Theory.

(a) By the bivariate CLT and Slutsky’s Theorem, for j = 1, 2, and denoting

μj = δEθ = 0

[
l̇(X ; 0)ψj(X)

]
,

[
S

(j)
N

log LN

]
L→ N2

([
0

−
(
δ2/2
)

I(f )

]
,

[
σ 2

j μj

μj δ2I(f )

])
, where

μj = δEθ0

[
l̇
(

Xj; 0
)
ψj(X)

]
.

(b) Since log LN
L→ N
(−(δ/2

)
I(f ), δ2I(f )

)
, {QN } is contiguous to {PN } by LeCam’s First

Lemma, so LeCam’s Third Lemma applies, by which

S
(j)
N

L→ N
(

0 + μj, σ 2
j

)
= N
(
δEθ = 0

[
l̇(X ; 0)ψj(X)

]
, σ 2

j

)
, j = 1, 2.

(c) The Pitman ARE of S(2)
N with respect to S(1)

N is

e2,1 =
E0

[
l̇(X ; 0)ψ2(X)

]
/σ 2

2

E0

[
l̇(X ; 0)ψ1(X)

]
/σ 2

1

.

8.2 Locally Most Powerful Rank Tests
Tests discussed in the last section were proposed on an ad hoc basis, on intuitive grounds,
without any kind of optimality criterion in mind. Although some of these tests have
good asymptotic properties under normality in terms of Pitman’s ARE, their performances
under other models will vary.
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It should be mentioned that for data which one suspects to be normally distributed
without being sure about it, Fisher and Yates [35] proposed the test statistic

m+n∑
i=m+1

E
[
Φ−1(UN :RN :i

)]
, N = m + n

for the two-sample problem, where UN :1 < · · · < UN :N are the order statistics in a random
sample of size N from Unif (0, 1) and Φ is the cdf of N(0, 1). Further investigations on this
and related problems were carried out by Hoeffding [36] and Terry [37].

The material presented in this section is mainly based on the development by Hájek
and Šidák [4] aiming at construction of rank tests with a local optimality property for a
general class of nonparametric hypotheses.

Definition 8.2.1. Let P and
{

qΔ,Δ ≥ 0
}

be families of pdf’s on R
N , so that q0 ∈ P but{

qΔ,Δ > 0
}

is distinct from P , and suppose that p is the joint pdf of rv’s (X1, . . . , XN ). A rank
test Ψ ∗ is a locally most powerful (LMP) rank test at level α for H0: p ∈ P vs H1: p = qΔ,
Δ > 0 based on (X1, . . . , XN ) if

(i) Ep
[
Ψ ∗(RN )

] ≤ α for all P ∈ P where RN is the vector of ranks of (X1, . . . , XN ) and
(ii) there exists ε > 0 such that Ep

[
Ψ ∗(RN )

] ≥ Ep[Ψ (RN )] for all Ψ satisfying (i) and for all
p ∈ {qΔ, 0 < Δ ≤ ε

}
.

In this section, we shall construct LMP rank tests for several nonparametric hypothesis
testing problems. These problems will involve the following families of probabilities

P0 =
⎧⎨
⎩p: p(x) =

N∏
i=1

f (xi), f is an unknown pdf on R

⎫⎬
⎭,

P1 =
⎧⎨
⎩p: p(x) =

N∏
i=1

f
(
xi
)
, f is an unknown symmetric pdf on R

⎫⎬
⎭,

P2 =
⎧⎨
⎩p: p

(
x, y
) = N∏

i=1

f
(
xi
)
g
(
yi
)
, f and g are unknown pdf’s on R

⎫⎬
⎭.

The problems of testing p ∈ P0 or P1 or P2 vs various alternatives
{

qΔ,Δ > 0
}

will be taken
up in the following.

8.2.1 Testing H0: p ∈ P0 Against a General Alternative

Regularity Conditions A. Let
{

f (x, θ), θ ∈ J
}

be a family of pdf’s on R where J is an open
interval in R containing 0 and the following hold:

(i) f (x, θ) is absolutely continuous in θ for almost all x (see Section 2.1 of Chapter I of
Hájek and Šidák [4]),



Chapter 8 • Distribution-Free Tests for Hypothesis Testing in Nonparametric Families 229

(ii) for each θ in a neighborhood of 0, the partial derivative

ḟ (x, θ) = lim
h→0

{
f
(
x, θ + h

) − f (x, θ)
}
/h

exists for almost all x,
(iii) limθ→0

∫∞
−∞ |ḟ (x, θ)| dx = ∫∞

−∞ |ḟ (x, 0)| dx < ∞.

Theorem 8.2.1. Let p denote an unknown joint pdf of (X1, . . . , XN ) and let qΔ(x1, . . . , xN )
= ∏N

i=1 f (xi, ciΔ), where the family
{

f (x, θ), θ ∈ J
}

is specified and satisfies the regularity
conditions A. Then the LMP rank test at level α for H0: p ∈ P0 vs H1: p = qΔ, Δ > 0 is
given by

Ψ (r) = 0, or γ , or 1 according as

N∑
i=1

ciaN
(
ri, f
)
<, or =, or > k, where

aN
(
i, f
) = Eq0

[
ḟ
f

(
XN :i, 0

)]
,

and 0 ≤ γ ≤ 1 and k are determined by Ep[Ψ (R)] = α for all p ∈ P0.
Before going into the proof, we shall look into some special cases of the family

{
f (x, θ)

}
which determines the score function aN

(
i, f
)
.

Location and Scale Families
Definition 8.2.2. The family

{
f (x, θ) = f (x − θ), −∞ < θ < ∞} is called a location family

and the family
{

f (x, θ) = e−θ f
(
(x − μ)e−θ ), −∞ < θ < ∞} is called a scale family.

Lemma 8.2.1. Let f be an absolutely continuous pdf. Then

(a) the location family satisfies Condition A if
∫∞
−∞ |f ′(x)| dx < ∞, and

(b) the scale family satisfies Condition A if
∫∞
−∞ |xf ′(x)| dx < ∞.

In the location family with f (x, θ) = f (x − θ), we have

ḟ (x, θ) = −f ′(x − θ) and
ḟ
f

(
Xn:i, 0

) = − f ′
f

(
XN :i
)
.

Let F(x, θ) = F(x − θ) where F is the cdf corresponding to f . Then

F−1(u, θ) = θ + F−1(u), 0 < u < 1, and

ḟ
f

(
F−1(u, 0), 0

)
= − f ′

f

(
F−1(u)

)
:= ϕ
(
u, f
)
.

Thus aN
(
i, f
) = E

[
ϕ
(
UN :i, f

)]
where UN :1 < · · · < UN :N are the order statistics in a random

sample (U1, . . . , UN ) from Unif (0, 1).
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In the scale family,

ḟ (x, θ) = e−θ f
(

(x − μ)e−θ)− (x − μ)e−2θ f ′((x − μ)e−θ)
= f (x, θ)

[
−1 − (x − μ)e−θ f ′

f

(
(x − μ)e−θ)], and

F(x, θ) =
∫ x

−∞
e−θ f
(

(y − μ)e−θ) dy =
∫ (x−μ)e−θ

−∞
f (y) dy = F

(
(x − μ)e−θ).

Then F−1(u, θ) = μ+ eθF−1(u), 0 < u < 1, and

ḟ
f

(
F−1(u, 0), 0

)
= −1 − F−1(u)

f ′
f

(u) := ϕ1
(
u, f
)
.

The score function aN
(
i, f
)

in this case is now denoted by

a1N
(
i, f
) = E

[
ϕ1
(
UN :i, f

)]
.

The above results are summarized below.
Let F denote the cdf corresponding to the pdf f by means of which the location and

scale families are defined and let UN :i denote the ith-order statistic in a random sample of
sine N from Unif (0, 1). Then the score functions in the location and the scale family are,
respectively,

aN
(
i, f
) = E

[
ϕ
(
UN :i, f

)]
where ϕ

(
u, f
) = − f ′

f

(
F−1(u)

)
, (3)

a1N
(
i, f
) = E

[
ϕ1
(
UN :i, f

)]
where ϕ1

(
u, f
) = −1 − F−1(u)

f ′
f

(
F−1(u)

)
. (4)

Next consider the important case when

c1 = · · · = cm = 0 and cm+1 = · · · = cN = 1,

which corresponds to the two-sample problem in which (X1, . . . , Xm) and
(
Xm+1, . . . , XN

)
are independent random samples from two populations and we want to test where they
have the same pdf, or whether their pdf’s differ in location (or scale). The test criterion for
the LMP rank tests in the two-sample location problem and the two-sample scale problem
are, respectively,

N∑
i=m+1

aN
(
ri, f
)

and
N∑

i=m+1

a1N
(
ri, f
)
,

where the score functions are given by Eqs. (3) and (4).
We now give an outline of the proof of Theorem 8.2.1. The proofs of three subsequent

theorems dealing with LMP rank tests in which P0 is replaced by P1 or P2 in H0 and qΔ
have other forms, will be concerned with the likelihood ratio of RN or

(
R+

n , S
)
, etc., namely,

PqΔ
[
RN = r

]
/Pq0

[
RN = r

]
, etc.,
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which will be written as

1 + N ![PqΔ
(
RN = r

)− Pq0

(
RN = r

)]
= 1 + N !Δ

∫
RN =rN

Δ−1

⎧⎨
⎩

N∏
i=1

f
(
xi,Δci

)− N∏
i=1

f
(
xi, 0
)⎫⎬⎭ dx

in the proof of Theorem 8.2.1 and similarly in the other proofs. The integral in the
expression above is an N-dimensional integral. The integrand is a difference of two
products, which will be simplified by the identity

N∏
i=1

ai −
N∏

i=1

bi =
k∑

k=1

(
ak − bk

) k−1∏
j=1

aj

N∏
j=k+1

bj (5)

resulting in a sum of k integrals. The crucial step is taking limΔ↓0 under the integrals, where
the regularity conditions come into play. The proof is then completed by some routine
simplifications, using Lemma 8.2.1.

Proof of Theorem 8.2.1. By N-P Lemma, it is enough to show that there exists ε > 0
such that for all Δ ∈ (0, ε], the likelihood ratios

PqΔ
[
RN = r

]
/Pq0

[
RN = r

]
for all r

are in the same ascending order as the numbers
∑N

i=1 ciaN
(
ri, f
)
. Since Pq0 [RN = r] = 1/N !

for all r, the likelihood ratio equals

1 + N !
∫

RN=r

⎧⎨
⎩

N∏
i=1

f
(
xi,Δci

)− N∏
i=1

f
(
xi, 0
)⎫⎬⎭ dx = 1 + N !Δ

N∑
k=1

ckINk
(
r, f ;Δ

)
, where

INk =
∫

RN =r

{
f
(
xk,Δck

)− f
(
xk, 0
)

Δck

} k−1∏
j=1

f
(

xj,Δcj

) N∏
j=k+1

f
(

xj, 0
)

dx, (6)

by Eq. (5). Hence the theorem will be proved by showing that

lim
Δ↓0

INk
(
r, f ;Δ

) = aN
(
rk, f
) = Eq0

[
ḟ
f

(
XN :k, 0

)|RN = r

]

= Eq0

[
ḟ
f

(
XN :k, 0

)]
,

using Lemma 8.1.1, and because N !∏N
j=1 f
(
xj, 0
)

is the conditional pdf of X given RN = r
under q0.

The justification for taking limΔ↓0 under the integral is provided by the regularity
conditions on

{
f (x, θ), θ ∈ J

}
. We omit the technicalities of this demonstration, referring

to Hájek and Šidák [4].
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8.2.2 One-Sample Location Problem, Assuming Symmetry

Here we shall consider rank-sign tests based on
(
R+

N , S
)
, the properties of which under

symmetry are given in Theorem 8.1.2, and a rank-sign test has been discussed in Sec-
tion 8.1.1.

Theorem 8.2.2. Suppose that (X1, . . . , XN ) have joint pdf p(x) on RN . Then the LMP rank-
sign test at level α for H0: p ∈ P1 vs H1: p(x) = qΔ(x) = ∏N

i=1 f (xi −Δ), Δ > 0, where f is a
specified symmetric absolutely continuous pdf on R with

∫∞
−∞ |f ′(x)| dx < ∞, is given by

Ψ (r, s) = 0, or γ , or 1 according as

N∑
i=1

sia+
N
(
ri, f
)
<, or = or > k,

the constant k and 0 ≤ γ ≤ 1 being determined by EH0

[
Ψ
(
R+

N , S
)] = α and the score

function is

a+
N
(
i, f
) = Eq0

[
− f ′

f

(|X |N :i
)] = Eq0

[
− f ′

f

(
F−1(1/2 + (1/2)UN :i

))]
:= Eq0

[
ϕ+(UN :i, f

)]
.

Proof. We need to show that the likelihood ratios(
2N N !

)
PqΔ

[(
R+

N , S
)

= (r, s)
]

for the 2N N ! different (r, s) are ordered in the same way as
∑N

i=1 sia
+
N

(
ri, f
)

for all suffi-
ciently smallΔ. As indicated earlier, we write these likelihood ratios as

1 +
(

2N N !
)
Δ

N∑
i=1

INk
(
r, s, f ;Δ

)

using Eq. (5) where the integrals INk have the same form as in Eq. (6) except that the
integration is over the set

{(
R+

N , S
) = (r, s)

}
. By Lemma 8.2.1(a), the conditions on f allow

taking limΔ↓0 under these integrals, showing that

lim
Δ↓0

INk
(
r, s, f ,Δ

) = ∫(
R+

N ,S
)= (r,s)

{
− f ′

f

(
xk
)}

f (x)dx.

Finally, since f is symmetric,

f ′
f

(x) = sign(x)
f ′
f

(|x|).

Hence

lim
Δ↓0

INk
(
r, s, f ;Δ

) = sk

∫
(
R+

N ,S
)= (r,s)

{
− f ′

f

(|xk|)}f (x) dx

= sk

2N N !Eq0

[
− f ′

f
(|Xk |)|R+

N = r, S = s
]
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= sk

2N N !Eq0

[
− f ′

f
(|Xk|)|R+

N = r
]

= sk

2N N !Eq0

[
− f ′

f
(|X |N :rk

)
]

∝ ska+
N (rk,f )

by Lemma 8.1.1 and since |Xk| is independent of S under q0. This concludes the proof,
leaving the verification of a+

N (i, f ) = E
[
ϕ+(UN :i, f

)]
as an exercise.

8.2.3 Two-Sample Scale Problem, Assuming Symmetry

Theorem 8.2.3. Let p(x) be the joint pdf of (X1, . . . , XN ). Then the LMP rank test for H0: p ∈
P1 vs H1: p(x) = qΔ(x) = ∏m

i=1 f (xi, 0)
∏N

i=m+1 f (xi,Δ), where
{

f (x, θ) = e−θ f
(
xe−θ )}

is a scale family with a specified symmetric absolutely continuous pdf f on R having∫∞
−∞ |xf ′(x)| dx < ∞, is given by

Ψ (r) = 0, or γ , or 1 according as

N∑
i=m+1

a+
1N
(
ri, f
)
<, or =, or > k,

the constants k and 0 ≤ γ ≤ 1 being determined by EH0

[
Ψ
(
R+

N

)] = α and the score
function is

a+
1N (i, f ) = Eq0

[
−1 − |X |N :i

f ′
f

(|X |N :i
)]

= E
[
−1 − F−1(1/2 + 1/2UN :i

) f ′
f

(
F−1(1/2 + 1/2UN :i)

)]

:= E
[
ϕ+

1
(
UN :i, f

)]
.

Proof. This is a special case of Theorem 8.2.1 with c1 = · · · = cm = 0, cm+1 = · · · = cN =
1, and f (x, θ) = e−θ f

(
xe−θ ). Lemma 8.2.1(b) and the conditions on f imply Condition A for

the validity of Theorem 8.2.1. We have already seen that for this f (x ,θ),

ḟ (x, θ)/f (x, θ) = −1 − xe−θ f ′
f

(
xe−θ), so

ḟ
f

(x, 0) = −1 − x
f ′
f

(x).

Also, since f is symmetric,

x = sign(x)|x| and
f ′
f

(x) = sign(x)
f ′
f

(|x|).

Hence the score function is

a+
1N (i, f ) = Eq0

[
−1 − |X |N :i

f ′
f

(|X |N :i)
]

.
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The verification of a+
1N (i, f ) = E

[
ϕ+

1

(
UN :i, f

)]
is left as an exercise.

8.2.4 Test for Independence in a Bivariate Population

Theorem 8.2.4. Let p
(
x, y
)

be the joint pdf of {(Xi, Yi): i = 1, . . . , N} and RN , R′
N the vectors of

ranks of (X1, . . . , XN ) and (Y1, . . . , YN ), respectively. Then the LMP rank test at level α based
on RN and R′

N for H0: p ∈ P2 vs H1: p
(
x, y
) = qΔ

(
x, y
) = ∏N

i=1 hΔ
(
xi, yi
)
, Δ > 0, where

hΔ(x, y) = ∫ f (x −Δz)g
(
y −Δz

)
dM(z) with specified pdf ’s f and g on R having continuous

f ′, g ′ and specified cdf M on R with finite variance σ 2
M is

Ψ
(
r, r′) = 0, or γ , or 1 according as

N∑
i=1

aN
(
ri, f
)
aN
(
r′

i, g
)
<, or =, or > k,

the constants k and 0 ≤ γ ≤ 1 being determined by EH0

[
Ψ
(
RN , R′

n
)] = α and the score

functions aN
(
i, f
)
, aN
(
i, g
)

are as in Eq. (3).
Remark 8.2.1. Under qΔ, the (Xi, Yi)’s are iid as (X , Y ) = (X∗ +ΔZ , Y ∗ +ΔZ

)
where X∗

with pdf f , Y ∗ with pdf g, and Z with cdf M are mutually independent.
In the proof of this theorem, we shall use

p
(
x, y
) = N∏

i=1

{
fΔ(xi)gΔ(yi)

}
with

fΔ(x) =
∫

f (x −Δz) dM(z) and gΔ(y) =
∫

g
(
y −Δz

)
dM(z).

Note that this p
(
x, y
) ∈ P2 and call this distribution Q0,Δ.

Lemma 8.2.2. limΔ↓0 Δ
−2
[
hΔ
(
x, y
)− fΔ(x)gΔ(y)

] = f ′(x)g ′(y)σ 2
M .

Proof. By algebraic rearrangements, we can write

hΔ(x, y) − fΔ(x)gΔ(y)

=
∫∫ [

f (x −Δz)g
(
y −Δz

)− f (x −Δz)g
(
y −Δz′)] dM(z) dM

(
z′)

= (1/2)
∫∫ {

f (x −Δz) − f
(
x −Δz′)}{g( y −Δz

)− g
(
y −Δz′)} dM(z) dM

(
z′).

Hence

Δ−2[hΔ(x, y) − fΔ(x)gΔ(y)
]

=
∫∫ {

f (x −Δz) − f
(
x −Δz′)

Δ
(
z − z′)

}{
g
(
y −Δz

)− g
(
y −Δz′)

Δ
(
z − z′)

}
(1/2)

(
z − z′)2 dM(z) dM

(
z′).

Let A(Δ, δ) be the part of this integral over
{|z|, |z′| ≤ δ/Δ

}
and let R(Δ, δ) be the remainder.

Then A(Δ, δ) can be made arbitrarily close to

f ′(x)g ′(y)(1/2)
∫
|z|≤δ/Δ

∫
|z′|≤δ/Δ

(
z − z′)2 dM(z) dM

(
z′)
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by making δ > 0 sufficiently small, and then this tends to f ′(x)g ′(y)σ 2
M as Δ → 0. Finally,

with ‖f ‖, ‖g‖ as sup norms of f , g and C = {|z|, |z′| ≤ δ/Δ
}c,

R(Δ, δ) ≤
[

2‖f ‖ ‖g‖/Δ2
] ∫∫

C
dM(z) dM

(
z′)

≤
[

4‖f ‖ ‖g‖/δ2
](
δ/Δ
)2PM

[|Z| > δ/Δ
]

≤
[

4‖f ‖ ‖g‖/δ2
] ∫

|z|>δ/Δ
z2 dM(z) → 0

for arbitrary δ asΔ → 0.
Proof. As in the proofs of Theorems 8.2.1–8.2.3, we consider the likelihood ratio

L
(
r, r′) = QΔ

(
R = r, R′ = r′)

Q0Δ
(
R = r, R′ = r′)

= 1 + (N !)2Δ2
∫

R=r

∫
R′=r ′

Δ−2

⎡
⎣ N∏

i=1

hΔ
(
xi, yi
)− N∏

i=1

{
fΔ(xi)gΔ(yi)

}⎤⎦ dx dy

= 1 + N !Δ2
N∑

k=1

INk
(
r, r′, f , g;Δ

)

using Eq. (5), where

INk =
∫

R=r

∫
R′=r ′

hΔ
(
xk, yk

)− fΔ(xk)gΔ( yk)

Δ2

k−1∏
j=1

hΔ
(

xj, yj

) N∏
j=k+1

{
fΔ(xj)gΔ( yj)

}
dxdy.

Since the likelihood ratios L
(
r, r′) are ordered as

∑N
k=1 INk

(
r, r′, f , g;Δ

)
, the theorem will be

proved by showing that for each (N , K ),

(N !)2 lim
Δ↓0

INk
(
r, r′, f , g;Δ

) = aN (ri, f )aN
(
r′

i, g
)
.

By Lemma 8.2.2, for each
(
N , k
)

the integrand of INk
(
r, r′, f , g;Δ

)
converges to (as Δ → 0)

f ′
f

(xk)
g ′
g

(yk)
N∏

j=1

{
f (xj)g(yj)

}
.

Now taking limΔ↓0 under the integral in INk, for the justification of which we refer to Hájek
and Šidák [4], we have
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(N !)2 lim
Δ↓0

INk
(
r, r ′, f , g;Δ

)

= σ 2
M

∫
R=r

∫
R′=r ′

f ′
f

(xk)
g ′
g

(yk)

∏N
j=1

{
f (xj)g(yj)

}
(1/N !)2

dx dy

= σ 2
M Eq0

[
f ′
f

(Xk)
g ′
g

(Yk)|RN = r, R′
N = r′

]

= σ 2
M Eq0

[
f ′
f

(Xk)|RN = r
]

Eq0

[
g ′
g

(Yk)|R′
N = r′

]

= σ 2
M Eq0

[
f ′
f

(
XN :rk

)]
Eq0

[
g ′
g

(
YN :r′

k

)]
= σ 2

M aN
(
rk, f
)
aN

(
r′

k, g
)

,

using Lemma 8.1.1.

8.2.5 Specific Rank Tests Using Approximate Scores

First, note that the scores aN
(
i, f
)
, a1N (i, f ), . . . can only be obtained from tables (if avail-

able) due to their complicated expressions. For example, there are tables for E
[
Φ−1(UN :i)

]
.

However, since E[UN :i] = i/(N + 1) and Var[UN :i] = i(N − i + 1)/
{

(N + 1)2(N + 2)
}→ 0 as

N → ∞, the distribution of UN :i is concentrated near i/(N + 1); so

aN (i, f ) = E
[
ϕ
(
UN :i, f

)] ≈ ϕ
(
E
[
UN :i
]
, f
) = ϕ

(
i/(N + 1), f

)
if ϕ is sufficiently smooth near u = i/(N + 1).

We now look at a number of specific problems.

I. Two-sample location
(a) Normal: ϕ

(
u, f
) = Φ−1(u), aN (i, f ) = E

[
Φ−1(UN :i)

] ≈ Φ−1(i/(N + 1)).
(b) Logistic: ϕ(u, f ) = 2u − 1, aN (i, f ) = E[2UN :i − 1] = (2/(N + 1))i − 1, or

equivalently, i (Wilcoxon test).
(c) Double exponential: ϕ(u, f ) = sign(2u − 1),

aN (i, f ) = E
[
sign(2UN :i − 1)

] ≈ sign
(
2i/(N + 1) − 1

) = sign
(
i − (N + 1)/2

)
.

The test statistic
∑N

i=m+1 sign
(
ri − (N + 1)/2

)
, or equivalently,∑N

i=m+1(1/2)
[
sign
(
ri − (N + 1)/2

)+ 1
]

can be expressed as
# observations in the second sample exceeding the pooled median (Median
test).

II. Two-sample scale

(a) Normal: 1 + a1N (i, f ) = E
[{
Φ−1(UN :i)

}2] ≈ {Φ−1(i/(N + 1))
}2

.

(b) Cauchy-type tail: f (x) = 1
2(1+|x|)2 ; 1 + ϕ1(u, f ) = 2|2u − 1|,

1 + a1N (i, f ) = 2E[|2UN :i − 1|] has led to several statistics.
III. One-sample location, assuming symmetry.

(a) Normal: a+
N (i, f ) = E

[
Φ−1
(
1/2 + (1/2)UN :i

)] ≈ Φ−1
(
1/2 + (1/2)i/(N + 1)

)
.
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(b) Logistic: ϕ
(
u, f
) = 2u − 1, ϕ+(u, f ) = ϕ

(
1/2 + (1/2)u, f

) = u,
a+

N (i, f ) = E[UN :i] = i/(N + 1). Test statistic is
∑

Xi>0 R+
N :i/(N + 1), or equivalently,∑

Xi>0 R+
N :i (Wilcoxon signed-rank test).

IV. Bivariate independence: For f and g both logistic, test statistic is Spearman’s rank
correlation ρS.

The verification of these scores and resulting test statistics are left as exercises.

8.2.6 Asymptotic Distribution of Test Statistics for LMP Rank Tests

We need the distribution under H0 of the test statistic of an LMP rank test in order to find
the critical value at a given level α. In some cases, these statistics have special forms (at
least approximately), for which exact distributions may be manageable (see Section 8.1.2),
while in some other cases, asymptotic distributions can be derived by the U-statistic
approach (see Section 8.1.3).

We first state without proof the following theorem from Hájek and Šidák [4], providing
the asymptotic null distributions of a large class of rank statistics such as those constructed
in Theorem 8.2.1.

Theorem 8.2.5. Suppose that ϕ is a square-integrable function on [0, 1] with ϕ̄ =∫ 1
0 ϕ(u) du and that the sequence {cN } satisfies

lim
N→∞

∑N
i=1
(
cNi − c̄N

)2
max1≤i≤N

(
cNi − c̄N

)2 = ∞, where c̄N = N−1
N∑

i=1

cNi.

Let ScN = ∑N
i=1 cNia

ϕ
N (RN :i), where RN is the rank vector of (X1, . . . , XN ) having joint pdf

p(x) ∈ P0 and aϕN (i) = E[ϕ(UN :i)]. Then
(
ScN − μcN

)
/σcN

L→ N(0, 1), where

μcN = cN

N∑
i=1

aϕN (i) and σ 2
cN

=
N∑

i=1

(
cNi − c̄N

)2 ∫ 1

0
{ϕ(u) − ϕ̄}2 du,

which is assumed to be positive.
In the two-sample case with cN1 = · · · = cNmN = 0, cN ,mN+1 = · · · = cN ,mN+nN = cNN =

1, c̄N = nN/N = 1 − λN , the condition on {cN } holds if mN/N → λ ∈ (0, 1). Here ScN =∑N
i=mN +1 aϕN (RN :i), μcN = (1 − λN )

∑N
i=1 aϕN (i), and σ 2

cN
= NλN (1 − λN )

∫ 1
0 {ϕ(u) − ϕ̄}2 du.

We now discuss a different approach by Chenoff and Savage [38] for deriving the
asymptotic distribution of the LMP rank statistic in the two-sample location problem
under the null hypothesis as well as under location-shift.

Let (X1, . . . , Xm) and (Y1, . . . , Yn) be independent random samples from populations
with cdf’s F and G, respectively, on R and let the empirical cdf’s of the two samples be
denoted by

Fm(x) = m−1
m∑

i=1

I(−∞,x](Xi) and Gn(y) = n−1
n∑

i=1

I(−∞,y](Yi).
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Next let

H(x) = λN F(x) + (1 − λN
)
G(x) and HN (x) = λN Fm(x) + (1 − λN

)
Gn(x),

where N = m + n and m/N = λN . Finally, let {JN } be a sequence of functions on [0, 1] by
suitably extending JN (i/N) = aN (i), i = 1, . . . , N (eg, as a step function), which converges
to a function J obeying certain conditions to be stated later.

The main idea of the Chernoff-Savage approach is to recognize that

HN (Xi) = empirical cdf of the combined sample evaluated at Xi = RN :i/N is the rank
statistic of interest,

where RN :i = rank of Xi in the combined sample, so if JN (i/N) = aN (i), then

TN =
∫

JN
[
HN (x)

]
dFm(x) = m−1

m∑
i=1

aN (RN :i).

To find the asymptotic distribution of TN , write

TN −
∫

J[H(x)] dF(x)

=
∫ {

J
[
HN (x)

]− J[H(x)]
}

dFm(x) +
∫

J[H(x)]d[Fm(x) − F(x)]

+
∫ {

JN
[
HN (x)

]− J
[
HN (x)

]}
dFm(x) (7)

On the right-hand side of Eq. (7), expand the integrand of the first term as

{HN (x) − H(x)}J ′[H(x)] + (1/2){HN (x) − H(x)}2J ′′[αN HN (x) + (1 − αN
)
H(x)
]
,

0 ≤ αN ≤ 1 and make rearrangement of all the terms. Thus

TN −
∫

J[H] dF =
∫ [
λN (Fm − F) + (1 − λN

)(
Gn − G

)]
J ′(H) dF

+
∫

J(H)d(Fm − F) + RN1 + RN2 + Rn3, (8)

where

RN1 =
∫ (

HN − H
)
J ′(H)d(Fm − F),

RN2 = (1/2)
∫

(HN − H)2J ′(αN HN + (1 − αN )H
)

dFm, and

RN3 =
∫

{JN (HN ) − J(HN )} dFm.

Integrating by parts, the main terms of Eq. (8) become∫ [
λN (Fm − F) + (1 − λN

)
Gn − G

]
J ′(H) dF

−
∫

(Fm − F)J ′(H)d
[
λN F + (1 − λN

)
G
]
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= −(1 − λN
) ∫

(Fm − F)J ′(H) dG + (1 − λN
) ∫ (

Gn − G
)
J ′(H) dF .

Now letting

J ′[H(x)] dG(x) = dB(x), J ′[H(x)] dF(x) = dB∗(x),

and integrating by parts, we are led to

TN −
∫

J[H(x)] dF(x)

= −(1 − λN
) ∫

[Fm(x) − F(x)] dB(x) + (1 − λN
) ∫ [

Gn(x) − G(x)
]

dB∗(x) + RN

= (1 − λN
) ∫

B(x)d[Fm(x) − F(x)] − (1 − λN
) ∫

B∗(x)d
[
Gn(x) − G(x)

]+ RN

= (1 − λN
)⎡⎣m−1

m∑
i=1

{
B(Xi) − EB(Xi)

}− n−1
n∑

i=1

{
B∗(Yi) − EB∗(Yi)

}⎤⎦ + RN .

The remainder term RN = RN1 + RN2 + RN3 can be shown to be oP
(
N−1/2

)
under the

following conditions:

1. J(u) = limN→∞ JN (u) exists for 0 < u < 1 and is not a constant.
2.
∫
{x: 0<HN (x)<1}{JN [HN (x)] − J[HN (x)]} dFm(x) = oP

(
N−1/2

)
.

3. JN (1) = O
(
N−1/2

)
.

4. |J (i)(u)| =
∣∣∣ diJ

dui

∣∣∣ ≤ constant|u(1 − u)|−i−1/2+δ , i = 0, 1, 2 for some δ > 0.

Also, since H = λN F + (1 − λN )G depends on N , so do the iid sequences
{B(Xi), i = 1, . . . , m} and {B∗(Yi), i = 1, . . . , n}. The asymptotic normality of

√
N[TN −∫

J[H(x)] dF(x)
]

would, therefore, have to be justified for this triangular array situation.
This justification is also provided by the above conditions.

We now arrive at the following theorem.
Theorem 8.2.6 (Chernoff-Savage). Under Conditions 1–4, if 0 < λ0 ≤ λN ≤ 1 − λ0 < 1

for all N, then
√

N
[

TN − ∫∞
−∞ J[H(x)] dF(x)

]
√(

1 − λN
){( 1−λN

λN

)
Var
[
B(X1)

] + Var
[
B∗(Y1)

]} L→ N(0, 1).

To make the statement of the above theorem explicit, we need Var[B(X1)] and
Var
[
B∗(Y1)

]
. Let F1(x) = I(X1 ≤ x) and G1(y) = I

(
Y1 ≤ y

)
. Then

E
[
F1(x)

] = F(x), Cov
[
F1(x), F1(y)

] = min
{

F(x), F(y)
}− F(x)F(y)

and likewise for E
[
G1(x)

]
and Cov

[
G1(x), G1(y)

]
. Using these, we have

Var
[
B(X1)

] = 2
∫∫

−∞<x<y<∞
F(x)
{

1 − F(y)
}

J ′[H(x)]J ′[H(y)
]

dG(x) dG(y) (9)
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and Var
[
B∗(Y1)

]
is obtained by interchanging F and G in the above formula for Var[B(X1)].

The asymptotic variance

VN = (1 − λN
){(1 − λN

λN

)
Var
[
B(X1)

]+ Var
[
B∗(Y1)

]}

can now be written in an explicit form.
In the two-sample problem, with G(x) = F(x − θN ) and F ′ = f , the asymptotic normality

holds uniformly in 0 < λ0 ≤ λN ≤ 1 − λ0 < 1 and θN in some neighborhood of 0. If θN → 0,
then (

λN

1 − λN

)
VN → 2

∫∫
x<y

F(x)
{

1 − F(y)
}

J ′[F(x)]J ′[F(y)
]

dF(x) dF(y)

= 2
∫∫

0<u<v<1
u(1 − v)J ′(u)J ′(v) du dv

= 2
∫∫∫∫

0<s<u<v<t<1
J ′(u)J ′(v) du dv ds dt

=
∫∫

0<s<t<1

[
J2(s) + J2(t) − 2J(s)J(t)

]
ds dt

=
∫ 1

0
J2(t) dt −

{∫ 1

0
J(t) dt

}2

. (10)

Verifying the details of the derivations of Eqs. (9) and (10) are left as exercises.
Going back to the original problem with

JN (i/N) = aN (i) = E
[

K −1(UN :i
)]

,

K being a strictly increasing absolutely continuous cdf, we need J = K −1 to satisfy

Condition 4 of Theorem 8.2.6 and λN → λ ∈ (0, 1). Then
√

N[TN − μ(θ)]/σ (θ)
L→ N(0, 1),

where μ(θ) and σ 2(θ) are obtained by letting J = K −1 in
∫

J[H(x)] dF(x) and the formula
for VN using Eq. (9) and its counterpart for Var

[
B∗(Y1)

]
. From these, we get

μ′(0) = −(1 − λ)
∫ ∞
−∞

(
K −1
)′

[F(x)]f (x) dF(x), and

σ 2(0) =
(

1 − λ

λ

)⎡⎣∫ 1

0

{
K −1(u)

}2
du −

{∫ 1

0
K −1(u) du

}2
⎤
⎦ =
(

1 − λ

λ

)
σ 2

K ,

if σ 2
K = VarK [X ] < ∞. Hence the Pitman asymptotic efficacy of TN is

{
μ′(0)
}2
/σ 2(0) = λ(1 − λ)

σ 2
K

{∫ ∞
−∞

K −1′[F(x)]f (x) dF(x)
}2

.
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Now take J = K −1 = Φ−1. If F(x) = Φ
(
(x − a)/b

)
and we take K = Φ in TN , then

∫ ∞
−∞

K −1′[F(x)]f (x) dF(x) = b−1
∫ ∞
−∞

Φ−1′[Φ(t)]φ(t) dΦ(t)

= b−1
∫ ∞
−∞

dΦ(t) = b−1,

so
{
μ′(0)
}2
/σ 2(0) = λ(1 − λ)/b2.

For F(x) = Φ
(
(x − a)/b

)
, the two-sample t-test has the same asymptotic efficacy.

Thus the Pitman ARE of the LMP rank test with score function Φ−1 with respect to the
t-test = 1.

8.3 Tests Based on Empirical Distribution Function
Let X1, . . . , Xn, . . . be a sequence of iid rv’s with common cdf F which we assume to be
continuous and strictly increasing. The random function

Fn(x) = n−1
n∑

i=1

I(−∞,x](Xi), −∞ < x < ∞,

called the empirical distribution function (edf) based on X1, . . . , Xn has already been
defined in Chapter 3.

Theorem 8.3.1 (Glivenko-Cantelli). supx |Fn(x) − F(x)| → 0 a.s., as n → ∞.
Proof.

(i) If |Fn(a) − F(a)| < ε/2, |Fn(b) − F(b)| < ε/2 and F(b) − F(a) < ε/2 for a < b, then
|Fn(x) − F(x)| < ε for all a ≤ x ≤ b and

(ii) there are only a finite number of points at which F has a jump bigger than ε/2. From
these facts it follows that for every ε > 0, there exists a constant C and another
constant α such that

P
[

sup
x

|Fn(x) − F(x)| > ε

]
≤ C exp

(
−αnε2

)
for all n.

[By a result due to Dvoretzky et al. [39], this probability inequality holds with α = 2.]
The theorem now follows from the Borel-Cantelli Lemma. The details of the proof are
left as an exercise.

8.3.1 Test Statistics

There are some well-known tests for the nonparametric hypothesis H0: F = F0 (where F0

is specified continuous cdf) against H1: F �= F0 which are based on the random function{√
n[Fn(x) − F0(x)]: x ∈ R

}
. Test statistics for two such tests are
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Kolmogorov-Smirnov statistic: Dn = supx
√

n|Fn(x) − F0(x)|, and
Cramér-von Mises statistic: W 2

n = n
∫∞
−∞[Fn(x) − F0(x)]2 dF0(x).

An important fact is the distribution-free property of these test statistics. To see this,
suppose that F0 is strictly increasing (a condition which can be removed if we argue a little
more carefully), and let Ui = F0(Xi). In Section 1.11 we have seen that X1, . . . , Xn are iid
with cdf F0 ⇐⇒ U1, . . . , Un are iid Unif (0, 1), so that

{√
n
[
Fn(x) − F0(x)

]
: − ∞ < x < ∞} D= {√n

[
Gn ◦ F0(x) − F0(x)

]
, −∞ < x < ∞}, (11)

where Gn(t) = n−1∑n
i=1 I(0,t](Ui) is the edf of (U1, . . . , Un).

Now letting t = F0(x), the statistics Dn and W 2
n can be expressed as

Dn = sup
0≤t≤1

√
n|Gn(t) − t| and W 2

n = n
∫ 1

0

[
Gn(t) − t

]2 dt. (12)

This shows that the distribution of Dn and W 2
n under H0: F = F0 is the same for all F0.

The statistic Dn can also be used to construct a confidence band for an unknown
continuous cdf. Since Dn is distribution-free, we can find a constant cα for a given
0 < α < 1 such that for all F we have

1 − α = PF

[
sup

x

√
n|Fn(x) − F0(x)| ≤ cα

]

= PF

[
Fn(x) − n−1/2cα ≤ F(x) ≤ Fn(x) + n−1/2cα for all x

]
.

Consequently,
{

Fn(x) ± n−1/2cα, −∞ < x < ∞} is a confidence band for F with confidence
coefficient 1 − α.

One-sided versions of the test statistic Dn, namely,

D+
n = sup

x

√
n
[
Fn(x) − F0(x)

]
and D−

n = sup
x

√
n
[
F0(x) − Fn(x)

]
(13)

can be used to test H0: F = F0 against one-sided alternatives.
The above ideas extend to two-sample problems as follows.
Let X11, . . . , X1m, . . . and X21, . . . , X2n, . . . be two independent iid sequences with com-

mon cdf’s F1, F2, respectively, and let

F1m(x) = m−1
m∑

i=1

I(−∞,x](X1i) and F2n(x) = n−1
n∑

i=1

I(−∞,x](X2i)

be the edf based on X11, . . . , X1m and X21, . . . , X2n, respectively. Then the two-sample ex-
tensions of the Kolmogorov-Smirnov and the Cramér-von Mises statistics are, respectively,

Dmn =
√

mn
m + n

sup
x

|F1m(x) − F2n(x)| and

W 2
mn = mn

m + n

∫ ∞
−∞
[
F1m(x) − F2n(x)

]2 d
(

mF1m(x) + nF2n(x)
m + n

)
, (14)

which can be used to test H0: F1 = F2 vs H1: F1 �= F2.
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We now examine the distribution of the stochastic process
{√

n[Fn(x) − F0(x)], −∞
< x < ∞} under H0: F = F0 or equivalently, the process

{√
n
[
Gn(t) − t

]
, 0 ≤ t ≤ 1

}
where

Gn(t) is the edf of a random sample U1, . . . , Un from Unif (0, 1) given in Eq. (11). Although
exact results for small sample are available for the statistics D+

n and Dn, we shall only give
an outline of the asymptotic property of

{√
n
[
Gn(t) − t

]
, 0 ≤ t ≤ 1

}
as n → ∞.

First note that

√
n
[
Gn(t) − t

] = n−1/2
n∑

i=1

[
I[0,t]
(
Ui
)− t
]
, and

E
[
I[0,t]
(
Ui
)] = t, Var

[
I[0,t](Ui)

] = t(1 − t),

Cov
[
I[0,s](Ui), I[0,t](Ui)

] = min(s, t) − st = s(1 − t) for 0 ≤ s ≤ t ≤ 1.

By multivariate CLT, it follows that for all sets of finite points 0 < t1 < · · · < tk < 1,

(√
n
[
Gn(t1) − t1

]
, . . . ,

√
n
[
Gn(tk) − tk

])T L→ Nk
(
0,Σt1,...,tk

)
, where

Σt1,...,tk =

⎡
⎢⎢⎢⎣

t1(1 − t1) t1(1 − t2) · · · t1(1 − tk)
t1(1 − t2) t2(1 − t2) · · · t2(1 − tk)

...
...

...
...

t1(1 − tk) t2(1 − tk) · · · tk(1 − tk)

⎤
⎥⎥⎥⎦. (15)

From this, it seems plausible that the entire stochastic process
{√

n
[
Gn(t) − t

]
, 0 ≤ t ≤ 1

}
should converge (in some sense) to a Gaussian process with mean value function 0 and
covariance function ρ(s, t) = s(1 − t), 0 ≤ s ≤ t ≤ 1, that is, a stochastic process
{X(t): 0 ≤ t ≤ 1} such that for any 0 ≤ t1 < · · · < tk ≤ 1,

(
X(t1), . . . , X(tk)

)
follows a k-dim

normal distribution with mean vector 0 and covariance matrix Σt1,...,tk given by Eq. (15).
This was conjectured by Doob [40]. For a formal description of this phenomenon, we shall
first review some basic facts about Brownian Motion and Weak Convergence.

8.3.2 Brownian Motion: Some Basic Facts

A standard Brownian Motion (B.M.) is a stochastic process {X(t), t ≥ 0} (ie, a collection of
rv’s on some probability space) with the following properties:

(i) X(0) = 0 w.p. 1.
(ii) For all k and 0 = t0 < t1 < · · · < tk , X(ti) − X(ti−1), 1 ≤ i ≤ k, are mutually

independent and X(ti) − X(ti−1) ∼ N
(
0, ti − ti−1

)
. Equivalently,(

X(t1), . . . , X(tk)
)T ∼ Nn

(
0,
((

min
(
ti, tj
))))

. [This is the property of independent and
stationary increments in a Gaussian Process.]

Wiener showed that it is possible to construct a probability distribution on a suitable σ -
field of continuous functions on R such that {X(t) = X(t,ω), t ≥ 0} defined on continuous
functions ω would have properties (i) and (ii). For this reason, the probability distribution
of a standard B.M. is called the “Wiener Measure.” From now on, we assume that the
sample paths of a B.M. are continuous w.p. 1.
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In general a B.M. {Y (t), t ≥ 0} with mean μ and variance σ 2 per unit time is Y (t) = μt +
σX(t), where {X(t), t ≥ 0} is a standard B.M.

We now state some properties of a standard B.M.

(I) If {X(t), t ≥ 0} is a standard B.M., then so are
(a) {−X(t), t ≥ 0} (Symmetry).
(b) {X(s + t) − X(s), t ≥ 0} for fixed s. Moreover, the process is independent of

{X(τ ), 0 ≤ τ ≤ s} (Markov Property).
(c) {tX(1/t), t ≥ 0} (Inversion).
(d)
{
α−1/2X(αt), t ≥ 0

}
for α > 0 (Scale Change).

(e) {X(t0) − X(t0 − t), 0 ≤ t ≤ t0} (Time Reversal).
For proofs of the above, it is enough to check that the covariance function of the
processes in (a)–(e) is min(t1, t2).
The next three properties involve the concept of martingales. In Section 3.3, we have
mentioned the martingale property of the stochastic process{

Sk =∑k
i=1 Xi, k = 1, 2, . . .

}
where {Xi} is a sequence of independent rv’s with mean

zero. More generally, a stochastic process {X(t), t ≥ 0} on a probability space (Ω ,A, P)
is a martingale if E[|X(t)|] < ∞ for all t and E[X(t)|{X(τ ), 0 ≤ τ ≤ s}] = X(s) for all
s ≤ t.

(II) (a) From the Markov Property, it follows that for s < t,

E[X(t)|X(τ ), τ ≤ s] = E[X(t) − X(s) + X(s)|X(τ ), τ ≤ s]

= E[X(t) − X(s)] + X(s) = X(s),

that is, {X(t), t ≥ 0} is a martingale.
(b) It is also easy to verify that

{
X(t)2 − t, t ≥ 0

}
is a martingale.

(c) Let ξ(t) = eθX(t)/E
[
eθX(t)

] = eθX(t)−θ2t/2, since

E
[

eθX(t)
]

= mgf of N(0, t) at θ = eθ
2t/2.

For s ≤ t

E[ξ (t)|ξ (τ ), τ ≤ s] = E
[

exp
(
θX(s) + θ(X(t) − X(s)) − θ2t/2

)
|ξ (τ ), τ ≤ s

]
= exp

(
θX(s) − θ2t/2

)
E
[
exp(θ(X(t) − X(s)))|ξ (τ ), τ ≤ s

]
= exp

(
θX(s) − θ2t/2

)
exp
(
θ2(t − s)/2

)
= exp

(
θX(s) − θ2s/2

)
= ξ (s),

showing that {ξ(t), t ≥ 0} is a martingale.
(III) Stopping Time.

For a continuous time stochastic process {X(t), t ≥ 0}, let T ≥ 0 be an rv defined in
such a manner that the event {T ≤ t} depends only on {X(τ ), τ ≤ t}. Such an rv is
called a stopping time. Examples are Ta = inf{t: X(t) = a}, Tab = inf

{
t: X(t) /∈ (a, b

)}
for a < 0 < b.
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If T is a stopping time, then min(T , t) is also a stopping time. Suppose that
{X(t), t ≥ 0} is a martingale with continuous sample paths and let T < ∞ be a
stopping time with E[|X(T)|] < ∞. Then under integrability conditions,
E[X(T)] = E[X(0)]. See Freedman [41] Brownian Motion and Diffusion, p. 193 and
Breiman [42] Probability, Generalization of Corollary 5.31, p. 98 and 274 for details.

The martingale {ξ(t), t ≥ 0} defined in II(c) above satisfies these conditions, so

E
[
ξ
(
min(T , t)

)] = E[ξ (0)]. (16)

8.3.3 Weak Convergence of
{
Yn(t) = √

n
(
Gn(t) − t

)
, 0 ≤ t ≤ 1

}
The random functions Yn(·) are not in C[0, 1] due to jumps in Gn(t) given in Eq. (11).
However, we can take care of this difficulty by a minor adjustment of Gn(t). Let Un:1 < · · · <
Un:n denote the order statistics of the random sample (U1, . . . , Un) from Unif (0, 1). The edf
Gn has jumps of 1/n at each of the order statistics. Now define G̃n by linear interpolation
between the points:

(0, 0),
(
Un:1, 1/(n + 1)

)
,
(
Un:2, 2/(n + 1)

)
, . . . ,
(
Un:n, n/(n + 1)

)
, (1, 1), ie,

G̃n(t) = (n + 1)−1[(i − 1) + (t − Un:i−1
)
/
(
Un:i − Un:i−1

)]
for Un:i−1 ≤ t ≤ Un:i

letting Un:0 = 0 and Un:n+1 = 1. Then |G̃n(t) − Gn(t)| ≤ 1/n for all t ∈ [0, 1], and{
Ỹn(t) = √

n
(

G̃n(t) − t
)

, 0 ≤ t ≤ 1
}

is in C[0, 1]. We can, therefore, use the theory of weak

convergence in C[0, 1] outlined in Section A.5 to find the weak limit of {Yn(·)} which is the

same as the weak limit of
{

Ỹn(·)
}

, because sup0≤t≤1 |Yn(t) − Ỹn(t)| ≤ n−1/2.

As mentioned at the end of Section 8.3.1, the natural candidate for the weak limit
of
{

Yn(t) = √
n
(
Gn(t) − t

)
, 0 ≤ t ≤ 1

}
is a Gaussian process on [0, 1] with mean value

function 0 and covariance function {ρ(s, t) = s(1 − t), 0 ≤ s ≤ t ≤ 1}. Now the process
{Y (t) = X(t) − tX(1), 0 ≤ t ≤ 1} where {X(t)} is a standard B.M. fits this description, be-
cause {Y (t)} is a Gaussian process with E[Y (t)] = 0 for all t and for s < t,

Cov[Y (s), Y (t)] = Cov[X(s), X(t)] − sCov[X(t), X(1)] − tCov[X(s), X(1)] + stVar[X(1)]

= s − st − st + st = s(1 − t).

To accomplish the actual proof of Yn(·) w→ Y (·) via weak convergence of
{

Ỹn(·)
}

, we invoke

Theorem A.5.2 in Section A.5, of which Condition (i) regarding convergence of fdd’s is
already seen, Condition (iia) that Yn(0) = OP(1) is trivial and Condition (iib) is verified
by a lengthy analysis (see [43, p. 105–108]).

The process {Y (t) = X(t) − tX(1), 0 ≤ t ≤ 1} where {X(t)} is a standard B.M. is called a
Brownian Bridge because it connects the points (0, Y (0)) = (0, 0) and (1, Y (1)) = (1, 0) by a
continuous sample path.
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8.3.4 Asymptotic Distributions of D+
n , Dn, and W2

n

All three statistics

D+
n = sup

0≤t≤1

√
n
[
Gn(t) − t

] = sup
0≤t≤1

Yn(t)

Dn = sup
0≤t≤1

|Yn(t)| and W 2
n =
∫ 1

0
Yn(t)2 dt

given by Eqs. (12) and (13) are continuous functions of {Yn(·)}. It therefore follows from the
Continuous Mapping Theorem A.5.1, Section A.5 that

Theorem 8.3.2. D+
n

L→ sup0≤t≤1 Y (t), Dn
L→ sup0≤t≤1 |Y (t)|, and W 2

n
L→ ∫ 1

0 Y (t)2 dt,
where {Y (t)} is the Brownian Bridge on [0, 1].

We first find the asymptotic distribution of D+
n .

Theorem 8.3.3. Let {Y (t) = X(t) − tX(1), 0 ≤ t ≤ 1}, where {X(t)} is a standard B.M.
Then

P

[
sup

0≤t≤1
Y (t) ≥ y

]
= e−2y2

, y > 0.

Proof. Note that

sup
0≤t≤1

Y (t) ≥ y ⇐⇒ sup
s≥0

Y
(
s/(1 + s)

) ≥ y

⇐⇒ X∗(s) = (1 + s)Y
(
s/(1 + s)

) ≥ (1 + s)y

for some s ≥ 0. Now
{

X∗(t) = (1 + t)Y
(
t/(1 + t)

)
, t ≥ 0

}
is a standard B.M., because it is a

Gaussian process with E
[
X∗(t)

] = 0 and

Cov
[
X∗(s), X∗(t)

] = (1 + s)(1 + t)
[
s/(1 + s)

][
1 − t/(1 − t)

] = s, for s ≤ t.

Hence

P

[
sup

0≤t≤1
Y (t) ≥ y

]
= P
[
X(s) ≥ ys + y for some s ≥ 0

]
, (17)

where {X(t)} is a standard B.M.
We shall now find P

[
X(t) ≥ at + b for some t ≥ 0] by a martingale approach.

Consider the stopping time

T = min
{

t: X(t) = at + b
}

if X(t) = at + b for some t ≥ 0 and

T = ∞ if X(t) < at + b for all t > 0.

Then

P
[
X(t) ≥ at + b for some t ≥ 0

] = P[T < ∞]. (18)

Recall that for each t, T ∧ t = min(T , t) is a stopping time, and
{
ξ(t) = eθX(t)/E

[
eθX(t)

]
= eθX(t)−θ2t/2

}
is a martingale (property II(c) of a standard B.M.). Consequently, Eq. (16)

holds.
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For θ = 2a > 0,

ξ (T ∧ t) = exp
[
θX(T ∧ t) − θ2(T ∧ t)/2

]

=
⎧⎨
⎩

exp
[
θX(t) − θ2t/2

]
< exp

[
θ
(
at + b

)− θ2t/2
]

, t < T

exp
[
θX(T) − θ2T/2

]
= exp

[
θ
(
aT + b

)− θ2T/2
]

, t ≥ T

≤ exp
[
θ
{

a(T ∧ t) + b
}− θ2(T ∧ t)/2

]
= exp

[
2a
{

a(T ∧ t) + b
}− (2a)2(T ∧ t)/2

]
= e2ab. (19)

Next note that

ξ (t) = exp
[
θX(t) − θ2t/2

]
→ 0 a.s. as t → ∞, (20)

because if {Zi} are iid N(0, 1) and X(n) = ∑n
i=1 Zi, then θX(n) − θ2n/2 = θn

(
Z̄n − θ/2

) →
−∞ a.s.

Now consider

lim
t→∞ ξ (T ∧ t) = lim

t→∞[ξ (t)I(t ≤ T) + ξ (T)I(T < t)],

of which the first term is 0 a.s. by Eq. (20) and the second term is ξ(T) limt→∞ I(T < t) =
ξ(T)I(T < ∞). Thus

lim
t→∞ ξ (T ∧ t) = ξ (T)I(T < ∞), a.s.

Hence by dominated convergence, using Eq. (19),

lim
t→∞ E[ξ (T ∧ t)] = E[ξ (T)I(T < ∞)]

= E
[

exp[θ(aT + b
)− θ2T/2]I(T < ∞)

]
= E
[

exp[2a
(
aT + b

)− (2a)2T/2]I(T < ∞)
]

= e2abP[T < ∞]

for θ = 2a. But by Eq. (16), E[ξ(T ∧ t)] = 1 for all t, so

lim
t→∞ E[ξ (T ∧ t)] = 1 = e2abP[T < ∞].

Thus P[T < ∞] = e−2ab for a > 0 and b ≥ 0. Taking a = b = y > 0 in this formula and
using Eqs. (17) and (18), the theorem follows.

The distribution of sup0≤t≤1 |Y (t)| is obtained by lengthy analysis of the joint behavior
of the maximum and the minimum of a standard B.M. We state the result in the following
theorem, referring to Billingsley [43, p. 77–80 and 83–85] for a proof.

Theorem 8.3.4. Let {Y (t), 0 ≤ t ≤ 1} be a Brownian Bridge on [0, 1]. Then

P

[
sup
0≤t

|Y (t)| ≤ y

]
= 1 + 2

∞∑
k=1

(−1)ke−2k2y2
, y > 0.
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The distribution of
∫ 1

0 Y (t)2 dt is obtained by using an orthogonal expansion of a stan-
dard B.M. in terms of an infinite sequence of iid N(0, 1) rv’s {Y0, Y1, . . .} due to Wiener [44].
We sketch the derivation of this distribution, referring to Breiman [42], Section 12.7, and
Hájek and Šidák [4], V3.3 Theorem C for details.

Let {X(t)} be a standard B.M. on [0,π]. Then Cov[X(s), X(t)] can be expressed by the
following identity:

st/π + (2/π) ∞∑
k=1

(
sin ks

)(
sin kt

)
/k2 = min(s, t) for 0 ≤ s, t ≤ π . (21)

Hence {X(t)} has the representation:

X(t) = (1/√π)tY0 +√2/π
∞∑

k=1

{(
sin kt

)
/k
}

Yk, 0 ≤ t ≤ π , (22)

where Y0, Y1, . . . are iid N(0, 1) rv’s, because the right-hand side of Eq. (22) is a Gaussian
process with E[X(t)] = 0 and Cov[X(s), X(t)] is the same as in Eq. (21).

Rewrite Eq. (21), replacing s/π , t/π by s∗, t∗, respectively, and rewrite Eq. (22) by scale
change to obtain

X∗(t) = (1/√π)X(πt) = tY0 + √
2

∞∑
k=1

{(
sin kπt

)
/(kπ)

}
Yk, 0 ≤ t ≤ 1

and

s∗t∗ + 2
∞∑

k=1

(
sin kπs∗

)(
sin kπt∗

)
/
(
kπ
)2 = min

(
s∗, t∗

)
, 0 ≤ s∗, t∗ ≤ 1. (23)

Hence {X∗(t)} is a standard B.M. on [0, 1], because Cov
[
X∗(s), X∗(t)

] = min(s, t) by Eq. (23).

Since X∗(1) = Y0, it follows that

Y (t) = X∗(t) − tX∗(1) = √
2

∞∑
k=1

{(
sin kπt

)
/(kπ)

}
Yk (24)

is a Brownian Bridge on [0, 1]. We thus arrive at the following theorem.
Theorem 8.3.5.

∫ 1
0 Y (t)2 dt =∑∞

k=1

(
kπ
)−2Y 2

k , which is a mixture of χ2’s.
Proof. By Eq. (24),

∫ 1

0
Y (t)2 dt = 2

∞∑
j=1

∞∑
k=1

(
jkπ2
)−1

YjYk

∫ 1

0
sin jπt sin kπtdt =

∞∑
k=1

(
kπ
)−2Y 2

k ,

since 2
∫ 1

0

(
sin jπt

)(
sin kπt

)
dt = 1 when j = k and = 0 when j �= k.
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Finally, we consider the two-sample statistics Dmn and W 2
mn given by Eq. (14) under the

null hypothesis F1 = F2 = F (unknown).
For m, n → ∞ in such a way that m/(m + n) = m/N → λ and n/(m + n) = n/N → 1 −λ

for 0 < λ < 1, write

Dmn =
√

mn
m + n

sup
x

|{F1m(x) − F(x)} − {F2n(x) − F(x)}|

=
√

mn
m + n

sup
0≤t≤1

|m−1/2[√m{G1m(t) − t}]− n−1/2[√n{G2n(t) − t}]|
L→ √λ(1 − λ) sup

0≤t≤1
|λ−1/2Y1(t) − (1 − λ)−1/2Y2(t)|

= sup
0≤t≤1

|√1 − λY1(t) − √
λY2(t)|,

where {Y1(t)} and {Y2(t)} are independent Brownian Bridges on [0, 1]. Since{
Y (t) = √

1 − λY1(t) − √
λY2(t)

}
is a Gaussian process with mean value function 0 and

Cov[Y (s), Y (t)] = (1 − λ)s(1 − t) + λs(1 − t) = s(1 − t) for 0 ≤ s, t ≤ 1,

Dmn
L→ sup0≤t≤1 |Y (t)| and {Y (t)} is a Brownian Bridge on [0, 1]. Thus the asymptotic dis-

tribution of Dmn is the same as that of the one-sample statistic Dn under null hypothesis.
For W 2

mn, analogous argument holds with the additional observation that (m + n)−1[
mG1m(t) + nG2n(t)

] → t, a.s. uniformly by Glivenko-Cantelli Lemma. Hence W 2
mn

L→∫ 1
0 Y (t)2 dt.

Exercises
8.1. Let p be the joint pdf of X1, . . . , Xm, Xm+1, . . . , Xm+n . We want a UMP similar region

test at level α for H0: p ∈ P0 vs H1: p = qΔ,Δ > 1, where

qΔ
(
x1, . . . , xn+m

) = (2π)(m+n)/2Δ−n/2 exp

⎡
⎣−(1/2)

m∑
i=1

x2
i − (2Δ)−1

n+m∑
i=m+1

x2
i

⎤
⎦.

(a) Show that the UMP similar region test at level α for H0 vs H1 is of the form:
ϕ
(
x(m+n), r(m+n)

) = 0, or γ
(
x(m+n)

)
, or 1

according as
∑m+n

i=m+1 x2
i <, or =, or> k

(
x(m+n)

)
.

(b) For m = 6, n = 9, and Δ = 2, generate
(
x1, . . . , xm+n

)
from qΔ and apply the

above test at level α = 0.05 by determining k
(
xm+n

)
and γ

(
xm+n

)
from

(i) the permutation distribution of
∑m+n

i=m+1 x2
i ,

(ii) a random sample of 100 combinations.
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8.2. The Mann-Whitney statistic, properly normalized, is

Tn =
√

n
n1n2

n1∑
i=1

n2∑
j=1

{
I[0,∞)

(
Xi − Yi

)− θ
}

,

n1 = [nλ], n2 = [n(1 − λ)], 0 < λ < 1,

where {Xi} and
{

Yj
}

are independent iid sequences from F and G, respectively, and
θ = ∫ G(x) dF(x). Find
(a) the Hájek projection T∗

n of Tn when G = F,
(b) the asymptotic distribution of T∗

n , and
(c) the asymptotic distribution of Tn with proper justification.

8.3. The Kendall’s tau statistic based on a random sample (X1, Y1), . . . , (XN , YN ) from a
continuous bivariate distribution is

τn = 1
N(N − 1)

N∑
i=1

N∑
j �=i=1

sign
(

Xi − Xj

)
sign
(

Yi − Yj

)
.

(a) Find the Hájek projection τ ∗
N of τN and the asymptotic distribution of

√
Nτ ∗

N
under H0: X and Y are independent.

(b) Use (a) and the property of Var
[
τN − τ ∗

N

]
to derive the asymptotic distribution

of
√

NτN under H0.
8.4. Let X1, . . . , Xm, Y1 = Xm+1, . . . , Yn = Xm+n be independent rv’s, N = m + n.

(a) Under H0: Xi ∼ N(0, 1), i = 1, . . . , N and under contiguous alternative

HN : Xi ∼ N(0, 1), i = 1, . . . , m and Xi ∼ N
(
δ/

√
N , 1
)

, i = m + 1, . . . , N , find the

asymptotic distributions of the following:

SN1 = Two-sample t-statistic = (X̄ − Ȳ
)/[( 1

m + 1
n

)
(m−1)S2

X +(n−1)S2
Y

m+n−2

]1/2

,

SN2 = Wilcoxon statistic = m−1∑m
i=1 RN :i − n−1∑m+n

i=m+1 RN :i, or equivalently,
SN2 =∑m

i=1 RN :i,
SN3 = Fisher-Yates normal scores rank statistic =∑m

i=1 E
[
Φ−1
(
UN :RN :i

))]
, using

usual notations.
(b) Find the Pitman AREs of SN2 and SN3 with respect to SN1.

8.5. Let X1, . . . , Xn be a random sample from a distribution with mean μ, variance σ 2,
and finite fourth central moment β = E

[
(X − μ)4]. We want the asymptotic

distribution of the sample variance s2
n = (n − 1)−1∑n

i=1

(
Xi − X̄n

)2
.

(a) Show that s2
n = {n(n − 1)}−1∑n

i=1
∑n

j=1

(
Xi − Xj

)2, which is a U-statistic.

(b) Use this U-statistic form to find the Hájek projection of 2s2
n and then the

asymptotic distribution of
√

n
(
s2

n − σ 2
)
.

8.6. Let (X1, Y1), . . . , (XN , YN ) be iid as (X , Y ) following the bivariate normal distribution
with E[X ] = E[Y ] = 0, E

[
X 2
] = E

[
Y 2
] = 1, and E[XY ] = θ . For testing H0: θ = 0 vs

H1: θ > 0 (ie, independence vs positive dependence), find the Pitman ARE of
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SN1 = √
NτN with respect to SN2 = √

NrN , where τN is Kendall’s tau and rN is the
product-moment correlation based on (X1, Y1), . . . , (XN , YN ) as in Example 8.1.3.
Use the Hájek projection of τN and its asymptotic property obtained in Exercise 8.3
and show that

√
NrN = N−1/2∑N

i=1 XiYi + oP(1). Now find l̇
(
x, y; 0

)
and I , express

log LN , SN1, and SN2 in the desired form. [Hint: IfΦ and φ are the cdf and pdf of
N(0, 1), then

∫∞
−∞ xΦ(x) dΦ(x) = ∫∞

−∞
[∫ x

−∞ φ(t) dt
]
xφ(x) dx = ∫∞

−∞[∫∞
t xφ(x) dx

]
φ(t) dt. Evaluate this.]

8.7. In this problem, Kendall’s tau and Spearman’s rank correlation are used in a
different context. Let Xi = θdi + Zi, i = 1, . . . , n, where Z1, . . . , Zn are iid with a
continuous cdf and d1, . . . , dn are equally spaced constants in increasing order,
which can be taken to be 1, . . . , n, without loss of generality. The following statistics
can be used to test H0: θ = 0 vs H1: θ > 0.
(i) Moore-Wallis Difference-Sign Statistic: Dn =∑n

i=2 I(0,∞)
(
Xi − Xi−1

)
,

(ii) Difference-Sign Correlation Coefficient (Kendall):
τN = [4n(n − 1)]−1∑n−1

i=1

∑n
j=i+1 I(0,∞)

(
Xi − Xj

)
,

(iii) Rank Correlation Coefficient (Spearman):
ρn = 1 − [6n

(
n2 − 1

)]−1∑n−1
i=1

∑n
j=i+1

(
j − i
)[

1 + sign
(
Xi − Xj

)]
,

(iv) The t-statistic: Tn =∑n
i=1

(
di − d̄n

)(
Xi − X̄n

)/√∑n
i=1

(
Xi − X̄n

)2
.

We now ask the following questions, regrading the asymptotic properties of these
statistics:
(a) Express Kendall’s tau and Spearman’s rank correlation coefficient in the form

given in (ii) and (iii).
(b) Express the t-statistic in the form given in (iv). [This is the test statistic for

H0: θ = 0 in the linear model Xi = μ+ diθ + Zi, where Z1, . . . , Zn are iid
N
(
0, σ 2
)
, obtained from the least squares estimator and the residual sum of

squares. See Example 6.9.10.]
(c) Find the asymptotic distribution of Dn, τn, ρn, and Tn (properly normalized)

under H0 and under H1, assuming that the Zi’s are iid as N
(
0, σ 2
)
. For H1,

consider contiguous alternatives.
(d) Calculate the Pitman AREs of the tests based on Dn, τn, and ρn with respect to

the test based on Tn.
[Hint: The statistic τn is a U-statistic, but ρn is not; so find the Hájek projection
(adjusting for the mean) and check that the Hájek projection differs from the

original statistic by oP(1). Express Tn in terms of bn =
√∑n

i=1

(
di − d̄n

)2
,

Yn =∑n
i=1

(
di − d̄n

)
Zi/bn ∼ N(0, 1), and Wn =∑n

i=1

(
Zi − Z̄n

)2 − Y 2
n ∼ χ2

n−2, and in

the nonnull case use θ = θn = δ/bn . For Dn, use Theorem 3.3.3 of Chapter 3 for
m-dependent processes.]

8.8. Let Un1 = (1/n(r)
)∑

n,r g1
(
Xi1 , . . . , Xir

)
and Un2 = (1/n(s)

)∑
n,s g2
(
Xi1 , . . . , Xis

)
be

two U-statistics based on iid rv’s X1, . . . , Xn, both g1 and g2 being symmetric in their
arguments. Let θ1 = E

[
g1(X1, . . . , Xr)

]
, θ2 = E

[
g2(X1, . . . , Xs)

]
and assume that
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E
[
g2

1 (X1, . . . , Xr)
]
, and E

[
g2

2 (X1, . . . , Xs)
]

are finite. We want the asymptotic
distribution of

√
n[ϕ(Un1, Un2) − ϕ(θ1, θ2)], where ϕ has continuous first partial

derivatives at (θ1, θ2). Let

h1
(
x1, . . . , xr

) = g1
(
x1, . . . , xr

)− θ1, h2
(
x1, . . . , xs

) = g1
(
x1, . . . , xs

)− θ2,

h∗
1(X1) = E

[
h1
(
X1, . . . , Xr

)|X1
]
, h∗

2(X1) = E
[
h2
(
X1, . . . , Xs

)|X1
]
,

σ11 = E
[

h∗2

1 (X1)
]

, σ22 = E
[

h∗2

2 (X1)
]

, σ12 = E
[
h∗

1(X1)h∗
2(X1)

]
, and

suppose thatΣ =
[
σ11 σ12

σ12 σ22

]
is positive-definite.

(a) Find two-dimensional Hájek projection
(
V ∗

n1, V ∗
n2

)
of

(Vn1, Vn2) = (√n(Un1 − θ1),
√

n(Un2 − θ2)
)
.

(b) Show that
(
V ∗

n1, V ∗
n2

)− (Vn1, Vn2) = oP(1).
(c) Find the asymptotic distribution of (Vn1, Vn2).
(d) From (c), find the asymptotic distribution of

√
n[ϕ(Un1, Un2) − ϕ(θ1, θ2)], using

the delta method.
8.9. Let X1, . . . , Xn be iid positive-valued rv’s with cdf F having mean μ and variance σ 2.

Let

Δ = EF
[|X1 − X2|] = ∫∫ |x1 − x2| dF(x1) dF(x2) and

ζ = EF
[
X1|X1 − X2|] = ∫∫ x1|x1 − x2| dF(x1) dF(x2).

The statistic Gn = Dn/
(
2X̄n
)
, where X̄n = n−1∑n

i=1 Xi and
Dn = [n(n − 1)]−1∑n

i=1
∑n

j �=i=1 |Xi − Xj| is known as Gini’s coefficient of
concentration.
Use the result of Exercise 8.8 to find the asymptotic distribution of√

n
(
Gn −Δ/(2μ)

)
.

8.10. Verify that the score functions

a+
N (i, f ) = Eq0

[
− f ′

f

(|X |N :i
)] = E

[
ϕ+(UN :i, f

)]
and

a+
1N (i, f ) = Eq0

[
−1 − |X |N :i

f ′
f

(|X |N :i
)] = E

[
ϕ+

1
(
UN :i, f

)]

are as stated in Theorems 8.2.2 and 8.2.3.
8.11. Verify that the scores and the resulting test statistics for the specific problems in

Section 8.2.5 are as stated in the text.
8.12. Let p be the joint pdf of

(
X1, . . . , Xm+n

)
. We want to test H0: p ∈ P0 vs H1: p = qΔ,

Δ > 0. Show that if the joint cdf QΔ corresponding to qΔ is given by (Lehmann
Alternative)
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QΔ
[
Xi ≤ xi, 1 ≤ i ≤ m + n

] = m∏
i=1

[
(1 −Δ)F(xi) +ΔF2(xi)

] m+n∏
i=m+1

F(xi),

where F is an arbitrary absolutely continuous cdf, then the LMP rank test of
H0: p ∈ P0 vs H1: p = qΔ,Δ > 0, has a critical region of the form∑m

i=1 Rm+n:i ≥ constant.
8.13. In the set-up of Exercise 8.12, suppose that the joint cdf QΔ is given by

QΔ
[
Xi ≤ xi, 1 ≤ i ≤ m + n

] = m∏
i=1

F(xi)
1+Δ

m+n∏
i=m+1

[
1 − {1 − F(xi)

}1+Δ],
where F is an arbitrary absolutely continuous cdf. Show that the LMP rank test of
H0: P ∈ P0 vs H1: p = qΔ,Δ > 0, has a critical region of the form∑m

i=1 aN
(
Rm+n:i

) ≥ constant, with aN (i) =∑i−1
j=0 1/(N − j) −∑N−i

j=0 1/
(
N − j

)
,

N = m + n. [Hint: First show that E
[− log(1 − UN :i)

] =∑i−1
j=0 1/(N − j) and

E
[− log UN :i

] =∑N−i
j=0 1/(N − j), where UN :1 < · · · < UN :N is an ordered random

sample from Uniform(0, 1).]
8.14. Verify the formula for Var[B(X)] given in Eq. (9) and the limit of λN (1 − λN )−1VN as

θN → 0 given by Eq. (10).
8.15. Suppose that X1, . . . , XN are iid rv’s and let RN :i be the rank of Xi among X1, . . . , XN .

Consider the scores

aN (i) =
{

i 1 ≤ i ≤ N − 1
N2/2 i = N

,

and let Smn =∑m
i=1 aN (RN :i), m + n = N . Show that if N → ∞, m → ∞, and

m/N → 0, then
(a)
{

E
[
Smn
]− mN/2

}2
/
(
mnN/12

)→ ∞,
(b) Var

[
Smn
]
/
(
mnN/12

)→ ∞, and

(c)
(
Smn − mN/2

) L→ N(0, 1).
8.16. Give a detailed proof of the Glivenko-Cantelli Theorem using the outline in the text.
8.17. Let {X(t), 0 ≤ t ≤ 1} be a collection of rv’s such that

(i) X(0) = 0 with probability 1,
(ii) for any 0 = t0 < t1 < · · · < tk ≤ 1, the increments X(ti) − X

(
ti−1
)

are
independent N

(
0, ti − ti−1

)
.

Show that for any 0 < t1 < · · · < tk ≤ 1 (X(t1), . . . , X
(
tk
)
) follows the k-dim normal

distribution with mean vector 0 and covariance matrix
((
σ
(
ti, tj
))) = ((min

(
ti, tj
)))

.
8.18. Let U1U2, . . . be iid Uniform(0, 1) rv’s and Fn(t) = n−1∑n

i=1 I[0,t](Ui). Let
Yn(t) = √

n[Fn(t) − t]. Show that for any 0 ≤ t1 < · · · < tk ≤ 1,(
Yn(t1), . . . , Yn

(
tk
)) L→ (Y (t1), . . . , Y

(
tk
))

, where Y (t)
D= X(t) − tX(1) and

{X(t): 0 ≤ t ≤ 1} is an in Exercise 8.17.



9
Curve Estimation

9.1 Introduction
This chapter is concerned with three problems:

Problem 1. Let X1, . . . , Xn be a random sample from a cdf F with pdf f = F ′. We want to
estimate the function f .

Problem 2. Let (X1, Y1), . . . , (Xn, Yn) be a random sample from a bivariate distribution
with regression function

m(x) = E[Y |X = x] =
∫ ∞
−∞

yfY |X
(
y|x) dy = ϕ(x)/f (x), where

ϕ(x) =
∫ ∞
−∞

yfXY
(
x, y

)
dy

and f is the pdf of X . We want to estimate the function m.
Problem 3. Let

(
T , C

)
be independent positive-valued rv’s, where T is the survival time

of sample unit with cdf F and pdf f , observations on which may be stopped at time C.
We want to estimate the survival function S(t) = 1 − F(t) and the hazard function λ(t) =
f (t)/S(t) based on iid observations on

(
T , C

)
.

We shall develop methods for estimating the functions f and m, and look at the
asymptotic properties of these estimators as n → ∞. Methods for estimating the survival
function and integrated hazard function will also be constructed.

9.2 Density Estimation
Since the empirical cdf Fn(x) = n−1 ∑n

i=1 I(−∞,x](Xi) is a natural estimator of F , we can
attempt to estimate f = F ′ via the estimator Fn of F , using the relation

f (x) = lim
h↓0

h−1[F(x + h/2
) − F

(
x − h/2

)]
≈ h−1[F(x + h/2

) − F
(
x − h/2

)]

Theory and Methods of Statistics. http://dx.doi.org/10.1016/B978-0-12-802440-9.00009-6
Copyright © 2016 Elsevier Inc. All rights reserved.
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for small h > 0. This leads to the estimator

fn(x) = h−1
n

[
Fn

(
x + hn/2

) − Fn
(
x − hn/2

)]
= (

nhn
)−1

n∑
i=1

I(x−hn/2,x+hn/2]
(
Xi
)

= (
nhn

)−1
n∑

i=1

I(−1/2,1/2]
(

x − Xi
hn

)
. (1)

The data distribution is a discrete distribution with mass 1/n at each Xi. If we spread the
discrete mass uniformly over an interval of length hn centered around Xi, then the mass
1/n at Xi is replaced by a histogram of height

(
nhn

)−1 on the interval (Xi − hn/2, Xi + hn/2].
Putting all these histograms around X1, . . . , Xn together, we obtain fn(x) defined by Eq. (1).
In this intuitive description, we could spread the mass 1/n at each Xi by an arbitrary pdf
h−1

n K
(
(· − Xi)/hn

)
instead of the uniform pdf h−1

n I(−1/2,1/2]
(
(· − Xi)/hn

)
. This would define

a general class of estimators of the form

fn(x) = (
nhn

)−1
n∑

i=1

K
((

x − Xi
)
/hn

)
, (2)

where K is a pdf (ie, K (u) ≥ 0 and
∫∞
−∞ K (u) du = 1). Such an estimator is called a

kernel estimator with kernel K and bandwidth hn. Since hn serves the purpose of spreading
discrete masses over the support of K , it is called a smoothing parameter of the estimator
fn(x).

Note that fn is itself a pdf, because fn(x) ≥ 0 for all x and it is easy to check that∫∞
−∞ fn(x) dx = 1.

The kernel K and the bandwidth hn are chosen by the user. The following kernels are
often used:

Uniform: K (u) = I[−1/2,1/2](u),

Logistic: K (u) = eu/
(
1 + eu)2,

Epanechnikov: K (u) = (
3/4

)(
1 − u2

)
I[−1,1](u).

Actually, the estimators are not very sensitive to the choice of K , but they are very
sensitive to the choice of hn.

For early work on kernel estimators of density functions and regression functions
(discussed in the next section), we refer to Rosenblatt [45], Parzen [46], and Nadaraya [47].

Properties of Kernel Estimators of Density Functions
We first look at the effect of hn on the estimator fn in terms of its mean and variance.

It should be intuitively clear that the bias increases as hn increases (eg, with uniform
kernel, fn(x) estimates h−1

n
[
F
(
x + hn/2

) − F
(
x − hn/2

)]
instead of limh↓0 h−1

[
F
(
x + h/2

)
−F

(
x − h/2

)]
), and the variance increases as hn decreases (because fewer observations
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make appreciable contributions as the bandwidth shrinks). Therefore, we should choose
hn appropriately to strike a balance between bias and variance in order to achieve the best
rate at which the mean-square error

(
MSE

) = Bias2 + Variance tends to 0 as n → ∞,
remembering that hn ↓ 0 as n → ∞ anyway.

E
[
fn(x)

] = E
[

h−1
n K

(
(x − X)/hn

)] =
∫ ∞
−∞

h−1
n K

((
x − y

)
/hn

)
f
(
y
)

dy

=
∫ ∞
−∞

K (u)f
(
x − hnu

)
du, (3)

letting u = (
x − y

)
/hn, and similarly,

Var
[
fn(x)

] = n−1
[

h−1
n

∫ ∞
−∞

K 2(u)f
(
x − hnu

)
du

−
{∫ ∞

−∞
K (u)f

(
x − hnu

)
du

}2
]

. (4)

We make the following assumptions:

1. (a) K is a symmetric pdf (ie, K (−u) = K (u) for all u), (b) σ 2
K = ∫∞

−∞ u2K (u) du < ∞, and
(c) ‖K‖2 = ∫∞

−∞ K 2(u) du < ∞.
2. f ′′ is bounded and continuous.

Assumption 1 poses no problem, because K is chosen by the user. If Assumption 2 is
replaced by other smoothness conditions of F , then the results we now derive, will change
accordingly.

Expand f
(
x − hnu

)
in the expressions (3) and (4) of E

[
fn(x)

]
and Var

[
fn(x)

]
:

f
(
x − hnu

) = f (x) − hnuf ′(x) + (
1/2

)
h2

nu2f ′′(x)

+ (
1/2

)
h2

nu2{f ′′(−λhnu
) − f ′′(x)

}
, 0 ≤ λ ≤ 1. (5)

Since
∫∞
−∞ uK (u) du = 0 by Assumption 1(a) and

lim
n→∞

∫ ∞
−∞

{
f ′′(x − hnu

) − f ′′(x)
}

u2K (u) du = 0

by Assumption 2 and Dominated Convergence, using Eq. (5) we have

Bias
[
fn(x)

] = E
[
fn(x)

] − f (x) = (
1/2

)
h2

n

[
σ2

K f ′′(x) + o(1)
]

and

Var
[
fn(x)

] = (
nhn

)−1
[
‖K‖2f (x) + o(1)

]
.

Combining the above two formulas, we have

MSE
[
fn(x)

] =
(

h4
n

)[
σ4

K f ′′(x)2/4 + o(1)
]

+ (
nhn

)−1
[
‖K‖2f (x) + o(1)

]
,

so that

n4/5MSE
[
fn(x)

] =
(

n1/5hn

)4[
σ4

K f ′′(x)2/4 + o(1)
]

+
(

n1/5hn

)−1[‖K‖2f (x) + o(1)
]

. (6)
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On the right-hand side of Eq. (6), the first term → ∞ if n1/5hn → ∞ and the second term
→ ∞ if n1/5hn → 0. Thus n4/5MSE

[
fn(x)

] → ∞ if n1/5hn either tends to 0 or to ∞, and
remains bounded if hn is of the order of magnitude n−1/5. Taking hn = tn−1/5, we have

n4/5MSE
[
fn(x)

] = t4σ4
K f ′′(x)2/4 + t−1‖K‖2f (x) + o(1).

Finally, t4a + t−1b with a, b > 0 is minimized at t0 = (
b/(4a)

)1/5.
Using this, we see that n4/5MSE

[
fn(x)

]
is minimized with hn = n−1/5t0 where t0 =[{‖K‖2f (x)

}
/
{
σ 4

K f ′′(x)2
}]1/5

.
For example, if K is the uniform kernel on

[−1/2, 1/2
]
, then with ‖K‖2 = 1 and σ 2

K =
1/12, we have t0 = [

144f (x)/f ′′(x)2
]1/5

.
Since t0 involves the unknown f (x) and f ′′(x), one way to implement this in practice

would be to obtain initial (consistent) estimates of f (x) and f ′′(x) from the data and then
“plug in” these estimates in the formula for t0.

So far we have considered the estimation of f (x) at a specific x. However, we are
often interested in estimating the entire function f , in which case, one would like to use
the same bandwidth for all x. For this, the integrated mean-square error IMSE

(
fn
) =∫

MSE
[
fn(x)

]
dx or integrated square error

∫ [
fn(x) − f (x)

]2 dx would be a reasonable
criterion to minimize. There is a huge literature on the issue of bandwidth choice in density
estimation and regression estimation, some of which will be discussed at the end of this
chapter.

We shall now establish the following asymptotic properties of fn:
Theorem 9.2.1 (Strong Uniform Consistency). In addition to Assumptions 1(a, b) and 2,

suppose that the kernel K is of bounded variation on (−∞, ∞). Then supx |fn(x) − f (x)| → 0
a.s., provided that nh2

n/ log n → ∞ as n → ∞. [In particular, this holds for hn = O
(
n−1/5

)
.]

Theorem 9.2.2 (Asymptotic Normality). Under Assumptions 1(a, b, c) and 2, with hn =
n−1/5t,

n2/5[fn(x) − f (x)
] L→ N

((
1/2

)
t2σ2

K f ′′(x), t−1‖K‖2f (x)
)

.

We now prove the strong uniform consistency property. The asymptotic normality of
fn(x) will be proved together with that of the regression estimator mn(x) of m(x) to be
discussed later.

We first state a result from Real Analysis and a probability inequality to be used in the
proof of Theorem 9.2.1 before proving the theorem.

Theorem 9.2.3. If K is of bounded variation on (−∞, ∞) and
∫ |K (u)| du < ∞, then

limu→±∞ K (u) = 0.
Theorem 9.2.4 (Dvoretzky-Kiefer-Wolfowitz). If Fn is the empirical cdf of a random

sample of size n from F, then there exists a constant C so that

P
[

sup
x

|Fn(x) − F(x)| > a
]

≤ C exp
(
−2na2

)
.
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Proof of Theorem 9.2.1. Note that supx |fn(x) − f (x)| ≤ An + Bn, where

Bn = sup
x

|E[fn(x)
] − f (x)| = sup

x

∣∣∣∣
∫ ∞
−∞

K (u)
{

f
(
x − hnu

) − f (x)
}

du

∣∣∣∣
= sup

x

∣∣∣∣
∫ ∞
−∞

[
−hnuf ′(x) + (

1/2
)
h2

nu2f ′′(x − λhnu
)]

K (u) du

∣∣∣∣
≤ (

1/2
)
h2

nσ2
K sup

x
|f ′′(x)| = O

(
h2

n

)
= o(1),

using Assumptions 1(a, b) and 2, and

An = sup
x

∣∣fn(x) − E
[
fn(x)

]∣∣
= sup

x

∣∣∣∣∣∣
(
nhn

)−1
n∑

i=1

K
((

x − Xi
)
/hn

) − E

⎡
⎣(nhn

)−1
n∑

i=1

K
(
(x − Xi

)
/hn)

⎤
⎦
∣∣∣∣∣∣

= h−1
n sup

x

∣∣∣∣
∫ ∞
−∞

K
((

x − y
)
/hn

)
d
[
Fn

(
y
) − F

(
y
)]∣∣∣∣

= h−1
n sup

x

∣∣∣∣
∫ ∞
−∞

−[
Fn

(
y
) − F

(
y
)]

K
((

x − y
)
/hn

)
dK

((
x − y

)
/hn

)∣∣∣∣
≤ (

μ/hn
)

sup
x

|Fn(x) − F(x)|,

where μ = ∨∞
−∞ K is the total variation of K on (−∞, ∞), having used integration by

parts and observing that limy→±∞ h−1
n K

((
x − y

)
/hn

){
Fn
(
y
) − F

(
y
)} = 0, all this by using

Theorem 9.2.3. We shall now show that for arbitrary ε > 0,
∑∞

n=1 P
[
supx |fn(x) − E

[
fn(x)

]| >

ε
]

< ∞ and then An → 0 a.s., will follow by the Borel-Cantelli Lemma. To this end, we use
Theorem 9.2.4 to see that

P
[

sup
x

|fn(x) − E
[
fn(x)

]| > ε

]
≤ P

[(
μ/hn

)
sup

x
|Fn(x) − F(x)| > ε

]

= P
[

sup
x

|Fn(x) − F(x)| > hnε/μ

]

≤ C exp
[
−2n

(
hnε/μ

)2
]

= C exp
[
−2

(
ε/μ

)2nh2
n

]
.

Since nh2
n/ log n → ∞ as n → ∞,

(
ε/μ

)2nh2
n > log n (ie, exp

[
−2

(
ε/μ

)2nh2
n

]
< 1/n2 for

large n) and
∑∞

n=1 1/n2 < ∞. �
Functions of bounded variation, Stieltjes integral and integration by parts are discussed

in Appendix A.3.
Remark 9.2.1. Strong uniform consistency of fn holds under milder conditions than

stated above. It is enough to assume:

1∗. K is a pdf of bounded variation.
2∗. f is uniformly continuous (and is therefore bounded).
3∗. hn ↓ 0 and nh2

n/ log n → ∞ as n → ∞.
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To prove Theorem 9.2.1 under these conditions, note that only 1∗ and 3∗ are used in
proving An → 0 a.s. in the above proof, so we only need to modify the proof of the fact that
Bn = supx | E

[
fn(x)

]− f (x)| → 0 as n → ∞ using
∫∞
−∞ K (u) du < ∞ and 2∗. The main points

to note are that under these conditions, for every ε > 0,

(i) we can choose M such that
∫
|u|>M K (u) < ε/

{
4 supx f (x)

}
, so that

∫
|u|>M

|f (x − hnu
) − f (x)|K (u) du < ε/2 for all x, and

(ii) we can choose δε > 0 such that

|h| < δε �⇒ sup
x

|f (x − h
) − f (x) < ε/2.

The details of the proof is left as an exercise.
Remark 9.2.2. For rates of convergence of kernel estimators of density functions and

their derivatives, see Bhattacharya [48]. An estimator of Fisher-information of a location
family of unknown form has also been constructed in this paper.

9.3 Regression Estimation
The regression function Y on X is m(·), where

m(x) = ϕ(x)/fX (x), ϕ(x) =
∫ ∞
−∞

yfXY
(
x, y

)
dy.

Since fX (x) is estimated by fn(x) given in Eq. (2), the main thing is to estimate ϕ(x).
Analogous to f (x) = F ′(x), ϕ(x) can be expressed as

ϕ(x) = d
dx

∫ x

t=−∞

[∫ ∞
y=−∞

yfXY
(
t, y

)
dy

]
dt

= lim
h↓0

h−1
∫ x+h/2

x−h/2

∫ ∞
y=−∞

yfXY
(
t, y

)
dy dt

= lim
h↓0

h−1
∫ ∞
−∞

∫ ∞
−∞

I[x−h/2,x+h/2](t)yfXY
(
t, y

)
dy dt

= lim
h↓0

E
[

h−1I[x−h/2,x+h/2](X)Y
]

= lim
h↓0

E
[

h−1I[−1/2,1/2]
(
(x − X)/h

)
Y
]

,

so a natural estimator of ϕ(x) is

ϕn(x) = (
nhn

)−1
n∑

i=1

I[−1/2,1/2]
((

x − Xi
)
/hn

)
Yi



Chapter 9 • Curve Estimation 261

with small hn > 0, or more generally,

ϕn(x) = (
nhn

)−1
n∑

i=1

K
((

x − Xi
)
/hn

)
Yi, (7)

using a pdf K as the kernel.
This leads to the kernel regression estimator

mn(x) =
(
nhn

)−1 ∑n
i=1 K

((
x − Xi

)
/hn

)
Yi(

nhn
)−1 ∑n

i=1 K
((

x − Xi
)
/hn

) = ϕn(x)
fn(x)

, (8)

where hn ↓ 0 as n → ∞.
The estimator mn(·) also has the strong uniform convergence property, which we state

below without proof.
Theorem 9.3.1. Suppose that the following conditions hold:

1. (a) P
[
a ≤ X ≤ b, c ≤ Y ≤ d

] = 1 for some a < b and c < d,
(b) fX (x) is bounded away from 0 on

[
a, b

]
,

(c) |fXY
(
x1, y

) − fXY
(
x2, y

)| ≤ M|x1 − x2| for some M and for all x1, x2 ∈ [
a, b

]
and

y ∈ [
c, d

]
.

2. K is a bounded symmetric pdf on [−1, 1].
3. hn → 0 and nhn/ log n → ∞ as n → ∞.

Then supa≤x≤b |mn(x) − m(x)| → 0 a.s. at the rate of rn = hn +
√

log n/
(
nhn

)
(ie,

r−1
n supa≤x≤b |mn(x) − m(x)| is bounded with probability 1).

We now state a theorem on the asymptotic normality of the bivariate sequence(
fn(x), ϕn(x)

)
given by Eqs. (2) and (7). In particular, this will establish the asymptotic

normality of fn(x), proving Theorem 9.2.2, and the asymptotic normality of mn(x) =
ϕn(x)/fn(x) given in Eq. (8), will follow by the delta method.

We shall make the following assumptions:

1. The second derivative f ′′
X , m′′, and v′′, where v(x) = Var[Y |X = x] exist, and are

bounded and continuous.
2. The kernel K is a symmetric pdf with σ 2

K = ∫
u2K (u) du < ∞ and

‖K‖2 = ∫
K 2(u) du < ∞.

Theorem 9.3.2. Under Assumptions 1 and 2, with hn = n−1/5t,

n2/5
[

fn(x) − f (x)
ϕn(x) − ϕ(x)

]

L→ N2

(
1
2

t2σ2
K

[
f ′′(x)
ϕ′′(x)

]
, t−1‖K‖2f (x)

[
1 m(x)

m(x) v(x) + m2(x)

])
.
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Corollary 9.3.1. Convergence of the first coordinate gives us Theorem 9.2.2, and using
the delta method with g(u, w) = w/u, we have

n2/5[mn(x) − m(x)]
L→ N

(
β(x), Ψ (x)

)
, where

β(x) = (
1/2

)
t2σ2

K
ϕ′′(x) − f ′′(x)m(x)

f (x)
and Ψ (x) = t−1‖K‖2 v(x)

f (x)
.

Verification of the formulas for β(x) and Ψ (x) is left as an exercise.
Proof of Theorem 9.3.2. We shall use the Cramér-Wold device, namely,

a1Un + a2Wn
L→ a1U + a2W for all

(
a1, a2

) ⇒ (Un, Wn)
L→ (U , W ).

Let us, therefore, consider

ξni = a1h−1
n K

((
x − Xi

)
/hn

) + a2h−1
n K

((
x − Xi

)
/hn

)
Yi

= h−1
n K

((
x − Xi

)
/hn

)(
a1 + a2Yi

)
.

Then for each n, {ξni, i = 1, . . . , n} are iid. Let

μni = E
[
ξni

]
, σ2

ni = Var
[
ξni

]
, An =

n∑
i=1

μni = nμn1, and B2
n =

n∑
i=1

σ2
ni = nσ2

n1.

Letting m(x) = E[Y |X = x] and v(x) = Var[Y |X = x], we have

μni =
∫∫

h−1
n K

(
(x − t)/hn

)(
a1 + a2y

)
fY |X

(
y|t)fX (t) dy dt

=
∫∫

K (u)
(
a1 + a2y

)
fY |X

(
y|x − hnu

)
fX
(
x − hnu

)
dy du

=
∫

K (u)
{

a1 + a2m
(
x − hnu

)}
fX
(
x − hnu

)
du,

and similarly,

σ2
ni = h−1

n

∫
K 2(u)

[{
a1 + a2m

(
x − hnu

)}2 + a2
2v
(
x − hnu

)]
f
(
x − hnu

)
du − μ2

ni.

Assumptions 1 and 2 allow us to expand f
(
x − hnu

)
, m

(
x − hnu

)
, and v

(
x − hnu

)
to second-

order terms about x in the above expressions. After algebraic manipulations, this leads to

μni = {a1 + a2m(x)}f (x) + (
1/2

)
h2

n[α(x) + o(1)] and

σ 2
ni = h−1

n
[
γ (x) + o(1)

]
, Bn = nσ2

n1 = nh−1
n

[
γ (x) + o(1)

]
(9)

where

α(x) = σ 2
K
[
a1f ′′(x) + a2

{
f (x)m′′(x) + f ′′(x)m(x) + 2f ′(x)m′(x)

}]
,

γ (x) = ‖K‖2
[
{a1 + a2m(x)}2 + a2

2v(x)
]

f (x). (9a)
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To establish asymptotic normality of
∑n

i=1(ξni − μni)/Bn, we now check the Lindeberg
Condition:

lim
n→∞ B−2

n

n∑
i=1

E
[

I(εBn,∞)
(|ξni − μni|

)(
ξni − μni

)2
]

= 0,

the verification of which is left as an exercise.
We thus have

∑n
i=1(ξni − μni)/Bn

L→ N(0, 1).
Using Eqs. (9) and (9a),

∑n
i=1(ξni − μni)/Bn simplifies to

√
nhn

γ (x) + o(1)

[
a1

{
fn(x) − f (x) − (

1/2
)
h2

nσ2
K f ′′(x)(1 + o(1))

}

+a2

{
ϕn(x) − ϕ(x) − (

1/2
)
h2

nσ2
K ϕ′′(x)(1 + o(1))

}]
,

which
L→ N(0, 1) for all (a1, a2).

Writing

γ (x) = (
a1 a2

)[ 1 m(x)
m(x) v(x) + m2(x)

](
a1
a2

)
‖K‖2f (x),

this implies

⎡
⎣√

nhn
{

fn(x) − f (x)
} − (

1/2
)√

nh5
nσ2

K f ′′(x)(1 + o(1))√
nhn{ϕn(x) − ϕ(x)} − (

1/2
)√

nh5
nσ2

K ϕ′′(x)(1 + o(1))

⎤
⎦

L→ N2

([
0
0

]
, ‖K‖2f (x)

[
1 m(x)

m(x) v(x) + m2(x)

])
.

Taking hn = n−1/5t, we arrive at the desired result. �

9.4 Nearest Neighbor Approach
Consider the uniform kernel with bandwidth hn. In both density estimation and regression
estimation, the methods discussed will suffer from the drawback that for those x where f (x)
is small, very few datapoints will have their X-values falling in the window x ± hn/2. As a
result, very few datapoints will contribute to the construction of fn(x) or mn(x) where f (x)
is small.

To overcome this difficulty, one may decide to let the data determine the bandwidth hn.
The idea is to choose hn large enough so that exactly k = kn of the Xi’s are included in the
window x ± hn/2 . Clearly, this would put the burden of MSE more on the bias when f (x)
is small (causing hn to be large) and more on the variance when f (x) is large (causing hn to
be small).
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Let dn = inf
{

h:
∑n

i=1 I[x−h,x+h](Xi) ≥ kn

}
. Then

∑n
i=1 I[x−dn,x+dn](Xi) = kn. Now if we

let dn play the role of hn/2 in the kernel estimation procedure with uniform kernel, then

fn(x) = (
nhn

)−1
n∑

i=1

I[x−hn/2,x+hn/2]
(
Xi
)

= 1

n
(
2dn

) n∑
i=1

I[x−dn,x+dn]
(
Xi
) = kn

2ndn
.

This dn is called the kn-nearest neighbor (kn-NN) distance from x and fn(x) = kn/
(
2ndn

)
is

called the kn-NN estimator of f (x).
Here kn is the smoothing parameter and the optimal rate at which kn → ∞ as n → ∞

is O
(
n4/5

) (
ie, we choose kn = [

n4/5t
])

, where [·] is the greatest integer function. This is
under the second-order smoothness condition assumed earlier.

Analogous argument in regression estimation leads to the kn-NN regression estimator

mn(x) =
(
n2dn

)−1 ∑n
i=1 I[x−dn,x+dn]

(
Xi
)
Yi(

n2dn
)−1 ∑n

i=1 I[x−dn,x+dn]
(
Xi
)

= k−1
n

n∑
i=1

I[x−dn,x+dn]
(
Xi
)
Yi = k−1

n
∑

{i: |Xi−x|≤dn}
Yi,

that is, mn(x) is the mean of those kn values of Yi corresponding to the Xi’s which are kn

nearest neighbors of x.
Another way to express this is to

(i) replace (Xi, Yi) by (|Xi − x|, Yi) := (Zi, Yi), i = 1, . . . , n,
(ii) rank Zi = |Xi − x|, i = 1, . . . , n as 0 < Zn:1 < · · · < Zn:n (strict inequality w.p. 1),
(iii) let Yn:i be the Y -value associated with Zn:i, ie, Yn:i = Yj ⇐⇒ Zn:i = Zj.

Then the kn-NN estimator of m(x) is mn(x) = k−1
n

∑kn
i=1 Yn:i.

9.5 Curve Estimation in Higher Dimension
Let X be a d-dim rv with pdf f and Y be a real-valued rv whose regression on X is
m(x) = E[Y |X = x]. So far, we have discussed the problems of estimating the pdf f from
iid observations on X and of estimating the regression function from iid observation
(X1, Y1), . . . , (Xn, Yn) when d = 1. We now consider these problems for d ≥ 2. For this,
the kernel and NN methods and the theoretical results for their asymptotics described so
far, extend in a straightforward manner to higher dimensions. However, the actual sample
size n needed for these estimators to perform reasonably well, increases rapidly with d.
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For d-dim X 1, . . . , X n, we work with d -dim kernel Kd which is symmetric in each
coordinate and define

fn(x) =
(

nhd
n

)−1 n∑
i=1

Kd
((

x − X i
)
/hn

)
and

mn(x) =
(

nhd
n

)−1 n∑
i=1

Kd
((

x − X i
)
/hn

)
Yi/fn(x).

In particular, we may choose Kd
(
u1, . . . , ud

) = ∏d
j=1 K

(
uj
)

where K is a pdf on R which is
symmetric about 0.

To understand the difficulty of high dimensionality, let Kd be the uniform kernel on[−1/2, 1/2
]d. Then the only datapoints contributing to the construction of fn(x) and mn(x)

are those with Xi −x ∈ [−hn/2, hn/2
]d, the number of which is of the order of nhd

n. Without
going into detailed calculations, it is easy to see that the bias of fn(x) or mn(x) will still be of

the order of h2
n (as in the case of d = 1), but their variances will be of the order of 1/

(
nhd

n

)
.

This will result in mean square error of the form

A(x)h4
n + B(x)/

(
nhd

n

)
+ Rn(x).

Neglecting the remainder term, we see that

n4/(d+4)MSE ≈ A(x)
(

n1/(d+4)hn

)4 + B(x)
(

n1/(d+4)hn

)−d
,

which blows up if n1/(d+4)hn either → 0 or ∞. Thus the optimal hn = n−1/(d+4)t with

a suitable t, resulting in MSE = O
(

n−4/(d+4)
)

. This shows how the rate at which the

MSE converges to 0 slows down as d increases. In the Curve Estimation literature, this
phenomenon is called “Curse of Dimensionality.”

For example, if the Xi’s are sampled from Nd(0, I), then in order to estimate this density
at x = 0 by the kernel method using normal kernel and optimal bandwidth, the sample
size n needed for

Relative MSE
[
fn(x)

] = E
[{

fn(x) − f (x)
}2
]
/f 2(x)

to be <0.1 increases from n = 4 for d = 1 to n = 67 for d = 3 to n = 10,700 for d = 7 (see
[49]).

9.6 Curve Estimation Using Local Polynomials
Let us first briefly review the result on the kernel estimator mn(x) of the unknown
regression function m(x) as given in Corollary 9.3.1, where asymptotic normality of the
estimator mn(x) is established after suitable renormalization. Asymptotic bias is

asymptotic bias:
(

h2
n/2

)
σ2

K
ϕ′′(x) − f ′′(x)m(x)

f (x)
,
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where hn = n−1/5t, t > 0. Since ϕ(x) = m(x)f (x), we get ϕ′′(x) − f ′′(x)m(x) = m′′(x)f (x) +
2m′(x)f ′(x). From Corollary 9.3.1 we get the asymptotic bias and asymptotic variance of
mn(x) as

asymptotic bias:
(

h2
n/2

)
σ2

K
[
m′′(x) + 2m′(x)f ′(x)/f (x)

]
, and

asymptotic variance:
(
nhn

)−1‖K‖2v(x)/f (x),

where v(x) = Var[Y |X = x]. Note that the bias term involves f ′(x) (ie, it depends on the
smoothness of the marginal density of X). In other words, the design of the Xi’s enters the
picture in regression estimation. Moreover, the estimator mn(x) has another aspect which
makes it difficult to use in practice. Suppose that f is supported on a compact interval
which we take to be [0, 1] without loss of generality. The bias of the estimator mn(x) at or
near the boundary points 0 or 1 is of order hn and not h2

n. Thus the regression estimate is
less reliable at or near the boundary points. The local polynomial method seeks to remove
these negative aspects of the kernel estimator mn.

In order to simplify notations let us denote

wi(x) = K
((

x − Xi
)
/hn

)
∑n

j=1 K
((

x − Xj

)
/hn

) .

Thus we may rewrite the kernel estimator as mn(x) = ∑n
i=1 wi(x)Yi. Since wi(x) ≥ 0 for all

i, and
∑n

i=1 wi(x) = 1, mn(x) is a weighted average of Yi’s with weights wi(x). If the kernel K
is compactly supported, say on

[−1/2, 1/2
]
, then wi(x) = 0 whenever |Xi − x| > hn/2. Note

that a regression model for (Xi, Yi) is of the form Yi = m(Xi)+εi, where {εi} are independent
with E[εi|Xi] = 0 for all i. If Xi is in the neighborhood Nn(x) = {

u: |u − x| ≤ hn/2
}

(ie, |Xi −x| ≤ hn/2) and we approximate m(Xi) by a constant β0 = m(x), then the regression
model takes the approximate form Yi = β0 +εi when Xi is in Nn(x). If we obtain an estimate
of β0 from a weighted least squares criterion of the form

∑n
i=1

(
Yi − β0

)2wi(x), which is
minimized with respect to β0, then mn(x) is that value of β0 which minimizes this local
weighted least squares.

Now if we approximate m(Xi) by a straight line instead of a constant when Xi is in Nn(x),
then a simple Taylor series expansion yields

m
(
Xi
) = β0 + β1

(
Xi − x

) + O
((

Xi − x
)2
)

,

where β0 = m(x) and β1 = m′(x). Thus the regression model described in the last
paragraph can be approximately expressed as Yi = β0 + β1(Xi − x) + εi when Xi is in
Nn(x). The parameters β0 and β1 can be estimated by using the method of weighted least
squares. If the estimate of β0 is β̂0, then our estimate of m(x) is β̂0. More formally, we
seek to minimize Q = ∑n

i=1

[
Yi − β0 − β1(Xi − x)

]2wi(x) with respect to β0 and β1. If we
differentiate Q with respect to β0 and β1 and equate the derivatives to 0, we are led to the
equations

β0 +
∑

wi(x)
(
Xi − x

)
β1 =

∑
wi(x)Yi,∑

wi(x)
(
Xi − x

)
β0 +

∑
wi(x)

(
Xi − x

)2
β1 =

∑
wi(x)

(
Xi − x

)
Yi.
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We can get an explicit expression for the estimate of β0 from these equations after some
tedious algebra. Let us simplify some notations by denoting

cs(x) =
∑

wi(x)(Xi − x)s, s = 1, 2, 3.

Then the estimate of β0 is

β̂0 =
∑

wi(x)
[
c2(x) − c1(x)

(
Xi − x

)]
Yi∑

wi(x)
[
c2(x) − c1(x)

(
Xi − x

)] .

Thus the local linear estimate of m(x) is given by

m(LL)
n (x) =

∑
wi(x)

[
c2(x) − c1(x)

(
Xi − x

)]
Yi∑

wi(x)
[
c2(x) − c1(x)

(
Xi − x

)] =
∑

li(x)Yi, where

li(x) = wi(x)
[
c2(x) − c1(x)

(
Xi − x

)]
∑

wj(x)
[

c2(x) − c1(x)
(

Xj − x
)] = wi(x)

[
c2(x) − c1(x)

(
Xi − x

)]
c2(x) − c1(x)2 .

The local linear estimate of m(x) is also a linear combination of Yi ’s with weights
li(x), and the weights sum to 1 (ie,

∑
li(x) = 1). These weights also have the property∑

li(x)(Xi − x) = 0. This is unlike the regular kernel estimate mn(x) = ∑
wi(x)Yi where

the weights wi(x) do not necessarily satisfy the equation
∑

wi(x)(Xi − x) = 0. Why is this
property important? It provides a correction term in the bias part. In order to see this, let
us write

m(LL)
n (x) − m(x) =

∑
li(x)

[
Yi − m

(
Xi
)] +

∑
li(x)

[
m
(
Xi
) − m(x)

]
.

The first sum in the last expression contributes toward the asymptotic variance of m(LL)
n (x),

whereas the second sum contributes toward the asymptotic bias. We now examine the
second sum in some detail. Let us assume that K is supported on a compact interval, say[−1/2, 1/2

]
, and it is symmetric about 0, m is twice differentiable, m′′ is continuous on the

compact interval
[
a, b

]
on which m is being estimated and f is continuous on

[
a, b

]
. Under

these conditions it can be shown that infi li(x) ≥ 0 with probability converging to 1. Since
m′′ is continuous on a compact interval, it is also uniformly continuous. Since wi(x) = 0
whenever |Xi − x| > hn/2, using a two-term Taylor expansion of m(Xi) around m(x), we
have ∑

li(x)
[
m
(
Xi
) − m(x)

] =
∑

li(x)
[(

Xi − x
)
m′(x) + (

1/2
)(

Xi − x
)2m′′(x)

]
+ oP

(
h2

n

)
= (

1/2
)∑

li(x)
(
Xi − x

)2m′′(x) + oP

(
h2

n

)
,

because the sum involving the linear term with Xi − x is exactly equal to zero (ie,∑
li(x)(Xi − x) = 0). A similar argument for the bias part for mn(x) (ie,

∑
wi(x)[m(Xi) − m(x)])

would involve a term of the form
∑

wi(x)(Xi − x). In order for this term to be of order h2
n, it

is required that f is differentiable and f ′ is continuous. Such a condition is not needed for
the local linear estimate.
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Let us now examine the bias term for the local linear estimator m(LL)
n (x) a bit more

closely and establish that
∑

li(x)(Xi − x)2 = h2
n
[
σ 2

K + oP(1)
]
. Then the bias term would be(

1/2
)
h2

nσ 2
K m′′(x) + oP

(
h2

n
)
.

Using the expression for li(x) we get

∑
li(x)

(
Xi − x

)2 =
∑ wi(x)

[
c2(x) − c1(x)

(
Xi − x

)](
Xi − x

)2

c2(x) − c1(x)2

= c2(x)2 − c1(x)c3(x)

c2(x) − c1(x)2 .

For any nonnegative integer r, using Chebychev’s inequality, it can be established that

(
nhs+1

n

)−1 ∑
K
((

x − Xi
)
/hn

)(
Xi − x

)s

= (
nhn

)−1 ∑K
((

x − Xi
)
/hn

){(
Xi − x

)
/hn

}s P→
∫

usK (u) du f (x).

Noting that
∫

usK (u) du = 0 for s = 1 and s = 3 (since K is symmetric about 0), we have

c1(x) = hn

[∫
uK (u) du + oP(1)

]
= oP

(
hn

)
,

c2(x) = h2
n

[∫
u2K (u) du + oP(1)

]
= h2

n

[
σ2

K + oP(1)
]

, and

c3(x) = h3
n

[∫
u3K (u) du + oP(1)

]
= oP

(
h3

n

)
.

Plugging in these approximations for c1(x), c2(x), and c3(x) in the expression for∑
li(x)(Xi − x)2, we have

∑
li(x)

(
Xi − x

)2 = c2(x)2 − c1(x)c3(x)

c2(x) − c1(x)2

=
h4

n

[
σ2

K + oP(1)
]2 − oP

(
h4

n

)
h2

n

[
σ2

K + oP(1)
]

− oP

(
h2

n

) = h2
n

[
σ2

K + oP(1)
]

.

Using arguments similar to the ones in proving Corollary 9.3.1, we can also get a similar
result for the local linear estimate m(LL)

n (x).
Theorem 9.6.1. Assume that

(a) on a compact interval
[
a, b

]
, m is twice differentiable, and m′′, v, and f are continuous,

(b) the kernel K is a bounded pdf on a compact interval [−c, c] and is symmetric about
zero, and

(c) supx∈[a,b] E
[
Y 4|X = x

]
< ∞.



Chapter 9 • Curve Estimation 269

Taking hn = n−1/5t, it can be shown that for x ∈ [
a, b

]
,

n2/5
[

m(LL)
n (x) − m(x)

] L→ N
(
β(LL)(x), Ψ (LL)(x)

)
, where

β(LL)(x) = (
1/2

)
t2σ2

K m′′(x) and Ψ (x) = t−1‖K‖2 v(x)
f (x)

.

Note that the asymptotic variances of mn(x) and m(LL)
n (x) are the same, but their

asymptotic biases are different.
Remark 9.6.1. In this section, a few aspects of local polynomial method have been high-

lighted. More applications and details can be found in the book by Fan and Gijbels [50].

1. Instead of the local linear method for estimating m(x), one may consider local
polynomial estimation by minimizing Q = ∑[

Yi − β0 − β1(Xi − x) − · · · −
βp(Xi − x)p]2wi(x) with respect to β0, β1, . . . , βp. Then the local polynomial estimate of

m(x) is m(LP)
n (x) = β̂0.

2. If the independent variable X is vector valued, one can obtain a local linear (or more
generally a local polynomial) estimate of m(x). In this case, one minimizes

Q = ∑[
Yi − β0 − βT

1 (X i − x)
]2

wi(x) with respect to β0 and β1, and as before the
estimate of m(x) is given by β̂0.

3. It is also possible to carry out density estimation using the local linear or local
polynomial method.

4. The choice of bandwidth hn is crucial as in any other curve estimation problem.
A cross-validation method can also be employed to obtain an appropriate value of hn.
The method of cross-validation is described in the next subsection in the context of
kernel density and regression estimation problems.

9.6.1 Choice of hn in Density Estimation

Ideally, we would choose hn which minimizes the Integrated Square-Error

∫ (
fn − f

)2 =
∫

f 2
n − 2

∫
fnf +

∫
f 2,

in which the last term does not depend on fn. So the aim is to minimize R
(
fn
) = ∫

f 2
n −

2
∫

fnf . The first term
∫

f 2
n is calculated directly from fn. So the main thing is to estimate

the second term from the data. The idea of “leave-one-out” is used for this purpose. Let

fn,−i(x) =
⎡
⎣{(n − 1)hn

}−1
n∑

j �=i=1

K
((

x − Xj

)
/hn

)⎤⎦ for each i = 1, . . . , n. (10)

Then
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E

⎡
⎣n−1

n∑
i=1

fn,−i
(
Xi
)⎤⎦ = E

[
fn,−n(Xn)

] = EE
[
fn,−n(Xn)|X1, . . . , Xn−1

]

= E
∫

fn,−n(x)f (x) dx = E
∫

fn(x)f (x) dx,

because

E
[
fn,−n(x)

] = E

⎡
⎣{(n − 1)hn

}−1
n−1∑
j=1

K
((

x − Xj

)
/hn

)⎤⎦

= E

⎡
⎣(nhn]−1

n∑
j=1

K
((

x − Xj

)
/hn

)⎤⎦ = E
[
fn(x)

]
.

Thus the estimator

R̂
(

fn
) =

∫
f 2
n − (

2/n
) n∑

i=1

fn,−i
(
Xi
)

(11)

has the property: E
[

R̂
(

fn
)] = E

[
R
(

fn
)]

.

Hence minimizing E
[

R̂
(

fn
)]

is equivalent to minimizing E
[
R
(

fn
)]

, so a choice of hn

which minimizes R̂
(

fn
)

will, hopefully, approximate the optimal hn which minimizes R
(

fn
)

itself.
We now describe the actual cross-validation procedure. First, for computational facility,

we express

∫
f 2
n = (

nhn
)−2

n∑
i=1

n∑
j=1

∫
K
((

Xi − x
)
/hn

)
K
((

x − Xj

)
/hn

)
dx

=
(

n2hn

)−1 n∑
i=1

n∑
j=1

∫
K
(
Xi/hn − u

)
K
(

u − Xj/hn

)
du

=
(

n2hn

)−1 n∑
i=1

n∑
j=1

∫
K
((

Xi − Xj

)
/hn −

(
u − Xj/hn

))
K
(

u − Xj/hn

)
du

=
(

n2hn

)−1 n∑
i=1

n∑
j=1

K (2)
((

Xi − Xj

)
/hn

)
,

where K (2) is the convolution of K with itself, that is

K (2)(z) =
∫

K (z − u)K (u) du = pdf of Z1 + Z2,



Chapter 9 • Curve Estimation 271

where Z1 and Z2 are iid with pdf K . Next rewrite the term n−1 ∑n
i=1 fn,−i(Xi) with a minor

modification to obtain

n−1
n∑

i=1

fn,−i
(
Xi
) = n−1

n∑
i=1

[
(n − 1)hn

]−1
n∑

j �=i=1

K
((

Xi − Xj

)
/hn

)

≈
(

n2hn

)−1 n∑
i=1

n∑
j=1

K
((

Xi − Xj

)
/hn

)
− (

nhn
)−1K (0).

Putting the two terms together in Eq. (11), we have

R̂
(
fn
) ≈R̂1

(
fn
)

=
(

n2hn

)−1 n∑
i=1

n∑
j=1

K (2)
((

Xi − Xj

)
/hn

)

− 2

⎧⎨
⎩
(

n2hn

)−1 n∑
i=1

n∑
j=1

K
((

Xi − Xj

)
/hn

)
− (

nhn
)−1K (0)

⎫⎬
⎭

=
(

n2hn

)−1 n∑
i=1

n∑
j=1

K ∗((Xi − Xj

)
/hn) + 2

(
nhn

)−1K (0),

where K ∗(·) = K (2)(·) − 2K (·).
The least squares cross-validation procedure is to choose the bandwidth as the value of

hn which minimizes R̂1
(
fn
)

(see [49, 51]).

Let I
(
fn; hn

) = ∫ (
fn − f

)2, where fn is given by Eq. (2) and let hn
(
CV

)
, hn

(
opt

)
denote,

respectively, the hn obtained by minimizing R̂1
(
fn
)

and the unknown optimal hn which
minimizes I

(
fn; hn

)
for the given data. Then the following optimality property holds for

hn
(
CV

)
whenever f is bounded and K satisfies some mild conditions:

lim
n→∞

I
(
fn; hn

(
CV

))
I
(
fn; hn

(
opt

)) = 1 with probability 1.

The above discussion was for d = 1. All of this goes through for d ≥ 2, by replacing hn by
hd

n in the formula for R̂1
(
fn
)
.

9.6.2 Regression Estimation

In regression estimation, analogous to density estimation, our goal may be to minimize

d
(
mn; hn

) =
∫

(mn − m)2wf

=
∫

m2
nwf − 2

∫
mnmwf +

∫
m2wf ,
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where f is the pdf of X and w(x) > 0 is a weight function. Again, the last terms does not
depend on mn, while the first two terms involve the unknown m and f and therefore, need
to be estimated.

To motivate the proposed procedure, let (X0, Y0) be an observation on (X , Y ) which is
independent of the data (X1, Y1), . . . , (Xn, Yn) and then rewrite the two terms as

∫
m2

nwf − 2
∫

mnmwf = E
[{

m2
n
(
X0

) − 2mn
(
X0

)
E
(
Y0|X0

)}
w
(
X0

)|Data
]

= E
[

E
({

m2
n
(
X0

) − 2mn
(
X0

)
Y0

}
w
(
X0

)|X0, Data
)
|Data

]
= E

[{
m2

n
(
X0

) − 2mn
(
X0

)
Y0

}
w
(
X0

)|Data
]

= E
[{

Y0 − mn
(
X0

)}2w
(
X0

)|Data
]

− E
[

Y 2
0 w

(
X0

)]
.

Since E
[
Y 2

0 w(X0)
]

does not depend on the choice of hn, we only need to estimate
E
[{Y0 − mn(X0)}2w(X0)|Data

]
and then choose hn to minimize this estimate.

Again using the “leave-one-out” method, we construct the estimate

d̂1
(
mn; hn

) = n−1
n∑

i=1

{
Yi − mn,−i

(
Xi
)}2w

(
Xi
)

for E
[{Y0 − mn(X0)}2w(X0)|Data

]
, where

mn,−i(x) = [
(n − 1)hn

]−1
n∑

j �=i=1

K
((

x − Xj

)
/hn

)
Yj/fn,−i(x)

with fn,−i(x) as in Eq. (10).
Then the cross-validated choice hn

(
CV

)
and the optimal choice hn

(
opt

)
of hn are,

respectively, the minimizer of d̂1
(
mn; hn

)
and d

(
mn; hn

)
. However, for technical reason, the

choice of hn is restricted to
[
C1n−δ , C2

]
for some constants C1, C2 and δ > 0. This technical

condition is also in conformity with the practice. To see this, assume that the kernel K
is supported on

[−1/2, 1/2
]
. Then the nonparametric regression estimate at x is simply a

weighted average of Yi’s for which Xi is in the interval
[
x − hn/2, x + hn/2

]
. Now, if hn is

too small and x is not one of the Xi’s, then this interval may not have X-observations, thus
there are no observations to average on and one cannot get a nonparametric estimate of
m at x.

Suppose that f is supported on a compact set in R
d, on which it is bounded away from

0, and that f and m are continuous on this set. Then under assumption of boundedness of
conditional moments of all orders of Y given X , the following property holds for hn

(
CV

)
:

d
(
mn; hn

(
CV

))
d
(
mn; hn

(
opt

)) P→ 1.
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9.7 Estimation of Survival Function and Hazard Rates
Under Random Right-Censoring

Let
(
T1, C1

)
, . . . ,

(
Tn, Cn

)
be iid pairs of positive-valued rv’s where for each i, Ti and Ci

are independent. For each i, Ti is the survival time (ie, the time until death of a sample
subject or the failure time of a sample equipment) and Ci is the censoring time (ie, time
at which observation is stopped for this sample unit). Thus the observed data consist of
(Y1, δ1), . . . , (Yn, δn) where Yi = Ti ∧ Ci and δi = I

(
Ti ≤ Ci

)
, so (Yi, δi) = (

y, 0
)

means that
the observation on the ith unit was censored at time y and (Yi, δi) = (

y, 1
)

means that the
observation continued until death or failure which occurred at time y. This is random right
censoring of survival time. Foe simplicity, we shall assume that there are no ties.

Let F denote the common cdf of the Ti’s and let f denote the corresponding pdf.
Definition 9.7.1. The function S(t) = 1 − F(t) = P[T > t] is called the survival function

and λ(t) = f (t)/[1 − F(t)] is called the hazard function or the hazard rate of the rv T .
Since λ(t) dt ≈ P

[
t < T < t + dt|T > t

]
, it is also called the instantaneous failure rate.

The survival function S(t) and the hazard function λ(t) are related by the formula

S(t) = exp
[
−
∫ t

0
λ(u) du

]
, (12)

the proof of which is left as an exercise.

Estimation of the Survival Function

We now consider the problem of estimating the survival function S(t) from randomly right-
censored data {(Yi, δi), i = 1, . . . , n}. Let Yn:1 < · · · < Yn:n denote the order statistics of
Y1, . . . , Yn and let δn:1, . . . , δn:n be defined by δn:i = δj ⇐⇒ Yn:i = Yj. At each Yn:i, either a
death or a censoring occurs, depending on whether δn:i = 1 (death) or δn:i = 0 (censoring).

Consider the intervals Ii = (Yn:i−1, Yn:i], taking Yn:0 = 0, and let

R(t) = Risk set at time t consisting of those who are still alive at time t−,

ni = #R(Yn:i) = number alive at time Yn:i−,

di = number dying at time Yn:i = δn:i,

pi = P
[
T > Yn:i|T ≥ Yn:i−1

]
and qi = 1 − pi.

The natural estimates of qi and pi are

q̂i = di/ni and p̂i = 1 − q̂i =
{

1 − 1/ni if δn:i = 1
1 if δn:i = 0

}
= (

1 − 1/ni
)δn:i .

The Product-Limit (PL) estimator of S(t) due to Kaplan and Meier [52] is

Ŝ(t) =
∏

i:Yn:i≤t

p̂i =
∏

i:Yn:i≤t

(
1 − 1/ni

)δn:i , (13)
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because ni = #R
(
Yn:i−1

) = n − #
{

dead or censored before Yn:i−1
} = n − i + 1.

Remark 9.7.1. On the interval (Yn:i−1, Yn:i], Ŝ(t) remains unchanged if the observation
at Yn:i is censored and it is reduced by a factor of

(
n − i

)
/
(
n − i + 1

)
if Yn:i is uncensored

(death).

Variance of Ŝ(t)

Since nip̂i ∼ Bin
(
ni, pi

)
,

Var
[
log p̂i

] ≈ Var
[
p̂i
](

d log pi/dpi
)2 = (

piqi/ni
)(

1/p2
i

)
= qi/

(
nipi

)
by the delta method. Hence

Var
[

log Ŝ
(
Yn:i

)] = Var

⎡
⎣ i∑

j=1

log p̂j

⎤
⎦ =

i∑
j=1

Var
[

log p̂j

]
≈

i∑
j=1

q̂j/
(

njp̂j

)
,

assuming log p̂1, log p̂2, . . . are independent. Using the delta method again, we have

Var
[

Ŝ
(
Yn:i

)] = Var
[

exp
(

log Ŝn:i

)]
≈ exp

(
2 log Ŝn:i

)
Var

[
log Ŝn:i

]

≈ Ŝ2(Yn:i
) i∑

j=1

q̂j/
(

njp̂j

)
.

Thus

Var
[

Ŝ(t)
]

≈ Ŝ2(t)
∑

i:Yn:i≤t

q̂i/
(
nip̂i

) = Ŝ2(t)
∑

i:Yn:i≤t

δn:i/
{

ni
(
ni − 1

)}
.

Redistribute-to-the-Right Algorithm

This is another method, due to Efron [53], of calculating the PL estimator Ŝ(t) given by
Eq. (13). If we start with a sample of size n,

(i) first put a probability of 1/n at each Yn:i;
(ii) if Yn:i1 is the first censored observation, redistribute the probability 1/n assigned to

Yn:i1 equally to Yn:i1+1, . . . , Yn:n, so that each of these observations now carries a
probability of

(
1/n

)(
1 + 1/

(
n − i1

))
;

(iii) if Yn:i2 is the second censored observation, distribute the probability on Yn:i2 equally
to Yn:i2+1, . . . , Yn:n, so that each of these observations now carries a probability of(
1/n

)(
1 + 1/

(
n − i1

))(
1 + 1/

(
n − i2

))
, and so on.

A proof that this method leads to the same estimator as the one given by Eq. (13) is left
as an exercise.
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Estimation of the Integrated Hazard Function

Estimation of the hazard function from censored data would involve estimation of the pdf
of T from censored data, which is difficult. On the other hand, estimating the integrated
hazard function Λ(t) = ∫ t

0 λ(u) du is straightforward, since S(t) = exp[−Λ(t)] by Eq. (12).
We therefore estimate Λ(t) by the estimator of − log S(t) , that is,

Λ̂1(t) = − log Ŝ(t) = −
∑

Yn:i≤y

log
(
1 − δn:i/

(
n − i + 1

))

because
(
1 − 1/

(
n − i + 1

))δn:i = 1 − δn:i/
(
n − i + 1

)
. Also since − log(1 − x) ≈ x for small x,

we have another estimator

Λ̂2(t) =
∑

Yn:i≤t

δn:i/
(
n − i + 1

)

which is approximately the same as Λ̂1.

Exercises
9.1. Show that a sufficient condition for a kernel estimator fn(x) of f (x) with bandwidth

hn to be a consistent estimator is that hn ↓ 0 and nhn → ∞.
9.2. Suppose that f is m times differentiable and f (m) is bounded. Drop the condition

that the kernel K is a pdf, but satisfies the conditions:∫
K (u) du = 1,

∫
urK (u) du = 0, r = 1, . . . , m − 1,

∫ |u|mK (u) du < ∞, and∫
K 2(u) du < ∞.

(a) Find the asymptotic bias and variance of the estimator
fn(x) = (

nhn
)−1 ∑n

i=1 K
(
(x − Xi)/hn

)
using such a kernel K .

(b) Determine the optimal rate at which hn should tend to 0 and the corresponding
rate of convergence of the MSE of fn(x).

9.3. Let mn(x) be a kernel estimator of the regression function m(x) of Y on X at X = x
based on a random sample of size n. Verify the formula for the mean β(x) and the
variance Ψ (x) of the asymptotic distribution of n2/5[mn(x) − m(x)] given in the text.

9.4. Give a detailed proof of Theorem 9.2.1 under the milder conditions 1*, 2*, and 3*.
9.5. Find the formulas of bias and variance of the kn-NN estimators of a pdf f (x) and a

regression function m(x), and verify that the optimal rate at which kn → ∞ as
n → ∞ is O

(
n4/5

)
.

9.6. Prove formula (12) on the relation between the survival function S(t) and the hazard
function λ(t).

9.7. Prove that the redistribute-to-the-right algorithm leads to the same estimator as the
one given by Eq. (13).
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Statistical Functionals and Their Use
in Robust Estimation

10.1 Introduction
Let F0 be a family of cdf’s in R

d. Then T : F0 → R is called a statistical functional. Most
statistical problems involve inference about such a T(F) for an unknown F ∈ F0 based on
T(Fn), where Fn is the empirical distribution function of a random sample X1, . . . , Xn from
F . The behavior of T(Fn)−T(F) is, therefore, of interest. Study of statistical functionals was
introduced by von Mises [54].

Examples

In these examples, for simplicity, d = 1.

1. T(F) = EF
[
g(X)

] = ∫
g(x) dF(x) on F0 = {

F : EF
[|g(X)|] < ∞}

, T(Fn) = n−1 ∑n
i=1 g(Xi).

2. T(F) = EF

[
(X − ξ (F))k

]
on F0 =

{
F : E F |X |k < ∞

}
, where ξ (F) = EF [X ],

T(Fn) = n−1 ∑n
i=1

(
Xi − X̄n

)k
where X̄n = n−1 ∑n

i=1 Xi.
3. T(F) = F−1

(
p
) = inf

{
x: F(x) ≥ p

}
, 0 < p < 1, on F0 = {

all cdf’s on R
}

, T(Fn) = Xn: [np].
4. T(F) = EF

[
g(X1, . . . , Xr)

]
where g is symmetric in its coordinates,

F0 = {
F : EF

[|g(X1, . . . , Xr)|] < ∞}
, T(Fn) = n−r ∑n

i1=1 · · ·∑n
ir=1 g

(
Xi1 , . . . , Xir

)
.

In the last example, T(Fn) is called a V -statistic which differs from a U-statistic by its
inclusion of all

(
i1, . . . , ir

)
rather than only those for which i1 �= · · · �= ir and then dividing

the sum by nr instead of n(r) = n(n − 1) · · · (n − r + 1).
In Section 10.2, we shall introduce an expansion of

√
n[T(Fn) − T(F)] by means of

“differentials” of T(F), analogous to the expansion of
√

n
[

T
(
θ̂n

)
− T(θ)

]
. The leading term

of this expansion will provide a functional delta method subject to the remainder term
being oP(1). Postponing the issue of remainder terms, Sections 10.3–10.5 will be devoted
to the L- and M-estimators. These estimators are called “robust” because their properties
hold for a wide class of distributions, unlike estimators focused on squared-error loss or
the maximum likelihood estimators which are susceptible to distributions with heavy tails.
Finally, the issue of remainder terms is taken up in Section 10.6.
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10.2 Functional Delta Method
We shall assume that F0 is a collection of cdf’s such that

(i) F ∈ F0 ⇒ Fn ∈ F0 and
(ii) F0 is convex (ie, F , G ∈ F0 implies F + λ

(
G − F

) ∈ F0 for any λ ∈ [0, 1]).

First consider a k-dim parameter θ = θ(F) being estimated by θ̂n and a real-valued

function T(θ) of θ being estimated by T
(
θ̂n

)
. For large n, taking the leading term in the

expansion of
√

n
[

T
(
θ̂n

)
− T(θ)

]
, we have

√
n
[

T
(
θ̂n

)
− T(θ)

]
= 〈∇T(θ),

√
n
(
θ̂n − θ

)
〉 + Rn,

where Rn = oP(1) if
√

n
(
θ̂n − θ

) L→ W , a random vector, and T is continuously differ-

entiable. In that case, the asymptotic distribution of
√

n
[

T
(
θ̂n

)
− T(θ)

]
is the same as

that of the leading term in the expansion (ie,
√

n
[

T
(
θ̂n

)
− T(θ)

] L→ 〈∇T(θ), W 〉). This is

commonly called the delta-method (see Theorem 3.2.6, Chapter 3). For a similar analysis
of

√
n[T(Fn) − T(F)], we need an analogous expansion which involves differentiation of a

functional T at F .
To understand the meaning of differentiation of T at F , let us again look at T : Rk → R

and examine the one-term Taylor expansion of T(θ + Δ) − T(θ) for small Δ:

T(θ + Δ) − T(θ) =
k∑

r=1

T ′(r; θ)Δr + o(‖Δ‖), (1)

where ‖Δ‖ =
(∑k

r=1 Δ2
r

)1/2
or max1≤r≤k |Δr|, and T ′(r; θ) = ∂T(u)/∂ur|u=θ .

The leading term is the differential Lθ (Δ) := ∑k
r=1 T ′(r; θ)Δr , which is linear in Δ.

Replacing θ by F , θ + Δ by G, r by x,
∑k

r=1 by
∫

x∈Rd , and Δr by dΔ(x) = d
[
G(x) − F(x)

]
,

the expansion (1) would take the form

T
(
G
)− T(F) = LF

(
G − F

)+ o
(‖Δ‖ρ

)
=
∫

T ′(x; F) d
[
G(x) − F(x)

]+ o
(‖Δ‖ρ

)
.

Such an expansion would be valid if there exists a linear functional LF on D ={
c
(
G − F

)
: c ∈ R and F , G ∈ F0

}
which is not identically 0 and satisfies

lim
j→∞

T
(

Gj

)
− T(F) − LF

(
Gj − F

)
‖Gj − F‖ρ

= 0,
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whenever
{

Gj
}

is a sequence in F0 with ‖Gj − F‖ρ = ρ
(
Gj, F

) → 0 as j → ∞. Here ρ is a
distance such that

ρ
(
F , F + t

(
G − F

)) = |t|ρ(F , G
) ⇐⇒ ‖t

(
Gj − F

)
‖ = |t| ‖Gj − F‖ρ

holds for all t in R and F , G ∈ F0.
In general, existence of LF with this property depends on how the sequence

{
Gj
}

is
allowed to approach F in the metric ρ. Three such schemes are described below. In each
scheme, the linear functional LF , if it exists, is called the differential.

A. Gâteaux differentiability. T is Gâteaux differentiable if the differential exists for every
sequence Gj = F + tjΔ ∈ F0, where Δ = G − F ∈ D is fixed and tj → 0. Here
ρ
(
Gj, F

) = ‖Gj − F‖ρ = ‖tjΔ‖ρ = |tj| ‖Δ‖ρ → 0 irrespective of the metric ρ.
B. ρ-Hadamard differentiability. T is ρ -Hadamard differentiable if the differential exists

for every sequence Gj = F + tjΔj ∈ F0, where ‖Δj − Δ‖ρ → 0 for a fixed Δ ∈ D and
tj → 0.

C. ρ-Fréchet differentiability. T is ρ-Fréchet differentiable if the differential exists for
every Gj ∈ F0 with ρ

(
Gj, F

) → 0.

Since these differentiability conditions are increasingly stringent, ρ-Fréchet
differentiability ⇒ ρ-Hadamard differentiability ⇒ Gâteaux differentiability, but the
reverse implications do not hold. Moreover, in the expansion

T
(
G
)− T(F) = LF

(
G − F

)+ o
(
ρ
(
G, F

))
as ρ

(
G, F

) → 0,

if the differential LF in C exists, it is the same as LF in A and B, and if LF in B exists, it is the
same as in LF in A.

We now examine the nature of the Gâteaux differential LF of T by the following
heuristics. Due to linearity of LF

lim
t→0

T(F + tΔ) − T(F) − LF (tΔ)
‖tΔ‖ = 0

⇐⇒ lim
t→0

T(F + tΔ) − T(F) − tLF (Δ)
t

= 0

⇐⇒ lim
t→0

T(F + tΔ) − T(F)
t

= LF (Δ), ie,

LF
(
G − F

) = d
dt

T
(
(1 − t)F + tG

)|t=0.

Let δx be the cdf with its entire mass at x (ie, δx(u) = I[x,∞)(u)). Then for every u,∫
{δx(u) − F(u)} dG(x) =

∫
x≤u

dG(x) − F(u) = G(u) − F(u) and∫
{δx(u) − F(u)} dF(x) = 0, ie,

Δ = G − F =
∫

(δx − F) d
[
G(x) − F(x)

]
. (2)
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Thus, if we let

T ′(x, F) = d
dt

T((1 − t)F + tδx)|t=0 = LF (δx − F),

then by linearity of LF , using Eq. (2), we should have

LF
(
G − F

) = LF

∫
(δx − F) d

[
G(x) − F(x)

]
=
∫

LF (δx − F) d
[
G(x) − F(x)

] =
∫

T ′(x; F) d
[
G(x) − F(x)

]
. (3)

The first-order differential expansion of T
(
G
)

can now be written as

T
(
G
)− T(F) =

∫
T ′(x; F) dG(x) + Rem

=
∫

T ′(x; F) d
[
G(x) − F(x)

]+ Rem,

where the remainder term → 0 as G → F .
Letting Fn play the role of G, we now have

√
n[T(Fn) − T(F)] = √

n
∫

T ′(x; F) dFn(x) + Rn

= n−1/2
n∑

i=1

T ′(Xi; F
)+ Rn. (4)

Since
√

n‖Fn − F‖∞ = OP(1), following the analogy of the parametric delta method, we
would expect Rn to be oP(1) and then the asymptotic distribution of

√
n[T(Fn) − T(F)]

would be the same as that of n−1/2 ∑n
i=1 T ′(Xi; F). Interchanging the order of operations

LF and the integration as in Eq. (3) (which needs justification), we would expect

EF
[
T ′(X ; F)

] =
∫

T ′(x; F) dF(x) =
∫

LF (δx − F) dF(x)

= LF

∫
(δx − F) dF(x) = LF (0) = 0,

and if we let

σ2(F) = VarF
[
T ′(X ; F)

] =
∫ {

T ′(x; F)
}2 dF(x),

assuming that it exists, then we would have

√
n[T(Fn) − T(F)] = n−1/2

n∑
i=1

T ′(Xi; F
)+ oP(1)

L→ N
(

0, σ2(F)
)

.

This is known as the functional delta method.
Remark 10.2.1.

1. In the robustness literature [55, 56], T ′(x; F) is called the influence function and it is
denoted by

IF(x; F , T) = T ′(x; F) = d
dt

T((1 − t)F + tδx)|t=0.
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The function IF(x; F , T) measures the rate at which T(F) changes when F is
contaminated by δx with a small probability. The contamination δx is called gross-error
and

λ∗ = sup
x

|IF(x; F , T)|

is called the gross-error sensitivity of T at F .
2. Since Gâteaux differentiability is too weak, there is no guarantee that Rn = oP(1), as

seen in the following example [57]:
Define T(F) = ∑

x∈[0,1][F(x) − F(x−)]α , α > 1, as a measure of jumps of F on R. For
F = U (uniform distribution on [0, 1]) which has no jumps,

T ′(x; U) = d
dt

T((1 − t)U + tδx)|t=0 = d
dt

∑
y∈[0,1]

tα
[
δx
(
y
)− δx

(
y−)]α |t=0

= d
dt

tα |t=0 = αtα−1|t=0 = 0 for α > 1,

because U has no jump and δx
(
y
)

has exactly one jump of magnitude 1 at y = x. Now
Fn has n jumps of 1/n each with probability 1, so T(Fn) = n

(
1/n

)α = n1−α . Hence

√
n[T(Fn) − T(U)] = √

n
[

n1−α − 0
]

= n3/2−α

with probability 1. Thus the expansion

√
n[T(Fn) − T(F)] = n−1/2

n∑
i=1

T ′(Xi; F
)+ Rn

becomes n3/2−α = 0 + Rn and for 1 < α < 3/2, Rn = oP(1) is false.

We now summarize the “potential” of the Gâteaux differentiability approach based on
the above heuristics:

Let T ′(x; F) = d
dt T((1 − t)F + tδx)|t=0. Then

√
n[T(Fn) − T(F)] = n−1/2

n∑
i=1

T ′(Xi; F
)+ Rn.

If EF
[
T ′(X ; F)

] = 0, 0 < VarF
[
T ′(X ; F)

] = σ 2(F) < ∞ and if Rn = oP(1), then
√

n[T(Fn) − T(F)]
L→ N

(
0, σ 2(F)

)
as n → ∞.

To put the above heuristics to work, the main thing is to demonstrate that Rn = oP(1)
which can be attempted in one of the two ways.

I. Use the expansion given in Eq. (4) as a working formula and then carry out the
following steps:

(i) Calculate T ′(x; F) = d
dt T((1 − t)F + tδx)|t=0 which involves a simple one-variable

differentiation.
(ii) Check the condition EF

[
T ′(X ; F)

] = ∫
T ′(x; F) dF(x) = 0.

(iii) Check the condition Rn = oP(1) by examining the particular case.
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(iv) Calculate σ 2(F) = ∫ {
T ′(x; F)

}2 dF(x).
II. Obtain conditions on T in terms of ρ-Hadamard or ρ -Fréchet differentiability, so that

Rn = oP(1).

We first illustrate the first approach by the examples listed in Section 10.1 of this chapter
and then go into some theoretical considerations needed to pursue the second approach.

Example 10.2.1 (The Mean). Here T(F) = ∫
u dF(u), T(Fn) = n−1 ∑n

i=1 Xi = X̄n. The
influence function is

T ′(x; F) = d
dt

∫
u d[(1 − t)F(u) + tδx(u)]|t=0 = x −

∫
u dF(u)

= x − EF (X) := x − ξ (F).

In this case, the first-order approximation is an identity, because the function T(F) is
already linear. If the sample space is R, then the influence function is unbounded, so X̄n is
not robust.

Example 10.2.2 (The kth Central Moment). Let μk = T(F) = ∫
[u − ξ (F)]k dF(u), where

ξ (F) = EF (X). The influence function is

T ′(x; F) = d
dt

T((1 − t)F + tδx)|t=0

= d
dt

∫
[u − ξ (F) − t(x − ξ (F))]kd[F(u) + t(δx(u) − F(u))]|t=0

= −k(x − ξ (F))μk−1 + (x − ξ (F))k − μk,

which is unbounded. By routine calculations, we have

EF
[
T ′(X ; F)

] = 0 and

σ 2(F) = μ2k − μ2
k − 2kμk−1μk+1 + k2μk−1μ2.

Finally, the remainder term of this one-term expansion of
√

n[T(Fn) − T(F)] is

Rn = √
n[T(Fn) − T(F)] − n−1/2

n∑
i=1

T ′(Xi; F
)

= √
n

⎡
⎣n−1

n∑
i=1

(
Xi − X̄n

)k − μk

⎤
⎦

− n−1/2
n∑

i=1

[(
Xi − ξ (F)

)k − μk − kμk−1
(
Xi − ξ (F)

)]

= n−1/2
n∑

i=1

[(
Xi − X̄n

)k − (
Xi − ξ (F)

)k
]

+ kμk−1
√

n
(
X̄n − ξ (F)

)

= n−1/2
n∑

i=1

[(
Yi − Ȳn

)k − Y k
i

]
+ kμk−1

√
nȲn (5)
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with Yi = Xi − ξ (F). Then EF [Yi] = 0 and EF

[
Y k−j

i

]
= μk−j. Now expand the last

expression in Eq. (5), make some algebraic rearrangements and note that
√

nȲn = OP(1),

n−1 ∑n
i=1 Y k−j

i = μk−j + oP(1) for j = 2, . . . , k. This shows that Rn = oP(1).
Example 10.2.3 (The p-Quantile). For 0 < p < 1, the p-quantile of F is

T(F) = F−1(p) = inf
{

x: F(x) ≥ p
}

, so that F
(

F−1(p)) = p.

Let Ft = (1 − t)F + tδx for a give x. Now differentiating both sides of the identity

p = Ft

(
F−1

t (p)
)

= (1 − t)F
(

F−1
t (p)

)
+ tδx

(
F−1

t
(
p
))

with respect to t, evaluated at 0, we have.

0 =
[{

−F
(

F−1
t

(
p
))+ (1 − t)f

(
F−1

t (p)
) d

dt
F−1

t
(
p
)}+

{
δx

(
F−1

t (p)
)

+ t
d
dt

δx

(
F−1

t
(
p
))}]

t=0

= −F
(

F−1(p))+ f
(

F−1(p)) d
dt

F−1
t

(
p
)∣∣∣∣

t=0
+ I[x,∞)

(
F−1(p))+ 0

= f
(

F−1(p)) d
dt

F−1
t

(
p
)∣∣∣∣

t=0
−
{

p − I[−∞,F−1(p))(x)
}

.

Hence

T ′(x; F) = d
dt

F−1
t

(
p
)|t=0 =

p − I(−∞,F−1(p)](x)

f
(
F−1

(
p
)) , (6)

and the leading term of the expression of
√

n[T(Fn) − T(F)] is

n−1/2
n∑

i=1

T ′(Xi; F
) = 1√

n

n∑
i=1

p − I(−∞,F−1(p)]
(
Xi
)

f
(
F−1

(
p
))

L→ N

(
0,

p
(
1 − p

)
f 2
(
F−1

(
p
))
)

,

provided that the remainder term Rn = oP(1). Indeed, Rn = Oa.s.
(
n−1/4 log n

)
, ie, there

exists C such that P
[|Rn| > Cn−1/4 log n i.o.

] = 0. For a proof, Bahadur [58].
Remark 10.2.2.

1. The expression (6), rewritten as

Xn:[np] = F−1(p)+ 1
n

n∑
i=1

p − I(−∞,F−1(p)]
(
Xi
)

f
(
F−1

(
p
)) + Rn
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is known as Bahadur representation of a sample quantile.

2. Since
[

p − I(−∞,F−1(p)](Xi)
]
/f
(
F−1

(
p
))

, i = 1, . . . , n are iid with mean zero and variance

p
(
1 − p

)
/f 2

(
F−1

(
p
))

, Xn:[np]
a.s.→ F−1

(
p
)
.

3. The Bahadur representation can be obtained by a simple heuristic argument. Let Fn be
the edf of X1, . . . , Xn. Then Fn

(
Xn:[np]

) = [np]/n. Now note that if ξ ≤ Xn:[np], then(
Xn:[np] − ξ

)
f (ξ ) ≈ F

(
Xn:[np]

)− F(ξ ) ≈ Fn
(
Xn:[np]

)− Fn(ξ )

= [np] − n−1
n∑

i=1

I(−∞,ξ ]
(
Xi
) ≈ n−1

n∑
i=1

[
p − I(−∞,ξ ]

(
Xi
)]

and similarly, for Xn:[np] ≤ ξ ,

(
ξ − Xn:[np]

)
f (ξ ) ≈ n−1

n∑
i=1

[
I(−∞,ξ ]

(
Xi
)− p

]
.

In both cases,

Xn:[np] ≈ ξ + n−1
n∑

i=1

[
p − I(−∞,ξ ]

(
Xi
)]

/f (ξ ),

where ξ = F−1
(
p
)
.

4. Asymptotic joint distributions of several sample quantiles can be obtained similarly.

Example 10.2.4 (The V -Statistic). Let g: R
r → R (or more generally, g: R

d × · · · ×
R

d → R) be such that g
(
yi1 , . . . , yir

) = g
(
y1, . . . , yr

)
for all

(
y1, . . . , yr

)
and all permutations(

i1, . . . , ir
)

of (1, . . . , r). Then T(F) = ∫ · · · ∫ g
(
y1, . . . , yr

)∏r
i=1 dF

(
yi
)

for F ∈ F0 ={
F : EF

[|g(Y1, . . . , Yr)|] < ∞}
is called a V -functional and its corresponding V -statistic is

T(Fn) = n−r
n∑

i1=1

· · ·
n∑

ir=1

g
(
Xi1 , . . . , Xir

)

based on a random sample X1, . . . , Xn from F . Since g is symmetric in its coordinates,

T((1 − t)F + tδx) =
∫

· · ·
∫

g
(
y1, . . . , yr

) r∏
i=1

d
[
(1 − t)F

(
yi
)+ tδx

(
yi
)]

= (1 − t)rT(F) +
r∑

c=1

tc(1 − t)r−cr(c)

×
∫

· · ·
∫

g
(
x, . . . , x, yc+1, . . . , yr

) r∏
i=c+1

dF
(
yi
)

which is a polynomial in t, so its derivative with respect to t, evaluated at 0 is the coefficient
of t. Thus
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T ′(x; F) = d
dt

T((1 − t)F + tδx)|t=0

= r
∫

· · ·
∫

g
(
x, y2, . . . , yr

) r∏
i=2

dF
(
yi
)− rT(F)

= r
{

EF
[
g
(
X1, X2, . . . , Xr

)|X1 = x
]− T(F)

} = rh1(x), where

h1(x) = EF
[
g
(
X1, X2, . . . , Xr

)|X1 = x
]− T(F).

Clearly,

r−1EF
[
T ′(X ; F)

] = 0 and σ 2(F) = r2EF

[
h2

1(X)
]

.

Hence subject to the verification of the remainder term

Rn = √
n[T(Fn) − T(F)] − rn−1/2

n∑
i=1

h1
(
Xi
)

being oP(1), we have

√
n[T(Fn) − T(F)]

L→ N
(

0, σ2(F)
)

.

Examine the discrepancy between the V -statistic and the corresponding U -statistic to see
that this result is what one would expect.

10.3 The L-Estimators
Let F(· − θ) be a cdf with pdf f (· − θ) where f is symmetric about 0 and θ ∈ R is unknown.
Then θ is a location parameter which is the point of symmetry of the unknown distribution,
which is the median of F(· − θ) and also the mean if it exists. If X1, . . . , Xn is a random
sample from F(· − θ), then the sample mean X̄n, being the UMVUE and the MLE of θ if
F(· − θ) is normal with mean θ , is a very good estimator, but it is not so good if F(· − θ) is
Cauchy with median θ . The median Nn:[n/2] is no good in case of normal distributions, but
does not break down like X̄n for Cauchy distributions.

The reason for X̄n performing so poorly for the Cauchy distribution is due to its heavy
tails. The Cauchy pdf tends to 0 at the rate of 1/x2 as x → ±∞ as opposed to the e−x2/2 rate
for the normal pdf. This makes the extreme-order statistics unstable. The sample mean
can also be viewed as n−1 ∑n

i=1 Xn:i, where Xn:1 < · · · < Xn:n are the order statistics in
(X1, . . . , Xn). To protect X̄n from being drastically affected by possibly heavy tails of the
underlying distribution, it would seem reasonable to redistribute the weights on the order
statistics so that the extreme ones are de-emphasized. This leads to the consideration
of estimators which are linear functions of order statistics. These estimators include the
sample mean, the sample median, and also a class of estimators called α -trimmed means
with 0 < α < 1/2 defined by X̄n(α) = (n − 2[αn])−1 ∑n−[αn]

i=[αn]+1 Xn:i, which fall between the
sample mean and the sample median.
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Definition 10.3.1. An L-functional T : F0 → R is defined as

T(F) =
∫ ∞
−∞

xJ[F(x)] dF(x) =
∫ 1

0
F−1(u)J(u) du,

F ∈ F0 and J : [0, 1] → R,

and if X1, . . . , Xn is a random sample from F ∈ F0 with edf Fn, then

T(Fn) =
∫ ∞
−∞

xJ[Fn(x)] dFn(x) = n−1
n∑

i=1

J
(
i/n

)
Xn:i

is called the L-estimator of T(F). The function J is called the score function.
We now calculate the influence function and the remainder R

(
G, F

)
in the expansion

T
(
G
)− T(F) =

∫
T ′(x; F) d

[
G(x) − F(x)

]+ R
(
G, F

)
.

Differentiating

T(F + t(δx − F)) =
∫

uJ[F(u) + t(δx(u) − F(u))]d[F(u) + t(δx(u) − F(u))]

with respect to t at t = 0, we have

T ′(x; F) =
∫

u(δx(u) − F(u))J ′[F(u)] dF(u) +
∫

uJ[F(u)] d(δx(u) − F(u)).

Integrate the second integral by parts and make some algebraic rearrangements to get

T ′(x; F) = −
∫

(δx(u) − F(u))J[F(u)] du

=
∫ x

−∞
J[F(u)] du −

∫ ∞
−∞

(1 − F(u))J[F(u)] du.

The remainder term is

R(G, F) = T(G) − T(F) −
∫

T ′(x; F) d
[
G(x) − F(x)

]
,

where

T(G) − T(F) =
∫ 1

0

[
G−1(u) − F−1(u)

]
J(u) du =

∫ 1

0

[∫ G−1(u)

F−1(u)
dx

]
J(u) du

=
∫ 1

0

∫ ∞
−∞

I[F−1(u),G−1(u)
](x)J(u) dx du

=
∫ ∞
−∞

∫ 1

0
I[G(x),F(x)](u)J(u) du dx

=
∫ ∞
−∞

[∫ F(x)

G(x)
J(u) du

]
dx = −

∫ ∞
−∞

[∫ G(x)

F(x)
J(u) du

]
dx, and

∫
T ′(x; F) d

[
G(x) − F(x)

] =
∫ ∞
−∞

[∫ x

−∞
J[F(u)] du

]
d
[
G(x) − F(x)

]− 0

= −
∫ ∞
−∞

[
G(x) − F(x)

]
J[F(x)] dx.
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Thus

R(G, F) = −
∫ ∞
−∞

[∫ G(x)

F(x)
J(u) du − (

G(x) − F(x)
)
J(F(x))

]
dx

= −
∫ ∞
−∞

WG(x)
[
G(x) − F(x)

]
dx, where (7)

WG(x) = (
G(x) − F(x)

)−1
∫ G(x)

F(x)
J(u) du − J(F(x)).

Now letting Fn play the role of G, we have

√
n[T(Fn) − T(F)] = n−1/2

n∑
i=1

T ′(Xi; F
)+ Rn, where

T ′(x; F) = −
∫

(δx(u) − F(u))J[F(u)] du and Rn = R(Fn, F). (8)

We now verify that EF
[
T ′(X ; F)

] = 0 and obtain a formula for σ 2(F) = VarF
[
T ′(X ; F)

]
. This

will then give us the asymptotic distribution of the L-estimator, namely,

√
n[T(Fn) − T(F)]

L→ N
(

0, σ2(F)
)

subject to Rn = R(Fn, F) = oP(1).
First,

EF
[
T ′(X ; F)

] = −
∫ [∫

(δx(u) − F(u))J[F(u)] du
]

dF(x)

= −
∫ [∫

(δx(u) − F(u)) dF(x)
]

J(F(u)) du = 0,

because
∫

(δx(u) − F(u)) dF(x) = 0 for all u.
Next,

σ2(F) = VarF
[
T ′(X ; F)

]
=
∫ [∫

(δx(u) − F(u))J[F(u)] du
]2

dF(x)

= 2
∫∫

u<v

[∫
(δx(u) − F(u))(δx(v) − F(v)) dF(x)

]
J(F(u))J(F(v)) du dv

= 2
∫∫

u<v
F(u)(1 − F(v))J(F(u))J(F(v)) du dv

=
∫∫ [

F(min(u, v)) − F(u)F(v)
]
J(F(u))J(F(v)) du dv, (9)

because∫
(δx(u) − F(u))(δx(v) − F(v)) dF(x) = (1 − F(u))(1 − F(v))F(u)

− F(u)(1 − F(v))(F(v) − F(u)) + F(u)F(v)(1 − F(v))

= F(u)(1 − F(v)).
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An alternate formula for σ 2(F) can be obtained by first replacing (u, v) by (x, y) and then
letting F(x) = u and F( y) = v in Eq. (9). Thus

σ2(F) = 2
∫∫

x<y
F(x)

(
1 − F( y)

)
J(F(x))J(Fn y)) dx dy

= 2
∫∫

u<v
u(1 − v)

{
J(u)/f

(
F−1(u)

)}{
J(v)/f (F−1(v))

}
du dv

= 2
∫∫

u<v
u(1 − v)A′(u)A′(v) du dv, where

A(u) =
∫ u

0

J(t)

f (F−1(t))
dt + c

where c is such that A(1) = 0, making A′(u) = J(u)/f
(
F−1(u)

)
. Thus

σ2(F) = 2
∫ 1

u=0

[∫ 1

v=u
A′(v) dv

]
uA′(u) du −

∫ 1

0

∫ 1

0
uvA′(u)A′(v) du dv

= 2
∫ 1

0
[0 − A(u)]uA′(u) du −

(∫ 1

0
aA′(u) du

)2

= −
∫ 1

0
u dA2(u) −

(∫ 1

0
u dA(u)

)2

=
∫ 1

0
A2(u) du −

(∫ 1

0
A(u) du

)2

, (10)

using integration by parts in both integrals.

10.3.1 Asymptotic Distribution of α-Trimmed Mean When f Is Symmetric
About θ

The L-functional for α-trimmed mean is: T(F) = (1 − 2α)−1 ∫ F−1(1−α)
F−1(α) x dF(x) (ie, the score

function is J(t) = (1 − 2α)−1I[α,1−α](t)). Since f = F ′ is symmetric about θ , F−1(1 − α) − θ =
θ − F−1(α) , so that

∫ F−1(1−α)

F−1(α)
(x − θ) dF(x) = 0 and T(F) = (1 − 2α)−1

∫ F−1(1−α)

F−1(α)
x dF(x) = θ .

Next,

A(u) =
∫ u

0

(1 − 2α)−1I[α,1−α](t)

f
(
F−1(t)

) dt

=

⎧⎪⎪⎨
⎪⎪⎩

0 if 0 < u < α

(1 − 2α)−1
[

F−1(u) − F−1(α)
]

if α ≤ u ≤ 1 − α

(1 − 2α)−1[F−1(1 − α) − F−1(α)] if 1 − α < u < 1.

To calculate
∫ 1

0 A(t) dt and
∫ 1

0 A2(t) dt, use that due to symmetry of f = F ′ about θ , F−1(1 −
α) − θ = θ − F−1(α). Using these facts, we obtain, after algebraic simplifications,
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σ2(F) =
∫ 1

0
A2(u) du −

(∫ 1

0
A(u) du

)2

= 1

(1 − 2α)2

[
2α
(
θ − F−1(α)

)2 +
∫ F−1(1−α)

F−1(α)
(x − θ)2 dF(x)

]
,

by Eq. (10).

10.4 The M-Estimators
The method of maximum likelihood is based on the fact that subject to identifiability of
the family

{
f (·, t)

}
, if X has pdf f (x, θ) , then the function Eθ

[
log f (X , t)

]
has t = θ as its

unique maximizer. The MLE of θ based on a random sample X1, . . . , Xn is the maximizer
of n−1 ∑n

i=1 log f (Xi; t) which is a natural estimate of Eθ

[
log f (X , t)

]
. Equivalently, the MLE

of θ is a solution of
∑n

i=1 Ψ (Xi, t) = 0, where Ψ (x, t) = ∂ log f (x, t)/∂t, assuming that f is
smooth. In the location problem,

Ψ (x, t) = ∂ log f (x − t)/∂t = − f ′
f

(x − t),

so the MLE of a location parameter is the solution of
∑n

i=1 Ψ (Xi − t) = 0 where Ψ = −f ′/f .

The MLEs have good properties under the correct model, but if not, then Ψ (x, t) may
be very unstable for some x, as in the location problem in which −( f ′/f

)
(x) = x for N(0, 1)

and Xi − t for extreme observations are unstable if the true distribution is heavy-tailed.
The M-estimators attempt to overcome this weakness of MLEs by using a function

ρ(x − t) in the location problem instead of, but somewhat similar to log f (x − t), and then
solving for t in the equation

∑n
i=1 Ψ (Xi − t) = 0, where Ψ = ρ′ instead of −f ′/f . In general,

we replace − log f (x, t) by ρ(x, t) and solve for t in the equation
∑n

i=1 Ψ (Xi, t) = 0, where
Ψ (x, t) = ∂ρ(x, t)/∂t.

We now formally define an M-functional T(F), of which T(Fn) will be an M-estimator.
Definition 10.4.1. Let ρ: Rd × R → R and let Θ be an open subset of R, Then

T(F) = arg min
t∈Θ

∫
ρ(x, t) dF(x), F ∈ F0

is an M-functional, and if Fn is the edf of a random sample X1, . . . , Xn from F , then

T(Fn) = arg min
t∈Θ

n∑
i=1

ρ
(
Xi, t

)

is the M-estimator of T(F).
If Ψ (x, t) = ∂ρ(x, t)/∂t exists and if

λF (t) =
∫

Ψ (x, t) dF(x) = ∂

∂t

∫
ρ(x, t) dF(x), (11)

then T(F) is a solution of λF (t) = 0, and so
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λF (T(F)) =
∫

Ψ (x, T(F)) dF(x) = 0 for all F ∈ F0. (12)

The M-estimator T(Fn) of T(F) can be equivalently be expressed as a solution of the
equation

∑n
i=1 Ψ (Xi, t) = 0.

To calculate T ′(x; F) = d
dt T((1 − t)F + tδx)|t=0, start with

0 = λ(1−t)F+tδx ((1 − t)F + tδx)

=
∫

Ψ (u, T((1 − t)F + tδx)) d[(1 − t)F(u) + tδx(x)]

= (1 − t)
∫

Ψ (u, T((1 − t)F + tδx)) dF(u) + tΨ (x, T((1 − t)F + tδx)),

and differentiate both sides with respect to t at t = 0 to obtain

0 = −
∫

Ψ (u, T(F)) dF(u) + d
dt

∫
Ψ (u, T((1 − t)F + tδx)) dF(u)|t=0

+ Ψ (x, T(F)) + 0

= −λF (T(F)) + d
dt

λF (T((1 − t)F + tδx))|t=0 + Ψ (T(F))

= 0 + λ′
F (T(F))T ′(x; F) + Ψ (x, T(F)),

using Eqs. (11) and (12).
Assuming λ′

F (T(F)) �= 0, we thus have

T ′(x; F) = −Ψ (x, T(F))/λ′
F (T(F)). (13)

We now check that

EF
[
T ′(X ; F)

] = −EF [Ψ (X , T(F))]/λ′
F (T(F)) = −λF (T(F))/λ′

F (T(F)) = 0

by Eqs. (11) and (12), and

σ2(F) = σ2(F , Ψ ) = VarF
[
T ′(X ; F)

] =
∫

Ψ 2(x, T(F)) dF(x){
λ′

F (T(F))
}2 . (14)

We can now conclude that

√
n[T(Fn) − T(F)] = n−1/2

n∑
i=1

T ′(Xi; F
)+ Rn

L→ N
(

0, σ2(F , Ψ )
)

,

subject to the verification Rn = oP(1).
The MLE is also an M-estimator with Ψ (x, t) = −∂ log f (x, t)/∂t, and letting Fθ = F(·, θ),

T(Fθ ) = θ . Now

λ′
Fθ

(
T
(
Fθ

)) = λ′
Fθ

(θ) =
∫ (

−∂2 log f (x, t)

∂t2

)
t=θ

f (x, θ) dx = If (θ), and

∫
Ψ 2(x, T

(
Fθ

))
dFθ (x) =

∫ (
∂ log f (x, t)

∂t

)2

t=θ

f (x, θ) dx = If (θ),
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where If (θ) is the Fisher-information of the family
{

f (x, t), t ∈ Θ
}

at t = θ . Thus σ 2(Fθ , Ψ ) =
1/If (θ) by Eq. (14).

In the location problem, f (x, θ) = f (x − θ) where f is a symmetric (about 0) pdf. Here

∂ log f (x − t)
∂t

∣∣∣∣
t=θ

= − f ′(x − θ)
f (x − θ)

and

If (θ) =
∫ {

f ′(x − θ)
f (x − θ)

}2
f (x − θ) dx =

∫ {
f ′(x)
f (x)

}2
f (x) dx for all θ .

10.4.1 A Minimax Approach to the Choice of Ψ

For robust estimation of a location parameter θ , instead of assuming F to be a known cdf,
we work within the model

F = F
(
G, ε

) =
{

F = (
1 − ε′)G + ε′H : H is a cdf symmetric about 0, ε′ ∈ [0, ε]

}
,

where G is a specified cdf which is symmetric about 0 and ε is a specified positive number
(ie, we assume F to be a symmetric cdf lying “within ε distance” of a specified symmetric
cdf G). For given G and ε, we now look for Ψ0 = Ψ0(G, ε) such that

sup
F∈F (G,ε)

σ2(F , Ψ0
(
G, ε

)) ≤ sup
F∈F(G,ε)

σ2(F , Ψ ) for all ψ .

Then the M-estimator with Ψ = Ψ0
(
G, ε

)
is minimax for the family F

(
G, ε

)
in the sense of

minimizing the maximum possible asymptotic variance.
For G = Φ, the cdf of N(0, 1), the solution of this minimax problem lies in the class of

“Huber Functions”:

Ψ0(x) =
⎧⎨
⎩

−k x ≤ −k
x |x| < k
k x ≥ k,

where k is given in terms of ε by the formula

∫ k

−k
φ(x) dx + (2/k)φ(k) = 1/(1 − ε), φ = Φ ′ = pdf of N(0, 1).

See Huber [56].

An Alternative Derivation of the Asymptotic Distribution of
M-Estimators When the Score Function Ψ Is Monotone

Let θ̂n be an M-estimator of the location parameter θ of a family of pdf’s
{

f (x, θ) = f (x − θ),
θ ∈ R} where f is symmetric about 0 and suppose that the score function is antisymmetric
and monotone increasing.

Since θ̂n is the solution of
∑n

i=1 Ψ (Xi − t) = 0 and
∑n

i=1 Ψ (Xi − t) is monotone decreas-
ing in t,

∑n
i=1 Ψ (Xi − t) ≤ 0 for all t ≥ θ̂n and

∑n
i=1 Ψ (Xi − t) ≥ 0 for all t ≤ θ̂n. Hence
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Pθ

[√
n
(
θ̂n − θ

)
≤ a

]
= Pθ

[
θ + a/

√
n ≥ θ̂n

]

= Pθ

⎡
⎣n−1/2

n∑
i=1

Ψ
(
Xi − θ − a/

√
n
) ≤ 0

⎤
⎦

= P0

⎡
⎣n−1/2

n∑
i=1

Ψ
(
Xi − a/

√
n
) ≤ 0

⎤
⎦.

Now write

n−1/2
n∑

i=1

Ψ
(
Xi − a/

√
n
) = n−1/2

n∑
i=1

Ψ
(
Xi
)− an−1

n∑
i=1

Ψ ′(Xi
)+ Rn.

Since E0[Ψ (Xi)] = 0 due to Ψ being antisymmetric,

n−1/2
n∑

i=1

Ψ
(
Xi
) L→ N

(
0, Var0

[
Ψ
(
Xi
)])

provided that Var0[Ψ (Xi)] = ∫
Ψ 2(x)f (x) dx < ∞. Also,

n−1
n∑

i=1

Ψ ′(Xi) = E0
[
Ψ ′(Xi

)]+ oP(1)

provided that E0
[
Ψ ′(Xi)

] = ∫
Ψ ′(x)f (x) dx exists.

Thus if Rn = oP(1) by regularity conditions on F and Ψ , then

n−1/2
n∑

i=1

Ψ
(
Xi − a/

√
n
) L→ N

(−aE0
[
Ψ ′(X)

]
, Var0[Ψ (X)]

)
.

Consequently,

lim
n→∞ Pθ

[√
n
(
θ̂n − θ

)
≤ a

]
= lim

n→∞ P0

⎡
⎣n−1/2

n∑
i=1

Ψ
(
Xi − a/

√
n
) ≤ 0

⎤
⎦

= Φ

(
aE0

[
Ψ ′(X)

]
√

Var0[Ψ (X)]

)
= Φ

⎛
⎝ a√

Var0[Ψ (X)]/E2
0
[
Ψ ′(X)

]
⎞
⎠,

provided that E0
[
Ψ ′(X)

] �= 0, that is,

√
n
(
θ̂n − θ

) L→ N
(

0, σ2(F , Ψ )
)

, where

σ 2(F , Ψ ) = Var0[Ψ (X)]

E2
0
[
Ψ ′(X)

] =
∫

Ψ 2(x)f (x) dx[∫
Ψ ′(x)f (x) dx

]2 .

In the above, Ψ is assumed to be strictly increasing.
If Ψ is merely nondecreasing, then the equation

∑n
i=1 Ψ (Xi − t) = 0 may be satisfied on

an entire interval. In that case, the above argument would need minor modification.
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10.5 A Relation Between L-Estimators and M-Estimators
Let F be a cdf, symmetric about 0 and let f = F ′ be the pdf. For simplicity, assume F to be
strictly increasing.

Consider an M-estimator of θ based on iid observations X1, . . . , Xn from F(x − θ), with
score function Ψ having Ψ (−x) = −Ψ (x) for all x. Note that nothing changes if Ψ is
multiplied by a constant, so we normalize Ψ to make

∫
Ψ ′(x)f (x) dx = 1 (assuming

that
∫

Ψ ′(x)f (x) dx �= 0). Then the asymptotic variance of the M-estimator with score
function Ψ is

σ2(F , Ψ ) =
∫

Ψ 2(x)f (x) dx[∫
Ψ ′(x)f (x) dx

]2 =
∫

Ψ 2(x)f (x) dx.

Now consider an L-estimator with score function

JΨ (u) = Ψ ′(F−1(u)
)

, 0 < u < 1.

Then the asymptotic variance of this L-estimator is the same as σ 2(F , Ψ ). To see this, note
that here

A′
Ψ (u) = JΨ (u)/f (F−1(u)) = Ψ ′(F−1(u)

)
/f
(

F−1(u)
)

,

so that

Aψ (t) =
∫ t

1/2
A′

Ψ (u) du =
∫ t

1/2

{
Ψ ′(F−1(u)

)
/f
(

F−1(u)
)}

du

=
∫ F−1(t)

F−1(1/2)

{
Ψ ′(x)/f (x)

}
dF(x) =

∫ F−1(t)

0
Ψ ′(x) dx

= Ψ
(

F−1(t)
)

− Ψ (0) = Ψ
(

F−1(t)
)

.

Hence

∫ 1

0
AΨ (t) dt =

∫ 1

0
Ψ
(

F−1(t)
)

dt =
∫ ∞
−∞

Ψ (x)f (x) dx = 0 and

∫ 1

0
A2

Ψ (t) dt =
∫ 1

0

{
Ψ
(

F−1(t)
)}2

dt =
∫ ∞
−∞

Ψ
(

2x
)

f (x) dx.

Thus the asymptotic variance of the L-estimator with score function JΨ is

∫ 1

0
A2

Ψ (t) dt −
(∫ 1

0
AΨ (t) dt

)2

=
∫ ∞
−∞

Ψ 2(x)f (x) dx = σ 2(F , Ψ ).
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10.6 The Remainder Term Rn
Throughout, we consider the case of d = 1, that is, X1, . . . , Xn are real-valued iid rv’s with
cdf F and Fn is the edf of X1, . . . , Xn .

We shall consider the following distances in

F = collection of all cdf’s on R, and
F1 = collection of all cdf’s on R with finite mean:

Sup-norm distance: ρ∞(F1, F2) = supx |F1(x) − F2(x)| for all F1 and F2 ∈ F .

Lp-distance: ρLp (F1, F2) = [∫
R

|F1(x) − F2(x)|p dx
]1/p, p ≥ 1 for all F1 and F2 ∈ F1.

Lemma 10.6.1. (i) ρ∞(Fn, F) = OP
(
n−1/2

)
, (ii) ρLp (Fn, F) = OP

(
n−1/2

)
if either 1 ≤ p < 2

and
∫

[F(x)(1 − F(x))]p/2 dx < ∞ or p ≥ 2.
Proof. By the DKW Theorem (See Theorem 9.2.4),

E
[√

nρ∞(Fn, F)
] =

∫ ∞
0

P
[√

nρ∞(Fn, F) > y
]

dy

≤
∫ ∞

0
C exp

[
−2n

(
y/

√
n
)2
]

dy

= C
∫ ∞

0
exp

[
−2y2

]
dy for all n.

Now by Markov inequality,

P
[√

nρ∞(Fn, F) > M
] ≤ M−1E

[√
nρ∞(Fn, F)

]
≤ CM−1

∫ ∞
0

exp
[
−2y2

]
dy → 0 as M → ∞,

proving that
√

nρ∞(Fn, F) = OP(1) (ie, ρ∞(Fn, F) = OP
(
n−1/2

)
).

The proof of (ii) is longer and we omit it.
The following theorem provides conditions under which the remainder term

Rn = √
n[T(Fn) − T(F)] − n−1/2

n∑
i=1

T ′(Xi; F
) = oP(1).

Theorem 10.6.1.

(i) If T is ρ∞-Hadamard differentiable at F, then Rn = oP(1).
(ii) If T is ρ∞-Fréchet differentiable at F and if

√
nρ(Fn, F) = OP(1), then Rn = oP(1).

Proof. Part (i) is proved by advanced techniques, for which we refer to Fernholtz [57].
To prove part (ii), note the following:
By definition of ρ-Fréchet differentiability, ρ(Fn, F) → 0 implies

T(Fn) − T(F) − LF (Fn − F)
ρ(Fn, F)

=
√

n[T(Fn) − T(F)] − √
nLF (Fn − F)√

nρ(Fn, F)

= Rn√
nρ(Fn, F)

→ 0,
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because if LF (Fn − F) exists as a ρ-Fréchet differential, then it is the same as the Gâteaux
differential which also exists, so that

√
nLF (Fn − F) = n−1/2 ∑n

i=1 T ′(Xi; F). Thus for every
ε > 0, there exists δ > 0 such that

ρ(Fn, F) < δ implies |Rn| < ε
√

nρ(Fn, F) for all large n.

Hence for arbitrary η > 0,

P[|Rn| > η] ≤ P[ρ(Fn, F) ≥ δ] + P
[√

nρ(Fn, F) > η/ε
]

for large n, so

lim sup
n

P[|Rn| > η] ≤ lim sup
n

P[ρ(Fn, F) ≥ δ] + lim sup
n

P
[√

nρ(Fn, F) > η/ε
]
.

Now (i)
√

nρ(Fn, F) = OP(1) implies ρ(Fn, F) = oP(1), limn→∞ P[ρ(Fn, F) ≥ δ] = 0 and
(ii)

√
nρ(Fn, F) = OP(1) also implies P

[√
nρ(Fn, F) > η/ε

]
can be made arbitrarily small by

choosing η/ε sufficiently large (ie, by making ε sufficiently small).
This completes the proof.
We now examine the remainder terms of the L- and M-estimators.
Theorem 10.6.2. Let T(G) = ∫

xJ
(
G(x)

)
dG(x) be an L-functional.

(i) If J is bounded, J(u) = 0 for all u /∈ (α, β) for some 0 < α < β < 1, and J is continuous at
F(x) for almost all x, then T is ρ∞-Fréchet differentiable at F with T ′(x; F) bounded and
continuous.

(ii) If |J(u) − J(v)| ≤ C|u − v|p−1 for some C > 0 and p > 1, then T is ρLp -Fréchet
differentiable at F.

Proof.

(i) Let
{

Gj
}

satisfy limj→∞ ρ
(
Gj, F

) = 0. Choose c < d such that F(c) < α < β < F(d).
Then for x /∈ [

c, d
]
, F(x) /∈ (

α, β
)
, so J(F(x)) = 0 for all x /∈ [

c, d
]
. Since ρ∞

(
Gj, F

) = 0,
for sufficiently large j, Gj(x) is also /∈ (

α, β
)

for x /∈ [
c, d

]
, so J(Gj(x)) = 0 for all

x /∈ [
c, d

]
. Hence for sufficiently large j and for x /∈ [

c, d
]
, J(u) = 0 for u = F(x) and for

all u lying between F(x) and Gj(x), and therefore,
∫ Gj(x)

F(x) [J(u) − J(F(x))] du = 0 and
WGj (x) = 0.
Hence for large j,

|R
(

Gj, F
)
| =

∣∣∣∣∣
∫ d

c
WGj(x)

[
Gj(x) − F(x)

]
dx

∣∣∣∣∣ ≤ ρ∞
(

Gj, F
) ∫ d

c
|WGj

(x)| dx.

Now use the continuity of J at F(x) for almost all x to see that WGj (x) → 0 a.e., and is

bounded since J is bounded. Hence
∫ d

c |WGj (x)| dx → 0 by dominated convergence.
Thus limj→∞ |R(Gj, F

)|/ρ∞
(
Gj, F

) = 0 showing that T is ρ∞-Fréchet differentiable at
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F . Again, for y /∈ [
c, d

]
, F(y) /∈ [

α, β
]

so J
(
F(y)

) = 0. Thus

T ′(x; F) = −
∫ d

c

[
δx(y) − F(y)

]
J
(
F(y)

)
dy

is bounded and continuous. This proves (i).
(ii) Let

{
Gj
}

satisfy limj→∞ ρLp

(
Gj, F

) = 0 and note that

|R
(

Gj, F
)
| =

∣∣∣∣∣
∫ [∫ Gj(x)

F(x)
{J(u) − J(F(x))} du

]
dx

∣∣∣∣∣
≤
∫ [∫ Gj(x)

F(x)
|J(u) − J(F(x))| du

]
dx

≤
∫ [∫ Gj(x)

F(x)
C|u − F(x)p−1| du

]
dx

≤ C
∫

|Gj(x) − F(x)|p dx = C
{
ρLp

(
Gj, F

)}p
.

Hence

lim
j→∞

|R
(

Gj, F
)
|

ρLp

(
Gj, F

) ≤ C lim
j→∞

{
ρLp

(
Gj, F

)}p−1 = 0 for p > 1,

showing that T is ρLp -Fréchet differentiable at F .

Corollary 10.6.1. In the expansion

√
n[T(Fn) − T(F)] = n−1/2

n∑
i=1

T ′(Xi; F
)+ Rn

of the L-estimator T(Fn) of T(f ) = ∫
xJ(F(x)) dx, the remainder term Rn = oP(1) if the

function J satisfies the conditions of Theorem 10.6.2(i) or (ii).
Proof. Under the condition of Theorem 10.6.2(i), T is ρ∞-Fréchet differentiable at F and

by Lemma 10.6.1(i), ρ∞(Fn, F) = OP
(
n−1/2

)
. Therefore, Theorem 10.6.1(ii) applies, proving

Rn = oP(1).
Under the condition of Theorem 10.6.2(ii) with p > 1, T is ρLp -Fréchet differentiable

and by Lemma 10.6.1(ii), ρLp (Fn, F) = OP
(
n−1/2

)
provided that

∫ [F(x)(1 − F(x))p/2 dx < ∞
also holds for the case 1 < p < 2. Hence Theorem 10.6.1(ii) applies, proving Rn = oP(1).

Theorem 10.6.3. Let T be an M-functional with score function Ψ (x, t) which is bounded
and continuous, and suppose that the function λF (t) = ∫

Ψ (x, t) dF(x) is continuously
differentiable at T(F) while λ′

F (T(F)) �= 0. Then T is ρ∞-Hadamard differentiable at F.
Proof. Let Gj = F + tjΔj where ‖Δj − Δ‖∞ → 0 on D = {c(F1 − F2), c > 0} and tj → 0 .

We argue through the following steps:
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(i) Since the ρ∞-Hadamard differential, if it exists, is the same as the Gâteaux
differential,

LF

(
Gj − F

)
=
∫

T ′(x; F) d
[

Gj(x) − F(x)
]

= −
∫

Ψ (x, T(F))
λ′

F (T(F))
d
[

Gj(x) − F(x)
]

,

using the formula for T ′(x; F) given in Eq. (11). It will, therefore, be enough to show
that

lim
j→∞

T
(

Gj

)
− T(F) + {

λ′
F (T(F))

}−1 ∫
Ψ (x, T(F)) d

[
Gj(x) − F(x)

]
‖tjΔj‖∞

(15)

= lim
j→∞

Rj/‖tjΔj‖∞,

where Rj is the numerator of Eq. (15).
(ii) Since λF (T(F)) = λGj

(
T(Gj)

) = 0 by (12),

λF

(
T(Gj)

)
− λF (T(F)) = λF

(
T(Gj)

)
− λGj

(
T(Gj)

)
= −

∫
Ψ
(

x, T(Gj)
)

d
[

Gj(x) − F(x)
]

= −
∫

Ψ
(

x, T(Gj)
)

d
[

tjΔj(x)
]

→ 0,

because tj → 0, ‖Δj − Δ‖∞ → 0 and Ψ is bounded.
(iii) Since λ′

F (T(F)) �= 0, the inverse function λ−1
F (·) of λF (·) exists and is continuous in a

neighborhood of λF (T(F)) = 0. Hence λF
(
T(Gj)

)− λF (T(F)) → 0 implies

T
(

Gj

)
− T(F) = λ−1

F

(
λF

(
T
(

Gj

)))
− λ−1

F
(
λF (T(F))

) → 0.

(iv) Use (ii) to write

T
(

Gj

)
− T(F) = −

T
(

Gj

)
− T(F)

λF

(
T(Gj)

)
− λF (T(F))

∫
Ψ
(

x, T(Gj)
)

d
[

tjΔj(x)
]

.

(v) From (i) and (iv),

Rj = 1

λ′
F (T(F))

∫
Ψ (x, T(F)) d

[
tjΔj(x)

]

−
T
(

Gj

)
− T(F)

λF

(
T(Gj)

)
− λF (T(F))

∫
Ψ
(

x, T(Gj)
)

d
[

tjΔj(x)
]

= tj

⎡
⎢⎣{λ′

F (T(F))
}−1 −

⎧⎨
⎩

λF

(
T(Gj)

)
− λF (T(F))

T
(

Gj

)
− T(F)

⎫⎬
⎭

−1 ∫
Ψ (x, T(F)) dΔj(x)

⎤
⎥⎦
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− tj

T
(

Gj

)
− T(F)

λF

(
T(Gj)

)
− λF (T(F))

∫ [
Ψ
(

x, T(Gj)
)

− Ψ (x, T(F))
]

dΔj(x)

:= tj

(
R1j + R2j

)
.

(vi) By (iii), T
(
Gj
)− T(F) → 0, so

⎧⎨
⎩

λF

(
T(Gj)

)
− λF (T(F))

T
(

Gj

)
− T(F)

⎫⎬
⎭

−1

− {
λ′

F (T(F))
}−1 → 0,

which together with boundedness of Ψ and ‖Δj − Δ‖∞ → 0 implies R1j → 0.
Also T

(
Gj
)− T(F) → 0 implies

T
(

Gj

)
− T(F)

λF

(
T(Gj)

)
− λF (T(F))

→ {
λ′

F (T(F))
}−1 and

∫
[Ψ
(

x, T(Gj)
)

− Ψ (x, T(F))] dΔj(x) → 0,

because Ψ is bounded and continuous, and ‖Δj − Δ‖∞ → 0. Thus R2j → 0. Putting
all this together, we have

lim
j→∞

Rj

‖tjΔj‖∞
= lim

j→∞
tj

(
R1j + R2j

)
‖tjΔj‖∞

= lim
j→∞

R1j + R2j

‖Δj‖∞
= 0,

showing that Eq. (15) holds.

Corollary 10.6.2. If T(F) is an M-functional with score function Ψ (x, t) satisfying the
conditions of Theorem 10.6.3 and if T(Fn) is the corresponding M-estimator, then in the
expansion

√
n[T(Fn) − T(F)] = n−1/2

n∑
i=1

T ′(Xi; F
)+ Rn,

the remainder term Rn is oP(1).
Proof. Under the conditions of Theorem 10.6.3, T is ρ∞-Hadamard differentiable at F ,

so Theorem 10.6.1(i) applies.

10.7 The Jackknife and the Bootstrap
In this section we will briefly deal with two well-known resampling methods — the
jackknife and the bootstrap. These methods can be used to obtain approximate bias,
variance, and distribution of estimates without having to obtain their analytic expressions
which may be quite complicated in many cases (see Efron and Tibshirani [59]). At the
beginning of this chapter, some examples of statistical functional were given, and in
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Examples 10.2.1–10.2.3, the first derivatives (influence functions) were explicitly obtained
for three functionals. It is important to add that there are many more useful functionals
for the univariate case as in Exercises 10.5–10.11 or in the multivariate case such as the
correlation coefficient, multiple correlation, etc. In this section, the discussion will be
informal, starting with the concept of second derivative of a functional. Extending the
definition given in Section 10.2 (for the first-order expansion of a statistical functional),
T ′′(x1, x2; F) is the second derivative if

T(F + tΔ) − T(F) − t
∫

T ′(x; F) dΔ(x) − t2
∫

T ′′(x1, x2; F
)

dΔ
(
x1
)

dΔ
(
x2
)

= o
(

t2
)

,

as t ↓ 0. We ignore the issue of whether the convergence is uniform in Δ. This has been
discussed in the previous sections. We now examine the bias and the variance of the
estimate T(Fn) of T(F), where Fn is the empirical cdf on the basis of iid sample X1, . . . , Xn.
If we write Δn = √

n(Fn − F) and t = n−1/2, under appropriate conditions we have

T(Fn) = T(F) + n−1/2
∫

T ′(x; F) dΔn(x)

+ n−1
∫

T ′′(x1, x2; F
)

dΔn
(
x1
)

dΔn
(
x2
)+ Rn

:= T(F) + Ln(F) + Qn(F) + Rn, (16)

where we assume that the remainder term is oP
(
1/n

)
. However, we should point out that,

usually for many functionals, Rn = OP
(
n−3/2

)
.

We now discuss the concepts of asymptotic bias (ABias) and asymptotic variance (AVar)
of a statistical functional. In all our subsequent discussions in this section, we ignore the

remainder term Rn and assume that T(Fn) = T(F)+Ln(F)+Qn(F), and that E
[{

T ′(X ; F)
}2
]

,

E
[{

T ′′(X , X ; F)
}2
]

, and E
[{

T ′′(X1, X2; F)
}2
]

are finite.

Note that Ln(F) has mean zero and variance

Var[Ln(F)] = n−1Var
[
T ′(X ; F)

]
.

A tedious calculation, whose justification will be given later, shows

Var
[
Ln(F) + Qn(F)

] = Var[Ln(F)] + O(n−2).

The expected value of Qn(F) is

E
[
Qn(F)

] = n−1[E{T ′′(X , X ; F)
}− E

{
T ′′(X1, X2; F

)}]
, and hence

E
[
Ln(F) + Qn(F)

] = E
[
Qn(F)

] = n−1[E{T ′′(X , X ; F)
}− E

{
T ′′(X1, X2; F

)}]
.

We define the asymptotic bias and asymptotic variance of T(Fn) as

ABias(T(Fn)) = E
[
Qn(F)

]
= n−1[E{T ′′(X , X ; F)

}− E
{

T ′′(X1, X2; F
)}]

:= n−1b(F), (17)
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AVar[T(Fn)] = Var[Ln(F)] = n−1Var
[
T ′(X ; F)

]
:= n−1v(F). (18)

In some cases, it is possible to find explicit expressions for ABias and AVar, and in such
cases, we may simply replace b(F) and v(F) by b(Fn) and v(Fn). However, in many others,
explicit expressions for ABias and AVar are quite complicated, and it is useful to have
simple sample-based methods for estimating these quantities. We now discuss estimation
of these two quantities: asymptotic bias and asymptotic variance.

Remark 10.7.1. It is important to note that T(Fn) may not have finite mean and variance
in many cases. For instance, let X1, . . . , Xn be iid discrete random variables taking values in
N = {0, 1, 2, . . .}. Let μ(F) = E[X ] and σ 2(F) = Var[X ], and we are interested in estimating
T(F) = log(μ(F)) or the coefficient-of-variation T(F) = σ (F)/μ(F). Note that if P[X = 0] >

0, then T(Fn) in each of these cases does not have finite mean and the variance is not
defined. However, in statistical applications, the issues of interest are estimation of T(F)
and construction of its confidence interval. Hence if P[T(Fn) = ∞] → 0 as n → ∞, we may
bypass the problem of estimating the actual bias and variance (may not exist) by assuming
that the expression for T(Fn) is given by the expression on the right-hand side of Eq. (16)
without the remainder term Rn.

10.7.1 Estimation of Asymptotic Bias and Asymptotic Variance

Let Fni be the empirical cdf of F on the basis of X1, . . . , Xi−1, Xi+1, . . . , Xn (ie, Fni is based on
n − 1 observations, deleting Xi). Let T(Fni) be the estimate of T(F) based on Fni. Tukey’s
pseudo values are defined to be

Vi = nT(Fn) − (n − 1)T
(
Fni

)
, i = 1, . . . , n.

These pseudo values are approximately iid with mean T(F) and variance v(F)/n. As a
matter of fact, the following turn out to be true

E
[
V̄
] = T(F),

E

⎡
⎣(n − 1)−1

n∑
i=1

(
Vi − V̄

)2

⎤
⎦ = v(F) + O

(
n−1

)
,

where V̄ = n−1 ∑n
i=1 Vi. Since E

[
T(Fn) − V̄

] = E[T(Fn)] − T(F), the Jackknife estimates of
ABias(T(Fn)) is given by

ABias(J)(T(Fn)) = T(Fn) − V̄ = (n − 1)
[
T̄n − T(Fn)

]
,

where T̄n = n−1 ∑n
i=1 T(Fni).

The Jackknife estimate of AVar(T(Fn)) is

AVar(J)(T(Fn)) = [n(n − 1)]−1
n∑

i=1

(
Vi − V̄

)2 = n − 1
n

n∑
i=1

(
T(Fni) − T̄n

)2.

The bootstrap method is conceptually simple: it basically seeks to replace bn(F) by its
empirical estimate bn(Fn). However, it does so without having to obtain any analytic ex-
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pression for bn(F). The method described here is known as the “nonparametric” bootstrap.
Let X∗

1 , . . . , X∗
n be iid with cdf Fn, then the bootstrap estimate of ABias is given by

ABias(B)(T(Fn)) = E
[{

T
(
F∗

n
)− T(Fn)

}|X1, . . . , Xn
]
,

that is, the (conditional) expectation is taken over the random sample X∗
1 , . . . , X∗

n . In
practice, it is calculated as follows. Draw a random sample of size n with replacement from
the data {X1, . . . , Xn} and repeat this N times. Let F∗

n(t) be the empirical cdf on the basis

of the tth sample
{

X∗
1(t), . . . , X∗

n(t)

}
, and let T

(
F∗

n(t)

)
be the estimate of T(F) based on F∗

n(t).

Then, one calculates the quantity

N−1
N∑

t=1

[
T
(

F∗
n(t)

)
− T(Fn)

]
,

which, by the weak law of large numbers, converges to ABias(B)(T(Fn)) as N → ∞.
The bootstrap estimate of the asymptotic variance is

AVar(B)(T(Fn)) = Var
[
T
(
F∗

n
)|X1, . . . , Xn

]
,

where the conditional variance is over the bootstrap sample
(
X∗

1 , . . . , X∗
n
)
.

The bootstrap procedure may also be used to obtain an estimate of the sampling distri-
bution Qn(z) = P

[√
n{T(Fn) − T(F)} ≤ z

]
, z real. Even though such sampling distributions

are approximately normal under appropriate conditions when the sample size n is large,
one may nonetheless use the bootstrap method in such cases. A bootstrap estimate of
Qn(z) is given by Q(B)

n (z) = P
[√

n
{

T
(
F∗

n
)− T(Fn)

} ≤ z|X1, . . . , Xn
]
, where the (conditional)

probability is over the bootstrap sample
(
X∗

1 , . . . , X∗
n
)
. In general if there is a functional of

the form T(Fn, F) and one wishes to estimate E[T(Fn, F)], then its bootstrap estimate is
E
[
T
(
F∗

n, Fn
)|X1, . . . , Xn

]
.

Remark 10.7.2. It is important to point out that the jackknife and bootstrap procedures
may not always work. For instance, the jackknife estimate of bias cannot provide consis-
tent estimates for the ABias and AVar when estimating a quantile F−1(p). Success of the
jackknife method depends on the smoothness of the functional (ie, on the validity of the
expansion given in Eq. (16)). Bootstrap works well for quantile estimation as long as p is
away from 0 or 1. However, it cannot provide consistent estimates for ABias and AVar when
estimating extreme quantiles (ie, when p is close to 0 or 1).

10.7.2 Heuristic Justification for the Jackknife and the Bootstrap

Let us first justify the validity of the bootstrap estimate. In the arguments given here we
denote n−1/2Δn = Fn − F by Dn and F∗

n − Fn by D∗
n. We can simplify notations by writing∫

T ′(x; F) dDn(x) by LF (Dn) and
∫

T ′′(x1, x2; F) dDn(x1) dDn(x2) by QF (Dn). If we expand
T
(
F∗

n
)

about Fn, then we have

T
(
F∗

n
)− T(Fn) = LFn

(
D∗

n
)+ QFn

(
D∗

n
)
.
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Conditional expectation (given X1, . . . , Xn) of the first term on the right-hand side of the last
expression equals zero, and the conditional expectation of the second term is n−1bn(Fn).

The result follows once we note that |bn(Fn) − bn(F)| P→ 0 as n → ∞. The justification for
the bootstrap estimate of the variance is similar.

Let us now look at the jackknife estimate. The validity of the bias estimate is fairly easy
to establish since

E
[
Vi
] = E

[
nT(Fn) − (n − 1)T

(
Fni

)] = b(F) − b(F) = 0.

Thus E
[
V̄
] = 0.

Justification for the validity of the jackknife estimate of the variance requires a bit of
work. Simple algebra tells us

n∑
i=1

(
Vi − V̄

)2 = (2n)−1
∑

1≤i �=i′≤n

(
Vi − Vi′

)2

= (2n)−1(n − 1)2
∑

1≤i �=i′≤n

[
T
(
Fni

)− T
(
Fni′

)]2. (19)

We will work with T(Fni) − T(Fni′) for the proof.
For notational simplicity, we suppress F in the notations of T ′ and T ′′. We also

assume that T ′′ is symmetric in its arguments. Since if it is not, we can symmetrize it
by using

[
T ′′(x1, x2) + T ′′(x2, x1)

]
/2, and such symmetrization does not alter the value of∫

T ′′(x1, x2) dH(x1) dH(x2), where H is a cdf or a difference of two cdfs. For any x, x1, and
x2, define

T1(x) = T ′(x) − E
[
T ′(X)

]
,

T2
(
x1, x2

) = T ′′(x1, x2
)− E

[
T ′′(x1, X2

)]− E
[
T ′′(X1, x2

)]+ E
[
T ′′(X1, X2

)]
.

Then

Ln(F) =
∫

T ′(x) dDn(x) =
∫

T1(x) dFn(x) = n−1
n∑

j=1

T1

(
Xj

)
,

Qn(F) =
∫

T ′′(x1, x2
)

dDn
(
x1
)

dDn
(
x2
)

=
∫

T2
(
x1, x2

)
dFn

(
x1
)

dFn
(
x2
) = n−2

∑
1≤j,k≤n

T2

(
Xj, Xk

)
.

Thus

T(Fn) = T(F) + n−1
n∑

j=1

T1

(
Xj

)
+ n−2

∑
1≤j,k≤n

T2

(
Xj, Xk

)
.

The two sums in the last expression are not uncorrelated. A simple argument can be used
to create two uncorrelated sums. Note that b(F) = E[T2(X , X)] and let

Ui = T1
(
Xi
)+ n−1[T2

(
Xi, Xi

)− b(F)
]
,

Wj,k = T2

(
Xj, Xk

)
.

Then T(Fn) can be rewritten as
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T(Fn) = T(F) + b(F)/n + n−1
n∑

j=1

Ui + n−2
∑

1≤j �=k≤n

Wj,k. (20)

It is easy to see that Ui and Wj,k, j �= k, have zero means, Cov
[
Ui, Wj,k

] = 0 whenever j �= k,
and Cov

[
Wj1,k1 , Wj2,k2

] = 0 except when
(
j1, k1

) = (
j2, k2

)
or
(
j1, k1

) = (
k2, j2

)
. We therefore

have

E[T(Fn)] = T(F) + b(F)/n,

Var[T(Fn)] = Var

⎡
⎣n−1

n∑
j=1

Ui

⎤
⎦+ Var

⎡
⎣n−2

∑
1≤j �=k≤n

Wj,k

⎤
⎦

= n−1Var
[
U1

]+ O
(

n−2
)

= n−1
{

Var
[
T1(X)

]+ O
(

n−1
)}

+ O
(

n−2
)

= n−1v(F) + O
(

n−2
)

.

Applying the equality in Eq. (20) for T(Fni) and T(Fni′) for i �= i′, we have

T
(
Fni

)− T
(
Fni′

) = (n − 1)−1[Ui′ − Ui
]+ 2(n − 1)−2

∑
j �=i,j �=i′

[
Wi′,j − Wi,j

]
.

Thus

E

⎧⎨
⎩

∑
1≤i �=i′≤n

[
T
(
Fni

)− T
(
Fni′

)]2

⎫⎬
⎭ =

∑
i �=i′

E
{

(n − 1)−1[Ui′ − Ui
]}2

+
∑
i �=i′

E

⎧⎨
⎩2(n − 1)−2

∑
j �=i,j �=i′

[
Wi′,j − Wi,j

]⎫⎬
⎭

2

= 2n(n − 1)−1Var
[
U1

]+ O
(

n−1
)

= 2n(n − 1)−1
{

Var
[
T1(X)

]+ O
(

n−1
)}

+ O
(

n−1
)

= 2n(n − 1)−1Var
[
T1(X)

]+ O
(

n−1
)

.

From Eq. (19), we thus have

E

⎡
⎣ n∑

i=1

(
Vi − V̄

)2

⎤
⎦ = (n − 1)Var

[
T1(X)

]+ O(1) = (n − 1)v(F) + O(1).

This shows that E
[
AVar(J)(T(Fn))

] = n−1v(F) + O(n−2).

Exercises
In the following problems, X1, . . . , Xn is a random sample from a population with cdf F
and pdf f , X̄n and s2

n are the sample mean and sample variance, Xn:1 < · · · < Xn:n are the



304 THEORY AND METHODS OF STATISTICS

order statistics, and Q1n = Xn:[n/4], Mn = Xn:[n/2], and Q3n = Xn:[3n/4] are, respectively, the
sample first quartile, the sample median, and the sample third quartile.

10.1. Let F be the cdf of N
(
μ, σ 2

)
. Consider two tests with critical regions T1n ≥ c1n and

T2n ≥ c2n for testing H0: μ = 0 vs H1: μ > 0, where T1n = √
nX̄n/sn,

T2n = Q1n + Q3n, and c1n, c2n are chosen so as to control the Type I error
probability at a given level α, approximately for large n. For alternatives of the
order 1/

√
n, calculate the Pitman ARE of the test based on T2n with respect to the

one based on T1n.
10.2. If F is the cdf of N

(
μ, σ 2

)
, find the asymptotic joint distribution of

(
X̄n, Mn

)
,

properly normalized.
10.3. Let ξ1 and ξ3 denote the first and the third quartiles of F (ie, ξ1 = F−1(1/4) and

ξ3 = F−1(3/4)).
(a) Write down the Bahadur representation of Q1n and Q3n, stating conditions on

F for their validity.
(b) Let F be the cdf of N

(
μ, σ 2

)
. Find the asymptotic distribution of the

inter-quartile range Dn = Q3n − Q1n.
(c) Find a constant c such that Tn = cDn is a consistent estimator of σ . What can

you say about the asymptotic efficiency of Tn? [If φ is the pdf and Φ is cdf of
N(0, 1), then Φ−1(3/4) = 0.6745 and φ

(
Φ−1(3/4)

) = 0.3178.]
10.4. Suppose the pdf involves a parameter θ and

f (x, θ) = (
1/2 − θ

)
exI(−∞,0)(x) + (1/2)e−x/(1+2θ)

=
{ (

1/2 − θ
)
e−|x| x < 0(

1/2 + θ
) 1

1+2θ
e−|x|/(1+2θ) x ≥ 0.

For θ = 0, the pdf f (x, 0) = (1/2)e−|x|, −∞ < x < ∞ is symmetric with
mean = median = 0. For θ �= 0, none of this is true. To test H0: θ = 0 vs H1: θ �= 0
we can, therefore, test for symmetry on the basis of the mean or the median.
Another possibility is to test whether the MLE θ̂n of θ exhibits distributional
property that it should have under H0. With this in mind, consider the following
test statistics:

T0n = θ̂n, T1n = X̄n, T2n = Mn,

T3n = Q3n − 2Mn + Q1n (a measure of asymmetry).

(a) Find the asymptotic distributions of T0n, T1n, T2n, and T3n (properly
normalized).

(b) Consider tests with critical regions Tjn ≥ cjn, j = 0, 1, 2, 3, each cjn being
chosen to control the Type I error probabilities at a given level α

approximately, for large n. For alternative θ > 0 of the order 1/
√

n, calculate
the Pitman AREs of the tests based on T1n, T2n, T3n with respect to the one
based on T0n.
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10.5. (a) Let T1 and T2 be statistical functionals of a family of cdf’s F0 having finite third
moments. Express the influence function T ′(x; F) of T = T1/T2 in terms of
T1(F), T2(F) and their influence functions T ′

1(x; F) and T ′
2(x; F).

(b) Let T(F) = EF
[
(X − ξ (F))3]/{EF

[
(X − ξ (F))2]}3/2

, where ξ (F) = EF [X ]. Use the

result of (a) and the formula for the influence function of EF

[
(X − ξ (F))k

]
given in Section 10.2 to derive the influence function of this T(F).

(c) Verify for this T(F) that EF
[
T ′(X ; F)

] = 0, Rn = √
n[T(Fn) − T(F)] − n−1/2∑n

i=1 T ′(Xi; F) = oP(1), and then find the asymptotic distribution of√
n[T(Fn) − T(F)] for arbitrary F ∈ F0 and when F is the cdf of N

(
μ, σ 2

)
.

10.6. Let F0 be the set of all cdf’s on R with finite mean.
(a) Find T(F) on F0 such that T(Fn) = n−1 ∑n

i=1 |Xi − X̄n|.
(b) Find the influence function of T(F).
(c) Specializing to the case of symmetric F , indicate how you would show that

Rn = √
n[T(Fn) − T(F)] − n−1/2 ∑n

i=1 T ′(Xi; F) = oP(1).
10.7. Let T(F) = EF

[|X − X ′|], where X , X ′ are iid with cdf F .
(a) Find the influence function of T(F).
(b) Write down the expression for T(Fn) and derive the asymptotic distribution of√

n[T(Fn) − T(F)].
10.8. Let T(F) = (∫

x dF(x)
)1/2 = ξ (F)1/2 for F having finite mean ξ (F) > 0.

(a) Find the influence function of T ′(x; F).
(b) Verify that EF

[
T ′(X ; F)

] = 0,
Rn = √

n[T(Fn) − T(F)] − n−1/2 ∑n
i=1 T ′(Xi; F) = oP(1), and then find the

asymptotic distribution of
√

n[T(Fn) − T(F)].

10.9. Let T(F) = [∫
(x − ξ (F))2 dF(x)

]1/2
for a cdf with mean EF [X ] = ξ (F) and finite

second moment. Find the influence function of T(F) and the asymptotic
distribution of

√
n[T(Fn) − T(F)].

10.10. For cdf’s on R with nonzero mean ξ (F), define T(F) = 1/ξ (F). Find the influence
function of T(F) and the asymptotic distribution of

√
n[T(Fn) − T(F)].

10.11. For cdf’s on R with positive mean ξ (F) and finite second moment, let

T(F) = [∫
(x − ξ (F))2 dF(x)

]1/2/
ξ (F) denote the coefficient of variation. Find the

influence function of T(F) using the results of Exercises 10.5(a), 10.9, and 10.10,
and then find the asymptotic distribution of

√
n[T(Fn) − T(F)].

10.12. The pdf f (x, θ) of X is of the form

f (x, θ) =
{

1/4 |x − θ | ≤ 1
(1/4) exp[−|x − θ | + 1] |x − θ | > 1,

which is uniform in the middle and double-exponential in the tails.
(a) Find formulas for the α-quantile and the (1 − α)-quantile of this distribution

for 0 < α < 1/4 and for 1/4 < α < 1/2.
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(b) Let X̄n(α) = (n − 2[αn])−1 ∑n−[αn]
i=[αn]+1 Xn:i denote the α-trimmed mean based on

X1, . . . , Xn. Find the asymptotic distribution of
√

n
[
X̄n(α) − θ

]
.

(c) Plot the asymptotic variance σ 2
1 (α) obtained in (b) for α = 0.1, 0.2, 0.3, 0.4 to

determine the best choice of trimming among these.
(d) Let Mn(k) denote the M-estimator of θ obtained by solving∑n

i=1 Ψ (Xi − t) = 0, using the Huber function
Ψ (x) = xI

(|x| ≤ k
)+ k sign(x)I(|x| > k). Find the asymptotic distribution of√

n
[
Mn(k) − θ

]
.

(e) Plot the asymptotic variance σ 2
2 (k) obtained in (d) for suitably chosen values

of k (starting with k = 0.5, 1.0, 1.5, 2.0) to determine as good a choice of k you
can.

(f) Compare the performances of X̄n(α) with α chosen in (c) and Mn(k) with k
chosen in (e).

In the following two problems, the population cdf and pdf are, respectively,
Fθ (x) = F(x − θ) and fθ (x) = f (x − θ), where f is symmetric about 0.

10.13. (a) Suppose that T is an L-functional with score function J . Show that if J is
symmetricabout 1/2 with

∫ 1
0 J(u) du = 1, then T(Fθ ) = θ .

(b) Let X̄n(α) denote the α-trimmed mean. Find the asymptotic variance of√
n
[
X̄n(α) − θ

]
when α = 1/4 and f (x) is the pdf of the standard Cauchy

distribution.
10.14. Let T(F) be the solution of the equation

∫
Ψ (x − t) dF(x) = 0 and let θ̂n be the

corresponding M-estimator. Make the following assumptions as needed:
(i) differentiation under the integral sign is valid,
(ii) xf (x) is of bounded variation,
(iii)

∫ |Ψ (x)|f ′(x) dx < ∞ and �= 0,
(iv)

∫
Ψ 2(x)f (x) dx < ∞.

(a) Show that if Ψ (−x) = −Ψ (x) for all x, then T(Fθ ) = θ .
(b) Let 0 < If = ∫ {

f ′(x)/f (x)
}2f (x) dx < ∞ denote the Fisher-information of

the location family
{

f (x − θ), θ ∈ R
}

and let σ 2(F , Ψ ) denote the

asymptotic variance of
√

n
(
θ̂n − θ

)
. Show that σ 2(F , Ψ ) ≥ I−1

f . [Hint: Use

integration by parts to rewrite the denominator of σ 2(F , Ψ ) and then
apply Cauchy-Schwarz inequality.]

(c) Calculate σ 2(F , Ψ ) when f is the pdf of the standard Cauchy distribution

and Ψ (x) = −xI[−c,c](x). [Hint: Show that
∫ c

0

(
1 + x2

)−1
dx = arctan c and∫ c

0 x2
(
1 + x2

)−1
dx = c − arctan c.]

10.15. The sample mean in a random sample from a Cauchy distribution can be
stabilized by excluding just one- or two-order statistics at each end. Let
X̄∗

n,r = (n − 2r)−1 ∑n−r
i=r+1 Xn:i. Show that X̄∗

n,r is an unbiased estimator of the
Cauchy median θ if r ≥ 1 and that X̄∗

n,r has finite variance if r ≥ 2.
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10.16. Calculate the ARE of the M-estimator with score function Ψ (x) = −xI[−c,c](x) of
the median θ of a Cauchy distribution, comparing σ 2(F , Ψ ) with I−1

f . Use the
results of Exercise 10.14(c) with c = 1.

10.17. Let Fθ (x) = F(x − θ) be a cdf with pdf fθ (x) = f (x − θ), where f (x) = (1/2)e−|x|, θ is
unknown and we want to estimate θ . Let T(Fθ ) be a solution to the equation

λFθ
(t) =

∫
Ψ (x − t) dFθ (x) = 0 where Ψ (x) =

{ |x|1/2 x ≤ 0
−|x|1/2 x > 1.

Then the influence function of T(Fθ ) is T ′(x; Fθ ) = −Ψ (x − T(Fθ ))/λ′
Fθ

(T(Fθ )).
(a) Show that T(Fθ ) = θ .
(b) Express the corresponding M-estimator θ̂n = T(Fn) in terms of (X1, . . . , Xn) of

which Fn is the edf.
(c) Write down one-term Taylor expansion of

√
n
(
θ̂n − θ

)
. Assume that the

remainder term is oP(1).
(d) Show that Eθ

[
T ′(X ; Fθ )

] = 0 and evaluate σ 2(Fθ , Ψ ) = Var
[
T ′(X ; Fθ )

]
.

(e) Find the asymptotic distribution of
√

n
(
θ̂n − θ

)
. [Hint: To find

λ′
Fθ

(T(Fθ )) = dλFθ (t)/ dt|t=θ , differentiate under the integral and use

Ψ ′(x) = −(1/2)|x|−1/2 for x �= 0. Although Ψ ′ does not exist at x = 0, this
calculation is still valid. Also note that

∫∞
0 x−1/2e−x dx = Γ (1/2) = √

π .]
10.18. Let fθ (x) = f (x − θ) be the pdf of a double exponential distribution with mean θ

(ie, fθ (x) = (1/2)e−|x−θ |) having cdf Fθ and let Fn the empirical cdf of a random
sample from Fθ . Let T(Fn) be the L-estimator of θ with score function
J(u) = 4uI

(
0 ≤ u ≤ 1/2

)+ 4(1 − u)I
(
1/2 < u ≤ 1

)
.

(a) Express T(Fn) as a linear function of the order statistics Xn:1 < · · · < Xn:n,
using coefficients J

(
i/(n + 1)

)
instead of J

(
i/n

)
, with n even.

(b) Show that T(Fθ ) = θ for the corresponding L-functional.
(c) Find the asymptotic distribution of

√
n[T(Fn) − θ ]. [Hint: The asymptotic

variance σ 2(F , J) of
√

n[T(Fn) − T(F)] involves F−1. If F is the cdf
corresponding to f (x) = (1/2)e−|x|, then F−1(u) = log(2u) if 0 ≤ u ≤ 1/2 and
= − log(2(1 − u)) if 1/2 < u ≤ 1.]



11
Linear Models

11.1 Introduction
Linear models are widely used in statistical data analysis when the dependent or the
response variable is quantitative, whereas the independent variables may be quantitative,
qualitative, or both. It can also be used for some types of nonlinear modeling as an example
given below will show. A few well-known classes of linear models are

(i) regression: all the variables are quantitative,
(ii) analysis of variance (ANOVA): all the independent variables are qualitative, and
(iii) analysis of covariance (ANCOVA): some of the independent variables are quantitative

and some qualitative.

An obvious example of a linear model is simple linear regression with one independent
variable. If the observations are (Yi, Xi), i = 1, . . . , n, where {Yi} are the values of the
dependent variable and {Xi} are the values of the independent variable, then the simple
linear regression model is

Yi = β0 + β1Xi + εi, i = 1, . . . , n,

where β0 is the intercept, β1 is the slope, and {εi} are mutually uncorrelated random errors
with mean 0 and common variance σ 2. This model may also be written as Y = Xβ + ε,
where

Y =

⎛⎜⎜⎜⎜⎝
Y1
·
·
·

Yn

⎞⎟⎟⎟⎟⎠, X =

⎛⎜⎜⎜⎜⎝
1 X1
· ·
· ·
· ·
1 Xn

⎞⎟⎟⎟⎟⎠, β =
(

β0
β1

)
, ε =

⎛⎜⎜⎜⎜⎝
ε1
·
·
·

εn

⎞⎟⎟⎟⎟⎠,

where E[ε] = 0 and Cov [ε] = σ 2I . In the linear model terminology, X is called the design
matrix and the goal is to obtain estimates of the unknown parameters β and σ 2, and carry
out inferences on them.

It turns out that all the models mentioned in (i)–(iii) can be rewritten in the framework
of a Gauss-Markov model which is

Y = Xβ + ε, E[ε] = 0, Cov[ε] = σ2I , (1)

Theory and Methods of Statistics. http://dx.doi.org/10.1016/B978-0-12-802440-9.00011-4
Copyright © 2016 Elsevier Inc. All rights reserved.
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where Y is n × 1 vector of observed response values, the design matrix X is of order n × p
and β is a p × 1 vector of unknown parameters. In standard applications, the errors are
often taken to be iid N

(
0, σ 2

)
. In this chapter, the columns of X will sometimes be referred

to as independent variables.

Important Assumptions

Throughout this chapter, we assume that the design matrix X is nonrandom, or if it is
random all the calculations such as E[·], Cov[·], etc., are carried out conditionally on X .
We also assume that n > p and X has full rank (ie, rank(X ) = p). For the Gauss-Markov
model,

E[Y ] = Xβ and Cov[Y ] = σ 2I .

The problems of inference involve estimation of β and σ 2, construction of confidence
intervals, and hypotheses tests for β and its linear functions, deciding if some columns of X
can be deleted from the model, prediction of Y at a future set of values of the independent
variables, etc.

11.2 Examples of Gauss-Markov Models
Even though the description of the Gauss-Markov in Eq. (1) requires only the mutual
uncorrelatedness of the random errors, this assumption is too general to be useful in
applications. Therefore, following the standard practice, we assume that these random
errors are iid with mean 0 and variance σ 2 in all the examples below.

Example 11.2.1 (Linear Regression). Suppose that we have n observation vectors(
Yi, Xi,1, . . . , Xi,p−1

)
, i = 1, . . . , n, where the response for the ith case is Yi and values of

the independent variables are Xi,1, . . . , Xi,p−1. Then a linear regression model is

Yi = β0 + β1Xi,1 + · · · + βp−1Xi,p−1 + εi,

where {εi} are iid with mean 0 and variance σ 2 . The statistical analysis involves estimation
of the unknown constants β0, β1, . . . , βp−1 and σ 2 from the data

(
Yi, Xi,1, . . . , Xi,p−1

)
, i =

1, . . . , n. This model can be expressed in the Gauss-Markov framework given in Eq. (1) with

Y =

⎛⎜⎜⎜⎜⎝
Y1
·
·
·

Yn

⎞⎟⎟⎟⎟⎠, X =

⎛⎜⎜⎜⎜⎝
1 X1,1 · · · X1,p−1
· · · · · ·
· · · · · ·
· · · · · ·
1 Xn,1 · · · Xn,p−1

⎞⎟⎟⎟⎟⎠,

β =

⎛⎜⎜⎜⎜⎝
β0
·
·
·

βp−1

⎞⎟⎟⎟⎟⎠, ε =

⎛⎜⎜⎜⎜⎝
ε1
·
·
·

εn

⎞⎟⎟⎟⎟⎠.



Chapter 11 • Linear Models 311

Example 11.2.2 (Nonlinear Regression). The structure given in the last example is
quite general as it can accommodate nonlinear cases. For instance, if we have only one
independent variable but it is believed that the relation between the independent variable
and the dependent variable is nonlinear, then we may fit a polynomial model to account
for the nonlinearity. If a polynomial of degree p − 1 is considered, when the observations
are {Yi, Xi}, i = 1, . . . , n, then we may consider the model

Yi = β0 + β1Xi + β2X2
i + · · · + βp−1X

p−1
i + εi.

This is clearly of the form given in the last example if we take Xi,1 = Xi, Xi,2 = X 2
i , . . . ,

Xi,p−1 = X p−1
i . It is worthwhile to point out that in actual data analysis one may not

use the powers of Xi to create independent variables since it may lead to the problem
of very strong correlation among independent variables (also called the problem of high
multicollinearity), which leads to instability (high variance) in the parameter estimates,
especially when p is not small. In such cases, one may employ orthogonal polynomials to
create the independent variables instead of using the powers of the independent variable
to form the columns of the design matrix X .

Remark 11.2.1. The last two examples show that any linear regression model can
be reexpressed in the Gauss-Markov framework. In order to show that the ANOVA and
ANCOVA models are in the Gauss-Markov setup, it will be enough to show that they can be
written as linear regression models and this is the approach taken in the examples below.

Example 11.2.3 (One-Factor Analysis of Variance (ANOVA)). The superintendant of a
school district may be interested in comparing the mathematical aptitudes of the students
in k different schools in a city. In order to achieve this, ni students are selected at random
from the ith school, i = 1, . . . , k, and the score of each of the n = n1 +· · ·+nk students on a
standardized mathematics test is recorded. This is an example of a one-factor study where
“school” is called a factor with k levels. Thus there are k populations and ni iid observations
are available from the ith population. A typical assumption is that the populations may
have different means {μi} but the variances are the same. If Yij is the score of the jth student
in the ith school, then the one-factor ANOVA model can be written as

Yij = μi + εij, j = 1, . . . , ni, i = 1, . . . , k,

where
{
εij
}

are iid with mean 0 and variance σ 2. This model is called balanced if ni’s are the
same (ie, ni = n0 for all i).

If μ is an overall (weighted) average of {μi} (ie, μ = ∑k
i=1 wiμi where wi ≥ 0 and∑

wi = 1), then the factor effect for the ith school is defined to be αi = μi − μ and {αi}
satisfy the constraint

∑
wiαi = 0. In practice, the weights are often taken to be wi ≡ 1/k

or wi = ni/n, i = 1, . . . , k, though other choices are also possible. The one-factor ANOVA
model may also be written as a factor-effects model

Yij = μ + αi + εij, j = 1, . . . , ni, i = 1, . . . , k.

Note that E
[
Yij
] = μ + αi = μi, irrespective of how μ and αi are defined.
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We now examine how this model may be recast in the regression setup. If the main
effects satisfy the constraint

∑
αi = 0 (ie, wi ≡ 1/k), and if α1, . . . , αk−1 are known, then

αk = −α1 −· · ·−αk−1 is known. Thus there are really k free parameters in the factor-effects
model and they are μ, α1, . . . , αk−1. Define k − 1 variables as follows

Xij,1 =
⎧⎨⎩

1 j = 1
−1 j = k
0 otherwise

, Xij,2 =
⎧⎨⎩

1 j = 2
−1 j = k
0 otherwise

, . . . ,

Xij,k−1 =
⎧⎨⎩

1 j = k − 1
−1 j = k
0 otherwise.

Then the ANOVA model can be expressed in the regression framework

Yij = β0 + β1Xij,1 + · · · + βk−1Xij,k−1 + εij, with

β0 = μ, β1 = α1, . . . , βk−1 = αk−1.

Note that when j = k,

μ + α1Xij,1 + · · · + αk−1Xij,k−1 = μ − (
α1 + · · · + αk−1

) = μ + αk.

Example 11.2.4 (One-Factor ANOVA Continued). As mentioned in the last example,
there are many ways to define the overall mean μ and the factor effects {αi}. If the overall
mean μ is defined to be μ = ∑

wiμi with wi = ni/n and αi = μi − μ, then the constraint
on the factor effects is

∑(
ni/n

)
αi = 0 (ie,

∑
niαi = 0). In this case one may define the

X-variables as

Xij,1 =
⎧⎨⎩

1 i = 1
−n1/nk i = k

0 otherwise
, Xij,2 =

⎧⎨⎩
1 i = 2

−n2/nk i = k
0 otherwise

, . . . ,

Xij,k−1 =
⎧⎨⎩

1 i = k − 1
−nk−1/nk i = k

0 otherwise.

Then the ANOVA model can be rewritten as

Yij = β0 + β1Xij,1 + · · · + βk−1Xij,k−1 + εij, with

β0 = μ, β1 = α1, . . . , βk−1 = αk−1.

A one-factor ANOVA model may also be written as a regression of Y on the following k − 1
indicator variables as defined below

Xij,1 =
{

1 i = 1
0 i �= 1

, . . . , Xij,k−1 =
{

1 i = k − 1
0 i �= k − 1.

Example 11.2.5 (Two-Factor ANOVA). If in Example 11.2.3, ethnicity/race of each
student is recorded, then we have a two-factor study with factors “school” and “ethnicity.”
Changing the notations a bit, suppose that there a levels of factor A (school) and b levels of
factor B (ethnic group). Assume that a random sample of nij students is taken from the ith
school with the jth ethnic background and the observed scores are

{
Yijk: k = 1, . . . , nij

}
. If
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μij is the mean score of the students in the ith school with the jth ethnic background, then
the cell means model is

Yijk = μij + εijk, k = 1, . . . , nij, j = 1, . . . , b, i = 1, . . . , a,

where
{
εijk
}

are usually assumed to be iid random errors with mean 0 and variance σ 2.
A two-factor study is called balanced if nij = n0 for all i and j.

In order to rewrite the two-factor model as a factor-effects model, let us define

μ = (
ab
)−1

a∑
j=1

a∑
i=1

μij, μi· = b−1
b∑

j=1

μij, μ·j = a−1
a∑

i=1

μij,

αi = μi· − μ, βj = μ·j − μ, and(
αβ
)

ij = μij − μi· − μ·j + μ = μij −
(
μ + αi + βj

)
, and hence

μij = μ + αi + βj + (
αβ
)

ij.

Here μ is the overall mean, {αi} are called the main effects of factor A,
{
βj
}

the main effects

of factor B, and
{(

αβ
)

ij

}
the interaction effects. The main effects and the interactions

satisfy the constraints ∑
αi = 0,

∑
βj = 0,∑

j

(
αβ
)

ij = 0 for any i, and
∑

i

(
αβ
)

ij = 0 for any j.

Thus the two-factor ANOVA model may be written as a factor-effects model

Yijk = μ + αi + βj + (
αβ
)

ij + εijk.

If it turns out that the interaction effects are zero, then we end up with an additive model
(ie, additive in factor effects)

Yijk = μ + αi + βj + εijk.

In order to express the two-factor ANOVA model in the regression framework, we need to
define variables for factors A and B. We can create a − 1 factor A variables as

X (A)
ijk,1 =

⎧⎨⎩
1 i = 1

−1 i = a
0 otherwise

, X (A)
ijk,2 =

⎧⎨⎩
1 i = 2

−1 i = a
0 otherwise

, . . . ,

X (A)
ijk,a−1 =

⎧⎨⎩
1 i = a − 1

−1 i = a
0 otherwise.

Similarly, the b − 1 factor B variables are

X (B)
ijk,1 =

⎧⎨⎩
1 j = 1

−1 j = b
0 otherwise

, X (B)
ijk,2 =

⎧⎨⎩
1 j = 2

−1 j = b
0 otherwise

, . . . ,
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X (B)
ijk,b−1 =

⎧⎨⎩
1 j = b − 1

−1 j = b
0 otherwise.

Then the two-factor ANOVA model can be expressed as

Yijk = μ +
a−1∑
l=1

αlX (A)
ijk,l +

b−1∑
m=1

βmX (B)
ijk,m

+
a−1∑
l=1

b−1∑
m=1

(
αβ
)

lmX (A)
ijk,lX (B)

ijk,m + εijk.

It is of interest to note that the interaction effects are the coefficients associated with the
product terms of X (A) and X (B).

The additive model (ie, when the interactions are not present) can be written as

Yijk = μ +
a−1∑
l=1

αlX (A)
ijk,l +

b−1∑
m=1

βmX (B)
ijk,m + εijk.

Example 11.2.6 (Analysis of Covariance). Analysis of covariance models come up when
some of the independent variables are quantitative and others are qualitative. Let us first
discuss a case with one qualitative variable (factor) and one quantitative variable. If in
Example 11.2.3, family income level of each student in the sample is recorded, then any
modeling should take into account the school effect (factor) and the income levels

{
Zij
}

. A
simple model in this case is

Yij = μ + αi + γ Zij + εij, or more generally

Yij = μ + αi + γiZij + εij, j = 1, . . . , ni, i = 1, . . . , k,

where
{
εij
}

are iid with mean 0 and variance σ 2. The first is an additive model, whereas
the second model contains an interaction between the qualitative and the quantitative
variables. In the first model, there are k parallel regression lines, whereas the second model
allows for k separate regression lines with possibly different intercepts and different slopes.
In both cases, it is assumed that

∑
αi = 0. In order to write these two models in the Gauss-

Markov framework, we may define the indicator variables Xij,1, . . . , Xij,k for k schools as in
Example 11.2.4, that is,

Xij,1 =
{

1 if i = 1
0 otherwise

, . . . , Xij,k =
{

1 if i = k
0 otherwise.

Then the first model can be written as

Yij =
k∑

i=1

βlXij,l + γ Zij + εij,
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where βl = μ + αl. The second model (ie, the model with interactions) can be written as

Yij =
k∑

l=1

βlXij,l +
k∑

l=1

γlXij,lZij + εij,

with βl = μ + αl.
Example 11.2.7 (Analysis of Covariance). A researcher wishes to investigate the effects

of k different diets on the growth (weight) of animals. Let Yij be the growth of the jth subject
on the ith diet and let Zij1 and Zij2 be the initial weight and age of the subject. Analysis of
covariance model may be written as

Yij = μ + αi + γ1Zij1 + γ2Zij2 + εij, j = 1, . . . , ni, i = 1, . . . , k,

where
{
εij
}

are iid with mean 0 and variance σ 2. If
{

Xij,l: l = 1, . . . , k
}

are created as in the
last example, then we may write this model as

Yij =
k∑

l=1

βlXij,l +
2∑

l=1

γlZijl + εij.

If the researcher wishes to consider, in addition to the diet (factor A, a levels), the effect of
gender (factor B), then she may have nij subjects of gender j assigned to diet i. If Yijk is the
growth rate of the kth subject with gender j and diet i, we may consider the model

Yijk = μ + αi + βj + (
αβ
)

ij + γ1zijk1 + γ2Zijk2 + εijk, k = 1, . . . , nij, j = 1, 2, i = 1, k,

where {αi},
{
βj
}

are the main effects of the factors and
{(

αβ
)

ij

}
the interaction effects, and

they satisfy the constraints stated in Example 11.2.5.
Remark 11.2.2. In the last example, the first model with diet as the factor, and initial

weight and age as the covariates, may be written as

Y = Xβ + Zγ + ε,

where Z is an n×2 matrix whose columns consist of
{

Zij1
}

and
{

Zij2
}

. The first component
on the right-hand side is Xβ and this consists of information on the factor levels. The
second component Zγ consists of information on the covariates. Note that this follows
the Gauss-Markov framework with the n × (

k + 2
)

design matrix [X Z] and the unknown

vector of parameters β = (
β1, . . . , βk, γ1, γ2

)T . The same representation holds for the model
with interaction in Example 11.2.6 (which allows for regression lines with different slopes
and intercepts), except that Z is now an n × k matrix whose lth column has

{
Xij,lZij

}
,

l = 1, . . . , k.

11.3 Gauss-Markov Models: Estimation
This section is devoted to estimation of the unknown parameters of a Gauss-Markov model
as given in Eq. (1) (ie, to estimate β and σ 2 when Y and X are observed). The method of
least squares is a standard procedure for obtaining an estimate of β and it is done by
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minimizing the quantity G
(
b
) = ‖Y − Xb‖2 with respect to b in Rp. It turns out that G

has a unique minimum and if the minimum is attained at b = β̂, then β̂ is taken to be an
estimate of β and an estimate of the unknown mean vector Xβ is Ŷ = X β̂. The vector of
residuals ε̂ = Y − Ŷ , which is an estimate of the error vector ε, can be used to estimate σ 2.

The column space of X is M(X ) = {
Xb: b ∈ Rp

}
and the (orthogonal) projection on it is

given by QX = X
(
X T X

)−1
X T (Section B.6). Note that QX is symmetric and idempotent (ie,

Q2
X = QX ), and I − QX is the projection on M(X )⊥, the orthogonal complement of M(X ).

11.3.1 Estimation of β and σ 2

We begin with the discussion on estimation of β. Note that

G
(
b
) = Y T Y − 2bT X T Y + bT X T Xb.

The gradient and Hessian of G are

∂G/∂b = −2X T Y + 2X T Xb, ∂2G/∂b∂b = 2X T X .

If β̂ is a solution of ∂G/∂b = 0, then clearly X T X β̂ = X T Y . Since rank(X ) = rank
(
X T X

) = p,
the Hessian ∂2G/(∂b∂b) = 2X T X is positive definite and the function G is strictly convex.
Therefore, G has a unique minimum at b = β̂.

The estimated mean vector and the vector of the residuals are

Ŷ = X β̂ = X
(

X T X
)−1

X T Y = QX Y , and

ε̂ = Y − Ŷ = Y − X β̂ = (
I − QX

)
Y .

Since Ŷ = X β̂ is in M(X ) and ε̂ is in M(X )⊥, Ŷ is orthogonal to the vector of residuals. Thus
we are led to the following important result on the least squares method for estimating β.

Theorem 11.3.1. Consider the function G
(
b
) = ‖Y − Xb‖2, b ∈ Rp.

(a) The function G has a unique minimum and denote by β̂ the vector at which G achieves

its minimum. Then we have X T X β̂ = X T Y (ie, β̂ = (
X T X

)−1
X T Y ).

(b) Let ε̂ = Y − X β̂ be the vector of residuals. Then X T ε̂ = 0.

(c) The vector of residuals is orthogonal to the estimated mean vector Ŷ = X β̂ (ie, Ŷ
T
ε̂ = 0).

A few important properties of the least squares estimate β̂ of β, the estimated mean
vector Ŷ = X β̂, and the residual vector ε̂ can be derived rather easily using some basic

algebra. Since β̂ = (
X T X

)−1
X T Y , we have

E
[
β̂
]

=
(

X T X
)−1

X T E[Y ] =
(

X T X
)−1

X T Xβ = β,

Cov
[
β̂
]

=
(

X T X
)−1

X T Cov[Y ]X
(

X T X
)−1 = σ2

(
X T X

)−1
,

E
[

X β̂
]

= X E
[
β̂
]

= Xβ,

Cov
[

X β̂
]

= X Cov
[
β̂
]

X T = σ2X
(

X T X
)−1

X T = σ2QX .
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Since I − QX is symmetric and idempotent, we have

E
[
ε̂
] = (

I − QX
)
E[Y ] = (

I − QX
)
Xβ = 0,

Cov
[
ε̂
] = (

I − QX
)
Cov[Y ]

(
I − QX

)T
= σ2(I − QX

)(
I − QX

)T = σ2(I − QX
)2 = σ2(I − QX

)
,

E
[
‖ε̂‖2

]
= trace

(
Cov

[
ε̂
]) = σ2 trace

(
I − QX

)
= σ2[n − trace

(
QX
)] = σ2(n − p

)
,

the last step is justified since the rank of the projection matrix QX equals its trace. The
last result indicates that an unbiased estimator of σ 2 is given by σ̂ 2 = ‖ε̂‖2/

(
n − p

)
. In the

literature,

(i) ‖ε̂‖2 is usually called the residual sum of squares and is denoted by SSE,
(ii) degrees of freedom (df) of the SSE is defined to be n − rank(X ) = n − p,

(iii) mean square error (denoted by MSE) is defined to be MSE = ‖ε̂‖2/
(
n − p

)
.

For any linear function lT Y of Y , l ∈ Rn, we have

Cov
[

lT Ŷ , ε̂
]

= Cov
[

lT QX Y ,
(
I − QX

)
Y
]

= σ2lT QX
(
I − QX

) = 0.

Thus any linear function of the estimated mean vector Ŷ is uncorrelated with the vector
of residuals ε̂. This observation is crucial in inference since under the assumption of
normality of ε, uncorrelatedness implies independence and thus X β̂ is independent of ε̂.
The discussion above leads to the following result.

Theorem 11.3.2. Let Ŷ = X β̂ be the fitted mean vector and ε̂ be the vector of residuals as
in Theorem 11.3.1. Then the following hold:

(a) E
[
β̂
]

= β, Cov
[
β̂
]

= σ 2
(
X T X

)−1
.

(b) E
[

Ŷ
]

= Xβ, Cov
[

Ŷ
]

= σ 2QX .

(c) E
[
ε̂
] = 0, Cov

[
ε̂
] = σ 2

(
I − QX

)
.

(d) The residual vector ε̂ is uncorrelated to any linear function of the estimated mean
vector Ŷ = X β̂.

(e) E
[
MSE

] = σ 2, where MSE = ‖ε̂‖2/
(
n − p

)
.

11.3.2 Estimation of Linear Functions of β

Often it is of interest to estimate linear functions of the unknown parameter β. If β̃ is an
unbiased for β, then a linear function aT β̃, a ∈ Rp, is also unbiased for aT β. Let L be a
known p × m matrix of rank m ≤ p, and consider the problem of estimating the linear
function θ = LT β. Least squares estimate of θ is defined to be equal to θ̂ = LT β̂, where β̂

is the least squares estimate of β. The following simple result shows that θ̂ is an unbiased
estimate of θ .
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Lemma 11.3.1. E
[
θ̂
]

= θ , Cov
[
θ̂
]

= σ 2LT (X T X
)−1

L.

11.3.3 Best Linear Unbiased Estimation

We begin with a definition.
Definition 11.3.1. A linear function β̃ of Y is called a best linear unbiased estimator

(BLUE) of β if

(i) β̃ is an unbiased estimator of β, and

(ii) for any a ∈ Rp, Var
[

aT β̃
]

≤ Var
[

lT Y
]

for all linear unbiased estimators lT Y of aT β,

l ∈ Rn.

It is clear from this definition that β̃ is a BLUE of β if aT β̃ is BLUE of aT β for any a ∈ Rp.
The following argument will show that the BLUE exists, it is unique and it is equal to the
least squares estimate β̂. It will be enough to show that, if for any a ∈ Rp, lT Y is a BLUE for
aT β, then lT Y = aT β̂.

If lT Y is an unbiased estimator of aT β, then aT β = E
[

lT Y
]

= lT Xβ for all β and hence

X T l = a. If lT Y is a BLUE of aT β, then for any linear unbiased estimator mT Y of 0 (ie,
E
[
mT Y

] = 0 for all β),
(
l + tm

)T Y is also unbiased for aT β, where t is a real number. Let

h(t) = Var
[(

l + tm
)T Y

]
= σ2‖l + tm‖2.

Since lT Y is a BLUE, the function h achieves a minimum at t = 0, thus 0 = h′(0) = 2σ 2lT m
(ie, lT m = 0). Since mT Y is an unbiased estimator of 0, we have mT Xβ = 0 for all β

and thus X T m = 0. Since lT m = 0 for all m satisfying the condition X T m = 0 (ie, for
all m ∈ M(X )T ), it follows that l must be in M(X ). Thus l = Xc for some c ∈ Rp. Since
lT Y is unbiased for aT β, we have aT β = lT Xβ = cT X T Xβ for all β. This implies that

c = (
X T X

)−1
a and hence l = X

(
X T X

)−1
a. Thus if lT Y is a BLUE of aT β, then

lT Y = aT
(

X T X
)−1

X T Y = aT β̂.

Uniqueness is clear since any BLUE must have this form.
Thus we are led to the following important result.
Lemma 11.3.2. The BLUE of β is unique and it is equal to the least squares estimate β̂.

11.4 Decomposition of Total Sum of Squares
In each of the examples given in Section 11.2 of this chapter, the design matrix X has a
column consisting of 1’s. In regression, it corresponds to the intercept term and in ANOVA
models, it corresponds to the overall mean. Let us assume without loss of generality that
the first column of X consists of 1’s and the vector of parameters is β = (

β0, β1, . . . , βp−1
)T .

A model which only has the first column (and ignores the last p−1 columns) is Yi = β0 +εi,
i = 1, . . . , n. Clearly the least squares estimate of β0 is Ȳ = n−1∑n

i=1 Yi and the residual
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sum of squares of this simple model
∑(

Yi − β̂0

)2 = ∑(
Yi − Ȳ

)2
is usually called the total

sum of squares (SSTO). Let Ŷ = X β̂ be the least squares estimate of the mean Xβ for the
full model Y = Xβ + ε. We already know that the residual vector ε̂ = Y − X β̂ = Y − Ŷ is
orthogonal to any vector in M(X ) and hence to Ȳ 1, where 1 is an n × 1 vector of 1’s. Then

SSTO =
∑(

Yi − Ȳ
)2 = ‖Y − Ȳ 1‖2 = ‖X β̂ − Ȳ 1‖2 + ‖Y − X β̂‖2

=
∑(

Ŷi − Ȳ
)2 +

∑(
Yi − Ŷi

)2

=
∑(

Ŷi − Ȳ
)2 + SSE.

Since SSTO is the residual sum of squares for the model Yi = β0 + εi, i = 1, . . . , n, the

quantity
∑(

Ŷi − Ȳ
)2

is the reduction in the residual sum of squares when we go from the

simple model Y = β01 + ε to the full model Y = Xβ + ε and

R2 =
∑(

Ŷi − Ȳ
)2

/SSTO = 1 − SSE/SSTO

is the proportional reduction in the residual sum of squares. It is also called the coefficient
of determination and is widely used in practice. Clearly, R2 is between 0 and 1, and if R2

is close 1, it is taken as an indication that the full model Y = Xβ + ε explains the data

well. The reduction
∑(

Ŷi − Ȳ
)2

is called the “regression sum of squares” in the regression

model and “treatment sum of squares” in the one-factor ANOVA model.
Even though R2 is popular as a descriptive measure it has some flaws. If there is a true

model Y = X∗β∗ + ε with rank(X∗) = p∗ and it is nested in the model under consideration
Y = Xβ + ε, where M(X ∗) ⊂ M(X ) and rank(X ) = p > p∗, then clearly the SSE for the
latter model is smaller than that of the former (ie, the true lower dimensional model), and
thus the latter model has a higher R2. As a matter of fact, for any class of nested models,
the value of R2 will always increase as we consider higher dimensional models, and this is
true regardless of what the true model is. In order to remedy this, we first need to identify
a parameter ρ2 that R2 is trying to estimate. It turns out that a descriptive measure called
the adjusted R2, denoted by R2

adj, is a better estimate of ρ2 than R2 is. Before we go any
further, let us first state a simple lemma and then define the concept of degrees of freedom
associated with residual sums of squares for any linear model.

We consider here a general structure for the n × 1 observation vector Y with mean μ

such that

Y = μ + ε, with E[ε] = 0 and Cov[ε] = σ 2I .

If X is n × p of rank p, then the minimum of ‖μ − Xβ‖2, β ∈ Rp, is attained at β∗ =(
X T X

)−1
X T μ, and the projected mean is Xβ∗ = X

(
X T X

)−1
X T μ = QX μ. So when a model

Y = Xβ + ε is fitted to the data, then QX Y is estimating the projected mean QX μ and the
model is a true description of the data if μ = QX μ.

Lemma 11.4.1. Assume that Y = μ + ε , where Y is n × 1 observation vector, E[ε] = 0,
Cov[ε] = σ 2I , and a model of the form Y = Xβ + ε, where X is n × p of rank p, is fitted to the
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data. A measure of deviation of Y from the projected mean QX μ is D = E
[‖Y − QX μ‖2

]
and

an estimate of D is SSE = ‖Y − QX Y ‖2. The following hold:

(a) D = nσ 2 + ‖(I − QX
)
μ‖2,

(b) E
[
SSE

] = (
n − p

)+ ‖(I − QX
)
μ‖2.

Definition 11.4.1. If a model of the form Y = Xβ + ε, where X is n × p matrix of rank
p, is fitted to the observation vector Y where Y = μ + ε, E[ε] = 0, Cov[ε] = σ 2I , then QX μ

is called the projected mean of the model. The degrees of freedom (df) of the residual sum
of squares SSE = ‖Y − QX Y ‖2 is n − p, and the mean square error is MSE = SSE/

(
n − p

)
.

For the simple model Yi = β0 + εi, i = 1, . . . , n, the residual sum of squares is SSTO and
its mean square error is MSTO/(n − 1). The adjusted R2 is defined as

R2
adj = 1 − MSE/MSTO.

For the model Y = β01 + ε, let Q0μ be the projection of μ on 1 (ie, Q0μ = β01 with
β0 = 1T μ/n). Noting that Ȳ estimates β0 and SSTO estimates E

[‖Y − Q0μ‖2
]
, the deviation

of Y from Q0Xβ = β01. Similarly, SSE is an estimate of E
[‖Y − QX μ‖2

]
, when the model

Y = Xβ + ε (where the first column of X consists of 1’s) is fitted to the data. We may thus
define the proportional reduction in the true deviation of Y from the projected mean when
we go from the model Y = β01 + ε to the model Y = Xβ + ε as

ρ2 = 1 − E
[
‖Y − QX μ‖2

]/
E
[
‖Y − Q0μ‖2

]
= 1 − nσ 2 + ‖(I − QX

)
μ‖2

nσ 2 + ‖(I − Q0
)
μ‖2

= ‖(QX − Q0
)
μ‖2

nσ 2 + ‖(I − Q0
)
μ‖2 ,

using the results in the lemma above. Note that R2 is an estimate of ρ2, but it has a serious
flaw as discussed above.

Under the assumption of normality of the error terms, ‖Y −Q0μ‖2/σ 2 ∼ χ2
n−1

(
δ2

0

)
, where

the noncentrality parameter is δ2
0 = (

1/2
)‖(I − Q0

)
μ‖2/σ 2. Similarly, ‖Y − QX Y ‖2/σ 2 ∼

χ2
n−p

(
δ2
)

with δ2 = (
1/2

)‖(I − QX
)
μ‖2/σ 2. If n is large, it can be shown that

MSE = ‖Y − QX Y ‖2/(n − p
)

= σ2 + n−1‖(I − QX
)
μ‖2 + OP

(
n−1/2

)
, and

MSTO = ‖Y − Q0Y ‖2/(n − 1)

= σ 2 + n−1‖(I − Q0
)
μ‖2 + OP

(
n−1/2

)
,

assuming that the quantity n−1‖(I − Q0
)
μ‖2 stays bounded as n → ∞. These results

are generally true under reasonable technical conditions even if the error terms are not
normally distributed. Thus
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R2
adj = 1 − MSE/MSTO = MSTO − MSE

MSTO

= n−1‖(QX − Q0
)
μ‖2

σ2 + n−1‖(I − Q0
)
μ‖2 + OP

(
n−1/2

)
= ρ2 + OP

(
n−1/2

)
.

Clearly, R2
adj is a

√
n consistent estimate of ρ2.

Example 11.4.1. In the multiple regression case with p − 1 independent variables, the
normal equations X T Xβ = X T Y are

⎡⎢⎢⎢⎢⎣
n

∑
Xi,1 · · · ∑

Xi,p−1∑
Xi,1

∑
X 2

i,1 . . .
∑

Xi,1Xi,p−1
...

... . . .
...∑

Xi,p−1
∑

Xi,p−1Xi,1 . . .
∑

X 2
i,p−1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

β0
β1
...

βp−1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
∑

Xi,1Yi∑
Xi,2Yi

...∑
Xi,p−1Yi

⎤⎥⎥⎥⎥⎦,

where all the sums are over i from 1 through n. When p = 2 (ie, there is only one
independent variable), the solutions are

β̂1 =
∑(

Xi,1 − X̄1
)(

Yi − Ȳ
)/∑(

Xi,1 − X̄1
)2 , β̂0 = Ȳ − β̂1X̄1,

where X̄1 = n−1∑n
i=1 Xi,1 and Ȳ = n−1∑n

i=1 Yi. When p > 2, there are no such simple
expressions for the estimates of β0, β1, etc. Typically, solving these equations require
computing packages, which are widely available. If Ŷ = X β̂ (ie, Ŷi = β̂0 + β̂1Xi,1 + · · · +
β̂p−1Xi,p−1, i = 1, . . . , n), then the quantity

∑(
Ŷi − Ȳ

)
is called the “regression sum of

squares” and thus R2 = SSR/SSTO.
Example 11.4.2. In the one-factor ANOVA case as in Example 11.2.3, it is fairly easy to

get the least squares estimate of μi

μ̂i = n−1
i

ni∑
j=1

Yij := Ȳi·.

The residual sum of squares is SSE = ∑
i
∑

j

(
Yij − Ȳi·

)2
and MSE = SSE/

(
n − k

)
is an

unbiased estimate of σ 2, where n = n1 + · · · + nk is the total number of observations.
The estimates of the overall mean μ = ∑

wiμi and αi = μi −μ are obtained by substituting
{μi} by

{
μ̂i
}

. For instance, if wi = ni/n, then

μ̂ =
∑(

ni/n
)
Ȳi· =

∑
i

∑
j

Yij/n := Ȳ·· and α̂i = Ȳi· − Ȳ··.

As before if we denote Ŷ = X β̂, then Ŷij = Ȳi· and
∑

i
∑

j

(
Ŷij − Ȳ··

)2 = ∑
ni
(
Ȳi· − Ȳ··

)2

is called the “treatment sum of squares” (SSTR) or the “between group sum of squares.”
For this case, the SSE is sometimes called the “within group sum of squares.” The
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decomposition of the total sum of squares is

SSTO =
∑

i

∑
j

(
Yij − Ȳ··

)2 =
∑

niα̂
2
i + SSE, ie,

SSTO = SSTR + SSE.

In this case R2 = SSTR/SSTO. The quantity SSTR/
(
k − 1

)
is usually called MSTR, mean

square for the treatment. It can be shown that (left as an exercise)

E
[
MSTR

]
/σ2 = 1 + (

k − 1
)−1∑ni

(
μi − μ

)2
/σ2.

The quantity
(
k − 1

)−1∑ni(μi − μ)2/σ 2 is a unit-free measure of the variability of {μi}.
This measure equals 0 if and only if μi’s are all the same. Thus the ratio F = MSTR/MSE,
which fluctuates about 1 if and only if μ1 = · · · = μk, is used for testing the hypothesis that
the means are the same. Under the assumption of normality (ie,

{
εij
}

are iid N
(
0, σ 2

)
),

SSE/σ2 ∼ χ2
n−k, SSTR/σ2 ∼ χ2

k−1

(
δ2
)

, where

δ2 = (
1/2

)∑
niα

2
i /σ2,

and F = MSTR/MSE ∼ Fk−1,n−k
(
δ2
)
. Hence the F-statistic can be used to test H0: α1 =

· · · = αk = 0, since F ∼ Fk−1,n−k under H0.
If the overall mean μ is defined as k−1∑μi, then the estimates of μ and αi are μ̂ =

k−1∑ Ȳi· and α̂i = Ȳi· − μ̂. Note that E
[
Yij
]

is always equal to μi irrespective of how μ and
{αi} are defined, Ŷij = Ȳi· and ε̂ij = Yij − Ȳi·, and hence the residual sum of squares also
remains the same.

Example 11.4.3. In general ANOVA models (one- or multifactor), one may first obtain
the estimates of the means of all the factor combinations and then use them to estimate
the overall mean, factor effects, interactions, etc. For instance, in the two-factor ANOVA
model, the estimate of μij is μ̂ij = Ȳij·, where Ȳij· = n−1

ij

∑nij

k=1 Yijk, and this can be used

to estimate μ, μi·, μ·j, the factor effects {αi},
{
βj
}

, and the interactions
{(

αβ
)

ij

}
, which are

all linear functions of
{
μij
}

. The residual sum of squares is SSE = ∑
i
∑

j
∑

k

(
Yijk − Ȳij·

)2
,

and MSE = SSE/
(
n − ab

)
, where n = ∑

i
∑

j nij is the total number of observations, is an

unbiased estimate of σ 2. Thus

μ̂ = (
ab
)−1∑

i

∑
j

μ̂ij = (
ab
)−1∑

i

∑
j

Ȳij·

μ̂i· = b−1
∑

j

Ȳij·, μ̂·j = a−1
∑

i

Ȳij·,

α̂i = μ̂i· − μ̂, β̂j = μ̂·j − μ̂,
(̂
αβ
)

ij = μ̂ij − μ̂i· − μ̂·j + μ̂, and

Ŷijk = Ȳij· = μ̂ + α̂ι + β̂j + (̂
αβ
)

ij.
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Example 11.4.4. In the balanced two-factor ANOVA model (ie, nij ≡ n0), the estimates
are much simpler when one uses the following notations

Ȳ··· = (
n0ab

)−1∑
i

∑
j

∑
k

Yijk,

Ȳi·· = (
n0b

)−1∑
j

∑
k

Yijk, Ȳ·j· = (
n0a

)−1∑
i

∑
k

Yijk, and

Ȳij· = n−1
0

∑
k

Yijk.

With these notations

μ̂ = Ȳ···, α̂i = Ȳi·· − Ȳ···, β̂j = Ȳ·j· − Ȳ···,(̂
αβ
)

ij = Ȳij· − Ȳi·· − Ȳ·j· + Ȳ···, and

Yijk − μ̂ = α̂i + β̂j + (̂
αβ
)

ij + ε̂ijk,

where
{
ε̂ijk = Yijk − Ȳij·

}
are the residuals. If both sides are squared and summed over i, j,

and k, all the cross-product terms vanish to yield the following decomposition of the total
sum of squares

SSTO =
∑

i

∑
j

∑
k

(
Yijk − Ȳ···

)2

=
∑

i

∑
j

∑
k

(
Ȳij· − Ȳ···

)2 +
∑

i

∑
j

∑
k

(
Yijk − Ȳij·

)2

= (
n0b

)∑
α̂2

i + (
n0a

)∑
β̂2

j + n0
∑

i

∑
j

(̂
αβ
)2

ij + SSE

:= SSA + SSB + SSAB + SSE.

SSA, SSB, and SSAB are called the sums of squares due to the main effects of factor A, main
effects of factor B, and the interactions, respectively. It is important to point out that this
decomposition of SSTO is no longer valid for the unbalanced case.

It can also be shown that (left as an exercise)

E
[
SSA

] = (a − 1)σ 2 + (
n0b

)∑
α2

i , E
[
SSB

] = (
b − 1

)
σ2 + (

n0a
)∑

β2
j ,

E
[
SSAB

] = (a − 1)
(
b − 1

)
σ2 + n0

∑
i

∑
j

(
αβ
)2

ij,

E
[
SSE

] = (
n − ab

)
σ2.

How do we view these results in matrix terms? Consider the following (sub)models

Yijk = μ + εijk (model 0),

Yijk = μ + αi + εijk (model 1),

Yijk = μ + βj + εijk (model 2),

Yijk = μ + αi + βj + εijk (model 3), and

Yijk = μ + αi + βj + (
αβ
)

ij + εijk (model 4),
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where model 4 is the full (true) model and the rest are submodels of the full model. The
fitted values (or estimated means) of these models are

Ŷ (0)
ijk = μ̂ = Ȳ···, Ŷ (1)

ijk = Ȳi·· = μ̂ + α̂i,

Ŷ (2)
ijk = Ȳ·j· = μ̂ + β̂j, Ŷ (3)

ijk = Ȳi·· + Ȳ·j· − Ȳ··· = μ̂ + α̂i + β̂j, and

Ŷ (4)
ijk = Ȳij· = μ̂ + α̂i + β̂j + (̂

αβ
)

ij.

For each of the five linear models above, the postulated mean belongs to a linear space
and the vector of fitted values is a projection of Y on this column space. If QjY denotes the

projection of Y for model j, j = 0, . . . , 4, then the decomposition Yijk − μ̂ = α̂i + β̂j +
(̂
αβ
)

ij +
ε̂ijk can be written in the matrix form as(

I − Q0
)
Y = (

Q1 − Q0
)
Y + (

Q2 − Q0
)
Y + (

Q4 − Q3
)
Y + (

I − Q4
)
Y , or(

I − Q0
)
Y = M1Y + M2Y + M3Y + M4Y ,

where M1 = Q1 − Q0, M2 = Q2 − Q0, M3 = Q4 − Q3, and M4 = I − Q4. It is fairly easy to
check that M j, j = 1, 2, 3, 4, are projection matrices. Moreover, for the balanced two-factor
ANOVA model, M iM j = 0, 1 ≤ i �= j ≤ 4. When

{
εijk
}

are iid N
(
0, σ 2

)
, using the results in

Section B.7 we have

SSA/σ2 = ‖M1Y ‖2/σ2 ∼ χ2
a−1

(
δ2

1

)
, δ2

1 = (
1/2

)(
n0b

)∑
α2

i /σ2,

SSB/σ 2 = ‖M2Y ‖2/σ2 ∼ χ2
b−1

(
δ2

2

)
, δ2

2 = (
1/2

)(
n0a

)∑
β2

j /σ2,

SSAB/σ2 = ‖M3Y ‖2/σ2 ∼ χ2
(a−1)(b−1)

(
δ2

3

)
, δ3

3 = (
1/2

)
n0
∑

i

∑
j

(
αβ
)2

ij/σ
2,

SSE/σ2 = ‖M4Y ‖2/σ2 ∼ χ2
n−ab,

and SSA, SSB, SSAB, and SSE are independent.
Example 11.4.5 (Estimation in One-Factor ANOVA). In one-factor ANOVA or multifac-

tor models, one is often interested in comparing the means or comparing the factor effects.
For instance, in a one-factor model, it is of interest to estimate the pairwise differences of
the means μi − μi′ = αi − αi′ , i �= i′. In general, one may be interested in estimating a
linear combination of the means θ = ∑

ciμi, where {ci} are known constants. A linear
combination θ = ∑

ciμi is called a contrast if
∑

ci = 0. Thus, any pairwise difference of
the means is a contrast.

The least squares estimate of θ = ∑
ciμi is θ̂ = ∑

ciȲi·. It is fairly easy to see that its
mean, variance, and the estimated variance are

E
[
θ̂
]

= θ , Var
[
θ̂
]

= σ 2
∑

c2
i /ni, and s2

(
θ̂
)

= ̂
Var

[
θ̂
]

= MSE
∑

c2
i /ni.

Since θ̂ is a function of the estimated mean vector, it is independent of SSE and hence of

MSE. Under the assumption of normality
(
θ̂ − θ

)/
s
(
θ̂
)

∼ tn−k, and this result can be used

for constructing confidence intervals or for testing hypotheses.
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Example 11.4.6 (ANCOVA With One Factor and One Covariate). Consider the following
model with one factor and one covariate

Yij = μ + αi + γ Zij + εij, j = 1, . . . , ni, i = 1, . . . , a.

If γ were known then we could rewrite the model as Y ∗
ij = μ+αi +εij, where Y ∗

ij = Yij −γ Zij,
and the estimates of μ and αi would be

μ̃ = Ȳ ∗·· = Ȳ·· − γ Z̄··, and α̃i = Ȳ ∗
i· − Ȳ ∗·· = Ȳi· − Ȳ·· − γ

(
Z̄i· − Z̄··

)
.

When γ is unknown (which is usually the case in practice) and it is estimated by γ̂ , then we
may plug in the estimate of γ in the above expressions in order to obtain the estimates of μ

and αi. It turns out that this reasoning is valid and it will be discussed in a separate section
later.

We now outline a simple strategy for obtaining the least squares estimate of γ . Rewriting
the ANCOVA model as

Yij = μ + α∗
i + γ Z̃ij + εij,

where Z̃ij = Zij − Z̄i· and α∗
i = αi + γ Z̄i·, the least squares criterion is∑

i

∑
j

(
Yij − μ − α∗

i − γ Z̃ij

)2 =
∑

i

∑
j

Y 2
ij +

∑
i

∑
j

(
μ + α∗

i
)2 +

∑
i

∑
j

(
γ Z̃ij

)2

− 2
∑

i

∑
j

Yij
(
μ + α∗

i
)− 2

∑
i

∑
j

Yij

(
γ Z̃ij

)
,

since the cross-product term involving μ+α∗
i and γ Z̃ij equals 0. This allows for estimation

of γ and μ + α∗
i separately. Thus

γ̂ =
∑

i

∑
j

YijZ̃ij

/∑
i

∑
j

Z̃2
ij,

μ̂ = Ȳ·· − γ̂ Z̄··, α̂i = Ȳi· − Ȳ·· − γ̂
(
Z̄i· − Z̄i·

)
, and Ŷij = Ȳi· + γ̂ Z̃ij.

Details on ANCOVA models appear in a later section.

11.5 Estimation Under Linear Restrictions on β

In Section 11.4 of this chapter, a simple submodel Y = β01 + ε of Y = Xβ + ε was
considered when discussing the concept of R2. However, more general submodels can
also be considered, and an analogous result on the decomposition of the residual sum
of squares for the submodel can be obtained. The details will be given later, but the result
is as follows. If Ŷ = X β̂ is the estimated mean vector for the full model Y = Xβ + ε and
Ỹ = X β̃ is the estimated mean vector under a submodel (reduced model) of the full model,
where β̃ is the least squares estimate of β in the submodel, then it turns out that

‖Y − Ỹ ‖2 = ‖Ŷ − Ỹ ‖2 + ‖Y − Ŷ ‖2.
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Thus if we write SSEF = ‖Y − Ŷ ‖2 and SSER = ‖Y − Ỹ ‖2 as the residual sum of squares
under the full and reduced models, then

SSER = ‖Ŷ − Ỹ ‖2 + SSEF .

Analogous to R2, we can obtain the proportional reduction (also known as the coefficient
of partial determination) in the residual sum of squares when going from the submodel to
the full model

SSER − SSEF

SSER
.

Let us now see when and how the above results hold. Suppose we wish to estimate the
mean vector Xβ in the Gauss-Markov model under the restriction LT β = θ0, θ0 known,
where L is a p × m matrix of rank m ≤ p. Such a problem usually comes up in hypothesis
testing where the null is H0: LT β = θ0 against the alternative H1: LT β �= θ0. For such a
testing problem, we need to obtain the residual sums of squares for the full model and
reduced model (ie, the submodel model with the constraint LT β = θ0), and then use them
to carry out the test which will be described later.

The restricted least squares estimate of β has a complicated expression and some
notational simplifications make the arguments clearer. Since the design matrix X may not
have orthogonal columns, it helps to reexpress Xβ as X 0γ so that the columns of X 0 are

orthonormal. Let
(
X T X

)1/2
be a symmetric square root of X T X and define

X 0 = X
(

X T X
)−1/2

, γ =
(

X T X
)1/2

β, L0 =
(

X T X
)−1/2

L, so that

Xβ = X 0γ and θ = LT β = LT
0 γ .

With these notations, let us note the following:

(i) X T
0 X 0 = I ,

(ii) the least squares estimate of γ in the full model is γ̂ = (
X T X

)1/2
β̂ = X T

0 Y ,
(iii) E

[
γ̂
] = γ , Cov

[
γ̂
] = σ 2I ,

(iv) E
[
θ̂
]

= θ and Cov
[
θ̂
]

= σ 2LT
0 L0, where θ̂ = LT β̂ = LT

0 γ̂ , and

(v) the least squares estimate of the mean vector μ = Xβ in the full model is
μ̂ = X β̂ = X 0γ̂ .

For the restricted least squares case, we now find the estimate of Xβ. We minimize
‖Y − Xβ‖2 = ‖Y − X 0γ ‖2 with respect to γ subject to the constraint LT

0 γ = θ0. The
method of Lagrangian multiplier is useful for a constrained optimization problem, and
we minimize

‖Y − X 0γ ‖2 + λT
(

LT
0 γ − θ0

)
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with respect to γ where λ is the Lagrangian multiplier vector. Differentiating the last
expression with respect to γ and λ, and equating the derivatives to 0, we have

γ̃ = X T
0 Y − (

1/2
)
L0λ and LT

0 γ̃ = θ0.

Premultiplying the first equation with LT
0 we get LT

0 γ̃ = LT
0 X T

0 Y − (1/2
)
LT

0 L0λ. Since LT
0 γ̃ =

θ0, then λ = 2
(
LT

0 L0
)−1[

LT
0 X T

0 Y − θ0
]
. Thus we get a solution to the restricted least squares

problem as

γ̃ = X T
0 Y − L0

(
LT

0 L0

)−1(
LT

0 X T
0 Y − θ0

)
= γ̂ − L0

(
LT

0 L0

)−1(
LT

0 γ̂ − θ0

)
, and

β̃ =
(

X T X
)−1/2

γ̃ .

The estimated mean vector and the vector of residuals ε̃ for the restricted least squares are

X β̃ = X 0γ̃ = X 0γ̂ − X 0L0

(
LT

0 L0

)−1(
LT

0 γ̂ − θ0

)
= X β̂ − X 0L0

(
LT

0 L0

)−1(
θ̂ − θ0

)
,

ε̃ = Y − X β̃ = ε̂ + X 0L0

(
LT

0 L0

)−1(
θ̂ − θ0

)
.

Since X 0L0
(
LT

0 L0
)−1
(
θ̂ − θ0

)
is in M(X ) and ε̂ is orthogonal to M(X ), we have

‖ε̃‖2 = ‖ε̂‖2 + ‖X 0L0

(
LT

0 L0

)−1(
θ̂ − θ0

)
‖2

= ‖ε̂‖2 +
(
θ̂ − θ0

)T(
LT

0 L0

)−1(
θ̂ − θ0

)
.

Therefore,

SSER = SSEF +
(
θ̂ − θ0

)T(
LT

0 L0

)−1(
θ̂ − θ0

)
, or

SSER − SSEF =
(
θ̂ − θ0

)T(
LT

0 L0

)−1(
θ̂ − θ0

)
. (2)

The discussion above leads to the following important result.
Theorem 11.5.1. Let β̃ be the least squares estimate of β in the Gauss-Markov model

in Eq. (1) under the restriction LT β = θ0, where θ0 is known, and let X β̃ be the estimated

mean vector under the restriction. Let θ = LT β, L0 = (
X T X

)−1/2
L, and θ̂ = LT β̂, where β̂

is the unrestricted least squares estimate of β. Denote the residual vectors ε̂ = Y − X β̂ and
ε̃ = Y − X β̃. Then:

(a) X β̃ = X β̂ − X 0L0
(
LT

0 L0
)−1
(
θ̂ − θ0

)
,

(b) ε̃ = ε̂ + X 0L0
(
LT

0 L0
)−1
(
θ̂ − θ0

)
,

(c) ‖ε̃‖2 = ‖ε̂‖2 +
(
θ̂ − θ0

)T (
LT

0 L0
)−1
(
θ̂ − θ0

)
.
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11.6 Gauss-Markov Models: Inference
Throughout this section we assume a Gauss-Markov model with normal errors (ie, ε ∼
Nn
(
0, σ 2I

)
). Theorem 11.5.1 can be used for constructing confidence regions and hypothe-

ses testing. If θ = LT β, where L is a p × m matrix of rank m ≤ p, then its least square
estimate is θ̂ = LT β̂, where β̂ is the least square estimate of β. Since θ̂ is a linear function of
the estimated mean vector Ŷ = X β̂, it is uncorrelated with the residual vector ε̂ = Ŷ − X β̂

(Theorem 11.3.2). Thus, under the assumption of normality, θ̂ is independent of ε̂ and
hence of MSE = ‖Ŷ − X β̂‖2/

(
n − p

)
. Note that

(i) θ̂ ∼ Nm
(
θ , σ 2LT

0 L0
)
, where L0 = (

X T X
)−1/2

L, and(
θ̂ − θ

)T(
LT

0 L0

)−1(
θ̂ − θ

)T
/σ 2 ∼ χ2

m,

(ii) SSE/σ 2 = ‖Ŷ − X β̂‖2/σ 2 ∼ χ2
n−p,

(iii) θ̂ and SSE are independent.

The F-ratio

F =
(
θ̂ − θ

)T(
LT

0 L0

)−1(
θ̂ − θ

)T
/
(
σ2m

)
‖Ŷ − X β̂‖2

/
(
σ2
(
n − p

))
=
(
θ̂ − θ

)T(
LT

0 L0

)−1(
θ̂ − θ

)T
/m

MSE

=
(
θ̂ − θ

)T [
s2
(
θ̂
)]−1(

θ̂ − θ
)
/m, where

s2
(
θ̂
)

= MSE
[

LT
0 L0

]−1
,

has an F-distribution with df = (
m, n − p

)
.

If L is a vector (ie, m = 1), then θ = LT β is a real number and
(
θ̂ − θ

)
/s
(
θ̂
)

∼ tn−p. Then

a confidence interval for θ with confidence coefficient 1 − α is θ̂ ± tn−p,α/2s
(
θ̂
)

. Similarly, if

we want to test H0: θ = θ0 against the alternative H1: θ �= θ0, then one may reject the null

hypothesis if
∣∣∣(θ̂ − θ0

)
/s
(
θ̂
)∣∣∣ > tn−p,α/2.

If L is a matrix of order p × m with rank m ≤ p and θ = LT β, and it is desired to
carry out a test H0: θ = θ0 against H1: θ �= θ0, then there are two equivalent ways to
express the F-statistic for this test. One expression involves SSEF and SSER, whereas the
other involves θ̂ = LT β̂ (where β̂ is the least squares estimate under the full model) and

s2
(
θ̂
)

, the estimate of Cov
[
θ̂
]

. For a particular application, one may use the form that is

more convenient to obtain the F-statistic. If MSEF is the mean square error under the full
model, then the F-statistic can be written in the two equivalent forms
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F =
(
SSER − SSEF

)
/m

MSEF
(3a)

=
(
θ̂ − θ0

)T [
s2
(
θ̂
)]−1(

θ̂ − θ0

)
/m. (3b)

Since θ̂ ∼ Nm

(
θ , σ 2LT (X T X

)−1
L
)

, using Theorem 11.5.1, we have

[
SSER − SSEF

]
/σ2 =

(
θ̂ − θ0

)T [
LT

0 L0

]−1(
θ̂ − θ0

)
/σ2 ∼ χ2

m

(
δ2
)

,

where δ2 = (
1/2

)(
θ − θ0

)T [LT
0 L0

]−1(
θ − θ0

)
/σ 2. Since β̂ is independent of the residual

vector Y − X β̂, SSER − SSEF , which is a function of β̂, is independent of SSEF , a function
of Y − X β̂. Thus SSEF/σ 2 ∼ χ2

n−p, and under H0,
(
SSER − SSEF

)
/σ 2 ∼ χ2

m
(
δ2
)
, where δ2 is

given above. Therefore

F =
(
SSER − SSEF

)
/m

SSEF/
(
n − p

) =
(
SSER − SSEF

)
/m

MSEF

=
(
θ̂ − θ0

)T [
s2
(
θ̂
)]−1(

θ̂ − θ0

)
/m ∼ Fm,n−p

(
δ2
)

.

Thus we reject H0: θ = θ0 in favor of H1: θ �= θ0 if the value of the F-statistic given above
is higher than the critical value obtained from the F-distribution with df = (

m, n − p
)
.

A few important facts come out from the above discussions:

(a) Any linear hypothesis about β induces a reduced model.
(b) There are two alternate ways to derive the F-statistic for testing H0: θ = θ0 vs

H1: θ �= θ0.
(c) SSER − SSEF depends on Y only through θ̂ = LT β̂. Since X β̂ is uncorrelated with

ε̂ = Y − X β̂, β̂ is independent of ε̂. Consequently, SSER − SSEF (a function of β̂) is
independent of SSEF (a function of ε̂).

(d) df
(
SSEF

) = n − p, df
(
SSER

) = n − p + m, df
(
SSER

)− df
(
SSEF

) = m.
(e) Under H0: θ = θ0, the F-statistic as given in Eqs. (3a) and (3b) has an F-distribution

with df = (
m, n − p

)
.

We will summarize the above discussion in the following result.
Theorem 11.6.1. Assume the Gauss-Markov setup as in Eq. (1) with ε ∼ Nn

(
0, σ 2I

)
. Let

L be a known matrix of order p × m with rank m ≤ p, and denote θ = LT β. We wish to test
H0: θ = θ0 against H1: θ �= θ0. Let β̂ be the least squares estimate of β and θ̂ = LT β̂. Let
SSEF = ‖Y − X β̂‖2 and SSER = ‖Y − X β̃‖2, where β̃ is the least squares estimate of β under
the restriction LT β = θ0. Then

(a) θ̂ is independent of SSEF ,
(b) SSEF/σ 2 ∼ χ2

n−p and SSER − SSER is independent of SSEF ,

(c)
(
SSER − SSEF

)
/σ 2 ∼ χ2

m
(
δ2
)

where the noncentrality parameter is

δ2 = (
1/2

)(
θ − θ0

)T [LT
0 L0

]−1(
θ − θ0

)
/σ 2 with L0 = L

(
X T X

)−1/2
, and
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(d) for the F-statistic in Eqs. (3a) and (3b), F ∼ Fm,n−p
(
δ2
)
, where δ2 is as given in part (c),

and F ∼ Fm,n−p under H0.

Example 11.6.1 (Deleting a Variable From the Regression). Let us consider a regression
model with p − 1 = 4 independent variables. Suppose we wish to find out if variable
X1 should be dropped from the model. This is equivalent to testing H0: β1 = 0 against
H1: β1 �= 0. In this case, we can write L as a row vector of length p = 5 whose second
element is 1 and the rest are zeros. In such a case, clearly, θ = LT β = β1. We can carry out
either a t-test or an F-test for this purpose. The reduced model (ie, the model under H0)
has p−2 independent variables instead of p−1. If we call the original model the full model,
then we have

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε (full)

Y = β0 + β2X2 + β3X3 + β4X4 + ε (reduced).

In this case, we may obtain the residual sums of squares for the full and the reduced models
and df

(
SSEF

) = n − 5, df
(
SSER

) = n − 4. The F-statistic for this test

F = SSER − SSEF

MSEF

is exactly equal to
[
β̂1/s

(
β̂1

)]2
. Thus we may simply use the t-statistic t = β̂1/s

(
β̂1

)
for

testing H0: β1 = 0 against H1: β1 �= 0 and avoid calculating SSER.
Example 11.6.2 (Deleting More Than One Variable From the Regression Model).

Suppose the set-up is the same as the last example, but now we wish to know if we can
delete the first two independent variables from the model. This is equivalent to testing
H0: β1 = β2 = 0 against H1: at least one β1, β2 is nonzero. In this case, L can be written as a
p×2 matrix which has all zeros except for 1’s at the second element of the first column and
at the third element of the second column. We need to test H0: θ = θ0 against H1: θ �= θ0,

where θ0 = (0, 0)T . The F-statistic for this test is F =
(
θ̂ − θ0

)T[
s2
(
θ̂
)]−1(

θ̂ − θ0

)
/2.

However, we can derive this same test statistic in a different way. The full and the reduced
(under the null) models are

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε (full),

Y = β0 + β3X3 + β4X4 + ε (reduced).

Here, df
(
SSEF

) = n − 5, df
(
SSER

) = n − 3, and we can write

F =
(
SSER − SSEF

)
/2

MSEF
,

and F ∼ F2,n−5 under H0.
Example 11.6.3 (One-Factor ANOVA Model). Consider a one-factor model with k levels.

If it is desired to test H0: α1 = · · · = αk = 0 vs H1: not all αi’s are 0, then the full and the
reduced models are

Yij = μ + αi + εij (full), Yij = μ + εij (reduced).
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In this case,

SSEF =
∑

i

∑
j

(
Yij − Ȳi·

)2
, df

(
SSEF

) = n − k,

SSER =
∑

i

∑
j

(
Yij − Ȳ··

)2
, df

(
SSER

) = n − 1, and

SSRR − SSEF =
∑

i

∑
j

(
Ȳi· − Ȳ··

)2 =
∑

niα̂
2
i := SSTR.

The F-statistic is

F =
[
SSRR − SSEF

]
/
(
k − 1

)
MSEF

= SSTR/
(
k − 1

)
MSEF

= MSTR
MSE

,

where MSE = MSEF . Denoting δ2 = (
1/2

)∑
niα

2
i

/
σ 2 , we get the result F ∼ Fk−1,n−k

(
δ2
)

and F ∼ Fk−1,n−k under H0.
Example 11.6.4 (Balanced Two-Factor ANOVA). In the two-factor balanced ANOVA

model, we have seen in Example 11.4.4 that SST0, the total sum of squares, can be
decomposed as the sum of SSA, SSB, and SSAB. If we want to test H0:

(
αβ
)

ij = 0 for all

i and j, vs H1: at least one
(
αβ
)

ij is not zero, the full and reduced models are

Yijk = μ + αi + βj + (
αβ
)

ij + εijk (full),

Yijk = μ + αi + βj + εijk (reduced).

Estimated mean values for the full and reduced models are

Ŷijk = Ȳij· = μ̂ + α̂i + β̂j + (̂
αβ
)

ij

Ỹijk = μ̂ + α̂i + β̂j,

where μ̂, α̂i, and β̂j are as given in Example 11.4.4. The sums of squares for the full and the
reduced models are

SSEF =
∑

i

∑
j

∑
k

(
Yijk − Ȳij·

)2
, df

(
SSEF

) = n − ab,

SSER =
∑

i

∑
j

∑
k

(
Yijk − μ̂ − α̂i − β̂j

)2
, df

(
SSER

) = n − (
a + b − 1

)
,

SSER − SSEF =
∑

i

∑
j

∑
k

(
Ȳij· − μ̂ − α̂i − β̂j

)2

= n0
∑

i

∑
j

(̂
αβ
)2

ij = SSAB.

Thus the F-statistic for this testing problem is

F = SSAB
/(

ab − a − b + 1
)

MSEF
= MSAB

MSE
,

where MSE denotes MSEF . Under H0, F ∼ F(a−1)(b−1),n−ab.
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Even though it may not be a standard practice to test for the main effects in the presence
of interactions, we can still formulate the statistical problem and describe the test statistic.
Let H0: α1 = · · · = αa = 0 vs H1: not all αi’s are zero. Then the full and reduced models are

Yijk = μ + αi + βj + (
αβ
)

ij + εijk (full),

Yijk = μ + βj + (
αβ
)

ij + εijk (reduced).

Estimated mean values for the full and reduced models, and their sums of squares are

Ŷijk = μ̂ + α̂i + β̂j + (̂
αβ
)

ij, Ỹijk = μ̂ + β̂j + (̂
αβ
)

ij,

SSEF =
∑

i

∑
j

∑
k

(
Yijk − Ȳij·

)2
, df

(
SSEF

) = n − ab,

SSER =
∑

i

∑
j

∑
k

(
Yijk − μ̂ − β̂j − (̂

αβ
)

ij

)2
, df

(
SSER

) = n − [
1 + a

(
b − 1

)]
,

SSER − SSEF = SSA,

and the F-statistic is

F = SSA/(a − 1)
MSEF

= MSA
MSE

,

where MSE = MSEF . Under H0, F ∼ Fa−1,n−ab.
Example 11.6.5 (Two-Factor ANOVA: One Observation per Cell). Consider a two-factor

ANOVA model as in the previous example with nij = 1 for all i and j. If Yij is the response
when factor A is at level i and factor B is at level j, then a model without interactions is

Yij = μ + αi + βj + εij, j = 1, . . . , b, i = 1, . . . , a,

where
∑

αi = 0,
∑

βj = 0, and
{
εij
}

are iid N
(
0, σ 2

)
. Estimates of μ, αi, and βj are exactly

the same as before (ie, μ̂ = Ȳ··, α̂i = Ȳi· − Ȳ··, and β̂j = Ȳ·j − Ȳ··). In this case, the fitted Y
values, residuals, and the residual sum of squares are

Ŷij = μ̂ + α̂i + β̂j, ε̂ij = Yij −
(
μ̂ + α̂i + β̂j

)
,

SSE =
∑

i

∑
j

(
Yij − μ̂ − α̂i − β̂j

)2
, and

df
(
SSE

) = ab − (
a + b − 1

) = (a − 1)
(
b − 1

)
, and

MSE = SSE/
[
(a − 1)

(
b − 1

)]
.

One can then carry out inferences on {αi} and
{
βj
}

such as construction of simultaneous
confidence intervals or tests such as H0: α1 = · · · = αa = 0 vs H1: not all αi are 0.

Now if it is desired to investigate if the interaction effects are present, one may think of
the usual model in the two-factor case

Yij = μ + αi + βj + (
αβ
)

ij + εij, j = 1, . . . , b, i = 1, . . . , a,

with the usual constraints on {αi},
{
βj
}

, and
{(

αβ
)

ij

}
. For this model, the number of

unknown parameters (excluding σ 2) is n = ab, the estimated mean is Ŷij = Yij and the



Chapter 11 • Linear Models 333

residuals are Yij − Ŷij = 0. Thus there is no way to estimate σ 2 as there are too many in-
teraction parameters, and we cannot use this model to determine if the interaction effects
are present. One way to approach this issue is to consider a more restrictive type of the
interaction of the form θαiβj, θ real. This leads to the consideration of Tukey’s interaction
model

Yij = μ + αi + βj + θαiβj + εij, j = 1, . . . , b, i = 1, . . . , a,

where
∑

αi = 0,
∑

βj = 0, and
{
εij
}

are iid N
(
0, σ 2

)
. For this model, absence or presence

of interaction effects can be judged by testing H0: θ = 0 against H1: θ �= 0. This is known
as “Tukey’s one degree of freedom test for nonadditivity”, details of which are described
below.

Now Tukey’s model is no longer a linear model, but if one estimates μ̂, α̂i, and β̂j as in

the additive model, then minimizing
∑

i
∑

j

(
Yij − Ỹij − θα̂iβ̂j

)2
, where Ỹij = μ̂ + α̂i + β̂j,

with respect to θ leads to an estimate

θ̂ =
∑

i
∑

j ε̃ijα̂iβ̂j

SαSβ
, where

ε̃ij = Yij − Ỹij, Sα =
∑

α̂2
i , and Sβ =

∑
β̂2

j .

Since
{
ε̃ij
}

are independent of
{

Ỹij

}
, E
[
ε̃ij|Ỹ

]
= E

[
ε̃ij
] = θαiβj, where Ỹ is the vector of

Ỹij’s, and

E
[
θ̂ |Ỹ

]
=
∑

i
∑

j E
[
ε̃ij|Ỹ

]
α̂iβ̂j

SαSβ
=
∑

i
∑

j

(
θαiβj

)
α̂iβ̂j

SαSβ

= θ

∑
i
∑

j αiβjα̂iβ̂j

SαSβ
:= θA.

For two sequences of constants {ei, i = 1, . . . , a} and
{

fj, j = 1, . . . , b
}

satisfying the
constraints

∑
ei = 0 and

∑
fj = 0,

∑
i

∑
j

ε̃ijeifj =
∑

i

∑
j

Yijeifj, and

Var

⎡⎣∑
i

∑
j

ε̃ijeifj

∣∣∣Ỹ
⎤⎦ = Var

⎡⎣∑
i

∑
j

ε̃ijeifj

⎤⎦
= Var

⎡⎣∑
i

∑
j

Yijeifj

⎤⎦ = σ2
∑

i

∑
j

e2
i f 2

j .
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Thus

Var
[
θ̂ |Ỹ

]
= σ2/

[
SαSβ

]
.

In order to carry out a test on θ , we need an estimate of σ 2. If we write Ŷij = Ỹij + θ̂ α̂iβ̂j and

ε̂ij = Yij − Ŷij = ε̃ij − θ̂ α̂iβ̂j, then a simple calculation will show that

SSER =
∑

i

∑
j

ε̃2
ij =

∑
i

∑
j

ε̂2
ij + θ̂2SαSβ = SSEF + θ̂2SαSβ .

Conditionally on Ỹ ,

(i)
[
SSER − SSEF

]
/σ 2 = θ̂2SαSβ/σ 2 ∼ χ2

1

(
δ2

1

)
,

where δ2
1 = (

1/2
){

E
[
θ̃ |Ỹ

]}2
/σ 2 = (

1/2
)
θ2A2/σ 2,

(ii) SSER/σ 2 ∼ χ2
(a−1)(b−1)

(
δ2
)
, where δ2 = θ2∑

j
∑

i α2
i β2

j

/
σ 2 , and

(iii) SSEF is nonnegative.

Hence by an application of Lemma B.7.2 in Appendix B, we can conclude that,
conditionally on Ỹ , SSEF/σ 2 ∼ χ2

(a−1)(b−1)−1

(
δ2 − δ2

1

)
and SSEF/σ 2 is independent of[

SSER − SSEF
]
/σ 2. This allows us to construct a test for H0: θ = 0 vs H1: θ �= 0 using the

F-statistic

F = SSER − SSEF

MSEF
= θ̂2SαSβ

MSEF
, where

MSEF =
⎡⎣∑

i

∑
j

ε̃2
ij − θ̂2SαSβ

⎤⎦/[
(a − 1)

(
b − 1

)− 1
]
,

and F ∼ F1,(a−1)(b−1)−1 under H0.
Example 11.6.6 (Nested ANOVA). Let us begin with a simple example. The school

superintendent has asked every school in a town to try a pilot training program in order
to improve the quantitative aptitude of the students. The town has a schools and each
school has its own b designated teachers for this training program. A random sample of
nij students is chosen in the ith school (factor A), i = 1, . . . , a, and assigned to the jth
teacher in that school, j = 1, . . . , b, and after 6 months of training, the students are given
a standardized test to evaluate their performances. Note that the teachers in different
schools are entirely different and thus the teacher effect (factor B) is nested in the school
(factor A). If Yijk is the score of the kth student assigned to teacher j in the ith school, then
a reasonable model is

Yijk = μ + αi + βj(i) + εijk, k = 1, . . . , nij, j = 1, . . . , b, i = 1, . . . , a,

where {αi} are the factor A (school) effects,
{
βj(i)

}
are the factor B (teacher) effects nested

in factor A, and
{
εijk
}

are iid N
(
0, σ 2

)
errors. This is an example of a simple nested ANOVA

model. For this model, it is assumed that
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(a)
∑

αi = 0, (b)
b∑

j=1

βj(i) = 0 for each i = 1, . . . , a.

Let Ȳ···, Ȳi··, etc., be as in the two-factor ANOVA model. Then estimates of μ, αi, βj(i),
fitted Y values, and the residuals are

μ̂ = (
ab
)−1∑

i

∑
j

Ȳij·, α̂i = b−1
∑

j

Ȳij· − μ̂, β̂j(i) = Ȳij· − μ̂ − α̂i,

Ŷijk = Ȳij·, ε̂ijk = Yijk − Ȳij·, and

SSE =
∑

i

∑
j

∑
k

ε̂2
ijk.

As usual, SSE/σ 2 ∼ χ2
n−ab, and MSE = SSE/

(
n − ab

)
is an unbiased estimate of σ 2, where

n is the total number of observations. One can obtain variances of μ̂,
{
α̂i
}

, and
{
β̂j(i)

}
, but

they are a bit cumbersome in the unbalanced case. In the balanced case (ie, nij = n0 for all

i and j), the expressions of μ̂,
{
α̂i
}

, and
{
β̂j(i)

}
are simpler

μ̂ = Ȳ···, α̂i = Ȳi·· − Ȳ···, β̂j(i) = Ȳij· − μ̂ − α̂i = Ȳij· − Ȳi··,

and

Var
[
μ̂
] = Var

[
Ȳ···
] = σ 2/n,

Var
[
α̂i
] = Var

[
Ȳi·· − Ȳ···

] = σ 2(a − 1)/n,

Var
[
β̂j(i)

]
= Var

[
Ȳij· − Ȳi··

]
= σ2(b − 1

)
/
(
n0b

)
.

Since μ̂,
{
α̂i
}

, and
{
β̂j(i)

}
are functions of the fitted mean vector Ŷ , they are independent of

SSE and hence of MSE, and this fact can be used to carry out inferences such as hypotheses
testing and construction of confidence intervals.

If we wish to test the hypothesis of no teacher effect (ie, test H0: βj(i) = 0 for all j and
i) against the alternative H1: not all βj(i) are zero, then the full and reduced models and
fitted Y values are

Yijk = μ + αi + βj(i) + εijk, Ŷijk = Ȳij· = μ̂ + α̂i + β̂j(i) (full),

Yijk = μ + αi + εijk, Ỹijk = μ̂ + α̂i (reduced).

The residual sums of squares are

SSEF =
∑

i

∑
j

∑
k

(
Yijk − Y ij·

)2
, df

(
SSEF

) = n − ab,

SSER =
∑

i

∑
j

∑
k

(
Yijk − μ̂ − α̂i

)2
, df

(
SSER

) = n − a,

SSER − SSEF =
∑

i

∑
j

nijβ̂
2
j(i) := SSB(A).



336 THEORY AND METHODS OF STATISTICS

The quantity SSB(A) is the sum of squares due to teachers (factor B) nested in school
(factor A). The test statistic is

F = SSB(A)/
(
ab − a

)
MSEF

= MSB(A)
MSE

,

where MSB(A) = SSB(A)/
(
ab − a

)
and MSE = MSEF . Under H0, F ∼ Fab−a,n−ab.

In order to test the hypothesis of no school effect (ie, H0: α1 = · · · = αa = 0 vs H1: at
least one αi is not zero), the full and reduced models along with the fitted values are

Yijk = μ + αi + βj(i) + εijk, Ŷijk = Ȳij· = μ̂ + α̂i + β̂j(i) (full),

Yijk = μ + βj(i) + εijk, Ỹijk = μ̂ + β̂j(i) (reduced).

The residual sum of squares are

SSEF =
∑

i

∑
j

∑
k

(
Yijk − Y ij·

)2
, df

(
SSEF

) = n − ab,

SSER =
∑

i

∑
j

∑
k

(
Yijk − μ̂ − β̂j(i)

)2
,

df
(
SSER

) = n − 1 − a
(
b − 1

)
, and

SSER − SSEF =
∑∑

nijα̂
2
i := SSA.

Thus the F-statistic

F = SSA/(a − 1)
MSEF

= MSA
MSE

,

where MSE = MSEF , follows an F-distribution with df
(
a − 1, n − ab

)
under H0.

For the balanced case, the total sum of squares admits the following decomposition

SSTO = SSA + SSB(A) + SSE.

11.6.1 Simultaneous Inference

We now address the issue of constructing simultaneous confidence intervals for θ =
LT β and its linear functions, where L is a matrix of order p × m of rank m ≤ p. The
main ingredients are the basic distributional results on the least squares estimate β̂ of
β and θ̂ of θ , as outlined in this section. Recall that the estimate of the error variance
σ 2 in the Gauss-Markov model Y = Xβ + ε is given by MSE = ‖Y − X β̂‖2/

(
n − p

)
.

Thus for a real-valued parameter θ = LT β,
(
θ̂ − θ

)
/s
(
θ̂
)

∼ tn−p where θ̂ = LT β̂ and

s2
(
θ̂
)

= MSE
{

LT (X T X
)−1

L
}−1

. Hence θ̂ ± tn−p,α/2s
(
θ̂
)

is a confidence interval for θ with

confidence coefficient 1 − α. Now if θ is vector valued (ie, L is a p × m matrix), then there
are different methods for constructing simultaneous confidence intervals for θ1, . . . , θm,
the components of θ , and for the linear combinations of θ . In the literature, there are
many methods for simultaneous inference, but the discussion below will be for only three
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well-known methods: Bonferroni, Scheffé, and Tukey. Even though we only discuss the
problem of constructing simultaneous confidence intervals, these can also be employed
for simultaneous hypotheses testing.

Bonferroni Method

According to the Bonferroni method, simultaneous confidence intervals with a family
confidence coefficient of at least 1 − α are given by

θj: θ̂j ± Bs
(
θ̂j

)
, j = 1, . . . , m, with B = tn−p,α/(2m),

where s2
(
θ̂j

)
is the jth diagonal element of the matrix s2

(
θ̂
)

. Even though this method is

valid for any m, its usefulness is questionable when m is not small since the multiplier
tn−p,α/(2m) associated with the confidence intervals increases as m increases. Mathemati-
cally, the multiplier converges to ∞ as m → ∞. In reality, the Bonferroni method is an inef-
ficient method for constructing simultaneous confidence intervals when m is larger than
3 or 4. The Scheffé procedure is more appropriate when m is large. Before describing the
Scheffé method, let us briefly see why the Bonferroni method leads to a simultaneous con-

fidence of at least 1−α. Let Aj denote the random event
{
θj: θj ∈

[
θ̂j − Bs

(
θ̂j

)
, θ̂j + Bs

(
θ̂j

)]}
,

j = 1, . . . , m. Now P
(

Ac
j

)
= α/m and

P

⎛⎝ m⋂
j=1

Aj

⎞⎠ = 1 − P

⎛⎝ m⋃
j=1

Ac
j

⎞⎠ ≥ 1 −
m∑

j=1

P
(

Ac
j

)
= 1 − α.

It shows that the probability that θj is inside θ̂j ± Bs
(
θ̂j

)
for all j = 1, . . . , m, is at least 1 − α,

which justifies the Bonferroni approach. This leads to the following lemma.

Lemma 11.6.1. The confidence intervals θ̂j ± Bs
(
θ̂j

)
for θj, j = 1, . . . , m, have a simulta-

neous confidence of at least 1 − α, where B = tn−p,α/(2m).

Scheffé Method

This method obtains simultaneous confidence intervals for all linear combinations aT θ ,
a ∈ Rm. Note that the least squares estimate of aT θ is aT θ̂ = aT LT β̂, where β̂ is the least

squares estimate of β. It is also clear that E
[

aT θ̂
]

= aT θ , Var
[

aT θ̂
]

= aT Cov
[
θ̂
]

a, and an

estimate of Var
[

aT θ̂
]

is given by s2
(

aT θ̂
)

= aT s2
(
θ̂
)

a.

This method states that simultaneous confidence intervals for all linear combinations
of θ with an overall confidence level of 1 − α are given by

aT θ : aT θ̂ ± Ss
(

aT θ̂
)

, a ∈ Rm, where S =
√

mFm,n−p,α .
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The Scheffé method is closely related to a procedure for obtaining a confidence region for
θ , known as the confidence ellipsoid, which is given by

A =
{
θ ∈ Rm:

(
θ − θ̂

)T [
s2
(
θ̂
)]−1(

θ − θ̂
)
/m ≤ Fm,n−p,α

}
.

Note that Pθ [A] = 1 − α and thus the confidence ellipsoid provides a confidence region for
θ with confidence 1−α. However, this is not a useful method in practice as it is not possible
to visualize the region when m > 3.

There is a connection between Scheffé’s simultaneous confidence intervals and the
confidence ellipsoid, and it is through the following equality

sup
a∈Rm

(
aT θ̂ − aT θ

)2
/s2
(

aT θ̂
)

=
(
θ − θ̂

)T [
s2
(
θ̂
)]−1(

θ − θ̂
)

,

which basically follows from the Cauchy-Schwarz inequality (Section B.1) since(
aT θ̂ − aT θ

)2
/s2
(

aT θ̂
)

=
[

aT
(
θ̂ − θ

)]2
/
[

aT s2
(
θ̂
)

a
]

.

Thus we have

1 − α = Pθ

[(
θ̂ − θ

)T [
s2
(
θ̂
)]−1(

θ̂ − θ
)
/m ≤ Fm,n−p,α

]

= Pθ

[
sup

a∈Rm

(
aT θ̂ − aT θ

)2
/
[

aT s2
(
θ̂
)

a
]

≤ S2

]

= Pθ

[(
aT θ̂ − aT θ

)2
/
[

aT s2
(
θ̂
)

a
]

≤ S2 for all a ∈ Rm
]

= Pθ

[
aT θ̂ − Ss

(
aT θ̂

)
≤ aT θ ≤ aT θ̂ + Ss

(
aT θ̂

)
for all a ∈ Rm

]
.

This justifies the validity of the Scheffé method and we have the following result.
Theorem 11.6.2. Let θ be a linear function of β of the form LT β where L is a p×m matrix

of rank m ≤ p. Then simultaneous confidence intervals for all linear combinations of θ with
an overall confidence coefficient of 1 − α are

aT θ : aT θ̂ ± Ss
(

aT θ̂
)

, a ∈ Rm, where S =
√

mFm,n−p,α .

Tukey Method

The basic argument behind Tukey’s method is given below and it will be clear from an
example (given below) how the method can be used. Let Wi ∼ N

(
θi, τ2

)
, i = 1, . . . , t, be

independent random variables and let S2 be an unbiased estimate of τ2 such that

(i) S2 is independent of W1, . . . , Wt , (ii) νS2/τ2 ∼ χ2
ν .
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Consider the following rv, called the studentized range variable,

Q =
{

max
i

(
Wi − θi

)− min
i

(
Wi − θi

)}/
S.

The distribution of Q is known as the studentized range distribution (denoted by Q(t, ν))
and it is available in statistical packages. Many statistics textbooks also have the table
of this distribution. Tukey simultaneous confidence intervals with family confidence
coefficient 1 − α for all pairwise differences θi − θj is

Wi − Wj ± Qt,ν,αS,

where Qt,ν,α is the (1 − α)-quantile of the studentized range distribution with degrees of
freedom (t, ν).

Application of Tukey’s Method to One-Factor Balanced ANOVA Models

Let Yij = μ + αi + εij, j = 1, . . . , n0, i = 1, . . . , k, where
{
εij
}

are iid N
(
0, σ 2

)
and let μi =

μ + αi, i = 1, . . . , k. Suppose that we want to construct simultaneous confidence intervals
for μi −μi′ = αi −αi′ , i �= i′, with a family confidence coefficient of 1−α. Take Wi = √

n0Ȳi·,
θi = √

n0μi, S2 = MSE, τ 2 = σ 2, t = k, and ν = n − k, where n = kn0 is the total number
of observations. Then simultaneous confidence intervals for θi − θi′ = √

n0(αi − αi′), i �= i′,
with family confidence coefficient 1 − α are given by

√
n0
(
Ȳi· − Ȳi′·

)± Qk,n−k,αMSE.

Consequently, simultaneous confidence intervals for θi − θi′ , i �= i′, are(
Ȳi· − Ȳi′·

)± Ts
(
Ȳi· − Ȳi′·

)
,

where T = Qk,n−k,α/
√

2.

11.6.2 Prediction Intervals

If we rewrite the Gauss-Markov model as

Yi = βT xi + εi, i = 1, . . . , n,

where xT
i is the ith row of the design matrix, it is sometimes of interest to predict Y0 at a

vector x0 of values in Rp where Y0 = βT x0 + ε0 and ε0 ∼ N
(
0, σ 2

)
is independent of the

observation vector Y . If β were known, the best predictor of Y0 would be βT x0. Usually, β is

unknown and the predicted value of Y0 is Ŷ0 = β̂
T

x0, where β̂ is the least squares estimate
of β. Noting that ε0 is independent of β̂ and hence of Ŷ0 , we have

E
[

Ŷ0 − Y0

]
= E

[
β̂

T
x0 − βT x0 − ε0

]
= 0, and

Var
[

Ŷ0 − Y0

]
= Var

[
β̂

T
x0 − βT x0 − ε0

]
= Var

[
β̂

T
x0 − βT x0

]
+ Var

[
ε0
]

= xT
0 Cov

[
β̂
]

x0 + σ2 = σ2xT
0

(
X T X

)−1
x0 + σ2.



340 THEORY AND METHODS OF STATISTICS

Thus an estimate of Var
[

Ŷ0 − Y0

]
is

s2
(

Ŷ0 − Y0

)
= MSE xT

0

(
X T X

)−1
x0 + MSE := s2 (pred).

Since Ŷ0 − Y0 is normally distributed with mean 0 and variance given above, and is

independent of s2
(

Ŷ0 − Y0

)
, the random variable

(
Ŷ0 − Y0

)
/s
(
pred

) ∼ tn−p. Thus a

prediction interval for Y0 with confidence coefficient 1 − α is given by Ŷ0 ± tn−p,α/2s(pred).
Simultaneous prediction intervals for m different Y values at k different x vectors can

be constructed using the Bonferroni method by taking the multiplier associated with the
prediction intervals to be equal to B = tn−p,α/(2m).

11.7 Analysis of Covariance
As we have discussed in Remark 11.2.2, the ANCOVA model can be written as

Y = Xβ + Zγ + ε, (4)

where Y is n × 1 vector of observations, X is a known n × p matrix of rank p, Z is a known
n × q matrix of rank q, and ε is Nn

(
0, σ 2I

)
. We further assume that M(X ) ∩ M(Z) = {0},

and hence the rank of the augmented matrix [X Z] is p + q. Here β and γ are vectors of
unknown parameters to be estimated.

Here we will be concerned with estimation of β and γ , and inference on them. For
instance, in Example 11.2.7 we may be interested in testing that diet has no effect on the
growth rate (ie, H0: α1 = · · · = αk = 0 vs H1: not all αi’s equal 0). We may be interested
in testing that age has no effect on growth (ie, H0: γ2 = 0 vs H1: γ2 �= 0). Or we may be
interested in finding out neither initial weight nor age has any effect on the growth rate,
H0: γ1 = γ2 = 0 vs H1: not both of γ1 and γ2 are zero.

Here we discuss the following issues:

(i) estimation of β and γ , and their linear functions θ = LT β and η = MT γ ,
(ii) test for H0: θ = θ0 vs H1: θ �= θ0, θ0 known, and
(iii) test for H0: η = η0 vs H1: η �= η0, η0 known.

11.7.1 Estimation of β and γ

If W = [X Z] and θ is the
(
p + q

)
-dim vector obtained by stacking β and γ vertically,

then the normal equations would be W T W θ = W T Y . The matrix W T W =
(

X T X X T Z
Z T X Z T Z

)
is not necessarily block diagonal. It would help in obtaining a simple estimate of γ if
we could rewrite the model in order to get a block diagonal matrix on the left-hand
side of the normal equations. In order to achieve this, we can argue as follows. Let QX
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be the orthogonal projection on the column space of X (ie, QX = X
(
X T X

)−1
X T and

Z̃ = (
I − QX

)
Z). Then we can rewrite the ANCOVA model as

Y = Xδ + Z̃γ + ε,

where δ = β + (
X T X

)−1
X T Zγ . Since X T Z̃ = 0, the least squares method produces the

normal equations (
X T X 0

0 Z̃
T

Z̃

)(
δ

γ

)
=
(

X T Y

Z̃
T

Y

)
.

From the second set of equations we get

γ̂ =
(

Z̃
T

Z̃
)−1

Z̃
T

Y .

From the first set of equations we get

X T Y = X T X δ̂ = X T X
(

β̂ +
(

X T X
)−1

X T Z γ̂

)
= X T X β̂ + X T Z γ̂ , and

X T X β̂ = X T (Y − Z γ̂
)
.

The discussion above leads to the following simple result.
Lemma 11.7.1. The least squares estimates of β and γ for the ANCOVA model are

(a) γ̂ =
(

Z̃
′
Z̃
)−1

Z̃
T

Y , (b) β̂ =
(

X T X
)−1

X T (Y − Z γ̂
)
.

The following lemma states a few basic results on the least squares estimates and its
proof is left to the reader.

Lemma 11.7.2. If β̂ and γ̂ are least squares estimates of β and γ , respectively, then we
have

(a) E
[
γ̂
] = γ , E

[
β̂
]

= β,

(b) Cov
[
γ̂
] = σ 2

(
Z̃

T
Z̃
)−1

,

(c) Cov
[
β̂
]

= σ 2
[(

X T X
)−1 + (

X T X
)−1

X T DX
(
X T X

)−1
]

, where D = Z
(

Z̃
T

Z̃
)−1

Z T ,

(d) Cov
[

X β̂
]

= σ 2
(
QX + QX DQX

)
,

(e) Cov
[
γ̂ , X β̂

]
= −σ 2

(
Z̃

T
Z̃
)−1

Z T QX .

Remark 11.7.1. Here is an intuitive way to view the matrix Z̃ . Suppose that the columns
of Z are Z 1, . . . , Z q. Then the ith column vector for the matrix Z̃ is Z̃ i = (

I − QX
)
Z i. Now

for any column of Z , say Z1, we can view QX Z 1 as the vector of fitted values when fitting
the model Z1 = Xβ + error, and hence the vector of residuals is

(
I − QX

)
Z 1. Similar

interpretation holds for all the columns of Z̃ .
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11.7.2 Residual Sum of Squares

The vectors of fitted values and the residuals for the ANCOVA model are

Ŷ = X β̂ + Z γ̂ = QX
(
Y − Z γ̂

)+ Z γ̂ = QX Y + Z̃ γ̂ ,

ε̂ = Y − Ŷ = (
I − QX

)
Y − Z̃ γ̂ .

Since ε̂ is orthogonal to any linear combination of X and Z , and hence to Z̃ γ̂ , we have

‖(I − QX
)
Y ‖2 = ‖ε̂ + Z̃ γ̂ ‖2 = ‖ε̂‖2 + ‖Z̃ γ̂ ‖2, and hence

SSE = ‖ε̂‖2 = ‖(I − QX
)
Y ‖2 − ‖Z̃ γ̂ ‖2.

Since the rank of the matrix [X Z] is p + q and df
(
SSE

) = n − p − q, an unbiased estimate
of σ 2 is

MSE = SSE/
(
n − p − q

)
.

11.7.3 Inference for γ and β

We first discuss inference on γ and its linear functions.

Inference for γ

If we want to estimate η = MT γ , where M is a q × s matrix of rank s ≤ q, then the least
squares estimate of η is given by η̂ = MT γ̂ , where γ̂ is the least squares estimate of γ .
If ε ∼ Nn

(
0, σ 2I

)
, then η̂ ∼ Ns

(
η, σ 2MT Cov

[
γ̂
]
M
)
, where Cov

[
γ̂
]

is as in Lemma 11.7.2

and it can be estimated by s2
(
η̂
) = MSE

[
MT

(
Z̃

T
Z̃
)−1

M
]

. We can now easily handle all

the inferential issues regarding η such as construction of confidence intervals and tests of
hypotheses. In particular, suppose we want to test H0: η = η0 vs H1: η �= η0, where η0 is
known. A test statistic is

F = (
η̂ − η0

)T [s2(η̂)]−1(
η̂ − η0

)
/s.

Degrees of freedom associated with this F-test are
(
s, n − p − q

)
.

Inference for β

If we want to estimate θ = LT β, where L is a p×r matrix of rank r ≤ p, then its least squares
estimate is given by θ̂ = LT β̂ and the distribution of θ̂ is an r-dim normal with mean θ and

covariance matrix LT Cov
[
β̂
]

L, where the expression for Cov
[
β̂
]

is given in Lemma 11.7.2.

An estimate of Cov
[
θ̂
]

is

s2
(
θ̂
)

= MSE LT
[(

X T X
)−1 +

(
X T X

)−1
X T DX

(
X T X

)−1
]

.
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In order to carry out a test H0: θ = θ0 vs H1: θ �= θ0, θ0 known, we can use the following
test statistic

F =
(
θ̂ − θ0

)T [
s2
(
θ̂
)]−1(

θ̂ − θ0

)
/r.

The degrees of freedom for this F-test are
(
r, n − p − q

)
.

We should point that we can also carry out tests for θ or η using the alternate expression
for the F-statistic which involves obtaining SSER and SSEF , the residual sums of squares
for the reduced and full models, as described in Section 11.6.

Example 11.7.1. Consider the following model with one factor and one covariate

Yij = μ + αi + γ Zij + εij, j = 1, . . . , ni, i = 1, . . . , k.

In Example 11.4.6, estimates of μ, αi, and γ are given. Here Z has only one column, QX Z is
the vector of fitted values when fitting the model Zij = μ + αi + error, and Z̃ = (

I − QX
)
Z

is the vector of residuals. Hence Z̃ij = Zij − Z̄i·, where Z̄i· = ∑ni
j=1 Zij/ni. Similarly, let Ỹij =

Yij − Ȳi·, where Ȳi· = ∑ni
j=1 Yij/ni . Consequently,

γ̂ =
(

Z̃
T

Z̃
)−1

Z̃
T

Y =
⎛⎝∑

i

∑
j

Z̃ijYij

⎞⎠/⎛⎝∑
i

∑
j

Z̃2
ij

⎞⎠
=
⎛⎝∑

i

∑
j

Z̃ijỸij

⎞⎠/⎛⎝∑
i

∑
j

Z̃2
ij

⎞⎠ .

The residual sum of squares is

SSE = Ỹ
T

Ỹ −
(

Ỹ
T

Z̃
)(

Z̃
T

Z̃
)−1(

Z̃
T

Ỹ
)

=
∑

i

∑
j

Ỹ 2
ij −

⎛⎝∑
i

∑
j

Z̃ijỸij

⎞⎠2/⎛⎝∑
i

∑
j

Z̃2
ij

⎞⎠ .

Note that df
(
SSE

) = n − k − 1, where n = ∑
ni is the total number of observations. So an

estimate of σ 2 is MSE = SSE/
(
n − k − 1

)
.

If we want to test H0: α1 = · · · = αk = 0 vs H1: not all αi’s are equal to zero, then we need
to obtain the residual sum of squares SSER of the reduced model.

The reduced model (under H0) is Yij = μ + γ Zij + εij and

SSER = inf
μ,γ

∑
i

∑
j

[
Yij − μ − γ Zij

]2

=
∑

i

∑
j

[(
Yij − Ȳ··

)
− γ ∗(Zij − Z̄··

)]2
, where
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γ ∗ =
∑

i

∑
j

(
Zij − Z̄··

)
Yij

/∑
i

∑
j

(
Zij − Z̄··

)2
,

df
(
SSER

) = n − 2.

So the test statistic is

F =
(
SSER − SSEF

)/(
k − 1

)
MSE

,

where MSE = MSEF and the degrees of freedom for this test are
(
k − 1, n − k − 1

)
.

If we wish to construct a confidence interval for θ = αi − αi′ , i �= i′, then its estimate is
θ̂ = Ȳi· − Ȳi′· − γ̂

(
Z̄i· − Z̄i′·

)
. It is left to the reader to verify that

Cov
[
Ȳi·, γ̂

] = 0 for any i = 1, . . . , k.

Fairly simple calculations will show that

E
[
θ̂
]

= θ and

Var
[
θ̂
]

= σ 2
[

1/ni + 1/ni′ + (
Z̄i· − Z̄i′·

)2
/SZ̃

]
, where

SZ̃ =
∑

i

∑
j

Z̃2
ij.

Thus an estimate of Var
[
θ̂
]

is given by

s2
(
θ̂
)

= MSE
[

1/ni + 1/ni′ + (
Z̄i· − Z̄i′·

)2
/SZ̃

]
.

Since
(
θ̂ − θ

)
/s
(
θ̂
)

∼ tn−k−1, we can construct a confidence interval for θ . As a matter of

fact, we can carry out many pairwise comparisons αi − αi′ , i �= i′, using the Bonferroni or
Scheffé methods.

11.7.4 Application of ANCOVA to Missing Data

Suppose that we have the usual linear model Y = Xβ + ε, where Y is n × 1 and X is n × p.
However, the last r observations on the response (ie, Y values) are missing. Let Y ∗ and Y r

denote the vectors of n−r available observations and the vectors of r missing observations,
respectively. Similarly, let X∗ and X r denote the submatrices of X corresponding to the
available and missing cases. Note that X∗ is (n − r) × p and X r is r × p. The basic idea



Chapter 11 • Linear Models 345

here is to formulate an ANCOVA by introducing one unknown parameter for every missing
observation. Consider the ANCOVA model(

Y ∗
Y r

)
=
(

X∗
X r

)
β +

(
0
Ir

)
γ + ε,

where Ir is the r × r identity matrix, and the r × 1 vector of unknown parameters γ is
introduced here for the missing cases. If we carry out a straightforward least squares with

the design matrix
(

X∗ 0
X r Ir

)
in order to estimate the unknown parameters

(
β

γ

)
, then the

normal equations are (
X T∗ X∗ + X T

r X r X T
r

X r Ir

)(
β̂

γ̂

)
=
(

X T∗ Y ∗ + X T
r Y r

Y r

)
.

The two sets of equations (obtainable from the normal equations above) are

X T∗ X∗β̂ + X T
r X r β̂ + X T

r γ̂ = X T∗ Y ∗ + X T
r Y r ,

X r β̂ + γ̂ = Y r .

Premultiply the second equation above by X T
r and then subtract it from the first equation

to obtain

X T∗ X∗β̂ = X T∗ Y ∗, and hence

γ̂ = Y r − X r β̂.

We now have explicit expressions for β̂ and γ̂ . The vectors of fitted values and residuals are

Ŷ =
(

X∗
X r

)
β̂ +

(
0
Ir

)
γ̂ =

(
X∗β̂

X r β̂ + γ̂

)
=
(

X∗β̂

Y r

)
,

Y − Ŷ =
(

Y ∗
Y r

)
−
(

X∗β̂

Y r

)
=
(

Y ∗ − X∗β̂

0

)
.

Consequently, the residual sum of squares is given by

SSE = ‖Y ∗ − X∗β̂‖2.

Note that this residual sum of squares turns out to be identical to that for the model(
Y ∗ = X∗β + ε∗

)
with only available observations. The degrees of freedom for the SSE is

n−p−r. Thus, the degrees of freedom of the SSE is the same as the one that can be obtained
from an analysis of the available observations assuming that rank(X ) = rank(X∗).

11.8 Model Selection
In the Gauss-Markov setup one is often concerned with selecting a model from an
appropriate class of candidate models. There are a number of methods for model selection
and properties of these methods have been investigated by many authors, but we focus on
a few of them instead of describing all. Consider the general framework Y = μ+ε, where Y
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is the n×1 response vector, μ is the mean vector, and ε is the vector of iid errors with mean
0 and variance σ 2. We assume that there is a class of candidate models

{
X kβk: k = 1, . . . , K

}
for describing μ, where X k is a known n × pk matrix of rank pk and βk is unknown.

11.8.1 An Overview of Various Model Selection Criteria

For the kth model, if μ̂k = X kβ̂k is the estimated mean vector, where β̂k is the least squares
estimate of βk, then the residual sum of squares is SSEk = ‖Y −μ̂k‖2. Note that the residual
sum of squares SSEk = ‖Y − X kβ̂k‖2 decreases for a nested class of models (where for each
k, the kth model is contained in the k + 1-st model) and the minimum of {SSEk} is attained
for the model with the largest number of parameters. Thus one cannot hope to select
an appropriate model by minimizing SSEk over k. A reasonable measure of how well μ̂k
estimates μ is given by Dk = E

[‖μ − μ̂k‖2
]
, the expected squared distance between μ and

μ̂k. Ideally, one would choose the model for which Dk is the smallest, but Dk is unknown
as it depends on the unknown population parameters. Therefore, one then first obtains a
good estimate D̂k of Dk, then minimizes D̂k over k = 1, . . . , K . If the minimum is attained

at k = k̂, then
{

X k̂β̂ k̂

}
is considered the most appropriate estimate of the mean vector μ.

Akaike’s FPE and Mallows’ criteria seek to obtain an unbiased (or nearly unbiased) estimate
of Dk.

Cross-validation (CV) and generalized cross-validation (GCV) seek to estimate the
prediction error of the kth fitted model. In this setup, it is assumed that

(
Yi, xk,i

)
, i =

1, . . . , n, where the observed values of the covariates
{

xT
k,i

}
are the rows of X k, are iid

and
(
Yn+1, xk,n+1

)
is an independent copy of

(
Yi, xk,i

)
. If β̂k is the least squares estimate

of βk, then the error for predicting Yn+1 using the estimated kth model is PE
(
k
) =

E
[

Yn+1 − β̂
T
k xk,n+1

]2
. Both CV and GCV obtain nearly unbiased estimators of this pre-

diction error. Thus one chooses the model for which P̂E
(
k
)

(as given by the CV or GCV
criterion) is the smallest.

Both Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are
likelihood-based methods, which seek to model the joint pdf f of Y = (Y1, . . . , Yn)T .
Suppose there is a class of candidate probability models

{
fk
(·, θk

)
: k = 1, . . . , K

}
for f

under consideration. In the case of linear models, fk may be the pdf of Nn
(
X kβk, σ 2I

)
and θk =

(
βk
σk

)
. As in the case of residual sum of squares, −2 log f

(
Y , θ̂k

)
, where θ̂k is

the MLE for θk, will always decrease if we take a sequence of nested models and thus it is

not possible to select an appropriate model by trying to minimize −2 log f
(

Y , θ̂k

)
over k,

since the minimum is always attained at the model with the largest number of parameters.
A true measure of how good the kth fitted model is can be judged by how well it performs
for a dataset that is independent of the data Y and this is what is done in the arguments
involving the AIC. The AIC seeks to obtain an estimate of 2 times the Kullback-Leibler
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divergence KL
(
k
) = E

[
log f

(
Ỹ
)
/fk

(
Ỹ , θ̂k

)]
, where Ỹ has the same distribution as Y , but

is independent of it. The model corresponding to the smallest value of AIC is considered
the most appropriate one.

As the name suggests, the BIC is based on Bayesian considerations. In this setting,
there is an “index of model” variable J which takes values in {1, . . . , K } so that the prior
probability of choosing model k is πk (ie, P

[
J = k

] = πk). Given J = k, the pdf of Y is
fk
(·, θk

)
, where θk has a prior gk. The goal to find the model for which the conditional prob-

ability P
[
J = k|Y ] is maximized or −2 log P

[
J = k|Y ] is minimized. Since these conditional

probabilities are unknown, the BIC obtains an estimate of −2 log P
[
J = k|Y ] for each k.

For the kth linear model, let SSEk = ‖Y − X kβ̂k‖2 and σ̂ 2
k = SSEk/n, where β̂k is the

least squares estimate of βk. Under normality (ie, ε ∼ Nn
(
0, σ 2I

)
), the MLE of σ 2 is σ̂ 2

k . The
various model selection criteria mentioned above are

FPE
(
k
) = n + pk

n − pk
SSEk,

MAL
(
k
) = SSEk + 2pkσ̂2,

AIC
(
k
) = n log σ̂ 2

k + 2pk,

BIC
(
k
) = n log σ̂2

k + log(n)pk,

P̂E(cv)(k) = n−1
n∑

i=1

(
Yi − β̂

T
k,(−i)xk,i

)2
, and

P̂E(gcv)(k) = n−1SSEk/
(
1 − pk/n

)2.

For Mallows’ criterion, it is assumed that σ̂ 2 is a consistent estimate of σ 2. In the
cross-validation criterion, it is understood that, for the kth model, the rows of X k

are
{

xT
k,i, i = 1, . . . , n

}
and β̂k,(−i) is the least squares estimate of βk based on n − 1

observations, deleting
(
Yi, xk,i

)
.

Remark 11.8.1. Both AIC and BIC have forms which are more general than what are
written above. More general versions are given below and they are described in detail. It
can be shown that FPE, Mallows’, CV, GCV, and AIC criteria are equivalent in an asymptotic
sense as n → ∞. The BIC is different from the others as its use may lead to models
with fewer parameters. If the correct model is in the candidate class, then mathematical
arguments, under appropriate conditions, show that BIC selects the correct model with
probability converging to 1. The other model selection criteria given above tend to choose
the “best” predictive model. It is important to keep in mind that the correct model (if it
exists) is not necessarily the best predictive model.

11.8.2 Akaike’s FPE and Mallows’ Criteria

Suppose β̂k is the least squares estimate of βk and μ̂k = X kβ̂k. A measure of divergence
between μ and μ̂k is given by Dk = E

[‖μ − μ̂k‖2
]
, and the goal is to obtain a reasonable
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estimate of Dk. Now we can write μ̂k = QkY , where Qk = X k
(
X T

k X k
)−1

X T
k is the projection

on the column space of X k and rank
(
Qk
) = trace

(
Qk
) = pk. Moreover,

μ − μ̂k = μ − QkY = (
I − Qk

)
μ − Qkε = Q̄kμ − Qkε,

where Q̄k = I − Qk. Since Q̄kμ and Qkε are orthogonal, ‖μ − μ̂k‖2 = ‖Q̄kμ‖2 + ‖Qkε‖2 and
taking expectation on both sides, we have

Dk = E‖μ − μ̂k‖2 = ‖Q̄kμ‖2 + pkσ2.

Let us now examine the residual sum of squares SSEk = ‖Y − μ̂k‖2. We can write Y − μ̂k =
Q̄kY = Q̄kμ + Q̄kε. Hence

SSEk = ‖Q̄kμ‖2 + ‖Q̄kε‖2 + 2
(

Q̄kμ
)T(

Q̄kε
)

, and

E
[
SSEk

] = ‖Q̄kμ‖2 + (
n − pk

)
σ2.

This shows that

Dk = E
[
SSEk

]− (
n − 2pk

)
σ2 = E

[
SSEk

]+ 2pkσ2 − nσ2.

The last term nσ 2 does not depend on k and hence there is no need to estimate it. So if we
have an estimate σ̂ 2

k of σ 2, then we can get a criterion

D̂k = SSEk + 2pkσ̂2
k − nσ2.

The criteria given in Section 11.8.1 ignore the nσ 2 term. How one estimates σ 2 depends on
the type of problem at hand. If σ 2 is estimated by MSEk = SSEk/

(
n − pk

)
, then one ends up

with Akaike’s FPE criterion given above. Another possibility is to take a large enough model
(maybe the largest model in the candidate class) so that the model bias is low and use the
mean square error of that model to estimate σ 2. In such a case, the estimate of σ 2 does not
depend on k and the resulting D̂k is a special case of Mallows’ criterion.

11.8.3 AIC and BIC

Let f be the joint pdf of Y = (Y1, . . . , Yn)T and the goal is to find a suitable approx-
imation for f among a class of candidate probability models. Let the kth model be{

fk
(
y, θk

)
, θk ∈ Ωk

}
, k = 1, . . . , K , where Ωk is a nonempty open subset of Rpk . If θ̂k is the

MLE of θk for the kth model, then the AIC and BIC are

AIC
(
k
) = −2 log fk

(
Y , θ̂k

)
+ 2pk,

BIC
(
k
) = −2 log fk

(
Y , θ̂k

)
+ log(n)pk.

If a criterion is minimized at k = k̂, then fk̂ is declared to be the most appropriate model

according to that criterion. Note that in both the criteria, −2 log fk

(
Y , θ̂k

)
are penalized

by a constant times the number of parameters estimated. However, the BIC has a higher
penalty than the AIC and thus it may select a model with fewer parameters than the AIC.
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In the case of linear models with normal errors, if one has a sequence of models{
X kβk: βk ∈ Rpk

}
, then there are simple expressions for these criteria. Let θk =

(
βk
σk

)
be

the vector of parameters for the kth model, then the MLE are

β̂k =
(

X T
k X k

)−1
X T

k Y , σ̂2
k = ‖Y − X kβ̂k‖2/n,

and thus we have

fk

(
Y , θ̂k

)
=
(

1√
2πσ̂k

)n

exp
[
−‖Y − X kβ̂k‖2

/(
2σ̂2

k

)]

=
(

1√
2πσ̂k

)n

exp
[−n/2

]
, and

−2 log fk

(
Y , θ̂k

)
= n log σ̂2

k + n + n log(2π).

The last two terms in the last expression do not involve k, and after ignoring them we
arrive at

AIC
(
k
) = n log σ̂2

k + 2pk and BIC
(
k
) = n log σ̂ 2

k + log(n)pk.

Theoretical arguments used in deriving these criteria are different. The arguments given
here are heuristic, but they can be made rigorous at the expense of fairly cumbersome
calculations. The AIC is obtained by trying to approximate a predictive likelihood, whereas
the derivation of the BIC involves approximating the probability of choosing a model given
the data Y .

Mathematical Settings
I. Suppose Ỹ has the same distribution as Y but is independent of it. AIC is obtained by

an approximation of E
[
−2 log f

(
Ỹ , θ̂k

)]
, where θ̂k is the MLE based on the available

data.
II. Suppose J is a discrete rv taking values 1, . . . , K , and P

[
J = k

] = πk. Also assume that
given J = k, the pdf of the model is f

(·, θk
)
, where θk has a prior gk(·). Then the goal

is to find the value of k which maximizes P
[
J = k|Y ] or minimizes −2 log P

[
J = k|Y ].

The BIC is obtained by finding an approximation to −2 log P
[
J = k|Y ]. It turns

out that as long as the priors {πk} and
{

gk(·)} are reasonably “flat” on the parameter
spaces (ie, they are not degenerate or close to being degenerate), the dominant
terms in the asymptotic expansion of −2 log P

[
J = k|Y ] do not depend on the priors.

Heuristic Derivation of AIC
Let us assume that there exists a unique θk0 ∈ Ωk when E

[
log f

(
Y , θk

)]
is maximized over

θk ∈ Ωk, where the expectation is over the true pdf f of Y . Let fi be the pdf of Yi and fk,i
(·, θk

)
be the pdf of Yi under the kth model and denote
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ξk,i
(·, θk

) = − log fk,i
(·, θk

)
, ξk

(
y, θk

) =
n∑

i=1

ξk,i
(
yi, θk

)
,

ξ̇k,i
(·, θk

) = ∂

∂θk
ξk,i

(·, θk
)
, ξ̈k,i

(·, θk
) = ∂2

∂θk∂θk
ξk,i

(·, θk
)
,

ξ̇k
(
y, θk

) =
n∑

i=1

ξ̇k,i
(
yi, θk

)
, and ξ̈

(
y, θk

) =
n∑

i=1

ξ̈k,i
(
yi, θk

)
.

In these notations, f
(
y, θk

) = exp
[−ξk

(
y, θk

)]
. Let

Ik
(
f
) = E

⎡⎣n−1
n∑

i=1

ξ̇k,i
(
Yi, θk0

)
ξ̇k,i

(
Yi, θk0

)T⎤⎦, Ĩk
(
f
) = E

[
n−1ξ̈k

(
Y , θk0

)]
,

where the expectations are taken over the true pdf f (·) of Y . Suppose that θ̂k is the MLE of
θk based on the data Y , Ỹ is an independent copy of Y , and the following hold (heuristic
justifications given below)

E
[
ξk

(
Ỹ , θ̂k

)]
= E

[
ξk

(
Y , θ̂k

)]
+ (

1/2
)
trace

(
Ĩk
(
f
)−1Ik

(
f
))

[1 + o(1)], (5a)

E
[
ξk

(
Y , θ̂k

)]
= E

[
ξk

(
Y , θ̂k

)]
− (

1/2
)
trace

(
Ĩk
(
f
)−1Ik

(
f
))

[1 + o(1)]. (5b)

Then a reasonable estimate of E
[
ξk

(
Ỹ , θ̂k

)]
is given by

ξk

(
Y , θ̂k

)
+ trace

(
Ĩk
(
f
)−1Ik

(
f
))

.

Since trace
(

Ĩk
(
f
)−1Ik

(
f
))

is unknown, it needs to be estimated. If it is assumed that

fk
(·, θk0

)
is reasonably close to f , then we may replace Ĩk

(
f
)

and Ik
(
f
)

by Ĩk
(
fk
(·, θk0

))
and I

(
fk
(·, θk0

))
, respectively. Nothing that Ĩk

(
fk
(·, θk0

)) = Ik
(
fk
(·, θk0

))
(using Eqs. (3a)

and (3b) in Section 7.1, and ξk is the negative of the log-likelihood), we may estimate

trace
(

Ĩk
(
f
)−1Ik

(
f
))

by

trace
(

Ĩk
(
fk
(·, θk0

))−1Ik
(
fk
(·, θk0

))) = trace(I) = pk.

Thus an estimate of E
[
ξk

(
Ỹ , θ̂k

)]
is given by

ξk

(
Y , θ̂k

)
+ pk = − log fk

(
Y , θ̂k

)
+ pk.

The AIC is two times the quantity given above.
What remains to be shown is that the approximate expansions given in Eqs. (5a) and

(5b) are valid. The MLE θ̂k satisfies the likelihood equation ξ̇k

(
Y , θ̂k

)
= 0. Since θk0

maximizes E
[
log f

(
Y , θk

)]
, E
[
ξ̇k
(
Y , θk0

)] = 0. For notational convenience, we denote Ik
(
f
)
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and Ĩk
(
f
)

by Ik and Ĩk. Arguments used in obtaining the asymptotic properties of the MLE
(Chapter 7) can be employed to conclude the following

n−1ξ̈k
(
Y , θk0

)− Ĩk
P→ 0,

Zn,k = n−1/2I−1/2
k ξ̇k

(
Y , θk0

) D→ Zk ∼ Npk (0, I), and

θ̂k − θk0 = −ξ̈k
(
Y , θk0

)−1
ξ̇k
(
Y , θk0

)[
1 + oP(1)

]
= −n−1/2Ĩ

−1
k I1/2

k Zn,k
[
1 + oP(1)

]
.

Now

ξk

(
Ỹ , θ̂k

)
= ξk

(
Ỹ , θk0

)
+
(
θ̂k − θk0

)T
ξ̇k

(
Ỹ , θk0

)
+ (

1/2
)(

θ̂k − θk0

)T
ξ̈k

(
Ỹ , θk0

)(
θ̂k − θk0

)[
1 + oP(1)

]
.

Since Ỹ is independent of Y and hence of θ̂k,

E
[
ξk

(
Ỹ , θk0

)]
= E

[
ξk
(
Y , θk0

)]
, E
[
ξ̇k

(
Ỹ , θk0

)]
= E

[
ξ̇
(
Y , θk0

)] = 0.

Noting that n−1ξ̈k

(
Ỹ , θk0

)
− Ĩk

P→ 0, we have

(
θ̂k − θk0

)T
ξ̈k

(
Ỹ , θk0

)(
θ̂k − θk0

)
= ZT

n,kI1/2
k Ĩ

−1
k

[
n−1ξ̈k

(
Ỹ , θk0

)]
Ĩ
−1
k I1/2

k Zn,k
[
1 + oP(1)

]
= ZT

n,kI1/2
k Ĩ

−1
k I1/2

k Zn,k
[
1 + oP(1)

]
.

Since Z n,k
D→ Z k and E

[
Z kZ T

k

] = I , ignoring the oP(1) term we have

E
[(

θ̂k − θk0

)T
ξ̈k

(
Ỹ , θk0

)(
θ̂k − θk0

)]
= E

[
ZT

k I1/2
k Ĩ

−1
k I1/2

k Zk

]
[1 + o(1)]

= trace
(

I1/2
k Ĩ

−1
k I1/2

k E
[

ZkZT
k

])
[1 + o(1)]

= trace
(

Ĩ
−1
k Ik

)
[1 + o(1)], and

E
[
ξk

(
Ỹ , θ̂k

)]
= E

[
ξk
(
Y , θk

)]+ (
1/2

)
trace

(
Ĩ
−1
k Ik

)
[1 + o(1)].

This shows that Eq. (5a) holds. The above argument assumes that the oP(1) term can be
turned into an o(1) term when taking the expectation. Such a step requires the concept of
uniform integrability which we ignore here for the sake of simplicity of discussion.

In order to verify Eq. (5b), expand ξk

(
Y , θ̂k

)
about ξk

(
Y , θk0

)
to get

ξk

(
Y , θ̂k

)
= ξk

(
Y , θk0

)+
(
θ̂k − θk0

)T
ξ̇k
(
Y , θk0

)
+ (

1/2
)(

θ̂k − θk0

)T
ξ̈k
(
Y , θk0

)(
θ̂k − θk0

)[
1 + oP(1)

]
.
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Since θ̂k − θk0 = −ξ̈k
(
Y , θk0

)−1
ξ̇k
(
Y , θk0

)
[1 + oP(1)], we have

ξk

(
Y , θ̂k

)
= ξk

(
Y , θk0

)− (
1/2

)(
θ̂k − θk0

)T
ξ̈k
(
Y , θk0

)(
θ̂k − θk0

)[
1 + oP(1)

]
.

Using the same argument as in the expansion of ξk

(
Ỹ , θ̂k

)
, we get

E
[
ξk

(
Y , θ̂k

)]
= E

[
ξk
(
Y , θk

)]− (
1/2

)
trace

(
Ĩ
−1
k Ik

)
[1 + o(1)].

Heuristic Derivation of BIC
Recall that in the Bayesian setting, the goal is to find k for which P

[
J = k|Y ] is maximized

where the discrete variable J can take values 1, . . . , K with probabilities π1, . . . , πK . Now

P
[
J = k|Y = y

] =
∫
Ωk

fk
(
y, θk

)
gk
(
θk
)
πk dθk

f
(
y
) ,

where f (·) is the marginal pdf of Y . Since the denominator of f
(
y
)

does not depend on k,
we may simply ignore it as it plays no role in optimization of P

[
J = k|Y ] over k. We outline

the basic arguments in approximating the integral in the numerator when gk is taken as a
noninformative prior (ie, gk

(
θ
) ≡ 1). When Ωk is not compact, the use of such a prior can

be justified by taking a uniform prior on a compact region Ak,j ⊂ Ωk and letting Ak,j → Ωk

as j → ∞ in an appropriate manner.
Let ξk, ξk,i, etc., be the same as in the derivation of the AIC. Then fk

(
Y , θk

) =
exp

[−ξk
(
Y , θk

)]
. The MLE θ̂k of θk is a solution to the equation ξ̇k

(
Y , θk

) = 0 and assume

that n−1ξ̈k

(
Y , θ̂k

)
P→ Ĩk, a positive definite matrix. Reexpress θk as θ̂k + n−1/2u where

u = √
n
(
θk − θ̂k

)
and hence

∫
Ωk

fk
(
Y , θk

)
dθk = n−pk/2

∫
Ω ′

k

fk

(
Y , θ̂k + n−1/2u

)
du

= n−pk/2
∫
Ω ′

k

exp
[
−ξk

(
Y , θ̂k + n−1/2u

)]
du,

where Ω ′
k =

{√
n
(

z − θ̂k

)
: z ∈ Ωk

}
. If it can be shown that (heuristic details given below)

∫
Ω ′

k

exp
[
−ξk

(
Y , θ̂k + n−1/2u

)]
du = exp

[
−ξk

(
Y , θ̂k

)](√
2π
)pk

∣∣∣Ĩk

∣∣∣−1/2[
1 + oP(1)

]
,

then we have∫
Ωk

fk
(
Y , θk

)
dθk = n−pk/2 exp

[
−ξk

(
Y , θ̂k

)](√
2π
)pk

∣∣∣Ĩk

∣∣∣−1/2[
1 + oP(1)

]
.
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Since fk(Y , θ̂k) = exp
[
−ξk

(
Y , θ̂k

)]
, keeping only the dominant terms, −2 times the

logarithm of
∫
Ωk

fk
(
Y , θk

)
dθk is approximately equal to

2ξk

(
Y , θ̂k

)
+ log(n)pk = −2 log fk

(
Y , θ̂k

)
+ log(n)pk,

which is the BIC.
Let us now outline the heuristic arguments involved in the approximation of the

integral
∫
Ω ′

k
exp

[
−ξk

(
Y , θ̂k + n−1/2u

)]
du. Assuming that θ̂k is in a compact set with

probability converging to 1, Ω ′
k → Rpk as n → ∞. Since θ̂k is the MLE, we have

ξ̇k

(
Y , θ̂k

)
= 0. Expanding ξk

(
Y , θ̂k + n−1/2u

)
about ξk

(
Y , θ̂k

)
, we have (under reasonable

regularity conditions on fk)

ξk

(
Y , θ̂k + n−1/2u

)
= ξk

(
Y , θ̂k

)
+ (

1/2
)
uT Ĩku

[
1 + oP(1)

]
.

Thus ∫
Ω ′

k

exp
[
−ξk

(
Y , θ̂k + n−1/2u

)]
du

=
∫
Ω ′

k

exp
[
−ξk

(
Y , θ̂k

)
− (

1/2
)
uT Ĩku

(
1 + oP(1)

)]
du

= exp
[
−ξk

(
Y , θ̂k

)] ∫
Ω ′

k

exp
[
−(1/2

)
uT Ĩku

(
1 + oP(1)

)]
du

= exp
[
−ξk

(
Y , θ̂k

)] ∫
R

pk
exp

[
−(1/2

)
uT Ĩku

]
du
[
1 + oP(1)

]
.

This kind of approximation of an integral is known as the Laplace approximation. We have
omitted a lot of details in the above approximation including how the integral over Ω ′

k
can be approximated by the integral over Rpk , how the oP(1) terms can be brought out of
the exponential term, etc. However, all the calculations can be justified using appropriate
mathematical conditions.

The integrand in the last integral is proportional to the pdf of a pk -dim normal random
vector with mean 0 and covariance matrix Ĩk

−1. Thus∫
Rk

exp
[
−(1/2

)
uT Ĩku

]
du =

(√
2π
)pk

∣∣∣Ĩk

∣∣∣−1/2
.

Thus an approximation to
∫
Ωk

fk
(
Y , θk

)
dθk is given by

exp
[
−ξk

(
Y , θ̂k

)](√
2π
)pk

∣∣∣Ĩk

∣∣∣−1/2
.

11.8.4 Cross-Validation and Generalized Cross-Validation

Recall that the kth model under consideration is Y = X kβk + ε, where X k is an n × pk

matrix of rank pk, and assume that the rows of X k are xT
k,i, i = 1, . . . , n, and that

(
Yi, xk,i

)
,
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i = 1, . . . , n, are iid. If
(
Yn+1, xk,n+1

)
is a future copy of

(
Yi, xk,i

)
, which is independent of

the data
{(

Yi, xk,i
)
, i = 1, . . . , n

}
, then the mean square error in predicting Yn+1 by β̂

T
k xk,n+1

is PE
(
k
) = E

[
Yn+1 − β̂

T
k xk,n+1

]2
, where β̂k = (

X T
k X k

)−1
X T

k Y is the least squares estimate

of βk. Cross-validation method seeks to estimate this prediction error PE
(
k
)
. The method

is as follows. Obtain the least squares estimate β̂k,(−i) of βk based on n − 1 observations
deleting the ith case. Then an estimate of the prediction error is given by

P̂E(cv)(k) = n−1
n∑

i=1

(
Yi − β̂

T
k,(−i)xk,i

)2
.

As will be shown below, there is no need to calculate all the n different estimates of βk. Let

Qk = X k
(
X T

k X k
)−1

X T
k be the projection matrix which projects on the columns of X k . Let

Ŷi = β̂
T
k xi and ε̂i = Yi − Ŷi. It will be shown that

β̂k,(−i) = β̂k − (
1 − qk,ii

)−1
(

X T
k X k

)−1
xk,iε̂i, (6a)

Yi − β̂
T
k,(−i)xk,i =

(
Yi − β̂

T
k xk,i

)
/
(
1 − qk,ii

)
, (6b)

where qk,ii is the ith diagonal element of Qk. So PE(cv) can be written as

P̂E(cv)(k) = n−1
∑

i

(
Yi − β̂

T
k xi

)2
/
(
1 − qk,ii

)2.

If any or some of the values of qk,ii is/are close to 1, then the cross-validated estimate of
PE
(
k
)

may become unstable. For this reason, it has been proposed to replace qk,ii by its
average

q̄k =
∑

i

qk,ii/n = trace
(
Qk
)
/n = pk/n.

This leads to what is known as the generalized cross-validation estimate

P̂E(gcv)(k) = n−1
∑

i

(
Yi − β̂

T
k xi

)2
/
(
1 − pk/n

)2.

It should be noted that the expression of the P̂E(gcv)(k) is almost proportional to Akaike’
FPE criterion. More precisely,

P̂E(gcv)(k) = n−1
[

1 + O
(
pk/n

)2]FPEk,

assuming that pk/n → 0 as n → ∞.
We now verify the identities given in Eqs. (6a) and (6b). For notational convenience we

suppress k in the expressions for X k, β̂k, xk,i, etc. Let X (−i) be the matrix obtained from
X by deleting its ith row. Thus X (−i) has n − 1 rows. Similarly let Y (−i) be the vector with
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n − 1 rows after deleting the ith row from Y . Note that the normal equations for the least
squares estimate of β after deleting the ith observation (Yi, xi) is given by the solution of
X T

(−i)X (−i)β = X T
(−i)Y (−i). Since

X T
(−i)X (−i) = X T X − xixT

i and X T
(−i)Y (−i) = X T Y − xiYi,

using the Sherman-Morrison formula (Section B.1), and denoting
(
X T X

)−1
by D, we have

(
X T

(−i)X (−i)
)−1 =

(
X T X − xixT

i

)−1

=
(

X T X
)−1 +

[
1 − xT

i

(
X T X

)−1
xi

]−1(
X T X

)−1
xixT

i

(
X T X

)−1

=
(

X T X
)−1 + (

1 − qii
)−1

(
X T X

)−1
xixT

i

(
X T X

)−1

= D + (
1 − qii

)−1DxixT
i D,

where the ith diagonal element of Q is qii = xT
i

(
X T X

)−1
xi = xT

i Dxi. Thus

β̂(−i) =
(

X T
(−i)X (−i)

)−1
X T

(−i)Y (−i)

=
[

D + (
1 − qii

)−1DxixT
i D
][

X T Y − xiYi

]
=
[

I + (
1 − qii

)−1DxixT
i

][
DX T Y − DxiYi

]
=
[

I + (
1 − qii

)−1DxixT
i

][
β̂ − DxiYi

]
= β̂ − DxiYi + (

1 − qii
)−1Dxi

[
xT

i β̂ − xT
i DxiYi

]
= β̂ − DxiYi + (

1 − qii
)−1Dxi

[
Ŷi − qiiYi

]
= β̂ − Dxi

[
Yi − (

1 − qii
)−1

(
Ŷi − qiiYi

)]
= β̂ − Dxi

[(
1 − qii

)−1
(

Yi − Ŷi

)]
= β̂ − (

1 − qii
)−1Dxiε̂i.

This show that equality (6a) holds. In order to verify Eq. (6b), note that

β̂
T
(−i)xi = β̂

T
xi − (

1 − qii
)−1xT

i Dxiε̂i

= β̂
T

xi − (
1 − qii

)−1qiiε̂i, and

Yi − β̂
T
(−i)xi =

(
Yi − β̂

T
xi

)
+ (

1 − qii
)−1qiiε̂i

= ε̂i + (
1 − qii

)−1qiiε̂i = (
1 − qii

)−1
ε̂i.
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11.9 Some Alternate Methods for Regression
In a regression setting with p − 1 independent variables, in some cases, Y is related to
only k < p − 1 independent variables, and thus it makes sense to remove some of the
independent variables from the model. Stepwise regression, all subsets regression, or a
penalty method such as lasso may be used for this purpose. In some cases, another situa-
tion may be true where Y is related to all the independent variables and the independent
variables are well correlated among themselves. In such cases, it may be reasonable to
regress Y on a few (say k < p − 1) appropriately created linear combinations of the in-
dependent variables. Partial least squares (PLS) or principal components regression (PCR)
may be used for this purpose. The phenomenon of all or some of the independent vari-
ables being well-correlated among themselves is called multicollinearity. Another method
that has been proposed in the literature for multicollinear cases is known as the ridge
regression.

Theoretical properties of some of the procedures described above are either nontrivial
or not well-understood. For this reason, only outlines of these procedures will be given. It
is also important to point out there are other regression procedures in addition to the ones
mentioned above.

For all the methods to be discussed here, we assume the Gauss-Markov setup given in
Eq. (1) is true with ε as the vector of iid variables with mean 0 and variance σ 2, and the goal
is to estimate the mean vector Xβ on the basis of the observation vector Y . Even though
the typical assumption is that {εi} are iid, in some cases, such as stepwise regression, the
typical assumption is ε ∼ Nn

(
0, σ 2I

)
.

11.9.1 All Subsets Regression

All subsets regression consists of fitting all possible submodels and choosing an appropri-
ate (sub)model using a criterion such as AIC, Mallows’ or BIC (ie, choose the model with
the smallest value of the criterion). If there are p − 1 independent variables then there are
2p−1 possible submodels. When p is not small, then the number of submodels 2p−1 is quite
large and, in such cases, carrying out all subsets regression may not be feasible. For this
reason, one may use a computationally feasible method such as stepwise regression which
is described below.

11.9.2 Stepwise Regression

Let us first discuss the simplest versions of this method: forward selection and backward
elimination.

In the forward selection method, one builds up a model beginning with no independent
variable and adding one variable at a time till it is not possible to add any more. It is typical
to start with the model Y = β0 + ε and then try each of the p − 1 regression models,
Y = β0 + βjXj + ε, j = 1, . . . , p − 1. When comparing the models Y = β0 + ε (reduced)
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to Y = β0 + βjXj + ε (full), one can test H0: βj = 0 against H1: βj �= 0. This leads to an
F-statistic and, since there are p−1 models, there are p−1 such F-values. The variable with
the largest F-value is the best candidate for inclusion. If this largest F-statistic is larger than
a preselected threshold (called F-to-enter), then the corresponding independent variable
is entered in the model. If the value of the largest F-statistic is smaller than the threshold,
then no variable can be added and it is declared that Y = β0 + ε is the most appropriate
model.

Suppose that variable X2 has been selected in step 1, then one considers p − 2 models,
Y = β0 +β2X2 +βjXj + ε, 1 ≤ j �= 2 ≤ p − 1. Now there are p − 2 testing problems H0: βj = 0
against H1: βj �= 0, 1 ≤ j �= 2 ≤ p − 1. Thus there are p − 2 F-values and the variable with
the largest F-value is entered if it is larger than the threshold. Otherwise Y = β0 + β2X2 + ε

is considered the most appropriate model. In this manner, independent variables can be
added one at a time till it is not possible to enter any more.

Remark 11.9.1. In each step, instead of using the F-values, one may use p-values and
enter a variable if the corresponding p-value is the smallest, and it is smaller than a
threshold p-value (called p-to-enter).

The selected model depends on the threshold F-value (often taken to be equal to 3.5
or 4) or the threshold p-value (often taken to be equal to 0.05 or 0.10). Changing the
threshold value may lead to a different model. For this reason, sometimes it is considered
appropriate to look at the best candidate’s AIC or BIC value at each step. The model with
the smallest value AIC or BIC is considered the most appropriate.

In the backward elimination method, one starts with the full model and then deletes
variables one at a time using the F-values and a threshold called F-to-delete till no variable
can be dropped. As in the forward selection method, one may use p-values instead of F-
values or use a criterion such as AIC to carry out this procedure.

Stepwise regression can be done in a forward or in a backward manner. In the forward
stepwise regression, variables are added as in the forward stepwise regression. However,
in each step it also has the option of deleting a variable that is already in the model.
So forward stepwise regression is basically a forward selection method which includes
a backward elimination step. For this reason, a forward stepwise method needs two
threshold values: one for forward selection and the other for backward elimination.

Similarly, backward stepwise regression is basically a backward elimination method
with the option of reentering a variable that is outside the model. As in the forward
stepwise method, it needs two threshold values.

11.9.3 Penalty Methods

Penalty-based approaches to regression seek to minimize the least squares criterion
G
(
b
) = ‖Y − Xb‖2 with restrictions on b. This can usually be achieved by minimizing G

(
b
)

plus a penalty term as given below

G
(
b, λ

) = G
(
b
)+ λp

(
b
)
,
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where the penalty parameter λ is nonnegative and the penalty function p
(
b
) ≥ 0 is equal to

0 at b = 0. There are many possible choices for the penalty function, but we will mention
only two: p

(
b
) = ∑

cj|bj| and p
(
b
) = ∑

c2
j b2

j , where c2
j is the jth diagonal element of X T X .

For the first case, also known as lasso, there is no explicit expression for the minimizer.
However, for the second case, known as the ridge regression, there is an explicit expression

for the minimizer β̂(λ) = (
X T X + λC

)−1
X T Y , where C is a diagonal matrix with diagonal

elements
{

c2
j

}
. When the penalty term λ = 0, both methods are the same as the ordinary

least squares. In general, the penalty parameter can be chosen by cross-validation or its
modified versions.

Ridge regression works well in estimating the mean response when the independent
variables are well correlated among themselves. However, if the independent variables are
mutually uncorrelated, its performance may not be satisfactory. With appropriate choice
of λ and under regularity conditions, lasso can recover the regression model when some of
the beta parameters are nonzero and the rest are zeros. However, the ridge estimates will
typically result in nonzero estimates for all the beta parameters.

The penalty methods mentioned above can be motivated by a Bayesian consideration
where the true parameters are assumed to randomly distributed. If all the variables have
been standardized, then there is no need for an intercept term and the penalty term can
be taken to be equal to λ

∑
β2

j = λ‖β‖2. If the true regression coefficients
{
βj
}

are assumed

to be iid N
(
0, τ2

)
, then ignoring the terms that do not depend on Y or β, −2 times the

logarithm of the joint pdf of Y and β is

‖Y − Xβ‖2/σ2 + ‖β‖2/τ2 = σ−2
[
‖Y − Xβ‖2 + λ‖β‖2

]
, λ = σ2/τ2.

Minimizing the above with respect to β leads to the ridge estimate of β. If instead of
assuming normal distribution of

{
βj
}

, one assumes
{
βj
}

to be iid double exponential with
the pdf (2τ )−1 exp

[−|u|/τ ], −∞ < u < ∞, τ > 0, then the argument above leads to a lasso
estimate of β.

It can be shown that there exists λ > 0 such that the ridge estimate X β̂(λ) is a superior
estimate of μ = E[Y ] = Xβ than the least squares estimate X β̂ of μ. We write down the
result for the case when all the variables have been standardized so that the penalty term

is λ‖β‖2 and the ridge estimate of β is β̂(λ) = (
X T X + λI

)−1
X T Y .

Lemma 11.9.1. Let us assume that all the variables have been standardized in a regres-

sion model and the ridge estimate of β is β̂(λ) = (
X T X + λI

)−1
X T Y , λ > 0. Let D(λ) =

E
[
‖X β̂(λ) − Xβ‖2

]
be the expected value of the squared distance between X β̂(λ) and Xβ.

There exists λ > 0 such that D(λ) < D(0), ie, there exists a ridge estimate X β̂(λ), λ > 0, which
is a superior estimate of Xβ than the least squares estimate X β̂ = X β̂(0).

Proof of Lemma 11.9.1. Clearly,

β(λ) = E
[
β̂(λ)

]
=
(

X T X + λI
)−1

X T Xβ = β − λ
(

X T X + λI
)−1

β.
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Hence, writing Aλ = X T X + λI for notational convenience, we have

X β̂(λ) − Xβ = X β̂(λ) − Xβ(λ) + Xβ(λ) − Xβ

= X
(

X T X + λI
)−1

X T ε − λX
(

X T X + λI
)−1

β

= XA−1
λ X T ε − λXA−1

λ β, and

D(λ) = E
[
‖X β̂(λ) − Xβ‖2

]
= E

[
‖XA−1

λ X T ε‖2
]

+ λ2‖XA−1
λ β‖2

:= DV (λ) + DB(λ).

We may regard DV (λ) and DB(λ) as the variance and the bias-squared terms. Since Cov[ε] =
σ 2I, we have

DV (λ) = E
[
‖XA−1

λ X T ε‖2
]

= trace
(

XA−1
λ X T Cov[ε]XA−1

λ X T
)

= σ2 trace
(

XA−1
λ X T XA−1

λ X T
)

= σ2 trace
(

X T XA−1
λ X T XA−1

λ

)
= σ2 trace

([
X T XA−1

λ

]2
)

.

Let the spectral decomposition of X T X be
∑p

j=1 λjujuT
j with λ1 ≥ · · · ≥ λp, and denote

γj = uT
j β. Then

A−1
λ =

∑(
λj + λ

)−1
ujuT

j ,

X T XA−1
λ =

∑
λj

(
λj + λ

)−1
ujuT

j , and

A−1
λ X T XA−1

λ =
∑

λj

(
λj + λ

)−2
ujuT

j .

Therefore

DV (λ) = σ 2 trace
([

X T XA−1
λ

]2
)

=
∑[

λj

/(
λj + λ

)]2
,

DB(λ) = λ2‖XA−1
λ β‖2 = λ2

∑
λj

(
λj + λ

)−2
γ 2

j .

It is fairly easy to see that DV (λ) is a decreasing function of λ, but DB(λ) is increasing in λ.
As a matter of fact

D′
V (λ) = −2σ 2

∑
λ2

j

(
λj + λ

)−3
, D′

B(λ) = 2λ
∑

λ−2
j

(
λj + λ

)−3
γ 2

j ,

D′(λ) = D′
V (λ) + D′

B(λ)

= −2σ2
∑

λ2
j

(
λj + λ

)−3 + 2λ
∑

λ−2
j

(
λj + λ

)−3
γ 2

j , and

D′(0) = −2σ 2
∑

λ−1
j < 0.

Thus D(λ) is decreasing in a neighborhood of 0 and hence D(λ) < D(0) for some λ > 0. �
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11.9.4 Partial Least Squares and Principal Components Regression

The main idea behind PCR and PLS is to create a design matrix Z from X whose columns
are mutually orthogonal. Thus if an n × p matrix Z = [

Xu1, . . . , Xup
]

is created so that

ZT
j Zk =

(
Xuj

)T (
Xuk

) = uT
j X T Xuk = 0, j �= k,

then Z T Z is a diagonal matrix. If we write U = [
u1, . . . , up

]
, then Xβ = XUU−1β = Zα,

with α = U−1β. So we have a new Gauss-Markov model Y = Zα + ε and the least

squares estimate of α is α̂ = (
Z T Z

)−1
Z T Y , and α̂j = Z T

j Y /Z T
j Z j is the estimate of αj,

the jth component of α. It is important to note that in this formulation, estimate of αj

depends only on Z j and Y , Cov
[
α̂
] = σ 2

(
Z T Z

)−1
, and whenever j �= k, Cov

[
α̂j, α̂k

] = 0
since Z T Z is a diagonal matrix. Model selection now involves choosing a few of the newly
created independent variables Z 1, . . . , Z p and this can be carried out by using stepwise
regression with an appropriate model selection criterion described in the last section.
Since β = Uα, once we have an estimate α̂ of α (and this includes the case when some
αj are set be zero if we decide to delete the corresponding Z j ’s), we can get the estimate of

β as β̂ = U α̂ = ∑
α̂juj.

PCR and PLS differ in the way the vectors u1, . . . , up are created or the new mutually
orthogonal vectors Z1, . . . , Z p are created. In PCR,

{
uj
}

are taken to be the orthonormal
eigenvectors obtained from the spectral decomposition of X T X . Thus if λ1, . . . , λp are the
eigenvalues of X T X with the corresponding orthonormal eigenvectors u1, . . . , up, then Z j

is taken to be Z j = Xuj, j = 1, . . . , p, then clearly
{

Z j
}

are mutually orthogonal.
In the presence of multicollinearity, it is of interest to create the mutually uncorrelated

variables economically so that a linear combination of a few of them can model the
response variable Y well. It is thus desirable to have a method which creates the vectors{

uj
}

using both Y and X . PCR uses only information from X , whereas PLS uses both X and
Y . It should be pointed out that PLS is basically what is known as the Conjugate Gradient
Method in Numerical Analysis. It is an iterative method for obtaining the minimum of a
quadratic form βT Sβ − 2bT

β over β ∈ Rp, where S is a p × p positive definite matrix.
Remark 11.9.2. It is generally advisable to standardize all the variables for the PCR and

the PLS so that there is no need to include an intercept term in the model and all the
variables are on the same scale.

There are many equivalent ways of describing PLS, including a version with statistical
interpretation. This procedure generates u1, u2, . . . in a recursive manner along with the
estimated coefficients α̂1, α̂2, . . . and the corresponding estimates of β. Here is a version
which follows the numerical analyst’s description. For notational convenience, let S =
n−1X T X , b = n−1X T Y so that the normal equations can be written as Sβ = b. The
following iterative scheme describes how the columns of the matrix Z , and α̂1, α̂2, . . .etc.,
are generated recursively.

Step 1. Take u1 = b. Then Z1 = Xu1, α̂1 = Z T
1 Y /Z T

1 Z 1 = uT
1 b/uT

1 Su1, and β̂
(1) = α̂1u1.

Denote the remainder b − Sβ̂
(1)

by r1.



Chapter 11 • Linear Models 361

We will describe how to carry out this recursion. Suppose that u1, . . . , uk has been

generated with the corresponding estimates β̂
(1)

, . . . , β̂
(k)

and the remainders

r1 = b − Sβ̂
(1)

, . . . , rk = b − Sβ̂
(k)

, and we now want to create uk+1.

Step k + 1. Let uk+1 = rk − ckuk, where ck is such that Z k+1 = Xuk+1 is orthogonal to
Zk = Xuk. This leads to ck = uT

k Srk/uT
k Suk. So we have

uk+1 = rk − ckuk, Zk+1 = Xuk+1 with ck = uT
k Srk/rT

k Srk,

α̂k+1 = ZT
k+1Y /ZT

k+1Zk+1 = uT
k+1b/uT

k+1Suk+1, and

β̂
(k+1) = α̂1u1 + · · · + α̂kuk + α̂k+1uk+1 = β̂

(k) + α̂k+1uk+1,

and the remainder is rk+1 = b − X β̂
(k+1)

.

Remark 11.9.3.

(a) It can be shown that for the procedure described above Z 1 = Xu1, Z 2 = Xu2, . . . are
orthogonal.

(b) If S is a diagonal matrix, the iteration stops after the first iteration. If X is n × p, then

the procedure stops after p iterations and β̂
(p)

equals the least squares estimate β̂

of β.
(c) How do we decide when to stop the iterations? One may use a criterion such as AIC or

cross-validation and terminate the iteration when the value of the AIC stops
decreasing.

11.10 Random- and Mixed-Effects Models
Random-effects models come up in many situations of practical interest. Consider a
simple example. Suppose in a state, it is desired to know the average performance of
children in some standardized mathematics test. Since the state has many schools and
the student performance may vary from school to school, it may be desirable to choose
k schools at random and, for each selected school, the standardized test is given to some
randomly selected children. Thus if Yij is the performance of the jth child in the ith school,
one may write a one-factor ANOVA model as Yij = μ+αi + εij, where μ is the overall mean,
αi is the school effect, and εij is the random error. Since the schools are randomly selected it
is reasonable to assume that, for this one-factor model, {αi} are iid N

(
0, σ 2

1

)
. This is perhaps

the simplest of all random-effect models.
Example 11.10.1 (One random factor). Suppose we have observations

{
Yij : j = 1, . . . ,

ni, i = 1, . . . , k
}

where the random factor has k levels and the model is

Yij = μ + αi + εij, j = 1, . . . , ni, i = 1, . . . , k,

where μ is a constant,
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(i)
{
εij
}

are iid N
(
0, σ 2

)
, {αi} are iid N

(
0, σ 2

1

)
, and

(ii) {αi} and
{
εij
}

are mutually independent.

Thus, we have

E
[

Yij

]
= μ, Var

[
Yij

]
= σ2

1 + σ2,

Cov
[

Yij, Yij′
]

= σ2
1 , j �= j′, and

Cov
[

Yij, Yi′j′
]

= 0, i �= i′.

Now the variability of Yij has two components: variability among schools and the error
variance. For this reason, σ 2

1 and σ 2 are also called the components of variance of Yij.
The observations

{
Yi1, . . . , Yini

}
in a particular school are correlated, unlike in the fixed

factor case. The correlation between Yij and Yij′ , j �= j′, which equals σ 2
1 /
(
σ 2

1 + σ 2
)
, is called

the intraclass correlation. The goal is often to estimate μ and the intraclass correlation
coefficient.

Example 11.10.2 (Two Random Factors). Suppose we have observations
{

Yijk: k = 1, . . . ,
nij, j = 1, . . . , b, i = 1, , a

}
where factor A has a levels, factor B has b levels, and both factors

are random. Thus it can be written as

Yijk = μ + αi + βj + (
αβ
)

ij + εijk,

where it is assumed that μ is a constant; {αi} are iid N
(
0, σ 2

1

)
;
{
βj
}

are iid N
(
0, σ 2

2

)
;
{(

αβ
)

ij

}
are iid N

(
0, σ 2

3

)
;
{
εijk
}

are iid N
(
0, σ 2

)
; and {αi},

{
βj
}

,
{(

αβ
)

ij

}
, and

{
εij
}

, are mutually

independent. Here

E
[

Yijk

]
= μ and Var

[
Yijk

]
= σ2

1 + σ2
2 + σ2

3 + σ2.

So the components of variance are σ 2
1 , σ 2

2 , σ 2
3 , and σ 2. The goal is often to estimate these

variance components along with the overall mean μ.
Example 11.10.3 (Mixed-Effects Model: One Factor Fixed and One Factor Random). In

the last example, if factor A is fixed but factor B is random, then the model is the same

except that μ and αi are constants with
∑

αi = 0, but
{
βj
}

,
{(

αβ
)

ij

}
are

{
εijk
}

are iid

N
(
0, σ 2

1

)
, N
(
0, σ 2

2

)
and N

(
0, σ 2

)
, respectively. It is also assumed that

{
βj
}

,
{(

αβ
)

ij

}
and

{
εijk
}

are mutually independent. Thus

E
[

Yij

]
= μ + αi and Var

[
Yijk

]
= σ2

1 + σ2
2 + σ2.

This is a mixed-effects model with the variance components σ 2
1 , σ 2

2 , and σ 2.
Example 11.10.4 (Mixed-Effects Model: One Random Factor With a Covariate). We can

also have a mixed model in which some factors are random, some fixed, and there are
one or more covariates. Consider a case with one random factor and one covariate. Thus
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if
(
Yij, Xij

)
, j = 1, . . . , ni, are the observed values of the response and the covariate for the

factor at level i, then a model can be written as

Yij = β0 + β1Xij + αi + εij, j = 1, . . . , ni, i = 1, . . . , k,

where β0, β1 are unknown constants, {αi} are iid N
(
0, σ 2

1

)
,
{
εij
}

are iid N
(
0, σ 2

)
, and {αi} and{

εij
}

are mutually independent. In this case, we have

E
[

Yij

]
= β0 + β1Xij and Var

[
Yij

]
= σ2

1 + σ2.

Example 11.10.5 (Mixed Model: Growth Model With Random Slopes). Suppose we have
k children whose heights (growths) are measured at various ages. Let Yij be the height of the
ith child at age tj, j = 1, . . . , n0, and let Xij be the vector of covariates (available nutrition,
parents’ heights, family income, etc.). If we model the height as a polynomial of degree r in
age with random slopes, then a reasonable model is

Yij = β0 + βT
1 Xij +

r∑
l=1

γiltl
j + εij, j = 1, . . . , n0, i = 1, . . . , k,

where β0, β1 are nonrandom,
{
γil: i = 1, . . . , k

}
are iid N

(
0, σ 2

l

)
for each l,

{
εij
}

are iid
N
(
0, σ 2

)
, and {γil} and

{
εij
}

are mutually independent. This is an example of a growth
model which allows different rates of growths for different children.

In Example 11.10.4 we can create k indicator variables
{

Zij1, . . . Zijk
}

as follows. Let
Zijl = 1 if i = l and 0 otherwise. If we denote the random effects by {γi} instead of {αi},
then

Yij = β0 + β1Xij + Zij1γ1 + · · · Zijkγk + εij.

We can express this model in a matrix form. Let n = n1 + · · · + nk be the total number of
observations. Let X be the n × 2 matrix whose first column has only ones and its second
column consists of values of the covariate. Let Z be an n × k matrix whose first column
consists of the values of Zij1, second column consists of the values Zij2, etc. Then we may
rewrite the last model as

Y = Xβ + Zγ + ε,

where γ is the k × 1 vector of γ1, . . . , γk. Here X and Z are known matrices, β is the
vector of unknown parameters, γ ∼ Nk

(
0, σ 2

1 I
)
, ε ∼ Nn

(
0, σ 2I

)
, and γ and ε are

independent.
One-factor random-effects model can also be written in this form. In order to accom-

modate the two-factor random- and mixed-effects models, which have more than two
variance components, we consider a more general model

Y = Xβ + Z1γ 1 + · · · + Zrγ r + ε, (7)
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where X , Z 1, . . . , Z r are known matrices of orders n × p, n × q1, . . . , n × qr , respectively,

β is a vector of unknown parameters, γ j ∼ Nqj

(
0, σ 2

j I
)

, j = 1, . . . , r, ε ∼ Nn
(
0, σ 2I

)
, and

γ 1, . . . , γ k and ε are all independent. In this framework

E[Y ] = Xβ and Cov[Y ] = σ 2
1 Z1ZT

1 + · · · + σ2
k ZrZT

r + σ2I .

Two-factor mixed- and random-effects models (Examples 11.10.2 and 11.10.5) can also
be expressed in this form and it is left as an exercise. It is often useful to express the
above model by taking Z = [

Z 1, . . . , Z k
]

and γ as a column vector with γ 1, . . . , γ k stacked
vertically. Thus Z is n × q and γ is q × 1, where q = q1 + · · · + qk. Thus

Y = Xβ + Zγ + ε, (8)

where γ ∼ Nm(0, D), where D is a block diagonal matrix with the diagonal blocks
Cov

[
γ 1
]
, . . . , Cov

[
γ r
]
.

Assumption

For the model in Eq. (8) we assume that rank(X) = p, rank
(
Zj
) = qj, j = 1, . . . , r.

11.10.1 Estimation of β and Prediction of γ

We now discuss estimation of β and prediction of γ assuming all the variance components
to be known. Since γ is random, its estimation (or linear function of it) is called prediction.

Definition 11.10.1.

(i) A linear function β̂ of Y is called a BLUE of β if it is an unbiased estimator of β, that is,

E
[
β̂
]

= β, and, for any a ∈ Rp, Var
[

aT β̂
]

≤ Var
[

lT Y
]

for all linear unbiased estimators

lT Y of aT β.
(ii) A linear function γ̂ of Y is called a best linear unbiased predictor (BLUP) of γ if it is an

unbiased predictor of γ , that is, E
[
γ̂ − γ

] = 0, and for any b ∈ Rq,

E
[

bT
γ̂ − bT

γ
]2 ≤ E

[
lT Y − bT

γ
]2

for all linear unbiased predictors lT Y of bT
γ .

According to the definition given above, β̂ is a BLUE of β if aT β̂ is the BLUE of aT β for
any a ∈ Rp. Similarly, γ̂ is BLUP for γ if bT

γ̂ is the BLUP of bT
γ for any b ∈ Rq.

For the mixed model, the BLUE of β is no longer equal to
(
X T X

)−1
X T Y . As a matter of

fact, it now depends on the unknown matrix D and σ 2. Let Σ = Cov[Y ] = ZDZ T + σ 2I .
Then, if we multiply both sides of the mixed model by Σ−1/2, where Σ1/2 is a symmetric
square root of Σ , it leads to a reexpression of the mixed model as Ỹ = X̃β + ε̃, where
Ỹ = Σ−1/2Y , X̃ = Σ−1/2X , and ε̃ = Σ−1/2(Zγ + ε

)
. Thus the reexpressed mixed model is

in the standard Gauss-Markov setup since E
[
ε̃
] = 0 and Cov

[
ε̃
] = I , and the BLUE of β

is β̂ =
(

X̃
T

X̃
)−1

X̃
T

Ỹ = (
X T Σ−1X

)−1
X T Σ−1Y . We leave it to the reader to verify that the

BLUE of β is unique.
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Let us first find out what the BLUP of bT
γ would be if β were known. The best linear

predictor of bT
γ can be obtained by a linear regression of bT

γ on Y . So the best linear
predictor h0 + hT

1 Y has the form

h1 = [
Cov(Y )

]−1Cov
[

Y , bT γ
]

= Σ−1ZDb,

h0 = E
[

bT γ
]

− hT
1 E[Y ] = −hT

1 Xβ, and thus

h0 + hT
1 Y = hT

1
(
Y − Xβ

)
.

If β were known, the BLUP of bT
γ would be

hT
1
(
Y − Xβ

) = bT DZT Σ−1(Y − Xβ
)
.

Since β is unknown, it therefore makes sense to replace it by its BLUE. Thus the BLUP of

bT
γ should be bT DZ T Σ−1

(
Y − X β̂

)
and the BLUP of γ should be γ̂ = DZ T Σ−1

(
Y − X β̂

)
(proof given below). We leave it to the reader to show that the BLUE of γ is unique.

We now write down expressions for the BLUE and BLUP of β and γ in the following
result.

Theorem 11.10.1. The BLUE of β and the BLUP for γ in the mixed linear model are
given by

β̂ =
(

X T Σ−1X
)−1

X T Σ−1Y , γ̂ = D−1ZT Σ−1
(

Y − X β̂
)

.

Remark 11.10.1. Unlike in the Gauss-Markov model discussed in Section 11.3 of this
chapter, the normal equations for estimating β are no longer of the form X T Xβ = X T Y .
Except in some balanced random- and mixed-effects models, as an example given below
will show, the BLUE of β now depends on Σ , the unknown covariance matrix of Y . Similarly
prediction of γ also requires the knowledge of Σ . In practice, however, Σ is not known and
has to be estimated from the data. In order to obtain the approximate BLUE β̂ of β and the
BLUP γ̂ of γ , we need to use the estimate Σ̂ of Σ in the formulas for β̂ and γ̂ . The problem
of estimating Σ which involves estimation of the variance components will be discussed
later.

The following result gives necessary and sufficient conditions for γ̂ to be BLUP of γ . Its
proof is left as an exercise.

Lemma 11.10.1. For the mixed model, γ̂ is BLUP for γ if and only if for any b ∈ Rm,

(i) E
[

bT
γ̂ − bT

γ
]

= 0 and

(ii) Cov
[

bT
γ̂ − bT

γ , lT Y
]

= 0 for any l ∈ Rn satisfying the condition X T l = 0.

Now let us check if γ̂ = DZ T Σ−1
(

Y − X β̂
)

, where β̂ is the BLUE, is indeed the BLUP

of γ . Since β̂ is unbiased for β, Condition (i) of Lemma 11.10.1 holds. If Condition (ii)
of this lemma also holds, then γ̂ is the BLUP of γ . Denoting X β̂ = RY where R =
X
(
X T Σ−1X

)−1
X T Σ−1, we have γ̂ = DZ T Σ−1(I − R)Y . Therefore for any l ∈ Rn with

X T l = 0, we have
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Cov
[

bT γ̂ − bT γ , lT Y
]

= Cov
[

bT γ̂ , lT Y
]

− Cov
[

bT γ , lT Y
]

= Cov
[

bT γ̂ , lT Y
]

− bT DZT l

= Cov
[

bT DZT Σ−1(I − XR)Y , lT Y
]

− bT DZT l

= bT DZT Σ−1(I − XR)Σl − bT DZT l = −bT DZT Σ−1XRΣl.

Since X T l = 0, we have

RΣl = X
(

X T Σ−1X
)−1

X T Σ−1Σl =
(

X T Σ−1X
)−1

X T l = 0.

This shows that Condition (ii) of Lemma 11.10.1 holds and hence γ̂ is the BLUP of γ .

11.10.2 Mixed Model Equations

We have already seen that the expressions for the BLUE β̂ of β and the BLUP γ̂ of γ

involve the inverse of Cov[Y ] = Σ , which is an n × n matrix, where n is the total number
of observations. In many cases, Σ does not have a simple expression, and, if n is large,
calculation of Σ−1 may be quite time consuming even on a modern computer. Are there
some simpler formulas for obtaining β̂ and γ̂ ? The answer is yes and it turns out that
β̂ and γ̂ can be obtained by solving the so-called Mixed Model Equations, which require
inversions of matrices whose dimensions are much smaller than that of Σ . Let us first see
what these equations are, provide intuitive arguments which lead to them, and then show
that their solutions are the BLUE and the BLUP.

Mixed model equations take the form (assuming that D = Cov
[
γ
]

is positive definite)(
X T X X T Z
ZT X σ2

0 D−1 + ZT Z

)(
β

γ

)
=
(

X T Y
ZT Y

)
. (9)

Theorem 11.10.2.

(a) The mixed model equations have a unique solution.
(b) Let β̂ and γ̂ be the solution to the mixed model equations. Then β̂ is the BLUE for β and

γ̂ is the BLUP for γ .

The proof of this theorem is postponed to Section 11.10.3. We now give a simple
example to show how the mixed model equations can be used in the one-factor random-
effects model.

Example 11.10.6. Consider a one-factor random-effects model described in
Example 11.10.1. Here X is an n × 1 vector of 1’s, where n = n1 + · · · + nk is the total
number of observations. If πi = ni/

(
σ 2/σ 2

1 + ni
)
, then we show below that the BLUE and

BLUP for μ and γi are given by (denoting the random effects by {γi} instead of {αi))

μ̂ =
∑(

1 − πi
)
niȲi·

/∑(
1 − πi

)
ni , γ̂i = πi

(
Ȳi· − μ̂

)
.
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For a balanced model, we have μ̂ = Ȳ·· and γ̂i = π
(
Ȳi· − Ȳ··

)
with π = n0/

(
σ 2/σ 2

1 + n0
)
,

where n0 = n1 = · · · = nk. In this case, the BLUE of μ does not depend on the
variance components σ 2

1 and σ 2. Also note that for a balanced fixed-effects model with
the constraint

∑
γi = 0, the least squares estimate of γi is Ȳi· − Ȳ··. The BLUP of γi in the

random-effects model is obtained by shrinking Ȳi· − Ȳ·· toward zero (since 0 < π < 1). If
σ1 → ∞, then π → 1 and the BLUP is then the same as the BLUE of γi for the fixed effects
case. In a sense then, the mixed model is the same as the fixed-effects model when σ1 = ∞.

Let us now see how we can obtain the estimates given above using the mixed model
equations. Denote Y·· = nȲ··, and Yi· = niȲi·, i = 1, . . . , k. Note that in this case, Σ =
σ 2

1 ZZ T + σ 2I with D = σ 2
1 I . So we have X T X = nI , X T Z = (

n1, . . . , nk
)
, and Z T Z is a k × k

diagonal matrix with diagonal elements n1, . . . , nk. So the mixed model equations are⎛⎜⎜⎜⎜⎜⎜⎝

n n1 · · · nk
n1 σ2/σ2

1 + n1 0 0
· 0 0
· · · ·
· · · ·

nk 0 0 σ2/σ2
1 + nk

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

μ

γ1
·
·
·

γk

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

Y··
Y1·
·
·
·

Yk·

⎞⎟⎟⎟⎟⎟⎟⎠,

or

nμ + n1γ1 + · · · + nkγk = Y··, and

niμ +
(
σ2/σ2

1 + ni

)
γi = Yi·, i = 1, . . . , k.

The last k equations can be written as

πiμ + γi = πiȲi·, ie, μ = πi
(
Ȳi· − μ

)
, i = 1, . . . , k.

Substitute γi by πi
(
Ȳi· − μ

)
in the first equation and solve for μ to obtain

μ̂ =
∑(

1 − πi
)
niȲi·

/∑(
1 − πi

)
ni and γ̂i = πi

(
Ȳi· − μ̂

)
.

11.10.3 Motivation for Mixed Model Equations

We now provide a motivation for the mixed model equations under the assumption of
normality. Let us assume that γ ∼ Nq(0, D), ε ∼ Nn

(
0, σ 2I

)
, and that ε and γ are

independent. The main idea is to treat γ as a parameter even though it is random. Note
that conditional on γ , Y ∼ Nn

(
Xβ + Zγ , σ 2I

)
. The joint pdf of Y and γ can be written as

fY ,γ
(
y, γ

) = fY |γ
(
y|γ )fγ (γ )

= c exp
[
−‖y − Xβ − Zγ ‖2/

(
2σ2

)]
exp

(
−γ T D−1γ /2

)
,

where the constant c depends on σ and D. If we treat γ as nonrandom, and try to estimate
β and γ , then the likelihood function is

L
(
β, γ

) = c exp
[
−‖Y − Xβ − Zγ ‖2/

(
2σ2

)]
exp

(
−γ T D−1γ /2

)
.
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Maximizing L with respect to β and γ is equivalent to minimizing −2 log L with respect to
β and γ . Differentiating −2 log L with respect to β and γ and equating the derivatives to
zero lead to the following equations

∂
(−2 log L

)
/∂β = 0, ie, X T Xβ + X T Zγ = X T Y , and

∂
(−2 log L

)
/∂γ = 0, ie, ZT X +

(
ZT Z + σ2D−1

)
γ = ZT Y ,

and these are the mixed model equations given in Eq. (9).
The proof of Theorem 11.10.2 requires the following result which can be derived from

the Sherman-Morrison formula (Section B.1). The proof of this lemma is left as an exercise.
Lemma 11.10.2.

(a) Σ−1 = σ−2
[

I − Z
(
ZT Z + σ 2D−1)−1

Z T
]

(b) Σ−1 = σ−2Z
(
Z T Z + σ 2D−1)−1

D−1,

(c)
(
Z T Z + σ 2D−1)−1

Z T = DZ T Σ−1.

Proof of Theorem 11.10.2. Part (a) is not difficult to check and it is left as an exercise.
In order prove part (b), it is enough to show that the solutions of β̂ and γ̂ of the mixed

model equations are the same as those in Theorem 11.10.1.
If β̂ and γ̂ are the solutions of the mixed model equations, then

ZT X β̂ +
(

ZT Z + σ2D−1
)
γ̂ = ZT Y , and hence

γ̂ =
(

ZT Z + σ2D−1
)−1

ZT
(

Y − X β̂
)

= DZT Σ−1
(

Y − X β̂
)

,

using part (c) of Lemma 11.10.2. Thus, γ̂ has the same form as in Theorem 11.10.1 and
hence this would be the BLUP if we can show that the solution β̂ of the mixed model
equations is indeed the BLUE of β.

The first set of equations in the mixed model equations are

X T X β̂ + X T Z γ̂ = X T Y .

Substituting the expression of γ̂ in this equation we have

X T X β̂ + X T ZDZT Σ−1
(

Y − X β̂
)

= X T Y , or

X T
[

I − ZDZT Σ−1
]

X β̂ = X T
[

I − ZDZT Σ−1
]

Y .

Since

I − ZDZT Σ−1 = I −
[
Σ − σ2I

]
Σ−1 = σ2Σ−1,

we have

X T σ2Σ−1X β̂ = X T σ2Σ−1Y , or β̂ =
(

X T Σ−1X
)−1

X T Σ−1Y .

The expression is the same as in Theorem 11.10.1. Thus the solution β̂ of the mixed model
equations is the BLUE of β. �



Chapter 11 • Linear Models 369

11.10.4 Estimation of Variance Components

For the model given in Eq. (7)

E[Y ] = Xβ, and

Σ = Cov[Y ] = σ 2
1 Z1ZT

1 + · · · + σ2
r ZrZT

r + σ2
0 I .

Note that we have changed the notations a bit and now σ 2 is denoted by σ 2
0 . We now

focus on the problem of estimating the variance components σ 2
0 , σ 2

1 , . . . , σ 2
r .

There are a number of well-known methods for estimating the variance components
including

(i) Henderson’s method III,
(ii) Maximum likelihood,
(iii) Restricted maximum likelihood (REML), and
(iv) MINQUE (minimum norm quadratic unbiased estimation).

Here we discuss only the first three methods. Computer packages such as R can be used
to estimate the variance components using these procedures. Henderson’s method and
MINQUE do not require any distributional assumptions, whereas the maximum likelihood
and the REML methods require the assumptions of normality. It should be pointed out
that these methods may not produce the same estimates of the variance components. In
unbalanced cases, the estimates obtained by employing any of these procedures usually
do not have explicit expressions. Detailed discussion on all these methods can be found in
the book “Linear Models” by Searle [60] (Chapters 9–11).

Henderson’s Method III
Suppose that we want to estimate one of the variance components, say σ 2

r . Let Q be the
projection on the column space of the augmented matrix [X , Z 1, . . . , Z r] and let Qr be the
projection on the column space of the matrix

[
X , Z 1, . . . , Z r−1

]
. Then QY is the vector of

fitted values when we fit the model Y = Xβ + Z 1γ 1 + · · · + Z rγ r + ε pretending that
γ 1, . . . , γ r are nonrandom unknown parameters. Similarly QrY is the vector of fitted values
when we fit the model Y = Xβ + Z 1γ 1 + · · · + Z r−1γ r−1 + ε pretending that γ 1, . . . , γ r−1
are nonrandom parameters. Note that an unbiased estimate of σ 2

0 is given by σ̂ 2
0 = ‖Y −

QY ‖2/
(
n − rank

(
Q
))

. Henderson’s estimate of σ 2
r is given by

σ̂2
r =

[
‖QY − QrY ‖2 − trace

(
Q − Qr

)
σ̂2

0

]/
trace

(
ZT

r
(
I − Qr

)
Zr

)
. (10)

Since σ 2
r > 0, its estimate is usually taken to be max

(
σ̂ 2

r , 0
)
.

Let us now see how this estimate is derived. First of all note that
(
Q − Qr

)
Xβ = 0 and(

Q − Qr
)
Z i = 0, i = 1, . . . , r − 1. Hence(

Q − Qr
)
Y = (

Q − Qr
)(

Xβ + Z1γ 1 + · · · + Zrγ r + ε
)

= (
Q − Qr

)
Zrγ r + (

Q − Qr
)
ε.
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Then

E
[
‖QY − QrY ‖2

]
= E

[
‖(Q − Qr

)
Zrγ r + (

Q − Qr
)
ε‖2

]
= E

[
‖(Q − Qr

)
Zrγ r‖2

]
+ E

[
‖(Q − Qr

)
ε‖2

]
= σ2

r trace
((

Q − Qr
)
ZrZT

r
(
Q − Qr

)T)+ σ2
0 trace

((
Q − Qr

)(
Q − Qr

)T)
= σ2

r trace
(

ZT
r
(
Q − Qr

)T (Q − Qr
)
Zr

)
+ σ2

0 trace
((

Q − Qr
)(

Q − Qr
)T).

Now use the facts that Q and Qr are symmetric and Q − Qr is also a projection, and
consequently,

(
Q − Qr

)T (Q − Qr
) = Q − Qr and

(
Q − Qr

)(
Q − Qr

)T = Q − Qr . So we have

E
[
‖QY − QrY ‖2

]
= σ2

r trace
(

ZT
r
(
Q − Qr

)
Zr

)
+ σ2

0 trace
(
Q − Qr

)
= σ2

r trace
(

ZT
r
(
I − Qr

)
Zr

)
+ σ2

0 trace
(
Q − Qr

)
.

The last step is justified since Z T
r QZ r = Z T

r QT QZ r = Z T
r Z r . From the last expression we

now see that an unbiased estimate of σ 2
r is of the form given above.

Except in the case of balanced models, Henderson’s estimates for the variance compo-
nents do not have nice forms. Here we give an example for the one-factor case.

Example 11.10.7. Consider a one-factor (random) ANOVA model as in Example 11.10.6.
Here

‖Y − QY ‖2 =
∑

i

∑
j

(
Yij − Ȳi·

)2 = SSE, and

‖QY − Q1Y ‖2 =
∑

i

∑
j

(
Ȳi· − Ȳ··

)2 =
∑

ni
(
Ȳi· − Ȳ··

)2 = SSTR.

Assuming that n = n1 +· · ·+nk is the total number of observations, we have n−rank
(
Q
) =

n − k and trace
(
Q − Q1

) = rank
(
Q
) − rank

(
Q1
) = k − 1. So an unbiased estimate of σ 2

0 is
given by

σ̂2
0 = ‖Y − QY ‖2/

(
n − rank

(
Q
)) = SSE/

(
n − k

) = MSE.

Now let γ̄ = ∑
niγi/n. Then

E
[
‖QY − Q1Y ‖2

]
= E

[
SSTR

]
= E

[∑
ni
(
γi − γ̄ + ε̄i· − ε··

)2]
=
(

n −
∑

n2
i /n

)
σ2

1 + (
k − 1

)
σ2

0 .

So an unbiased estimate of σ 2
1 is given by

σ̂2
1 =

[
SSTR − (

k − 1
)
σ̂2

0

]/[
n −

∑
n2

i /n
]
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= [
SSTR − (

k − 1
)
MSE

]/[
n −

∑
n2

i /n
]

= (
k − 1

)[
MSTR − MSE

]/[
n −

∑
n2

i /n
]

.

In the balanced case, n = n0a where ni ≡ n0 for all i. It is easy to check that the Henderson’s
estimate of σ 2

1 is then given by σ̂ 2
1 = [

MSTR − MSE
]
/n0.

Maximum Likelihood

The maximum likelihood method (under the assumption of joint normality of γ 1, . . . , γ r
and ε) jointly estimates β and the variance components. We rewrite the mixed linear model
given in Eq. (7) as

Y = Xβ +
r∑

i=0

Z iγ i, (11a)

E[Y ] = Xβ, and Σ
(
θ
) = Cov[Y ] =

r∑
i=0

σ2
i Z iZT

i , (11b)

where Z 0 = I , γ 0 = ε, and θ = (
σ 2

0 , σ 2
1 , . . . , σ 2

r
)T

. So we have Y ∼ Nn
(
Xβ, Σ(θ)

)
. The

likelihood therefore is

L
(
β, θ

) = c
[

1/|Σ(θ)|1/2
]

exp
[
−(Y − Xβ

)T
Σ(θ)−1(Y − Xβ

)
/2
]

,

where |Σ(θ)| = det
[
Σ(θ)

]
and c > 0 is a constant that does not depend on β and θ .

Maximizing the likelihood with respect to β and θ is equivalent to minimizing −2 log L
with respect to β and θ . Note that

− 2 log L
(
β, θ

) = −2 log(c) + (
Y − Xβ

)T
Σ(θ)−1(Y − Xβ

)+ log
(|Σ(θ)|).

We need to differentiate −2 log L with respect to β and θi, i = 0, . . . , r, and equate the
derivatives to zero. Calculations will show that

∂
(−2 log L

)
/∂β = 0, ie, X T Σ(θ)−1Xβ = X T Σ(θ)−1Y , and

∂
(−2 log L

)
/∂θi = 0, ie,(

Y − Xβ
)T [

∂Σ(θ)−1/∂θi

](
Y − Xβ

)+ ∂
(
log |Σ(θ)|)/∂θi = 0, i = 0, . . . , r.

Note that the first set of equations are the same as the normal equations (for estimating β)
described in Section 11.10.1. The second set of equations need simplifications. Noting that
∂Σ(θ)/∂θi = Z iZ T

i and using results from Section B.5, we have

∂Σ(θ)−1/∂θi = −Σ(θ)−1[∂Σ(θ)/∂θi
]
Σ(θ)−1

= −Σ(θ)−1Z iZT
i Σ(θ)−1, and

∂
(
log |Σ(θ)|)/∂θi = trace

(
Σ(θ)−1∂Σ(θ)/∂θi

)
= trace

(
ZT

i Σ(θ)−1Z i

)
.
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Thus the likelihood equation involving derivative with respect to θi turns out to be

0 = (
Y − Xβ

)T [
∂Σ(θ)−1/∂θi

](
Y − Xβ

)+ ∂
(
log |Σ(θ)|)/∂θi

= −(Y − Xβ
)T

Σ(θ)−1Z iZT
i Σ(θ)−1(Y − Xβ

)+ trace
(

ZT
i Σ(θ)−1Z i

)
= −‖ZT

i Σ(θ)−1(Y − Xβ
)‖2 + trace

(
ZT

i Σ(θ)−1Z i

)
.

So the likelihood equations are

X T Σ(θ)−1Xβ = X T Σ(θ)−1Y , (12a)

trace
(

ZT
i Σ(θ)−1Z i

)
= ‖ZT

i Σ(θ)−1(Y − Xβ
)‖2, i = 0, . . . , r. (12b)

These equations have no explicit solutions except in some balanced cases and iterative
methods are used to solve them numerically.

Restricted Maximum Likelihood
REML is a variant of the maximum likelihood method whereby the issue of estimation of
β is entirely bypassed and the focus is entirely on estimating the variance components. In

this method, the estimate of θ = (
σ 2

0 , . . . , σ 2
r
)T

is obtained by solving the equations

trace
(

ZT
i Σ(θ)−1(I − M

(
θ
))

Z i

)
= ‖ZT

i Σ(θ)−1(I − M
(
θ
))

Y ‖2, i = 0, . . . , r, (13)

where M
(
θ
) = X

(
X T Σ

(
θ
)−1X

)−1
X T Σ

(
θ
)−1. These equations usually have no explicit so-

lutions and iterative methods are employed in numerical computations. Once an estimate
θ̂ of θ is available, β can be estimated by solving the approximate normal equations

X T Σ
(
θ̂
)−1

Xβ = X T Σ
(
θ̂
)−1

Y .

We will provide a justification for the REML equations. Since rank(X ) = p, we can find a
matrix B of order

(
n − p

)× n which has rank n − p and it satisfies the equation BX = 0. Let
Ỹ = BY , Z̃ i = BZ i, i = 0, . . . , r, premultiplying both sides of Eq. (11a) leads to a modified
model

Ỹ =
r∑

i=0

Z̃ iγ i, and

Cov
[

Ỹ
]

=
r∑

i=0

σ2
i Z̃ iZ̃

T
i = Σ̃

(
θ
)
, say.

Since Ỹ ∼ Nn−p

(
0, Σ̃

(
θ
))

, the likelihood (based on Ỹ ) is

L
(
θ
) = c

[
1/|Σ̃(θ)|1/2

]
exp

[
−Ỹ

T
Σ̃
(
θ
)−1Ỹ /2

]
,

where the constant c > 0 does not depend on θ . In order to obtain the MLE for θ in this
case, we differentiate −2 log L with respect to θi, i = 0, . . . , r, and equate the derivatives to
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zero. Then, as in Eq. (12b), we have

trace
(

Z̃
T
i Σ̃

(
θ
)−1Z̃ i

)
= ‖Z̃

T
i Σ̃

(
θ
)−1Ỹ ‖2, i = 0, . . . , r.

Since Z̃ i = BZ i and Σ̃
(
θ
) = BΣ(θ)BT , the ith equation is

trace
(

ZT
i BT

(
BΣ(θ)BT

)−1
BZ i

)
= ‖ZT

i BT
(

BΣ(θ)BT
)−1

BY ‖2.

The important fact is that the matrix BT (BΣ(θ)BT )−1
B does not depend on the choice B

as long as BX = 0 and rank(B) = n − rank(X ). The following result turns out to be true.
Lemma 11.10.3. Assume that BX = 0 and rank(B) = n − rank(X ). Let M

(
θ
) =

X
(

X T Σ
(
θ
)−1X

)−1
X T Σ

(
θ
)−1. Then

BT
(

BΣ(θ)BT
)−1

B = Σ(θ)−1(I − M
(
θ
))

.

Using Lemma 11.10.3, we can show that the REML equations are

trace
(

ZT
i Σ(θ)−1(I − M

(
θ
))

Z i

)
= ‖ZT

i Σ(θ)−1(I − M
(
θ
))

Y ‖2, i = 1, . . . , r.

Proof of Lemma 11.10.3. Simplifying the notations, writing Σ instead of Σ
(
θ
)

and
denoting R = Σ1/2BT , where Σ1/2 is a symmetric square root of Σ , we have

BT
(

BΣBT
)−1

B = Σ−1/2R
(

RT R
)−1

RT Σ−1/2.

Now note that R
(
RT R

)−1
RT is a projection matrix. Where does this matrix project

onto? Since BX = 0 and rank(B) = n − rank(X ), M(R) is the same as the orthogonal
complement of the column space of the matrix Σ−1/2X . Now the expression of the matrix

that projects on the column space of Σ−1/2X is given by Σ−1/2X
(
X T Σ−1X

)−1
X T Σ−1/2.

So I − Σ−1/2X
(
X T Σ−1X

)−1
X T Σ−1/2 projects on the orthogonal complement of Σ−1/2X .

Hence we must have

R
(

RT R
)−1

RT = I − Σ−1/2X
(

X T Σ−1X
)−1

X T Σ−1/2.

Consequently,

BT
(

BΣBT
)−1

B = Σ−1/2R
(

RT R
)−1

RT Σ−1/2

= Σ−1/2
(

I − Σ−1/2X
(

X T Σ−1X
)−1

X T Σ−1/2
)

Σ−1/2

= Σ−1(I − M),

where M = X
(
X T Σ−1X

)−1
X T Σ−1. This completes the proof. �
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11.11 Inference: Examples From Mixed Models
Here we present estimation methods in a few balanced models since the expressions
for the estimates in the unbalanced cases involve complicated and cumbersome no-
tations. Except in Example 11.11.3, where the maximum likelihood method is consid-
ered, Henderson’s method is used throughout to obtain the estimates of the variance
components.

Example 11.11.1 (One-Factor Random Effects). We consider one-factor balanced
ANOVA random-effects models as in Examples 11.10.1, 11.10.6, and 11.10.7, except now
we assume that {γi} are iid N

(
0, σ 2

1

)
and

{
εij
}

are iid N
(
0, σ 2

0

)
. We have already see in

Examples 11.10.6 and 11.10.7 that the BLUE for μ is μ̂ = Ȳ··,

E
[
SSE

] = (
n − k

)
σ2

0 , where n = n0k,

E
[
SSTR

] = (
k − 1

)
n0σ2

1 + (
k − 1

)
σ2

0 ,

E
[
MSE

] = σ2
0 , E

[
MSTR

] = n0σ2
1 + σ2

0 ,

and unbiased estimate of σ 2
0 and σ 2

1 are

σ̂2
0 = MSE and σ̂2

1 = (
MSTR − MSE

)
/n0.

Direct calculation will show that μ̂ = Ȳ·· ∼ N
(
μ,
(
n0σ

2
1 + σ 2

0

)
/n
)
. So an estimate of

Var
[
μ̂
]

is then given by s2
(
μ̂
) = MSTR/n. Note that SSTR/

(
n0σ

2
1 + σ 2

0

) ∼ χ2
k−1 and(

μ̂ − μ
)
/

√(
n0σ

2
1 + σ 2

0

)
/n ∼ N(0, 1). Since μ̂ = Ȳ·· is independent of SSTR and hence of

MSTR,

(
μ̂ − μ

)
/s
(
μ̂
) =

(
μ̂ − μ

)/√(
n0σ2

1 + σ2
0

)
/n√

SSTR
/[(

n0σ2
1 + σ2

0

)(
k − 1

)] ∼ tk−1

and this fact now can be used to construct a confidence interval for μ. Unlike in the fixed-
effect case, MSTR is being used to estimate Var

[
μ̂
]

and, consequently, the df for the t-
distribution is now k − 1 instead of n − k.

In some cases one may want to test if H0: σ 2
1 = 0 vs H1: σ 2

1 �= 0. The F-statistic for this
is F = MSTR/MSE and F ∼ Fk−1,n−k under H0.

Example 11.11.2. Consider the one-factor random-effects model as in the last example
and we want to construct a confidence interval for the intraclass correlation coefficient
ρ = σ 2

1 /
(
σ 2

1 + σ 2
0

)
, which is also the proportion of variability in the response explained

by the random factor. Clearly an estimate of ρ is given by ρ̂ = σ̂ 2
1 /
(
σ̂ 2

1 + σ̂ 2
0

)
, where the

expressions for σ̂ 2
1 and σ̂ 2

0 are as given in the last example. Let us denote MSTR/MSE by F∗.
A confidence interval for ρ with confidence coefficient 1 − α is given by

[
L∗, U∗], where
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L∗ = L/(1 + L), U∗ = U/(1 + U), and

L = (
1/n0

)[ F∗
Fk−1,n−k,α/2

− 1

]
and U = (

1/n0
)[ F∗

Fk−1,n−k,1−α/2
− 1

]
.

Let us see why this is indeed a confidence interval of ρ with confidence coefficient
1 − α. Note that SSTR/

(
n0σ

2
1 + σ 2

0

)
∼ χ2

k−1, SSE/σ 2
0 ∼ χ2

n−k, and that SSTR and SSE are
independent. Hence the random variable

F =
[

SSTR
/(

n0σ2
1 + σ2

0

)]/(
k − 1

)[
SSE

/
σ 2

0

]/(
n − k

) =
[
σ2

0

/(
n0σ2

1 + σ2
0

)]
F∗

has an F-distribution with df = (
k − 1, n − k

)
. Denote c1 = Fk−1,n−k,1−α/2 and c2 =

Fk−1,n−k,α/2. Then

1 − α = P
[
c1 ≤ F ≤ c2

]
= P

[
c1/F∗ ≤ σ2

0 /
(

n0σ2
1 + σ2

0

)
≤ c2/F∗]

= P
[

F∗/c2 ≤ n0σ2
1 /σ2

0 + 1 ≤ F∗/c1

]
= P

[(
F∗/c2 − 1

)
/n0 ≤ σ2

1 /σ2
0 ≤ (

F∗/c1 − 1
)
/n0

]
= P

[
L ≤ σ 2

1 /σ2
0 ≤ U

]
= P

[
L/(1 + L) ≤ σ 2

1 /
(
σ2

1 + σ2
0

)
≤ U/(1 + U)

]
= P

[
L∗ ≤ ρ ≤ U∗].

Example 11.11.3 (One-Factor Random-Effects Model). The setup here is the same as in
the last two examples, but the estimates of the variance components are obtained using the
maximum likelihood method. Here X is n-dim vector of 1’s, β = μ is a scalar, Z 0 = I , and

the matrix Z 1 =

⎛⎜⎜⎜⎝
1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

⎞⎟⎟⎟⎠ is n × k, where 1 is the n0-dim vector of 1’s. Since Σ
(
θ
) =

σ 2
1 Z 1Z T

1 + σ 2
0 I , it can be checked using the Sherman-Morrison formula (Section B.1) that

Σ
(
θ
)−1 = σ−2

0

[
I − πn−1

0 Z1ZT
1

]
, where π = n0σ2

1 /
(

n0σ2
1 + σ2

0

)
,

X T Σ
(
θ
)−1X = σ−2

0 n(1 − π), and

X T Σ
(
θ
)−1(Y − Xβ

) = σ−2
0 (1 − π)(Y·· − nμ).

Thus the first likelihood Eq. (12a)

X T Σ
(
θ
)−1X = X T Σ

(
θ
)−1(Y − Xβ

)
, ie,

σ−2
0 (1 − π)(Y·· − nμ) = σ−2

0 n(1 − π)
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leads to the usual estimate of μ (ie, μ̂ = Ȳ··). In order to obtain the maximum likelihood
estimates of σ 2

0 and σ 2
1 , more calculations are needed. The following can be checked (left

as an exercise)

trace
(

ZT
0 Σ

(
θ
)−1Z0

)
= σ−2

0 n
(

1 − πn−1
0

)
,

trace
(

ZT
1 Σ

(
θ
)−1Z1

)
= σ−2

0 n(1 − π),

‖ZT
0 Σ

(
θ
)−1

(
Y − X β̂

)
‖2 = σ−4

0

∑
i

∑
j

[
Yij − Ȳ·· − π

(
Ȳi· − Ȳ··

)]2

= σ−4
0

[
SSE + (1 − π)2SSTR

]
, and

‖ZT
1 Σ

(
θ
)−1

(
Y − X β̂

)
‖2 = σ−4

0 n0(1 − π)2SSTR.

Using the above-simplified expressions, the likelihood Eq. (12b) in this case are

σ−2
0 n

(
1 − πn−1

0

)
= σ−4

0

[
SSE + (1 − π)2SSTR

]
, and

σ−2
0 n(1 − π) = σ−4

0 n0(1 − π)2SSTR.

Solutions to these equations lead to the maximum likelihood estimates of the variance
components

σ̂2
0 = MSE and σ̂2

1 = SSTR/k − MSE
n0

=
[(

k − 1
)
/k
]
MSTR − MSE

n0
.

This estimate of σ 2
1 is slightly different from Henderson’s estimate given in

Example 11.10.7.
Example 11.11.4 (Two-Factor ANOVA, Both Factors Random). The setup here is the

same as in Example 11.10.2, but we now assume that it is a balanced ANOVA (ie, nij = n0

for all i and j). It can be checked that the BLUE of μ here is μ̂ = Ȳ···. Recall that the sums of
squares are (Example 11.6.4)

SSA = n0b
∑

i

(
Ȳi·· − Ȳ···

)2, SSB = n0a
∑

j

(
Ȳ·j· − Ȳ···

)2
,

SSAB = n0
∑

i

∑
j

(
Ȳij· − Ȳi·· − Ȳ·j· + Ȳ···

)2
, and

SSE =
∑

i

∑
j

∑
k

(
Yijk − Ȳij·

)2
.

It can be shown that

E
[
MSA

] = n0bσ2
1 + n0σ2

3 + σ2
0 ,

E
[
MSB

] = n0aσ2
2 + n0σ2

3 + σ2
0 ,

E
[
MSAB

] = n0σ2
3 + σ2

0 , and E
[
MSE

] = σ2
0 .
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So the unbiased estimates of the variance components are

σ̂2
0 = MSE, σ̂2

3 = (
MSAB − MSE

)
/n0,

σ̂2
1 = (

MSA − MSAB
)
/
(
n0b

)
, and σ̂2

2 = (
MSB − MSAB

)
/
(
n0a

)
.

Note that μ̂ = Y ··· is unbiased for μ and

Var
[
μ̂
] =

(
n0bσ2

1 + n0aσ2
2 + n0σ2

3 + σ2
0

)
/n,

where n = n0ab. So an unbiased estimate of Var
[
μ̂
]

is given by s2
(
μ̂
) = (

MSA + MSB −
MSAB

)
/n.

Example 11.11.5 (Two-Factor ANOVA: Factor A Fixed, Factor B Random). We now
consider a two-factor balanced mixed-effects model as in Example 11.10.3.

For this model,

E
[

Yijk

]
= μ + αi and Var

[
Yijk

]
= σ2

1 + σ2
2 + σ2

0 .

It can be shown that the expected values of the mean squares are

E
[
MSA

] = n0b
∑(

αi − ᾱ
)2

/(a − 1) + n0σ2
2 + σ2

0 ,

E
[
MSB

] = n0aσ2
1 + n0σ2

2 + σ2
0 ,

E
[
MSAB

] = n0σ2
2 + σ2

0 , and E
[
MSE

] = σ2
0 .

So the unbiased estimates of the variance components are

σ̂2
0 = MSE, σ̂2

2 = (
MSAB − MSE

)
/n0, and

σ̂2
1 = (

MSB − MSAB
)
/
(
n0a

)
.

If we want to test the null hypothesis of no effect of factor A (ie, H0: α1 = · · · = αa vs H1: not
all α′

is are equal), then the test statistic is F∗ = MSA/MSAB with df = (
a − 1, (a − 1)

(
b − 1

))
.

For this model, the BLUE of μi = μ + αi is given by Ȳi··. It can be shown that E
[
Ȳi··
] =

μ + αi and

Var
[
Ȳi··
] =

(
n0σ2

1 + n0σ2
2 + σ2

0

)
/
(
n0b

)
.

So an unbiased estimate of Var
[
Ȳi··
]

is given by

s2(Ȳi··
) = [(

MSB − MSAB
)
/a + MSAB

]
/
(
n0b

)
.
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Note that (
MSB − MSAB

)
/a + MSAB = (

1/a
)
MSB + (

1 − 1/a
)
MSAB.

The last quantity is nonnegative since it is a weighted average of MSB and MSAB. Also note
that (

MSB − MSAB
)
/a + MSAB = (

1/a
)
MSB + (

1 − 1/a
)
MSAB

= [(
b − 1

)
MSB + (a − 1)

(
b − 1

)
MSAB

]
/
[
a
(
b − 1

)]
= [

SSB + SSAB
]
/
[
a
(
b − 1

)]
= n0

∑∑(
Ȳij· − Ȳi··

)2
/
[
a
(
b − 1

)]
.

We denote the sum of squares n0
∑

i
∑

j

(
Ȳij· − Ȳi··

)2
by SSB(A) (nested ANOVA case in

Example 11.6.6). This sum of squares has df = a
(
b − 1

)
and we denote SSB(A)

/[
a
(
b − 1

)]
by MSB(A). Hence we have

s2(Ȳi··
) = MSB(A)/

(
n0b

)
.

Since Ȳi·· is independent of SSB(A) and hence of MSB(A),
(
Ȳi·· − μi

)
/s
(
Ȳi··
) ∼ ta(b−1) and

this fact can be used to construct a confidence interval for μi.
If we want to estimate a contrast θ = ∑

ciαi of {αi}, then the BLUE is θ̂ = ∑
ciȲi··. It can

be shown that

E
[
θ̂
]

= θ and Var
[
θ̂
]

=
(∑

c2
i

)(
n0σ2

2 + σ2
0

)/(
n0b

)
.

An unbiased estimate of Var
[
θ̂
]

is

s2
(
θ̂
)

=
(∑

c2
i

)
MSAB/

(
n0b

)
,

and since
{

Ȳi··, i = 1, . . . , a
}

are independent of SSAB and hence of MSAB, θ̂ is also inde-

pendent of MSAB. Consequently,
(
θ̂ − θ

)/
s
(
θ̂
)

∼ t(a−1)(b−1), and this fact can be used to

construct a confidence interval for θ .
Remark 11.11.1. An alternative modeling scheme for the interactions in the last exam-

ple assumes that

(i) for any j,
∑a

i=1

(
αβ
)

ij = 0,

(ii) for any i,
(
αβ
)

i1, . . . ,
(
αβ
)

ib are iid N
(
0, σ 2

2

)
,

(iii) Cov
[
(αβ)ij, (αβ)i′j

] = −σ 2
2 /(a − 1), for any i �= i′, j = 1, . . . , b.

In this framework
{(

αβ
)

ij

}
are no longer iid and the estimates of the variance components

may be different from what are given above.



Chapter 11 • Linear Models 379

Exercises
11.1. Consider a one-factor study with k levels as in Example 11.2.3.

(a) Express the ANOVA model in a regression setting by creating k − 1 indicator
variables for the factor levels. Relate the parameters of this regression model
to those of the ANOVA model.

(b) Obtain the parameter estimates of the regression model in part (a) and their
standard errors.

11.2. Verify the expression of E
[
MSTR

]
given in Example 11.4.2.

11.3. Consider the two-factor ANOVA model given in Example 11.4.4.
(a) Verify the expressions for E

[
SSA

]
, E
[
SSB

]
, and E

[
SSAB

]
as given in

Example 11.4.4.
(b) Check that E

[
MSAB

] = σ 2 if and only if
(
αβ
)

ij = 0 for all i and j. Similarly,

check that E
[
MSA

] = σ 2 if and only if αi = 0 for all i, and E
[
MSB

] = σ 2 if and
only if βj = 0 for all j.

11.4. Consider a real-valued response variable Y and two independent variables X1 and
X2. Let L(Y |X1), L(Y |X2), and L(Y |X1, X2) be the best linear predictors of Y given X1,
Y given X2, and Y given X1, X2, respectively. Partial correlation between Y and X2

given X1 is defined as ρYX2|X1 = Corr[Y − L(Y |X1), X2 − L(X2|X1)].
Show that ρ2

YX2|X1
= [

E{Y − L(Y |X1)}2 − E{Y − L(Y |X1, X2)}2]/E{Y − L(Y |X1)}2.
11.5. Suppose a Gauss-Markov model is of the form Y = X 1β1 + X 2β2 + ε,

ε ∼ Nn
(
0, σ 2I

)
, where X 1 and X 2 are of full rank, and the augmented matrix

[X 1 X 2] is also of full rank. Let Q1 = X T
1

(
X T

1 X 1
)−1

X T
1 and X̃ 2 = (

I − Q1
)
X 2.

(a) Show that the least squares estimate of β2 is given by β̂2 =
(

X̃
T
2 X̃ 2

)−1
X̃ 2Y .

(b) Find the distribution of β̂2 and use this to test H0: β2 = 0 vs H1: β2 �= 0.
11.6. Consider a Gauss-Markov model Y = X 1β1 + X 2β2 + ε, ε ∼ Nn

(
0, σ 2I

)
. We are

interested testing H0: β2 = 0 vs H1: β2 �= 0. Let SSEF and SSER be the residual
sums of squares for the full and the reduced model (ie, the model under H0). The
coefficient of partial determination is defined to be R2

YX2|X1
= (

SSER − SSEF
)
/SSER.

(a) Express R2
YX2|X1

as a function of the F-statistic for testing H0: β2 = 0 vs
H1: β2 �= 0.

(b) Use the result in part (a) to describe the distribution of R2
YX2|X1

under H0.

[Hint: If U ∼ χ2
p , V ∼ χ2

q and U and V are independent, then
U/(U + V ) ∼ Beta

(
p/2, q/2

)
.]

11.7. Assume that for a two-factor study with one observation for all treatment
combinations, the appropriate model is Yij = μ + αi + βj + εij with the usual
constraints on {αi} and

{
βj
}

. Here
{

Yij
}

are the observations and
{
εij
}

are iid
N
(
0, σ 2

)
.

(a) Use the Scheffé method to obtain simultaneous confidence intervals for all
contrasts in {αi}.
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(b) Use Tukey’s method to obtain simultaneous confidence intervals for all
pairwise difference of {αi}. How would you obtain simultaneous confidence
intervals for all pairwise differences of {αi} and all pairwise differences of

{
βj
}

,
using Tukey’s method, so that the family confidence is at least 1 − α?

11.8. Prove Lemma 11.7.2.
11.9. For the ANCOVA model with one factor and one covariate as given in

Example 11.7.1, use the Scheffé method to obtain simultaneous confidence
intervals for all contrasts of {αi}, where {αi} are the factor effects.

11.10. Let Y be n × 1 observation vector and assume that Y = μ + ε, where the vector ε

consists of iid observations with mean 0 and variance σ 2. Consider a model of the
form Y = X kβk + ε, where X k is a n × pk matrix of rank pk, which is being fitted to
the data Y and let μ̂k = X kβ̂k where β̂k is the least squares estimator βk. The
expected value of the squared distance between μ and μ̂k is Dk = E

[‖μ − μ̂k‖2
]
.

(a) Let D̂k = FPE
(
k
)− nσ 2, where the expression of Akaike’s FPE is given in

Section 8.1 of this chapter. Is D̂k an unbiased estimate of Dk? If not find its

bias and find the condition under which
{

E
[

D̂k

]
− Dk

}
/Dk → 0 as n → ∞.

(b) Let D̂k = MAL
(
k
)− nσ 2, where the expression of Mallows’ criterion is given in

Section 8.1. Suppose we have a class of models Y = X kβk + ε, k = 1, . . . , K ,
where all the K − 1 models are nested in the K th model (ie, M

(
X k
) ⊂ M(X K )).

In Mallows’ criterion let σ̂ 2 be the MSE of the K th model. Is D̂k an unbiased
estimate of Dk? If not find its bias and find the condition under which{

E
[

D̂k

]
− Dk

}
/Dk → 0 as n → ∞.

(c) In this part assume that ε ∼ Nn
(
0, σ 2I

)
. Then the MLE of σ 2 under the model

Y = X kβk + ε is σ̂ 2
k = ‖Y − X kβ̂k‖2/n. If Ỹ is an independent copy of Y but is

independent of it, then the AIC is an estimate of −2E
[

log f
(

Ỹ , θ̂k

)]
, where the

expectation is over Y and Ỹ , and θ̂k is the vector of β̂k and σ̂ 2
k stacked

vertically. Recall that AIC(k) = −2 log f (Y , θ̂k) + 2pk, and denote
−2 log f (Ỹ , θ̂k) by Lk. If μ = X kβk for some βk (ie, the model being fitted is the
correct one), then using asymptotic expansion as n → ∞ and pk/n → 0,
obtain an approximation of E

[
AIC

(
k
)]− E

[
Lk
]
, which is the bias of AIC

(
k
)

in
estimating E

[
Lk
]
.

11.11. Consider a model Y = ∑K
j=1 βjZ j + ε, where Y is n -dim observation vector, the

vectors
{

Z j
}

are mutually orthogonal with ‖Z j‖2 = n, and ε ∼ Nn
(
0, σ 2I

)
. Assume

that βj �= 0, j = 1, . . . , k∗ < n, and βj = 0, j = k∗ + 1, . . . , K . Consider the

submodels Y = X kβk + ε, where X k = [
Z 1, . . . , Z k

]
and βk = (

β1, . . . , βk
)T ,

k = 1, . . . , K . Consider a model selection criterion of the form
Fk = ‖Y − X kβ̂k‖2 + ckσ̂ 2, c > 0, k = 1, . . . , K , where β̂k is the least squares
estimate of βk for the kth model and σ̂ 2 is the MSE of the largest model under
consideration (ie, the K th model). The values of F1, F2, . . . are calculated
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sequentially and let k̂ be the index so that Fk − Fk+1 becomes nonnegative for the
first time (ie, Fk is strictly decreasing in k, k = 1, . . . , k̂ and Fk̂+1 ≥ Fk̂).
(a) If we test Hk0: βk = 0 vs Hk1: βk �= 0, k = 1, . . . , K , then consider the t-statistic

tk = β̂k/s
(
β̂k

)
, where β̂k = Z T

k Y /n and s2
(
β̂k

)
= σ̂ 2/n. Then given a critical

value, Hk0 is rejected or accepted depending on whether |tk| is larger than the

critical value or not. Show that |tk| > c1/2 for 1 ≤ k ≤ k̂ and
∣∣∣tk̂+1

∣∣∣ ≤ c1/2, if

model selection is done by using the criterion function {Fk}.

(b) If c = log n, then prove that P
[

k̂ = k∗
]

→ 1 as n → ∞. [This proves that a

BIC-type criterion is capable of consistent model selection.]
11.12. Prove Lemma 11.10.1.
11.13. Prove Lemma 11.10.2.
11.14. In a one-factor random-effects model, compare the BLUP α̃1 of α1 to the naive

predictor α̂1 = Ȳi· − Ȳ··.
(a) Obtain the distributions of α̃1 − α1 and α̂1 − α1.
(b) Compare the errors E

[(
α̃1 − α1

)2
]

and E
[(

α̂1 − α1
)2
]

.

(c) Obtain the proportional reduction in the errors, that is,

θ =
{

E
[(

α̂1 − α1
)2
]

− E
[(

α̃1 − α1
)2
]}/

E
[(

α̂1 − α1
)2
]

and examine it as σ 2
1 → 0

or ∞ (assuming σ 2 to be fixed).
11.15. In a repeated measures design each of the randomly selected m subjects (factor A)

is assigned to k levels of a treatment (factor B). A reasonable model is thus

Yij = μ + αi + βj + εij, j = 1, . . . , k, i = 1, . . . , m,

where the subject effects {αi} are iid N
(
0, σ 2

α

)
, treatment effects

{
βj
}

are
nonrandom with

∑
βj = 0,

{
εij
}

are iid N
(
0, σ 2

)
, and {αi} are independent of

{
εij
}

Define SSA = m
∑(

Ȳi· − Ȳ··
)2

, SSB = k
∑(

Ȳ·j − Ȳ··
)2

, and

SSE = ∑∑(
Yij − Ȳi· − Ȳ·j + Ȳ··

)2
.

(a) Find the mean, variance, and covariances of
{

Yij
}

.
(b) Obtain E

[
SSA

]
, E
[
SSB

]
, and E

[
SSE

]
.

(c) Use the results in part (b) to obtain unbiased estimates of σ 2 and σ 2
α .

(d) If someone ignores the subject effect and uses a model of the form
Yij = μ + βj + εij and obtains an MSE based on this model. Is this MSE an
unbiased estimate of σ 2? If not find its bias.

11.16. Consider the repeated measures design as in the previous exercise. It is of interest
to obtain a BLUP of α1. The structure of the Mixed Model Equations suggest that
the BLUP is a linear function of

{
Ȳi·
}

and
{

Ȳ·j
}

.
(a) Assuming that σ 2

α and σ 2 are known, find the BLUP α̃1 of α1.
(b) Find the distribution of α̃1 − α1.

11.17. Verify the expressions for E
[
SSTR

]
and E

[
MSTR

]
given in Example 11.11.1.

11.18. Verify the expressions of E
[
MSA

]
, E
[
MSB

]
, and E

[
MSAB

]
in Example 11.11.4.
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11.19. Verify the expressions of E
[
MSA

]
, E
[
MSB

]
, and E

[
MSAB

]
in Example 11.11.5.

11.20. Consider a balanced two-factor ANOVA model in which factor A is fixed and factor
B is random as in Example 11.11.5. Let μi, θ , μ̂i, and θ̂ be as in that example.
(a) Prove that

(
μ̂i − μi

)
/s
(
μ̂i
) ∼ ta(b−1), where s2

(
μ̂i
) = MSB(A)/

(
n0b

)
.

(b) Prove that
(
θ̂ − θ

)
/s
(
θ̂
)

∼ t(a−1)(b−1), where s2
(
θ̂
)

= (∑
c2

i

)
MSAB/

(
n0b

)
.



12
Multivariate Analysis

12.1 Introduction
Multivariate analysis is an area of statistics which deals with observations that are vector
valued. Almost all univariate statistical methods have their multivariate counterparts. For
instance, when comparing two species of the same animal, various measures such as
height, length, tail length, etc., may be measured. One can then compare these two species
using a multivariate version of two-sample t-test. Fisher’s famous Iris data set contains
four measurements for each of the three species: petal length, petal width, sepal length,
and sepal width. In order to compare the three species, a multivariate analog of analysis
of variance has been developed. If there is a new observation vector (of unknown species)
with four measurements, then allocation of this observation vector to one of the species is
known as the problem of classification.

Another class of procedures has been developed for multivariate data which deal with
dimensionality reduction. If many measurements are taken on children where each mea-
surement is a measure of intelligence, then it is often the case that these various measures
are correlated with each other. If there are 20 measurements for each child, it may be
reasonable to look for a few summaries which contain most of the information. These
summaries are often expressed as appropriate linear combinations of the measurements.
This class of methods is known as principal components and factor analyses.

We describe these methods in a systematic manner starting with a few technical results
on the Wishart distribution, which is a multivariate generalization of the chi-squared
distribution.

12.2 Wishart Distribution
If Y 1, . . . , Y k are iid Np(0, Σ) and M = ∑k

i=1 Y iY T
i , then we say that M has a (central)

Wishart distribution with df = k and the scale matrix Σ , and we write M ∼ Wp(k, Σ).
If the means {μi} of {Y i} are not necessarily equal to 0, then M is said to have a non-
central Wishart distribution Wp(k, Σ , Δ), where Δ = (1/2)Σ−1/2 ∑k

i=1 μiμ
T
i Σ−1/2 is the

noncentrality matrix. Here we discuss only the central Wishart distribution and some of
its properties. Some of the results stated below will be proved later in this chapter and
further details on the theory can be found in the book by Mardia et al. [61]. In multivariate

Theory and Methods of Statistics. http://dx.doi.org/10.1016/B978-0-12-802440-9.00012-6
Copyright © 2016 Elsevier Inc. All rights reserved.
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analysis, we often deal with positive definite matrices and, for brevity of notation, we
sometimes abbreviate “positive definite” by “pd.”

(1) If M ∼ Wp(k, Σ), then BMBT
∼ Wm(k, BΣBT ) for any m × p matrix B.

(2) If M1 ∼ Wp(k1, Σ), M2 ∼ Wp(k2, Σ), and M1 and M2 are independent, then
M1 + M2 ∼ Wp(k1 + k2, Σ).

(3) If M ∼ Wp(k, Σ) and Σ is pd, then P[M is pd] = 0 if k < p, and P[M is pd] = 1 if
k ≥ p.

(4) If M ∼ Wp(k, Σ), then aT Ma/aT Σa ∼ χ2
k if aT Σa �= 0, where a is in R

p.
(5) If M ∼ Wp(k, Σ), k ≥ p, and Σ is pd, then aT Σ−1a/aT M−1a ∼ χ2

k−p+1, where a
is in R

p.
(6) Let Y 1, . . . , Y n be iid Np(μ, Σ). Define

Y = 1
n

∑
Y i, S = 1

n − 1

∑
(Y i − Y )(Y i − Y )T .

Then Y and S are independent, and

Y ∼ Np(μ, n−1Σ), (n − 1)S ∼ Wp(n − 1, Σ).

(7) Let Y 1, . . . , Y n1 be iid Np(μ1, Σ), Z 1, . . . , Z n2 be iid Np(μ2, Σ), and assume that the
samples {Y i} and {Z j} are independent. Define

S1 = 1
n1 − 1

∑
(Y i − Y )(Y i − Y )T ,

S2 = 1
n2 − 1

∑
(Z j − Z)(Z j − Z)T , and

Spooled = 1
n1 + n2 − 2

[(n1 − 1)S1 + (n2 − 1)S2].

Then Y − Z and Spooled are independent, and

Y − Z ∼ Np(μ1 − μ2, (1/n1 + 1/n2)Σ),

(n1 + n2 − 2)Spooled ∼ Wp(n1 + n2 − 2, Σ).

(8) Let Y 1, . . . , Y n, Y , and S be the same as in Property (6) above. The rv
T 2 = n(Y − μ)T S−1(Y − μ) is called Hotelling’s T 2-statistic and it is distributed as
(n−1)p

n−p Fp,n−p, where Fp,n−p has an F-distribution (central) with df = (p, n − p).

(9) Let Y − Z and Spooled be the same as in Property (7), and consider the following
two-sample Hotelling’s T 2-statistic

T2 = (1/n1 + 1/n2)−1(Y − Z − (μ1 − μ2))T S−1
pooled(Y − Z − (μ1 − μ2)).

This two-sample Hotelling’s T 2 is distributed as (n1+n2−2)p
n1+n2−p−1 Fp,n1+n2−p−1.
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(10) If k ≥ p and Σ is pd, the Wishart distribution has the pdf

f (M) = |M|(k−p−1)/2

2kp/2πp(p−1)/4|Σ |k/2

exp
[
−trace(Σ−1M)/2

]
∏p

i=1 Γ
[
(k + 1 − i)/2

]
where M varies over pd matrices.

12.3 The Role of Multivariate Normal Distribution
We write Y ∼ (μ, Σ) to mean that the p-dim random vector Y has a mean μ and covariance
matrix Σ . Note that Y is not necessarily normally distributed in this notation.

12.3.1 Mahalanobis Distance

If Y ∼ (μ, Σ), then the Mahalanobis distance between Y and μ is defined to be Δ2(Y , μ) =
(Y − μ)T Σ−1(Y − μ). Similarly, if Y 1 ∼ (μ1, Σ) and Y 2 ∼ (μ2, Σ), then Δ2(Y 1, Y 2) = (Y 1 −
Y 2)T Σ−1(Y 1 − Y 2). Note that Δ2 is well defined only if Σ is pd. It may be worthwhile to
point out that the positive square root of Δ2 is a distance on R

p (and not Δ2).
An important property of Δ2 is that it is invariant under nonsingular linear transforma-

tions. Let X 1 = a + BY 1, X 2 = a + BY 2, where a is p × 1, B is p × p and is nonsingular.
Then Δ2(X 1, X 2) = Δ2(Y 1, Y 2). Mahalanobis distance comes up naturally in multivariate
analysis. For instance, if Y 1, . . . , Y n are iid (μ, Σ), then Δ2(Y , μ) = n(Y − μ)T Σ−1(Y − μ). If
we want to test H0: μ = μ0, then we may use the Mahalanobis distance between Y and μ0,
that is, Δ2(Y , μ0) = n(Y − μ0)T Σ−1(Y − μ0), as a test statistic (assuming that Σ is known).
If Σ is unknown and an estimate Σ̂ of Σ is available, then Δ2(Y , μ0) can be approximated

by n(Y − μ0)T Σ̂
−1

(Y − μ0).
In the univariate case we often assume normality. However, except for prediction inter-

vals, almost all the inference are approximately valid without normality of the population
as long as the sample size n is large. The same is also true in the multivariate case as long
as n is large relative to p.

12.3.2 Multivariate Central Limit Theorem

If Y 1, . . . , Y n are iid with mean μ and covariance matrix Σ , then by the multivariate central
limit theorem (Section A.4),

√
n(Y − μ)

D→ Np(0, Σ) as n → ∞.

A consequence of this result is that

n(Y − μ)T Σ−1(Y − μ)
D→ χ2

p as n → ∞.
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The sample covariance matrix S = 1
n−1

∑
(Y i − Y )(Y i − Y )T is an unbiased estimate of Σ .

Since S is a consistent estimator of Σ , we have

T2 = n(Y − μ)T S−1(Y − μ)
D→ χ2

p .

Property (8) in Section 12.2 states that when the population is normal,

T2
∼

(n − 1)p
n − p

Fp,n−p.

Since the rv Fp,n−p can be written as

Fp,n−p = W1/p
W2/(n − p)

,

where W1 ∼ χ2
p , W2 ∼ χ2

n−p, and W1 and W2 are independent, we have

(n − 1)p
n − p

Fn,n−p = n − 1
n − p

W1

W2/(n − p)
.

When n → ∞, (n − 1)/(n − p) → 1 and W2/(n − p)
P→ 1, and therefore

T2
∼

(n − 1)p
n − p

Fp,n−p
D→ χ2

p .

12.3.3 Checking Normality

A simple indication of multivariate normality is normality of each of the p component
variables. Even though this may be enough in most cases, it is important to note that
the normality of the marginal distributions does not imply multivariate normality. We
now discuss a strategy for checking multivariate normality when we have iid p-dim
observations Y 1, . . . , Y n from a population.

If the population is indeed normal, then the quantities d2
j = (Y j−Y )T S−1(Y j−Y ) should

be approximately iid χ2
p . So for a given data set, we can calculate these deviances {d2

j } and

plot them against the corresponding quantiles of the χ2
p distribution. If the population is

multivariate normal, we expect the plot to be approximately linear. Here are the steps.

(a) Order d2
j from the smallest to the largest: d2

(1) ≤ · · · ≤ d2
(n).

(b) Obtain the chi-squared plot, that is, plot {d2
(j)} against

{
χ2

p ((j − 0.5)/n)
}

, where

χ2
p ((j − 0.5)/n) is the (j − 0.5)/n-quantile of the χ2

p distribution.

We recommend the following steps for checking multivariate normality on the basis of a
data set.

Step I. Check if each of the individual p variable is univariate normal.
Step II. Check if the chi-squared plot of the deviances {d2

j } is linear.
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Steps I and II do not guarantee multivariate normality. However, for practical purposes,
these two steps are often enough for checking normality.

12.3.4 Sampling From a Normal Population

Let Y 1, . . . , Y n be iid Np(μ, Σ). As before, let S (Property (6) in Section 12.2) be the sample
covariance matrix. Then Y and S are unbiased estimates of μ and Σ , respectively. It turns
out the maximum likelihood estimate (MLE) of μ is Y . However, the MLE of Σ (proved
below) is

S̃ = 1
n

∑
(Y i − Y )(Y i − Y )T = n − 1

n
S,

which is not an unbiased estimator for Σ . We summarize the above and a bit more in the
following result, the proof of which is given in Section 12.3.5.

Theorem 12.3.1. Let Y and S be the sample mean and sample covariance matrix based
on n independent observations from Np(μ, Σ). Then:

(a) The MLE of μ and Σ are Y and S̃, respectively.
(b) Sufficient statistics for (μ, Σ) are (Y , S).

12.3.5 Sampling Distributions

Results given in the following theorem are important for inference when sampling from a
multivariate normal population.

Theorem 12.3.2. Let Y 1, . . . , Y n be iid from Np(μ, Σ). Then the following are true:

(a)
√

n(Y − μ) ∼ Np(0, Σ).
(b) (n − 1)S ∼ Wp(n − 1, Σ).

(c) Y and S are independent.
(d) n(Y − μ)T Σ−1(Y − μ) ∼ χ2

p .

(e) T 2 = n(Y − μ)T S−1(Y − μ) ∼ (n−1)p
n−p Fp,n−p.

Proof of Theorem 12.3.1.

(a) The likelihood function L = L(μ, Σ) is given by

L =
(

1/
√

2π
)np(

1/|Σ |)n/2 exp
[
−(1/2)

∑
(Y i − μ)T Σ−1(Y i − μ)

]
.

Maximizing L with respect to μ and Σ is equivalent to minimizing −2 log L with
respect to μ and Σ . Since∑

(Y i − μ)T Σ−1(Y i − μ) =
∑

(Y i − Y )T Σ−1(Y i − Y )

+ n(Y − μ)T Σ−1(Y − μ)

= n trace(Σ−1S̃) + n(Y − μ)T Σ−1(Y − μ),
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we have

− 2 log L = n trace(Σ−1S̃) + n(Y − μ)T Σ−1(Y − μ) + n log(|Σ |) + np log(2π).

Clearly, if we minimize −2 log L with respect to μ, the minimum occurs at μ = Y . So

− 2 log L(Y , Σ) = n trace(Σ−1S̃) + n log(|Σ |) + np log(2π).

In order to show that S̃ is indeed the MLE of Σ , it is enough to show that the quantity
trace(Σ−1S̃) + log(|Σ |) is minimized at Σ = S̃. Now

trace(Σ−1S̃) + log(|Σ |) = trace(Σ−1S̃) − log(|Σ−1|)

= trace
(

S̃
1/2

Σ−1S̃
1/2)− log

(∣∣∣S̃1/2
Σ−1S̃

1/2
∣∣∣)+ log

(
|S̃|
)

= trace(R) − log(|R|) + log(|S̃|),

where S̃
1/2

is a symmetric square root of S̃ and R = S̃
1/2

Σ−1S̃
1/2

. Let λ1, . . . , λp be the
eigenvalues of R. Then

trace(R) − log(|R|) + log(|S̃|) =
∑

λi −
∑

log λi + log(|S̃|).

The last quantity is minimized when λ1 = · · · = λp = 1, that is, R = I . Consequently,
Σ̂ = S̃.

(b) Follows from the factorization theorem.

Proof of Theorem 12.3.2. The proof of part (a) is obvious. The proofs of parts (b) and
(c) mirror their univariate counterparts. Part (d) follows from part (a). We now present the
proof of the result in part (e).

Note that R1 = n(Y −μ)T Σ−1(Y −μ) ∼ χ2
p . Let d = √

n(Y −μ). Now we will use Property

(5) of Wishart distribution from Section 12.2. Since Y and S are independent, conditionally
on Y ,

R2 = dT Σ−1d/[dT ((n − 1)S)−1d] ∼ χ2
n−1−p+1.

Since this conditional distribution does not depend on Y , we conclude that R2 ∼ χ2
n−p

unconditionally, and, R2 is independent of Y and hence of R1. Therefore,

T2 = (n − 1)
R1

R2
= (n − 1)p

n − p
R1/p

R2/(n − p)
∼

(n − 1)p
n − p

Fp,n−p.

12.4 One-Sample Inference
Let Y 1, . . . , Y n be iid Np(μ, Σ). It is of interest to obtain the estimates of μ, Σ , and
confidence regions for μ. In some cases we may be interested in testing
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I. H0: μ = μ0 against H1: μ �= μ0 (μ0 known).
II. H0: ψ = ψ0 against H1: ψ �= ψ0, where ψ = Dμ, D is an m × p matrix of rank m ≤ p,

and D and ψ0 are known.

There are many examples of the second testing problem. A particular characteristic
of the precision instruments produced by a company is considered to be important and
the company takes a random sample of n instruments. The characteristic is measured
by four engineers and thus there is a vector of four measurements for each instrument.
If μ = (μ1, . . . , μ4)T is the mean vector, we may be interested in testing if these four
measurements are same on the average, that is, H0: μ1 = μ2 = μ3 = μ4. This can be
restated as a testing problem given in (II) with

ψ =
⎛⎜⎝1 0 0 −1

0 1 0 −1

0 0 1 −1

⎞⎟⎠
⎛⎜⎜⎜⎝

μ1

μ2

μ3

μ4

⎞⎟⎟⎟⎠ =
⎛⎜⎝μ1 − μ4

μ2 − μ4

μ3 − μ4

⎞⎟⎠ and ψ0 =
⎛⎜⎝0

0

0

⎞⎟⎠.

12.4.1 Confidence Ellipsoid for μ

Consider the random ellipsoid

A = {u: n(Y − u)T S−1(Y − u) ≤ cα},

where cα = (n−1)p
n−p Fp,n−p,α and Fp,n−p,α is the (1 − α)-quantile of the F-distribution with

df = (p, n − p). This method has been already discussed in the context of Linear models
(Section 11.6.1 in Chapter 11). Since Pμ,Σ [μ is in A] = 1−α, the set A is called the confidence
ellipsoid for μ with confidence coefficient 1 − α. When p = 2 or 3, it is not difficult to get
a plot of this ellipsoid. However, it is not possible to visualize this ellipsoid when p ≥ 4. In
order to obtain confidence intervals for the individual components of μ, one can consider
the confidence shadows. However, this may sometimes lead to an inefficient method for
simultaneous inference. We discuss two methods for constructing confidence intervals for
linear combinations of μ.

12.4.2 Simultaneous Confidence Intervals

Following the ideas given in Section 11.6.1 of Chapter 11, we present two methods for
constructing simultaneous confidence intervals for linear combinations of the mean
vector μ. Proofs are not given since they are the same as in Chapter 11.

(i) Scheffé method: Simultaneous confidence intervals for all linear combinations lT
μ, l

in R
p, with a family confidence coefficient of 1 − α are

lT μ: lT Y ± √
cαs(lT Y ),

where s2(lT Y ) = lT Sl/n and cα = (n−1)p
n−p Fp,n−p,α .
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(ii) Bonferroni method: Simultaneous confidence intervals for m linear combinations
lT

1 μ, . . . , lT
mμ with a family confidence coefficient at least 1 − α are

lT
i μ: lT

i Y ± Bs(lT
i Y ), i = 1, . . . , m,

where B = tn−1,α/(2m).

As discussed in Chapter 11, the Bonferroni method may be inefficient if m is not small
since the multiplier B increases as m increases.

12.4.3 Hypothesis Testing

We now consider the two hypothesis testing problems involving the mean vector μ

mentioned at the beginning of this section.

I. Suppose we want to test H0: μ = μ0 against H1: μ �= μ0 (μ0 known). Then the test
statistic is Hotelling’s T 2 statistic introduced earlier: T 2 = n(Y − μ0)T S−1(Y − μ0).
Under H0, T 2

∼
(n−1)p

n−p Fp,n−p. We may reject H0 at level α if T 2 > cα , where

cα = (n−1)p
n−p Fp,n−p,α .

II. Let ψ = Dμ, where D is a known m × p matrix of rank m ≤ p. Suppose we want to test
H0: ψ = ψ0 against H1: ψ �= ψ0, where ψ0 is known. Then the appropriate test statistic
is

T2 = n(ψ̂ − ψ0)T (DSDT )−1(ψ̂ − ψ0).

Under H0, T 2
∼

(n−1)m
n−m Fm,n−m. So we reject H0 at level α if T 2 > (n−1)m

n−m Fm,n−m,α .

The second testing problem is the same as the first if we take the observation vectors to
be W 1 = DY 1, . . . , W n = DY n. Note that ψ̂ = W = DY ∼ Nm(Dμ, DΣDT ) and an unbiased
estimate of DΣDT is DSDT , where S is the sample covariance matrix based on the sample
Y 1, . . . , Y n.

12.4.4 Likelihood Ratio Test

Let us denote (μ, Σ) by θ . The likelihood function is

L(θ) =
(

1/
√

2π
)np(

1/|Σ |)n/2 exp
[
−(1/2)

∑
(Y i − μ)T Σ−1(Y i − μ)

]
.

The likelihood ratio statistic for testing H0 is

λ = maxθ in H0 L(θ)

maxθ L(θ)
= max{L(θ): θ in the reduced model}

max{L(θ): θ in the full model}
,

where the “reduced model” is the same as the “model under H0.” Asymptotic theory for
likelihood ratio tests tells us, under H0,

− 2 log λ
D→ χ2

t
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as n → ∞, where

t = (# of parameters estimated under the full model)

− (# of parameters estimated under H0)

= p.

For large n, we reject H0 at level α if −2 log λ > χ2
p,α . It should be noted that the chi-square

approximation for −2 log λ is valid asymptotically, and it is possible to obtain the exact
distribution of −2 log λ using Theorem 12.4.1 stated below.

What is the relation between the likelihood ratio test statistic and Hotelling’s T 2? The
following result provides the answer when the true mean μ is in a small neighborhood
of μ0.

Theorem 12.4.1. Consider the problem of testing H0: μ = μ0 vs H1: μ �= μ0 on the basis
of an iid sample Y 1, . . . , Y n from Np(μ, Σ).

(a) The likelihood ratio test statistic for this testing problem is λ = |S̃|n/2
/|S0|n/2 , where

S0 = n−1 ∑(Y i − μ0)(Y i − μ0)T and S̃ is as given in Theorem 12.3.1.
(b) Let T 2 = n(Y − μ0)T S−1(Y − μ0). Under Pμ,Σ , where μ is in the set

An = {u: ‖u − μ0‖ ≤ cn} , cn → 0 as n → ∞,

− 2 log λ = T2 + oP(1).

Remark 12.4.1. An examination of the proof of Theorem 12.4.1 shows that if cn is of
order n−1/2, then the oP(1) in the last theorem can be replaced by OP(1/n). Hence, under
H0: μ = μ0, or under a contiguous alternative of the form μ = μ0 + n−1/2δ, we have
−2 log λ = T 2 + OP(1/n).

The following important identity will be used in the proof of Theorem 12.4.1

S0 = S̃ + (Y − μ0)(Y − μ0)T ,

where S0 is as given in the theorem.
Proof of Theorem 12.4.1.

(a) We use the expression for the likelihood function L(μ, Σ) given in the proof of
Theorem 12.3.1. Note that the MLEs of μ and Σ are obtained by maximizing L(μ, Σ)
over μ and Σ . Since the MLEs of μ and Σ are Y and S̃, respectively, we have

max
μ,Σ

L(μ, Σ) = L(Y , S̃)

=
(

1/
√

2π
)np(

1/|̃S|)n/2 exp
[
−(1/2)

∑
(Y i − Y )T S̃

−1
(Y i − Y )

]
=
(

1/
√

2π
)np(

1/|S̃|
)n/2

exp(−pn/2).

When μ = μ0, we may write the likelihood as
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L(μ0, Σ) =
(

1/
√

2π
)np(

1/|Σ |)n/2 exp
[
−(1/2)

∑
(Y i − μ0)T Σ−1(Y i − μ0)

]
=
(

1/
√

2π
)npnp(

1/|Σ |)n/2 exp
[
−(n/2)trace(Σ−1S0)

]
.

The arguments (Proof of Theorem 12.3.1) employed in obtaining the MLE of Σ , when
μ is unknown, can be used when μ = μ0. Basically the same arguments show that
L(μ0, Σ) is maximized at Σ = S0 where

S0 = 1
n

∑
(Y i − μ0)(Y i − μ0)T .

Consequently,

max
μ=μ0,Σ

L(μ, Σ) = max
Σ

L(μ0, Σ)

=
(

1/
√

2π
)np(

1/|S0|)n/2 exp
(
−(n/2)trace(S−1

0 S0)
)

=
(

1/
√

2π
)np(

1/|S0|)n/2 exp(−np/2).

Hence the likelihood ratio statistic for the testing problem is

λ = maxμ=μ0,Σ L(μ, Σ)

maxμ,Σ L(μ, Σ)
= |S̃|n/2

|S0|n/2 .

(b) Using the identity stated before the beginning of the proof of this theorem, we can
express the likelihood ratio statistic λ as

λ = 1∣∣∣S̃−1/2
S0S̃

−1/2
∣∣∣ = 1

|I + bbT | ,

where b = S̃
−1/2

(Y − μ0).

It is not difficult to check that the matrix I + bbT has an eigenvalue equal to 1 with
multiplicity p − 1, and the remaining eigenvalue is 1 + ‖b‖2. Since the determinant of a
matrix is the product of its eigenvalues, we get

|I + bbT | = 1 + ‖b‖2 = 1 + (Y − μ0)T S̃
−1

(Y − μ0) = 1 + 1
n − 1

T2.

Since S = Σ + oP(1) and Y = μ+OP(n−1/2) (as n → ∞),

T2 ≤ n‖Y − μ0‖2‖S‖ ≤ n
[
‖(Y − μ)‖ + ‖(μ − μ0)‖

]2‖S‖ = oP(n)

on the set An = {μ: ‖μ−μ0‖ ≤ cn}, and this implies T 2/(n−1) = oP(1) on the set An. Hence

− 2 log λ = n log(1 + T2/(n − 1)) = T2 + oP(1).
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12.5 Two-Sample Problem
Suppose that we have two independent samples from two multivariate normal popula-
tions with different mean vectors, but the same covariance matrix. Let Y 1j, j = 1, . . . , n1,
be iid Np(μ1, Σ) and Y 2j, j = 1, . . . , n2 be iid Np(μ2, Σ). We assume that the samples {Y 1j}
and {Y 2j} are independent. We address the following two issues:

(a) test for H0: μ1 = μ2 against H1: μ1 �= μ2.
(b) confidence statements for μ1 − μ2.

12.5.1 Estimation

The MLEs for μ1 and μ2 are

μ̂1 = Y 1· = (1/n1)
∑

Y 1j, and μ̂2 = Y 2· = (1/n2)
∑

Y 2j.

An unbiased estimate of Σ is

S = Spooled = (n1 + n2 − 2)−1[(n1 − 1)S1 + (n2 − 1)S2
]
,

where S1 and S2 are the sample covariance matrices on the basis of {Y 1j: j =, 1, . . . , n1} and
{Y 2j: j = 1, . . . , n2}, respectively, that is,

Si = (ni − 1)−1
∑

j

(Y ij − Y i·)(Y ij − Y i·)T , i = 1, 2.

As in the univariate two-sample problem, the S = Spooled is a better estimator of Σ than S1

or S2.
The following result is useful for inference in two-sample problems.
Theorem 12.5.1. Let us denote μ1 − μ2 and its MLE μ̂1 − μ̂2 by δ and δ̂, respectively. The

following hold:

(a) (μ̂1, μ̂2, S) is sufficient for (μ1, μ2, Σ).
(b) μ̂1 ∼ Np(μ1, (1/n1)Σ), μ̂2 ∼ Np(μ2, (1/n2)Σ), and δ̂ ∼ Np(δ, (1/n1 + 1/n2)Σ).
(c) (n1 + n2 − 2)S ∼ Wp(n1 + n2 − 2, Σ).
(d) μ̂1, μ̂2, and S are independent.
(e) The two-sample Hotelling T 2-statistic

T2 = (1/n1 + 1/n2)−1(δ̂ − δ)T S−1(δ̂ − δ)

has the same distribution as (n1+n2−2)p
n1+n2−p−1 Fp,n1+n2−p−1.

When n1 + n2 → ∞, the two-sample Hotelling’s T 2 D→ χ2
p .

Proof of Theorem 12.5.1. We only provide a proof of parts (c) and (e) since the rest are
not difficult to establish.
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(c) Note that (n1 − 1)S1 ∼ Wp(n1 − 1, Σ), (n2 − 1)S2 ∼ Wp(n2 − 1, Σ) and that S1 and S2

are independent. Hence

(n1 + n2 − 2)S = (n1 − 1)S1 + (n2 − 1)S2 ∼ Wp(n1 + n2 − 2, Σ).

(e) We will argue as in the one-sample case. Let

d = (1/n1 + 1/n2)−1/2(δ̂ − δ),

R1 = (1/n1 + 1/n2)−1(δ̂ − δ)T Σ−1(δ̂ − δ), and

R2 = dT Σ−1d/{dT ((n1 + n2 − 2)S)−1d}.

From part (a), R1 ∼ χ2
p . From part (d), μ̂1 and μ̂2 are independent of S and hence

conditionally on μ̂1 and μ̂2, R2 ∼ χ2
n1+n2−p−1 (by Property (5) in Section 12.2). Since

this conditional distribution does not depend on μ̂1 and μ̂2, we conclude that
R2 ∼ χ2

n1+n2−p−1 unconditionally, and R1 and R2 are independent.
Therefore,

T2 = (n1 + n2 − 2)
R1

R2

= (n1 + n2 − 2)p
n1 + n2 − p − 1

R1/p
R2/(n1 + n2 − p − 1)

∼
(n1 + n2 − 2)p

n1 + n2 − p − 1
Fp,n1+n2−p−1.

12.5.2 Hypothesis Testing

We want to test H0: μ1 = μ2 against H1: μ1 �= μ2 at a level of significance α. Consider the
following Hotelling’s T 2 -statistic

T2 = (1/n1 + 1/n2)−1(μ̂1 − μ̂2)T S−1(μ̂1 − μ̂2).

Under H0, T 2 has the same distribution as (n1+n2−2)p
n1+n2−p−1 Fp,n1+n2−p−1. So we reject H0 at level

α if T 2 > cα where

cα = (n1 + n2 − 2)p
n1 + n2 − p − 1

Fp,n1+n2−p−1,α .

12.5.3 Confidence Ellipsoid for μ1 − μ2

Consider the ellipsoid

A = {δ: (1/n1 + 1/n2)−1(μ̂1 − μ̂2 − δ)T S−1(μ̂1 − μ̂2 − δ) ≤ cα}.

Since Pμ1,μ2,Σ [μ1−μ2 is in A] = 1−α, A is a confidence ellipsoid for μ1−μ2 with confidence
coefficient 1 − α.
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12.5.4 Simultaneous Confidence Intervals

(a) Scheffé method: Simultaneous confidence intervals for all linear combinations lT
δ, l

in R
p and δ = μ1 − μ2, with a family confidence coefficient 1 − α are given by

lT
δ̂ ± √

cαs(lT
δ̂), where δ̂ = μ̂1 − μ̂2 and s2(lT

δ̂) = (1/n1 + 1/n2)lT Sl.
(b) Bonferroni method: Simultaneous confidence intervals for lT

1 δ, . . . , lT
mδ with a family

confidence coefficient of at least 1 − α are

lT
i δ: lT

i δ̂ ± tn1+n2−2,α/(2m)s(lT
i δ̂), i = 1, . . . , m.

12.6 One-Factor MANOVA
Suppose that we have k multivariate normal populations with possibly different mean
vectors, but the same covariance matrix. Let {Y ij: j = 1, . . . , ni} be iid Np(μi, Σ), i = 1, . . . , k.
We may write the one-factor MANOVA model as

Y ij = μi + εij, j = 1, . . . , ni, i = 1, . . . , k,

where {εij} are iid Np(0, Σ). We can also rewrite the above as a factor-effect model

Y ij = μ + αi + εij,

where μ = ∑
(ni/n)μi, αi = μi −μ and n = n1 +· · ·+ nk is the total number of observation

vectors.
The following issues are of interest:

(a) test H0: μ1 = · · · = μk against H1: not all μi’s are the same.
(b) confidence statements about μi’s and αi’s.

12.6.1 Estimation

MLEs for μ1, . . . , μk are μ̂i = Y i· = (1/ni)
∑

j Y ij, i = 1, . . . , k. An unbiased estimate of the
covariance matrix Σ is

S = 1
n − k

[(n1 − 1)S1 + · · · + (nk − 1)Sk], where

Si = 1
ni − 1

∑
j

(Y ij − Y i·)(Y ij − Y i·)T

is the sample covariance matrix on the basis of the ith sample, i = 1, . . . , k. The MLEs for μ

and αi are

μ̂ = Y ··, α̂i = μ̂i − μ̂ = Y i· − Y ··.

As in one- and two-sample cases, the MLE of Σ

S̃ = 1
n

[(n1 − 1)S1 + · · · + (nk − 1)Sk]

is a biased estimator.
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The following result is useful for inference in one-factor MANOVA.
Theorem 12.6.1. Let μ̂1, . . . , μ̂k be the sample means based on independent random

samples from Np(μ1, 	), . . . , Np(μk, 	), and let S be the pooled covariance matrix. Then the
following hold:

(a) (μ̂1, . . . , μ̂k, S) is sufficient for (μ1, . . . , μk, Σ).
(b) Y i· ∼ Np(μi, (1/ni)Σ).
(c) μ̂ ∼ Np(μ, (1/n)Σ).
(d) α̂i ∼ Np(αi, (1/ni − 1/n)Σ).
(e) μ̂1, . . . , μ̂k and S are all independent.
(f) (n − k)S ∼ Wp(n − k, Σ).
(g) When μ1 = · · · = μk,

∑
ni(Y i· − Y ··)(Y i· − Y ··)T

∼ Wp(k − 1, Σ).

The proof of this theorem is not given. The results in it can be obtained using arguments
similar to one- and two-sample cases given above, and by borrowing appropriate results
from univariate analysis of variance.

12.6.2 Hypothesis Testing in One-Factor MANOVA

Suppose we wish to test H0: μ1 = · · · = μk against H1: not all μi’s are the same. This is
equivalent to testing H0: α1 = · · · = αk = 0 against H1: not all αi’s are equal to 0. We define
a few matrices analogous to the various sums of squares in the univariate case. Total sum
of squares and products (SSP), between group SSP and within group SSP, as well as their
corresponding degrees of freedom are given below

T =
∑

i

∑
j

(Y ij − Y ··)(Y ij − Y ··)T , df = n − 1,

B =
∑

ni(Y i· − Y ··)(Y i· − Y ··)T , df = k − 1, and

W =
∑

i

∑
j

(Y ij − Y i·)(Y ij − Y i·)T , df = n − k.

It is fairly easy to check that T = B + W .
Theorem 12.6.2. Consider the problem of testing H0: α1 = · · · = αk = 0 against H1: not

all αi’s are equal to 0, in one-factor MANOVA. The likelihood ratio test statistic is

λ =
{ |W |

|T |
}n/2

= Λn/2,

where Λ = |W |
|T | is called Wilks’ lambda.

The proof of this result will be given below in Section 12.6.4, but we describe the
inference procedures first. The exact distribution of the likelihood ratio statistic λ is
complicated even under H0. In some cases we know the exact distributional results as
given below. However, for the general case, we may use the asymptotic theory. From the
theory of likelihood ratio tests, under H0,

− 2 log λ = −n log Λ
D→ χ2

p(k−1)
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as n → ∞. In order to obtain a better asymptotic approximation, Bartlett made a suitable
modification to the test statistic. According to his modification, under H0,

− [n − 1 − (p + k)/2] log Λ
D→ χ2

p(k−1),

as n → ∞. If α is the given level of significance, we may reject H0 at level α if

− [n − 1 − (p + k)/2] log Λ > χ2
p(k−1),α .

12.6.3 Simultaneous Confidence Intervals

If we are interested in constructing simultaneous confidence intervals for αil, l = 1, . . . , p,
i = 1, . . . , k, then the Bonferroni method yields the intervals

αil: α̂il ± tn−k,α/(2pk)s(α̂il),

where α̂il is the lth component of α̂i and s2(α̂il) = (1/ni − 1/n)sll and sll is the lth diagonal
element of S. Similarly if we want to construct simultaneous confidence intervals for all
pairwise differences αil − αi′l, 1 ≤ i �= i′ ≤ k, l = 1, . . . , p, with a family confidence
coefficient of at least 1 − α, then the intervals are

αil − αi′l: α̂il − α̂i′l ± tn−k,α/[pk(k−1)]s(α̂il − α̂i′l),

where α̂il − α̂i′l is the lth component of α̂i − α̂i′ = Y i· − Y i′·, and

s2(α̂il − α̂i′l) = (1/ni + 1/ni′ )sll.

Clearly, the Bonferroni method may lead to wide intervals if p (and/or k) is not small. If k
is not large, we may use one-factor ANOVA models to construct Scheffé- or Tukey-type (in
the balanced case) confidence intervals for αil − αi′l, 1 ≤ i �= i′ ≤ k, for each l = 1, . . . , p, so
that the family confidence coefficient is at least 1 − α.

12.6.4 Exact Distributions of Wilks’ Lambda

In general it is not easy to obtain the exact distribution of Wilks’ Λ statistic and one usually
uses the asymptotic distribution with Bartlett corrections. However, there are some special
cases where exact distributions have been obtained and some of these are presented in
following table:

p = 1 k ≥ 2 n−k
k−1

1−Λ
Λ

∼ Fk−1,n−k

p = 2 k ≥ 2 n−k−1
k−1

1−√
Λ√

Λ
∼ F2(k−1),2(n−k−1)

p ≥ 1 k = 2 n−p−1
p

1−Λ
Λ

∼ Fp,n−p−1

p ≥ 1 k = 3 n−p−2
p

1−√
Λ√

Λ
∼ F2p,2(n−p−2)
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Proof of Theorem 12.6.2. Note that the likelihood is

L(μ1, . . . , μk, Σ) =
(

1/
√

2π
)pn(

1/|Σ |)n/2 exp

⎡⎣−
∑

i

∑
j

(Y ij − μi)T Σ−1(Y ij − μi)/2

⎤⎦.

Under H0: μ1 = · · · = μk, the MLE for the common mean μ is μ̂ = Y ·· and the MLE for Σ is

S0 = (1/n)
∑

i

∑
j

(Y ij − Y ··)(Y ij − Y ··)T .

For the general case, the MLE for μi is μ̂i = Y i· and the MLE of Σ is

S̃ = (1/n)
∑

i

∑
j

(Y ij − Y i·)(Y ij − Y i·)T .

Following the argument similar to the one- and two-sample cases, we can show that

max
μ1=···=μk ,Σ

L(μ1, . . . , μk, Σ) = L
(

Y ··, S0

)
=
(

1/
√

2π
)pn(

1/|S0|)n/2 exp(−pn/2), and

max
μ1,...,μk ,Σ

L(μ1, . . . , μk, Σ) = L
(

Y 1·, . . . , Y k·, S̃
)

=
(

1/
√

2π
)pn(

1/|S|)n/2 exp(−pn/2).

So the likelihood ratio test statistic for testing equality of the means is

λ = maxμ1=···=μk ,Σ L(μ1, . . . , μk, Σ)

maxμ1,...,μk ,Σ L(μ1, . . . , μk, Σ)
=
(

|S̃|
|S0|

)n/2

=
( |W |

|T |
)n/2

.

The last equality holds since S0 = (1/n)T and S̃ = (1/n)W .

12.6.5 More Tests for One-Factor MANOVA

In Section 12.6.2, we have discussed the likelihood ratio test for H0: α1 = · · · = αk =
0 against H1: not all αi’s are 0. There are three other well-known tests, and computer
packages routinely report them. These are

(a) Lawley-Hotelling trace: trace(BW −1),
(b) Pillai’s trace: trace(BT−1), and
(c) Roy’s largest root: the largest eigenvalue of BT−1.

For each of these tests, we reject H0 if the corresponding statistic is larger than a
threshold value. It turns out that all these four test statistics can be written as functions
of the eigenvalues of BT−1. Let λ̂1 ≥ · · · ≥ λ̂p be the eigenvalues of B with respect to T (ie,
the eigenvalues of T−1/2BT−1/2, where T−1/2 is symmetric). Then we have
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(a) likelihood ratio:
{∏p

i=1(1 − λ̂i)
}n/2

,

(b) Lawley-Hotelling trace:
∑p

i=1 λ̂i/(1 − λ̂i),
(c) Pillai’s trace:

∑p
i=1 λ̂i, and

(d) Roy’s largest root: λ̂1.

Remark 12.6.1. Since the rank of the matrix B is s = min(p, k−1), the number of nonzero
generalized eigenvalues of B with respect to T is equal to s. Thus λ̂j > 0, j = 1, . . . , s, and
the remaining λ̂j’s are 0.

Interpretation of Tests in MANOVA
When testing H0: α1 = · · · = αk = 0, the reduced and the full MANOVA models are

Y ij = μ + εij (reduced),

Y ij = μ + αi + εij (full).

Now if we look at {eT Y ij}, e ∈ R
p, then we get the reduced and full models for the one-factor

ANOVA case

eT Y ij = eT μ + eT εij (reduced),

eT Y ij = eT μ + eT αi + eT εij (full).

Since the coefficient of determination R2(e) is the proportional reduction in the residual
sum of squares from the reduced to the full model (following the terminology used in
Chapter 11), we have

R2(e) = SSER − SSEF

SSER
=

∑
ni(eT Y i· − eT Y ··)2∑

i
∑

j(eT Y ij − eT Y ··)2
= eT Be

eT Te
. (1)

Let λ̂1 ≥ · · · ≥ λ̂p be the generalized eigenvalues of B with respect to T , that is, λ̂1, . . . , λ̂p

are the eigenvalues of T−1/2BT−1/2 with the corresponding eigenvectors û1, . . . , ûp

(Section B.4). If we denote êi = T−1/2ûi, then R2(êi) = λ̂i, i = 1, . . . , p.
Clearly, R2(e) is maximized at e = ê1 and R2(ê1) = λ̂1. The next largest value of R2(e)

is obtained by maximizing it over e subject to the constraint eT T ê1 = 0. This maximum is
attained at e = ê2 and R2(ê2) = λ2 . This argument can be carried out further and it shows
that {R2(êi)} are the same as the generalized eigenvalues {λ̂i} of B with respect to T .
We can now express the four test statistics given above for the one-factor MANOVA in terms
of R2(ê1), . . . , R2(êp),

(a) likelihood ratio:
{∏p

i=1(1 − R2(êi))
}n/2

,

(b) Lawley-Hotelling trace:
∑p

i=1 R2(êi)/
[
1 − R2(êi)

]
,

(c) Pillai trace:
∑p

i=1 R2(êi), and
(d) Roy’s largest root: R2(ê1).
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12.7 Two-Factor MANOVA
Let us consider a two-factor balanced MANOVA model

Y ijk = μ + αi + βj + (αβ)ij + εijk,

k = 1, . . . , n0, j = 1, . . . , b, i = 1, . . . , a, where {εijk} are iid Np(0, Σ),∑
αi = 0,

∑
βj = 0,∑

i

(αβ)ij = 0 for all j, and
∑

j

(αβ)ij = 0 for all i.

For notational simplicity we write γ ij for (αβ)ij. The vectors {αi}, {βj}, and {γ ij} are the main
effects of factor A, main effects of factor B, and interaction effects, respectively. The total
number of observation vectors is n = n0ab.

12.7.1 Estimation

The MLEs of μ, αi, βj, and γ ij are

μ̂ = Y ···, α̂i = Y i·· − Y ···, β̂j = Y ·j· − Y ···, and

γ̂ ij = Y ij· − Y i·· − Y ·j· + Y ···.

We now write down the sums of squares and products matrices along with their degrees of
freedom,

SSPtot =
∑

i

∑
j

∑
k

(Y ijk − Y ···)(Y ijk − Y ···)T , df = n − 1

SSPA = n0b
∑

α̂iα̂
T
i , df = a − 1,

SSPB = n0a
∑

β̂jβ̂
T
j , df = b − 1,

SSPAB = n0
∑

i

∑
j

γ̂ ijγ̂
T
ij , df = (a − 1)(b − 1),

SSPres =
∑

i

∑
j

∑
k

(Y ijk − Y ij·)(Y ijk − Y ij·)T , df = n − ab.

The following lemma lists some useful facts.
Lemma 12.7.1. For a two-factor MANOVA, the following hold:

(a) SSPtot = SSPA + SSPB + SSPAB + SSPres.
(b) df (SSPtot) = df (SSPA) + df (SSPB) + df (SSPAB) + df (SSPres) .
(c) SSPA, SSPB, SSPAB, and SSPres are independent.
(d) SSPres ∼ Wp(n − ab, Σ).
(e) An unbiased estimate of Σ is 1

n−ab SSPres.
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12.7.2 Hypothesis Testing in Two-Factor MANOVA

We will write down here only the likelihood ratio tests. However, as in the one-factor
MANOVA case, there are other tests such as those by Pillai, Lawley-Hotelling, and Roy, and
computer packages routinely report them.

Test for Interactions
Suppose we wish to test H0: γ ij = 0 for all i and j, against H1: not all γ ij are zero.

Wilks’ lambda for this test is Λ = |SSPres|
|SSPAB+SSPres| and the likelihood ratio test statistic is

λ = Λn/2. Under H0, using Bartlett’s modification we have

−
{

ab(n0 − 1) − p + 1 − (a − 1)(b − 1)
2

}
log Λ

D→ χ2
(a−1)(b−1)p,

as n → ∞. We can use this result to obtain the critical value or the p-value in order to carry
out the test.

Test for the Main Effects of Factor A
If we wish to test H0: αi = 0 for all i, against H1: not all αi are zero, Wilks’ lambda criterion
is Λ = |SSPres|

|SSPA+SSPres| and the likelihood ratio test statistic is λ = Λn/2.
Once again, we can use the following asymptotic result to carry out this test. Under H0,

using Bartlett’s approximation we have

−
{

ab(n0 − 1) − p + 1 − (a − 1)
2

}
log Λ

D→ χ2
(a−1)p,

as n → ∞.

Test for the Main Effects of Factor B
If we wish to test H0: βj = 0 for all j, against H1: not all βj are zero, Wilks’ lambda criterion

is Λ = |SSPres|
|SSPB+SSPres| and the likelihood ratio is λ = Λn/2. It turns out that under H0 (using

Bartlett’s modification),

−
{

ab(n0 − 1) − p + 1 − (b − 1)
2

}
log Λ

D→ χ2
(b−1)p,

as n → ∞.

12.7.3 Simultaneous Confidence Intervals

Simultaneous confidence intervals with a family confidence coefficient of at least 1 − α for
all the pairwise differences in the main effect of factor A are given by

αil − αi′l: α̂il − α̂i′l + Bs(α̂il − α̂i′l), 1 ≤ i �= i′ ≤ a, l = 1, . . . , p,

where, B = tn−ab,α/[pa(a−1)], s(α̂il−α̂i′l) = √
2sll/(n0b), and sll is the lth diagonal element of S.
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Simultaneous confidence intervals with a family confidence coefficient of at least 1 − α

for all the pairwise differences in the main effect of factor B are given by

βjl − βj′l: β̂jl − β̂j′l + Bs(β̂jl − β̂j′l), 1 ≤ j �= j′ ≤ b, l = 1, . . . , p,

where B = tn−ab,α/[pb(b−1)] and s(β̂jl − β̂j′l) = √
2sll/(n0a).

Simultaneous confidence intervals with a family confidence coefficient of at least 1 − α

for all the pairwise differences in the mean response are given by

μijl − μi′j′l: μ̂ijl − μ̂i′j′l + Bs(μ̂ijl − μ̂i′j′l),

1 ≤ i �= i′ ≤ a, 1 ≤ j �= j′ ≤ b, (i, j) �= (i′, j′), l = 1, . . . , p,

where B = tn−ab,α/[pab(ab−1)] and s(μ̂ijl − μ̂i′j′l) = √
2sll/n0. [Note that μ̂ij = Y ij·.]

The simultaneous confidence intervals given above are expected to be wide. Therefore,
we may use Tukey’s method for pairwise comparisons for each of the p univariate ANOVA
models with a confidence level of 1−α/p so that the overall confidence level is at least 1−α.

12.8 Multivariate Linear Model
In the usual linear model framework, the response for each of the n observations is real
valued. Thus the observed vector of responses Y is n-dim, and if the design matrix X is
n×k, then the Gauss-Markov model is written as Y = Xβ+ε, where β is an unknown vector
of parameters and ε is an n × 1 vector of mutually uncorrelated random errors with mean
zero and common variance σ 2 (Section 11.1 in Chapter 11). If each of the n observations
is p-dim, then we have an n × p matrix Y of observed responses which can modeled by
a generalization of the framework described in Section 11.1 of Chapter 11 resulting in a
multivariate linear model. We have also seen in Chapter 11 that the Gauss-Markov setup
and its extensions include regression, analysis of variance, analysis of covariance, random-
and mixed-effect models as special cases, and the same is true for their multivariate
counterparts.

In the multivariate case, we have p columns of n×1 observation vectors Y 1, . . . , Y p, and
for each observed vector of responses, the model is

Y j = Xβj + εj, j = 1, . . . , p,

where βj is a k-dim unknown vector of parameters and εj is an n-dim vector of mutually
uncorrelated mean zero random errors. Thus we have[

Y 1, . . . , Y p
] = X

[
β1, . . . , βp

]
+ [

ε1, . . . , εp
]
, or

Y = Xβ + ε,

where Y is n × p with columns Y 1, . . . , Y p, X is n × k, β is k × p with columns β1, . . . , βp,
and ε is n × p with columns ε1, . . . , εp. This is the multivariate linear model and it has the
same formal structure as in Eq. (1) in Chapter 11. It is possible to analyze each of the p
linear models separately, but this strategy has a drawback since the p observations in each



Chapter 12 • Multivariate Analysis 403

row of the response matrix may be correlated, that is, the p elements in each row of ε may
be correlated, and a procedure which analyzes the p linear models separately, fails to take
into account this dependence. A joint analysis of these p models is therefore preferable. In
the subsequent discussion we assume that X T X is nonsingular.

In the multivariate linear model, we often assume that the rows of ε are iid Np(0, Σ).
The goal is to estimate the matrices of unknown parameters β and Σ , carry out inferential
procedures such as tests of hypotheses and construction of confidence intervals, and make
predictions whenever necessary. We do not discuss random- and mixed-effect cases here.
We write down a few basic results on the estimation of β and Σ , and the distributions of
the estimates.

12.8.1 Estimation of β and Σ

The normal equations and least squares estimate of β are similar to those in the univariate
case, and they are

X T X β̂ = X T Y , β̂ = (X T X )−1X T Y .

In order to see why the same equations come up, we may consider rewriting the model.
Postmultiplying both sides of the multivariate linear model by Σ−1/2 leads to[

R1, . . . , Rp
] = X

[
γ 1, . . . , γ p

]
+ [

δ1, . . . , δp
]
, or

R = Xγ + δ,

where Rj = Y jΣ
−1/2, γ j = βjΣ

−1/2, δj = εjΣ
−1/2, j = 1, . . . , p. Under normality (ie, the rows

of ε are iid Np(0, Σ)), the error vectors δ1, . . . , δp are mutually independent, and each δj has
n entries which are iid with mean 0 and variance 1. Even if the assumption of normality is
not valid, δ1, . . . , δp are mutually uncorrelated, and we can minimize∑

‖Rj − Xγ j‖2

with respect to γ 1, . . . , γ p in order to get the least squares estimates, which lead to the
following p normal equations

X T Xγ j = X T Rj, ie, X T XβjΣ
−1/2 = X T Y jΣ

−1/2, ie,

X T Xβj = X T Y j, j = 1, . . . , p, or

X T Xβ = X T Y , ie, β̂ = (X T X )−1X T Y .

Since ∑
‖Rj − Xγ j‖2 = trace((R − Xγ )T (R − Xγ ))

= trace((Y − Xβ)T (Y − Xβ)Σ−1),

it follows that the normal equations are obtained by minimizing trace((Y − Xβ)T

(Y − Xβ)Σ−1) with respect to β.
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An unbiased estimate of Σ is given by

S = 1
n − k

(Y − X β̂)T (Y − X β̂).

As in the univariate case, the estimated response Ŷ = X β̂ and the residuals ε̂ = Y − X β̂

are uncorrelated, and are independent when the rows of ε are iid Np(0, Σ), in which case,

S and β̂ are independent as well.

12.8.2 Properties of the Estimates of β and Σ

For the rest of this section, we assume that the rows of ε are iid Np(0, Σ). We have the
following result which can be used for tests of hypotheses and construction of confidence
intervals.

Theorem 12.8.1.

(a) The MLEs of β and Σ are

β̂ = (X T X )−1X T Y , S̃ = 1
n

(Y − X β̂)T (Y − X β̂).

(b) (β̂, S) are sufficient for (β, Σ).
(c) Ŷ = X β̂ and ε̂ = Y − X β̂ are independent.
(d) β̂ and S are independent.
(e) For any vector b in R

p, β̂b ∼ Nk(βb, bT
Σb(X T X )−1).

(f) (n − k)S ∼ Wp(n − k, Σ).

12.9 Principal Components Analysis
Principal components analysis is a widely used method in multivariate analysis, and its
goal is to reduce the dimensionality of the data with as little loss of information as possible.
We first describe the basic ideas behind principal components, and discuss estimation
issues later. Let Y be a p-dim random vector with mean μ and covariance matrix Σ . In
some cases we assume that the diagonal elements of Σ are 1 which means that Σ is a
correlation matrix.

If {e1, . . . , ep} is an orthonormal basis of Rp, then

Y − μ =
p∑

j=1

[
eT

j (Y − μ)
]

ej, and

‖Y − μ‖2 =
p∑

j=1

[
eT

j (Y − μ)
]2

.

Note that eT
j (Y − μ) is a random variable with mean 0 and variance eT

j Σej. The total
variability of Y is
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p∑
j=1

Var[Yj] =
p∑

j=1

E[Yj − μj]2 = E

⎧⎨⎩
p∑

j=1

(Yj − μj)2

⎫⎬⎭
= E[‖Y − μ‖2] = trace(Σ).

On the other hand
p∑

j=1

Var[Yj] = E[‖Y − μ‖2] =
p∑

j=1

E
[

eT
j (Y − μ)

]2 =
p∑

j=1

Var[eT
j Y ].

Now if it happens that for some k < p (and hopefully k is small),

E[‖Y − μ‖2] ≈
k∑

j=1

E
[

eT
j (Y − μ)

]2
, and

p∑
j=k+1

E
[

eT
j (Y − μ)

]2
is small,

then the total variability of Y is explainable (to a large extent) by the variability of k
random variables eT

1 Y , . . . , eT
k Y . Ideally, the reduction in dimensionality is substantial if k

is small in comparison to p. Let λ1 ≥ · · · ≥ λp be the eigenvalues of Σ with u1, . . . , up,
the corresponding orthonormal eigenvectors. From the properties of eigenvalues and
eigenvectors (Section B.2) we have that

max
{

eT
1 Σe1 + · · · + eT

k Σek: e1, . . . , ek orthonormal
}

= λ1 + · · · + λk,

and the maximum is attained at e1 = u1, . . . , ek = uk. So

max
{

Var[eT
1 Y ] + · · · + Var[eT

k Y ]: e1, . . . , ek orthonormal
}

= Var[uT
1 Y ] + · · · + Var[uT

k Y ] = λ1 + · · · + λk .

Remark 12.9.1.

(a) The random variable uT
1 (Y − μ) is called the first principal component of Y ,

uT
2 (Y − μ) is the second principal component, and so on. The vectors u1, u2, . . . are

sometimes called the loading vectors.
(b) Principal components and the eigenvalues are not unit free. For this reason, in many

cases one may prefer to carry out principal components analysis on the standardized
variables which means that Σ is the correlation matrix.

(c) Note that πk = (λ1 + · · · + λk)/(λ1 + · · · + λp) is the proportion of the total variability of
Y explained by the first k principal components. We can expect k to be small when
the variables are strongly correlated. When the variables are mutually uncorrelated,
principal components analysis is not useful.

Here is a summary of the properties of principal components.
Lemma 12.9.1. Let Zs = uT

s (Y − μ), s = 1, 2, . . . Then:



406 THEORY AND METHODS OF STATISTICS

(a) E[Zs] = 0.
(b) Var[Zs] = λs.
(c) Cov[Zs, Zs′ ] = 0 if s �= s′.
(d) Corr[Yl, Zs] = √

λsuls/
√

σll, where Yl is the lth component of Y , uls is the lth element of
the vector us and σll is the lth diagonal element of Σ .

12.9.1 Regression Interpretation of Principal Components

Let Z1 = eT
1 (Y − μ), . . . , Zk = eT

k (Y − μ) be k linear functions of the random vector Y such
that the random variables Z1, . . . , Zk are mutually uncorrelated. Now consider the problem
of predicting Yj, the jth component of Y , from Z1, . . . , Zk using a linear regression and let τ2

j

be the prediction error. Then
∑p

j=1 τ2
j is the total prediction error for predicting Y1, . . . , Yp

(each separately) using Z1, . . . , Zk. If
∑p

j=1 τ2
j is quite small, then we may conclude that the

information in the vector Y can be well summarized by Z1, . . . , Zk. It turns out that
∑p

j=1 τ2
j

is minimized when Z1, . . . , Zk are the first k principal components of Y .
Let us now justify this regression interpretation. Note that Yj − μj, Z1, . . . , Zk have zero

means, and hence the intercept term for the regression of Yj − μj on Z1, . . . , Zk is zero.
Clearly,

τ2
j = min

βj1,...,βjk
E

⎧⎨⎩Yj − μj −
k∑

s=1

βjsZs

⎫⎬⎭
2

.

Since Z1, . . . , Zk are assumed to be mutually uncorrelated, the solution to this minimiza-
tion problem is given by β∗

js = Cov[Yj, Zs]/Var[Zs], 1 ≤ s ≤ k, and consequently

τ2
j = Var[Yj] −

k∑
s=1

Cov[Yj, Zs]2/Var[Zs].

Let σ 1, . . . , σ p be the column vectors of the covariance matrix Σ , that is, Σ = [σ 1, . . . , σ p].
Then Cov[Yj, Zs] = eT

s σ j, Var[Zs] = eT
s Σes, and we have

τ2
j = Var[Yj] −

k∑
s=1

(eT
s vj)2

eT
s Σes

.

Hence

p∑
j=1

τ2
j =

p∑
j=1

Var[Yj] −
p∑

j=1

k∑
s=1

(eT
s σ j)2

eT
s Σes

=
p∑

j=1

Var[Yj] −
k∑

s=1

p∑
j=1

(eT
s σ j)2

eT
s Σes

.
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Since
∑p

j=1 Var[Yj] = trace(Σ) and

p∑
j=1

(eT
s σ j)2 = eT

s

p∑
j=1

σ jσ
T
j es = eT

s Σ2es,

we have

p∑
j=1

τ2
j = trace(Σ) −

k∑
s=1

eT
s Σ2es

eT
s Σes

.

Minimizing
∑p

j=1 τ2
j with respect to e1, . . . , ek subject to the constrains eT

s Σes′ =
Cov[Zs, Zs′ ] = 0, 1 ≤ s �= s′ ≤ k, is equivalent to maximizing

k∑
s=1

eT
s Σ2es

eT
s Σes

(2)

with respect to e1, . . . , ek subject to the constraints eT
s Σes′ = 0, 1 ≤ s �= s′ ≤ k. This a gen-

eralized eigenvalue problem described in Section B.4. If λ1 ≥ λ2 ≥ · · · are the generalized
eigenvalues of A = Σ2 with respect to B = Σ , the maximum value of Eq. (2) is given by

λ1 +· · ·+λk. Since λ1, λ2, . . . are the eigenvalues of B−1/2AB−1/2 = Σ−1/2Σ2Σ
−1/2 = Σ with

the corresponding orthonormal eigenvectors u1, u2, . . ., the maximum of Eq. (2) occurs at
es = us, s = 1, . . . , k.

This proves that among all the k mutually uncorrelated linear functions of Y , the
principal components Z1 = uT

1 (Y − μ), . . . , Zk = uT
k (Y − μ) are the best linear predictors

of Y1, . . . , Yp.

12.9.2 Estimation of Principal Components

Till now we have discussed the concept of principal components for a random vector from
a theoretical standpoint. We now take up the issue of estimating them from the data. Let
Y 1, . . . , Y n be iid with mean vector μ and covariance matrix Σ . Note that we have made no
assumption on the distribution of Y i (such as normality).

Even though the covariance matrix of the standardized variables is the correlation
matrix, for notational simplicity, we use Σ to denote both the covariance and correla-
tion matrices. Similarly we use S to denote both the sample covariance and correlation
matrices. Note that if we want to find the principal components of Y − μ, then we deal
with the covariance matrix of Y . Whereas if we want to find the principal components
of
[
diag(Σ)

]−1/2(Y − μ) (ie, the standardized variables), we deal with the correlation
matrix.

As before, let λ1 ≥ λ2 ≥ · · · be the eigenvalues of Σ with u1, u2, . . . as the corresponding
orthonormal eigenvectors. Similarly, let λ̂1 ≥ λ̂2 ≥ · · · be the eigenvalues of S with the
corresponding orthonormal eigenvectors û1, û2, . . .. It is easy to guess that λ̂j estimates λj



408 THEORY AND METHODS OF STATISTICS

and ûj estimates ±uj, j = 1, . . . , p. The reason for “±” is that if uj is an eigenvector of Σ

with the eigenvalue λj, then −uj is also an eigenvector of Σ with the same eigenvalue λj.

Estimated principal components are Ẑs = ûT
s (Y − Y ), s = 1, . . . , p. Recall that the

population (or theoretical) principal components have zero means and are uncorrelated.
The estimated (sample) principal components have similar properties. Define the scores
of the sth principal component to be Ẑis = ûT

s (Y i − Y ), i = 1, . . . , n. A result analogous
to Lemma 12.9.1 holds for the sample principal components when E[·], Var[·], etc., are
replaced by the sample mean, sample variance, etc., and this is left as an exercise. In
particular,

n∑
i=1

Ẑis/n = 0,
n∑

i=1

Ẑ2
is/(n − 1) = λ̂s, and

n∑
i=1

ẐisẐis′/(n − 1) = 0, s �= s′.

Scree Plot
The ratio λ̂k/

∑
λ̂j = λ̂k/trace(S) estimates the proportion of total variability of Y explained

by the kth principal component. For this reason, it is useful to plot λ̂k/trace(S) against
k. This plot graphically displays how the eigenvalues decay. It is also useful to plot the
cumulative ratio π̂k = (λ̂1 + · · · + λ̂k)/(λ̂1 + · · · + λ̂p) against k. This gives us an idea of how
much dimensionality reduction is possible since π̂k is an estimate of πk = (λ1 + · · · +
λk)/(λ1 + · · · + λp), the proportion of the total variability of Y explained by the first k
principal components.

12.9.3 Asymptotic Results in Principal Components Analysis

Asymptotic distributions of sample eigenvalues and sample eigenvectors are somewhat
complicated. It is important to point out that the asymptotic distributions depend on the
distribution of the multivariate population from which the observations are taken. This is
quite unlike the limit theorems for the estimated mean vectors and associated statistics.
Here we only deal with the case when the eigenvalues of the population covariance
matrix Σ are distinct. When some of the eigenvalues have multiplicities larger than 1, the
asymptotic distributions of the sample eigenvalues and sample eigenvectors are not even
normal (they are mixtures of normals). We do not discuss such cases here.

As before, let the spectral decompositions of Σ and sample covariance matrix S be

Σ =
p∑

j=1

λjujuT
j and S =

p∑
j=1

λ̂jûjûT
j ,

where λ1 ≥ λ2 ≥ · · · and λ̂1 ≥ λ̂2 ≥ · · · . We assume all the eigenvalues are distinct (ie, λ1 >

λ2 > · · · > λp). For continuous distributions, it can be shown that the sample eigenvalues
λ̂1, . . . , λ̂p are distinct with probability 1.
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The jth principal component of Y is Zj = uT
j (Y − μ). We know that E[Zj] = 0 and

Var[Zj] = λj. We also know that Z1, . . . , Zp are mutually uncorrelated. If the population of
Y is normal then Z1, . . . , Zp are independent and Zj ∼ N(0, λj), j = 1, . . . , p.

We will write down the asymptotic distributions of the sample eigenvalues and sample
eigenvectors. These results can be proved using the perturbation theory of matrices which
is outside the scope of this book.

Theorem 12.9.1. Let Y 1, . . . , Y n be iid with mean μ and covariance matrix Σ , and
assume that the eigenvalues of Σ are distinct. All the results below are true assuming that
n → ∞.

(a)
√

n(λ̂ − λ)
D→ Np(0, W ), where element (j, k) of W is given by Cov[Z2

j , Z2
k ], where λ and λ̂

are p-dim vectors of the eigenvalues λ1, . . . λp and their estimates.
(b) If the population is normal (ie, {Y i} are iid Np(μ, Σ)), then the matrix W in part (a) is a

diagonal matrix whose jth diagonal element is given by 2λ2
j .

(c) For any 1 ≤ i ≤ k,
√

n(ûi ± ui)
D→ Np(0, Ri), where

Ri =
∑
j �=i

∑
k �=i

Cov[ZjZi, ZkZi]
(λj − λi)(λk − λi)

ujuT
k .

(d) If the population is normal, then the matrix Ri in part (c) has the simplified form

Ri = λi
∑
j �=i

λj

(λj − λi)2 ujuT
j .

The results given above allow us to construct confidence intervals for the eigenvalues.
Remark 12.9.2. Even though {Zj} are mutually uncorrelated, the same is not necessarily

true for {Z2
j }. If the population is normal, {Z2

j } are mutually independent, and hence

mutually uncorrelated. Thus, under normality, Cov[Z2
j , Z2

k ] = 0, j �= k, and Cov[Z2
j , Z2

k ] =
Var[Z2

j ] = 2λ2
j when j = k. Therefore, part (b) of the last result follows from part (a). When

j �= i and k �= i,

Cov[ZjZi, ZkZi] = E[ZjZkZ2
i ] − E [ZjZi]E[ZkZi] = E[ZjZkZ2

i ].
Under normality, when j, k, and i are all distinct, E[ZjZkZ2

i ] = 0. When j = k �= i, then
E[ZjZkZ2

i ] = E[Z2
j ]E[Z2

i ] = λjλi. This shows that part (d) of the last theorem follows from
part (c).

When the population is normal, estimation of W or Ri is rather easy since Ŵ is a
diagonal matrix with diagonal elements 2λ̂2

1, . . . , 2λ̂2
p, and

R̂i = λ̂i
∑
j �=i

λ̂j

(λ̂j − λ̂i)2
ûjûT

j .

However, if the population is not normal, then we need to estimate these matrices (W and
Ri) using the principal component scores. For the ith principal component, the scores are
{Ẑti = uT

i (Y t − Y ): t = 1, . . . , n}. Estimate of element (j, k) of W is
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Ŵjk = sample covariance of {(Ẑ2
tj, Ẑ2

tk): t = 1, . . . , n}

= (n − 1)−1

⎧⎨⎩
n∑

t=1

Ẑ2
tjẐ2

tk − nλ̂jλ̂k

⎫⎬⎭.

Similarly

R̂i =
∑
j �=i

∑
k �=i

v(j, k, i)

(λ̂j − λ̂i)(λ̂k − λ̂i)
ûjûT

k ,

where v(j, k, i) is the sample estimate of Cov[ZjZi, ZkZi] and is given by

v(j, k.i) = (n − 1)−1
n∑

t=1

ẐtjẐtkẐ2
ti.

Confidence Interval for λj
An approximate confidence interval for λj with a confidence coefficient 1 − α is given by

λ̂j ± zα/2

√
Ŵjj/n, where zα/2 is the (1 − α/2)-quantile of the standard normal distribution.

Note that Ŵjj = 2λ̂2
j for the normal case, whereas Ŵjj is the sample variance of {Ẑ2

tj: t =
1, . . . , n} in the general case. Sometimes it may be preferable to construct a confidence
interval for log λj. By the delta method,

√
n(log λ̂j − log λj)

D→ N(0, Wjj/λ
2
j ).

If the population is normal, then the natural logarithm is a variance stabilizing transfor-
mation since Wjj/λ

2
j = 2, and in such a case, an approximate confidence interval for log λj

with confidence coefficient 1 − α is given by log λ̂j ± zα/2
√

2/n. In the general case, an

approximate confidence interval for log λj is log λ̂j ± zα/2

√
Ŵjj/(nλ̂2

j ).

Estimation of πk = (λ1 + · · · + λk)/(λ1 + · · · + λp)
Recall that πk is the proportion of variability of Y explained by the first k principal
components. An estimate of πk is

π̂k = (λ̂1 + · · · + λ̂k)/(λ̂1 + · · · + λ̂p)

= (λ̂1 + · · · + λ̂k)/trace(S).

In order to obtain a confidence interval for πk, we need to find the asymptotic distribution
of π̂k. Let

g(λ) = (λ1 + · · · + λk)/(λ1 + · · · + λp)

and let g1(λ) be the vector of partial derivatives of g. By the delta method,

√
n(π̂k − πk)

D→ N(0, g1(λ)T Wg1(λ)) as n → ∞.
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12.10 Factor Analysis
Let Y be a p-dim vector with mean μ and covariance matrix Σ . A factor model with k
common factors (k ≤ p) is

Y − μ = Lf + ε or Y = μ + Lf + ε, (3)

where L is a p × k matrix of factor loadings (nonrandom), f is a k × 1 vector of common
factors (random), and ε is a p × 1 vector of specific factors (random). We assume that

E[f ] = 0, Cov[f ] = I , E[ε] = 0, Cov[ε] = Ψ , and Cov[f , ε] = 0.

Here Ψ is assumed to be a diagonal matrix with positive diagonal elements ψ1, . . . , ψp.
Note that if the factor model is correct, then E[Y ] = μ and Cov[Y ] = LLT +Ψ . The goal of

factor analysis is to approximate the covariance matrix Σ by a matrix of the form LLT + Ψ ,
where L is p×k and Ψ is a diagonal matrix with positive diagonal elements. In other words,
factor analysis can be viewed as a dimensionality reduction method, and, in order for this
method to be useful, k should be as small as possible (at least in comparison to p).

Let Yi be the ith component of Y . If the factor model is correct, then E[Yi] = μi and

Var[Yi] = l2
i1 + · · · + l2

ik + ψi = h2
i + ψi, i = 1, . . . , p,

where h2
i = l2

i1 + · · · + l2
ik is called the “communality” and ψi is called the specific variance.

It is important to note that the factor model in Eq. (3) is not identifiable. If G is a k × k
orthogonal matrix and L̃ = LG, then we can write

Y − μ = Lf + ε = L̃f̃ + ε,

where f̃ = GT f . Note that E[f̃ ] = 0 and Cov[f̃ ] = I , and

Cov[Y ] = LLT + Ψ = L̃L̃
T + Ψ .

12.10.1 Estimation of L and Ψ

Let Y 1, . . . , Y n be a random sample from a population with mean μ and covariance matrix
Σ . As usual the mean vector is estimated by the sample mean. The goal is to estimate
L and Ψ from the data assuming that the factor model given in Eq. (3) is appropriate
(ie, Cov[Y ] = LLT + Ψ ). The following two methods are widely used for estimating
L and Ψ :

(a) principal components,
(b) maximum likelihood.

Principal Factor Analysis

Let λ̂1 ≥ · · · ≥ λ̂p be the eigenvalues of the sample covariance matrix S with
the corresponding orthonormal eigenvectors û1, . . . , ûp. Then the p × k matrix
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L̂ = [λ̂1/2
1 û1, . . . , λ̂1/2

k ûk] is taken to be an estimate of L, that is, the columns of L̂ are

l̂j = λ̂
1/2
j ûj, j = 1, . . . , k, and hence L̂L̂

T = ∑k
j=1 λ̂jûjû

T
j . Here

ĥ2
i = l̂2

i1 + · · · + l̂2
ik, ψ̂i = sii − ĥ2

i ,

where sii is the ith diagonal element of the sample covariance matrix S. An estimate of
the proportion of total variability of Y explained by the first factor is ‖l̂1‖2/trace(S) =
λ̂1/trace(S). In general, an estimate of the proportion of total variability of Y explained by
the jth factor is λ̂j/trace(S), j = 1, . . . , k.

If the sample correlation matrix is used in the analysis instead of the sample covariance
matrix, then L̂ = [λ̂1/2

1 û1, . . . , λ̂1/2
k ûk], where λ̂1 ≥ λ̂2 ≥ · · · are the eigenvalues of the

sample correlation matrix with the corresponding normalized eigenvectors û1, û2, . . .. In
this case, ĥ2

i = l̂2
i1+· · ·+ l̂2

ik, ψ̂i = 1−ĥ2
i , and the proportion of the total variability explained

by the jth factor is λ̂j/p, j = 1, 2, . . . .

Maximum Likelihood

This method typically assumes that Y 1, . . . , Y n are iid Np(μ, Σ). The maximum likelihood
estimates of L and Ψ are obtained by maximizing the likelihood under the constraint that
LΨ −1L is a diagonal matrix. This constraint eliminates the problem of nonuniqueness
of the factor loading matrix L. Explicit expression for the estimates are not available.
However, computer packages such R or MATLAB can be used to obtain the estimates of
L and Ψ . Estimate of the proportion of the total variability explained by the jth factor is
‖l̂j‖2/trace(S), j = 1, . . . , k, where l̂1, . . . , l̂k are the columns of L̂.

If the correlation matrix is used in the analysis, the estimate of the proportion of the
total variability explained by the jth factor is ‖l̂j‖2/p, j = 1, . . . , k.

How Many Factors

Since we are trying to estimate Σ by a matrix of the form LLT + Ψ , a reasonable way to

determine k is to examine the residual matrix S − (L̂L̂
T + Ψ̂ ). If all the elements of the

residual matrix are small, then we may assume that LLT +Ψ is a good approximation to Σ .
A more formal way to decide the number of factors is to minimize an AIC-type criterion
over k. However, we do not address that issue here.

Factor Rotation

If L̂ is an estimate of the factor loading matrix L and L̂∗ = L̂G, where G is a k ×k orthogonal

matrix, then L̂L̂
T + Ψ̂ = L̂∗L̂

T
∗ + Ψ̂ . So we may take L̂∗ to be also a valid estimate of L .

It has been suggested that one should choose L̂∗ so that for each column of L̂∗, some of
the elements are relatively large and the rest are small. Kaizer’s Varimax Rotation tries to
achieve this. The procedure is described below.
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Let l̃∗ij = l̂∗ij/ĥi, j = 1, . . . , k , i = 1, . . . , p, where l̂∗ij is the jth element in the ith row

of L̂∗. Now consider the p × k matrix L̃∗ whose elements are given by l̃∗ij’s. Note that each

row of L̃∗ has length 1 since for any 1 ≤ i ≤ p,
∑k

j=1 l̃2
∗ij = 1 . We consider a criterion

which maximizes the variability of the squares of the elements in each column of L̃∗. For

1 ≤ j ≤ k, consider a measure of the variability of
{

l̃2
∗1j, . . . , l̃2

∗pj

}

(1/p)
p∑

i=1

⎧⎪⎨⎪⎩l̃4
∗ij −

⎛⎝∑
i

l̃2
∗ij/p

⎞⎠2
⎫⎪⎬⎪⎭.

Now add these measures over j = 1, . . . , k, to obtain the following criterion

Q =
k∑

j=1

(1/p)
p∑

i=1

⎧⎪⎨⎪⎩l̃4
∗ij −

⎛⎝∑
i

l̃2
∗ij/p

⎞⎠2
⎫⎪⎬⎪⎭

=
k∑

j=1

[
variance of

{
l̃2
∗ij: i = 1, . . . , p

}]
.

We can maximize Q in order to obtain L̂∗ which is a rotated version of L̂. There is no explicit
expression for the rotated matrix, but one can obtain this estimate by using a computer
package.

12.10.2 Prediction of Common Factors

Prediction of common factors in a factor analysis setting is similar to prediction in a
random- or mixed-effect model discussed in Section 11.10 of Chapter 11. Assume that the
factor model in Eq. (3) holds, μ, L, and Ψ are known (or estimated using past observations),
then the goal is to predict f when Y is observed. We restrict ourselves to predictors which
are linear functions of Y . A predictor f̂ of f is called unbiased if E[f̂ −f ] = 0. In the following
discussion we assume that L has rank k, and the diagonal elements of Ψ are positive. Since
we can center Y by subtracting the mean μ, we assume that μ = 0 in the subsequent
discussion.

If we ignore that f is random and minimize the ordinary least squares criterion ‖Y −Lf ‖
with respect to f , we get a predictor of the form f̂

(1) = (LT L)−1LT Y . Similarly, we may try
to obtain a weighted least squares predictor of f as follows. If we premultiply both sides of
Eq. (3) by Ψ −1/2, we get model of the form Ỹ = Lf + ε̃, where Ỹ = Ψ −1/2Y , L̃ = Ψ −1/2L,
and ε̃ = Ψ −1/2ε. Noting that E[ε̃] = 0 and Cov[ε̃] = I , we may minimize ‖Ỹ − L̃f ‖2 =
(Y − Lf )T Ψ −1(Y − Lf ) with respect to f , and this leads to another linear predictor f̂

(2) =
(LT Ψ −1L)−1LT Ψ −1Y . Both f̂

(1)
and f̂

(2)
are unbiased linear predictors of f , but they are not

the best in terms of prediction error.
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As in Section 11.10 of Chapter 11, we may define the concept of best linear unbiased
predictor as follows.

Definition 12.10.1. A linear function f̂ of Y is called a best linear unbiased predictor of
f if

(i) f̂ is an unbiased predictor of f , that is, E
[

f̂ − f
]

= 0 .

(ii) For any a ∈ R
k, E

[
aT f̂ − aT f

]2 ≤ E
[

lT Y − aT f
]2

for all linear unbiased predictors

lT Y of aT f , l ∈ R
p.

Arguments used in Sections 11.10.1 and 11.10.2 lead to the following best linear
predictor

f̂
(3) =

(
LT Ψ −1L + I

)−1
LT Ψ −1Y .

We leave it to the reader to prove that the best linear unbiased predictor of f is unique and

is equal to f̂
(3)

as given above.

12.11 Classification and Discrimination
Suppose that we have k populations (each p-dim) with means μ1, . . . , μk and the same
covariance matrix Σ . If we have an observation vector y from one of these populations,
then the goal of the classification problem is to guess which population y comes from. If y is
closer to μi than all other means, then a reasonable guess is that y comes from population
i. It turns out that this intuition is also mathematically valid. Recall that Mahalanobis
distance between y and μi is �2(y, μi) = (y − μi)

T Σ−1(y − μi). So a reasonable rule is:
allocate y to population i if

�2(y, μi) < �2(y, μj), for all j �= i, ie, (4)

− 2μT
i Σ−1y + μT

i Σ−1μi < −2μT
j Σ−1y + μT

j Σ−1μj, for all j �= i.

This is called a linear discriminant rule since the criterion for discrimination between the
populations depends linearly on y.

In some cases, the prior probabilities {π1, . . . , πk} of the populations need to be taken
into account. For such a case, the rule given above is modified: now we allocate y to
population i if

�2(y, μi) − 2 log πi < �2(y, μj) − 2 log πj, for all j �= i. (5)

Note that the rule defined by the inequalities given in (5) is also a linear discriminant rule,
and the rule in (4) is a special case of the rule in (5) when the prior is noninformative, that
is, when π1 = π2 = · · · = πk = 1/k.

Note. If the k populations have different covariance matrices, then the rules defined by
the inequalities in (4) and (5) need to be modified, and, in such a case, we are led to what
is known as a quadratic discriminant rule. We discuss this issue below.
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12.11.1 Bayes’ Rule for Classification

Let us assume that the chance that the random vector Y is from population i (with pdf fi)
is πi, i = 1, . . . , k, where π1 + · · · + πk = 1. Let J be a discrete variable taking values 1, . . . , k,
with P[J = i] = πi. In this framework, the conditional pdf of Y given J = i is fi. The marginal
pdf of Y is f (y) = π1f1(y)+· · ·+πkfk(y), and the conditional probability of J = i given Y = y
is P[ J = i|Y = y] = πifi(y)/f (y). Given an observation vector Y = y, the decision rule is to
allocate y to population i if

P[J = i|Y = y] > P[J = j|Y = y], for all j �= i, ie,

πifi(y) > πjfj(y), for all j �= i. (6)

This is known as the Bayes’ rule for classification, and it is the “best” rule as will be
discussed below.

12.11.2 The Normal Case

We now discuss the case where the populations are Np(μi, Σ i)i = 1, . . . , k. If the popula-
tions have the same covariance matrix, that is, Σ1 = · · · = Σk = Σ , then we are led to the
linear discriminant rule. Otherwise, we have a quadratic discriminant rule.
Case I: Σ1 = · · · = Σk = Σ .

The pdf of the jth population is

fj(y) =
(

1/
√

2π
)p

(1/|Σ |1/2) exp
[
−(1/2)(y − μj)T Σ−1(y − μj)

]
.

According to the Bayes’ rule given in Eq. (6), allocate y to population i if, for all j �= i,

πifi(y) > πjfj(y), ie,

−2 log fi(y) − 2 log πi < −2 log fj(y) − 2 log πj, ie,

(y − μi)T Σ−1(y − μi) − 2 log πi < (y − μj)T Σ−1(y − μj) − 2 log πj.

This is precisely the rule defined by the inequalities given in (5). If π1, . . . , πk are
unknown, one often assumes that the prior is noninformative, that is, π1 = · · · =
πk = 1/k. In such a case, we are led to the rule given in (4).

Case II: Σ1, . . . , Σk not the same.

The pdf of the jth population is

fj(y) =
(

1/
√

2π
)p(

1/|Σ j|1/2
)

exp
[
−(1/2)(y − μj)T Σ−1

j (y − μj)
]

.

According to the Bayes’ rule given in Eq. (6) allocate y to population i if, for all j �= i,

πifi(y) > πjfj(y), ie,

− 2 log fi(y) − 2 log πi < −2 log fj(y) − 2 log πj, ie,

(y − μi)T Σ−1
i (y − μi) + log |Σ i| − 2 log πi

< (y − μj)T Σ−1
j (y − μj) + log |Σ j| − 2 log πj.



416 THEORY AND METHODS OF STATISTICS

This is called the quadratic discriminant rule. Note that unlike the case Σ1 = · · · =
Σk, the quadratic terms involving y do not cancel out.

12.11.3 Sample Estimates

Suppose that we have ni observations from population i, i = 1, . . . , k . Then we can
estimate the population means μ1, . . . , μk. Let Si be the sample covariance matrix on the
basis of ni observations from population i.

Linear Discriminant Rule
In order to apply the linear discriminant rule, we need an estimate of Σ in addition to the
estimates of μ1, . . . , μk. Recall that an unbiased estimate of Σ is given by

S = Spooled = 1
n − k

[(n1 − 1)S1 + · · · + (nk − 1)Sk],

where n = n1 + · · · + nk is the total number of observation vectors.
If π1, . . . , πk are known (or if they are estimated), then the discriminant rule is: allocate

y to population i if, for all j �= i

(y − μ̂i)T S−1(y − μ̂i) − 2 log πi < (y − μ̂j)T S−1(y − μ̂j) − 2 log πj, ie,

−2μ̂T
i S−1y + μ̂T

i S−1μ̂i − 2 log πi < −2μ̂T
j S−1y + μ̂T

j S−1μ̂j − 2 log πj.

This rule is simplified when the prior is noninformative since the terms involving {log πi}
cancel out.

Remark 12.11.1. In some cases it may be possible to estimate π1, . . . , πk. Suppose the
observations in the sample are (Jt , Y t), t = 1, . . . , n, where Jt are iid. In such a case, ni =
{# of Jt = i} is random, and (n1, . . . , nk) is Multinomial(n; π1, . . . , πk). We can then use the
estimate π̂j = nj/n (or π̂j = (nj + 1/2)/(n + 1/2)) of πj in the classification rule.

Quadratic Discriminant Rule
The quadratic discriminant rule is: allocate y to population i if, for all j �= i,

(y − μ̂i)T S−1
i (y − μ̂i) + log |Si| − 2 log πi

< (y − μ̂j)T S−1
j (y − μ̂j) + log |Sj| − 2 log πj.

One big drawback of the quadratic discriminant rule is that we need to estimate Σ1, . . . , Σk

which is equivalent to estimating kp(p + 1)/2 parameters of the covariance matrices.
This can lead to inefficiencies especially if p(p + 1)/2 is not small in comparison to
min{n1, . . . , nk}. A plausible remedy is to estimate Σ i by shrinking Si toward S, the pooled
estimate constructed in the linear discriminant rule (ie, estimate Σ i by Σ̂ i = (1−αi)Si+αiS,
0 ≤ αi ≤ 1). One can then carry out a quadratic discriminant rule using {Σ̂ i} instead of
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{Si}. The constants {αi} need to be estimated from the data, and methods for doing this
include:

(i) minimizing an AIC-type criterion, and
(ii) minimizing a cross-validation type criterion.

12.11.4 Probability of Misclassification

Let Y be a p-dim random vector which comes from one of the k populations with pdf’s
f1, . . . , fk. As before assume that π1, . . . , πk are the prior probabilities which may or may
not be noninformative. If d(Y ) is a function from R

p to the set {1, . . . , k}, then it is called
a classifier or a classification function. If d(Y ) = i, then the classifier d allocates Y to
population i. Now if Y is actually from population i, but the classifier allocates it to
population j (ie, d(Y ) = j, j �= i), then there is a misclassification. Given that Y is from
population i, the probability of misclassification is

P[d(Y ) �= i|J = i] =
∑
j �=i

P[d(Y ) = j|J = i].

So the total probability of misclassification for the classifier is

P[d(Y ) �= J] =
k∑

i=1

P[d(Y ) �= i|J = i]P[J = i]

=
k∑

i=1

P[d(Y ) �= i|J = i]πi.

The following result states that the classification rule defined by the inequalities given in
(6) has the smallest total probability of misclassification among all classifiers.

Theorem 12.11.1. Let d∗ be the Bayes’ rule for classification defined by the inequalities
given in (6) that is,

d∗(y) = i if πifi(y) > πjfj(y) for all j �= i, i = 1, . . . , k.

If D is the set of all classifiers from R
p to {1, . . . , k}, then mind∈D P[d(Y ) �= J] = P[d∗(Y ) �= J].

Remark 12.11.2. Note that when πifi(y) = πjfj(y) for some i �= j, there may be an ambi-
guity in how to classify y. If Y has a continuous distribution, then P

[
πifi(Y ) = πjfj(Y )

] = 0
for any j �= i. For this reason, the definition of d∗ as given above is adequate for continuous
distributions.

Proof of Theorem 12.11.1. Since P[d(Y ) �= J] = 1 − P[d(Y ) = J], it is enough to show that
for any classification rule d,

P[d(Y ) = J] ≤ P[d∗(Y ) = J].
Note that P[d(Y ) = J] = E[P{d(Y ) = J|Y }]. We will show that for classification rule d

P[d(Y ) = J|Y ] ≤ P[d∗(Y ) = J|Y ].
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In the calculation of the conditional probability P[d(Y ) = J|Y ], we may assume that d(Y )
is fixed since Y is fixed. Hence

P[d(Y ) = J|Y ] =
k∑

i=1

I(d(Y ) = i)P[J = i|Y ],

where I is the indicator function such that I(u = v) = 1 if u = v and = 0 otherwise. Assume
that the maximum of P[J = i|Y ], over i = 1, . . . , k, is attained at i∗. Hence by definition,
d∗(y) = i∗. So I(d∗(Y ) = i) is equal to 0 or 1 depending on whether i �= i∗ or i = i∗. Hence

P[d(Y ) = J|Y ] =
k∑

i=1

I(d(Y ) = i)P[J = i|Y ]

≤
k∑

i=1

I(d(Y ) = i)P[J = i∗|Y ] = P[J = i∗|Y ]

=
k∑

i=1

I(d∗(Y ) = i)P[J = i|Y ] = P[d∗(Y ) = J].

This concludes the proof of this result.

12.11.5 Classification: Fisher’s Method

This method does not require the normality assumption and is flexible enough to provide
nonlinear classification rules. Suppose that we have ni observations vectors {Y ij: j =
1, . . . , ni} from population i, i = 1, . . . , k. If e is in R

p, then we have a one-factor ANOVA
model

eT Y ij = eT μi + eT εij, j = 1, . . . , ni, i = 1, . . . , k,

and R2(e), the coefficient of determination (given in Eq. (1)), is

R2(e) = eT Be

eT Te
= eT Be

eT Be + eT We
= (eT Be)/(eT We)

(eT Be)/(eT We) + 1
,

where B, W , and T are the between group, within group, and total SSP matrices, re-
spectively. Maximizing R2(e) with respect to e leads to a generalized eigenvalue problem
(Section B.4). Now maximizing R2(e) is equivalent to maximizing the ratio eT Be/eT We
which in turn is equivalent to maximizing eT Be/eT Se, where S = (n − k)−1W is the pooled
covariance matrix (n = n1 + · · · + nk).

Let λ̂1 ≥ λ̂2 ≥ · · · be the eigenvalues of B with respect to S (ie, these are the
eigenvalues of S−1/2BS−1/2). Let û1, û2, . . . be the corresponding orthonormal eigenvectors
of S−1/2BS−1/2. If êj = S−1/2ûj, j = 1, 2 . . ., then êT

j Sêj = 1 for all j, and êT
i Sêj = 0 whenever

i �= j. Since s = rank(B) = min(k − 1, p), λ̂1 ≥ · · · ≥ λ̂s > 0 and λ̂s+1 = · · · = λ̂p = 0. We will

call Z1 = êT
1 Y the first discriminant, Z2 = êT

2 Y the second discriminant, and so on. The
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vector of discriminants Z is given by (êT
1 Y , . . . , êT

s Y )T . If we write Z ij = (êT
1 Y ij, . . . , êT

s Y ij)T ,
then we can write an approximate MANOVA model

Z ij = θ̃ i + δij, j = 1, . . . , ni, i = 1, . . . , k,

where θ̃ i = (êT
1 μi, . . . , êT

s μi)
T , and for each i, sample means and sample covariance matrix

of {Z ij} are {θ̃ i} and I , respectively.

Method of Classification
Suppose y is from one of the k populations and we need to classify it. Let z =
(êT

1 y, . . . , êT
s y)T be the vector of discriminant scores of y. Let θ̂ i = (êT

1 μ̂i, . . . , êT
s μ̂i)

T .
Allocate y to population i if

‖z − θ̂ i‖2 < ‖z − θ̂ j‖2 for all j �= i.

If it is decided to use q discriminants (q < s), then we create a vector z = (êT
1 y, . . . , êT

q y)T

using the first q discriminants and let θ̂ i = (êT
1 μ̂i, . . . , êT

q μ̂i)
T be the corresponding sample

means. Then the rule is: allocate y to population i if

‖z − θ̂ i‖2 < ‖z − θ̂ j‖2 for all j �= i.

In practice, the decision to use the first q discriminants is usually based on how close the
ratio π̂q = (λ̂1 +· · ·+ λ̂q)/(λ̂1 +· · ·+ λ̂s) is to 1, and this approach makes intuitive sense since
π̂q is an estimate of the proportion of variability in Y explained by the first q discriminants.

Connection to Linear Discriminant Rule
The linear discriminant rule is not necessarily the same as Fisher’s. These two rules are the
same if all the discriminants are used (ie, number of discriminants is equal to s = rank(B))
in Fisher’s method and the prior is noninformative.

Lemma 12.11.1. Fisher’s classification rule with s = rank(B) discriminants is equivalent
to the linear discriminant rule with a noninformative prior (ie, π1 = · · · = πk = 1/k).

Proof of Lemma 12.11.1. Recall that λ̂1 ≥ λ̂2 ≥ · · · are the eigenvalues of S−1/2BS−1/2

with the corresponding orthonormal eigenvectors û1, û2, . . .. Set êl = S−1/2ûl, l = 1, . . . , p.
Since λ̂l = 0 for l ≥ s + 1, we have for any l ≥ s + 1

0 = ûT
l S−1/2BS−1/2ûl = êT

l Bêl =
∑

1≤i≤k

ni(êT
l Y i· − êT

l Y ··)2.

Hence, êT
l Y i· = êT

l Y ·· whenever l ≥ s + 1. For 1 ≤ i ≤ k, and any y in R
p,

(y − Y i·)T S−1(y − Y i·)
= ‖S−1/2(y − Y i·)‖2

=
p∑

l=1

{ûT
l S−1/2(y − Y i·)}2 ({û1, . . . , ûp} is an orthonormal basis of Rp)
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=
p∑

l=1

{êT
l (y − Y i·)}2 =

∑
1≤l≤s

{êT
l (y − Y i·)}2 +

∑
s+1≤l≤p

{êT
l (y − Y i·)}2

=
s∑

l=1

{êT
l (y − Y i·)}2 +

p∑
l=s+1

{êT
l (y − Y ··)}2

= ‖z − θ̂ i‖2 +
p∑

l=s+1

{êT
l (y − Y ··)}2,

where z = (êT
1 y, . . . , êT

s y)T and θ̂ i = (êT
1 μ̂i, . . . , êT

s μ̂i)
T . Note that the second sum in the last

expression does not depend on i. So comparing (y − Y i·)T S−1(y − Y i·) to (y − Y i′·)T S−1(y −
Y i′·), i �= i′, is equivalent to comparing ‖z − θ̂ i‖2 to ‖z − θ̂ i′ ‖2.

This argument shows that, for the noninformative prior, the linear discriminant rule is
equivalent to Fisher’s rule if the number of discriminants used by Fisher’s method is equal
to rank(B).

12.12 Canonical Correlation Analysis
Canonical correlation analysis is a descriptive method that seeks to obtain measures of
association between two sets of multivariate observations. Let X be q × 1 and Y be p × 1
random vectors with means μX and μY , respectively. Assume that the covariance matrix of(

X
Y

)
is
(

Σ11 Σ12

Σ21 Σ22

)
,

Σ11 = Cov[X ], Σ22 = Cov[Y ], and Σ12 = Cov[X , Y ] = ΣT
21.

Assume that Σ11 and Σ22 are nonsingular.
The goal is to find linear functions aT X and bT Y , a ∈ R

q and b ∈ R
p, which

maximize the correlation between aT X and bT Y . Clearly, we can rescale a and b so that
Var[aT X ] = Var[bT Y ] = 1 (ie, aT Σ11a = bT

Σ22b = 1). In such a case, Corr[aT X , bT Y ] =
aT Σ12b.

If Corr[aT X , bT Y ] ≤ 0, then the correlation between −aT X and bT Y is nonnegative.
This shows that maximizing the absolute value of Corr[aT X , bT Y ] is equivalent to maxi-
mizing Corr[aT X , bT Y ].

Let λ1 ≥ λ2 ≥ · · · be the eigenvalues of the matrix Σ
−1/2
11 Σ12Σ

−1
22 Σ21Σ

−1
11 with u1, u2, . . .

as the corresponding orthonormal eigenvectors. Let

ρi = λ
1/2
i , ai = Σ

−1/2
11 ui, and bi = ρ−1

i Σ−1
22 Σ21ai, (7)

i = 1, . . . , k = min(p, q). Then ρ1 ≥ ρ2 ≥ · · · are called the canonical correlations, aT
1 X ,

aT
2 X , . . . are called the canonical variates of X , and bT

1 Y , bT
2 Y , . . . are called the canonical

variates of Y . Detailed arguments are given in Section 12.12.4.
The following result summarizes the key ideas.



Chapter 12 • Multivariate Analysis 421

Theorem 12.12.1. Let {ρi}, {ai}, and {bi} be as given in Eq. (7). Then the following
hold:

(a) Var[aT
i X ] = Var[bT

i Y ] = 1, i = 1, . . . , k.

(b) When i �= j, Cov[aT
i X , aT

j X ] = 0, Cov[bT
i Y , bT

j Y ] = 0, and Cov[aT
i X , bT

j Y ] = 0.

(c) Corr[aT
i X , bT

i Y ] = ρi, i = 1, . . . , k.

Proof of this result is given in Section 12.12.4. We now write down two more results on
canonical correlations.

Theorem 12.12.2. Let {ρi}, {ai}, and {bi} be as in Theorem 12.12.1. Then:

(a) maxaT Σ11a=1, bT Σ22b=1 Corr[aT X , bT Y ] = Corr[aT
1 X , bT

1 Y ] = ρ1.

(b) Under the constraints aT Σ11ai, i = 1, . . . , r − 1,
maxaT Σ11a=1, bT Σ22b=1 Corr[aT X , bT Y ] = Corr[aT

r X , bT
r Y ] = ρr , r = 2, . . . , k.

Proof of Theorem 12.12.2 is not given since it is basically a restatement of Theorem B.4.1
given in Appendix B. The following result on invariance of canonical correlations under
nonsingular linear transformations is left as an exercise.

Lemma 12.12.1 (Invariance). If X̃ = c + UX and Ỹ = d + V Y , where U is q × q and
nonsingular, V is p × p and nonsingular, and c, d, U , and V are nonrandom, then the
canonical correlations between X̃ and Ỹ are the same as those between X and Y . Moreover,
if {ai} and {bi} are the canonical vectors of X and Y , then ãi = {U−1}T ai and b̃i = {V −1}T bi

are the canonical vectors of X̃ and Ỹ , respectively, i = 1, . . . , k.

12.12.1 Sample Estimates

Let (X t , Y t), t = 1, . . . , n, be the n pairs of vector observations, and let S11 and S22 be the
sample covariance matrices of {X t} and {Y t}, respectively. Set S12 = 1

n−1

∑
(X t −X̄ )(Y t −Y )T

and S21 = ST
12.

Let λ̂1 ≥ λ̂2 ≥ · · · be the eigenvalues of the matrix S−1/2
11 S12S−1

22 S21S−1
11 with û1, û2, . . . as

the corresponding orthonormal eigenvectors. Let

ρ̂i = λ̂
1/2
i , âi = S−1/2

11 ûi, and b̂i = ρ̂−1
i S−1

22 S21âi,

i = 1, . . . , k = min(p, q). Then

ρ̂1 ≥ ρ̂2 ≥ · · · are the estimated canonical correlations,
âT

1 X , âT
2 X ,. . . are the estimated canonical variates of X , and

b̂
T
1 Y , b̂

T
2 Y ,. . . are the estimated canonical variates of Y .

12.12.2 Test for Σ12 = 0

Are X and Y uncorrelated? The likelihood ratio statistic for testing H0: Σ12 = 0 against
H1: Σ12 �= 0 is
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λ = |I − S−1
22 S21S−1

11 S12|n/2 = {(1 − ρ̂2
1 ) · · · (1 − ρ̂2

k)}n/2 = Λn/2,

where Λ = (1 − ρ̂2
1 ) · · · (1 − ρ̂2

k ) is Wilks’ lambda. Under H0,

− [n − (p + q + 3)/2)] log Λ
D→ χ2

pq,

as n → ∞.
If we want to test that only m < k of the population canonical correlations are non-

negative, then the test is based on the statistic Λ = (1 − ρ̂2
m+1) · · · (1 − ρ̂2

k ). Then under
H0: ρm+1 = · · · = 0,

− [n − (p + q + 3)/2] log Λ
D→ χ2

(p−m)(q−m),

as n → ∞.
Example 12.12.1. Scores of n = 88 students in five subjects are given in Mardia

et al. [61]. The subjects are Mechanics (C), Vectors (C), Algebra (O), Analysis (O), and
Statistics (O).

Here “C” and “O” stand for closed- and open-book examinations. The goal is to
find canonical correlations between open- and closed-book scores. Let X be the vector
closed-book marks and Y be the vector of open-book marks. The sample covariance
matrix is

S =

⎛⎜⎜⎜⎜⎝
302.3 125.8 100.4 105.1 116.1

170.9 84.2 93.6 97.9
111.6 110.8 120.5

217.9 153.8
294.4

⎞⎟⎟⎟⎟⎠.

Here q = 2 and p = 3, and so k = min(q, p) = 2.
The canonical correlations are ρ̂1 = 0.6630 and ρ̂2 = 0.0412. The first canonical

scores are

âT
1 X = 0.0260X1 + 0.0518X2, and b̂

T
1 Y = 0.0824Y1 + 0.0081Y2 + 0.0035Y3.

12.12.3 Cross-Classified Data and Canonical Correlation

Consider the 5 × 5 contingency table given below on the occupational status of n =
3497 father-son pairs. Data sets of this type have been analyzed by many authors in
order to investigate issues of intergenerational mobility. Note that occupational status is
a qualitative variable and its numbering of 1 through 5 is purely descriptive. Can we assign
numerical values for father’s and son’s status so that they can be treated as “quantitative”
variables? This issue will be addressed here using canonical correlation analysis.

Suppose that we have an r × c contingency table with cell counts {nij} and the total is
n = ∑∑

nij. For i = 1, . . . , r, and j = 1, . . . , c, create the following indicator variables,
t = 1, . . . , n,
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Xti =
{

1 if individual t belongs to the ith row category

0 otherwise

Ytj =
{

1 if individual t belongs to the jth column category

0 otherwise.

Thus the observations are (X t , Y t) , t = 1, . . . , n, where X t = (Xt1, . . . , Xtr)T and
Y t = (Yt1, . . . , Ytc)T . Suppose the numerical values for father’s status and son’s status
are a1, . . . , ar and b1, . . . , bc, respectively (here r = c = 5). We wish to find {aj} and {bj}
so that the correlation between father’s and son’s status is maximized and this is done by
employing canonical correlation analysis. Since X has only one nonzero component, aT X
takes one of the r values a1, . . . , ar . Similarly, bT Y takes one of the c values b1, . . . , bc. Thus
a father-son pair has a bivariate score (ai, bj), if the father is in the ith row category and the
son is in the jth column category. We can now find a = (a1, . . . , ar)T and b = (b1, . . . , bc)T

to maximize Corr[aT X , bT Y ].
Social mobility data: n = 3497

Father’s Status Subject’s Status Total Percent

1 2 3 4 5

1 50 45 8 18 8 129 3.7

2 28 174 84 154 55 495 14.2

3 11 78 110 223 96 516 14.8

4 14 150 185 714 447 1510 43.2

5 0 42 72 320 411 845 24.2

Total 103 489 459 1429 1017 3497

Percent 2.9 13.9 13.1 40.9 29.1

Classes: 1 = professional, 2 = intermediate, 3 = skilled, 4 = semiskilled, 5 = unskilled.

The first canonical correlation is ρ̂1 = 0.504. The canonical scores are given below

Father’s Status 1 2 3 4 5

0 3.15 4.12 4.55 4.96

Son’s Status 1 2 3 4 5

0 3.34 4.49 4.87 5.26

Scores seem to be increasing for both the father and the son. Father’s scores seem to be
correlated to son’s scores. Social Classes 1 and 2 seem to be more distinct from one another
than other adjacent social classes, both for the son’s and the father’s.
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12.12.4 Technical Notes

Derivation of Canonical Correlations
The following lemma is useful and it is similar to a result in Section B.1.

Lemma 12.12.2. Let w be in R
m. Then max‖a‖=1 wT a = ‖w‖, and the maximum is

attained at a = w/‖w‖.
Now let us find the canonical correlations and the corresponding canonical vectors.

Since aT Σ11a = bT
Σ22b = 1, we have

Corr[aT X , bT Y ] = Cov[aT X , bT Y ] = aT Σ12b.

Making a change of vector v = Σ
1/2
22 b, we have

max
bT Σ22b=1

Corr[aT X , bT Y ) = max‖v‖=1
aT Σ12Σ

−1/2
22 v

= ‖Σ−1/2
22 Σ21a‖ = (aT Σ12Σ−1

22 Σ21a)1/2,

and this maximum occurs at v = Σ
−1/2
22 Σ21a/‖Σ−1/2

22 Σ21a‖, that is, at b = Σ−1
22 Σ21a/

‖Σ−1/2
22 Σ21a‖.

Now making a change of vector u = Σ
1/2
11 a, we get

max
aT Σ11a=1

aT Σ12Σ−1
22 Σ21a = max‖u‖=1

uT Σ
−1/2
11 Σ12Σ−1

22 Σ21Σ
−1/2
11 u.

Let λ1 ≥ λ2 ≥ · · · be the eigenvalues of Σ
−1/2
11 Σ12Σ

−1
22 Σ21Σ

−1/2
11 with u1, u2, . . . as the

corresponding orthonormal eigenvectors. So

ρi = λ
1/2
i , ai = Σ

−1/2
11 ui, and bi = Σ−1

22 Σ21ai/‖Σ−1/2
22 Σ21ai‖.

Note that

‖Σ−1/2
22 Σ21ai‖2 = aT

i Σ12Σ−1
22 Σ21ai = uT

i Σ
−1/2
11 Σ12Σ−1

22 Σ21Σ
−1/2
11 ui = ρ2

i .

Thus we have bi = ρ−1
i Σ−1

22 Σ21ai.

Proof of Theorem 12.12.1.

(a) It is easy to see that Var[aT
i X ] = aT

i Σ11ai = uT
i ui = 1.

Note that

Var[bT
i Y ] = bT

i Σ22bi = ρ−2
i aT

i Σ12Σ−1
22 Σ12ai

= ρ−2
i uT

i Σ
−1/2
11 Σ12Σ−1

22 Σ21Σ
−1/2
11 ui = ρ−2

i ρ2
i = 1.

(b) It is fairly easy to see that aT
i X and aT

j X are uncorrelated for i �= j since

Cov[aT
i X , aT

j X ] = aT
i Σ11aj = uT

i uj = 0.

Note that when i �= j, we have

Cov[bT
i Y , bT

j Y ] = bT
i Σ22bj = ρ−1

i ρ−1
j aT

i Σ12Σ−1
22 Σ21aj

= ρ−1
i ρ−1

j uT
i Σ

−1/2
11 Σ12Σ−1

22 Σ21Σ
−1/2
11 uj = 0.
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The last step follows from the fact that the eigenvectors u1, u2, . . . are orthonormal.
Similarly

Cov[aT
i X , bT

j Y ] = aT
i Σ12bj = ρ−1

j aT
i Σ12Σ−1

22 Σ21aj = 0.

The last step follows from the intermediate step in the proof for Cov[bT
i Y , bT

j Y ] = 0.
(c) Note that

Corr[aT
i X , bT

i Y ] = Cov[aT
i X , bT

i Y ]
= aT

i Σ12bi = ρ−1
i aT

i Σ12Σ−1
22 Σ21ai

= ρ−1
i uT

i Σ
−1/2
11 Σ12Σ−1

22 Σ21Σ
−1/2
11 ui = ρ−1

i ρ2
i = ρi.

Exercises
12.1. For this question, you may use the following facts: if X ∼ χ2

m, then E[X ] = m and
E[1/X ] = 1/(m − 2), m > 2
(a) Show that E[Fu,v] = v

v−2 where Fu,v has an F-distribution with df = (u, v),

v > 2. [Hint: Fu,v = R1/u
R2/v , where R1 ∼ χ2

u , R2 ∼ χ2
v , and R1 and R2 are

independent.]
(b) Let M ∼ Wp(k, Σ), where Σ is positive definite and k > p + 1. Show that

E[M] = kΣ .
(c) Let M be as in part (b). Show that E[M−1] = cΣ−1 for some constant c > 0,

and find an explicit expression for this constant. [Hint: Use Property (5) of
Wishart distribution given in Section 12.2].

12.2. Consider a repeated measures study in which, for each of the n randomly
selected subjects, an attribute (such as growth) is recorded at times t1, . . . , tp.
Thus for the ith individual, the vector of measurements is Y i = (Yi1, . . . , Yip)T .
For each of the three popular models given below, β0 is a constant, {αi} are iid
N(0, σ 2

α ), {δij} are iid N(0, σ 2
δ ):

(i) Yij = β0 + αi + τj + δij, τj’s are time effects (fixed) with
∑

τj = 0.
(ii) Yij = β0 + αi + β1tj + δij, β1 is the slope (constant).

(iii) Yij = β0 + αi + βi1tj + δij, {βi1} are iid random slopes with βi1 ∼ N(β1, σ 2
β ).

It is understood that {αi}, {βi1}, {δij} are all mutually independent. For each of the
three models above, Y 1, . . . , Y n are iid Np(μ, Σ). Explicitly obtain the elements of
μ and Σ in each of the three cases.

12.3. Let Y ∼ Np(μ, Σ) and u is a vector in R
p. Let Z = uT (Y − μ)/

√
uT Σu.

(a) If u is nonrandom, then show that Z ∼ N(0, 1).
(b) Now assume that u is a random vector which is independent of Y and

P[uT Σu = 0] = 0. Show that Z ∼ N(0, 1) and Z is independent of u.
12.4. Suppose that the growth of n randomly selected children are observed at p

different time points and let Y i be the p -dim vector of observed growths for the
ith child. Assume that εi = Y i − E[Y i] are iid Np(0, Σ), Σ unknown. It is also
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assumed that the mean growth at time t can be modeled by β0 + β1t + · · · + βdtd,
where {βj} are unknown and need to be estimated.
(a) If growth of each of the n children are observed at times t1, . . . , tp, then

E[Y i] = Dβ and obtain an explicit expression for the matrix D. Explicitly
write down −2 × log-likelihood.

(b) If the observation time points for these children are not necessarily the
same, that is, the growth of the ith child is measured at times tij, j = 1, . . . , p,
then E[Y i] = Diβ and obtain an explicit expression for Di. Explicitly write
down −2 × log-likelihood.

(c) Show that the likelihood equations (ie, the minimizers of
−2 × log-likelihood) for part (a) are

β = (DT Σ−1D)−1DT Σ−1Y , Σ = n−1
∑

(Y i − Dβ)(Y i − Dβ)T .

[Estimates of β and Σ are obtained by iterations starting with some
reasonable estimates of β and Σ . For instance one may start with an initial

estimate of β as β̂
0 = (DT D)−1DT Y and use this in the expression of Σ (in

the likelihood equations) to get an intial estimate Σ̂
0

of Σ .]
(d) Show that the likelihood equations (ie, the minimizers of

−2 × log-likelihood) for part (b) are

β =
(∑

DT
i Σ−1Di

)−1(∑
DT

i Σ−1Y
)

,

Σ = n−1
∑

(Y i − Diβ)(Y i − Diβ)T .

12.5. Let Y 1, . . . , Y n be iid Np(μ, Σ), but assume that Σ is known. The statistic

T 2
0 = n(Ȳ − μ0)T Σ−1(Y − μ0) may be used for testing H0: μ = μ0 against

H1: μ �= μ0.
(a) Find the distribution of T 2

0 under H0. If H0 is not true, what is the
distribution of T 2

0 ?
(b) Show that E

[
T 2

0

] = p + n(μ − μ0)T Σ−1(μ − μ0), when the true mean is μ.
12.6. Let Y 1, . . . , Y n be iid Np(μ, Σ). Consider the problem of testing H0: μ = μ0

against H1: μ �= μ0. Then the Hotelling’s T 2 statistic is T 2 = n(Y − μ0)T

S−1(Y − μ0), where S is the sample covariance matrix. For a in R
p, we denote

Y (a) = aT Y , μ(a) = aT μ, ε(a) = aT ε, μ0(a) = aT μ0, and s(a)2 = aT Sa.
(a) Consider the univariate model Yi(a) = μ(a) + εi(a). Then for the problem of

testing H0: μ(a) = μ0(a) against H1: μ(a) �= μ0(a), we may use the t-statistic
t(a) = √

n(Y (a) − μ0(a))/s(Ȳ (a)), where s2(Ȳ (a)) = aT Sa/n. Show that
maxa �=0 t(a)2 = T 2.

(b) Show that E[T 2] = p(n−1)
n−p−2 when H0 is true.

(c) Show that E[T 2] = n(n−1)
n−p−2 (μ − μ0)T Σ−1(μ − μ0) + p(n−1)

n−p−2 . Show that

E[T 2] = p(n−1)
n−p−2 when and only when H0 is true.



Chapter 12 • Multivariate Analysis 427

12.7. Let Y 1, . . . , Y n be iid Np(μ, Σ). Let θi = μi+2 − 2μi+1 + μi, i = 1, . . . , p − 2.
Suppose that we are interested in testing H0: θ = 0 against H1: θ �= 0, where θ is
the (p − 2)-dim vector consisting of elements θ1, . . . , θp−2. [This kind of testing
may be important in growth analysis where we may want to test if μi’s are linear
in i.]
(a) Express θ as a linear function Dμ of μ by finding a matrix D explicitly.
(b) Find the MLE θ̂ of θ . Obtain the distribution of this estimate. Obtain an

unbiased estimate of the covariance matrix of θ̂ .
(c) Obtain an appropriate statistic for testing H0 against H1, and find the

distribution of this statistic under H0.
12.8. Let Y 1, . . . , Y n be iid N2p(μ, Σ). Let μ = (

μ1
μ2

)
where μ1 and μ2 are p-dim. We are

interested in inference on θ = μ1 − μ2. This type of issue comes up in the case of

paired observations. Assume that Σ is of the form

(
Σ11 Σ12

Σ21 Σ22

)
, where Σ11, Σ12,

Σ21, and Σ22 are p × p matrices. Similarly the sample covariance matrix

S can be written as

(
S11 S12

S21 S22

)
, where S11, S12, S21, and S22 are p × p matrices.

(a) Express θ in the form Dμ and find the matrix D explicitly. Find the MLE
of θ and then find the distribution of this estimate. Obtain the parameters
of this distribution explicitly in terms of θ , Σ11, Σ12, Σ21, and Σ22.

(b) Suppose you want to test H0: θ = 0 against H1: θ �= 0. Find the appropriate
Hotelling’s T 2-statistic and obtain its distribution under H0. Modify this test
statistic appropriately if Σ were known. Find the distribution of this modified
statistic under H0.

(c) Obtain simultaneous confidence intervals for θ1, . . . , θm with family
confidence of at least 1 −α using the Bonferroni approach. Obtain an explicit
expression for the standard error of the estimate of each θi as a combination
of the elements of the matrices S11, S12, S21, and S22.

(d) In some cases it is of interest to test H0: θ1 + · · · + θm ≤ 0 against H1: θ1 + · · ·
+ θm > 0 at a level of significance α, where m ≤ p. Obtain an appropriate
statistic for this testing problem and state the decision rule.

12.9. Consider a one-factor MANOVA model Y ij = μi +εij, j = 1, . . . , ni, i = 1, . . . , k,
where {εij} are iid Np(0, Σ). Let B, W , and T denote the between group, within
group, and total SSP matrices, respectively.
(a) Show that the matrices B, W , and T are nonnegative definite.
(b) Show that |W | ≤ |T |.
(c) Assume that T is positive definite with probability 1. Show that |W | = |T |

when and only when Y i· = Y ·· for i = 1, . . . , k. [Hint for parts (b) and (c):
Look at T−1/2WT−1/2.]

(d) Let μ = ∑
(ni/n)μi and αi = μi − μ, where n = n1 + · · · + nk. Let

α̂i = Y i· − Y ··. Show that Y ·· ∼ Np(μ, n−1Σ) and α̂i ∼ Np(αi, (n−1
i − n−1)Σ).
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(e) Let θ = ∑
ciαi be a contrast, that is, {ci} are real numbers and they satisfy

the constraint
∑

ci = 0. Let θ̂ = ∑
ciα̂i. Show that θ̂ ∼ Np

(
θ ,
∑

c2
i /niΣ

)
.

(f) First prove that E[B] = (k − 1)Σ +∑
miαiα

T
i .

Then show that E[B] = (k − 1)Σ when and only when μ1 = · · · = μk.
12.10. Consider a one-factor MANOVA model as in Exercise 12.9. Consider the

transformed data Z ij = a + AY ij, where a is a vector in R
p and A is a nonsingular

matrix of order pxp.
(a) Write down a one-factor MANOVA model for {Z ij}, that is, Z ij = θ i + δij,

where δij’s have zero means. Find the distribution of {δij}. Express θ i and
the parameters of the distribution of δij explicitly in terms of μi, a, A, and Σ .

(b) Show that the between group, within group, and total SSP matrices
for the transformed data {Z ij} are ABAT , AWAT , and ATAT , respectively.

(c) Consider the problem of testing H0: θ1 = · · · = θk against H1: not all θ i ’s
are the same. Show that the Wilks’ lambda, Pillai trace, and Roy’s largest root
statistics obtained on the basis of the data {Z ij} are the same as those for {Y ij}.

(d) When k = 2, show that the Lawley-Hotelling statistic trace(BW −1)
is equal to cT 2, for some constant c > 0, where T 2 is the two-sample
T 2-statistic for testing H0: μ1 = μ2 vs H1: μ1 �= μ2. Find the constant c.

12.11. Let Y 1, . . . , Y n be iid p-dim random vectors with mean vector μ and covariance
matrix Σ whose eigenvalues are λ1 ≥ λ2 ≥ · · · with the corresponding
orthonormal eigenvectors u1, u2, . . .. Let λ̂1 ≥ λ̂2 ≥ · · · be the eigenvalues
of the sample covariance matrix S with the corresponding orthonormal
eigenvectors û1, û2 . . . . The sample values of the jth principal component are
Ẑtj = ûT

j (Y t − Y ), t = 1, . . . , n.

(a) Show that the sample mean and sample variance of {Ẑtj: t = 1, . . . , n} are
zero and λ̂j, respectively.

(b) Show that the sample correlation of {(Ẑti, Ẑtj): t = 1, . . . , n}, i �= j, is equal
to zero.

For parts (c) and (d) assume that the population is normal and that the
eigenvalues λ1, . . . , λp are distinct.

(c) Let πk = (λ1 + · · · + λk)
/

trace(Σ) and π̂k = (λ̂1 + · · · + λ̂k)
/

trace(S) , k < p.

Let Σk = ∑k
j=1 λjujuT

j . Show that
√

n(π̂k − πk)
D→ N(0, 2τ2

k ), where

τ2
k = [

(1 − πk)2 trace(Σ2
k) + π2

k trace{(Σ − Σk)2}]/trace(Σ)2.

(d) Let θ and θ̂ be the geometric means of {λ1, . . . , λp} and {λ̂1, . . . , λ̂p},

respectively. Show that
√

n(θ̂ − θ)
D→ N(0, 2θ2/p).

12.12. Consider the factor model given in Eq. (3) and assume that L and Ψ are known and
μ = 0. Suppose it is desired to predict the vector of common factors f when Y is

given and this problem examines the three predictors f̂
(1)

, f̂
(2)

, and f̂
(3)

given in
Section 12.10.2.
(a) Show that f̂

(3)
is the best linear unbiased predictor of f .
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(b) For any a ∈ R
k, explicitly calculate E

[
aT f̂

(1) − aT f
]2

, E
[

aT f̂
(2) − aT f

]2

,

and E
[

aT f̂
(3) − aT f

]2

, and rank these three predictors f̂
(1)

, f̂
(2)

, and f̂
(3)

from the worst to the best.
12.13. Let Y ∼ Np(μ, Σ) and assume that the factor model given in Eq. (3)

holds, that is, Y = μ + Lf + ε, where L is p × k, k < p, f ∼ Nk(0, I), ε ∼ Np(0, Ψ ),
where Ψ is diagonal, and f and ε are assumed to be independent. Suppose
it is desired to predict f when Y is given and the matrices L and Ψ are known
and μ = 0.
(a) Find the conditional distribution of f given Y and show that the mean of

this conditional distribution is f̂
(3)

as given in Section 12.10.2.
(b) Using the joint distribution of Y and f , obtain an analog of the mixed

model equations given in Section 11.10.2 of Chapter 11 (assuming that L and

Ψ are known and μ = 0) and show that f̂
(3)

is the solution of this equation.
12.14. Let Y be from one of the populations Np(μ1, Σ) (population 1) or Np(μ2, Σ)

(population 2) with probabilities π1 and π2, respectively, with π1 + π2 = 1.
Consider a linear discriminant rule with prior probabilities π1 and π2. Assume
that μ1, μ2, Σ , and π1 are known. Denote (μ1 − μ2)T Σ−1(μ1 − μ2) and log(π1/π2)
by δ2 and c, respectively.
(a) Let R = (μ1 − μ2)T Σ−1(Y − μ), where μ = (μ1 + μ2)/2.

Show that the linear discriminant rule allocates Y to population
1 if R > −c, and allocates Y to population 2 if the inequality is reversed.

(b) Show that R is N(δ2/2, δ2) if Y is from population 1, and R is N(−δ2/2, δ2)
if Y is from population 2.

(c) Show that the probability of misclassification is equal to Φ(−δ/2 − c/δ)
if Y is from population 1, and is equal to Φ(−δ/2 + c/δ) when Y
is from population 2. [Here Φ is the cdf of the standard normal distribution.]

(d) If Y is from one of the two populations (with probability π1 from population 1
and with probability π2 from population 2) and it is classified using a linear
discriminant rule, find the probability of misclassifying Y , in terms
of δ, π1, and π2.

12.15. Prove Theorem 12.12.2.
12.16. Prove Lemma 12.12.1.
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Time Series

13.1 Introduction
In the previous chapters, except for random-effects models in Chapter 11, all the different
types of statistical modeling and procedures are concerned with data sets consisting of
independent observations. In practice, however, there are many cases when the assump-
tion of independence is not tenable and this is particularly true when the observations
are recorded over time and/or over space (geographical locations). A simple example
for such a data set is daily records of average levels of ozone concentration in the air
at various locations in a particular geographical region. This chapter is only concerned
with data sets consisting of observations recorded over time and such observations are
usually dependent. For instance, when unemployment rates are recorded over months,
observation in a particular month depends on the employment levels in the previous
months. Methodologies developed for the investigation of such data sets are called time
series methods. Here are a few examples of time series data:

(a) Annual precipitation at Lake Michigan in the last 75 years.
(b) Annual temperature anomalies (ie, average yearly temperature minus a base value)

in the last 150 years.
(c) Monthly unemployment in the United States in the last 50 years.
(d) Monthly electricity sales to the residential sector in the United States in the last 50

years.
(e) EEG data (used in diagnosing patients) at a particular skull location.

We may denote the observations as {Yt : t = 1, . . . , n} where the time unit may be
a year or a month or a week or even fraction of a second depending on the particular
problem at hand. An actual examination of the data in the first example indicates that
the annual precipitation {Yt : t = 1, . . . , n = 75} tends to fluctuate around a constant value.
In the second example, there is an overall increase in the annual temperature anomalies
{Yt : t = 1, . . . , n = 150} over the last 150 years and thus it is reasonable to model Yt as
a smooth part (trend) plus a rough part (random errors which are identically distributed,
but not necessarily independent). An examination of the monthly electricity sales series
{Yt : t = 1, . . . , n = 12 × 50 = 600} would reveal an overall increase over time. Moreover,
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there is a seasonal factor (ie, January sales in consecutive years tend to be similar, February
sales in consecutive years tend to be similar, and so on). There may also be a cyclical
factor (about 9–12 years) as the sales may dip a little after economic recessions. Thus Yt

may be modeled as a sum of the trend, the seasonal effect, the cyclical effect, and a mean
zero random error. Thus a general model for Yt for three of the five examples given above
may be

Example (a): Yt = μ + Xt ,

Example (b): Yt = μt + Xt ,

Example (d): logYt = μt + St + Ct + Xt ,

where μt is the trend, {St} are the seasonal effects, {Ct} are the cycles, and {Xt} are the
random errors which are identically distributed but may not be independent. Note that in
Example (d), the series is transformed by the natural logarithm in order achieve constant
variability over time and this will be discussed below. The trend can be modeled as a
smooth function by nonparametric methods. Seasonals {St} may be modeled by various
methods including linear combination of sines and cosines. If the period of cycles are
known, they may also be modeled by sines and cosines. Apart from the above-mentioned
methods for modeling the trend, the seasonals, and the cycles, there are also probabilistic
modeling schemes. Forecasting is one of the important goals in time series analysis.
Forecasting at time t + h, h ≥ 1, requires estimates of μt+h, St+h, Ct+h, and Xt+h which
can be added to get a forecast value of Yt+h as Ŷt+h = μ̂t+h + Ŝt+h + Ĉt+h + X̂t+h.

In the fifth example above, the observations are combination of waves (alpha, beta,
theta, delta, etc.), and the weights of the combinations vary depending on whether the
subject is normal or has a disease such as epilepsy. For instance, theta waves are in the
frequency range of 3–8 Hz and are present in diseased patients, whereas alpha waves
vary in the frequency range of 8–13 Hz and are present in normal individuals without
any external stimulus. The goal of the analysis here in not prediction, but to determine
the combination of different waves in the observed series for a particular patient and
this is done by using the spectral analysis which is described in the last section of this
chapter.

This chapter is concerned with understanding and analysis of the rough part {Xt}.
The main assumptions are

(i) {Xt} are identically distributed,
(ii) for any t, the correlation between Xt and Xt+h, h ≥ 0, depends only on h, and
(iii) the correlation between Xt and Xt+h is negligible when h is large.

A series with properties (i) and (ii) is called stationary, and property (iii) is a statistical
necessity, which allows forecasting and consistent estimation for parametric models based
on observed data sets.
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Types of Nonstationary Series
There may be many sources of nonstationarity, but we briefly point out three of them:

(i) unequal means over time,
(ii) unequal variance over time, and
(iii) inappropriate time scale.

Often, a reasonable way to view unequal means is to treat it as a smooth function of
time (trend). For some series, such as daily records of sulfur dioxide levels in the air, sharp
changes may correspond to unusual events such as volcano eruptions, and may need to
be incorporated into the trend.

In the analysis of financial time series data such as rate of return on stocks, the main
focus of investigation is on modeling the variance which changes over time. In other cases,
unequal variance can sometimes be remedied by transforming the data using a Box-Cox
transformation

Yt (λ) =
{

Y λ
t −1
λ λ �= 0

log (Yt ) λ = 0.

If a transformation turns out to be useful, then analysis and modeling are done on the
transformed series. For instance, a logarithmic transformation for monthly electricity sales
(Example (d) above) is appropriate for achieving equal variance.

For some series, such as a signal from bird chirping, attempts are made to plot,
understand, and analyze the data on a time scale H(t) (a nonlinear function of time t)
on which the series may be stationary. Typically H is unknown and needs to be estimated.

A Simple Method for Extracting the Stationary Part
Consider a series of the form Yt = mt + St + Xt , where {mt} is the smooth trend,
{St} are the seasonal effects with period s, and {Xt} is the stationary part. As mentioned
above, in some cases approximate equal variance may be achieved by employing Box-Cox
transformations. When the seasonal effects are absent (ie, the model is Yt = mt + Xt),
a popular method for the analysis of such series employs the integrated autoregressive-
moving average (ARIMA) models. When both the trend and the seasonals are present,
then such a series can be analyzed by using what is known as the integrated seasonal
autoregressive-moving average (seasonal ARIMA) model. A good detailed description of
these models can be found in the book by Box et al. [62].

Here we briefly describe a simple regression method for estimating mt and St , and
this procedure works well for some series. Since Xt = Yt − (mt + St

)
, we can obtain an

approximation of Xt if we can obtain estimates of mt and St . For the sake of identifiability,
let us assume that St−r+1 + · · · + St = 0 for any t, where r is the seasonal order. In order to
simplify the discussion, let us assume that we are dealing with quarterly data (ie, r = 4). If
we model the trend mt by a polynomial of degree d, then
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mt = β0 + β1t + · · · + βdtd.

In order to account for the seasonal effects, create variables, It1, It2, and It3 as

It1 =
⎧⎨
⎩

1 if time t is Quarter 1
−1 if time t is Quarter 4
0 otherwise

, It2 =
⎧⎨
⎩

1 if time t is Quarter 2
−1 if time t is Quarter 4
0 otherwise

,

It3 =
⎧⎨
⎩

1 if time t is Quarter 3
−1 if time t is Quarter 4
0 otherwise.

Thus mt + St can be modeled as

β0 + β1t + · · · + βdtd + θ1It1 + θ2It2 + θ3It3,

and the unknown parameters β0, . . . , βd and θ1, θ2, and θ3 can be estimated by minimizing
the least squares criterion

n∑
t=1

[
Yt − β0 − β1t − · · · − βdtd − θ1It1 − θ2It2 − θ3It3

]2
.

Once the estimates of these parameters are obtained, one can get estimates m̂t and Ŝt of
mt and St . Then an estimate of Xt is given by X̂t = Yt − (m̂t + Ŝt).

It is important to note that the seasonal fluctuations {St} are assumed to be nonrandom
in this discussion, which may not always be appropriate.

13.2 Concept of Stationarity
In order to develop an appropriate mathematical framework, it is usually assumed that
the data {X1, . . . , Xn} is a finite section of an infinite series {Xt : − ∞ < t < ∞}.
Throughout this chapter, we use the terms “series” and “process” to mean a sequence of
random variables. A series {Xt} is called strictly stationary if {Xt , . . . , Xt+k} has the same
distribution as {Xt+h, . . . , Xt+h+k} for any t and h ≥ 0. This notion of stationarity is
usually too strict to be useful in applications since it is difficult to verify it in practice.
A weaker version, also known as covariance stationarity, assumes that Cov[Xt , Xt+h] de-
pend only on h. It is easy to see that strict stationarity implies weak stationarity. From
now on, we assume that {Xt} has mean μ and γ (h) = Cov[Xt , Xt+h] for any t and h.
Since γ (−h) = Cov[Xt+h, Xt] and Cov[Xt , Xt+h] = Cov[Xt+h, Xt], it thus follows that
γ (−h) = γ (h) for any integer h. The correlation between Xt and Xt+h can be easily seen
to be ρ(h) = γ (h)/γ (0) and this quantity also does not depend on t. The sequences
{γ (h)} and {ρ(h)} are called the autocovariance function and the autocorrelation function,
respectively.

A time series is stationary Gaussian if the joint distribution of {Xt+1, . . . , Xt+p}, for any t
and p ≥ 1, has a p-dim multivariate normal distribution with the mean vector (μ, . . . , μ)T



Chapter 13 • Time Series 435

and covariance matrix Γ p with elements γ (k − j), 1 ≤ j, k ≤ p. It can be shown that a
covariance-stationary Gaussian time series is also “strictly” stationary.

Definition 13.2.1. A series {Xt} is called (weakly) stationary if, for any t, E[Xt] = μ and
Cov[Xt , Xt+h] depends only on h. Its autocovariance {γ (h)} and autocorrelation functions
{ρ(h)} are γ (h) = Cov[Xt , Xt+h] and ρ(h) = Corr[Xt , Xt+h] = γ (h)/γ (0).

We now present a few examples of stationary series and one example of a nonstationary
series.

Example 13.2.1 (White Noise). Let {Xt} be iid with mean μ and variance σ 2, then it is
stationary with

γ (h) =
{
σ 2 if h = 0
0 if h �= 0

and ρ(h) =
{

1 if h = 0
0 if h �= 0

.

If {Xt} are iid with μ = 0, then such a series is called white noise. Some authors dispense
with the iid assumption and call a series white noise if {Xt} have zero mean, identical
variances, and are mutually uncorrelated.

Example 13.2.2 (Moving Average Process). If a series {Xt} can be written as

Xt − μ = εt + θεt−1,

where {εt} are iid with mean 0 and variance σ 2, then it is called a moving average process
of order 1. For such a series, E[Xt] = μ, and the autocovariances are

γ (0) = Var[Xt ] = Var[εt ] + Var[θεt−1] = (1 + θ2)σ 2,

γ (1) = Cov[Xt , Xt−1] = Cov[εt + θεt−1, εt−1 + θεt−2]
= Cov[θεt−1, εt−1] = θσ2, and

γ (h) = 0, h ≥ 2.

Clearly, the autocorrelations are

ρ(1) = θ/(1 + θ2), ρ(h) = 0, h ≥ 2.

A process more general than the above is

Xt − μ = εt + θ1εt−1 + · · · + θqεt−q,

where {εt} are mean 0 iid variables with common variance σ 2. This is known as a moving
average process of order q and is denoted by MA(q). For this series, E[Xt] = μ, and the
autocovariances and autocorrelations are

γ (h) = σ 2
q−h∑
j=0

θjθj+h, 0 ≤ h ≤ q, with θ0 = 1,

γ (h) = 0, h ≥ q + 1,

ρ(h) =
q−h∑
j=0

θjθj+h

/ q∑
j=0

θ2
j , 0 ≤ h ≤ q, and

ρ(h) = 0, h ≥ q + 1.
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Example 13.2.3 (Autoregressive Process). If a series {Xt} is representable as

Xt − μ = φ(Xt−1 − μ) + εt ,

where {εt} are iid with mean 0 and variance σ 2, then it is called an autoregressive process
of order 1. For this series, E[Xt] = μ. In order to obtain the variance of Xt , note that
Cov[Xt−1, εt] = 0, and hence

γ (0) = Var[Xt ] = Var[φXt−1] + Var[εt ] = φ2γ (0) + σ 2, and

γ (0) = (1 − φ2)−1σ2.

The condition γ (0) = Var[Xt] > 0 requires that φ2 < 1 (ie, |φ| < 1) and this will be shown
later to be the condition for the series to be stationary. Autocovariances of this series can
be obtained by using a recursive procedure. Since Xt−1 is uncorrelated with εt , we have

γ (1) = Cov[Xt , Xt−1] = Cov[φXt−1 + εt , Xt−1]
= φCov[Xt−1, Xt−1] = φγ (0).

Similarly, noting that εt is uncorrelated with Xt−h for h ≥ 1, we have

γ (h) = Cov[Xt , Xt−h] = Cov[φXt−1 + εt , Xt−h]
= φCov[Xt−1, Xt−h] = φγ (h − 1).

Thus for h = 2, . . ., we have

γ (2) = φγ (1) = φ2γ (0),

γ (3) = φγ (2) = φ3γ (0), . . . .

This argument shows that for any h ≥ 0

γ (h) = φhγ (0) with γ (0) = (1 − φ2)−1σ2, and ρ(h) = φh.

Since |φ| < 1, ρ(h) converges to zero exponentially as h → ∞.
A general version of the simple autoregressive process is

Xt − μ = φ1(Xt−1 − μ) + · · · + φp(Xt−p − μ) + εt ,

where {εt} are iid with mean 0 and variance σ 2. This is an autoregressive process of order
p with mean E[Xt] = μ and it is denoted by AR(p). Conditions on φ1, . . . , φp needed for
the process {Xt} to be stationary will be discussed later. In the AR(p) case, it is not possible
to obtain explicit expressions for the autocovariance or autocorrelation functions though
computer packages such as R can be used to obtain them for given values of φ1, . . . , φp and
σ 2. It should be pointed out that, under the condition of stationarity, the autocorrelation
function ρ(h) converges rapidly (exponentially) to zero as h → ∞.

Example 13.2.4 (Autoregressive-Moving Average Process). A series {Xt} which has
both AR(p) and MA(q) parts is called an ARMA(p, q) process, and is representable in
the form
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Xt − μ = φ1(Xt−1 − μ) + · · · + φp(Xt−p − μ)

+ εt + θ1εt−1 + · · · + θqεt−q,

where {εt} are iid with mean 0 and variance σ 2. Conditions on φ1, . . . , φp are needed to
guarantee stationarity as in the AR(p) case. In general there are no explicit forms for the
autocovariances and autocorrelations even though computer packages can be used to
obtain them. As in the AR(p) case, under appropriate conditions, the autocorrelation ρ(h)
converges to zero exponentially as h → ∞. The error terms {εt} in AR, MA, or ARMA series
are sometimes called innovations.

Example 13.2.5 (Random Walk). A mean zero AR(1) series with φ = 1 is called a random
walk and it has the form Xt = Xt−1 + εt , t = 1, 2, . . ., where {εt} are iid with mean 0 and
variance σ 2. It is easy to see that Xt = X0 + ε1 + · · · + εt and assuming that E[X0] = μ,
we have

E[Xt ] = μ and Cov[Xt , Xt+h] = Var[X0] + tσ2, h ≥ 0.

Clearly this series is not stationary since Cov[Xt , Xt+h] depends on t. Random walks are
sometimes used for modeling the trend of a nonstationary time series.

13.2.1 Representation of the Autocovariance Function

We begin with an important result on the representation of the covariance function
{γ (h): −∞ < h < ∞} of a stationary series. Under the assumption that

∑∞
h=−∞

∣∣γ (h)
∣∣ < ∞,

the function

f (w) =
∞∑

h=−∞
exp[−2π ihw]γ (h), h ≥ 0, (1)

is well defined on [−1/2, 1/2], where i = √−1. This function f is called the spectral density
function of the series {Xt} with the autocovariance function {γ (h)}. It is periodic with
period 1 (ie, f can be defined for any real w and f (w) = f (w + 1)). More detailed discussion
on spectral density function will be given in a later section.

Since γ (h) = γ (−h) and exp[−2π ihw] + exp[2π ihw] = 2 cos(2πhw), we have

f (w) =
−1∑

h=−∞
exp[−2π ihw]γ (h) + γ (0) +

∞∑
h=1

exp[−2π ihw]γ (h)

= γ (0) +
∞∑

h=1

{
exp[2π ihw] + exp[−2π ihw]}γ (h)

= γ (0) + 2
∞∑

h=1

cos(2πhw)γ (h).

Thus the spectral density function is a trigonometric series with autocovariances
{γ (h)} as the coefficients. It is symmetric about 0 (ie, f (−w) = f (w)), and is nonneg-
ative (to be shown below). What is the connection between the autocovariance function
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{γ (h)} and the spectral density function? If we know the spectral density function f , then
we can get the autocovariances as

γ (h) =
∫ 1/2

−1/2
exp[2π ihw]f (w)dw, h ≥ 0.

In order to verify that f is nonnegative, consider the arguments given below. The discrete
cosine and sine transforms of {Xt − μ, t = 1, . . . , n} are

X̃c,n(w) = n−1/2
n∑

t=1

(Xt − μ) cos(2πwt), and

X̃s,n(w) = n−1/2
n∑

t=1

(Xt − μ) sin(2πwt),

where |w| ≤ 1/2. Then

E
[

X̃c,n(w)
]2 + E

[
X̃s,n(w)

]2 = n−1
∑

1≤s,t≤n

cos(2πws) cos(2πwt)Cov[Xs, Xt ]

+ n−1
∑

1≤s,t≤n

sin(2πws) sin(2πwt)Cov[Xs, Xt ]

= n−1
∑

1≤s,t≤n

cos(2πw(t − s)w)Cov[Xs, Xt ]

= n−1
∑

1≤s,t≤n

cos(2πw(t − s)w)γ (t − s).

It is not difficult to check that, for any −(n − 1) ≤ h ≤ n − 1, the number of (s, t) pairs when
t − s = h, 1 ≤ s, t ≤ n, equals n − ∣∣h∣∣, and therefore

E
[

X̃c,n(w)
]2 + E

[
X̃s,n(w)

]2 = n−1
n−1∑

h=−n+1

(n − ∣∣h∣∣) cos(2πhw)γ (h)

=
n−1∑

h=−n+1

(1 − ∣∣h∣∣/n) cos(2πhw)γ (h).

Clearly, the last sum is nonnegative, and since
∑∣∣γ (h)

∣∣ < ∞, this sum converges to∑∞
h=−∞ cos(2πhw)γ (h) = f (w) by the Dominated Convergence Theorem. Thus f (w) ≥ 0

for any |w| ≤ 1/2.
Example 13.2.6. Let {Xt} be iid with mean 0 and variance σ 2. Then γ (h) = σ 2 if h = 0

and γ (h) = 0 if h �= 0. For this case, the spectral density function is f (w) = σ 2 for any
w ∈ [−1/2, 1/2].
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Example 13.2.7. Let {Xt} be a mean zero MA(1) series, that is, Xt = εt + θεt−1 where {εt}
are iid with mean 0 and variance σ 2. We have already seen that

γ (h) =
⎧⎨
⎩

(1 + θ2)σ 2 h = 0
θσ2 h = 1

0 h ≥ 2
.

Since γ (h) = γ (−h) for any integer h, the spectral density function is

f (w) = γ (0) + 2
∞∑

h=1

cos(2πhw)γ (h)

= (1 + θ2)σ 2 + 2θσ2 cos(2πw)

= σ2
[

1 + θ2 + 2θ cos(2πw)
]

.

Example 13.2.8. Let {Xt} be a stationary AR(1) series as described in Example 13.2.3. We
have already seen that for this sequence γ (h) = φhγ (0), h ≥ 0, and γ (0) = (1 − φ2)−1σ 2. So
the spectral density function of the AR(1) series is

f (w) = γ (0) + 2
∞∑

h=1

cos(2πhw)γ (h)

= γ (0) + 2
∞∑

h=1

φhγ (0) cos(2πhw)

= γ (0)

⎡
⎣1 + 2

∞∑
h=1

φh cos(2πhw)

⎤
⎦.

Denoting z = exp(−2π iw) and noting that 2 cos(2πhw) = zh + z̄h, where z̄ = exp(2π iw) is
the complex conjugate of z, we have

1 + 2
∞∑

h=1

φh cos(2πhw) = 1 +
∞∑

h=1

φh
(

zh + z̄h
)

=
∞∑

h=0

(φz)h +
∞∑

h=0

(φz̄)h − 1 = (1 − φz)−1 + (1 − φz̄)−1 − 1

= (1 − φ2)
1

1 + φ2 − 2φ cos(2πw)
,

where the last step is obtained after some simple algebra. Hence we have

f (w) = γ (0)(1 − φ2)
1

1 + φ2 − 2φ cos(2πw)

= σ2 1

1 + φ2 − 2φ cos(2πw)
,

where the justification of the last step follows from the fact that γ (0) = (1 − φ2)−1σ 2.
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Remark 13.2.1. There is a more general result on the representation of the autocovari-
ance function which does not require a restrictive condition like

∑∣∣γ (h)
∣∣ < ∞. It can

be shown (Bochner’s Theorem) that there exists a nonincreasing function F (called the
spectral distribution function) on [−1/2, 1/2] such that γ (h) = ∫ 1/2

−1/2 exp(2π ihw)dF(w) for
any integer h. When F is differentiable, its derivative f is the spectral density function.
Further details can be found in the books by Brockwell and Davis [63] and Gikhman and
Skorokhod [64].

13.2.2 Linear Time Series

In this book we only consider linear time series, which, as the same suggests, are linear
combinations of mean zero variables {εt} of the form

Xt = μ +
∞∑

j=−∞
ajεt−j,

where
∑

a2
j < ∞, and {εt} are mutually uncorrelated with mean 0 and variance σ 2. For this

series, the mean and the autocovariance function are

E[Xt ] = μ, γ (h) = σ 2
∞∑

j=−∞
ajaj+h.

Such a representation exists if the spectral density f is integrable. If {Xt} is stationary
Gaussian, then {εt} are iid N(0, σ 2) variables.

A stationary series {Xt} is said to have a causal representation if it can be written as

Xt = μ +
∞∑

j=0

ajεt−j,

where {εt} are mutually uncorrelated mean zero rv’s with common variance σ 2. If∫ 1/2
−1/2 log(f (w))dw > −∞, then the series admits a causal representation. As before, if {Xt}

is stationary Gaussian, then {εt} are iid N(0, σ 2) variables. A detailed discussion on these
representations can be found in Chapter 5 of the book by Gikhman and Skorokhod [64].

In practice, it is usually assumed that {εt} are iid with mean 0 and variance σ 2 even
if they are not normally distributed. Particular examples of linear time series are ARMA
processes. There are other time series that are nonlinear such as the bilinear series

Xt = μ +
∞∑

j=−∞
ajεt−j +

∑
−∞<j,k<∞

bjkεt−jεt−k

with
∑∣∣aj

∣∣ < ∞ and
∑∣∣bjk

∣∣ < ∞, but such series are not discussed in this chapter.
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From now on, it will be assumed that {Xt} is a linear time series with {εt} iid mean zero
rv’s with finite variance σ 2, that is,

Xt = μ +
∞∑

j=−∞
ajεt−j, with

∞∑
j=−∞

∣∣∣aj

∣∣∣ < ∞, (2)

{εt} iid, E[εt ] = 0, and Var [εt ] = σ2.

This series {Xt} is stationary as discussed above.

Notations
The following notations will be used throughout this chapter. For any stationary series
with autocovariance function γ and for any positive integer h, Γ h will denote the h × h
matrix whose element (j, k) is given by γ (j − k) and γ h will denote the h × 1 vector with
elements γ (1), . . . , γ (h). Similarly, Γ̂ h and γ̂ h will denote the estimates of Γ h and γ h when
the autocovariances are estimated based on the available data. We note that Γ h is the
covariance matrix of (Xt+1, . . . , Xt+h) and it is nonnegative definite.

13.2.3 Time Reversibility for Linear Prediction

If {Xt} is stationary with autocovariance function γ , then we show below that the coeffi-
cients associated with the best linear predictor (forecast) of Xt based on Xt−1, . . . , Xt−h are
the same as those of the best linear predictor (backcast) of Xt−h−1 based on Xt−h, . . . , Xt−1.
This result is true for any h ≥ 1. In order to simplify the notations, we assume that {Xt} has
zero mean, since we can always subtract the mean μ from Xt to achieve this.

A linear predictor φ1Xt−1 + · · · + φhXt−h of Xt has the prediction error PE(f ) =
E[Xt − φ1Xt−1 − · · · − φhXt−h]2. Since Xt , Xt−1, . . . , Xt−h have zero means, there is no need
to include an intercept term in the formula for the predictor. The best linear predictor can
be obtained by minimizing PE(f ) with respect to φ1, . . . , φh. As in the case of linear models,
we can differentiate PE(f ) with respect to φj, j = 1, . . . , h, and equate the derivatives to zero,
which leads to the normal equations. When the derivative of PE(f ) with respect to φj is set
to 0, we have

− 2E[Xt − φ1Xt−1 − · · · − φhXt−h]Xt−j = 0, ie,

−γ (j) + φ1γ (j − 1) + · · · + φhγ (j − h) = 0, ie,

φ1γ (j − 1) + · · · + φhγ (j − h) = γ (j),

j = 1, . . . , h. These normal equations can be written in the matrix form as

Γ hφ = γ h, (3)

where φ = (φ1, . . . , φh)T , and they are also known as the Yule-Walker equations. Moreover,
the prediction error of the best linear predictor with coefficients φ1, . . . , φh satisfying the
Yule-Walker equations is given by
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E[Xt − φ1Xt−1 − · · · − φhXt−h]2 = E[X 2
t ] − 2E[Xt (φ1Xt−1 + · · · + φhXt−h)]

+ E
[
φ1Xt−1 + · · · + φhXt−h

]2
= γ (0) − 2φT γ h + φT Γ hφ = γ (0) − φT γ h
= γ (0) − φ1γ (1) − · · · − φhγ (h).

A linear predictor φ1Xt−h+φ2Xt−h+1+· · ·+φhXt−1 of Xt−h−1 has the prediction error PE(b) =
E[Xt−h−1 − φ1Xt−h − · · · − φhXt−1]2. In order to obtain the best linear predictor we need to
differentiate PE(b) with respect to φ1, . . . , φh and equate the derivatives to 0. Setting the
derivative of PE(b) with respect to φj to 0, we have

− 2E[(Xt−h−1 − φ1Xt−h − · · · − φhXt−1)Xt−h−1+j] = 0, ie,

−γ (j) + φ1γ (j − 1) + · · · + φhγ (j − h) = 0, ie,
φ1γ (j − 1) + · · · + φhγ (j − h) = γ (j),

j = 1, . . . , h. These normal equations in the matrix form are exactly the same as in
Eq. (3). Since the normal equations for forecasting (ie, linear prediction of Xt based on
Xt−1, . . . , Xt−h) and backcasting (ie, linear prediction of Xt−h−1 based on Xt−h, . . . , Xt−1)
are the same, the vectors of coefficients Γ −1

h γ h are also the same. Using the arguments
given above, it is fairly easy to verify that the prediction error for the best linear predictor
for backcasting Xt−h−1 is exactly the same as that for forecasting Xt . Thus we arrive at an
important result.

Lemma 13.2.1. Let {Xt} be a mean zero stationary series.

(a) For any positive integer h, if X̂ (f )
t = φ1Xt−1 + · · · + φhXt−h is the best linear predictor of

Xt based on Xt−1, . . . , Xt−h, then X̂ (b)
t−h−1 = φ1Xt−h + φ2Xt−h+1 + · · · + φhXt−1 is the best

linear predictor of Xt−h−1 based on Xt−h, . . . , Xt−1.
(b) The vector of coefficients φ of the best predictor described in part (a) is given by the

solution of the normal equations (ie, the Yule-Walker equations) Γ hφ = γ h.

(c) The prediction errors E
[

Xt − X̂ (f )
t

]2
and E

[
Xt−h−1 − X̂ (b)

t−h−1

]2
are the same and they are

given by γ (0) − φ1γ (1) − · · · − φhγ (h).

13.3 Estimation of the Mean and the Autocorrelation
Function

Suppose that X1, . . . , Xn are observations from a stationary series with mean μ and
covariance function γ . Some useful descriptive statistics for an initial analysis involve
estimation of the mean, the autocovariance function γ , the autocorrelation function ρ,
etc. These are the topics of discussion in this section.

13.3.1 Estimation of the Mean

An estimate of μ is given by μ̂ = X̄n = n−1∑n
t=1 Xt . It is fairly easy to see that μ̂ is an

unbiased estimator of μ. In order to obtain the standard error of this estimate, one needs
to calculate the variance of μ̂. Note that
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Var[μ̂] = n−2
n∑

s,t=1

Cov[Xs, Xt ] = n−2
n∑

s,t=1

γ (s − t).

The argument used in Section 13.2.1 to demonstrate the nonnegativeness of the spectral
density function can be employed to show that

τ2
n = nVar[μ̂] = n−1

n−1∑
h=−(n−1)

(n − ∣∣h∣∣)γ (h) =
n−1∑

h=−n+1

(1 − ∣∣h∣∣/n)γ (h)

→
∞∑

h=−∞
γ (h) := τ2,

assuming that
∑∣∣γ (h)

∣∣ < ∞. Since γ (−h) = γ (h), we may also rewrite τ2
n and τ2 as

τ2
n = nVar[μ̂] =

n−1∑
h=−n+1

(1 − ∣∣h∣∣/n)γ (h) = γ (0) + 2
n−1∑
h=1

(1 − h/n)γ (h),

τ2 =
∞∑

h=−∞
γ (h) = γ (0) + 2

∞∑
h=1

γ (h).

If it is assumed that γ (h) converges rapidly to zero as h → ∞, a condition satisfied by many
series such as ARMA(p, q), then one may ignore γ (h), h > L, for a suitably chosen integer L
which may depend on n (eg, L ≈ √

n). In such a case, a reasonable estimate of τ2
n is

τ̂2
n = n−1γ̂ (0) + 2

L∑
h=1

(1 − h/n)γ̂ (h) ≈ n−1

⎡
⎣γ̂ (0) + 2

L∑
h=1

γ̂ (h)

⎤
⎦,

where γ̂ (h) is an estimate of γ (h). It turns out that the central limit theorem (CLT) holds for
μ̂ = X̄n under reasonable conditions.

Theorem 13.3.1. Assume that X1, . . . , Xn are observations from a linear stationary series

{Xt} as given in Eq. (2). Then as n → ∞,
√

n(μ̂−μ)
D→ N(0, τ2), where τ2 = limn→∞ nVar[μ̂].

This result now can be used to construct an approximate confidence interval for μ. Let

τ̂n be as given above. Assuming that τ̂n/τn − 1
P→ 0, an approximate confidence interval for

μ with confidence coefficient 1 − α is μ̂ ± zα/2τ̂n/
√

n.
A proof of the above result on the asymptotic normality of μ̂ = X̄n uses the CLT

for the sample mean of m-dependent rv’s (Theorem 3.3.3) and it involves careful details
as it requires verifying technical conditions, and the details are given in Brockwell and
Davis [63]. However, the basic idea behind the proof is simple and can be summarized
in the following steps. Let Wn = √

n(X̄n − μ).
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I. The truncated rv’s {Xm,t}

Xm,t = μ +
m∑

j=−m

ajεt−j,

are 2m-dependent with mean μ where m is a positive integer.
II. Let X̄m,n = n−1∑n

t=1 Xm,t and Wm,n = √
n
(
X̄m,n − μ

)
. Since {Xm,t} is 2m-dependent,

the CLT holds for Wm,n (Theorem 3.3.3). Thus Wm,n
D→ Zm ∼ N(0, τ (m)2), where

τ2(m) = limn→∞ Var
[
Wm,n

]
.

III. Show that for any δ > 0,

lim sup
n→∞

P
[∣∣Wm,n − Wn

∣∣ > δ
]→ 0

as m → ∞. A sufficient condition for this, via Chebychev’s inequality, is

lim sup
n→∞

E
[∣∣Wm,n − Wn

∣∣2]→ 0

as m → ∞.
IV. If τ2(m) = limn→∞ Var

[
Wm,n

]→ τ2 > 0, then Wn
D→ Z ∼ N(0, τ2).

The four steps given above can be written down in a general framework which does not
require {Xt} to be a linear stationary series. The general framework is useful since this result
can also be applied for obtaining asymptotic normality of estimates of the autocovariances
and autocorrelations.

Theorem 13.3.2. Let X1, . . . , Xn be observations from an infinite sequence {Xt} of rv’s with
common mean μ and let Wn = √

n(X̄n − μ), where X̄n = n−1∑n
t=1 Xt. Assume that for any

positive integer m, there exists an m-dependent series {Xm,t} with common mean μm and

let Wm,n = √
n(X̄m,n − μm), where X̄m,n = n−1∑n

t=1 Xm,t . Then Wn
D→ Z ∼ N(0, τ2) if the

following conditions hold

(i) for every positive integer m, Wm,n
D→ Zm ∼ N(0, τ (m)2), where

τ2(m) = limn→∞ Var
[
Wm,n

]
,

(ii) for any δ > 0, lim supn→∞ P
[∣∣Wm,n − Wn

∣∣ > δ
]→ 0 as m → ∞,

(iii) τ2(m) converges to a constant τ2 > 0 as m → ∞.

Let us briefly examine why this theorem is true. For any real number z and δ > 0,

P[Wn ≤ z] = P
[
Wn ≤ z,

∣∣Wn − Wm,n
∣∣ ≤ δ

]
+ P
[
Wn ≤ z,

∣∣Wn − Wm,n
∣∣ > δ

]
≤ P

[
Wm,n ≤ z + δ

]+ P
[∣∣Wn − Wm,n

∣∣ > δ
]
.

Denoting Δ(m, δ) = lim supn→∞ P
[∣∣Wn − Wm,n

∣∣ > δ
]
, we have

lim sup
n→∞

P[Wn ≤ z] ≤ lim sup
n→∞

P
[
Wm,n ≤ z + δ

]+ Δ(m, δ)

= P[Zm ≤ z + δ] + Δ(m, δ).
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Since τ (m)2 → τ2, letting m → ∞ we have

lim sup
n→∞

P[Wn ≤ z] ≤ P[Z ≤ z + δ], and thus

lim sup
n→∞

P[Wn ≤ z] ≤ P[Z ≤ z],

since δ > 0 is arbitrary.
A similar argument will show that

lim sup
n→∞

P[Wn > z] ≤ P[Z > z], and hence

lim inf
n→∞ P[Wn ≤ z] ≥ P[Z ≤ z].

Since

P[Z ≤ z] ≤ lim inf
n→∞ P[Wn ≤ z] ≤ lim sup

n→∞
P[Wn ≤ z] ≤ P[Z ≤ z],

we conclude that limn→∞ P[Wn ≤ z] = P[Z ≤ z].

13.3.2 Estimation of Autocovariance and Autocorrelation Functions

Estimates of γ (h) = Cov[Xt , Xt+h] and ρ(h) = Corr
[
Xt , Xt+h

]
, h = 0, 1, . . . are

γ̂ (h) = n−1
n−h∑
t=1

(Xt − X̄)(Xt+h − X̄) and ρ̂(h) = γ̂ (h)/γ̂ (0). (4)

This estimate of γ (h) is not unbiased as will be clear soon. For notational convenience, we
assume that E[Xt] = 0 since Xt − X̄ is the same as Yt − Ȳ , where Yt = Xt − μ is the centered
Xt . Simple algebra shows that

γ̂ (h) = n−1
n−h∑
t=1

(Xt − X̄)(Xt+h − X̄)

= n−1
n−h∑
t=1

Xt Xt+h − X̄n−1
n−h∑
t=1

Xt+h − X̄n−1
n−h∑
t=1

Xt + n−1(n − h)X̄ 2

= n−1
n−h∑
t=1

Xt Xt+h − (1 + h/n)X̄ 2 + X̄

⎡
⎣n−1

h∑
t=1

Xt + n−1
n∑

t=n−h+1

Xt

⎤
⎦.

We have already seen from the last section that Var[X̄ ] = τ 2
n/n = O(n−1) assuming that∑∣∣γ (h)

∣∣ < ∞. Since E[Xt] = 0, E[X̄ 2] = Var[X̄ ] . It is not difficult to verify that the
expectation of the last term in the last displayed equation is O(n−3/2). Since E

[
XtXt+h

] =
γ (h), we have
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E
[
γ̂ (h)

] = n−1(n − h)γ (h) + τ2
n/n + O(n−3/2)

= γ (h) − (h/n)γ (h) + τ2
n/n + O(n−3/2).

Expression for τ2
n/n given in the last section shows that (h/n)γ (h) is not cancelled by τ2

n/n
and thus the bias of γ̂ (h) is O(h/n).

From the preceding arguments, we get the following simple result.
Lemma 13.3.1. Let {Xt} be stationary with the autocovariance function {γ (h)} which

satisfies the condition
∑∣∣γ (h)

∣∣ < ∞. Then

γ̂ (h) = n−1
n−h∑
t=1

(Xt − μ)(Xt+h − μ) − (X̄ − μ
)2 + R1

= n−1
n∑

t=1

(Xt − μ)(Xt+h − μ) + R2,

where E|R1| = O(n−3/2) and E|R2| = O(n−1).
Why is the biased estimate of γ (h) used in practice? The reason is that the n × n matrix

Γ̂ n = ((
γ̂ (j − k)

))
n×n, which is an estimate of the covariance matrix Γ n, is nonnegative

definite. Had we used an unbiased estimate of γ (h), then this nonnegative definiteness
property is not guaranteed to be preserved. An unbiased estimate of γ (h) is

γ̃ (h) = (n − h − 1)−1
n−h∑
t=1

(Xt − X̄1)(Xt+h − X̄2), with

X̄1 = (n − h)−1
n−h∑
t=1

Xt and X̄2 = (n − h)−1
n∑

t=h+1

Xt .

Asymptotic distributions of the estimated autocovariances and autocorrelations are
known. We first write down the joint distribution of ρ̂(1), . . . , ρ̂(h).

Theorem 13.3.3. Let {Xt} be a linear stationary series as given in Eq. (2) with the extra
assumption E[ε4

t ] < ∞. Let ρh be the h × 1 vector with elements ρ(1), . . . , ρ(h), and similarly
let ρ̂h be the h × 1 vector with elements ρ̂(1), . . . , ρ̂(h), where ρ̂(j)’s are as in Eq. (4). Then√

n(ρ̂ − ρ)
D→ Nh(0, W ) as n → ∞, where element (j, k) of the matrix W is

wjk =
∞∑

l=−∞
e(j, l)e(k, l), with

e(j, l) = [ρ(l + j) + ρ(l − j) − 2ρ(j)ρ(l)]
/√

2 .

If {Xt} are iid, then ρ(j) = 0 for any j ≥ 1, W is the h × h identity matrix, and,
√

nρ̂(j),
j = 1, . . . , h, are asymptotically iid N(0, 1) variables.

Note that if the series {Xt} are iid, then e(j, l) is equal to 1 if l = j and is 0 otherwise. In
such a case, the matrix W in the above theorem the identity. So if {Xt} are iid, then

√
nρ̂(j),

j = 1, 2, . . . are asymptotically iid N(0, 1) rv’s. The estimated autocorrelation function is
widely used to check if a series is white noise, that is, to check if ρ(h) = 0 when h �= 0. In
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practice, one usually plots ρ̂(h) against h to check if ρ̂(h) is outside the range 0 ± 2/
√

n to
investigate if ρ(h) �= 0. Such a plot is called the ACF plot.

The proof of the above theorem on the asymptotic distribution of the estimated
autocorrelations follows from the asymptotic normality of the estimated autocovariances
and this is stated below.

Theorem 13.3.4. Let {Xt} be a linear stationary series as given in Eq. (2) with the extra
assumption E[ε4

t ] < ∞. Let δh be the (h + 1)-dim vector with elements γ (0), . . . , γ (h) and,

similarly, let δ̂h be the vector of γ̂ (0), . . . , γ̂ (h). Then
√

n(δ̂h−δh)
D→ Nh+1(0, V ) where element

(j, k) of V is

[
E(ε4

t ) − 3σ4
]
γ (j)γ (k) +

∞∑
l=−∞

f (j, l)f (k, l), with

σ2 = E[ε2
t ], f (j, l) = [γ (l + j) + γ (l − j

]/√
2 .

The proof of the above result uses the following steps and Theorem 13.3.2 given above.
The details are quite long, and are given in the book by Brockwell and Davis [63].

As in the analysis of bias of γ̂ (h), we may use the centered variable Xt − μ, but we
continue to denote it by Xt with the understanding that E[Xt] = 0.

I. Define γ̃ (j) = n−1∑n
t=1 XtXt+j. Then, by Lemma 13.3.1, γ̂ (j) = γ̃ (j) + OP(n−1) since

X̄ = OP(n−1/2).
II. It is enough to prove the CLT for

∑h
j=0 cjγ̂ (j) where c0, . . . , ch are constants

(Cramér-Wold device). Since γ̂ (j) = γ̃ (j) + OP(n−1), j = 0, . . . , h, it is enough to prove
the CLT for

∑h
j=0 cjγ̃ (j).

III. Denoting St = Xt(c0Xt + · · · + chXt+h), we have

h∑
j=0

cjγ̃ (j) = n−1
n∑

t=1

Xt (c0Xt + · · · + chXt+h) = n−1
n∑

t=1

St .

IV. Let Xm,t =∑m
j=−m ajεt−j, where m is a positive integer and

Sm,t = Xm,t (c0Xm,t + · · · + chXm,t+h).

Note that {Xm,t} and {Sm,t} are 2m- and (h + 2m)-dependent sequences of rv’s,
respectively. Moreover, E[St] is the same for all t and the same is true for E[Sm,t]. Let

S̄n = n−1
n∑

t=1

St , S̄m,n = n−1
n∑

t=1

Sm,t ,

θ = E[St ], θm = E[Sm,t ],
Wn = √

n
(

S̄n − θ
)

, and Wm,n = √
n
(

S̄m,n − θm

)
.
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V. For any positive integer m, show that Wm,n
D→ Zm ∼ N(0, ν2

m) as n → ∞
(Theorem 3.4.3).

VI. Show that limm→∞ Δ(m, δ) = 0, where Δ(m, δ) = lim supn→∞ P
[∣∣Wn − Wm,n

∣∣ > δ
]
.

VII. Show that νm → ν2 as m → ∞, where ν2 =∑0≤j,k≤h cjckvjk (vjk is element (j, k) of the
matrix V ).

13.3.3 Diagnostics

Diagnostic tools are often employed for an observed series X1, . . . , Xn in order to investigate
if there is trend, if the assumption of equal variance is reasonable, if the sequence is iid, if
the assumption of normality is reasonable, etc. Before we discuss the diagnostic methods,
let us introduce another descriptive measure called the partial autocorrelation function
(PACF) which is commonly used in the analysis of stationary time series data. PACF of
order h is the partial correlation between Xt and Xt−h given Xt−1, . . . , Xt−h+1. More formally,

if X (f )
t is the best linear predictor of Xt based on Xt−1, . . . , Xt−h+1 and X (b)

t−h is the best linear
predictor of Xt−h based on Xt−h+1, . . . , Xt−1, then the partial autocorrelation between Xt

and Xt−h is π(h) = Corr
[

Xt − X (f )
t , Xt−h − X (b)

t−h

]
, h ≥ 2. By definition, π(1) = ρ(1). In a

later section, partial autocorrelations will be discussed in detail along with appropriate
formulas that can be used for computations. If a series is AR(p), then π(h) = 0 when
h ≥ p + 1, and if π̂(h) is the estimator of π(h), then

√
nπ̂(h) is approximately distributed

as N(0, 1) for large n.
We now discuss some graphical and formal diagnostic procedures.

(a) Plot of the series against time reveals if there is a trend or if the assumption of equal
variance (across time) is reasonable. In some cases, the problem of unequal variance
can be remedied by an appropriate Box-Cox transformation of the observed series.

(b) In order to check if {Xt} are iid, one may plot the estimated autocorrelations (the ACF
plot) along with 0 ± 2/

√
n bars in order to assess if the autocorrelations are close to

zero. ACF plot of the estimated residuals {ε̂t} after fitting an ARMA model can also be
used to assess appropriateness of the model. For instance, if an AR(p) model is fitted,
the estimated residuals are

ε̂t = Xt − X̄ −
p∑

j=1

φ̂j(Xt−j − X̄), t = p + 1, . . . , n,

where X̄ is the sample mean, and φ̂1, . . . , φ̂p are the estimated autoregressive
parameters. If AR(p) provides an appropriate description of the data, then {ε̂t} are
approximately iid and its ACF plot would indicate this. Similar logic can be used when
fitting an MA(q) or an ARMA(p, q) model to check its adequacy.

(c) There are a number of formal tests for checking if the observations are iid. We may
want to test, for a given positive integer h, H0: ρ(1) = · · · = ρ(h) = 0 against H1: at
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least one of ρ(1), . . . , ρ(h) is nonzero. We mention two tests: Portmanteau and
Ljung-Box. The test statistics are

Q = n
h∑

j=1

ρ̂(j)2 and QLB = n(n + 2)
h∑

j=1

ρ̂(j)2/(n − j),

where {ρ̂(j)} are the estimated autocorrelations as given in Eq. (4). Under H0, each of
the two statistics (Q and QLB) has an approximate chi-squared distribution with h
degrees of freedom. So we can reject the null hypothesis at level α if Q > χ2

h,α or

QLB > χ2
h,α , where χ2

h,α is the (1 − α)-quantile of the chi-squared distribution with h
degrees of freedom. These tests are based on the asymptotic result given in
Theorem 13.3.3. According to this theorem, if the series consists of iid observations,
then

√
nρ̂(j), j = 1, . . . , h, are approximately iid N(0, 1) for large n. Ljung-Box test

provides a small sample correction to the Portmanteau test by obtaining a better
estimate of the asymptotic variance of ρ̂(j). In Portmanteau test, Var[ρ̂(j)] is
approximated by 1/n, whereas Ljung-Box uses the approximation
(n − j)/[n(n + 2)].

(d) One can examine the histogram of the data to check if the assumption of normality is
justifiable.

(e) A plot of π̂(h) against h along with 0 ± 2/
√

n bars is known as the PACF plot and it can
be used to make an assessment if π(h) is substantially different from zero. This plot is
useful in guessing the order of an autoregressive model since π(h) = 0, h ≥ p + 1 , for
an AR(p) model. It is a common practice to use ACF and PACF plots in the initial
analysis of the data.

It is useful to keep in mind that for an MA(q) model, autocorrelations of lag q + 1 or
higher are all zero. Similarly, for an AR(p) model, partial autocorrelations of order p + 1
or higher are zero. So the ACF plot is useful for an initial guess of the order of a moving
average model and the PACF plot is useful in guessing the order of an autoregressive model.
For instance, if the autocorrelations of lag 3 or higher are all negligible, then an MA(2)
model may provide a reasonable description of the data. If the partial autocorrelations
of lag 3 or higher are negligible, then AR(2) may be a reasonable model for the data. It
should be pointed, however, out that if the true model is MA(q), the asymptotic mean of
ρ̂(h) is 0 for h ≥ q + 1, but the asymptotic variance of ρ̂(h) is

∑q
j=−q ρ(j)2/n and not 1/n

and thus the ±2/
√

n bounds are not necessarily equal to ±2SE[ρ̂(h)]. Nevertheless, the
ACF plot can be a useful graphical method for assessing if some moving average model is
reasonable.

The ACF of a stationary autoregressive series, and under the condition of invertibility
(discussed later), the PACF of a moving average series decrease rapidly with lag h. In
general, for an ARMA series both the ACF and PACF decrease rapidly. The following table
provides a summary.
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Model AR(p) MA(q) ARMA(p, q)

ACF Tails off Cuts off after lag q Tails off

PACF Cuts off after lag p Tails off Tails off

In order to get a good predictive model, one should use a criterion such as AIC to select an
appropriate model. Nevertheless, the use of ACF and PACF plots may sometimes lead to a
reasonable predictive model.

13.3.4 Notation of Backshift Operator

The notation of backshift operator makes the description of ARMA processes convenient.
The backshift operator B is defined as BXt = Xt−1. Note that Xt−k = BkXt for any k with the
understanding that B0Xt = Xt . A mean zero AR(1) process can be written as

Xt = φ1BXt + εt , or Xt − φ1BXt = εt , or (1 − φ1B)Xt = εt .

Similarly, a mean zero AR(p) process can be written as

(1 − φ1B − · · · − φpBp)Xt = εt , or φ(B)Xt = εt ,

with φ(B) = 1 − φ1B − · · · − φpBp.

If a series {Xt} with mean μ is AR(p), then

φ(B)(Xt − μ) = εt , where φ(B) = 1 − φ1B − · · · − φpBp.

Similarly, an MA(q) series {Xt} with mean μ can be expressed as

Xt − μ = εt + θ1εt−1 + · · · + θqεt−q = θ(B)εt , where

θ(B) = 1 + θ1B + · · · + θqBq.

An ARMA(p, q) series {Xt} with mean μ can be written as

φ(B)(Xt − μ) = θ(B)εt .

As mentioned earlier, the error terms {εt} are often called innovations in the time series
literature.

13.4 Partial Autocorrelation Function (PACF)
As discussed in the last section, the partial autocorrelation (PACF) plot is widely used in
the analysis of stationary data as it aids in the preliminary identification of autoregressive
models. Let us recall that, for any h ≥ 2, partial autocorrelation π(h) of order h of a
stationary series {Xt} is defined to be the partial correlation between Xt and Xt−h given

Xt−1, . . . , Xt−h+1. When h = 1, π(1) is defined to be Corr[Xt , Xt−1]. If X̂ (f )
h−1,t is the best linear

predictor (forecast) of Xt based on Xt−1, . . . , Xt−h+1 and X̂ (b)
h−1,t−h is the best linear predictor



Chapter 13 • Time Series 451

(backcast) of Xt−h based on Xt−h+1, . . . , Xt−1, then for any h ≥ 2, the partial autocorrelation
of order h is

π(h) = Corr
[

Xt − X̂
(f )
h−1,t , Xt−h − X̂ (b)

h−1,t−h

]
.

In this section, we discuss partial autocorrelations in some detail. We show that π(h) =
φh,h, where φh,h is the coefficient associated with Xt−h in the expression of the best linear
predictor of Xt based on Xt−1, . . . , Xt−h. As a by-product of the discussion, we also obtain
an important recursion formula (known as Durbin-Levinson recursions) which relates the
autoregressive coefficients of the AR(h) fit to those of AR(h − 1) fit.

We first write down a basic result.
Lemma 13.4.1. If {Xt} is a stationary AR(p) series, then π(h) = 0 for h ≥ p + 1.
It is fairly easy to see why this lemma is true. Assume that E[Xt] = 0. Since the series is

assumed to be AR(p) with autoregressive coefficients φ1, . . . , φp, for any h ≥ p + 1, the best

linear predictor of Xt based on Xt−1, . . . , Xt−h+1 is X̂ (f )
h−1,t = φ1Xt−1 + · · · + φpXt−p and Xt −

X̂ (f )
h−1,t = εt . If X̂ (b)

h−1,t−h is the best linear predictor of Xt−h based on Xt−h+1, . . . , Xt−1, then

the remainder Xt−h − X̂ (b)
h−1,t−h is a linear function of Xt−1, . . . , Xt−h. Since εt is uncorrelated

with Xt−1, . . . , Xt−h, we can conclude that Xt − X̂h−1,t = εt is uncorrelated with Xt−h −
X̂ (b)

h−1,t−h and thus π(h) = 0.

13.4.1 Expression for π (h) and Durbin-Levinson Iterations

Let {Xt} be a mean zero stationary series which is not necessarily an autoregressive series of
any finite order. Let φh,1, . . . , φh,h be the coefficients of the best linear predictor of Xt based

on Xt−1, . . . , Xt−h (ie, X̂ (f )
h,t = φh,1Xt−1 + · · · + φh,hXt−h). The arguments here are given in

terms of the theoretical autocovariances which can be replaced by their sample estimates
for numerical computations based on the available data.

By Lemma 13.2.1

X̂
(f )
h−1,t = φh−1,1Xt−1 + · · · + φh−1,h−1Xt−h+1,

X̂ (b)
h−1,t−h = φh−1,1Xt−h+1 + · · · + φh−1,h−1Xt−1,

and the mean square error in forecasting Xt by X̂ (f )
h−1,t is the same as the error in backcasting

Xt−h by X̂ (b)
h−1,t−h. This common prediction error is

PE(h − 1) = E
[

Xt − X̂
(f )
h,t

]2 = E
[

Xt−h − X̂ (b)
h−1,t−h

]2

= γ (0) − [φh−1,1γ (1) + · · · + φh−1,h−1γ (h)
]
.

The identity π(h) = φh,h and Durbin-Levinson iterative formula follow by equating the
coefficients of two different but equivalent expressions of the best linear predictor of Xt

based on Xt−1, . . . , Xt−h. This basic idea is detailed the following observations.
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(i) Any linear predictor of Xt based on Xt−1, . . . , Xt−h can be expressed as

L = a1Xt−1 + · · · + ah−1Xt−h+1 + ahδh−1,t−h,

where δh−1,t−h = Xt−h − X̂ (b)
h−1,t−h.

(ii) Since δh−1,t−h is uncorrelated with Xt−1, . . . , Xt−h+1, the prediction error E[Xt − L]2,
where L is as in (i), is minimized at

a∗
1 = φh−1,1, . . . , a∗

h−1 = φh−1,h−1, and

a∗
h = Cov

[
Xt , δh−1,t−h

]/
Var
[
δh−1,t−h

]
= Cov

[
Xt − X̂

(f )
h−1,t , Xt−h − X̂ (b)

h−1,t−h

]/
Var
[

Xt−h − X̂ (b)
h−1,t−h

]
= Corr

[
Xt − X̂

(f )
h−1,t , Xt−h − X̂ (b)

h−1,t−h

]
= π(h),

where the last two steps follow from the fact that

E
[

Xt − X̂ (f )
h−1,t

]2 = E
[

Xt−h − X̂ (b)
h−1,t−h

]2
.

(iii) The coefficients of the best linear predictor X̂ (f )
h,t are given in (ii) above, and using

Lemma 13.2.1 we have

X̂
(f )
h,t = a∗

1Xt−1 + · · · + a∗
h−1Xt−h+1 + a∗

hδh−1,t−h

= φh−1,1Xt−1 + · · · + φh−1,h−1Xt−h+1

+ π(h)
[
Xt−h − φh−1,1Xt−h+1 + · · · + φh−1,h−1Xt−1

]
= [φh−1,1 − π(h)φh−1,h−1]Xt−1 + · · ·

+ [φh−1,h−1 − π(h)φh−1,1]Xt−h+1 + π(h)Xt−h.

(iv) The expression for the best linear predictor X̂ (f )
h,t of Xt based on Xt−1, . . . , Xt−h is

φh,1Xt−1 + · · · + φh,h−1Xt−h+1 + φh,hXt−h,

and this should be the same as X̂ (f )
h,t in (iii). Equating the coefficients of Xt−1, . . . , Xt−h

in these two expressions, we have

φh,h = π(h) = a∗
h

= Cov
[
Xt , δh−1,t−h

]/
Var
[
δh−1,t−h

]
= γ (h) − φh−1,1γ (h − 1) − · · · − φh−1,h−1γ (1)

γ (0) − φh−1,1γ (1) − · · · − φh−1,h−1γ (h − 1)
, and

φh,j = φh−1,j − φh,hφh−1,h−j, j = 1, . . . , h − 1.

From Step (iv), we have φh,h = π(h). The expressions in (iv), which relate the AR(h)
coefficients to AR(h − 1), provide a recursion formula for calculating the autoregressive
coefficients, which is known as the Durbin-Levinson algorithm. In order to obtain the
estimate π̂(h) of π(h), it is enough to fit an AR(h) model and solve the Yule-Walker
equations with {γ̂ (j)} in place of {γ (j)}. Also note that the Durbin-Levinson algorithm
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provides an iterative scheme for solving the Yule-Walker equations starting from AR(1).
We thus arrive at the following important results.

Theorem 13.4.1. If {Xt} is a mean zero stationary series, and if φh,1Xt−1 + · · · + φh,hXt−h

is the best linear predictor of Xt based on Xt−1, . . . , Xt−h, then the partial autocorrelation of

order h ≥ 2 is given by π(h) = φh,h. If {Xt} is stationary AR(p), then
√

nπ̂(h)
D→ N(0, 1) as

n → ∞ for h ≥ p + 1.
Theorem 13.4.2 (Durbin-Levinson Iterations). For a mean zero stationary series {Xt},

if φh,1Xt−1 + · · · + φh,hXt−h is the best linear predictor of Xt based on Xt−1, . . . , Xt−h, then
the coefficients φh,1, . . . , φh,h are related to those of the best linear predictor of Xt based on
Xt−1, . . . , Xt−h−1 as given in observation (iv) above.

We now provide a justification of the result on the asymptotic normality of π̂(h). We will

see in Section 13.8.1 that when {Xt} is AR(p), then
√

n(φ̂h − φh)
D→ Nh(0, σ 2Γ −1

h ), h ≥ p + 1,

where φh = Γ −1
h γ h and φ̂h is the solution of the Yule-Walker equations Γ̂ hφ = γ̂ h. Thus,

√
n(π̂(h) − π(h))

D→ N
(

0, σ 2Γ −1
h (h, h)

)
, where Γ −1

h (h, h) is the last element of the matrix

Γ −1
h . From matrix algebra it is known that

(i) Γ −1
h (h, h) = ∣∣Γ h−1

∣∣/|Γ h| , where |·| denotes the determinant,

(ii) Γ h =
(

Γ h−1 γ h−1

γ T
h−1 γ (0)

)
and |Γ h| = ∣∣Γ h−1

∣∣[γ (0) − γ T
h−1Γ

−1
h−1γ h−1

]
,

(iii) Γ −1
h (h, h) = 1

/[
γ (0) − γ T

h−1Γ
−1
h−1γ h−1

]
, and

(iv) from Lemma 13.2.1, γ (0) − γ T
h−1Γ

−1
h−1γ h−1 = E

[
Xt − X (f )

h−1,t

]2
.

If {Xt} is stationary AR(p), then X (f )
h−1,t = X (f )

p,t when h ≥ p + 1 and

E
[

Xt − X
(f )
h−1,t

]2 = E
[

Xt − X
(f )
p,t

]2 = γ (0) − γ T
p Γ −1

p γ p,

Stationarity of {Xt} implies

γ (0) = Var[Xt ] = Var
[
φ1Xt−1 + · · · + φpXt−p + εt

]
= Var

[
φ1Xt−1 + · · · + φpXt−p

]+ Var[εt ]
= φT Γ pφ + σ2 = γ T

p Γ −1
p γ p + σ2, and hence

σ2 = γ (0) − γ T
p Γ −1

p γ p, and

σ2Γ −1
h (h, h) = σ2

/[
γ (0) − γ T

h−1Γ −1
h−1γ h−1

]
= 1

for any h ≥ p + 1. This shows that
√

nπ̂(h)
D→ N(0, 1) as n → ∞ for h ≥ p + 1.
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13.5 Causality and Invertibility
This section addresses a number of important mathematical issues and theoretical results,
but their proofs are not given. For theoretical details including proofs, the readers may
consult the book by Brockwell and Davis [63].

A series {Xt} is called causal if it has an MA(∞) representation, that is

Xt − μ =
∞∑

j=0

ψjεt−j, with ψ0 = 1, (5)

where {εt} are mean zero iid with common variance σ 2 and
∑∣∣ψj

∣∣ < ∞. Any causal series
is stationary since for any h ≥ 0,

Cov[Xt , Xt+h] = σ2
∞∑

j=0

ψjψj+h = γ (h),

depends only on h. In general, explicit expressions for these ψ weights are difficult
to obtain (unless it is an MA(q) model) even though iterative formulas are available.
Fortunately, packages such as R will calculate these ψ coefficients for an ARMA(p, q)
model.

A series {Xt} is invertible if it can be written as an AR(∞) series, that is, it has the
representation

Xt − μ =
∞∑

j=1

πj(Xt−j − μ) + εt , (6)

where {εt} are iid with mean 0 and common variance σ 2. Clearly, any AR(p) model is
invertible. However, an invertible model need not be stationary. For instance if Xt = Xt−1 +
εt , where {εt} are iid mean 0 with variance σ 2, then {Xt} is invertible but is not stationary
(Example 13.2.5). Except for autoregressive models, there are no simple expressions for {πj}
for MA(q) or ARMA(p, q) models. However, a computing package such as R can be used to
obtain them.

Mathematical conditions for invertibility and causality will be discussed later. An
invertible expression is useful for obtaining the forecast values, whereas a causal repre-
sentation makes it easy to obtain the variance of forecasts.

Example 13.5.1. A mean zero AR(1) series {Xt} may be rewritten as

Xt = φXt−1 + εt = φ(φXt−2 + εt−1) + εt

= φ2Xt−2 + φεt−1 + εt

= φ2(φXt−3 + εt−2) + φεt−1 + εt

= φ3Xt−3 + φ2εt−2 + φεt−1 + εt .
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We may repeat this argument to get

Xt = φrXt−r + φr−1εt−r+1 + · · · + φεt−1 + εt ,

for any positive integer r. If |φ| < 1, then φr → 0 and hence φrXt−r
P→ 0 as r → ∞. Thus we

may reexpress Xt as

Xt =
∞∑

j=0

φ jεt−j,

which is a causal representation of the series {Xt} with ψj = φj.
Example 13.5.2. A mean zero MA(1) series may be rewritten as

εt = Xt − θεt−1 = Xt − θ(Xt−1 − θεt−2) = Xt − θXt−1 + θ2εt−2.

Repeating this argument we have, for any positive integer r,

εt = Xt − θXt−1 + · · · + (−θ)rXt−r + (−θ)r+1εt−r−1.

If |θ | < 1, then (−θ)r+1εt−r−1
P→ 0 as r → ∞ and thus we have an invertible representation

for the MA(1) series

εt = Xt − θXt−1 + θ2Xt−2 + · · · , and hence

Xt = θXt−1 − θ2Xt−2 + · · · + εt =
∞∑

j=1

πjXt−j + εt ,

with πj = (−1)j−1θ j.
Example 13.5.3. Consider an ARMA(2, 2) model with φ1 = 0.8, φ2 = −0.15, θ1 = 0.6,

θ2 = 0.08. Using R, we have obtained the first 12 values of {ψj} starting with ψ1 = 1.400 are

[1.400, 1.050, 0.630, 0.347, 0.184, 0.094, 0.050, 0.024, 0.012, 0.006, 0.003, 0.002].
Note that the values of ψj become small for large j and this is typical for any ARMA series
satisfying the condition of stationarity as will be seen later. Using R, we can get an invertible
expression, and the first 12 values of {πj} starting with π1 = 1.400 are

[1.400, −0.910, 0.434, −0.188, 0.078, −0.032, 0.013, −0.005, 0.002, −0.001, 0.0003, −0.0001].
The values of πj rapidly approach 0 as j increases.

13.5.1 Usefulness of Invertible Representation

If we know the weights {πj}, then it is easy to do the forecasting from the data {X1, . . . , Xn}
assuming that πj → 0 as j → ∞, which is generally true for ARMA processes under
appropriate conditions. For notational simplicity let us assume that μ = 0 . Then we can
write this series as

Xt = εt + π1Xt−1 + π2Xt−2 + · · · .
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If we have the entire past {Xt : − ∞ < t ≤ n}, then the forecasted value of Xn+1 is

X̂n+1 = π1Xn + π2Xn−1 + π3Xn−2 + · · · ,

If Xn+1 were known, then forecast of Xn+2 would be

π1Xn+1 + π2Xn + π3Xn−1 + · · · .

Since Xn+1 is unknown, then we can substitute it by X̂n+1 (justification given in
Lemma 13.6.1), leading to the forecasted value of Xn+2 as

X̂n+2 = π1X̂n+1 + π2Xn + π3Xn−1 + · · · .

This method can now be replicated to forecast Xn+3, Xn+4, etc.
Typically μ is not equal to zero, but obtaining the forecasts is not difficult with the

known π values. For instance, the forecasting formula for Xn+1 is given by

X̂n+1 − μ = π1(Xn − μ) + π2(Xn−1 − μ) + π3(Xn−2 − μ) + · · · .

These expressions for forecasts assume that the entire past {Xt : − ∞ < t ≤ n} is known.
However, if πj → 0 rapidly as j → ∞, which is the case for ARMA processes under
the condition of invertibility, then the terms involving Xt , t ≤ 0, may be ignored since
the associated π-coefficients are negligible and thus the approximate forecasts are linear
functions of the available data X1, . . . , Xn.

13.5.2 Usefulness of Causal Representation

Any practical approach to forecasting is incomplete without addressing the issue of predic-
tion limits (or prediction intervals) of these forecasts. If the observed series is {X1, . . . , Xn},
then the h step ahead forecast is denoted by X̂n+h. The forecast error is Xn+h − X̂n+h, which
is not known since Xn+h is unknown. For all the cases we consider in this chapter, the mean
of the forecast error is equal to zero (or close to zero when the parameters of the model are
estimated). The mean square error of the forecast error is denoted by

σ2(h) = Var[(Xn+h − X̂n+h)|X1, . . . , Xn]
= E[(Xn+h − X̂n+h)2|X1, . . . , Xn].

Thus a prediction interval for Xn+h with confidence coefficient 1 − α is X̂n+1 ± zα/2σ (h) if
the series is assumed to be stationary Gaussian.

13.5.3 Important Technical issues

Here is a summary of the technical issues for AR(p), MA(q), and ARMA(p, q) models which
will be discussed in this section.

1. For AR(p) models, we need conditions on the autoregressive coefficients φ1, . . . , φp in
order to guarantee stationarity.
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2. Moving average models are not in general identifiable. Thus for MA(q) models, we
need conditions on the moving average coefficients θ1, . . . , θq in order to guarantee
identifiability.

3. For ARMA(p, q) models,
(i) the coefficients in the AR part must satisfy constrains to guarantee stationarity (as

in (1) above),
(ii) the MA coefficients must satisfy constraints in order to guarantee identifiability of

the model (as in (2) above),
(iii) conditions on the AR and the MA coefficients are needed in order to guarantee

“nonredundancy.” This issue will be discussed in soon.

Nonuniqueness of Moving Average Models

Moving average models are not unique. For instance, consider an MA(1) series Xt − μ =
εt + θεt−1, where {εt} is white noise with variance σ 2. Under the assumption of normality
(ie, {εt} are normally distributed), any stationary series is completely characterized by the
mean and autocovariances. Thus if two sequences have the same mean and autocovari-
ance functions, they are equally good descriptions of the data, that is, they provide the
same fit and they have the same predictive performances. Consider the following two
models

Xt − μ = εt + θεt−1, Xt − μ = ε′
t + (1/θ)ε′

t−1,

where θ �= 0, {εt} is white noise with variance σ 2, and {ε′
t} is white noise with variance θ2σ 2.

Note that we only observe the data {Xt}, not {εt} or {ε′
t}. Both models have the same mean

μ. All the autocovariances of lag 2 or higher are zero for both models. For the first model

γ (0) = (1 + θ2)σ 2, γ (1) = θσ 2, and 0 = γ (2) = γ (3) = · · · .

For the second model,

γ (0) = [1 + (1/θ)2](θ2σ2) = (1 + θ2)σ 2,

γ (1) = (1/θ)(θ2σ2) = θσ 2, and 0 = γ (2) = γ (3) = · · · .

So both the models have identical mean and autocovariance structures. Hence they will
provide identical fits and predictions. This nonuniqueness, or lack of identifiability, is
problematic since there are multiple “correct” models.

How is this issue resolved? If the value of θ is larger than 1 in magnitude and Var[εt] =
σ 2, then we may as well consider the second model for which coefficient associated with
εt−1 is 1/θ whose magnitude is less than 1. Similarly if the moving average coefficient (1/θ)
of the second model is larger than 1 in magnitude, then we may decide to use the first
model for which the coefficient would be smaller than 1 in magnitude. Thus we can always
choose a model whose moving average coefficient is no larger than 1 in magnitude and this
is what is done in practice.
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The same issue of nonidentifiability comes up for general MA(q) models. One can
restrict attention to those models with appropriate conditions on the MA parameters
θ1, . . . , θq needed for identifiably and this is what is usually done.

Redundancy Issue for ARMA(p, q) Models

If a series {Xt} is white noise (ie, Xt = εt , where {εt} is white noise), then subtracting
0.5Xt−1 = 0.5εt−1 from this series we have

Xt − 0.5Xt−1 = εt − 0.5εt−1, ie, Xt = 0.5Xt−1 + εt − 0.5εt−1.

Now it seems that the series {Xt} is ARMA(1, 1), whereas in reality it is a white noise. As a
matter of fact we can rewrite Xt as

Xt = φXt−1 + εt − φεt−1,

for any −1 < φ < 1. Once again it looks as if {Xt} is ARMA(1, 1); however, there is a
redundant parameter φ. Also note that the number of such redundant models is infinite.
In general if θ = −φ in an ARMA(1, 1) model Xt = φXt−1 + εt + θεt−1, then there is
redundancy. When θ �= φ then this redundancy is no longer present. The same issue needs
to be addressed for general ARMA models and constraints on the parameters are needed
in order to avoid any redundancy.

Condition for Stationarity for AR(p) Models

If {Xt} follows an AR(p) model, then it is stationary (and causal) if it can be written in
the form Eq. (5). Conditions on the autoregressive coefficients φ1, . . . , φp are needed to
guarantee that the series can be written in this form. Let φ(z) = 1 − φ1z − · · · − φpzp be
a polynomial in z, where z is complex. This polynomial has p roots which can be real or
complex valued.

Lemma 13.5.1. If the absolute values of all the roots of the polynomial φ(z) of an AR(p)
series are larger than 1, then the series is stationary.

When p = 1, the root of the polynomial is 1/φ1. The condition that the absolute
value of 1/φ1 is larger than 1 is equivalent to the condition −1 < φ1 < 1. In this case,
the autocorrelation function is ρ(h) = φh

1 , h = 0, 1, . . ., and ρ(h) converges to zero
exponentially fast as h increases (Example 13.2.3).

For p = 2, the condition on φ1 and φ2 for stationarity is a bit more complicated. The
condition is: −1 < φ2 < 1 and −1 < φ1/(1 − φ2) < 1, that is, (φ1, φ2) is inside the triangle
Δ = {(u1, u2): − 1 < u2 < 1, −1 < u1/(1 − u2) < 1}. The roots of φ(z) are reciprocals

of the roots of g(z) = z2 − φ1z − φ2. The roots of g(z) are (1/2)
[
φ1 ±

√
φ2

1 + 4φ2

]
, and they

must be smaller than 1 in magnitude for the AR(2) series to be stationary. In the AR(2)
case, it can be shown that ρ(h) = φ1ρ(h − 1) + φ2ρ(h − 2), h = 2, 3, . . .. When the roots
r1 and r2 of g(z) are real and distinct, the theory of difference equations tells us that the
autocorrelations ρ(h) behave like c1rh

1 + c2rh
2 , where c1 and c2 are real. When r1 = r2, that



Chapter 13 • Time Series 459

is, φ2
1 + 4φ2 = 0, then ρ(h) = c1rh

1 + c2hrh
1 , c1, c2 real. Thus the autocorrelation function

{ρ(h)} decays exponentially in h when the roots of g(z) are real.
When r1 and r2 are complex, the AR(2) can model series with pseudo-cyclical behavior.

In this case, φ2
1+4φ2 < 0, r2 is the complex conjugate of r1 and ρ(h) is of the form c1rh

1 +c2rh
2 ,

where c1 and c2 are complex. Calculations show that ρ(h) = |r1|h[sign(φ1)]h sin(2πCh+D)/
sin(D), where sign(φ1) = 1 if φ1 > 0 and = −1 if φ1 < 0, and C and D are constants. Since
|r1| = |r2| < 1, ρ(h) decays exponentially in a sinusoidal fashion.

In general, the autocorrelations of an AR(p) process decay as a mixture of exponentials
or as damped (sinusoidal) exponentials.

Identifiability of MA(q) Models

Consider the polynomial θ(z) = 1 + θ1z + · · · + θqzq, where θ1, . . . , θq are the parameters of
the MA(q) model. This polynomial has q roots which can be real or complex valued.

Lemma 13.5.2. If the absolute values of all the roots of the polynomial θ(z) of an MA(q)
series are larger than or equal to 1, then the series is identifiable.

For the MA(1) model, this translates into the condition that −1 ≤ θ1 ≤ 1. For MA(2) this
condition is equivalent to the condition that (−θ1, −θ2) is in the triangle Δ as in the AR(2)
case, except that (−θ1, −θ2) is allowed to be on the boundaries of the triangle.

Lemma 13.5.3. If for an MA(q) or ARMA(p, q) series, the absolute values of all the roots
of the polynomial θ(z) are larger than 1, then the series is invertible.

For the MA(1) model, the conditions for identifiability and invertibility are −1 ≤
θ1 ≤ 1 and −1 < θ1 < 1, respectively. For MA(2) the model is invertible if (−θ1, −θ2)
is in the triangle Δ as in the AR(2) case. Thus the condition for invertibility guarantees
identifiability.

Stationarity, Invertibility, and Nonredundancy of ARMA(p, q) Models

We have already seen that for an ARMA(1, 1) series, there is no redundancy when θ �= −φ.
For this case the roots of φ(z) and θ(z) are 1/φ and −1/θ , respectively. Thus nonredundancy
is achieved when φ(z) and θ(z) have no common root. This same condition is true for the
general ARMA model.

Lemma 13.5.4. For an ARMA(p, q) series, if φ(z) and θ(z) have no common root, then the
model is nonredundant.

For the general ARMA model we need the following:

(a) roots of φ(z) are larger than 1 in magnitude (condition for stationarity),
(b) roots of θ(z) are larger than or equal to 1 (condition for identifiability), and
(c) the roots of φ(z) are distinct from the roots of θ(z) (condition for nonredundancy).

These are summarized in the following result.
Lemma 13.5.5. An ARMA(p, q) series is stationary, identifiable, and nonredundant if the

following conditions hold:
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(a) the roots of φ(z) are larger than 1 in magnitude,
(b) the roots of θ(z) are larger than or equal to 1 in magnitude,
(c) φ(z) and θ(z) have no common roots.

For invertibility, in addition to stationarity and nonredundancy, condition (b) needs
to be replaced by the stronger condition

(b′) the roots of θ(z) are larger than 1 in magnitude.

13.6 Forecasting
This section deals with the issues of forecasting, and obtaining prediction intervals for
an ARMA series {Xt}. Here the parameters associated with the ARMA model are assumed
to be known, but they need to be estimated in practice, and the issue of estimation
will be discussed later. Suppose that observations are X1, . . . , Xn and we wish to forecast
Xn+1, Xn+2, . . ., then a linear predictor of Xn+h is of the form a0 +a1X1 +· · ·+anXn. If all the
variables are centered (ie, they are subtracted by their means), then we may take a0 = 0.
For notational convenience, we consider the issue of forecasting a centered series and we
continue to denote the centered series as {Xt}.

If we wish to predict Xn+1 using a linear predictor based on X n = (X1, . . . , Xn)T for the
AR(1) case which is modeled as Xn+1 = φXn + εn+1, the best linear predictor of Xn+1 is
X̂n+1 = φXn. If Xn+1 were available, then the best linear predictor of Xn+2 based on X n+1 =
(X1, . . . , Xn, Xn+1) would be φXn+1. Now Xn+1 is unobserved, but a predicted value X̂n+1 of
Xn+1 is available. Thus substituting X̂n+1 in place of Xn+1, we can obtain a linear predictor
of Xn+2 based on X n as X̂n+2 = φX̂n+1 = φ2Xn. We can similarly obtain a linear predictor of
Xn+h based on X1, . . . , Xn as X̂n+h = φhXn. Is X̂n+h = φhXn the best linear predictor of Xn+h

based on X1, . . . , Xn? The answer is yes.
Let X̂n+h denote the best linear predictor of Xn+h based on X1, . . . , Xn. In general, it is

easy to obtain an expression for the best predictor of Xn+h based on X1, . . . , Xn+h−1 and in
this expression we can substitute X̂n+1, . . . , X̂n+h−1 for Xn+1, . . . , Xn+h−1 in order to obtain
the best linear predictor of Xn+h based on X1, . . . , Xn. This is based on a rather simple
argument as outlined below.

If Y is a rv and W 1, W 2 are two random vectors, then the best predictors of Y given
W 1, and given W 2 and W 1 are E[Y |W 1} and E[Y |W 2, W 1], respectively. The law of iterative
expectations tells us E[Y |W 1] = E[E{Y |W 2, W 1} |W 1]. Is this result true for best linear
predictors? The answer is yes if Y , W 1, W 2 are jointly normally distributed, since the best
predictor is the same as the best linear predictor. However, the result is true more generally
in the sense described in the result below. Let the best linear predictors of Y given W 1, and
Y given W 1, W 2 be denoted by L(Y |W 1) and L(Y |W 2, W 1), respectively. We can then write
the following result.

Lemma 13.6.1. Let L(· |·) be the best linear predictor as described above.

(a) L is linear in the response in the sense that for any rv’s Y1 and Y2,

L(Y1 + Y2 |W 1) = L(Y1 |W 1) + L(Y2 |W 1).
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(b) L satisfies the iterative formula L(Y |W 1) = L[L(Y |W 2, W 1) |W 1].
(c) If W 1 and W 2 are uncorrelated, that is, Cov[W 1, W 2] = 0, then

L[L(Y |W 2) |W 1] = 0 and L(Y |W 2, W 1) = L(Y |W 2) + L(Y |W 1).

This proof of this lemma is left as an exercise. It can be used to justify replacing
Xn+1, . . . , Xn+h−1 by X̂n+1, . . . , X̂n+h−1 in the expression for the best linear predictor of Xn+h

given X1, . . . , Xn+h−1 in order to obtain the best linear predictor of Xn+h given X1, . . . , Xn.

13.6.1 Forecasting an AR(p) Series

Forecasting with an AR(p) model with autoregressive coefficients φ1, . . . , φp is quite simple
as it has a regression form. Suppose that observations are X1, . . . , Xn and we wish to forecast
Xn+1, Xn+2, . . .. The best linear predictor of Xn+h based on X1, . . . , Xn will be denoted by
X̂n+h. Since

Xt = φ1Xt−1 + · · · + φpXt−p + εt ,

where {εt} are iid with mean 0 and variance σ 2, the best linear predictor of Xn+1 based on
X1, . . . , Xn is

X̂n+1 = φ1Xn + · · · + φpXn+1−p.

If Xn+1 were known the best linear predictor based on X1, . . . , Xn+1 is φ1Xn+1 +φ2Xn +· · ·+
φpXn+2−p. In Lemma 13.6.1, use Y = Xn+2, W 1 = (X1, . . . , Xn)T and W2 = Xn+1 to obtain

X̂n+2 = L(Y |W 1) = L[L{Y |W2, W 1} |W 1]
= L
[
φ1Xn+1 + φ2Xn + · · · + φpXn+2−p |W 1

]
= φ1L(Xn+1 |W 1) + φ2Xn + · · · + φpXn+2−p

= φ1X̂n+1 + φ2Xn + · · · + φpXn+2−p.

We have used linearity of L (part (a) of Lemma 13.6.1) and the fact that L(Xt |W 1) = Xt for
any t = 1, . . . , n.

If we denote X̂t = Xt , t = 1, . . . , n, then the argument used above can be employed to
show that for any h ≥ 1,

X̂n+h = φ1X̂n+h−1 + · · · + φpX̂n+h−p.

13.6.2 Forecasting an MA(q) Series

For a mean zero MA(q) series with coefficients θ1, . . . , θq, Xn+h is uncorrelated with Xn when
h ≥ q + 1. Thus X̂n+h = 0 for h = q + 1, q + 2, . . .. We discuss below how to find the
formula for forecasting X̂n+1, . . . , X̂n+q. As will be clear in the subsequent discussion, unlike
in the AR(p) case where the forecasted value X̂n+h depends only on Xn, . . . , Xn+1−p, here the
forecasted value of Xn+h, 1 ≤ h ≤ q, depends on the entire available past Xn, . . . , X1.
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For an invertible series given in Eq. (6), the forecasting formula is simple if the entire
past {Xt : − ∞ < t ≤ n} were available. Absolute summability of {πj} guarantees that
πj → 0 as j → ∞, and for an invertible MA(q) model, πj decays exponentially fast as j
increases. So when predicting Xn+h based on X1, . . . , Xn, we may simply truncate the π

series at j = n thus approximating the process by an AR(p) sequence with p = n, and
then use the methods associated with forecasting an autoregressive process as given in
Section 13.6.1.

We now discuss how to carry out forecasting without having to obtain the values of {πj}
assuming that the series is invertible. Note that

Xn+1 = εn+1 + θ1εn + · · · + θqεn+1−q.

For the moment assume that in addition to the observations X n = (X1, . . . , Xn)T we
also have ε0 = (ε−q+1, . . . , ε0)T , and we predict Xn+1 based on ε0 and X n. Any linear
combination of ε0 and X n can be rewritten as a linear combination of ε−q+1, . . . , εn, and
vice versa. Thus the best linear predictor of Xn+1 based on ε0 and X n is given by

X̂n+1 = θ1εn + · · · + θqεn+1−q.

In order to forecast Xn+2, note that

Xn+2 = εn+2 + θ1εn+1 + θ2εn + · · · + θqθn+2−q,

and (εn+2, εn+1) is uncorrelated with W 1 = (εT
0 , X1, . . . , Xn)T . Thus the best linear predictor

of Xn+2 given W 1 is

X̂n+2 = θ2εn + · · · + θqθn+2−q.

A similar argument will show that

X̂n+3 = θ3εn + · · · + θqεn+3−q,

X̂n+h = θhεn + · · · + θqεn+h−q, 1 ≤ h ≤ q, and

X̂n+h = 0, h > q.

The forecasts X̂n+h, h = 1, . . . , q, depend on knowing εn, εn−1, . . . , εn+1−q. We now point
out how to obtain these from ε0 and X n. We may obtain ε1 and ε2 as

ε1 = X1 − (θ1ε0 + · · · + θqε1−q), and

ε2 = X2 − (θ1ε1 + · · · + θqε2−q).

Continuing this way, once we have ε1, . . . , εt , we may obtain

εt+1 = Xt+1 − (θ1εt + · · · + θqεt+1−q), t = 1, . . . , n − 1.

It is important to note that only the data X n = (X1, . . . , Xn) is available and not ε0. Even
though εn, . . . , εn+1−q are linear combinations of ε0 and X n, often one takes ε0 = 0
since the coefficients associated with ε0 in these linear combinations are negligible if
the assumption of invertibility is valid. Without the assumption of invertibility, it is still
possible to obtain the forecasts, but that issue will not be discussed here.
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Example 13.6.1. Consider a mean zero MA(1) series with the moving average coeffi-
cient θ . Assuming ε0 to be known, we can get

ε1 = X1 − θε0, ε2 = X2 − θε1, . . . , εn = Xn − θεn−1.

Using the arguments given in Example 13.5.2, we have

εn = Xn − θXn−1 + θ2Xn−2 + · · · + (−1)n−1θn−1X1 + (−1)nθnε0.

The forecasted value X̂n+1 of Xn+1 based on ε0, X1, . . . , Xn is

X̂n+1 = θεn

= θ
[

Xn − θXn−1 + θ2Xn−2 + · · · + (−1)n−1θn−1X1

]
+ (−1)nθn+1ε0.

The term θn+1ε0 is negligible if |θ | < 1 (ie, the series is invertible) and thus X̂n+1 is
approximately a linear combination of X1, . . . , Xn.

13.6.3 Forecasting an ARMA Series

If {Xt} is mean zero ARMA(p, q), then the method for forecasting Xn+h based on X n =
(X1, . . . , Xn)T combines the methods given for AR and MA models. If the series in invertible,
then we can obtain, in principle, the (approximate) best linear predictors of Xn+h, h =
1, 2, . . ., based on X1, . . . , Xn, by approximating {Xt} by an AR(p) process with p = n.

For the moment assume that εp = (εp+1−q, . . . , εp)T is known. Then we can obtain
εp+1, . . . , εn as linear combinations of εp and X n as will be shown below.

Since

Xn+1 = φ1Xn + · · · + φpXn+1−p + εn+1 + θ1εn + · · · + θqεn+1−q

= φ1Xn + · · · + φpXn+1−p + θ1εn + · · · + θqεn+1−q + εn+1,

the best linear predictor X̂n+1 of Xn+1 is given by

X̂n+1 = φ1Xn + · · · + φpXn+1−p + θ1εn + · · · + θqεn+1−q.

Since

Xn+2 = φ1Xn+1 + φ2Xn + · · · + φpXn+2−p

+ θ1εn+1 + θ2εn + · · · + θqεn+2−q + εn+2,

the best linear predictor of Xn+2 would be

φ1Xn+1 + φ2Xn + · · · + φpXn+2−p + θ1εn+1 + θ2εn + · · · + θqεn+2−q,

if Xn+1, εn+1 were known. Following Lemma 13.6.1 we can now replace Xn+1 by X̂n+1

and εn+1 by ε̂n+1 = 0 (since εn+1 is uncorrelated with εp and X1, . . . , Xn). The best linear
predictor of Xn+2 given εp and X1, . . . , Xn is

X̂n+2 = φ1X̂n+1 + φ2Xn + · · · + φpXn+2−p + θ2εn + · · · + θqεn+2−q.
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A similar argument will show that

X̂n+h = φ1X̂n+h−1 + · · · + φpX̂n+h−p + θhεn + · · · + θqεn+h−q, h = 1, . . . , q,

X̂n+h = φ1X̂n+h−1 + · · · + φpX̂n+h−p, h > q,

with the understanding that X̂t = Xt for t = 1, . . . , n.
The forecasts X̂n+h, h ≥ 1, depend on εn+1−q, . . . , εn. We need to obtain their

values when εp and X1, . . . , Xn are available, and this can be done iteratively starting
with εp+1

εp+1 = Xp+1 − φ1Xp − · · · − φpX1 − (θ1εp + · · · + θqεp+1−q),

εp+2 = Xp+2 − φ1Xp+1 − · · · − φpX2 − (θ1εp+1 + · · · + θqεp+2−q),

and, when εp+1, . . . , εt , t ≥ p + 1, are available, we can find

εt+1 = Xt+1 − φ1Xt − · · · − φpXt+1−p − (θ1εt + · · · + θqεt+1−q).

Thus εn, . . . , εn+1−q and hence X̂n+h, h ≥ 1, are linear combinations of εp and X1, . . . , Xn.
Under the conditions of invertibility, the coefficients associated with εp, . . . , εp+1−q are
negligible. In practice, often εp, . . . , εp+1−q are taken to be zeros.

Example 13.6.2. Let us assume that we have an ARMA(1, 1) process Xt = φXt−1 + εt +
θεt−1, φ �= −θ , and we want to predict Xn+1, Xn+2, . . . using the observations X1, . . . , Xn. If
ε1 were available, then generate ε2, εn, . . . , εn as

ε2 = X2 − (φX1 + θε1), ε3 = X3 − (φX2 + θε2), . . . , εn = Xn − (φXn−1 + θεn−1)

Thus predicted values of Xn+h, h ≥ 1, are

X̂n+1 = φXn + θεn, X̂n+2 = φX̂n+1 + θ ε̂n+1 = φX̂n+1, and

X̂n+h+1 = φX̂n+h, h ≥ 2.

Remark 13.6.1. For the MA(q) and ARMA(p, q) cases, it is generally assumed that the
series is invertible. However, the condition of invertibility is more of a convenience than
necessity. Even without the condition of invertibility, it is still possible to forecast Xn+h,
h ≥ 1, using the best linear predictor a1Xn + · · · + an−1X1, but unlike in the invertible case,
the coefficients {aj} may not converge to 0 rapidly. For instance, for the mean zero MA(1)
case if we have θ = −1, then the best linear predictor of Xn+1 is of the form

X̂n+1 =
n−1∑
j=0

ajXn−j, where aj = −1 + (j + 1)/(n + 1).

Note that the coefficients {aj} increase linearly from a0 = −n/(n + 1) to an−1 = −1/(n + 1).
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13.6.4 Standard Error for Prediction

Calculations of standard errors of predictions are needed to construct confidence bounds.
Let σ 2(h) = E[(Xn+h − X̂n+h)2 |X n] be the mean square error for predicting Xn+h based
on the data X n = (X1, . . . , Xn)T . Once again we assume that the parameters of the
ARMA model are known and formulas for σ 2(h) depend on the unknown parameters. In
practice these parameters are replaced by their sample estimates. Under the assumption
of normality, a prediction interval for Xn+h with confidence coefficient 1 − α is given by
X̂n+h ± zα/2σ (h).

The formulas for σ 2(h) can be obtained easily for a series with causal representation

Xt =
∞∑

j=0

ψjεt−j, with ψ0 = 1,

where {εt} are iid with mean 0 and variance σ 2, and
∑∣∣ψj

∣∣ < ∞. If we assume that the entire
past Xn = {Xt : − ∞ < t ≤ n} is known, then it is equivalent to knowing the entire past of
{εt : − ∞ < t ≤ n} of the errors. If a predictor of Xn+h is a linear combination of {Xt : − ∞ <

t ≤ n}, then it is a linear combination of {εt : − ∞ < t ≤ n}. Under appropriate conditions
of stationarity and invertibility, the dependence on {εt : − ∞ < t ≤ 0} is negligible. Since

Xn+1 =
∞∑

j=1

ψjεn+1−j + εn+1,

the best linear predictor X̂n+1 of Xn+1 is
∑∞

j=1 ψjεn+1−j, and the mean square error of
prediction is

σ2(1) = E
[(

Xn+1 − X̂n+1

)2
∣∣∣∣X n

]2
= E

[
ε2

n+1

]
= σ2.

The best linear predictor of Xn+2 given Xn is

X̂n+2 = ψ2εn + ψ3εn−1 + · · · , and

Xn+2 − X̂n+2 = [εn+2 + ψ1εn+1 + ψ2εn + · · · ]
− [ψ2εn + ψ3εn−1 + · · · ]

= εn+2 + ψ1εn+1.

Hence the mean square error for predicting Xn+2 by X̂n+2 is

σ2(2) = E
[(

Xn+2 − X̂n+2

)2
∣∣∣∣X n

]
= E

[ (
εn+2 + ψ1εn+1

)2∣∣∣X n

]
= σ2 + ψ2

1 σ2 =
(

1 + ψ2
1

)
σ2.

A very similar argument will show that the best linear predictor of Xn+h based on the entire
past and the mean square error of prediction are

X̂n+h = ψhεn + ψh+1εn−1 + · · · ,

Xn+h − X̂n+h = εn+h + ψ1εn+h−1 + · · · + ψh−1εn+1, and
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σ2(h) = E
[(

Xn+h − X̂n+h

)2
∣∣∣∣X n

]

=
(

1 + ψ2
1 + · · · + ψ2

h−1

)
σ2.

Note that σ 2(h) → σ 2∑∞
j=0 ψ2

j as h → ∞, where ψ0 = 1. The limit of σ 2(h) is a constant as
we assume that {ψj} is absolutely summable.

13.7 ARIMA Models and Forecasting
If a series {Yt} is nonstationary in the mean in the sense that there is a trend, then the first
difference {Xt = Yt − Yt−1} or the second difference {Xt = Yt − 2Yt−1 + Yt−2} may behave
like a stationary series, and an ARMA model may be used for the differenced series {Xt}.
Thus if the dth-order difference of the sequence {Yt} follows an ARMA(p, q) model, then
we say that the series {Yt} follows an ARIMA(p, d, q) model [ARIMA stands for “integrated
autoregressive-moving average”].

Let us briefly discuss forecasting when d = 1, which is often used in practice. Let Xt =
Yt − Yt−1. If the observations are Y1, . . . , Yn, then we have the differenced values X2 = Y2 −
Y1, . . . , Xn = Yn − Yn−1. If {Xt} is modeled by ARMA(p, q), we can obtain forecasts X̂n+h,
h = 1, 2, . . .. Since

Yn+h = Xn+h + · · · + Xn+1 + Yn,

the forecast of Yn+h is

Ŷn+h = X̂n+h + · · · + X̂n+1 + Yn.

The formula for the mean square error for prediction is a bit more complicated in
comparison to the stationary case. Following the arguments in Section 13.6.4,

X̂n+l − Xn+l =
l∑

j=1

ψl−jεn+j, where ψ0 = 1, and

Ŷn+h − Yn+h =
h∑

l=1

(X̂n+l − Xn+l)

=
h∑

l=1

l∑
j=1

ψl−jεn+j =
h∑

j=1

⎛
⎝h−j∑

l=0

ψl

⎞
⎠εn+j,

where {εt} are the error terms in ARMA model for {Xt}. Thus the mean square error for
predicting Yn+h is

σ2(h) = E
[

(Ŷn+h − Yn+h)2|Y1, . . . , Yn

]
= σ2

h∑
j=1

⎛
⎝h−j∑

l=0

ψl

⎞
⎠

2

.
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Unlike in the stationary case (Section 13.6.4), σ 2(h) here increases linearly with h as the
expression above shows. Thus the prediction interval for Yn+h can be wide unless h is
small.

13.8 Parameter Estimation
We now discuss how to estimate the parameters of ARMA models based on the data
X1, . . . , Xn and write down the asymptotic distributions of the parameter estimates. For the
Gaussian series, the maximum likelihood method can be used to estimate the parameters.
However, the actual implementation may always not be easy due to the dependence of
the observations and, often appropriate approximations to the likelihood are used in
order ease the computation. Details can be found in the book by Box et al. [62]. Here
we will basically focus on the least squares type methods. We begin with estimation
of the parameters of AR models since it is simpler than the MA or ARMA models.
For the discussion below, we assume that the series {Xt} is stationary, invertible, and
identifiable.

13.8.1 Parameter Estimation: AR(p) Models

If a series {Xt} is AR(p), we may estimate the parameters by the method of least squares
since it can rewritten as

Xt = φ0 + φ1Xt−1 + · · · + φpXt−p + εt , where

φ0 = μ − (φ1 + · · · + φp)μ.

Thus one may minimize
∑n

t=p+1[Xt−φ0−φ1Xt−1−· · ·−φpXt−p]2 with respect to φ0, . . . , φp in
order to obtain their least squares estimates. However, numerically more stable estimates
are obtained via Yule-Walker equations. Recall that the theoretical Yule-Walker equations
Γ pφ = γ p, φ = (φ1, . . . , φp)T , as given in Eq. (3) are obtained by minimizing Q = E[(Xt −μ)−
φ1(Xt−1−μ)−· · ·−φp(Xt−p−μ)]2 with respect to φ1, . . . , φp. If {γ (j)} in Yule-Walker equations
are replaced by their empirical estimates {γ̂ (j)}, then we get the empirical version of the

equations Γ̂ pφ = γ̂ p, that is, φ̂ = Γ̂
−1
p γ̂ p. The Yule-Walker estimate φ̂ can also be obtained

by padding the data X1, . . . , Xn as follows. Create X̃t , t = −p+1, . . . , n+p, where X̃t = Xt −X̄ ,
t = 1, . . . , n and X̃t = 0 otherwise. Then one can minimize the least squares criterion

n+p∑
t=1

(X̃t − φ1X̃t−1 − · · · φt−pX̃t−p)2

with respect to φ1, . . . , φp and the normal equations are the same as the Yule-Walker
equations Γ̂ pφ = γ̂ p.
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Theorem 13.8.1. Let φ̂ be the solution of the Yule-Walker equations Γ̂ pφ = γ̂ p, where

Γ̂ and γ̂ p are estimates of Γ p and γ p based on the observations X1, . . . , Xn from an AR(p)

process. Assuming that E[ε4
t ] < ∞,

√
n(φ̂ − φ)

D→ Np(0, σ 2Γ −1
p ).

Remark 13.8.1. The above result is also true if the true model is AR(p) but we fit an

autoregressive model of order higher than p. For h > p, let φh =
(

φ

0

)
, where φ is the vector

of autoregressive parameters of the AR(p) model and 0 is a (h − p)-dim vector of zeros. Let
φ̂h be the solution of the Yule-Walker equations for estimating the parameters of an AR(h)

model, that is, φ̂h = Γ̂
−1
h γ̂ h. Then

√
n(φ̂h − φh)

D→ Nh(0, σ 2Γ −1
h ) assuming that E[ε4

t ] < ∞.
This result can be used to carry out inferences on φ1, . . . , φp including construction

of confidence intervals and deciding if an autoregressive term can be dropped from the
model.

An outline of the proof will be given below. One may heuristically guess the asymptotic
result since the AR(p) model can be reexpressed as a Gauss-Markov model and one
may use the distributional results of the least squares estimates. However, applying the
distributional results of the Gauss-Markov model for the autoregressive case requires
justifications due to dependence of the observations. We provide an outline of the main
arguments used in the derivation of the asymptotic normality of φ̂.

Since {Xt} can be centered by subtracting the mean μ, we assume that E[Xt] = 0. The
main idea behind the proof is to decompose γ̂ p so that

γ̂ p = Γ̂ pφ + n−1/2δ + OP(n−1),

where δ is a p-dim vector whose jth element is δj = n−1/2∑n
t=1 Xtεt+j. For the moment

assume that δ
D→ Np(0, σ 2Γ p). Then

Γ̂ p(φ̂ − φ) = γ̂ p − Γ̂ pφ =
[
Γ̂ pφ + n−1/2δ + OP(n−1)

]
− Γ̂ pφ

= n−1/2δ + OP(n−1).

It follows from Theorem 13.3.4 that γ̂ (h) − γ (h)
P→ 0, h = 0, . . . , p − 1, and hence Γ̂ p−

Γ p
P→ 0 and Γ̂

−1
p − Γ −1

p
P→ 0. Therefore,

n1/2(φ̂ − φ) = Γ̂
−1
p δ + OP(n−1/2)

D→ Np(0, σ2Γ −1
p ).

Let us briefly examine why the asymptotic normality of δ is valid. It is fairly easy to
check that

E
[
δj

]
= 0,

E
[
δjδk

]
= n−1

n∑
t=1

E
[

Xt Xt+k−j

]
= γ (k − j), j ≤ k, and

Cov[δ] = Γ p.
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In order to establish the asymptotic normality of δ, use the Cramér-Wold device, that is,
establish the asymptotic normality of a linear function c1δ1 + · · · + cpδp = cT δ of δ, where
c = (c1, . . . , cp)T is a vector of constants. Now, denoting St = Xt(c1εt+1 + · · · + cpεt+p),
we have

cT δ = n−1/2
n∑

t=1

Xt (c1εt+1 + · · · + cpεt+p) = n−1/2
n∑

t=1

St

Since {Xt} is stationary and has a causal representation, Xt = ∑∞
j=0 ψjεt−j with ψ0 = 0 and∑∣∣ψj

∣∣ < ∞. For any positive integer m, let Xm,t = ∑m
j=0 ψjεt−j and Sm,t = Xm,t(c1εt+1 +

· · · + cpεt+p). Since {εt} are iid, the process {Sm,t} is (m + p)-dependent and we can use
Theorem 13.3.2 (details omitted) in order to establish asymptotic normality of δ.

Let us now see why the decomposition of γ̂ p given above is valid. Since we are assuming

that E[Xt] = 0, Xt = φT X t−1 + εt where X t−1 = (Xt−1, . . . , Xt−p)T . Using Lemma 13.3.1, the
jth element of γ̂ p is

γ̂ (j) = n−1
n∑

t=1

Xt Xt+j + OP(n−1)

= n−1
n∑

t=1

Xt

(
φT X t+j−1 + εt+j

)
+ OP(n−1)

=
p∑

l=1

φln−1
n∑

t=1

Xt Xt+j−l + n−1
n∑

t=1

Xtεt+j + OP(n−1)

=
p∑

l=1

φl

[
γ̂ (j − l) + OP(n−1)

]
+ n−1/2δj + OP(n−1)

=
p∑

l=1

φl γ̂ (j − l) + n−1/2δj + OP(n−1), h = 1, . . . , p.

In the matrix notations, these equations can be written as

γ̂ p = Γ̂ pφ + n−1/2δ + OP(n−1).

13.8.2 Parameter Estimation: MA(q) Models

Parameter estimation for moving average models is more complicated in comparison to
autoregressive models and no closed form solution is available. If the series {Xt} has mean
μ and we have observations X1, . . . , Xn, we can estimate μ by the sample mean X̄ and
then continue to do the analysis based on {Xt − X̄}. For this reason, in order to make
the notations simple, we assume that the series has zero mean. We now describe the least
squares and the maximum likelihood methods for estimating θ1, . . . , θq.

Let us follow the ideas used in forecasting MA(q) models. If ε0 = (ε−q+1, . . . , ε0)T were
known, given θ = (θ1, . . . , θq), we may calculate εt ’s starting with

ε1(θ , ε0) = X1 − (θ1ε0 + · · · + θqε−q+1),
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and then iteratively compute, when ε−q+1, . . . , εt−1 are available, εt as

εt (θ , ε0) = Xt − (θ1εt−1 + · · · + θqεt−q), t = 2, . . . , n.

It is important to note that each εt is a linear combination of Xt , . . . , X1 and ε0. For the
MA(1) case, denoting θ1 by θ , we have

εt (θ , ε0) = Xt − θXt−1 + · · · + (−θ)t−1X1 + (−θ)tε0.

In the invertible case, that is, |θ | < 1, dependence of εt(θ , ε0) on ε0 is negligible when t is
not small since (−θ)t → 0 rapidly. For the general MA(q) case, the same is true when it is
invertible.

In order to obtain the estimate of θ , we may minimize
∑n

t=1 εt(θ , ε0)2, with respect to θ .
This estimate θ̂ depends on ε0, even though this dependence is negligible in the invertible
case as pointed out before. How can one implement this estimation method in practice?
The following are among many options:

(i) take ε0 = 0,
(ii) obtain the MLE, and

(iii) obtain a modified MLE.

The first option is often used and is reasonable in the invertible case. In order to see
the second and the third options let us note that the joint pdf of ε0 and X1, . . . , Xn, under
normality (ie, {εt} are iid N(0, σ 2)), is

f (x, ε0, θ , σ ) =
(√

2πσ
)−n−q

exp

⎡
⎣− 1

2σ2

n∑
t=1

εt (θ , ε0)2 − 1

2σ2 ‖ε0‖2

⎤
⎦,

where x = (x1, . . . , xn)T . In order to obtain the MLE (option (ii)), one needs to maximize
the likelihood after ε0 has been integrated out, that is, maximize

f (X , θ , σ ) =
∫

f (X , θ , ε0, σ )g(ε0, σ )dε0,

where g is the marginal pdf of ε0 and X = (X1, . . . , Xn)T . Clearly this integration is rather
difficult since

∑n
t=1 εt(θ , ε0)2 does not have a simple expression involving ε0. Another

option is to approximate this integral f (X , θ , σ ) by an average of M iid copies of ε0, that
is, approximate f (X , θ , σ ) by

fM (X , θ , σ ) = M−1
M∑

j=1

f (X , ε0j, θ , σ ),

where ε0j are iid as ε0. Mathematically fM (x, θ , σ ) converges to f (x, θ , σ ) in probability as
M → ∞. In practice, M = n should be adequate.

In the third option, one may try to maximize f (X , θ , ε0, σ ) with respect to θ , σ , and ε0,
an idea used in the derivation of mixed model equations in Chapter 11. Thus one may
minimize
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− 2 log f (X , θ , ε0, σ ) = 1

σ2

n∑
t=1

εt (θ , ε0)2 + 1

σ2 ‖ε0‖2 + (n + q) log(2πσ 2),

with respect to θ , σ , and ε0. Note that the first two terms in the last expression have
the same denominator and hence in order to obtain estimates of θ and ε0 one needs to
minimize the penalized criterion

n∑
t=1

εt (θ , ε0)2 + ‖ε0‖2

with respect to θ and ε0.
For the least squares method, once we have obtained θ̂ , the estimate of σ 2 can be

obtained as σ̂ 2 = (n)−1 ∑ εt(θ̂ , ε0)2 , where either ε0 = 0 or it is estimated by optimizing a
penalized criterion as described above.

The following asymptotic result holds for the estimate θ̂ of θ . In order to describe
the covariance matrix of the asymptotic distribution of θ̂ , we will adopt some simple
notations as in Brockwell and Davis [63]. Let {Dt} be a mean zero AR(q) process of the form
θ(B)Dt = δt , where θ(B) = 1 + θ1B +· · ·+ θqBq and {δt} are iid with mean 0 and variance σ 2.
Let V = Cov[Dt], where Dt = [D1, . . . , Dq]T .

Theorem 13.8.2. Let X1, . . . , Xn be observations from a Gaussian MA(q) series which is

invertible. Then as n → ∞,
√

n(θ̂ − θ)
D→ Nq(0, σ 2V −1), where V is as given above and θ̂ is

estimated using any of the methods described above.
This result makes it possible to obtain the standard errors of the estimates θ̂1, . . . , θ̂q and

construct confidence intervals for θ1, . . . , θp or carry out tests of hypotheses.

13.8.3 Parameter Estimation: ARMA(p, q) Models

As in the MA(q) case, parameter estimates for ARMA models do not have closed-form ex-
pressions. There are many methods for the estimation of parameters and many textbooks
on time series provide details of these methods. As in the MA(q) case, we can center the
observations by the sample mean so that we can assume the mean of the series to be zero.
Here we outline a simple least squares type method extending some of the ideas outlined
for the AR(p) and MA(q) cases. Details can be found in the well-known book on time series
by Box et al. [62].

We assume that {Xt} is mean zero stationary Gaussian ARMA(p, q) series which is causal
and invertible. If εp = (εp−q+1, . . . , εp)T were available, then for given values of φ and θ , we
can obtain

εp+1(φ, θ , εp) = (Xp+1 − φ1Xp − · · · − φpX1) − (θ1εp + · · · + θqεp−q+1).

Once εp+1(φ, θ , εp), . . . , εt−1(φ, θ , εp) are obtained, then it is possible to calculate

εt (φ, θ , εp) = (Xt − φ1Xt−1 − · · · − φpXt−p) − (θ1εt−1 + · · · + θqεt−q),
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t = p + 2, . . . , n. Following the ideas in the MA(q) case, in order to obtain estimates φ̂ and
θ̂ , we may minimize

∑n
t=p+1 εt(φ, θ , εp)2, with εp = 0, with respect to φ and θ , or we may

minimize
n∑

t=p+1

εt (φ, θ , εp)2 + ‖εp‖2,

with respect to φ, θ , and εp.
As described in the AR(p) estimation case, we may also used the idea of padding the data

at the beginning and at the end to obtain {X̃t : t = −p + 1, . . . , n + p} and then taking ε0 =
(ε−q+1, . . . , ε0)T , we can obtain εt(φ, θ , ε0), t = 1, . . . , n + p, and then obtain the estimates

φ̂ and θ̂ by minimizing
∑n

t=p+1 εt(φ, θ , ε0)2, with ε0 = 0, or by minimizing the penalized
criterion

n+p∑
t=1

εt (φ, θ , ε0)2 + ‖ε0‖2

with respect to φ, θ , and ε0.
An estimate of σ 2 is

σ̂2 = (n)−1
n∑

t=p+1

εt (φ̂, θ̂ , ε̂0)2,

where ε̂0 is 0 or is obtained by optimizing a penalized criterion as described above.
We now write down the asymptotic distribution of (φ̂, θ̂). Let {Ct} and {Dt} be mean zero

AR(p) and AR(q) series

φ(B)Ct = δt , θ(B)Dt = δt ,

where φ(B) = 1 − φ1B − · · · − φpBp, θ(B) = 1 + θ1B + · · · + θqBq and {δt} are iid with mean 0
and variance σ 2. Let R = [C1, . . . , Cp, D1, . . . , Dq] and V = Cov[R].

Theorem 13.8.3. Let X1, . . . , Xn be observations from a stationary Gaussian ARMA(p, q)
series which is invertible and nonredundant. Let β the (p + q) × 1 vector of φ and θ stacked
vertically and, similarly, let β̂ be the stacked vector of φ̂ and θ̂ which are obtained using any

of the least squares methods outlined above. Then
√

n(β̂ − β)
D→ Np+q(0, σ 2V −1), where V is

described above.
Approximate standard errors of the estimates of φ̂ and θ̂ can be obtained using this

theorem.

13.9 Selection of an Appropriate ARMA model
As in any statistical method, model selection is an important part of time series analysis.
As in the case of linear models, it is possible to select an appropriate ARMA model by using
a criterion such as AIC or BIC. We also introduce another widely used criterion known as
AICC which provides a small sample correction to AIC. For an ARMA(p, q) model, the total
number of estimated parameters (excluding σ 2) is k = p + q + 1. As in the case of linear
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models (Section 11.8.3 in Chapter 11), the AIC, AICC, and BIC values with k = p + q + 1,
can be written as

AIC(k) = −2 log L(μ̂k, φ̂k, θ̂k, σ̂k) + 2k, BIC(k) = −2 log L(μ̂k, φ̂k, θ̂k, σ̂k) + [log (n)]k,

AICC(k) = AIC(k) + 2k(k + 1)/(n − k − 1),

where L is the likelihood, and (μ̂k, φ̂k, θ̂k, σ̂k) is the MLE of (μ, φ, θ , σ ) under the ARMA(p, q)
model. Statistical computing packages such as R or MATLAB can calculate the values of
these criteria for an ARMA model given a data set. As usual, an appropriate model is
selected by minimizing the criterion of choice.

13.10 Spectral Analysis
Analysis of time series has two important aspects

(a) model fitting and forecasting, and
(b) understanding of the hidden periodicities.

We have discussed the first aspect in the previous sections, and we now discuss
the second which involves a deeper analysis of the spectral density function defined
in Eq. (1).

The basis of spectral analysis is an important mathematical result which states that any
stationary time series (causal or noncausal) can be approximated by linear combinations
of sines and cosines with random coefficients. Toward this end, let us define an important
quantity: frequency. A frequency is a real number between 0 and 1/2. For the monthly
energy (electricity) data mentioned at the beginning of this chapter, once the trend is
estimated and subtracted from the data, the detrended series has a similar pattern of
behavior every 12 time points (months). Energy consumptions in January are similar,
energy consumptions in March are similar, and so on. In such a case, we can say that
energy consumption has an “important” frequency at w = 1/12. A plot of the annual
sunspots recorded over the last n = 313 years reveals that the peaks are occurring between
8 and 12 years. However, unlike in the energy data (which is seasonal), the times of the
peaks are not fixed in the sunspot series. There are 28.5 cycles in the series. So the series
tends to behave similarly every 313/28.5 = 10.98 years (on the average). Thus there is a
peak at frequency at w = 1/10.98 = 0.091.

Consider a series Xt = A cos(2πwt) + B sin(2πwt), 0 ≤ w ≤ 1/2 , where A and
B are mutually uncorrelated rv’s with mean 0 and variance σ 2. Then E[Xt] = 0,
Var[Xt] = σ 2, and the series {Xt} is stationary since Cov[Xt , Xt+h] = σ 2 cos(2πwh)
depends only on h. Note that Corr[Xt , Xt+h] = cos(2πhw) = 1 whenever hw is a
positive integer. Thus if 1/w is an integer, then the series repeats itself at every 1/w
time points, that is, Xt = Xt+h when h is an integer multiple of 1/w. However, even if
1/w is not a rational number, the correlation cos(2πwh) is high whenever hw is close
to an integer. We call this series an elementary periodic series with frequency w and
variance σ 2.
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Now consider a series Xt which is a sum of M such elementary periodic series with
distinct frequencies w1, . . . , wM and variances σ 2

1 , . . . , σ 2
M , that is,

Xt =
M∑

j=1

{Aj cos(2πwjt) + Bj sin(2πwjt)}, (7)

where {Aj}, {Bj} are mean zero mutually uncorrelated rv’s with Var[Aj] = Var[Bj] = σ 2
j . It

is also assumed that {Aj} and {Bj} are also uncorrelated to each other. Then it can be seen
that {Xt} is stationary with

E[Xt ] = 0, Var[Xt ] = σ2
1 + · · · + σ2

M , and

Cov[Xt , Xt+h] =
M∑

j=1

σ2
j cos(2πwjh) = γ (h). (8)

Remarks
(a) If Xt has mean μ, then the representation above is valid with Xt − μ on the left-hand

side of Eq. (7). From now on we assume the mean to be equal to zero since we can
always carry out spectral analysis after subtracting the mean from the series.

(b) For the monthly electricity consumption data {Yt = log(sales)}, we have briefly
discussed the model Yt = mt + St + Xt , where {Xt} is stationary (Section 13.1). There
are many approaches to the analysis of such a data set. We may estimate the trend mt

and the seasonal effect St , and then subtract them from Yt in order to get an estimate
of the stationary part {Xt}. However, there is another way of modeling this. We can
subtract the trend only and the remainder, that is, St + Xt can be often considered
stationary, especially if {St} is deemed to be stochastic. Thus if a sequence has no
trend, but has seasonality whose variance does not depend on time t, then the
sequence itself can be considered stationary.

(c) In some trivial cases, M may be small. But in general M is large.
(d) The goal of spectral analysis is to find σj’s. Since Var[Xt] = σ 2

1 + · · · + σ 2
M , the

contribution of the jth elementary periodic series to this variance (at frequency
wj) is σ 2

j . It is of interest to find out which frequencies contribute more to this
variability than the others.

(e) If M is large (mathematically M → ∞) and almost all σj’s are not equal to zero, then
these σj’s need to be small so that Var[Xt] = σ 2

1 + · · · + σ 2
M remains finite as M → ∞.

This can be done if σ 2
j = O(1/M). In Section 13.2.1, it is written that if∑∞

h=−∞
∣∣γ (h)

∣∣ < ∞, then the spectral density is given by f (w) =∑∞
h=−∞ γ (h)

exp(−2π ihw). However, for the series in Eq. (7),
∑∞

h=−∞
∣∣γ (h)

∣∣ is not finite and hence

we may consider a truncated version fM (w) =∑M
h=−M γ (h) exp(−2π ihw). It is left as

an exercise for the reader to verify that

fM (w) = [(2M + 1)/2]σ 2
j if w = j/(2M + 1), j = 1, . . . , M .
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In order for fM to be approximately equal to a bounded spectral density f for large M ,
we need to have σ 2

j ≈ [2/(2M + 1)]f (wj) when wj = j/(2M + 1) and one of the goals
of the spectral analysis is to obtain an estimate of the spectral density f based on the
available data X1, . . . , Xn.

13.10.1 Representation of a Stationary Series

If {Xt} is a mean zero stationary series, can one approximate it as in Eq. (7)? The answer is
yes if the underlying spectral density function f as defined in Eq. (1) is square integrable.
The arguments given here are heuristic and detailed proofs can be found in Gikhman and
Skorokhod [64]. Consider the following random functions

Z1,M (w) =
M∑

s=−M

sin(2πsw)
2πs

Xs and Z2,M (w) =
M∑

s=−M

1 − cos(2πsw)
2πs

Xs,

with the understanding that when s = 0, sin(2πsw)/(2πs) = w and [1−cos(2πsw)]/(2πs) =
0. Then it is easy to check that for −M ≤ t ≤ M ,

Xt = 2
∫ 1/2

0
cos(2πtw)dZ1,M (w) + 2

∫ 1/2

0
sin(2πtw)dZ2,M (w).

Now consider the limiting random functions Z1 of Z1,M and Z2 of Z2,M as M → ∞

Z1(w) =
∞∑

s=−∞
sin(2πsw)

2πs
Xs and Z2(w) =

∞∑
s=−∞

1 − cos(2πsw)
2πs

Xs,

which exist for 0 ≤ w < 1/2 in the sense that E[Z1(w)2] < ∞ and E[Z2(w)2] < ∞. Let us
denote Rt,M = ∫ 1/2

0 cos(2πtw)dZ1,M (w). For any given t, the sequence {Rt,N } is Cauchy in
the mean square sense, that is, E[(Rt,M − Rt,N )2] → 0 and M , N → ∞. Thus a limit of Rt,M

exists in the mean square sense as M → ∞ and the limit is denoted by∫ 1/2

0
cos(2πtw)dZ1(w).

A similar argument can be used to show that the limit of
∫ 1/2

0 sin(2πtw)dZ2,M (w) exists in
the mean square sense as M → ∞ and the limit is denoted by∫ 1/2

0
sin(2πtw)dZ2(w).

Thus we can represent the time series {Xt} as

Xt = 2
∫ 1/2

0
cos(2πtw)dZ1(w) + 2

∫ 1/2

0
sin(2πtw)dZ2(w). (9)

The random function Z1 has the orthogonal increment property, that is, if w1 �= w2,
then Z1(w1 + δ) − Z1(w1) and Z1(w2 + δ) − Z1(w2), δ > 0, are uncorrelated if the
intervals (w1, w1 + δ] and (w2, w2 + δ] are disjoint. Moreover, E[{Z1(w + δ) − Z1(w)}2]
≈ (δ/2)f (w) when δ > 0 is small enough. The random function Z2 also has the same
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property as Z1. Additionally, Z1(w1) is uncorrelated with Z2(w2) for any w1, w2. The
representation of Xt as given above in Eq. (9) is known as the Cramér Representation of
a stationary series.

Now consider approximating the integral 2
∫ 1/2

0 cos(2πtw)dZ1(w) by a finite sum as
follows. For a positive integer M , denote wj = j/(2M + 1), Ij = (wj−1, wj], Z1(Ij) =
Z1(wj) − Z1(wj−1), j = 1, . . . , M . Ignoring the integral over (wM , 1/2), which is reasonable
when M is large, we have

2
∫ 1/2

0
cos(2πtw)dZ1(w) ≈ 2

M∑
j=1

∫
Ij

cos(2πtw)dZ1(w)

≈ 2
M∑

j=1

cos(2πtwj)Z1(Ij) =
M∑

j=1

Aj cos(2πtwj),

with Aj = 2Z1(Ij). Due to the orthogonal increment property of the random function Z1,
the rv’s {Aj} are mutually uncorrelated and

Var[Aj] = 4Var[Z1(Ij)] ≈ 4[1/{2(2M + 1)}]f (wj) = [2/(2M + 1)]f (wj).

Similarly we can approximate

2
∫ 1/2

0
sin(2πtw)dZ2(w) ≈

M∑
j=1

Bj cos(2πtwj),

where Bj = 2Z2(Ij). Here {Bj} are also mutually uncorrelated with Var[Bj] ≈ [2/(2M +
1)]f (wj). Moreover, {Aj} and {Bj} are also uncorrelated with each other. Thus combining
all the arguments above we have

Xt ≈
M∑

j=1

{Aj cos(2πwjt) + Bj sin(2πwjt)},

when M is large.
Remark 13.10.1. The Cramér representation of Xt as given in Eq. (9) is true more gener-

ally under weaker conditions than given here (Chapter 5 in Gikhman and Skorokhod [64]),
but we will not concern ourselves with such mathematical details.

13.10.2 Periodogram

Consider the series in Eq. (7) with wj = j/n, j = 1, . . . , M , where M is the largest integer for
which M/n < 1/2. We can estimate Aj and Bj from the data {X1, . . . , Xn} using the method
of least squares

Âj =
∑n

t=1 Xt cos(2πwjt)∑n
t=1 cos2(2πwjt)

, B̂j =
∑n

t=1 Xt sin(2πwjt)∑n
t=1 sin2(2πwjt)

, or

Âj = (2/n)
n∑

t=1

Xt cos(2πwjt), B̂j = (2/n)
n∑

t=1

Xt sin(2πwjt).
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The last equalities hold since it can be shown that

n∑
t=1

cos2(2πwjt) = n/2 and
n∑

t=1

sin2(2πwjt) = n/2.

The quantity P(wj) = Â2
j + B̂2

j is called the scaled periodogram and its rescaled version

I(wj) = (n/4)P(wj)

is called the periodogram. The main use of the periodogram I(wj) is as an estimator of
f (wj), the spectral density function at frequency wj = j/n. There is a related quantity called
the discrete Fourier transform of the data

d(wj) = n−1/2
n∑

t=1

Xt exp(−2π iwjt)

= n−1/2
n∑

t=1

Xt cos(2πwjt) − in−1/2
n∑

t=1

Xt sin(2πwjt)

:= X̃c,n(wj) − iX̃s,n(wj)

where i = √−1 is the imaginary number, and X̃c,n(wj) and X̃s,n(wj) are the discrete cosine
and sine transforms introduced in Section 13.2.1. The connection between the discrete
Fourier transform and the periodogram is

I(wj) =
∣∣∣d(wj)

∣∣∣2 = X̃2
c,n + X̃ 2

s,n.

In the general case when the series {Xt} may not have zero mean, the definitions of X̃c,n,
X̃s,n, d, and I are based on centered observations {Xt − X̄}, that is,

X̃c,n(wj) = n−1/2
n∑

t=1

(Xt − X̄) cos(2πwjt),

X̃s,n(wj) = n−1/2
n∑

t=1

(Xt − X̄) sin(2πwjt),

d(wj) = X̃c,n(wj) − iX̃s,n(wj), I(wj) =
∣∣∣d(wj)

∣∣∣2 = X̃2
c,n + X̃ 2

s,n,

and the periodogram values are obtained at frequencies wj = j/n, j = 1, . . . , M . We should
note that the periodogram values at frequencies {wj} as defined in the last displayed iden-
tities can be, and are usually, calculated when observations X1, . . . , Xn from a stationary
series are available.

If {Xt} is a mean zero Gaussian series, then clearly X̃c,n(wj) and X̃s,n(wj) are normally
distributed since each of them is a linear function of X1, . . . , Xn. However, asymptotic
normality of X̃c,n(wj) and X̃s,n(wj) hold if the observations are from a linear process as given
in Eq. (2) using arguments outlined in the proof of Theorem 13.3.1.
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Theorem 13.10.1. Let {Xt} be a mean zero linear process as given in Eq. (2) and assume
that 0 < wj = j/n < 1/2, j = 1, . . . , M. As n → ∞,

(a) X̃n(wj) = (X̃c,n(wj), X̃s,n(wj))T D→ N2
(
0, (1/2)f (wj)I

)
, j = 1, . . . , M, where I is the 2 × 2

identity matrix, and X̃n(w1), . . . , X̃n(wM ) are asymptotically independent,
(b) I(wj) is approximately distributed as (ξj/2)f (wj), where ξj ∼ χ2

2 , j = 1, . . . , M, and
I(w1), . . . , I(wM ) are approximately independent.

13.10.3 Estimation of the Spectral Density

Since I(wj) is approximately distributed as (ξj/2)f (wj), where ξj ∼ χ2
2 , and E[I(wj)] is

approximately equal to f (wj) (noting that E[ξj] = 2). Thus I(wj) is almost an unbiased es-
timator of f (wj). However, it is not a consistent estimator since Var[I(wj)] is approximately
equal to Var[ξj/2]f (wj)2 = f (wj)2 and this variance does not converge to zero as the sample
size n → ∞. In order to construct a consistent estimator of the spectral density at any point
w ∈ (0, 1/2), we may use a weighted average of I(wj) for wj in a small neighborhood of w.
Assuming that the spectral density function f is smooth, such a weighted average should
lead to a better estimate of f (w) since I(wj)’s are asymptotically independent. Toward this
purpose, we may use the kernel method for regression discussed in Chapter 9. Let K be a
pdf on [−1, 1] and, as in Chapter 9, assume that

(i) K is symmetric about 0, (ii)
∫

zK (z)dz = 0.

In the discussion below it is assumed that periodogram values at frequencies 0 and 1/2
are excluded, so the total number of frequencies M may be smaller than [n/2].

We can now obtain a nonparametric estimate of f (w), w ∈ (0, 1/2), with kernel K and
bandwidth hn → 0 as

f̂ (w) =
∑M

j=1 K (h−1
n (w − wj))I(wj)∑M

j=1 K (h−1
n (w − wj))

.

The bias and variance properties of the kernel estimate f̂ (w) are similar to those in
Chapter 9. Writing Kj = K (h−1

n (w − wj)) and K+ =∑Kj, we have

E[f̂ (w)] − f (w) ≈
∑

KjE[ξj/2]f (wj)/K+ − f (w)

=
∑

Kjf (wj)/K+ − f (w) =
∑

Kj[f (wj) − f (w)]/K+.

If f is twice differentiable and f ′′ is continuous, then a two term Taylor expansion yields

f (wj) − f (w) = (wj − w)f ′(w) + (1/2)(wj − w)2f ′′(w′
j),

where w′
j lies between w and wj. Employing arguments similar to the ones used in

Chapter 9, we get the bias of f̂ (w) as
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E[f̂ (w)] − f (w) ≈
∑

Kj[f (wj) − f (w)]/K+

= (1/2)h−2
n f ′′(w)

∫
z2K (z)dz[1 + o(1)]

= (1/2)h2
nf ′′(w)μ2(K )[1 + o(1)],

where μ2(K ) = ∫ z2K (z)dz.

Approximate independence of I(wj)’s may be used to calculate the variance of f̂ (w) and
thus we have

Var[f̂ (w)] ≈
∑

K 2
j Var[ξj/2]f (wj)2/K 2+ =

∑
K 2

j f (wj)2/K 2+
≈
[∑

K 2
j /K 2+

]
f (w)2, (10)

where the last step is justified since f (wj) is approximately equal to f (w) by continuity when∣∣wj − w
∣∣ ≤ hn. Once again, employing arguments similar to the ones used in Chapter 9, we

have

Var[f̂ (w)] ≈ (nhn)−1f (w)2
∫

K 2(z)dz = (Mhn)−1f (w)2‖K‖2,

where ‖K‖2 = ∫ K 2(z)dz.
Since the mean square error of any estimator is the sum of its variance and square of its

bias, the mean square error of f̂ (w) is approximately given by

(nhn)−1f (w)2‖K‖2 + (1/4)h4
nf ′′(w)2μ2(K )2.

The last expression is convex in hn and it is minimized at h∗
n = c1n−1/5, where c1 =[

f (w)‖K‖/{f ′′(w)μ2(K )
}]2/5. The minimum mean square error of f̂ (w) (at hn = h∗

n) is
approximately equal to c2n−4/5, where c2 is a constant that depends f (w), f ′′(w), ‖K‖, and
μ2(K ).

Remark 13.10.2.

(a) It is possible to obtain asymptotic normality of f̂ (w) as given in Chapter 9 and the
results are similar.

(b) As discussed in Section 9.6 of Chapter 9, a drawback of the kernel density or kernel
regression estimates is that near the boundary points of the independent variable, the
bias may be of order hn and not h2

n. However, in the case of spectral density
estimation, this does not pose a problem since the spectral density f is periodic and
symmetric about 0, so one can obtain a periodogram estimate at point −wj, where
0 < wj < 1/2, by taking I(−wj) = I(wj). Even though I(0) = 0 (follows from the

formula), we can obtain an estimate f̂ (0) of f (0) using the kernel method since the
periodogram values at negative frequencies can be obtained as mentioned above. For
a frequency near zero, say at w = hn/2, all the values of I(wj),

∣∣wj − w
∣∣ ≤ hn, are now

available (substituting f̂ (0) for the periodogram at frequency 0) and we can obtain an
estimate f̂ (w) of f (w) using the kernel method. Thus the bias of f̂ (w) is of order h2

n
when w is close to zero. However, it should be pointed out that when w is close to 0,
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the variance of f̂ (w) is different from the formula given in Eq. (10) and it needs to be
recalculated since f̂ (w) is no longer a weighted average of approximately
independent rv’s.
Similar strategies can be used to estimate f (1/2) and f (w) when w is close to 1/2.
Since f is periodic on [−1/2, 1/2] and symmetric about 0, for any 1/2 < w < 1,
f (w) = f (w − 1) = f (1 − w) and the same is also true for the periodogram values. For
any n/2 < j < n, we can get I(j/n) = I(1 − j/n). Thus a kernel estimate of f (w) for w
near 1/2 does not have any inadequacy in terms of inflated bias, but its variance
needs to be recalculated as it is not the same as the formula given in Eq. (10).

(c) As in any nonparametric method, one needs to obtain an estimate of the bandwidth
in a data dependent manner. One may apply the method of cross-validation as
outlined in Chapters 9 and 11 for this purpose. It should be pointed out that in the
context of kernel regression discussed in Chapter 9, the theoretical justification of the
method of cross-validation relies on the assumption that the data consist of iid
observations (Yj, Xj), j = 1, . . . , n. A kernel estimate of the spectral density f (w) is
based on the data {(I(wj), wj), j = 1, . . . , M}, which are not iid. Even though wj’s are
nonrandom, the use of cross-validation does not pose a problem since wj’s are
equally spaced.

13.10.4 Linear Filtering

For a series {Xt}, it is sometimes of interest to study the behavior of the first difference or a
running weighted average of the series such as

(a) Zt = Xt − Xt−1,

(b) Zt = (1/2)Xt + (1/2)Xt−1, and

(c) Zt = (1/3)Xt + (1/3)Xt−1 + (1/3)Xt−2.

For each of the three cases above, {Zt} is a linear combination of {Xt}. A linear combination
of {Xt} is called a filtered series of {Xt}. It turns out that there is a nice formula connecting
the spectral density of the original series to that of the filtered series when {Xt} is stationary.
Denoting the spectral density functions of {Xt} and {Zt} by fX and fZ , respectively, the
spectral density functions for {Zt} for (a) and (b) are (justifications given below)

(a) fZ (w) = [2 − 2 cos(2πw)] fX (w), and
(b) fZ (w) = (1/2)[1 + cos(2πw)] fX (w).

In each case, the spectral density of Zt is equal to the spectral density of Xt times a weight
function. Note that in (a), the weight function is zero at w = 0 and it monotonically
increases to the value of 4 at w = 1/2. In other words, the higher the frequency, the higher
is the weight, indicating that the first difference of {Xt} is a rougher series than {Xt}. For
the second case, the weight function (1/2)[1 + cos(2πw)] equals 1 at w = 0 and then
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it decreases to zero at w = 1/2. This indicates that the running average {Zt} of {Xt} is
smoother than {Xt} since, for this case, higher frequencies have lower weights.

Consider the filtered series of a mean zero stationary series {Xt},

Zt =
∞∑

j=−∞
ψjXt−j,

where {ψj} are constants satisfying the condition
∑∞

j=−∞
∣∣ψj
∣∣ < ∞. If γX is the autocovari-

ance function of the series {Xt}, then

E[Z2
t ] =

∑
−∞<j,k<∞

ψjψk Cov[Xt−j, Xt−k]

=
∑

−∞<j,k<∞
ψjψkγX (j − k) < ∞,

since γX is bounded and
∑∞

j=−∞
∣∣ψj
∣∣ < ∞. The fact that {Zt} is stationary follows from the

fact that

Cov[Zt , Zt+h] =
∑

−∞<j,k<∞
ψjψkCov[Xt−j, Xt+h−k]

=
∑

−∞<j,k<∞
ψjψkγX (h + j − k)

depends only on h. Thus we conclude that {Zt} is stationary with the autocovariance
function

γZ (h) =
∑

−∞<j,k<∞
ψjψkγX (h + j − k). (11)

Now let us look at the spectral density function of the series {Zt} which is

fZ (w) =
∞∑

h=−∞
exp(−2π ihw)γZ (h)

=
∞∑

h=−∞
exp(−2π ihw)

∑
−∞<j,k<∞

ψjψkγX (h + j − k)

=
∞∑

h=−∞

∑
−∞<j,k<∞

[ψj exp(2π ijw)][ψk exp(−2π ikw)]

× [exp(−2π i(h + j − k)w)γX (h + j − k)]
=

∑
−∞<j,k<∞

[ψj exp(2π ijw)][ψk exp(−2π ikw)]

×
∞∑

h=−∞
[exp(−2π i(h + j − k)w)γX (h + j − k)].
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Writing l = h + j − k, we see that

∞∑
h=−∞

[exp(−2π i(h + j − k)w)γX (h + j − k)]

=
∞∑

l=−∞
exp(−2π ilw)γX (l) = fX (w).

Hence

fZ (w) =
∑

−∞<j,k<∞
[ψj exp(2π ijw)][ψk exp(−2π ikw)]fX (w)

=
∣∣∣∣∣∣

∞∑
j=−∞

ψj exp(−2π ijw)

∣∣∣∣∣∣
2

fX (w)

= |Ψ (w)|2fX (w), where

Ψ (w) =
∞∑

j=−∞
ψj exp(−2π iwj) (12)

is called the frequency response function. Thus we arrive at the following important result.
Lemma 13.10.1. Let {Xt} be a mean zero stationary series with autocovariance function

γX and spectral density function fX . Consider the filtered series Zt = ∑∞
j=−∞ ψjXt−j where

{ψj} are constants satisfying the condition
∑∞

j=−∞
∣∣ψj
∣∣ < ∞.

(a) The series {Zt} is mean zero stationary with the autocovariance function {γZ (h)} given
in Eq. (11).

(b) The spectral density function of {Zt} is fZ (w) = |Ψ (w)|2fX (w), where Ψ (w) is the
frequency response function given in Eq. (12).

Example 13.10.1. Let Zt = Xt − Xt−1, where {Xt} is mean zero stationary. In this case
ψ0 = 1, ψ1 = −1, and ψj = 0 when j �= 0 and j �= 1. Then the frequency response
function is

Ψ (w) =
∞∑

j=−∞
ψj exp(−2π iwj)

= (1) exp(−2π iw0) + (−1) exp(−2π iw)

= 1 − exp(−2π iw) = 1 − cos(2πw) + i sin(2πw), and

|Ψ (w)|2 = [1 − cos(2πw)]2 + sin2(2πw) = 2 − 2 cos(2πw).

Hence the spectral density of {Zt} is

fZ (w) = [2 − 2 cos(2πw)] fX (w).
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Example 13.10.2. Let Zt = (1/2)Xt +(1/2)Xt−1, where {Xt} is mean zero stationary. Then
ψ0 = ψ1 = 1/2 and ψj = 0 otherwise. The frequency response function is

Ψ (w) =
∞∑

j=−∞
ψj exp(−2π iwj)

= (1/2) exp(−2π iw0) + (1/2) exp(−2π iw)

= (1/2)
[
1 + exp(−2π iw)

]
= (1/2)

[
1 + cos(2πw) − i sin(2πw)

]
, and

|Ψ (w)|2 = (1/4)[1 + cos(2πw)]2 + (1/4) sin2(2πw)

= (1/4)[2 + 2 cos(2πw)] = (1/2)[1 + cos(2πw)].
Thus the spectral density function of {Zt} is

fZ (w) = (1/2)[1 + cos(2πw)]fX (w).

Example 13.10.3. Let Zt = (Xt +· · ·+Xt−L+1)/L, where {Xt} is mean zero and stationary.
Then ψj = 1/L when j = 0, . . . , L − 1, and = 0 otherwise. The frequency response
function is

Ψ (w) =
∞∑

j=−∞
ψj exp(−2π iwj) = (1/L)

L−1∑
j=0

exp(−2π iwj)

= (1/L)
1 − exp(−2π iwL)
1 − exp(−2π iw)

.

Since

|1 − exp(−2π iwL)|2 = |1 − cos(2πwL) + i sin(2πwL)|2
= |1 − cos(2πwL)|2 + |sin(2πwL)|2
= 2 − 2 cos(2πwL), and similarly

|1 − exp(−2π iw)|2 = 2 − 2 cos(2πw),

we have

|Ψ (w)|2 = (1/L2)
|1 − exp(−2π iwL)|2
|1 − exp(−2π iw)|2

= (1/L2)
2 − 2 cos(2πwL)
2 − 2 cos(2πw)

= (1/L2)
1 − cos(2πwL)
1 − cos(2πw)

.

The spectral density function of {Zt} is

fZ (w) = (1/L2)
1 − cos(2πwL)
1 − cos(2πw)

fX (w).

13.10.5 Spectral Density for ARMA

In this section we use Lemma 13.10.1 to obtain an explicit expression of the spectral
density function of an ARMA(p, q) series. As in the previous sections, let φ1, . . . , φp be
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the AR parameters and let θ1, . . . , θq be the MA parameters of the ARMA(p, q) series. The
polynomials used in the discussion on stationarity, invertibility, etc., in Section 13.5 are

θ(z) = 1 + θ1z + · · · + θqzq, φ(z) = 1 − φ1z − · · · − φpzp.

Let us first consider a mean zero MA(q) series which is of the form Xt = εt +∑q
j=1 θjεt−j,

where {εt} are iid with mean 0 and variance σ 2. So {Xt} is a filtered series of {εt} with ψ0 = 1,
ψj = θj, j = 1, . . . , q, and ψj = 0 otherwise. Hence the frequency response function of {Xt} is

Ψ (w) =
∞∑

j=−∞
ψj exp(−2π iwj) = 1 +

q∑
j=1

θj exp(−2π iwj)

= θ(z), with z = exp(−2π iw).

Since the spectral density function of {εt} is fε(w) = σ 2 for all w, the spectral density
of {Xt} is

fX (w) = |Ψ (w)|2fε(w) = σ 2|θ(z)|2, with z = exp(−2π iw).

Let us now find the spectral density function of an AR(p) series. For this series

Xt = φ1Xt−1 + · · · + φpXt−p + εt , ie,

εt = Xt − φ1Xt−1 − · · · − φpXt−p.

Thus {εt} is a filtered series of {Xt} with ψ0 = 1, ψj = −φj, j = 1, . . . , p, and ψj = 0 otherwise.
The frequency response function is

Ψ (w) =
∞∑

j=−∞
ψj exp(−2π iwj) = 1 −

p∑
j=1

φj exp(−2π iwj)

= φ(z), with z = exp(−2π iw).

It then follows that

fε(w) = |φ(w)|2fX (w), and hence

fX (w) = σ 2 1

|φ(z)|2 , with z = exp(−2π iw).

Now let us look at the ARMA(p, q) series

Xt = φ1Xt−1 + · · · + φpXt−p + εt + θ1εt−1 + · · · + θqεt−q, ie,

Xt − φ1Xt−1 − · · · − φpXt−p = εt + θ1εt−1 + · · · + θqεt−q.

The left-hand side of the last expression is a filtered series of {Xt} with the frequency
response function Ψ1(w) and the right-hand side is a filtered series {εt} with frequency
response function Ψ2(w), where Ψ1(w) = φ(z) and Ψ2(w) = θ(z) with z = exp(−2π iw).
Since the spectral density function of the filtered series on the left equals the spectral
density function on the right-hand side, we have
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|Ψ1(w)|2fX (w) = |Ψ2(w)|2fε(w) = σ 2|Ψ2(w)|2, ie,

|θ(z)|2fX (w) = σ 2|θ(z)|2fε(w).

Therefore, the spectral density function of an ARMA(p, q) series is

fX (w) = σ 2 |θ(z)|2
|θ(z)|2 , with z = exp(−2π iw).

Since

θ(z) = 1 +
q∑

j=1

θj exp(−2π ijw)

= 1 +
q∑

j=1

θj cos(2π jw) − i
q∑

j=1

θj sin(2π jw),

φ(z) = 1 −
p∑

j=1

φj exp(−2π ijw)

= 1 −
p∑

j=1

φj cos(2π jw) + i
p∑

j=1

φj sin(2π jw),

the spectral density function fX of an ARMA(p, q) series can be written as

fX (w) = σ 2

[
1 +∑q

j=1 θj cos(2π jw)
]2 +

[∑q
j=1 θj sin(2π jw)

]2

[
1 −∑p

j=1 φj cos(2π jw)
]

+
[∑p

j=1 φj sin(2π jw)
]2 .

Some Special Cases
I. Spectral density of AR(1).

When z = exp(−2π iw), we have

|φ(z)|2 = 1 + φ2 − 2φ cos(2πw).

Hence we get

fX (w) = σ 2 1

1 + φ2 − 2φ cos(2πw)
.

II. Spectral density of AR(2).
Using some algebra, we have

|φ(z)|2 = [1 − φ1 cos(2πw) − φ2 cos(4πw)
]2 + [φ1 sin(2π jw) + φ2 sin(4πw)

]2
= 1 + φ2

1 + φ2
2 + 2φ1(1 − φ2) cos(2πw) − 2φ2 cos(4πw).
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Since cos(4πw) = 2 cos2(2πw) − 1, substituting this in the last expression, we have

|φ(z)|2 = φ2
1 + (1 + φ2)2 + 2φ1(1 − φ2) cos(2πw) − 4φ2 cos2(2πw),

which is a quadratic polynomial in cos(2πw). Thus the spectral density function is

fX (w) = σ 2 1

φ2
1 + (1 + φ2)2 + 2φ1(1 − φ2) cos(2πw) − 4φ2 cos2(2πw)

.

III. Spectral density of MA(1).
Here

|θ(z)|2 = 1 + θ2 + 2θ cos(2πw), with z = exp(−2π iw),

and hence the spectral density is

fX (w) = σ 2[1 + θ2 + 2θ cos(2πw)].
IV. Spectral density of ARMA(1, 1).

If the parameters of an ARMA(1, 1) series are φ and θ , then

|θ(z)|2 = 1 + θ2 + 2θ cos(2πw), and

|φ(z)|2 = 1 + φ2 − 2φ cos(2πw), with z = exp(−2π iw).

Thus the spectral density of an ARMA(1, 1) series is

fX (w) = σ 2 1 + θ2 + 2θ cos(2πw)

1 + φ2 − 2φ cos(2πw)
.

Exercises
In all the problems below, the autocorrelations and autocovariances of stationary series
are denoted by {γ (h)} and {ρ(h)}, respectively. For any ARMA series, it is understood that
the mean and variance of the innovations {εt} are 0 and σ 2, respectively.

13.1. Let {X1t}, . . . , {Xkt} be k independent stationary series with autocovariance
functions γ1, . . . , γk. Then show that Wt = c1Xt1 + · · · + ckXtk, where c1, . . . , ck are
constants, is also stationary. Find the autocovariances and autocorrelations of the
series {Wt} in terms of the autocovariance and autocorrelation functions of the
series {X1t}, . . . , {Xkt}.

13.2. For each of the following models, determine if it is stationary and invertible. It is
understood that {εt} are iid with mean 0 and variance σ 2.
(i) Xt = 6 + εt + 1.2εt−1.

(ii) Xt = −5 + εt + 0.6εt−1 + 0.7εt−2.
(iii) Xt = 3 + 0.5Xt−1 + εt = 0.4εt−1.
(iv) Xt = 9 + 0.7Xt−1 + 0.6Xt−1 + εt .
(v) Xt = 2 − 0.5Xt−1 − 0.4Xt−2 + εt + 0.3εt−1 + 0.6εt−2.
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13.3. Assume that {Xt} follows a stationary ARMA(1, 1) model with the autoregressive
and moving average parameters φ and θ , respectively, with φ �= −θ .
(a) Show that for any positive integer r, one may write Xt as

Xt = φrXt−r +
r−1∑
j=0

ψjεt−j + φr−1θεt−r ,

where ψ0 = 1 and ψj = (φ + θ)φj−1, j = 1, . . ..
(b) Use the result in part (a) to argue that Xt =∑∞

j=0 ψjεt−j, where {ψj} are as
given in part (a).

(c) Show that Var[Xt] = [1 + (φ + θ)2(1 − φ2)−1
]
σ 2.

(d) Show that the autocovariance function of {Xt} is
γ (h) = (φ + θ)(1 + φθ)(1 − φ2)−1σ 2, h = 1, 2, . . ..

13.4. Let {Xt} be a stationary ARMA(1, 1) series with mean μ. Assuming that φ, θ , and σ 2

are known, use the results in Exercise 13.3 to obtain an estimate of τ2
n = Var[μ̂] in

terms of φ, θ , σ 2, and n, where μ̂ = n−1∑n
t=1 Xt is an estimate of μ based on the

available data X1, . . . , Xn.
13.5. Let {Xt} be stationary (not necessarily AR(p)) with mean μ. Denote ρ(1) by φ.

(a) Show that the best linear predictor (forecast) of Xt from Xt−1 is

X (f )
t = μ + φ(Xt−1 − μ).

(b) Show that the best linear predictor (backcast) of Xt−2 from Xt−1 is
X (b)

t−2 = μ + φ(Xt−1 − μ).

(c) Show that Var
[

Xt − X (f )
t

]
= (1 + φ2)γ (0) − 2φγ (1).

(d) Show that Var
[

Xt−2 − X (f )
t−2

]
= (1 + φ2)γ (0) − 2φγ (1).

(e) Show that Cov
[

Xt − X (f )
t , Xt−2 − X (b)

t−2

]
= γ (2) − 2φγ (1) + φ2γ (0).

(f) Show that the partial correlation between Xt and Xt−2 given Xt−1 is given by
[γ (2) − 2φγ (1) + φ2γ (0)]/[(1 + φ2)γ (0) − 2φγ (1)].

13.6. Suppose that when fitting an AR(p) model to the data X1, . . . , Xn from a stationary
series {Xt} with mean μ, the data are expanded by padding with 2p extra values the
sample mean X̄ at the beginning and at the end. In particular, let
X̃t , t = −p + 1, . . . , n + p be such that X̃t = Xt if 1 ≤ t ≤ n and X̃t = X̄ otherwise.
Show that the normal equations obtained by minimizing∑n+p

t=1

(
Yt − φ1Yt−1 − · · · − φpYt−p

)2, where Yt = X̃t − X̄ , with respect to φ1, . . . , φp

are the same as the Yule-Walker equations.
13.7. For an invertible MA(1) model obtain the partial correlation function {π(h)} and

express it as a function of the moving average parameter θ .
13.8. Let {Xt} be a stationary, invertible, and nonredundant ARMA(1, 1) series with zero

mean, and AR and MA parameters φ and θ .
(a) Obtain an invertible representation of {Xt} as Eq. (6) by finding {ψj} explicitly

in terms of φ and θ .
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(b) If the ARMA(1, 1) series {Xt} has mean zero and its invertible representation is
Xt+1 =∑j=0 πjXt−j + εt , then consider predicting Xn+1 using

X̂n+1 = π1Xn + · · · + πnX1. Find the mean square error of prediction
E[X̂n+1 − Xn+1]2.

13.9. In Section 13.5 (after Lemma 13.5.1), it has been pointed out that the
autocorrelation function of a stationary AR(2) series is representable in terms of
the roots z1, z2 of the equation g(z) = 0, where g(z) = z2 − φ1z − φ2. Condition of
stationarity requires that (φ1, φ2) is inside the triangular region
Δ = {(u1, u2): |u2| < 1, |u1/(1 − u2)| < 1}.
Show that (φ1, φ2) is inside Δ if and only if |z1| < 1 and |z2| < 1.

13.10. Let {Xt} be an AR(2) series with autoregressive coefficients φ1 and φ2.
(a) Show that |φ2| < 1.
(b) Show that ρ(1) = φ1/(1 − φ2).
(c) σ 2 = (1 − φ2

1 − φ2
2 )γ (0) − 2φ1φ2γ (1).

(d) Show that ρ(h) = φ1ρ(h − 1) + φ2ρ(h − 2), h ≥ 2.
13.11. For an AR(1) series {Xt} with autoregressive coefficient −1 < φ < 1, show that the

prediction error for predicting Xn+h by its best linear predictor based on X1, . . . , Xn

is σ 2(h) = σ 2 1−φ2h

1−φ2 .

13.12. (a) Let {Xt} be a mean zero time series following an MA(1) model. Let X̂t be the
forecasted value of Xt based on the past Xt−1, Xt−2, . . ., and X̂t+1 be the
forecasted value of Xt+1 based on the past Xt , Xt−1, . . . Show that
X̂t+1 = θ(Xt − X̂t). [Here θ is the moving average parameter.]

(b) The series {Yt} follows an ARIMA(0, 1, 1) model and assume that the series
{Xt}, the first difference of {Yt}, has zero mean. Let Ŷt be the forecasted value
of Yt based on the past Yt−1, Yt−2, . . ., and Ŷt+1 be the forecasted value of Yt+1

based on the past Yt , Yt−1, . . . . Show that Ŷt+1 = Yt + θ(Yt − Ŷt), where
−1 < θ < 1 is the moving average coefficient.

13.13. If {Xt} follows an MA(q) model, then show that the asymptotic variance of ρ̂(h) is∑q
j=−q ρ(j)2/n, for any h ≥ q + 1.

13.14. (a) If {Xt} is stationary AR(1) and the parameter φ is estimated using the
Yule-Walker method based on a sample X1, . . . , Xn. Obtain the asymptotic
distribution of

√
n(φ̂ − φ) and explicitly obtain the parameters of this

distribution in terms of φ and σ 2.
(b) Repeat part (a) for the parameter estimate θ̂ of θ for an MA(1) series.
(c) If {Xt} is stationary ARMA(1, 1) and it is invertible and nonredundant. Let φ̂

and θ̂ be the estimates of φ and θ using the methods in Section 13.8.3. Find
the joint asymptotic distribution of

√
n(φ̂ − φ) and

√
n(θ̂ − θ), and explicitly

obtain the parameters of this distribution in terms of φ, θ , and σ 2.
13.15. Prove Lemma 13.6.1.
13.16. Let {Xt} be as in Eq. (7). Show that {Xt} is stationary with the autocovariance

function {γ (h)}, where γ (h) =∑M
j=1 σ 2

j cos(2πwjh).
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13.17. Let {Xt} be stationary and define Wt = (Xt−2 + 2Xt−1 + 3Xt + 2Xt+1 + Xt+2).
(a) Find the frequency response function Ψ (w).
(b) Obtain the spectral density function of {Wt} in terms of the spectral density

function of {Xt}.
(c) Plot the square of the absolute value of the frequency response function.

13.18. For a stationary series {Xt}, its second difference is Wt = Xt − 2Xt−1 + Xt−2.
(a) Find the frequency response function Ψ (w).
(b) Obtain the spectral density function of {Wt} in terms of the spectral density

function of {Xt}.
(c) Plot the square of the absolute value of the frequency response function.



Appendix A
Results From Analysis and Probability

A.1 Some Important Results in Integration Theory
Theorem A.1.1 (Lebesgue Dominated Convergence). Let { fn} be a sequence of integrable
functions on X . If

(i) limn→∞ fn(x) = f (x) a.e. in X , that is, for all x /∈ S where
∫

S dx = 0, and
(ii) there is an integrable function g on X such that | fn(x)| ≤ g(x) for all n and for all x ∈ X ,

then

lim
n→∞

∫
X

fn(x) dx =
∫
X

lim
n→∞ fn(x) dx =

∫
X

f (x) dx.

Proof. See Royden [65, p. 88].
The nest two theorems follow from the Dominated Convergence Theorem in a straight-

forward manner.
Theorem A.1.2 (Monotone Convergence). Let { fn} be a sequence of nonnegative func-

tions on X such that 0 ≤ f1(x) ≤ f2(x) ≤ · · · and let limn→∞ fn(x) = f (x) where f is integrable
on X . Then

lim
n→∞

∫
X

fn(x) =
∫
X

f (x) dx.

Theorem A.1.3 (Differentiation Under Integration). Let f (x, t) for (x, t) ∈ [a, b]×[c, d] be
such that

(i) f (x, t) is an integrable function of x on [a, b] for each t ∈ [c, d],
(ii) the partial derivative ∂f /∂t exists and is bounded on [a, b] × [c, d].

Then

d
dt

∫ b

a
f (x, t) dx =

∫ b

a

∂f (x, t)
∂t

dx.

491
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Theorem A.1.4 (Fubini). If f (x, y) is integrable on X × Y , then

∫∫
X×Y

f (x, y) dx dy =
∫
X

[∫
Y

f (x, y) dy
]

dx =
∫
Y

[∫
X

f (x, y) dx
]

dy,

that is, the double integral can be evaluated interactively either way.

A.2 Convex Functions
Definition A.2.1. A real-valued function f on an interval (a, b) ⊂ R, or more generally on
(a1, b1) × · · · × (ak, bk) ⊂ R

k, is said to be convex if for any x1, x2 in its domain and for any
0 < λ < 1,

f (λx1 + (1 − λ)x2) ≤ λf (x1) + (1 − λ)f (x2).

The function is strictly convex if the above inequality is a strict inequality for all such x1, x2

and λ.
Geometrically, a function is convex if the straight line joining any two points on its

graph lies entirely above the graph.
A twice differentiable function f on (a, b) ⊂ R is convex iff f ′′(x) ≥ 0 for all a < x < b.

More generally, a function f on (a1, b1) × · · · × (ak, bk) ⊂ Rk for which all second partial
derivatives exist and are finite, is convex iff the Hessian (ie, the matrix of second partial
derivatives) is nonnegative definite.

From the above definition it follows by induction, that if X is an rv taking values
x1, . . . , xr in (a, b) with P[X = xi] = λi, i = 1, . . . , r with

∑r
i=1 λi = 1, then

f (E[X ]) = f

⎛
⎝ r∑

i=1

λixi

⎞
⎠ ≤

r∑
i=1

λif (xi) = E[ f (X)].

Obviously, this inequality also holds for a random vector X taking values in (a1, b1) × · · · ×
(ak, bk) ⊂ Rk.

The following theorem asserts that this inequality holds for arbitrary random vector X
with finite expectation.

Theorem A.2.1 (Jensen’s Inequality). If f is a convex function on I = (a1, b1) × · · · ×
(ak, bk) ⊂ Rk and X is a k-dim random vector with P[X ∈ I] = 1, and with finite expectation,
then

f (E[X ]) ≤ E[f (X )].

Moreover the above inequality is strict if f is strictly convex, unless X is a constant with
probability 1.

Proof. The proof depends on the Supporting Hyperplane Theorem for convex sets. See
Ferguson [1, p. 76].
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An Application

Consider the function f (x, y) = −xpy1−p, x > 0, y > 0, and 0 < p < 1, which can be
shown to be convex on the first quadrant on R2 by verifying that its Hessian is nonnegative
definite. The following theorem is now proved by an application of Jensen’s Inequality.

Theorem A.2.2 (Hölder’s Inequality). If X and Y are positive rv’s with finite means and
0 ≤ p ≤ 1, then

E
[

XpY 1−p
]

≤ (E[X ])p(E[Y ])1−p.

Taking X = U2 and Y = V 2 and p = 1/2, the Cauchy-Schwarz inequality follows as a
special case.

A.3 Stieltjes Integral
Let f and g be real-valued functions on an interval [a, b]. The Stieltjes integral of f with
respect to g on [a, b], denoted by

∫ b
a f (x) dg(x) or simply

∫ b
a f dg is a generalization

of the Riemann integral
∫ b

a f (x) dx. As in Riemann integration, we need the concept of
partitions.

Definition A.3.1.

(i) A partition of [a, b] is a finite set of real numbers P = {x0, x1, . . . , xn} where
a = x0 < x1 < · · · < xn = b, of which [xi−1, xi] are segments with length
Δxi = xi − xi−1, and ΔP = max{Δxi, i = 1, . . . , n} is the norm of P.

(ii) A partition Q = {y0, y1, . . . , ym} is a refinement of P = {x0, x1, . . . , xn} if P ⊂ Q, in
which case, ΔQ ≤ ΔP.

(iii) A partition Q = {ξ1, . . . , ξn} is an intermediate partition of P = {x0, x1, . . . , xn} if
xi−1 ≤ ξi ≤ xi for all i.

(iv) For real-valued functions f and g on [a, b], a partition P = {x0, x1, . . . , xn} of [a, b] and
an intermediate partition Q = {ξ1, . . . , ξn} of P, the Stieltjes sum of f with respect to g
on [a, b] corresponding to P and Q is defined as

S( f , g, P, Q) =
n∑

i=1

f (ξi)Δgi, where Δgi = g(xi) − g(xi−1).

[This generalizes the Riemann Sum
∑n

i=1 f (ξi)Δxi, where Δxi = xi − xi−1.]
(v) The Stieltjes integral of f with respect to g on [a, b] is defined as a number∫ b

a f (x) dg(x) having the property that for every ε > 0 there exists a δ > 0 such that

∣∣∣∣∣S( f , g, P, Q) −
∫ b

a
f dg

∣∣∣∣∣ < ε

for all P with ΔP < δ and for all intermediate partitions Q of P.
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[Definition (v) is a formal way of saying,
∫ b

a f dg = limΔP→0 S( f , g, P, Q).]

As in Riemann integration,

∫ a

b
fdg = −

∫ b

a
f dg, for all a < b, and

∫ a

a
fdg = 0, by convention.

Existence

The Stieltjes integral
∫ b

a f dg exists if f is continuous and g is nondecreasing on [a, b]. More

generally,
∫ b

a exists if f has at most a finite number of discontinuities, g is of bounded
variation (as defined below) and f and g have no common discontinuity on [a, b]. For
practical purposes, this generality will suffice.

Definition A.3.2 (Functions of Bounded Variation). The variation of f on [a, b] corre-
sponding to a partition P = {x0, x1, . . . , xn}

V P( f ) =
n∑

i=1

|f ( xi) − f (xi−1)|.

Obviously, if Q is a refinement of P, then V P( f ) ≤ V Q( f ). If the set {V P( f ): P is a partition of
[a, b]} is bounded, then f is called a function of bounded variation on [a, b] and V [a,b]( f ) =
supP V P( f ) is the total variation of f on [a, b].

If f is differentiable on [a, b] with |f ′(x)| ≤ M for all x ∈ [a, b], then f is of bounded
variation on [a, b] and V [a,b](f ) ≤ M(b−a). More generally, f is of bounded variation iff it is
the difference of two nondecreasing functions. Indeed, for a function of bounded variation
if we let

v(x; f ) = V [a,x]( f ) for a < x ≤ b and v(a; f ) = 0,

then the function v(x; f ) called the total variation function of f and the function
r(x; f ) = v(x; f ) − f (x) called the residual function of f , on [a, b], are both nondecreasing
and f = v − r.

Properties of Stieltjes Integrals

1. If f is Riemann integrable and g has continuous derivative g ′ on [a, b], then the
Riemann integral

∫ b
a f (x)g ′(x) dx and the Stieltjes integral

∫ b
a f (x) dg(x) both exit and

are equal.
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2. (a) If
∫ b

a fi dg, i = 1, 2, exist, then so does
∫ b

a (k1f1 + k2f2) dg for k1 and k2 constants
and

∫ b

a
(k1f1 + k2f2) dg = k1

∫ b

a
f1 dg + k2

∫ b

a
f2 dg,

and (a′) if
∫ b

a fdgi, i = 1, 2, exist, then so does
∫ b

a fd(k1g1 + k2g2) for k1, k2 constants
and

∫ b

a
f d(k1g1 + k2g2) = k1

∫ b

a
f dg1 + k2

∫ b

a
f dg2.

(b) If
∫ b

a f dg exists, then for a < c < b,
∫ c

a f dg and
∫ b

c f dg exist and

∫ b

a
f dg =

∫ c

a
f dg +

∫ b

c
f dg.

(c) If
∫ b

a f dg exists, then
∫ d

c f dg exists for any [c, d] ⊂ [a, b].
Theorem A.3.1 (Integration by Parts). If

∫ b
a f dg exists, then

∫ b
a g df also exists and

∫ b

a
f dg = f (b)g(b) − f (a)g(a) −

∫ b

a
g df .

4. Change of variable. Suppose that
∫ b

a f dg exists, h is a strictly increasing and
continuous function on [p, q] with h(p) = a and h(q) = b. Then for F = f ◦ h and

G = g ◦ h on [p, q], ∫ q
p F dG exists and is equal to

∫ b
a f dg.

Riemann-Stieltjes (R-S) integral. If in the Stieltjes Sum S( f , g, P, Q) we replace f (ξi)
by mi = infx∈[xi−1,xi] f (x) or Mi = supx∈[xi−1,xi] f (x), then the resulting sums, denoted

by RS( f , g, P) and RS( f , g, P), respectively, are called the Lower and the Upper R-S
sums which are generalizations of the Lower and Upper Riemann Sums. Since
RS( f , g, P) ≤ RS( f , g, Q) for all partitions P, Q of [a, b], we have

∫ b

a
f dg := sup

P
RS(f , g, P) ≤ inf

P
RS(f , g, P) :=

∫ b

a
f dg.

If
∫ b

a
f dg and

∫ b

a f dg, called the lower and upper R-S integrals are equal, then the

common value is called the R-S integral of f with respect to g on [a, b].
The Stieltjes integral and the Riemann-Stieltjes integral both exist and are equal if f

has at most a finite number of discontinuities, g is nondecreasing, and f and g do not
have any common discontinuity on [a, b].

Expected value of a random variable. The expected value of an rv with cdf F is
defined as

EF [X ] =
∫

x dF(x).
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More generally, EF [g(X)] = ∫
g(x) dF(x) where g has at most a finite number of

discontinuities.
If F is differentiable, F ′ = f is the pdf of X , and

∫
x dF(x) = ∫

xf (x) dx. If F increases
only by jumps at x1, x2, . . . with jump size f (xi) at xi, then X is discrete with pmf
f (xi), i = 1, 2, . . ., and

∫
x dF(x) = ∑

i xif (xi).
If P[X ≥ 0] = 1, then we have the following alternative expression for EF [X ] < ∞,

using integration by parts:

EF [X ] =
∫ ∞

0
x dF(x) = −

∫ ∞
0

x d[1 − F(x)]

=
∫ ∞

0
[1 − F(x)] dx =

∫ ∞
0

P[X > x] dx,

because x[1 − F(x)] ≤ ∫ ∞
x yF(y) which converges to 0 as x → ∞ by virtue of EF [X ] < ∞.

Empirical cdf. For a random sample (X1, . . . , Xn) from F , the function

Fn(x) = n−1
n∑

i=1

I(−∞,x](Xi),

which increases by jumps of size 1/n at X1, . . . , Xn is called the empirical cdf. It follows
that

∫
g(x) dFn(x) = n−1

n∑
i=1

g(Xi) = Sample mean of g(X1), . . . , g(Xn).

We often want to deal with n−1 ∑n
i=1 g(Xi) − EF [g(X)], the difference between the

sample mean of g(X1), . . . , g(Xn) and its expected value. This can be represented as

n−1
n∑

i=1

g(Xi) − EF [g(X)] =
∫

g(x) dFn(x) −
∫

g(x) dF(x)

=
∫

g(x)d[Fn(x) − F(x)].

A.4 Characteristic Function, Weak Law of Large Number,
and Central Limit Theorem

Theorem A.4.1 (Helly-Bray Theorem). Xn
L→ X implies E[g(Xn)] → E[g(X)] for all bounded

and a.e. continuous functions g.
Proof. See Breiman [42, p. 160].
Note. Let Dg denote the set of discontinuity points of g. If P[X ∈ Dg ] = 0, then g is a.e.

continuous.
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Characteristics Function

Definition A.4.1. The characteristic function (cf) of an rv X with cdf F , or the cf of F is
defined to be

ϕ(t) = ϕX (t) = E[eitX ] =
∫ ∞
−∞

eitx dF(x) =
∫ ∞
−∞

cos(tx) dF(x) + i
∫

sin(tx) dF(x),

where t is real and i = √−1. In general, ϕ(t) is complex-valued, with

ϕ(0) = 1, |ϕ(t)| ≤
∫ ∞
−∞

dF(x) = 1 for all t, and ϕ(−t) = ϕ(t) for all t,

where z̄ denotes the complex conjugate of a complex number z.

If f is symmetrically distributed (about 0) (ie, X
D= −X), then

ϕ(t) = ϕ(−t) = E[ei(−t)X ] = E[it(−X)] = E[eitX ] = ϕ(t).

Thus the cf of a symmetric rv is real-valued function of t.
By dominated convergence, ϕ(t) is continuous and if mk = E [X k] exists, then ϕ(t) is

k-times differentiable; moreover, we can differentiate under the integral sign, that is,

ϕ(r)(t) = ir
∫ ∞
−∞

xreitx dF(x) for 0 ≤ r ≤ k, and

ϕ(r)(0) = ir
∫ ∞
−∞

xr dF(x) = irE[X r] = irmr , 0 ≤ r ≤ k.

In the neighborhood of t = 0, we have the McLaurin Series

ϕ(t) = 1 +
k∑

r=1

(mr/r!)(it)r + o(tk), as t → 0.

Special Cases

1. Let Φ denote the cdf of N(0, 1). Then the cf of Φ is

ϕ(t) =
∫ ∞
−∞

eitx dΦ(x) = e−t2/2.

2. Let F denote the cdf of an rv X with P[X = c] = 1 (ie, F(x) = 0 for x < c and F(x) = 1 for
x ≥ c). Then the cf of F is ϕ(t) = eitc .

Properties of cf

1. If ϕX is the cf of X , then ϕaX+b(t) = eitbϕX (at) for constant a, b.
2. If X1, . . . , Xn are independent, then ϕ∑n

i=1 Xi
(t) = ∏n

i=1 ϕXi (t).
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In particular, if X1, . . . , Xn are iid as X , then

ϕ∑n
i=1 Xi/

√
n(t) = {

ϕX (t/
√

n)
}n.

We now state the following two fundamental theorems in the theory of characteristic
functions, for the proof of which we refer to Cramér [18, p. 93–8].

Theorem A.4.2 (Uniqueness of Characteristic Functions on R). If (a − h, a + h) is a
continuity interval of a cdf F (ie, a ± h are continuity points of F), and if ϕ is the cf
of F, then

F(a + h) − F(a − h) = lim
T→∞

1
π

∫ T

−T

sin(ht)
t

e−itaϕ(t) dt.

Consequently, the cf ϕ determines the cdf F.
Theorem A.4.3 (Continuity of Characteristic Functions on R). If {Fn} is a sequence of

cdf ’s and {ϕn} is the corresponding sequence of cf ’s, then Fn → F (at all continuity points of
F) iff there exists a ϕ which is continuous at t = 0, such that ϕn(t) → ϕ(t) for all t. Moreover,
if there is such a ϕ, then it is the cf of F.

Note. The Uniqueness and Continuity Theorems for Characteristic Functions also
extend to Rk. See Cramér [18, p. 100–3].

Remark A.4.1. Combining the Helly-Bray Theorem with the Continuity Theorem for
Characteristic Functions, we now conclude that the following are equivalent:

1. Xn
L→ X .

2. Fn(x) → F(x) at all continuity points of F .
3. E[g(Xn)] → E[g(X)] for all bounded and a.e. continuous functions g.
4. ϕn(t) = E

[
eitXn

] → ϕ(t) = E
[
eitX

]
for all t.

Applications of the Continuity Theorem for Characteristic Functions

Theorem A.4.4. If Xn
L→ X and g is a a.e. continuous function, then g(Xn)

L→ g(X).
Proof. Since cos(tg(x)) and sin(tg(x)) are a.e. continuous functions of x for every t, it

follows from the Helly-Bray Theorem that

ϕg(Xn)(t) = E
[

eitg(Xn)
]

= E
[
cos(tg(Xn))

] + iE[sin(tg(Xn))]
→ E

[
cos(tg(X))

] + iE[sin(tg(X))] = E
[

eitg(X)
]

= ϕg(X)(t).

Hence g(Xn)
L→ g(X) by the Continuity Theorem.

We now prove Theorems 3.2.1–3.2.3 of Chapter 3.
Theorem A.4.5 (Weak Law of Large Numbers (Khinchine)). If X1, X2, . . . are iid as X with

E[X ] = μ, then X̄n = n−1 ∑n
i=1 Xi

P→ μ.
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Proof. The cf of X̄n is

ϕX̄n
(t) = ϕn−1

∑n
i=1 Xi

(t) = {ϕX (t/n)}n = [
1 + i(t/n)μ + o(1/n)

]n

by McLaurin’s series expansion of ϕX (t/n) about 0. Hence

lim
n→∞ ϕX̄n

(t) = lim
n→∞

[
1 + i(t/n)μ + o(1/n)

]n = eitμ,

which is the cf of an rv X0 which takes the value μ with probability 1. Hence X̄n
L→ X0 by

the Continuity Theorem, so that for all ε > 0,

P[X̄n ≤ μ − ε] → P[X0 ≤ μ − ε] = 0 and

P[X̄n ≤ μ + ε] → P[X0 ≤ μ + ε] = 1.

Thus, for any ε > 0,

lim
n→∞ P[|X̄n − μ| ≤ ε] = lim

n→∞ P[X̄n ≤ μ + ε] − lim
n→∞ P

[
X̄n ≤ μ − ε

] = 1 = 0 = 1.

Theorem A.4.6 (Central Limit Theorem (Lindeberg-Lévy)). If X1, X2, . . . are iid as X with
E[X ] = μ and Var[X ] = σ 2, then

Zn = 1

σ
√

n

n∑
j=1

(Xj − μ)
L→ Z ∼ N(0, 1), ie,

1√
n

n∑
j=1

(Xj − μ)
L→ σZ ∼ N(0, σ 2).

Proof. Let (Xj − μ)/σ = Yj. Then Y1, Y2, . . . are iid as Y = (X − μ)/σ with E[Y ] = 0 and
E[Y 2] = 1. Then

ϕZn (t) = ϕn−1/2
∑n

j=1 Yj
(t) = {

ϕY (t/
√

n)
}n

=
[

1 + i(t/
√

n)0 + (1/2)i2(t/
√

n)21 + o(1/n)
]n

=
[

1 − t2/(2n) + o(1/n)
]n → e−t2/2 = ϕZ (t).

Hence Zn
L→ Z by the Continuity Theorem.

Theorem A.4.7 (The Cramér-Wold Device). Let {X n} be k-dim random vectors such that

aT X n
L→ aT X for all a ∈ R

k. Then X n
L→ X .

Proof. Since aT X n
L→ aT X for all a ∈ R

k ,

ϕaT X n
(t) = E[eit(aT X n)] → ϕaT X (t) = E[eit(aT X )], for all t ∈ R and a ∈ R

k.

But {ta: t ∈ R, a ∈ R
k} = {s: s ∈ R

k}, and therefore,

ϕX n (s) = E
[

eisT X n
]

→ E
[

eisT X
]

= ϕX (s) for all s ∈ R
k.

Hence X n
L→ X by the Continuity Theorem for Characteristic Functions on R

k.
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Theorem A.4.8 (Multivariate Central Limit Theorem). If X 1, X 2, . . . are iid as X in R
k

with the mean vector E[X ] = μ and the covariance matrix E[(X − μ)(X − μ)T ] = Σ which is
positive definite, then

n−1/2
n∑

j=1

(X j − μ)
L→ W ∼ Nk(0, Σ).

Proof. For a ∈ R
k, let Yj = aT X j and Y = aT X . Then Y1, Y2, . . . are iid as Y where E[Y ] =

aT μ and Var[Y ] = aT Σa, so that

n−1/2
n∑

j=1

(aT X j − aT μ)
L→ Za ∼ N(0, aT Σa)

by the univariate Central Limit Theorem. On the other hand, if W ∼ Nk(0, Σ), then aT W ∼
N(0, aT Σa) . Thus

aT

⎧⎨
⎩n−1/2

n∑
j=1

(X j − μ)

⎫⎬
⎭

L→ aT W for all a ∈ R
k,

and so the theorem follows by the Cramér-Wold device.

A.5 Weak Convergence of Probabilities on C[0,1]
A metric on a nonempty set S is a function d: S × S → R such that (i) d(x, y) ≥ 0 and
d(x, y) = 0 iff x = y, (ii) d(x, y) = d( y, x), (iii) d(x, y) ≤ d(x, z) + d( y, z) for all x, y, z ∈ S. We
call (S, d) a metric space.

For each x ∈ S and ε > 0, the set Sε(x) = { y: d(x, y) < ε} is the open sphere of radius ε

centered at x. A set G ⊂ S is open ⇐⇒ for each x ∈ G, Sε(x) ⊂ G for some ε > 0 ⇐⇒ G
is a union of open spheres.

In S, a sequence {xn} converges to x if limn→∞ d(xn, x) = 0. The boundary of A ⊂ S is
∂A = {x ∈ S: x is a limit point of sequences in both A and Ac}.

A collection of open sets {Gλ: λ ∈ Λ} is an open covering of A ⊂ S if A ⊂ ∪λ∈ΛGλ. A set
K ⊂ S is compact if for every open covering of K , there is a finite subcovering.

Let {Pn} and {P} be probabilities on (S,S) where S is the Borel σ -field, that is, the
smallest σ -field of subsets of S which includes all open sets and let C(S) be the set of all
bounded continuous functions f : S → R.

The sequence {Pn} converges weakly to P iff
∫

f dPn → ∫
f dP for all f ∈ C(S). This

is denoted by Pn
w→ P. Equivalently, Pn

w→ P iff Pn(A) → P(A) for all A ∈ S for which

P(∂A) = 0. The weak limit is unique (ie, if Pn
w→ P and Pn

w→ Q), then P = Q.
A transformation g: (S,S) → (S′,S ′) is measurable if g−1(B) ∈ S for all B ∈ S ′, in which

case, for {Pn} and P on (S,S), {Png−1} and Pg−1 are induced probabilities on (S′,S ′), where

Png−1(B) = Pn(g−1(B)) and Pg−1(B) = P(g−1(B)) for all B ∈ S ′.

A function g: (S, d) → (S′, d′) is continuous iff xn → x in S �⇒ g(xn) → g(x) in S′.
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Theorem A.5.1 (Continuous Mapping Theorem). If Pn
w→ P on (S,S) and if g: (S, d) →

(S′, d′) is continuous, then Png−1 w→ Pg−1 on (S′,S ′). More generally, the theorem holds if
P(Dg ) = 0 where Dg is the set of discontinuity points of g.

The continuous mapping theorem stated above is a generalization of Theorem 3.2.5(III)
dealing with probability distributions of k-dim rv’s.

Let C = C[0, 1] be the set of all continuous functions on [0, 1] with the metric d(x, y) =
sup0≤t≤1 |x(t) − y(t)| and let C denote the Borel σ -field in C. On (C, C), we now consider the
weak convergence of {Pn} to P, which holds under two conditions, namely, convergence of
finite-dimensional distributions (fdd) and “tightness” of the sequence {Pn}. For notational
simplicity, we describe these conditions in terms of random elements Xn(·) of (C, C, Pn) and
X(·) of (C, C, P).

Definition A.5.1. For each positive integer k and t1 < · · · < tk in [0, 1], the distributions
of (Xn(t1), . . . , Xn(tk)) and (X(t1), . . . , X(tk)) are called fdd of Xn(·) and X(·), respectively.

Definition A.5.2. A family of probabilities Π on (S,S) is tight if for every ε > 0, there
exists a compact set K such that P(K ) > 1 − ε for all P ∈ Π . In particular, a sequence of
probabilities {Pn} on (C, C) is tight if for every ε > 0, there exists a compact set K in C such
that P[Xn(·) ∈ K ] > 1 − ε for all n.

Notation

We are writing P[Xn(·) ∈ K ] for Pn(K ).
Theorem A.5.2. Let {Xn(·), n = 1, 2, . . .} and X(·) denote random elements of (C, C, Pn)

and (C, C, P), respectively. Then Pn
w→ P or equivalently, Xn

w→ X if

(i) the fdd’s of {Xn(·)} converge to those of X(·),
(iia) {Xn(0)} is tight (ie, Xn(0) = OP(1)), and
(iib) there exist constants γ ≥ 0 and α > 1 and a nondecreasing, continuous function F on

[0, 1] such that

P
[|Xn(t2) − Xn(t1)| ≥ λ

] ≤ 1
λγ

|F(t2) − F(t1)|α

holds for all t1, t2 and n, and all λ > 0 (see [43, p. 95–6]).



Appendix B
Basic Results From Matrix Algebra

This appendix lists some basic definitions, formulas, and results for vectors and matrices
which are used in this book. We begin with some simple definitions and elementary results.

B.1 Some Elementary Facts
It is known from the theory of matrices that the number of linearly independent rows of a
matrix A equals the number of linearly independent columns, and the rank of A (denoted
by rank(A)) is defined to be the number of linearly independent rows of A (or the number
of linearly independent columns). For any vector x, xT x will be denoted by ‖x‖2, which
equals the square of the length of x. A matrix A of order n × m is said to have a full rank if
rank(A) = min(n, m).

For any n × n matrix A, its quadratic form is defined to be q(x) = xT Ax, where x ∈ R
n. If

A is not symmetric, then q(x) may also be written as xT Ãx, where Ã = (1/2)(A + AT ) is the
symmetrized version of A.

Definition B.1.1. All the matrices in this definition are assumed to be square of order n
(ie, the matrices have n rows and n columns).

(a) Trace of a matrix is defined to be the sum of its diagonal elements (ie,
trace(A) = ∑n

i=1 aii).
(b) The determinant A (denoted by |A|) is defined to be

∑
π (−1)π ai,π(i), where the sum is

over all permutations π of {1, . . . , n}, and (−1)π equals 1 or −1 depending on whether
π is a positive or a negative permutation.

(c) A symmetric matrix A is called nonnegative definite if its quadratic form xT Ax ≥ 0
for any x ∈ R

n. If xT Ax > 0 for all 0 �= x ∈ R
n, then A is called a positive definite

matrix.
(d) A matrix A is said to be orthogonal if its rows are orthonormal (ie, the row vectors are

orthogonal to each other and each has unit length). Consequently, AAT = I . It is easy
to check that A is nonsingular, AT = A−1 and AT A = I . Since AT A = I, columns of A
are orthonormal.

Here are some important results on rank and trace of matrices.

503
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Lemma B.1.1.

(a) For any matrix A of order n × m, rank(AAT ) = rank(A).
(b) If A and B are of order n × m , then rank(A + B) ≤ rank(A) + rank(B).
(c) If A and B are of order n × m and m × k, respectively, then

rank(AB) ≤ min[rank(A), rank(B)].
(d) If A and B are of order n × n, then trace(A + B) = trace(A) + trace(B).
(e) If A and B are of order n × m and m × n, then trace(AB) = trace(BA).
(f) If A and B are of order n × n , then |AB| = |A| |B|.

A class of formulas known as the Sherman-Morrison Formulas are quite useful in
inverting matrices.

Theorem B.1.1.

(a) If a ∈ R
n, then (I + aaT )−1 = I − (1 + ‖a‖2)−1aaT .

(b) If a ∈ R
n, ‖a‖ �= 1, then (I − aaT )−1 = I + (1 − ‖a‖2)−1aaT .

(c) If A is of order n × m, then (I + AAT )−1 = I − A(I + AT A)−1AT .
(d) If A is n × m and B is a positive definite matrix of order n × n, then

(B + AAT )−1 = B−1 − B−1A(I + AT B−1A)−1AT B−1.

The following is the Cauchy-Schwarz inequality for the matrices.
Theorem B.1.2. Let a be an n-dim vector and A be a positive definite matrix of order

n × n.

(a) For any x ∈ R
n, |aT x|2 ≤ ‖a‖2‖x‖2. Moreover, sup{|aT x|2/‖x‖2: x ∈ R

n} = ‖a‖2 and
this supremum is attained at x = a.

(b) For any x ∈ R
n, |aT x|2 ≤ [aT A−1a][xT Ax]. Moreover,

sup{|aT x|2/[xT Ax]: x ∈ R
n} = aT A−1a and this supremum is attained at x = A−1a.

B.2 Eigenvalues and Eigenvectors
For a square matrix A of order n, if there exists a scalar (may be complex) and a vector x
(may be complex) such that Ax = λx, then λ is called an eigenvalue of A with the corre-
sponding eigenvector x. The following result lists some basic properties of eigenvalues.

Lemma B.2.1.

(a) If A is symmetric, then all its eigenvalues and eigenvectors are real.
(b) If A is nonsingular, then all its eigenvalues are nonzero.
(c) If λ is an eigenvalue of symmetric matrix A with the corresponding eigenvector x, then

for any positive integer r, λr is an eigenvalue of Ar with eigenvector x
(d) The nonzero eigenvalues of AT A, where A is a matrix of order n × m, are the same as

those of AAT .
(e) The eigenvalues of a nonnegative definite (positive definite) matrix A are nonnegative

(positive).
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The following is an important result that is widely used in Linear Models and Multivari-
ate Analysis.

Theorem B.2.1 (Spectral Decomposition Theorem). If A is a symmetric matrix of order
n × n, then there exist an n × n orthogonal matrix U with columns u1, . . . , un (ie, U =
[u1, . . . , un]) and a diagonal matrix Λ of order n × n with diagonal elements λ1, . . . , λn such
that

A = UΛUT =
n∑

j=1

λjujuT
j .

Here {λj} are the eigenvalues of A with the corresponding orthonormal eigenvectors {uj}.
Is there an analog of the Spectral Decomposition Theorem for an arbitrary matrix A is

of order n×m? The answer is yes. Positive square roots of the eigenvalues of AT A are called
the singular values of A. Since AT A is nonnegative definite, its eigenvalues are nonnegative
and thus the square roots of the eigenvalues of AT A are real. Clearly, if A is symmetric, then
AT A = A2 with eigenvalues {λ2

j }, where {λj} are the eigenvalues of A, and the singular values
of A are {|λj|}.

Theorem B.2.2 (Singular Value Decomposition). Let A be a matrix of order n×m, m ≤ n.
There exist an n × m suborthogonal matrix U (ie, the columns of U are orthonormal), an
m × m orthogonal matrix V , and an m × m diagonal matrix Λ with nonnegative diagonal
entries λ1, . . . , λm such that

A = UΛV T =
m∑

j=1

λjujvT
j ,

where {uj} and {vj} are the columns of U and V , respectively.
It is important to note that {λj} in the Singular Value Decomposition of A are the

singular values of A, and {λ2
j } are the eigenvalues of the matrix AT A.

We finally write down two important formulas for the trace and determinant of
matrices.

Lemma B.2.2. Let A be a symmetric matrix of order n × n with eigenvalues {λj, j =
1, . . . , n}. Then,

trace(A) =
n∑

j=1

λj and |A| =
n∏

j=1

λj.

The following result on the optimization of quadratic forms involves the eigenvalues
and eigenvectors.

Theorem B.2.3. Let λ1 ≥ · · · ≥ λn be the eigenvalues of a symmetric matrix A of order
n × n with the corresponding orthonormal eigenvectors u1, . . . , un. It is understood that x,
x1, . . . written below are in R

n. Then the following hold:

(a) sup
{

xT Ax: ‖x‖ = 1
} = supx �=0

xT Ax
xT x

= λ1, and this supremum is attained at x = u1.

(b) inf
{

xT Ax: ‖x‖ = 1
} = infx �=0

xT Ax
xT x

= λn, and this infimum is attained at x = un.
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(c) For 1 < m ≤ n, we have

sup
{

xT
1 Ax1 + · · · + xT

mAxm: x1, . . . , xm are orthonormal
}

= sup

{
xT

1 Ax1

xT
1 x1

+ · · · + xT
mAxm

xT
mxm

: x1 �= 0, . . . , xm �= 0 are orthogonal

}

= λ1 + · · · + λm,

and this supremum is attained at x1 = u1, . . . , xm = um.

B.3 Functions of Symmetric Matrices
If A is a symmetric matrix of order n×n, then for any real-valued function f whose domain
contains the eigenvalues of A , it is possible to define the corresponding function of A using
the Spectral Decomposition Theorem. More formally, let f be a real-valued function with
domain D ⊂ R, and let {λj: j = 1, . . . , n} be the eigenvalues of A with the corresponding
orthonormal eigenvector {uj}. If the eigenvalues of A are inside the set D, then the matrix
function f (A) is defined to be f (A) = ∑n

j=1 f (λj)ujuT
j . Here are some examples that are

useful in Linear Models and Multivariate Analysis.

I. (Square root of a matrix) Let A be nonnegative definite and let f (u) = u1/2, u ≥ 0 (ie,
D = [0, ∞)). Then

A1/2 = f (A) =
n∑

j=1

f (λj)ujuT
j =

n∑
j=1

λ
1/2
j ujuT

j .

Clearly, A1/2 is symmetric and it is fairly easy to check that A1/2A1/2 = A.
II. (Inverse of a matrix) If A is nonsingular, then all its eigenvalues are nonzero and let

f (u) = u−1, u �= 0 (ie, D = R − {0}). Then

A−1 = f (A) =
n∑

j=1

λ−1
j ujuT

j .

It is fairly easy to check that A−1 is indeed the inverse of the matrix A.
III. (Inverse of square root of a matrix) Let A be positive definite and let f (u) = u−1/2,

u > 0 (ie, D = (0, ∞)). Then

A−1/2 = f (A) =
n∑

j=1

λ
−1/2
j ujuT

j .

It is clear that A−1/2 is symmetric, and it is easy to verify that A−1/2A−1/2 = A−1.
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B.4 Generalized Eigenvalues
Let A and B be symmetric matrices of order n × n where B is positive definite. We say that
λ is a (generalized) eigenvalue of A with respect to B if there is a vector l in R

n such that
Al = λBl. Premultiplying both sides by B−1 we get B−1Al = λl. In other words, if λ is an
eigenvalue of A with respect to B, then λ is also an eigenvalue of B−1A, and the converse
is also true. Similarly we can show that if λ is an eigenvalue of A with respect to B, then λ

is also an eigenvalue of AB−1 and of B−1/2AB−1/2, where B−1/2 is symmetric. The following
result summarizes these observations.

Lemma B.4.1. Eigenvalues of AB−1, B−1A, and B−1/2AB−1/2 are the same.
Let λ1 ≥ · · · ≥ λn be the generalized eigenvalues of A with respect to B. By Lemma B.4.1,

λ1, . . . , λp are also the eigenvalues of B−1/2AB−1/2. By the Spectral Decomposition Theo-
rem, we have

B−1/2AB−1/2 =
n∑

j=1

λjujuT
j , and

n∑
j=1

ujuT
j = I ,

where {uj} are the orthonormal eigenvector of the matrix B−1/2AB−1/2 corresponding to
the eigenvalues {λj}. We now write down an analog of Theorem B.2.3 for the generalized
eigenvalues.

Theorem B.4.1. Let A and B be symmetric n × n matrices, and assume that B is positive
definite. Let λ1 ≥ · · · ≥ λn be the eigenvalues of B−1/2AB−1/2 with the corresponding
orthonormal eigenvectors u1, . . . , un. It is understood that x, x1, . . . written below are in R

n.
Then the following hold:

(a) supx �=0
xT Ax
xT Bx = λ1, and this supremum is attained at x = B−1/2u1.

(b) infx �=0
xT Ax
xT Bx = λn, and this infimum is attained at x = B−1/2un.

(c) For 1 < m ≤ n, we have

sup

{
xT

1 Ax1

xT
1 Bx1

+ · · · + xT
mAxm

xT
mBxm

: xT
i Bxj = 0, 1 ≤ i �= j ≤ m, xi �= 0, i = 1, . . . , m

}

= λ1 + · · · + λm,

and this supremum is attained at x1 = B−1/2u1, . . . , xm = B−1/2um.

B.5 Matrix Derivatives
In many cases one needs to differentiate the quadratic form or the trace or the determinant
of a matrix. There are a number of useful formulas for such purposes. For any function
f : Rn → R, the column vector of its first order partial derivatives and the n × n matrix of
second order partial derivatives (also known as the Hessian) will be denoted by ∂

∂x f (x) and
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∂2

∂x∂x f (x), respectively. Let A be a symmetric matrix of order n × n, and let l(x) = Ax and
q(x) = xT Ax, x ∈ R

n.
Lemma B.5.1. Let l(x) and q(x) be defined as above. Then,

∂

∂x
l(x) = A,

∂

∂x
q(x) = 2Ax,

∂2

∂x∂x
q(x) = 2A.

For the result given below, it is assumed that the square matrix A(x) of order n is a
function of a real variable x and element (i, j) of A(x) is aij(x). Let Ȧ(x) denote the matrix

obtained by differentiating all elements A(x) with respect to x (ie, Ȧ(x) = ((
ȧij(x)

))
, where

ȧij(x) = daij(x)/dx). The following result presents expressions for the derivatives of A−1(x)
and |A(x)| with respect to x.

Lemma B.5.2. Let A(x) be an n × n symmetric nonsingular matrix whose elements
depend on a real variable x, and let Ȧ(x) be the matrix obtained by differentiating the
elements of A(x) with respect to x. Then,

d
dx

A−1(x) = −A−1(x)Ȧ(x)A−1(x),

d
dx

|A(x)| = |A(x)|trace(Ȧ(x)A−1(x)).

It is fairly easy to check the first equality. Since I = A−1(x)A(x), differentiating both sides
with respect to x, we have

0 = d
dx

I = d
dx

A−1(x)A(x)

=
[

d
dx

A−1(x)
]

A(x) + A−1(x)
[

d
dx

A(x)
]

=
[

d
dx

A−1(x)
]

A(x) + A(x)−1Ȧ(x).

Postmultiply by A−1(x) on both sides to get the result.
The proof of the second equality is a bit more involved than that of the first. We outline

a proof via spectral decomposition of A(x) = ∑n
j=1 λj(x)uj(x)uT

j (x), where for each x,

{uj(x): j = 1, . . . , n} are orthonormal. Denote the derivatives of λj(x) and uj(x) by λ̇j(x)
and ėj(x), respectively. Since |A(x)| = λ1(x) · · · λn(x), we have

d
dx

|A(x)| = d
dx

[
λ1(x) · · · λn(x)

] =
n∑

j=1

[
λ1(x) · · · λn(x)

][
λ̇j(x)/λj(x)

]

= |A(x)|
n∑

j=1

λ̇j(x)/λj(x).

The second equality would hold if we can establish that

trace(Ȧ(x)A−1(x)) =
n∑

j=1

λ̇j(x)/λj(x).
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Since A(x) = ∑n
j=1 λj(x)uj(x)uT

j (x), differentiating both sides with respect to x we have

Ȧ(x) =
n∑

j=1

λ̇j(x)uj(x)uT
j (x) +

n∑
j=1

λj(x)u̇j(x)uT
j (x) +

n∑
j=1

λj(x)uj(x)u̇T
j (x)

:= B1(x) + B2(x) + B3(x).

The result now follows nothing that

A−1(x) =
n∑

j=1

λj(x)−1uj(x)uT
j (x),

trace(B1(x)A(x)−1) =
n∑

j=1

λ̇j(x)/λj(x), and

trace(B2(x)A(x)−1) = trace(B3(x)A(x)−1) =
n∑

j=1

uT
j (x)u̇j(x) = 0,

where the last step is justified as uT
j (x)u̇j(x) = 0 for all j, which can be verified by

differentiating both sides of the identity uT
j (x)uj(x) = 1 with respect to x.

B.6 Orthogonal Projection
For a matrix A of order n × m, we denote its column space {Ax: x ∈ R

m} by M(A). The
orthogonal complement of M(A) , denoted by M(A)⊥, is the set {y ∈ R

n: yT u = 0 for
any u ∈ M(A)}. A square matrix A of order n is called idempotent if A2 = A. A symmetric
matrix A is called a (orthogonal) projection matrix if it is symmetric and idempotent. It is
fairly easy to see that if A is a projection matrix, then so is I − A. Since (I − A)A = A − A2 =
A − A = 0, it follows that M(A)⊥ = M(I − A). If λ is an eigenvalue of A, then λ2 is an
eigenvalue of A2. Since A = A2, we have λ = λ2 and thus λ = 0 or 1. The following lists a
few important properties of a projection matrix.

Theorem B.6.1. Let A be a n × n projection matrix. Let M(A) = {Ax: x ∈ R
n} be the

column space of A. The following hold:

(a) I − A is a projection matrix.
(b) All the eigenvalues of A are either 0 or 1.
(c) trace(A) = rank(A).
(d) M(A)⊥ = M(I − A).
(e) If B is an n × n projection matrix and M(B) ⊂ M(A), then A − B is a projection on

M(A) ∩ M(B)⊥ and AB = B (ie, (I − A)B = 0).

Suppose that A is of order n × m, with rank m ≤ n. Given a vector y ∈ R
n, how do we

find a vector in M(A) that is closest to y? Clearly, this is equivalent to minimizing ‖y − Ax‖2

with respect to x ∈ R
m, and if a minimum is attained at x = x∗, then ŷ = Ax∗ is the
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element in M(A) that is closest to y. It is fairly easy to verify that x∗ = (AT A)−1AT y and
ŷ = A(AT A)−1AT y = QAy, where QA = A(AT A)−1AT . It is also easy to check that QA is a
projection matrix and M(A) = {QAu : u ∈ R

n}.

B.7 Distribution of Quadratic Forms
In this section, all the matrices A, A1, etc., associated with quadratic forms of Y , where
Y ∼ Nn(μ, I), are assumed to be symmetric of order n×n. If A is a projection matrix of rank
p ≤ n, then it has exactly p eigenvalues equal to 1 (and the rest are 0), and let u1, . . . , up be
the corresponding orthonormal eigenvectors. Then

‖AY ‖2 = Y T AY =
p∑

j=1

(
uT

j Y
)2

:=
p∑

j=1

W 2
j .

Since {uj} are orthonormal, {Wj = uT
j Y , j = 1, . . . , p} are independent with Wj ∼ N(uT

j μ, 1).

Results from Section 2.2.9 in Chapter 2 tell us ‖AY ‖2 = ∑p
j=1 W 2

j ∼ χ2
p (δ2), where δ2 =

(1/2)
∑p

j=1

(
uT

j μ
)2 = (1/2)μT Aμ = (1/2)‖Aμ‖2.

It turns out that the converse is also true, that is, if Y T AY ∼ χ2
p (δ2), then A must be a

projection matrix of rank p. In order to see this, let us assume that A has rank q and its
nonzero eigenvalues and the corresponding normalized eigenvectors are λ1, . . . , λq and
u1, . . . , uq, respectively. Then

Y T AY =
q∑

j=1

λjW 2
j ,

where {Wj = uT
j Y , j = 1, . . . , q} are independent with Wj ∼ N(uT

j μ, 1). Since W 2
j ∼ χ2

1 (δ2
j )

with δ2
j = (1/2)

(
uT

j μ
)2

, and {Wj : j = 1, . . . , q} are independent, the characteristic function

(cf) of Y T AY is the product of the cf’s of λjW 2
j , j = 1, . . . , q. And this product of cf’s must be

equal the cf of χ2
p (δ2), since Y T AY ∼ χ2

p (δ2) by assumption. An examination of this equality
of the characteristic functions shows (details not given here) that p must be equal to q and
λ1 = · · · = λq = 1. This proves that A is a projection matrix of rank p and we have the
following result.

Lemma B.7.1. If Y ∼ Nn(μ, I), then Y T AY ∼ χ2
p (δ2) if and only if A is a projection matrix

of rank p.
We now discuss a more general result. Let A1 and A2 be two projection matrices of ranks

p1 and p2, respectively, and A1A2 = 0. We can therefore find orthonormal vectors {uj: j =
1, . . . , p1 + p2} such that
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A1 =
p1∑

j=1

ujuT
j and A2 =

p1+p2∑
j=p1+1

ujuT
j .

Since {Wj = uT
j Y , j = 1, . . . , p1 + p2} are independent with Wj ∼ N(uT

j μ, 1), we can
conclude that

‖A1Y ‖2 = Y T A1Y =
p1∑

j=1

W 2
j ∼ χ2

p1
(δ2

1),

‖A2Y ‖2 = Y T A2Y =
p1+p2∑

j=p1+1

W 2
j ∼ χ2

p2
(δ2

2),

and that Y T A1Y and Y T A2Y are independent, where δ2
1 = (1/2)μT A1μ and δ2

2 =
(1/2)μT A2μ. Moreover, Y T (A1 + A2)Y ∼ χ2

p1+p2
(δ2

1 + δ2
2).

It turns out that a converse of this is also true as given in the following result. The proofs
of the next two results use ideas similar to the ones given above and details can be found
in Rao [66].

Lemma B.7.2. Let A = A1 + A2 and assume that

(i) Y T AY ∼ χ2
p (δ2),

(ii) Y T A1Y ∼ χ2
p1

(δ2
1), and

(iii) P[Y T A2Y ≥ 0] = 1.

Then A2 is a projection matrix of rank p − p1 and A1A2 = 0. Consequently, Y T A2Y ∼
χ2

p−p1
(δ2 − δ2

1) and Y T A1Y is independent of Y T A2Y .

Lemma B.7.3. Assume that Y T A1Y ∼ χ2
p1

(δ2
1), . . . , Y T ArY ∼ χ2

pr
(δ2

j ). Then a necessary

and sufficient condition that Y T A1Y , . . . , Y T ArY are independent is that AjAk = 0 for all
j �= k, in which case, Y T (A1 + · · · + Ar)Y ∼ χ2

p1+···+pr
(δ2

1 + · · · + δ2
r ).
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Autoregressive-moving average
(ARMA(p, q)) models

invertibility, 459–460
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Autoregressive-moving average
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parameter estimation, 471–472
redundancy issue, 458
stationarity, 459–460
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discrete variable, 352
Laplace approximation, 353
positive definite matrix, 352–353

Bayes principle, 79
Bayes’ rule, 80–81, 415
Behavioral decision rule, 72, 126
Bernoulli parameter, 72
Bernoulli (p) rv, 25–26
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two-sample problem, 395

Bootstrap resampling method, 298–303
asymptotic bias, 300–301
asymptotic variance, 300–301
heuristic justification, 301–303

Borel-Cantelli Lemma, 57, 241, 259
Bounded variation, 259–260, 494
Box-Cox transformation, 433

C
Calculus, fundamental theorem of, 95
Canonical correlation analysis, 420–425

cross-classified data, 422–423
sample estimates, 421
social mobility data, 423
technical notes, 424–425
test for, 421–422

Cauchy distribution, 45–46, 131, 285–286
Cauchy-Schwarz inequality, 12, 493, 504
Causal time series, 454–460

invertible representation, 455–456
moving average models, 457–458
technical issues, 456–457
usefulness of, 456

Censored data, 255, 273, 275
Censoring time, 273
Central Limit Theorem (CLT)

asymptotic normality, 66–67
characteristic function, 496–500
Lindeberg-Lévy, 56
multivariate, 385–386, 500

Change of variable, 495
Characteristic function, 496–500

continuity theorem, 498–500
Helly-Bray theorem, 496, 498
properties of, 497–498
special cases, 497
uniqueness of, 498

Chernoff-Savage approach, 238–239
Chi-squared distribution, 40–41, 390–391
Classification function

Bayes’ rule, 417
Fisher’s method, 418–420
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method of, 419
probability of, 417–418

CLT. See Central Limit Theorem (CLT)
Coefficient of determination, 318–319
Communality, 411
Composite hypothesis, 131–132
Conditional distribution, 147, 154
Conditional expectation, 300–301
Conditional probability, 347
Conditional tests, 149–152
Confidence coefficient, 169–171
Confidence ellipsoid

one-sample inference, 389
two-sample problem, 394

Confidence intervals, 170, 328
Bonferroni method, 390, 395
confidence coefficient, 410
Scheffé method, 389, 395
simultaneous, 397, 401–402

Confidence sets
inverting acceptance regions, 171–173
pivotal functions, 169–171

Conjugate gradient method, 360
Consistency and asymptotic normality

almost sure convergence, 189–191
efficiency, 191–193
multinomial distribution, parameters in,

193–194
Consistent estimators, 182
Continuation region, 164
Continuity theorem, 498–500

Cramér-Wold device, 499
Helly-Bray theorem, 498
Khinchine weak law of large numbers, 498
Lindeberg-Lévy theorem, 499
multivariate central limit theorem, 500

Continuous distributions
beta distributions, 34–36
beta functions, 33–34
Cauchy distribution, 45–46
Chi-square distribution, 40–41
exponential distribution, 36
exponential family, 49–51
F distributions, 42–45
gamma distributions, 34–36

gamma functions, 33–34
multivariate normal distribution, 46–49
noncentral χ2, 43–45
normal distribution, 36–42
sample mean, 41–42
sample variance, 41–42
t distributions, 42–43
uniform distribution, 34

Continuous mapping theorem, 501
Convergence modes, 55–60

in law, 56
in probability, 56
in quadratic mean, 56

Convex function, 492–493
Correlation coefficient, 12, 16
Correlation matrix, 412
Covariance

ANCOVA, application of, 344–345
β and γ estimation of, 340–345
γ and β inference for, 342–344
residual sum of squares, 342

Covariance matrix, 11
Covariance stationarity. See Strictly stationary
Cramér-Rao inequality, 97
Cramèr-Rao information inequality, 99
Cramèr-Rao lower bound, 96–98
Cramér-Wold device, 468–469
Critical function, 126, 135
Critical region/rejection region, 126
Cross-product term, 323, 325
Cross-validation method, 269, 353–355
Cumulative distribution function (cdf), 7
Curve estimation

density, 255–260
higher dimension, 264–265
local polynomials, 265–272
nearest neighbor approach, 263–264
regression, 260–263
survival function and hazard rates,

273–275

D
Decision functions, 71–74. See also Optimal

decision rules
Degrees of freedom (df), 317, 319–320
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Delta method
Bahadur sample quantile,

283–284
differentiability condition, 279
gross-error δχ , 280
influence function, 280, 282–285
kth central moment, 282
mean, 282
partial derivatives, 60
p-quantile, 283
Taylor expansion, 278
variance of, 274
V -statistic, 277, 284

De Moivre-Laplace theorem,
37–40

DeMorgan’s rules, 2, 58
Density estimation

bandwidth choice, 269–270
cross-validation procedure,

270–271
integrated square-error, 269–270
leave-one-out, 269–270
optimality property, 271

Design matrix, 309, 318–319
Diagnostics, 448–450
Differential conditions

ρ-Fréchet differentiability, 279
Gâteaux differentiability, 279
ρ-Hadamard differentiability, 279

Differentiation under integral, 491
Discrete distribution, 255–256

binomial distribution, 25–26
geometric distribution, 27–28
hypergeometric distribution, 29–30
multinomial distribution, 26–27
negative binomial distribution,

28–29
poisson distribution, 30–33

Discrete Fourier transform, 476–477
Disjoint subsets, 125–126
Distribution-free property, 242
Dominated convergence theorem, 491
Double exponential, 358
Durbin-Levinson iterative, 451–453
Durbin-Levinson recursions, 450–451

E
Eigenvalues, 205–206, 504–506

singular value decomposition, 505
spectral decomposition theorem, 505

Eigenvectors, 505–506
Elementary facts

Cauchy-Schwarz inequality, 504
Sherman-Morrison formula, 504
symmetric matrix A, 503

Empirical distribution function
asymptotic distributions, 246–249
Brownian motion, 243–245
test statistics, 241–243
weak convergence, 245

Empirical distribution function (edf), 55
Equivariance, 106–112
Equivariant under location, 77
Error probabilities, 163–164
Error vector, 315–316
Estimation

β and �, 403–404
canonical correlation analysis, 421
factor analysis, 411
MANOVA model, 395–396
principal components, 407–408
properties of, 404
two-factor MANOVA, 400
two-sample problem, 393–394

Euclidean space, 135
Exact distributions, 397–398
Expected value, random variable, 495
Exponential distributions, 36, 199
Exponential family, distribution, 49–51, 98
Extracting stationary part, 433–434

F
Factor analysis, 411–414

estimation of, 411
maximum likelihood, 412
prediction of, 413–414
principal, 411–412

Factor-effect smodel, 311–313
Factorization theorem, 76, 388
F-distribution, 42–45, 329
Feller’s theorem, 170
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Finite expectation, 214
Finite sample space, 4–5
Fisher-information

Cramér-Rao bound, 118
exponential families, 98
information inequality, 97
M-estimator, 290–291
Wald’s statistics, 211

Fisher-Irwin test, 152
Fisher’s method, 418–420
Fitted mean vector, 317, 335
ρ-Fréchet differentiability, 279, 294–295
Frequency distribution, 207
Frequency response function, 481–483
Frequency x2, 202–208
F-statistic, 328–329
Fubini theorem, 492
Fundamental identity, 167

G
Gamma distributions, 34–36
Gamma functions, 33–34
Gâteaux differentiability, 279–280, 297
Gaussian stationary, 434–435
Gauss-Markov models, 402, 468

β and σ 2 estimation of, 316–317
Bonferroni method, 337
inference, 328–340
linear functions, estimation of, 317–318
linear unbiased estimation, 318
one-factor balanced ANOVA model, 339
prediction intervals, 339–340
Scheffé method, 337–338
simultaneous, 336–337
Tukey method, 338–339

Generalized cross-validation (GCV), 346
Generalized eigenvalues, 507
Gross-error δχ , 280

H
ρ-Hadamard differentiability, 279
Hájek projection method, 220–221
Hájek-Rényi inequality, 64
Hardy-Weinberg formula, 212
Hazard function, 275

Heine-Borel property, 191
Helly-Bray theorem, 496, 498
Higher dimension

bias, 265
curse of dimensionality, 265
iid observation, 264
kernel method, 265
optimal bandwidth, 265
regression function, 264
variance, 265

Histogram, 255–256
Hoeffding’s inequality, 62
Hölder’s inequality, 165, 493
Homogeneity distributions, 199
Homogeneity probabilities, 200
Hotelling’s T2-distribution, 384
Hypergeometric distribution, 131, 152
Hypothesis testing

conditional tests, 149–152
confidence sets, 169–173
empirical distribution function, 241–249
generalized Neyman-Pearson lemma,

135–136
locally best tests, 140–144
MANOVAmodel, 396–397
one-sample inference, 390
one-sided hypotheses, UMP tests for,

131–132
p-value, 159–160
ranks and order statistics, 213–227
rank tests, 227–241
sequential probability ratio test, 160–168
simple null hypothesis vs. simple

alternative, 127–131
two-factor MANOVA, 401
two-sample problem, 394
two-sided problems, UMP tests for, 135–136
unbiased tests, 133–135

I
Identifiability condition, 117, 189
Independent nonidentically distributed data,

201–202
Independent variable, 309–310
Influence function, 280, 282–285
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Information inequality
Cramèr-Rao lower bound, 96–98
in multiparameter families, 99–106

Information lower bound, 102
Information matrix, 102
Initial estimator, 185–189
Instantaneous failure rate, 273
Integrated autoregressive-moving average

(ARIMA)
forecasting, 466–467
stationary part, 436

Integrated square error, 258
Integration theory, 491–492
Interaction effects, 313–314
Intraclass correlation, 362–363
Invariant under location, 77
Inverse of matrix, 506
Invertible time series. See Causal time series

J
Jackknife, 298–303

asymptotic bias, 300–301
asymptotic variance, 300–301
heuristic justification, 301–303

Jensen’s inequality, 492–493
Joint distribution, 144, 213–214

K
Kendall’s tau statistic, 218
Kernel estimator, properties of, 256–260
Kolmogorov’s inequality, 63
κth central moment, 282
Kullback-Leibler divergence, 346–347

L
Lagrangian multiplier, 326–327
Lasso method, 357–358
Law of large number, 496–500
Least square estimate, 328, 358–359
Leave-one-out, 269–270
Lebesgue dominated convergence, 165
Left-sided null hypothesis vs. right-sided

alternative, 171
Lehmann-Scheffé theorem, 103
L-estimators, 285–289

α-trimmed mean, 288–289
asymptotic distribution, 286–287
Cauchy distribution, 285–286
M-estimators, 293
score function, 293

Level of significance, 126
Likelihood equation, 188
Likelihood function (L), 115, 387, 390–391
Likelihood ratio statistic, 211
Likelihood ratio test (LRT), 194–201, 390–392

factor A main effects, 401
factor B main effects, 401
for interaction test, 401

Lindeberg condition, 262
Lindeberg-Feller theorem, 67
Lindeberg-Liapounov theorem, 67
Linear discriminant rule

Fisher’s method, 419
sample estimates, 416–417

Linear filtering, 480–483
Linear functions, 317–318
Linear models, 402–404, 414

β, linear restrictions, 325–328
covariance analysis, 340–345
Gauss-Markov models, 310–315
inference, 374–378
model selection, 345–355
random and mixed-effects, 361–373
regression, methods for, 356–361
total sum of squares, decomposition of,

318–325
Linear prediction, 441–442
Linear regression model, 309, 311
Linear time series, 440–441
Ljung-Box test, 448
Loading vectors, 405
Local linear estimate, 266–268
Locally best tests

Fisher-information, 141–142
locally most powerful, 140
logistic distribution, 143
multiparameter exponential families, 140
random sample, 140–142
regularity conditions, 140
UMP unbiased tests, 140
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Locally most powerful (LMP), 140, 228
Local polynomials

asymptotic bias, 265–267
asymptotic variance, 265–267
cross-validation method, 269
density estimation, 269–271
local linear estimate, 266–268
regression estimation, 271–272
regression function, 265–266
regression model, 266–267

Location-scale family, 170
Logistic distribution, 143
Log likelihood ratio, 161–162
Loss function, 72
Lower bound

Cramèr-Rao lower bound, 96–98
Fisher-information, 98
multiparameter families, 99–106

Lower confidence bound, 169

M
Mahalanobis distance, 385, 414
MA(q) models. See Moving average (MA(q))

models
Mann-Whitney statistic, 217–218
MANOVA model

confidence intervals, 397
estimation, 395–396
hypothesis testing, 396–397
one-factor tests, 398–399
of test interpretation, 399
Wilks’ lambda, 397–398

Marginal distribution, 147
Markov inequality, 60
Martingale property, 64
Matrix algebra

distribution of quadratic forms, 510–511
eigenvalues and eigenvectors,

504–506
elementary facts, 503–504
generalized eigenvalues, 507
matrix derivatives, 507–509
orthogonal projection, 509–510
symmetric matrix function, 506

Matrix derivatives, 507–509

Maximum likelihood estimators (MLEs)
M-estimator, 289
method of, 115
normal population sampling, 387
variance components, 371–373
Wilks’ lambda, 398

Mean, 442–445. See also Autocorrelation
function

forecast error, 456
influence function, 282

Mean-square error (MSE)
bias and variance, 256–257
Mallows’ criterion, 347–348
unbiased estimator, 317

M-estimator, 289–292. See also Maximum
likelihood estimators (MLEs)

asymptotic distribution, 291–292
Huber functions, 291
L-estimators, 293
L-functional, 295
minimax problem, 291
monotone score function, 291–292
score function, 293

Method of maximum likelihood, 115–118
Method of minimum χ , 119–121
Method of moments estimators (MOME), 119
Minimax principle, 79
Minimax rules, 82–83
Minimum norm quadratic unbiased

estimation (MINQUE), 369
Minimum risk equivariant (MRE) estimator.,

107–108
Mixed-effects models, 413

equations, 366–367
inference, 374–378
variance components, estimation of,

369–371
Mixed model equations

assumption of normality, 367–368
likelihood function, 367–368
motivation for, 367–369
one-factor random effects model, 366–367
Sherman-Morrison formula, 368–369

MLEs. See Maximum likelihood estimators
(MLEs)
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MLR. See Monotone likelihood ratio (MLR)
Model selection

AIC and BIC criteria, 348–353
Akaike’s FPE, 347–348
cross-validation, 353–355
Mallows’ criterion, 347–348

Monotone convergence theorem, 191, 491
Monotone likelihood ratio (MLR), 131–132
Monotone power, 137
Most powerful (MP), 127–128
Moving average (MA(q)) models

forecasting, 461–463
identifiability of, 459
nonuniqueness of, 457–458
parameter estimation, 469–471

MSE. See Mean-square error (MSE)
Multinomial coefficient, 26–27, 152
Multinomial distribution, 193–194,

202–203, 212
Multinomial probabilities, 200
Multiple linear regression model, 15
Multivariate analysis

bonferroni method, 390
canonical correlation analysis, 420–425
central limit theorem, 385–386
classification and discrimination,

414–420
confidence ellipsoid, 389
confidence intervals, 389–390
factor analysis, 411–414
hypothesis testing, 390
likelihood ratio test, 390–392
linear model, 402–404
mahalanobis distance, 385
MANOVA model, 395–399
normality, 386–387
normal population, sampling, 387
one-sample inference, 388–392
principal components analysis, 404–410
sampling distributions, 387–388
two-factor MANOVA, 400–402
two-sample problem, 393–395
wishart distribution, 383–385

Multivariate normal distribution, 46–49
Multivariate normality, 386–387

N
Natural parameter space, 133–135
Nearest neighbor approach

density estimation, 263
kernel estimation procedure, 264
MSE, 263
regression estimation, 263–264
second-order smoothness condition, 264

Nested ANOVA model, 334
Newton-Raphson method, 183–189, 193–194
Neyman-Pearson lemma

corollary, 128–131
Euclidean space, 135
likelihood ratio, 129
MP level, 129–131
parametric family, 129–131
uniformly most powerful, 130

Noncentral χ2, 43–45
Noncentrality parameter, 320–322
Nonlinear regression, 311
Nonparametric estimate, 272
Nonparametric models, 70
Nonrandomized decision rule, 126
Nonstationary series, 433
Normal distribution, 36–42
Nuisance parameters

alternative hypotheses, 147
exponential family, 146
joint distribution, 144
Neyman-structure, 145
normal distribution, context of, 154–158
null hypothesis, 144–145
similarity and completeness, 144–158
sufficient statistic, 145–146
three problems, 145

Null hypothesis
alternative hypothesis, 77
consistency, 197
hypothesis testing, 71

O
One-factor ANOVA model, 311–312
One random factor, 361
One-to-one transforms, 156, 158
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Operating characteristic (OC) function, 162,
164–166

Optimal bandwidth, 265
Optimal decision rules

Bayes rules, 80–81
conditions for admissibility, 83–86
estimation problem, 77
minimax rules, 82–83
suitable ordering of, 78–80
two-decision problem, 77–78

Optimality under unbiasedness, 89–96
Optimally property, 168
Orthogonal columns, 326
Orthogonal polynomials, 311
Orthogonal projection, 316, 340–341,

509–510
Orthonormal basis, 404–406
Orthonormal eigenvectors, 205, 360

P
PACF. See Partial autocorrelation function

(PACF)
Parameter estimation

ARMA(p, q) models, 471–472
AR(p) models, 467–469
MA(q) models, 469–471

Parametric and nonparametric models, 70
Parametric family, 129–131
Partial autocorrelation function (PACF),

450–453
ACF, 449–450
Durbin-Levinson iterative, 451–453
Durbin-Levinson recursions, 450–451

Partial least squares (PLS), 360–361
Penalty function, 357–358
Penalty methods, 357–359
Penalty parameter, 357–358
Penalty term, 357–358
Periodogram, 476–478
Permutation test, 215–216
Poison distribution, 206–207, 209
Polya’s theorem, 57–58
Polynomial model, 311
Pooled data, 201, 207
Portmanteau test, 448

Positively dependent, 151
Power function, 132
Prediction, 364

error, 353–354
intervals, 339–340
standard error, 465–466

Principal components analysis,
404–410

asymptotic results, 408–410
estimation of, 407–408
orthonormal basis, 404–406
regression interpretation, 406–407

Principal components regression (PCR),
360–361

Probability analysis
central limit theorem, 496–500
characteristic function, 496–500
convex functions, 492–493
integration theory, 491–492
Stieltjes integral, 493–496
weak convergence of, 500–501
weak law of large number, 496–500

Probability, axiomatic definition of, 3
Probability density function (pdf), 8
Probability distributions, 69, 169. See also

Continuous distributions, Discrete
distributions

Probability inequalities, 60–66
Probability mass function (pmf), 8
Probability space, 3
Probability theory

conditional probability and independence,
5–7

correlation coefficient, 10–13
covariance, 10–13
expected value, 10–13
moment generating function (mgf), 13
moments, 13
random experiments, 1
set theory, 1–2
transforms, 17–21
variance, 10–13

Product-Limit (PL), 273–274
Projection matrix, 316–317, 353–354
Proportional reduction, 320, 325–326
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p-Value
accept H0/reject H0, 159
hypothesis testing, 159
Pearson’s Pλ statistic, 159–160
test statistic, 159

Q
Quadratic discriminant rule, 414–417

Bayes’ rule, 415
normal case, 415–416

Quadratic forms distribution, 510–511
p-Quantile, 283

R
Random-effects model, 361–362
Random errors, 310–311
Random right-censoring

integrated hazard function, 275
right algorithm, redistribute to, 274
survival function, estimation of, 273–274
variance, 274

Random stopping time, 166
Random variables, transforms of

extension, 20
linear transformation, 21
order statistics, joint distribution of, 20

Random walk model, 437
Ranks and order statistics

asymptotic distribution, 219–223
contiguity theory, 226–227
exact distribution under H0, 218–219
permutation test, 215–216
Pitman’s approach, asymptotic comparison

of, 224–226
three basic problems, nonparametric tests

in, 216–218
Rank tests

approximate scores, 236–237
bivariate population, 234–236
general alternative, 228–231
LMP, asymptotic distribution of, 237–241
one-sample location problem, 232–233
two-sample scale problem, 233–234

Rao-Blackwell formula, 92–93
Rao-Blackwell method, 94, 115

Rao-Blackwell theorem, 90
Rao’s statistic, 211
Real-valued function, 278, 497
Rectangular density, 186
Regression

partial least squares, 360–361
penalty methods, 357–359
stepwise, 356–357
subsets, 356

Regression analysis, 406–407
Regression estimation

conditional moments, 272
cross-validated choice, 272
leave-one-out cross-validation, 272
nonparametric estimate, 272
optimal choice, 272

Regression function, 255
Regression model, 15
Regression sum of squares, 318–319, 321
Regular estimators, 192–193
Regularity conditions, 180–181, 228–229
Remainder term Rn, 294–298
Residual sum of squares, 317–319, 342
Residual variance, 15
Restricted maximum likelihood (REML),

372–373
Ridge regression method, 357–358
Riemann–Stieltjes integral, 493–496
Right algorithm, 274
Right-tail tests, 160
Risk function, 72

S
Sample covariance matrix, 387
Sample eigenvalues, 408–410
Sample mean, 41–42, 170
Sample variance, 41–42, 170
Sampling distributions

factorization theorem, 388
likelihood function (L), 387

Scheffé method, 389, 395
Cauchy-Schwarz inequality, 338
confidence coefficient, 338
confidence ellipsoid, 337–338
simultaneous confidence intervals, 337
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Score function
asymptotic distribution, 291, 293
L-estimator, 286, 291, 293
M-estimator, 293
M-functional, 296

Sequential analysis, 160. See also sequential
probability ratio test (SPRT)

Sequential probability ratio test (SPRT)
ASN function, 166–168
definition of, 161–162
error probabilities of, 163–164
OC function, 164–166
stops with probability 1, 162–163

Set theory, 1–2
Sherman-Morrison formula, 354–355, 504
Simple hypothesis, 126
Simple linear regression model, 157, 309
Simple null hypothesis vs. simple alternative

distinct probability distributions, 127–128
existence, 127
necessity, 127
Neyman-Pearson lemma, 127
sufficiency, 127

Simple propositions, 3–4
Simple vs.simple likelihood ratio, 195
Simultaneous confidence intervals, 336–337
Single-parameter exponential family, 133, 135
Singular value decomposition, 505
SLLN. See Strong law of large numbers (SLLN)
Slutsky’s theorem, 57–58
Smoothing parameter, 255–256
Spearman’s rank correlation, 218
Spectral analysis, 473–486

linear filtering, 480–483
periodogram, 476–478
remarks, 474–475, 479
spectral density, 478–480, 483–486
stationary series, 475–476

Spectral decomposition theorem, 505
Spectral density function

ARMA, 483–486
autocovariance function, 437–440
estimation of, 478–480
frequency response function, 483–485
special cases, 485–486

Spectral distribution function, 440
SPRT. See Sequential probability ratio test

(SPRT)
Squared-error loss, 89–96
Square root of a matrix, 506
Standard deviation, 11
Standard normal distribution, 36
Stationarity

ARIMA, 436
autocovariance function, 437–440
autoregressive process, 436
Cramér representation, 475–476
Gaussian, 434–435
linear prediction, 441–442
linear time series, 440–441
moving average process, 435
random walk model, 437
strict, 434
time reversibility, 441–442
weakly, 435
white noise, 435

Statistical data analysis, 309
Statistical functionals

bootstrap method, 298–303
delta method, 278–285
exercises, 303–307
jackknife method, 298–303
L-estimators, 285–289
M-estimator, 289–292
remainder term Rn, 294–298

Statistical inference
confidence sets, 71
hypothesis testing, 71
optimal decision rules, 76–86
parametric and nonparametric models, 70
point estimation, 71
population and random samples, 69
problems of, 70–71
statistical decision functions, 71–74
sufficient statistics, 74–76

Stepwise regression
backward elimination, 356–357
forward selection, 356

Stieltjes integrals, properties, 494–496
Stirling’s approximation, 43
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Strictly stationary, 434
Strong consistency, 185. See also Almost sure

convergence
Strong law of large numbers (SLLN), 56
Strong uniform consistency, 258, 261
Studentized version, 170
Subsets regression, 356
Sufficiency, 179
Sufficient statistic, 74–75
Sum of squares and products (SSP),

396–397
Superefficient estimators, 192
Supporting hyperplane theorem, 492
Survival function, 273–275
Survival time, 273
Symmetric matrix function, 506

inverse of a matrix, 506
inverse of square root of a matrix, 506
multivariate analysis, 506
square root of a matrix, 506

T
Taylor series, 278
Tchebyshev’s inequality, 57, 61
t distributions, 42–43
Test statistic, 125, 390
Time reversibility, 441–442
Time series

ARMA model appropriate, 472–473
autocorrelation function, 442–450
autocovariance function, 434, 437–440
causality, 454–460
forecasting, 460–466
invertibility, 454–460
mean, 442–450
PACF, 450–453
parameter estimation, 467–472
spectral analysis, 473–486
stationarity, 434–442

Traditional statistical inference, 160
Treatment sum of squares (SSTR),

318–319
Triangular density, 186
Tukey method

application of, 339

studentized range distribution, 339
studentized range variable, 339

Two-factor ANOVA model, 313–314,
321

Two-parameter exponential family, 150
Two random factors, 362
Two-sided problems, 136–138
Two-term Taylor expansion, 266–267
Type I error, 125
Type I error probability, 78
Type II error, 125
Type II error probability, 77–78

U
Unbiased confidence interval, 172–173
Unbiased estimators, 182, 191–192
Unbiasedness, 89–90
Unbiased tests, 78

behavioral test, 133
MLR property, 133
natural parameter space, 133–135
null hypothesis, 133
power functions, 133
single-parameter exponential family,

133
Uniform distribution, 34
Uniform integrability, 56, 350–351
Uniformly minimum variance unbiased

estimator (UMVUE), 89–96
Uniformly most powerful (UMP)

nuisance parameters, 144–158
one-sided hypotheses, 131–132
two-sided problems, unbiased tests,

136–139
Upper confidence bounds, 169
U-statistic, 277

V
Variance components

Henderson’s method III, 369–371
maximum likelihood, 369, 371–373
MINQUE, 369
restricted maximum likelihood, 369

Variance-stabilizing transformations, 60
V -statistic, 277, 284
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W
Wald’s statistics, 211
Weak convergence, probabilities,

500–501
Weak law of large numbers (WLLN), 56
Wilcoxon signed-rank statistic, 216–217
Wilks’ lambda, 396

exact distributions, 397–398
factor B main effects, 401

Wishart distribution, 383–385
WLLN. See Weak law of large numbers (WLLN)

Y
Yule-Walker equations, 441–442, 452–453
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