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Medical Statistics at a Glanceisdirected at undergraduate medical
students, medical researchers, postgraduates in the biomedical
disciplines and at pharmaceutical industry personnel. All of these
individuals will, at some time in their professional lives, be faced
with quantitative results (their own or those of others) which
will need to be critically evaluated and interpreted, and some, of
course, will have to pass that dreaded statistics exam! A proper
understanding of statistical conceptsand methodology isinvaluable
for these needs. Much as we should like to fire the reader with an
enthusiasm for the subject of statistics, we are pragmatic. Our aim
in this new edition, asit wasin the earlier edition, isto provide the
student and the researcher, aswell asthe clinician encountering sta-
tistical concepts in the medica literature, with a book which is
sound, easy to read, comprehensive, relevant, and of useful practi-
cal application.

We believe Medical Satistics at a Glance will be particularly
helpful as an adjunct to statistics lectures and as a reference guide.
The structure of this second edition is the same as that of the first
edition. In line with other books in the At a Glance series, we |lead
the reader through a number of self-contained two-, three- or
occasionally four-page chapters, each covering adifferent aspect of
medical statistics. We have learned from our own teaching experi-
ences, and have taken account of the difficulties that our students
have encountered when studying medical statistics. For thisreason,
we have chosen to limit the theoretical content of the book to alevel
that is sufficient for understanding the procedures involved, yet
which does not overshadow the practicalities of their execution.

Medical statistics is a wide-ranging subject covering a large
number of topics. We have provided a basic introduction to
the underlying concepts of medical statistics and a guide to the
most commonly used statistical procedures. Epidemiology is
closely allied to medical statistics. Hence some of themainissuesin
epidemiology, relating to study design and interpretation, are
discussed. Also included are chapters which the reader may find
useful only occasionally, but which are, neverthel ess, fundamental
to many areas of medical research; for example, evidence-based
medicine, systematic reviews and meta-analysis, survival anaysis
and Bayesian methods. We have explained the principles underly-
ing these topics so that the reader will be able to understand
and interpret the results from them when they are presented in the
literature.

The order of the first 30 chapters of this edition corresponds to
that of the first edition. Most of these chapters remain unaltered in
thisnew edition: some haverelatively minor changeswhich accom-
modate recent advances, cross-referencing or re-organi zation of the
new material. Our major amendments relate to comparatively
complex forms of regression analysis which are now more widely
used than at the time of writing the first edition, partly because the
associ ated software is more accessible and efficient than in the past.
We have modified the chapter on binary outcomes and logistic
regression (Chapter 30), included a new chapter on rates and
Poisson regression (Chapter 31) and have considerably expanded
the original statistical modelling chapter so that it now comprises
three chapters, entitled ‘Generalized linear models (Chapter 32),
‘Explanatory variables in statistical models' (Chapter 33) and
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‘Issues in statistical modelling’ (Chapter 34). We have aso modi-
fied Chapter 41 which describes different approachesto theanalysis
of clustered data, and added Chapter 42 which outlines the various
regression methods that can be used to analyse this type of data.
The first edition had a brief description of time series anaysis
which we decided to omit from this second edition aswe felt that it
was probably too limited to be of real use, and expanding it would
go beyond the bounds of our remit. Because of thisomission and the
chapters that we have added, the numbering of the chaptersin the
second edition differsfrom that of thefirst edition after Chapter 30.
Most of the chapters in this latter section of the book which were
alsointhefirst edition are atered only dlightly, if at all.

The description of every statistical technique is accompanied by
an exampleillustrating its use. We have generally obtained the data
for these examples from collaborative studies in which we or col-
leagues have been involved; in some instances, we have used real
datafrom published papers. Where possible, we have used the same
data set in more than one chapter to reflect the reality of dataanaly-
sis which is rarely restricted to a single technique or approach.
Although we believethat formulae should be provided and thelogic
of the approach explained as an aid to understanding, we have
avoided showing the detail s of complex cal cul ations—most readers
will have access to computers and are unlikely to perform any but
the simplest cal culations by hand.

We consider that it is particularly important for the reader to be
abletointerpret output from acomputer package. We havetherefore
chosen, where applicable, to show results using extracts from com-
puter output. In some instances, where we believe individua s may
have difficulty with itsinterpretation, we have included (A ppendix
C) and annotated the complete computer output from an analysis of
a data set. There are many statistical packages in common use; to
give the reader an indication of how output can vary, we have not
restricted the output to a particular package and have, instead, used
three well known ones—SAS, SPSS and Stata.

There is extensive cross-referencing throughout the text to help
the reader link the various procedures. A basic set of statistical
tablesis contained in Appendix A. Neave, H.R. (1981) Elememen-
tary Statistical Tables Routledge, and Diem, K. (1970) Documenta
Geigy ientific Tables, 7th Edn, Blackwell Publishing: Oxford,
amongst others, provide fuller versionsif the reader requires more
precise results for hand calculations. The Glossary of terms
(Appendix D) provides readily accessible explanations of com-
monly used terminology.

We know that one of the greatest difficulties facing non-
statisticians is choosing the appropriate technique. We have there-
fore produced two flow charts which can be used both to aid the
decision as to what method to use in agiven situation and to locate
a particular technique in the book easily. These flow charts are
displayed prominently on theinside cover for easy access.

The reader may find it helpful to assess his/her progressin self-
directed learning by attempting the interactive exercises on our
Website (www.medstatsaag.com). ThisWebsite al so containsafull
set of references (some of which are linked directly to Medline) to
supplement the references quoted in the text and provide useful
background information for the examples. For those readers



who wish to gain a greater insight into particular areas of medical
statistics, we can recommend the following books:

Altman, D.G. (1991). Practical Satistics for Medical Research.
Chapman and Hall, London.

Armitage, P, Berry, G. and Matthews, J.FN. (2001). Satistical
Methods in Medical Research, 4th Edn. Blackwell Science,
Oxford.

Pocock, S.J. (1983). Clinical Trials: A Practical Approach. Wiley,
Chichester.

We are extremely grateful to Mark Gilthorpe and Jonathan Sterne
who made inval uable comments and suggestions on aspects of this

second edition, and to Richard Morris, Fiona Lampe, Shak Hajat
and Abul Basar for their counsel on the first edition. We wish to
thank everyone who has helped us by providing data for the exam-
ples. Naturally, wetakefull responsibility for any errorsthat remain
in the text or examples. We should aso like to thank Mike, Gerald,
Nina, Andrew and Karen who tolerated, with equanimity, our pre-
occupation with thefirst edition and lived with us through thetrials
and tribulations of this second edition.

AvivaPetrie
Caroline Sabin
London



0 Types of data

Data and statistics

The purpose of most studiesisto collect data to obtain information
about aparticular areaof research. Our datacomprise obser vations
on one or more variables, any quantity that varies is termed a
variable. For example, we may collect basic clinica and
demographic information on patients with a particular illness.
The variables of interest may include the sex, age and height of the
patients.

Our dataare usually obtained from asampleof individualswhich
represents the population of interest. Our aim isto condense these
datain ameaningful way and extract useful information from them.
Statistics encompasses the methods of collecting, summarizing,
analysing and drawing conclusions from the data: we use statistical
techniquesto achieve our aim.

Datamay take many different forms. We need to know what form
every variable takes before we can make a decision regarding the
most appropriate statistical methods to use. Each variable and the
resulting data will be one of two types: categorical or numerical
(Fig- 1.2).

Categorical (qualitative) data

These occur when each individual can only belong to one of a
number of distinct categories of the variable.

* Nominal data—the categories are not ordered but simply have
names. Examples include blood group (A, B, AB, and O) and
marital status (married/widowed/single etc.). In this case, there is
no reason to suspect that being married isany better (or worse) than
being single!

e Ordinal data—the categories are ordered in some way. Exam-
ples include disease staging systems (advanced, moderate, mild,
none) and degree of pain (severe, moderate, mild, none).

Categorical Numerical
(qualitative) |~ ~ """ "7 777 (quantitative)
Categories Categories Integer values, || Takes any value
are mutually are mutually typically in a range of
exclusive and exclusive and counts values
unordered ordered
e.g. e.g. e.g. e.g.
Sex (male/ Disease stage Days sick Weight in kg
female) (mild/moderate/ | | per year Height in cm
Blood group severe)
(A/B/AB/0)

Figure 1.1 Diagram showing the different types of variable.
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A categorical variable is binary or dichotomous when there
are only two possible categories. Examples include ‘Yes/No',
‘Dead/Alive’ or ‘Patient has disease/Patient does not have
disease’.

Numerical (quantitative) data

These occur when the variabl e takes some numerical value. We can
subdivide numerical datainto two types.

e Discrete data—occur when the variable can only take certain
whole numerical values. These are often counts of numbers
of events, such as the number of visits to a GP in a year or the
number of episodes of illness in an individual over the last five
years.

e Continuous data—occur when there is no limitation on the
values that the variable can take, e.g. weight or height, other than
that which restricts us when we make the measurement.

Distinguishing between data types

We often use very different statistical methods depending on
whether the data are categorical or numerical. Although the distinc-
tion between categorical and numerical data is usually clear, in
somesituationsit may become blurred. For example, whenwe have
a variable with a large number of ordered categories (e.g. a pain
scalewith seven categories), it may bedifficult todistinguishitfrom
adiscrete numerical variable. The distinction between discrete and
continuous numerical data may be even less clear, athough in
general thiswill have little impact on the results of most analyses.
Ageisan example of avariablethat isoften treated as discrete even
though it istruly continuous. We usually refer to ‘age at last birth-
day’ rather than ‘age’, and therefore, awoman who reports being 30
may havejust had her 30th birthday, or may bejust about to have her
31st birthday.

Do not be tempted to record numerical data as categorical at the
outset (e.g. by recording only the range within which each patient’s
age falls rather than his/her actual age) asimportant information is
often lost. Itissimpleto convert numerical datato categorical data
once they have been collected.

Derived data

We may encounter a number of other types of data in the medical
field. Theseinclude:

¢ Percentages— These may arise when considering improvements
in patients following treatment, e.g. a patient’s lung function
(forced expiratory volume in 1 second, FEV1) may increase by
24% following treatment with a new drug. In this case, it is the
level of improvement, rather than the absolute value, which is of
interest.

e Ratios or quotients—Occasionaly you may encounter the
ratio or quotient of two variables. For example, body mass index
(BMI), calculated as an individual’s weight (kg) divided by her/his
height squared (m2), is often used to assess whether s’heis over- or
under-weight.

¢ Rates—Disease rates, in which the number of disease events
occurring among individuals in a study is divided by the total
number of years of follow-up of al individuas in that



study (Chapter 31), are common in epidemiological studies
(Chapter 12).

» Scores—\We sometimes use an arbitrary value, i.e. ascore, when
we cannot measure aquantity. For example, a series of responsesto
questions on quality of life may be summed to give some overall
quality of life score on each individual .

All these variables can be treated as numerical varigbles for
most analyses. Where the varigble is derived using more than one
value (e.g. the numerator and denominator of a percentage), it is
important to record al of the values used. For example, a 10%
improvement in a marker following treatment may have different
clinical relevance depending on the level of the marker before
treatment.

Censored data

We may come across censored datain situationsillustrated by the
following examples.

« |f we measure laboratory values using atool that can only detect
levels above a certain cut-off value, then any values below this
cut-off will not be detected. For example, when measuring virus
levels, those below the limit of detectability will often be reported
as ‘undetectable’ even though there may be some virus in the
sample.

* We may encounter censored data when following patients in a
trial in which, for example, some patients withdraw from the trial
before the trial has ended. This type of datais discussed in more
detail in Chapter 44.

Types of data Handling data 9



o Data entry

When you carry out any study you will almost always need to enter
the data onto a computer package. Computers are invaluable for
improving the accuracy and speed of data collection and analysis,
making it easy to check for errors, produce graphical summaries of
the dataand generate new variables. It isworth spending sometime
planning data entry —this may save considerable effort at later
stages.

Formats for data entry

There are anumber of waysin which datacan be entered and stored
on a computer. Most statistical packages alow you to enter data
directly. However, the limitation of this approach is that often you
cannot move the data to another package. A simple alternativeisto
store the datain either a spreadsheet or database package. Unfortu-
nately, their statistical procedures are often limited, and it will
usually be necessary to output the data into a specialist statistical
packageto carry out analyses.

A more flexible approach is to have your data available as an
ASCI1 ortext file. Onceinan ASCII format, the datacan beread by
most packages. ASCII format simply consists of rows of text that
you can view on acomputer screen. Usually, each variableinthefile
is separated from the next by some delimiter, often a space or a
comma. Thisisknown asfreeformat.

The simplest way of entering datain ASCII format isto type the
datadirectly inthisformat using either aword processing or editing
package. Alternatively, data stored in spreadsheet packages can be
saved in ASCII format. Using either approach, it is customary for
each row of datato correspond to adifferent individual inthe study,
and each column to correspond to a different variable, athough it
may be necessary to go on to subsequent rows if data from alarge
number of variables are collected on each individual .

Planning data entry

When collecting datain astudy you will often need to use aform or
questionnaire for recording the data. If these forms are designed
carefully, they can reduce the amount of work that has to be done
when entering the data. Generaly, these forms/questionnaires
include a series of boxesin which the data are recorded—it is usual
to have a separate box for each possible digit of the response.

Categorical data

Some statistical packages have problems deadling with non-
numerical data. Therefore, you may need to assign numerical codes
to categorical data before entering the data onto the computer. For
example, you may chooseto assign the codes of 1, 2, 3and 4 to cat-
egoriesof ‘nopain’, ‘mild pain’, ‘moderate pain’ and * severe pain’,
respectively. These codes can be added to theformswhen collecting
the data. For binary data, e.g. yes/no answers, it is often convenient
to assignthe codes 1 (e.g. for ‘yes’) and O (for ‘no’).

* Single-coded variables—there is only one possible answer to a
question, e.g. ‘isthe patient dead? . It isnot possibleto answer both
‘yes and ‘no’ to this question.

10 Handling data Dataentry

e Multi-coded variables—more than one answer is possible for
each respondent. For example, ‘what symptoms has this patient
experienced? . Inthiscase, anindividual may have experienced any
of anumber of symptoms. There aretwo waysto deal with thistype
of data depending upon which of the two following situations
applies.
» There are only a few possible symptoms, and individuals
may have experienced many of them. A number of different
binary variables can be created which correspond to whether the
patient has answered yes or no to the presence of each possible
symptom. For example, ‘did the patient have a cough? ‘Did the
patient have a sore throat?
e There are a very large number of possible symptoms but
each patient is expected to suffer from only a few of them. A
number of different nominal variables can be created; each suc-
cessive variable alows you to name a symptom suffered by the
patient. For example, ‘what was the first symptom the patient
suffered? ‘What was the second symptom? You will need to
decide in advance the maximum number of symptoms you think
apatient islikely to have suffered.

Numerical data

Numerical data should be entered with the same precision as they
are measured, and the unit of measurement should be consistent
for all observations on a variable. For example, weight should be
recorded in kilograms or in pounds, but not both interchangeably.

Multiple forms per patient

Sometimes, information is collected on the same patient on more
than one occasion. It isimportant that thereissomeuniqueidentifier
(e.g. aseria number) relating to the individual that will enable you
tolink all of the datafrom anindividua in the study.

Problems with dates and times

Dates and times should be entered in aconsistent manner, e.g. either
as day/month/year or month/day/year, but not interchangeably. It
is important to find out what format the statistical package can
read.

Coding missing values

You should consider what you will do with missing values before
you enter the data. In most cases you will need to use some symbol
to represent amissing value. Statistical packages deal with missing
values in different ways. Some use specia characters (e.g. a full
stop or asterisk) to indicate missing values, whereas others require
you to define your own code for a missing value (commonly used
valuesare9, 999 or —99). Thevaluethat ischosen should be onethat
isnot possible for that variable. For example, when entering a cate-
gorical variable with four categories (coded 1, 2, 3 and 4), you may
choosethevalue9to represent missing values. However, if thevari-
ableis‘ageof child then adifferent code should be chosen. Missing
dataare discussed in more detail in Chapter 3.



Example

Discrete
variable
Nominal -can only Multicoded variable
variables take certain  -used to create four Error on questionnaire
-no ordering to  values in a separate binary ~some completed in kg, Continuous
categories raﬂj variables others in Ib/oz. variable  Nominal Ordinal
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—————— I N I N DATE
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age Frequency
Patient [Bl eeding | Sex of Gestational | Inhaled (I M v Epi dural | Apgar kg I'b oz Date of (_years) at| Blood |of bleeding
nunmber |def i ci ency| baby age (weeks)| gas Pet hi di ne| Pet hi di ne score birth bL_’:E of group |guns
chi
47 3 3 . . . . . . .| 08/08/ 74 . 3 6
33 g 5 41 0 1 0 1 6 13| 11/ 08/ 52 27. 26| 1 4
34 g 1 39 1 0 0 0 7 14| 04/ 02/ 53 22.12 1 1
43 g 1 41 1 1 0 0 o . 8 0| 26/02/54 27.51 3 33
23 2 2 . 0 0 0 0[10/1-10/] 11.19 . .| 29/12/ 65 36. 58| 1 B
49 g 3 . . . . . 5 5 .| 09/08/57 o 1 5
51 3 3 . . . . . . . .| 21706751 . 3 5
20 2 41 0 1 0 0 . 7 12]15/08/96]  25.61 3 3 .
64 4 . . 1 1 0 0 o . .| 10/11/51 24.61 3] 2
27 g 1 14 1 0 0 0 ok 8 8| 02/12/71 22. 45 1 1
38 3 2 38 1 0 0 0[9/1-9/5 6 10| 12/11/61 31. 60| 1 1
50 g 2 40 0 0 0 0 5 5 11| 06/02/ 68 18. 75 1 6
54 4 1 41 0 1 0 0 7 4| 17/10/ 59 24.62 3] 2
7 1 i 40 0 0 0 1 6 5| 17/ 12/ 65 20. 35| 2 6
9 1 2 38 0 1 0 0 5 4| 12/ 12/ 96 28. 49 g g
17 1 4 . . . . . . .| 15/05/71 26. 81 1 5
53 3 2 40 0 0 1 0 o 8 7| 07/ 03/ 41 31. 04 1 B
56 4 2 40 0 0 0 0 3.5 . 0| 16/11/57 37. 86| 3 3
58 4 1 40 0 1 0 1 o 8 0|17/ 063/ 47 22.32 g Y
14 1 1 38 0 0 0 1 7 12| 04/05/61 19.12 4 2
L _J
j O=N 1=0+ve
=NO N
1=Haemophilia A =Yoo 2=0-ve
2=Haemophilia B S=Asve 1=More th 4
3=Von Willebrand's disease 1=Male e 2__Oore jn e E ey
4=FX| deficiency 2=Female 5=B+ve 5~OH06 a ayk
B=Abortion 6=B-ve =0l 2)
4=5till pregnant 7=AB+ve 4=0nce a month
&=AB—ve 5=Less frequently

6=Never

Figure 2.1 Portion of a spreadsheet showing data collected on asample of 64 women with inherited bleeding disorders.

As part of astudy on the effect of inherited bleeding disorders on
pregnancy and childbirth, data were collected on a sample of
64 women registered at a single haemophilia centre in London.
The women were asked questions relating to their bleeding
disorder and their first pregnancy (or their current pregnancy if
they were pregnant for the first time on the date of interview).
Fig. 2.1 shows the data from a small selection of the women
after the data have been entered onto a spreadsheet, but

before they have been checked for errors. The coding schemes
for the categorical variables are shown at the bottom of Fig. 2.1.
Each row of the spreadsheet represents a separate individual
in the study; each column represents a different variable.
Where the woman is still pregnant, the age of the woman at the
time of birth has been calculated from the estimated date of
the baby’s delivery. Data relating to the live births are shown in
Chapter 37.

Datakindly provided by Dr R. A. Kadir, University Department of Obstetrics and Gynaecology, and Professor C. A. Lee, Haemophilia Centre and Haemostasis

Unit, Royal Free Hospital, London.
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e Error checking and outliers

Inany study thereisalwaysthe potential for errorsto occur in adata
set, either at the outset when taking measurements, or when collect-
ing, transcribing and entering the data onto a computer. It ishard to
eliminateall of these errors. However, you can reduce the number of
typing and transcribing errors by checking the data carefully once
they have been entered. Simply scanning the data by eye will often
identify valuesthat are obviously wrong. In this chapter we suggest
anumber of other approachesthat you can use when checking data.

Typing errors

Typing mistakes are the most frequent source of errors when enter-
ing data. If theamount of dataissmall, then you can check the typed
data set against the original forms/questionnaires to see whether
there are any typing mistakes. However, this is time-consuming
if the amount of dataislarge. It is possible to type the datain twice
and compare the two data sets using a computer program. Any dif-
ferences between the two data sets will reveal typing mistakes.
Although this approach does not rule out the possibility that the
same error has been incorrectly entered on both occasions, or that
thevalue on theform/questionnaireisincorrect, it doesat least min-
imize the number of errors. The disadvantage of this method is that
it takes twice aslong to enter the data, which may have major cost
or timeimplications.

Error checking
» Categorical data—Itisrelatively easy to check categorical data,
astheresponses for each variable can only take one of a number of
limited values. Therefore, values that are not allowable must be
errors.
* Numerical data—Numerical data are often difficult to check but
areproneto errors. For example, itissimpleto transposedigitsor to
misplace adecimal point when entering numerical data. Numerical
data can be range checked —that is, upper and lower limits can be
specified for each variable. If avalueliesoutsidethisrangethenitis
flagged up for further investigation.
o Dates—It is often difficult to check the accuracy of dates,
although sometimes you may know that dates must fall within
certain time periods. Dates can be checked to make sure that they
are valid. For example, 30th February must be incorrect, as must
any day of the month greater than 31, and any month greater than
12. Certain logical checks can aso be applied. For example, a
patient’sdate of birth should correspond to his’her age, and patients
should usually have been born before entering the study (at least in
most studies). In addition, patientswho have died should not appear
for subsequent follow-up visits!

With all error checks, avalue should only be corrected if thereis
evidence that a mistake has been made. You should not change
values ssimply because they ook unusual.

Handling missing data

There is dways a chance that some data will be missing. If avery
large proportion of the datais missing, then the results are unlikely
to be reliable. The reasons why data are missing should always be
investigated—if missing datatend to cluster on aparticular variable
and/or in aparticular sub-group of individuals, then it may indicate
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that the variable is not applicable or has never been measured for
that group of individuals. If thisisthe case, it may be necessary to
exclude that variable or group of individuals from the analysis. We
may encounter particular problems when the chance that data are
missing is strongly related to the variable of greatest interest in
our study (e.g. the outcome in a regression analysis— Chapter 27).
In this situation, our results may be severely biased (Chapter 12).
For example, suppose we are interested in a measurement which
reflects the health status of patients and this information is missing
for some patients because they were not well enough to attend their
clinic appointments: wearelikely to get an overly optimistic overall
view of the patients’ health if we take no account of the missing data
intheanalysis. It may be possibleto reduce thisbias by using appro-
priate statistical methodst or by estimating the missing datain some
way?, but a preferable option is to minimize the amount of missing
data at the outset.

Outliers

What are outliers?

Outlier sare observationsthat aredistinct from the main body of the
data, and are incompatible with the rest of the data. These values
may be genuine observations from individuals with very extreme
levels of the variable. However, they may aso result from typing
errorsor theincorrect choice of units, and so any suspicious values
should be checked. It isimportant to detect whether there are out-
liersin the data set, as they may have a considerable impact on the
results from some types of analyses (Chapter 29).

For example, awoman who is 7 feet tall would probably appear
as an outlier in most data sets. However, athough this value is
clearly very high, compared with the usua heights of women, it
may be genuineand thewoman may simply bevery tall. Inthiscase,
you should investigate this value further, possibly checking other
variables such as her age and weight, before making any decisions
about the validity of the result. The value should only be changed if
thereredlly isevidencethat it isincorrect.

Checking for outliers

A simple approach is to print the data and visually check them by
eye. This is suitable if the number of observations is not too
largeand if the potential outlier ismuch lower or higher thantherest
of the data. Range checking should also identify possible outliers.
Alternatively, the data can be plotted in some way (Chapter 4) —
outliers can be clearly identified on histograms and scatter plots
(see also Chapter 29 for a discussion of outliers in regression
analysis).

Handling outliers
It isimportant not to remove an individual from an analysis simply
because hig’her values are higher or lower than might be expected.

1L aird, N.M. (1988). Missing datain longitudinal studies. Satisticsin Medi-
cine, 7, 305-315.

2Engels, JM. and Diehr, P. (2003). Imputation of missing longitudinal data: a
comparison of methods. Journal of Clinical Epidemiology, 56: 968-976.



However, theinclusion of outliers may affect the resultswhen some However, if the results change drasticaly, it is important to use
statistical techniques are used. A simple approach isto repeat the  appropriate methods that are not affected by outliers to analyse the
analysis both including and excluding the value. If theresultsare  data. Theseinclude the use of transformations (Chapter 9) and non-
similar, then the outlier does not have agreat influence on theresult. parametric tests (Chapter 17).

Example
Have values been entered Missing values coded
incorrectly with a with a ! Is this genuine?
column missed out? Unlikely to be correct
Interventions veql/red Pur\ ng pregnancy Wi ght of baby
Mot her s
age Frequency
Patient [Bl eeding | Sex of Gegtational | I nhal ed (I M v Epi dural | Apgar kg I'b oz Date of (years) at| Blood |of bleeding
nunber |defi ci ency| baby agd (weeks)| gas Pet hi di\ne| Pet hi Yji ne score birth blh'rltz of group |gums
chi
47 3 3 . . T . .| 08/08/74 . 3 6
33 3 . | 0 1 0 1 . 6 13] 11/08/ 52 27.26 1 4
34 3 1 | 39 1 0 0 0 : 1/ 7 14] 04/02/ 53 22.12 1 1
43 3 1 | 41 1 1 0 0 . - 8 0| 26/ 02/ 54 27. 5] 3 33
23 3 2] ] . 0 0 0 0]10/1-10/[_11.19 . .| 29/12/65 36. 58 1 3
49 3 3 . . . . . - 09/ 08/ 57| . 1 5
51 3 3 . . . . . . . .| 21/06/51 . 3 5
20 2 (41) — 0 1 0 0 . 7 12| 15/08/96]  25.61 3 3 .
64 4 - 1 1 0 0 . . 10/ 11/ 51 24. 61 B 2
27 3 1 (14 1 0 0 0 ok 8 8[ 02/12/ 71, 22. 45 1 1
38 8 2 A 1 0 0 0|9/1-9/5 . 6 10| 12/11/61] 31. 60 1 1
50 3 2 40] \ 0 0 0 0 . . 5 11| 06/02/ 68| 18. 75 1 6
54 4 1 411\ 0 1 0 0 . 7 4] 17/10/59) 24. 62 3 2
7 1 1 40 |\ © 0 0 1 . 6 5] 1 65 20. 35 2 6
9 1 2 38 | 0 1 0 0 . 5 12/ 12/ 96| 28. 49 3 3
17 1 4 o . . . . . 71 15705/ 71 26. 81 1 5
59 3 2 40 0 0 1 0 . . 8 7| 07/03/ 41, 31. 04 1 3
56 4 2 40 0 0 0 0 . 3.5 .|/ o[ 1e/11/57 37. 86 3 N
58 4 1 40 0 1 0 1 ) . 8| / 17/063/4 22.32 3 (&%
14 1 1 38 0 0 0 1 . . 7] [ 12[ oa705/61] ™\ _19. 12 4 Vv 1
Digits d?/ ls this correct? \ : ?
g1Le Lransposed: Too young to have a Typing mistake?

Should be 417 childl Should be 17/06/47
Figure 3.1 Checking for errorsin adata set.

After entering the data described in Chapter 2, the data set is
checked for errors. Some of the inconsistencies highlighted are
simpledataentry errors. For example, thecodeof ‘41’ inthe " sex
of baby’ column is incorrect as a result of the sex information
being missing for patient 20; the rest of the data for patient 20
had been entered in the incorrect columns. Others (e.g. unusual
valuesinthe gestational age and weight columns) arelikely to be

errors, but the notes should be checked before any decision
is made, as these may reflect genuine outliers. In this case, the
gestational age of patient number 27 was 41 weeks, and it
was decided that a weight of 11.19kg was incorrect. As it was
not possible to find the correct weight for this baby, the value
was entered as missing.

Error checking and outliers 13



One of the first things that you may wish to do when you have
entered your data onto a computer is to summarize them in
some way so that you can get a‘fedl’ for the data. This can be done
by producing diagrams, tables or summary statistics (Chapters 5
and 6). Diagrams are often powerful tools for conveying informa
tion about the data, for providing simple summary pictures, and for
spotting outliers and trends before any forma analyses are
performed.

Frequency distributions

An empirical frequency distribution of a variable relates each
possible observation, class of observations (i.e. range of values) or
category, asappropriate, toitsobserved frequency of occurrence. If
we replace each frequency by arelative frequency (the percentage
of the total frequency), we can compare frequency distributionsin
two or more groups of individuals.

Displaying frequency distributions
Once the frequencies (or relative frequencies) have been obtained

for categorical or some discrete numerical data, these can be
displayed visualy.

e Bar or column chart—a separate horizontal or vertical bar is
drawn for each category, its length being proportional to the fre-
guency in that category. The bars are separated by small gaps to
indicate that the data are categorical or discrete (Fig. 4.14a).

» Pie chart—a circular ‘pi€’ is split into sections, one for each
category, so that the area of each section is proportiona to the
frequency in that category (Fig. 4.1b).

It is often more difficult to display continuous numerical data,
as the data may need to be summarized before being drawn.
Commonly used diagramsinclude the following:

» Histogram —thisissimilar to abar chart, but there should be no
gaps between the bars as the data are continuous (Fig. 4.1d). The
width of each bar of the histogram relatesto arange of valuesfor the
variable. For example, the baby’sweight (Fig. 4.1d) may be catego-
rized into 1.75-1.99kg, 2.00-2.24kg, . . ., 4.25-4.49kg. The area
of the bar is proportional to the frequency in that range. Therefore,
if one of the groups covers a wider range than the others, its base
will be wider and height shorter to compensate. Usually, between
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Figure 4.1 A selection of graphical output which may be produced when summarizing the obstetric datain women with bleeding disorders (Chapter 2).
(a) Bar chart showing the percentage of women in the study who required pain relief from any of the listed interventions during labour. (b) Pie chart
showing the percentage of women in the study with each bleeding disorder. (c) Segmented column chart showing the frequency with which women with
different bleeding disorders experience bleeding gums. (d) Histogr am showing the weight of the baby at birth. (€) Dot plot showing the mother’s age at
the time of the baby’s birth, with the median age marked asa horizontal line. (f) Scatter diagram showing the relationship between the mother’s age at
delivery (on the horizontal or x-axis) and the weight of the baby (on the vertical or y-axis).
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665 | 1.1 |39
53 | 1.2 |99
9751 | 1.3 | 1135677999
955410 | 1.4 | 0148
987655 | 1.5 | 00338899
9531100 | 1.6 | 0001355
731 | 1.7 | 00114569
99843110 | 1.8 | 6
654400 | 1.9 | 01
6120
7121119
10| 2.2

Beclomethasone Placebo

dipropionate

Figure 4.2 Stem-and-leaf plot showing the FEV 1 (litres) in children
receiving inhal ed beclomethasone dipropionate or placebo (Chapter 21).

five and 20 groups are chosen; the ranges should be narrow enough
to illustrate patterns in the data, but should not be so narrow that
they arethe raw data. The histogram should be labelled carefully to
makeit clear where the boundarieslie.

» Dot plot—each observation is represented by one dot on a hori-
zontal (or vertical) line (Fig. 4.1€). Thistypeof plotisvery simpleto
draw, but can be cumbersome with large data sets. Often asummary
measure of the data, such as the mean or median (Chapter 5),
is shown on the diagram. This plot may also be used for discrete
data

e Stem-and-leaf plot —Thisisamixture of adiagram and atable;
it looks similar to a histogram turned on its side, and is effectively
thedatavalueswritteninincreasing order of size. Itisusually drawn
with avertical stem, consisting of thefirst few digits of the values,
arranged in order. Protruding from this stem arethe leaves—i.e. the
final digit of each of the ordered values, which are written horizon-
tally (Fig. 4.2) inincreasing numerical order.

» Box plot (often called abox-and-whisker plot) —Thisisaverti-
cal or horizontal rectangle, with the ends of the rectangle corre-
sponding to the upper and lower quartiles of the data values
(Chapter 6). A line drawn through the rectangle corresponds to

the median value (Chapter 5). Whiskers, starting at the ends of
the rectangle, usualy indicate minimum and maximum values
but sometimes relate to particular percentiles, e.g. the 5th and 95th
percentiles (Chapter 6, Fig. 6.1). Outliers may be marked.

The ‘shape’ of the frequency distribution

The choice of the most appropriate statistical method will often
depend on the shape of the distribution. The distribution of the data
is usually unimodal in that it has a single ‘peak’. Sometimes the
distribution is bimodal (two peaks) or uniform (each value is
equally likely and there are no peaks). When the distribution is uni-
modal, the main aim is to see where the mgjority of the data values
lie, relative to the maximum and minimum values. In particular, itis
important to assess whether the distributioniis:

e symmetrical —centred around some mid-point, with one side
being amirror-image of the other (Fig. 5.1);

» skewed totheright (positively skewed) —along tail to theright
with one or a few high values. Such data are common in medical
research (Fig. 5.2);

« skewed to the left (negatively skewed) —a long tail to the left
with oneor afew low values (Fig. 4.1d).

If one variable is categorical, then separate diagrams showing the
distribution of the second variable can be drawn for each of the
categories. Other plots suitable for such data include clustered or
segmented bar or column charts (Fig. 4.1c).

If both of the variables are numerical or ordinal, then the rela-
tionship between thetwo can beillustrated using ascatter diagram
(Fig. 4.1f). This plots one variable against the other in a two-way
diagram. One variableisusually termed the x variable and is repre-
sented on the horizontal axis. The second variable, known asthey
variable, is plotted on the vertical axis.

We can often use single variable data displays to identify outliers.
For example, avery long tail on one side of a histogram may indi-
cate an outlying value. However, outliers may sometimes only
become apparent when considering the relationship between two
variables. For example, aweight of 55kg would not be unusual for
a woman who was 1.6m tall, but would be unusually low if the
woman’'s height was 1.9m.

Displaying data graphically 15



0 Describing data: the ‘average’

Summarizing data

It is very difficult to have any ‘feeling’ for a set of numerical
measurements unless we can summarize the data in a meaningful
way. A diagram (Chapter 4) is often a useful starting point. We can
also condense the information by providing measures that describe
the important characteristics of the data. In particular, if we
have some perception of what constitutes a representative value,
and if we know how widely scattered the observations are around
it, then we can formulate an image of the data The average
is a general term for a measure of location; it describes a typical
measurement. We devote this chapter to averages, the most
common being the mean and median (Table 5.1). We introduce
measures that describe the scatter or spread of the observationsin
Chapter 6.

The arithmetic mean

The arithmetic mean, often simply called the mean, of a set of
values is calculated by adding up al the values and dividing this
sum by the number of valuesin the set.

It is useful to be able to summarize this verbal description by an
algebraic formula. Using mathematical notation, wewrite our set of
n observations of avariable, X, as Xy, X,, X5, . . . , X,. For example, x
might represent anindividual’sheight (cm), so that x, representsthe
height of thefirst individual, and x; the height of the ith individual,
etc. We can write the formula for the arithmetic mean of the
observations, written xand pronounced ‘x bar’, as:

g At XXt X,
n

Using mathematical notation, we can shorten thisto:

n

2%

i=1
n

X =

where X (the Greek uppercase ‘sigma’) means ‘ the sum of ', and the
sub- and super-scripts on the X indicate that we sum the valuesfrom
i = 1to n. Thisisoften further abbreviated to

g 2K 2x

ortox=

The median
If wearrangeour datain order of magnitude, starting with the small-
est value and ending with the largest value, then the median isthe
middle value of this ordered set. The median divides the ordered
valuesinto two halves, with an equal number of values both above
and below it.

Itiseasy to calculate the median if the number of observations, n,
isodd. It isthe (n + 1)/2th observation in the ordered set. So, for
example, if n= 11, then the median is the (11 + 1)/2 = 12/2 = 6th
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observation in the ordered set. If niseven then, strictly, thereisno
median. However, we usually calculate it asthe arithmetic mean of
the two middle observationsin the ordered set [i.e. the n/2th and the
(n/2 + 1)th]. So, for example, if n= 20, the median isthe arithmetic
mean of the 20/2 = 10th and the (20/2 + 1) = (10 + 1) = 11th
observationsin the ordered set.

The median is similar to the mean if the data are symmetrical
(Fig. 5.1), lessthan the mean if the data are skewed to theright (Fig.
5.2), and greater than the mean if the data are skewed to the | eft.

The mode

Themodeisthevaluethat occursmost frequently in adataset; if the
data are continuous, we usually group the data and calculate the
modal group. Some datasetsdo not have amode because each value
only occurs once. Sometimes, there is more than one mode; thisis
when two or more values occur the same number of times, and the
frequency of occurrence of each of these valuesis greater than that
of any other value. We rarely use the mode as a summary measure.

The geometric mean

The arithmetic mean is an inappropriate summary measure of loca-
tion if our data are skewed. If the data are skewed to the right, we
can produce a distribution that is more symmetrical if we take the
logarithm (to base 10 or to base €) of each value of the variablein
this data set (Chapter 9). The arithmetic mean of thelog valuesisa
measure of location for the transformed data. To obtain a measure
that has the same units as the original observations, we have to
back-transform (i.e. take the antilog of) the mean of the log data;
we call this the geometric mean. Provided the distribution of the
log data is approximately symmetrical, the geometric mean is
similar to the median and less than the mean of the raw data
(Fig.5.2).

The weighted mean

We use a weighted mean when certain values of the variable of

interest, x, are moreimportant than others. We attach aweight, w;, to

each of thevalues, x;, in our sample, to reflect thisimportance. If the

values X, X,, X, . . ., %, have corresponding weights w;, w,, W,
.+ W, theweighted arithmetic mean is:

WO+ WoXo o WXy D WX
W+ Wy +. LW yw

For example, suppose we are interested in determining the
average length of stay of hospitalized patientsin adistrict, and we
know the average discharge time for patients in every hospital. To
take account of the amount of information provided, one approach
might be to take each weight as the number of patients in the
associated hospital.

The weighted mean and the arithmetic mean areidentical if each
weight isequal to one.
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Figure 5.1 The mean, median and geometric mean age of the womenin
the study described in Chapter 2 at the time of the baby’s birth. Asthedis-
tribution of age appears reasonably symmetrical, the three measures of the
‘average’ al give similar values, asindicated by the dotted line.
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Figure 5.2 Themean, median and geometric mean triglyceridelevel ina
sample of 232 men who devel oped heart disease (Chapter 19). Asthe dis-
tribution of triglyceridelevelsis skewed to theright, the mean givesa
higher ‘average’ than either the median or geometric mean.

Table 5.1 Advantages and disadvantages of averages.

Typeof
average Advantages Disadvantages
Mean ¢ Usesall thedatavalues < Distorted by outliers
» Algebraicaly defined ~ « Distorted by skewed data
and so mathematically
manageable
¢ Known sampling
distribution (Chapter 9)
Median « Not distorted by ¢ |gnores most of the
outliers information
« Not distorted by « Not algebraically defined
skewed data ¢ Complicated sampling
distribution
Mode * Easily determinedfor ~  Ignoresmost of the
categorical data information
* Not algebraically defined
¢ Unknown sampling
distribution
Geometric ¢ Before back- ¢ Only appropriateif the
mean transformation, it has log transformation
the same advantages as produces a symmetrical
the mean distribution
« Appropriate for right
skewed data
Weighted < Sameadvantagesas * Weights must be known or
mean the mean estimated

Ascribesrelative
importanceto each
observation
Algebraically defined

Describing data: the ‘average’
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o Describing data: the ‘spread’

Summarizing data

If we are able to provide two summary measures of a continuous
variable, onethat gives anindication of the ‘average’ value and the
other that describes the ‘spread’ of the observations, then we have
condensed the data in a meaningful way. We explained how to
choose an appropriate average in Chapter 5. We devote this chapter
to a discussion of the most common measures of spread (disper-
sion or variability) which are compared in Table 6.1.

The range

The range is the difference between the largest and smallest
observations in the data set; you may find these two values quoted
instead of their difference. Note that the range provides a mislead-
ing measure of spread if there are outliers (Chapter 3).

Ranges derived from percentiles

What are percentiles?

Suppose we arrange our data in order of magnitude, starting with
the smallest value of the variable, x, and ending with the largest
value. The value of x that has 1% of the observationsin the ordered
set lying below it (and 99% of the observations lying above it) is
called thefirst percentile. The value of x that has 2% of the obser-
vationslying below it is called the second percentile, and soon. The
values of x that divide the ordered set into 10 equally sized groups,
that isthe 10th, 20th, 30th, . . ., 90th percentiles, are called deciles.
The values of x that divide the ordered set into four equally sized
groups, that isthe 25th, 50th, and 75th percentiles, are called quar -
tiles. The 50th percentile isthe median (Chapter 5).

Using percentiles

We can obtain ameasure of spread that isnot influenced by outliers
by excluding the extreme valuesin the data set, and determining the
range of the remaining observations. The interquartile range is

Interquartile range:

3.15103.87kg /
5 —

Maximum = 4.46 kg

X
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s edian =25%%0 " 9594 central range:
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0

Figure 6.1 A box-and-whisker plot of the baby’sweight at birth (Chapter
2). Thisfigureillustrates the median, the interquartile range, the range that
containsthe central 95% of the observations and the maximum and
minimum values.
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the difference between the first and the third quartiles, i.e. between
the 25th and 75th percentiles (Fig. 6.1). It contains the central 50%
of the observationsin the ordered set, with 25% of the observations
lying below its lower limit, and 25% of them lying above its upper
limit. Theinter decile range contains the central 80% of the obser-
vations, i.e. those lying between the 10th and 90th percentiles.
Often we use the range that contains the central 95% of the obser-
vations, i.e. it excludes 2.5% of the observations above its upper
limit and 2.5% below its lower limit (Fig. 6.1). We may use this
interval, provideditiscalculated from enough values of thevariable
in healthy individuals, to diagnose disease. It is then called the
reference interval, reference range or normal range (see
Chapter 38).

The variance

One way of measuring the spread of the data is to determine the
extent to which each observation deviates from the arithmetic
mean. Clearly, thelarger the deviations, the greater the variability of
the observations. However, we cannot use the mean of these devia-
tionsasameasure of spread becausethe positive differencesexactly
cancel out the negative differences. We overcome this problem by
squaring each deviation, and finding the mean of these squared
deviations (Fig. 6.2); we call this the variance. If we have a
sample of n observations, X;, X,, Xs, . . ., X,, Whose mean is X =
(2x)/n, we calculate the variance, usually denoted by 2, of these
observations as:

We can see that thisis not quite the same as the arithmetic mean
of the squared deviations because we have divided by n— 1 instead

Squared distance = (34.65 - 27.01)2

L 1 1 0 1 |
10 20 210130 3465 40 50
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Figure 6.2 Diagram showing the spread of selected values of the mother’s
age at the time of baby’s birth (Chapter 2) around the mean value. The
varianceis calculated by adding up the squared distances between each
point and the mean, and dividing by (n—1).



of n. Thereason for thisisthat wea most alwaysrely on sampledata
inour investigations (Chapter 10). It can be shown theoretically that
we obtain a better sample estimate of the population varianceif we
divideby (n-1).

Theunitsof the variance are the square of the units of the original
observations, e.g. if the variableisweight measured in kg, the units
of thevariance are kg2.

The standard deviation
The standard deviation is the square root of the variance. In a
sample of n observations, itis:

D -%)°

n-1

We can think of the standard deviation as a sort of average of the
deviations of the observations from the mean. It isevaluated in the
same units astheraw data.

If we divide the standard deviation by the mean and expressthis
quotient as a percentage, we obtain the coefficient of variation.
Itisameasure of spread that isindependent of the units of measure-
ment, but it has theoretical disadvantages so is not favoured by
statisticians.

Variation within- and between-subjects

If we take repeated measurements of a continuous variable on an
individual, then we expect to observe some variation (intra- or
within-subject variability) in the responseson that individual. This
may be because a given individua does not always respond in
exactly the same way and/or because of measurement error.
However, the variation within an individual is usualy lessthan the
variation obtained when we take a single measurement on every

individual in a group (inter- or between-subject variability). For
example, a 17-year-old boy has a lung vital capacity that ranges
between 3.60 and 3.87 litres when the measurement is repeated 10
times; the values for single measurements on 10 boys of the same
ageliebetween 2.98 and 4.33 litres. These conceptsareimportantin
study design (Chapter 13).

Table 6.1 Advantages and disadvantages of measures of spread.

Measure
of spread Advantages Disadvantages
Range ¢ Easily determined ¢ Usesonly two observations
 Distorted by outliers
e Tendsto increase with
increasing sample size
Ranges ¢ Usuadly unaffected ¢ Clumsy to calculate
based on by outliers e Cannot be calculated for
percentiles ¢ Independent of small samples
samplesize ¢ Usesonly two observations
« Appropriate for « Not algebraically defined
skewed data
Variance ¢ Usesevery ¢ Units of measurement are
observation the square of the units of
« Algebraically defined theraw data
e Sensitiveto outliers
« |nappropriate for skewed
data
Standard ¢ Same advantages as ¢ Sensitiveto outliers
deviation the variance * Inappropriate for skewed
 Units of measurement data
arethe sameasthose
of theraw data

Easily interpreted
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Theoretical distributions:
the Normal distribution

In Chapter 4 we showed how to create an empirical frequency dis-
tribution of the observed data. This contrasts with a theoretical
probability distribution which is described by a mathematical
model. When our empirical distribution approximates a particular
probability distribution, we can use our theoretical knowledge of
that distribution to answer questions about the data. This often
requires the evaluation of probabilities.

Understanding probability
Probability measures uncertainty; it lies at the heart of statistical
theory. A probability measures the chance of a given event
occurring. It isapositive number that lies between zero and one. If
it is equal to zero, then the event cannot occur. If it is equal to
one, then the event must occur. The probability of the complemen-
tary event (the event not occurring) is one minus the probability of
the event occurring. We discuss conditional probability, the
probability of an event, given that another event has occurred, in
Chapter 45.

We can calculate a probability using various approaches.
» Subjective—our personal degree of belief that the event will
occur (e.g. that the world will cometo an end in the year 2050).
» Frequentist —the proportion of times the event would occur if
we were to repeat the experiment alarge number of times (e.g. the
number of timeswewould get a‘ head’ if wetossed afair coin 1000
times).
 Apriori —thisrequiresknowledge of thetheoretical model, called
the probability distribution, which describes the probabilities of
all possible outcomes of the ‘experiment’. For example, genetic
theory allows us to describe the probability distribution for eye
colour in ababy born to a blue-eyed woman and brown-eyed man
by initialy specifying all possible genotypes of eye colour in the
baby and their probabilities.

The rules of probability

Wecan usetherulesof probability to add and multiply probabilities.
» The addition rule—if two events, A and B, are mutually ex-
clusive (i.e. each event precludes the other), then the probability
that either one or the other occurs is equal to the sum of their
probabilities.

Prob(A or B) = Prob(A)+ Prob(B)

e.g. if the probabilities that an adult patient in a particular dental
practice has no missing teeth, some missing teeth or is edentulous
(i.e. has no teeth) are 0.67, 0.24 and 0.09, respectively, then the
probability that a patient has someteeth is0.67 + 0.24 = 0.91.

e The multiplication rule—if two events, A and B, are inde-
pendent (i.e. the occurrence of one event is not contingent on the
other), then the probability that both events occur is equal to the
product of the probability of each:

Prob(A and B) = Prob(A) x Prob(B)

e.g. if two unrelated patients are waiting in the dentist’s surgery, the
probability that both of them have no missing teethis0.67 x 0.67 =
0.45.
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Probability distributions: the theory

A random variable is a quantity that can take any one of a set of
mutually exclusive values with a given probability. A probability
distribution shows the probabilities of all possible values of the
random variable. It is a theoretical distribution that is expressed
mathematically, and has a mean and variance that are analogous to
those of an empirical distribution. Each probability distribution is
defined by certain parameter s which are summary measures (e.g.
mean, variance) characterizing that distribution (i.e. knowledge of
them allows the distribution to be fully described). These param-
eters are estimated in the sample by relevant statistics. Depending
on whether the random variable is discrete or continuous, the prob-
ability distribution can be either discrete or continuous.

* Discrete (e.g. Binomial, Poisson) —we can derive probabilities
corresponding to every possible value of the random variable. The
sum of all such probabilitiesisone.

» Continuous (e.g. Normal, Chi-squared, t and F)—we can only
derive the probability of the random variable, X, taking values in
certain ranges (because there areinfinitely many values of x). If the
horizontal axisrepresentsthe values of x, we can draw acurvefrom
the equation of the distribution (the probability density function);
it resembles an empirical relative frequency distribution (Chapter
4). Thetotal area under the curve is one; this area represents the
probability of al possibleevents. The probability that x liesbetween
two limitsisequa to the areaunder the curve between these values
(Fig. 7.1). For convenience, tables (Appendix A) have been pro-
duced to enable us to evaluate probabilities of interest for com-
monly used continuous probability distributions. These are
particularly useful in the context of confidence intervals (Chapter
11) and hypothesistesting (Chapter 17).

Total area under curve =1 (or 100%)
pdf

Shaded area represents
Prob {x; < x < x4}

Shaded area
represents
Prob {x> xo}

v

XU X1 Xo X
Figure 7.1 The probability density function, pdf, of x.
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The Normal (Gaussian) distribution
One of the most important distributions in statistics is the Normal
distribution. Its probability density function (Fig. 7.2) is:
o completely described by two parameters, the mean (1) and the
variance (02);
* bell-shaped (unimodal);
e symmetrical about its mean;
« shifted to the right if the mean isincreased and to the left if the
mean is decreased (assuming constant variance);
« flattened asthevarianceisincreased but becomes more peaked as
thevarianceis decreased (for afixed mean).

Additional propertiesarethat:
« the mean and median of aNormal distribution are equal;
« the probability (Fig. 7.38) that a Normally distributed random
variable, x, with mean, 1, and standard deviation, o, lies between:

(u—o)and (u+0)is0.68
(4—-1.960) and (1 +1.960)is0.95
(u—2.580)and (1 +2.580)is0.99

These intervals may be used to define reference intervals
(Chapters 6 and 38).
We show how to assess Normality in Chapter 35.

The Standard Normal distribution

There are infinitely many Normal distributions depending on the
valuesof yand o. The Standard Normal distribution (Fig. 7.3b) isa
particular Normal distribution for which probabilities have been
tabulated (Appendix A1, A4).

e The Standard Normal distribution has a mean of zero and a
variance of one.

« |f therandom variable, x, hasaNormal distribution with mean, u,
and variance, o2, then the Standar dized Normal Deviate (SND),

z=—", is a random variable that has a Standard Normal
o

distribution.
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o Theoretical distributions: other distributions

Some words of comfort

Do not worry if you find the theory underlying probability distribu-
tions complex. Our experience demonstrates that you want to know
only when and how to use these distributions. We havetherefore out-
lined the essential's, and omitted the equations that define the proba-
bility distributions. You will find that you only need to be familiar
with the basic ideas, the terminology and, perhaps (although infre-
quently in this computer age), know how to refer to the tables.

More continuous probability distributions
These distributions are based on continuous random variables.
Oftenitisnot ameasurablevariablethat follows such adistribution,
but a statistic derived from the variable. The total area under the
probability density function represents the probability of all pos-
sible outcomes, and is equal to one (Chapter 7). We discussed the
Normal distribution in Chapter 7; other common distributions are
described in this chapter.

The t-distribution (Appendix A2, Fig. 8.1)

e Derived by W.S. Gossett, who published under the pseudonym
‘Student’, it isoften called Student’ s t-distribution.

e The parameter that characterizes the t-distribution is the degrees
of freedom, so we can draw the probability density function if we
know the equation of the t-distribution and its degrees of freedom.
We discuss degrees of freedom in Chapter 11; note that they are
often closely affiliated to sample size.

e |ts shape is similar to that of the Standard Normal distribution,
but it is more spread out with longer tails. Its shape approaches
Normality asthe degrees of freedom increase.

e |t is particularly useful for calculating confidence intervals for
and testing hypotheses about one or two means (Chapters 19-21).

The Chi-squared (y?) distribution (Appendix A3, Fig. 8.2)
« |tisaright skewed distribution taking positive values.
« |tischaracterized by its degrees of freedom (Chapter 11).

04~  Continuous line o~

I df=50~_/
/

af=5

Dotted line /
df=500

Probability density
o
N

0.0 —-" . - .

t
Figure 8.1 t-distributionswith degrees of freedom (df) = 1, 5, 50, and 500.
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¢ |ts shape depends on the degrees of freedom; it becomes more
symmetrical and approaches Normality as the degrees of freedom
increases.

e |tis particularly useful for analysing categorical data (Chapters
23-25).

The F-distribution (Appendix A5)

* |tisskewed totheright.

* It is defined by a ratio. The distribution of a ratio of two esti-
mated variances calculated from Normal data approximates the
F-distribution.

¢ The two parameters which characterize it are the degrees of
freedom (Chapter 11) of the numerator and the denominator of the
ratio.

e The F-distribution is particularly useful for comparing two vari-
ances (Chapter 18), and more than two means using the analysis of
variance (ANOVA) (Chapter 22).

The Lognormal distribution

* It isthe probability distribution of a random variable whose log
(to base 10 or €) followsthe Normal distribution.

* Itishighly skewedtotheright (Fig. 8.3a).

« |f, whenwetakelogsof our raw datathat are skewed to theright,
we produce an empirical distribution that is nearly Normal (Fig.
8.3b), our data approximate the Lognormal distribution.

¢ Many variablesin medicine follow aLognormal distribution. We
can use the properties of the Normal distribution (Chapter 7) to
makeinferencesabout these variables after transforming the databy
taking logs.

« If adata set has a Lognormal distribution, we can use the geo-
metric mean (Chapter 5) asa summary measure of location.

Probability density

Chi-squared value

Figure 8.2 Chi-squared distributions with degrees of freedom (df ) =1, 2,
5, and 10.
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Figure 8.4 Binomial distribution showing the number of successes, r, when the probability of successis = 0.20 for samplesizes(a) n=5, (b) n= 10, and
(c) n=50. (N.B. in Chapter 23, the observed seroprevalence of HHV-8 was p = 0.187 =~ 0.2, and the sample size was 271: the proportion was assumed to

follow aNormal distribution.)

Discrete probability distributions

The random variable that defines the probability distribution isdis-
crete. The sum of the probabilitiesof all possible mutually exclusive
eventsisone.

The Binomial distribution

e Suppose, in a given situation, there are only two outcomes,
‘success and ‘failure’. For example, we may be interested in
whether a woman conceives (a success) or does not conceive
(afailure) after in vitro fertilization (IVF). If we look at n = 100
unrelated women undergoing IVF (each with the same probability
of conceiving), the Binomial random variable is the observed
number of conceptions (successes). Often this concept is explained
in terms of n independent repetitions of atrial (e.g. 100 tosses of a
coin) in which the outcomeis either success (e.g. head) or failure.

e Thetwo parametersthat describe the Binomial distribution aren,
the number of individual sinthe sample (or repetitionsof atrial) and
7, the true probability of success for each individual (or in each
trial).

¢ |tsmean (the value for the random variable that we expect if we
look at nindividuals, or repeat thetrial ntimes) isnzx. Itsvariance
isnm(1 - m).

e When nissmall, the distribution is skewed to theright if 7< 0.5
and to theleft if 7> 0.5. The distribution becomes more symmetri-
cal as the sample size increases (Fig. 8.4) and approximates the
Normal distribution if both nzr and n(1 — 7) are greater than 5.

e We can use the properties of the Binomial distribution when
making inferences about proportions. In particular, we often use
the Normal approximation to the Binomial distribution when
analysing proportions.

The Poisson distribution

» ThePoissonrandom variableisthe count of the number of events
that occur independently and randomly in time or space at some
average rate, u. For example, the number of hospital admissions
per day typically follows the Poisson distribution. We can use our
knowledge of the Poisson distribution to cal cul ate the probability of
acertain number of admissionson any particular day.

e Theparameter that describesthe Poisson distributionisthemean,
i.e. theaveragerate, u.

» The mean equalsthe variancein the Poisson distribution.

* Itisaright skewed distribution if the mean is small, but becomes
more symmetrical as the mean increases, when it approximates a
Normal distribution.
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o Transformations

Why transform?
The observations in our investigation may not comply with the
requirements of theintended statistical analysis (Chapter 35).
e A variable may not be Normally distributed, a distributional
requirement for many different analyses.
» The spread of the observationsin each of anumber of groups may
be different (constant variance isan assumption about aparameter
in the comparison of means using the unpaired t-test and analysis of
variance— Chapters 21-22).
* Twovariablesmay not belinearly related (linearity isan assump-
tion in many regression analyses— Chapters 27-33 and 42).

It is often helpful to transform our data to satisfy the assump-
tions underlying the proposed statistical techniques.

How do we transform?

We convert our raw datainto transformed data by taking the same
mathematical transformation of each observation. Supposewe have
n observations (y,, Y, . - ., Y,,) on avariable, y, and we decide that
the log transformation is suitable. We take the log of each observa-
tion to produce (log y;, log v, . . ., log y,). If we call the trans-
formedvariable, z, thenz =logy, foreachi (i=1,2,...,n),and our
transformed datamay bewritten (z,,z,, . . . , z,).

We check that the transformation has achieved its purpose of
producing a data set that satisfies the assumptions of the planned
statistical analysis (e.g. by plotting a histogram of the transformed
data. See Chapter 35), and proceed to analyse the transformed data
(z, 2, . . ., 7). We often back-transform any summary measures
(such as the mean) to the original scale of measurement; we then
rely on the conclusions we draw from hypothesistests (Chapter 17)
on the transformed data.

Typical transformations

The logarithmic transformation, z=1og y

When log transforming data, we can choose to take logs either to
base 10 (log,, ¥, the ‘common’ log) or to base e (log, y = Iny, the

Before

‘natural’ or Naperian log) or to any other base, but must be con-
sistent for aparticular variablein adataset. Notethat we cannot take
thelog of anegative number or of zero. The back-transformation of
alog is called the antilog; the antilog of a Naperian log is the
exponential, e.
* If yisskewed to theright, z=logy is often approximately Nor -
mally distributed (Fig. 9.1a). Theny hasaL ognormal distribution
(Chapter 8).
« |If thereisan exponential relationship between y and another vari-
able, x, so that the resulting curve bends upwards when y (on the
vertical axis) is plotted against x (on the horizontal axis), then
the relationship between z = log y and x is approximately linear
(Fig. 9.1b).
 Supposewe have different groups of observations, each compris-
ing measurements of a continuous variable, y. We may find that the
groupsthat havethe higher values of y also havelarger variances. In
particular, if the coefficient of variation (the standard deviation
divided by themean) of yisconstant for al thegroups, thelog trans-
formation, z=log y, produces groups that have similar variances
(Fig. 9.1¢).

In medicine, thelog transformation is frequently used because of
its logical interpretation and because many variables have right-
skewed distributions.

The square root transformation, z =~y

This transformation has properties that are similar to those of the
log transformation, athough the results after they have been
back-transformed are more complicated to interpret. In addition
to its Normalizing and linearizing abilities, it is effective at
stabilizing variance if the variance increases with increasing
values of y, i.e. if the variance divided by the mean is constant.
We often apply the square root transformation if y is the count of a
rare event occurring in time or space, i.e. it is a Poisson variable
(Chapter 8). Remember, we cannot take the square root of a nega
tive number.

Figure 9.1 Theeffects of the logarithmic trans-
formation: (a) Normalizing, (b) linearizing,

transformation y y
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(c) variance stabilizing.
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Figure 9.2 Theeffect of the square transforma-
tion: (&) Normalizing, (b) linearizing, (c) vari-
ance stabilizing.
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Thereciprocal transformation, z=1/y

We often apply the reciproca transformation to survival times
unless we are using specia techniques for survival analysis
(Chapter 41). The reciprocal transformation has properties that are
similar to those of the log transformation. In addition to its Nor-
malizingand linearizing abilities, it ismoreeffectiveat stabilizing
variance than the log transformation if the variance increases very
markedly with increasing values of y, i.e. if the variance divided by
the (mean)4 is constant. Note that we cannot take the reciprocal of
zero.

The square transformation, z=y?2
The square transformation achieves the reverse of the log
transformation.
 If y is skewed to the left, the distribution of z=y2 is often ap-
proximately Normal (Fig. 9.29).
« |If therelationship between two variables, xandy, issuchthat aline
curving downwards is produced when we plot y against x, then the
relationship between z=y2 and x isapproximately linear (Fig. 9.2b).
« |If the variance of a continuous variable, y, tends to decrease as
the value of y increases, then the square transformation, z = y2,
stabilizesthevariance (Fig. 9.2¢).
The logit (logistic) transformation, z= Inl—pp
Thisis the transformation we apply most often to each proportion,
p, in aset of proportions. We cannot take the logit transformation if
either p = 0 or p = 1 because the corresponding logit values are
—oo @and +o0. One solution isto take p as 1/(2n) instead of 0, and as
{1-1/(2n)} instead of 1, where nisthe samplesize.

It linearizes a sigmoid curve (Fig. 9.3). See Chapter 30 for the
use of thelogit transformation in regression analysis.

p
1 —
0
X
Logit p
X

Figure 9.3 Theeffect of thelogit transformation on asigmoid curve.
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m Sampling and sampling distributions

Why do we sample?

In statistics, apopulation represents the entire group of individuals
in whom we are interested. Generaly it is costly and labour-
intensive to study the entire population and, in some cases, may be
impossible because the population may be hypothetical (e.g.
patients who may receive a treatment in the future). Therefore we
collect data on a sample of individuals who we believe are repre-
sentative of thispopulation (i.e. they have similar characteristicsto
theindividual sinthe population), and use them to draw conclusions
(i.e. make infer ences) about the popul ation.

When we take a sample of the population, we have to recognize
that the information in the sample may not fully reflect what istrue
in the population. We have introduced sampling error by studying
only some of the population. In this chapter we show how to use
theoretical probability distributions (Chapters 7 and 8) to quantify
thiserror.

Obtaining a representative sample

Ideally, we aim for arandom sample. A list of all individualsfrom
the population is drawn up (the sampling frame), and individuals
are selected randomly from this list, i.e. every possible sample of
a given size in the population has an equal probability of being
chosen. Sometimes, we may have difficulty in constructing thislist
or the costsinvolved may be prohibitive, and then wetake aconve-
nience sample. For example, when studying patients with a partic-
ular clinical condition, we may choose a single hospital, and
investigate some or all of the patients with the condition in that
hospital. Very occasionally, non-random schemes, such as quota
sampling or systematic sampling, may be used. Although the sta-
tistical tests described in this book assume that individuals
are selected for the sample randomly, the methods are generally
reasonable as long as the sample is representative of the
popul ation.

Point estimates

We are often interested in the value of a parameter in the popula-
tion (Chapter 7), e.g. amean or aproportion. Parametersare usually
denoted by letters of the Greek alphabet. For example, we usually
refer to the population mean as 1 and the popul ation standard devi-
ation as 0. We estimate the val ue of the parameter using thedatacol-
lected from the sample. This estimate is referred to as the sample
statistic and is a point estimate of the parameter (i.e. it takes a
singlevalue) asopposedto aninterval estimate (Chapter 11) which
takesarange of values.

Sampling variation

If wetake repeated samples of the same sizefrom apopulation, itis
unlikely that the estimates of the population parameter would be
exactly the samein each sample. However, our estimates should all
be close to thetrue value of the parameter in the population, and the
estimates themsel ves should be similar to each other. By quantify-
ing the variability of these estimates, we obtain information on the
precision of our estimate and can thereby assess the sampling error.
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In reality, we usually only take one sample from the population.
However, we still make use of our knowledge of thetheoretical dis-
tribution of sample estimates to draw inferences about the popula-
tion parameter.

Sampling distribution of the mean

Suppose we are interested in estimating the population mean; we
could take many repeated samples of size n from the population,
and estimate the mean in each sample. A histogram of the estimates
of these meanswould show their distribution (Fig. 10.1); thisisthe
sampling distribution of the mean. We can show that:

« If the sample size is reasonably large, the estimates of the mean
follow aNormal distribution, whatever the distribution of the orig-
inal datain the population (this comes from atheorem known asthe
Central Limit Theorem).

* |If the sample size is small, the estimates of the mean follow a
Normal distribution provided the data in the population follow a
Normal distribution.

» The mean of the estimates is an unbiased estimate of the true
mean inthe population, i.e. the mean of the estimates equal sthetrue
popul ation mean.

» The variability of the distribution is measured by the standard
deviation of the estimates; this is known as the standard error
of the mean (often denoted by SEM). If we know the population
standard deviation (o), then the standard error of the mean is
given by:

SEM =o/+n

When we only have one sample, asis customary, our best estimate
of the population mean is the sample mean, and because we rarely
know the standard deviation in the population, we estimate the stan-
dard error of the mean by:

SEM = §/vn

where sisthe standard deviation of the observationsin the sample
(Chapter 6). The SEM provides a measure of the precision of our
estimate.

Interpreting standard errors
 Alargestandard error indicates that the estimate isimprecise.
* A small standard error indicates that the estimate is precise.
The standard error isreduced, i.e. we obtain amore precise esti-
mate, if:
* thesize of thesampleisincreased (Fig. 10.1);
* thedataarelessvariable.

SD or SEM?

Although these two parameters seem to be similar, they are used for
different purposes. The standard deviation describesthevariationin
the data values and should be quoted if you wish to illustrate vari-
ability in the data. In contrast, the standard error describes the
precision of the sample mean, and should be quoted if you areinter-
ested in the mean of aset of datavalues.



Sampling distribution of the proportion

We may be interested in the proportion of individualsin a popula-
tion who possess some characteristic. Having taken asample of size
n from the population, our best estimate, p, of the population pro-
portion, r, isgiven by:

p=r/n
wherer isthe number of individualsin the sample with the charac-

teristic. If we wereto take repeated samples of size n from our pop-
ulation and plot the estimates of the proportion as a histogram, the
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resulting sampling distribution of the proportion would approxi-
mate a Normal distribution with mean value, . The standard devi-
ation of this distribution of estimated proportions is the standard
error of the proportion. When we take only asingle sample, it is
estimated by:

SE( p) — p(lr: p)

This provides a measure of the precision of our estimate of r; a
small standard error indicates a precise estimate.
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Figure 10.1 (a) Theoretical Normal distribution of log, (triglyceride levels) with mean = 0.31l0g,,(mmol/L) and standard deviation= 0.24
log,,(mmol/L), and the observed distributions of the means of 100 random samples of size (b)10, (c)20, and (d)50 taken from this theoretical

distribution.
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m Confidence intervals

Oncewe havetaken asamplefrom our popul ation, we obtain apoint
estimate (Chapter 10) of the parameter of interest, and calculate its
standard error to indicate the precision of the estimate. However, to
most people the standard error is not, by itself, particularly useful.
It is more helpful to incorporate this measure of precision into
an interval estimate for the population parameter. We do this by
making use of our knowledge of the theoretical probability distrib-
ution of the sample statistic to calculate a confidence interval for
the parameter. Generally the confidence interval extendseither side
of the estimate by some multiple of the standard error; the two
values (the confidence limits) which define the interval are gener-
ally separated by acomma, adash or theword ‘to’ and are contained
in brackets.

Confidence interval for the mean

Using the Normal distribution

In Chapter 10, we stated that the sample mean followsaNormal dis-
tribution if the sample size is large. Therefore we can make use of
the properties of the Normal distribution when considering the
samplemean. In particular, 95% of the distribution of sample means
lies within 1.96 standard deviations (SD) of the population mean.
We call this SD the standard error of the mean (SEM), and when we
have a single sample, the 95% confidence interval (Cl) for the
mean is:

(Sample mean — (1.96 x SEM) to Sample mean + (1.96 x SEM))

If we were to repeat the experiment many times, this range of
values would contain the true population mean on 95% of occa-
sions. This range is known as the 95% confidence interval for the
mean. We usually interpret this confidence interval as the range of
values within which we are 95% confident that the true population
mean lies. Although not strictly correct (the population mean is a
fixed value and therefore cannot have a probability attached to it),
we will interpret the confidence interval in thisway asit is concep-
tually easier to understand.

Using the t-distribution

Strictly, we should only use the Normal distribution in the calcula-
tionif weknow thevalue of thevariance, o2, in the population. Fur-
thermore, if the sample sizeis small, the sample mean only follows
a Norma distribution if the underlying population data are Nor-
mally distributed. Where the data are not Normally distributed,
and/or we do not know the population variance but estimateit by 2,
the sample mean follows a t-distribution (Chapter 8). We calculate
the 95% confidence interval for the mean as:

(Sample mean — (t, o5 X SEM) to Sample mean + (t, o5 X SEM))

S s
i.eitis Sample mean + t, X N
wheret, .- isthe percentage point (percentile) of the t-distribution
with (n — 1) degrees of freedom which gives a two-tailed probabil-
ity (Chapter 17) of 0.05 (Appendix A2). This generally provides a
dlightly wider confidenceinterval than that using the Normal distri-
bution to allow for the extrauncertainty that we have introduced by
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estimating the population standard deviation and/or because of the
small sample size. When the sample size is large, the difference
between the two distributions is negligible. Therefore, we always
use thet-distribution when cal culating a confidence interval for the
mean even if the sample sizeislarge.

By convention we usually quote 95% confidence intervals. We
could calculate other confidence intervals e.g. a 99% confidence
interval for the mean. Instead of multiplying the standard error by
the tabulated value of the t-distribution corresponding to a two-
tailed probability of 0.05, we multiply it by that corresponding to a
two-tailed probability of 0.01. The 99% confidenceinterval iswider
than a 95% confidence interval, to reflect our increased confidence
that the range includes the true popul ation mean.

Confidence interval for the proportion

The sampling distribution of aproportion followsaBinomial distri-
bution (Chapter 8). However, if the sample size, n, is reasonably
large, then the sampling distribution of the proportion is approxi-
mately Normal with mean, . We estimate 7 by the proportioninthe
sample, p=r/n (wherer isthe number of individuasin the sample
with the characteristic of interest), and its standard error is

estimated by .| P2~ P) (Chapter 10).
n

The 95% confidence interval for the proportion is estimated
by:

(p—[l.%x /p(lT_p)}to p+[1.96>< /p(lT_p)D

If the sample sizeissmall (usually when np or n(1-p) islessthan 5)
then we haveto usethe Binomial distribution to cal culate exact con-
fidence intervalst. Note that if p is expressed as a percentage, we
replace (1-p) by (100—p).

Interpretation of confidence intervals

When interpreting a confidence interval we are interested in a
number of issues.

e How wide isit? A wide interval indicates that the estimate is
imprecise; a narrow one indicates a precise estimate. The width of
the confidence interval depends on the size of the standard error,
which in turn depends on the sample size and, when considering a
numerical variable, the variability of the data. Therefore, small
studies on variable data give wider confidence interval s than larger
studieson less variable data.

* What clinical implications can be derived from it? The upper
and lower limits provide a means of assessing whether the results
areclinically important (see Example).

 Doesitincludeany valuesof particular interest? We can check
whether a hypothesized value for the population parameter falls
within the confidence interval. If so, then our results are consistent
with this hypothesized value. If not, then it is unlikely (for a 95%
confidenceinterval, thechanceisat most 5%) that the parameter has
thisvalue.

1Diem, K. (1970) Documenta Geigy Scientific Tables, 7th Edn. Blackwell Pub-
lishing: Oxford.



You will come across the term ‘ degrees of freedom’ in statistics. In
general they can be calculated as the sampl e size minus the number
of constraints in a particular calculation; these constraints may be
the parameters that have to be estimated. As a smple illustration,
consider aset of three numberswhich add up to aparticular total (T).
Two of the numbers are ‘free' to take any value but the remaining
number is fixed by the constraint imposed by T. Therefore the
numbers have two degrees of freedom. Similarly, the degrees of

S\2
freedom of the sample variance, 2 = Z(x—lx) (Chapter 6), are

the sample size minus one, because we have to calculate the
sample mean (X), an estimate of the population mean, in order to
evaluate 2.

Example

Confidence interval for the mean

We are interested in determining the mean age at first birth in women
who have bleeding disorders. In asample of 49 such women (Chapter
2):

Mean age at birth of child, x=27.01 years

Standard deviation, s=5.1282 years

5.1282
49

Standard error, SEM = =0.7326 years

The variable is approximately Normally distributed but, because
the population variance is unknown, we use the t-distribution to cal-
culate the confidence interval. The 95% confidence interval for the
mean is:

27.01+(2.011x 0.7326) = (25.54,28.48) years

where 2.011 is the percentage point of the t-distribution with
(49 — 1) = 48 degrees of freedom giving a two-tailed probability
of 0.05 (Appendix A2).

We are 95% certain that the true mean age at first birth in women
with bleeding disorders in the population lies between 25.54 and
28.48 years. Thisrangeisfairly narrow, reflecting a precise estimate.
In the general population, the mean age at first birth in 1997 was 26.8
years. As 26.8 fallsinto our confidence interval, there is no evidence
that women with bleeding disorders tend to give birth at an older age
than other women.

Note that the 99% confidence interval (25.05, 28.97 years),
is dlightly wider than the 95% CI, reflecting our increased
confidence that the population mean liesin the interval.

Bootstrapping is a computer intensive simulation process which
we can use to derive a confidence interval for a parameter if we do
not want to make assumptions about the sampling distribution of its
estimate (e.g. the Normal distribution for the sample mean). From
the original sample, we create a large number of random samples
(usually at least 1000), each of the same size asthe original sample,
by sampling with replacement, i.e. by alowing an individual who
has been selected to be ‘replaced’ so that, potentialy, thisindividual
can beincluded morethan onceinagiven sample. Every samplepro-
vides an estimate of the parameter, and we use the variability of the
distribution of these estimates to obtain aconfidenceinterval for the
parameter, for example, by considering relevant percentiles (e.g. the
2.5th and 97.5th percentiles to provide a 95% confidence interval).

Confidence interval for the proportion

Of the 64 women included in the study, 27 (42.2%) reported that they
experienced bleeding gums at least once aweek. Thisis arelatively
high percentage, and may provide away of identifying undiagnosed
women with bleeding disorders in the general population. We calcu-
late a 95% confidenceinterval for the proportion with bleeding gums
in the population.

Sample proportion = 27/64 = 0.422

f 0.422(1-0.422
Standard error of proportion= (T) =0.0617

95% confidenceinterval = 0.422 + (1.96 x 0.0617)
=(0.301,0.543)

We are 95% certain that the true percentage of women with bleed-
ing disorders in the population who experience bleeding gums this
frequently lies between 30.1% and 54.3%. Thisisafairly wide confi-
denceinterval, suggesting poor precision; alarger sample size would
enable us to obtain a more precise estimate. However, the upper and
lower limits of this confidenceinterval both indicate that a substantial
percentage of these women are likely to experience bleeding
gums. We would need to obtain an estimate of the frequency of this
complaint in the general population before drawing any conclusions
about its value for identifying undiagnosed women with bleeding
disorders.

Confidence intervals 29



Q Study design |

Study design is vitally important as poorly designed studies may
give misleading results. Large amounts of data from a poor study
will not compensatefor problemsinitsdesign. Inthischapter andin
Chapter 13 we discuss some of the main aspects of study design. In
Chapters 14-16 we discuss specific types of study: clinical trias,
cohort studies and case—control studies.

The aims of any study should be clearly stated at the outset. We
may wish to estimate a parameter in the population (such as the
risk of some event (Chapter 15)), to consider associations between
aparticular aetiological factor and an outcome of interest, or toeval -
uate the effect of an intervention (such as a new treatment). There
may be a number of possible designs for any such study. The ulti-
mate choice of design will depend not only on the aims, but on the
resources available and ethical considerations (see Table 12.1).

Experimental or observational studies

» Experimental studiesinvolvetheinvestigator intervening in some
way to affect the outcome. The clinica trid (Chapter 14) is an

Table 12.1 Study designs.

example of an experimental study in which the investigator intro-
ducessomeform of treatment. Other examplesincludeanimal studies
or laboratory studies that are carried out under experimental condi-
tions. Experimental studies providethe most convincing evidencefor
any hypothesis as it is generally possible to control for factors that
may affect the outcome. However, these studies are not always feasi-
bleor, if they involve humans or animal's, may be unethical.

* Observational studies, for example cohort (Chapter 15) or
case—control (Chapter 16) studies, arethosein which theinvestiga-
tor does nothing to affect the outcome, but simply observes what
happens. These studies may provide poorer information than
experimental studies becauseit isoftenimpossibleto control for all
factors that affect the outcome. However, in some situations, they
may be the only types of study that are helpful or possible. Epi-
demiological studies, which assess the relationship between
factors of interest and disease in the population, are observational .

Actionin
Actionin present time Actionin
Typeof study  Timing Form past time (starting point) futuretime Typical uses
Cross-sectional  Cross- Observational Collect * Prevalence estimates
sectional al * Reference ranges and diagnostic
information tests
 Current health status of agroup
. A 4 A 4 \ 4 _
Repeated Cross- Observationa Collect Collect Collect ¢ Changesover time
cross-sectional  sectional al al al
information information information
Cohort Longitudinal Observationa Define cohort ¢ Prognosisand natural history
(Chapter 15) (prospective) and »| Observe (what will happen to someone
assessrisk factors | follow | outcomes with disease)
« Aetiology
Case—control Longitudinal Observational [ pgsess Define cases « Aetiology (particularly for rare
(Chapter 16) (retrospective) risk wacd  and controls diseases)
factors | =]  (i.e. outcome)
Experiment Longitudinal Experimental e Clinical trial to assessther
i ( rog ective) P : Apply_ »| Obsarve (Chapter 14) w
prosp intervention follow outcomes R p .
« Trial to assess preventative

measure, e.g. large scale vaccine
trial
L aboratory experiment
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Assessing causality in

observational studies

Although the most convincing evidence for the causal role of a
factor in disease usually comesfrom experimental studies, informa-
tion from observational studies may be used provided it meets a
number of criteria. The most well known criteriafor ng cau-
sation were proposed by Hill.,

e The cause must precede the effect.

» Theassociation should be plausible, i.e. the results should be bio-
logically sensible.

 There should be consistent results from anumber of studies.

e The association between the cause and the effect should be
strong.

 There should be a dose—response relationship with the effect, i.e.
higher levels of the effect should lead to more severe disease or
more rapid disease onset.

e Removing the factor of interest should reduce the risk of
disease.

Cross-sectional or longitudinal studies

e Cross-sectional studies are carried out at asingle point in time.
Examplesinclude surveys and censuses of the population. They are
particularly suitablefor estimating the point prevalence of acondi-
tionin the population.

Number with the disease
at asingletime point
Total number studied
at the same time point

Point prevalence=

Aswe do not know when the events occurred prior to the study,
we can only say that there is an association between the factor of
interest and disease, and not that the factor islikely to have caused
disease. Furthermore, we cannot estimate the incidence of the
diseasg, i.e. the rate of new eventsin a particular period (Chapter
31). Inaddition, because cross-sectional studiesareonly carried out
at one point in time, we cannot consider trends over time. However,
these studies are generally quick and cheap to perform.

» Repeated cross-sectional studies may be carried out at different
time points to assess trends over time. However, as these studies
involve different groups of individuals at each time point, it can be

1Hill, AB. (1965) The environment and disease: association or causation? Pro-
ceedings of the Royal Society of Medicine, 58, 295.

difficult to assesswhether apparent changesover timesimply reflect
differencesin the groups of individuals studied.

 Longitudinal studies follow a sample of individuals over time.
They are usually prospective in that individuals are followed for-
wardsfrom some point in time (Chapter 15). Sometimesr etr ospec-
tive studies, in which individuals are selected and factors that have
occurred in their past areidentified (Chapter 16), are also perceived
aslongitudinal. Longitudinal studies generally take longer to carry
out than cross-sectional studies, thus requiring moreresources, and,
if they rely on patient memory or medical records, may be subject to
bias (explained at the end of this chapter).

Experimental studies are generally prospective as they consider
theimpact of an intervention on an outcome that will happen in the
future. However, observational studiesmay beeither prospective or
retrospective.

Controls

The use of acomparison group, or control group, isessential when
designing a study and interpreting any research findings. For
example, when assessing the causal role of a particular factor
for adisease, therisk of disease should be considered both in those
who are exposed and in those who are unexposed to the factor of
interest (Chapters 15 and 16). See also ‘ Treatment comparisons’ in
Chapter 14.

Bias
When there is a systematic difference between the results from a
study and the true state of affairs, bias is said to have occurred.
Typesof biasinclude:
e Observer bias—oneaobserver consistently under- or over-reports
aparticular variable;
e Confounding bias—where a spurious association arisesdueto a
failure to adjust fully for factors related to both the risk factor and
outcome (see Chapter 34);
e Selection bias—patients selected for inclusion into a study are
not representative of the population to which the results will be
applied;
e Information bias—measurements are incorrectly recorded in a
systematic manner; and
 Publication bias—a tendency to publish only those papers that
report positive or topical results.

Other biases may, for example, be due to recall (Chapter 16),
healthy entrant effect (Chapter 15), assessment (Chapter 14) and
allocation (Chapter 14).
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Variation in data may be caused by known factors, measurement
‘errors’, or may be unexplainablerandom variation. We measure
theimpact of variation in the data on the estimation of a population
parameter by using the standard error (Chapter 10). When the mea-
surement of avariableissubject to considerablevariation, estimates
relating to that variable will be imprecise, with large standard
errors. Clearly, itisdesirableto reduce theimpact of variation asfar
as possible, and thereby increase the precision of our estimates.
There are various waysin which we can do this.

Our estimates are more precise if we take replicates (e.g. two or
three measurements of agiven variablefor every individual on each
occasion). However, as replicate measurements are not indepen-
dent, we must take care when analysing these data. A simple
approach isto use the mean of each set of replicatesin the analysis
in place of the original measurements. Alternatively, we can use
methods that specifically deal with replicated measurements (see
Chapters 41 and 42).

The choice of an appropriate size for astudy is acrucia aspect of
study design. With anincreased samplesize, the standard error of an
estimate will be reduced, leading to increased precision and study
power (Chapter 18). Sample size calculations (Chapter 36) should
be carried out before starting the study.

M odifications of simple study designs can lead to more precise esti-
mates. Essentially we are comparing the effect of one or more
‘treatments’ on experimental units. The experimental unit isthe
smallest group of ‘individuals’ which can be regarded as indepen-
dent for the purposes of analysis, for example, anindividual patient,
volume of blood or skin patch. If experimental units are assigned
randomly (i.e. by chance) to treatments (Chapter 14) and there are
no other refinements to the design, then we have a complete ran-
domized design. Although thisdesignisstraightforward to analyse,
itisinefficient if there is substantial variation between the experi-
mental units. In this situation, we can incorporate blocking and/or
useacross-over design to reduce the impact of thisvariation.

Blocking

It is often possible to group experimental units that share similar
characteristics into a homogeneous block or stratum (e.g. the
blocks may represent different age groups). The variation between
unitsin ablock isless than that between units in different blocks.
The individuals within each block are randomly assigned to treat-
ments, we compare treatments within each block rather than
making an overall comparison between the individualsin different
blocks. We can therefore assess the effects of treatment more pre-
cisely than if there was no blocking.

Parallel versus cross-over designs (Fig. 13.1)
Generally, we make comparisons between individuals in different
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groups. For example, most clinical trials (Chapter 14) are parallel
trias, in which each patient receives one of the two (or occasionally
more) treatments that are being compared, i.e. they result in
between-individual comparisons.

Because there is usually less variation in a measurement within
an individua than between different individuals (Chapter 6), in
some situationsit may be preferableto consider using each individ-
ual as higher own control. These within-individual comparisons
provide more precise comparisons than those from between-indi-
vidua designs, and fewer individuals are required for the study to
achieve the same level of precision. In aclinical trial setting, the
cross-over design! is an example of a within-individual compari-
son; if there are two treatments, every individual gets each treat-
ment, one after the other in arandom order to eliminate any effect of
calendar time. The treatment periods are separated by a washout
period, which alows any residua effects (carry-over) of the
previous treatment to dissipate. We analyse the difference in
the responses on the two treatmentsfor each individual. Thisdesign
can only be used when the treatment temporarily alleviates
symptoms rather than provides a cure, and the response timeis not
prolonged.

Factorial experiments

When we are interested in more than one factor, separate studies
that assess the effect of varying one factor at a time may be ineffi-
cient and costly. Factorial designsallow the simultaneous analysis
of any number of factors of interest. The ssimplest design, a2 x 2
factorial experiment, considers two factors (for example, two dif-
ferent treatments), each at two levels (e.g. either active or inactive
treatment). As an example, consider the US Physicians Health
study?, designed to assess the importance of aspirin and beta
carotene in preventing heart disease and cancer. A 2 x 2 factorial
design was used with the two factors being the different compounds
and thetwo levelsof each indicating whether the physician received
the active compound or its placebo (see Chapter 14). Table 13.1
shows the possibl e treatment combinations.

We assess the effect of the level of beta carotene by comparing
patients in the left-hand column to those in the right-hand column.
Similarly, we assess the effect of the level of aspirin by comparing
patientsin the top row with those in the bottom row. In addition, we
can test whether the two factorsareinter active, i.e. when the effect
of thelevel of betacaroteneisdifferent for thetwo levelsof aspirin.

Table 13.1 Active treatment combinations.

Beta carotene
Aspirin No Yes
No None Beta carotene
Yes Aspirin Aspirin + beta carotene

1Senn, S. (1993) Cross-over Trialsin Clinical Research. Wiley, Chichester.

2 Steering Committee of the Physician’s Health Study Research Group. (1989)
Final report of the aspirin component of the on-going Physicians Health Study.
New England Journal of Medicine, 321, 129-135.



If the effects differ, wethen say that thereisan inter action between
the two factors (Chapter 34). In this example, an interaction would
suggest that the combination of aspirin and betacarotenetogether is
more (or less) effective than would be expected by simply adding

(a) Parallel

Population

Samol Baseline
2le assessment
%’b-
/e&
(b) Cross-over
Population
i
Baseline
Sample assessment

Figure 13.1 (a) Paralel, and (b) Cross-over designs.

the separate effects of each drug. This design, therefore, provides
additional information to two separate studies and is a more effi-
cient use of resources, requiring asmaller sample sizeto obtain esti-
mates with agiven degree of precision.
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0 Clinical trials

Aclinical triallisany form of planned experimental study designed,
in general, to evauate the effect of a new treatment on a clinical
outcomein humans. Clinical trialsmay either be pre-clinical studies,
small clinical studies to investigate effect and safety (Phase /11
trials), or full evaluations of the new treatment (Phase 111 trias). In
this chapter we discuss the main aspects of Phase Il trials, al of
which should be reported in any publication (see CONSORT state-
ment checklistin Table 14.1, and Figs 14.1 & 14.2).

Treatment comparisons

Clinical trials are prospective studies in that we are interested in
mesasuring the impact of atreatment given now on afuture possible
outcome. In general, clinical trials evaluate new interventions
(e.g. type or dose of drug, or surgical procedure). Throughout this
chapter we assume, for simplicity, that only one new treatment is
being evaluated in atrial.

An important feature of aclinical tria isthat it should be com-
parative (Chapter 12). Without acontrol treatment, it isimpossible
to be sure that any response is due solely to the effect of the treat-
ment, and the importance of the new treatment can be over-stated.
The control may bethe standard treatment (apositive control) or, if
one does not exist, may be a negative control, which can be a
placebo (atreatment which looks and tastes like the new drug but
which does not contain any active compound) or the absence of
treatment if ethical considerations permit.

Endpoints

We must decide in advance which outcome most accurately reflects
the benefit of the new therapy. Thisis known asthe primary end-
point of the study and usually relates to treatment efficacy. Sec-
ondary endpoints, which often relateto toxicity, are of interest and
should also be considered at the outset. Generally, all these end-
points are analysed at the end of the study. However, we may
wish to carry out some preplanned interim analyses (for example,
to ensure that no major toxicities have occurred requiring the trial
to be stopped). Care should be taken when comparing treatments
at these times due to the problems of multiple hypothesis testing
(Chapter 18).

Treatment allocation

Once a patient has been formally entered into aclinical trial, gheis
allocated to atreatment group. In general, patientsare allocated ina
random manner (i.e. based on chance), using a process known as
random allocation or randomization. This is often performed
using a computer-generated list of random numbers or by using a
table of random numbers (Appendix A12). For example, to allocate
patients to two treatments, we might follow a sequence of random
numbers, and allocate the patient to treatment A if the number is
even (treating zero as even) and to treatment B if it is odd. This
process promotes similarity between the treatment groupsin terms
of baseline characteristics at entry to thetrial (i.e. it avoids alloca-
tion bias and, consequently, confounding (Chapters 12 and 34)),
maximizing the efficiency of the trial. If a baseline characteristic

1Pocock, S.J. (1983) Clinical Trials: A Practical Approach. Wiley, Chichester.
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is not evenly distributed in the treatment groups (evaluated by
examining the appropriate summary measures, e.g. the means and
standard deviations), the discrepancy must be due to chanceif ran-
domization has been used. Therefore, it isinappropriate to perform
aformal statistical hypothesis test (e.g. the t-test, Chapter 21) to
compare the parameters of any baseline characteristic in the treat-
ment groups because the hypothesis test assesses whether the dif-
ference between the groupsis due to chance.

Trialsinwhich patients are randomized to receive either the new
treatment or a control treatment are known as randomized con-
trolled trials (often referred to as RCTs), and are regarded as
optimal.

Further refinements of randomization, including stratified ran-
domization (which controls for the effects of important factors),
and blocked randomization (which ensures roughly equal sized
treatment groups) exist. Systematic allocation, whereby patients
are allocated to treatment groups systematically, possibly by day of
visit or date of birth, should be avoi ded where possible; theclinician
may be able to determine the proposed treatment for a particular
patient before s/he is entered into the trial, and this may influence
his/her decision asto whether toinclude apatient in thetrial. Some-
timeswe use aprocess known as cluster randomization, whereby
we randomly alocate groups of individuals (e.g. al people regis-
tered at asinglegeneral practice) to treatmentsrather than eachindi-
vidual. We should take care when planning the size of the study and
analysing the data in such studies (see also Chapters, 36, 41 and
42)2,

Blinding or masking

There may be assessment bias when patients and/or clinicians are
aware of thetreatment allocation, particularly if the responseissub-
jective. An awareness of the treatment allocation may influence the
recording of signs of improvement or adverse events. Therefore,
where possible, all participants (clinicians, patients, assessors) in a
trial should be blinded or masked to the treatment alocation. A
trial in which the patient, the treatment team and the assessor are
unaware of thetreatment allocationisadouble-blind trial. Trialsin
which it is impossible to blind the patient may be single-blind
providing the clinician and/or assessor is blind to the treatment
allocation.

Patient issues

Asclinica trialsinvolve humans, patient issues are of importance.
In particular, any clinical trial must be passed by an ethical com-
mittee who judge that the trial does not contravene the Declaration
of Helsinki. I nformed patient consent must be obtained from each
patient (or fromthelegal guardian or parent if the patientisaminor)
before s/heisentered into atrial.

The protocol
Before any clinical tria is carried out, a written description of all
aspectsof thetrial, known asthe protocol, should be prepared. This

2Kerry, SM. and Bland, J.M. (1998) Sample sizein cluster randomisation.
British Medical Journal, 316, 549.



includes information on the aims and objectives of the trial, along chance of correctly detecting a true treatment effect is sufficiently
with adefinition of which patientsareto berecruited (inclusion and high. Therefore, before carrying out any clinica trial, the optimal
exclusion criteria), treatment schedules, data collection and analy- trial size should be calculated (Chapter 36).

sis, contingency plans should problems arise, and study personnel. Protocol deviations are patients who enter the trial but do
It is important to recruit enough patients into a trial so that the not fulfil the protocol criteria, e.g. patients who were incorrectly

Table 14.1 Checklist of items from the CONSORT statement (Consolidation of Standards for Reporting Trials) to include when reporting arandomized
trial (www.consort-statement.org).

PAPER SECTION Reported

and topic Item Description on page #

TITLE & ABSTRACT 1 How participants were all ocated to interventions (e.g., ‘random allocation’, ‘ randomized’, or
‘randomly assigned’).

INTRODUCTION 2 Scientific background and explanation of rationale.

Background

METHODS 3 Eligibility criteriafor participants and the settings and locations where the data were collected.

Participants

Interventions 4 Precise details of the interventionsintended for each group and how and when they were actually
administered.

Objectives 5 Specific objectives and hypotheses.

Outcomes 6 Clearly defined primary and secondary outcome measures and, when applicable, any methods used to
enhance the quality of measurements (e.g., multiple observations, training of assessors).

Samplesize 7 How sample size was determined and, when applicable, explanation of any interim analyses and
stopping rules.

Randomization— 8 Method used to generate the random all ocation sequence, including details of any restriction (e.g.,

Sequence generation blocking, stratification).

Randomization— 9 Method used to implement the random allocation sequence (e.g., numbered containers or central

Allocation conceal ment telephone), clarifying whether the sequence was concealed until interventions were assigned.

Randomization— 10 Who generated the allocation sequence, who enrolled participants, and who assigned participants to

Implementation their groups.

Blinding (masking) 11 Whether or not participants, those administering the interventions, and those ng the outcomes
were blinded to group assignment. When relevant, how the success of blinding was eval uated.

Statistical methods 12 Statistical methods used to compare groups for primary outcome(s); Methods for additional analyses,
such as subgroup analyses and adjusted analyses.

RESULTS 13 Flow of participants through each stage (adiagram is strongly recommended; see Fig 14.1).

Participant flow Specifically, for each group report the numbers of participants randomly assigned, receiving intended

treatment, compl eting the study protocol, and analyzed for the primary outcome. Describe protocol
deviationsfrom study as planned, together with reasons.

Recruitment 14 Dates defining the periods of recruitment and follow-up.

Baseline data 15 Baseline demographic and clinical characteristics of each group.

Numbers analyzed 16 Number of participants (denominator) in each group included in each analysis and whether the analysis
was by ‘intention-to-treat’ . State the results in absolute numbers when feasible (e.g., 10/20, not 50%).

Outcomes and 17 For each primary and secondary outcome, asummary of resultsfor each group, and the estimated effect

estimation sizeand itsprecision (e.g., 95% confidence interval).

Ancillary analyses 18 Address multiplicity by reporting any other analyses performed, including subgroup analyses and
adjusted analyses, indicating those pre-specified and those exploratory.

Adverse events 19 All important adverse events or side effectsin each intervention group.

DISCUSSION 20 Interpretation of the results, taking into account study hypotheses, sources of potential bias or

Interpretation imprecision and the dangers associated with multiplicity of analyses and outcomes.

Generalizability 21 Generalizability (external validity) of thetrial findings.

Overall evidence 22 General interpretation of the resultsin the context of current evidence.
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recruited into or who withdrew from the study, and patients who
switched treatments. To avoid bias, the study should be analysed
on an intention-to-treat basis, in which all patients on whom
we have information are analysed in the groups to which they
wereoriginally allocated, irrespective of whether they followed the

Assessed for

treatment regime. Where possible, attempts should be made to
collect information on patients who withdraw from the trial.
On-treatment analyses, in which patients are only included in the
analysisif they complete afull course of treatment, are not recom-
mended as they often lead to biased treatment comparisons.

6446 women gave birth at Hinchingbrooke
Hospital: June 1993 to December 1995

eligibility (n=..)
Excluded (n=...)
Not meeting
= inclusion criteria
£ (n=...)
£ Refused to participate
o (n=...)
Other reasons (n= ...)
| Randomized (n=...)
Allocated to intervention Allocated to intervention
(n=..) (n=..)
H Received allocation Received allocation
'E intervention (n=...) intervention (n=...)
S
= Did not receive allocated Did not receive allocated
intervention intervention
(give reasons) (n=...) (give reasons) (n=...)
Lost to follow up (n=...) Lost to follow up (n=...)
S | (give reasons) (give reasons)
=
=: Discontinued intervention Discontinued intervention
= (n=...) (give reasons) (n=...) (give reasons)
@ Analysed (n=...) Analysed (n=...)
3
%‘ Excluded from analysis Excluded from analysis
£ (give reasons) (n=...) (give reasons) (n=...)

Figure 14.1 The CONSORT statement’strial profile of the Randomized

Controlled Trial’s progress (www.consort-statement.org).
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- 4934 did not take part
=
£ 3958 ineligible
2 976 declined
w
1512 randomly allocated management
764 allocated to 748 allocated to
5 expectant management active management
=
s 764 received 748 received
= expectant management expectant management
381 upright 383 supine 374 upright 374 supine
33 lost to follow up 32 lost to follow up
- (18 supine; 15 upright) (16 supine; 16 upright)
=
B 2 mothers’ questionnaires at 3 mothers’ questionnaires at
= discharge home not available discharge home not available
w (2 supine; 0 upright) (1 supine; 2 upright)
31 mothers’ questionnaires 6 29 mothers’ questionnaires 6
weeks post partum not available weeks post partum not available
(16 supine; 15 upright) (15 supine; 14 upright)
@2
S
s 731 analysed 716 analysed
<

Figure 14.2 Trial profile example (adapted from trial described in Chapter

40 with permission).




@ Cohort studies

A cohort study takes a group of individuals and usually follows
them forward in time, the aim being to study whether exposureto a
particular aetiological factor will affect the incidence of a disease
outcome in the future (Fig. 15.1). If so, the factor is generally
known as arisk factor for the disease outcome. For example, a
number of cohort studieshaveinvestigated the rel ationship between
dietary factors and cancer. Although most cohort studies are
prospective, historical cohorts can beinvestigated, theinformation
being obtained retrospectively. However, the quality of historical
studiesisoften dependent on medical recordsand memory, and they
may therefore be subject to bias.

Cohort studies can either be fixed or dynamic. If individuals
leave a fixed cohort, they are not replaced. In dynamic cohorts,
individuals may drop out of the cohort, and new individuals may
join asthey becomeeligible.

Selection of cohort
The cohort should be representative of the population to which
the results will be generalized. It is often advantageous if the indi-
viduals can be recruited from a similar source, such as a particular
occupational group (e.g. civil servants, medical practitioners) as
information on mortality and morbidity can be easily obtained from
records held at the place of work, and individuals can be re-con-
tacted when necessary. However, such a cohort may not be truly
representative of the general population, and may be hedlthier.
Cohorts can also berecruited from GPlists, ensuring that agroup of
individuals with different health states is included in the study.
However, these patients tend to be of similar socia backgrounds
because they livein the same area.

When trying to assessthe aetiological effect of arisk factor, indi-
vidualsrecruited to cohorts should be disease-free at the start of the

study. Thisis to ensure that any exposure to the risk factor occurs
before the outcome, thus enabling a causal role for the factor to be
postulated. Because individuals are disease-free at the start of the
study, we often see a healthy entrant effect. Mortality ratesin the
first period of the study are then often lower than would be expected
inthegeneral population. Thiswill beapparent when mortality rates
start to increase suddenly afew yearsinto the study.

Follow-up of individuals

When following individuals over time, there is always the problem
that they may belost to follow-up. Individuals may move without
leaving aforwarding address, or they may decide that they wish to
leave the study. The benefits of a cohort study are reduced if alarge
number of individualsislost to follow-up. We should thusfind ways
to minimize these drop-outs, e.g. by maintaining regular contact
with theindividuals.

Information on outcomes

and exposures

It is important to obtain full and accurate information on disease
outcomes, e.g. mortality and illnessfrom different causes. Thismay
entail searching through disease registries, mortality statistics, GP
and hospital records.

Exposure to the risks of interest may change over the study
period. For example, when assessing the relationship between
acohol consumption and heart disease, an individua’s typica
acohol consumption is likely to change over time. Therefore it is
important to re-interview individua sin the study on repeated occa-
sionsto study changesin exposure over time.
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Figure 15.1 Diagrammatic representation of a Follow
cohort study (frequenciesin parenthesis, see
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Analysis of cohort studies
Table 15.1 contains observed frequencies.

Table 15.1. Observed frequencies (seeFig. 15.1)

Exposed to factor
Yes No Total
Disease of interest
Yes a b a+b
No c d c+d
Total a+c b+d n=a+b+c+d

Because patients are followed longitudinally over time, it is
possible to estimate the risk of developing the disease in the
population, by calculating therisk in the sample studied.

Estimated risk of disease
_ Number developing disease over study period g4 p

Total number in the cohort n

Therisk of diseasein the individuals exposed and unexposed to
the factor of interest in the population can be estimated in the same

way.

Estimated risk of diseasein the exposed group,
lsKg,, = al(a+c)

Estimated risk of diseasein the unexposed group,

(K e = DI(D + d)
) o risk,,
Then, estimated relativerisk = ——22
I‘Ig(unexp
_a(a+c)
 b/(b+d)

Therelativerisk (RR) indicatestheincreased (or decreased) risk
of disease associated with exposure to the factor of interest. A rela-
tiverisk of oneindicatesthat therisk isthe samein the exposed and
unexposed groups. A relative risk greater than one indicates that
there is an increased risk in the exposed group compared with the
unexposed group; arelative risk less than one indicates a reduction
in the risk of disease in the exposed group. For example, arelative
risk of 2 would indicate that individuals in the exposed group had
twicetherisk of disease of those in the unexposed group.

A relative risk should aways be interpreted alongside the
underlying risk of the disease. Even alarge relative risk may have
limited clinical implications when the underlying risk of diseaseis
very small.
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A confidence interval for the relative risk should be
calculated, and we can test whether therelative risk is egual to one.
These are easily performed on a computer and therefore we omit
details.

Advantages of cohort studies

 Thetime sequence of events can be assessed.

 They can provideinformation on awide range of outcomes.

* |t ispossibleto measure the incidence/risk of disease directly.

* Itispossibleto collect very detailed information on exposureto a
widerange of factors.

* Itispossibleto study exposureto factorsthat arerare.

» Exposure can be measured at a number of time points, so that
changesin exposure over time can be studied.

» Thereisreduced recall and selection bias compared with case—
control studies (Chapter 16).

Disadvantages of cohort studies

* In general, cohort studies follow individuals for long periods of
time, and are therefore costly to perform.

» Where the outcome of interest israre, avery large sample sizeis
needed.

» Asfollow-upincreases, thereisoftenincreased loss of patientsas
they migrate or leave the study, leading to biased resullts.

» As a conseguence of the long time-scalg, it is often difficult to
maintain consistency of measurements and outcomes over time.
Furthermore, individuals may modify their behaviour after an
initial interview.

* Itispossiblethat disease outcomes and their probabilities, or the
aetiology of diseaseitself, may change over time.

Clinical cohorts

Sometimeswe select acohort of patientswith the sameclinical con-
dition attending one or more hospitalsand follow them (either asin-
patients or out-patients) to see how many patients experience a
resolution (in the case of a positive outcome of the condition) or
someindication of disease progression such asdeath or relapse. The
information we collect on each patient is usually that which is col-
lected as part of routine clinical care. Theaims of clinical cohorts
or observational databases may include describing the outcomes
of individuals with the condition and assessing the effects of
different approaches to treatment (e.g. different drugs or different
treatment modalities). In contrast to randomized controlled trials
(Chapter 14), which often include ahighly selective sample of indi-
viduals who are willing to participate in the trial, clinical cohorts
often include all patients with the condition at the hospitals in the
study. Thus, outcomesfrom these cohorts are thought to more accu-
rately reflect the outcomes that would be seen in clinical practice.
However, as allocation to treatment in these studies is not random-
ized (Chapter 14), clinica cohorts are particularly prone to con-
founding bias (Chapters 12 and 34).



Example

The British Regional Heart Study? is alarge cohort study of 7735
men aged 40-59 years randomly selected from general practices
in 24 British towns, with the aim of identifying risk factors for
ischaemic heart disease. At recruitment to the study, the men were
asked about a number of demographic and lifestyle factors,
including information on cigarette smoking habits. Of the 7718
men who provided information on smoking status, 5899 (76.4%)
had smoked at some stage during their lives (including those who
were current smokers and those who were ex-smokers). Over the
subsequent 10 years, 650 of these 7718 men (8.4%) had amyocar-
dia infarction (MI). The results, displayed in the table, show the
number (and percentage) of smokersand non-smokerswho devel-
oped and did not develop aMI over the 10 year period.

M in subsequent 10 years
Smoking status at baseline Yes No Total

Ever smoked 563 (9.5%) 5336 (90.5%) 5899
Never smoked 87(4.8%)  1732(95.2%) 1819
Total 650 (8.4%)  7068(71.6%) 7718
The estimated relative risk = W =2.00.
(87/1819)

It can be shown that the 95% confidence interval for the true
relativerisk is (1.60, 2.49).

We can interpret the relative risk to mean that a middle-aged
man who has ever smoked istwiceaslikely to suffer aM| over the
next 10 year period asaman who hasnever smoked. Alternatively,
therisk of suffering aMI for aman who has ever smoked is 100%
greater than that of a man who has never smoked.

1Datakindly provided by Dr F.C. Lampe, Ms M. Walker and Dr P. Whincup, Department of Primary Care and Population Sciences, Royal Free and University

College Medica School, London, UK.
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m Case-control studies

A case—control study compares the characteristics of a group of
patients with a particular disease outcome (the cases) to a group of
individuals without a disease outcome (the controls), to see
whether any factors occurred more or less frequently in the cases
than the controls (Fig. 16.1). Such retrospective studies do not
provide information on the prevalence or incidence of disease but
may give clues as to which factors elevate or reduce the risk of
disease.

Selection of cases

It is important to define whether incident cases (patients who are
recruited at the time of diagnosis) or prevalent cases (patients who
were already diagnosed before entering the study) should be
recruited. Prevalent cases may have had time to reflect on their
history of exposuretorisk factors, especialy if thediseaseisawell-
publicized one such as cancer, and may have altered their behaviour
after diagnosis. It isimportant to identify as many cases as possible
so that theresults carry moreweight and the conclusions can be gen-
eralized to future populations. To this end, it may be necessary to
access hospital listsand disease registries, and to include caseswho
died during the time period when cases and controls were defined,
because their exclusion may lead to a biased sample of cases.

Selection of controls

Controls should be screened at entry to the study to ensure that they
do not have the disease of interest. Sometimes there may be more
than one control for each case. Where possible, controls should be
selected from the same source as cases. Controls are often selected
from hospitals. However, as risk factors related to one disease
outcome may also be related to other disease outcomes, the selec-
tion of hospital-based controls may over-select individuals who
have been exposed to the risk factor of interest, and may, therefore,
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Figure 16.1 Diagrammatic representation of a case—control study.
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not always be appropriate. It is often acceptable to select controls
from the general population, although they may not be as motivated
to take part in such a study, and response rates may therefore
be poorer in controls than cases. The use of neighbourhood con-
trols may ensure that cases and controls are from similar socia
backgrounds.

Matching

Many case—control studiesare matched in order to select cases and
controlswho areassimilar aspossible. Ingeneral, itisuseful to sex-
matchindividuals (i.e. if the caseismale, the control should also be
male), and, sometimes, patientswill be age-matched. However, itis
important not to match on the basis of the risk factor of interest, or
onany factor that fallson the causal pathway of the disease (Chapter
34), as thiswill remove the ability of the study to assess any rela
tionship between the risk factor and the disease. Unfortunately,
matching does mean that the effect on disease of the variables that
have been used for matching cannot be studied.

Analysis of unmatched

case-control studies

Table 16.1 shows observed frequencies. Because patients are
selected on the basis of their disease status, it isnot possible to esti-
mate the absolute risk of disease. We can calculate the oddsratio,
whichisgiven by:

Oddsof beingacasein

exposed grou
Oddsratio = P grotp

Oddsof beingacasein
unexposed group

where, for example, the odds of being acasein the exposed groupis
equal to:

probability of being a casein the exp osed group
probability of not being a casein the exp osed group

The odds of being a case in the exposed and unexposed samples

_( o )_E oddsunexp—( d )—a
a+c b+d

and therefore the estimated oddsratio = % _ax d
b/d bxc

When adiseaseisrare, the oddsratio isan estimate of therelative
risk, and isinterpreted in asimilar way, i.e. it gives an indication of
the increased (or decreased) odds associated with exposure to the
factor of interest. An odds ratio of oneindicatesthat the oddsisthe
same in the exposed and unexposed groups; an odds ratio greater
than one indicates that the odds of diseaseis greater in the exposed
group than in the unexposed group, etc. Confidence intervals and
hypothesistests can also be generated for the oddsrratio.

odds,,




Table 16.1 Observed frequencies (see Fig. 16.1). analysis for matched studies can be found in Chapter 30 (see Con-

Exposed to factor ditional Logistic Regression) and in Breslow and Day?.
Yes No Total
Disease status « They aregenerally relatively quick, cheap and easy to perform.
Case a b a+b « They are particularly suitable for rare diseases.
Control ¢ d c+d « A widerange of risk factors can beinvestigated.
Total a+c b+d n=a+b+c+d » Thereisnolossto follow-up.

« Recall bias, when cases have a differential ability to remember
certain details about their histories, is a potential problem. For
example, alung cancer patient may well remember the occasiona
period when s/he smoked, whereas a control may not remember a
similar period.

« |f the onset of disease preceded exposureto therisk factor, causa-
tion cannot beinferred.

e Case—control studies are not suitable when exposures to the risk
factor arerare.

Where possible, the analysis of matched case—control studies
should alow for the fact that cases and controls are linked to each
other as a result of the matching. Further details of methods of

1Breslow, N.E. & Day, N.E. (1980) Satistical Methodsin Cancer Research.
\olume| — The Analysis of Case-control Sudies. International Agency for
Cancer Research, Lyon.

Example

A total of 1327 women aged 50-81 years with hip fractures,
wholivedinalargely urban areain Sweden, wereinvestigatedin
this unmatched case—control study. They were compared with

39% of that of a woman who had never used or formerly used
HRT, i.e. being a current user of HRT reduced the odds of hip
fracture by 61%.

3262 controlswithin the same age range randomly sel ected from
the national register. Interest was centred on determining
whether women currently taking postmenopausal hormone
replacement therapy (HRT) werelesslikely to have hip fractures
than those not taking it. The resultsin the table show the number

Observed frequenciesin fracture study

Never used

of women who were current users of HRT and those who had Currentuserof  HRT/former
never used or formerly used HRT in the case and control groups. HRT user of HRT Total

The observed oddsratio = (040 X 3(_)23)/(2_39 % 1287) = 0.39. With hip fracture (cases) 20 1287 1327

It can be shown that the 95% confidence interval for the odds Without hip fracture 239 3023 3062
ratiois (028, 0 56) (Contro| S)

Thusthe odds of ahip fracturein apostmenopausal womanin

Total 279 4310 4589

this age range in Sweden who was a current user of HRT was

Data extracted from: Michaelsson, K., Baron, J.A., Farahmand, B.Y., et al. (1998) Hormone replacement therapy and risk of hip fracture: population based
case-control study. British Medical Journal, 316, 1858-1863.
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Q Hypothesis testing

We often gather sample datain order to assess how much evidence
thereis against a specific hypothesis about the population. We use a
process known as hypothesis testing (or significance testing) to
quantify our belief against a particular hypothesis.

This chapter describesthe format of hypothesistesting in general
(Box 17.1); details of specific hypothesis tests are given in subse-
guent chapters. For easy reference, each hypothesistest iscontained
inasimilarly formatted box.

Box 17.1 Hypothesis testing —
a general overview

We define five stages when carrying out a hypothesistest:

1 Definethe null and alternative hypotheses under study
2 Collect relevant datafrom asample of individuals

3 Calculate the value of the test statistic specific to the null
hypothesis

4 Comparethevalue of thetest statistic to valuesfrom aknown
probability distribution

5 Interpret the P-value and results

Defining the null and

alternative hypotheses

We usually test the null hypothesis (H,) which assumes no effect
(e.g. the difference in means equals zero) in the population. For
example, if we are interested in comparing smoking rates in men
and women in the population, the null hypothesiswould be:

H,: smoking rates are the samein men and womenin the population

We then define the alter native hypothesis (H,) which holds if
the null hypothesis is not true. The aternative hypothesis relates
more directly to the theory we wish to investigate. So, in the
example, we might have:

H,: the smoking rates are different in men and women in the
population.

We have not specified any direction for the differencein smoking
rates, i.e. we have not stated whether men have higher or lower rates
than women inthe population. Thisleadsto what isknown asatwo-
tailed test because we alow for either eventuality, and is recom-
mended aswe arerarely certain, in advance, of the direction of any
difference, if oneexists. In some, very rare, circumstances, we may
carry out aone-tailed test in which adirection of effect is specified
inH,. Thismight apply if we are considering a disease from which
all untreated individualsdie (anew drug cannot make thingsworse)
or if weare conducting atrial of equivalence or non-inferiority (see
last section in this chapter).
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Obtaining the test statistic

After collecting the data, we substitute values from our sampleinto
aformula, specific to the test we are using, to determine avalue for
the test statistic. This reflects the amount of evidence in the data
against the null hypothesis —usually, the larger the value, ignoring
itssign, the greater the evidence.

Obtaining the P-value

All test statistics follow known theoretical probability distributions
(Chapters 7 and 8). We relate the value of the test statistic obtained
from the sampleto the known distribution to obtain the P-value, the
area in both (or occasionally one) tails of the probability distribu-
tion. Most computer packages provide the two-tailed P-value auto-
matically. TheP-valueistheprobability of obtainingour results,
or something more extreme, if the null hypothesisistrue. The
null hypothesis relates to the population of interest, rather than the
sample. Therefore, the null hypothesisis either true or false and we
cannot interpret the P-value as the probability that the null hypo-
thesisistrue.

Using the P-value

We must make a decision about how much evidence we require to
enable us to decide to reject the null hypothesis in favour of the
aternative. The smaller the P-value, the greater the evidence
against the null hypothesis.

» Conventionally, we consider that if the P-value isless than 0.05,
there is sufficient evidence to reject the null hypothesis, asthereis
only asmall chance of the results occurring if the null hypothesis
weretrue. Wethen reject the null hypothesisand say that the results
aresignificant at the 5% level (Fig. 17.1).

e In contrast, if the P-value is equa to or greater than 0.05, we
usually concludethat thereisinsufficient evidenceto reject the null
hypothesis. We do not reject the null hypothesis, and we say that the
resultsare not significant at the 5% level (Fig. 17.1). This does not
mean that the null hypothesisis true; simply that we do not have
enough evidenceto reject it.

Probability density
function

Probability Probability
P_ P_
5 =0.025 5 =0.025

T T Test statistic

A value of the A value of the
test statistic which  test statistic which

gives P>0.05 gives P<0.05

Figure 17.1 Probability distribution of the test statistic showing atwo-
tailed probability, P=0.05.



The choice of 5% isarbitrary. On 5% of occasionswe will incor-
rectly reject the null hypothesis when it is true. In situations in
which the clinical implications of incorrectly rejecting the null
hypothesis are severe, we may require stronger evidence before
rejecting the null hypothesis (e.g. we may decide to reject the null
hypothesisif the P-valueislessthan 0.01 or 0.001). The chosen cut-
off for the P-value (e.g. 0.05 or 0.01) iscalled the significancelevel
of thetest; it must be chosen before the data are collected.

Quoting a result only as significant at a certain cut-off level
(e.g. stating only that P < 0.05) can be misleading. For example,
if P=0.04 we would reject Hy; however, if P = 0.06 we would not
reject it. Are these really different? Therefore, we recommend
quoting the exact P-val ue, often obtained from the computer output.

Non-parametric tests

Hypothesis tests which are based on knowledge of the probability
distributions that the data follow are known as parametric tests.
Often data do not conform to the assumptions that underly these
methods (Chapter 35). In theseinstances we can use non-par amet-
ric tests (sometimes referred to as distribution-free tests, or rank
methods). These tests generaly replace the data with their ranks
(i.e. thenumbers 1, 2, 3 etc., describing their position in the ordered
data set) and make no assumptions about the probability distribu-
tion that the datafollow.

Non-parametrictestsare particularly useful whenthesamplesize
is small (so that it is impossible to assess the distribution of the
data), and/or when the data are measured on a categorical scale.
However, non-parametric tests are generally wasteful of informa-
tion; consequently they havelesspower (Chapter 18) to detect areal
effect than the equivalent parametric test if all the assumptions
underlying the parametric test are satisfied. Furthermore, they are
primarily significance tests that often do not provide estimates of
the effects of interest; they lead to decisions rather than an appreci-
ation or understanding of the data.

Which test?

Deciding which statistical test to use depends on the design of the
study, the type of variable and the distribution that the data being
studied follow. Theflow chart on theinsidefront cover will aid your
decision.

Hypothesis tests versus confidence
intervals

Confidence intervals (Chapter 11) and hypothesis tests are closely
linked. The primary aim of a hypothesis test is to make a decision
and provide an exact P-value. A confidence interval quantifies the
effect of interest (e.g. the difference in means), and enables us to
assess the clinical implications of the results. However, because it
providesarange of plausiblevaluesfor thetrue effect, it can also be
used to make a decision although an exact P-value is not provided.
For example, if the hypothesized value for the effect (e.g. zero) lies
outside the 95% confidence interval then we believe the hypothe-
sized value is implausible and would reject Hy,. In this instance we

know that the P-value is less than 0.05 but do not know its exact
value.

Equivalence and non-inferiority trials

In most randomized controlled trials (Chapter 14) of two or more
different treatment strategies, we are usually interested in demon-
strating the superiority of at least one treatment over the other(s).
However, in some situations we may believe that a new treatment
(e.g. drug) may be no more effective clinically than an existing
treatment but will have other important benefits, perhapsin terms of
reduced side effects, pill burden or costs. Then, we may wish to
show simply that the efficacy of the new treatment is similar (in an
equivalencetrial) or not substantially worse (in anon-inferiority
trial) than that of the existing treatment.

When carrying out an equivalence or non-inferiority trial, the
hypothesis testing procedure used in the usual superiority trial
which teststhe null hypothesis that the two treatments are the same
isirrelevant. This is because (1) a non-significant result does not
imply non-inferiority/equivalence, and (2) evenif astatistically sig-
nificant effect is detected, it may be clinically unimportant. Instead,
we essentialy reverse the null and aternative hypotheses in an
equivalencetrial, so that the null hypothesis expresses a difference
and the alternative hypothesis expresses equival ence.

Rather than calculating test statistics, we generally approach the
problem of assessing equivalence and non-inferiorityl by determin-
ing whether the confidenceinterval for the effect of interest (e.g. the
difference in means between two treatment groups) lies wholly or
partly within a predefined equivalence range (i.e. the range of
values, determined by clinical experts, that correspondsto an effect
of no clinical importance). If the whole of the confidence interval
for the effect of interest lies within the equivalence range, then we
conclude that the two treatments are equivalent; in this situation,
even if the upper and lower limits of the confidenceinterval suggest
thereisbenefit of onetreatment over the other, it isunlikely to have
any clinical importance. In anon-inferiority trial, we want to show
that the new treatment is not substantially worse than the standard
one(if the new treatment turnsout to be better than the standard, this
would be an added bonus!). Inthissituation, if thelower limit of the
appropriate confidence interval does not fall below the lower limit
of the equivalencerange, then we concludethat the new treatment is
not inferior.

Unless otherwise specified, the hypothesis tests in subsequent
chapters are tests of superiority. Note that the methods for deter-
mining sample size described in Chapter 36 do not apply to equiva
lence or non-inferiority trials. The sample size required for an
equivalence or non-inferiority trial2 isgenerally greater than that of
the comparable superiority tria if al factorsthat affect ssmple size
(e.g. significance level, power) are the same.

1John, B., Jarvis, P, Lewis, JA. and Ebbutt, A.F. (1996). Trialsto assess
equivalence: theimportance of rigorous methods. British Medical Journal 313;
36-39.

2Julious, S.A. (2004). Tutoria in Biostatistics: Sample sizesfor clinical trials
with Normal data. Statisticsin Medicine 23: 1921-1986.
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Q Errors in hypothesis testing

Making a decision

Most hypothesis tests in medical statistics compare groups of
people who are exposed to a variety of experiences. We may, for
example, beinterested in comparing the effectiveness of two forms
of treatment for reducing 5 year mortality from breast cancer. For a
given outcome (e.g. death), we call the comparison of interest (e.g.
the difference in 5 year mortality rates) the effect of interest or, if
relevant, the treatment effect. We express the null hypothesisin
termsof no effect (e.g. the 5 year mortality from breast cancer isthe
samein two treatment groups); the two-sided aternative hypothesis
is that the effect is not zero. We perform a hypothesis test that
enables usto decide whether we have enough evidenceto reject the
null hypothesis (Chapter 17). We can make one of two decisions;
either weregject the null hypothesis, or we do not reject it.

Making the wrong decision

Although we hope we will draw the correct conclusion about the
null hypothesis, we have to recognize that, because we only have a
sample of information, we may make the wrong decision when we
reject/do not reject the null hypothesis. The possible mistakes we
can make are shown in Table 18.1.

* Typel error: we reject the null hypothesis when it is true, and
conclude that there is an effect when, in reality, thereis none. The
maximum chance (probability) of making aType| error is denoted
by o (alpha). Thisisthe significance level of the test (Chapter 17);
we reject the null hypothesisif our P-value is less than the signifi-
cancelevd,i.e.if P<a.

We must decide on the value of o before we collect our data; we

usually assign aconventional value of 0.05 toit, although we might
choose a more restrictive value such as 0.01 or a less restrictive
value such as 0.10. Our chance of making aType | error will never
exceed our chosen significance level, say o= 0.05, because we will
only reject the null hypothesisif P < 0.05. If wefind that P > 0.05,
we will not reject the null hypothesis, and, consequently, do not
makeaTypel error.
e Type |l error: we do not reject the null hypothesis when it is
false, and conclude that there is no effect when one really exists.
The chance of making a Type Il error is denoted by S (beta); its
compliment, (1 - f3), isthe power of thetest. The power, therefore,
is the probability of rejecting the null hypothesis when it is false;
i.e. it is the chance (usualy expressed as a percentage) of
detecting, as statistically significant, a real treatment effect of a
givensize.

Ideally, we should like the power of our test to be 100%; we
must recognize, however, that this is impossible because there is
always a chance, albeit dim, that we could make a Type Il
error. Fortunately, however, we know which factors affect power,
and thus we can control the power of atest by giving consideration
to them.

Power and related factors

Itisessential that we know the power of aproposed test at the plan-
ning stage of our investigation. Clearly, we should only embark on
astudy if webelievethat it hasa‘good’ chance of detecting aclini-
caly relevant effect, if oneexists(by ‘ good’ we mean that the power
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should be at least 80%). It isethically irresponsible, and wasteful of
time and resources, to undertake aclinical tria that has, say, only a
40% chance of detecting areal treatment effect.

A number of factors have a direct bearing on power for a given
test.

» The sample size: power increases with increasing sample size.
This means that a large sample has a greater ability than a small
sample to detect a clinically important effect if it exists. When the
samplesizeisvery small, thetest may have an inadequate power to
detect a particular effect. We explain how to choose sample size,
with power considerations, in Chapter 36. The methods can also be
used to evaluate the power of the test for a specified sample size.

» Thevariability of the observations: power increases asthe vari-
ability of the observations decreases (Fig. 18.1).

» The effect of interest: the power of the test is greater for larger
effects. A hypothesis test thus has a greater chance of detecting a
largereal effect than asmall one.

» The significance level: the power is greater if the significance
level islarger (thisisequivalent to the probability of the Typel error
(@) increasing as the probability of the Typell error (f3) decreases).
So, wearemorelikely to detect areal effect if we decide at the plan-
ning stage that we will regard our P-value as significant if it isless
than 0.05 rather than less than 0.01. We can see this relationship
between power and the significance level in Fig. 18.2.

Notethat aninspection of theconfidenceinterval (Chapter 11) for
the effect of interest gives an indication of whether the power of the
test was adequate. A wide confidence interval results from a small
sample and/or data with substantial variability, and is a suggestion
of low power.

Multiple hypothesis testing

Often, we want to carry out anumber of significancetests on adata
set, e.g. when it comprises many variables or there are more than
two treatments. The Type | error rate increases dramatically as the
number of comparisonsincreases, leading to spurious conclusions.
Therefore, we should only perform asmall number of tests, chosen
to relate to the primary aims of the study and specified apriori. Itis
possible to use some form of post-hoc adjustment to the P-value to
take account of the number of tests performed (Chapter 22). For
example, the Bonferroni approach (often regarded as rather con-
servative) multiplies each P-value by the number of tests carried
out; any decisions about significance are then based on this adjusted
P-value.

Table 18.1 The consequences of hypothesistesting.

Reject H, Do not reject Hy
H, true Typel error No error
H,false No error Typell error




Figure 18.1 Power curves showing therelation-
ship between power and the sample sizein each
of two groups for the comparison of two means
using the unpaired t-test (Chapter 21). Each
power curverelatesto atwo-sided test for which
the significancelevel is0.05, and the effect of
interest (e.g. the difference between the treatment
means) is 2.5. The assumed equal standard devia-
tion of the measurementsin the two groupsis dif-
ferent for each power curve (see Example,
Chapter 36).

Figure 18.2 Power curves showing the relation-
ship between power and the sample sizein each of
two groups for the comparison of two proportions
using the Chi-squared test (Chapter 24). Curves
are drawn when the effect of interest (e.g. the dif-
ferencein the proportions with the characteristic
of interest in the two treatment groups) is either
0.25 (i.e. 0.65—0.40) or 0.10 (i.e. 0.50 — 0.40);
the significance level of the two-sided test iseither
0.05 or 0.01 (see Example, Chapter 36).
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Q Numerical data: a single group

The problem

We have asample from asingle group of individuals and one numeri-
cd or ordina variable of interest. We are interested in whether the
average of thisvariabletakesaparticular vaue. For example, we may
have a sample of patients with a specific medical condition. We have
been monitoring triglyceridelevelsin theblood of healthy individuals
and know that they haveageometric mean of 1.74mmol/L. Wewishto
know whether theaveragelevel inour patientsisthesameasthisvalue.

The one-sample t-test

Assumptions

In the population, the variable is Normally distributed with agiven
(usually unknown) variance. In addition, we have taken a reason-
able sample size so that we can check the assumption of Normality
(Chapter 35).

Rationale

We are interested in whether the mean, u, of the variable in the
population of interest differsfrom some hypothesized value, u,. We
use atest statistic that isbased on the difference between the sample
mean, X, and u,. Assuming that we do not know the popul ation vari-
ance, then this test statistic, often referred to as t, follows the t-
distribution. If we do know the population variance, or the sample
size is very large, then an dternative test (often called a ztest),
based on the Normal distribution, may be used. However, in these
situations, results from both testsare virtually identical.

Additional notation
Our sampleisof size n and the estimated standard deviationiss.

1 Definethenull and alter native hypotheses under study
H,: the mean in the population, u, equals u,
H,: the mean in the population does not equal u;.

2 Collect relevant data from a sample of individuals

continued

3 Calculatethevalue of thetest statistic specifictoH,,

o (X=m)

T gvn
which followsthet-distribution with (n— 1) degrees of freedom.
4 Compare the value of the test statistic to values from a

known probability distribution
Refer t to Appendix A2.

5 Interpret the P-valueand results
Interpret the P-value and calculate a confidence interval for
the true mean in the population (Chapter 11).

The 95% confidence interval isgiven by:
Xty 5% (5/vn)

wheret, - isthe percentage point of thet-distributionwith (n—1)
degrees of freedom which gives atwo-tailed probability of 0.05.

Interpretation of the confidence interval

The 95% confidenceinterval providesarange of valuesinwhichwe
are 95% certain that the true popul ation mean lies. If the 95% confi-
dence interval does not include the hypothesized value for the
mean, u,, wergject the null hypothesis at the 5% level. If, however,
the confidence interval includes u,, then we fail to reject the null
hypothesisat that level.

If the assumptions are not satisfied

We may be concerned that the variable does not follow a Normal
distributioninthe population. Whereasthet-test isrelatively robust
(Chapter 35) to some degree of non-Normality, extreme skewness
may be aconcern. We can either transform the data, so that the vari-
able is Normally distributed (Chapter 9), or use a non-parametric
test such asthe sign test or Wilcoxon signed rankstest (Chapter 20).
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Rationale

Thesigntest isasimpletest based on the median of the distribution.
We have some hypothesized value, A, for the median in the popula-
tion. If our sample comes from this population, then approximately
half of the values in our sample should be greater than A and half
should be less than A (after excluding any values which equal 7).

The sign test considers the number of valuesin our sample that are
greater (or less) than A.

Thesigntest isasimpletest; we can use amore powerful test, the
Wilcoxon signed ranks test (Chapter 20), which takes into account
theranksof thedataaswell astheir signswhen carrying out such an
anaysis.

1 Definethenull and alter native hypothesesunder study
H,: the median in the popul ation equals 4
H,: the median in the popul ation does not equal A.

2 Collect relevant data from a sample of individuals

3 Calculatethevalueof thetest statistic specifictoH,,
Ignoreall valuesthat are equal to 4, leaving n” values. Count the
vauesthat are greater than A. Similarly, count the values that are
lessthan A. (In practice thiswill often involve calculating the dif-
ference between each value in the sample and A, and noting its
sign.) Consider r, the smaller of these two counts.
e |f " <10, thetest statisticisr

’

nl 1

r _—
’ — ‘ 2 2
e |f n"> 10, calculate Z—T
2
where n’/2 is the number of values above (or below) the median
that wewould expect if the null hypothesisweretrue. The vertical

bars indicate that we take the absolute (i.e. the positive) value of
the number inside the bars. The distribution of zis approximately
Normal. The subtraction of %, in the formulafor zis acontinuity
correction, which we havetoincludeto allow for the fact that we
are relating a discrete value (r) to a continuous distribution (the
Normal distribution).

4 Compare the value of the test statistic to values from a
known probability distribution

e If n” <10, refer r to Appendix A6

e If n”> 10, refer zto Appendix Al.

5 Interpret the P-valueand results

Interpret the P-value and calculate a confidence interval for the
median—some statistical packages provide this automaticaly; if
not, we can rank thevaluesin order of sizeand refer to Appendix A7
to identify the ranks of the values that are to be used to define the
limits of the confidenceinterval. In general, confidence intervalsfor
the median will be wider than those for the mean.

Example

Thereissome evidencethat high blood triglyceridelevelsare asso-
ciated with heart disease. As part of alarge cohort study on heart
disease, triglyceride levels were available in 232 men who devel-
oped heart disease over the 5 years after recruitment. We are inter-
ested in whether the average triglyceride level in the population of
men from which this sample is chosen is the same as that in the

general population. A one-samplet-test was performed to investi-
gatethis. Triglyceridelevelsare skewed to theright (Fig. 8.3a); log
triglyceride levels are approximately Normally distributed (Fig.
8.3b), so we performed our analysis on the log values. In the men
in the general population, the mean of the log values equals
0.2410g,, (mmol/L) equivalent to ageometric mean of 1.74mmol/L.

1 H,: the mean log,, (triglyceride level) in the population of
men who develop heart disease equals 0.241og (mmol/L)

H,: themeanlog, (triglyceridelevel) inthe population of men
who devel op heart disease does not equal 0.241og (mmol/L).
2 Samplesize, n=232

Mean of log values, X =0.311og (mmol/L)

Standard deviation of log values, s= 0.231og (mmol/L).

3 Test statistic, _ 0.31-0.24
0.23/v232

4 We refer t to Appendix A2 with 231 degrees of freedom:
P < 0.001

=4.64

5 Thereisstrong evidenceto reject the null hypothesisthat the
geometric mean triglyceride level in the population of men
who develop heart disease equals 1.74 mmol/L. The geometric
mean triglyceride level in the population of men who develop
heart disease is estimated as antilog (0.31) = 10031, which
equals 2.04mmol/L. The 95% confidence interval for the
geometric mean triglyceride level ranges from 1.90 to
2.19mmol/L (i.e. antilog [0.31 + 1.96 x 0.23/+/232]). There-
fore, in this population of patients, the geometric mean trigly-
ceride level is significantly higher than that in the genera
population.

continued
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We can use the sign test to carry out a similar analysis on the
untransformed triglyceride level s asthis does not make any distri-

butional assumptions. We assume that the median and geometric
mean triglyceride level in the male population are similar.

1 H,: the median triglyceride level in the population of men
who develop heart disease equals 1.74mmol/L.

H,: the median triglyceride level in the population of men
who develop heart disease does not equal 1.74mmol/L.

2 Inthisdataset, the median value equals 1.94mmol/L.

3 Weinvestigate the differences between each value and 1.74.
There are 231 non-zero differences, of which 135 are positive
and 96 are negative. Therefore, r = 96. As the number of non-
zero differencesis greater than 10, we calculate:

oo 2341
Z=

21 2
=2.50
V231

2

4 Werefer ztoAppendix Al: P=0.012.

5 There is evidence to reject the null hypothesis that the
median triglyceride level in the population of men who
develop heart disease equals 1.74mmol/L. The formula in
Appendix A7 indicatesthat the 95% confidenceinterval for the
population median is given by the 101st and 132nd ranked
values; these are 1.77 and 2.16mmol/L. Therefore, in this
population of patients, the median triglyceride level is
significantly higher than that in the general population.

Datakindly provided by Dr F.C. Lampe, MsM. Walker and Dr P. Whincup, Department of Primary Care and Population Sciences, Royal Free and University

College Medical School, London, UK.
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@ Numerical data: two related groups

The problem

We have two samplesthat are rel ated to each other and one numeri-
cal or ordinal variable of interest.

e Thevariable may be measured on each individual intwo circum-
stances. For example, inacross-over trial (Chapter 13), each patient
has two measurements on the variable, one while taking active
treatment and one while taking placebo.

e Theindividualsin each sample may bedifferent, but arelinked to
each other in some way. For example, patientsin one group may be
individually matched to patientsin the other group in acase—control
study (Chapter 16).

Such dataareknown aspaired data. It isimportant to take account
of the dependence between the two samples when analysing the
data, otherwise the advantages of pairing (Chapter 13) are lost. We
do this by considering the differences in the values for each pair,
thereby reducing our two samplesto asingle sample of differences.

The paired t-test

Assumption

In the population of interest, the individua differences are Nor-
mally distributed with a given (usually unknown) variance. We
have areasonable sample size so that we can check the assumption
of Normality.

Rationale

If the two sets of measurements were the same, then we would
expect the mean of the differences between each pair of measure-
mentsto be zero inthe population of interest. Therefore, our test sta-
tistic smplifies to a one-sample t-test (Chapter 19) on the
differences, where the hypothesized value for the mean difference
inthe populationis zero.

Additional notation

Because of the paired nature of the data, our two samples must be of
the same size, n. We have n differences, with sample mean, X, and
estimated standard deviation s,

1 Definethenull and alter native hypothesesunder study
H,: the mean difference in the population equals zero
H,: themean differencein the popul ation does not equal zero.
2 Coallect relevant data from two related samples

3 Calculatethevalueof thetest statistic specifictoH,,
(d-0 d

~ SE(d)  g/vn
which followsthet-distribution with (n— 1) degrees of freedom.
4 Compare the value of the test statistic to values from a
known probability distribution

Refer t to Appendix A2.

continued

5 Interpret the P-valueand results

Interpret the P-value and calculate a confidence interval for the
true mean difference in the population. The 95% confidence
interval isgiven by

d 105 X (S4/VN)

where t, o is the percentage point of the t-distribution with
(n—1) degrees of freedom which gives atwo-tailed probability
of 0.05.

If the assumption is not satisfied

If the differences do not follow a Normal distribution, the assump-
tionunderlying thet-test isnot satisfied. We can either transform the
data (Chapter 9), or use a non-parametric test such as the sign test
(Chapter 19) or Wilcoxon signed ranks test to assess whether the
differences are centred around zero.

The Wilcoxon signed ranks test

Rationale

In Chapter 19, we explained how to use the sign test on asingle
sample of numerical measurements to test the null hypothesis that
the population median equalsaparticular value. We can also usethe
sign test when we have paired observations, the pair representing
matched individuals (e.g. in a case—control study, Chapter 16) or
measurements made on the same individual in different circum-
stances (asin across-over tria of two treatments, A and B, Chapter
13). For each pair, we evaluate the differ ence in the measurements.
Thesign test can be used to assess whether the median differencein
the population equals zero by considering the differences in the
sample and observing how many are greater (or less) than zero.
However, the sign test does not incorporate information on the sizes
of these differences.

The Wilcoxon signed ranks test takes account not only of the
signs of the differences but also their magnitude, and thereforeisa
more powerful test (Chapter 18). Theindividual differenceiscalcu-
lated for each pair of results. Ignoring zero differences, these are
then classed asbeing either positive or negative. In addition, the dif-
ferences are placed in order of size, ignoring their signs, and are
ranked accordingly. The smallest difference thus gets the value 1,
the second smallest getsthevalue 2, etc. up to thelargest difference,
whichisassignedthevauen’, if therearen’ non-zero differences. If
two or more of the differences are the same, they each receive the
mean of the ranks these values would have received if they had not
been tied. Under the null hypothesis of no difference, the sums of
theranksrelating to the positive and negative differences should be
the same (see following box).
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1 Definethenull and alter native hypothesesunder study
H,: the median differencein the popul ation equals zero
H,: the median differencein the population does not equal zero.

2 Collect relevant data from two related samples

3 Calculatethevalueof thetest statistic specifictoH,,

Calculate the difference for each pair of results. Ignoring their
signs, rank all n” non-zero differences, assigning thevalue 1 to the
smallest difference and thevaluen’ to thelargest. Sum the ranks of
the positive (T,) and negative differences (T_).

o If n" < 25, the test statistic, T, takes the value T, or T_,
whichever issmaller

* If n"> 25, calculate the test statistic z, where:

‘T M+ 1
. 4 2
(n’(n’ +1)(2n’ +1))

24

zfollowsaNormal distribution (itsvalue hasto beadjustedif there
are many tied valuest).

4 Compare the value of the test statistic to values from a
known probability distribution

o If n” <25, refer Tto Appendix A8

o 1f n"> 25, refer zto Appendix Al.

5 Interpret the P-valueand results
Interpret the P-value and calcul ate a confidence interval for the
median difference (Chapter 19) in the entire sample.

1Siegel, S. & Castellan, N.J. (1988) Nonparametric Statistics for the Behavioural Sciences, 2nd edn, McGraw-Hill, New York.

Examples

Ninety-six new recruits, all men aged between 16 and 20 years, had
their teeth examined when they enlisted in the Royal Air Force.
After receiving the necessary treatment to maketheir teeth dentally
fit, they were examined one year later. A complete mouth, exclud-
ing wisdom teeth, has 28 teeth and, in this study, every tooth had
four sites of periodontal interest; each recruit had aminimum of 84
and amaximum of 112 measurable siteson each occasion. It was of
interest to examine the effect of treatment on pocket depth, a

measure of gum disease (greater pocket depth indicates worse
disease). Pocket depth was evaluated for each recruit as the mean
pocket depth over the measurable sitesin his mouth.

Asthedifference in pocket depth was approximately Normally
distributed in this sample of recruits, a paired t-test was per-
formed to determine whether the average pocket depth was the
same before and after treatment. Full computer output isshownin
Appendix C.

1 H,: the mean difference in a man’'s average pocket depth
before and after treatment in the population of recruits equals
Zero

H,: the mean difference in a man's average pocket depth
before and after treatment in the population of recruits does not
equal zero.

2 Sample size, n = 96. Mean difference of average pocket
depth, X = 0.1486mm. Standard deviation of differences, s; =
0.5601 mm.

0.1486

3 Test tatistic, t=—————
0.5601/~/96

=2.60

4 We refer t to Appendix A2 with (96 — 1) = 95 degrees of
freedom: 0.01 < P < 0.05 (computer output gives P = 0.011).

5 We have evidence to reject the null hypothesis, and can infer
that arecruit’saverage pocket depth wasreduced after treatment.
The 95% confidence interval for the true mean difference in
average pocket depth is 0.035 to 0.262mm (i.e. 0.1486 + 1.95 x
0.5601/~/96). Of course, we have to be careful here if we want
to conclude that it is the treatment that has reduced average
pocket depth, aswe have no control group of recruitswho did not
receive treatment. The improvement may be a consequence of
time or achangein dental hygiene habits, and may not be due to
the treatment received.

continued
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The datain the following table show the percentage of measur-
able sites for which there was loss of attachment at each assess-
ment in each of 14 of these recruits who were sent to aparticular
air forcebase. Loss of attachment isan indication of gum disease

that may be more advanced than that assessed by pocket depth.
Asthedifferencesin the percentages were not Normally distrib-
uted, we performed aWilcoxon signed rankstest to investigate
whether treatment had any effect on loss of attachment.

1 H,: the median of the differences (before and after treatment)
in the percentages of siteswith loss of attachment equals zeroin
the population of recruits

H,: the median of the differences in the percentages of sites
with loss of attachment does not equal zero in the popul ation.

2 The percentages of measurable sites with loss of attachment,
before and after treatment, for each recruit are shownin thetable
below.

3 There is one zero difference; of the remaining n” = 13 differ-
ences, three are positive and 10 are negative. The sum of the
ranks of the positive differences, T, =3+ 5+ 13=21.

4 Asn’ < 25, werefer T, to Appendix A8: P > 0.05 (computer
output gives P =0.09).

5 Thereisinsufficient evidence to reject the null hypothesis of
no changein the percentage of siteswith loss of attachment. The
median difference in the percentage of sites with loss of attach-
ment is—3.1% (i.e. the mean of —2.5% and —3.6%), a negative
median difference indicating that, on average, the percentage of
siteswith loss of attachment is greater after treatment, although
this difference is not significant. Appendix A7 shows that the
approximate 95% confidence interval for the median difference
in the population is given by the 3rd and the 12th ranked differ-
ences (including the zero difference); these are —12.8% and
0.9%. Although the result of thetest is not significant, the lower
limit indicates that the percentage of sites with loss of attach-
ment could be as much as 12.8% more after the recruit received
treatment!

Recruit 1 2 & 4 5 6 7 8 9 10 11 12 13 14
Before (%) 655 750 872 971  100.0 926 823 900 930 1000 917 97.7 790 954
After (%) 1000 100 1000 971 99.1 1000 916 946 955 973 923 980 100.0 99.0
Difference (%) -345 650 128 0.0 0.9 -74 93 46 -25 27 06 -03 -210 -36
Rank 12 13 10 — 3 8 9 7 4 5 2 1 11 6

Duffy, S. (1997) Results of athree year longitudinal study of early periodontitisin agroup of British male adolescents. M Sc Dissertation, University of London,

Eastman Dental Institute for Oral Health Care Sciences.
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Q Numerical data: two unrelated groups

The problem

We have samples from two independent (unrelated) groups of indi-
viduals and one numerical or ordinal variable of interest. We are
interested in whether the mean or distribution of the variable isthe
samein the two groups. For example, we may wish to compare the
weightsin two groups of children, each child being randomly allo-
cated to receive either adietary supplement or placebo.

The unpaired (two-sample) t-test
Assumptions

Inthepopulation, thevariableisNormally distributed in each group
and the variances of the two groups are the same. In addition, we
have reasonable sample sizes so that we can check the assumptions
of Normality and equal variances.

Rationale

We consider the difference in the means of the two groups. Under
the null hypothesis that the population meansin the two groups are
the same, this difference will equal zero. Therefore, we use a test
statistic that isbased on the differencein the two sample means, and
on the value of the difference in population means under the null
hypothesis (i.e. zero). This test statistic, often referred to as t,
follows the t-distribution.

Notation
Our two samples are of size n, and n,. Their means are X, and X,
their standard deviationsare s, and s,.

1 Definethenull and alter native hypothesesunder study
H,: the popul ation meansin the two groups are equal
H,: the population meansin the two groups are not equal .
2 Collect relevant data from two samplesof individuals
3 Calculatethevalueof thetest statistic specifictoH,,
If sisan estimate of the pooled standard deviation of the two
groups,
o [0+, -3
n+n,-2

then thetest statisticisgiven by t where:
t= ()_(1_)_(2)_0 — ()_(1_)_(2)

E()_(1 - )_(2) S\/l + i
L n
which follows the t-distribution with (n, + n, — 2) degrees of
freedom.

continued

4 Compare the value of the test statistic to values from a
known probability distribution

Refer t to Appendix A2. When the sample sizes in the two
groups are large, the t-distribution approximates a Normal dis-
tribution, and then we reject the null hypothesis at the 5% level
if the absolute value (i.e. ignoring the sign) of t is greater than
1.96.

5 Interpret the P-valueand results

Interpret the P-value and calculate a confidence interval for
the difference in the two means. The 95% confidence interval,
assuming equal variances, is given by:

(%= %) &t 05X SE(X, — %)
where t; .- is the percentage point of the t-distribution with

(n, + n, — 2) degrees of freedom which gives a two-tailed
probability of 0.05.

Interpretation of the confidence interval

The upper and lower limits of the confidenceinterval can be used to
assess whether the difference between the two mean values is
clinically important. For example, if the upper and/or lower limitis
close to zero, this indicates that the true difference may be very
small and clinically meaningless, even if the test is statistically
significant.

If the assumptions are not satisfied

When the samplesizesarereasonably large, thet-testisfairly robust
(Chapter 35) to departures from Normality. However, it is less
robust to unequal variances. Thereisamodification of the unpaired
t-test that alows for unequal variances, and results from it are
often provided in computer output. However, if you are concerned
that the assumptions are not satisfied, then you either transform the
data (Chapter 9) to achieve approximate Normality and/or equal
variances, or use a hon-parametric test such as the Wilcoxon rank
sum test.

The Wilcoxon rank sum (two-sample) test
Rationale

The Wilcoxon rank sum test makes no distributional assumptions
and is the non-parametric equivalent to the unpaired t-test. The test
is based on the sum of the ranks of the values in each of the two
groups, these should be comparabl e after allowing for differencesin
sample size if the groups have similar distributions. An equivalent
test, known as the Mann-Whitney U test, gives identical results
although it is slightly more complicated to carry out by hand.
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1 Definethenull and alter native hypothesesunder study
H,- thetwo groups have the same distribution in the population
H,: thetwo groups have different distributionsin the popul ation.

2 Collect relevant data from two samplesof individuals

3 Calculatethevalueof thetest statistic specifictoH,,

All observations are ranked as if they were from a single
sample. Tied observations are given the mean of the ranks the
values would have received if they had not been tied. The sum of
the ranks, T, is then calculated in the group with the smaller
samplesize.

* If the sample size in each group is 15 or less, T is the test

statistic

« If at least one of the groups has asample size of morethan 15,

calculatethe test statistic

(T-uy)

Z2=—""=

O

which followsaNormal distribution, where

1Siegel, S. & Castellan, N.J. (1988) Nonparametric Statisticsfor the Behavioural Sciences, 2nd edn. McGraw-Hill, New York.

_ng(ng+n_+1)

Uy = > o =N u; /6

and ngand n,_arethe samplesizesof thesmaller and larger groups,
respectively. zmust be adjusted if there are many tied valuest.

4 Compare the value of the test statistic to values from a
known probability distribution
o If the sample size in each group is 15 or less, refer T to
Appendix A9
« If at least one of the groups has asample size of morethan 15,
refer zto Appendix Al.

5 Interpret the P-valueand results

Interpret the P-value and obtain a confidence interval for the
differencein thetwo medians. Thisistime-consuming to calculate
by hand so details have not been included; some statistical pack-
ageswill providethe ClI. If thisconfidenceinterval isnot included
in your package, you can quote a confidence interval for the
median in each of the two groups.

Example 1

In order to determine the effect of regular prophylactic inhaled
corticosteroids on wheezing episodes associated with viral infec-
tionin school age children, arandomized, double-blind controlled
trial was carried out comparing inhaled beclomethasone dipropi-
onate with placebo. In this investigation, the primary endpoint

was the mean forced expiratory volume (FEV 1) over a 6 month
period. After checking the assumptions of Normality and constant
variance (see Fig. 4.2), we performed an unpaired t-test to
compare the means in the two groups. Full computer output is
shown in Appendix C.

1 H,: themean FEV 1in the population of school agechildrenis
the samein the two treatment groups

H,: themean FEV 1 in the popul ation of school age childrenis
not the same in the two treatment groups.
2 Treated group: sample size, n; = 50; mean, X, = 1.64 litres,
standard deviation, s, = 0.29 litres
Placebo group: samplesize, n,=48; mean, X,=1.54litres; stan-
dard deviation, s, = 0.25 litres.
3 Pooled standard deviation,

< [(49%029%)+(47x0.25)
(50+48-2)

=0.2670 litres.

1.64-1.54

Test statistic, t= T 1
0.2670><\/— +—
50 48

=1.9145

4 We refer t to Appendix A2 with 50 + 48 — 2 = 96 degrees of
freedom. BecauseA ppendix A2 isrestricted to certain degrees of
freedom, we have to inter polate (estimate the required value
that lies between two known values). We therefore interpolate
between the values relating to 50 and 100 degrees of freedom.
Hence, P > 0.05 (computer output gives P = 0.06).

5 We have insufficient evidence to reject the null hypothesis at
the 5% level. However, as the P-value is only just greater than
0.05, there may be an indication that the two population means
aredifferent. The estimated difference between thetwo meansis
1.64—-1.54=0.10litres. The 95% confidenceinterval for thetrue
differencein the two means ranges from —0.006 to 0.206 litres

{= 0.10+ (1.96>< 0.2670x \/ﬂﬂ
50 48

Datakindly provided by Dr |. Doull, Cystic Fibrosis/Respiratory Unit, Department of Child Health, University Hospital of Wales, Cardiff, UK and Dr F.C.
Lampe, Department of Primary Care and Population Sciences, Royal Free and University College Medical School, London, UK.
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Example 2

In order to study whether the mechanisms involved in fatal
soybean asthma are different from that of normal fatal asthma, the
number of CD3+ T cellsin the submucosa, ameasure of thebody’s
immune system, was compared in seven cases of fatal soybean

dust-induced asthma and 10 fatal asthma cases. Because of the
small sample sizes and obviously skewed data, we performed a
Wilcoxon rank sum test to compare the distributions.

1 H,: the distributions of CD3+ T-cell numbers in the two
groupsin the population are the same

H,: the distributions of CD3+ T-cell numbers in the two
groupsin the population are not the same.
2 Soy-bean group: sample size, ng = 7, CD3+ T-cell
levels (cellsfmm?) were 34.45, 0.00, 1.36, 0.00, 1.43, 0.00,
4.01

Asthma group: sample size, n, = 10, CD3+ T-cell levels
(cellmm?) were 74.17, 13.75, 37.50, 1225.51, 99.99, 3.76,
58.33, 73.63, 4.32, 154.86.

The ranked data are shown in the table bel ow.

3 Sum of theranksin the soy-beangroup=2+2+2+4+5+7
+10=32

Sum of theranksin the asthmagroup=6+8+9+ 11+ 12 +
13+14+15+16+17=121.

4 Because there are 10 or less values in each group, we obtain
the P-value from Appendix A9: P < 0.01 (computer output gives
P=0.002).

5 Thereisevidenceto reject the null hypothesisthat the distrib-
utions of CD3+ T-cell levels are the samein the two groups. The
median number of CD3+ T cellsin the soybean and fatal asthma
groups are 1.36 (95% confidence interval 0 to 34.45) and
(58.33 + 73.63)/2 = 65.98 (95% confidence interval 4.32 to
154.86) cells'mm?, respectively. We thus believe that CD3+
T cells are reduced in fatal soybean asthma, suggesting a diff-
erent mechanism from that described for most asthma deaths.

Soy-bean 0.00 0.00 0.00 1.36 1.43 4.01 34.45
Asthma 3.76 432 1375 37.50 58.33 73.63 7417 99.99 154.86 122551
Rank 2 2 2 4 5 6 7 8 10 11 12 13 14 15 16 17

Datakindly provided by Dr M. Synek, Coldeast Hospital, Sarisbury, and Dr F.C. Lampe, Department of Primary Care and Population Sciences, Royal Free and

University College Medical School, London UK.
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@ Numerical data: more than two groups

The problem

We have samples from anumber of independent groups. We have a
single numerical or ordinal variable and are interested in whether
the average value of the variable variesin the different groups, e.g.
whether the average platelet count varies in groups of women with
different ethnic backgrounds. Although we could perform tests to
compare the averages in each pair of groups, the high Type | error
rate, resulting from thelarge number of comparisons, meansthat we
may draw incorrect conclusions (Chapter 18). Therefore, we carry
out asingle global test to determine whether the averages differ in
any groups.

One-way analysis of variance

Assumptions

The groups are defined by thelevels of asinglefactor (e.g. different
ethnic backgrounds). In the population of interest, the variable
isNormally distributed in each group and thevariancein each group
isthe same. We have areasonabl e sample size so that we can check
these assumptions.

Rationale

The one-way analysis of variance separates the total variability in
the datainto that which can be attributed to differences between the
individuals from the different groups (the between-group varia-
tion), and to the random variation between the individuals within
each group (the within-group variation, sometimes called unex-
plained or residual variation). These components of variation are
measured using variances, hence the name analysis of variance
(ANOVA). Under the null hypothesis that the group means are the
same, the between-group variance will be similar to the within-
group variance. If, however, there are differences between the
groups, then the between-group variance will be larger than the
within-group variance. The test is based on the ratio of these two
variances.

Notation

We have k independent samples, each derived from a different
group. The sample sizes, means and standard deviations in each
grouparen;, X, ands;, respectively (i=1,2, . . ., k). Thetotal sample
sizeisn=n;+n,+...+n,.

1 Definethenull and alter native hypothesesunder study
H,: al group meansin the population are equal
H,: at least one group mean in the popul ation differs from the
others.

2 Collect relevant data from samplesof individuals

3 Calculatethevalueof thetest statistic specifictoH,,

The test statistic for ANOVA is aratio, F, of the between-
group variance to the within-group variance. This F-statistic
followsthe F-distribution (Chapter 8) with (k— 1, n— 1) degrees
of freedom in the numerator and denominator, respectively.

Thecalculationsinvolvedin ANOVA are complex and are not
shown here. Most computer packages will output the values
directly inan ANOVA table, which usualy includes the F-ratio
and P-value (see Example 1).

4 Compare the value of the test statistic to values from a
known probability distribution

Refer theF-ratio to Appendix A5. Because the between-group
variation is greater than or equal to the within-group variation,
we ook at the one-sided P-values.

5 Interpret the P-valueand results

If we obtain a significant result at thisinitial stage, we may
consider performing specific pairwise post-hoc comparisons.
We can use one of a humber of special tests devised for this
purpose (e.g. Duncan’s, Scheffé's) or we can use the unpaired
t-test (Chapter 21) adjusted for multiple hypothesis testing
(Chapter 18). We can also calculate a confidence interval for
each individual group mean (Chapter 11). Note that we use a
pooled estimate of the variance of the values from all groups
when calculating confidence intervals and performing t-tests.
Most packagesrefer to this estimate of the variance astheresid-
ual variance or residual mean square; it is found in the
ANOVA table.

Although the two tests appear to be different, the unpaired t-test
and ANOVA giveequivalent resultswhen thereare only two groups
of individuals.
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If the assumptions are not satisfied

Although ANOVA is relatively robust (Chapter 35) to moderate
departures from Normality, it is not robust to unequal variances.
Therefore, before carrying out theanalysis, we check for Normality,
and test whether the variances are similar in the groups either by
eyeballing them, or by using Levene's test or Bartlett's test
(Chapter 35). If the assumptions are not satisfied, we can either
transform the data (Chapter 9) or use the non-parametric equivalent
of one-way ANOVA, the Kruskal-Wallistest.

Rationale

This non-parametric test is an extension of the Wilcoxon rank sum
test (Chapter 21). Under the null hypothesis of no differencesin the
distributions between the groups, the sums of the ranks in each of
the k groups should be comparable after allowing for any differ-
encesin samplesize.

Example 1

A total of 150 women of different ethnic backgrounds were
included in a cross-sectional study of factors related to blood
clotting. We compared mean platelet levels in the four groups

1 Definethenull and alter native hypothesesunder study
H,: each group has the same distribution of values in the
population
H,: each group does not have the same distribution of values
in the population.
2 Collect relevant data from samplesof individuals

3 Calculatethevalue of thetest statistic specifictoH,,

Rank al nvaluesand cal cul ate the sum of theranksin each of
the groups: these sums are R, . . . R.. The test statistic (which
should be modified if there are many tied valuest) isgiven by:

- n(n+1)Z -3n+Y

which follows a Chi-squared distribution with (k— 1) df

4 Compare the value of the test statistic to values from a
known probability distribution
Refer H to Appendix A3.

5 Interpret the P-valueand results

Interpret the P-value and, if significant, perform two-sample
non-parametric tests, adjusting for multiple testing. Calculate a
confidenceinterval for the median in each group.

1Siegel, S. and Castellan, N.J. (1988) Nonparametric Satistics for the
Behavioral Sciences, 2nd edn. McGraw-Hill, New York.

We use one-way ANOVA or its non-parametric equivalent when
the groupsrelate to asingle factor and are independent. We can use
other forms of ANOVA when the study design is more complex2.

2Mickey, R.M., Dunn, O.J. and Clark, V.A. (2004) Applied Satistics: Analysis
of Variance and Regression. 3rd Edn. Wiley, Chichester.

using aone-way ANOVA. It wasreasonableto assume Normality
and constant variance, as shown in the computer output (Appen-
dix C).

1 H,: there are no differences in the mean platelet levelsin the
four groupsin the population

H,: at least one group mean platelet level differs from the
othersin the population.

2 Thefollowing table summarizes the datain each group.

Samplesize Mean (x109) Standard 95% CI for mean (using pooled
Group n (%) X deviation (x109), s standard deviation—see point 3)
Caucasian 90 (60.0) 268.1 77.08 252.7t0283.5
Afro-Caribbean 21 (14.0) 254.3 67.50 220.9t0287.7
Mediterranean 19(12.7) 281.1 71.09 245.7t0316.5
Other 20(13.3) 2733 63.42 238.9t0307.7

continued
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3 Thefollowing ANOVA tableis extracted from the computer output:

Source Sum of sguares df Mean square F-ratio P-value
Between ethnic group 7711.967 2570.656 0.477 0.6990
Within ethnic group 787289.533 146 5392.394

Pooled standard deviation = v/5392.394 x 109= 73.43 x 10°.

4 The ANOVA table gives P = 0.70. (We could have referred F
to Appendix A5 with (3, 146) degrees of freedom to determine
the P-value.)

5 There is insufficient evidence to reject the null hypothesis
that the mean levelsin the four groups in the population are the
same.

Datakindly provided by Dr R.A. Kadir, University Department of Obstetrics and Gynaecol ogy, and Professor C.A. Lee, Haemophilia Centre and Haemostasis

Unit, Royal Free Hospital, London, UK.

Example 2

Quality-of-life scores, measured using the SF-36 questionnaire,
were obtained in three groups of individuals: those with severe
haemophilia, those with mild/moderate haemophilia, and normal
controls. Each group comprised a sample of 20 individuals.
Scores on the physical functioning scale (PFS), which can take
valuesfrom 0to 100, were compared in thethree groups. Asvisual
inspection of Fig. 22.1 showed that the data were not Normally
distributed, we performed aK ruskal-Wallistest.

100

80
60

40

Physical functioning

20

0
Group
Sample size, n
Median (95% Cl)
Range 0-100 0-100 0-100

Figure 22.1 Dot plot showing physical functioning scores (from the
SF-36 questionnaire) in individual s with severe and mild/moderate

Mild/moderate
20

Controls
20

Severe
20

47.5(30to 80) 87.5(75to 95) 100 (90 to 100)

haemophiliaand in normal controls. The horizontal bars are the medians.

1 H,: each group has the same distribution of PFS scoresin the
population
H,: at least one of the groups has a different distribution of
PFS scoresin the population.
2 ThedataareshowninFig. 22.1.
3 Sum of ranksin severe haemophiliagroup = 372
Sum of ranks in mild/moderate haemophiliagroup = 599
Sum of ranksin normal control group = 859.

5992
+
20

8592
20

12 ( 3722

H = " - 3(60+1)=19.47
60(60+1)\ 20 j ¥ )

4 Werefer H to Appendix A3: P < 0.001.

5 Thereissubstantial evidenceto reject the null hypothesisthat
the distribution of PFS scores is the same in the three groups.
Pairwise comparisons were carried out using Wilcoxon rank
sum tests, adjusting the P-values for the number of tests per-
formed using the Bonferroni correction (Chapter 18). The indi-
viduals with severe and mild/moderate haemophilia both had
significantly lower PFS scores than the controls (P = 0.0003 and
P = 0.03, respectively) but the distributions of the scoresin the
haemophilia groups were not significantly different from each
other (P=0.09).

Datakindly provided by Dr A. Miners, Department of Primary Care and Population Sciences, Royal Free and University College Medical School, London, UK,
and Dr C. Jenkinson, Health Services Research Unit, University of Oxford, Oxford, UK.
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@ Categorical data: a single proportion

The problem

We have a single sample of n individuals; each individual either
‘possesses’ acharacteristic of interest (e.g. ismale, is pregnant, has
died) or does not possess that characteristic (e.g. is female, is not
pregnant, isstill alive). A useful summary of the datais provided by
the proportion of individuals with the characteristic. We areinter-
ested in determining whether the true proportion in the population
of interest takes a particular value.

The test of a single proportion

Assumptions

Our sample of individuals is selected from the population of
interest. Each individual either has or does not have the particular
characteristic.

Notation

r individuals in our sample of size n have the characteristic. The
estimated proportion with the characteristic is p = r/n. The propor-
tion of individualswith the characteristic in the populationis 7. We
areinterested in determining whether 7 takes a particular value, r,.

Rationale

The number of individualswith the characteristic follows the Bino-
mial distribution (Chapter 8), but this can be approximated by the
Normal distribution, providing np and n(1— p) are each greater than
5. Then p is approximately Normally distributed with an estimated

mean = p and an estimated standard deviation = p(lT—p)
Therefore, our test statistic, which is based on p, aso follows the

Normal distribution.

1 Definethenull and alter native hypotheses under study
H,: the population proportion, 7, is equal to a particular
value, m;
H,: the population proportion, =, is not equal to ;.

2 Collect relevant data from a sample of individuals

continued

3 Calculatethevalueof thetest statistic specifictoH,,

1
B |p—7t1|—%

i

which followsaNormal distribution.

The 1/2n in the numerator is a continuity correction: it is
included to make an allowance for the fact that we are approxi-
mating the discrete Binomial distribution by the continuous
Normal distribution.

4 Compare the value of the test statistic to values from a
known probability distribution
Refer zto Appendix A1.

5 Interpret the P-valueand results

Interpret the P-value and calculate a confidence interval for
the true population proportion, 7. The 95% confidence interval
for wis:

p+1.96 /—p(l_ P
n

We can use this confidence interval to assessthe clinical or bio-
logical importance of the results. A wide confidence interval is
an indication that our estimate has poor precision.

The sign test applied to a proportion
Rationale
The sign test (Chapter 19) may be used if the response of interest
can be expressed asapreference (e.g. inacross-over tria, patients
may have a preference for either treatment A or treatment B). If
thereisno preference overall, then we would expect the proportion
preferring A, say, to equal 1/2. We usethe sign test to assesswhether
thisisso.

Although this formulation of the problem and its test statistic
appear to be different from those of Chapter 19, both approachesto
the sign test produce the same resullt.
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1 Definethenull and alter native hypothesesunder study

H,: the proportion, r, of preferences for A in the population is
equal to 1/2

H,: the proportion of preferences for A in the population is not
equal to 1/2.

2 Collect relevant data from asample of individuals
3 Calculatethevalueof thetest statistic specifictoH,,

Ignore any individuals who have no preference and reduce the
sample sizefrom nto n” accordingly. Then p=r/rn’, wherer isthe
number of preferencesfor A.

* If n” <10, count r, the number of preferencesfor A

* If n”> 10, calculate the test stetistic:

bl
_ 2l 2n

Z=

Z followsthe Normal distribution. Note that this formulais based
on the test statistic, z, used in the previous box to test the null
hypothesis that the population proportion equals r;; here we
replacen by n’, and r, by 1/2.
4 Compare the value of the test statistic to values from a
known probability distribution

e If n” <10, refer r to Appendix A6

e If "> 10, refer Z toAppendix AL

5 Interpret the P-valueand results
Interpret the P-value and cal cul ate a confidence interval for the
proportion of preferencesfor A in the entire sample of sizen.

Example 1

Human herpes-virus 8 (HHV-8) has been linked to Kaposi’'s
sarcoma, primary effusion lymphoma and certain types of multi-
centric Castleman’s disease. It has been suggested that HHV-8 can
be transmitted sexually. In order to assess the relationships
between sexual behaviour and HHV-8 infection, the prevalence of
antibodies to HHV-8 was determined in a group of 271

homo/bisexual men attending a London sexually transmitted
disease clinic. In the blood donor population in the UK, the sero-
prevalence of HHV-8 has been documented to be 2.7%. Initially,
the seropreval ence from this study was compared to 2.7% using a
single proportion test.

1 Hy: the seroprevalence of HHV-8 in the population of
homo/bisexual men equals2.7%

H,: the seroprevalence of HHV-8 in the population of
homo/bisexual men does not equal 2.7%.
2 Samplesize, n=271; number who are seropositive to HHV 8,
r=50

Seroprevalence, p=50/271=0.185 (i.e. 18.5%).

1
2x 271
\/O. 185(1-0.185) 6.62
271

0.185- 0.027)—

3 Test statisticis z=

4 Werefer zto Appendix Al: P < 0.0001.

5 Thereissubstantial evidencethat the seroprevalence of HHV-
8 in homo/bisexual men attending sexually transmitted disease
clinicsin the UK is higher than that in the blood donor popula-
tion. The 95% confidence interval for the seroprevalence of
HHV-8 in the population of homo/bisexual men is 13.9% to
23.1%, calculated as

0.185x (1— 0.185)
271

{0.185 +1.96 x } % 100%.

Datakindly provided by DrsN.A. Smith, D. Barlow, and B.S. Peters, Department of Genitourinary Medicine, Guy’sand St Thomas' NHS Trust, London, and Dr
J. Best, Department of Virology, Guy's, King's College and St Thomas's School of Medicine, King's College, London, UK.
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Example 2

In adouble-blind cross-over study, 36 adults with perennial aler-
gic rhinitis were treated with subcutaneous injections of either
inhalant allergens or placebo, each treatment being given daily for
a defined period. The patients were asked whether they preferred

the active drug or the placebo. The sign test was performed to
investigate whether the proportions preferring the two prepara-
tions were the same.

1 H,: the proportion preferring the active preparation in the
population equals 0.5

H,: the proportion preferring the active preparation in the
population does not equal 0.5.
2 Of the 36 adults, 27 expressed a preference; 21 preferred the
active preparation. Of those with a preference, the proportion
preferring the active preparation, p=21/27 = 0.778.

0.778-0.5 -+ _
3 Test statisticis Z = 2X21 _ 04
ISicis 2 = \/0.778(1—0.778) -
27

4 Werefer Z to Appendix A1: P=0.001

5 Thereissubstantial evidenceto reject the null hypothesisthat
thetwo preparations are preferred equally in the population. The
95% confidence interval for the true proportion is 0.62 to 0.94,
calculated as

0.778x (1-0.778)
27 ’

Therefore, at the very least, we believe that almost two-thirds of
individualsin the population prefer the active preparation.

0.778 £1.96 x \/

Dataadapted from: Radcliffe, M.J., Lampe, F.C., Brostoff, J. (1996) Allergen-specific low-dose immunotherapy in perennial allergic rhinitis: adouble-blind
placebo-controlled crossover study. Journal of Investigational Allergology and Clinical Immunology, 6, 242—247.
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@ Categorical data: two proportions

The problems

« Wehavetwo independent groups of individuals (e.g. homosexual
men with and without a history of gonorrhoea). We want to know if
the proportions of individuals with a characteristic (e.g. infected
with human herpesvirus-8, HHV-8) are the samein the two groups.
* We have two related groups, e.g. individuals may be matched, or
measured twice in different circumstances (say, before and after
treatment). We want to know if the proportionswith acharacteristic
(e.g. raised test result) are the same in the two groups.

Independent groups: the Chi-squared test
Terminology

The data are obtained, initialy, as frequencies, i.e. the numbers
with and without the characteristic in each sample. A tablein which
the entries are frequenciesis called acontingency table; when this
table hastwo rows and two columnsitiscalled a2 x 2 table. Table
24.1 shows the obser ved frequenciesin the four cells correspond-
ing to each row/column combination, the four mar ginal totals (the
frequency in a specific row or column, e.g. a+ b), and the overall
total, n. We can calculate (see Rationale) the frequency that we
would expect in each of thefour cellsof thetableif Hyweretrue (the
expected frequencies).

Assumptions

We have samples of sizesn, and n, from two independent groups of
individuals. We areinterested in whether the proportionsof individ-
uals who possess the characteristic are the same in the two groups.
Eachindividual isrepresented only oncein the study. Therows (and
columns) of the table are mutually exclusive, implying that each
individual can belong in only one row and only one column. The
usual, abeit conservative, approach requires that the expected fre-
quency in each of thefour cellsisat least five.

Rationale

If the proportionswith the characteristicinthetwo groupsare equal,
we can estimate the overall proportion of individuals with the char-
acteristic by p = (a+ b)/n; we expect n, x p of them to bein Group
1and n, x p to be in Group 2. We evaluate expected numbers
without the characteristic similarly. Therefore, each expected fre-
quency isthe product of the two relevant marginal totals divided by
theoverall total. A large discrepancy between the observed (O) and
the corresponding expected (E) frequenciesisan indication that the
proportions in the two groups differ. The test statistic is based on
this discrepancy.

Table 24.1 Observed frequencies.

Characteristic Group 1 Group 2 Total

Present a b a+b

Absent c d c+d

Total n,=a+c n,=b+d n=a+b+c+d

Proportion with _a _b _atb
characteristic = “n T

1 Definethenull and alter native hypothesesunder study
H,- the proportions of individuals with the characteristic are
equal in thetwo groupsin the population
H,: these popul ation proportions are not equal.

2 Collect relevant data from samplesof individuals
3 Calculatethevalueof thetest statistic specifictoH,,

2
(10-8-1)
L 2)

E

where O and E are the observed and expected frequencies,
respectively, in each of the four cells of the table. The vertical
lines around O—E indicate that we ignoreitssign. The 1/2 in the
numerator isthe continuity correction (Chapter 19). Thetest sta-
tistic follows the Chi-squared distribution with 1 degree of
freedom.

4 Compare the value of the test statistic to values from a
known probability distribution

Refer y2to Appendix A3.
5 Interpret the P-valueand results

Interpret the P-value and cal cul ate the confidence interval for
the difference in the true popul ation proportions. The 95% con-
fidenceinterval isgiven by:

(p.— p,)+196 \/ pl(lr; P, P(1-p)

n,

2=

If the assumptions are not satisfied

If E<5inany one cell, we use Fisher’'s exact test to obtain a P-
value that does not rely on the approximation to the Chi-sguared
distribution. Thisis best |eft to a computer program as the calcula-
tions are tedious to perform by hand.

Related groups: McNemar’s test
Assumptions

The two groups are related or dependent, e.g. each individual may
be measured in two different circumstances. Every individual
is classified according to whether the characteristic is present
in both circumstances, one circumstance only, or in neither
(Table24.2).

Table 24.2 Observed frequencies of pairsin which the characteristicis
present or absent.

Circumstance 1

Present Absent Total no. of pairs
Circumstance 2
Present w X W+ X
Absent y z y+2
Total w4y X+2z m=W+X+y+2z

Categorical data: two proportion
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Rationale

The observed proportions with the characteristic in the two circum-
stancesare (w-+y)/mand (w+ x)/m. They will differ if xandy differ.
Therefore, to compare the proportions with the characteristic, we

ignore those individuals who agree in the two circumstances, and
concentrate on the discordant pairs, x and y.

1 Definethenull and alter native hypotheses under study

H,: the proportions with the characteristic are equal in the two
groupsin the population

H,: these population proportions are not equal.
2 Collect relevant data from two samples

3 Calculatethevalue of thetest statistic specifictoH,,

,_ (x=)-1°

X+Y
which follows the Chi-squared distribution with 1 degree of
freedom. The 1 in the numerator is a continuity correction
(Chapter 19).

X

4 Compare the value of the test statistic with values from a
known probability distribution
Refer y2to Appendix A3.

5 Interpret the P-valueand results

Interpret the P-value and calculate the confidence interval for
the differenceinthetrue population proportions. The approximate
95%Cl is:

Example 1

In order to assess the rel ationship between sexual risk factors and
HHV-8 infection (study described in Chapter 23), the prevalence
of seropositivity to HHV-8 was compared in homo/bisexual men

who had aprevious history of gonorrhoea, and those who had not
previously had gonorrhoea, using the Chi-sguared test. A typical
computer output is shown in Appendix C.

1 H,: theseroprevalence of HHV-8isthe sameinthosewith and
without a history of gonorrhoeain the population

H,: the seroprevalenceis not the samein thetwo groupsin the
population.
2 The observed frequencies are shown in the following contin-
gency table: 14/43 (32.6%) and 36/228 (15.8%) of those with
and without aprevioushistory of gonorrhoeaare seropositivefor
HHV-8, respectively.
3 The expected frequencies are shown in the four cells of the
contingency table.

Thetest statisticis
pm {(|14_ 7.93 - 1) . (36-42.07- )

7.93 42.07
2 2
L (29-3507- 1) (192-18598-1)°| .
35.07 185.93

4 Werefer y2to Appendix A3 with 1 df: 0.01 < P < 0.05 (com-
puter output gives P=0.017).

5 Thereisevidence of area differencein the seroprevalencein
the two groups in the population. We estimate this difference
as 32.6% — 15.8% = 16.8%. The 95% ClI for the true difference
in the two percentagesis 2.0% to 31.6%

i.e 16.8+1.96 x V({32.6 x 67.4} /43 + { 15.8 x 84.2} /228).

Previous history of gonorrhoea

Yes No
Total

HHV-8 Observed Expected Observed Expected observed
Seropositive 14 (43 x 50/271) 36 (228 x 50/271) 50

=7.93 =42.07
Seronegative 29 (43 x 221/271) 192 (228 x 221/271) 221

=35.07 =185.93
Total 43 228 271
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Example 2

In order to compare two methods of establishing the cavity status
(present or absent) of teeth, adentist assessed the condition of 100
first permanent molar teeth that had either tiny or no cavitiesusing
radiographic techniques. These results were compared with those

obtained using the more objective approach of visually assessing
a section of each tooth. The percentages of teeth detected as
having cavities by the two methods of assessment were compared
using McNemar’stest.

1 Hg: thetwo methods of assessment identify the same percent-
age of teeth with cavitiesin the population
H,: these percentages are not equal.

2 The frequencies for the matched pairs are displayed in the
table:

Radiographic diagnosis

Cavities Cavities
Diagnosis on section absent present Total
Cavities absent 45 4 49
Cavities present 17 34 51
Total 62 38 100

2
B7-4-0 g6

17+4
4 We refer y2 to Appendix A3 with 1 degree of freedom:
0.001 < P < 0.01 (computer output gives P = 0.009).

5 Thereissubstantial evidenceto reject the null hypothesisthat
the same percentage of teeth are detected as having cavities
using the two methods of assessment. The radiographic method
has a tendency to fail to detect cavities. We estimate the
differencein percentages of teeth detected as having cavities as
51% — 38% = 13%. An approximate confidence interval for the
true differencein the percentagesis given by 4.4% to 21.6%

2
ie mi@><\/(17+4)—M % 100% |.
100 100 100

3 Test statistic, X2 =

Adapted from Ketley, C.E. & Holt, R.D. (1993) Visual and radiographic diagnosis of occlusal cariesin first permanent molars and in second primary molars.

British Dental Journal, 174, 364-370.
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@ Categorical data: more than two categories

Chi-squared test:

large contingency tables

The problem

Individual scan beclassified by two factors. For example, onefactor
may represent disease severity (mild, moderate or severe) and the
other factor may represent blood group (A, B, O, AB). Weareinter-
ested in whether the two factors are associated. Areindividuals of a
particular blood group likely to be more severely ill?

Assumptions

Thedatamay be presented inanr x ¢ contingency tablewith r rows
and c columns (Table 25.1). Theentriesinthetablearefrequencies;
each cell contains the number of individualsin aparticular row and
aparticular column. Every individua is represented once, and can
only belonginonerow and in onecolumn, i.e. the categoriesof each
factor are mutualy exclusive. At least 80% of the expected fre-
guencies are greater than or equal to 5.

Rationale

The null hypothesisis that there is no association between the two
factors. Note that if there are only two rows and two columns, then
this test of no association is the same as that of two proportions
(Chapter 24). We cal culate the frequency that we expect in each cell
of the contingency tableif the null hypothesisistrue. As explained
in Chapter 24, the expected frequency in a particular cell is the
product of the relevant row total and relevant column total, divided
by the overall total. We calculate a test statistic that focuses on the
discrepancy between the observed and expected frequencies in
every cell of thetable. If the overall discrepancy islarge, thenitis
unlikely the null hypothesisistrue.

1 Definethenull and alter native hypotheses under study
H,: there is no association between the categories of one
factor and the categories of the other factor in the population
H,: thetwo factors are associated in the population.

2 Collect relevant data from asample of individuals
3 Calculatethevalueof thetest statistic specifictoH,,

Zzzz(o-EE)‘

where O and E are the observed and expected frequencies in
each cell of the table. The test statistic follows the Chi-squared
distribution with degrees of freedom equal to (r — 1) x (c— 1).
Because the approximation to the Chi-squared distribution is
reasonable if the degrees of freedom are greater than one, we do
not need to include a continuity correction (aswedid in Chapter
24).
4 Compare the value of the test statistic to values from a
known probability distribution
Refer y2to Appendix A3.

5 Interpret the P-valueand results

If the assumptions are not satisfied

If more than 20% of the expected frequencies arelessthan 5, wetry
to combine, appropriately (i.e. sothat it makes scientific sense), two
or more rows and/or two or more columns of the contingency table.
We then recal cul ate the expected frequencies of this reduced table,
and carry on reducing thetable, if necessary, to ensurethat theE>5
conditionissatisfied. If we have reduced our tableto a2 x 2 table so
that it can be reduced no further and we still have small expected
frequencies, we use Fisher’s exact test (Chapter 24) to evaluate the
exact P-value. Some computer packages will compute Fisher’'s
exact P-valuesfor larger contingency tables.

Chi-squared test for trend

The problem

Sometimes we investigate relationships in categorical data when
one of the two factors has only two categories (e.g. the presence or
absence of acharacteristic) and the second factor can be categorized
into k, say, mutually exclusive categories that are ordered in
some sense. For example, one factor might be whether or not an
individual responds to treatment, and the ordered categories of the
other factor may represent four different age (in years) categories
6569, 7074, 75-79 and >80. We can then assess whether thereis
atrend in the proportions with the characteristic over the categories
of the second factor. For example, we may wish to know if the pro-
portion responding to treatment tendsto increase (say) withincreas-

ing age.

Table 25.1 Observed frequenciesinanr x ctable.

Row Col Col Col Col

categories 1 2 3 [« Total
Row 1 i f, fis fie R,
Row 2 fn f2 fs foc R,
Row 3 fa f3 f3 fa Ry
Row r fa fo fig fe R
Total C, C, (ON C, n

Table 25.2 Observed frequencies and assigned scoresin a2 x k table.

Col Col Col Col
Characteristic 1 2 3 k Tota
Present iy 1o fis ik R,
Absent fo f fo 2% R,
Total C, C, (ON C, n
Score Wy W, W W
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1 Definethenull and alter native hypothesesunder study

H,: thereisno trend inthe proportionswith the characteristicin
the population

H,: thereisatrend in the proportionsin the popul ation.

2 Collect relevant data from a sample of individuals

We estimate the proportion with the characteristic in each of
the k categories. We assign a score to each of the column cate-
gories(Table25.2). Typically these arethe successivevalues, 1, 2,
3,..., k, but, depending on how we have classified the column
factor, they could be numbers that in some way suggest the rela-
tive values of the ordered categories (e.g. the midpoint of the age
range defining each category) or the trend we wish to investigate
(e.g. linear or quadratic). The use of any equally spaced numbers
(eg.1,2,3,...,k alowsustoinvestigate alinear trend.

3 Calculatethevalueof thetest statistic specifictoH,,
wC
w f; — —1
. (Zw,-r3"M )
-t zew {2
—|1-— Cwz—n y -
n n 20w b2 n

using the notation of Table 25.2, and where the sums extend over
all the k categories. The test statistic follows the Chi-squared dis-
tribution with 1 degree of freedom.

4 Compare the value of the test statistic to values from a
known probability distribution

Refer y2to Appendix A3.
5 Interpret the P-valueand results

Interpret the P-value and calculate a confidence interval for
each of the k proportions (Chapter 11).

Example

A cross-sectional survey was carried out among the elderly popu-
lation living in Southampton, with the objective of measuring the
frequency of cardiovascular disease. A total of 259 individuals,
ranging between 65 and 95 years of age, were interviewed. Indi-

viduals were grouped into four age groups (6569, 70-74, 75-79
and 80+ years) at the time of interview. We used the Chi-squared
test to determine whether the prevalence of chest pain differed in
the four age groups.

1 H,: there is no association between age and chest pain in the
population

H,: there is an association between age and chest pain in the
population.

2 The observed fregquencies (%) and expected frequencies are
shown in thefollowing table.

4 We refer y2 to Appendix A3 with 3 degrees of freedom:
P > 0.10 (computer output gives P = 0.18).

5 Thereisinsufficient evidence to reject the null hypothesis of
no association between chest pain and age in the population of
elderly people. The estimated proportions (95% confidence
intervals) with chest pain for the four successive age groups,
starting with the youngest, are: 0.20 (0.11, 0.29), 0.12 (0.04,

15-9.7)? 41-39.1°
3 Test statistic, 72 = 5-97°  (41-390)° 0.19), 0.10 (0.02, 0.17) and 0.09 (0.02, 0.21).
9.7 39.1
~ 4,839
Age (years)
Chest pain 65—69 70-74 75-79 80+ Total
Yes
Observed 15(20.3%) 9 (11.5%) 6(9.7%) 4(8.9%) 34
Expected 9.7 10.2 8.1 5.9
No
Observed 59 (79.7%) 69 (88.5%) 56 (90.3%) 41 (91.1%) 205
Expected 64.3 67.8 53.9 39.1
Total 74 78 62 45 259
continued
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Asthefour age groupsin thisstudy are ordered, it isalso possi-
ble to analyse these data using a Chi-squared test for trend,
which takes into account the ordering of the groups. We may
obtain a significant result from this test, even though the

general test of association gave a non-significant result. We
assign the scores of 1, 2, 3 and 4 to each of the four age groups,
respectively, and because of their even spacing, can test for a
linear trend.

1 H,: thereis no linear association between age and chest pain
in the population

H,: thereisalinear association between age and chest painin
the popul ation.

2 Thedataaredisplayed in the previoustable. We assign scores
of 1, 2, 3and 4 to the four age groups, respectively.

3 Test statisticis y2.

[(Ax15)+...+(4x 4)]-34x 1x 74
(

259

il

4 We refer y2 to Appendix A3 with 1 degree of freedom:
0.05 < P < 0.10 (computer output gives P = 0.052).

5 Thereisinsufficient evidenceto reject the null hypothesis of
no linear associ ation between chest pain and agein the popula
tion of elderly people. However, the P-value is very close to
0.05 and there is a suggestion that the proportion of elderly
people with chest pain decreases with increasing age.

i

xZ:

259 259

34x(1_34)x{[(74x12)+...+(45><42)]—259X[(1;5;4)+"'+(42X535 )ﬂ

=3.79

Adapted from: Dewhurst, G., Wood, D.A., Walker, F,, et al. (1991) A population survey of cardiovascular diseasein elderly people: design, methods and preva-

lenceresults. Age and Ageing 20, 353-360.
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@ Correlation

Introduction
Correlation analysis is concerned with measuring the degree of
association between two variables, x and y. Initially, we assume that
both xand y are numerical, e.g. height and weight.

Suppose we have apair of values, (x, y), measured on each of the
n individuals in our sample. We can mark the point corresponding
to each individua’s pair of values on a two-dimensiona
scatter diagram (Chapter 4). Conventionally, we put the x variable
on the horizontal axis, and they variable on the vertical axisin this
diagram. Plotting the pointsfor all nindividuals, we obtain a scatter
of pointsthat may suggest arelationship between the two variables.

Pearson correlation coefficient

We say that we have a linear relationship between x and y if a
straight line drawn through the midst of the points provides the
most appropriate approximation to the observed relationship. We
measure how close the observations are to the straight line that best
describes their linear relationship by calculating the Pearson
product moment correlation coefficient, usualy ssimply called
the correlation coefficient. Its true value in the population, p (the
Greek letter, rho), isestimated in the sample by r, where

S (x=%)y-Y)
VS (=072 (y-y)

which isusually obtained from computer output.

Properties

e rrangesfrom-1to+1.

* |tssign indicateswhether one variableincreases asthe other vari-
ableincreases (positive r) or whether one variable decreases as the
other increases (negativer) (see Fig. 26.1).

* |ts magnitude indicates how close the points are to the straight
line. In particular if r = +1 or —1, then there is perfect correlation
with al the points lying on the line (this is most unusual, in prac-
tice); if r =0, thenthereisnolinear correlation (although there may
be a non-linear relationship). The closer r is to the extremes, the
greater the degree of linear association (Fig. 26.1).

* Itisdimensionless, i.e. it hasno units of measurement.

* Itsvaueisvaid only within the range of values of xandy in the
sample. Its absolute value (ignoring sign) tends to increase as the
range of values of x and/or y increases and therefore you cannot
infer that it will have the same value when considering values of x
or y that are more extreme than the sample val ues.

« xandy can beinterchanged without affecting the value of r.

« A correlation between x and y does not necessarily imply a‘ cause
and effect’ relationship.

* 2 represents the proportion of the variability of y that can be
attributed to itslinear relationship with x (Chapter 28).

r=+1

r=-1

r=+0.5

r=0

r=-0.5

Figure 26.1 Fivediagramsindicating values of r in different situations.
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When not to calculater

It may be misleading to calculate r when:

« there is a non-linear relationship between the two variables
(Fig. 26.2a), e.g. aquadratic relationship (Chapter 33);

« the datainclude more than one observation on each individual ;
 oneor moreoutliersare present (Fig. 26.2b);

* the data comprise subgroups of individuals for which the mean
levels of the observations on at |east one of the variables are differ-
ent (Fig. 26.2c);

Hypothesis test for the Pearson correlation coefficient
We want to know if there is any linear correlation between two
numerical variables. Our sample consists of n independent pairs of
valuesof x and y. We assumethat at |east one of thetwo variablesis
Normally distributed.

1 Definethenull and alter native hypotheses under study
Hy p=0
Hy:p#0

2 Collect relevant data from a sample of individuals

3 Calculate the value of the test statistic specific to H,
Calculater.

e |f n< 150, r isthetest statistic
(n-2)

1-r2)
which follows at-distribution with n — 2 degrees of freedom.

e [fn>150, calculate T =

4 Compare the value of the test statistic to values from a
known probability distribution

e 1f n< 150, refer r to Appendix A10

e I1f n> 150, refer T to Appendix A2.

5 Interpret the P-valueand results

Calculate aconfidenceinterval for p. Provided both variables
are approximately Normally distributed, the approximate 95%
confidenceinterval for pis:

(e221—1 e222—1)
ez +1° ez +1
where 7. = 7. 196 _,, 196
4 vn=3’ % vn=3’
(1+r)}
and z=0.51 R
Oge[(l—r)

Notethat, if the sample sizeislarge, H, may berejected evenif r
isquite closeto zero. Alternatively, evenif r islarge, H, may not
be rejected if the sample sizeis small. For this reason, it is par-
ticularly helpful to calculate r2, the proportion of the total vari-
ance of one variable explained by itslinear relationship with the
other. For example, if r = 0.40 then P < 0.05 for asample size of
25, but therelationship isonly explaining 16% (= 0.402 x 100) of
thevariability of onevariable.
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Figure 26.2 Diagrams showing when it isinappropriate to calculate the
correlation coefficient. () Relationship not linear, r = 0. (b) In the pres-
ence of outlier(s). (c) Data comprise subgroups.

Spearman’s rank correlation coefficient
We calculate Spearman’s rank correlation coefficient, the non-
parametric equivalent to Pearson’s correlation coefficient, if one or
more of the following pointsistrue:

* at least one of the variables, x or y, is measured on an ordinal
scale;

* neither x nor y isNormally distributed;
 thesamplesizeissmall;

* we require a measure of the association between two variables
when their relationship is non-linear.

Calculation

To estimate the population value of Spearman’s rank correlation
coefficient, p, by itssamplevalue, rg

1 Arrange the values of x in increasing order, starting with the
smallest value, and assign successive ranks (the numbers 1, 2, 3,
..., n) to them. Tied values receive the mean of the ranks these
valueswould have received had there been no ties.

2 Assignranksto the values of y in asimilar manner.

3 r, isthe Pearson correlation coefficient between the ranks of x
andy.

Properties and hypothesis tests

These are the same as for Pearson’s correlation coefficient, replac-
ing r by r, except that:

* 1, provides a measure of association (not necessarily linear)
between x and y;

 whentesting thenull hypothesisthat p =0, refer toAppendix A11
if the sample sizeislessthan or equal to 10;

* wedo not calculater 2 (it does not represent the proportion of the
total variation in onevariablethat can be attributed toitslinear rela-
tionship with the other).



Example

As part of a study to investigate the factors associated with
changes in blood pressure in children, information was collected
on demographic and lifestyle factors, and clinical and anthropo-
metric measuresin 4245 children aged from 5to 7 years. Therela-
tionship between height (cm) and systolic blood pressure (mmHQ)

inasampleof 100 of these childrenisshowninthe scatter diagram
(Fig. 28.1); thereis atendency for taller children in the sample to
have higher blood pressures. Pearson’s correlation coefficient
between these two variables was investigated. Appendix C con-
tains acomputer output from the analysis.

1 H,: the population value of the Pearson correlation coeffi-
cient, p, iszero

H,: the population value of the Pearson correl ation coefficient
isnot zero.

2 We can show (Fig. 37.1) that the sample values of both
height and systolic blood pressure are approximately Normally
distributed.

3 Wecalculater as0.33. Thisisthetest statistic since n < 150.

4 We refer r to Appendix A10 with a sample size of 100:
P < 0.001.

5 Thereisstrong evidenceto reject the null hypothesis; we con-
clude that there is a linear relationship between systolic blood
pressure and height in the population of such children. However,
r2=0.33x 0.33=0.11. Therefore, despite the highly significant
result, the relationship between height and systolic blood

pressure explains only asmall percentage, 11%, of the variation
in systolic blood pressure.

In order to determine the 95% confidence interval for the true
correlation coefficient, we calculate:

zZ= 0.51n(@) =0.3428
0.67

7, =0.3428 - R O) =0.1438
9.849
z, = 0.3428 + L5 =0.5418
9.849
Thus the confidence interval rangesfrom
(e2x01438 —17)  (e2x05418 —1) . 0.33. 1.96
,i.e.from ——to—.
(e2x01438 +1)  (e2x05418 1+ 1) 233 396

We are thus 95% certain that p lies between 0.14 and 0.49.

Aswe might expect, given that each variableis Normally dis-
tributed, Spearman’s rank correlation coefficient between
these variables gave a comparabl e estimate of 0.32. To test H;:

ps = 0, we refer this value to Appendix A10 and again find
P <0.001.

Datakindly provided by Ms O. Papacostaand Dr P. Whincup, Department of Primary Care and Popul ation Sciences, Royal Free and University College Medical

School, London, UK.
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@ The theory of linear regression

What is linear regression?

To investigate the relationship between two numerical variables, x
and y, we measure the values of x and y on each of thenindividuals
in our sample. We plot the points on ascatter diagram (Chapters 4
and 26), and say that we have a linear relationship if the data
approximate astraight line. If webelievey isdependent on x, witha
change in y being attributed to a change in X, rather than the other
way round, we can determine the linear regression line (the
regression of y on x) that best describes the straight line relation-
ship between the two variables. In general, we describe the regres-
sion as univariable because we are concerned with only one x
variableintheanalysis; this contrastswith multivariable regression
which involves two or more X's (see Chapters 29-31).

The regression line
The mathematical equation which estimates the simple linear
regression lineis:

Y=a+bx

e xiscaledtheindependent, predictor or explanatory variable;
 for agiven value of x, Y isthe value of y (called the dependent,
outcome or response variable), which lies on the estimated line. It
isan estimate of the value we expect for y (i.e. its mean) if we know
thevalue of x, and iscalled thefitted value of y;

e aistheintercept of the estimated line; it isthe value of Y when x
=0(Fig. 27.1);

e bisthe slope or gradient of the estimated line; it represents the
amount by which Yincreaseson averageif weincrease x by oneunit
(Fig. 27.2).

a and b are called the regression coefficients of the estimated
ling, although thisterm is often reserved only for b. We show how to
evaluate these coefficients in Chapter 28. Simple linear regression
can be extended to include more than one explanatory variable; in
thiscase, itisknown asmultiplelinear regression (Chapter 29).

Method of least squares

We perform regression analysis using a sample of observations. a
and b are the sample estimates of the true parameters, o and f3,
which definethelinear regression linein the population. aand b are

y . .
Estimated linear
regression line

(<=}

s Y=a+ bx
s

=>

=

D

=

[

S a

D

()]

0 X

Explanatory variable

Figure 27.1 Estimated linear regression line showing the intercept, a, and
the dlope, b (themeanincreasein Y for aunit increasein x).

determined by the method of least squares (often called ordinary
least squares, OLS) in such away that the ‘fit’ of thelineY=a+ bx
tothe pointsin the scatter diagramisoptimal . We assessthisby con-
sidering the residuals (the vertical distance of each point from the
ling, i.e. residual = observed y — fitted Y, Fig. 27.2). The line of
best fit is chosen so that the sum of the squared residuas is a
minimum.

Assumptions

1 Thereisalinear relationship between x and y

2 Theobservationsin thesampleareindependent. The observa-

tions are independent if there is no more than one pair of observa-

tionson each individual.

3 For each valueof x, thereisadistribution of valuesof yin the

population; thisdistribution is Normal. The mean of thisdistrib-

ution of y valueslies on thetrue regression line (Fig. 27.3).

4 Thevariability of thedistribution of they valuesin the popu-

lation is the same for all values of x, i.e. the variance, 62, is

constant (Fig. 27.3).

5 Thexvariablecan bemeasured without error. Notethat wedo

not make any assumptions about the distribution of the x variable.
Many of the assumptions which underlie regression analysis

relate to the distribution of the y population for a specified val ue of

X, but they may be framed in terms of the residuals. It is easier to

check the assumptions (Chapter 28) by studying the residuals than

thevaluesof y.

Analysis of variance table

Description

Usually the computer output in a regression analysis contains an
analysisof variancetable. In analysisof variance (Chapter 22), the
total variation of the variable of interest, in this case 'y, is parti-
tionedintoitscomponent parts. Because of thelinear rel ationship of
y 0N X, we expect y to vary as x varies, we call this the variation
which is due to or explained by the regression. The remaining
variability is called the residual error or unexplained variation.
Theresidual variation should be as small as possible; if so, most of
thevariationiny will be explained by the regression, and the points
will liecloseto or ontheline; i.e. thelineisagood fit.

Estimated linear
1 O regression line

Observed y Y=a+bx
Residual \y :
=N vy \

Fitted Y 0 Each point corresponds to an

individual's values of xand y

X

Figure 27.2 Estimated linear regression line showing theresidual (vertical
dotted line) for each point.
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Figure 27.3 lllustration of assumptions made in linear regression.

Purposes

Theanalysis of variance table enables usto do the following.

1 Assess how well the line fits the data points. From the informa-
tion provided in the table, we can calculate the proportion of the
total variation iny that is explained by the regression. This propor-
tion, usually expressed asapercentage and denoted by R2 (insimple
linear regression it is r2, the square of the correlation coefficient;
Chapter 26), allows us to assess subjectively the goodness of fit of
the regression equation.

2 Test the null hypothesisthat the true slope of theline, j3, is zero;
asignificant result indicates that there is evidence of alinear rela-
tionship between x and y.

3 Obtain an estimate of the residual variance. We need this for
testing hypotheses about the slope or the intercept, and for cal culat-
ing confidence intervals for these parameters and for predicted
valuesof y.

We provide details of the more common procedures in Chapter
28.

Regression to the mean

The statistical use of theword ‘regression’ derives from a phenom-
enon known as regression to the mean, attributed to Sir Francis
Galton in 1889. He demonstrated that although tall fathers tend to
havetall sons, the average height of the sonsislessthan that of their
tall fathers. The average height of the sons has ‘regressed’ or ‘gone
back’ towards the mean height of all the fathers in the population.
So, on average, tall fathers have shorter (but still tall) sonsand short
fathers havetaller (but still short) sons.

We observeregression to the meanin screening (Chapter 38) and
inclinical trials (Chapter 14), when a subgroup of patients may be
selected for treatment because their levels of acertain variable, say
cholesterol, are extremely high (or low). If the measurement is
repeated some time later, the average value for the second reading
for the subgroup isusually lessthan that of thefirst reading, tending
towards (i.e. regressing to) the average of the age- and sex-matched
population, irrespective of any treatment they may have received.
Patients recruited into aclinical trial on the basis of a high choles-
terol level ontheir first examination arethuslikely to show adropin
cholesterol levels on average at their second examination, even if
they remain untreated during this period.
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@ Performing a linear regression analysis

The linear regression line

After selecting asample of size nfrom our population, and drawing
ascatter diagram to confirm that the data approximate a straight
line, we estimate theregression of y on x as.

Y=a+bx

whereY isthe estimated fitted or predicted value of y, a isthe esti-
mated intercept, and b is the estimated slope that represents the
average changein Y for aunit changein x (Chapter 27).

Drawing the line

To draw theline Y = a + bx on the scatter diagram, we choose three
values of x (i.e. X;, X, and x;) along its range. We substitute x, inthe
equation to obtain the corresponding value of Y, namely Y; = a +
bx,; Y; isour estimated fitted value for x, which correspondsto the
observed value, y,. We repeat the procedure for x, and x, to obtain
the corresponding values of Y, and Y;. We plot these points on the
scatter diagram and join them to produce a straight line.

Checking the assumptions

For each observed value of x, theresidual isthe observed y minus
the corresponding fitted Y. Each residual may be either positive or
negative. We can use the residuals to check the following assump-
tions underlying linear regression.

1 Thereisalinear relationship between x and y: Either plot y
against x (the data should approximate a straight line), or plot the
residuals against x (we should observe a random scatter of points
rather than any systematic pattern).

2 The observations are independent: the observations are inde-
pendent if there is no more than one pair of observations on each
individual.

3 The residuals are Normally distributed with a mean of
zero: Draw ahistogram, stem-and-leaf plot, box-and-whisker plot
(Chapter 4) or Normal plot (Chapter 35) of the residuals and
‘eyeball’ the result.

4 The residuals have the same variability (constant variance)
for all the fitted values of y: Plot the residuals against the fitted
values, Y, of y; we should observe arandom scatter of points. If the
scatter of residuals progressively increases or decreases as Y
increases, then this assumption is not satisfied.

5 Thex variable can be measured without error.

Failure to satisfy the assumptions

If thelinearity, Normality and/or constant variance assumptionsare
in doubt, we may be able to transform x or y (Chapter 9), and calcu-
late anew regression line for which these assumptions are satisfied.
It is not always possible to find a satisfactory transformation. The
linearity and independence assumptions are the most important. If
you are dubious about the Normality and/or constant variance
assumptions, you may proceed, but the P-valuesin your hypothesis
tests, and the estimates of the standard errors, may be affected. Note

that thex variableisrarely measured without any error; provided the
error is small, thisis usually acceptable because the effect on the
conclusionsisminimal.

Outliers and influential points

* Aninfluential observation will, if omitted, alter one or more of
the parameter estimates (i.e. the slope or theintercept) in the model.
Formal methods of detection are discussed briefly in Chapter 29. If
these methods are not available, you may haveto rely onintuition.
e An outlier (an observation that is inconsistent with most of the
valuesin the data set (Chapter 3)) may or may not be an influential
point, and can often be detected by looking at the scatter diagram or
theresidual plots (see also Chapter 29). For both outliers and influ-
ential points, wefit the model with and without the suspect individ-
ua’s data and note the effect on the estimate(s). Do not discard
outliers or influentia points routinely because their omission may
affect your conclusions. Always investigate the reasons for their
presence and report them.

Assessing goodness of fit

We can judge how well the line fits the data by calculating R2
(usually expressed as a percentage), which is equal to the square of
the correlation coefficient (Chapters 26 and 27). Thisrepresentsthe
percentage of the variability of y that can be explained by itsrela-
tionship with x. Its compliment, (100 — R2), represents the percent-
age of the variation in y that is unexplained by the relationship.
Thereisno formal test to assess R?; we have to relay on subjective
judgement to evaluate thefit of the regression line.

Investigating the slope

If the slope of thelineiszero, thereisno linear relationship between
x and y: changing x has no effect on y. There are two approaches,
with identical results, to testing the null hypothesisthat the true
slope, B, iszero.

» Examine the F-ratio (equa to the ratio of the ‘explained’ to the
‘unexplained’ mean squares) in the analysis of variance table. It
follows the F-distribution and has (1, n — 2) degrees of freedom in
the numerator and denominator, respectively.

 Calculate the test statistic = % which follows the t-
distribution on n — 2 degrees of freedom, where SE(b) is the stan-
dard error of b.

In either case, a significant result, usualy if P < 0.05, leads to
rejection of the null hypothesis.

We caculate the 95% confidence interval for B as
b+ 1, o5 SE(D), wheret, s isthe percentage point of the t-distribution
with n— 2 degreesof freedom which givesatwo-tailed probability of
0.05. Itistheinterval that containsthetrue slopewith 95% certainty.
For large samples, say n > 100, we can approximatet, - by 1.96.

Regression analysis is rarely performed by hand; computer
output from most statistical packages will provide all of this
information.
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We can use the regression line for predicting values of y for values
of x within the observed range (never extrapolate beyond these
limits). We predict the mean value of y for individuals who have a
certain value of x by substituting that value of x into the equation of
theline. So, if x = x,, we predict y as Y, = a + bx,. We use this esti-
mated predicted value, and its standard error, to evaluate the confi-
dence interva for the true mean value of y in the population.
Repeating this procedure for various values of x allows us to con-
struct confidence limits for the line. Thisis a band or region that
containsthetruelinewith, say, 95% certainty. Similarly, we can cal-
culate awider region within which we expect most (usually 95%) of
the observationstolie.

Example

The relationship between height (measured in cm) and systolic
blood pressure (SBP, measured in mmHg) in the 100 children
described in Chapter 26 is shown in Fig. 28.1. We performed a
simple linear regression analysis of systolic blood pressure on
height. Assumptions underlying this analysis are verified in Figs
28.2t0 28.4. A typica computer output is shown in Appendix C.
Thereis asignificant linear relationship between height and sys-
tolic blood pressure, as can be seen by the significant F-ratio inthe
analysis of variance tablein Appendix C (F = 12.03 with 1 and 98
degrees of freedom in the numerator and denominator, respec-
tively, P = 0.0008). The R2 of the model is 10.9%. Only approxi-
mately atenth of the variability in the systolic blood pressure can
thus be explained by the model; that is, by differences in the
heights of the children. The computer output provides the infor-
mation shown in the table.

The parameter estimate for ‘Intercept’ corresponds to a, and
that for * Height” correspondsto b (the slope of theregressionline).
So, the equation of the estimated regression lineis:

SBP=46.28 + 0.48 x height

In this example, the intercept is of no interest in its own right (it
relates to the predicted blood pressure for a child who has a
height of zero centimetres—clearly out of the range of values
seeninthestudy). However, we can interpret the slope coefficient;
in these children, systolic blood pressure is predicted to
increase by 0.48mmHg, on average, for each centimetre increase
in height.

Useful formulaefor hand calculations

X=yxn and y=)y/n

~Y)? . . :
L= Z(y—) the estimated residual variance
(n-2)
E(b) = =
V2 (x=%)°
Parameter Standard
Variable estimate Error Test statistic P-value
Intercept 46.2817 16.7845 2.7574 0.0070
Height 0.4842 0.1396 3.4684 0.0008

P = 0.0008 for the hypothesistest for height (i.e. H,: true slope
equals zero) isidentical to that obtained from the analysis of vari-
ancetablein Appendix C, as expected.

Since the sample size is large (it is 100), we can approximate
to,05 Dy 1.96 and calculate the 95% confidenceinterval for thetrue
slopeas:

b+ 1.96 x SE(b) = 0.48 + (1.96 x 0.14)

Therefore, the 95% confidence interval for the slope ranges from
0.21 to 0.75mmHg per cm increase in height. This confidence
interval does not include zero, confirming the finding that the
slope issignificantly different from zero.

We can use the regression equation to predict the systolic blood
pressure we expect achild of agiven height to have. For example,
achildwhois115cmtall hasan estimated predicted systolic blood
pressure of 46.28 + (0.48 x 115) = 101.48mmHg; a child who is
130cm tall has an estimated predicted systolic blood pressure of
46.28 + (0.48 x 130) = 108.68 mmHg.

continued
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Figure 28.1 Scatter plot showing relationship between systolic
blood pressure (SBP) and height. The estimated regression line,
SBP=46.28 + 0.48 x height, is marked on the scatter plot.

Figure 28.2 No relationship isapparent in this diagram, indi-
cating that alinear relationship between height and systolic
blood pressure is appropriate.

Figure 28.3 Thedistribution of the residualsis approximately
Normal.
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@ Multiple linear regression

What is it?
We may beinterested in the effect of several explanatory variables,
X3, X - - 5 X ON Aresponse variable, y. If we believethat these x's
may be inter-related, we should not look, in isolation, at the effect
ony of changing the value of asingle x, but should simultaneously
takeinto account the val ues of the other x's. For example, asthereis
a strong relationship between a child’s height and weight, we may
want to know whether the relationship between height and systolic
blood pressure (Chapter 28) is changed when we take the child’'s
weight into account. Multiplelinear regression allowsusto investi-
gate the joint effect of these explanatory variables on y; it is an
example of a multivariable analysis where we relate a single
outcome variable to two or more explanatory variables simultane-
ously. Note that, although the explanatory variables are sometimes
called independent variables, thisis amisnomer because they may
be related.

Wetake asample of nindividuals, and measure the value of each
of the variables on every individual. The multiple linear regression
equation which estimates the relationshipsin the populationiis:

Y=a+bx; +bx,+...+bx

* X istheith explanatory variableor covariate(i=1,2,3,...,K);
 Yisthe estimated predicted, expected, mean or fitted value of y,
which corresponds to a particular set of valuesof X, X,, . . . , X,
* aisaconstant term, the estimated intercept; it is the value of Y
when al the x'sare zero;
* b, b, ..., Db aretheestimated partial regression coefficients;
b, represents the amount by which Y increases on average if we
increasex, by oneunit but keep all the other x's constant (i.e. adjust
or control for them). If there is a relationship between x, and the
other x's, b, differs from the estimate of the regression coefficient
obtained by regressing y on only x,;, because the latter approach
does not adjust for the other variables. b, represents the effect of x;
onythat isindependent of the other X's.

Invariably, youwill perform amultiplelinear regression analysis
on the computer, and so we omit the formulae for these estimated
parameters.

Why do it?

Tobeableto:

* identify explanatory variablesthat are associated with the depen-
dent variable in order to promote understanding of the underlying
process,

* determine the extent to which one or more of the explanatory
variables is/are linearly related to the dependent variable, after
adjusting for other variablesthat may berelated toit; and,

* possibly, predict the value of the dependent variable asaccurately
as possible from the explanatory variables.

Assumptions

The assumptions in multiple linear regression are the same (if we
replace ‘X' by ‘each of the x's’) asthose in simplelinear regression
(Chapter 27), and are checked in the same way. Failureto satisfy the
linearity or independence assumptionsis particularly important. We
can transform (Chapter 9) the y variable and/or some or all of the x
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variablesif the assumptions arein doubt, and then repeat the analy-
sis (including checking the assumptions) on the transformed data.

Categorical explanatory variables

We can perform amultiplelinear regression analysisusing categor -
ical explanatory variables. In particular, if we have abinary vari-
able, x, (e.g. male=0, female= 1), and we increase x, by one unit,
weare‘changing’ from malesto females. b, thus representsthe dif-
ference in the estimated mean values of y between females and
males, after adjusting for the other x's.

If we have anominal explanatory variable (Chapter 1) that has
more than two categories of response, we haveto create anumber of
dummy or indicator variablest. In general, for anominal variable
with k categories, we create k — 1 binary dummy variables. We
choose one of the categories to represent our reference category,
and each dummy variable allows us to compare one of the remain-
ing k— 1 categories of the variable with the reference category. For
example, we may be interested in comparing mean systolic blood
pressurelevelsinindividualslivingin four countriesin Europe (the
Netherlands, UK, Spain and France). Suppose we choose our refer-
ence category to be the Netherlands. We generate one binary vari-
abletoidentify thoseliving in the UK; this variable takes the value
1if theindividua livesin the UK and O otherwise. We then gener-
ate binary variablesto identify thoseliving in Spain and Francein a
similar way. By default, those living in the Netherlands can then be
identified since these individuals will have the value O for each of
the three binary variables. In a multiple linear regression analysis,
theregression coefficient for each of the other three countriesrepre-
sents the amount by which Y (systolic blood pressure) differs, on
average, among those living in the relevant country compared to
those living in the Netherlands. The intercept provides an estimate
of the mean systolic blood pressure for those living in the Nether-
lands (when all of the other explanatory variables take the value
zero). Some computer packages will create dummy variables auto-
matically once you have specified that the variableis categorical .

If we have an ordinal explanatory variable and its three or more
categories can be assigned values on ameaningful linear scale (e.g.
social classes 1-5), then we can either use these values directly in
the multiple linear regression equation (see also Chapter 33), or
generate a series of dummy variables asfor anominal variable (but
this does not make use of the ordering of the categories).

Analysis of covariance

An extension of analysis of variance (ANOVA, Chapter 22) isthe
analysisof covariance, in which we compare the response of inter-
est between groups of individuals (e.g. two or more treatment
groups) when other variables measured on eachindividual aretaken
into account. Such data can be analysed using multiple linear
regression techniques by creating one or more dummy binary vari-
ablesto differentiate between the groups. So, if wewish to compare
the mean values of y in two treatment groups, while controlling for
the effect of variables, x,, X;, ..., X (0. age, weight, .. .), we

1Armitage, P, Berry, G. and Matthews, J.N.S. (2001) Satistical Methodsin
Medical Research, 4th edn. Blackwell Science (UK).



create a binary variable, x,, to represent *‘treatment’ (e.g. x, = 0 for
treatment A, x, = 1 for treatment B). Inthe multiplelinear regression
equation, b, isthe estimated difference in the mean responses on y
between treatments B and A, adjusting for the other X's.

Anaysisof covarianceisthe preferred analysisfor arandomized
controlled trial comparing treatments when each individua in the
study has abaseline and post-treatment follow-up measurement. In
thisinstance the response variable, y, isthe follow-up measurement
and two of the explanatory variables in the regression model are a
binary variable representing treatment, x;, and the individual’s
baselinelevel at the start of the study, x,. Thisapproachisgenerally
better (i.e. has a greater power —see Chapter 36) than using either
the change from baseline or the percentage change from follow-up
astheresponse variable.

Asarule of thumb, we should not perform amultiple linear regres-
sionanalysisif thenumber of variablesisgreater than the number of
individualsdivided by 10. Most computer packages have automatic
procedures for selecting variables, e.g. stepwise selection (Chapter
33). These are particularly useful when many of the explanatory
variables arerelated. A particular problem ariseswhen collinearity
is present, i.e. when pairs of explanatory variables are extremely
highly correlated (Chapter 34).

Most computer output containsthe following items.
1 An assessment of goodness of fit

The adjusted R2 represents the proportion (often expressed as a
percentage) of thevariability of ywhich can beexplained by itsrela-
tionship with the x's. R? is adjusted so that models with different
numbers of explanatory variables can be compared. If it hasalow
value (judged subjectively), the model isapoor fit. Goodness of fit
isparticularly important when we use the multiple linear regression
equation for prediction.
2 TheF-testin the ANOVA table

This tests the null hypothesis that @l the partial regression coeffi-
cientsin the population, 3, B,, . . ., B, are zero. A significant result

Example

In Chapter 28, we studied the relationship between systolic blood
pressure and height in 100 children. It is known that height and
weight are positively correlated. We therefore performed amulti-
plelinear regression analysisto investigate the effects of height
(cm), weight (kg) and sex (0= boy, 1= girl) on systolic blood pres-
sure (mmHg) in these children. Assumptions underlying this
analysisare verifiedin Figs 29.1 to 29.4.

A typical output from acomputer analysis of these datais con-
tained in Appendix C. The analysis of variancetableindicatesthat
at least one of the explanatory variablesisrelated to systolic blood

indicatesthat thereisalinear relationship between y and at | east one of
thex's.
3 The t-test of each partial
i=12...,k

Each t-test relates to one explanatory variable, and is relevant if
we want to determine whether that explanatory variable affects the
response variable, while controlling for the effects of the other
covariates. To test Hy: B = 0, we calculate the test statistic

B
SE(h)
explanatory variables — 1) degrees of freedom. Computer output
includes the values of each by, SE(b,) and the related test statistic
with its P-value. Sometimes the 95% confidence interval for 3, is
included; if not, it can be calculated as b, * t, o SE(b,).

regression coefficient, f

, which follows the t-distribution with (n — number of

Asdiscussed briefly in Chapter 28, anoutlier (anobservationthatis
inconsistent with most of the valuesin the data set (Chapter 3)) may
or may not beinfluential (i.e. affect the parameter estimate(s) of the
model if omitted). An outlier and/or influential observation may
have one or both of the following:

e A large residual (aresidud is the difference between the pre-
dicted and observed values of the outcome variable, y, for that indi-
vidua’svalue(s) of the explanatory variable).

 High leverage when theindividual’s value of x (or set of X's) isa
long way from the mean value of x (or set of X's). High leverage
values may be taken as those greater than 2(k + 1)/n where k is the
number of explanatory variablesinthe model and nisthe number of
individualsin the study.

Various methods are available for investigating model sensitiv-
ity —the extent to which estimates are affected by subsets of the
data. We can determine suspect influential observations by, for
example, (1) investigating those individuals having large residual’s,
high leverage and/or values of Cook’sdistance (an overall measure
of influence incorporating both residual and leverage values)
greater than one, or (2) examining special diagnostic plotsinwhich
influential points may become apparent.

pressure (F = 14.95 with 3 and 96 degrees of freedom in the
numerator and denominator, respectively, P = 0.0001). The
adjusted R2 value of 0.2972 indicates that 29.7% of the variability
in systolic blood pressure can be explained by the model —that is,
by differences in the height, weight and sex of the children. Thus
this provides a much better fit to the data than the simple linear
regression in Chapter 28 in which R2 = 0.11. Typical computer
output contains the information in the following table about the
explanatory variablesin the model:

Parameter Standard 95% CI for
Variable estimate error parameter Test statistic P-value
Intercept 79.4395 17.1182 (45.89t0 112.99) 4.6406 0.0001
Height —0.0310 0.1717 (-0.371t00.31) —0.1807 0.8570
Weight 1.1795 0.2614 (0.67 to 1.69) 45123 0.0001
Sex 4.2295 1.6105 (1.07t0 7.39) 2.6261 0.0101

continued
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Figure 29.1 Thereisno systematic pattern to the residuals when
plotted against weight. (Note that, similarly to Fig. 28.2, aplot of the
residualsfrom this model against height aso shows no systematic
pattern).
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Figure 29.3 Aswith the univariable model, there isno tendency for the
residualsto increase or decrease systematically with fitted values. Hence
the constant variance assumption is satisfied.

The multiple linear regression equation is estimated by:

SBP=79.44 — (0.03 x height) + (1.18 x weight) +
(4.23 x sex)

The relationship between weight and systolic blood pressureis
highly significant (P < 0.0001), with a one kilogram increase in
weight being associated with a mean increase of 1.18mmHg
in systolic blood pressure, after adjusting for height and sex.
However, after adjusting for the weight and sex of the child, the
relationship between height and systolic blood pressure becomes
non-significant (P = 0.86). This suggests that the significant rela-
tionship between height and systolic blood pressure in the simple
regression analysis reflects the fact that taller children tend to be
heavier than shorter children. There is a significant relationship
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Figure 29.2 Thedistribution of the residualsis approximately Normal
and the variance is dlightly less than that from the simple regression model
(Chapter 28), reflecting the improved fit of the multiple linear regression
model over the smple model.
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Figure 29.4 Thedistribution of the residualsissimilar in boysand girls,
suggesting that the model fits equally well in the two groups.

(P = 0.01) between sex and systolic blood pressure; systolic
blood pressure in girls tends to be 4.23mmHg higher, on
average, than that of boys, even after taking account of possible
differencesin height and weight. Hence, both weight and sex are
independent predictors of achild's systolic blood pressure.

We can calculate the systolic blood pressures we would expect
for children of given heights and weights. If the first child men-
tioned in Chapter 28 who is 115cm tall isagirl and weighs 37Kkg,
she now has an estimated predicted systolic blood pressure of
79.44 — (0.03 x 115) + (1.18 x 37) + (4.23 x 1) = 123.88mmHg
(higher than the 101.48mmHg predicted in Chapter 28); if the
second child who is 130cm tall is aboy and weighs 30kg, he now
has an estimated predicted systolic blood pressure of 79.44 — (0.03
% 130) + (1.18 x 30) + (4.23 x 0) = 110.94mmHg (higher than the
108.68 mmHg predicted in Chapter 28).
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@ Binary outcomes and logistic regression

Reasoning

Logistic regression is very similar to linear regression; we use it
when we have a binary outcome of interest (e.g. the presence/
absence of a symptom, or an individual who does/does not have a
disease) and a number of explanatory variables. From the logistic
regression equation, we can determine which explanatory variables
influence the outcome and, using an individua’s values of the
explanatory variables, evaluate the probability that s’he will have a
particular outcome.

We start by creating a binary variable to represent the two out-
comes(e.g. ‘hasdisease’ = 1, ‘ doesnot have disease’ = 0). However,
we cannot use this as the dependent variable in alinear regression
analysis since the Normality assumption is violated, and we cannot
interpret predicted values that are not equal to zero or one. So,
instead, we take the probability, p, that an individua is classified
into the highest coded category (i.e., has disease) as the dependent
variable, and, to overcome mathematical difficulties, usethelogis-
tic or logit transformation (Chapter 9) of it in the regression equa-
tion. Thelogit of thisprobability isthe natural logarithm (i.e. to base
e) of the odds of ‘disease’, i.e.

. P
logit(p) = In——
ogit(p) o

The logistic regression equation

An iterative process, called maximum likelihood (Chapter 32),
rather than ordinary least squares regression (so we cannot use
linear regression software), produces, from the sample data, an esti-
mated logistic regression equation of theform:

logit(p) =a+bx +b,%, +... +B X,

* X istheith explanatory variable (i=1,23, . .. K);
* pisthe estimated value of the true probability that an individual
with aparticular set of valuesfor x,, . . . , X has the disease. p cor-
responds to the proportion with the disease; it has an underlying
Binomial distribution (Chapter 8);
* aistheestimated constant term;
e b, b, ..., b aretheestimated logistic regression coefficients.
The exponentia of a particular coefficient, for example, e, is an
estimate of the oddsr atio (Chapter 16). For aparticular value of x;,
it is the estimated odds of disease for (x, + 1) relative to the esti-
mated odds of disease for x,, while adjusting for all other x’'sin the
equation. If the odds ratio is equal to one (unity), then these two
odds are the same. A value of the odds ratio above one indicates an
increased odds of having the disease, and a value below one indi-
cates adecreased odds of having the disease, as x, increases by one
unit. When the disease israre, the odds ratio can be interpreted asa
relativerisk.

We can manipulate the logistic regression equation to estimate
the probability that an individual has the disease. For each individ-
ual, with aset of covariate valuesfor x,, . . . , X, we calculate

z=a+bx +bx +...+b X,

Then, the probability that the individual hasthe diseaseis estimated
as.

e
l+ez

p

Asthelogistic regression model isfitted onalog scale, the effects of
the x's are multiplicative on the odds of disease. This means that
their combined effect is the product of their separate effects (see
Example). Thisisunlikethe situation in linear regression where the
effects of the x's on the dependent variable are additive.

Computer output

For each explanatory variable

Comprehensive computer output for alogistic regression analysis
includes, for each explanatory variable, the estimated logistic
regression coefficient with standard error, the estimated odds ratio
(i.e. theexponential of the coefficient) with aconfidenceinterval for
its true value, and a Wald test statistic (testing the null hypothesis
that the relevant logistic regression coefficient is zero which is
equivalent to testing the hypothesis that the odds ratio of ‘ disease’
associated with this variable is unity) and associated P-value. We
usethisinformation to determine whether each variableisrelated to
the outcome of interest (e.g. disease), and to quantify the extent to
which thisis so. Automatic selection procedures (Chapter 33) can
be used, asin multiplelinear regression, to select the best combina-
tion of explanatory variables. A rule of thumb for the maximum
number of explanatory variablestoincludeinthe model isthat there
should be at least 10 times as many responsesin each of the two cat-
egories defining the outcome (e.g. presence/absence of asymptom)
asthereare variablest.

To assess the adequacy of the model

Usually, interest is centred on examining the explanatory variables
and their effect on the outcome. Thisinformation isroutinely avail-
ablein all advanced statistical computer packages. However, there
are inconsistencies between the packages in the way in which the
adequacy of the model is assessed, and in the way it is described.
Your computer output may contain the following (in one guise or
another).

e A quantity called —2log likelihood, likelihood ratio statistic
(LRS) or deviance: it has an approximately Chi-squared distribu-
tion, and indicates how poorly the model fits with all the explana-
tory variables in the model (a significant result indicates poor
prediction— Chapter 32).

e The model Chi-square or the Chi-square for covariates. this
tests the null hypothesis that all the regression coefficients in the
model are zero (Chapter 32). A significant result suggests that at
least one covariate is significantly associated with the dependent
variable.

1Peduzzi, P, Concato, J., Kemper, E., Holford, T.R. and Feinstein, A.R. (1996).
A simulation study of the number of events per variablein logistic regression
analysis. Journal of Clinical Epidemiology 49: 1373-9.
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* The percentages of individuals correctly predicted as * diseased’
or ‘disease-free’ by the model. Thisinformation may bein aclassi-
fication table.

* A histogram: this has the predicted probabilities along the hori-
zontal axis, and uses symbols (such as 1 and 0) to designate the
group (“diseased’ or ‘disease-free’) to which anindividual belongs.
A good model will separate the symbols into two groups which
show little or no overlap.

* Indicesof predictiveefficiency: thesearenot routinely available
in every computer package but may include the false positive and
false negative proportions and the sensitivity and specificity of the
model (Chapter 38). Our adviceisto refer to more advanced texts
for further information?2.

Although the odds ratio is often taken as an estimate of therelative
risk, it will only give asimilar value if the outcome is rare. Where
the outcome is not rare, the odds ratio will be greater than the rela-
tiveriskif therelativerisk isgreater than one, and it will belessthan
the relative risk otherwise. Although the odds ratio is less easily
interpreted than the relative risk, it does have attractive statistical
properties and thus is usualy preferred (and must be used in a
case—control study when the relative risk cannot be estimated
directly (Chapter 16)).

Multinomial (also called polychotomous) and ordinal logistic
regression are extensions of logistic regression; we use them when

2Menard S. (1995). Applied logistic regression analysis. In: Sage University
Paper Serieson Quantitative Applicationsin the Social Sciences, Seriesno. 07-
106. Sage University Press, Thousand Oaks, California.

Example

In a study of the relationship between human herpesvirus type 8
(HHV-8) infection (described in Chapter 23) and sexual behav-
iour, 271 homo/bisexual men were asked questions relating to
their past histories of a number of sexually transmitted diseases
(gonorrhoea, syphilis, herpes simplex type 2 [HSV-2] and HIV).
In Chapter 24 we showed that men who had a history of gonor-
rhoea had a higher seroprevalence of HHV-8 than those without a
previous history of gonorrhoea. A multivariable logistic regres-
sion analysiswas performed to investigate whether this effect was
simply a reflection of the relationships between HHV-8 and the

we haveacategorical dependent variablewith morethan two cat-
egories. When the dependent variable is nominal (Chapter 1) (e.g.
the patient has one of three back disorders; lumbar disc hernia,
chronic low-back pain, or acute low-back pain) we use multino-
mial logistic regression. When the dependent variableisordinal or
ranked (e.g. mild, moderate or severe pain) we use ordinal logistic
regression. These methods are complex and so you should refer to
more advanced texts? and/or seek specialist advice if you want to
usethem. Asasimple alternative, we can combine the categoriesin
some appropriate way to create anew binary outcome variable, and
then perform the usua two-category logistic regression analysis
(recognizing that this approach may be wasteful of information).
The decision on how to combine the categories should be made in
advance, before looking at the data, in order to avoid bias.

We can use conditional logistic regression when we have matched
individuals (asin amatched case-control study (Chapter 16)) and
we wish to adjust for possible confounding factors. Analysis of a
matched case—control study using ordinary logistic regression or
the methods described in Chapter 16 isinefficient and lacks power
because neither acknowledges that cases and controls are linked to
each other. Conditional logistic regression allows us to compare
casesto controlsin the same matched ‘ set’ (i.e. each pair in the case
of one-to-one matching). In this situation, the ‘ outcome' is defined
by the patient being a case (usually coded 1) or a control (usually
coded 0). Whilst advanced statistical packages may sometimes
allow you to perform conditional logistic regression directly, it may
be necessary to use the Cox proportional hazards regression
model (Chapter 44).

3Ananth, C.V. and Kleinbaum, D.G. (1997). Regression methods for ordinal
responses: areview of methods and applications. International Journal of Epi-
demiology 27: 1323-33.

other infections and/or the man’s age. The explanatory variables
werethe presence of each of the four infections, each coded as* O’
if the patient had no history of the particular infection or ‘1" if he
had a history of that infection, and the patient’'sage in years.

A typical computer output is displayed in Appendix C.
It shows that the Chi-square for covariates equals 24.598 on 5
degrees of freedom (P = 0.0002), indicating that at |east one of the
covariatesis significantly associated with HHV-8 serostatus. The
following table summarizes the information about each variable
inthe model.

Parameter Standard Wald Chi- Estimated 95% CI for odds
Variable estimate error square P-value oddsratio ratio
Intercept —2.2242 0.6512 11.6670 0.0006 — —
Gonorrhoea 0.5093 0.4363 1.3626 0.2431 1.664 (0.71-3.91)
Syphilis 1.1924 0.7111 2.8122 0.0935 3.295 (0.82-13.28)
HSV-2 positivity 0.7910 0.3871 4.1753 0.0410 2.206 (1.034.71)
HIV 1.6357 0.6028 7.3625 0.0067 5.133 (1.57-16.73)
Age 0.0062 0.0204 0.0911 0.7628 1.006 (0.97-1.05)

continued
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Theseresultsindicate that HSV-2 positivity (P=0.04) and HIV
status (P = 0.007) areindependently associated with HHV-8 infec-
tion; individuals who are HSV-2 seropositive have 2.21 times
(= exp[0.7910]) the odds of being HHV-8 seropositive as those
who are HSV-2 seronegative, after adjusting for the other infec-
tions. In other words, the odds of HHV-8 seropositivity in these
individuals is increased by 121%. The upper limit of the confi-
dence interval for this odds ratio shows that this increased odds
could be asmuch as 371%. HSV-2 infection isawell-documented
marker of sexual activity. Thus, rather than HSV-2 being a cause
of HHV-8 infection, the association may be a reflection of the
sexual activity of theindividual.

Furthermore, the multiplicative effect of the model suggests
that a man who is both HSV-2 and HIV seropositive is estimated
to have 2.206 x 5.133 = 11.3 times the odds of HHV-8 infection
compared to a man who is seronegative for both, after adjusting
for the other infections.

In addition, there is a tendency for a history of syphilis to be
associated with HHV-8 serostatus. Although this is marginally

non-significant (P=0.09), we should note that the confidenceinter-
val doesinclude valuesfor the odds ratio as high as 13.28. In con-
trast, thereis no indication of an independent relationship between
ahistory of gonorrhoea and HHV-8 seropositivity, suggesting that
this variable appeared, by the Chi-squared test (Chapter 24), to be
associated with HHV-8 serostatus because of the fact that many
men who had ahistory of one of the other sexually transmitted dis-
eases in the past aso had a history of gonorrhoea. Thereisno sig-
nificant relationship between HHV-8 seropositivity and age; the
odds ratio indicates that the estimated odds of HHV-8 seropositiv-
ity increases by 0.6% for each additional year of age.

The probability that a 51 year-old man has HHV-8 infection if
he has gonorrhoea and is HSV-2 positive (but does not have
syphilis and is not HIV positive) is estimated as 0.35, i.e. it is
exp{—0.6077}/{1 + exp(-0.6077)} where —0.6077 = 0.2242 +
0.5093 + 0.7910 + (0.0062 x 51).

Binary outcomes and logistic regression 81



Q Rates and Poisson regression

Rates

Inany longitudinal study (Chapter 12) investigating the occurrence
of an event (such asdeath), we should take into account the fact that
individuals are usually followed for different lengths of time. This
may be because some individuals drop out of the study or because
individuals are entered into the study at different times, and there-
fore follow-up times from different people may vary at the close of
the study. As those with alonger follow-up time are more likely to
experience the event than those with shorter follow-up, we consider
the rate at which the event occurs per person per period of time.
Often the unit which represents aconvenient period of timeisayear
(but it could be a minute, day, week, etc.). Then the event rate per
person per year (i.e. per person-year of follow-up) isestimated by:

Rate— Number of events occurring

Total number of years of follow-up for al individuals
_ Number of events occurring
~ Person-years of follow-up

Each individual’slength of follow-up isusually defined asthetime
fromwhen s/he entersthe study until thetimewhen the event occurs
or the study draws to a close if the event does not occur. The total
follow-up timeisthe sum of al theindividuals' follow-up times.

Therateiscalled anincidencerate when the event isanew case
(e.g. of disease) or the mortality rate when the event is death.
When therateisvery small, it is often multiplied by a convenience
factor such as 1,000 and re-expressed as the rate per 1,000 person-
years of follow-up.

Features of the rate

» When calculating the rate, we do not distinguish between person-
years of follow-up that occur in the sameindividual and those that
occur in different individuals. For example, the person-years of
follow-up contributed by 10 individuals, each of whom isfollowed
for 1year, will bethe sameasthat contributed by 1 person followed
for 10 years.

» Whether we also include multiple events from each individual
(i.e. when the event occurs on more than one occasion) depends on
the hypothesis of interest. If we are only interested in first events,
then follow-up must cease at the point at which an individual expe-
riences higher first event as the individual is no longer at risk of a
first event after thistime. Where multiple eventsfrom the sameindi-
vidual are included in the calculation of the rate, we have a specia
form of clustered data (Chapter 41), and appropriate statistical
methods must be used (Chapters 41 and 42).

 Aratecannot becalculated in across-sectional study (Chapter 12)
sincethistype of study does not involvetime.

Comparing the rate to the risk

The risk of an event (Chapter 15) is simply the total number of
eventsdivided by the number of individualsincluded in the study at
the start of the investigation, with no allowance for the length of
follow-up. As aresult, the risk of the event will be greater when
individuals are followed for longer, since they will have more
opportunity to experience the event. In contrast, the rate of the

event should remain relatively stablein these circumstances, asthe
rate takes account of the duration of follow-up.

Relative rates

We may beinterested in comparing the rate of diseasein agroup of
individuals exposed to somefactor of interest (Rate,, ,oqq) With that
inagroup of individuals not exposed to the factor (Rate;,e,posea) -

Rate
Relative rate = exposed

ateunexp osed

The relative rate (or rate ratio, sometimes referred to as the inci-
dencerateratio) isinterpreted inasimilar way to therelativerisk
(Chapter 15) and to the oddsratio (Chapters 16 and 30); arelative
rate of 1 (unity) indicates that the rate of disease is the same in the
two groups, a relative rate greater than 1 indicates that the rate is
higher in those exposed to the factor than in those who are unex-
posed, and arelativeratelessthan oneindicatesthat therateislower
in the group exposed to the factor.

Although therelative rate is often taken as an estimate of therel-
ativerisk, the relative rate and the relative risk will only be similar
if theevent (e.g. disease) israre. When theevent isnot rareand indi-
vidualsarefollowed for varying lengths of time, therate, and there-
foretherelativerate, will not be affected by the different follow-up
times. Thisis not the case for the relative risk as the risk, and thus
therelative risk, will change asindividuals are followed for longer
periods. Hence, therelativerateisaways preferred when follow-up
timesvary between individualsin the study.

Poisson regression

What is it?

The Poisson distribution (named after a French mathematician) isa
probability distribution (Chapter 8) of the count of the number of
rare events that occur randomly over an interval of time (or space)
at a constant average rate. This forms the basis of Poisson regres-
sion which is used to analyse the rate of some event (e.g. disease)
when individuals have different follow-up times. This contrasts
with logistic regression (Chapter 30) which is concerned only with
whether or not the event occurs and is used to estimate odds ratios.
In Poisson regression, we assume that the rate of the event among
individualswith the same explanatory variables (e.g. ageand sex) is
constant over the whole study period. We generally want to know
which explanatory variables influence the rate at which the event
occurs, and may wish to compare this rate in different exposure
groups and/or predict the rate for groups of individualswith partic-
ular characteristics.

The equation and its interpretation

The Poisson regression model takesavery similar formtothelogis-
tic regression model (Chapter 30), each having a (usually) linear
combination of explanatory variables on the right hand side of the
equation. Poisson regression analysis also mirrors logistic regres-
sion analysisin that we transform the outcome variable in order to
overcome mathematical difficulties. We use the natural log trans-
formation (In) of the rate and an iterative process (maximum likeli-
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hood, Chapter 32) to produce an estimated regression equation from
the sample data of the form:

In(r)=a+bx +b,x +... +bB X,

* X istheith explanatory variable (i=1,2,3, ..., K);

* r isthe estimated value of the mean or expected rate for an indi-
vidual with aparticular set of valuesfor x;, . .., X

 aisthe estimated constant term providing an estimate of the log
rate when all x;’sin the equation take the value zero (the log of the
baseline rate);

e b, b, ..., b aretheestimated Poisson regression coefficients.

The exponential of a particular coefficient, for example, eby, isthe
estimated relative rate associated with the relevant variable. For a
particular value of x,, it isthe estimated rate of disease for (x, + 1)
relativeto the estimated rate of diseasefor x,, whileadjusting for all

other x’s in the equation. If the relative rate is equal to one (unity),
then the event rates are the same when x, increases by one unit. A
valueof therelativerate above oneindicatesan increased event rate,
and a value below one indicates a decreased event rate, as x;
increases by one unit.

Aswith logistic regression, Poisson regression models are fitted
onthelog scale. Thus, the effects of thex;’sare multiplicative on the
rate of disease.

We can manipulate the Poisson regression equation to estimate
the event rate for an individual with a particular combination of
valuesof x,, . . ., .. For each set of covariate valuesforx;, ..., X,
we calculate

z=a+bx +bx, +... +bx
Then, the event ratefor that individual is estimated as ez.

Use of an offset

Although we model the rate at which the event occurs (i.e. the
number of events divided by the person-years of follow-up), most
statistical packages require you to specify the number of events
occurring rather than the rate itself as the dependent variable. The
log of each individual’s person-years of follow-up is then included
as an offset in the model. Assuming that we are only interested in
including asingle event per person, the number of events occurring
in each individual will either take the value O (if the event did not
occur) or 1 (if theevent did occur). Thisprovidesadlightly different
formulation of themodel which allowsthe estimatesto be generated
inalesscomputationally intensive way. The resultsfrom the model,
however, are exactly the same as they would be if the rate were
modelled.

Entering data for groups

Note that when all of the explanatory variables are categorical, we
can make use of thefact that the calculation of the rate does not dis-
tinguish between person-years of follow-up that occur in the same
individual and those that occur in different individuals to ssimplify
the data entry process. For example, we may be interested in the
effect of only two explanatory variables, sex (male or female) and
age (<16, 1620 and 21-25 years), on the rate of some event.
Between them, these two variables define six groups (i.e. males
aged < 16 years, femalesaged < 16 years, . . . , femalesaged 21-25
years). We can simplify the entry of these data by determining the

total number of eventsfor al individual swithin the same group and
the total person-years of follow-up for these individuals. The esti-
mated rate in each group is then calculated as the total number of
events divided by the person-years of follow-up in that group.
Using this approach, rather than entering data for the n individuals
one by one, we enter the data for each of the 6 resulting groups,
including in the model the binary and dummy variables (Chapter
29) separately for sex and age. Note that when entering datain this
way, it is not possible to accommodate numerical covariates to
define the groups or include an additional covariate in the model
that takes different valuesfor theindividualsin agroup.

Incorporating variables that change over time

By splitting thefollow-up period into shorter intervals, it ispossible
to incorporate variables that change over time into the model. For
example, we may be interested in relating the smoking history of
middle-aged men to the rate at which they experience lung cancer.
Over a long follow-up period, many of these men may give up
smoking and their rates of lung cancer may be lowered as a resullt.
Thus, categorizing men according to their smoking status at the start
of the study may give a poor representation of the impact of
smoking status on lung cancer. Instead, we split each man’sfollow-
up into short time intervals in such a way that his smoking status
remains constant in each interval. We then perform a Poisson
regression analysis, treating the relevant information in each short
time interval for each man (i.e. the occurrence/non-occurrence of
the event, hisfollow-up time and smoking status) asif it camefrom
adifferent man.

Computer output

Comprehensive computer output for a Poisson regression analysis
includes, for each explanatory variable, the estimated Poisson
regression coefficient with standard error, the estimated rel ative rate
(i.e. theexponential of the coefficient) with aconfidenceinterval for
its true value, and a Wald test statistic (testing the null hypothesis
that the regression coefficient is zero or, equivalently, that the
relative rate of ‘disease’ associated with this variable is unity) and
associated P-value. As with the output from logistic regression
(Chapter 30), we can assess the adequacy of the model using -2 log
likelihood (LRS or deviance) and the model Chi-square or the Chi-
square for covariates (see a so Chapter 32).

Extra-Poisson variation

One concern when fitting a Poisson regression model is the possi-
bility of extra-Poisson variation which usually implies overdisper-
son. Thisoccurswhen theresidua varianceisgreater than would be
expected from a Poisson model, perhaps because an outlier is
present (Chapter 3) or because an important explanatory variable
has not been included in the model. Then the standard errors are
usually underestimated and, consequently, the confidence intervals
for the parameters aretoo narrow and the P-valuestoo small. A way
to investigate the possibility of overdispersion is to divide —2log
likelihood (LRS or deviance) by the degrees of freedom, n — k,
where n is the number of observations in the data set and k is the
number of parameters fitted in the model (including the constant
term). Thisquotient should be approximately equal to 1if thereisno
extra-Poisson variation; values substantially above 1 may indicate
overdisperson. Underdispersion, wheretheresidual varianceisless
than would be expected from a Poisson model and wheretheratio of
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—2log likelihood to n— kissubstantially lessthan 1, may also occur
(e.g. if high counts cannot berecorded accurately). Underdispersion
and overdispersion may a so be aconcern when performing logistic
regression (Chapter 30) when they arereferred to asextra-Binomial
variation.

Example

Individuals with HIV infection treated with highly active anti-
retroviral therapy (HAART) usually experience a declinein HIV
vira load to levels below the limit of detection of the assay (an
initial response). However, some of theseindividuals may experi-
ence virological failure after this stage; this occurs when an indi-
vidua’s viral load becomes detectable again whilst on therapy.
Identification of factors that are associated with an increased rate
of virological failure may allow steps to be taken to prevent this
occurring. There is some concern that the rate of virological
failure may increase with longer time on therapy. As patients are
followed for different lengths of time, a Poisson regression
analysisisappropriate.

516 patients who experienced an initial response to therapy
were identified and followed until the time of virological
failure, or until their last date of follow-up if their viral load
remained suppressed at this time. Follow-up started on the
first date that their viral load became undetectable. The explana
tory variable of primary interest was the duration of time on
treatment since an initial response but this was a variable
whosevalueswere constantly changing for each patient during the
study period. Therefore, to investigate whether the virological
failure rate did change over time, the duration of time on treat-
ment since an initial response was split into three time intervals:
<1, 1-2 and >2 years (this created 988 sets of observations), with
the broad assumption that the virological failure rate was approxi-
mately constant within each period. Failure ratesin the three time
periods were then compared. The data (the length of follow-up in
that interval, whether or not virological failurewasexperiencedin
that interval, and relevant explanatory variables) were entered on
to a spreadsheet for each patient in every interval in which she
was followed up. The explanatory variables considered included
demographics, the stage of disease at the time of starting therapy,
the year of starting HAART and whether or not the patient had
received treatment in the past.

In order to limit the number of covariates in the multivariable
Poisson regression model, a separate univariable Poisson regres-
sion model for each covariate was used to identify the covariates
associated with virological failure (see Chapter 34).

Alternative to Poisson analysis

When a group of individuals is followed from a natura ‘starting
point’ (e.g. an operation) until the time that the person develops an
endpoint of interest, we may use an aternative approach known as
survival analysis which, in contrast to Poisson regression, does not
assume that the ‘hazard’ (the rate of the event in asmall interval) is
constant over time. Thisapproachisdescribed in detail in Chapter 44.

Over atotal follow-up of 718 person-years, 61 patients experi-
enced virological failure, an unadjusted event rate of 8.50 per 100
person-years (95% confidence interval: 6.61, 10.92). Unadjusted
virological failure rates were 8.13 (6.31, 10.95) in the first year
after initial response to therapy, 12.22 (7.33, 17.12) in the second
year and 3.99 (1.30, 9.31) in later years. Results from a Poisson
regression model that incorporated only two dummy variables
(Chapter 29) to reflect the categories of 1-2 and >2 years, each
compared to<1year, sinceaninitial responseto therapy suggested
that time since initial virological response was significantly asso-
ciated with virological failure (P=0.04). In addition, the patient’s
sex (P = 0.03), his/her baseline CD8 count (P = 0.01) and treat-
ment status at the time of starting the current regimen (previously
received treatment, never received treatment, P = 0.008) were all
significantly associated with virological failure in univariable
Poisson models. Thus, amultivariable Poisson regression analysis
was performed to assess the relationship between virological
failure and duration of time on therapy, after adjusting for these
other variables. The results are summarized in Table 31.1; full
computer output is shown in Appendix C.

The results from this multivariable model suggested that there
was atrend towards a higher virological failure rate in the period
1-2 years after initial response compared to that seen in the first
year (virological failure rate was increased by 53% in the period
1-2 years), but alower rate after the second year (failure rate was
reduced by 44% in this period compared to that seen in the first
year after initial response), although neither of these effects was
statistically significant. After adjusting for all other variables in
the model, patientswho werereceiving their first treatment had an
estimated virological failure rate that was 44% lower than that of
patients who had previously received treatment, the estimated
virologica failure rate in men was 39% less than that seen in
women (this was not statistically significant), and the estimated
virological failure rate was reduced by 65% if the CD8 count at
baseline was 100 cells/fmm3 higher.

See also the Examples in Chapters 32 and 33 for additional
analyses relating to this Poisson model, including assessments of
overdispersion, goodness of fit and linearity of the covariates.
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Table 31.1 Resultsfrom multivariable Poisson regression analysis of factors associated with virological failure.

Parameter Estimated 95% Confidence Wald
Variable* estimate Standard error relativerate interval for relative rate P-valuef
Timesinceinitial responseto
therapy (years) <1 reference — 1 — —
1-2 0.4256 0.2702 153 0.90, 2.60 0.12
>2 —0.5835 0.4825 0.56 0.22,1.44 0.23
Treatment status
Previously received treatment (0) reference — 1
Never received treatment (1) —-0.5871 0.2587 0.56 0.33,0.92 0.02
Sex
Female (0) reference — 1 —
Male (1) —0.4868 0.2664 0.61 0.36,1.04 0.07
CD8 count (per 100 cellsymm3) —-1.0558 0.0267 0.35 0.33,0.37 0.04

* Codes for binary variables (sex and treatment status) are shown in parentheses. Time since initial response to therapy wasincluded by incorporating

dummy variablesto reflect the periods 1-2 years and >2 years after initial response.
TAn aternative method of ng the significance of categorical variableswith more than two categoriesis described in Chapters 32 and 33.

Adapted from work carried out by Ms Colette Smith, Department of Primary Care and Population Sciences, Royal Free and University College Medical School,

London, UK.
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@ Generalized linear models

Statistical modelling includes the use of simple and multiple linear
regression (Chapters 27-29), logistic regression (Chapter 30),
Poisson regression (Chapter 31) and some methods that deal with
survival data (Chapter 44). All these methods rely on generating a
mathematical model that best describes the relationship between
an outcome and one or more explanatory variables. Generation of
such a model allows us to determine the extent to which each
explanatory variableisrelated to the outcome after adjusting for all
other explanatory variables in the model and, if desired, to predict
the value of the outcome from these explanatory variables.

The generalized linear model (GLM) can be expressed in the
form

oY)=a+bx +b,x, +... +b.x,

where Y is the estimated value of the predicted, mean or expected
value of the dependent variable which follows a known probability
distribution (e.g. Normal, Binomial, Poisson); g(Y), caled the link
function, is a transformation of Y which produces a linear
relationship with x,, ..., X,, the predictor or explanatory variables,
by, ..., b are estimated regression coefficients that relate to these
explanatory variables; and aisaconstant term.

Each of theregression model sdescribed in earlier chapterscan be
expressed as a particular type of GLM (see Table 32.1). The link
function is the logit of the proportion (i.e. the log, of the odds) in
logistic regression and the log, of the ratein Poisson regression. No
transformation of the dependent variableis required in simple and
multiplelinear regression; thelink functionisthen referred to asthe
identity link. Onceyou have specified which type of regressionyou
wish to perform, most statistical packagesincorporatethelink func-
tion into the cal culations automatically without any need for further
specification.

Which type of model do we choose?
The choice of an appropriate statistical model will depend on the
outcome of interest (see Table 32.1). For example, if our dependent
variable is a continuous numerical variable, we may use simple or
multiple linear regression to identify factors associated with this
variable. If we have a binary outcome (eg. patient died or did not
die) and al patients are followed for the same amount of time, then
logistic regression would be the appropriate choice of model.

Note that we may be able to choose a different type of model by

modifying the format of our dependent variable. In particular, if
we have a continuous numerical outcome but one or more of the
assumptions of linear regression are not met, we may chooseto cate-
gorize our outcome variableinto two groupsto generate anew binary
outcome variable. For example, if our dependent variableis systolic
blood pressure (a continuous numerical variable) after a six-month
period of anti-hypertensive therapy, we may choose to dichotomize
the systolic blood pressure as high or low using a particular cut-off,
andthen uselogisticregressiontoidentify factorsassociated with this
binary outcome. Whilst dichotomizing the dependent variablein this
way may simplify the fitting and interpretation of the tatistical
model, some information about the dependent variable will usually
bediscarded. Thusthe advantages and disadvantages of thisapproach
should always be considered carefully.

Likelihood and maximum

likelihood estimation

When fitting a GLM, we generally use the concept of likelihood to
estimate the parameters of the model. For any GLM characterized by
a known probability distribution, a set of explanatory variables and
some potential values for each of their regression coefficients, the
likelihood of the model (L) is the probability that we would have
obtained the observed results had the regression coefficients taken
those values. We estimate the coefficients of the model by selecting
thevaluesfor theregression coefficientsthat maximizeL (i.e. they are
those values that are most likely to have produced our observed
results); the processis maximum likelihood estimation (MLE) and
the estimates are maximum likelihood estimates. MLE is an itera-
tive process and thus specialized computer softwareisrequired. One
exception to MLE isin the case of smple and multiple linear regres-
sion models (with the identity link function) where we usually esti-
matethe parametersusing the method of least squar es(the estimates
are often referred to as ordinary least squares (OLS) estimates;
Chapter 27); the OLS and MLE estimates are identical in this
situation.

Assessing adequacy of fit

Although MLE maximizes L for a given set of explanatory vari-
ables, we can aways improve L further by including additional
explanatory variables. At its most extreme, a saturated model is
onethat includes aseparate variablefor each observationinthe data

Table 32.1 Choice of appropriate types of GLM for use with different types of outcome.

Type of outcome Type of GLM commonly used See Chapter
Continuous numerical Simple or multiplelinear 28,29
Binary
Incidence of diseasein longitudinal study Logistic 30
(patients followed for equal periods of time)
Binary outcomein cross-sectional study Logistic 30
Unmatched case-control study Logistic 30
Matched case-control study Conditional logistic 30
Categorical outcome with more than two categories Multinomial or ordinal logistic regression 30
Event rate or count Poisson 31
Timeto event* Exponential, Weibull or Gompertz models a4

* Timeto event datamay al so be analysed using a Cox proportional hazards regression model (Chapter 44).
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set. Whilst such a model would explain the data perfectly, it is of
limited usein practice asthe prediction of future observationsfrom
this model islikely to be poor. The saturated model does, however,
alow us to calculate the value of L that would be obtained if we
could model the data perfectly. Comparison of this value of L with
the value obtained after fitting our simpler model with fewer vari-
ables provides a way of assessing the adequacy of the fit of our
model. We consider the likelihood ratio, the ratio of the value of L
obtained from the saturated model to that obtained from the fitted
model, in order to compare these two models. More specificaly, we
calculatethelikelihood ratio statistic (LRS) as:

L RS — _2 X log( Lsaturated)
10g(Ljea)

= -2 % {10g(Lyyraed) — 108(Listeq ) -

The LRS, often referred to as —2log likelihood (see Chapters 30
and 31) or as the deviance, approximately follows a Chi-squared
distribution with degrees of freedom equal to the difference in the
number of parametersfitted in thetwo models (i.e. n— kwherenis
the number of observations in the data set and k is the number of
parameters, including the intercept, in the simpler model). The null
hypothesisisthat the extraparametersin the larger saturated model
are al zero; alarge value of the LRS will give a significant result
indicating that the goodness of fit of the model is poor.

Example

In the example in Chapter 31, we used Wald teststo identify indi-
vidual factors associated with virological rebound in a group of
516 HIVtve the patients (with 988 sets of observations) who had
been treated with highly active antiretroviral therapy (HAART).
In particular, we were interested in whether the rate of virological
failure increased over time, after controlling for other potentially
confounding variables that were related to virological failure.
Although the outcome of primary interest was binary (patient
experienced virological failure, patient did not experience viro-
logical failure), a Poisson regression model rather than alogistic
model was chosen asindividual patients werefollowed for differ-
ent lengths of time. Thus, the outcome variable for the analysis
performed was an event rate. In this chapter, P-valuesfor the vari-
ableswere calculated using likelihood ratio statistics. In particu-
lar, to calculate the single P-value associated with both dummy
variables representing the time since initial response to therapy,
two models werefitted. Thefirst included the variablesrelating to
treatment status (previously received treatment, never received
treatment), sex and baseline CD8 count (Model 1); the second
included these variables as well as the two dummy variables
(Model 2). The difference between the values obtained for

The LRS can aso be used in other situations. In particular, the
LRS can be used to compare two models, neither of which is satu-
rated, when one model is nested within another (i.e. the larger
model includes al of the variables that are included in the smaller
model, in addition to extravariables). In this situation, the test sta-
tisticisthe difference between the value of the L RS from the model
which includes the extra variables and that from the model which
excludes these extra variables. The test statistic follows a Chi-
squared distribution with degrees of freedom equal to the number of
additional parameters included in the larger model, and is used to
test the null hypothesisthat the extra parametersin the larger model
areall zero. The LRS can also be used to test the null hypothesisthat
all the parameters associated with the covariates of amodel are zero
by comparing the LRS of the model which includes the covariates
to that of the model which excludes them. Thisis often referred to
as the Model Chi-square or the Chi-square for covariates (see
Chapters 30 and 31).

When performing any form of regression analysis, it isimportant to
consider a series of regression diagnostics. These alow us to
examine our fitted regression models and look for flaws that may
affect our parameter estimates and their standard errors. In particu-
lar, we must consider whether the assumptions underlying the
model areviolated (Chapter 28) and whether our results are heavily
affected by influential observations (Chapter 29).

-2 log likelihood (i.e. the LRS or deviance) from each of the
models was then considered (Table 32.2). A full computer output
isshown in Appendix C.

Theinclusion of the two dummy variables was associated with
areduction in the value of —21og likelihood of 5.53 (= 393.12 —
387.59). This test statistic follows the Chi-squared distribution
with 2 degrees of freedom (as 2 additional parameters were
included in the larger model); the P-val ue associated with thistest
statistic was 0.06 indicating that the relationship between viro-
logical failure and time since initial response is marginally non-
significant. The value of —2log likelihood for Model 2 aso
alowed us to assess the adequacy of fit of this model by compar-
ingitsvalueof —2log likelihood to a Chi-squared distribution with
982 degrees of freedom. The P—value obtained for this compari-
son was >0.99, suggesting that the goodness of fit of the model is
acceptable. However, it should be noted that after including these
five variables in the model, there was some evidence of under -
dispersion, astheratio of —2log likelihood divided by its degrees
of freedom was 0.39 which is substantially lessthan 1, suggesting
that the amount of residual variation was less than would be
expected from a Poisson model (see Chapter 31).

Table 32.2 —2Log likelihood values, degrees of freedom and number of parametersfitted in modelsthat exclude and include the time sinceinitial

response to therapy.
Number of parametersfitted
-2log Degrees of freedom inthe model, including
Model Variablesincluded likelihood for the model theintercept
1 Treatment status, sex and baseline CD8 count 393.12 984 4
2 Treatment status, sex, baseline CD8 count and 2 dummy 387.59 982 6

variablesfor timesinceinitial response to therapy
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@ Explanatory variables in statistical models

Whatever type of statistical model we choose, we have to make
decisionsabout which explanatory variablesto includein the model
and the most appropriate way in which they should beincorporated.
These decisions will depend on the type of explanatory variable
(either nominal categorical, ordinal categorical or numerical) and
therelationship between these variables and the dependent variable.

Nominal explanatory variables

It is usually necessary to create dummy or indicator variables
(Chapter 29) to investigate the effect of a nomina categorical
explanatory variable in a regression anaysis. Note that when
assessing the adequacy of fit of a model that includes a nominal
variable with more than two categories, or assessing the signifi-
cance of that variable, it isimportant to include all of the dummy
variablesin the model at the same time; if we do not do this (i.e. if
weonly include one of the dummy variablesfor aparticular level of
the categorical variable) we would only partially assess the impact
of that variable on the outcome. For this reason, it is preferable to
judge the significance of the variable using the likelihood ratio test
statistic (LRS— Chapter 32), rather than by considering individual
P-valuesfor each of the dummy variables.

Ordinal explanatory variables

In the situation where we have an ordinal variable with more than
two categories, we may take one of two approaches.

 Treat the categorical variable asacontinuous numerical measure-
ment by allocating a numerical value to each category of the vari-
able. Thisapproach makesfull use of the ordering of the categories
but it usually assumes a linear relationship (when the numerical
valuesare equally spaced) between the explanatory variableand the
dependent variable (or a transformation of it) and this should be
validated.

e Treat the categorical variable as a nominal explanatory variable
and create a series of dummy or indicator variables for it (Chapter
29). This approach does not take account of the ordering of the cat-
egories and is therefore wasteful of information. However, it does
not assume alinear relationship with the dependent variable and so
may be preferred.

The differencein the values of the LRS from these two models pro-
vides atest statistic for atest of linear trend (i.e. an assessment of
whether the model assuming a linear relationship gives a better
fitting model than one for which no linear relationship is assumed).
Thistest statistic follows a Chi-squared distribution with degrees of
freedom equal to the difference in the number of parametersin the
two models; asignificant result suggests non-linearity.

Numerical explanatory variables

Whenweincludeanumerical explanatory variableinthemodel, the
estimate of its regression coefficient provides an indication of
the impact of aone unit increase in the explanatory variable on the

outcome. Thus, for simple and multiple linear regression, the rela
tionship between each explanatory variable and the dependent vari-
ableisassumed to belinear. For Poisson and logistic regression, the
parameter estimate provides a measure of the impact of a one unit
increase in the explanatory variable on the log of the dependent
variable (i.e. the model assumes a linear relationship between the
explanatory variable and the log of the rate or of the odds, but an
exponential relationship with the actual rate or odds). It isimportant
to check the appropriateness of the assumption of linearity (see next
section) beforeincluding numerical explanatory variablesinregres-
sion models.

Assessing the assumption of linearity

To check the linearity assumption in a simple or multiple linear
regression model, we plot the numerical dependent variable, v,
against the numerical explanatory variable, x, or plot the residuals
of the model against x (Chapter 28). The raw data should approxi-
mate astraight line and there should be no discernabl e pattern in the
residuals. We may assess the assumption of linearity in logistic
regression (Chapter 30) or Poisson regression (Chapter 31) by cate-
gorizing individuals into a small number (5-10) of equally sized
subgroups according to their values of x. In Poisson regression, we
calculate the log of the rate of the outcome in each subgroup and
plot thisagainst the midpoint of therange of valuesfor x for the cor-
responding subgroup (see Fig. 33.1). For logistic regression, we
calculate the log odds for each subgroup and plot this against the
midpoint. In each case, if the assumption of linearity isreasonable,
we would expect to see a similarly sized step-wise increase (or
decrease) in the log of the rate or odds when moving between
adjacent categories of x.
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Figure 33.1 Plot of thelog(rate) according to the baseline CD8 count and
thetimesinceinitial responseto HAART. Neither variable exhibits
linearity.
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Dealing with non-linearity

If non-linearity is detected in any of these plots, there are anumber
of approaches that can be taken.

» Replacex by aset of dummy variablescreated by categorizing the
individualsinto three or four subgroups according to the magnitude
of x (often defined using the tertiles or quartiles of the distribution).
Thisset of dummy variables can beincorporated into the multivari-
able regression model as categorical explanatory variables (see
Example).

e Transform the x variable in some way (e.g. by taking a log or
square root transformation of x; Chapter 9) so that the resulting
relationship between the transformed value of x and the
dependent variable (or its log for Poisson or its logit for logistic
regression) islinear.

« Find some algebraic description that approximates the non-linear
relationship using higher orders of x (e.g. aquadratic or cubic rela
tionship). Thisis known as polynomial regression. We just intro-
duce terms that represent the relevant higher orders of x into the
equation. So, for example, if we have acubic relationship, our esti-
mated multiple linear regression equation is Y = a + byx + b,x2 +
b,x3. Wefit thismodel, and proceed with the analysisin exactly the
same way asif the quadratic and cubic terms represented different
variables (x, and X;, say) in a multiple regression analysis. For
example, we may fit aquadratic model that comprises the explana-
tory ‘variables height and height2. We can test for linearity by com-
paring the LRSin the linear and quadratic models (Chapter 32), or
by testing the coefficient of the quadratic term.

Even if not saturated (Chapter 32), there is always the danger of
over-fitting models by including a very large number of explana-
tory variables; thismay lead to spuriousresultsthat areinconsistent
with expectations, especialy if the variables are highly correlated.
For amultiple linear regression model, a usual rule-of-thumb isto
ensure that there are at least ten times as many individuals as
explanatory variables. For logistic regression, there should be at
least 10 times as many responses or events in each of the two
outcome categories as explanatory variables.

Often, we have alarge number of explanatory variables that we
believe may be related to the dependent variable. For example,
many factors may appear to be related to systolic blood pressure,
including age, dietary and other lifestyle factors. We should only
include explanatory variables in a model if there is reason to
suppose, from a biological or clinical standpoint, that they are
related to the dependent variable. We can eliminate some variables
by performing a univariable analysis (perhaps with aless stringent
significance level of 0.10 rather than the more conventional 0.05)
for each explanatory variable to assess whether it is likely to be
related to the dependent variable, e.g. if we have an numerical
dependent variable, we may perform asimpleregression analysisif
the explanatory variable is numerical or an unpaired t-test if it is
binary. We then consider only those explanatory variablesthat were
significant at this first stage for our multivariable model (see the
Examplein Chapter 31).

Automatic selection procedures

When we are particularly interested in using the model for predic-
tion, rather than in gaining insight into whether an explanatory vari-
able influences the outcome or in estimating its effect, computer
intensive automatic selection procedures provide a means of
identifying the optimal model by selecting some of these
variables.

« All subsets—every combination of explanatory variablesis con-
sidered; that which provides the best fit, as described by the model
Rz (Chapter 27) or LRS (Chapter 32), is selected.

e Backwards selection—all possible variables areincluded; those
that are judged by the model to be least important (where this deci-
sion is based on the change in R? or the LRS) are progressively
removed until none of the remaining variables can be removed
without significantly affecting thefit of the model.

« Forwar ds selection —variables that contribute most to the fit of
the model (based on the changein R2 or the LRS) are progressively
added until no further variable significantly improves the fit of the
model.

e Stepwise selection —a combination of forwards and backwards
selection that starts by progressing forwards and then, at the end of
each ‘step’, checksbackwardsto ensurethat all of theincluded vari-
ablesaretill required.

Disadvantages

Although these procedures remove much of the manual aspect of
model selection, they have some disadvantages.

« |tispossiblethat two or moremodelswill fit the dataequally well,
or that changesin the data set will produce different models.
 Because of the multiple testing that occurs when repeatedly com-
paring one model to another within an automatic selection proce-
dure, the Type | error rate (Chapter 18) is particularly high. Thus,
some significant findingsmay arise by chance. Thisproblem may be
aleviated by choosing amore stringent significance level (say 0.01
rather than 0.05).

« |f the model is refitted to the data set using the m, say, variables
remaining in thefinal automatic selection model, itsestimated para-
meters may differ from those of the automatic selection model. This
is because the automatic selection procedure uses in its analysis
only those individuals who have complete information on all the
explanatory variables, but the sample size may be greater when
individuals areincluded if they have no missing values only for the
relevant mvariables.

» The resulting models, athough mathematically justifiable, may
not be sensible. In particular, when including a series of dummy
variables to represent a single categorical variable (Chapter 29),
automatic models may include only some of the dummy variables,
leading to problemsin interpretation.

Therefore, acombination of these proceduresand common sense
should be applied when sel ecting the best fitting model . M odel sthat
are generated using automatic selection procedures should be vali-
dated on other external data setswhere possible (see‘validating the
score’, Chapter 34).

Explanatory variables in statistical models 89



Example

In Chapters 31 and 32, we studied the factors associated with viro-
logical failurein HIV+vethe patientsreceiving highly active anti-
retroviral therapy (HAART). In this multivariable Poisson
regression analysis, the individual’s CD8 count at baseline was
included as a continuous explanatory variable (it was divided by
100 so that each unit increasein the scaled variabl e reflected a 100
cell/mm3 increase in the CD8 count); the results indicated that a
higher baseline CD8 count was associated with a significantly
reduced rate of virological failure. In order to assessthevalidity of
the linearity assumption associated with this variable, five
groupswere defined on the basis of the quintiles of the CD8 distri-
bution, and the failure rate was calculated in each of the five
groups. A plot of thelog(rate) in each of these groupsrevealed that
the relationship was not linear as there was no stepwise progres-
sion (Figure 33.1). In particular, whilst the log(rate) was broadly
similar in the four lowest groups, no events occurred at al in the
highest group (>1495 cellsymm3), giving avalue of minusinfinity
for thelog(rate). For thisreason, the two upper groups were com-
bined for the subsequent analysis. Furthermore, it was noted that a
substantial number of patients had to be excluded from thisanaly-
sisasthere was no record of their CD8 counts at baseline.

Thus, because of the lack of linearity between the virological
failure rate and the actual CD8 count, the continuous explanatory

variable representing the CD8 count in the Poisson regression
model was replaced by a series of four dummy variables (see
Chapter 29). Individuals with baseline CD8 counts in the range
825 < CD8 < 1100 cellsymms3 were treated as the reference group
for these dummies. Each of three dummy variables provided a
comparison of one of the remaining CD8 groups with the refer-
ence group, and the fourth dummy provided acomparison of those
with missing CD8 countswith the reference group. Theresultsare
summarized in Table 33.1; a full computer output is shown in
Appendix C. A comparison of the value for —2log likelihood (i.e.
the LRS or deviance) from the model that included the four
dummy variables for the CD8 count (387.15) to that from the
model that included the same variables apart from these dummy
variables (392.50) gave a P-value of 0.25 (test statistic of 5.35 on
4 degrees of freedom). Thus, after incorporating it in thisway, the
CD8 count no longer had a statistically significant relationship
with virological failure in contrast to the model which, inappro-
priately, incorporated the CD8 count as a continuous explanatory
variable. The relationships between virological failure and
treatment status, sex and time since initial response to therapy,
however, remained similar.

Table 33.1 Results from multivariable Poisson regression analysis of factors associated with virological failure, after including the CD8 count asa

categorical variablein the model.

Parameter Estimated 95% Confidence
Variable* estimate Standard error relativerate interval for relative rate P-valuer
Timesinceinitial response to therapy
(years) <1 reference — 1 —
12 0.4550 0.2715 158 0.93,2.68
>2 —0.5386 0.4849 0.58 0.23,1.51 0.06
Treatment status
Previously received treatment (0) reference — 1 —
Never received treatment (1) —0.5580 0.2600 0.57 0.34,0.95 0.03
Sex
Female (0) reference — 1 —
Male (1) —0.4970 0.2675 0.61 0.36,1.03 0.07
CD8 count (cells/mm3)
<625 —-0.2150 0.6221 0.81 0.24,2.73
>625, <825 —0.3646 0.7648 0.63 0.16,3.11
>825, <1100 reference — 1 —
>1100 —-0.3270 1.1595 0.78 0.07,7.00
Missing —0.8264 0.6057 0.44 0.13,1.43 0.25

* Codesfor binary variables (sex and treatment status) are shown in parentheses. Time sinceinitial response to therapy was included by incorporating
two dummy variablesto reflect the periods 1-2 years and >2 years after initial response. The baseline CD8 count wasincorporated as described above.
tP-values were obtained using L RS (see Chapter 32); where dummy variables were used to incorporate more than 2 categories of the variable, the P-

value reflects the combined effect of these dummies.
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@ Issues in statistical modelling

Interaction

What is it?

Statistical inter action (also known as effect modification, Chapter
13) between two explanatory variables in a regression analysis
occurs where the relationship between one of the explanatory
variables and the dependent variable is not the same for different
levels of the other explanatory variables, i.e. the two explanatory
variables do not act independently on the dependent variable. For
example, suppose current smoking status and alcohol status can
each be categorized into two levels (smoker/non-smoker and
drinker/non-drinker) and that each individual belongs to one cate-
gory of each variable. If the difference in diastolic blood pressure
(the dependent variable) between smokers and non-smokers is
greater on average in those who do not consume acohol than in
those who do, then we say that there is an interaction between
smoking and alcohol consumption.

Testing for interaction

Testing for statistical interaction in a regression model is usually
straightforward, and many statistical packagesallow you to request
the inclusion of interaction terms. If the package does not provide
this facility then an interaction term may be created manually by
including the product of the relevant variables as an additional
explanatory variable. Thus, to obtain the value of the variablewhich
represents the interaction between two variables (both binary, both
numerical or one binary and one numerical), we multiply the indi-
vidual’svalues of these two variables. If both variables are numeri-
cal, interpretation may be easier if we create an interaction term
from the two binary variables obtained by dichotomizing each
numerical variable. If one of the two variables is categorical with
more than two categories, we create a series of dummy variables
fromit (Chapter 29) and use each of them, together with the second
binary or numerical variable of interest, to generate aseries of inter-
action terms. This procedure can be extended if both variables are
categorical and each has more than two categories.

Interaction terms should only beincluded inthe regression model
after themain effects (the effects of the variableswithout any inter-
action) have been included. Note that statistical tests of interaction
areusually of low power (Chapter 18). Thisisof particular concern
when both explanatory variables are categorical and few events
occur in the subgroups formed by combining each level of onevari-
ablewith every level of the other, or if these subgroupsinclude very
few individuals.

Confounding

What is it?

A confounding variable or confounder isan explanatory variable
that isrelated to both the dependent variable and to one or more of
the explanatory variables in the model. For example, we may be
interested in studying the effects of smoking status and al cohol con-
sumption on the incidence of coronary heart disease (CHD) in a
cohort of middie-aged men. Whilst acohol consumption and
smoking status are both known to be associated with the develop-
ment of CHD, the two variables are also related to each other (i.e.
men who consume alcohol are more likely to smoke than men who

do not consume alcohol). Any regression model that considers the
effect of one of the explanatory variables on the outcome but does
not include the confounder (e.g. amodel that rel ates smoking status
totheincidence of CHD without adjusting for a cohol consumption)
may misrepresent the true role of the explanatory variable. Con-
founding may either hideatrueassociation or may artificialy create
a false association between the explanatory variable and the
outcome variable. Failure to adjust for confounding factors in
regression analyseswill lead to biased (Chapter 12) estimates of the
parameters of the model.

Dealing with confounding

Confounding may be dealt with in one of two ways:

« Create subgroups by stratifying the data set by the levels of the
confounding variable (e.g. create two subgroups, drinkers and non-
drinkers) and then perform an analysis separately in each subgroup.
Whilst thisapproach is simple and has much to recommend it when
therearefew confounders, (1) the subgroups may be small, and thus
the analyses will have reduced power to detect a significant effect,
(2) spurioussignificant results may arise because of multipletesting
(Chapter 18) if ahypothesistest is performed in each subgroup, and
(3) it may be difficult to combine the separate estimates of the effect
of interest for each subgroup.

e Adjust for the confounding variablein amultivariable regression
model. This approach, which is particularly useful when there are
many confoundersin the study, provides an estimate of therelation-
ship between the explanatory and dependent variables that cannot
be explained by the relationship between the dependent variable
and the confounder.

Confounding in non-randomized studies

We have to be particularly wary of confounding when comparing
treatments in a non-randomized clinical cohort study (Chapter 15).
In this type of study, the characteristics of the individuals may be
unevenly distributed in the different treatment groups. For example,
individualsmay be selected for aparticular treatment on the basis of
disease history, demographic or lifestyle factors. Some of these
factors may be related to the outcome and will therefore be con-
founded with the treatment. Whilst multivariable regression models
can be used to adjust for any differences in the distribution of
the factorsin the different treatment groups, thisis only possible if
the study investigators are aware of the confounding factors and
have recorded them in the data set. Randomized controlled trials
(Chapter 14) rarely suffer from confounding as patients are ran-
domly allocated to treatment groups and therefore al covariates,
both confoundersand other explanatory variables, should be evenly
distributed in the different treatment groups.

Adjusting for intermediate variables

Whereavariableisknownto lie on the causal pathway between the
explanatory variable and the outcome of interest, it is known as an
intermediate variable. We should be careful when adjusting for
intermediate variables in multivariable models. Consider the situa-
tion where we are conducting arandomized placebo controlled tria
of the effect of anew lipid-lowering drug on the incidence of CHD.
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Although we may adjust for any discrepancies between the lipid
levels of patientsin the two treatment groups at the start of thetrial
(although this should not be necessary if randomization has been
successful), we should not adjust for any changes in lipids that
occur during the trial period. If we adjusted for these changes, we
would be controlling for the beneficial effect of the drug, and thus
any effect of the drug would probably ‘disappear’ (although this
would provide anindication of how much of the drug’seffect can be
explained by its impact on lipid values which, in itself, may be
useful).

Collinearity

When two explanatory variables are highly correlated, it may be
difficult to evaluate their individual effects in a multivariable
regression model. As a consequence, whilst each variable may be
significantly associated with the dependent variablein aunivariable
model (i.e. when there is a single explanatory variable), neither
may be significantly associated with it when both explanatory
variables are included in a multivariable model. This collinearity
(also called multi-collinearity) can be detected by examining
the correlation coefficients between each pair of explanatory
variables (commonly displayed in acorrelation matrix) or by visua
impression of the standard errors of the regression coefficients in
the multivariable model; these will be substantialy larger than
those in the separate univariable models if collinearity is present.
The easiest solution to this problem is to include only one of the
variables in the model, although in situations where many of
the variables are highly correlated, it may be necessary to seek
statistical advice.

Prognostic indices and risk scores for

a binary response

Given alarge number of demographic or clinical featuresof anindi-
vidual, we may want to predict whether that individual is likely to
develop disease. Models, often fitted using proportional hazards
regression (Chapter 44), logistic regression (Chapter 30) or a
similar method known as discriminant analysis, can be used to
identify factors that are significantly associated with outcome. A
prognosticindex or risk scor e can then be generated from the coef-
ficients of this model, and the score calculated for an individual to
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assess hig/her likelihood of disease. However, amodel that explains
alarge proportion of the variability in the data may not necessarily
be good at predicting which patients will develop disease. There-
fore, once we have derived a predictive score based on amodel, we
should assessthe validity of that score.

Validating the score

We can validate our score in anumber of ways.

» We produce a prediction table based on our data set, showing the
number of individualsin whom we correctly and incorrectly predict
the disease status (similar to the table in Chapter 38). Measures,
including sensitivity and specificity, can be calculated for thistable,
or

» We categorize individuals according to their score and consider
disease rates in the different categories (see Example); we should
see arelationship between the categories and disease rates, e.g. with
higher scored categories having greater disease rates.

Clearly, any model will always perform well on the data set that
was used to generatethemodel. Therefore, in order to provideatrue
assessment of the usefulness of the score, it should be validated on
other, independent, data sets.

Where this is impractical, we may separate the data into two
roughly equally sized subsamples. The first subsample, known as
thetraining sample, isused to generate the model . The second sub-
sample, known asthe validation sample, is used for validating the
results from the training sample. As a consequence of the smaller
sample size, fewer explanatory variables can be included in the
model.

Jackknifing

Jackknifing isaway of estimating parameters and providing confi-
denceintervalsin an unbiased manner. Each individual is removed
from the sample, one a atime, and the remaining (n — 1) individu-
alsare used to estimate the parameters of themodel. Thisprocessis
repeated for each of the n individuals in the sample, and the result-
ing estimates of each parameter are averaged over al n samples.
Because a score derived in thisway is generated from many differ-
ent data sets, it can be validated on the complete data set without
taking subsamples.
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Example

Although there are wide differencesin prognosi s between patients
with AIDS, they are often thought of as a single homogeneous
group. In order to group patients correctly according to their likely
prognosis, a prognostic score was generated on the basis of the
clinical experience of 363 AIDS patients at a single centre in
London. A total of 159 (43.8%) of these patients died over a
follow-up period of 6 years.

The score was the weighted sum of the number of each type
(mild, moderate or severe) of AIDS-defining diseases the patient
had experienced and his’her minimum CD4 cell count (measured
in cellsmms3) and was equal to:

Score=300x number of very severe Al DS events (lymphoma)

+100 x number of severe AIDS events (all events, other
than those listed as very severe or mild)

+20x number of mild AIDS events (oesophageal
candida, cutaneous Kaposi’s sarcoma,
Pneumocystis carinii pneumonia,
extrapulmonary tubercul osis)

—1x  minimum CDA4 cell count measured sinceAIDS

In order to aid the interpretation of this score, and to validateit,
three groups wereidentified.

AIDSGradel Score<0
AIDSGradell Score0-99
AIDS Gradelll Score> 100

Validation of the score was assessed by considering the death
rate (number of deathsdivided by thetotal person-yearsof follow-
up) in each grade.

Follow-up
AIDSgrade Deaths (person-years) Deathrate
I 17 168.0 1.0
I 54 153.9 815
11 71 81.2 8.7

Thusthereisaclear trend towards increasing death rates as the
score increases. The score was also validated on a group of
patients from asecond L ondon centre.

Follow-up
AIDSgrade Deaths (person-years) Death rate
I 65 828.5 0.8
I 229 579.6 4.0
1 322 361.3 89

Remarkably similar results were seen, thus confirming the
value of this scoring system.

Adapted from: Mocroft, A.J., Johnson, M.A., Sabin, C.A., et al. (1995) Staging system for clinical AIDS patients. Lancet 346; 12—17 with permission from

Elsevier.
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@ Checking assumptions

Why bother?

Computer analysis of data offers the opportunity of handling large
data sets that might otherwise be beyond our capabilities. However,
do not be tempted to ‘have a go’ at statistical analyses simply
because they are avail able on the computer. The validity of the con-
clusions drawn rely on the appropriate analysis being conducted in
any given circumstance, and a requirement that the underlying
assumptions inherent in the proposed statistical analysis are satis-
fied. We say that an analysisisrobust to violations of its assump-
tions if its P-value and power (Chapter 18) are not appreciably
affected by the violations. Performing a non-robust analysis could
lead to misleading conclusions.

Are the data Normally distributed?
Many analyses make assumptions about the underlying distribution
of the data. The following procedures verify approximate Normal-
ity, the most common of the distributional assumptions.
» We produce a dot plot (for small samples) or a histogram, stem-
and-leaf plot (Fig. 4.2) or box plot to show the empirical frequency
distribution of the data (Chapter 4). We conclude that the distribu-
tion is approximately Normal if it is bell-shaped and symmetrical.
The median in abox plot should cut the rectangle defining the first
and third quartilesin half, and the two whiskers should be of equal
length if the data are Normally distributed.
* Alternatively, we can produce a Normal plot (preferably on the
computer) which plots the cumul ative frequency distribution of the
data (on the horizontal axis) against that of the Normal distribution.
Lack of Normality is indicated by the resulting plot producing a
curvethat appearsto deviate from astraight line (Fig. 35.1).
Although both approaches are subjective, the Normal plot is
more effective for smaller samples. The Kolmogorov-Smirnov
and Shapiro-Wilk tests, both performed on the computer, can be
used to assess Normality more objectively.

Are two or more variances equal?

We explained how to use the t-test (Chapter 21) to compare two
means, and ANOVA (Chapter 22) to compare more than two means.
Underlying these analyses is the assumption that the variability of
the observations in each group is the same, i.e. we require equa
variances, described as homogeneity of variance or homoscedas-
ticity. We have heterogeneity of variance if the variances are
unequal.

¢ We can use L evene'stest, using a computer program, to test for
homogeneity of variance in two or more groups. The null hypothe-
sisisthat al thevariancesare equal. Levene' stest hasthe advantage
that it is not strongly dependent on the assumption of Normality.
Bartlett’'s test can aso be used to compare more than two vari-
ances, but it isnon-robust to departuresfrom Normality.

¢ We can usethe F-test (variance-ratio test) described in the box
to compare two variances, provided the data in each group are
approximately Normally distributed (the test isnon-robust to avio-
lation of this assumption). The two estimated variances are s and
3, calculated from n, and n, observations, respectively. By conven-
tion, we choose s? to bethelarger of thetwo variances, if they differ.
» We also assume homogeneity of variance of the residuals in
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simple and multiple regression (Chapters 28, 29) and in random
effects models (Chapter 42). We explained how to check this
assumption in Chapters 28 and 29.

1 Definethenull and alter native hypothesesunder study
H,: the two population variances are equal
H,: the two population variances are unequal .

2 Collect relevant data from a sample of individuals

3 Calculatethevalue of thetest statistic specifictoH,
F=5/3

which follows an F-distribution with n, — 1 df in the numerator,

and n, — 1 df in the denominator. By choosing s7 > s5, we have

ensured that the F-ratio will alwaysbe>1. Thisallowsusto use

the tables of the F-distribution which are tabulated only for
values>1.

4 Compare the value of the test statistic to values from a
known probability distribution

Refer F toAppendix A5. Our two-sided alternative hypothesis
leadsto atwo-tailed test.

5 Interpret the P-valueand results
Note that we are rarely interested in the variances per se, so we
do not usually calculate confidence intervals for them.
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Figure 35.1 (@) Normal plot of untransformed triglyceride levels
described in Chapter 19. These are skewed and the resulting Normal plot
shows adistinct curve. (b) Normal plot of log (triglyceride levels). The
approximately straight lineindicates that the log transformation has been
successful at removing the skewnessin the data.



Most of the techniques which we discussed in Chapters 26-31 and
describe in Chapter 42 assume that there is alinear (straight line)
relationship between two variables. Any inferences drawn from
such analyses rely on the linearity assumption being satisfied. We
explained how to check for linearity and how to deal with non-
linearity in regression analysis in Chapters 28 and 29 (for simple
and multiple regression) and in Chapter 33 (for other generalized
linear models, e.g. logistic and Poisson).

We have various options.

* Proceed as planned, recognizing that this may result in a non-
robust analysis. Be aware of the implicationsif you do this. Do not
be fooled into an inappropriate analysis just because others, in
similar circumstances, have done onein the past!

Example

Consider the unpaired t-test example of Chapter 21. A total of 98
school age children were randomly assigned to receive either
inhaled beclomethasone dipropionate or a placebo to determine
their effects on wheezing. We used the unpaired t-test to compare
the mean forced expiratory volume (FEV 1) in each group over the

e Take an appropriate transformation of the raw data so that the
transformed data satisfy the assumptions of the proposed analysis
(Chapter 9). Inregression analysis, thisusually meanstransforming
an x variable although other approaches are possible (see Chapter
32);

« |f feasible, perform anon-parametrictest (Chapter 17) that does
not make any assumptions about the distribution of the data (e.g.
Normality). You may also come across the term non-parametric
regression analysist; its purpose is to estimate the functional form
(rather than the parameters) of the relationship between aresponse
variable and one or more explanatory variables. Using non-
parametric regression, we relax the linearity assumption of the
model and fit a smooth curve to the data so that we can visualize
trends without requiring the specification of aparametric model.

1Eubank, R.L. (1999) Nonparametric Regression and Spline Smoothing,
Marcel Dekker.

6 months, but need assurance that the underlying assumptions
(Normality and constant variance) are satisfied. The stem-and-| eaf
plots in Fig. 4.2 show that the data in each group are approxi-
mately Normally distributed. We performed the F-test to investi-
gate the assumption of constant variancein the two groups.

1 Hg: the variance of FEV 1 measurements in the population of
school age children isthe samein the two treatment groups

H,: the variance of FEV 1 measurements in the popul ation of
school age children is not the same in two treatment groups.
2 Treated group: sample size, n, = 50, standard deviation, s, =
0.29 litres

Placebo group: sample size, n, = 48, standard deviation, s, =
0.25litres.

2 2
3 The test statistic, F =2 = Uz Qe
€ 025 00625

follows an F-distribution with 50 — 1 =49 and 48 — 1 =47 df in
the numerator and denominator, respectively.

=1.336 which

4 We refer F = 1.34 to Appendix A5 for atwo-sided test at the
5% level of significance. Because Appendix A5 is restricted to
entries of 25 and infinity df in the numerator, and 30 and 50 df in
the denominator, we have to interpolate (Chapter 21). The
required tabulated value at the 5% level of significance lies
between 1.57 and 2.12; thus P > 0.05 because 1.34 is |ess than
the minimum of these values (computer output gives P = 0.32).

5 Thereisinsufficient evidenceto reject the null hypothesisthat
thevariancesareequal. It isreasonableto usethe unpaired t-test,
which assumes Normality and homogeneity of variance, to
compare the mean FEV 1 valuesin the two groups.
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@ Sample size calculations

The importance of sample size

If the number of patientsin our study is small, we may have inad-
equate power (Chapter 18) to detect an important existing effect,
and we shall have wasted all our resources. On the other hand, if the
sample size is unduly large, the study may be unnecessarily time-
consuming, expensive and unethical, depriving some of the patients
of the superior treatment. We therefore have to choose the optimal
sample size which strikes a balance between the implications of
making a Type | or Type Il error (Chapter 18). Unfortunately, in
order to calculate the sample size required, we have to have some
idea of the results we expect in the study.

Requirements

We shall explain how to calculate the optimal samplesizein simple
situations; often more complex designs can be simplified for the
purpose of calculating the samplesize. If our investigationinvolves
anumber of tests, we concentrate on the most important or evaluate
the sample size required for each and choose the largest.

Our focusisthe calculation of the optimal sasmplesizeinrelationto
aproposed hypothesis test. However, it is possible to base the sample
sizecalculation on other aspectsof the study, such asonthe precision of
an estimate or onthewidth of aconfidenceinterva (the processusually
adopted in equiva ence and non-inferiority studies, Chapter 17).

To calculate the optimal samplesizefor atest, we need to specify
the following quantities at the design stage of the investigation.

» Power (Chapter 18) —the chance of detecting, asstatistically sig-
nificant, a specified effect if it exits. We usually choose a power of
at least 80%.

 Significance level, a (Chapter 17)—the cut-off level below
whichwewill reject thenull hypothesis, i.e. itisthe maximum prob-
ability of incorrectly concluding that there is an effect. We usually
fix thisas 0.05 or, occasionally, as 0.01, and reject the null hypothe-
sisif the P-valueislessthan thisvalue.

* Variability of the observations e.g. the standard deviation, if we
have anumerical variable.

» Smallest effect of interest —the magnitude of the effect that is
clinically important and which we do not want to overlook. Thisis
often a difference (e.g. difference in means or proportions). Some-
timesit is expressed as a multiple of the standard deviation of the
observations (the standar dized difference).

Itisrelatively simple to choose the power and significance level
of the test that suit the requirements of our study. The choice is
usually governed by theimplications of aTypel and aTypell error,
but may be specified by the regulatory bodies in some drug licens-
ing studies. Given a particular clinical scenario, it is possible to
specify the effect we regard as clinically important. The real diffi-
culty liesin providing an estimate of the variation in a numerical
variable beforewe have collected the data. We may be ableto obtain
thisinformation from other published studieswith similar outcomes
or we may need to carry out apilot study.

Methodology

We can calculate sample size in a number of ways, each of which
requires essentially the same information (described in Require-
ments) in order to proceed:
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» General formulael —these can be complex but may be necessary
in somesituations{ e.g. to retain power in acluster randomized trial
(Chapters 14 and 41), we multiply the sample size that would be
required if we were carrying out individual randomization by the
design effect equal to [1+ (m— 1) p], where misthe average cluster
sizeand p istheintraclass correlation coefficient (Chapter 42)} .

* Quick formulae—these exist for particular power values and
significance levels for some hypothesis tests (e.g., Lehr’'s for-
mulae?, see below).

» Special tablesl—these exist for different situations (e.g., for
t-tests, Chi-squared tests, test of the correlation coefficient, com-
paring two survival curvesand for equivalence studies).

* Altman’s nomogram—thisis an easy to use diagram which is
appropriate for various tests. Details are given in the next section.

e Computer software—this has the advantage that results can be
presented graphically or in tablesto show the effect of changing the
factors (eg. power, size of effect) on the required sample size.

Altman’s nomogram

Notation

We show in Table 36.1 the notation for using Altman’s nomogram
(Appendix B) to estimate the sample size of two equally sized
groups of observationsfor three frequently used hypothesis tests of
means and proportions.

Method

For each test, we calculate the standardized difference and join its
value on the left hand axis of the nomogram to the power we have
specified on theright hand vertical axis. Therequired samplesizeis
indicated at the point at which theresulting lineand samplesizeaxis
meet.

Note that we can a so use the nomogram to eval uate the power of
ahypothesistest for agiven samplesize. Occasionally, thisisuseful
if wewish to know, retrospectively, whether we can attribute | ack of
significance in a hypothesis test to an inadequately sized sample.
Remember, also, that a wide confidence interval for the effect of
interest indicateslow power (Chapter 11).

Quick formulae

For the unpaired t-test and Chi-sguared test, we can use Lehr’s
formula2 for calculating the sample size for a power of 80% and a
two-sided significance level of 0.05. The required sample size in
each groupis:

16
(Standardized difference)

If the standardized difference is small, this formula overestimates
the sample size. Note that a numerator of 21 (instead of 16) relates
to apower of 90%.

1Machin, D., Campbell, M.J., Fayers, PM. and Pinol, A.RY. (1997) Sample
size Tablesfor Clinical Studies, 2nd edn, Blackwell, Oxford.

2| ehr, R. (1992) Sixteen s squared over d squared: arelation for crude sample
size estimates. Statistic in Medicine 11:1099-1102.



Table 36.1 Information for using Altman’s nomogram.

Explanation of N in

Hypothesistest Standardized difference nomogram Terminology

Unpaired t-test S N/2 observationsin each group 6. thesmallest differencein meanswhichisclinically important.

(Chapter 21) o o theassumed equal standard deviation of the observationsin
each of thetwo groups. You can estimate it using results
from asimilar study conducted previously or from published
information. Alternatively, you could perform apilot study
to estimateit. Another approach isto express 6 asamultiple
of the standard deviation (e.g, the ability to detect a
difference of two standard deviations).

Paired t-test 25 N pairs of observations §: the smallest mean difference which isclinically important.

(Chapter 20) (o o, the standard deviation of the differences in response, usually
estimated from apilot study.

Chi-squared test % N/2 observationsin each group p, — P,: the smallest differencein the proportions of * success’ in

(Chapter 24) ) the two groupsthat is clinically important. One of these

proportionsis often known, and the relevant difference
evaluated by considering what value the other
proportion must take in order to constitute a noteworthy
change.

It is often essential and always useful to include a power statement
in a study protocol or in the methods section of a paper (see
CONSORT statement, Chapter 14) to show that careful thought has
been given to sample size at the design stage of the investigation.
A typica statement might be ‘84 patients in each group were
required for the unpaired t-test to have a 90% chance of detecting a
difference in means of 2.5 days (SD = 5 days) at the 5% level of
significance’ (see Example1).

We may wish to adjust the sample size:

« to alow for losses to follow-up by recruiting more patients into
the study at the outset. If we believe that the drop-out rate will be
r%, then the adjusted sample size is obtained by multiplying the
unadjusted sample size by 100/(100 —r).

Example 1

« tohaveindependent groupsof different sizes. Thismay bedesir-
able when one group is restricted in size, perhaps because the
disease is rare in a case—control study (Chapter 16) or because
the novel drug treatment isin short supply. Note, however, that the
imbalancein numbersusually resultsin alarger overal samplesize
when compared to abalanced designif asimilar level of power isto
be maintained. If theratio of the sample sizesin the two groupsisk
(e.g. k= 3if we require one group to be three times the size of the
other), the adjusted overall sasmplesizeis

N’ = N(1+k)? /(4k)
where N isthe unadjusted overall samplesize calculated for equally

sized groups. Then N’/(1 + k) of these patientswill beinthe smaller
group and the remaining patients will be in thelarger group.

Comparing means in independent groups using the unpaired t-test

Objective—to examinethe effectiveness of aciclovir suspension
(15mg/kg) for treating 1—7-year-old children with herpetic gin-
givostomatitislasting lessthan 72h.

Design—randomized, double-blind placebo-controlled trial
with ‘treatment’ administered five timesaday for 7 days.

Main outcome measure for the determination of sample size—
duration of oral lesions.

Sampl e size question—how many children are required to have
a90% power of detecting a 2.5 day difference in mean duration
of oral lesions between the two groups at the 5% level of sig-
nificance? The authors assume that the standard deviation of
duration of oral lesionsis approximately 5 days.

continued

Sample size calculations 97



Using the nomogram:
6= 2.5daysand o =5 days. Thusthe standardized

difference equals 9 = 25 =
o 5

0.50

The line connecting a standardized difference of 0.50 and a
power of 90% cuts the sample size axis at approximately 160.
Therefore about 80 children are required in each group [Note: (i)
if 0 wereincreased to 3 days, the standardized difference equals
0.6 and the required sample size would decrease to approxi-
mately 118 in total, i.e. 59 in each group, and (ii) if, using the
original specification, the investigators wanted twice as many

children on aciclovir treatment as on placebo (i.e., k = 2), then
the adjusted sample size would be

N’ = N(1+ k)2 /(4k) = 160(1+ 2)? /(4 x 2) =180,

with 180/3 = 60 children on placebo and the remaining 120 chil-
dren on aciclovir]. Figure 18.1 shows power curves for this
example.

Quick formula:
If the power is 90%, the required samplesizein each groupiis:

21 21
- - 2= 2 =84
(standardized difference)”  (0.50)

Amir, J., Harel, L., Smettana, Z. and Varsano, |. (1997) Treatment of herpes simplex gingivostomatitis with aciclovir in children: arandomized double-blind
placebo controlled study British Medical Journal, 314, 1800-1803.

Example 2
Comparing two proportions in independent groups using the Chi-squared test

Objective—to compare the effectiveness of corticosteroid
injections with physiotherapy for the treatment of painful stiff
shoulder.

Design— Randomized controlled trial (RCT) in which patients
are randomly allocated to 6 weeks of treatment, these compris-
ing either a maximum of three injections or twelve 30 min ses-
sions of physiotherapy for each patient.

Main outcome measure for determining sample size—treatment
is regarded as a success after 7 weeks if the patient rates
him/herself as having made a complete recovery or as having
much improvement (on asix-point Likert scale).

Sample size question—how many patients are required in order
to have an 80% power of detecting aclinically important differ-
ence in success rates of 25% between the two groups at the 5%
level of significance? The authors assume a success rate of 40%
in the group having the least successful treatment.

Using the nomogram:

p,=0.40and p,=0.65,50 p=

_ o.4o;o.65 0525

Therefore, the standardized difference

N 0.25 _
- Jpl-p) .0525x0475

0.50

The line connecting a standardized difference of 0.50 and a
power of 80% cuts the sample size axis at 120. Hence approxi-
mately 60 patients are required in each group [Note: (i) if the
power were increased to 85%, the required sample size would
increase to approximately 140 in total, i.e. 70 patients would be
required in each group, and (ii) if the drop-out rate was expected
to bearound 20%, the adjusted overall sampl e size (with apower
of 80%) would be 120 x 100/(100 — 20) = 150, with 75 patients
in each group). Figure 18.2 shows power curves for this
example.

Quick formula:
If the power is 80%, the required sample sizein each groupiis:
16 16

= = 64
(standardized difference)®>  (0.50)

van der Windt, D.A.W.M., Koes, B.W., Devillé, W. de Jong, B.A. and Bouter, M. (1998) Effectiveness of corticosteroid injections with physiotherapy for treat-
ment of painful shoulder in primary care: randomised trial. British Medical Journal, 317, 1292-6.
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Q Presenting results

Introduction

An essential facet of statisticsisthe ability to summarize theimpor-
tant features of theanalysis. We must know what to include and how
to display our results in a manner that enables others to obtain
relevant and important information easily and draw correct
conclusions. Thischapter describesthe key features of presentation.

Numerical resuits

 Give figures only to the degree of accuracy that is appropriate
(as a guideline, one significant figure more than the raw data). If
analysing the data by hand, only round up or down at the end of the
calculations.

¢ Givethe number of items on which any summary measure (e.g. a
percentage) is based.

 Describe any outliers and explain how they are handled (Chapter
3).
¢ Includethe units of measurement.

e When interest is focused on a parameter (e.g. the mean, regres-
sion coefficient), always indicate the precision of its estimate. We
recommend using a confidence interval for this but the standard
error is also acceptable. Avoid using the + symbol, as in mean *
SEM (Chapter 10), because by adding and subtracting the SEM, we
create a 67% confidence interval that can be misleading for those
used to 95% confidence intervals. It is better to show the standard
error in brackets after the parameter estimate [e.g. mean = 16.69
(SEM 0.5g)].

e When interest is focused on the distribution of observations,
aways indicate a measure of the ‘ spread’ of the data. The range of
values that excludes outliers (typicaly, the range of values con-
taining the central 95% of the observations— Chapter 6) isa useful
descriptor. If thedataare Normally distributed, thisrangeis approx-
imated by the sample mean +1.96 x standard deviation (Chapter 7).
You can quote the mean and the standard deviation [e.g. mean =
35.9mm (SD 2.8mm)] instead but this|eavesthe reader to evaluate
therange.

Tables

» Do not givetoo much information in atable.

« Include a concise, informative, and unambiguoustitle.

 Label each row and column.

* Remember that it is easier to scan information down columns
rather than acrossrows.

Diagrams

» Keep adiagram simple and avoid unnecessary frills (e.g. making
apie chart three-dimensional).

* Include a concise, informative, and unambiguoustitle.

e Label al axes, segments, and bars, and explain the meaning of
symbals.

« Avoid distorting results by exaggerating the scale on an axis.

« Indicate where two or more observations lie in the same position
on ascatter diagram, e.g. by using adifferent symbol.

e Ensure that al the relevant information is contained in the
diagram (e.g. link paired observations).

Presenting results in a paper

When presenting resultsin apaper, we should ensure that the paper
contains enough information for the reader to understand what has
been done. S/he should be able to reproduce the results, given the
appropriate computer package and data. All aspects of the design of
the study and the statistical methodology must be fully described
(seealso CONSORT Statement— Chapter 14).

Results of a hypothesis test

¢ Include arelevant diagram, if appropriate.

« Indicate the hypotheses of interest.

» Namethetest and state whether it is one- or two-tailed.

« Justify the assumptions (if any) underlying the test (e.g. Normal-
ity, constant variance; Chapter 35), and describe any transforma-
tions (Chapter 9) required to meet these assumptions (e.g. taking
logarithms).

e Specify the observed value of the test statistic, its distribution
(and degrees of freedom, if relevant), and, if possible, the exact P-
value (e.g. P = 0.03) rather than an interval estimate of it (e.g.
0.01<P<0.05) or astar system (e.g. *, **, *** for increasing levels
of significance). Avoid writing ‘n.s.” when P > 0.05; an exact P-
valueis preferable even when the result is non-significant.

« Include an estimate of the relevant effect of interest (e.g. the
difference in means for the two-sample t-test, or the mean differ-
ence for the paired t-test) with aconfidence interval (preferably) or
standard error.

e Draw conclusions from the results (e.g. rgect the null
hypothesis), interpret any confidence intervals and explain their
implications.

Results of aregression analysis

Here we include simple (Chapters 27 and 28) and multiple linear
regression (Chapter 29), logistic regression (Chapter 30), Poisson
regression (Chapter 31), proportional hazards regression (Chapter
44) and regression methods for clustered data (Chapter 42). Full
details of these analyses are explained in the associated chapters.

* Include relevant diagrams (e.g. a scatter plot with the fitted line
for simpleregression).

 Clearly state which is the dependent variable and which is (are)
the explanatory variable(s).

« Justify underlying assumptions and explain the results of regres-
sion diagnostics, if appropriate.

 Describe any transformations, and explain their purpose.

» Where appropriate, describe the possible numerical values taken
by any categorical variable (e.g. male= 0, femae= 1), how dummy
variables were created (Chapter 29), and the units of continuous
variables.

e Giveanindication of the goodness of fit of the model (e.g. quote
R2 (Chapter 29) or LRS (Chapter 32)).

« |f appropriate (e.g. in multiple regression), give the results of the
overall F-test fromthe ANOVA table.

 Provide estimates of all the coefficients in the model (including
those which are not significant, if applicable) together with the con-
fidence intervals for the coefficients or standard errors of their esti-
mates. Inlogisticregression (Chapter 30), Poisson regression (Chapter
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31) and proportional hazards regression (Chapter 44), convert the
coefficientsto estimated oddsratios, relativeratesor relative hazards
(with confidenceintervals). Interpret the relevant coefficients.
 Show the results of the hypothesis tests on the coefficients (i.e.
include the test statistics and the P-values). Draw appropriate con-
clusionsfrom these tests.

Complex analyses
There are no simple rules for the presentation of the more complex

Example

Informative and

unambiguous title stratified by bleeding disorder

forms of statistical analysis. Be sure to describe the design of the
study fully (e.g. the factorsin the analysis of variance and whether
there is a hierarchical arrangement), and include a validation of
underlying assumptions, relevant descriptive statistics (with confi-
dence intervals), test statistics and P-values. A brief description of
what the analysis is doing helps the uninitiated; this should be
accompanied by areferencefor further details. Specify which com-
puter package has been used.

Table 34.1 : Information relating to first births in women with bleeding disordersT,

Bleeding disorder Numbers on which

Rows and percentages are
columns fully Total Haem A Haem B vWD FXI based
labelled deficiency
Number of women with live births 48 14 5
Mother's age at birth of baby (years)
Median 27.0 24.9 28.5 27.5 271
range (16.7-37.9) (16.7-33.0) (25.6-34.9) (18.8-36.6) (22.3-37.9)
Gestational age of baby (weeks)
Units of measurement Median 40 39 40 40 40.5
\ (range)  (37-42) (38-42) (39-41) (38-42) (37-42)
Weight of baby Nurmerical
results quoted
% Median 3.64 3.62 3.78 3.64 3.62 to appropriate
Estimates of location (range) (1.96-4.46) (1.96-4.46) (3.15-3.94) (2.01-4.35) (2.90-3.84) degree of
and spread EIOUIECY
Sex of baby*
Boy 20 (41.7%) 8 (57.1%) 0(-) 8 (42.1%) 4 (40.0%)
Girl 20 (41.7%) 4(28.6%) 2 (40.0%) 10 (52.6%) 4 (40.0%)
Not stated 8 (16.7%) 2 (14.3%) 3(60.0%) 1(5.3%) 2 (20.0%)
Interventions received during labour*
Inhaled gas 25 (52.1%) 6 (42.9%) 2 (40.0%) 11 (57.9%) 6 (60.0%)
Intramuscular pethidine 22 (45.8%) 9 (64.3%) 1(20.0%) 4(21.1%) 8 (80.0%)
Intravenous pethidine 2 (4.2%) 0(0.0%) 0(0.0%) 1(5.3%) 1(10.0%)
Epidural 10(20.8%) 3(21.4%) 2 (40.0%) 4(21.1%) 1 (10.0%)
*Entries are frequencies (%)
TThe study is described in Chapter 2
continued
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Number of children
Number of children

0 8 90 95 100 105 110 115 120 125 130
Systolic blood pressure (mmHg)

\ Units of

measurement

Clear title Axes labelled
\ appropriately

Figure 37.1 Histograms showing the distribution of () systolic blood pressure and (b) height in asample of 100 children (Chapter 26).
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@ Diagnostic tools

Anindividua’s state of health is often characterized by anumber of
numerical or categorical measures. In this context, an appropriate
reference interval (Chapters 6 and 7) and/or diagnostic test may
be used:

« by theclinician, together with aclinical examination, to diagnose
or exclude aparticular disorder in his/her patient;

e asascreening deviceto ascertain which individualsin an appar-
ently healthy population arelikely to have (or sometimes, not have)
the disease of interest. Individuals flagged in this way will then
usually be subjected to morerigorousinvestigationsin order to have
their diagnoses confirmed. It isonly sensibleto screen for adisease
if adequatefacilitiesfor treating the disease at the pre-symptomatic
stages exist, this treatment being less costly and/or more effective
thanwhen given at alater stage (or, occasionally, if itisbelieved that
individuals who are diagnosed with the disease will modify their
behaviour to prevent the disease spreading).

Reference intervals

A reference interval (often referred to as a normal range) for a
single numerical variable, calculated from avery large sample, pro-
videsarange of valuesthat aretypically seenin healthy individuals.
If anindividual’s valueis above the upper limit, or below the lower
limit, we consider it to be unusually high (or low) relative to healthy
individuals.

Calculating reference intervals

Two approaches can be taken.

¢ We make the assumption that the data are Normally distributed.
Approximately 95% of the data values lie within 1.96 standard
deviations of the mean (Chapter 7). We use our data to calculate
these two limits (mean + 1.96 x standard deviation).

¢ An aternative approach, which does not make any assumptions
about the distribution of the measurement, isto use a central range
which encompasses 95% of the data val ues (Chapter 6). We put our
values in order of magnitude and use the 2.5th and 97.5th per-
centilesas our limits.

The effect of other factors on reference intervals
Sometimes the values of a numerical variable depend on other
factors, such as age or sex. It is important to interpret a particular
value only after considering these other factors. For example, we
generate reference intervals for systolic blood pressure separately
for men and women.

Diagnostic tests

The gold-standard test that provides a definitive diagnosis of a
particular condition may sometimes beimpractical or not routinely
available. Wewould likeasimpletest, depending on the presence or
absence of some marker, which provides a reasonable guide to
whether or not the patient has the condition.
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Wetakeagroup of individual swhosetrue disease statusisknown
from the gold standard test. We can draw up the 2 x 2 table of
frequencies (Table 38.1):

Table 38.1 Tableof frequencies.

Gold standard test
No
Test result Disease disease Total
Positive a b a+b
Negative c d c+d
Total a+c b+d n=a+b+c+d

Of the n individuals studied, a + c individuals have the disease.
The prevalence (Chapter 12) of the disease in this sample
_(a+c)
==
Of thea+ cindividualswho havethe disease, a have positive test
results (tr ue positives) and ¢ have negative test results (false nega-
tives). Of the b + d individuals who do not have the disease, d have
negativetest results (tr ue negatives) and b have positivetest results
(false positives).

is

Assessing reliability: sensitivity and specificity
Sensitivity = proportion of individuals with the disease who are
correctly identified by the test
_a
~ (a+0)

Specificity = proportion of individuals without the disease who are
correctly identified by the test
. d
~ (b+d)

These are usually expressed as percentages. As with all estimates,
we should calculate confidence intervals for these measures
(Chapter 11).

Wewould liketo have asensitivity and specificity that are both as
closeto 1 (or 100%) as possible. However, in practice, wemay gain
sensitivity at the expense of specificity, and vice versa. Whether we
aim for a high sensitivity or high specificity depends on the condi-
tion we are trying to detect, along with the implications for the
patient and/or the population of either afalse negative or false posi-
tive test result. For conditions that are easily treatable, we prefer a
high sensitivity; for those that are serious and untreatable, we prefer
ahigh specificity in order to avoid making afalse positive diagno-
sis. It is important that before screening is undertaken, subjects
should understand the implications of a positive diagnosis, as well
as having an appreciation of the false positive and false negative
rates of thetest.




Predictive values
Positive predictive value = proportion of individuals with a posi-
tive test result who have the disease
a

(a+h)

Negative predictive value= proportion of individua swith anega-
tive test result who do not have the
disease

. d
" (c+d)

We cal cul ate confidence intervals for these predictive val ues, often
expressed as percentages, using the methods described in Chapter
1.

These predictive values provide information about how likely it
isthat theindividual has or does not have the disease, given his/her
test result. Predictive values are dependent on the prevalence of the
disease in the population being studied. In populations where the
disease is common, the positive predictive value of agiven test will
be much higher than in populations where the disease is rare. The
converseistruefor negative predictive values.

The use of a cut-off value

Sometimes we wish to make a diagnosis on the basis of a con-
tinuous measurement. Often there is no threshold above (or below)
which disease definitely occurs. In these situations, we need to
define acut-off value ourselves, above (or below) which we believe
anindividual hasavery high chance of having the disease.

A useful approach isto usethe upper (or lower) limit of therefer-
ence interval. We can evaluate this cut-off value by calculating
its associated sensitivity, specificity and predictive vaues. If we
choose a different cut-off, these values may change as we become
more or less stringent. We choose the cut-off to optimize these
measures as desired.

Receiver operating characteristic curves

These provide away of assessing whether a particular type of test
provides useful information, and can be used to compare two differ-
ent tests, and to select an optimal cut-off value for atest.

For agiven test, we consider all cut-off pointsthat give aunique
pair of values for sensitivity and specificity, and plot the sensitivity
against one minus the specificity (thus comparing the probabilities
of a positive test result in those with and without disease) and
connect these points by lines (Fig. 38.1).

The receiver operating characteristic (ROC) curve for atest that
has some use will lieto the left of the diagona (i.e. the 45° line) of
the graph. Depending on the implications of false positive and false
negative results, and the preval ence of the condition, we can choose
the optimal cut-off for atest from this graph. Two or more tests for
the same condition can be compared by considering the area under
each curve; thisareais given by the C statistic (produced by many
statistical packages). Thetest with the greater area (i.e. the higher C
statistic) is better at discriminating between disease outcomes.

Is atest useful?

The likelihood ratio (LR) for a positive result is the ratio of the
chance of apositiveresult if the patient hasthe disease to the chance
of apositiveresultif shedoesnot havethe disease (see al so Chapter
32). Likelihood ratios can also be generated for negativetest results.
For example, aLR of 2 for a positive result indicates that a positive
resultistwiceaslikely to occur inanindividual with diseasethanin
one without it. A high likelihood ratio for a positive result suggests
that the test provides useful information, as does alikelihood ratio
closeto zero for anegative result.

It can be shown that:

Sensitivity

LR for apositiveresult =————
(1— specificity)

We discussthisLR in aBayesian framework in Chapter 45.
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Example

Cytomegalovirus (CMV) is a common viral infection to which
approximately 50% of individuals are exposed during childhood.
Although infection with the virus does not usually lead to any
major problems, individualswho have beeninfected with CMV in
the past may suffer serious disease after certain transplant proce-
dures, such as bone marrow transplantation, if their virusis either
reactivated or if they are re-infected by their donors. It is thought
that the amount of detectablevirusintheir blood after transplanta-
tion (the viral load) may predict which individuals will get severe
disease. In order to study this hypothesis, CMV vira load was
measured in a group of 49 bone marrow transplant recipients.
Fifteen of the 49 patients devel oped severe disease during follow-
up. Vira load values in all patients ranged from 2.7 log,,
genomes/mL to 6.010g,,genomes/mL. Asastarting point, avalue
in excess of 4.5 log,, genomes/mL was considered an indica-
tion of the possible future development of disease. The table of
frequencies shows the results obtained; the box contains calcula-
tions of estimates of measures of interest.

Severe disease
Viral load (log,, genomes/mL) Yes No Total
>4.5 7 6 13
<45 8 28 36
Total 15 34 49

Prevalence= (15/49) x 100% = 31% (95% CI 18% to 45%)
Sensitivity = (7/15) x 100% = 47% (95% CI 22% to 72%)
Specificity = (28/34) x 100% = 82% (95% CI 69% to 95%)

Positive predictive value = (7/13) x 100% = 54% (95% ClI
27% to 81%)

Negative predictive value = (28/36) x 100% = 78% (95% CI
65% to 92%)

Likelihood ratio for positive result = 0.47/(1-0.82) = 2.6

(95% Cl 1.1% to 6.5%, obtained from computer output)

Therefore, for this cut-off value, we have a relatively high
specificity and amoderate sensitivity. The LR of 2.6 indicates that
this test is useful, in that a viral load >4.5 log,, genomes/mL is
morethantwiceaslikely in anindividual with severe diseasethan
in one without severe disease. However, in order to investigate
other cut-off values, a ROC curve was plotted (Fig. 38.1). The
plotted line falls just to the left of the diagonal of the graph.
For this example, the most useful cut-off value (5.0 log,,
genomes/mL) is that which gives a sensitivity of 40% and a
specificity of 97%; then the LR equals 13.3.

The optimal cut-off value
of 5.0 log;o genomes/mL

100 - gives a sensitivity of 40%,
specificity of 97% and
a0 LR of 13.3
9
= 60 [
=
2 40} A cut-off value
] of 4.5 log4 genomes/mL
gives a sensitivity of 47%,
20 specificity of 82% and
LR of 2.6
| | | | |
0 20 40 60 80 100

100 - specificity (%)

Figure 38.1 Receiver operating characteristic (ROC) curve, highlight-
ing the results from two possible cut-off values, the optimal one and
that used in the diagnostic test.

Datakindly provided by Prof. V.C. Emery and Dr D. Gor, Department of Virology, Royal Free and University College Medica Schoal, London, UK.
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@ Assessing agreement

Introduction
There are many occasions on which we wish to compare results
which should concur. In particular, we may want to assess and,
if possible, quantify the following two types of agreement or
reliability:
* Reproducibility (method/observer agreement). Do two tech-
niques used to measure a particular variable, in otherwise identical
circumstances, produce the same result? Do two or more observers
using the same method of measurement obtain the same results?
* Repeatability. Does a single observer obtain the same results
when s/hetakesrepeated measurementsinidentical circumstances?
Reproducibility and repeatability can be approached in the same
way. In each case, the method of analysis depends on whether
the variable is categorical (e.g. poor/average/good) or numerical
(e.g. systolic blood pressure). For simplicity, we shall restrict
the problem to that of comparing only paired results (e.g. two
methods/two observers/duplicate measurements).

Categorical variables

Suppose two observers assess the same patients for disease severity
using a categorical scale of measurement, and we wish to evaluate
the extent to which they agree. We present the resultsin atwo-way
contingency table of frequencies with the rows and columns indi-
cating the categories of response for each observer. Table 39.1 is
an example showing the results of two observers assessments of
the condition of tooth surfaces. The frequencies with which the
observers agree are shown aong the diagonal of the table. We cal-
culate the corresponding frequencies which would be expected if
the categorizations were made at random, in the same way as we
calculated expected frequencies in the Chi-sguared test of associa-
tion (Chapter 24) —i.e. each expected frequency is the product of
therelevant row and column total sdivided by the overall total. Then
we measure agreement by:

&

which represents the chance corrected proportional agreement,
where:

* m=total observed frequency (e.g. total number of patients)

* O, = sum of observed frequencies along the diagonal

* E,=sum of expected frequencies along the diagonal

« 1inthe denominator represents maximum agreement.

Cohen’ skappa, k =

k= 1impliesperfect agreement and k= 0 suggeststhat the agree-
ment is no better than that which would be obtained by chance.
There are no objective criteria for judging intermediate values.

1Landis, J.R. and Koch, G.G. (1977) The measurement of observer agreement
for categorical data. Biometrics 33; 159-174.

However, kappais often judged as providing agreement? whichis:
» Poor if k¥<0.20,

e Fairif 0.21< k¥<0.40,

e Moderateif 0.41 < k< 0.60,

* Substantial if 0.61< x¥<0.80,

e Goodif x> 0.80.

Althoughitispossibleto estimate astandard error for kappa, we do
not usually test the hypothesis that kappa is zero since this is not
really pertinent or redlistic in areliability study.

Note that kappa is dependent both on the number of categories
(i.e., its value is greater if there are less categories) and the
prevalence of the condition, so care must be taken when comparing
kappas from different studies. For ordinal data, we can also calcu-
late a weighted kappa? which takes into account the extent to
which the observers disagree (the non-diagonal frequencies) as
well as the frequencies of agreement (along the diagonal). The
weighted kappa is very similar to the intraclass correlation
coefficient (see next section and Chapter 42).

Numerical variables

Suppose an observer takes duplicate measurements of a numerical
variable on n individuals (just replace the word ‘repeatability’ by
‘reproducibility’ if considering the similar problem of method
agreement, but remember to assessthe repeatability of each method
before carrying out the method agreement study).

« |f theaverage difference between duplicate measurementsis zero
(assessed by the paired t-test, sign test or signed ranks test—
Chapters 19 and 20) then we caninfer that thereisno systematic dif-
ference between the pairs of results: if one set of readingsrepresents
the true values, as is likely in a method comparison study, this
means that there is no bias. Then, on average, the duplicate read-
ingsagree.

* The estimated standard deviation of the differences (sy) provides
ameasure of agreement for anindividual. However, itismore usual
to calculate the British Standards Institution repeatability co-
efficient = 2s;. This is the maximum difference which is likely to
occur between two measurements. Assuming aNormal distribution
of differences, we expect approximately 95% of the differencesin
the population to lie between d + 2s, where d is the mean of the
observed differences. The upper and lower limitsof thisinterval are
called the limits of agreement; from them, we can decide (subjec-
tively) whether the agreement between pairs of readingsin agiven
situation is acceptable.

e Anindex of reliability commonly used to measure repeatability
and reproducibility is the intraclass correlation coefficient (ICC,
Chapter 42) which takes values from zero (no agreement) to 1
(perfect agreement). When measuring agreement between pairs of
observations, the ICC is the proportion of the variability in the
observations which is due to the differences between pairs, i.e. it is
the between-pair variance expressed as a proportion of the tota
variance of the observations.

2Cohen, J. (1968). Weighted Kappa: nominal scale agreement with provision
for scale disagreement or partial credit. Psychological Bullelin 70: 213-220.
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When thereisno evidence of asystematic difference between the
pairs, we may calculate the ICC as the Pearson correlation coeffi-
cient (Chapter 26) between the 2n pairs of observations obtained by
including each pair twice, once when itsvalues are as observed and
once when they are interchanged (see Example 2).

If wewish to take the systemati ¢ difference between the observa-
tionsin apair into account, we estimate the ICC as:

2-%

a

G+ 2 (a7 - )

where we determine the difference between and the sum of the
observationsin each of the n pairsand:

&2 isthe estimated variance of the n sums;

&4 isthe estimated variance of the n differences;

d isthe estimated mean of the differences (an estimate of the sys-
tematic difference).

We usually carry out areliability study as part of alarger inves-
tigative study. The sample used for the reliability study should be a
reflection of that used for the investigative study. We should not
compare values of the ICC in different data setsasthe ICC isinflu-
enced by features of the data, such asitsvariability (the | CC will be
greater if the observationsare morevariable). Furthermore, the | CC
is not related to the actual scale of measurement or to the size of
error which isclinically acceptable.

Precautions

* It makes no sense to calculate asingle measure of repeatability if
the extent to which the observationsin a pair disagree depends on
the magnitude of the measurement. We can check this by determin-
ing both the mean of and the difference between each pair of read-

3Bland, J.M., Altman, D.G. (1986). Statistical methods for ng agreement
between two pairs of clinical measurement. Lancet i; 307-310.

Example 1
Assessing agreement —categorical variable
Two observers, an experienced dentist and a dental student,
assessed the condition of 2104 tooth surfacesin school-aged chil-
dren. Every surfacewas coded as* 0’ (sound), ‘1’ (with at least one
‘small’ cavity), ‘2" (with at least one ‘big’ cavity) or ‘3’ (with at
least onefilling, with or without cavities) by each individual. The
observed frequencies are shown in Table 39.1. The bold figures
along the diagonal show the observed frequencies of agreement;
the corresponding expected frequenciesarein brackets. We cal cu-
lated Cohen’s Kappa to assess the agreement between the two
observers.

We estimate Cohen’s kappa as:

(1785+154+ 20+14) _(1602.1+ 21.3+0.5+ O.ZJ

2104 2104
1- (1602.1+ 21.3+ 0.5+ 0.2)

2104

K=

_ 0.9377-0.7719 —073
1-0.7719

ings, and plotting the n differences against their corresponding
means3 (Fig 39.1). If we observe arandom scatter of points (evenly
distributed above and below zeroif thereisno systematic difference
between the pairs) then a single measure of repeatability is accept-
able. If, however, we observe afunnel effect, with the variation in
the differences being greater (say) for larger mean values, then we
must reassess the problem. We may be able to find an appropriate
transformation of the raw data (Chapter 9), so that when we repeat
the process on the transformed observations, the required
condition is satisfied. We can aso use the plot to detect outliers
(Chapter 3).

» Be wary of calculating the correlation coefficient (Chapter 26)
between the two sets of readings (e.g. from the first and second
occasions or from two methods/observers). We are not really inter-
ested in whether the pointsin the scatter diagram (e.g. of the results
from the first occasion plotted against those from the second occa-
sion) lie on a straight line; we want to know whether they conform
to theline of equdlity (i.e., the 45° line when the two scales are the
same). Thiswill not be established by a hypothesis test of the null
hypothesis that the true correlation coefficient is zero. It would, in
any case, be very surprising if the pairs of measurements were not
related, given the nature of the investigation. Furthermore, bear
in mind the fact that it is possible to increase the magnitude of the
correlation coefficient by increasing the range of values of the
measurements.

More complex situations

Sometimes you may come across more complex problems when
assessing agreement. For example, there may be more than two
replicates, or more than two observers, or each of a number of
observers may have replicate observations. You can find details of
the analysis of such problemsin Streiner and Norman4.

4Streiner, D.R. and Norman, G.L. (2003). Health measurement scales: A practical
guideto their development and use, 3rd edn. Oxford University Press, Oxford.

There appears to be substantial agreement between the student
and the experienced dentist in the coding of the children’s tooth
surfaces.

Table 39.1 Observed (and expected) frequencies of tooth surface
assessment.

Dental student
Code 0 1 2 3 Total
0 1785 46 0 7 1838
(1602.1)
1 46 154 18 5 223
(21.3)
Dentist 2 0 0 20 0 25
(0.5
8 8 1 0 14 18
(0.2
Total 1834 201 43 26 2104

Datakindly provided by Dr R.D.Holt, Eastman Dental Institute, University College London, London, UK.
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Example 2

Assessing agreement —numerical variables

The Rosenberg self-esteem index isused to judge apatient’seval -
uation of hisor her own self-esteem. The maximum value of the
index (an indication of high self-esteem) for a person is 50, com-
prising the sum of the individual values from ten questions, each
scored from zero to five. Part of astudy which examined the effec-
tiveness of aparticular type of surgery for facial deformity exam-
ined the change in a patient’s psychological profile by comparing
the values of the Rosenberg index in the patient before and after
surgery. The investigators were concerned about the extent to
which the Rosenberg score would be reliable for a set of patients,
and decided to assess the repeatability of the measure on the first
25 patients requesting treatment for facial deformity. They
obtained avaluefor the Rosenberg index when the patient initially
presented at the clinic and then asked the patient for a second
assessment 4 weeks | ater. The results are shown in Table 39.2.

The differences (first value — second value) can be shown to be
approximately Normally distributed; they have amean, d = 0.56
and standard deviation, ;= 1.83. Thetest statistic for the paired t-
test is equal to 1.53 (degrees of freedom = 24), giving P = 0.14.
This non-significant result indicates that there is no evidence
of any systematic difference between the results on the two
occasions.

The British Standards Institution repeatability coefficient is2s;
=2x1.83=3.7. Approximately 95% of the differencesin the pop-
ulation of such patientswould beexpected toliebetween d +2 Sy
i.e. between —3.1 and 4.3. These limits are indicated in Fig. 39.1
which shows that the differences are randomly scattered around a
mean of approximately zero.

Theindex of reliability is estimated as

287.573-3.340

= =0.98
287.573+3.340 +__(25(0.562) - 3.340)

Since the systematic difference is negligible, this value for the
ICC isthe same as the one we get by cal culating the Pearson cor-
relation coefficient for the 50 pairs of results obtained by using
each pair of resultstwice, oncewiththe order reversed. Asanillus-
tration of the technique, consider thefirst 5 pairs of pre-treatment
vaues: (30, 27), (39, 41), (50, 49), (45, 42) and (25, 28). If we
reverse the order of each pair, we obtain a second set of 5 pairs:

(27, 30), (41, 39), (49, 50), (42, 45) and (28, 25). By repeating this
process for the remaining 20 pairs, we obtain a total of 50 pairs
which we use to calculate the correlation coefficient, an estimate
of thelCC.

Since the maximum likely difference between repeated mea-
surements is around 3.7, and since virtually all (i.e., 98%) of the
variability in the results can be attributed to differences between
patients, the investigators felt that the Rosenberg index was reli-
able, and used it to evaluate the patients’ perceptions of the effec-
tiveness of thefacial surgery.

Table 39.2 The pre-treatment values (1st and 2nd) of the Rosenberg
index obtained on 25 patients.

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

30 27 41 39 37 39 43 43 21 20
39 41 41 4 42 42 40 39 41 39
50 49 50 49 46 44 31 30 29 28
45 42 38 40 49 48 45 46 26 27
25 28 41 39 21 23 46 42 32 30
8
6+

Upper limit of agreement

Difference (1st- 2nd)
o
T

2|k
-4+ Lower limit of agreement
ads indicates two coincident points
8t indicates three coincident points
1 1 1 1
20 30 40 50

Mean of 1st and 2nd values

Figure 39.1 Difference between first and second Rosenberg self-esteem
values plotted against their mean for 25 patients.

Cunningham, S.J., Hunt, N.P. and Feinnman, C. (1996) Perceptions of outcome following othognathic surgery British Journal of Oral and Maxillofacial Surgery

34, 210-213, 1996
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@ Evidence-based medicine

Sackett et al.1 describe evidence-based medicine (EBM) as ‘the
conscientious, explicit and judicious use of current best evidencein
making decisions about the care of individual patients'. To practice
EBM, you must be ableto locate the research relevant to the care of
your patients, and judge its quality. Only then can you think about
applying thefindingsin clinical practice.

Sackett et al. suggest the following approach to EBM. For con-
venience, we have phrased the third and fourth points below in
terms of clinical trials (Chapter 14) and observational studies
(Chapters 15 and 16), but they can be modified to suit other forms of
investigations (e.g. diagnostic tests, Chapter 38).

1 Formulate the problem

You must decide what is of interest to you —how you define the
patient population, which intervention (e.g. treatment) or compari-
son isrelevant, and what outcome you are looking at (e.g. reduced
mortality).

2 Locate the relevant information

(e.g. on diagnosis, prognosis or therapy)
Often the relevant information will be found in published
papers, but you should also consider other possibilities, such ascon-
ference abstracts. You must know what databases (e.g. Medline)
and other sources of evidence areavailable, how they are organized,
which search terms to use, and how to operate the searching
software.

3 Critically appraise the methods in order

to assess the validity (closeness to

the truth) of the evidence

Thefollowing questions should be asked.

¢ Haveall important outcomes been considered?

e Was the study conducted using an appropriate spectrum of
patients?

Do theresults make biological sense?

e Was the study designed to eliminate bias? For example, in a
clinical trial, was the study controlled, was randomization used
in the assignment of patients, was the assessment of response
‘blind’, were any patients lost to follow-up, were the groups
treated in similar fashion, aside from the fact that they received
different treatments, and was an ‘intention-to-treat’ analysis
performed?

e Are the statistical methods appropriate (e.g. have underlying
assumptions been verified; have dependencies in the data (e.g.
pairing) been taken into account in the analysis)?

1Sackett, D.L., Straus, S., Richardson, S., Rosenberg. W. and Haynes, R.B.
(2000) Evidence-based Medicine: How to Practice and Teach EBM.2nd Edn
Churchill-Livingstone, London.
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4 Extract the most useful results and

determine whether they are important

Extracting the most useful results

You should ask the following questions:

(@) What isthe main outcome variable (i.e. that which relates to
the major objective)?

(b) How largeisthe effect of interest, expressed in terms of the
main outcome variable? If thisvariableis:

* Binary (e.g. died/survived)

(i) What are the rates/risks/odds of occurrence of thisevent (e.g.

death) in the (two) comparison groups?

(if) The effect of interest may be the difference in rates or risks
(the absolute reduction) or aratio (the relative rate or risk or
oddsratio) —what isits magnitude?

¢ Numerical (e.g. systolic blood pressure)

(i) What isthe mean (or median) value of the variable in each of

the comparison groups?

(i) What is the effect of interest, i.e. the difference in means
(medians)?

(c) How precise is the effect of interest? Ideally, the research
being scrutinized should include the confidenceinterval for thetrue
effect (awide confidenceinterval isanindication of poor precision).
Is this confidence interval quoted? If not, is sufficient information
(e.g. the standard error of the effect of interest) provided so that the
confidenceinterval can be determined?

Deciding whether the results are important
e Consider the confidence interval for the effect of interest (e.g.
the difference in treatment means):

(i) Would you regard the observed effect clinically important
(irrespective of whether or not the result of the relevant
hypothesistest is statistically significant) if the lower limit of
the confidence interval represented the true value of the
effect?

(if) Would you regard the observed effect clinically important if
the upper limit of the confidenceinterval represented the true
value of the effect?

(iii) Areyour answersto the abovetwo points sufficiently similar
to declare the results of the study unambiguous and
important?

* To assess therapy in a randomized controlled trial, evaluate the
number of patientsyou need to treat (NNT) with the experimen-
tal treatment rather than the control treatment in order to prevent
one of them developing the ‘bad’ outcome (such as post-partum
haemorrhage, see Example). The NNT can be determined in various
ways depending on the information available. It is, for example,
the reciprocal of the difference in the proportions of individuals
with the bad outcome in the control and experimental groups (see
Example).



If the results are to help you in caring for your patients, you must
ensurethat:

« your patient issimilar to those on whom theresultswere obtained;
« theresults can be applied to your patient;

« dl clinically important outcomes have been considered;

« thelikely benefits are worth the potential harms and costs.

Example

Primary aim
specified

Self-evaluation involves questioning your abilities to complete
tasks 1 to 5 successfully. Are you then able to integrate the critical
appraisal into clinical practice, and have you audited your perfor-
mance? You should also ask yourself whether you have learnt from
past experience so that you are now more efficient and are finding
the whole process of EBM easier.

Objective To test the hypothesis that active management (prophylactic oxytocic within 2
minutes of baby's birth, immediate cutting and clamping of the cord, delivery of placenta

by controlled cord traction of maternal effort) of the third stage of labour lowers the risk
of primary postpartum haemorrhage (PPH) compared with expectant management (no
maternal effort), in a setting where both managements are commonly practiced, and that
this effect is not mediated by maternal posture.

Spectrum of

[P Subjects 1512 women judged to be at low risk of PPH (blood loss > 500 ml) were

randomly assigned to active or expectant management. Exclusion criteria were placenta
praevia, previous PPH, antepartum haemorrhage after 20 weeks' gestation, anaemia,
non-cephalic presentation, multiple pregnancy, intrauterine death, epidural anaesthesia,
parity greater than five, uterine fibroid, oxytocin infusion, anticoagulant therapy, intended
operative/instrumental delivery, duration of pregnancy less than 32 weeks. Trial profile
shown in Chapter 14.

Midwife and
mother not
blinded

Technicians
blind

Design A randomized controlled parallel group trial in whichwomen either received
active or expectant management. Women were also rangemly assigned upright or supine
posture. The treatment allocation could not be concealed because active and expectant
management require different actions on the part of both midwife and mother. The
technicians who did the antenatal and postnatal blood tests were unaware of the

allocation.
Main outcome
Findings Analyses were by intention-to-treat. The risk of PPH was significantly lower variable

Magnitude of
main effect of
interest

with active than with expectant management (51 [6.8%] of 748 vs 126 [16.8%] of 764;
relative risk 2.42 [95% Cl 1.78-3.30] , P<0.0001). Posture had no effect on this risk

(upright 92 [12%] of 755 vs supirfe85 [11%] of 757). Objective measures of blood loss
confirmed the results. There was morewomiting in the active group but no other important
differences were detected.

Interpretation Active management of the thiri
the woman's posture, even when midwives are familiar with both approaches. It is
recommended that clinical guidelines in hospital setting advocate active management
(with oxytocin alone). However, decisions about individual care should take into account
the weights placed by pregnant womed and their caregivers on blood loss compared with
an intervention-free third stage

tage reduces the risk of PPH, whatever

Precision of main
effect of interest

Questions the
importance of the

findings as they
relate to the
individual

—risk of PPH is at
least 1.6 and could

From these proportions
with PPH (ie 0.065

be 3.3 times and 0.168)
greater with NNT=1/(0.1686-0.068)
expectant =10

ie. need to treat 10
women with active

management to prevent
one suffering a PPH

management

Adapted from Rogers, J., Wood, J., McCandish, R., Ayers, S., Truesdale, A., Elbourne, D. (1998) Active versus expectant management of third stage of labour:
the Hinchingbrooke randomised controlled trial. Lancet, 351, 693-699, with permission from Elsevier.

Evidence-based medicine 109



m Methods for clustered data

Clustered data conform to a hierarchical or nested structure in
which, in its simplest form (the univariable two-level structure),
the value of asingle response variable is measured on a number of
level 1 unitscontained in different groupsor clusters (level 2 units).
For example, thelevel 1andlevel 2 units, respectively, may beteeth
in a mouth, knees in a patient, patients in a hospital, clinicsin a
region, children in a class, successive visit times for a patient (i.e.
longitudinal data, Fig. 41.1), etc. The statistical analysis of such
repeated measures data should take into account the fact that the
observationsin acluster tend to be correlated, i.e. they are not inde-
pendent. Failure to acknowledge this usually results in underesti-
mation of the standard errors of the estimates of interest and,
consequently, increased Type | error rates and confidence intervals
which aretoo narrow.

For the purposes of illustration, we shall assume, in this chapter,
that we have longitudinal dataand our repeated measures data com-
prise each patient’s values of the variable at different time points,
i.e. the patient is the cluster. We summarize the data by describing
the patterns in individual patients, and, if relevant, assess whether
these patterns differ between two or more groups of patients.

Displaying the data

A plot of the measurement against time for each patient in the study
provides avisua impression of the pattern over time. When we are
studying only asmall group of patients, it may be possible to show
all the individua plots in one diagram. However, when we are
studying large groups this becomes difficult, and we may illustrate
just a selection of ‘representative’ individual plots (Fig. 41.3),
perhaps in a grid for each treatment group. Note that the average
pattern generated by plotting the means over al patients at each
time point may be very different from the patterns seen in indi-
vidual patients.

Comparing groups:

inappropriate analyses

It isinappropriate to use all the values in a group to fit asingle
linear regression line (Chapters 27, 28) or perform aone-way analy-

sis of variance (ANOVA; Chapter 22) to compare groups because
these methods do not take account of the repeated measurementson
the same patient. Furthermore, it is also incorrect to compare the
meansin the groups at each time point separately using unpaired t-
tests (Chapter 21) or one-way ANOVA for anumber of reasons:

» The measurementsin apatient from onetime point to the next are
not independent, so interpretation of the results is difficult. For
example, if acomparison is significant at one time point, thenitis
likely to be significant at other time points, irrespective of any
changesin the valuesin theinterim period.

» Thelarge number of tests carried out impliesthat we are likely to
obtain significant results purely by chance (Chapter 18).

» Weloseinformation about within-patient changes.

Comparing groups: appropriate analyses
Using summary measures

We can base our analysis on asummary measur e that capturesthe
important aspects of the data, and calculate this summary measure
for each patient. Typical summary measures are:

* change from baseline at a pre-determined time point;

» maximum (peak) or minimum (nadir) value reached;

* timeto reach the maximum (or minimum) value;

« timeto reach some other pre-specified valug;

* averagevalue (e.g. mean);

 areaunder the curve (AUC, Fig. 41.2);

* slope or intercept of the patient’s regression line (describing the
rel ationship between the measurement and time).

If the parameter (e.g. the mean or slope) is estimated more pre-
cisely in some patients than others (perhaps because there are more
observations for these patients), we should take account of thisin
the analysis by giving more weight to those measures which are
estimated more precisely.

The choice of summary measure depends on the main question of
interest and should be made in advance of collecting the data. For
example, if we are considering drug concentrationsfollowing treat-
ment with two therapies, we may consider time to maximum drug
concentration (C,,,) or AUC. However, if we are interested in

Patient
3
. . At Figure 41.1 Diagrammatic representation of a
Visit | (Visit | | Visit two-level hierarchical structure for longitudinal
1 2 3 data.

LEVEL 2 Patient Patient
1 2
LEVEL 1 Visit | | Visit | | Visit Visit Visit
1 2 3 1 2
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antibody titres following vaccination, then we may beinterested in
thetimeit takesthe antibody titre to drop below a particular protec-
tivelevel.

We compare the values of the summary measure in the different
groups using standard hypothesis tests [e.g. Wilcoxon rank sum
(Chapter 21) or Kruska-Wallis (Chapter 22)]. Because we have
reduced a number of dependent measurements on each individual
to a single quantity, the values included in the analysis are now
independent.

Whilst analyses based on summary measures are simple to
perform, it may be difficult to find a suitable measure that ade-
quately describes the data, and we may need to use two or more
summary measures. |n addition, these approachesdo not useall data
valuesfully.

Repeated measures ANOVA

We can perform a particular type of ANOVA (Chapter 22), called
repeated measuresANOVA, in which the different time pointsare
considered asthe levels of onefactor in the analysis and the group-
ing variable is a second factor in the analysis. We can regard the
repeated measuresANOVA asan extension of the paired t-test when
we have more than two related observations. If the repeated mea-

suresANOVA produces significant differences between the groups,
then paired t-tests, which take account of the dependencein the data
and have P-values adjusted for multipletesting (Chapter 18), can be
performed to identify at what time points these differences become
apparent?.

However, repeated measuresANOVA has several disadvantages:
« |tisoften difficult to perform.
e Theresults may be difficult to interpret.
« |t generally assumes that values are measured at regular time
intervals and that there are no missing data, i.e. the design of the
study is assumed to be balanced. In redlity, values are rarely mea-
sured at all time points because patients often miss appointments or
come at different timesto those planned.

Regression methods

Variousregression methods, such asthose which provide parameter
estimates with robust standard errors or use generalized estimating
equations (GEE) or random effects models, may be used to analyse
clustered data (see Chapter 42).

1Mickey, R.M., Dunn, O.J,, Clark, V.A. (2004) Applied Statistics: Analysis of
Variance and Regression 3rd Edn. Wiley.
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Example

As part of a practical class designed to assess the effects of two
inhaled bronchodilator drugs, fenoterol hydrobromide and iprat-
ropium bromide, 99 medical students were randomized to receive
one of thesedrugs (n= 33 for each drug) or placebo (n=33). Each
student inhaled four times in quick succession. Tremor was
assessed by measuring the total time (in seconds) taken to thread
five sewing needles mounted on a cork; measurements were made
at baseline beforeinhalation and at 5, 15, 30, 45 and 60 mins after-
wards. The measurements of a representative sample of the stu-
dentsin each treatment group are shown inFig. 41.2.

It was decided to compare the valuesin the three groups using
the ‘area under the curve’ (AUC) as a summary measure. The
calculation of AUC for one student isillustrated in Fig. 41.3.

Minutes after inhalation

The median (range) AUC was 1552.5 (417.5-3875), 1215
(457.5-2500) and 1130 (547.5-2625) seconds? in those receiving
fenoterol hydrobromide, ipratropium bromide and placebo,
respectively. The valuesin the three groups were compared using
the Kruskal-Wallis test which gave P = 0.008. There was thus
strong evidence that the AUC measures were different in the three
groups. Non-parametric post-hoc comparisons, adjusted for mul-
tipletesting, indicated that valueswere significantly greater in the
group receiving fenoterol hydrobromide, confirming pharmaco-
logical knowledge that this drug, as a f3,-adrenoceptor agonist,
induces tremor by the stimulation of 3,-adrenoceptorsin skeletal
muscle.

Datawere kindly provided by Dr R. Morris, Department of Primary Care and Population Sciences, and were collected as part of a student practical class orga-
nized by Dr T.J. Allen, Department of Pharmacology, Royal Free and University College Medical School, London, UK.
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Figure 41.3 Timetaken to thread five sewing needlesfor three representative studentsin each treatment group.

112

Additional chapters Methods for clustered data



@ Regression methods for clustered data

Variousregression methods can be used for theanalysis of thetwo-
level hierarchical structure described in Chapter 41, in which each
cluster (level 2 unit) contains a number of individual level 1 units.
For example, in a study of rheumatoid arthritis, we may measure
the flexion angle on both the left and right knees (level 1) of every
patient (level 2). Alternatively, we may have alongitudinal data set
with a measurement (e.g. total cholesterol) observed at successive
times (level 1) on each patient (level 2). The main advantages and
disadvantages of each method are summarized in Table 42.1. Most
of these methods are unreliable unless there are sufficient clusters,
and they can be complicated to perform and interpret correctly; we
therefore suggest you consult aspecialist statistician for advice.

Aggregate level analysis

A very simple approach is to aggregate the data and perform an
analysis using an appropriate numerical summary measure (e.g.
themean) for each cluster (e.g. the patient) (Chapter 41). Thechoice
of this summary measure will depend on features of the dataand on
the hypotheses being studied. We perform an ordinary least squares
(OLS) multiple regression analysis using the cluster as the unit of
investigation and the summary measure as the outcome variable. If
each cluster has been allocated a particular treatment (in the knee
example, the patient may be randomly allocated one of two treat-
ments—an exercise regimen or no exercise) then, together with
other cluster level covariates (e.g. gender, age), we can incorporate
‘treatment’ in the regression model as a dummy variable using
codessuchas0and 1 (or asaseries of dummy variablesif we have
more than 2 treatments (Chapter 29)).

Robust standard errors

If the clustering isignored in the regression analysis of atwo-level
structure, an important assumption underlying the linear regression
model —that of independence between the observations (see Chap-
ters 27 and 28) —isviolated. As a conseguence, the standard errors
of the parameter estimates are likely to be too small and, hence,
results may be spuriously significant.

To overcome this problem, we may determine robust standard
errorsof the parameter estimates, basing our calculation of them on
the variability in the data (eval uated by appropriate residuals) rather
than on that assumed by the regression model. In amultiple regres-
sion analysiswith robust standard errors, the estimates of the regres-
sion coefficients are the same as in OLS linear regression but the
standard errors are more robust to violations of the underlying
assumptions, our particular concern being lack of independence
when we have clustered data.

Random effects models

Random effectsmodel st areal so known ashier ar chical, multilevel,
mixed, cluster-specific or cross-sectional time seriesmodels. They
can befitted using various comprehensive statistical computer pack-

1Goldstein, H. (2003) Multilevel Satistical Models 3rd edn, Kendall Library of
Statistics 3, Arnold.

ages, such as SAS and Stata, or specialist software such as MLwiN
(http://multilevel .ioe.ac.uk), all of which use aversion of maximum
likelihood estimation. The estimate of the effect for each cluster is
derived using both the individual cluster information as well asthat
of the other clusters so that it benefits from the ‘ shared’ information.
In particular, shrinkage estimates are commonly determined
whereby, using an appropriate shrinkage factor, each cluster’s esti-
mate of theeffect of interestis‘ shrunk’ towardsthe estimated overall
mean. The amount of shrinkage depends on the cluster size (smaller
clusters have greater shrinkage) and on the variation in the data
(shrinkageisgreater for the estimateswhen thevariation within clus-
tersislarge when compared to that between clusters).

A random effects model regards the clusters as a sample from a
real or hypothetical population of clusters. The individual clusters
are not of primary interest; they are assumed to be broadly similar
with differences between them attributed to random variation or to
other *fixed’ factors such as gender, age, etc. Thetwo-level random
effects model differs from the model which takes no account of
clustering in that, although both incorporate random or unexplained
error duethe variation between level 1 units (thewithin cluster vari-
ance, 2), the random effects model aso includes random error
which is dueto the variation between clusters (¢ 2). The variance of
anindividual observation in thisrandom effects model is therefore
the sum of the two components of variance, i.e.itiso2+ o2

Particular models

When the outcome variable, y, is numerical and there is a single
explanatory variable, x, of interest, the simple random inter cepts
linear two-level model assumes that there is a linear relationship
between y and x in each cluster, with all the cluster regression lines
having acommon slope, 3, but different intercepts (Fig. 42.1a). The
mean regression line hasaslope equal to and an intercept equal to
a, which is the mean intercept averaged over al the clusters. The
random error (residual) for each cluster isthe amount by which the
intercept for that cluster regression linediffers, inthe vertical direc-
tion, from the overall mean intercept,or (Fig. 42.1a). The cluster
residuals are assumed to follow a Normal distribution with zero
mean and variance = ¢ 2. Within each cluster, the residuals for the
level 1 unitsare assumed to follow aNormal distribution with zero
mean and the same variance, 2. If the cluster sizes are similar, a
simpleapproach to checking for Normality and constant variance of
theresidualsfor both thelevel 1 unitsand clustersisto look for Nor-
mality in a histogram of the residuals, and to plot the residuals
against the predicted val ues (see Chapter 28).

Thismodel can be modified in anumber of ways (see also Table
42.1), for example, by alowing the slope, S, to vary randomly
between clusters. The model isthen called arandom slopesmodel
inwhich case the cluster specific regression linesare not parallel to
the mean regression line (Fig 42.1b).
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Assessing the clustering effect
The effect of clustering can be assessed by:
* Calculating the intraclass correlation coefficient (ICC, some-
times denoted by p—see also Chapter 39) which, in the two-level
structure, represents the correlation between two randomly chosen
level 1 unitsin one randomly chosen cluster.
ICC= _o
02+02

ThelCC expressesthe variation between the clusters asapropor-
tion of thetotal variation; it is often presented as a percentage. The
ICC = 1 when there is no variation within the clusters and all the
variation is attributed to differences between clusters; the ICC = 0
when there is no variation between the clusters. We can usethe ICC
to make a subjective decision about the importance of clustering.
e Comparing two models where one model is the full random
effects model and the other is a regression model with the same
explanatory variable(s) but which does not take clustering into
account. Therelevant likelihood ratio test hasatest statistic equal to
the differencein thelikelihood ratio statistics of the two models (see
Chapter 32) and it follows the Chi-squared distribution with one
degree of freedom.

2Liang, K.-Y. and Zeger, S.L. (1986) Longitudinal data analysisusing general-
ized linear models Biometrika 73; 13-22.

Generalized estimating equations (GEE)

In the GEE approach? to estimation, we adjust both the parameter
estimatesof aGLM and their standard errorsto takeinto account the
clustering of thedatain atwo-level structure. We makedistributional
assumptions about the dependent variable but, in contrast to the
random effects model, do not assume that the between-cluster resid-
ualsare Normally distributed. Weregard the clustering asanuisance
rather than of intrinsic interest, and proceed by postulating a
‘working’ structure for the correlation between the observations
within each cluster. This does not have to be correct since, provided
there are enough clusters, the robust standard errors and parameter
estimates will be acceptable. However, we will obtain better
parameter estimates if the structure is plausible. We commonly
adopt an exchangeable correlation structure which assumes that
exchanging two level 1 units within a cluster will not affect the
estimation.

The GEE approach is sometimes called population-aver aged
(referring to the population of clusters) or marginal because the
parameter estimates represent the effects averaged across the clus-
ters (even though al level 1 unit information is included in the
analysis). The GEE approach is often preferred to the more
complex random effects model analysis for logistic (Chapter 30)
and, sometimes, Poisson (Chapter 31) regression, even though the
exchangeable correlation structure is known to be incorrect in these
situations.

Table 42.1 Main advantages and disadvantages of regression methods for analysing clustered data.

Method Advantages Disadvantages
Aggregate level e Simple « Doesnot allow for effects of covariatesfor level 1 units
analysis * Easy to perform with basic software « Ignoresdifferencesin cluster sizesand in precision
of the estimate of each cluster summary measure
* May not be ableto find an appropriate summary measure
Robust standard * Relatively simple e Unreliable unless number of clusterslarge, say >30
errorsthat allow  Caninclude covariateswhich vary for level 1 units » Does not adjust parameter estimates for clustering
for clustering  Adjusts standard errors, confidence intervals and P-values
to take account of clustering
 Allowsfor different numbers of level 1 units per cluster
Random effects  Explicitly allowsfor clustering by including both inter- and « Unreliable unlessthere are sufficient clusters
model intra-cluster variation in model » Parameter estimates often biased
* Cluster estimates benefit from shared information from all e Complex modelling skills required for extended models
clusters  Estimation of random effectslogistic model problematic
 Adjusts parameter estimates, standard errors, confidence
intervals and P-values to take account of clustering
 Caninclude covariateswhich vary for level 1 units
 Allowsfor different numbers of level 1 units per cluster
 Can extend hierarchy from 2 levelsto multi-levels
» Can accommodate various forms of GLM (e.g. Poisson)
GEE * Relatively simple  Unreliable unless number of clusterslarge, say >30
 Nodistributional assumptions of random effects (dueto * Treats clustering as anuisance of no intrinsic interest*

clusters) required

Caninclude covariateswhich vary for level 1 units
Allowsfor different numbers of level 1 units per cluster
Adjusts parameter estimates, standard errors, confidence
intervals and P-values to take account of clustering

» Requires specification of working correlation structure®
» Parameter estimates are cluster averages and do not
relate to individualsin popul ation*

* These points may sometimes be regarded as advantages, depending on the question of interest.
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Example

Data relating to periodontal disease were obtained on 96 white
male trainee engineers aged between 16 and 20 entering the
apprentice training school at Royal Air Force Halton, England
(see also Chapter 20). Each of the possible 28 teeth (excluding
wisdom teeth) in every trainee’s mouth was examined at four sites
(the mesiobuccal, mesiolingual, distobuccal and mesiobuccal). To
simplify the analysis, we have considered a subset of the data,
namely, only (1) the mesiobuccal site in each tooth; this leads to
a two-level structure of teeth within subjects (each subject cor-
responds to a cluster), and (2) two variables of interest; loss of
attachment (loa, measured in mm) between the tooth and the
jawbone evaluated at the mesiobuccal site, and the current ciga-
rette smoking status of the trainee (yes = 1, no = 0). We wish to
assess Whether smoking is a risk factor for gum disease (where
greater loss of attachment indicates worse disease).

Table 42.2 shows extracts of the results from different regres-
sion analysesin which the outcome variable isloss of attachment
(mm) and the covariate is smoking. Full computer output is given
in Appendix C. The estimates of the regression coefficients for
smoking and/or their standard errors vary according to the type of

(b) Random slopes model The bold line represents the mean regression
line for al the clusters and each of the lighter lines represents the regression
line for adifferent cluster. The intercept of theith cluster specific

regression line differs from that of the mean line by aresidual = o — ¢,

and the slope of the i th specific regression line differs from that of the mean
line by aresidual = f3;— 3, where the residuals are Normally distributed with
zero mean and variances o2 and o2, respectively.

analysis performed. The two OLS analyses have identical esti-
mated regression coefficients (which are larger than those of the
other three analyses) but their standard errors are different. The
standard error of the estimated regression coefficient in the OLS
analysis which ignores clustering is substantially smaller that the
standard errorsin the other four analyses, i.e. ignoring clustering
resultsin an underestimation of the standard error of the regres-
sion coefficient and, consequently, a confidenceinterval that istoo
narrow and a P-value that is too small. The intracluster correla-
tion coefficient from the random effects model is estimated as
0.224. Thus approximately 22% of the variation in loss of attach-
ment, after taking account of smoking, was between trainees
rather than within trainees.

In this particular example, we conclude from all five analyses
that smoking is not significantly associated with loss of attach-
ment. This lack of significance for smoking is an unexpected
finding and may be explained by the fact that these trainees were
very young and so the smokers amongst them would not have
smoked for along period.

Table 42.2 Summary of results of regression analysesin which loa (mm) isthe outcome variable.

Estimated Standard 95% ClI Test
Analysis coefficient (smoking) Error (SE) for coefficient statistic* P-value
OL S* regression ignoring clustering —-0.0105 0.0235 —0.057 t0 0.036 t=-0.45 0.655
OL Sregression with robust SEs —0.0105 0.0526 —0.115t0 0.094 t=-0.20 0.842
Aggregate analysis (OL Sregression on —0.0046 0.0612 -0.126t00.117 t=-0.07 0.941
group means)
Random effects model —0.0053 0.0607 —-0.124t00.114 z=-0.09 0.930
GEE with robust SEs & exchangeable —0.0053 0.0527 —0.108t0 0.098 z=-0.10 0.920

correlation structure

* t = test statistic following t-distribution; z=Wald test statistic following standard Normal distribution.

+OLS= ordinary least squares.

Datakindly provided by Dr Gareth Griffiths, Dept of Periodontology, Eastman Dental Institute, University College London, UK.

Regression methods for clustered data 115



@ Systematic reviews and meta-analysis

The systematic review

What is it?

A systematicreview! isaformalized and stringent process of com-
bining theinformation from all relevant studies (both published and
unpublished) of the same health condition; these studiesare usually
clinical trials(Chapter 14) of the same or similar treatments but may
be observational studies (Chapters 15 and 16). A systematic review
isanintegral part of evidence-based medicine (EBM; Chapter 40)
which applies the results of the best available evidence, together
with clinical expertise, tothecare of patients. Soimportantisitsrole
in EBM that it has become the focus of an international network of
clinicians, methodologists and consumers who have formed the
CochraneCollaboration. Thishas produced the Cochrane Library
containing regularly updated evidence-based healthcare databases
including the Cochrane Database of Systematic Reviews; full
access to these reviews requires subscription but the abstracts are
freely available on the internet (www.cochrane.org/reviews).

What does it achieve?

¢ Refinement and reduction —large quantities of information are
refined and reduced to amanageable size.

« Efficiency —the systematic review is usually quicker and less
costly to perform than anew study. It may prevent othersembarking
on unnecessary studies, and can shorten the time lag between
medical developments and their implementation.

» Generalizability and consistency —results can often be general-
ized to awider patient popul ation in abroader setting than would be
possible from a single study. Consistencies in the results from dif-
ferent studies can be assessed, and any inconsistencies determined.
 Reliability —the systematic review aimsto reduce errors, and so
tends to improve the reliability and accuracy of recommendations
when compared with haphazard reviews or single studies.

» Power and precision —the quantitative systematic review (see
meta-analysis) has greater power (Chapter 18) to detect effects of
interest and provides more precise estimates of them than asingle

study.

Meta-analysis

What is it?

A meta-analysis or overview is a particular type of systematic
review that focuses on the numerical results. The main aim of a
meta-analysis is to combine the results from individual studies to
produce, if appropriate, an estimate of the overall or average effect
of interest (e.g. therelativerisk, RR; Chapter 15). The direction and
magnitude of this average effect, together with a consideration of
the associated confidence interval and hypothesistest result, can be
used to make decisions about the therapy under investigation and
the management of patients.

Statistical approach
1. Wedecideontheeffect of interest and, if theraw dataare avail-
able, evaluateit for each study. However, in practice, we may have

1Chalmers, I. and Altman, D.G. (eds) (1995) Systematic Reviews. British
Medical Journal Publishing Group, London.
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to extract these effects from published results. If the outcomein a
clinical trial comparing two treatmentsis:

e numerical —the effect may be the difference in treatment

means. A zero difference implies no treatment effect;

* binary (e.g. died/survived) —we consider therisks, say, of the

outcome (e.g. death) in the treatment groups. The effect may be

the difference in risks or their ratio, the RR. If the differencein

risks equals zero or RR =1, then thereisno treatment effect.
2. Check for statistical homogeneity and obtain an estimate
of statistical heterogeneity —we have statistical heterogeneity
when there is genuine variation between the effects of interest from
the different studies. We can perform a hypothesis test of homo-
geneity toinvestigate whether the variation in theindividual effects
is compatible with chance alone. However, this test has low power
(Chapter 18) to detect heterogeneity if there are few studiesin the
meta-analysis and may, conversely, give a highly significant result
if it comprises many large studies, even when the heterogeneity is
unlikely to affect the conclusions. An index, 12, which does not
depend on the number of studies, the type of outcome data or the
choice of treatment effect (e.g. relativerisk), can be used to quantify
the impact of heterogeneity and assess inconsistency? (see
Example). 12 represents the percentage of the total variation across
studies dueto heterogeneity; it takes values from 0% to 100%, with
avalue of 0% indicating no observed heterogeneity. If thereis evi-
dence of statistical heterogeneity, we should proceed cautiously,
investigate the reasons for its presence and modify our approach
accordingly, perhapsby dividing the studiesinto subgroups of those
with similar characteristics.
3. Estimate the average effect of interest (with a confidence
interval), and perform the appropriate hypothesis test on the
effect (e.g. that the true RR = 1) —you may come across the terms
‘fixed effects’ and ‘random effects’ modelsin this context (see also
Chapter 42). If thereis no evidence of statistical heterogeneity, we
generally use a fixed effects model (which assumes the treatment
effect isthe samein every study and any observed variation initis
due to sampling error); otherwise we use a random effects model
(which assumesthat the separate studies represent arandom sample
from a population of studies which has a mean treatment effect
about which theindividual study effectsvary).
4. Interpret theresultsand present thefindings—it ishelpful to
summarizetheresultsfrom each trial (e.g. the sample size, baseline
characteristics, effect of interest such asthe RR, and related confi-
dence interval, Cl) in a table (see Example). The most common
graphical display isaforest plot (Fig. 43.1) in which the estimated
effect (with CI) for each trial and their average are marked along
the length of a vertical line which represents ‘no treatment effect’
(e.g. thisline corresponds to the value ‘one’ if the effect is a RR).
The plotting symbol for the estimated effect for each study is often
a box which has an area proportional to the size of that study. Ini-
tially, we examine whether the estimated effects from the different
studies are on the same side of the line. Then we can use the Clsto
judge whether the results are compatible (if the Cls overlap), to

2Higgins, PT., Thompson, S.G., Deeks, J.J. and Altman, D.G. (2003) Measur-
ing inconsistency in meta-analysis British Medical Journal 237, 557-560.



determine whether incompatible results can be explained by small
sample sizes (if Cls are wide) and to assess the significance of the
individual and overall effects (by observing whether the vertical
line crosses some or al of the Cls).

Advantages and disadvantages

As a meta-analysis is a particular form of systematic review, it
offersall the advantages of the latter (see ‘what doesit achieve?').
In particular, ameta-analysis, because of itsinflated sample size, is
able to detect treatment effects with greater power and estimate
these effects with greater precision than any single study. Its
advantages, together with the introduction of meta-analysis soft-
ware, have led meta-analysesto proliferate. However, improper use
can lead to erroneous conclusionsregarding treatment efficacy. The
following principal problems should be thoroughly investigated
and resolved before ameta-analysisis performed.

* Publication bias—the tendency to include in the analysis only
the results from published papers; these favour statistically signifi-
cant findings. We can decide if publication bias is an issue by
drawing a funnel plot, a scatter diagram which usually has the
study sample size on the horizontal axis and the treatment effect

Example

A patient with severe angina will often be eligible for either per-
cutaneoustransluminal coronary angioplasty (PTCA) or coronary
artery bypass graft (CABG) surgery. Results from eight published
randomized trials were combined in a collaborative meta-
analysisof 3371 patients (1661 CABG, 1710 PTCA) with amean
follow-up of 2.7 years. Themain features of thetrialsare shownin
Table 43.1. Results for the composite endpoint of cardiac death
plus non-fatal myocardia infarction (MI) in the first year of
follow-up are shown in Fig. 43.1. The estimated relative risks
(RR) are for the PTCA group compared with the CABG group.
Thefigure uses alogarithmic scale for the RR to achieve symmet-
rical confidenceintervals (Cl). Although the individual estimates
of relative risk vary quite considerably, from reductionsin risk to

Number (%) having cardiac
death or Ml in first year

(e.g. odds ratio) on the vertical axis, In the absence of publication
bias, the scatter of points (each point representing one study) in the
funnel plot will be substantial at the bottom where the study sizeis
small, and will narrow (in the shape of a funnel) towards the top
where the study size is large. If publication bias is present, the
funnel plot will probably be skewed and asymmetrical, with a gap
towards the bottom left hand corner where both the treatment effect
and study sizeare small (i.e. when the study haslow power to detect
asmall effect).

« Clinical heterogeneity —in which differencesin the patient pop-
ulation, outcome measures, definition of variables, and/or duration
of follow-up of the studiesincluded in the analysis create problems
of non-compatibility.

e Quality differences—the design and conduct of the studies may
vary in their quality. Although giving more weight to the better
studiesisone solution to thisdilemma, any weighting system can be
criticized on the groundsthat it isarbitrary.

» Dependence—the results from studies included in the analysis
may not be independent, e.g. when results from a study are pub-
lished on more than one occasion.

quitelargeincreasesinrisk, all the confidenceintervalsoverlap to
some extent. A more formal assessment of heterogeneity is pro-
vided by Cochran’s Chi-squared test for homogeneity which
gives a non-significant result (test statistic Q = 13.2, degrees of
freedomdf=8-1=7, P=0.07). However, I2= 100x(Q — df)/Q =
100%x(13.2 — 7)/13.2 = 47% (95% CI 0% to 76%) which suggests
moderate inconsistency across the studies and advocates a cau-
tious approach to interpreting the combined estimate of relative
risk for al trials. Thisrelative risk was estimated as 1.03 (95% Cl
0.79t0 1.50), indicating that there was no evidence of areal overall
difference between the two revascul arization strategies. It may be
of interest to note that during early follow-up, the prevalence of
anginawas higher in PTCA patientsthan in CABG patients.

Trial PTCA CABG RR (95% Cl) RR (95% Cl)
CABRI 43 (7.9%) 29 (5.7%) r 1.41(0.89, 2.22)
RITA 34 (6.7%) 31 (6.2%) 1.08 (0.67, 1.73)
EAST 24 (13.7%) 33 (18.4% o 0.71 (0.4, 1.16)
GABI 10 (5.5%) 18 (10.2%) . 0.54 (0.26, 1.14)
Toulouse 6 (7.9%) 6 (7.9%) 1.00 (0.34, 2.96)
MASS 5 (6.9%) 1(1.5%) =) 4.86 (0.58, 40.57)
Lausanne 6 (8.8%) 2 (3.0%) . I 2.91 (0.61, 13.91)
ERACI 8 (12.7%) 7 (10.9%) L 1.16 (0.45, 3.01)
Al trials 136 127 > 1.04 (0.83, 1.31)

0.1

02 05 1 2 5 10
Favours PTCA Favours CABG

Figure 43.1 Forest plot of relative risk (RR) with 95% CI of cardiac death or myocardia infarction for PTCA group compared with CABG group in

first year since randomization.

continued
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Table 43.1 Characteristics of eight randomized trials comparing percutaneous transluminal coronary angioplasty and coronary artery bypass graft.

Number of patients

Principal Single- or multi- Follow-up
Country investigator vessel CABG PTCA (years)

Coronary Angioplasty Bypass Europe A.F. Rickards Multi 513 541 1
Revascularisation I nvestigation
(CABRI)

Randomised Intervention on UK J.R. Hampton Single (n = 456) 501 510 4.7
Treatment of AnginaTrial (RITA) Multi (n=555)

Emory Angioplasty versus USA S.B.King Multi 194 198 3+
Surgery Trial (EAST)

German Angioplasty Bypass Germany C.W. Hamm Multi 177 182 1
Surgery Investigation (GABI)

The Toulouse Trial (Toulouse) France J. Puel Multi 76 76 2.8

Medicine Angioplasty or Brazil W. Hueb Single 70 72 32
Surgery study (MASS)

The Lausannetrial (Lausanne) Switzerland J.-J. Goy Single 66 68 32

Argentine Trial of PTCA versus Argentina A. Rodriguez Multi 64 63 3.8
CABG (ERACI)

Adapted from Pocock, S.J., Henderson, R.A., Rickards, A.F,, et al. (1995) A meta-analysis of randomised trials comparing coronary angioplasty with bypass

surgery. Lancet, 346, 1184-1189, with permission from Elsevier.
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Survival data are concerned with the time it takes an individual to
reach an endpoint of interest (often, but not always, death) and are
characterized by the following two features.

« |tisthelength of timefor the patient to reach the endpoint, rather
than whether or not s'he reaches the endpoint, that is of primary
importance. For example, wemay beinterested inlength of survival
in patients admitted with cirrhosis.

e Datamay often be censored (see below).

Standard methods of analysis, such as logistic regression or a
comparison of the mean time to reach the endpoint in patients with
and without anew treatment, can give misleading results because of
the censored data. Therefore, a number of statistical techniques,
known as survival methodst, have been developed to dea with
these situations.

Survival timesare calculated from some baseline date that reflectsa
natural ‘starting point’ for the study (e.g. time of surgery or diagno-
sis of acondition) until the time that a patient reaches the endpoint
of interest. Often, however, we may not know when the patient
reached the endpoint, only that s’/he remained free of the endpoint
whilein the study. For example, patientsin atrial of anew drug for
HIV infection may remain AIDS-free when they leave the study.
This may either be because the trial ended while they were till
AlIDS-free, or because these individuals withdrew from the tria
early before developing AIDS, or because they died of non-AIDS
causes before the end of follow-up. Such data are described as

105
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Figure 44.1 Survival experience of 105 patients following admission with
cirrhosis. Filled blank circlesindicate patients who died, open circlesindi-
cate those who remained alive at the end of follow-up.

1Collett, D. (2003). Modelling Survival Data in Medical Research. 2nd Edn.
Chapman and Hall/CRC, London.

right-censored. These patients were known not to have reached the
endpoint when they were last under follow-up, and thisinformation
should beincorporated into the analysis.

Where follow-up does not begin until after the baseline date,
survival times can also beleft-censored.

A separate horizontal line can bedrawn for each patient, itslength
indicating the survival time. Lines are drawn from left to right, and
patients who reach the endpoint and those who are censored can be
distinguished by the use of different symbols at the end of the line
(Fig. 44.1). However, these plotsdo not summarizethe dataanditis
difficult to get afeel for the survival experience overall.

e Survival curves, usualy caculated by the Kaplan—Meier
method, display the cumulative probability (the survival probabil-
ity) of anindividual remaining free of the endpoint at any time after
baseline (Fig. 44.2). Thesurvival probability will only changewhen
an endpoint occurs, and thus the resulting ‘curve' is drawn as a
series of steps. An aternative method of calculating survival proba-
bilities, using a lifetable approach, can be used when the time to
reach the endpoint isonly known to within aparticul ar timeinterval
(e.g. within ayear). The survival probabilities using either method
are simple but time-consuming to calculate, and can be easily
obtained from most statistical packages.

We often summarize survival by quoting survival probabilities
(with confidence intervals) at certain time points on the curve, for
example, the 5 year survival rates in patients after treatment for
breast cancer. Alternatively, the median time to reach the endpoint
(the time at which 50% of the individuals have progressed) can be
quoted.
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Years after admission
Number in risk set at each time point
HVPG <16 46 33 22 11 9 5
HVPG>16 59 41 20 10 4 3

Figure 44.2 Kaplan—Meier curves showing the survival probability,

expressed as a percentage, following admission for cirrhosis, stratified by
baseline HV PG measurement.
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We may wish to assess theimpact of anumber of factors of interest
onsurvival, e.g. treatment, disease severity. Survival curves can be
plotted separately for subgroups of patients; they provide a means
of assessing visually whether different groups of patients reach the
endpoint at different rates (Fig. 44.2). We can test formally whether
there are any significant differences in progression rates between
the different groups by, for example, using the log-rank test or
regression models.

The log-rank test

Thisnon-parametric test addressesthe null hypothesisthat there are
no differences in survival times in the groups being studied, and
compares events occurring at all time points on the survival curve.
We cannot assess the independent roles of more than one factor on
the time to the endpoint using the log-rank test.

Regression models

We can generate a regression model to quantify the relationships
between one or more factors of interest and survival. At any pointin
time, t, an individual, i, has an instantaneous risk of reaching the
endpoint (often known as the hazard, or A,(t)), given that s’he has
not reached it up to that point in time. For example, if death isthe
endpoint, the hazard istherisk of dying at timet. Thisinstantaneous
hazard isusually very small and isof limited interest. However, we
may want to know whether there are any systematic differences
between the hazards, over all time points, of individualswith differ-
ent characteristics. For example, isthe hazard generally reduced in
individuals treated with anew therapy compared with those treated
with aplacebo, when wetakeinto account other factors, such asage
or disease severity?
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We can use the Cox proportional hazards model to test the
independent effects of a number of explanatory variables (factors)
on the hazard. It isof theform:

A,(t) = A (exp{ B + X +...+ B X}

where A,(t) isthe hazard for individual i at timet, A,(t) isan arbitrary
baseline hazard (in which we are not interested), x,, ..., X are
explanatory variables in the model and 3, . .., B, are the corre-
sponding coefficients. We obtain estimates, b,, ..., b,, of these
parameters using a form of maximum likelihood known as partial
likelihood. The exponential of these values (e.g. exp{ b;} =€) are
the estimated relative hazards or hazard ratios. For a particular
value of x,, the hazard ratio is the estimated hazard of disease for
(x, + 1) relative to the estimated hazard of disease for x;, while
adjusting for al other x's in the equation. The relative hazard is
interpreted in asimilar manner to the odds ratio in logistic regres-
sion (Chapter 30) or the relative rate in Poisson regression (Chapter
31); therefore values above one indicate a raised hazard, values
below oneindicate adecreased hazard and values equal to oneindi-
cate that there is no increased or decreased hazard of the endpoint.
A confidenceinterval can be calculated for therelative hazard and a
significance test performed to assessits departure from 1.

The relative hazard is assumed to be constant over time in this
model (i.e. the hazards for the groups to be compared are assumed
to be proportional ). It isimportant to check this assumption either
by using graphical methods or by incorporating an interaction
between the covariate and log(time) in the model and ensuring that
it isnon-significant?.

Other models can be used to describe survival data, e.g. the
Exponential, Weibull or Gompertz models, each of which
assumes a specific probability distribution for the hazard function.
However, these are beyond the scope of this book?.



Example

Height of portal pressure (HVPG) is known to be associated with
the severity of alcoholic cirrhosis but israrely used as a predictor
of survival in patientswith cirrhosis. In order to assessthe clinical
value of this measurement, 105 patients admitted to hospital with
cirrhosis, undergoing hepatic venography, were followed for a
median of 566 days. The experience of these patientsisillustrated
in Fig. 44.1. Over the follow-up period, 33 patients died.
Kaplan-Meier curves showing the cumulative survival
percentage at any time point after baseline are displayed sepa-
rately for individuals in whom HV PG was less than 16 mmHg (a
value previously suggested to provide prognostic significance)
and for thoseinwhom HV PG was 16 mmHg or greater (Fig. 44.2).

The computer output for the log-rank test contained the fol-
lowing information:

P-value
0.0213

Test Chi-square df
5.2995 1

Log-rank

Thus there is asignificant difference (P = 0.02) between survival
times in the two groups. By 3 years after admission, 73.1% of
those with alow HVPG measurement remained alive, compared
with 49.6% of those with ahigher measurement (Fig. 44.2).

Table 44.1 Results of Cox proportional hazards regression analysis.

A Cox proportional hazards regression model was used to
investigate whether this relationship could be explained by differ-
encesin any known prognostic or demographic factorsat baseline.
Twenty variables were considered for inclusion in the model,
including demographic, clinical and laboratory markers. Graphi-
cal methods suggested that the proportional hazards assumption
wasreasonablefor these variables. A stepwise selection procedure
(Chapter 33) was used to select the final optimal model, and the
resultsare shownin Table 44.1.

The results in Table 44.1 indicate that raised HVPG remains
independently associated with shorter survival after adjusting for
other factors known to be associated with a poorer outcome. In
particular, individual swith HV PG of 16 mmHg or higher had 2.46
(=exp{0.90}) timesthe hazard of death compared with those with
lower levels (P = 0.04) after adjusting for other factors. In other
words, the hazard of death isincreased by 146% in theseindivid-
uals. In addition, increased prothrombin time (hazard increases by
5% per additional second), increased bilirubin level (hazard
increases by 5% per 10 additional mmol/L), the presence of
ascites (hazard increases by 126% for a one level increase) and
previous long-term endoscopic treatment (hazard increases by
246%) were al independently and significantly associated with
outcome.

Estimated

Parameter Standard relative 95% ClI for
Variable (and coding) df estimate error P-value hazard relative hazard
HVPG* (0=<16, 1=>16mmHg) 1 0.90 0.44 0.04 2.46 (1.03-5.85)
Prothrombin time (secs) 1 0.05 0.01 0.0002 1.05 (1.02-1.07)
Bilirubin (10mmol/L) 1 0.05 0.02 0.04 1.05 (1.00-1.10)
Ascites (0= none, 1= mild, 1 0.82 0.18 0.0001 2.26 (1.58-3.24)

2 =moderate/severe)

Previous long-term endoscopic 1 124 0.41 0.003 3.46 (1.54-7.76)

treatment (0= no, 1 =yes)

HVPG*, Height of portal pressure.

Datakindly provided by Dr D. Patch and Prof. A.K. Burroughs, Liver Unit, Royal Free Hospital, London, UK.
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@ Bayesian methods

The frequentist approach

The hypothesis tests described in this book are based on the
frequentist approach to probability (Chapter 7) and inference that
considers the number of times an event would occur if we wereto
repeat the experiment a large number of times. This approach is
sometimes criticized for the following reasons.

* It usesonly information obtained from the current study, and does
not incorporate into the inferential process any other information
we might have about the effect of interest, e.g. aclinician’s views
about the relative effectiveness of two therapies before a clinical
tria isundertaken.

* Itdoesnot directly addresstheissuesof greatest interest. Inadrug
comparison, we are usualy really interested in knowing whether
one drug is more effective than the other. However, the frequentist
approach tests the hypothesis that the two drugs are equally effec-
tive. Although we conclude that one drug is superior to the other if
the P-value issmall, this probability (i.e. the P-value) describesthe
chance of getting the observed resultsif the drugs are equally effec-
tive, rather than the chance that one drug is more effective than the
other (our real interest).

« |t tends to over-emphasize the role of hypothesis testing and
whether or not aresult is significant, rather than the implications of
theresults.

The Bayesian approach

An dternative, Bayesian?, approach to inference reflects an indi-
vidua’s personal degree of belief in a hypothesis, possibly based
on information already available. Individuals usualy differ in their
degrees of belief in a hypothesis; in addition, these beliefs may
change as new information becomes available. The Bayesian
approach calculates the probability that a hypothesis is true (our
focusof interest) by updating prior opinionsabout the hypothesisas
new data become available.

Conditional probability

A particular type of probability, known as conditional probability,
is fundamental to Bayesian analyses. This is the probability of an
event, given that another event has already occurred. Asan illustra-
tion, consider an example. The incidence of haemophiliaA in the
general population is approximately 1 in 10000 male births.
However, if weknow that awoman isacarrier for haemophilia, this
incidence increases to around 1 in 2 male births. Therefore, the
probability that amale child has haemophilia, given that his mother
isacarrier, isvery different to the unconditional probability that he
has haemophiliaif his mother’s carrier statusis unknown.

Bayes theorem

Suppose we are investigating a hypothesis (e.g. that a treatment
effect equals some value). Bayes theorem convertsaprior proba-
bility, describing an individual’s belief in the hypothesis before the
study iscarried out, into aposterior probability, describing his/her
belief afterwards. The posterior probability is, in fact, the condi-

1Freedman, L. (1996) Bayesian statistical methods. A natural way to assess
clinical evidence. British Medical Journal, 313, 569-570.
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tional probability of the hypothesis, given theresultsfrom the study.
Bayestheorem statesthat the posterior probability isproportional
totheprior probability multiplied by avalue, thelikelihood of the
observed results which describes the plausibility of the observed
resultsif the hypothesisistrue (Chapter 32).

Diagnostic tests in a Bayesian framework
Almost al clinicians intuitively use a Bayesian approach in their
reasoning when making a diagnosis. They build a picture of the
patient based on clinical history and/or the presence of symptoms
and signs. From this, they decide on the most likely diagnosis,
having eliminated other diagnoses on the presumption that they are
unlikely to be true, given what they know about the patient. They
may subsequently confirm or amend this diagnosis in the light of
new evidence, e.g. if the patient responds to treatment or a new
symptom develops.

When an individual attends a clinic, the clinician usually has
someideaof the probability that theindividual hasthe disease —the
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Figure 45.1 Fagan’s nomogram for interpreting a diagnostic test result.
Adapted from Sackett, D.L ., Richardson, W.S., Rosenberg, W., Haynes,
R.B. (1997) Evidence-based Medicine: How to Practice and Teach EBM.
Churchill-Livingstone, London, with permission.



prior or pre-test probability. If nothing else is known about the
patient, this is smply the prevalence (Chapters 12 and 38) of the
disease in the population. We can use Bayes theorem to change
the prior probability into aposterior probability. Thisis most easily
achieved if weincorporatethelikelihood ratio (Chapter 32), based
on information obtained from the most recent investigation (e.g. a
diagnostic test result), into Bayestheorem. Thelikelihood ratio of a
positivetest result isthe chance of apositivetest result if the patient
has disease, divided by that if 'heis disease-free. We discussed the
likelihood ratio in this context in Chapter 38, and showed that it
could be used to indi cate the usefulness of adiagnostic test. We now
useit to express Bayes theorem in terms of odds (Chapter 16):

Posterior oddsof disease= prior oddsx likelihood ratio
of apositivetest result
where

prior probability
(1— prior probability)

Prior odds=

The posterior odds is smple to calculate, but for easier inter-
pretation, we convert the odds back into a probability using the
relationship:

posterior odds

Posterior probability = {1+ posterior odds)

Example

In the example in Chapter 38 we showed that in bone marrow
transplant recipients, aviral load above 5 log, , genomes/mL gave
the optimal sensitivity and specificity of atest to predict the devel -
opment of severe clinical disease. The likelihood ratio for a posi-
tive test for this cut-off valuewas 13.3.

If we believe that the prevalence of severe disease asaresult of
cytomegalovirus (CMV) infection after bone marrow transplanta-
tion is approximately 33%, the prior probability of severe disease
in these patients equals 0.33.

Prior odds= oS =0.493
0.67

Posterior odds= 0.493 x likelihood ratio
=0.493x%x 13.3
=6.557

6.557 _ 6.557

= =0.868
(1+6.557) 7.557

Posterior probability =

This posterior or post-test probability is the probability that the
patient hasthe disease, given apositivetest result. Itissimilar to the
positive predictive value (Chapter 38) but takes account of the prior
probability that the individual hasthe disease.

A simpler way to perform these calculations is to use Fagan’s
nomogram (see Fig. 45.1); by connecting the pre-test probability
(expressed as apercentage) to thelikelihood ratio and extending the
line, we can evaluate the post-test probability.

Aspart of any Bayesian analysis, it is necessary to specify the prior
probability of the hypothesis (e.g. the pre-test probability that a
patient has disease). Because of the subjective nature of these
priors, individual researchers and clinicians may choose different
values for them. For this reason, Bayesian methods are often criti-
cized as being arbitrary. Where the most recent evidence from the
study (i.e. the likelihood) is very strong, however, the influence of
the prior informationisminimized (at itsextreme, theresultswill be
completely uninfluenced by the prior information).

The calculations involved in many Bayesian analyses are
complex, usualy requiring sophisticated statistical packages that
are highly computer intensive. Therefore, despite being intuitively
appealing, Bayesian methods have not been used widely. However,
theavailability of powerful personal computers meansthat their use
is becoming more common.

Therefore, if theindividual hasaCMV viral load above 5 log,,
genomes/mL, and we assume that the pre-test probability of
severe diseaseis 0.33 (i.e. 33%), then we believe that the individ-
ual hasan 87% chance of developing severedisease. Thiscan also
be estimated directly from Fagan’s nomogram (Fig. 45.1) by con-
necting the pre-test probability of 33%to alikelihood ratio of 13.3
and extending the line to cut the post-test probability axis. In con-
trast, if we believe that the probability that an individual will get
severe disease is only 0.2 (i.e. pre-test probability equals 20%),
then the post-test probability will equal 77%.

In both cases, the post-test probability is much higher than the
pre-test probability, indicating the usefulness of a positive test
result. Furthermore, both resultsindicate that the patient isat high
risk of developing severe disease after transplantation and that it
may be sensible to start anti-CMV therapy. Therefore, despite
having very different prior probabilities, the general conclusion
remainsthe samein each case.

Bayesian methods 123



Appendix A: Statistical tables

This appendix contains statistical tables discussed in the text. We
have provided only limited P-values because data are usually
analysed using acomputer, and P-values are included in its output.
Other texts, such as that by Fisher and Yates!, contain more com-
prehensive tables. You can also obtain the P-value directly from
some computer packages, given avalue of the test statistic. Empty
cellsin atable are an indication that values do not exist.

Table A1l contains the probability in the two tails of the distribution
of avariable, z, whichfollowsthe Standard Normal distribution. The
P-valuesin Table Al relate to the absolute values of z, soif zis neg-
ative, weignoreits sign. For example, if atest statistic that follows
the Standard Normal distribution hasthevalue 1.1, P=0.271.

Table A2 and Table A3 contain the probability in the two tails of a
distribution of a variable that follows the t-distribution (Table A2)
or the Chi-squared distribution (Table A3) with given degrees of
freedom (df). To use Table A2 or Table A3, if the absolute value of
the test statistic (with given df) lies between the tabul ated valuesin
two columns, then the two-tailed P-value lies between the P-values
specified at thetop of these columns. If thetest statisticisto theright
of the final column, P < 0.001; if it is to the left of the second
column, P > 0.10. For example, (i) Table A2: if the test statistic is
2.62 with df = 17, then 0.01 < P < 0.05; (ii) TableA3: if thetest sta-
tisticis 2.62 with df = 17, then P < 0.001.

Table A4 contains often used P-values and their corresponding
values for z, a variable with a Standard Normal distribution. This
table may be used to obtain multipliers for the calculation of
confidence intervals (Cl) for Normally distributed variables. For
example, for a95% confidence interval, the multiplier is 1.96.

Table A5 contains P-values for a variable that follows the F-
distribution with specified degrees of freedom in the numerator
and denominator. When comparing variances (Chapter 35), we
usualy use a two-tailed P-value. For the analysis of variance
(Chapter 22), we use a one-tailed P-value. For given degrees of
freedom in the numerator and denominator, the test is significant at
thelevel of P quoted inthetableif thetest statisticisgreater thanthe
tabulated value. For example, if the test statistic is2.99 with df =5
in the numerator and df = 15 in the denominator, then P < 0.05 for a
one-tailed test.

TableA6 containstwo-tailed P-values of the sign test of r responses
of aparticular type out of atotal of n” responses. For a one-sample
test, r equals the number of values above (or below) the median
(Chapter 19). For apaired test, r equals the number of positive (or
negative) differences (Chapter 20) or the number of preferencesfor

1Fisher, R.A. and Yates, F. (1963) Satistical Tablesfor Biological, Agricul-
tural and Medical Research, 6th edn. Oliver and Boyd, Edinburgh.
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aparticular treatment (Chapter 23). n” equals the number of values
not equal to the median, non-zero differences or actual preferences,
asrelevant. For example, if we observed three positive differences
out of eight non-zero differences, then P =0.726.

Table A7 contains the ranks of the values which determine the
upper and lower limits of the approxi mate 90%, 95% and 99% con-
fidence intervals (Cl) for the median. For example, if the sample
sizeis 23, then the limits of the 95% confidenceinterval are defined
by the 7th and 17th ordered values.

For sample sizes greater than 50, find the observations that corre-
spond to the ranks (to the nearest integer) equal to: (i) /2 — zVn/2;
and (i) 1+ n/2 + zVn/2; wherenisthe sample sizeand z= 1.64 for a
90% Cl, z=1.96 for a95% Cl, and z=2.58 for a99% ClI (the values
of z being obtained from the Standard Normal distribution, Table
A4). These observations define (i) the lower, and (ii) the upper con-
fidence limitsfor the median.

TableA8 containstherange of valuesfor the sum of theranks (T, or
T.), which determines significance in the Wilcoxon signed ranks
test (Chapter 20). If the sum of the ranks of the positive (T,) or neg-
ative (T_) differences, out of n” non-zero differences, is equal to or
outside the tabulated limits, the test is significant at the P-value
quoted. For example, if there are 16 non-zero differencesand T, =
21,then 0.01< P <0.05.

Table A9 contains the range of values for the sum of the ranks
(T) which determines significance for the Wilcoxon rank sum
test (Chapter 21) at (a) the 5% level and (b) the 1% level. Suppose
we have two samples of sizesngand n , whereng< n, . If the sum of
the ranks of the group with the smaller sample size, ng, is equal to
or outside the tabulated limits, the test is significant at (a) the 5%
level or (b) the 1% level. For example, if ng= 6 and n_ =8, and the
sum of the ranks in the group of six observations equals 39, then
P> 0.05.

Tables A10 and Table A1l contain two-tailed P-values for
Pearson’s (Table A10) and Spearman’s (Table A11) correlation
coefficientswhen testing the null hypothesisthat the relevant corre-
lation coefficient is zero (Chapter 26). Significanceis achieved, for
agiven sample size, at the stated P-value if the absolute value (i.e.
ignoring its sign) of the sample value of the correlation coefficient
exceeds the tabulated value. For example, if the sample size equals
24 and Pearson’sr = 0.58, then 0.001 < P < 0.01. If the sample size
equals 7 and Spearman’sr =—0.63, then P > 0.05.

TableA12 contains the digits 0-9 arranged in random order.



Table A1 Standard Table A2 t-distribution. Table A3 Chi-squared distribution.
Normal distribution.

Two-tailed P-value Two-tailed P-value
2-taled df 010 005 001 0001 df 0.10 0.05 0.01 0.001
z P-value

00 Lo0o 1 6314 12706 63656 636.58 1 2.706 3.841 6.635 10.827
o 0920 2 2920 4303 9925 31600 2 4.605 5.991 9210 13815
o P 3 2353 3182 5841 12924 3 6.251 7815 11345  16.266
g 0764 4 2132 2776 4604 8610 4 7.779 9488 13277  18.466
o 060 5 2015 2571 4032  6.869 5 923 11070 15086 20515
e 0017 6 1943 2447 3707 5959 6 10645 12592 16812 22457
o 0020 7 1895 2365 3499 5408 7 12017 14067 18475 24321
07 0.084 8 1860 2306 3355 5041 8 13362 15507 20090 26124
ot 0o 9 1833 2262 3250 4781 9 14684 16919 21666  27.877
oo 0308 10 1812 2228 3169 4587 10 15987 18307 23209 29588
o 0317 11 1796 2201 3106 4437 1 17275 19675 24725 31264
12 1782 2179 305 4318 12 18549 21026 26217 32909
11 0.271 13 1771 2160 3012 4221 13 19812 22362  27.688 34527
12 0.230 14 1761 2145 2977 4140 14 21064 23685 20141 36124
13 0.194 15 1753 2131 2947 4073 15 22307 2499 30578  37.698
14 0.162 16 1746 2120 2921 4015 16 23542 26296 32000  39.252
L5 0.134 17 1740 2110 2898 3965 17 24769 27587 33409 40791
16 0.110 18 1734 2101 2878 3922 18 25980 28860  34.805 42312
L7 0.089 19 1729 2093 2861 3883 19 27204 30144 36191 43819
i-g g-ggi 20 1725 2086 2845 3850 20 28412 31410 37566 45314
21 1721 2080 2831 3819 21 209615 32671 38932 46796
20 0.046 2 1717 2074 2819 3792 22 30813 33924 40289 48268
21 0.036 23 1714 2069 2807 3768 23 32007 35172 41638 49728
22 0.028 24 1711 2064 2797 3745 24 33196 36415 42980 51179
2.3 0.021 25 1708 2060 2787 3725 25 34382 37652 44314 52619
24 0016 26 1706 2056 2779  3.707 26 35563 38885 45642  54.051
25 0.012 27 1703 2052 2771  3.689 27 36741 40113 46963 55475
26 0.009 28 1701 2048 2763 3674 28 37916 41337 48278  56.892
2.7 0.007 29 1699 2045 2756  3.660 29 39087 42557 49588 58301
28 0.005 30 1697 2042 2750 3646 30 40256 43773 50892  59.702
29 0.004 40 1684 2021 2704 3551 40 51805 55758 63691 73403
30 0.003 50 1676 2009 2678  3.496 50 63167 67505 76154  86.660
31 0.002 100 1660 1984 2626  3.390 60 74397 79082 88379  99.608

3.2 0.001 200 1653 1972 2601  3.340 70 85527 90531 10043 11232

g-z g-ggi 5000 1645 1960 2577  3.293 80 96578  101.88 11233 12484

: : — : 9 10757 11315 12412 13721

35 0.000 Derived using Microsoft Excel Version 5.0. 100 118.50 124.34 135.81 149.45

Derived using Microsoft

8 Derived using Microsoft Excel Version 5.0.
Excel Version 5.0.
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Table A4 Standard Normal distribution.

Table A6 Signtest.

Two-tailed P-value

r = number of ‘positive differences’ (see explanation)

0.50 0.10 0.05 0.01 0.001 n 0 1 2 3 4 5
Relevant Cl 50% 90% 95% 99% 99.9% 4 0.125 0.624 1.000
z(i.e. Cl multiplier)  0.67 164 1.96 2.58 3.29 5 0.062 0.376 1.000
Derived using Microsoft Excel Version 5.0. 6 0.032 0.218 0.688 1.000
7 0.016 0.124 0.454 1.000
8 0.008 0.070 0.290 0.726 1.000
9 0.004 0.040 0.180 0.508 1.000
10 0.001 0.022 0.110 0.344 0.754 1.000
Derived using Microsoft Excel Version 5.0.
Table A5 TheF-distribution.
df of otailed  1-tailed Degrees of freedom (df ) of the numerator
denominator P-value P-value 1 2 3 4 5 6 7 8 9 10 15 25 500
1 0.05 0.025 6478 7995 8642 899.6 921.8 937.1 9482 956.6 9633 9686 9849 998.1 1017.0
1 0.10 0.05 1614 1995 2157 2246 2302 2340 2368 2389 2405 2419 2459 2493 254.1
2 0.05 0.025 3851 39.00 39.17 3925 3930 39.33 39.36 39.37 3939 3940 3943 3946 39.50
2 0.10 0.05 1851 19.00 19.16 19.25 19.30 19.33 1935 1937 1938 1940 1943 1946 19.49
3 0.05 0.025 1744 16.04 1544 1510 1488 1473 1462 1454 1447 1442 1425 1412 1391
3 0.10 0.05 1013 955 928 912 901 894 88 88 881 879 870 8.63 853
4 0.05 0.025 1222 1065 998 960 936 920 907 898 890 884 866 850 8.27
4 0.10 0.05 7.71 694 659 639 626 616 609 604 600 59 586 577 564
5 0.05 0.025 10.01 843 776 739 715 698 68 676 668 662 643 6.27 6.03
5 0.10 0.05 6.61 579 541 5.19 5.05 4.95 4.88 4.82 477 4.74 4.62 452 437
6 0.05 0.025 8.81 726 660 623 599 58 570 560 552 546 527 511 486
6 0.10 0.05 599 514 476 453 439 428 421 415 410 406 394 383 3.68
7 0.05 0.025 8.07 654 589 552 529 512 499 490 482 476 457 440 416
7 0.10 0.05 559 474 435 412 397 387 379 373 368 364 351 340 324
8 0.05 0.025 7.57 6.06 542 505 482 465 453 443 436 430 410 394 368
8 0.10 0.05 532 446 407 384 369 358 350 344 339 33 322 311 294
9 0.05 0.025 7.21 571 508 472 448 432 420 410 403 39 377 360 335
9 0.10 0.05 512 426 38 363 348 337 329 323 318 314 301 289 272
10 0.05 0.025 694 546 483 447 424 407 395 38 378 372 352 335 3.09
10 0.10 0.05 4.96 410 371 3.48 3.33 3.22 314 3.07 3.02 2.98 2.85 273 255
15 0.05 0.025 620 477 415 380 358 341 329 320 312 306 286 269 241
15 0.10 0.05 454 368 329 306 290 279 271 264 259 254 240 228 2.08
20 0.05 0.025 587 446 386 351 329 313 301 291 284 277 257 240 210
20 0.10 0.05 435 349 310 287 271 260 251 245 239 235 220 207 186
30 0.05 0.025 557 418 359 325 303 287 275 265 257 251 231 212 181
30 0.10 0.05 4.17 332 292 269 253 242 233 227 221 216 201 188 164
50 0.05 0.025 53 397 339 305 283 267 255 246 238 232 21 192 157
50 0.10 0.05 403 318 279 256 240 229 220 213 207 203 187 173 146
100 0.05 0.025 518 383 325 292 270 254 242 232 224 218 197 177 138
100 0.10 0.05 394 309 270 246 231 219 210 203 197 1.93 177 162 131
1000 0.05 0.025 5.04 370 313 2.80 2.58 2.42 2.30 2.20 2.13 2.06 1.85 1.64 1.16
1000 0.10 0.05 38 300 261 238 222 211 202 195 189 184 1.68 152 113

Derived using Microsoft Excel Version 5.0.
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Table A7 Ranksfor confidenceintervalsfor the median. Table A8 Wilcoxon signed rankstest.

Approximate Two-tailed P-value

Samplesize 90%Cl 95% Cl 99%Cl n’ 0.05 0.01 0.001

6 16 16 — 6 0-21 — —

7 1,7 17 — 7 2-26 - -

8 2,7 18 — 8 3-33 0-36 —

9 28 28 19 9 5-40 144 —
10 29 29 1,10 10 847 3-52 —
11 39 2,10 111 11 10-56 561 0-66
12 3,10 3,10 211 12 13-65 7-71 1-77
13 4,10 311 2,12 13 17-74 9-82 2-89
14 4,11 3,12 2,13 14 21-84 12-93 4-101
15 4,12 4,12 3,13 15 25-95 15-105 6-114
16 5,12 4,13 314 16 29-107 19-117 9-127
17 513 4,14 3,15 17 34-119 23-130 11-142
18 6,13 514 4,15 18 40-131 27-144 14-157
19 6,14 515 4,16 19 46-144 32-158 18-172
20 6,15 6,15 4,17 20 52-158 37173 21-189
21 7,15 6,16 517 21 58-173 42-189 26-205
22 7,16 6,17 5,18 22 66-187 48-205 30-223
23 8,16 717 5,19 23 73-203 54-222 35-241
24 8,17 7,18 6,19 24 81-219 61-239 40-260
25 8,18 8,18 6,20 25 89-236 68-257 45-280
26 9,18 8,19 6,21

Adapted with permission from Altman, D.G. (1991) Practical Statistics

g 1813 gég ;g for Medical Research. Copyright CRC Press, Boca Raton.
29 10,20 9,21 8,22
30 11,20 10,21 8,23
31 11,21 10,22 8,24
32 11,22 10,23 9,24
33 12,22 11,23 9,25
34 12,23 11,24 9,26
35 12,23 12,24 10,26
36 13,24 12,25 10,27
37 14,24 13,25 11,27
38 14,25 13,26 11,28
39 14,26 13,27 11,29
40 15,26 14,27 12,29
41 15,27 14,28 12,30
42 16,27 15,28 13,30
43 16,28 15,29 13,31
44 17,28 15,30 13,32
45 17,29 16,30 14,32
46 17,30 16,31 14,33
47 18,30 17,31 15,33
48 18,31 17,32 15,34
49 19,31 18,32 15,35
50 19,32 18,33 16,35

Derived using Microsoft Excel Version 5.0.

Appendix A: Statistical tables Appendix 127



Table A9(a) Wilcoxon rank sum test for atwo-tailed P = 0.05.

N, (the number of observationsin the smaller sample)

n 4 5 6 7 8 9 10 1 12 13 14 15
4 1026 1634 2343 3153 40-64 49-77 60-90 72-104 85-119 99-135 114-152  130-170
5 11-29 1738 2448 3358 42-70 52-83 63-97 75-112 89-127 103-144 118-162  134-181
6 12-32 1842 2652 3464 44-76 55-89 66-104 79-119 92-136  107-153  122-172  139-191
7 13-35 2045 2757 3669 46-82 57-96 69-111 82-127 96-144 111162  127-181  144-201
8 14-38 21-49 29-61 38-74 49-87 60-102 72-118 85-135 100-152 115171  131-191 149-211
9 1442 2253 3165  40-79 51-93 62-109  75-125 89-142  104-160 119-180 136200  154-221
10 1545 2357 3270 42-84 53-99 65-115  78-132 92-150  107-169 124188 141209  159-231
11 1648 24-61 34-74 44-39 55-105 68-121 81-139 96-157 111-177 128197  145-219 164-241
12 17-51 2664 35-79 46-94 58-110 71127 84-146 99-165 115185  132-206  150-228 169-251
13 1854 2768 3783 4899 60-116  73-134  88-152  103-172 119193 136215 155-237  174-261
14 1957 2872 3888 50-104 62-122 76-140 91-159  106-180  123-201 141-223 160-246  179-271
15 2060 29-76 4092 52-109 65-127 79-146  94-166  110-187  127-209 145232 164-256  184-281
Table A9(b) Wilcoxon rank sum test for atwo-tailed P = 0.01.
N, (the number of observationsin the smaller sample)
n. 4 5 6 7 8 9 10 11 12 13 14 15
4 — — 2145  28-56 37-67 46-80 57-93 68-108 81-123 94-140 109-157  125-175
5 — 1540 22-50 29-62 38-74 48-87 59-101 71-116 84-132 98-149  112-168 128-187
6 10-34 1644 2355 3167 40-80 50-94 61-109  73-125 87-141 101159 116-178  132-198
7 1038 1649 2460 32-73 42-86 52-101 64-116  76-133 90-150 104-169 120-188  136-209
8 1148 1753 2565 34-78 43-93 54-108 66-124  79-141 93-159 108-178 123-199  140-220
9 1145 1857 26-70 3584 45-99 56-115  68-132  82-149 96-168  111-188 127-209  144-231
10 1248 1961 27-75 3789 47-105 58-122  71-139  84-158 99-177 115197 131219  149-241
11 12-52 2065 2880 3895 49-111  61-128  73-147  87-166 102-186 118207 135-229  153-252
12 1355 2169 3084 40-100 51-117 63-135 76-154 90174 105-195 122-216 139239  157-263
13 1359 22-73 3189 41-106 53-123 65-142 79161  93-182 109203 125226 143-249  162-273
14 1462  22-78 3294  43-111 54130 67149 81-169  96-190 112-212  129-235 147-259  166-284
15 15-65 23-82 33-99 44117 56-136 69-156 84-176 99-198 115221  133-244  151-269 171-294

Extracted with permission from Diem, K. (1970) Documenta Geigy Scientific Tables, 7th edn, Blackwell Publishing, Oxford.

128 Appendix Appendix A: Statistical tables




Table A10 Pearson’s correlation coefficient. Table A11 Spearman’s correlation coefficient.

Sample Two-tailed P-value Sample Two tailed P-value
size 0.05 0.01 0.001 size 0.05 0.01 0.001
5 0.878 0.959 0.991 5 1.000
6 0.811 0.917 0.974 6 0.886 1.000
7 0.755 0.875 0.951 7 0.786 0.929 1.000
8 0.707 0.834 0.925 8 0.738 0.881 0.976
9 0.666 0.798 0.898 9 0.700 0.833 0.933
10 0.632 0.765 0.872 10 0.648 0.794 0.903
1 0.602 0.735 0.847 Adapted from Siegel, S. & Castellan, N.J. (1988) Nonparametric Sa-
12 0.576 0.708 0.823 tistics for the Behavioural Sciences, 2nd edn, McGraw-Hill, New York,
13 0.553 0.684 0.801 and used with permission of McGraw-Hill Companies.
14 0.532 0.661 0.780
15 0.514 0.641 0.760
16 0.497 0.623 0.742
17 0.482 0.606 0.725
18 0.468 0.590 0.708
19 0.456 0.575 0.693
20 0.444 0.561 0.679
21 0.433 0.549 0.665
22 0.423 0.537 0.652
23 0.413 0.526 0.640
24 0.404 0.515 0.629
25 0.396 0.505 0.618
26 0.388 0.496 0.607
27 0.381 0.487 0.597
28 0.374 0.479 0.588
29 0.367 0.471 0.579
30 0.361 0.463 0.570
35 0.334 0.430 0.532
40 0.312 0.403 0.501
45 0.294 0.380 0.474
50 0.279 0.361 0.451
55 0.266 0.345 0.432
60 0.254 0.330 0.414
70 0.235 0.306 0.385
80 0.220 0.286 0.361
90 0.207 0.270 0.341
100 0.217 0.283 0.357
150 0.160 0.210 0.266

Extracted with permission from Diem, K. (1970) Documenta Geigy
Scientific Tables, 7th edn, Blackwell Publishing, Oxford.
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Table A12 Random numbers.

34814 68020 28998 51687 40088 35458 24708 01815 5377
99106 50899 07394 91071 22411 61643 64435 62552 6431
47185 31782 48894 68790 51852 36918 05737 90653 6112
81354 57296 39329 52263 43194 51624 42429 61367 4120
83467 85622 95778 05347 00445 51334 29445 9917 3009
27924 34167 57060 57535 32278 16949 04960 04116 9146
58319 88164 94130 07743 16917 15681 93572 997583 4911
49732 66702 72425 99117 49298 87265 14195 83391 1979
69594 26749 68743 39139 44495 11944 12970 56523 6241
30074 97517 97450 54251 51777 21073 03909 26519 3957
81147 57508 93479 87826 28965 74474 97468 80149 1783
74689 28933 59819 93052 61325 83145 44684 72958 9182
14802 25982 48024 15461 37570 44685 47386 09504 7783
68501 34194 85355 38411 46559 41694 99678 88268 8667
48734 92671 85252 85985 34228 91289 56331 14683 3649
84102 81699 97352 545009 93196 51204 43351 11818 4117
28432 32873 83834 09862 12720 64569 42218 26726 8086
91458 82524 75523 01276 19591 47473 90251 99103 7294
45435 30389 69732 81962 30243 96199 33546 39672 8376
23557 78437 44957 98728 65674 34701 83398 54102 6584
30395 91850 52004 04844 28848 19728 96571 13317 7085
69991 12755 97916 57639 43445 90463 85556 35469 1974
32980 43608 20592 72527 63583 46443 53929 87219 5519
59776 37035 53765 55196 68659 71429 25225 91942 5113
73714 79868 23880 92254 72984 07792 81306 24277 8236
61547 16575 68520 59869 67299 73565 77316 96682 1803
87737 01058 76012 76247 75616 51335 70364 78942 4056
98669 08334 40520 78389 56498 74336 02434 485909 6757
81535 46690 92814 44456 29227 48122 30522 13852 4843
05975 47110 32733 46929 98261 52193 83215 53192 8310

COORRL, ON®OO®O TONDO WARPRADMN ORPANN PNWOO®

Derived using Microsoft Excel Version 5.0.
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Appendix B: Altman’s nomogram for sample size
calculations (Chapter 36)

0.995

—10.99

—10.98

—10.97

—10.96
0.95

0.90

0.85

0.80

0.75
—10.70
—10.65
—0.60
—0.55
—10.50

—10.45
—0.40

—0.35
—10.30
—10.25

Power

Standardized difference

—10.20

—10.15

Significance
level

12—

—0.05

Extracted from: Altman, D.G. (1982) How large asample? In: Statisticsin Practice (eds S.M. Gore & D.G. Altman). BMA, London, with permission from
Blackwell Publishing Ltd.
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Appendix C: Typical computer output

Analysis of pocket depth data dascribed in Topic 20, generated by SPSS
Cape Processing Summary

Cases
valid Missing Total
N Percent N Fercent N Parcent
FDIFF 96 50.0% 98 S50.0% 192 100.0%
Descriptives This ls 00516
Statiscic | Scd. Error /
PDDIFF Mean -1486 | 5,.716E-02
95% Confidence Lower Bound | 31.511E-02
Interval for Mean Upper Bound 2621 Table of
i e 2262 summary measures
Variance -314 for the dlff‘rm
std. Deviation L5601 (efore' minus
Hindmusm -2.69 ‘after’) in pocket
Mo imums 2.48 depth
Range 5.17
Interquartile Range 3171
Skewness =2.243 L2486
Eurtosis 15.146 .488
PDDIFF Stem-and Leaf Plot
Frequency stem & Leaf
4.00 Extremas [=e=.910
1.00 -3 . B
4.00 -2 . 0016
3.00 -1 . D.29
7.00 =0 . 0127759 G Stem-and-leaf plot
13.00 0 . 0112234588889 shows that the differences
11.90 1 . ABA4SEESTI are approximately
21.00 2 . 00112233444566THBEIDY Nermally distributed.
15,00 3 . 11223334455T888
11.00 4 00123347839
1.00 5 o
1.00 B T
1.00 T . 9
3.00 Extramas [==.84)
Stem widch: 10
Each leaf: 1 caseis)
Fesults of paired t-test
Paired Samples Statistcice 4=01486,
Std. Serd. Error 2,=05601, t=2.60
Mean H Deviatlon | Mean and P—valus=0.011

Fair FDAVBEFD | 2.5787 SE -4771 4.863E-02
1 FOAVAFTE | 2.4301 96 L3827 3.506E-02

Faired Samples Test /P—Vlll.lﬂ'

Paired Differences

95% Confidence
Interval of the
difference
ged. Scd. Error gig.

Mean |Deviation Mean Lower Upper| & df | (2-tailed)

=

Pair PDAVBEFO-
1 FOAVAETE 1488 .S601 5.716ED2 |3.511E-02 (2621 |2.600( 95 011

\_ Thig is C.O5TIE
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Analysis of platelet data described in Tepie 22, generated by SPSE

700 =
|.— Fatient 27 |s an outlisr
500
S00
B 90 27
"; 125
2 | .
= 400 _ 0709 038
™
300~ | - Bow-plats showing distribution
' ' of platelet counts in the four
200 - T ethnic groups
100 ] 1 ] ]
N= @0 21 19 20
Greup |: Caucasian Hediterranean
Afro-caribean other
Omeway
Report
Flatelet
Group Std. sed. Error
Mean Ll Deviacion of Mean Summary measures
Caucasian Z68.1000 | og 77.0784 8.1248 for each of the four & Topis 22
Afro-caribbean | 254.2857 | 21 67.5005 14.7298 grovps
Hedi terranean 281.0526 | 19 T1.0934 16.3099 r/
Other 273.3000 20 B3.4243 14.1821
Total 26B.5000 | 150 73.0451 5.9641
Plateler Test of Homogeneity of Variances Easults from Laving's tast:
Levene the P-value of 0.989
Statistie dfl afl Sig. Iindicates that there s no
04l 3 146 .9B9 ¥ Wt;ﬂ'ﬂ'n"ﬂ
are different in the four
aroups
Placelet Anova
Bum of Hean The
Squares dat Square F Sig. | e—— ANOVA
Batween Groups T711.967 3 2570.656 477 699 table
Within Groups T87283.533 146 5392.3%4
Tocal T95001.500 149
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Analysis of FEV1 data described in Topic 21, genmsrated by SAS

The SAS System

srsrsa s TE@ATEGNE

GRFP
Flacebo
Placebo
Flacebo
Placeba
Placebo
Treated
Treated
Treated
Treated
Treated

FEV
1.2B57L
1.31250
1.,60000
1.41250
1.60000
1.60000
1.80000
1.94286
1.84286
1.30000

Univariace Proceduras

Variable=FEJ

Homants
H 48 Sum Wgts
Mean 1.536758 Sum
Std Dev 0.245819 WVariance
Skowness 0.272608 Hurtosis
Uss 116.1981 CS5
cv 15.99552 Srd Mean
T:Maan=0 43.31232 Pz Tl
Num “=0 48 Num > O
M (Sign) 24 Pra= Ml
Sgn Rank 588 Pre=|5|
Wedian Quantiles [(Def=5)
100% Max 2.1875 9%
\ 75% Q3 1.7 95%
50% Med 1.551785 0%
25% QL 1.36505 10%
0% Hin i 5%
1%
Range 1.1875
Q93-01 0.33085
Mada 1.3875
Extremes
LOwnst Obs Higheat
1{ 21) 1.8571414
1.041 33) L.94
1.1285714 45] 1.91429(
1.185714 12} 2.1125¢
1.2857114 1] 2.18754
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Group=Placeba weroarmramniians

4B

T3.T6441
0.060427
0.500457
2.84005%
0.0354B1

0.

0.
[

2.
1.5
1.8
1.2
1.1

Go0l

4B
0ooL
oool

1875
1429
3714
B571
2857

1

QOba
47}
26}
46}
27)
201

Print out of first
five obsarvations in

/ each group
>._

Unhariate summary
statistice showing

that the mean and
medlan are falrhy

similar in the placebo
group. Thus we

belisve that the

values are approdmatety
Hormally distributesd

b Topic 21

contineed



cemssssssssnissssisinies Troatmant GroupsTreated - -secerorcssasnes

Univariate Procedure SusmTtary mmm? fobtha
Variable=FEV Treatod group. Agan, Hhe 34
H " mzan and median are fairly
A similar, suggesting Normally
. = Buom ke 5 distributed data
Mean 1.640048 Sum B2.00239
S5td Dev 0,285816 Variance 0.081651
Skewness -0.02B79 Rurtosis =0.51153
vss 138, 4097 fal13 4.002858
oV 17.4273z2 Std Mean  0.040421
T:Mean=0 40.57462 Pr> |7 0.0001
Bum =0 50 Hus > O 50
H (sign) a5 Pre=|Hi 0.0001
Sgn Rank B37.5 Pr>=|5i 0.,0001 1,
Quantiles (Def=5)
100% Max 2.212% 99% 2.2125
75% Q3 1.875 95% 2.17143
50% Med 1.6135 0% 1.195625
25% @1 1.4375 10% 1.2375
0% Min 1.025 5% 1.1625
1% 1.025
Range 1.187%
03-gL 0.4375
Mode 1.1625%
ExXtremes b_ Tt
opic 21
Lowest Oba Highest Obs
1.025( 13) 1.9625 20}
1.15( 36) 2.0625( 9
1.1625( 35) 2.1711431 8)
1.16251 1€ 2,21 30} A test of the equality of
1.225] 34) 2.2125( 27} two variances, As P>0.05
we have insufficient.
evidence to reject Hy
T Test procedure
Variable=FEV
GRP N Maan 5td Dow ttd Error
Placebs 4a 1.53675654 0.24581862 0.03548086
Treated 50 1. 6400478 0.2B581635 004042054
Variances T OF Probe T
Dnequal -1.9204 54.9 0.0%78 Esauits of the unpaired t-test
Equal -1.9145 96.0 0.0585 As we believe the variances
For HO: Variances are equal, F' = 1.35 Df = (49,47) 270 Squal weauote the Palue
Prob>F' = 0.3012 SPEE PR pofial visriancen i
(=0.0585) -
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Analysis of anthropometric data described in Topics 26, 28 and
19, genarated by SAS

RS SBP Helight wWeight Sax
1 91.00 115.7 0.0 [
2 122.50 124.6 42.5% o
¢ mesy 4143 e 6 Print out of data
5 99.00  112.5 19.0 o\ froeh fieng: 10
£ 103 .50 115.1 19.3 0 chileren
7 101.00 116.3 19.6 Q
1 103.00 111.1 17.1 1
L] 106.50 117.2 20.7 1
10 102.50 113.2 22.1 1
Correlation Analysis
4 '"VAR* Variables: SBP Height waight Age
Simple Statiscics
variable N Maan Std Dav Sum
SHRP 100 104.414700 9.430%33 10441
Hoight 100 120.054000  6.435986 12005
wWeight 100 22.826000 4.233303 2282, 600000
Age 100 6.696900  0.731717 669.690000
Simple Statistics
variable Minimam Maximm
sBR §1.500000  128.850000 /—-_' SURImArY. StatS Ly
¥ % for sach variable
Height 107.1000000  136.800000 AL
Weight 15, 900000 42500000
Age 5.130000 B.840000
Poarson Correlation Coefficients/Prob> IRl under Ho:Rho=0 ™\
/N=100
FPearson's correlation
sBE Height wWelght Age - aatokint: berisn
SBP 1.00000 0.33066 0.51774 Q.16373 SEF and age
0.0 0.0008 0.0001 n.m:iﬁﬂ_“‘___
Helght 0.33066 1.00000 0.69151  0.644B6 Aasociated Pvalue
0.0008 0.0 0.0001 0.0001
welght ©0.51774 0.69151 1.00000  0.38%35
0.0001 0.0001 0.0 0.0001
Age 0.16373 0.64486 0.38935  1.00000
0.1036 0.0001 0.0001 0.0
irTaplc 26
Spearman Correlation Coefficients/Probs IRl under Ho:Rho=0
JR=100
SBP Height Waight Age
sBP  1.00000 0.31519 0.45453  0.14778 E’F“"I"""'ﬁ correlation
0.0 0.0014 0.0001 0.1423 M"’f”"ﬁ“:m"
Height 0.31513 1.00000 0.B2298  0.61491 il sic) ge
0.0014 0.0 0.0001 0.0001 "-...______
Weight 0.45453 0_82298 1.00000  0.51260 F-value
0.0001 0. 0001 a.0 0.0001
Age 0.14778 0.61491 0.51260 1.00000
0.1423 0.0001 a.0001 0.0 .a

136 Appendix Appendix C: Typical computer output



Model :HODEL]L
Dependent Variable:SBP

Analysis of Variance

Ssurce OF Sum of Kean F Value
Squares Square
Model 1 962.71441 962 . 71441 12.030
Error S8 T842.55208 B0.02645
C Toral a9 BB05.30649
Root MSE B.54575% R-square 0.10%93
Dap Mean 104.41470 Add B-2g 0.1002
c.v. B.56752
Parampter Estimates
Irrw:.spt. &

Parameter Standard T for HO:
variable ©DF Eatimate Error Parameters=0
Intercep 1 46.281684 16. 78450788 2.757
Height 1 0.4B4224 0.13%60927 3.468
Variable DF Praob= T Slope, b
Intercep 1 0.0070
Height 1 0.0008
Hodel : MODELL
Dependent Variable:SBP

hnalysis of Variance
Source oF Sum of Mean F Value
Squares Sguare
Hodel 3 2E04 . 04514 934.,.68171 14.952
Error 96 6001, 26135 62.51314
C Total a9 BEOS, 30649
Root MSE T.90653 R-square 0.3184
Dap Maan 104 .41470 Adj R-sg 0.2972
Ol T7.57223
Parameter Estimates
variahle pF Parameter Srtandard T for HO:
Estimate Error Parameter=0
Intercep 1 79.439541 17.11822110 4.641
Height 1 -0.031023 0.17170250 ~0.1E1
Welght 1 1.179455 0. 261392400 4,512
S 1 4.229540 1.61054848 2.626

Variaple  DF - ProbslTl Estimated partial
Intercep 1 0.0001 regreseion
Height 1 0.8570 coefficlents
Welght 1 0.p001

Sax 1 0.0101

Frob=F

A
0.0008 nova table

Results from

simgle Engar regrassion
i of SBF (systolic blood
pressurs] on height
Topic 28

Prab=F

0. 0001

Fesults from
rrultiple lincar

|, regression of

SBF on helght,
welght and gender
Topic 29

Appendix C: Typical computer output Appendix 137



Analysis of HHV-8 data described in Topics 23, 24 and 30, generated by STATA
.List hhv8 gonnerrho syphilis hsvi hiv age in 1/10

hhvé gonorrho syphilis  hsvi hiw age

1. negative history [1] ] o 28 =
2. negative history 1] a o 40
1. negative history /] 1] ] P
4. negative history 1] i o 4z
5. positive history 1] a o el v Print out of data
6. negacive nohistory 1] o ] 33 from first 10 man
T. nagative history L] 1 ] 27
BE. positcive history a a o 32
2. negative history 1 o o EL
10. posicive history 1] a ] 35 w
Tabulate gonorrho hhvBE, chi row col Contingency tabls B

' hhva ! i /

gonorrhos | negative | posikive | Total
e s N LU LT rrY TP CEP PR T
Himkory § 152 i 6 : @ & Row marginal total

Row fh —————————p | B4.21 i 15.79 ¢ 10070

Column % 5 :- B6.B8 : Ta.00 i 84.13
KMo history |1 29 I
! 67.44 1

i 13.12 1 2B.00 i 15.87

Toral | 231 | ) @E’P Column marginal total
i 81,55 | 18,7 y 1067 '\\

! 100.00 ! 100,00 I 100.00

Overall total
Pearson chi2{l) = 6.7609 Pr = 0.009
. Logit hhv8 gonorrho eyphilis hsvl hiv age, or tab
Interation 0: Log Likelihood = -122.86506 Chi-gquars for covariates
Interation 1: Log Likelihoed = -111.87072 and its P-value
Interation 2: Losg Likelihosd = =110.58712
Interation 3: Log Likelihood = -110.56596
Interation 4: Log Likelihood = =110.56595
i " Humber of cba = 260
Logit Estimates chiz (5) = 24.60
Prob > chi2 = 0,0002
Logit Likelihood = -110.56595 Pesuda BRI = 0.1001
hhwe | coef.  std. Eer. = P> |zl [95% Conf. Intervall
gonorrho | . 5093263 .4363219 1.167 0.243 -.345849 1.364502
syphilis ! 1.192442 7110707 1.677 0.0%4 =.201211 2.586115
hevz ! .7910041 L3BT1154 2,043 0.041 .0322798 1.549728
hiw : 1.635663 BO2B147 2.713 0.007 4541738 2.B17164
age -DOB1E0S p3p41s2 0.302 0.763  -.0338521 046174
constant L"2-22"|15"| .G6511603 =3.416 0.001 =3.500415 ~-.9479135
f.-F’rvnlu:
T wnve 0dds matic  S€dl Err. 2 palzl  [95% Conf. Intervall
gonorrho ' 1.68417 (7261137 1.167 0,243 .7076193  3.913772 Cl for odds ratio
syphilis ! 3 298118  2.343062 1.677 0.094 LB177235 13.27808
hevz ' z.20861 B538167 2.043 0.041 1.032806 4.710151
hiw : 5.13Z889 3.0941E81 2.713 o.a07 1.5748T71 16.72934
age | 1.00618 0205413 0.302 0.763 JBEETLAS 1.047257
e el e o ] e o e o
Comparison of cutcomes and probabilites
Outcome ! Pr < .5 Pr > = .5 Total
Failure ' 208 g ! 213 Predicted outcome
Success | 38 g ! 47 <05 = 0 (No)
---------- e bt 205 = 1{Yes)
Tokal | 246 14 1 260
Observed outcome Fallure = O [No) \
Success = 1(Yes) Classification table
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Anal ysi s of virol ogical

failure data described in Chapters 31-33, generated by SAS

Time since initial response Virological failure  Length of follow-up (days) Fmﬁfff
(<lyr=11-2yr6 =2, >2yrs = 3) (No=0,Yes=1) B
oBS PATI ENT PERI OD EVENT PDAYS SEX BASECD8 TRTSTATUS I
1 1 1 0 365. 25 0 665 1 \ Treatment status
2 1 2 0 48.75 0 665 1 (Previously
3 2 1 0 365. 25 1 2053 1 received treatment = O,
4 2 2 0 365. 25 1 2053 1 No previous treatment = 1)
5 2 3 0 592. 50 1 2053 1 Print out
7 4 1 0 30. 00 0 327 1 } of data from
g g % g ggg gg 1 ggi i first 10 patients
10 5 3 0 732. 50 1 931 1 ﬁmh pavient
13 6 1 0 166. 00 1 1754 1 49 3 row o
14 7 1 0 84. 00 1 665 1 data for each
15 8 1 0 365. 25 1 297 1 time period)
16 8 2 0 152.75 1 297 1
17 9 1 0 142. 00 1 455 1
18 10 1 0 230. 00 0 736 1
The GENMOD Procedure i
Model | nformation
Dat a Set WORK. APPENDI X_PO SSON
Di stribution Poi sson
Li nk Function Log
Dependent Vari abl e EVENT
O fset Variable LTI ME = Log (FDAYS)
Cbservations Used
Criteria For Assessing Goodness Of Fit
Criterion DF Val ue Val ue/ DF
Devi ance 984 393.1203 0. 3995
Scal ed Devi ance 984 393.1203 0. 3995
Pear son Chi - Squar e 984 7574. 2725 7.6974
Scal ed Pearson X2 984 7574. 2725 7.6974
Log Li kel i hood -257.5601 Model 1
) ) } excluding 2
Baseline CD& count Anal ysis O Paraneter Estimates Wald test dumwea
divided by 100 St andar d vald 95% Chi - 5 cratiotco fortime
Paraneter DF Estimate Error  Confidence Limits Square Pr > ChiSq since initizl
F@SPOHS&
I nt er cept 1 -1.1698 0.3228 -1.8024 -0.5372 13. 14 0. 0003 Chapter 22
TRTSTATUS 1 -0.6096 0. 2583 -1.1159 -0.1033 5.57 0.0183
BASECD8_100 1 -0.0587 0. 0268 -0.1112 -0.0063 4.82 0. 0281
SEX 1 -0.4923 0. 2660 -1.0136 0. 0290 3.43 0. 0642
Scal e 0 1. 0000 0. 0000 1. 0000 1. 0000
LR Statistics For Type 3 Analysis
Scale parameter Chi -
used to adjust for Sour ce DF Squar e Pr > Chi Sq
oxra-rolscon TRTSTATUS 1 5. 40 0.0201
di ! . . . o
opersion BASECDS_100 1 5. 46 0.0194 ': Va'“he for 5;?”'_*‘””26[
SEX 1 3. 27 0.0707 OT eacn variaple In mode! )
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Model
Dat a Set

I nf ormati on
WORK. APPENDI X_PO SSON

Di stribution Poi sson
Li nk Function Log
Dependent Vari abl e EVENT
O fset Variable LTI ME
Cbservations Used 988

LRS or deviance gives

P> 0.99 Class Level Infornation
for
evaluating d ass Level s Val ues
goodness PERI CD3 3 123 Degrees of freedom
of fit Criteria For Assessing Goodnes
Criterion DF al ue Val ue/ DF
This is
982 387.5904 0 substantially
Scal ed Devi ance 982 387.5904 0.3947 <1, indicating
Pear son Chi - Squar e 982 5890. 6342 5.9986 underdispersion
Scal ed Pearson X2 982 5890. 6342 5. 9986
Log Li kel i hood - 254, 7952

Anal ysis O Paraneter Estinates

Estimates of model parameters
shown in Table 31.1—Relative
rates obtained by antilogging estimates

St andard Wal d 95%
Par anet er DF Estinmate Error Confidence Limts Squar e
I nt er cept 1 -1.2855 0.3400 -1.9518 -0.6192 14. 30
TRTSTATUS 1 -0.5871 0.2587 -1.0942 -0.0800 5.15
BASECD8_100 1 -0.0558 0.0267 -0.1083 -0.0034 4. 36
SEX 1 -0.4868 0.2664 -1.0089 0. 0353 3.34
PERI OD 1 0 0. 0000 0. 0000 0. 0000 0. 0000
PERI OD 2 1 0. 4256 0.2702 -0.1039 0. 9552
PERI OD 3 1 -0.5835 0.4825 -1.5292 0.3622
Scal e 0 1. 0000 0. 0000 1. 0000 1. 0000
LR Statistics For Type 3 Analysis
Test statistic Chi -
= difference in Sour ce DF Squar e Pr > Chi Sq
deviances of 2 models
=393.1203 - 3875904 1 5. 00 0.0253
1 4.91 0. 0267
SEX 3.19 0.0742
PER 0D D TEED 0. 0630
M I'nformation
Degrees of freedom = Dat a Set WORK. APPENDI X_PO SSON
difference in number Di stribution Poi sson
of parameters in Models Li nk Function Log
1and 2 Dependent Vari abl e EVENT
O fset Variable LTI ME
bservations Used 988
Class Level Information
Cl ass Level s Val ues
PERI CD 3 123
Criteria For Assessing Goodness OF Fit
Criterion DF Val ue Val ue/
Devi ance 983 392. 5001 0. 39
Scal ed Devi ance 983 392. 5001 0.39
Pear son Chi - Squar e 983 5580. 2152 5.67
Scal ed Pearson X2 983 5580. 2152 5. 67
Log Li kel i hood -257. 2501
Anal ysis O Paraneter Estimates
St andar d wal d 95% Chi -
Par anet er DF Estinate Error Confidence Limts Squar e
I ntercept 1 -1.7549 0.2713 -2.2866 -1.2232 41. 85
TRTSTATUS 1 -0.6290 0.2577 -1.1340 -0.1240 5. 96
SEX 1 -0.5444 0.2649 -1.0637 -0.0252 4.22
PERI D 1 0 0. 0000 0. 0000 0. 0000 0. 0000 .
PERI D 2 1 0.4191 0.2701 -0.1103 0.9485 2.41
PERI D 3 1 -0.6481 0.4814  -1.5918 0. 2955 1.81
Scal e 0 1. 0000 0. 0000 1. 0000 1. 0000
LR Statistics For Type 3 Analysis
Chi -
Sour ce DF Squar e Pr > Chi Sq
TRTSTATUS 1 5.77 0.0163
SEX 1 4.00 0. 0455
PERI CD 2 6. 08 0.0478

Cl for model coefficients

Pr > Chi Sq

0.
0

0.
0.

0002
. 0233
0369
0676

Zeros in this row indicate
that Period 1 is reference
category

P-value for test

of difference in deviancies
from models with and
without dummy variables
for time since initial

reepomee
DF
93
93
67
67
Pr > Chi Sq
<. 0001
0. 0146
0. 0399
O: 1207
0.1782

Model 2
including

2 dummies
for time since
initial
response
and CD&
count as a
numerical
variable.
Chapters 31
and 32

Model

} excluding
baseline

CD& count.

Chapter 23




Model | nformation B

Data Set WORK. APPENDI X_PO SSON
Di stribution Poi sson
Li nk Function Log
Dependent Vari abl e EVENT
O fset Variable LTI ME
Gbservations Used 988
Cl ass Level Information
Cl ass Level s Val ues
PERI OD 3 123
CDBGRP 5 12345
Criteria For Assessing Coodness OF Fit
Criterion DF Val ue Val ue/ DF
Devi ance 979 387. 1458 0. 3955
Scal ed Devi ance 979 387. 1458 0. 3955
Pear son Chi - Squar e 979 5852. 1596 5.9777
Scal ed Pearson X2 979 5852. 1596 5.9777
Log Li kel i hood -254.5729

Anal ysis O Paraneter Estinates

St andar d wal d 95% Chi -
Par anet er DF Estimate Error Confidence Limts Square Pr > Chi Sq Model including
baseline CD&
I nt er cept 1 -1.2451  0.6116 -2.4439 -0.0463 4.14 0.0418 [ "
TRTSTATUS 1 -0.5580 0.2600 -1.0677 -0.0483 4.60 0. 0319 serieo of
SEX 1 -0.4971 0.2675 -1.0214 0.0272 3.45 0. 0631 y bl
PERI D 1 0 0. 0000 0. 0000 0. 0000 0. 0000 . ) CE”“”W Vgga oo
PERI CD 2 1 0. 4550 0.2715 -0.0771 0.9871 2.81 0. 0937 apter
PERI CD 3 1 -0.5386 0.4849  -1.4890 0.4119 1.23 0. 2667
CDBGRP 1 1 [-0.2150 0.6221  -1.4343 1.0044 0.12 0. 7297
CDBGRP 2 1 |-0.3646 0.7648 -1.8636 1.1345 0.23 0. 6336
CDBGRP 3 0 0. 0000 0. 0000 0. 0000 0. 0000 .
CDBGRP 4 1 |-0.3270 1.1595 -2.5996 1. 9455 0.08 0.7779
CD8GRP 5 1 |-0.8264 0.6057 -2.0136 0. 3608 1.86 0.1725
Scal e 0 1.0000 0. 0000 1. 0000 1. 0000
LR Statistics For Type 3 Analysis
Chi -
Parameter estimates Sour ce DF Square Pr > Chi Sq
for dummy variables TRTSTATUS 1 4. 48 0.0342
for baseline CD& count SEX 1 3. 30 0. 0695
Yvherfe categorgif (=25, <1100) PERI OD 2 5. 54 0.0628 Povalue for
6 reterence category CD8GRP @ ‘/1;591; of significance
T of baseline CD& count_)
hen i ted
Number of Test statistic wnen \HCOFPOT‘Z I@
additional - 3925001 — 387458 O °catedoriea
variables in ' ' variable
larger model
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Anal ysis of periodontal data used in Chapter 42, generated by Stata

Test statistic and P-value
to test significance of

regress |oa smoke coefficient(s) in model

Source | SS df %S Number of obs = 2545
————————————— R T F( 1, 2543) = 0.20
Model | .056714546 1 .056714546 Prob > F = 0.6549
Residual | 721.589651 2543 .28375527 R- squar ed = 0.0001
————————————— R Adj R-squared = -0.0003
Total | 721.646365 2544 283666024 Root MSE = .53269
P-value for smoking
| oa | Coef Std. Err t P>|t] [95% Conf. Interval]
_____________ o
snoke | -.0105165 .0235231 -0.45 0.655 -. 0566429 . 0356099
Constant term ——» _CONS | 1.01473 . 012442 81. 56 0. 000 . 9903324 1.039127
regress | oa snoke, robust

Regression with robust standard errors Nunber of obs = 2545
nwhen g1, 96) = 0.04
clustering Prob > F = 0.8419
ignored R-squar ed = 0.0001
Nunber of clusters (subj) = 97 s0 F-value is Root MSE = .53269

larger

| Robust
| oa | Coef . Std. Err t P>|t] [95% Conf. Interval]
_____________ e
snoke | -.0105165 .0525946 -0.20 0.842 -. 114916 . 0938831
_cons | 1.01473 . 0352714 28. 77 0. 000 . 9447168 1.084743
xtreg | oa snoke, be

Bet ween regression (regression on group neans) Nunber of obs = 2545
Group variable (i): subj Nunber of groups = 97
R-sq: within = 0.0000 o " Cbs per group: mn = 21
bet ween = 0. 0001 Subject identified avg = 26. 2
overal | = 0.0001 as group (cluster) max = 28
F(1, 95) = 0.01
sd(u_i + avg(e_i.))= .2705189 Prob > F = 0. 9409
| oa | Coef Std. Err t P>|t] [95% Conf. Interval]
_____________ e e e ee e e e e emmmmmemmmemmmemmmemem-mmem-mmm-mmmmmmmemmm—m——————-
snoke | -. 004559 .0612848 -0.07 0.941 -. 1262246 . 1171066
_cons | 1.013717 .0323332 31.35 0.000 . 9495273 1. 077906

P-value for
significance of
smoking coefficient
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OoLs
regression
ignoring
clustering

OoLs

regression

with robust
standard errors
adjusted for
clustering

Aggregate
analysis

(OLS regression
on group
means)



iis subj
xtreg | oa snoke,

. 00516018
2. 204e- 07

tol erance

tol erance
Correlation structure
identified as
exchangeable

Iteration 1:
Iteration 2:

GEE popul ati on-aver aged nogel

Group vari abl e: subj
Li nk: identity
Fam | y: Gaussi an

Correl ation: exchangeabl e

Scal e paraneter: . 2835381

pa robust corr(exchangeabl e)

| Sem -robust

-
Model chi-squared to test
significance of coefficient P-value
in model for model
chi-squared
Nurmber of obs = 2545
Nunber of groups = 97
bs per group: mn = 21
avg = 26.2
max = 28
wal d chi2(1) = 0.01
Prob > chi2 = 0.9198
(standard errors adjusted for clustering on subj)
| oa | Coef . Std. Err. z P>| z| [95% Conf. Interval]
_____________ e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m e mm i m -
smoke | -.0053018 . 0526501 -0.10 0.920 -. 1084941 . 0978905
_cons | 1.013841 . 0347063 29.21  0.000 . 9458185 1. 081865
_____________________________________________________________________________ v
Wald test statistic
xtreg | oa snoke, nie -

Fitting constant-only nodel:

Iteration O: log |ikelihood = -1785. 7026
Iteration 1: log |ikelihood = -1785. 7004
Fitting full nodel:

Iteration O: log |ikelihood = -1785.7027
Iteration 1: log |ikelihood = -1785. 6966
Iteration 2: log |ikelihood = -1785. 6966

Random ef fects M. regression

\ difference = —0.0038 so

— 2 log likelihood ratio
=2X0.0038
=0.0076
~0.01
Nunber of obs

0.01

nterval ]

. 1136928
1.076653

. 2920201
. 4816176

fi”al " Goup variable (i): subj Nunber of groups =
iteration
provides  Random effects u_i ~ Gaussian Obs per group: mn =
stable avg =
) Degrees of
estimates freed max =
LRS = —2 log likelihood ratio reeaom
LR chi 2(1) =
Log likelihood = -1785.6966 Prob > chi 2 =
| oa | Coef Std. Err z P>| z| [ 95% Conf. |
............. e e ceccccccceccccmccecsccmcmesececmcmeseccmcmeseemcmeseemcmem———===
smoke | -.0053168 .0607203 -0.09 0.930 -. 1243265
_cons | 1.013844 . 032046 31.64 0.000 . 951035
............. e e ceccccccceccccmccecsccmcmesececmcmeseccmcmeseemcmeseemcmem———===
o, —> /signa_u | . 2519226 . 0204583 12.31 0. 000 . 2118251
c—— > /signa_e | . 4684954 . 0066952 69. 98 0. 000 . 4553731
_____________ e e e e e e e e e ee e me e e mmmemememmmememmemmmemmmemmmmmm-memmmm——————-
rho | . 2242953 0288039 . 1719879
Li kel i hood-ratio test off sigma_u=0: chibar2(01)= 443.21 Prob>=chi bar2

2
intracluster 0.2519226

correlation " 0.25192267 + 0.46849542

coefficient
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Appendix D: Glossary of terms

2 x 2 table: A contingency table of frequencies with two rows and
two columns

—2log likelihood: Seelikelihood ratio statistic

Accuracy: Refersto the way in which an observed value of aquan-
tity agreeswith the true value

All subsets model selection: See model selection

Allocation bias: A systematic distortion of the data resulting from
theway in which individual s are assigned to treatment groups

Alternative hypothesis: The hypothesis about the effect of interest
that disagrees with the null hypothesis and is true if the null
hypothesisisfalse

Altman’s nomogram: A diagram that rel atesthe sample size of asta-
tistical test to the power, significance level and the standardized
difference

Analysis of covariance: A specia form of analysis of variance that
compares values of adependent variable between groups of indi-
viduals after adjusting for the effect of one or more explanatory
variables

Analysis of variance (ANOVA): A genera term for analyses that
compare means of groups of observations by splitting the total
variance of avariableinto its component parts, each attributed to
aparticular factor

ANOVA : See analysisof variance

Arithmetic mean: A measure of |ocation obtained by dividing the
sum of the observations by the number of observations. Often
called the mean

ASCIl or text file format: Dataare avail able on the computer asrows
of text

Automatic model selection: A method of selecting variables to be
included in a mathematical model, e.g. forwards, backwards,
stepwise, all subsets

Average: A general term for ameasure of location

Backwards selection: See model selection

Bar or column chart: A diagram that illustrates the distribution of a
categorical or discrete variable by showing a separate horizontal
or vertical bar for each ‘ category’, itslength being proportional to
the (relative) frequency in that ‘ category’

Bartlett’s test: Used to compare variances

Bayes theorem: The posterior probability of an event/hypothesis
is proportional to the product of its prior probability and the
likelihood

Bayesian approach to inference: Usesnot only current information
(e.g. from atrial) but also an individual’s previous belief (often
subjective) about a hypothesis to evaluate the posterior belief in
the hypothesis

Bias: A systematic difference between the results obtained from a
study and the true state of affairs

Bimodal distribution: Datawhose distribution hastwo ‘ peaks

Binary variable: A categorical variable with two categories. Also
called adichotomous variable

Binomial distribution: A discrete probability distribution of abinary
random variable; useful for inferences about proportions

Blinding: When the patients, clinicians and the assessors of
response to treatment in a clinical trial are unaware of the treat-
ment all ocation (double-blind), or when the patient isaware of the
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treatment received but the assessor of response is not (single
blind). Also called masking

Block: A homogeneous group of experimenta units that share
similar characteristics. Also called astratum

Bonferroni correction (adjustment): A post hoc adjustment to the P-
valueto takeaccount of the number of tests performedin multiple
hypothesistesting

Bootstrapping: Simulation process used to derive a confidence
interval for a parameter. It involves estimating the parameter
from each of many random samples obtained by sampling with
replacement from the original sample; the Cl is derived by con-
sidering the variability of the distribution of these estimates

Box (box-and-whisker) plot: A diagram illustrating the distribution
of avariable; it indicates the median, upper and lower quartiles,
and, often, the maximum and minimum values

British Standards Institution repeatability coefficient: The
maximum difference that islikely to occur between two repeated
measurements

C statistic: Measures the area under a ROC curve and may be used
to compare diagnostic tests for the same condition

Carry-over effect: Theresidual effect of the previoustreatment in a
cross-over tria

Case: An individual with the disease under investigation in a
case—control study

Case—control study: Groups of individuals with the disease (the
cases) and without the disease (the controls) are identified, and
exposuresto risk factorsin these groups are compared

Categorical (qualitative) variable: Eachindividual belongsto one of
anumber of distinct categories of the variable

Cell of a contingency table: The designation of aparticular row and
aparticular column of thetable

Censored data: Occur in survival anaysis because there isincom-
plete information on outcome. Seeright- and left-censored data

Chi-squared (y?) distribution: A right skewed continuous distribu-
tion characterized by its degrees of freedom; useful for analysing
categorical data

Chi-squared test: Used on frequency data. It tests the null hypothe-
sis that there is no association between the factors that define a
contingency table. Also used to test differencesin proportions

Cl: See confidenceinterval

Clinical cohort: A group of patientswith the sameclinical condition
whose outcomes are observed over time

Clinical heterogeneity: Exists when the trials included in a meta-
analysis have differences in the patient population, definition of
variables, etc., which create problems of non-compatibility

Clinical trial: Any form of planned experiment on humans that is
used to evaluate anew treatment on aclinical outcome

Cluster randomized trial: A study in which groups (clusters) of indi-
viduals are randomized to different ‘treatments so that every
individual within aparticular cluster receives the same treatment

Cluster randomization: Groups of individuals, rather than separate
individuals, are randomly (by chance) allocated to treatments

Cochrane Collaboration: An international network of clinicians,
methodol ogists and consumers who continuously update system-
atic reviews and make them available to others



Coefficient of variation: The standard deviation divided by themean
(often expressed as a percentage)

Cohen'’s kappa (K): A measure of agreement between two setsof cat-
egorical measurements on the same individuals. If k= 1 thereis
perfect agreement; if x = 0, there is no better than chance
agreement

Cohort study: A group of individuals, al without the outcome of
interest (e.g. disease), isfollowed (usually prospectively) to study
the effect on future outcomes of exposureto arisk factor

Collinearity: Pairs of explanatory variablesin aregression analysis
are very highly correlated, i.e. with correlation coefficients very
closeto+l

Complete randomized design: Experimental units assigned ran-
domly to treatment groups

Conditional logistic regression: A form of logistic regression used
when individualsin astudy are matched

Conditional probability: The probability of an event, given that
another event has occurred

Confidence interval (CI) for a parameter: Therange of valueswithin
which we are (usually) 95% confident that the true population
parameter lies. Strictly, after repeated sampling, 95% of the esti-
mates of the parameter liein theinterval

Confidence limits: The upper and lower values of a confidence
interval

Confounding: When one or more explanatory variables are related
to the outcome and each other so that it is difficult to assess the
independent effect of each one on the outcome variable.

CONSORT statement: Facilitates critical appraisal and interpreta-
tion of RCTsby providing guidance, in theform of achecklist and
flowchart, to authors about how to report their trials

Contingency table: A (usually) two-way table in which the entries
arefrequencies

Continuity correction: A correction applied to a test statistic to
adjust for the approximation of adiscrete distribution by acontin-
uousdistribution

Continuous probability distribution: The random variable defining
the distribution is continuous

Continuous variable: A numerical variablein which thereisnolim-
itation on the values that the variable can take other than that
restricted by the degree of accuracy of the measuring technique

Control group: A term used in comparative studies, e.g. clinica
trials, to denote a comparison group. See also positive and nega-
tive controls

Control: Anindividual without the disease under investigation in a
case—control study, or not receiving the new treatment in a clini-
ca tria

Convenience sample: A group of individuals believed to be
representative of the population from which it is selected, but
chosen because it is close at hand rather than being randomly
selected

Correlation coefficient (Pearson’s): A quantitative measure, ranging
from —1 to +1, of the extent to which pointsin a scatter diagram
conform to a straight line. See also Spearman’s rank correlation
coefficient

Covariate: Seeindependent variable

Cox proportional hazards regression model: See proportiona
hazards regression model

Cross-over design: Each individual receives more than one treat-
ment under investigation, one after the other in random order

Cross-sectional studies: Thosethat are carried out at asingle point
intime

Cumulative frequency: The number of individualswho have values
below and including the specified value of avariable

Data: Observations on one or more variables

Deciles: Those values that divide the ordered observationsinto 10
equal parts

Degrees of freedom (df) of a statistic: the sample size minus the
number of parameters that have to be estimated to calculate the
statistic—they indicate the extent to which the observations are
‘free’ tovary

Dependent variable: A variable (usually denoted by y) that is
predicted by the explanatory variablein regression analysis. Also
called the response or outcome variable

Deviance: Seelikelihood ratio statistic

df: See degrees of freedom

Diagnostic test: Used to aid or make adiagnosisof aparticular con-
dition

Dichotomous variable: Seebinary variable

Discrete probability distribution: The random variable defining the
distribution takes discrete values

Discrete variable: A numerical variable that can only take integer
values

Discriminant analysis: A method, similar to logistic regression,
which can be used to identify factorsthat are significantly associ-
ated with abinary response

Distribution-free tests: See non-parametric tests

Dot plot: A diagram in which each observation on avariableisrep-
resented by one dot on ahorizontal (or vertical) line

Double-blind: Seeblinding

Dummy variables: Thek— 1 binary variablesthat are created from a
nominal or ordinal categorical variable with k > 2 categories,
affording a comparison of each of the k — 1 categories with a
reference category in aregression analysis. Also called indicator
variables

Effect modification: Seeinteraction

Effect of interest: Thevalue of theresponse variablethat reflectsthe
comparison of interest, e.g. the differencein means

Empirical distribution: The observed distribution of avariable

Epidemiological studies: Observational studiesthat assesstherela-
tionship between risk factors and disease

Equivalence trial: Used to show that two treatments are clinically
equivalent

Error variation: Seeresidual variation

Estimate: A quantity obtained from a sample that is used to repre-
sent a population parameter

Evidence-based medicine (EBM): The use of current best
evidence in making decisions about the care of individual
patients

Exchangeable model: Assumes the estimation procedure is not
affected if two observationswithin acluster are interchanged

Extra-Binomial variation: Occurs when the residual variance is
greater (overdispersion) or less (underdispersion) than that
expected in aBinomia model

Extra-Poisson variation: Occurs when the residual variance is
greater (overdispersion) or less (underdispersion) than that
expected in a Poisson model

Expected frequency: The frequency that is expected under the null
hypothesis
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Experimental study: The investigator intervenes in some way to
affect the outcome

Experimental unit: The smallest group of individuals who can be
regarded as independent for analysis purposes

Explanatory variable: A variable (usually denoted by x) that
is used to predict the dependent variable in a regression
analysis. Also called the independent or predictor variable or a
covariate

Factorial experiment: Allowsthe simultaneousanalysis of anumber
of factors of interest

Fagan's nomogram: A diagram relating the pre-test probability of a
diagnostic test result to the likelihood and the post-test probabil-
ity. Itisusually used to convert the former into the latter

False negative: Anindividual who has the disease but is diagnosed
as disease-free

False positive: Anindividual who isfree of the disease but is diag-
nosed as having the disease

F-distribution: A right skewed continuous distribution characterized
by the degrees of freedom of the numerator and denominator of
the ratio that defines it; useful for comparing two variances, and
more than two means using the analysis of variance

Fisher’s exact test: A test that eval uates exact probabilities(i.e. does
not rely on approximations to the Chi-squared distribution) in a
contingency table (usually a2 x 2 table), used when the expected
frequenciesare small

Fitted value: The predicted value of the response variable in a
regression analysis corresponding to the particul ar value(s) of the
explanatory variable(s)

Fixed effect: One where the levels of the factor make up the
entire population of interest (e.g. the factor ‘treatment’ whose
levels are drug, surgery and radiotherapy). It contrasts with a
random effect where the levels represent only a sample from the
population (e.g. the factor ‘patient’” whose levels are the 20
patientsinaRCT)

Fixed effect model: Contains only fixed effects; used in a meta-
analysiswhen there is no evidence of statistical heterogeneity

Follow-up: Thetimethat anindividual isin astudy, from entry until
s/he experiencesthe outcome (e.g. devel opsthe disease) or leaves
the study or until the conclusion of the study

Forest plot: A diagram used in a meta-analysis showing the esti-
mated effect in each trial and their average (with confidence
intervals)

Forwards selection: Seemodel selection

Free format data: Each variable in the computer file is separated
from the next by some delimiter, often a space or comma

Frequency distribution: Showsthe frequency of occurrence of each
possible observation, class of observations, or category, as appro-
priate

Frequency: The number of timesan event occurs

Frequentist probability: Proportion of timesan event would occur if
we were to repeat the experiment alarge number of times

F-test: Seevarianceratio test

Gaussian distribution: See Normal distribution

GEE: See generalized estimating equation

Generalized estimating equation (GEE): Used in atwo-level hierar-
chical structureto estimate parametersand their standard errorsto
take into account the clustering of the data without referring to a
parametric model for therandom effects; sometimesreferredto as
population averaged or marginal .
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Generalized linear model (GLM): A regression model which is
expressed in ageneral form viaalink function which relates the
mean value of the dependent variable (with a known probability
distribution such as Normal, Binomial or Poisson) to a linear
function of covariates.

Geometric mean: A measure of location for datawhose distribution
isskewed totheright; itistheantilog of the arithmetic mean of the
log data

GLM: See generalized linear model

Gold-standard test: Provides a definitive diagnosis of a particular
condition

Goodness of fit: A measure of the extent to which the values
obtained from amodel agree with the observed data

Hazard ratio: Seerelative hazard

Hazard: Theinstantaneousrisk of reaching the endpoint in survival
analysis

Healthy entrant effect: By choosing disease-free individualsto par-
ticipate in astudy, the response of interest (typically, mortality) is
lower at the start of the study than would be expected in the
general population

Heterogeneity of variance: Unequal variances

Hierarchical model: See multilevel model

Histogram: A diagram that illustratesthe (rel ative) frequency distri-
bution of a continuous variable by using connected bars. The
bar’'s areais proportional to the (relative) frequency in the range
specified by the boundaries of the bar

Historical controls: Individualswho are not assigned to atreatment
group at the start of the study, but who received treatment some
timein the past, and are used as a comparison group

Homoscedasticity: Equal variances; also described ashomogeneity
of variance

Hypothesis test: The process of using asample to assess how much
evidence there is against a null hypothesis about the population.
Also called asignificance test

12 An index which can be used to quantify the impact of statistical
heterogeneity between the studiesin ameta-analysis

ICC: Seeintraclass correlation coefficient

Incidence: Thennumber of new cases of adiseasein adefined period
divided by the number of individuals susceptible at the start or
mid-point of the period

Incidence rate: The number of new cases of a disease in a defined
period divided by the person-years of follow-up of individuals
susceptible at the start of the period

Incidence rate ratio: A relative rate defined as the ratio of two inci-
dencerates

Incident cases: Patientswho have just been diagnosed

Independent samples: Each unitin every sampleisunrelated to the
unitsin the other samples

Independent variable: See explanatory variable

Indicator variables: See dummy variables

Inference: The process of drawing conclusions about the population
using sample data

Influential point: An observation, which, if omitted from a regres-
sion analysis, will lead to achangein one or more of the parame-
ter estimates

Intention-to-treat analysis: All patients in the clinical tria are
analysed in the groups to which they were originally assigned

Interaction: Occurs between two explanatory variables in a regres-
sion analysis when the effect of one of the variables on the depen-



dent variable varies according to the level of the other. In the
context of ANOVA, aninteraction exists between two factorswhen
thedifference between thelevel sof onefactor isdifferent for two or
more levels of the second factor. Also called effect modification

Intercept: Thevalue of the dependent variablein aregression equa-
tion when the value(s) of the explanatory variable(s) is (are) zero

Interdecile range: The difference between the 10th and 90th per-
centiles; it contains the central 80% of the ordered observations

Interim analyses: Pre-planned analyses at intermediate stages of a
study

Intermediate variable: A variable that lies on the causal pathway
between an explanatory variable and an outcome of interest

Interpolate: Estimate the required value that lies between two
known values

Interquartile range: The difference between the 25th and 75th per-
centiles; it contains the central 50% of the ordered observations

Interval estimate: A range of values within which we believe the
popul ation parameter lies.

Intraclass correlation coefficient (ICC): In atwo-level structure, it
expresses the variation between clusters as a proportion of the
total variation; it represents the correlation between any two ran-
domly chosen level 1 unitsin one randomly chosen cluster

Jackknifing: A method of estimating parameters and confidence
intervals; each of nindividualsis successively removed from the
sample, the parameters are estimated from the remaining n — 1
individuals, and finally the estimates of each parameter are
averaged

Kaplan—-Meier plot: A survival curveinwhich the survival probabil-
ity isplotted against thetime from baseline. It is used when exact
timesto reach the endpoint are known

Kolmogorov—Smirnov test: Determines whether data are Normally
distributed

Kruskal-Wallis test: A non-parametric alternative to the one-way
ANOVA; used to compare the distributions of more than two
independent groups of observations

Left-censored data: Comefrom patientsin whom follow-up did not
begin until after the baseline date

Lehr’s formulae: Can be used to calculate the optimal sample sizes
required for some hypothesistests when the power is specified as
80% or 90% and the significance level as0.05

Level one unit: The‘individual’ at the lowest level of ahierarchical
structure; a group of level one units (e.g. patients) comprise a
cluster of individualswhich is nested within alevel two unit (e.g.
ward)

Level two unit: The‘individual’ at the second lowest level inahier-
archical structure; each level two unit (e.g. ward) comprises a
cluster of level one units (e.g. patients)

Level: A particular category of aqualitative variable or factor

Levene's test: Tests the null hypothesis that two or more variances
areequal

Leverage: ameasure of the extent to which thevalue of the explana-
tory variable(s) for an individual differs from the mean of the
explanatory variable(s) in aregression analysis

Lifetable approach to survival analysis: A way of determining sur-
vival probabilities when the time to reach the end-point is only
known to within aparticular timeinterval

Likelihood: The probability of the data, given the model. In the
context of a diagnostic test, it describes the plausibility of the
observed test result if the diseaseis present (or absent)

Likelihood ratio (LR): A ratio of two likelihoods; for diagnostic tests,
the LR istheratio of the chances of getting a particular test result
in those having and not having the disease

Likelihood ratio statistic (LRS): Equal to—2 timestheratio of thelog
likelihood of a saturated model to that of the model of interest. It
isused to assessadequacy of fit and may becalled thedevianceor,
commonly, —2 log likelihood. The difference in the LRS in two
nested models can be used to compare the models

Likelihood ratio test: Uses the likelihood ratio statistic to compare
the fit of two regression models or to test the significance of one
or aset of parametersin aregression model

Limits of agreement: In an assessment of repeatability, itistherange
of vaues between which we expect 95% of the differences
between repeated measurementsin the populationto lie

Linear regression line: The straight line that is defined by an alge-
braic expression linking two variables

Linear relationship: Impliesastraight linerel ationship between two
variables

Link function: In ageneralized linear model, it is a transformation
of the mean value of the dependent variable which ismodelled as
alinear combination of the covariates

Logistic regression coefficient: The partial regression coefficientin
alogistic regression equation

Logistic regression: A form of generalized linear model used to
relate one or more explanatory variables to the logit of the
expected proportion of individuals with a particular outcome
when the responseis binary

Logit (logistic) transformation: A transformation applied to a
proportion or probability, p, such that logit(p) = In{p/(1 — p)} =
In (odds)

Lognormal distribution: A right skewed probability distribution of a
random variable whose logarithm follows the Normal
distribution

Log-rank test: A non-parametric approach to comparing two sur-
vival curves

Longitudinal study: Followsindividuals over aperiod of time

LRsS: Seelikelihood ratio statistic

Main outcome variable: That which relatesto the major objective of
the study

Mann-Whitney U test: See Wilcoxon rank sum test

Marginal model: See generalized estimating equation

Marginal total in a contingency table: The sum of the frequenciesin
agiven row (or column) of thetable

Masking: Seeblinding

Matching: A process of selecting individuals who are similar with
respect to variables that may influence the response of interest

Maximum likelihood estimation (MLE): An iterative process of
estimation of a parameter which maximizesthe likelihood

McNemar’s test: Compares proportionsin two related groups using
aChi-squared test statistic

Mean: See arithmetic mean

Median: A measure of location that is the middle value of the
ordered observations

Meta-analysis (overview): A quantitative systematic review that
combines the results of relevant studies to produce, and investi-
gate, an estimate of the overall effect of interest

Method of least squares: A method of estimating the parametersin
aregression analysis, based on minimizing the sum of the squared
residuals
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Mixed model: Some of the parameters in the model have random
effects and others have fixed effects

MLE: See maximum likelihood estimation

Mode: The value of asingle variable that occurs most frequently in
adataset

Model Chi-squared test: Usually refers to a hypothesis test in a
regression analysis that tests the null hypothesisthat all the para-
meters associated with the covariates are zero; it is based on the
differenceintwo likelihood ratio statistics

Model sensitivity: The extent to which estimates in a regression
model are affected by one or more individuals in the data set or
mis-specification of the model

Model: Describes, in algebraic terms, the relationship between two
or more variables

Mortality rate: The death rate

Multilevel model: Used for the analysisof hierarchical datainwhich
level one units (e.g. patients) are nested within level two units
(e.g. wards) which may be nested within level three units (e.g.
hospitals), etc. Also called hierarchical model

Multinomial logistic regression: A form of logistic regression used
when the nominal outcome variable has more than two cate-
gories. Also called polychotomous logistic regression

Multiple linear regression: A linear regression model inwhichthereis
asinglenumerical dependent variable and two or more explanatory
variables

Multivariable regression model: Any regression model that has
a single outcome variable and two or more explanatory
variables

Multivariate regression model: Has two or more outcome variables
and two or more explanatory variables

Mutually exclusive categories: Each individual can belong to only
one category

Negative controls: Those patients in a randomized controlled trial
(RCT) who do not receive active treatment

Negative predictive value: The proportion of individuals with a
negative test result who do not have the disease

Nested models: Two regression models, the larger of which
includes the covariates in the smaller model, plus additional
covariate(s)

Nominal variable: A categorical variable whose categories have no
natural ordering

Non-inferiority trial: Used to demonstrate that a given treatment is
clinically not inferior to another

Non-parametric tests: Hypothesis tests that do not make assump-
tions about the distribution of the data. Sometimes called distrib-
ution-freetests or rank methods

Normal (Gaussian) distribution: A continuous probability distribu-
tion that is bell-shaped and symmetrical; its parameters are the
mean and variance

Normal plot: A diagram for assessing, visualy, the Normality of
data; astraight line on the Normal plot implies Normality

Normal range: Seereferenceinterval

Null hypothesis, H,: The statement that assumes no effect in the
population

Number of patients needed to treat (NNT): The number of patients
we need to treat with the experimental rather than the control
treatment to prevent one of them developing the ‘ bad’ outcome

Numerical (quantitative) variable: A variable that takes either dis-
crete or continuous values
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Observational study: The investigator does nothing to affect the
outcome

Odds ratio: Theratio of two odds (e.g. the odds of disease in indi-
viduals exposed and unexposed to a factor). Often taken as an
estimate of therelativerisk in acase—control study

Odds: Theratio of the probabilities of two complimentary events,
typically the probability of having a disease divided by the prob-
ability of not having the disease

Offset: An explanatory variable whose regression coefficient is
fixed at unity inageneralized linear model. Itisthelog of thetotal
person-years (or months/days, etc) of follow-up in a Poisson
model when the dependent variable is defined as the number of
events occurring instead of arate

One-sample t-test: Investigates whether the mean of a variable
differsfrom some hypothesized value

One-tailed test: The alternative hypothesis specifiesthe direction of
the effect of interest

One-way analysis of variance: A particular form of ANOVA used to
compare the means of more than two independent groups of
observations

On-treatment analysis: Patientsin aclinical trial are only included
in the analysisif they complete a full course of the treatment to
which they were randomly assigned

Ordinal logistic regression: A form of logistic regression used when
the ordinal outcome variable has more than two categories

Ordinal variable: A categorical variable whose categories are
ordered in some way

Outlier: An observation that is distinct from the main body of the
dataand isincompatible with the rest of the data

Overdispersion: Occurs when the residual variance is greater
than that expected by the defined regression model (e.g. Binomial
or Poisson)

Overfitted model: A model containing too many variables, e.g. more
than 1/10th of the number of individuals in a multiple linear
regression model

Overview: See meta-analysis

Paired observations: Relate to responses from matched individuals
or the sameindividual in two different circumstances

Paired t-test: Teststhe null hypothesis that the mean of a set of dif-
ferences of paired observationsisequal to zero

Parallel trial: Each patient receives only one treatment

Parameter: A summary measure (e.g. the mean, proportion) that
characterizes a probability distribution. Its value relates to the
population

Parametric test: Hypothesis test that makes certain distributional
assumptions about the data

Partial regression coefficients: Theparameters, other than theinter-
cept, which describe a multivariable regression model

Pearson’s correlation coefficient: See correlation coefficient

Percentage point: The percentile of a distribution; it indicates the
proportion of the distribution that liesto itsright (i.e. in the right
hand tail), toitsleft (i.e. in theleft-hand tail), or in both the right-
and left-hand tails

Percentiles: Those valuesthat divide the ordered observationsinto
100 equal parts

Person-years of follow-up: The sum, over al individuals, of the
number of yearsthat each individual isfollowed-up in astudy.

Pie chart: A diagram showing the frequency distribution of a cate-
gorical or discrete variable. A circular ‘pi€’ is split into sections,



onefor each ‘ category’; the areaof each sectionisproportional to
thefrequency in that category

Pilot study: Small scale preliminary investigation

Placebo: Aninert ‘treatment’, identical in appearance to the active
treatment that is compared to the active treatment in a negatively
controlled clinical trial to assess the therapeutic effect of the
activetreatment by separating fromit the effect of receiving treat-
ment; also used to accommodate blinding

Point estimate: A single value, obtained from asample, which esti-
mates a popul ation parameter

Point prevalence: The number of individualswith adisease (or per-
centage of those susceptible) at aparticular point intime

Poisson distribution: A discrete probability distribution of arandom
variable representing the number of events occurring randomly
and independently at afixed average rate

Poisson regression model: A form of generalized linear model used
to relate one or more explanatory variables to the log of the
expected rate of an event (e.g. of disease) when the follow-up of
the individuals varies but the rate is assumed constant over the
study period.

Polynomial regression: A non-linear (e.g. quadratic, cubic, quartic)
relationship between a dependent variable and one or more
explanatory variables

Population averaged model:
equation

Population: The entire group of individuals in whom we are inter-
ested

Positive controls: Those patientsin aRCT who receive some form
of active treatment as a basis of comparison for the novel
treatment

Positive predictive value: The proportion of individuals with apos-
itive diagnostic test result who have the disease

Posterior probability: An individual’s belief, based on prior belief
and new information (e.g. atest result), that an event will occur

Post-hoc comparison adjustments: Are made to adjust the
P-values when multiple comparisons are performed, eg.
Bonferroni

Post-test probability: The posterior probability, determined from
previous information and the diagnostic test result, that an indi-
vidual has adisease

Power: The probability of rejecting the null hypothesis when it is
false

Precision: A measure of sampling error. Refersto how well repeated
observations agree with one another

Predictor variable: Seeindependent variable

Pre-test probability: The prior probability, evaluated before a diag-
nostic test result isavailable, that an individual has adisease

Prevalence: The number (proportion) of individuals with a disease
at a given point in time (point prevalence) or within a defined
interval (period prevalence)

Prevalent cases: Patients who have the disease at a given point in
time or within adefined interval but who were diagnosed at apre-
vioustime.

Primary endpoint: The outcome that most accurately reflects the
benefit of anew therapy inaclinical trial

Prior probability: An individual’s belief, based on subjective views
and/or retrospective observations, that an event will occur

Probability density function: The equation that defines a probability
distribution

See genereralized estimating

Probability distribution: A theoretical distribution that is described
by a mathematical model. It shows the probabilities of all
possible values of arandom variable

Probability: Measures the chance of an event occurring. It
ranges from O to 1. See also conditional, prior and posterior
probability

Prognostic index: Assesses the likelihood that an individual has a
disease. Also called arisk score

Proportion: Theratio of the number of events of interest to the total
number in the sample or population

Proportional hazards regression model (Cox): Used in surviva
analysisto study the simultaneous effect of anumber of explana-
tory variables on survival

Prospective study: Individuals are followed forward from some
point intime

Protocol deviations: The patients who enter a clinica trial but do
not fulfill the protocol criteria

Protocol: A full written description of all aspectsof aclinical tria

Publication bias: A tendency for journal sto publish only papersthat
contain statistically significant results

P-value: The probability of obtaining our results, or something more
extreme, if the null hypothesisistrue

Qualitative variable: See categorical variable

Quantitative variable: See numerical variable

Quartiles: Those values that divide the ordered observations into
four equal parts

Quota sampling: Non-random sampling in which the investigator
chooses sample membersto fulfil a specified ‘ quotal

R2: The proportion of thetotal variation inthe dependent variablein
asimple or multiple regression analysis that is explained by the
model. It is a subjective measure of goodness of fit

Random effect: The effect of afactor whose levels are assumed to
represent arandom sample from the population

Random effects model: A model for a hierarchical data structure,
such as atwo-level structure with level 1 units nested in level 2
units, in which arandom effect is the source of error attributable
to thelevel 2 units

Random intercepts model: A random effects hierarchical model
which assumes, for the two-level structure, that the linear rela-
tionship between the mean val ue of the dependent variable and a
single covariatefor every level two unit hasthe same slopefor all
level two units and an intercept that varies randomly about the
mean intercept

Random sampling: Every possible sampleof agiven sizeinthe pop-
ulation has an equal probability of being chosen

Random slopes model: A random effects hierarchical model which
assumes, for the two-level structure, that the linear relationship
between the mean value of the dependent variable and a single
covariate for each level two unit has aslope that varies randomly
about the mean slope and an intercept that varies randomly about
the mean intercept

Random variable: A quantity that can take any one of aset of mutu-
ally exclusive valueswith a given probability

Random variation: Variability that cannot be attributed to any
explained sources

Randomization: Patients are alocated to treatment groups in a
random (based on chance) manner. May be stratified (controlling
for the effect of important factors) or blocked (ensuring approxi-
mately equally sized treatment groups)
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Randomized controlled trial (RCT): A comparative clinica tria in
which thereisrandom allocation of patientsto treatments

Range: The difference between the smallest and largest observations

Rank correlation coefficient: See Spearman’s rank correlation
coefficient

Rank methods: See non-parametric tests

Rate: The number of events occurring expressed as a proportion of
thetotal follow-up time of all individualsin the study

RCT: Seerandomized controlled trial

Recall bias: A systematic distortion of the data resulting from the
way in which individual s remember past events

Receiver operating characteristic (ROC) curve: A two-way plot of
the sensitivity against one minus the specificity for different cut-
off values for a continuous variable in a diagnostic test; used to
select the optimal cut-off value or to compare tests

Reference interval: Therange of values (usualy the central 95%) of
a variable that are typically seen in healthy individuals. Also
called the normal or referencerange

Regression coefficients: The parameters (i.e. the slope and inter-
cept in simple regression) that describe aregression equation

Regression to the mean: A phenomenon whereby a subset of
extreme results is followed by results that are less extreme on
average e.g. tall fathers having shorter (but still tall) sons

Relative frequency: The frequency expressed as a percentage or
proportion of thetotal frequency

Relative hazard: The ratio of two hazards, interpreted in a similar
way to therelativerisk. Also called the hazard ratio

Relative rate: Theratio of two rates (often therate of diseaseinthose
exposed to afactor divided by the diseaseratein those unexposed
to the factor).

Relative risk (RR): Theratio of tworisks, usually therisk of adisease
in a group of individuals exposed to some factor divided by the
risk in unexposed individuals

Reliability: A general term which encompasses repeatability, repro-
ducibility and agreement

Repeatability: The extent to which repeated measurements by the
same observer inidentical conditions agree

Repeated measures ANOVA: A special form of analysis of variance
used when a numerical variable is measured in each member
of a group of individuas more than once (e.g. on different
occasions)

Repeated measures: The variable of interest is measured on the
same individual in more than one set of circumstances (e.g. on
different occasions)

Replication: Theindividual has more than one measurement of the
variable on agiven occasion

Reproducibility: The extent to which the same results can be
obtained in different circumstances, e.g. by two methods of mea-
surement, or by two observers

Residual variation: Thevariance of avariable that remains after the
variability attributable to factors of interest has been removed. It
isthevariance unexplained by themodel, and istheresidual mean
sguare in an ANOVA table. Also called the error or unexplained
variation

Residual: The difference between the observed and fitted val ues of
the dependent variablein aregression analysis

Response variable: See dependent variable

Retrospective studies: Individuals are selected, and factors that
have occurred in their past are studied
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Right-censored data: Come from patients who were known not to
have reached the endpoint of interest when they were last under
follow-up

Risk factor: A determinant that affects the incidence of a particular
outcome, e.g. adisease

Risk of disease: The probability of developing the disease in the
stated time period; it is estimated by the number of new cases of
disease in the period divided by the number of individuals
disease-free at the start of the period

Risk score: See prognostic index

Robust standard error: Based on the variability in the data rather
than on that assumed by the regression model: more robust to vio-
lations of the underlying assumptions of the regression model
than estimatesfrom OLS

Robust: A testisrobust to violations of itsassumptionsif itsP-value
and the power are not appreciably affected by the violations

RR: Seerelativerisk

Sample: A subgroup of the population

Sampling distribution of the mean: The distribution of the sample
means obtained after taking repeated samples of afixed size from
the population

Sampling distribution of the proportion: The distribution of the
sample proportions obtained after taking repeated samples of a
fixed size from the population

Sampling error: The difference, attributed to taking only a sample
of values, between a population parameter and its sample
estimate

Sampling frame: A list of all theindividualsin the population

Saturated model: Oneinwhich the number of variablesequalsor is
greater than the number of individuals

Scatter diagram: The two-dimensional plot of one variable against
another, with each pair of observations marked by apoint

Screening: A process to ascertain which individuas in an appar-
ently healthy population are likely to have (or, sometimes, not
have) the disease of interest

SD: See standard deviation

Secondary endpoints: Theoutcomesinaclinical trial that are not of
primary importance

Selection bias: A systematic distortion of the dataresulting fromthe
way inwhichindividualsareincluded in asample

SEM: See standard error of mean

Sensitivity: The proportion of individuals with the disease who are
correctly diagnosed by the test

Shapiro-Wilk test: Determines whether data are Normally
distributed

Shrinkage: process used in estimation of parameters in a random
effects model to bring each cluster’s estimate of the effect of
interest closer to the mean effect from all the clusters

Sign test: A non-parametric test that investigates whether
differences tend to be positive (or negative); whether observa-
tionstend to be greater (or less) than the median; whether the pro-
portion of observations with a characteristic is greater (or less)
than one half

Significance level: The probability, chosen at the outset of an inves-
tigation, which will lead us to reject the null hypothesisif our P-
valueliesbelow it. It is often chosen as 0.05

Significance test: See hypothesistest

Simple linear regression: The straight line relationship between a
single dependent variable and asingle explanatory variable



Single-blind: See blinding

Skewed distribution: Thedistribution of the dataisasymmetrical; it
has a long tail to the right with a few high values (positively
skewed) or along tail to theleft with afew low values (negatively
skewed)

Slope: The gradient of the regression line, showing the mean
changein the dependent variable for aunit changein the explana-
tory variable

SND: See Standardized Normal Deviate

Spearman’s rank correlation coefficient: A non-parametric alterna-
tive to the Pearson correlation coefficient; it provides a measure
of association between two variables

Specificity: The proportion of individuals without the disease who
are correctly identified by adiagnostic test

Standard deviation (SD): A measure of spread equal to the square
root of the variance

Standard error of the mean (SEM): A measure of precision of the
sample mean. It isthe standard deviation of the sampling distrib-
ution of the mean

Standard error of the proportion: A measure of precision of the
sample proportion. It is the standard deviation of the sampling
distribution of the proportion

Standard Normal distribution: A particular Normal distribution with
amean of zero and avariance of one

Standardized difference: A ratio, used in Altman’s nomogram and
Lehr’s formulae, which expresses the clinically important treat-
ment difference asamultiple of the standard deviation

Standardized Normal Deviate (SND): A random variable whose dis-
tribution is Normal with zero mean and unit variance

Statistic: The sample estimate of a popul ation parameter

Statistical heterogeneity: |spresent inameta-analysiswhenthereis
considerable variation between the separate estimates of the
effect of interest

Statistically significant: The result of a hypothesis test is statisti-
caly significant at aparticular level (say 1%) if we have sufficient
evidence to reject the null hypothesis at that level (i.e. when
P<0.01)

Statistics: Encompasses the methods of collecting, summarizing,
analysing and drawing conclusions from data

Stem-and-leaf plot: A mixture of a diagram and a table used to
illustrate the distribution of data. It is similar to a histogram,
and is effectively the data values displayed in increasing order of
size

Stepwise selection: Seemodel selection

Stratum: A subgroup of individuals; usually, the individuals within
astratum share similar characteristics. Sometimes called a block

Student’s t-distribution: Seet-distribution

Subjective probability: Personal degree of belief that an event will
occur

Superiority trial: Used to demonstrate that two or more treatments
areclinicaly different

Survival analysis: Examines the time taken for an individual to
reach an endpoint of interest (e.g. death) when some data are
censored

Symmetrical distribution: The data are centred around some mid-
point, and the shape of the distribution to the left of the midpoint
isamirror image of that to theright of it

Systematic allocation: Patientsin aclinical trial are allocated treat-
mentsin asystematized, non-random manner

Systematic review: A formalized and stringent approach to combin-
ingtheresultsfromall relevant studiesof similar investigations of
the same health condition

Systematic sampling: The sample is selected from the popula-
tion using some systematic method rather than that based on
chance

t-distribution: Also called Student’s t-distribution. A continuous
distribution, whose shape is similar to the Normal distribution,
characterized by its degrees of freedom. It is particularly useful
for inferences about the mean

Test statistic: A quantity, derived from sample data, used to test a
statistical hypothesis; its value is compared with aknown proba-
bility distribution to obtain a P-value

Time-dependent variable: An explanatory variable in a regression
analysis (e.g. in Poisson regression or Cox survival analysis) that
takesdifferent valuesfor agivenindividual at varioustimesinthe
study

Training sample: The first sample used to generate the model (e.g.
in logistic regression or discriminant analysis). The results are
authenticated by a second (validation) sample

Transformed data: Obtained by taking the same mathematical trans-
formation (e.g. log) of each observation

Treatment effect: The effect of interest (e.g. the difference between
means or the relative risk) that affords a treatment comparison

Trend: Vaues of the variable show a tendency to increase or
decrease progressively over time

Two-sample t-test: See unpaired t-test

Two-tailed test: Thedirection of the effect of interest isnot specified
inthe alternative hypothesis

Type | error: Rejection of the null hypothesiswhenitistrue

Type Il error: Non-regjection of the null hypothesiswhen it isfalse

Unbiased: Freefrom bias

Underdispersion: Occurs when the residual variance is less than
that expected by the defined regression model (e.g. Binomial or
Poisson)

Unexplained variation: Seeresidual variation

Uniform distribution: Has no ‘ peaks because each valueis equally
likely

Unimodal distribution: Hasasingle ‘ peak’

Univariable regression model: Has one outcome variable and one
explanatory variable

Unpaired (two-sample) t-test: Tests the null hypothesis that two
means from independent groups are equal

Validation sample: A second sample, used to authenticate the results
from the training sample

Validity: Closenessto thetruth

Variable: Any quantity that varies

Variance ratio (F-) test: Used to compare two variances by compar-
ing their ratio to the F-distribution

Variance: A measure of spread equal to the square of the standard
deviation

Wald test statistic: Used to test the significance of a parameter in a
regression model; it follows the standard Normal distribution

Washout period: The interval between the end of one treatment
period and the start of the second treatment period in a cross-over
trial. It allowstheresidual effectsof thefirst treatment to dissipate

Weighted kappa: A refinement of Cohen’s kappa, measuring agree-
ment, which takes into account the extent to which two sets of
paired ordinal categorical measurements disagree
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Weighted mean: A modification of the arithmetic mean, obtained by Wilcoxon signed ranks test: A non-parametric test comparing
attaching weights to each value of the variablein the data set paired observations

Wilcoxon rank sum (two-sample) test: A non-parametric test com-
paring the distributions of two independent groups of observa-
tions. It is equivalent to the Mann—Whitney U test.
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additionrule 20
adequacy of fit 86-7
adjusted R? 77
aggregate level analysis 113
agreement
assessing 105-7
limitsof 105
allocation
bias 36
random see randomi zation
systematic 36
treatment 34
alpha (o) 44,96
aternative hypothesis 42
Altman’snomogram 96, 131
analysis of covariance 76
analysisof variance (ANOVA) 22
F-ratio 72
Kruskal-Wallistest 56
one-way 55-7
repeated measures 111
table 57,70
ANOVA see analysis of variance
apriori probability 20
areaunder the curve (AUC) 20, 21, 111
arithmetic mean 16
see also mean
ASCII format 10
assessment bias 36
association
in contingency table 64, 65-6
incorrelation 67
assumptions, checking 94-5
automatic selection procedures 89
average 16

backwards selection 89

bar chart 14

Bartlett'stest 56, 94

Bayesian methods 122-3

beta(B) 44,72

between-subject variability 19

bias 31, 105

bimodal distribution 14

binary (dichotomous) variables 8, 108
explanatory 70, 77, 88-91
inlogistic regression 79-81
inmeta-analysis 116
inmultipleregression 76

binomial distribution 23
Normal approximation of 23

blinding 34, 108

blocked randomization 36

blocking 32

Bonferroni correction 45

bootstrapping 29
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carry-over effects 32
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more than two categories 64—6
two proportions 61-3
multipleregression with 76
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censored data 9, 119
left- 119
right- 119
Central Limit Theorem 26
Chi-squared (x?) distribution 22, 125
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in2x2tables 61
for covariates (model Chi-square) 79, 87
independent groups 61
inlarge contingency tables 64
inr x ctable 64,656
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independent data 61, 6-3
paired data 62, 63
Cl see confidence intervals
classificationtable 80
clinical cohorts 38
clinical heterogeneity 117
clinical trials 34-7, 35, 36, 71
avoiding biasin 31
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cross-over design 32, 33
endpoints 34
ethical issues 34
inclusion/exclusion criteria 35
informed consent 34
intention-to-treat analysis 36, 108
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protocol 356
size 36
treatment allocation 34, 36
treatment comparisons 34
clustered column (bar) chart 15
cluster randomization 36
Cochrane Collaboration 116
coding
data 10, 11
missing values 10, 11
coefficient
correlation see correlation coefficient
intraclass correlation 105, 114

logistic regression 79
partial 76
regression 70
repeatability/reproducibility 105, 107
of variation 19
Cohen’skappa 105, 106
cohort studies 30, 37-9
dynamic 37
fixed 37
historical 37
collinearity 77,92
column (bar) chart 14
complete randomized design 32
computer output 132—43
conditional probability 20, 122
confidenceintervals (Cl) 28-9, 108
95% 72
for correlation coefficient 68, 69
for differencein two means 52, 54
for differencein two medians 53
for difference in two proportions
independent groups 61, 62
paired groups 62, 63
interpretation of 28-9, 46, 52, 108
interpretation 28
for mean 28,29
for mean difference 49-50, 51
for median 127
for median difference 49, 50-51
inmeta-analysis 1167, 118
multiplier for calculation of 124, 125
for proportion 28-9
for regression coefficient 73
for relativerisk 38, 39
for slope of regression line 73, 74
versus hypothesistesting 43
confidencelimits 28
confounding 31, 36, 91
CONSORT statement 34, 35
contingency tables
2x2 61
2xk 64
rxc 64
continuity correction 47, 58
continuous data 8, 20
continuous probability distributions 20-1, 22—3
controls 31, 34,40
in case-control studies 40
positive/negative 34
convenience sample 26
Cook’sdistance 77
correlation 67-9
linear 67-8
correlation coefficient
assumptions 67
confidenceinterval for 68, 69
hypothesistest of 68, 69
intraclass 105, 114
misuse of 68, 68
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non-parametric 68

Pearson 67, 69, 129
Spearman’srank 68, 69, 129
square of (r2) 67

counts 23

covariance, analysisof 76

covariate 76

Cox proportional hazards regression model 80,
120, 121

critical appraisal 108
cross-over studies 32, 33
cross-sectional studies 30, 31
C statistic 103, 104

cut-off values 103

data
censored 9, 119
coding 10, 11
clustered 82,110-12, 113-15
derived 9
description of 18-19
entry 10-11, 11, 83
error checking 12-13
graphical display 14-15, 110
missing 10, 12
paired 49
range checking 12
summarization of 16, 18
transformation 24-5
typesof 8-9
see also specific types
dates
checking 12
entering 10
deciles 18
Declaration of Helsinki 34
degrees of freedom (df) 22, 29, 126
delimiters 10
dependent (outcome, response) variables 70
binary 92
categorical 80
numerical 92
derived data 8-9
design see study design
deviance 79, 87
df see degrees of freedom
diagnostic tests 1024, 122-3
in Bayesian framework 122-3
diagrams 99
dichotomous variables see binary variables
discretedata 8,20
discriminant analysis 92
dispersion see spread
distribution
bimodal 14
continuous probability 22
discrete probability 22-3
empirical frequency 14
frequency 14, 15
probability 20
sampling 26-7
skewed 14
Standard Normal 21
symmetrical 14
theoretical 20-3
uniform 14
unimodal 14
see al so specific types
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distribution-free tests see non-parametric tests
dot plot 14,15

double-blind see blinding

dummy variables 76, 88

Duncan’'stest 55

effect modification see interaction, statistical
effect (of interest) 45
in evidence-based medicine 108
in meta-analysis 116
importance of 108
power of test and 44
insample size calculation 96
efficacy 34
empirical frequency distribution 14
endpoints 34
primary 34
secondary 34
epidemiological studies 30
equivalencerange 43
equivaencetrials 43
error
checking 1213, 13
in hypothesistesting 44-5
residual 70
Typel 44
Typell 44
typing 12
variation 45
even numbers 16
evidence-based medicine (EBM) 108-9, 116
exclusion criteria 35
expected frequency 61
experimental studies 30
experimental units 32
explanatory (independent, predictor) variables
70, 77,88-91
inlogistic regression 79-80
inmultipleregression 767
nomina 76, 89
numerical 91
ordina 88
Exponential model 120
extra-Binomial variation 84
extra-Poisson variation 834

factorial study designs 32-3
Fagan’snomogram 122, 123
false negatives 80, 102
false positives 80, 102
F-distribution 22, 126
Fisher’'sexact test 61, 64
fitted value 70
fixed effect model 116
follow-up 37
lossesto 37,97
forest plot 116, 117
forms 10
multiple 10
forwards selection 89
F-ratio 72
freeformat data 10
frequency 14, 61, 64
distribution 14, 15, 20
observed and expected 61
tableof 102
frequentist probability 20, 122
F-test 77,94

to compare variances 94, 95
inmultipleregression 77
funnel plot 117

Gaussian distribution see Normal distribution
generaized estimating equations (GEE) 114
generalized linear models (GLM) 86—7
geometric mean 16, 17
gold-standard test 102
goodness of fit 70, 71, 72
gradient, of regression line 70
graphica display 14-15, 110

onevariable 14-15

outliers 15

two variables 15

hazard 120
ratio 120
relative 120
healthy entrant effect 31, 37
heterogeneity
clinical 117
statistical 116
of variance 94, 116
histogram 14-15, 14, 80
homogeneity, of variance 94, 116
homoscedasticity 94
hypothesis, null and alternative 42
hypothesistesting 42-3
categorical data 58
consequencesof 44
for correlation coefficient 678
errorsin 44-5, 44
likelihood ratio 79
meta-analysis 116
more than two categories 64
more than two means 55
multiple 44
non-parametric 43
presenting results 99
inregression 72-3
singlemean 467
single proportion 58
two means
related groups 49-51
unrelated groups 524
two proportions
independent groups 61
related groups 61-2
two variances 94, 95
versus confidenceintervals 43
Wald 79

12 116

identity link 86

inappropriate analyses 110
incidencerate 82
incidencerateratio 82
incident cases 40

inclusion criteria 35
independent variables see explanatory variables
indicator variables 88
inferences 26

influential points 72, 77
information bias 31

informed consent 34
intention-to-treat analysis 108
interaction 33,91



interdecilerange 18

interim analyses 34

intermediate variable 92

interpolation 53

interquartilerange 18

inter-subject variability 19

interval estimate 26, 28

intraclass correlation coefficient 105, 114
intra-subject variability 19

jackknifing 92

Kaplan-Meier curves 119, 120
Kappax

Cohen’s 105, 106

weighted 105
Kolmogorov—Smirnov test 94
Kruskal-Wallistest 56, 57

|east squares, method of 70, 86
Lehr’sformula 96-7
Levene'stest 56, 94
leverage 77
lifetables 119
likelihood 86—7
-2log 79, 87
ratio 78, 87,103, 123
ratio statistic 79, 87
limits of agreement 105-6
linearizing transformations 24-5
linear regression 70-8
analysis 724
line seeregression line
multiple 70, 76-8
results 99-100
simple 70-1, 73
theory 70-1
linear relationships 95
checkingfor 88-9
|ocation, measures of 16
logarithmic transformation 24
logistic regression 79-81
coefficient 79
conditional 80
multinomial (polychotomous) 80
ordina 80
logit (logistic) transformation 25
lognormal distribution 22
log-rank test 120
longitudinal data 110
longitudinal studies 30-1

McNemar’stest 61, 63
main effects 91
Mann-Whitney U test 52
marginal total 61
masking 34, 108
matching 40
maximum likelihood estimation 86—7
mean 17
arithmetic 16
confidenceinterval for 28, 29
confidenceinterval for differenceintwo 52,
54
difference 49, 52, 54
geometric 16, 17
Poisson 23
regressionto 71

sampling distribution of 26
standard error of (SEM) 26
weighted 16, 17

mean square 55

measures
of location 16-17
of spread 18-19

median 16, 17
confidenceinterval for 47,124, 127
difference between two 49-50, 53
survival time 119
test for asingle 46-7

Medline 108

meta-analysis 116-18

method agreement 105

method of least squares 70

missing data 10, 12

mode 16, 17
models
Cox proportiona hazardsregression 80,
120,121

Exponential 120
fixed effect 116
generdized linear 867
Gompertz 120
hierarchical 113
logistic regression 79
multi-level 70, 76-8
multivariable 84
over-fitted 89
Poisson regression 82-83, 120
random effects 114
random intercepts 115
random slopes 114
regression 120
statistical 79-80, 86, 91-3
univariable 92
Weibull 120
mortality rate 82
multi-coded variables 10
multi-collinearity 92
multiple hypothesistesting 44
multiple linear regression 70, 75-7, 136
multiplication rule 20
multivariable analysis 76
mutually exclusive (categories) 61

negative controls 34

negative predictivevalue 103

nested model 87

nominal variables 8, 76, 88

non-inferiority trials 43

non-parametric (distribution-free, rank) tests

43,95

for more than two independent groups 56
for singlemedian 46-7
for Spearman correlation coefficient 68
for two independent groups 534
for two paired groups 49-50

Normal (Gaussian) distribution 21, 24
approximation to Binomial distribution 23,

58

approximation to Poisson distribution 23
in calculation of confidenceinterval 28
checking assumption of Normality 82, 83
Standard 21, 124, 125, 126
transformationto 24-5

Normalizing transformations 24-5

Normal plot 94
normal range see reference interval
null hypothesis 42, 71, 72
see also hypothesistesting
number needed to treat (NNT) 108
numerical data (variables) 8, 108
assessing agreement in 1056, 107
error checking 12
explanatory 88
graphical display of 14
more than two groups 557
presentation 99
singlegroup 467
two related groups 49-51
two unrelated groups 524

observational databases 38

observational studies 30

observations 8

observed frequency 61

observer bias 31

odds (of disease) 79
posterior 122-3
prior 123

oddsratio 40, 79, 82
estimated 40

offset 83

one-tailed test 42

on-treatment analysis 35

ordinal variables 8, 88
inmultipleregression 76

ordinary least squares (OLS) 86

outcome variabl es see dependent variables

outliers 12-13,72, 77
checking for 12
handling 12-13
identification 15

over-fitted models 89

overview see meta-analysis

paired data
categorical 62, 63
numerical 49-50
paired t-test 49, 50, 97, 151
parallel studies 32, 33
parameters 20, 24, 26
parametric tests 43
Pearson correlation coefficient 67, 69, 129
percentage 8
point 28
percentiles 18, 19
piechart 14,15
pilot studies 97
placebo 34
point estimates 26
point prevalence 31
Poisson distribution 23, 82-5
Poisson regression 82—3
polynomial regression 89
population 8, 26
positive controls 34
positive predictive value 103
posterior odds 122-3
posterior (post-test) probability 122, 123
post-hoc comparisons 55
power
curves 44-5, 45
samplesizeand 96
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statement 97
precision 26-7, 99, 108
in systematic reviews 116, 117
predictive efficiency, indicesof 80
predictive value
negative 103
positive 103
predictor variables see explanatory variables
preferences, analysing 58-9
presenting results 99-100
pre-test probability 123
prevalence 102, 123
point 30
prevalent cases 40
prior odds 123
prior (pretest) probability 122, 123
probability 20
additionrule 20
apriori 20
Bayesian approach 122-3
complementary 20
conditional 20, 122
discrete 20,23
frequentist 20, 122
multiplication rule 20
posterior (post-test) 122, 123
prior (pre-test) 122, 123
subjective 20
survival 119
probability density function 20
probability distribution 20, 42
prognosticindex 92
proportion(s) 23
confidenceinterval for 28
confidenceinterval for differenceintwo 61,
62, 63
logit transformation of 25
sampling distribution 27
signtest for 58-9
standard error of 27
test for single 58-60
test for trendin 64-5, 66
test for two
independent groups 61
related groups 61-2
proportional hazards regression model (Cox)
120, 121
prospective studies 31
protocol 356
deviations 36
publication bias 17, 31
P-value 42-3
explanation of 42-3
post-hoc adjustment of 45

qualitative data see categorical data

quality, of studiesin meta-analysis 117
quantitive date see numerical data

quartile 18

questionnaires 10

quick formulaein sample size estimation 96
quotasampling 26

quotients 8

r2 67
Rz 71,77
adjusted 77
r x ¢ contingency table 64

156 Index

random effectsmodel 114
random interceptsmodel 115
randomization 108
blocked 36
cluster 36
stretified 36
randomized controlled trials (RCT) 36
random numbers 130
random slopesmodel 114, 115
random variables 20, 32
random variation 32
range 18, 19
checking 12
interdecile 18
interquartile 18
reference (normal) 18, 21, 102
rank correlation coefficient see Spearman’s
rank correlation coefficient
rank tests see non-parametric tests
rateratio 82
rates 8-9,82-5
incidence 82
mortality 82
relative 82,83
ratio 8
F-ratio 72
hazard 120
incidencerate 82
likelihood 78, 87, 103, 123
odds 40, 79, 82
rate 82
recall bias 38, 41
receiver operating characteristic curves (ROC)
103, 104
reciprocal transformation 25
reference category 76
referenceinterval (range) 18, 21, 102
regression
clustered data 113-15
Cox 80, 120, 121
linear seelinear regression
logistic 79-80, 138
methods 111
models, survival data 120
Poisson 82-5
polynomial 89
presenting resultsin 99-100
simple 70, 72-4
tomean 71
regression coefficients 70
linear 70
logistic 79
partia 76
Poisson 83
regressionline 70
goodness of fit 70, 71, 72
prediction from 72-3
relative frequency 14
relative hazard 120
relativerisk (RR) 38
in meta-analysis 38
oddsratio as estimate of 79
reliability 105
index of 105
repeatability 105
repeated measures 110-12
replication 32
reproducibility 105

residua error 70
residual mean square 55
residuals 70
residual variance 55, 71
residua variation 72
response variables see dependent variables
results, presenting 99-101
risk 38,82
score 92
seealsorelativerisk
robust analysis 94
ROC curves seereceiver operating
characteristic curves

sample 8, 26

convenience 26

random 26

representative 26

statistic 26

training 92

validation 92

size 32,45, 96-8
sampling 26-7

distributions 27

error 26

frame 26

guota 26

systematic 26

variation 26
saturated models 92
scatter 16
scatter diagram 14, 15, 67, 70, 72
Scheffé'stest 55
scores 9
screening 40, 71
SD see standard deviation
SE see standard error
segmented column (bar) chart 15
selection bias 31, 38
sensitivity 77, 80, 102
Shapiro-Wilk test 94
Sheffétest 55
significancelevel 43,45

insample size calculation 96
significant result 42
signtest 47,126

paired data 49-50

for aproportion 58-9
single-blind trial 34
single-coded variables 10
skewed data

negatively 14

positively 14

transformationsfor 24-5

Spearman’srank correlation coefficient 68, 69,

129
specificity 80, 102
spread 16, 18-19
seealso variability
square root transformation 24, 25
squaretransformation 25
standard deviation (SD) 19, 26
pooled 55, 57
standard error (SE) 113
interpretation 26
of mean (SEM) 26
of proportion 27
robust 113-14



of dope 72-3

versus standard deviation 26
standardized difference 96
Standardized Normal Deviate (SND) 21

Standard Normal distribution 21, 125, 126

statistic
sample 26
test 42
statistics, definition of 8, 20
stem-and-leaf plot 15
stepwise selection 89
study design 30-3
case-control 30
cohort 30
cross-sectional 30, 31
factorial 32—-3
longitudinal 31
repeated cross-sectional 30, 31
summary measures 110-11
agoregate level analysis 113
of location 16-17
of spread 18-19
survival
analysis 84, 119-21
curves (Kaplan-Meier) 119, 120
probability 119
symmetrical distribution 14
systematic allocation 36
systematic reviews 116-18
systematic sampling 26

tables 99
2x2table 61, 62-3
contingency 61, 64
of frequencies 102
lifetables 119

statistical 124-30
t-distribution 22, 125

usein confidenceinterval 28
test statistic 42
text format 10
times, entering 10
training sample 92
transformation, data 24-5
treatment allocation 34
treatment effect 44
trend, Chi-squaretest for 64, 65, 88
true negatives 102
true positives 102
t-test 28

one-sample 46

for partial regression coefficients 77

paired 49

unpaired (two-sample) 52, 97
two-samplet-test 42
two-tailed test 42
Typel/ll errors 44
typing errors 12

unbiased estimate 26

uniform distribution 14

unimodal distribution 14

unit, experimental 32

unpaired t-test, see two-samplet-test

validation sample 92

vaidity 92

variability
between-subject 96
samplesizecalculation and 96
within-subject 19

variables 8

random 20, 32
see also data; specific types
variance 18-19, 19
Binomial 23
heterogeneity of 94, 116
homogeneity of 94, 116
Poisson 23
residua 55,71
stahilizing 24,25
testing for equality of two 56, 94, 95,
135
variance-ratio test see F-test
variation 32
between-group 55
between-subject 19
coefficient of 19
explained 72
extra-Binomial 84
extra-Poisson 834
over time 83
random 32
unexplained (residual) 72
within-group 55
within-subject 19

Wald test 79

washout period 32

Weibull model 120

weighted kappa 105

weighted mean 16, 17

Wilcoxon rank sumtest 52-3, 128
Wilcoxon signed rankstest 47, 49, 127
within-subject variability 19

z-test 46
z-value 47,48, 124,125
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