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Series Foreword

Computational nearoscience is an approach to understunding the information
content of neural signuls by modeling the nervous system al many different
structural scales, including the biophysical, the circuit, and the systems levels.
Computer simulations of neurons and oearal networks are complementary 1o
traditional wehniques in neuroscience. This book series welcomes contribu-
tions that link theoretical studies with experimental approaches to understand-
ing informanon processing i the nervous system, Areas and topics of par-
ticular interest include hophysical mechanisms for compuatation in neurons,
computer simulations of neural circuits, models of learning, representation of
sensory information in neural networks, systems models of SCASOEY-THOLOE in-
tegration, and computatonal analysis of problems in bislogical sensing, motor
control, and perception.

Terrence 1. Sejnowski
Tomase AL Poggio




Preface

This is o book about the way in which the nervous system represents or en-
eodes sensory signals. Our approach 1o the problem of newral coding is mo-
tivitted by o desire lor guantitative analysis. In particular, we would like w
describe the perlormance of neurons oo an abselule scale, making precise the
intuitive notion that these cells ure telling the brain something about the sen-
sory world.

The nevral code is the subject of o vast literature, and we muost make clear al
the outset that whal [ellows is not an eneyvelopedic guide w that lierature. On
the contrary, we ey o focus on a small number of questions. We develop these
guestions 1o section L2, and e osection 1.3 we make three claims about the
answers, Subsequent chapters are devored o the ideas and data thae sureound
and support these three claims.

The guestions we are asking abouwl the neural code are phrased within a
framework provided by ideas from probahility and suatistics, information the-
ary, and the analysis of signals and noise. In the hackground are analogies
between these ideas and ideas from statistical mechanics und thermodynamics:
We contend thit these concepts provide not only a natural language for talking
about the issues. but also a set of concrete tools for the design and analvsis of
eXPermants.

This approach will appeal, we expect. (o the growing numbers ol physicists,
mathematicians and engineers who are becoming involved in problems related
to newral computation. But if this group is our only audience we will have
failed. Since we are writing ahout the design and unalysis of real experiments
an real neurnns, we must address oursclves to the community of experimental
neurcbiologists, It is, therefore, essential that we explore the connection of
the different theoretical constructs to the guantities that are measored in the
lahoratory, As part of this effort, we try o use experimental data from real
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Preface

nevrons as an dlustration of cach new idea or mathematical tool, and as o result
st of the figures in the lext are constructed from real data,

In trying to make precise links between theory and experiment, we want o
distinguish between ideas that are essential to the geperal discussion and the
details or calculations that could be skipped on a frst reading, Unlike expen-
mental results or the results of computer simulations, all statements of muthe-
matical fact can be checked by the reader with pen-and paper, Ulimately, this
checking tests understanding and builds intuiton. On the other haod, a text
that repeatedly poinis out all the wonderful places vou can lest your under-
standing can be a bit tirgsome. As o compromise, we have collected many of
the caleuiatons mie “mathematcal asides™ which are placed at the end of the
text. Our hope s that many readers will lind their way into these asides, but
that by pulling the details aside we have left @ muin lext that can be read and
enjoved.
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ntroduction

Twi fricnds, one living in the city and the other on the funily farm, deseribe to
one another the experiences of everyday life. The furmer conjures up pastoral
images, acres of wheat swaying in a gentle breeze, the sweet smells of spring,
and the songs of the birds, The city dweller recounts scenes of thousands
of people ¢merging from the train station, the incscapable odors of traffic,
and the throbbing beat of @ street musician’s drums. 1t would seem that these
sensory experiences are as different as one could 1magine, yet they share with
all cur sensory experiences one crucial feature: In each case, our perception
al the world s constructed out of the raw data sent to our brains by our
sensory nerves, and in each case these data come in the same standard form—
as sequences of identical voltage pulses called action potentials or “spikes.”

When we see, we are not interpreting the pattern of light intensity thar Talls
an our reting; we are interpreting the pattern of spikes that the million cells af
aur optic nerve send to the brain. When we hear, we are nol interpreting the
patterns of amplitude and frequency modulation that characlerize the acous-
tic waveform; we are interpretng the pattemns of spikes from roughly thirty
thoosand suditory nerve libers, All the myrind tasks our brains perform in the
processing of incoming scnsory signals begin with these sequences of spikes,
When it comes tme to act on the results of these computations, the brain
sends out sequences of spikes to the motor neurons. Spike sequences are the
language for which the brain is listening, the language the brain uses for its
internal musings, and the language it ﬁpnﬁ}cs a5 il talks w the outside world.

If spikes are the language of the brain, we would like 1o provide a dictionary.
We would like o understand the structure of this dictionary, perhaps cven
providing the analog of a thesaurus, We would like 1o know i, as in language,
there are notions of context that can influence the meaning of the individual
words. And of course we would like to know whether our use of the linguistic
analopy makes sense. We must travel a long road even 1o give these questions
a precise formulation, We begin at the heginning, more than two centuries ago.
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1.1

THE

Iniraduction

CLASSICAL RESULTS

Our understanding ol how the sensory world 15 represented in the electrical
activity of the sensory nerves is limited, first and foremost. by our ability
to record this activity, Indeed. the history of experiments on the electrical
activity of nerves is intertwined with the history of electnical measurements
more generally. The science of electricity as we understand it today hegan
with Galvani and Yolta in the 1700s (Pera 1986}, Galvani observed that e
muscles of a frog could be made 1o twitch when touched with a piece of
metal, und he believed that the metal evoked “animal clectricity™ in the muscle.
Volta suspected that the electricity was generuted at the contact point itself,
and that similar effects should he abservable from a contact between different
inorganic materials. Vilta was right, and the pursuit of his ideas led him w
what we now call a Voltaic pile, the first real battery. The fact thar eleciricity
was not the special provenance of animals was one of the first nails in the
coffin of vitalism,

Galvani and Volta made macroscopic measurements. Their biological
preparations consisted of large hunks of muscle—olten the entire musele—not
what we now know 1o be the single muscle fibers or motor neurons that make
up these tissues. The notion that the body is constructed from cells emerged
only through the efforts of the nineteenth-century microscopists, which culmi-
nated in the beautiful observations of Ramidn y Cajal on the cellular nature of
the brain itself (Cajal 1909-1 1), As a more microscopic picture of the nervous
system began Lo take shape, it seemed natural to ask how the activity of indi-
vidual cells might refate to our perceptions. Miiller developed the doctrine of
specific nerve energics, according to which the identity of a sensory stimulus
is represented by the fuct that certain nerve libers, and not others, are wctivated
by that stimulus (Boring 1942), Helmhboltz provided evidence for this view
in his analysis of the inner ear, arguing that cells at different locations along
the cochlear spiral are sensitive o different frequencies of sound (Helmholts
I885). These discussions from the late nineteenth century form the founda-
tion for much of our current thinking about the nervous system. When we
read about a computational map in the cortex {Knudsen, du Lac, and Esterly
1987). where an armay of neurons decomposes incoming signals acenrding Lo
the values of different component features, we are reminded of Helmboli,
who realized that the array of auditory nerve fibers would decompose sound
into its compaonent frequencics.

Testing the ideas of Helmholtz and Miiller requires the direct observation of
electrical activity in individual sensory neurons, not just the summed activily

1.1 The classical resulis
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Figure 1.1

Scﬁcmmic of Advian’s apparatus for recording the electrical activity m oo nerve Aber,
Thie fiber itself s at the fr lefi. Adran placed the fiber across two clectrodes and
measured the difference m the volusge at these wo points along the nerve. The sigaal
wis amplified and used o control o mercury column, ot the for dght. Becords were
cbtained by scanmng a piece of film behind the mercory column, an example of which
15 shown in Fig, |3 Redrawn from Adreian ( 1926).

of 4 nerve bundle, But the electrical signals from individual cells are very
smull, at least when seen by an observer omside the cell. To pick up these
smull signals reguired a pew method of low noise amplification, and this was
provided in the first decade of this century by the vacuum whe. Using these
new devices at Cambridge University, Lucas (1917) built instruments which
allowed the recording of microvolt signals in handwidths of several KiloHertz,
We should remember that these experiments predale the oscilloscope, so even
the display of submillisecond signals posed a signiticant problem. The solution
to this problem, together with a general schematic of the instruments, 15 shown
in Fig. 1.1, Locas, sadly, died young, und the task of using these instruments
fell w E. 0. Adrian, In the space of roughly o decade, Adrian leamed much of
what we know tothis day about the problem of neural coding. Independent]y.
H. K, Hartline made many of the same discoveries, We follow the line of
reasoning lnid out by Adrian, and return shortly o some special features ol
Hartline's observations.

The classic early work of Adnan is contained, primarily, in o series of pu-
pers published in 1926 {Adran 1926; Adrian and Zotterman 1926a, 1926b).
Adrian summarized these results and their implications in o (sl very read-
able monograph, The Basis of Sensarion (1928). One can trice the evolution
of Adrian’s thinking in two subsequent books (Adrian 1932, 1947)




Introduction

Adriun’s experiments established three fundamental fucts about the neural
code. First, he saw that individual sensory neurons produce stereatyped action
potentials, or spikes. This s the all-or-none law, which had already been éstab-
lished For muscles and motor neurons: Incoming stimuli either produce action
potentials, which propagate long distances along the cell’s axon, or they do
not: there are no mtermediate signaling mechanisms. This means that a single
newron can provide information to the hrain only through the armival times of
the spikes.

To make Adrian’s observations o bir clenrer, we look at a modern version of
the swme experiment. In Fig. 1.2 we show raw data (rom o fine ungsten wire
clectrode which has been placed close 10 a single neuron in the brain of a fiy:
the voltage at this electrode is measured relative o that at a reference electrade
placed in the body Auids. Although the trace is noisy, there are clear, stereo-
typed events that can be isolated by appropriate flering. These are the action
petentials or spikes prodoced by this neuron and seen from outside the cell,
The observation of all-or-none responses raises several questions:' Why does
the nervous system choose this mode of communication? How is the stereo-
typed action potential waveform selected and stabilized? s this mechanism
universul?

Action potential propugation is an active process—ithe cell expends cnergy
o praduce and transmit u spike, und the epergy expenditure increases the
farther the spike must travel. In the absence of active processes, the electrical
properties of cell membranes are such that @ pulse starting at one end of o
cell would spread and decuy rather than propagating at constant velocity, and
the characteristic decay lengths are on the order of one millimeter (Hodgkin
and Rushton 1946), Therelore, pussive mechanisms are inadequate Tor sending
signals over long distances, such as the roughly one meter [rom vour fingertips
Lo your spinal cord, or even from one area of the cortex 1o 4 peighboring area:
action potentinls provide the means tor such long distance communication. On
the other hand, cells that send signals only over short distances, such as within
the retina or even across the body of a small animal, need not generate action
potentials and can, instead, operate entirely with “graded™ voltage responses o
sensory stimuli (Roberts and Bush 1981); we will see examples of this more
continuous mode of neural signalling in section 3.1.4,

1. The experinrents and theoretical developments which provided the answers ta these questions
are by now classic chaplers in e lstory of neuroscience (Aidley 1989, We povide only a bnel
simmary, bul we encourage the reader o look st the orginal papers, os well s the Jovely lext
b Kate | 19661 Some of the history is recounted i the essuys collected for the one-hundreedih
anniversary of the Phvsiological Society (Hodgkin et il, 1977)

.1 The ¢lassical results
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Figure 1.2

All-or-none coding by action potentials. Each action potential generated by the cell
has o similar shape. Thus action potentisls are the elementary unils of the reural code,
The top panel shows the difference between the voltage recorded with o fine lungsien
wire placed near o cell i the fly's brain and that recorded with a reference electrode
placed in the body Muid. The middle panef shows the sume voltage alter band-pass
filtering to separsie the relatively high frequency ompenents in the action potential
from low frequency noise: after (lering, the shapes of individual action potentials are
quite similar, A1 the right, five sction potentials are shown overluid on an expanded
time scale. This pives an impression of the shops and of the reproducibility of the tine
course. The bottom panel shows tming pulses generted clectronically by a threshold
ciscriminater cireuit
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Introduction

The local circoit properties of a cell membrane include active elements,
conductunces that are modulated by voltage chanpes and are electrically in se-
rics with power supplies (or, effectively, batteries) that are mamtmned by ion
pumps; these pumps in tum are powered by chemical energy [rom the cell's
metabolism, Hodgkin and Huxley (195320, 19520, 1952¢) analyzed the electri-
cal dynamics of the cell membrane in the mant axon of squid, and shewed that
these dynamics could be desenibed with relatively simple phenomenological
models of conductances that depend on voltage and are selective for differem
ions, When these local, active elements are assembled into o long cable, such
a5 the axon, the nonhinear dynumics of the conductances select a stereotyped
pulse which can propagate at constant veloeity, while all ather voltage changes
eventually decays the great tiumph of this work was (o show that this pulse
has a shape and speed essentially identical to the ohserved action potentials
(Hodgkin and Huxley 1952d) The mathematics of pulse selection has 1ts roots
in the nineteenth century, but u complete theory came much Liter { Aronson and
Weinberger 1978), and the Hodgkin-Huxley equations continue to provide the
inspiration for interesting mathematics and physics problems,

Although their analysis was purely phenomenological, the form of the
Hodgkin-Huxley eguations suggested o microscopic pictre in which the
conductances selective for different ions correspond to differemt molecular ele-
ments, or channels, in the membrane, and the modolations of the conductance
correspond to transitions among discrete states of these channel molecules.
Continuing advances in low noise amplilication made 11 possible 1o resolve
the clectrical noise generated by spontaneous ransitions among the differemn
charmel stites, and finally to detect the currents Howing through single chan-
nel molecules (Sukmann and Neher 1983), Measurements on the properties of
individual channel moelecules, together with the techniques of modern malec-
ular Biology, have made it possible to identify o preat diversity of chanpel
types (Hille 19921, but these studies also demonstrate that many features of
channel structure and function are strongly conserved throughout the animal
kingdom (Jan and Jan 1994) This oniversality of mechanism at the molecular
level harks back 1o Adrian's observations on the universality of spike encod-
ing. Onver the yvears, Adrian and his colleagues recorded the activity of sensory
newrons from an enormous variety of different sensory systems in different an-
imals, Although the quantitative details vary from neuron W neuron, it seems
that the principles are universal.

The second of Adrian’s fundamental ohservarions was thal, in response to
a static stimulus such as o continuous load on a streteh receptor, the rate of
spiking increases as the stmulus becomes larger, The raw data rom Adrian's

.1 The classical results
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Fipgure 1.3

Firing mate as o function of stimulis sirength, adapied from Aclrian and Fotterman
(1926, The spikes in these panels are visible as the Auetiations riding on the blick-
while interface, A lime marker is shown on top. Adrian and Zoterman measured the
relation between the force applied 1o o musele and the fring rate in o strewch receptor
embedded in the muscle, Different forces wire penerated by hanging weighis with dif-
ferent masses from the muscle, This type of experiment established that the Mrequency
of firing in sensery neurons increased with increasing stinulus strength,

ariginal demonstration of this principle is shown n Fig. 1.3, and a quantitative
analysis is shown in Fig. |.4a. Thus the rate, or frequency, of spikes indicates
the intensity of the stimulus. To be a hit more precise, the number of spikes
in u fixed tme window following the onset of a static stimulus represents the
intensity of that stimulus. This is the idea of rate voding.

The third of Addan’s discoveries was that if o statie stimulus is continued
for u very long time, the spike rate hegins o decline, as illustrated in Fig, 1.4b.
This is called adaprarion, although this e is also used more generally 1o
describe a dependence ol the neural response on the history of stirnulation,
Adrian suggested that this physiological phenomenon corresponds 1o percep-
tual phenomena wherein we become gradually unaware of constant stimuli,

As we hive tried 1o find a precise modern farmulation for the problem of
neural coding, we have been struck by the extent to which the ideas of Adrian
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Figure 1.4

Rate coding and adapeatlon. (u) Avernge fring rate of a strelch receptor ws o function
of the weight applied 1o the muscle, in an experiment similar o that of Fig. 1,3, (b
Decrease in Nring rale with tme following the onset of a static stimulus st ¢ =0,
adepred from Adrian (19260, This desensitization, or adaprarion, is a general property
of mewral coding, '

1.1 The classical resalis

and Hartline have formed the puradigim for subsequent exploration of the ner-
vous system. On the one hand this mast mean that their early experiments
captured essentiul and universal features of the neural code, On the other hand
gne miust worry that, in following this single line of ideas, some crucial points
may have heen missed.

In the first expeniments on single sensory neurons the stimulus was ofien
defined by a single parameter. This parameter, such as the load on a streteh
receplor, was held fixed while the stimulus was on, But naturally occurning
srimuli are defined by a much larger number of parameters. In vision, for
example, a small region of the visual field may be described by its overall
luminance, but also by its contrast relutive 1o the background, the size and
shape of any featres in the region, the positions and nricntations of such
features, their color, depth, and so on. By analogy with the Adrian-Hartline
ohservations on spike rate as a function of stimulus intensity, one can plot
the responses of a visual neuron as o function of these multiple parameters.
This leads to the notion of featwre sefectivity, in which the cell’s response
depends most strongly on a small number of parameters and is maximal at
some optimum value of these parumeters.

Precursors to the notion of feature selectivity can be found in the work of
Hartling and collaborators, who studied the responses of single neurons from
the compound eyes of the horseshoe crab Limudus polyphemus. In addition
to reproducing Adrian’s results coneerning rate coding, Hartline found that
the stimulus whose strength was coded by one neuron reflected the difference
between the light intensity at the location of that cell and the intensity at neigh-
boring cells, Thus the crab reting has an enhanced response to spatial contrast
or edges. Hartline, Rathff, and coworkers suggested that this enhuncement is
connected to the perceptual phenamenon of Mach bands, shown schematically
in Fig, .5, The unraveling of the retinal circuitry responsible for contrast ¢n-
hancement led to a long sequence of now classic papers (Ratliff 1974).

The concept of feature selectivity was clearly enunciated by Barlow (1953a,
195301, who was Addan's student, Recording from retinal ganglion cells in
the frop, he showed that the response of these cells to a spot of light at first
srows with the urea of the spot, but then declines if the spot exceeds a erit-
ical size, as summarized in Fig. |.6a. The portion of the visuul world that
can influence the activity of a neuron is called the receptive licld of that cell,
and Barlow's results can be described as u “center—surround” organization of
the receptive ficld: spots within a small region (the center) excile the cell,
but spots just outside this region (in the surround) inhibit the cell (Fig. Lab).
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Mach bands at the edge of a shadow, The “Light curve” is based on physical caleula:
tions of the luminance ol the edge of o shadow. The point @ 15 in the fully illuminoted
space, the point 7 is a1 the outer edge of the shadow, the point y is at the inncr cdge of
the shadow, and the point & is in the full shadow. The thicker line represents the appar-
ent Jurinance, or “Sensaton curve” aetoally sbserved. The masimum and minimum of
these curves correspond 10 the light and dark Mach bands that arisc from differencing
mechanisms in the visual system that enhance contryst, Redrawn from Baliff ( 1974),

To a good approximation these receptive fields are circularly symmetric. Es-
sentially identical receptive ficlds were found in cut retinal ganglion cells by
Kuffler (19331 In many cases the excitation and inhibition are balanced so that
spatially uniform stimulation produces no response. Another interpretation is
that these cells are tuned to ohjects of a given apparent size, perhaps thar of the
hugs the frog is hunting. The picture of frog retinal ganglion cells as special-
ized “bug detectors™ was emphasized by Lettvin and coworkers (1959), [n the
limiting ease this view presents sensory neurons as yesfno devices, signaling
the presence or ahsence of certnin elementary features,

The importance of feature selectivity was strongly supported by the ob-
servations of Kulfler's colleagues Hubel und Wiesel (1962}, They found that
many cells in cat visual corex are selective not only for the size of objects
{e.g., the width of a bar} but also for their orientation. As in the Barlvw—Kuffler
experiments, Hubel and Wiesel observed this selectivity by counting the num-
ber of spikes the cell produced in response to the presentation of a static stim-
ulus or in response 1o the motion of the stimalus through the cell’s receptive
ficld. Hubel and Wiesel presented a scenarin for how this orientation selectiv-
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Center—surmound receptive fields in retinal ganglion cells. (2) Sensitivity of n.'-l:in:l.llg:m-
alion cells in the frog as a function of the radios of the Tight stimulus; scnsjtilwl;.r i3
defined as the light intensity required o elicita fised number of spikes. As the stimulus
sive is increased, the sensitivity imtinlly increases, but then begins o decrease when the
stimuli are larger than (.2 mm in radios, This hebavior was seen in both “on” ganglion
cells; which respond 1w an increase in light intensity in the central mg'iqn DI'I their e
ceptive field. and in “of™ ganglion cells, which respond to a -le::lru.'nau in light intensily.
ihj Receptive field organization sugpesied by Barlow 10 eaplain mensurerents E'-I.!L'h
a5 those in (4), Light fulling within the central excitatory region of the cefl™s receplive
field cavses an increase in the number of spikes, while light falling in the Ellhlhﬂﬂf;.r
surround ciuses o deeregse 10 the number of spikes, indicated here as o pegntive sensi-
tivity, Maximal response 1o i spot of light is achieved when the stimulus just covers the
entine receptive field conter
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ity could be built out of center—surround neurons in lower levels of the visual
system, making explicit the intuitive notion that higher percepts are built out
of elementary features, Finally, they found that neighboring neurons are toned
1o neighbonng orentations, so thut feature selectivity is mapped over the sur-
face of the cortex: This notion of cortical mapping, presaged by Mounteastle's
(1957} obscrvations on the responses of cells in the somatosensory corex, re-
vealed order amid the seemingly impenetrable mass of cortical circuitry, This
discovery led, in turn, to the investigation of how this order develops out of the
more amarphous circuitry of the embryvenic brain, The ideas of leature selec-
tivity, cortical maps, and self-organization of maps during development have
dominated the exploration of cortex ever since {Hubel and Wiesel 1977

If we return o the origingl Adran—Harthne experiments on sensory neu-
rons, we see that one could extend the description ol the neural code in two
very different directions, One direction s to study the coding of mulliparame-
ter stimuli, which has heen followed exiensively in the exploration of the visual
system. A second direction 15 to use stimuli with realistic tme dependencies.
In & natural environment, sensory inputs are not broken inte diserele presen-
tations, and they are not simply twrened on and off. More complex dynamic
signals have been used in the study of the auditory system, where the main is-
sues concern recognition and classification of temporal waveforms. Bul evenin
these experiments there 15 4 tendeney o approximate real dynamic signals with
miore claborate but slll essentially stationary signals, For example, the cod-
ing of vowel sounds has olten been studied using continuous, periodic stimuli
whaose power spectra approximate those of real vowels,

A primary concern in this book is 1o understand how the nervous system
represems signals with realistic tme dependencies. The prohlem of coding for
nearly static stimuli is very different from the problems faced by the brain
under more natural conditions. In purticular, the focus on time dependent
signals forces us to think abour the sigoificance of much smaller numbers of
spikis. But we are getting ahead of ourselves.

Do the ideas of rate coding, feature selectivity, and corical mapping tell us
what we wint ty know about the neoral code? Certwinly the fact that neurons
i deeper layers of the hrain are selective for more complex features tells us
something about the kinds of computations that are carried oul as sensory
signuls are passed from one stage of processing o the next, although it is
dangerous to take a hierarchical of sequential view ol sensory processing too
literally, The iden of rate coding leaves open the question of whether other
features ol the spike train—generally prouped under the calch phrase gning—
carry meanmingful information, and indeed this question has been cenral to
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many discussions ol neural coding, The idea of mapping leads us o think
about the represemtation of the sensory world 0 arrays of nearons; it adso leads
tor the concepts of ensemble o population coding, which are active topics of
curreint research.

The classical results on the neurad code suppest many avenues for explo-
ration. We cannot do justice to all the different paths taken by different investi-
gators. In the following section we hope to muke precise a more limited set of
questions. which, with luck. we cun answer in the space of the remaining text.

1.2 DEFINING THE PROBLEM

What would 1t mean 1o say that we “understand™ the neural code ina particu-
far region of the nervous system? How do we quantify the notion that the spike
train of a single cell *conveys information™ abow the sensory world? In what
sense is o particular sequence of spikes the “right answer™ 10 Some compu-
tatinnal problem faced by the brain® We search for sharper versions of these
guestions by forcing ourselves to adopt u more precise and more mathematical
language. In talking about the nervous system we routinely make colloguial
use ol terms such as code, information, and relability. All of these words can
be given precise mathemitical definitions. and we hope, through the remuinder
of the text, 1o convince the reader thut these definitions provide a clear guide
the design and analysis of new experiments. In striving for precision we shall
see the emergence of some new ideas, We begin, however, by revisiting an old
idea, the homunculus.

The homuneulus is an often derded cancept in discussions of the brain. We
recall that this metaphor conjures up o little man—ar, na lovely variant by
Michael Land und Simon Laughlin (Fig. 1.7, a litle (ly—who observes the
responses of his own sensory neurons and fnully forms the percepts that the
arganism experiences. The problem with this picture is that it never gets to the
essence of what 1t means 1o perceive snd to expenence the world, On the other
hind, ns explorers of the nervous system we place ourselves, inevitably, in the
position of the homunculus—we observe the responses of sensory neurons and
try 1o decide what these responses could mean to the organism. This problem
of assipming meaning to the activity of scnsory neurons is the central issue in
our discussion of the neural code.

[t 5 easy W imagine that the task of the homuncelus is rivial—alter all, he
just watches a projected image of the warld as it Hashes through the brain. But
this projected image is encoded in the patterns of action potentials generited
B the sensory neurons, 10is not at all clear what the homunculus would have
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Figure 1.7
The Flynculus. Doodle by M. F Land, guolation, “The little fly siting i othe ly's brain
trying o Ty the fly,” from 5. B. Laughlin o with permission.

tordo, even in principle, (o make sense out of these encoded data, We propose
that “understanding the neural code™ means thut we would know how 1o make
sense oul of the bewildering array of spike trains streaming in from the sense
organs: I we understand the code, we can function a5 the homunculus.

When we ask what a spike train means, or what it ean tell us about the
world, we need to set some boundaries for the question, or, equivalendy, a
context for the answer. If we live in a world with only two possible sensory
stimuli, we can ask how the homunculus could best vse the spike train data
o make @ decision about which stimuolus in facl occurred. This decision rule
would constitute a complete understanding of the neural code, assuming that
the world offers just two possihle signals,

In many psychophysical discrimination experiments (Green and Swets
1966), a world of two alternatives is created artificially, and the subject must
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solve the problem of choosing between these alternatives, This binary deci-
ston problem provides a conventent context for asking questions about the
reliahility of our perceptions, and we shall see that it 15 also useful for inves-
tiguting the relinbility of neurens, But it 1s not enough to build & homunculus
that functions in o world of two aliernatives; we want to ask our question about
the meaning of spike trains in o context that approaches the complexity of the
natural world,

Under natural conditions, the stimulus that will appear in the next brief time
window 15 not known 1o us in advance, Instead the stimulus is chosen from
an infinite set of aliernatves. On the other hand, these alternatives are not all
equally likely. While there are blue spruce trees, green trees do not suddenly
turn blue (or red or yellow cither), Natural stimuli develop in Gme, and these
dynamics have mm::'und::rlying regularity or structure. This structure has a
deterministic component. as when a leaf falls downward according to New-
ton's luws. Bul since we do not know all the forces that shape the dynamics of
sensory stimuli, some aspects of these stimuli are unpredictable, as when the
falling leaf is deflected by a gust of wind. The result is that natural signals are
presented 1o us at random, but these signals have correlations that reflect their
origing in deterministic physical processes,

Rather than inhabiting a world of two aliwernatives, we thus inhabit a world
of random but correlated time dependent signals. The tme dependence is cru-
cial, because it means that we cannot wait forever to decide what we are look-
ing al. Not oaly does biology press for gquick decisions—we must catch our
prey and not be caught by predators—ihe physics of owr environment 1s such
that any simple averaging far long periods ol time will average away the very
signils that interest us, The task of the homunculus: then, is not to create o
stutic image of the sensory world from the input spike trains, but rather 1o give
a soat of running commentary or simultaneous translation, We emphasize thit
this running commentary need not be, and muost likely cannot be, o compre-
hensive recanstruction of the world around us,

To give meaning to the spike trains nonetheless requires that we recreate al
least some aspects of the continuous time dependent world that is encoded in
discrete sequences of spikes. From our experience in the laboratory we know
that when forced to interpret rapidly changing signals we are very susceptible
to notse; usually we try to combal noise by averaging in lime or by averaging
over repeated presentations of the same signal, But the homunculus is not free
o set arbitrary avernging times, and he certainly cannot ask for a second,
identical copy of the immediate pust. On the contrary, the homunculus (and
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the animal as well!) has to reach conclusions about the world from just one
example of the spike train in each of his sensory neurons,

In penerating a running commentary on the meaning of spike trains we shal|
hiave to deal with whatever level of noise is present in these datas Tdeally, our
interpretation of the spike trains should be as relble as possible given this
noise, and the statsteally sophisticated homunculus would report contidence
levels an his estimates of whit is happening in the world. 1 understanding
the neural code means building a homunculus, we can compare twao different
candidate homunculi—two different candidates for the structore of the new-
ral code—by comparing the accurscy of their inferences about events in the
sepsory world,

We are closing in. then, on a more precise definition of the problems in
understanding the neural code. We place ourselves in the position of the ho-
munculus, monitoring the spike trains of sensory newons as stimull vary in
time along some unknown trajectory, We must generate o running commern-
Lary on the identity of these stimuli, using only the spike train data as input,
Ohar inferences sbout events in the world will have some limited accuracy, and
we shall have to guantily this aceuracy. Out of many possible homunculi, there
is one that tells ug as moch as possihle about the world given the noise in
the spike train data isell, The performunce of this best homunculus will re-
Aect a compramise between averaging o Lime o combat noise and responding
quickly 1o keep up with the dysamics of the world, and we shall have w be
precise ubout these time scales,

The construction of a complete homunculus, or even the complete fiyneu-
lus of Fig. 1.7; is a daunting task. In the fiv, visual signuls stream in along
thousunds of parallel paths reflecting the array of lenses in the compound eye,
and in ourselves and our primate cousing the corresponding numbers ure three
orders of magnitude larger, There are a few speciul cases, such as the moths
discussed in section 41,1 (Roeder 1963), for which it might be possible o
monitor wl of the spike trains that encode one sensory madality, bot in general
this 15 hopeless. As we have noted, however, there is a long madition of Lry-
ing toomake sense out of the respanses of single nearons, always recognizing
that one cell can tell vs about anly a small piece of the sensory environment.
In this tradition, most of this book is about the problem of an impoverished
homuncolus who looks ot the spike train of just one neuron ot a time; we take
a brief look ar the problem of multiple neurons in section 5.1, We thus have
it clear question, amenable to experimental investigation: What can the spike
train of this one neuron tell us about events in the world?

{-[’i'
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1.3 CENTRAL CLAINMS OF THIS BOOK

Nearly seventy years ago. Adrian summarized the first generution of experi-
ments on neural coding (Adran 19281, We have argued that, even today, this
classic work contains a large fraction of what we know about the lunguage of
the brain. Forty years later, Perkel and Bullock (1968) provided an encyclope-
dic summury of the state of the field, o handboek of diverse candidate coding
strategics in different systems. Whad cun we add after all these yeurs?

W helieve that there has been substantal progress i both the formulation
and the resolution of three major issnes regarding coding by single neurons.
These three points form the core of our presentation:

. Represemtation of time-dependent sigaals, In a variety of sensory sysiems,
single neurons produce on the order of one spike per characteristic time of
stimulus varations—a sparse temporal representation. This 15 in direct contra-
diction to a simple, intuitive implementation of the rate coding idea, since the
rate is an avernge quantity not available from a single spike, Sparse temporal
codes can be decoded by simple algorithms, even when the encoding 15 a com-
plex nonlinear process. Thus the problem of decading—the problem solved by
our homunculus—may be simpler than the classical problem of encoding.

2. Information rates and coding efficiency. The focus on signals with realistic
time dependencies leads to the demonstration that single neurons can transmit
large amounts of information, on the order of several bits per spike. In oat
least one case, signals with more natural temporal correlations are coded more
efficiently, so that the spike train provides more information with roughly
the same number of spikes. These high rates come close 1o suturating the
fundamental physical limits o information ransmission.

3. Reliahility of computation. Understanding the reliability of the nervous
syslem reguires that we understand the code which the syslem uses to rep-
resent the answers to its computational problems: the study ol newral eoding
is thus tied 10 much broader issues of neural computation. In several systems
there is agreement hetween at least two of three fundamental quantities: The
refiahility of behaviar, the reliability of single neurons, und the [undamental
physical limits 1o relinbility imposed by noise in the sense data itself. 1t is cleur
that the approach to the physical limits is closest for the more natural tasks of
processing ume-dependent signals.

These three ideas provide, we hope, o clear answer to the questions [ormu-
lated in seetion 1.2, Decoding the spike train provides a literal construction of
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the “running commentary™ that we require from the homunculus, the measure-
ment of information transmission rates quantifies how much owr impoverished
homunculus can tell us by Tooking at just one neuron. and the observations on
reliahility place this information on a meaningful scale relanve 1o the capahil-
ities of the whole organism,

In explaring these three issues, we will refer e ¢xperimenta! results from
many different svstems, oblained by many different groups over a period of
several decades. The common thread running through these diverse studies
18 the attempt o grantify the behavior of nearons, specifically under condi-
tions that approximate the lunction of the nervous system in the life of the
organism. Much of the text is also concerned with methodology, reviewing
several theoretical approaches that have been proposed as guides to the design
and analysis of guantitative experiments. Many of our readers may reasonably
wonder whether the effort of building up this more mathematical framework
will be rewarded. One reason For persevering is that the quantitative analysis
of neural coding leads to surprising results. As devices for transmitting and
processing information, neurons are doing much more than one might have
expected, and in o precise sense they are doing almost as much as s physi-
cilly possible. Even simple quantitative questions—how many spikes carry a
meaningful signal?—have surprising answers. Thus we claim that the results
of a quantitative approach are sufficiently extreme that they hegin to alter our
qualitative conception of how the nervous system works.

Chapter 2
_ﬁ:—ﬁ;iatinns

How div wee quantify the behavior of spiking nearans'? What would & model of
the neural response look like, and how would we decide that this model was
safficient or complele! In this chapter we review several different methods for
the quantitative characterization of neural responses and discuss the relation
of these diflerent characterizations o the problems of coding outlined in the
introduction. We hope to provide o view that combines mathematical ideas
about encoding and decoding with an intuition from physiology and ethology

cabout the lime scales involved in neural signal processing, In particular, these

natural time scales are such that it cun be quite easy to decode the neural
response. This allows us to understand the neural code in the practical sense
that we can say what the spikes from u given neuron mean about signals in the

outside world.

21 CHARACTERIZING THE NEURAL RESPONSE

In the early experiments of Adnan and Hartline, the response of a neuron was
measured by counting the number of spikes in a fixed time window follow-
ing the onset of the stimulus. In modern experiments, one typically repeats the
summe stimulus many times and averages over these repeated presentations, The
first thing one sees in such expenments—before averaging—is that the spike
train is not identical on each tral, so that there appears to be an clement of ran-
domness in the neural response, an example of which is shown in Fig, 2.1, The
observation of random responses riises several questions: How do we quantify
the degree of mndomness in the neural response? What are the origins of this
randomness, and how does it limit the reliability of information transmission
and computation in the nervous system? What is the correet empirical char-
acterization of the peural response given that this response is not completely
reproducibile from trial to trial? We turn first (o this last queston.
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X I { T i1 Probabilistic responses and Bayes’ rule
E" ap %ﬂb .{f{ st L ' Understanding the newral code means understanding the relationship between
g 5 %ﬁj{i‘iﬁ e spike trains and real events in the sensory world, We would like to have this
5 E }’ i i : understanding in the form of @ guide to the homunculus—a set of rules that
% e 111 I A " : gives meaning to the spike trains in much the sume way that a hilingual dic-
E 10 ’gﬂéﬁﬂ 3 ".'.: R T i tionary gives meaning 1o the words of a foreign language. One possibility
o | iR bt P o is that each distinct event in the sensory world triggers a unigue spike triin
a m 2,'” T 4;] m'm response, and conversely every splke train represents a unigue event in the
time {ms) world. In practice one does not find this sort of unigueness, because repeated
presentations of the same stimulus lead to different spike trains, as shown in
el ; _ Fig. 2.1. The dictionary for understanding the neural code thus cannot consist
poststinulss:ime histogran (sth) of a simple list that gives a one-to-one mapping of spike trains into sensory

= stimuli,
ﬁ 200 - Instead of a one-to-one mapping, each sensory stimulus s assigned, appar-
! ently at random, 1o one of many possible spike trains. Describing the neural
:;g response and building our dictionary requires that we gquantify the extent of
- randomness, More generally our dictionary must be written in 4 language that
= goes beyond a simple list of correspondences. The appropriate language is pro-
J- vided by probability theory, and probabilistic ideas provide the unifying theme
for wll of our subseguent discussion,

time [ma}

Figure 2.1

Werinhility of neural responses and construction of the average response. The wp panel
shows a raster plot of 50 individual spike tains moresponse oo stimuolus wo@ = O
Each dot in the raster plon marks the time of occurmence of o single spike, Lo this
case, spikes are recorded extrcellularly Trom the movement sensitive neuron H1 in
the fly visual system, as 10 figure 1.2 The visual pattern seen by the fly makes a step
moteon ol f =0, creating a brief impulse of nonzere angular velocity, We sce that the
spike (riins in response o repeated presentations of the same stimulus are not identical,
A count of the average number of spikes in cich bin (10 ms |n this cese) following
stimulus presentation. and normalization 1o the number of presentations gnd (he bin
size, produces the post-stimulus time histogram, or psth, shown in the botom panel.
Normalized in this way, the psth gives the firing rale—uor probability per unit tme aof
firing, rit}—as o function of tme. The delay before the peak in the firing rate i due 1o
detays in the visual receprors and in the synapses between the receptors and H1,

In experiments like those of Fig, 2.1, the experimenter chonses some partic-
ular time dependent sensory stimulus, which we call 5(1). and then exarmines
the spike trains produced in response to repeated presentations of this sum-
ulus. Since there is oo unigque response, the most we can say is that there is
some probability of ohserving each of the different possible responses. This is
a conditional prohahility distribution; because we are talking about the proba-
bility of ohserving o particular spike train given that we present some stimlus
$(r). We can describe the spike train in terms of the arrival times of cach spike,
f.fa. o+ iy, and we will abbreviate this list of times as {t;}. Then our no-
tation for the conditional probability of the spike train given the stimulus is
Pll]ls (]

In formulating the problem of the homunculus, we emphasized that the real
world does not consist of just a few alternative stimuli. On the contrary, stim-
uli are chosen at rasdom from an ofinite set of possibilities, although these
random signals have a (perhaps complex) correlation structure, To make this
idea precise, we say that signals are chosen from some probability distribu-
tion. which we write as £[5(71]. The actual functional form of this distribution
embodies all of the structure in the world, such as the persistence of sensory
qualities over time and the smoothness of motion. To refer to this structure
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we shall say that the probability distribution Ps(1)] defines an ensemble of
signals,

IT signals are chosen wt random and the neuron has an element of rn-
domness tn its response, then the most complete description of the neuron
in the sensery world would be to give the joint distribulion of signals and
spike trains, P[{], 5(7)1], This distribution measures the likelihnod thar, in the
course of an experiment or in the [ife of the animal. we will observe both the
stimulus s(t) and the splke train {r;}. In the usuzl picture of stimulus and re-
sponse, stimali are chosen from Plain)] and presented to the neuron, which
responds with spikes af times ¢y, f2,- -~ .ty drown from the conditional distri-
bution P 000] This picture corresponds 1o the mathematical decompasi-
ton of the joint distribution into the conditional distribution multiplied by the
prior distribution for the stimuli.

Pl )i siea) = Plladst] % PLsin]. {(2.1)

The distribution of stimuli Ps(0)] is called the prior distriburion because it
embodies our knowledge, prior to any observations of the spike train, that
signuls will be chosen in accond with a certain stutistical structure,

Although Eq. (2.1) captures our intuition about the cell responding to the
stimulus, it docs not represent the only point of view on the system. In particu-
lar, it is not the poing ol view appropriate for our homunculus. The homunculus
sees one example of the spike train {5} and must say something about the stim-
ulus s(r). From his point of view, it is the spike train that has been chosen at
random from a distribution we shall call P[[r;}]. Since there is no unique stim-
ulus that can be placed in correspondence with this spike train, the most the
homunculus can tell us is that some stimuli are more likely than others, given
the observed spike train. Bot this statement can be quantified by another condi-
tional distribution, the distribulion of signals given the spike train. P[5t {5]].
Just as the prior distribution PLsit )] defines the ensemble of signals, the con-
ditional distribution £ [s(6)|{t;}] defines the response—conditional ensemble,
which we shall discuss in more detail in section 2.2.3. In the same way that
we can think about stimuli generating spike trains, giving us Eg. (2.1), we can
think about spike trains leading 1o inferences about stimull, giving us

Ptk st = Pls(olls)] = PHutL (2.2)

When we pick up a bilingual dictionary we naotice that there are two parts.
The first, for example, transtates from Dutch to English, the second f(rom
English to Dutch. The two languages can be brought into correspondence,
but this can be done from two points of view. For signals and spike trains
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this correspondence has a probabilistic element, bot again there must be twao
equivalent points of view, The “spike speaker” needs to translate into stimuli,
and looks up the distribution PLs(e ] 1L while the "stimulus speaker” needs
to translate into spikes and so looks up PHaHs (] As in the dictionary, we
can make a list of symbaols in the two “languages” and make comespondences,
but correspondences are really two-headed arrows, In the probabilistic contexl
this bidircctionality of wranslation is the statement that Eq's. (2.1) and (2.2)
are both decompositions of the same joint probability distribution. Hence the
two decompuositions must be related to one another, and the two conditional
distributions are therelore also related:

Plsied|[nd] = PHGH = LI s1] = Plsin] (2.3

Pleied]
Pl

This last relation is called Bayes” role, and it will play a crucial role in our
thinking about the neural code.’

In Fig. 2.2 we illustrate the decomposition of probability distribulions rep-
resented by Eg. {240 Our example is taken from experiments on the metion
sensitive neuron HI in the Ay's bruin. 4 system to which we return frequently
{see section 2.2.3 Tor o more systematic introduction). To simplify matters, we
collapse the full spike train (5] down to the spike count, o, ina 200 ms win-
dow, and we summurize the stimulus s00) by the average angular vielocity of
motion -across the fAyv's visual lield, v, 10 a corresponding window. The joint

= Pl = Pl st = (2.4

I Certuin words and phrases inspire pussionae responses (Carlin [978 ), even Tram seientists,
Baves” mle provides an example of this phenomenon, In modemn langueape, the mothematics of
Braves® mule i elementary it follows from the definition of conditional probability distribotions.
Monctheless, mention of Baves” rule can stll trgger heited discussion, with partesans disphiaying
i mearky religions geal Foroworeview of the history wod curment status of thie controversics see
Earman [1992). The problem (we think) lies with the cleim that gl pror expectatiens ghout the
world can be encapsulated 04 probuhility distributicn. Ta give an egample from the histery of
piessics (Weinberg 19831 Pauli postelared (he existence of an elementary particle that we now
enll the nentring, o paricle that would be very diflicult wodetec), as s way of esplaining thi
appirent non-cunsevation of cnergy in radioactive deeay processes. He viewed the negtring as
i distasteful hypothesis, but the idea thal energy conlid be creted or destroyed seemed eyen more
otjectionable. Clearly the “strength™ of his belicf in conservition of energy exceeded his concerns
swhonn nearly unohservable purticles, But would Be have been willing 1o stale a probablity thi
gnergy 5 oot cosserved? I the present discussion we oy o be quite explicit in anying thol
sensory sipnals are drawn from a probabilitg distribution, so there s, in principle, no ambigoicy.
In fehornlory experiments this “in principle™ 15 ransdaned oo proclice, since we a5 cxperimenters
chanse the stimuli and we can design Uie experiment so that stimuli are in fuct chosen w endom
fromn i distribation P [a0r1 ] that we have constrocted, In o natueil semting there 6 @ deeper utestinm:
Ts there 3 weell defined probability distribution from which natorel signals sre drawn? Some cflors
at specifying this distribution are collected mosection 5.2
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pmhnhi]it_}' distribution is then Pir. vl, from which we can construct the con-
ditional distribution of spike counts given the stimulus velocity, P, or the
conditional distribution of the sumulus velocity given that we have ohserved
4 particular spike count, #{v|n). The remaining factors in Fg. (2.4) are the
marginal distributions for the stimulus, P{v}, und for the spike count, P(n).
The distribution of stimuli is determined by the experimenter, while the dis-
tribution of spike counts is a property of the neuron and reflects the dynamic
runge that the cell can vse 1o represent the stimulus,

2.1 Characterizing the neural response

Figure 2.2

[Mustration of Baves' rule applied w experimental das ohiined from an experiment
an a motian sensitive eell (H1) in the blowdty, The By viewed o spaiial patiern dis-
played on an escilloscope sereen, and this puttern moved randomly, diffusmg across
the sereen. At the same fime, spikes from H1 were recorded. The figure depicis the
statistical relations between a stimnlus verisble, v, and a spike count, 0, v s the value:
of the stimulus velocity aversged over a 200 ms time window. It is measured in units
of the fAy’s phatoreceptor sprcing (ommatidia) per second, or ommds. One ommatidial
distance 35 about 137 of visual angle. o 1% the number of spikes coumed ina 200 ms
window, deliyed 20 ms with respect to the siimuolus-averaging window, The choice of
these variables is made here for the perpose of llustration, not because we think that
the fly uses these categorics—ilyimg at a speed of — 1 mis, the Ay would surely crash
if it averaged for 200 ms before muking o decision. (u} Peabability density Pivd for
all the 200 ms windows in the experiment, taken in an overlapping way at 2 ms in-
crements. (b Probability. Pl of finding o spikes in a 200 ms window, computed io
the same way. (2] Joint probability density 200, e) for o and o; P and P dre the
two marginal distibutions of Pin, ), As can be seen, Plo, ey 3= Piade Plod, which
means that there is indeed a cortelation between stimulus and response. We can Took a
this correlation In two wiys, either Torward or reverse. The reverse description is sum-
murized in Pioin) shown i (d), This is o family of distributions of v, parameterized
by the ohserved response 1. In other words, for each o we have a different distribution
af v, and if we know that the count ina certain window is 2 = ng. the distrbution of
velocities that could heve wiven rise to that count is given by the slice Fiufng) out of
the fumily of conditional distributions P{e|n ) o the forwarl d:.:stripliuh wie sk whit
values of 7 coull be induced by @ given vilue of v, This is deseribed by the conditional
distribution £ (aie) shown in de), The white Tines i panels {0 and () shiny the average
values of v given mr, and of & given ¢ respectively, These data are replotied in a-stan-
dard wrientation in (h) and (1), The average valoe v (o) in () and (h) gives the best
estimate of the stimulus given that o response o is observed (see section AT this s
akin t the problem an observer of the spike train must solve. The avernge figde) in ig)
and {1} gives the average response s a function of the stimolus, cormesponding to the
torward deseription. As explained in the test, the reverse estimator can be guile Tinear,
even when the forward description ss clearly nonlimear.

Figure 2.1 emphasizes that the response to a hxed sumulus has an element
of randomness; by showing individual spike trains we are showing samples
drawn from the conditional distribution 2121, To emphasive the bidi-
rectionality inherent in Bayes' rule we would like to show a similar figure,
but with a fixed spike trun and different samples of the stimuli drawn from
Ps(t){6;1]. This is a bit complicated, because in principle we should fix a
long list of spike armival Gmes f, ..., ty. We will return to this problem
later in the text, but for now suppose that we fix just one spike arrival time
and look at the stimulus at lLimes surrounding this arrival time, as in Fig. 2.3,
Wi see that, with the one spike arrival time fixed, the stimulus fluctuates from
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spike iriggered average

Figure 2.3

Construction of spike-trigeered average. The top pert of the figone shows o section of
the stimulus, in this case o time sequence of light inensity incident on usalamander
retima. Below the stimulus is the resulting spike response ina retinal ganglion cell, The
spike-iriggered average is constructed by averaging the stimulus waveform preceding
erch spike. The Bme course ol the spike-tnggered average is shown at the bottom right.
On average, o spike from this eell 15 preceded by a transient decresse in the stimulus
miensity—thus i the terminology mtroduced in Fig, |6 this is an “off™ ganghion cell,
From experiments by Warkand and Meister | 1995},

spike Lo spike, in complete analogy 1o the Auctuations of the spike wain from
presentation to presentation in Fig, 2.1, Nonetheless, the stimulos surrounding
a spike has a nonzero avernge, and we shall see in section 2.1.3 that this av-
erage stimulus waveform provides a useful description of the cell's response
properties, Figures 2.1 and 2.3 are just the beginning of a quantitative analy-
sis, but we hope that they provide some intuition for the problem of translation
and the importance of Bayes' rule. The bilingual dictionary of spikes and sen-
sory signals must be written in a probabilistic format, and Bayes' rule tells us
how the two halves of the dictionary are related.

2.1 Characterizing the neural response

Animportant point about bilingual dictionares is that, armed with ene half
we cur always produce the other hall, iF each 1s truly complete. Thus we could
make a list of all the English words in the Dutch-to-English dictionary, and
from the listed meanings of the Dutch words we ought (in principle) o be
able tw find corresponding Dutch words for each Enghish word on the st
thereby constructing the English—to—-Duich dictionary, Bayes’ rule tells us that
this process works for probability distributions as well,

In additien to the abstract picture of bilingual dictionaries, Bayes' rule is
telling us something very practical: We can characterize the neural code either
by listing the rules for transtating stmuli into spikes CP{{5 50010 or by listing
the rules for translating spikes back into stimuli (P[50 1]y 1F we can give
a conplete listing of either sel of rules, then we can solve any translation
problem. Roughly speaking, the traditional approach to the study of neural
coding has been to f[ix the stimulus and examine the response of the neuron,
then present another stimulus, and so on. In this way one works toward the
characterization of the conditonal distribution P{{ ) s000], and we will make
precise the way in which different methods of analysis tell us about different
aspects of this distribution. If we could complete the 1ask and really understand
the full structure of the distribution 2[5 ]]s00]. then by Bayes' rule we could
construct Plsi)] )] and hence give the rules our homunculus must follow as
he attempts to interpret the spike train.

Cn the other hand, we can abandon the traditional approach and design
experiments that characterize directly the distribution P[s(e)|[4]], taking the
point ol view of the homunculus from the outset. Again, Bayes™ rule tells us
that i’ we can give a complete characterization then it doesn’t mater which
point ol view we use, But the language example gives us the hint that a “com-
plete dictionary™ may be very difficult 1o produce. 1t is gasy 10 imagine that
for some netrons one point of view will be simpler than the other, and then we
will be happy 1o take the simpler point aof view. We will also want to know why
ane paint of view is simpler than the other. and whether this fact is relling us
something about the structure of the neural code, These ideas are developed in
the rest of this chapter.

Before proceeding, let us look hack at Fig. 2.2, We can see already that
the two points of view we have desenbed do indeed differ in complexity.
The conventional point of view—holding the stimulus fixed and examining
the probability distribution of responses—Ileads to the conditional distribution
Pin|v), which has a somewhat complex structure. At large negative veloeities,
for example, the most likely value of nis n = 0, and it is only above some crit-
ical velocity that the distribution breaks away from n =0 and forms a clear
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peak at nonzero spike count In contrast, the distnbution of stimult given the
spike count, Plvlel, seems wo be a simple, nearly Ganssion, peak whose mean
moves across the mnge of velocities as the number of spikes is varied, These
differences are mude clearer by actoally computing the means in the two distr-
butions. Forthe distribution P(i|v), this mean is the average number of spikes
produced as a function of the stimulus amplitude frg (e, and this is the -
ditional measure of neural response. We see the familiar nonlinear, sigmoidal
relationship observed by Adnan that has been reproduced in many systems.
But when we ask for the mean of the distribution P{uv|n), which is the average
stimulus velocity given that we observe a particular spike count, we see a very
different, almest perfectly linear relation. The nonlinearity of the sigmaoidal
input/output relation, so ubiguitous in neurobiology, seems o have vanished.
We are not vet ready 1o discuss the origins of this simplification, or eveén o un-
derstand why the ayerage stimulus given the spike count is such an interesting
quantity. But it should be clear thal by changing our point of view—Dby trans-
lating from spikes back into stimuali rather than the conventional wranslation
from stimulus to spikes—uwe have the chanee of simplifying our description of
the code,

2.1.2  Rates, intervals, and correlations

Givens o particular tme-dependent stimulus (6}, a complete probabilistic de-
seription of the neural response is contined in the conditional distribution
Pl s ], which measures the relative Likelihood that spikes will arrive at
the set of times {r),#z2,---, Iy ). But, as we hinted above, the words complere
deseription are a bit dangerous. No finite amount of data is ever sufficient to
determine completely a probability distribuwtion. In practice, experiments usu-
ally aim at characterizing the first few moments of a distribution—the mean,
the variance, and so on. We need to see how these quantities can be defined and
measured for the distribution of spike trains. The hope 15 that some structure
in the moments will catch our attention,

The first stepin trying to characterize a probability distribution is (o mea-
sure its mean. o a sense we make precise in section A, |, the mean of the con-
ditional distribution P[{ ||s{e)] 15 o quantity called the time dependent firing
rate; rt). The spike train itself is a very singular function of time, consisting
of pulses at the times . 11 we imagine sitting al one point in time, t, and then
avernging the spike train over many presentations ol the same stimulus, we
armive at the procedure shown in Fig, 2.1, When averaging, we should really
count the number of times that o spike arrives exactly at the time ¢, but this
never happens. Instead we count the spikes in a window of size At centered
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at 1, and then divide hy (he number of presentations. In this way we measure
the probability pir) that a spike occurs in our small window, i we make the
window larger the probability will be lorger, and we would like 10 characterize
the response in a way that does nol depend on our arbitrary choice of o win-
dow size, The way to do this is to tuke the smallest possible windows (1f the
windows are too small, a finite data set will not give reliable results) and rec-
ognize that as the window size becomes very small the probability of finding
a spike must be proportional 10 the window size, so that p(f) = rir)Ar. This
defines the rate r(f) as the probability per umit time that o spike will occur ina
stmall window surrounding the time £, This function of time, illostrated in Fig,
2.1, is also called the post- or peristimulus time histogram.

The spike rule defined in Adrian’s experiments wis equal 1o the number of
spikes in a rather large time window following the onset of the stimulus. This
rate ¢an be measured from just one example of the spike train, and 1t might
be hetler to focus on the fact that it is aocount of the number of spikes tha
oeeurred in that particular example. On the other hand, the tme dependent
rate r(¢) is o continuous function that determines the probability of spike oc-
currence ut dilferent tmes. Thus the time dependent rate is a property of an
ensemble ol spike trains—as js clear from its construction in Fig, 2.1 —and
is not knowable from observation of u single example of the neural response.
This distinction between counting spikes and knowing the rate as a function of
time will be crucial in the following sections.

The description of neurons as using 4 “rate code” presupposes that we all
agree on the meaning of “rate” But we have seen that there are least two
meanings—Adrian’s original definition 1n terms of spike counts, and the ume
dependent quantity that measures the probability of spike occurrence. Implic-
itly, o description in terms of o “rate code” also assumes that we can state (and
exclude) the alternative. usually called a “timing code” In the following para-
graphs we allow ourselves 1o be drawn into o superficial paradox by losing
track of the distinction between the two meanings of “rate.” and we drag the
poor reader along with us. We hope that this process, though a bit roundubout,
brings us (and the reader!) one step closer t the crucial issues. At the end.
the distinction hetween rate und tming codes will be less elear than one might
have hoped, but we think that this is the right answer. Rather than trying 1o
sharpen the rate/timing distinetion, we will argue thut the interesting question
is wherther sensory neurons produce large numbers of spikes or small num-
bers of spikes in the time windows relevant for behavior and decision making.
This formulation of the problem, however, will remain in the background until
section 2,201,
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Perhaps the best studied examples of time dependent firing rates are in cases
where the stimulus s(1) is periodic in time. In the mechanical sensors of the
inner ear, the analysis of time dependent firing rates is erucial 10 our curten
understanding of the system, IF one counts the spikes produced by an auditory
neuron o response ooa Cpure one” (sinusoidal sound pressure variations g
the cardrumy), there appears o be a threshold sound intensity required Lo raise
the spike count above its spontancous value. But, al least for low frequency
sound, this appearance is quite misleading. The time dependent firing rate in
response to relatively quiel fow frequency sine waves shows a nearly perfect
sinusoidal modulation around the spontaneous rate, as illustrated in Fig, 2.4,
Under these conditions, the time dependent rate r (1) is

U = ry o+ A sinder 4 @), (2.5

where ry is the spontaneous rate, A is the amplitude of the moduolation, e s
the frequency of the sine wave stimulus, and ¢ is the preferred phase of firing
refative to the stimulus, The moduolation A is proporional to the sound pres-
sure. Thus the probability of spiking varies smoothly with the input signal—
arhitrarily small signals produce proporionately small responses. The sensi-
tivily of this raie modulation 15 astounding: In one species of frog, the vibra-
tion of the entire [rog by one-tentl of un ﬁngmrum produces o modulation A ~
10 spikes per second 1n newrons from the saccolus (Narins and Lewis 1984).

Periodic modulation of the Aring rate by sinuscadal stmuoli becomes even
clearer at higher amplitndes. This behavior 15 often wemed phase lacking
(Rose et al. 1967} Although the variations of the ume dependent raie are
locked 1o the cycles of the sine wave stimulus, the average firing rate can be
much less than the frequency, so that spikes occur in only a small Taction of
the cycles. [tappears that the pattern of firing and skipping is randem, but vari-
ations in the probalilicy of firing are locked to the sine wave. Thus the timing
of individual spikes carries information about the phase of the sine wave, and
the times between spikes tend o cluster around integer multiples of the sine
wave period.

Al low frequincies, the wavelength of sound is long and our heads do not
cust o significant scoustic shadow. Thus the intensity of sounds at our two
ears is always the same for low frequency sounds. and the only clue about
sound source location comes from tming—ithe sound waves arrive earlier at
the closer car. At high lrequencies these time differences become ambigu-
ous, but shadowing effects take over and intensity differences hetween the
cars become significant, All of this was understood by Lord Rayleigh (Strut
1877781 in the late nineteenth century. Tn a series of experiments (with Lady
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Phase locking in Xesopus lateral ling receptors. Spike times are recorded in response 1o
womsntained 3 Ty sinusoidal stimulos, in thiscase the vibranon of o sphere in the water
some distinee away from the receptor [hottom panel ), The wmival time of each spike
e be registered iy an ahsolute time from the onset of the experrment o, slwereatively,
56 phase relative 1o the stmulus sinusond. Ooe then constructs a phase histogram
Iy amalogy with the post-stimulus tme histogeam i Fig. 200, shown inthe top panel.
Redrawn from Kroese, van der Zalmu and van den Bercken (1978).

Rayleigh as the subject and the guzebo as the laboratory) he showed conclu-
sively that we can hear phase differences between our ears, at least for low
frequency sounds. These phase differences correspond 1o time differences ol
less than ten microseconds. Barn owls, which are especially good ot localie-
ing prey by acoustic cues alone, have time difference thresholds as low as one
micrasecond. There 15 no guestion that the temporal information essential 10
these discrimination tasks is carried in the phase locking of the auditory nerve,
anel in the case of the barm owl it has heen possible 1o identfy the nearal cir-
cuits responsible for making the precise temporal companison between phise
locked spikes coming from the two ears, For a review of this work, see Carr
antel Komishi (1990,

Let us contrast the ohservation of phase locking with the classical notion of
rate coding. In Adrian’s original work, rate was defined by counting the spikes
in a fixed ome window (ollowing sumulus onset. The real content of the clam
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that information is carried by the liong rute (as opposed o tming ) must be that
the precise lemporal locations of the spikes within the window are med infor-
mative ghout the stimulos parwmeters. Clearly the spikes in primary auditory
nearons do provide information about the stimelus by virtwe of their precise
temporal pattern, Sound localization wl low frequency demonstrates that the
brain can use this temporal information, ultimately down to the microsecond
scale,

What we have just said is paradoxical (but we warned you!y: We introduced
phase locking as an illusteation of time dependent firing rales. vel now we
claim that this observation 15 inconsistent with the idea of rote coding. The
arigin of the paradox is in the doal definitions for “rate,” and in particular the
connection of these definitions o the time reselution with which we observe
the spike train. When we constroct a plot of rate vs. time from a post stimulus
time histogram such as Fig. 2.1, the rate 15 a probability defined (in principle)
in infinitesimally small time bins, In contrast, Adrian chose maore macroscopic
time windows, of arder the total duration of the stimulus. [n the case of phase
locking to sine wave stimuli, we keep the essence of the timing cues so long
as we use time bins that.are significantly smaller than the peried of the sine
wave. Thus, if we are listening to fones at 100 Hz, counting spikes in bins of 2
ms is sufficient to reveal the periodicity of the firing, and even hins of 5 ms are
enough o get o coarse measure of the phase variables that must be compared
in sound localization, although the intrinsic precision of the neuron may be
much better than this.

If we count spikes in 5 ms bins, are we medsuring rates with small windows,
or should we call this o Uming code? This is another way of looking at the
problem of defining Oring rate, as mentioned carlier in this section: Do we use
Adrian’s method of counting spikes, ar when we say rate do we mean the lime
dependent function described in the posi-stimulus time histogram of Fig, 2,17
Lest we think that the auditory systen is o special case, we shall see this prob-
lem come up in several other systems (section 2.2, 1), Although our discussion
here may seem a little confusing, we offer it as a first hint that the usval dis-
linctions between rate and timing are not the essential distinctions required for
uneerstanding the neural code, For now, let us put aside the interpretation of
neural responses in terms of rate or timing codes and return to the problem of
characterizing the responses themselves,

Having looked at the menn of the conditional distribution P[4 s(c)], it is
natural to ask about the analog of the variance. In the same way that the rate,
which measures the probability of occurrence of one spike, is a first moment
af the diswribution, the natureal formal definitions for the varances and covari-
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ances of the distribution P[{r||s(r)] are related to the joint probabilities of
oveurrence for two spikes (Fig. 2.5) There are many different wavs of looking
for two spikes. In one simple case, the two spikes occur in succession, with
oo spikes in between; in this cose we are talking aboul the probabilivy distri-
bution for interspike intervals. o the other simple case, we ask about the joint
probability for the occurrence of two spikes without regard to what happened
in between: this s called the correlation fimetion. The correlation function is
often normalized by the firing rate so that it measures the probability of ob-
serving o spike wt tme £ 4 7 given thil a spike was observed at time ¢, We
refer to this normalized correlation function as the comditiona! rare, as in Fig.
2.5. Notice that there are many other possibilities, such as the distribution of
times belween two spikes separated by exactly seven spikes, bur these don't
have much intuitive appeal. In several sensory systems one can fnd neurons
wilh comparable linng rutes bul very different second-order statistics. In the
vestibular system (Goldberg and Fernandez 1971, for example, such differ-
ences in statistics are evident even in the spontaneous activity of the primary
SUNROTY THCUTONS,

The interspike interval distribution quantifies the probability that successive
spikes will be separated by o particular interval in the same way that the time
dependent rate quantilies the probability that o spike will ocour at a given mao-
mend in e, Similarly, the correlation function gquantifies the probakbility that
twor spikes will oceur with o certwin separation independent of what happens
in between, All of these quantines are probabilines, so they are propertices of
an ensemble of spike trains and, apain, are nol accessible [rom observations
on a single spike train. For more details abour correlation funchions, seé sec-
tion A2,

Cine obvious question is whether cells in the central nervous system are sen-
sitive to the higher order statistics of incoming spike rains. Thirty years ago
Segundo et al. (1963 ) asked this specific question in a series of experiments on
Apdysia. In an ideal experiment one would control all of the spike trains which
provide synaptic input to a single cell, studying how changes in the statistics
of these inputs influence the postsynaptic response. In practice this complete
control is very difficult, and Sepundo et al. emphasize that their experiment
falls short of the ideal, but the results, exemplified by Fig. 2.0, seem clear:
Different temparal patterns of spikes in the presynaptic nerve fibers result in
very different postsynapiic responses,

Rather similarin spint 1o the experiment of Segundo et al. is the recent work
by Mainen and Sejnowski (1995), They study the behavior of cortical neurons
ina slice preparation, where one can effectively eliminate synaptic couplings
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using various pharmacological tricks, Mainen and Sejnowski then study the
spike trains of an isolated cortical neuron in response to injected currents. The
injected current is a controlled version of the myriad synaptic inputs that the
cell would experience in vive, By analogy with the Aplysia experiments, we
would like to know if the cortical neuron can give reproducible responses (©
the temporal details of injected current waveforms, or if all that counts is the
time average current, The result is clear: Cortical neurons can produce spikes
in a rather determimistic relation o temporal features on the millisecond time
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Figure 2.5

Construction of the sutocorrelaton function and the imterval bistogram. The top panel
shows wspike sequence measured from the HL cell m the fy visual system, The ime of
nceurrence of cach spike s represented by @ single diot, The spike sequence represented
by the lower horizontal row of dots is shifled repeatedly to the Left woalizn cach succes-
sive spike with Ar = {0 Thus the spike sequence reprosented by the second horizontal
row of dots is simply the lirst shifted one spike o the Jefi. the thicd row is shified 1wo
spikes. and soon. In the middle pane the oceurrence times of the spikes in each shifted
sequenee bre averdged and pormalized to o rate. This is the sutocorrelation function,
which can be thought ol wsthe firmg rale ot tme t + A given the occurrence of i spike
at tiee 1. For large values of A¢ this condinonal rte approsches the average rate, indi-
cating that the memory that there was @ spike st dme ¢ 15 bost. & similar procedure can
be follwed 1o measure the probabilicy of finding a particular interval between two sug-
cessive spikes—the mterspike mierval distribution (bottom panel), In this casc. rather
thun averaging all the spike nccurrence times, we average only the tmes of the first
spike after Ar =0 ineach shifted sequence. This imterval dispibotion s pormalized 1o
i probabitity density.
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Figure 26

Dependence of postsynaplic response on temporal pattern of mputs redrewn from Se-
eundo et al. (19630, Panels A and B show responses in the same cell o v dillerent
patterns of presvoaptic pulses with the same mean frequency but different second or-
der satistics. The difference in the threshold-crossings inthe responses to these strmulb
demonstrates that the wemporal pattern of the presynapie signal is imporant medeter-
mining the posTSYIEAPLC response,

scale, so that correlations in the synaptic input spike trains will change the
cell’s owput. Indeed, most experiments on neurens i cortical slices rely on
the fact that simple patterns of corrent injection, such as steps or pulses, will
penerate reproducible patterns of spikes.

It is worth remembering that the onginal analysis of action potential dynam-
ics was a deterministic deseripion—Hodgkin and Huxley (1952d) presented
equations of motion for the voltage and conductances of the cell membrune,
and these equations can be solved to predict the timing of action potentials
i relation to the pattern of injected currents: Generations of experiments on
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neurons i cortical slices hove been fit to generibizations of the Hodgkin-
Huxley equations, implicitly verifying the determinism of spike generation
in response Lo simple patterns of curent injection (Guinick and Mody 1995,
Reproducible spike generation is by no means limited to giant axons and cor-
tical pyramidal cells, as can be seén from recent experiments on cells from the
vestibular nuelei (du Lac and Lisberger 1995). Indecd, the now classic experi-
ments on neise in the nerve cell membrane involved heroic effors o reveal the
tiny window of stimulus amplitudes in which spike generation is noticeubly
probabilistic (Merveen 19615 reviewed by DeFelice 1981 ).

Sensitivity to temporal patterns is deteemined hoth by the inlegration time
and by the noise level of the cell. If we imagine that a neuran fires a spike
whenever the total input reaches a threshold, we know from the classical
mithematical literature (Bice 1944-45) that even the avernge rate of thresh-
obd crossings depends on the wmpaoral correlation in the input signal, bul if the
cell’s own electrical properties integrate the inputs over a very long time scale;
this integration time {and not the correlations in the input) will determine the
rate, Similarly, if the cell has an inlemal noise source which mixes with the in-
put signal, precise relations between the temporal features of the input and the
output spikes will be randomized. The Muinen-Sejnowski and related experi-
ments suggest that the spike generating mechanism itsell has o relatively short
integration time and low noise level, ot least under one set of conditions, Lass
and Abeles (1975) showwed that propagation of the action potential is also rela-
tively noise free, with a ten centimeter length of [I!_‘gft'.'l];]mli:d axon introducing
only a few microseconds of Jitter in the arrival time of a spike. What remains
as significant niise source is synaptic transmission (Kate 1966), and o num-
her of recent experiments have emphasized that transmission across central
synupses is surprisingly prone to failure (Allen and Stevens 19%4; Bekkers and
Stevens |994), but when transmmission oceurs it seems o introduce very little
temporzal jitter. All these experiments suggest that the elements of neural signal
transmission and computation ane capable of preserving precise temporal rela-
tionships. In o long series of experiments, Abeles and coworkers have drawn
attention ko the behavior of cells in frontal conex, where specific patterns of
spikes separated by hundreds of milliseconds can recur with millisecond accu-
ticy fsee. for example, Abeles et al. 1993}, and many investigators have noted
that spikes produced in response 1o the unsct of a sensory stimulus can be ex-
tremely reproducible, as illoswrated by the data from bat auditory cortex in Fig.
210 (Dear, Simmons, and Fritz 1993), But we still do not have a complete,
(uantitative answer to the question posed by Segando et al. more than thirty
years age—~how precisely can i postsynaptic cell measure the armival times of
incoming spikes’
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Figure 2.7

Iso-rate contours for a cell in the cot awditory nerve. Each curve deseribes the com-
binatns ol amplitude and fregquency of o pure tone thit give fise W0 cerain mean
firing rte, Additory newrons wre “tuned” oo particolar mnge of frequenties; us o re-
stll. the ampliude required 1o produce a given firing mate has a minimum, al about 8.5
kHz in this cell. The frequency tuning of suditory nearens means that changes in the
amplitude or froquency of o tone can produce similar changes in the mean firing rte:
thus we can move fromy one contour line of fixed finng e o another contour either
by changing the frequency and moving horizomually ar by changing the amplitnde and
moving vertically. Bedrawn from Evans { 1982),

To illustrate the possibilities of coding with second-order statistics, con-
sider again an auditory newron stimulated at low frequencies, The nomber of
spikes in response 10 @ tone burst privides no information about phase, and
there is a confusion between amplitude and frequency becavse loud sounds
awiy from the peak of the cell’s frequency sensitivity produce the same rate
as quiet sounds at the best frequeney, as illustrated in Fig, 2.7, But, ar low fre-
guencies, there is 9 tendency forinterspike intervals o cluster around intcger
multiples of the stimulus period (Kiang et al, 1963), and this is related w the
time dependent firing rates shown in Fig. 2.4, This clustering yields an inde-
pendent estimate of the frequency, and the amplitude of the sound can then be
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estimated unambiguously from the firing rate. Thus by keeping track of spike
arrival times, one can resolve the amplitude/frequency ambiguity that arises
from counting spikes in o large tme window. Ideas along these lines can be
troced back at least 1o Wever's (19490 early work on synchronous activity in
the auditory nerve.

[n this section we have seen the characterization of neural responses pro-
gress from the counting of spikes to the measurement of ensemble average,
time dependent rates, and fnally te the deseription of interval distributions
and correlation functions. In each case, changes in the parameters of the sen-
sory stimulus cause changes in our measure of the neural response, and hence
these different measures of the fesponse all have the polential 1o encode fea-
tures of the sensory world. The conference organized by Perkel and Bullock
(1968) produced a remarkable catalog of such candidate codes, drawing on
experiments from o wide range of different systems. We can see, at least in
outling, how these different codes reflect successively higher moments in the
conditional distnibution of spike trains given the stimulus, P ]sir] The
problem s that charscterization of neural responses in erms of this succession
of moments docs not seem Lo be converging—each time we introduce o new,
hizher moment some new coding sirategy becomes possible.

Input/output analysis

Ome might hope that there exists a complewe phepomenological characteriza-
tion of a neuron. One could then predict the neural response o arbitrary input
stimuli, In the engineering literature the search for such a churacterization is
sometimes called systems identification. and in the physics literature one con-
siders a hierarchy of linear and nonlinear response funclions (Pippard 19835),
These methods are simplest for the ense of linear systems, where the response
lo the sum of two stimuli is the sum of the responses w each of the stimuli
in isotation. Sensory neurons are seldom linear in this sense, and o varicty of
nonlineur methods have been widely used, particularly the Volierm and Wiener
approaches, which go under the rubric of white noise annlysis or reverse cor-
relaton (see section A3y For reviews of these methods see Sakai (1992 and
Eggermont, Johannesma, and Acrtsen ( 1983),

We want to emphasize that there are two distinet issues in the analysis
of a newron's inputfoutput relation, First we need 1o construct o family of
muoddels that 15 rich enougsh to describe what neurons may do under reasonably
natural copditions. Then we need wechniques for measuring the parameters of
these models 10 particular experiments. While noise analysis, or even the more

2.1 Characterizing the peurl response

classical mapping of receptive diclds in the visual system, addresses itself 1o
the second problem—we have in mind i model of how the nearon responds,
and we want tr measure the purameters of tus model, The parameters of
our inodel might be collected into a first Wienér kernel, or we might list the
location and dimensions of the receptive held.

This section may seem like o long digression from our main problem of
characterizing the neural code. On the contrary; this section ts about a set of
methods for quantifying what neurons do under a wide range ol stimulus con-
ditions. When we read in the lirerature about the quantitative characterization
of neural responses, some of the ideas discussed in this section are probably
lurking at least in the background of the experiments. Tt 1s important {or us 1o
understand both the potentizlities and the limitations of these approaches,

Wicner and Volterra methods are methods for measuring response {ue-
tions. The idea that we can characterize the behavior of o system in lerms of
lincar and nonlinear response [unclions 15 a generalization of the wea from
caleulus tha we can expand u function in g power series, We cmphasize once
more that this Jded of response unctions is separate from the guestion of how
we meastire the response functions in particelar experiments.

We recatll that if we have o nuinber @ and we take some [unction of rthis
number f(1), then i £ is sufficiently smooth we can upproximate it in the
tieighborood of some reference point g,

Flay= flag)+ flg)io — xp) + é_.l"”[.rn]l.l.' ) e (2.6)
This is the Taylor series. and f(v), f7Cx), - - ure the lirst, second, ---
derivatives of the function (1) evaluated at the point xyy, If we keep more and
more terms in this series, then the series converges o the exact valoe of f{x)
for any v in some range surrounding the relerence point vy, as illustrated m
Fig. 2.8, Azain this convergence is conditional on some notion of smoothniss
lor the function f La), but for aur purposes this is not a limitation. We can also
make precise statements about how close we come to the true function il we
keep unly the first N terms of the senes. Convergence and bounding of errors
means that as o model of the transformation {0, the Taylor serics cun be as
accurate as we want, 17 we think about the set of all possible Taylor series, we
know that somewhere in that set there is the true model for our function.
Knowing that with enough terms we can get as close as we like to the real
function 1 perhaps nof so useful. We would like to get away with keeping just
the first few terms, possibly knowing that then we cannot extrapuolate too far
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i{x)

Figure 2.8

Tayler seties approximation to F(x) = In(x) {solid line). First order. fjlal =x — L
and second order, faixi=(x — 1) — (@ — 13772, approsimations w Indx} in the neigh-
borhood of X = | are shown.

from our reference point vy, Thos, if we stop with the lerm ~ (3 — o) we are
making a linear approximation, since we are approximating £ (4] as 2 straight
line that passes through xo with the correct slope, as in Fig, 2.8, Notice that
il we look very close to g this lincar approximation must be correct, again
supposing that i) is smooth, Thus we have the idea that for each function
vy there is some typical scale Ax on which the nonlinear terms hecome
mnparant,

Volterra (19300 showed how one could generalize these ideas to the case
where the inputl to our function is not just one number but a whole func-
tion itself, such as the stimulus waveform (1), These functions of [unctions
are called finrctionals. Wicner (1938) showed how one eould rearrange the
Valterra series to measure more easily the coefficients in the expansion, But
both from o mathematical and from a conceptual point of view, all of these
ideas grow out of the more elementary notion of the Taylor series, s described
b Eq. (2.6) and illustrated in Fig. 2.8, Mathematical details of the Wiener and
Volterra formulations are summarized in section A3,

To understand how these methods work, it is useful to think tirst about a
system free from the complication of spiking. Imagine studying the dynamics
af 4 newron which does not generate spikes. There are sull voltage dependent

2.} Charactenzing the seural response

conductiances in the membrane, however, and we can write o set of coupled
differentiul equations for the dynamics of the voltage and the populations of
open and closed channels: these equations are of the same general form as
the originad Hodgkin—Huxley (1952d) equations, and they have a stable steady
state solution at the resting potential V. If we inject a small amount of current,
we expect that the resulting changes in voltage will also be small. Tn the limit
that currents are very small. the voliage change should be proportional 1o the
current. althnugh the time dependence of the current may be different than
the time dependence ol the voltage. This regime ol small currents is called
finear vesponse, and the function which charmcterizes the linear response is
sometimes called the rransfer fimction.

In the linear approximation we can write the voltage Vi) in response 1o an
injected current fir) as

5.
Wit) = Vn+f drZi{t) i = 1), (2.7}
—iaa

At this point #1011 is just some function which parameterizes the linear re-
sponse of the voltage to current, but it will turn oot that it s related o the
Fourier transform of the electrical impedance (Horowite and Hill TY8). Equa-
ton (2.7y predicts that if we injeet a pulse of current at tme ¢ = 0, then the
voltnge changes are AV (1) oo Z (¢, and i1 we inject two pulses we just get the
sum of the two voltage responses. This last statement is the definition of linear
response. Equation (2.7) s somewhat complicated, because the voltage at one
lime is related to the currents tnjected at all {pasty times, [owill turn out that
this description can be simplificd by thinking about relations among Fourier
components rather than relations among sigoals ot specific times, and so we
begin by taking the Fourter translorm of both sides in Bg. (2.7, We define the
Fourier transtform of the voluge us

= =
Vfw}zf drexpliar)[Vir) — Vil {2.8)
—
and similarly for the current,
. oo
o) =f drexpliot ) (r) (2.9)
—50

MNow we go through the steps of taking the Fourer transform of each side in

Eq. (2.7
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Clearly the nawral object is
o0
Filw) = [ dftexplior i), (F.11)
W=z

The units of 2. (o) are voltage/current, or resistance. For a resistor, Zilw) =
R, and more generally Zite) is called the frequency dependent impedance,
For a purely passive cell membrane deseribed by resistance & and capacitance
C, we have

2|{ru# e
| —jeut

r=RC. (2.13)

We emphasize that the concepr af impedance or linear response s not limited
1o cireuits constructed out of the femiliar resistors, capacitors, and indoctors,
Oy thinking about linear response functions should be unencembered by en-
gineering anulogies.

Anexactly linear response is i bit unusual, so we expeet more generally that
the response of the cell voltage o small mjecled currents can be written as

(= =
Vit =Wy +f drZyiealit — 1)

—a
l b W] ja o
+;f dr[ de’Zalta (b= oal(t = oy 00 (2,14
- W

—

2.1 Charsclerizing the neural response

Now 71 reflects the fact that if we inject two pulses of current they interact with
gach other in producing voltage changes that are not just the sum of the changes
pmduued ly each pulse alone, Similarly, if we inject sinosoidal currents
two frequencies my und ey, the term Z: measures the strength of the voliage
response al the sum and difference frequencies o = my &= wr. [0 our example
af a cell with voltage dependent conductances, #y, £a, - - - cun be related back

{o the activation parameters of the fon channels, But suppose that we do not

have such 4 model, and instead use the series in Eg. (2.14) to describe the
clectrical dynamics of the cell from a phenomenological point of view. This
i called a Volterra series, and there are theorems showing that, under certain
conditions, this series provides o complete description of a system il we keep
enough terms.

If Eq. (2.14) provides a complete description of the relation between {(in
our examplel current amd voltage. it is natural 1o ask how we could messire
the response functions 7, Z2, - -. One widely vsed technigue 15 white noise
analysis. which is inspired by Wiener's reformulation of the Volterra expansion
{Wiener [958). In the Wiener approach. the system is driven by random inputs
and we choose an expansion of the system response so that the different terms
in the expunsion are statistically independent when averaged over these random
inputs. This formulation has the advantage that one can measure the linear
compunent of the system response even when the overall response is quile
nonlinear. Furthermore, it we try 1o improve our description of the system by
including more terms in the series expansion, we won't have to go back and
revise our estimate of the Tower order terms,

The essence of the Wiener methad for analyzing nonlinear systems is in the
cross correlation of input and putpul signals. We have seen that in the linear
regime, if we inject currént at ane frequency we get voltage changes at that fre-
quency, So Wiencr proposes that we inject white noise currents, which contain
all frequencies but with random amplitudes and phases, and look—Irequency
component by frequency component—{or correlations between voltage and
current. This correlution then measures the impedance 2y,

The next step is o recognize that with all frequency components present,
notlinear terms like 25 in By, (2.14) produce Trequency mising, so that the
voltage at freguency o includes contributions generated by currents at all
frequencics ) and o such that e & wy = w So we look for correlations
between V feer) and the prodocts iy bf{wg,]. anmd these correlunons mensursg
the second order nonlinearities in the response. These ideas are made a bt more
explicit in section A3,
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We need one more mathematical idea to use the Wiener method: ergodie.
iy, The Wicner method is a reformulation of the Volterra expansion so thay
dilferent terms are statistically independent when we average over the random
input strmulbus. Similarly, the different terms in the expansion are measured
by computing a eross-correlation of input and owpue signals, and the cross-
correlation is an average over the random inputs, How are we o undersiand
these averages? In principle we should perform many identical experiments,
sothan we have an ensemble of inpuls and ouputs, and then compute the aver-
age over this ensemble. In practice; especially with random inputs, it is casier
1o fer the experiment run continonously o a very long time, Since the stimuoloy
is random, we can think of different time windows in this long run as being
like different samples drown from an ensemble of experiments. and when we
need o averdage we can average over time. The statement that averages over
time are equivalent o averapes over the ensemble is the statement of ergodic-
iy, For many prablems we huve an ereodic thearerm, which tells us that the two
averages ire mathematically identical. Thus, when we want (o cross-correlate
inputs and outputs, we can do this by averaging over time in one lang experi-
ment,

How can these rechnigques be used (o study spiking neurons? Now the input
is again some continuous function of tme $(¢) which we, as experimenters,
can choose so that it looks like a sample of while noise. But the outpat of the
neuron is not a continuous voltage: rather, it is o sequence of discrete spikes
al imes [ ], As described in section ALl we can construct o function of time
which deseribes these pulses,

,:r:}=z.ﬁu—m, (2.15)
i

o

where the “delta function™ §(t — ¢} is zero unless + = 1, but the peak att =4
is infinitely high so that the integral of the function is one; then the integral
of pir) over a time window counts the number of spikes in that window, Bat,
unlike our idealized example of current and voliage, pir) is a random func-
tion not completely determined by the iput s(2). Suppose that we proceed
naively, and cross-correlate the output p(r) with the input s¢7). As explained in
section A3, this eross—correlation is equivalent to computing the average slim-
tlus waveform surrounding o spike, which is the procedure shown in Fig, 2.3.
This cross-correlation function has several different names in the literaure—it
is the “first Wiener kernel” or the “reverse correlation function) and it is also
the “spike triggered average.” the “mean effective stimulus,” or the “iriggered
correlition function,”

21 Charectenizing the neord response

In their early work an white noise analysis of sensory neurons. de Boer and
Kuyper (1968) emphasized that the first Wiener kernel is equivalent 1o the

“pverage stimulus thut leads up 1o, or triggers, o spike. This suggests the in-

terpretation that the nevron 15 “looking for” features of the random wavelorm
that resemble the reverse correlation function, and that when such features are

detected the cell fires un action potential, To see how this works. consider the

simple case that the firing rale depends on a filtered version of the signal. so
that

L=
rif=mg [f drfirisl —Ill]. (2.16)
—

where f{7) is the filler and g[x| is some arbitrary memoryless nonlinear fune-
tior, Then one can show thas reverse conelation function, or first Wicner
kernel, is propartional o the filler function (), In this way reverse corre-
lation allows linear filtering properties to be separated from the nonlinearities
of spike generation, at least in the context of this simple model. The method is
widely used for the measurement of tuning curves in the auditory syslem or re-
ceptive fields in the visual system; for examples see Eggermont, Johannesma,
and Aertsen (19833, Reid and Shapley (1992), and DeAngelis. Ohzawa, and
Freeman (1995),

If we deliver o signal whase shape is matched o the shape of the flter [,
specifically s¢r) = f(—t}, then the rate r(t) will be changed by an especially
large amount. We can make this precise hy saying that il we try all possible
signals that have the same totul power [ drs?(r), then this particular signal will
give the Jargest modulation of the firing rate. Thus we can think of the neuron
as looking for this waveloon, in accord with the tnggering picture, but now
the triggenng 15 prohabilistic,

Il we continue along the lines of the Wiener method and cross-correlate the
spike train p(7) with higher powers of the stinulus 5(7), we end up with ob-
jects such as the average correlation function of the signal preceding a spike,
and so on, These terms indicate that spikes may be triggered not just by par-
ticular features of the waveform itself, but by higher order features such as
structure in the eavelope of the waveform (Marmarelis and Marmarelis 1978).
Auditory neurons tuned 1o high frequencies typically have o first Wiener ker-
nel near wero but o nonzere second kernel, and the second kernel can be an-
alyzed to show that the cell is sensitive 1o fluctuations in the envelope of the
waveform as seen through a band-pass filter. Similarly, a pure visual motion
sensor would have vero first kernel, so thut fickering of the imuge would pro-
duce no modulation of the firing rate. But the second kernel would show that
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the rate fs moddlated by the spatiotemporal correlation that corresponds (o

mation across the visoal lield. Although these methods can reveal sensitivity
to more complex Festures in the stimulus, all of the eross-correlation fune-

tions in conventional white noise analysis of neurons invalve anly one spike.

arrival time, Because the avernging is always triggered by o single spike, this
approach amounts to a Wiener expansion of the functional relation between
the stimulus si1) and the nme dependent firing rate rir).

White noise metheds, as we have deseribed them here, are a fumily of
methods for measuring the teoms ina seres expansion of the input/output
refation, As applied o spiking newrons, this mputfoutput relation 15 the relation
between the stimulus and the firing rote: Given that we are working within
this class of models. the Wiener methods provide us with a very efficient
way of measuring the response lunctions, In contrast, if we v 1o use sine
wave stimuli, we have 1o do the expeniment with each frequeney in sequence,
then use all possible frequency pairs to measure the second order nonlinearicy,
and so on, Even with the Wiener method, however, relinhle estimation of
higher order kernels requires very large amounts of data, and the analysis of
neurons is seldom carried oot fourth arder. Thus the mathematical problem
of whether this general description converges to the nght answer with enough
terms is not so relevant to the design of real experiments. The more interesting
guestion is whether we have some reason 1o believe in the validity of the linear
e weakly nonlinear models obtained by keeping just the first few kernels.

Many af the phenomenological ks we are taught in physics courses are
approximations, and they are the sume kind of approximation we are dis-
cussing here, Thus, Ohm's law tells us that the current that fows in a wire
is proportional to the voltuge drop across the length of the wire, Similarly,
Hooke's law tells us thut the stretching of a spring is proportional to the force.
If we pull hard enough or apply o lurge enougl voltage, these linear relaions
break down, and nonlinear terms in the Wiener or Volterra expansion of the
system response become importunt. The reasan that the linear approximation
works is that there is o dimensionless parameter o such that the '™ term in the
series is roughly proportional oo, so that it @ 15 small higher terms in the:
series become negligible.

When we streich a perfect crystulline block, for example, the strain is shared
equally among all the interwtomic bonds wlong the direction of the streich.
Thus, if the whole crystal is lengthened by 3%, euch bond is lengthened by
5%. We can translate this strain on the interatomic bonds into in energy, and
(roughly speakingh we can ke our parwmeter ¢ as the ratio of this steain
encrey 1o the energy of the bond self. Hooke's law works becanse the macro-
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scopic strain energy, when shared among all the bonds, is small compared
(o the chemical bond energy. If we expect a series expanston to give a good

description of neuril responses, then we need to identify an analogous small

p;u'umi:ter.
From dimensinnal analysis we can show that Tor neural responses Lo sensory

stimuli, the parnmeter e must be like the typical size of the stgnal & compared
10 somie nataral scale s What sets the natural scale of the signal? One possi-
bility s that the patural scale is set by the effective noise level in the u}-sm?\.
Thus we might imagine that the natural scale of mechanical displacements in
the ear is set by the level of Brownian maotion, which is essentially the dis-
placement at the threshold of hearing (For review sce Bialek 1987y But in this
case, rapid convergence of the series would require that signals are always on
the order of the threshold signal. The auditory system exhibits all sorts of in-
teresting nonlineurities in response o sounds that are barely audible, and the
dependence of these nonlinear outputs on the intensity ol input sounds 15 not
al all what one predicts from the first few terms in a functional series of the
Wiener type (Goldstein 19670, This is a clear example of how the first few
terms of o [unctional series are not sufficient to describe perceptually impor-
tant nonlinear responses in a sensory system, and we assume this Fatlure arises
from the luck of o natural small parameter. Analogous nonlinearities have been
seen in the voltage responses of individual hair cells (Jaramillo, Markin, and
Hudspeth 1993), and it will be interesting o see if the power series approach
fails here as well—do the anomalous nonlinearities arise in single cells. or are
they the result of collective interactions umong many cells in the cochlea?

In the case of vision, one is often interested in the response of neurons
changes in light intensity {contrast) arpund some background level. Now the
background level itsell can set a natural scale, and the convergence of u series
approximation will depend on the smallness of contrast as seen through the
receptive field of the neuron. This has ar least u chance of working, since
the average contrast of the nawral world isn't so large, of order 30% when
seen thraugh the photoreceptor array of the fovea and less when scen through
larger apertures (Laughlin 1981 Ruderman und Bialek [994). One must be
careful, though, because the distribution of contrasts in nutural images hus
a long wmil (Ruderman and Binlek [994), Photorecepiors and many retinal
ganglion cells ure quite lineur up to 30% contrasts, and measurement of the
first Wiener kernel provides an efficient method for extracting the form of this
linear response in space and time. As an example of these ideas we discuss,
in section 3.1.4, the linear response of photoreceptors and lamina cells in the
Ay's visunl system,
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Even for visual neurons that respond linearly 1o moderate contrasts, -
ever, the form of the linear response depends very strongly on the background
light intensity, as lirst noted for retinal ganglion cells many vears ago ( Barlow
FitzHugh and Kaffler 1957). If we want to give a completely general i:hm-:
scterization of the input/output relations in the visial system, however, the
separation of signals into a constant background and a small contrast is net
allowed. Instead, changes of the hackground intensity should just be viewed
a5 low frequency, large amplitude components of the input stimulus, But then
ne small number of terms in the Wiener series can describe the full response
of a retinal ganglion cell. The system is adaptive, and wdaptive nonlinearities
tend o be strong and poorly described by power series. Acsimple idea such ag
@ response time constant that depends on the background light level, as oceurs
already in the photoreceptors (Baylor and Hodgkin 1974), i very difficult tﬁ
express in the fanguage of Wiener kernels. It is not that the theoretically infi-
nite series cannot describe the phenomena, but rather that practical low-order
approximations 1o the series won't work. Thus some simple and robust feg-
tures of the cell's response may be hidden from us if we trv 1o force the datg
into a simple Wiener—Volterra description.

The problem of adaptation conld be even more serious (and more interest-
ng), In a while noise experiment on, for example, the visual systent, one must
choose not only the hackground light level but also the spectral density of con-
trast Huctuations that will be used as the probe signal s7t), What il the visual
system adapts not only to the mean light level but also to the variance of the
light level, or contrast (de Ruyter van Steveninck et al, 1994; Smirnakis et al.
1995; de Ruyter van Steveninck et al. 1996: Smirnakis et al. 1996 17 Apgain

such adaptation is extremely difficult to describe in ferms of a series expan-
sion, and it seems more economical to describe the sysiem by saying that it
responds in different ways to signals drawn from dilTerent stimulus ensembles.
Burt this means abandoning the idea that some systematic method will lead to
a complete description of the response to arbitrary stimuli,

To summuarize, we have seen that in some cases—such as the visual re-
sponse o low contrast images—it is reasonable 1o expect thal sensory neurons
will give linear or nearly linear responses. In this limit, white noise methods
provide a very efficient method for measuring the linear and nonlinear re-
sponse functions of both spiking and nonspiking cells. It does not seem very
elficient to use the Wiener or Volterra expansion to describe the profound nen-
lincarities associated with adaptation. but ina phenomenological approach one
can use these methods to describe the changes in coding and computation that
ceeur as the result of adaptation.

2.1 Characterizing the neural response

Models for firing statistics

In the preceding sections we have seen what can happen in the atlempt o give
4 “complete” characterization of neural responses. Thus we start with firing
rates as defined by Adrian, move on to fime dependent rates and then inter-
vals and correlution functions, and w each stage we see new phenomeni thit
generate new candidate codes. Similarly, Wiener and Volterra gave us methods
10 quantify the notions of receptive fields and tuning curves i terms of linear
and nonlinear response functions, but we also find that inleresting phenamend
are spreqad out over muny different terms 1 these s_:}*su:mutic expansions It is
not that exploration of higher order statistics or higher order Wiener kernels
has not uncovered anything interesting. On the contrary, the problem is thut
ench new order uncovers something new. We do not seem 1o be converging
10 a concise description of the neural code. so perhups it is ume o step back
a bit. .

In this seclion we explore simple. approximate deseriptions of spike stalis-
tics, Such models can be usefil, even il they are oniy approximiate, hecause
they give us some guidance ibout what to look for in the thicket of higrher-
order responses. In addition, we can make analytic statements about the -
plications of whole classes of such models for different interesting quuntities
such as the reliability of the code or the possibility of decoding the spike train,
We will come back 1o these applications of the models, but here we want 1o
understand how the medels are defined and how one can check that they are
good (or bad) approximate descriptions of o particular neuron. As ane might
hope, this exercise of checking the validity of simple miels uncovers some
interesting new phenomena,

Perhaps the stmplest model of neural firing statistics is the Poissan madel.
The defining feature of a Poisson process is that the firing of one spike oceurs
with some probability per unit time—the rate—and this rate can depend on
time but nor explicitly on the vecurrence times of the other spikes. How do we
test the hypothesis that the spikes from u given neuron [orm 4 time dependent
(or inhomageneous) Poisson process. and what are the implications of such o
model?

We start with the stimulus wavelorm s ), which determines the liring rate
rlr;sit)]. Because of the independence of spikes in the Poisson model it
must be that this rate determines everything we might want to know about
the spike statistics. The time dependent rate is, as in Fig. 2.1, the probabil-
ity per unit time of observing o spike; more precisely, ift we look in a hin of
size At surrounding the time f, the probability of observing u spike in this
bin is p(s) = r[e;sit)]AT. I we want o know the probability of observing o
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sequence of spikes at times £y, 13, ..., fv, then we need to compute the proba.
bility of finding spikes in these hins, but also the probability that re spikes )]
in any of the other bins. Because the spikes occur independently. the prohahi)-
ily of spikes occurring in the NV chosen bins is
Fispikes 1o bins) = rlr; o[ 0AT) = Flta sle [ IAT) =
s--wr|tys s AT
= rltpsiTiela st ] - rlrp sty jiATyY.

As explained in section A4, the probability of Anding no spikes in any of the
other hins is given by an exponential,

i T
Fing spikes in ather hins) = exp | - j ar r[;'_.s':rj]] :
i

where we are looking at the spike truin over the interval 0 < 1 < 7. Putting the
varjous factors together, we have the prohahility for observing the particolar
spike train £, f2, .0 e where we mark the spike occurrence times in hins of
slze At

Plls(n[tAT)Y = Pispikes in bins)

* Pino spikes in other bins) (2.17)
|
= —rltjstrhrle s iv)] - Fliws i)
MY
r ]
HOEKp - [ :f:r]r:.r[r]]li.ﬂr]“. (2.18)
o)

We notice that the probability is proportional (o the volume (A )™ of the bins
that contain spikes. as it most he—the probability of observing an event is
larger if we are less precise in defining that event, We then divide out the bin
stzes and work with the probability distribution P[] s021].

In working with probability distributions we should always be careful o
keep track of units and of normalization, P[{r;}Hs(1)] is the probability dis-
tribution for spike arrival times, so the term corresponding 1o the armival of N
spikes must have units of (time)™" or, equivalently, {rate)™ | If we integrate
ovier the arrival times and sum over the spike counts, we have exhausted all
possible spike trains, and so the total prohability has 1o be one; this is the nor-
milizution condition. But when we integrate over all spike arrival times we
have to be careful not to overcount—all the spikes are identical and we could
ulways choose a different assignment of the ;'s to the spikes, and 1o tuke care

31 Characterizing the neural sesponse

of this fact we need the factor of M1in Eq, (2.18). Checking for normalization

is a good exercise to make sure we understund o 1o manipulate probability
distributions. and the details of this calculation are given 1 section A4

How do we recognize o Porsson process” Perhaps the clearest test 15 given
by the spike counl, or pulse number distribution. 1T we tonk i an arbiteary ime
interval, which we wall say runs from time 0 10 time 7. then froum Eqp. {2.18)
we can calculate the probability of observing exactly N spikes. The result is

I ;
PIN) = rﬁgh expi—0), (2.19)
where @ is the average number ol spikes; that is,
(N)=) _NP(N)=Q, (2.20)
N

and 2 = f[,'r di (1), us one might expect: The average number of spikes is the
time integral of the liring rate. We can also calculate the varance of the spike
count, and we find that this variance is equal 10 the mean:

(AN = (N = (N
0
=Y (N - QPPN =0 = (N} (2.21)
M=)
We emphasize that these different statements about spike statistics are not
sepurate models, but rather direct mathematical consequences of the Poisson
model. Finally, these results show that the spike count distribution is nof sen-
sitive to the time dependence of the finng rate (which might be difficult to
measure), but rather only to the one number O that is measurable as the mean
spike count. For details of the relations among these different statements see
section A5,

In a series of papers, Teich, Khanna, and coworkers have measured pulse
number distributions and the ratio of varance to mean in spike trains from pri-
mary auditory neurons in cats, Initial results were focused on the spike count
distributions in time windows of =~ L0 ms, and were measured in response
1o stimulation with pure tones at the most sensitive frequency of the cell. The
results (Teich and Khanna 1985) were in reasonable agreement with predic-
tions from a Poissan model, Many authors have plotted the variance of spike
counts versus the mean and obtained an approximately lincar relationship. One
must be careful, however, because the mean spike count can be changed in two
very different ways. In mosl experiments one varies the stimulus parameters
to chinge the mean liring rate, holding the counting window T fixed. If one
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Figure 2.9

Evolution of the Fano facior with size of ume window, 7. The Faoo factor is the vari-
ance of the number of spikes counted in o specified Gme window divided by the mean
spike count, studied here for cells In the cat suditory nerve. In time windows smaller
than FO0=200 ma, the Fano factor is close 1o |, conststent with Poisson luciuations
in the spike count. As the time window is increased bevond 5000 ms, the Fano factor
increases as /7T —the variability of the spike counts exceeds that from Poisson floctu-
ations. Redrown from Teich et al, (1990)

instead varies T while holding the stimulus pirameters fixed (Teich 1959; Te-
ich et al. 19900, then the ratio of the variance to the mean—called the Fano
fuctor-—evolves as a function of integration time as shown in Fig. 2.9,

Figure 2.9 shows us that, while the Poisson model is unlikely 10 be an ex-
act description of nevral firing, it isn't o bad approximation over moderate time
sciles. On long time scales, however, something else is happening. One way 1o
think ubout the increasing Fano factor is to imagine that, although the exper-
imenters hold the auditory stimulus lixed, the firing rate of auditory neurons
fluctuates. perhaps because of noise in the receptor cells or in the synapse be-
tween the receptor eell and the primary neuron. Ordinarily one would expect
thar this noise would be averaged away m lurger time windows, so the Fano
factor should platean at Targe 7; instead it seems to grow as ~ /T This sort
of excess noisiness at Tong times s whut one would obiain, however, {f the
noise had o “1/f™ type of spectrum. Most electronic devices have this sorl
of noise al low frequencies, and this nose limits the ability of experimenters
to improve their measurements by increasing the integration lime {Horowilz

2.1 Characterizing the neural response

~and Hill 1980). The phenomenology of the Fano factor suggests that a smilar
problem nuty arise @5 the hrain processes auditory information.

Returning to the more modest time windows, where i Poisson model has
4 chance of working, we can test this model in a very different wuy. While
the spike count distribution is invariant 1o the time dependence of the rate,
these time dependencies can produce carrelations among spikes at different
times. Johnson { 1974) has studied the response of primary auditory neurons Lo
pure tones and asked whether the correlation function can be predicled from

observations on the time dependence of the rate using o Poissan model. This
works quite well over a range of stimulus amplitudes, strongly supporting 4

Poisson model over reasonable time windows, To the extent that this procedure

‘works, information carried in the second maments of P[{r}x{1)] is equivalent

ta the information carried by the dme dependent firing rate #(¢}, provided that
this rate is defined in sufficiently small time hins.

The examples discussed above concern the response of auditory neurons
to somewhat artificial stimuli, namely pure tones. More recently, Miller and
Mark (1992} have studied responses to synthetic vowels, searching for depar-
tures from Poisson behavior, Quite dramatically they find that the variances
of the Fourier components of the response are three times smaller than ex-
pected (rom a Poisson model. These data suggest than the neural response is
more reliable when the system is confronted with more natural signals. This is
obviously an important idea, to which we shall return several times.

Real spike trains can’t be exactly Poisson processes. At the very least we
know that spikes cannol come too close together in time, becuuse the spike
generating mechanism of all cells is refractory for some short time following
the firing of an action potential. Thus the occurrence time of one spike cannot
be completely independent of all the other occurrence times, as assumed in u
Poisson model. When Poisson models give a good approximation to the data,
it just means that the refractory time scale—or, more gencrally. any memaory
time scale in the spike generating mechanism—is short compared to the in-
teresting time scales such as the mean wmterspike intervul. This description is
very general, and any attempt to understand near-Poisson behavior of neurons
in terms of underlying molecular mechanisms must provide a basis for this
separation of time scales.

If stimuli are constant, then the firing rate should be constant, and in a Pois-
son process the resulting interspike interval distribution 15 exponential. Fur-
thermore, each interval is statistically independent of all the other intervals.
As a first step toward a more realistic picture, one might try assuming that
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intervals are still independent but that the fnterval distribution is nonexponen.
tial. incorporating (among other effects) refractoriness. Models of this type are
called renewal processes.

Crnce again we can ask, how do we recognize a renewal process? For reting)
zunglion cells in the cat, Troy and Rebson (1992) have applied o test analo-
gous 1o the test for Poisson behavior used by lohnson in e auditory nepve,
Again the wdea is that correlations among distant spikes must be buill vut of
maore elementary pieces, in this case the independent interspike intervals, I we
mieasure the interval distribution we can caleulate the correlation function (or
s Fourier transform, the power spectrum) on the hvpothesis that the intervals
are independent. Under conditions ol constant illuniination, these calculations
agree with experiment in impressive detnl.

W see that models of neural ling stanstics that might seem rather over-
stmplified actoally work reasonably well if we don’t push too hard. There
are different attitudes woward such resulls, Opne atlitude is that, because sim-
ple models are close o working, we shouold search exhoustively for the exact
model that works pectectly. This means nailing down the corrections to the
Poisson or renewal approximation, and then quontifving how rates and interval
distributions are modulated by arbitrary stimuli—perhaps using the Systems
identification methods deseribed above, caveuts and ull. A complementary @t-
titude is that, if simple models come close 10 working, then we should exploit
the simplicity and analyze these models thoroughly even though we know that
they are not perfect. Much of the analysis of the sunple models can be done
with pen and paper rather than with computer simulations, s0 we have the
chance of developing some infuition and generating some understanduble and
testable predictions. One shoulidn't trust the detls of such predicuons, since
they depend on the exact form of the model, but it might be possilile wo identify
some robust gualitative conclusions that lead o the design of new experiments.
[ is this more intuitive use of the models that we shall emphisize o the fol-
lowing sections,

2.2 TAKING THE ORGANISM'S POINT OF VIEW

Firing rates, interval distributions, und soon, are average quantities, properties
af an ensemble of spike trains rather than a single spike train. Claiming that
“information is carried by the liring rate™ doesn't really 12l us how the newral
code works hecause we haven't explained how the brain can mensure “the
firing rate” from a single example of the spike train, and this is the problem
which generated our paradoxicul discassion in section 2,12, As we stirt 1o see

22 Taking thit omganasIm's puornl ol vidw

just how serious this problem cun be, we will also be led 10 a new point of

view on the neural code.

Intervals in the signal and intervals between spikes

Consider agan the example of interval coding in an auditory neuron. The
interval distribution churacterizes the response o a single tone of fixed am-
plitude and frequency. Reul-world signals can be thought of as twones that are
modulated, perhaps by large amounts, in buth amplitude and lrequency. T the
modulations are very slow, many spikes are lired before the purameters of the
tone chunge significantly. From these many spikes one can build up the dis-
tribution of intervals anid thereby estimate the amplitude and frequency. But
modulations in many hiologically significant sounds (speech. bat echoloen-
tion, frog calls, cricker chirps) occur on time scales of 5-20 ms, during which
time o cell firing 100 spikes per second can generate just one or 1Wo spikes.
With such @ small number of smikes we cannol accumulite a reasonable inter-
spike interval disiribution, and we cannot even get i good estimate of the rate
before the parameters of the stimulus have changed.

The bat auditory system provides a clear example of the importance of small
numbers of spikes, In recordings from the auditory cortex of £. fuscins, Dear,
Simmons, and Fritz (1993; Dear et al, 1993) have studied the responses of
cells to pairs of ultrasonic pulses that simulate the bat's awn sonar call and o
returning echo. A substantial fraction of neurons are selective for the cieho de-
lay. which measures the distance to the trget under natural conditions. These
delay-tuned cells respond weakly if at all to a single pulse or to simplified
signals such as pure tones. 1 one chooses a delay thut mitches the wning of
the cell, then a single call—echo pair produces an average of just one spike, as
shown in Fig. 2.10. This spike itscll appears 10 oveur al a precise tne relative
Aocthe armival of the echo.

In trying to characterize the response of o neuron, it is twempting 1o focus
on the stimuli that generate the lurgest responses, and this complicates our
efforts to estimute the “typical” number of spikes representing significant stim-
ulus variations. [n the cortex especially, neurons are often extremely selective
for complex features of the stimulus, and hence one might worry thait moech
higher spike counts could be observed in response to i properly chosen sig-
natl. For experiments in the bat auditory cortex, however, these concerns ale
answered by combining the neural recordings with our understanding ol 1he
animitl’s behavior, The cells studied in the experiments of Fig. 2,10 are sen-
sitive to complex features of the stimulus, beng selective both for delays und
for the combination of harmonics that makes up a patural bat call. Bul we are
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Response of o neuron in the bat auditory cortes. The response to a siouland echo

consists of vsually one and occasionnlly no spikes; spike responses are generated of

a very constant latency. Redrawn from Dean, Stmmons, und Frite (1993},

not free to search the space ol all possible stimuli, becatse we know that bats

nitvigate using relatively stereotyped calls—behavior is driven by stimuli that
are almost identical to thase vsed in the physiological experiments. Finally,
wie know that single call-eche pairs are sulficient for the bat to make behav-

ioral decisions (Griffin 1958; Simmons [989). Thus it seems inescapable that
significant variations in the bat's acoustic environment are represented by of

order one spike or fess from each cortical neuron.
The similarity of time scales in natral signals and typical interspike inter-
vals is not confined to the auditory svstern. In the fly visual svstem, as we

discuss in later sections, movements across the visual field can result in the

generation of a compensating flight torque within 30 ms (Land and Collett
1974). During this time the handful of movemeni-sensitive neurons (Hausen
|984) can generate just a few spikes each. In certain specics of moths, complex
bat-eviding Right paths are inggered by bat cries just loud enough 1o produce
une or twa spikes in each of the two most sensitive auditory neurons (Roeder,
1963},

o2 Tiking the erganism’s paint of view

In the primary visual cortex of monkeys. preattentively discriminable tex-
tures produce an average of | 1o 3 spikes per cell within the 30100 ms be-
havioral decision time (Knierem and van Essen 1492), For the comparahle
cells in cats, optimally chosen moving gratings produce modulations of less
than 3 spikes per 10 ms (sce, for example, Reid, Seodak, and Shapley 19913,
When we discuss the reliability of neural computation in chapter 4. we shall
<ee that the discrimination ability of many neurons is dominated by short time
windows in which roughly one spike is fired. Similarly, from an information-
theoretic point of view (chapter 31 we shall see that a larse fracton of the
information available from the response o a transient stimulus is carried by
the first spike or two.

Recently Gallant, Connor, and van Essen (19941 have studicd the responses
of primary visual cortical neurons under conditions where the monkey is al-
lowed to move its eves and scan a static image as it chooses. Under these
conditions average firing rates are 10 1 50 spikesfs, so that the number of
spikes produced during a single fixation periad is roughly 110 3, as in the tex-
ture discrimination experiments. Although one can drive these cells o very
high sustained firing rates, it uppears that typical spike counts under move nat-
utal conditions are much smaller,

In the mat somatosensory cortex there are cells responsive o the displace-
ments of individual facial whiskers, and the rat uses tus tactile sense to cx-
plore its environment. In a typical behavioral experiment, the rat is asked
run around a track and then stop to make o tachle discrimination of the lexture
‘on some target. The rat is free to make and break contact between her whiskers
and the targel, so she controls the strength and duration of the tactile stimulus:
after contact is broken the rat makes her decision and twms to the right or left
s appropriate to the task, Recordings of the spike activity of neurons in the
primary somatosensory cortex during such behaviors (see, for exumple, Fee
and Kleinfeld 1994) reveals that the brief contact period required {or decision
making produces an average of order one spike in the most responsive cortical
cells, us illustrated in Fig, 2,11 This result is very much the same as in the
bat auditory cortex: The stimulus consists of & hriel pulse, the dynamics and
magnitude of the pulse are determined by the animal’s own behavior, o single
pulse e sufficient for a hehavioral decision, and corticul neurcns produce on
the order of ane spike per pulse.

It is likely that the importance of small numbers of spikes is not limited
to the early stages of neural signal processing. In the farthest reaches of pri-
mate visual cortex, cells respond selectively to particular faces: for a review
see Gross and Sergent (1992). Even a 20 ms presentation of a face evokes
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DPrynamics and cumulative spike count for o cell in the m somaiosensory cortex. At

time + =) the rat’s whisker makes contact with an objeet it must identify, and st some:

point, which varies from wial 1o trigl, contict 15 broken and a decision is made. But we:
soe that, on average, he entire epcounter with the object—the dynarmes of which is

controlled entirely by the rat herself—produces slightly less than ene spike. Redrawn.

from experiments by Fee and Kleinfeld 1 1994, with our thanks o authoes,

long-tasting (~ 400} ms) firing, but if the face is followed by a mask tl'iis__-
conlinuing activity can be silenced and the maximom output of the cell is of

arder 5 spikes (Rolls and Tovee 1994). Nonetheless we can perform reliable:
recognition under these rapid-musk conditions: for further analyses of corti-

cal responses on shorl tme scales see Panzeri et al, (1996), More generallys

Thorpe and coworkers huve emphasized that surprisingly saphisticated visual
tasks can be performed so rapidly that each layer of the visual system has the
chance to lire only of order one spike befare pussing its “result” on 1o the next
stage of processing: for a brief overview of these arguments, see Thorpe | 1990,
Thorpe, Fize, und Marlot 1996),

In the rat hippocampuos, which receives input only from higher sensory
cortices, cells have been found that are selective for the spatial location of

the rat ({7 Keefe and Nadel 1978). When the rat is exploring its environment

2.2 Taking the organism’s point of view
freely. these “oloce cells™ fire at peak rutes of ~ 30 spikes/s (see; for example,
Wilson and MeNaughton 1993; O"Keete and Hecee 1993), If we imagine that
ihe rat has knowledge of its own position with roughly centimeter accuracy,
then since it can move at speeds of ~ 20 cmds, hippocampal signaling about
position must be based on | or 2 spikes per cell, of the sume order as in sensory
cortex.

Although there are only @ sinall number of spikes per neuron, there are
many neurons, One could then imagine building up estimites of the hrnng rate,
the interval distribution, and so on, by averaging over an ensemble of cells. It
is certainly the case that many sensory signals are shared among large numbers
of cells, and that the overall performance of the organism depends on its abil-
ity to integrate this large array of data, This does not excuse us from thinking
ghout small numbers of spikes. To begin, many invertebrates do nor have Large
numbers of cells with which to generate ensemble averages, and their brains
certainly work., When we humans sit in a dark room, we are capable of see-
ing single pheatons, as discussed i section 4.1.2, and these perceptions must
he based on o small rotal number of spikes from the entire array of ~ H)® neu-
rons in the optic nerve. Recent experiments on hy peracuity (see section 4.2.2)

‘sugeest that these extremely precise sputial judgments are also based on smull

numbers of spikes. Finally, there are experiments suggesting that we can “feel”
the individual action potentials produced by the mechanosensors ol our skin
(Valbo 1995),

The fact that our coherent perception of the warld around us is based on
large numbers of spikes from many nevrons does not imply that the ingredients
of these coherent percepts are similarly carried by large numbers of spikes
or neurons. Experiments on the limits o our perception—phaton counting,
hyperacuity, the threshold of touch—suggest the opposite: Human observers
wcan report reliubly the arrival of small numbers of spikes from their sensory
neurons. We will return to this issue many times.

There is u more fundamental problem with assuming that the nervous sys-
tem has access (o many spikes simply becuuse it has many neurons. For ex-
ample, if one wunts o measore the rate of firing by pooling the spike truins
af many cells. one must make the hypothesis that these many newrons carry
the same (or nearly the same) signals, so that averaging their responses makes
sense, Furthermore one must assume that these responses are statistically in-
dependent, so thut averuging actually improves the reliability of the signal.
If both these hypotheses are correct, averaging over neurbns is equivalent
to averaging over multiple presentations of the same stimulus, and the brain
iremember our homunculus) can measure the conventional rates and imerval
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distributions even though each cell generates of order one spike. Bul this com..
bination of redundancy and statistical independence is an extreme h}f]mlhesis‘.{
and we shall see that there is direct evidence against i,

To return to our discussion o the introduction, we are taking an empirical
point af view, trying 1o understand how to boild the homunculus who looks ai
Just one cell. It may be that this particular homunculus can tell us very little,
and that his only hope to make sense out of the spike train data is to confer with
his fellow homunculi who maonitor the outputs of other cells, Alternatively,
the impoverished homuneulus who looks at the spike train ol just one nﬂumﬂ
might be able to reach precise and unambiguous conclusions about 4 small
part of the sensory world, But whatever the homunculus can say, and indesd.
whatever he brings to the discussion with hus fellows, he must base on just a
few spikes from the cell he observes,

In this section we have surveyed a selection of expeniments from many dif-
ferent systems. Although we may be biased in our selection, it seems clear
that—at least under some conditions—many neurons make use of sparse cod-
g dn the time domain. These cells fire of order one spike For each character-
istic time of variation in the stimolus, where the “churacteristic time" has to be.
defined with reference to some reasonably natural behavior. Under these con--
dittons, individual spikes must carry significant information simply because
there are no mare spikes. This notion that single spikes can be important drives:
much of the discussion in the following chapters, We begin, however, with the
obvious question,

22,2 What can small numbers of spikes tell the brain?

As we have outlined in the preceding sections, the traditional approach 1o
studying the neural code has been to catalog the average hehavior of neurons
in response o changes in stimulus parameters. The rate versus timing debate
has been framed as a question of whether all the information about the stim-
ulus is carried by the firing rate—or, equivalently, by the spike count in some

specified time window—aor whether the tming of individual spikes within this
window also correlates with the variations in the stimulus, Bur we have seen

that, in several cases, the time windows of releviance to behavior contain of or=

der one spike. In this limit, the colloguial distinetion between rate and timing
codes isn't very helptul. If 4 single spike 15 delayed by a few milliseconds,

should we think of this as changing the spike count or rate measured in 4

small window, or is the spike timing per se the significant varoble? Before

discussing such subtletics, one might wonder how so few spikes can convey

any information at all.

22 Taking the organism's point of view

Whatever the ultimate characterization of the neural code, it seems unrea-

; -gpnable 0 imagine that the oceurrence of o single spike can lead to complete
gertuinty about the nature of the sensory stimulus: To talk about the informa-
:-"ﬁ;;i.n conveyed in sinall numbers of spikes, then, we need a language that quan-
ufies out degree of certainty or uncertainty, This language s, again, probability
theory. As described in section 2.1, conventional upproaches to the neural code

can be thought of as taking various slices through the distribution of spikes in
fesponse i known stimulus, Pl s0ed], The organism, however, 1s not -

terested in predicting spike trains from known stimuli. On the contrary, the

organism hus access only Lo the spake teain (6] and muost mediate behaviors
that (hopefully) make sense in response o the unknown stimulus 504}, From

the point of view of the organism. then, we ask what one knows about the
~stimulus by virtue of observing the spike train. All of this knowledge is con-

tained in the conditional distribution Ps(¢)|{5 1], which measures the relative
likelihood of different stimulus wavelforms piven the particular spike train 4],

We have defined two different conditional probability distributions—the
distribution of spike trains given the sumulus, and the distribution of stimuli
given the spike train. As explained in section 2,11, these two distributions
are related through Bayes” rale. Although this is a simple mathematical fact,
Bayes' rule tells us some important things about the structure of the neural
code,

We have emphasized that the probability distribution P[5 ]s ()] deseribes
the encoding of stimult into spike teains. Although it 1s impaossible in practice,
let us imagine that we have understond everything there is to know about this
distribution—we understand the mles whereby sensory stimuli trigger neurul
‘spikes, including all the complexities of noise, adaptation, and nonlincarities.
Then the distribution £[ {511 is Gxed, once and for all. The fundamental
consequence of Bayes® rule is that this apparenily complete knowledge of the
mewron 'y encoding sirategy iy non, by itsell sufficiens 1o rell ws what a given
spike train means or stands for o the outside world!

When we observe a sequence of spikes at times 7y, 2, - -+, fy and ask what
sensory stimulus caused these spikes, we need to look al the probability dis-
tributiom P[5t )1} 1—the distribution that 1ells us the relative likelihood of
different stimuli given our ohservittions on the spike train. But from Bayes’
Eq. (2.4), this distribution is a product of three terms:

Plsinilln]] = Pl Nsiti] = Plsiz)] = (Tj_lflm) . (2.22)
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The first term 15 the encoding distribution deseribed ahove, but the second [.E.rm
i5 the distribution of signals m the world. The third term. the probability of
ahserving this particulur spike sequence, serves te normalize the distribution.
Even if we characterize completely the encoding of signals into spikes, the jn-
terpretation of these spikes as standing for signals in the outside world depends:
an the charactenstics of the world itself. This is o familiar idea—the meaning
of o ststemem depends on the context in which it occurs. Though we routingly
use this idea to discuss the problem of communicanion between people, Bayes
tells us that the notion of context is equally relevant to the interpretation of
spike trains from a single neuron.

Omne of the most important aspects of the decoding approach, as captured in-
the metaphor of the homuneulus. is that the stimulus is unknown to the -
imal. o the patural environment or inan experiment, stimoli are chosen ar.
random from some probability distribution Ple(e)] which defines the stim-
ulus ensemble. Many experiments use simple ensembles (e.g.. sine waves),
but in these eases s(0) can be predicted parfectly from knowledge of its past
s(t’ =), In this sense one can know the stimulus without looking at the spike
train, and o new infornation is gained by observation of the spikes. To get
started on the problem of what the spike train means aboul signals in the out-
side world, we need 1o choose these signals friom an ensemble rich enough u}ﬂtf
we (or the organism) can really leam something about the world by continu-
ous observation of the spike train. Obviously o completely nateral stimulus—
such as a tape recording of an evening at the frog pond—has this richness,
but these natural signals are also difficult W characterize. as we discuss in
section 5.2,

We can ask our guestion about the meaning of the spike train in any stimulus:
ensemble, and we know that the answer may be different in each case. Ideally.
then, we would hike to explore many different ensembles, working our wiy
toward the signals that actually occur in nature (see section 3.3.3). This is
also @ major theme in the neurcethology literature, and it seems a rather basic
“hiclogical” point of view to say that stgnals acquire their meaning only in the:
context provided by the sensory environment as a whole. This view, howevery
sieems apposed o seme of the taditonal quanntative analyses, which aim at 115
characterization of the nervous svstem or of a particular neuron as un isolated:
device. We beligve that the approach developed in the following sections gives:
us i way of quantifying the ethologists’ inwition, ataching numbers to the:
cantext dependent meaning of spike trains,

The characterization of the neurnl code from the point of view of the of=
ganism was advocated in early work by FitzHugh ( 19581, who emphasized the

2.2 Taking the orgamsm’s point of view

~ eed for the organism to perform a statistical analysis of the spike trains in

Jie sensory neurons, Such an unalysis was subsequently carried out by Barlow
and Levick (1969) in experiments on the detection and discrimination of light
fashes by ganglion cells in the cat retina, as will be described in section 4, 1.2,
These experiments, however. focused on forced-choice discrimination among
g small number of possible signals. We have posed the more difficult problem
of making continuous inferences aboul an unknown time varying signal, the
crunning commentary” discussed i section 120 As far as we know, the dis-
‘cussion closest to our own is that of Johannesma (1981}, and we return (o his
ideas in section 2.3.1.

response-conditional ensembles
~ Ithas been possible to give an experimental churactenzation of the conditional

distribution P02 {r |} from the responses of a motion sensitive neuron, HI,
in the fiy’s visual system (de Ruyter van Steveninck and Bialek [1988). Be-
ccause this system, and indeed this one identified neuron, provides examples
for several of the ideas in subsequent sections, we take some time here Lo give
a brief overview of Ay vision and the rale of visual movement estimation in (y
behavior.

When we watch a Ay buzzing around o room, we notice that its flight path
consists of relatively straight segments interrupted by sharp wrens, and this
impression can be quantified {Wagner 19864, 1986b, 1986¢), [f we turn out the
lights, the fiy lands. The ability of the flv to maintain a steady course depends
on sensory, particularly visual, feedback. Careful analysis of the trojectories
of flies during chasing behaviors indicates that a change in visual input can
trigger 4 change in Aight path with a latency of just 30 ms (Land and Collent
1974).

One can demonstrate the visual input 1o flight contral by tethering the Ay
5o that it hangs, wings flapping. from a torsion balance. If the visual environ-
ment of the fly rotates (on a drm surrounding the Ay, or on a video monitor),
the fly generates o torque. The sign of the torque is such that it tends 1o com-
pensate the rotational motion, Cne can close the sensory—maotor feedback loop
artificially by giving the visual environment an added velocity proportional 1o
the negative of the measured torque, as would happen if the fly were free o
turn., Unider these closed loop conditions, the Ay will spontaneously fixate an
AObject, creating (as best as possible under the circumstances) the image of fly-
ing straight toward that object. These basic facts about optomator control were
established in a series of experiments by Reichardt and collaborators, summi-
tized by Reichardt and Poggio (1976).
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More recently, Heisenberg and colleagues have emphusized thut importgng
aspects of this control loop are plastic, and can be modilied by the fly i e
sponse to changes in the simulated flight mechanics (Heisenberg and Walg
1984 Wolf and Heisenberg 1990). Physically, if the (ly wants to turn by 10 des
grees in LO0 ms, the question of how much wrque it should apply o its hady 15
actually quite comples, because the y is Aying under conditions in which the
airflow over its body 1s extremely unsteady (Dickinson and Gtz 1993; Dickins
son L9944, Furthermore, the exact answer to this question depends on the way
in which the wings have hardened after metamaorphosis, on whether the wiﬂg_s_'
huve been chipped or otherwise damaged, on the prevailing wind conditions,
und even on whether the fy has eaten recently. Thus there can be no straight-
forward autopilot that converts sensory stimuli into motor programs through g
constant, genctically determined rule; the Ay must learn and constantly update
the rule appropriste w s current Aight dynamics,

Input o the fly™s visual motion computations comes from a single class of
photoreceptor cells arrayed beneath the lenses of the compound eve. Photore-
ceptor signuls are processed by the cells of the Taming, meduolla, and lobula
before arriving at the lobula plate, where one finds a handful of large, identi=
fied movement sensiove neuroms (Hausen, 1984). Some of these cells rc:ipuufi_
most strongly o “wide feld” moton—coherent motion across the entire: vi-
sual field, as would be induced by rigid rotation of the Ay iself, Oiher cells
are selective for narrow field motion, as ooours when a small ohject moves
relative to the fiv and the buckground (Borst and Egelhaaf 1989; Hausen and
Egelhaaf 1989). Destruction of individual cells in the lobula plate produces.
specific deficits in optomotor behavior {Housen and Wehrhahn 19830, strongly)
suggesting that these motion sensitive cells are an obligutory link in the path
fromm visual input Lo matar autpa, ]

For the benefit of those readers more familiac with the vertebrate visual sys-
tem, we emphasize several features of the Ay's brain. First, the lobula plate:
is al least four synapses removed from the photoreceptors: in mammals the
privgary visual cortex 1s found at this stage, Second, processing is nol simpl_ﬂﬁ;
feedforward through the Layers of visual neuropl: instead, there are substan-
tial lateral interactions at cach stage, as well as projections back from medulla
to lamin, Finally, By vision is more than just motion detection: Insects have 8
memory for spatial patterns (Dill, Wolf, and Heisenberg 1993), a spontaneots
preference for novel images (DHIl and Heisenberg 1995), and individual neu-
rons in the lobuly are selective for the orientation of barlike stimuli in o manner
rather analogous w cells in visupl cortex (O Carrol] 1993),

We review here experiments on HI, which is o wide field, horizontal moves
ment sensor. Under favorable conditions it 15 possible to record continuously,

22 Taking the arganism's point of view

from H1 for periods of many days, using an immaobilized fly, almost com-
pIﬂl;"-lj" intact save Tor a small hole in the buck of the liead that allows aceess to
the lobula plate. In these long experiments one must pause occasionally to feed

 the fly, but it should be clear that this very stahle preparation makes it possi-
' Ble to address questions that require a very large statistical sample of neural

FESPONSES.
In the experiments that probed the structure of PLs(r)|{5]]. the fly looked

’ . 1 5 5
at a moving pattern presented on a display oscilloscope,” The signal wave-

farm s(r) is the time dependent angular velocity of the motion, with the spatial
siructure of the pattern held fixed. Most of the results discussed here are fora
patl&n that approximates spatial white noise along the horizontal axis and is
uniform along the vertical. This is a very simple choice that distributes hor-
izontal motion cues in a statistically uniform fashion across the entire visual
ﬁ&ld: we will also comnpare coding of these stimuli with the coding of more
_s'patinlly restricted signals. Finally, the velocity waveform is chosen [rom
stimulus ensemble that approximates Gauvssian white noise, so thal the pattern
diffuses across the visual field. Figure 2,12 shows the stimulus waveform from
a segment of the experiment, together with the procedure for constructing the
distributions Pls(T)|{5]].

The distributions £ls(t)|{]] provide, in ellect, o dictionary for the neural
code in which we can look up the stimulus most likely to have generated a par-
ticular spike sequence. In addition, the width of the distribution P[s(z)]{5]]
measures our conlidence in this maost likely waveform as an estimate of the
true stimulus. One can also use the distributions to quantify the information
content of different spike sequences, demonstrating, for example, that short
interspike intervals carry much more information per unit time than long inter-
vals, and that the absence of spikes actually conveys a substantial amount of
information per unit time, Perhaps the most important fact about the structure
of the distribution £[si7 {1} ] measured in H 1 is that it suggests the possibil-
ity of decoding the spike train, using the set of arrivial times (5] 1o generate a
t_.'ﬁminuuua estimate of the signal s(r) in real nme,

In the absence of any observations on the spike train, all we know is that
the stimulus waveform was chosen from some a priori probability distribution

2. Flies, pnd many other inseces, cun respond o ficker {time variations of light intensities) at
much igher {requencies than humans, Recondings in fly photoreceptors in bright biwlkgroum
lights show elear responses above 100 e, while cells in the lamin thal receive direct sviiptic
input from the receptoes can heave their peak response at aearly 100 Hz (see Fig. 3120 Tl'”'bl hich
temporal resolution precludes the use of ordinary video meniars for iy vision expeniments; in the
wotk reviewed hero the display wiis refreshed 800 times per second {de Ruyter vin Steveninek
and Bialek 108%)
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Procedure for constructing respense-conditional ensembles. The twi traces of the tap
show o sample of the stimulus (the velocity wavelorm vir) of o moving wide-field
pattern], dmd o digitized representation of the response of the Av's HI1 newron o this
mavement, Oveurrences of spike patterns, here consisting of an interspike interval '’
Followed by an empty interval ', are counted in the slice labeled “count™ at the
right hand side of the middle block: this procedure determines the joint distribution
PI4L e | For each response category |00 ms section. divided into 50 biss, of the
preceding stimulus wavelorm s accumulated in the slor comesponding to )
within the block labeled “first moments.” Similarly. all the second moments {the prod-
uets i -y, £ = 1o, 50 of all possible pairs of velocities in the 30 hins) and the
third and fourth diagonal moments (all o and v} are accumulated. Afier normalize-
lion we obtain the wean wavelorm, the covariance, and the dingonal elements of the
skewness snd the excess of the preceding stimulus ensemble, for ¢uch response cil-
egory [t e An cxample {s shown in the row of panels at the boton. After de
Ruyter van Steveninek and Bialek (19388,
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 determined by the experimental or environmentul conditions, The observation
of a cortain response changes our statistical knowledge from the a pria en-

semble to the conditional ensemble: We judge some classes ol stimub mare
i:-rnhﬂble and others less probable by virtue of observing this particular spike
train ().

Let us sce how the structure of Pls(z)|{5]] emerges from experiment.
fmagine taking a snapshot of the spike train at some observation Hme fop,-
At this instant, o time &y has elapsed since the last spike, while the second-
to-last spike occurred a time t further in the past, and so on. We call this

“snapshot of the spike train 8, since it is some particular response of the neu-
ron, We would like 1o know what the observation of this snapshot £ tells us
about the stimulus. Because the behaviora] response times are short, it makes

sense to look back at only a short history of the spike train in defining &,

Now let us suppose that we have performed o very long experiment, pre-
senting the system with some randomly chosen, continoously varying s{r).
In such a long experiment, the response B will have occurred many times—
there will be many observation times fone such that the fast spike occurred
at Ty — fn. and so on, Looking backward in time from each such ., we
will see some particular waveform s(f,,; — 7). As the experiment proceeds
we keep a list of all the waveforms that precede the response R. In making
this list we choose, out of the ensemble of all possible waveforms in our ex-
periment, a particular subensemble, the response-conditional ensemble. This
subensemble consists of waveforms which are chosen randomly outl of the dis-
tribution P[§(fm, + 1| R], so thal our experiment has given us a sort of Monte
Carlo sampling of this distribution. In practice (de Ruyter van Steveninck and
Bialck 1988, Plsie)|R] was upproximated as o multidimensional Gaussian,
characterized by the mean velocity veetor wpi(r) and the covariance matrix
Crity, ta), with R denoting the particular response that forms the condition.
One can contirm that this is u good approximation hy computing some of the
third and fourth moments.

Representations of the response-conditional ensembles for a selection of
different responses are provided by Fig. 2,13, Two simple conditions. a single
spike [0°] und a 50 ms period of non-firing | 507 |, are depicted in Figs,
2.13a and b. The meun stimulus waveform conditional on a single spike is
a smooth function of time, peaking 25 ms before the spike occurs, The line
plot represents the covariance matrix, scaled by the a prion stimulus variance.
The figure shows that the off-diagonal elements have a region of negative
covariance, centered at about 35 ms before the spike oceurs. The fact that the
off-diagonal values are negative means that the waveforms that constitute the
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ta-ly) Response-conditional ensembles for a selection of different response categories.
For euch category the response-conditional ensemhble is represented by a conditional
mean wirveform (bottom), and & covariance (lop), Response categories on which the:
ensemble we conditional are shown in the upper-right of the mean waveform boxes.
The superscripts ~ and signify, respectively, the absence and the presence of spikes.
For example, '5'10° stands for an anterspike mierval of 5 ms, followed by a [0 ms
interval without spikes. The ibscissae represent time with respect 1oty (the last point,
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Figure 2.13 (continued)

of the response), Covangnce matrices are represented by consecutive sections through
the top-left bottom-right diagomal, The elements of this diagonal are set w zero 1o
provide g reference. The calibration bars in the wp-right comers represent a length
of 0.05. Pogitive (negativey values are in the top-left (bottom-right) direction. Error
bars on the mean wiveforms are standard emors of the miean, After de Ruyier van
Steveninck and Bialek (1988),
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response-conditional ensemble are constrained to deviations from the Mean
that have less power at low frequencies than wavelorms from the prior
ensenible,

It is elear that more complex conditions on the spike train cOrrespond 1oy
more complex conditional mean wavelorms—these complex spike setjuences
stand for more complex signals. For example, for a pair of spikes separated
by a given interval the conditional mean waveform varies drastically as we
change the interspike interval. For an interval of 1 ms, one can find the cone
ditional mean waveform by adding up the waveforms corresponding to the o
dividual spikes, but this is clearly not true for much shorter or for much longer
intervils. [t is interesting to note that [0 ms is very close o the most proba-
ble interval in this experiment, and it is only for this interval that one observes
linear superposition of the single spike waveforms. The degree of nonlinearity
in stimulus coding is larger with intervals that deviate more strongly from the
most probable firing pattern. )

For long intervils we can distinguish three different phases in the average
veloeity wavelorm: two positive peaks oceurring 25 ms belore cach of the two
spikes, and a trough in between. As the interval becomes shorter than 1010 15
ms, these separate phases merge into a single peak, which becomes very high;
for the shorest intervals, This trunsition occurs for intervals with a length of
the order of the photoreceptor integration tme: A functional interpretation is
that, loosely speaking, structure in stimulus events on a time scale below the
phaoloreceptor integration time cannol be detected. However, the H1 neuron:
can generdte intervals of shorter duration: These intervals may therefore be
used to encode higher stimulus amplitudes.

One interesting question concerns the precision with which a hypothetical
abserver must measure the arrival times of the spikes in order to obtain the
maximum possible information. Clearly, if two response conditional ensem-
bles corresponding to different interspike intervals, for example, are essen-
tially indistinguishable, the observer loses very little by lumping these two

intervals in one bin. Since we approximate the distributions 2s(t)| 8] as mul-

tidimensional Gaussians, there s a natural measure of distinguishability: The
length of the vector that points from the center of one distribution to the cen-
ter of the ather, appropriately normalized by the covariunce matrix. This is the
signal o noise ratio for discrimination between signals drawn from the wo
distributions, and it is also the discriminability parameter d' used in the analy-
sis of psychophysical caperiments (Green and Swets, 19667; [or more details,
see the discussion of discrimination experiments in chapter 4.

22 Taking the orgwnsm’s point of view

Quantitatively. if we are presented with the event /) or the event /5, o 15
rﬁiut::l:l to probability that we can distinguish these events by looking at the

gtimuli that gave rise 1o them, If it is not possible 1 make this distinction, then
f! is near zero and we might as well consider £ and Rz to be the same cvent,
f the distinction 1s very easy. then d' is large. and the crossover defining re-
liahle distinction is conventionally taken as "= 1. In Fig. 2.14 we show the

results of analyeing discriminability among the response conditional ensem-
bles that correspond to different intervals ry, and these resulis are summarized
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"Figure 2.14

Diserimination between response-conditionu] enseinbiles s o function of the mierval
lengths, The ability to distinguish two signals drawn from different probalulity distn-
hutions is refated 1o the overlap of these distributions: 11 the disinbutions are Chaussian,
the discriminalbality cun be quantified by a parameter o' (Green and Swers 1966); see
also Fig. 4,19, The contour line gives the value of Ay as a function of ‘', for which the
response-conditional ensembles corresponding 1o spike intervals 'y and 'ty + A’ can
be discriminated with d” = 1. As the interval 1 is increased, the size of the increment
Asip mn which the two imtervals are distinguishable mitiolly mereases and then levels off
it about 17 ms.
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by the interpolated contour line of the values of Ay = ral R2] — | Ry where
d'= 1, as a function of 1o By ]

The conclusion from Fiz. 2.14 is that, onee o spike is fired, the precision
with which the cbserver must remember its position should be high shorly
after the spike has oceurred. As time goes on and no subsequent spike is fired,
high time resolution s less crucial. After about 17 ms, the mutual timing of the
twa spikes is no Jonger important, and they can be considered as repmsenﬁné,:
independent events. In this case the observer may forgel that there was a spike,
the only salient feature of the history being that no spike was fired during the
past 17 ms. Because the precision required for aptimul information extraction
is not terribly preat, we may say that the neural code is substantially robust lu
timing errors, even in u single neuron.

Ohservation of a particular spike train narrows the probability distribution
in cerlain directions, as represented in the covariance matrices of Fig, 2.]3,..'-__
There must be ather spike trains that stand for the stimuli just outside tl'uj_#_;;
narrowed distribution, These neighboring signals could be coded by any spike-
sequences, but o notion of smoothness such that neighboring stimuli were
represented by similar sequences of spikes would be attractive.

We recall that covariance matrices can be decomposed into eigenvalues and
ussociated eigenvectors. The eigenvectors determine the combinations of stim-
uli that vary independently, and the cigenvalues measure the variances in each.
of these independent directions. The eigenvalues of the covarianoe matrices
in response conditional ensembles are almost all equal 1o the corresponding
vilues in the a prior ensemble: There are just one or two eigenvalues which
have heen reduced significantly by virue of obscrving a particular response.
R, (de Ruyler van Steveninck and Bialek 1988} This implies that the narrow-
ing of the probability distribution 1s confined to just one or two dimensions
in the space of all possible stimulus waveforms. and these dimensions are de-
fined hy the eigenvectors associated with the reduced eigenvalues. To see if
coding obeys a notion of smoothness, we have Lo check that similar sequences
af spikes code for signals that differ only along these one or two dimensions,
This is in fuct the case, as shown in Fig. 2.15.

The probabilistic methods deseribed above provide precise duta on the in-
formation conveyed hy particular spike sequences R. For our homunculus this
means that we have solved part of the problem: 11 asked to interpret a short
sequence of spikes, the homunculus can refer 10 the response-conditional en-
sembles as @ literal dictionury for translation from the language of spikes buck
into the languige of sensory signals, But we require that the homunculus mive
a running commentary, which requires combining infarmation from success
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Eipenvectors nnd their cigenvalues for the thres Towest eigenvalues of the covariance
matrix for o single spike (2) and # single spike followed by a 10 ms empty interval (b1,
For the single spike there appears to be only one significant cigenvector: thise with
o= (189 and & = 0,90 are fuctuating ton fast 10 be meaningful. When & single spike
is followed by a 10 ms empty interval, a second smooth eigenvector develops with
%= 0.86. The fat Fine in (¢} shows the difference in average wiveforms for o 10 ms
closed interval, w[' 1], and a 10 ms open-ended interval, w('107]. The thin line 15 i
fit of the first two eigenvectors in (b to this difference waveform. Warious similar cases
corresponding 1 response eategories “close” to 1107 ], such as 'S5 and ['167 ], can
be fitted with these two cigenvectors, which meuns that these gigenvectors serve is
coordinates for measuring the changes in the conditional distributions for thie various
TESPONEE calegorios.
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sive sequences, The data presented here give no direct experimental guidange
on how to perform this combination. As a first step, one can make what is ad.
mittedly o ¢rude approsimation, namely that successive spike sequences are.
generated independently. After some algebra (see section ALG), this assump--
tion leads to a specific formula, Eq. (A.148), relating the sequences of B; o
the best estimate of the stimulus waveforim.

The response events R; analyzed in the H1 experiments were single spikes,
closed intervals, and closed double intervals, with the latter taken in 4 nonover-
lapping way so that the last spike of the previous event coincides with the first
spike of the present event, and so on. Figure 2,16 présents stimulus reconstruce
tiens for two seconds of the experiment. The traces nlso show the stimulus.
wuveform, and the spike sequences are depicted at the bottor. 1t is clear that
the reconstruction based on sinzle spikes has much less structure than the other
twa. This is related to the direction selectivity of H1: The cell is excited by mi-
tion in one direction and inhibited by motion in the other, with a small spike
ride at gero velocity, so that the cell has much greater dynamic range for the
encoding of positive velocities. The reconstructions can be symmetrized by

considering an “anti-neuron” which sees the stimulus —s(1); this approximates

the situation in nature where the fly has two HI cells, one on cach side of the
head, that are stimulated in antagonism as the fly undergoes rigid rotations {(de
Ruyter van Steveninck and Bialek 1988). 1t is perhaps more interesting that the
reconstructions are much more symmetric with intervals and double intervals
than with single spikes, in effect because the analysis of intervals allows the
spaces between the spikes to represent negative velocities,

Another noteworthy property of the reconstructions is that in regions of
high spike activity the reconstruction gencrally overestimates the stimulus,
The overestimate becomes less pronounced, however, when the reconstruction
depth increases o three spikes. The effect is therefore most likely due to serial
correlation in the spike train, and the explanation is thal events that oceur at
larger separation in time are less correlated. In other words, the assumption
af statistical independence becomes a noticeably better approximation as the
reconstruction depth inereases. To be fair, it 18 nol clear that o reconstruction
depth of three spikes is sufficient to convincingly validate the independence
hypothesis, but the quality of the reconstruction at this depth is already quite
good. These results encourage us to think that a more systematic attempt at
reading the newral code will be successful,

We should end this section with a note of caution. In each of the previous
sections where we have explored some apparently systemalic, quantitative
approach o the neuril code, we have faced the explosion of new structures at

voin i wewennil Biid ) sRTRERRIL] | R ITE U VT O [ AR AN LT
o 1 2
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Figure 2,16

Reconstructions (dark linesh of angular velocity (thin line) using rccun.t:l.rugticrn f:lr:]_'ytls
of 1,2, and 3 spike sequences (from bottom |, Reconstructions using only single spike

sequences (hottom ) caplure large fluctuations in the stimulus but miss many dietails,

Including sequences of two spikes (middle) improves the reconstructions, but clearly
the reconstructions systematically oyerestimate some aspects of the stirmulus. These
systematic errors are reduced in reconsiructions based on trplets of spikes (opl,
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successive vrders of approximation. The response-conditional ensembles seem
to suffer the same difficulty: We see simple structures in the mean waveformg:
conditional on the occurrence of ane spike, somewhat more complex structure
conditional on two spikes. and stll more complex structure with three spikes..
To convince ourselves that we understand the structure of the code, we shall
have to tame this complexity.

2.3 READING THE CODE

231

We have defined the problem of neural coding in terms of one basic question;
Given the spike triin (], what can we say about the unknown stimulus wave-
Form s(1)7? One possible answer is of the form in Fig, 2.16: We can “read”
the spike tain and teanslate back all the way to the stimulus itsell, This is,
if eorrect, a very simple answer, and it lends itself 10 quantitative analysis:
How accurate are the reconstructed waveforms? How complex are the récon-
struction algorithms? How do errors in the measurement of spike arrival times
affect the reconstruction? Stimulus reconstruction is not necessarily a problem
solved by the animal. It is. however, of the same character as the problems:
the animal must solve. For example, the fly can initiate o turn based on vi-
sual motion signals alone, which means that it translates the spike output of
its motion sensitive visual neurons into a torque, and this torque has o compo-
nent roughly propoertional o the time dependent angular velocity. The torgue
signal is a continuous analog waveform that the Ay synthesizes out of discrete:
spike sequences in its sensory neurons, The problem of recovering analog sig-
nals from the spike train is then a fundamental step in the neural processing of
sensory data.

Why it might work

The major difficulties in decoding are the sparseness and randomness of each
particular example of the spike train. In general, decoding the spike train re-
quires learning to interpolate between the discrete spikes w estimate a con-
tinuous stimulus waveform, and it is not obvious that such interpolation is
possible. Certainly the spike truin does not determine the stimuolus waveform
uniquely under all conditions: Many different stimuli can produce the same
spike train, and repeated presentations ol identical stimuli do not produce
identical spike wains, as in Fig 2.1,

Formally, the question of whether decoding is possible concerns the strie-
ture of the conditional probability distribution Ps(e)t 1] 1f Plsiolin)] s
sharply peaked ot a particular stimulus wavelform 505 (4], then it makes sense
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to sy that the spike train {t,} “stands for'” this stimulus, as in the discussion of
response conditional ensembles. Furthermore, the width of (his peak measures

the accuracy with which the (12 (4]) approximates the true stimulus. On the

other hand, if Plsieile]] isa broad smear with no disunct peak. there s no
reasonable sense in which one can decode the spike train 1o recover the ana-
log signal s(¢). The intermediate case is where PLa(0)|[6]] has several peaks

or a ridge of maxima, so that estimates of (¢} based on the spike wain (1) are

ambiguous. These different possibilities are illusteated in Fig. 217,

Motivated in part by the experimental results on Plsieifinl] in the fly,
Bialek and Zee (1990) formulated the problem of decoding in the context of
simple maodels for the stansics of spike encoding, specifically the Poisson
model described in section 2.1.4. In these models the problem of estimating
the stimulus (7) given the spike train {f;] tums oul to be equivalent 1o the
problem of predicting the trajectory of a particle subject to an impulse each
time & spike occurs. In the absence of spike train input. the particle undergoes
Brownian motian, tracing out rundom trajectories drawn from Plsis)]. These
random trajectories are modified both by the spikes, which provide impulsive
forces, and by a steady force related to the dependence of firing rate on the
stimulus, I it is really possible to reconstruct the stimulus from the spike train,
then this combination of steady and impulsive forces will cause the trajectories
to cluster around the true stimulus waveform.

Because the connection between spikes and signals is probabilistic, we have
to be more precise in defining the reconstruction problem. One natural choice
is to ask for the most likely stimulus given the particular spike train, or, equiv-
alently, the most likely trajectory given the force. This is maximum likeli-
hood estimation; it generalizes the maximum likelihood decision rules which
give the maximum percent correct performance n diserimination tasks such
as those used in psychophysical experiments. For a discussion of maximum
likelihood see sections 4.1.3 and A, 16, as well as Green and Swets (1966).
Another natural choice is to compute the average stimulus waveform given the
spike train. This strategy is optimal in the sense that the mean square error ( 3
between the estimate and the true stimulus will be minimized. It the distribu-
tion of stimuli given the spike train is well-behaved, these different estimation
strategies will all give very similar results. I, on the other hand, slight changes
in our criterion for the best estimate produce large changes in the estimation
algorithm, il is reasonable 1o say that robust stimulus estimation is not possi-
ble from the spike train alone. In the context of the model system, one can ask
explicitly about the conditions for robust estimation, and these conditions are
related once again (o the shapes of the distnbution Pls{t){|5 1], as in Fig. 2.17.
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Struerire of Plsiti{n]]. The success of dircct decoding of the spike train depends

un'ri::ai_]y on the structure of the conditional distribution Plsiriflail IF Plscols]l
hus o ..'img__rle well-resolved peak. as in (u), decoding should be possible; our estimate of
the Isumu!LL-i shoudd be ar the peak or near the peak of £lx023](4 1, depending on lﬁﬂ.'
choice of metric. On the other hand, if P[s(2)([#}] has no diseernible structure or does:
ot fiove a single peak, s in (h) and (¢), e hést estimate s nol well defined.

e
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fn & Jater section (see especially Fig.2.24 and the surrounding discussion) we
'umu look at experiments that address this quesliTn mote directly. For the mo-

mF“‘ we will focus on the best estimator in the 4~ sense, the conditional mean,
i ;uu:lm section A7 we review the connection between optinal estimation and
the conditional mean.

Following our discussion of input/output analysis in section 2.1.3, we know
that in many systems the average trajectory af a particle is lincarly related Lo
the applied forces, so that

{x(t)} =j dtKj(r)Ft — 1) {2.23)

where K () is the lincur response Tunction: for simplicity we assume that the
ay_eﬁge position in the absence of 4 force is zero, so we don’t have o add a
constant term 1o Eqg. (2.23). [n the analogy to spike encoding, the force consists
of a series of pulses at the spike times £,

"
Fity="y_ a(t =), (2.24)

i=1
and the trajectory t(r) corresponds to the signal waveform s(1); for a dis-
cussion of the delta functions see section A.1, Thus. linear response of the
mechanical system corresponds 1o linear reconstruction of the signal from the

Ep]kt! train:

F N
-Tts:{f]=ftffﬁ|fl']sz — T —)

N
= Z Kt — ). (2.25)

 The meaning of this equation is shown schematically in Fig. 2.18. Rather

than characterizing how the nervous system converts signals into spikes, Eq.
{2.25} characterizes the process by which an observer of the spike train could
‘estimate or reconstruet the stimulus. Thus we imagine building a “black box”
‘that tukes the spikes as input and returns the sumulus—or as close as we can

- get o the stimulus—as output.

- Equation (2.25) suys that the black box of Fig. 218 is approximately @ linear
tevice. More generally we might want to allow this box to have some non-
linearities, and this corresponds to the fact that the particle in the equivalent
statistical mechanics problem has a nonlinear response to applied forees. Then

ma generalization of Eq. (2.25) is




O

Foundations
.f_ﬁ Reading the code

il are drawn—we inlerpret what we “hear” from the neuron in light of
"uhm we expect. This is a matlematical fact that we can choose not o em-
Aﬁﬁﬂgizm but it will not go away. It is possible that the spike train provides
:ais,-}nvariam representation ol the stimulus wavetorm, or of certain features
in the stimulus wavetorm, but this requires thal the neuron adapt its compu-
tations and coding strategies to changes in the stimulus ensemble. Adaptation
certainly occurs, but whether this process provides an 1nvariant dictionary for
the ranslation of spike sequences remiins o determined. The reconstruction
problem forces us 10 address explicitly the issues ol context dependence and
adaptation, because the reconstruction lilters &, can be caleulated indepen-
~ dently in cach new conlext.
~ Another way of thinking about the filter K (r} is that it serves to separate
' the best estimate of the signal si(t) from the randomness or noise inherent in
 the spike train. Spike trains contain power at high frequencies, corresponding
to the time resolution with which we fas abservers) can localize the spikes.
ﬂ_'l’:t these high [requency data may just be noise. uncorrelated with the sensory
:inp_uL On the other hand, the low frequency variations of the spike rate may
be perfectly locked to the low frequency components of the signal. In this
case we would like to attenuate the high frequency noise and enhance those
~ components of the spike train that are strongly correlated with the signal. The
filter & (1) provides the best way of making this separation between signal
and noise.

What would it mean to say that the reconstruction of the stimulus according
10 Eq. (2.26), or even more simply according o Eq. (2.25), is successful? It
is important to realize that this procedure does not work automatically. For
‘example, atlempts 1o reconstruct the sound pressure waveform from the spike
trains of an auditory afferent tuned to high frequencies will undoubtedly Lail;
‘high frequency auditory neurons are not sensitive to the absolute phise of
the acoustic waveform, although they can code phase modulations. But if the
absolute phase is irrelevant, then the cell gives the same response to the sipnal
“5(t) and to the signal —s{7), and the output of the cell cannot tell us which of
these waveforms actually occurred. This is like the situations shown in Figs.
2,17h and ¢, where the spike train may be very informative about some aspects
of the stimulus but nonetheless ambiguous, preventing the reconstruction of
the waveform. In this case of the auditory neuron, it i usually thought that
the cell encodes the envelope of the sound pressure wavetorm. Atlempts 1o
“reconstruct this envelope were in fact successful, although the choice of a
proper definition for the envelope poses interesting questions (Rieke et al.
19493,

—*  sansory

system N\_,\*
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]

spike frain
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algorithm
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Figure 2,18
Schematic of stimulus estimalion
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In the analysis of & model neuron it is possible o ealeulate all of the kernels:
R Kegpae 5 sor that the procedure for decoding the spike trains of a model new
ron is completely determined. We don't believe that these model neurons
exact deseriplions of real neurons, 5o we need some more general understand-
ing of what the expansion in Eq. (2.26) means, .

To begin, the time constants that appear in the decoding filters K, are dif-
lerent from the time constants that characterize the encoding dynamics of the.
neuron, for example in the ransformation from the stimulus waveform .v{a‘}-tﬁﬁ;
the time dependent firing rate #(). In fact, the structure of the kernels dup:ndézi
on the statistics of the input signals, so that the optimul strategies for reading |
the neural code depend on the nature of signals in the environment, even if the
neuron does not adapt, These points emphasize the fact that the K, () are not
properties of the neuron alone, but rather combined properties of the neuron
and its sensory environment ( Bralek and Zee 1990: Bialek 1990 Gubbiani and
Koch 1996},

We have cmphasized from the very beginning that, because of Bayes' rales
the meaning of @ spike train must depend on the ensemble from which sensory i
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=&+ {2.27)

- where 1 is the noise, and we define the average of the noise 1o hl:’: zero () =
gam,;-The essence of the problem can be understood without worrying about the
time dependence, so in Eq. (2.27) the various quantitics are just rcu_! num_hn:f.u;
ﬂmgr than funetions of time. Characterizing the input/output relation of this
lh-s{mn ig frivial——on average. the output is equal to the inpot, s the estimation
ﬁu’nlém equally trivial? More precisely, what does it mean to say that linzar
reconstruction of 5 from x will work? _ . .
‘Everything that we know about the signal & by virtue of observing & is
contained in the conditional distribution £(s[x). From Bayes' rule in Ey. (2.4)

md Fig. 2.2, we can write

The sort of qualitative failure encountered for auditory neurons s
identily, The more subtle question s whether the reconstruction algorithmy
Eq. (2,26} is just another systematic expansion that fails o converge quic
enough to be useful. 1L turns out, for example, that so long as the first Wie
kernel of the neuron is nunzera, then the lincar reconstruction filter & i
also be nonzero. This makes us worry that linear reconstruction is just Jj
response looked at from a different point of view. This is not correet, and
fact the two expansions are very different. The [zct that hoth wols are relaed
to ideas developed by Wiener anly adds to the confusion.

If you are given observations of one signal (7} and try 1o estimate s0ime.
other signal xir). there is a rigorous theory due to Kolmogoroff (1939; |
magoroy: 1941} and Wiener (1949, of how to choose i linear filter that ;
sults in the best possible estimate. In our case we ohserve the signal ol
>80 — ;) and try to estimate s(¢), und the procedure in Lg. (2.25) is lin
hltering. so perhaps we could dispense with all the discussion and say that
are trying Lo build the Kolmagoroff-Wicner filter that estimates the signal irom

Plals)Pls) (2.28)

Y| Plsjx)= P

" Given the signal , the probability of ebserving a particular value for v =5 + 9
'ﬂﬁ'ﬂ:ﬂgpﬂndﬁ on the distribution of the neise 5, so we can write

the spike train* P(x|5) = Pagie(li = ¥ — 5). (2.29)
The Kolmogoroff-Wiener results (and their exegesis in subseguent litera- ..

ture) essentially solve any estimation problem that can be solved by linear i end hience

filtering, But why should linear filtering work? More specifically, why should ! Plsx) = & Prsse (11 = X — $1P (). (2.30)

estimates based on Tlincar filters be any good, und shouldn't we be able ln;d_tj
much better with & more complex nonlinear procedure? In the present context,
neurons can be highly nonlinear devices. so that if we tried to expand the fir
ing rate in powers of the stimulus, low order terms would nor be sufficient
under natural conditions. This is pant of the problem in applying the Wienﬂ!?;qé
Volterra methods o real neurons, But our EXPUNSION 15 Very u;iiﬁ"erem—mth'l-"fﬁ
than describing the input/output relation of the neuron, we are trying to de-
scribe a hypothetical black box that takes the spike train as input and returms
an estimate of the stimulus wavelorm (). )

To get a feeling for the difference hetween the estimation problem and the
more conventional input/foutput analysis. consider a simple detector whose av-
erage oulpul v is propartional to the input s, We can divide out the proportion=
ality constunt and write

Pixy

8 we'.n:n'inl_ercs{cd in estimating 5, and we know the mean square crrors in our
 estimate will be smallest if we use as our estimate the conditional mean (see
. ;.\.'...- ., - -

section A.7), that is,

4 .!'.:g:fd.n'P{.ﬂx]s. (230

Our job is to evaluate this integral.
Suppose that, as 15 often the case, the noise n is chosen from a Guaussian
 distribution. Then

1 7 513
Pok = — X =7 3 {"'l"'}
i ,,r"(l:r i B 2{n=}

and hence from Ei. (2,300 we have

A The references cited here illosirate the ambigoities m oanslaion between different ﬁymb'ﬂ- i i {5 = .ﬂE
syslems, as discussed for the translation between spike tralis amd sensnry stimuli, We notice thit P(slx) = FPix) exp | —- B . (2.23)
Homaoropon can be mapped inn Kolmogomll er into Eolmoporoy, This particular nmhlslﬂﬂl'é Pix) f {FJI:I 2{n=)

1= resalvable by reference fo place cells (0 Keele and Nindel 19781, ur mure specifically to nation
culls.
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In the simple case that the signal 5 is also drawn from a Gaussian distribyg

-

5
P —_ - L o
W= Tmen P TnA | 23
we have
-2 A2
Pislxy= l . L)

1
EAD | ———== | eip | ———=—
Px) 2/ (s (n?) "l T | 2%

_ B [_lz(ﬁ'_+d_l_)+_(_1-)
B 52 ) . {”—13] (2:35)

where Z(x) is a normalization constunt which is independent of the signal 5,

Thus, if we observe Gaussian signals in a Gaussian noise background,
conditional distribution of signal given our data is also Gaussian. The e
ditional mean is the same as the most likely value, and it is easy o find
salving the equation 8 Pis|x) /85 = 0. The result is that our best estimate of
signal is $eq = Kb, The kernel Ky = SNE/(SVA + 1), where the signal :

noise ratio is just the ratio of variances: SN R = (s7)/ (97}, This is a reasonable

result, in that the optimal decoding ol the output of a linear detector uses
linear system whose guin depends on the S& R. The dependence of the
on the SN R comes about because we have both prior knowledge about ¢
input signals and specific knowledge from observation of the output of the d

lector. AL high SA R the detector output is reliable and the gain approaches:

unity. At low SN R most of what we are seeing at the output of the deted
is nuise, and we seale down the detector outpul, relving more heavily on o

prior knowledge. Thus the dependence of our decoding strategy on both the

detector output and our prior knowledge causes us to underestimate the signal
svstemalically.

The success of linear estimation in the case of Gaussian signals does nﬂl;
generalize. Thus, if we imagine that signals are chosen from an exponential
distribution,

-P“l'] = {-'F-I],n"l:‘.-j ﬁxp‘ _1.T|IJ'I.'|'“]_

then the most likely value of the signal is actually a thresholded function of the
detector output! The threshold uppears at a point sy = (57} /sy that depends of
the typical values of the signal and noise, and if x < xg the most likely value
¥ i85 = 0, no matter what the precise value of v, This extreme nonlinearity s
softened a bit il we ask for the estimator that minimizes ;{3_ but there are still’
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very differcnt hehaviors of the optimal estimator above and below the nominal
threshold (Potters and Bialek 1994). _

"'[111& example of the exponential distribution shows us that, even [or a com-
iﬂétel:,r linear detectar, the decoding problem can have a drsunau_u:nl]_}- n.unlm—
ear solution, In this case linearity is destroved by changing the djs!njnuhun af
ij;.put signals, but one can just as well change the statistics of the noise, Nmf_.
;G'.aussin.n noise alone is sufficient to destroy linear decodability. OF course, if
thie signal to noise ratio is very high, the distribution P (x]s) upproaches a delta
function and hence its exact shape (the distribution of the noise) is irrelevant,
hu:. we know that biological detectors seldom operate in this limit.

This simple example shows us that the possibility of decoding the spike
train with @ lincar filter such as K in Eq. (2.30) really has nothing to do
with the conventional notion of linearity in the input/output of the neuron, or
the linearity of the relationship between the stimulus and the tiring rate, It 15
even possible that the cell is linear hy the conventional measures. but because
the noise in the cell's response is non-Gaussian, linear decoding won't work.
In this case one could 7y to reconstruct the stimulus waveform with a linear
filter, #nil this procedure would produce some answer, but one could do much
better by keeping (perhaps muny) more nonlinear terms in an expansion like
Eq. (2.26). ‘

In the conventional inputfoutput relation, we know how to test for hnearity
or nonlinearity. In particular, if we are not worried about time dependence
we can make a plot of neural output versus sensory input, and ask if this is
& straight line, This is what we did, tor HI, in Fig. 2.2i, where the newra
output is defined by the number of spikes in a 20 ms window and the sensory
Jinput is defined by the velocity of motion averaged over this window: clearly

~ the inputfoutput relation is nonfinear in the range ol velocities used for this

experiment. Can we make u similar plot for the decoding problem? We want
to plol our best estimate of the stimulus versus the neural outpul, and we

kmow that the best estimate—ithe estimate that will minimize our mean square

error—is the mean value of the stimulus conditional on the observed neural
output, This conditional mean is ploted in Fig. 2.2h, and we see that it is
a linear function of the spike count throughout the observed runpe of spike
counts, We emphasize that this plot s an explicit construction of the optimul
decoder for the restricted problem of inputs and owtputs averaged over a 200
ms window, and we see that nonlinear encoding of the velocity signal into
firing rate coexists with linear decodability. As in our mathematical examples,
the linearity of the decoding problem is simply a different question from the
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an extrapolate this knowledge out 1o a time window of roughly v around
e spike itsell. If the next spike always oceurs much later, with an interval
. "331,-;:, then this next spike gives us independent information about the signal,
the contributions of the two spikes to our estimate of the stimulus wave-
form must just add. This suggests that our expansion of the optimal eslimate
; iﬁLEq (2.26) is really an expansion in the average number of spikes per corre-
;ﬁﬁnn time. or (r17.. ln the context of simple models, this identification ol the
expansion parametcr can he verified hy detailed caleulations. .
. The description of nevrons as having inputfoutput relations as in Fig. 2.2i
or 1.4 completely misses the fact that the spike train s a discrete sequence of
;mrents while the sensory stimulus is a continuously varying function of time,
Under these conditions, estimating the stimulus cannot be a simple matter of
inverting the inputfoutput relation—what do we do 1o the spaces hetween the
spikes? As we hinted in the discussion of the homunculus (section 1.2). giv-
ing meaning to the spike train involves generating a “running commentary,”
and clearly this requires extrapolation from one spike to the next. The struc-
ture of the best decoding algorithm is really controlled by the nature of this
ngu‘ﬁpﬂlatiun. and not by the conventional input/output relation,
~In our review of input/output relations, we emphasized that any series ex-
;f.'pﬁn_s'iqn approach, like the Wiener or Volterra expansion, will work (in prac-
tice) only if we can identify some small parameter that enforees the rapid
convergence of the series. Unfortunately, for the study of encoding it is oflen
diffieult to identify such @ small parameter, But, for decoding, we hive a new
 possibility, namely that there are u small number of spikes per correlation time
- of the stimulus. Rather than trving to classify neurons as linear or nenlinear,
- we are led to ask which spike trins are linearly decodable.

Linear decodability delines a regime of neoral dynamics i which each
‘significant variation in the signal (on time scale ) triggers of order one spike
- or less. This is almost the oppusite picture from that suggested in rate coding
- models, where information must be carried in windows of tme that contain
- several spikes, enough to form a reasonable estimate of the firing rate over

'#IE window, Is there any evidence concerning the value of {rir.? We have
- reviewed the evidence that at least some systems operate in a regime where,
- under natural conditions, roughly one spike is fired for cach characteristic time
- of the signal, and we might thus expect that spike truns in such systems are
~ linearly decodable.
= - In their early upplications of white noise methods to the auditory system,
~de Boer and Kuyper (196%) emphasized the interpretation of the reverse cor-
relation function—the mean stimulus that triggers a spike—as the feature of

stimuius signal

response iraing

sparse

UL T 1L T

Figure 2.19
Estimation in sparse and dense spike trains. An important faetor determining the gu
cess of the estimation process of Fig. 2018 is the mean interval between spikes relatiy
ta the correlation time of the inpat signal. I7 the spikes are sparse, a8 in the top spil
train, the stimulus correlation time divided by the mean interval between spikes
vides u simall purameter which can be used to construct o systematic approach to
timation, a8 deseribed in more detail in the wxt 17, &5 in the lower response train,
nuimber ol spikes per correlation time becormes of order one, or bigger, this condition
nol fulfilled nnd a perurbative approach (o reconstruction is not feasible,

linearity of the encoding problem, and Fig. 2.2h is a direct demonstration thal
spike trains are linearly decodable.?

Decoding strategies depend on the correlation tme 7, of the signal in re-
lation to the typical interspike intervals, as shown schematically in Fig. 2,19,
The correlation time is the time over which one can predict the signal :
knowledge of its past behavior, When signals are filtered by the nervous sys-
tem, the correlation time can be changed. so we should think about the cor-
refation time measured after neural fillering and just before spike generation.
The accurrence of a single spike tells us something about the signal at the mo=
ment of spike generation—some voltage is equal to its threshold value. We

4. The EBineurity in Fig. 2.2h can be derived a5 a consequence of linearity in the recopstruction
whgorithm of By. 235 by wveruging botl sides of the equation sover o Hme window larger tha Ihﬁ'
spatined] by the Teatures of K050, Then the slope of the Tiee in Fig. 224 [s the average of K100
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the stimulus waveform that is signaled by the occurrence of a spike, T

- . i inalong pxperiment we can iry 1o minimize the tme average emmor, using the
much closer o the orgunism’s point of view than in the more comman =

tizh 3 . | . el ) : ‘ d of ergodicity discussed in section 2.1.3. Clearly we must be careful in this
ol white noise methods for system identification. Following these ideas, 6 o edure, because there 1s a significant chance of overfitting the kernels toa
len, Hesselmans, and Johannesma ( 1988) proposed that one could estimagp i i
stimulus waveform as in Eg. (2.25), with the kernel Ky(1) identified g5 (b
reverse correlation function, One can show that the reverse correlation f :
tiom, which is the mean stimulus wavelorm given the occurrence of a g
spike, is in fact the best estimate of the signal if all we know is that g
gle spike was fired (de Ruyter van Steveninck and Bialek 1988), and thg
linear reconstruction liller converges to the reverse correlation function in " y
limit that firing rates go o zero, as emphasized by Gabbiani and Koch (199
But. as the spikes come more frequently, the reverse correlation functions
tered on successive spikes overlap and can provide conflicting estimates o
stimulus (Fig, 2,30 The carrect resolution of these conflicts requires tha
attach measures of confidence to the different estimates; this 15 accomplish
by measuring the relevant probability distributions 2501313 ], as desenb
insection 2.2.3. It is a remarkable fact that, at least in the study of model ne
rons, one again arrives al an optimal estimator of the form of Eg. (2.25)
now the kernel Kyi1) is determined not only by the filter characteristics of
newron (the reverse correlation function) but also by the characteristics of the
stimulus ensemble,

LS
Jimited data set.
What should we use as an error function? If we choose a quadratic error

function, such as the mean square crror, we can mike considerable analytical
i "rti;'pgmﬁf- in determining the best kernels. Thus we consider error functions of

r ﬂlﬁ ﬁJl'm
¥ Efs(): sea 0] = {1840) = sesel) P Gls(0)]}, {2.37}

]
where the average {---} is over the repeated examples of the stimulus from

the distribution Pls]. and G[s] is a positive functional of 5 {e.g. Gls]=
1,151 5%, - . .. We begin by choosing G[s] = 1. so that £ is the convenlional
ﬁiu_aan SELCE ST, OF ;(3. hepween the stimulus and the estimate. Other choices
 of G will impose heavier penalties for errors al large values of the stimulus: in
section 2.3.3 we discuss how different metrics affect our decoding strategies.

'A second issue in choosing the estimation kernels is causulity. The moti-
vation for this particular approach to studying the neural code came largely
ﬁpm thinking about what information is available to the organism, or tw our
homunculus, from a single example of the spike train. To extract this informa-
tion in real time—not by recording the spike train on tape and coming back
the next day o analyze i—our estimation strategy must be causal. Causal-
ity tells us that 4 spike cannot influence our estimate of the stmulus until the
spike has occurred; tis means that the kernels must be zero for negative times,
Bz, Kyt < () = 1. Cavsality does nor, however, mean thal 4 spike which oc-
curred in the past cannot influence our present estimate of the stimulus: if the
stimulus has a finite correlation tme, knowledge ol the recent history of the
stimulus can contribute to the present estimate. There is also a strict causud
relation between the stimulus and the spike times, in that a spike occurring
al r =1 is generated only by the preceding stimulus, sir < (h. But now we
have a problen: A spike influences our estimate of the stimulus only after
the spike occurs, but the stimulus influences the generation of the spike only
before the spike occurs. The way out of this problem is 10 accept a delay in
the estimation. Causal estimation necessarily introduces delays: the magnitude
of the delay depends on the structure of the code, a point to which we will
returmn.

We now have a well posed mathematical problem: find the kernels £, thal
minimize the error measure in Eq. (2.37), while obeying the constraint of

2.3.2  Anexperimental strategy
Wi have formulated the problem of reading the neural code as the construction |
of a (generally nonlinear) filter that takes the spikes as input and produces
estinmile of the sensory stimulus, as in Eg. (2.26), In the context of mo cls
for the spike initiation process, this filler can be reluted 1o the paramelers
the model, but we do not want to take such details of the models too sedious
Instead we want 1o take the general idea ol decoding and use it as a wol for
design and analysis of experiments, Thus we would like to find an empiri
approach to choosing the kernels K (23, Kait. '), - -, given the experimentil
stimulus () and the measured spike times (4] [

In the analysis of model neurons, the kernels were computed (for exd
plet as those that minimize the mean squarg error between the estimate @
the true stimulus wavelorm, More generally, we choose some error funct
EL501), seq ()] that determines how well our estimate deseribes the stimul
We can then vary the kemnels | K, ] to minimize £, Ideally we want 1o m
mize the expectation value of the error measure in the stimulis ensembles BUE
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causality, This {5 rather like trving 1o make o least squares it of some
tonal relation between two variables, Here the two variables are a b
complex, since they represent the spike train and 2 comtinuous fupey
t[me but the idea is the same. All u;r!' the muihﬂm;tiical details are givem

pru*..f::lun. m:ghl et srugl{" in lecal minima nf th LITO MEasure, not ﬁn
the true best fit, or that the best fit itself may be (oo sensitive 16 nojse in
observed data, In the experiments we review here, there are several ¢of
stances working in our favor to help us avoid these problems. First, the s ot
measure £ is quadratic in the kermels K, which means that the oplimizati
of the filters is not a complex problem and there are no local minima. Se
the data sets for these experiments are quile large, consising in some cases
1F spikes. Finally, as an added precaution, we can learn the filters on the by
of the experimental data and then test the quality of the estimates on seeti
of data that did not contribute to the filter calculation, so we cannot “overfif®
the details of one data set and fool ourselves about the quality of the resultiy 7
reconsiruciions., 3

In the case of the HI cell, we do have one more problem with any attempt
to reconstruct the: velocity waveform. as explained in connection with B
2.16. Because HI is selective for the direction of motion, it has a much lare
dynamic range for the encoding of positive (back o front across the e
motion than for negative velocities. We expect that velocity estimates ba
on the output of this one cell will be biased, or at least will have errors with &
magnitude that depends strongly on the sign of the stimulus,

The fly solves the problem of asymmetric coding by having two HI cells,
one an each side of the head, that are stimulated in antagonism when the
makes rigid rotational motions. 11 would appear that the two cells are identics
cxcept for the sign of their direction selectivity—both are excited by back
front mation, but on one side of the head this is Jeft to right and on the ©
side it is right to left. One can create an experimental simulation of this efl
by recording the response of ane H1 cell to the velocity stimulus s{7), anc
the stimulus —s(7) during a different part of the experiment. We then imaging
that the responses (o #(¢) and to — (1) correspond to the respanses of two cells
one with positive and one with negative direction selectivity.

Information coded in the spike trains corresponding to the two polaritie
the stimulus can be combined to give a reconstruction based on two *virtu
neurons. Since the two virtual cells are identical except for the sign of their
rection selectivity, we insist that the equations for the reconstructed wavef@
be (antidsymmetric in the two spike trains:

Reading the code

se®) = 3 [ Ka(e =1y = Kyt = 1)
.-
| +Z["ﬂ“—ﬂ-’-r — iy = Kale =170 =1 :]
1

+ Y K=t =) e
%)

(2.38)

 where [; band (1 | are the spike necurrence tmes in the fesponse 0 s () and

_3.[;} respectively. K is a second kernel with contributions from one spike.

" frnm ench virtual neoron, which means that we allow (lor example) coincident

firing of the two cells to have special significance.

“We emphasize that this picture of two virteal neurons is not essential 1o the
idea of stimulus reconstruction. It is included here largely because this is how
th: original experiments (Bialek et al. 1990, 1991) were analyzed. Similar
arguments were made in the analysis of motion discrimination by cells in
monkey cortical area MT {Britten et al. 1992), as discussed in section 4.1.4.
In each case it would be more sutis{ying fo have an analysis based directly on
simultaneous recordings from cells with opposite direction selectivity, bt we
i}iink that noue of the conclusions from either the fly or the monkey work will
change significantly once this 1s done.

ative features of a first test

Here we explore some of the qualitative features of the H1 experiments, which
were the first test of the decoding strategies described in the previous section
-;‘,;Bialek et al. 1990, 1991, The linear filters & {1) obtained in this experiment
are shown in Fig. 2.20a, and the reconstructions using these filters are shown
in Fig. 2.20¢. We see that the optimal filters integrate over lime intervals on
the order of 30-40 ms. Since hehavioral decision times in the lly are also
on the order of 30 ms. the structure of the code appears to be well marched
10 the behavioral decision making process. Very few spikes contribute to the
reconstruction at any given time—which we have emphasized must he true
from the behavioral data,

Another way of measuring the width of the filter is to note that it signifi-
cantly attenuates [requencies greater than 25 Hz. This has a number of conse-
quences: First, we expect that the signal W ooise ratio of the reconstructions
will peak at frequencies below 25 Hz. Second, we may be systematically un-
#ﬂl‘ﬁﬁtilmting the stimulus at high frequencies. Finally, the code should be
I'E'lﬂl.i\-'e!y robust to timing errors on the order of a few milliseconds, becouse
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such errors will introduce only high frequency noise in the spike train, and
high frequency noise will he attenvated by the filter Ky(z).

As discussed in section 2.3.1, there are theoretical reasons for believing
that the reconstruction series, g, (2.3.2), should be dominated hy the first
term or the first few terms. Furthermore, this linearity of reconstruction 1§
distinct from linearity of response. To test these ideas, we first determine that
H1 is nat simply responding linearly to the variations in angular veloeity. In
Fig. 2.21 we show the firing rate s a function of time (as in Fig, 2.1), and
we compare this rate with the predictions from filtering the stimolus through

23 Reading the code

Figure 2.20

Eatimation for H| experinient. Estimation filters are shown in (a). The noisier trace is
thie cstimation filter colenlated directly from the stimulus and spike train, The filter bas
heen shified by 40 ms o produce o cousal estimation procedure. The smoath trace is
the estimation filter caleulated by expansion in g basis set of causal funetions with un

eqtimation delay of 40 ms, Details of each caleulation are deseribed i the text and
seetion A8, Spike responsés toou short section of the stimulus (dashed lime o (el)

are shown in (b upward spikes are responses (o this stimulus. Downwand spikes are
responses 1o the same stimulus, but with o change of sign ol the velocity, As there

Care two H1 cells tone for cach eye) with murtor symmetric directional selectivities,

the sign fAipped stimulus induees o response i HI typrcal for the contralieral HI

el when stimulated with the eniginal veloony waveform, We use both spike trains in

the reconsiruction to symmetrize the procedure, approximating the movement signal
seen by the comirulateral HI cell, The estimate (solid lne in fe)) is constructed by
convalving the filter in figure (a) (in this case the acausal dhitted Alter) with the spike
(ruins, Stimulus and estimate hive been smoothed with a Guoussian filter with a standard
deviation ol 3 ms,

the first Wiener kernel. The true rate exhibits much larger and more rapid
variations than expected from the linear madel, This corresponds o the fact
that individual spikes or small clusters of spikes are produced at rather precise
times in relation to particular variations of the stimulus waveform, so that the
Guussian distribution of input signals is transformed into @ very nonCraussian
distribution of rates rit). The crucial point for vur discussion, however, is thit
the experiment probes HI with stimuli that drive it out of the linear response
regime.

Given that H1 is responding nonlinearly. can we decode the spikes with o
linear filter? Syslematic errars in the reconstructions, especially at high veloe-
ities, would indicate that nonlinear terms maght be important. One check for
systemuatic errors is 10 plot the average stimulus given a particular value of the
reconstruction against the recanstruction vilue itself. Saturation effects should
show up i this plot as deviations from a straight line at high stimulus levels,
In Fig. 2.22 we see that these effects do not accur,

Ancther way of checking the suceess of linear reconstruction is o add in
the next terms of the expansion in Eq. (2.26), ostensibly to see if these addi-
tional terms improve the quality of the reconstruction (Ricke 1991 The short
answer is that the inclusion of nonlinearities does not make a statistically sig-
nificant change in x°. But perhaps » 7 is too crude a measure of the quality
of the reconstruction, and nonfinear terms may make @ more subtle difference.
In section 3.2.3 we discuss a more complete method of analyzing the qual-
ity of reconstructions, defining an effective noise level at cach frequency. This
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Figure 2.21
Stimulus, firing rate, snd first order estimate of rte from HI experiment. Panel (2}
shows a short section of the angular velocity stimulus. This stimulus was repeated oo
times, producing 100 spike responses, twioof which are shown in (k). From these spike
responses we mesgsure the time dependent firing rote {dashed line in (c)), as in Fig: 2.1
The solid line in {c) shows the predicted finng mme from the ficst tenm in the Wienet
expansion. The frst order estimate of the rate captures the slow modulations in firing
rite, bt fails to capture fase moslulstions in the rate.

23 Reading the code

T

Figure 2.22
Avernge stimulus conditional npon the estimate plotted as a function of the valoe of

the estimpte, for the reconstruction in Fig. 220, Systematic crrors in the estimote (es-

pecially saturation effects) should show up as deviations from a straight fine. The lack.

of such deviations suggests that nonlinear terms do not contribute significantly to the
estimation process,

effective noise level also does nat seem to be improved by adding nonlinear
terms to the reconstruction procedure, and wi shall see that over a range of [re-
quencies this noise level approaches the limit imposed by the signal and noise
properties of the photoreceptor inputs to the metion computation (seetion 4.3).
We will be uble to muke a similar argoment 1o the analysis of primary sensory
neurons, where it turns out that the information (in bits) provided by the linear
reconsiruction approaches the physical limits imposed by the statistics of the
spike train itsclf (section 3.3), In both ol these cases there is a regime in which
the linewr reconstructions are as good as possible, so they could not. even in
principle, be improved significantly by the addition of nonlinear terms,

The fly is faced with an interesting dilemma, perhaps typical of sensory
signal processing. Behavioral considerations push for short decision times,
but short times mean that the system is more susceptible 1o noise at each
stage of processing. To explore the relation between reliability and decision
times, one can find the causal reconstruction at various delay times, To test the
quality of these different reconstructions, we calculate the crosscorrelation of
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Figure 2,23
Normalized crosscorrelaion berween sumulus and reconstruction for various delays;
also shown is the sutocorrelation of the stimulus ccurve S)owhich has heen smoothed:
with a Gaussian filter with 5 ms standard deviation. The crosscorrelations shown dre
for stimulus estimates with delays of 10 ms (a), 20 ms (b), 30 ms fe), 40 ms (d), 50 m§
(ed, 60 ms (£, and 70 ms (21, The erosseomrelation increases lor defays between 10 and!
400 ris. Further increases in the deloy have minimal effect on the crosscorelation,

the reconstructions with the stimulus, as shown in Fig. 2.23, For a delay of
10 ms. close to the intrinsic delay for phototransduction, the reconstruction IF
almost uncorrelated with the stimulus. For delays in the range of 10—4() ms, the.
reconstruction improves with increasing delay. This improvement saturates for
delays greater than 40 ms, close t the behavioral reaction time of 30 ms: The
structure of the code and the behavioral decision times are quite well matched.

We have been describing the response of M1 in a simplified world where
omly the angular velocity varies in Gme, In fact, the firing rate in response 18 a
given velocity wavelorm depends on the spatinl structure of the patterns pres
sented 10 the fly, so that there appears (o be ambiguity among several stimulus
variables—velocity. contrast, and spatial {requency in the case of grating stim-
uli. In addition, the response of H1 adapts 1o the velocity wavefarm itself, 50
that the encoding of velocities will depend on the ensemble from which the
signals are chosen:

23 Reading the code

We have already seen that in a staristically stationary spatial environment,
ambiguities in the response of H1 do not impede the estimation of the velocily
waveform. What happens when we change the spatial environment? This was
explored in the analysis of two preliminary data sets (Ricke 1991). In the first
case the stationary random pattern was replaced by a single vertical siripe. In
the second case the random character of the pattern is retained, but the effec-
tive contrast seen by the photoreceptors is increased by an order of magnitude.
As expected for a wide field movement sensor, HI does not code a single wide
stripe as well as it does a whole field of stripes. We also expect that the preci-
sion of velocity estimation in a field of random stripes should be improved by
i.ncre:u-'.mg the effective contrast, and this is phserved, The theoretical signili-
cance of these variations in precision is considered in section 4.3.3. Although
quantitative differences among the reconsiructions are clear, no qualitative dif-
ferences are seen among the codes in these different stimulus ensembles. In
ench case it proves possible to reconstruct the stimulus by linear filtering of
the spike train, the inclusion of nonlinear terms in the reconstruction does not
have a significant effect, and the decoding filters themselves are remarkably
similar. Although the issue remains to be explored more systematically, these
results provide a hint that the strategy for reading the code in H1 may have a
substantial degree of invariance with respect to changes in the parameters if
the stimulus ensemble.

Another way in which decoding strategies might change is if we deliber-
ately emphasize different aspects of the signal. In our discussion of coding

thus far, we have chosen filters that minimize the mean square error, so that
“ll aspects of the stimulus are weighted equally. Whart if we are especially in-

terested in accurate estimates al large velocities? Once again, we need 1o know
the structure of the prabability distribution PLs(7){t;}: If the distribotion has

o single well defined peak, our choice of metric should not influence the de-

coding strategies dramatically, On the other hand, consider a cell that responds
identically 1o two different stimuli. In this case the best decoding surategy will
depend on the a prior probahilities for the two stimuli and on the cost of mak-
ing mistakes in estimating these stimuli. Depending on the metric, we miy
form an estimate of the stimulus corresponding to one peak of the distribution
Pls(x)){51], or w the other peak, or to some compromise in between.

We return to our error measure in Ey. (2.37), and carry through the calcula-
tions of the linear kernel & for different functionals Gls | Figure 2,24 shows
linear reconstruction filiers calculated using Gls] = 5% and Gis| = 5| for the
H1 experiments; both cases provide heavier penalties for errors at times when
the signal is large. Aside from an overall scaling, the filters for these different
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Estimation flters calculated for different metrivs. Filters were caleulated using

power series approach (see section A8 2) with o delay of 4 ms. In cach cose the em:;
function £ defined in Equation 2,37 was changed: the solid line is for G[s] =1, in
which case i l.h1. miean squire eror, the dashed line is for G5 ] = |5}, and the donet
line for G[s] =57, The struciure of the filtees is samilar, with the exceplion nfns:nﬁla
laetor,

metries have essentially the same shape, We do nol see o dramatic shift in the
decoding strategies for these different metrics. _

These first experiments on H1 strongly suggest that the strategy of linear
decoding works, and that at least for this system we are very close to giving
the miles that must be followed by the homunculus, We would like o know !f
these rules have some genendity, and we need 1o develop wols for quanl.:i'yu_l_g.:
the performance of the homunculus who follows these rules. As things stand,
it might be that a mere complex set of decoding rules would extract much
more information froan the spike train, It does seem true, however, that the
problem of decoding the spike train is very differeni from that of describing
the encoding, as first hinted in Fig. 2.2h, and that the decoding problem hﬂ.ﬁ
the chance of being salvable even under conditions where the encoding is very
nonlinear.

We have proposed an approach o neural coding that centers on understand=
ing what an animal can infer ubout the sensory environment from its 0w
neural signals, and on how this information can be extracted from the neyd=

Q;A Summary

ral responses, This is the problem that must he solved by the homunculus, but
it is also the type of problem that must be solved by the organism. We have

~ seen how many different experimental approaches to the neural code can be

fitinto a general probabilistic framework, and we have seen the crucial role of
Bayes' rule in relating differcnt points of view on the code and in estahlishing
the context dependence of the code.

The problem of interpreting spike trains seems (0 have & simple solation, in
that it is possible w estimate directly the wavelorm of unknown stimuli from
ohservations of a single spike train. The somewhat vague “running commen-
mq,;‘ we had hoped o receive from the homunculus is replaced by a quanti-
tative reconstruction of time varying signals in the sensory environment, The
estimation procedure itself is very simple, consisting, m essence, of an appro-
;jﬁriatcly chosen linear filter, Although the detuils of this filter are probably not
important, its structure allows us to see how the neural code is maiched to be-
havior and also hints at the robustness of the code with respect 10 naise or
wvarations in the importance of different stimulus feaures, Having seen that
the organism’s point of view can be pushed to its logical conclusion, we return
to the more quantitative 1ssues that motivated us in the introduction,




~ In this chapter we try o quantify the information that sensory neurons convey
- - about the outside world, The framework for this underaking is provided by
: Ehnnnnn < information theorv, Although there is a long history of information
bt - m:nrem. analyses in neurohiology, there is also an undercurrent of concern
.thut the fundamental concepts of information theory are inappropriate for hi-
nlng}* Thus, our liest task is to understand how information theory allows us
10 pose mathematically precise questions about the function ol the nervous
p}'st:m This discussion highlights the problem of understanding the ensemble
from which sensory stimuli are drawn in the natural environment. Information
theory also places limits on what 1s possible for any neursl code, in the same
way that the physics of diffraction places limits on what is possible for any
i _imag[ng system, We then tum to experiments that aim at a direct measurement
of information transmission by sensory neurons, exploring the coneeptual and
technical difficulties of such measuremems, Finally we show how the recon-
- struction methods introduced in chapter 2 allow us to place a lower hound on
the rate of neural information transmission in a complex sensory environment.
This leads us to new experiments on information transmission in primary sen-
sory neurons, 1o the demonstration that (at least in one case) more fatural
stimuli are eoded more efficiently, and to the intnguing result that these neu-
tons come close to the optimal performance allowed by information theory.

INFORMATION THEORY?

When we observe the spike train of a sensory neuron we learn, in principle,
dbout many diflerent aspects of the stimulus. Colloguially, we say that we
are “gaining information”™ about the sensory stimulus, or that the spike train
is “transmitting information.” We would like 10 make these intuttive notions
‘more precise. Part of the difficulty is the multidimensional character of nat-
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L2 Chuantifying information Iransmission
ural signals: A frog call, for example, can be described by ils fundame
frequency. hy the amplitudes and phases of the different harmonics, and
the shape of the envelope, One auditory neuron might tell us a great deal 5 L m'stnbulronllof ﬂg‘iﬁer &
one of these parameters, or perhaps a little bitabout all of them, I we ol ;jﬂfﬁigﬁm
each parameter, we can do discrimination experiments analogous to thoge i
psychophysics, as will be described in chapter 4. but in the real world signg _
are varying continuously along all dimensions at once. Neurons are nonline ;gf;r[rj:nfrar 8z
and adaptive, so that the encoding of ane stimulus dimension is not indep
dent of the context prowided by variations in all the other dimensions, How dg Wﬁé sh:;::_rlus
we characterize the system's performance under natural conditions? 1s thege i
quantitative measure of neural performance under these conditions analogon \
to the psychophysical discrimination threshold? Answers (o these fuestions. accessible region
for aif stimuwlf in FIS]
are provided, at least in part, by information theory, Information theory. -
only quantifics our intuitive notions of gaining information; it also puts i Flgm'l! a1
formation on an absolute scale, so that we can make meaningful state i themulu. representation of stimulus space. Consider stimuli which are described by
about whether the information transmission rate in & particular neuron is larg ; two parameters, §) and Sz, Prior 1o observation of the spike train we know the distribu-
or simall. ] ,__.ﬂm of stimuli, P[5], deseribed by the box, Upon observation of o particular spike train
4] the stimulus distribution is n:r.lm.;cﬂ _I'mm. f’i-'i_l (b ) 10 PLSHmT (gray 1"531[‘_’;]-
3.1.1 Eﬂt]‘ﬂp}' and available information i mpif!;:‘:lii:;:]l .;::[1'[:1:11::jftrl:l-;;f]ln[r::_zu::;-ruh I OUr estimate, ¢, maxmen ke

We can think about information transmission by sensory neurons in terms of
the schematic in Fig, 3.1. Before we observe any spikes, we know that not nl,I
stimuli are equally likely, but rather that signals in the real world have stro i
and limitations; we indicate this by skeiching a region in the stimulus spa
from which signals are likely to be chosen, When we observe the spike tra
the range of possible stimulus waveforms is narrowed into a smaller regi
of the stimulus space, as described in the discussion of response-conditio
ensembles in section 2.2.3, The information provided by the spikes about the
stimulus measures this reduction on a logarithmic scale, so that a reduction
by @ factor of two in the range of possible stimuli is counted a$ one bit of
information. For example, imagine that frogs call with fundamental frequen-
cies scatlered uniformly throughout o 50 Hz range, and that observation of th
spike train of a single cell allows vs to determine this frequency with a preci-
sion of 5 He. In this case we gain log,(50/5) ~ 3.3 bits of information.

To muke these ideas more precise, we review some of the key points m'
Shannon's formulation of information theory (Shannon 1948, 1949), We e
interested in cases where we observe some “output”™ ¥ and are trying to gain
information about the “input” X (Fig. 3.2). In practice, X is a sensory signal
which is described as a function of time, und ¥ is a set of spike arnval times.
The device we are trying to characterize is a communication chanpel—we ¢

Infarmation
souwe  Transmittar Aecalver  Dastinalion
- e =
Signal 3 Received
Mussags wgnaf Messags
Noise
Source
Figure 3.2

Shannon's commumcation systeni. The information source selecls o particolar message
out of u set of possible messages. The transmitter changes this message into the signal
which is sent over the communication channel o the receiver. The receiver converls
the transmitted sipnal bick into the message. In the process of being transmitted, unin-
tended noise is added 1o the signal. Redrawn from Shannon (1948),
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ar ensemble, of images, Monetheless, one aften refers in thermodynamics 1o the “entropy of

Croantifving inforntion mwansmissien

think of the outside world as sending us the message X, which we
encoded as the outpu ¥,

Under some set of natural or experimental conditions, input signal
chasen from a probahility distribution PLX|. Before considering info
transmission we need to characlerize how much information is availahle
distribution £| X is sa sharply peaked that only one value of the input v
1 possible, then no information (in the colloquial sense) can be transmi,
the message is always the same. To quantily the available 'ml'urmutinn, A
need o measure the variability allowed by the distnbution P[X]. Similyr
il the output ¥ is always the same, there can be no information Erinsmy
so we need @ measure of variahility for the output variable as well, The
propridte measure of variability or “available information” is the enrrop
same quantity defined in thermodynamics and statistical mechanics,

Any reasonable measure of variability must obey a significant constrai
namely additivity Tor independent variables. Suppose that the inputs X
deseribed by two statistically independent variables X and Xa. Statistical
independence means that the probability of observing a particular value
X2 does not depend in any way on the value of X, Formally this impli
that the probability of observing particular values for hoth X and X3 is
the product of the probabilities of observing Xy and X individually, th
PLX Xzl = PIEX P2 X2 Our intuition says that we can express a cerlain
amount of information about the world by giving a particular value for Xy,
and similarly for Xz, This “amount of information,” which we call the entr
§. depends on the probability distributions, so symbolically! we can
SUPLX ) Tor the amount of information available [rom observations of .ﬁ5 !
and S{P|X4]} for the mformation aviilable from observations of Xo. But
Xy and Xz are completely independent, then, if we are told values for bork X
and X7, the information from each vanable should just add to give the total
information available,

The addnivity of information means that for any distribution of N indepen-
dent variables,

PIX1 Xz Xl = PiLX P2 Xal - Pa[X v, @1

I We use this nacition e emphisize that the entrogpy 15 a property of a prohability distributio ,_
Thus the "entropy of an image”™ is aof defined; we cin speak only of the entropy of 1 distribu

gus"—presumally becanse saying fhe “entrupy ol the probability distribution from which thes
veloeites of the malecules in this sample of gas huve Been drawn 15 1oo cembersome. [n a S-{I'J_i =
ven we will later refer to the entcopy of X, wnd we will write ik 45 $].% |, We trust the repdets
will forgive oy for not writing §[P[X]] every time;

a1 Why information theory?

‘must be able to define the entropy of each individual distribution £;[X;]
A ‘add up the results to give the entropy of the full distnbution;
S{PIX1, X2oees Xall=S{PIX 1) + S{PlXalb + -
+ 5Pyl X ) {3.2)

‘Roughly speaking. if we want to convert a product of distributions as in Eq.

1) into the sum of entropies in Eq. 3.2y, the cntropy must behave like

_ the logarithm of the distribution. Shannon (1945) gi»:es ul rilgv:_:nmus ‘ﬂ?lrsiun
f..if this argument and shows that the only measure of variability consistent
fﬂ[h certain simple requirements (including additivity) 1s exactly the rmru?:y
‘rﬁiﬂ'ﬂulmmnnn defined for statistical mechanics. This 15 a beautiful and quite
. remarkable confluence af ideas.*

i The intuitive notion of entropy is that it is the logarithm of the number of
~ possible states the system can oceupy. Thus, if X is a discrete variable, s ltlmr
aiﬁdﬁn only have values 1y 13, xy. and each of the K values occurs with

equal probability, the entropy is § o log K. It we still have K possible values,
i:';ut they occur with wiegual probabilities (some values are more likely than
pthers), then the entropy 15

x -
S=—=k Z pi log iy, (3.3}
1=l
where p; is the probability of observing the " possible value and & is @
constant. This expression has a natural generalization to the case where v has
a continuous range of values, so we have i prabability distribution function
P(x) rather than a discrete set of probabilities. In this continuous case,

§=—k f drPx) log Plx). (3.4

2. We dlert the redder W some notational difficulties. In the engineesing and informution teory
fiteratures it is common o use the symhol 4 ta denote entropy. But in thermudynamics H s
somerimes the enthalpy, of the expectation value of the enerny, and the enerEy '_;Ltwcd a5 B
Aunotion of the system coondinates is always the Hamiltonuan /. Since the distinction b'.l:’lwten
enery and entropy is erucial, we connot bring ourselves to offend the ghosts _uI' Bolizmann,
“Hamilton, and Helmboltz by using # for the entropy. The enthalpy may alse be writen as L2 s
the volume, and Z is the pariition function, £ anid {2 are the momentum and position of & particle,
Risthe gas constant, and of course T s temperatire. W35 the number of ways of conliguring
our system (the number of states), and we have to keep ¥ and ¥ in case we need more vanables.
Gioing back 1o the first holf of the alphabet, A, F, and G are oll different Kinds of fres energies
(the Jast numed for Gibhs). 8 is @ viral coelticient or @ mugnetic field, © is the specilic hept, 2 s
Ahe electric displicement in s diclecine, und £ s the elearic field. £ will be used us wsymbal fh'-“
information; § and [ are angular momenta, K 15 Kelvin, which is the proper unit of 7. M s the
magnetiztinn, and A i s number, possibly Avogadros, and € i too sasily confused with i) This
leaves §, which must be the entropy,
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There are alse generalizations te the case where the varable X i itsalf
function. such us the waveform of sound pressure versus time in the aud
system or light intensity as a function of position on the retina; this noti
of random functions (as opposed to random variables) is discussed
tion 3.1 4. We can combine all these cases into-a shorthand notation,

S=—4k f[dX]Pl X]log PLX],

where [[dX] stands for a summation over any discrete variubles, inte _
aver all continuous variables, and functional integration in those cuses whe
the variables X define continuous tunctions in space or tme.

In thermodynamics it is conventional to choose a constant k (Boltzm
constant) with units such that the product of the entropy and the absolu
temperature is an energy, although this is not essential. In information the 0
all interesting measures are dimensionless, so & is a pure number that ¢
climinated by choosing the base of the logarithm.” The convention is 1o ¢
logarithms 1o the base two,

— /'[d;!r]PLXJJug: PLX].

and the resulting quantities of entropy or information are called birs, One bit i
enough information o choose between two equally likely altematives. Ag
in the simple case of discrete vanables this becomes [see Eq. (3.3)]

K
= Z Pilogs py bits, {3_

|

If all the K different signals ure equally likely, then p; = | /K, and

%
~ Y pilogy py

i=

S

]

.9
=3 (1K) loga (1K)
1=

=log; K.

But this is just the number of digits that we nesd to write K as a binary

Fo

number, and this digital representation is illustrated in Fig. 3.3, Corresponding

s

A, We recall thm logorithms in different bases are related 10 cach other by constent thﬂﬂﬁ;':@
particulur, we miske frequent wse of the connection betweed the logarithm o the base twe tod e
natural logasithm—for any number &, Jog; v =Inx/in 2,

1 ¢ dv &

Why information theory™
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Figure 3.3
.Eﬁiinding numbers in o digital code, Probably the most popular code used by p.r,ﬂph:
~ordering drinks is one in which only the wal number of raised digits carries the infor-
“mation, In this code, one hasid can carry log, (6] = 2,534 bits of information (1 included,
but non appreciated by any waiter). If we imagine the fingees to be Ume bins i i dlh-l
retization of the spike train, with finger up (down) denoting the presence (ahsence) of
a4spike, then this conventional “bar code” is equivalent o 4 “rate code™—only the total
“number of spikes in the five bins, and not their temporal sequence, cardes information,
‘But, as the figure mukes clear, il we keep track of “timing" and allow the pasition of
eiich finger 1o carry information, then one hand gan convey 2% = 37 distinet messages,
or'3 bits of information. This finger code has a greater capacity for carrying imiorma-
“Hon, but the bar code 3s more robust as the message is, for example, invariant o heing
viewed in a mirror. This robusmess derives from the redundancy of the code. since one
‘number may be represented by several combimations of nger positions, One could also
imagine neural codes in which particular patterns of spikes—represented here as pir-
ticular finger configurations—are cndowed with special significance.
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{0 our intuitive ideas, the larger the number of possible signals (K), the 13

the entropy, and the measure s lezarithimic, ]
The Gaussian distribution provides a simple example for the case of contins

uous variables. Thus, if the average or mean value of x is M and the varianpg

‘¢ rr2. then the probubility distribution is given hy

(x — M)?

3
2a-

exp | —

Plx) = .
2o

Substituting into Eq, (3.4), we lind the entropy ol the distribution (with details

in section A9

§ = - log,(2mea”) bits.

b | et

ussian distribution illustrates threg
ariance but not on the m
aartability, and the v

This expression for the entropy of a Ga
portant points. First, the entropy depends on the v
This mukes sense because the entropy is 4 measure of ¥
ability clearly does not depend on the meun. More fundamentally, the value
the mean is dependent on how we choose the point + = (), and this arbi
choice should not change our notion of available information. This is the
hint that information theoretic quintities need o have certain invariances
respect to changes in parameterization of the signals.
The secand imporiant point about Eg. (3.10) is that if we double the

of the distribution, so that the standard deviation 15 increased by a factor
twir (o — 2a ). then the entropy goes up by exactly one hit. Again this

hecause entropy is a logarithmic measure, s that differences in enlropy GO

the factor by which the range of possible v values has heen increased O

decreased. as in the example of the lrog call given at the beginning of

section.

The final point about the entropy of a Gaussian distribution is that it 1o
i bil funny, because we ar supposed o take the lagarithm of the var
2. But because the variable ¥ is a physical quantity. it has units—milliVo
perhaps—so the varanee has units (millivolts)?, We know what we meail
by the logarithm of a number. but what do we mean by the logarithm.
milliVolts? Worse, if we choose To measure in Volts instead of millivolts,
numerical value of & will change by a factor of L0F, and it would seem
the entropy of the voltage distribution would change by logs(107), or 10 b1
Of course no real physical quantity can depend on our choice of units,

something is wrong.

3] Why information theory!!

The problem with measuring the entropy of continuous variables is that the
“pumber of possible states™ is infinite. I we agree that voltage (o continue the
y E_;_;'amplc} is measured only wa resohnion of AV milliVolts then we can take
' the continuous voltage variuble and place it in discrete bins of size AV, But
with discrete variables we can go back and recompute the entropy using Eq.

L (33). and as long as AV is very small (much smaller than a ), we find that

(300

-':'_[‘1115 is almost the samie answer as in Eg. (3010, but now the voltage vanance
I},{l normalized by the resolution of our measurements, The quantity inside the
Jogarithm no longer has units (it 15 dimensionless), and so0 the entropy doesn’t

s wld conclude that the entropy for continuous variables is not guite well
:d_gﬁned, but it can be defined if we remember that measurements alwuys have
4 finite precision,

Squusr: that, instead of asking for the entropy of a distribution, we ask for
the difference in entropy between two Gaussian distributions that have dilter-

~ent variances, say o and oz We assume that when we make measurements

~our resolution AV is the sume in both cases. Then we can use Eg. (3015 o

- Eq {3.10) to compute the entropy of each distribution, and then take the dif-
:fr,_'.:;'ence, to find A5 = log, (7 /o2) bits. Again this shows us that if the standard

Eﬂf‘ﬂali::ln changes by a fuctor of two, the entropy changes by exactly one bit.
.._Mcrru il:npurt:!nﬂ}', we see that entropy differences are always well defined
even without an explicit himit on measurement precision. This is impnn:;n;
I-bﬂcaus? it will trn out tiat information transmission is measured by an en-
l.l'ﬂpy differcnce. We have loosely equated “well defined™ with “indﬁ';p::ndenl
}_ﬂ?.!ﬂur system ol units,” and in fact this can be made more ngorous: Entropy
'.!:ilfﬁlimr{r:es are independent of any reparameterization as long as the reparam-
.Eif:rlznunn is invertible, We can shulfle the lubels on the Rigna.ln all we want—
a4 long s the labels remain unigque-—and the entropy differences will nut
change,
. jI'he problems we encounter in defining entropy for continuous variables
-_ﬂmﬁl‘&lmudy _'m the original physics context for these concepts. In classical me-
::T:;:;cp;l::‘jles. can take on a cnntinun_u:? runge ol positions and velocities,
Ll : natural scale for the precision of measurements. Correspond-
ingly, the absolute entropy s i1l defined. although again entropy differences
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are perfectly sensible. This is fine, because one can observe only entrop
ferences (or the associated heat Aows), not absolute entropies. In qu
mechanics Planck’s constant provides o natural seale for the ranges “ff'ﬂH
und momentum, and absolute entropy becomes meaningful as a deserip
of the degree of order or randomness in the system. As Planck's constan
comes small compared to typical motions of the system, all observable g
tities, such as entropy differences, approach those caleulated in the clasgjea
theory. The point of this digression is that the difficultics of defining entrom,
are not unigue o Shannon’s application of the concept and that these diff
ties do not in any way impede the correet caleulation of observable quantit
such as heat flow or information transfer,

To return o our discussion ol entropy as a measure of available informa
we see that the entropy of an ensemble of signals depends on the nun
of different possible signals, not on the complexity of the individual 5
themselves, As an extreme example, imagine that we call a friend on
phone and pive a dramatic reading of either Macheth or Hamler. Tt i;'.
to imagine that large amounts of information are being conveyed. But if
friend knows in advance that we will be reading one of two plays, then al
need 1o tell her is which one. This is just one it of information, nowhere n
the naive or colloquial “information content” of the teats. As an alternati
imagine that all possible signals are stored on u large hard disk, If there
K possible signals, then each signal has a unigue address that is logy K bits
long. To specify a signal we need o give its address, not the full contents o
the comresponding sector an the disk. The entropy of the ensemble of signa
the length of the addresses, not the capacity of the disk.

These examples point out that informaton theory makes sense only in sits

uations where the “receiver” of signals knows the full range of possibiliti
In a simple case, this means that we are trying to transmit one of K possib
signuls, und the receiver has a list of these signals. 1t doesn't make sense
analyze the information transmitted in Morse code unless we assume that
recever knows that we are using Morse code, and hence that the elements
symibiols are dots and dashes, At a more advanced level. successive symbols
are usuully not independent—only certain combinations of dots und dash
form leters, certuin combinations of letters are much more likely 0 form
words, and 50 on. Again, the “available information™ is well defined only if}
assume thut the receiver of these signals konows about this statistical struch
in the bit stream. _

To make these ideas precise, we say that the entropy measures the info '
tion available by observing a particular signal chosen from a gnown distnt!

3.1 Why infarmation theory!

. Shannon developed information theory (and we will use i) primurily Lo
,ﬂ@]'.with situations where informution is being transmitted continuously over
"img times. In such a case we can imagine that anything we need to know aboul
! ﬁgdis_!rihutiau al signals is agreed upon at the outset, and that at long times
1 _i]{j;:has no effect on the steady stue rare of informaton transmission, Under
:[]:mggmnditiuns. the formulation where the distnbution of possible signals is
assumed known seems to make perfect sense. Clearly the “transient” period
, w]'[err: the receiver learns about the prohability distributions of sipnals is of

. greal interest, especially in a biological context, but this 15 distinet, at least
o neeptually, from an analysis of information transmission in the steady state,
| ltisoften pointed oul that Shannon's measure of information 15 blind 1o se-
mantics or “meaning.” Thus, a text written in a foreign language can have the
: .@me {nformation content as a text written in @ languaze we understand, and
" this seems wrong. In a similar vein, it is argued that Shannon's formulation
- |.'fs mot relevant to hiology because it does not take account of the organism’s
.8 interest or lack of interest in different aspects of the world. The locations and
- trajectories of predators are deemed binlogically more interesting than the de-
 ailed patterns of leaves on a tree, yet Shannon might assign these different

- signals similar information measures. In both of these examples, at least part

of the problem lies in specifying the probability distribution from which sig-
IluIE are being drown.
When we read a foreign language, we start out with essentially no knowl-
edge of the correlations between successive symbals, We can interpret the
incoming signals only as a string of letters and spaces, and if asked o assign
dn information content 1o this string we need Lo state an expected probability
 distribution for such strings. But what do we do about languages with unfamil-
iar-symbols? Especially in this casc, it seems difficult to give a probabiliste
description of the nominal tabula rasa on which the new language is being
recorded. The Shannon formulation, stricty interpreted, docs not defing the
“information content of texts in an unfamiliar language. 1F forced 1o give such o
measure, the intrepid information theorist would have to interview the reader
about his or her linguistic assumptions, and the resulting information cantent
would be differemt For differcnt individuals, in poeord with our intuition,
There is o maore subtle problem in the application of information theory
10 unfamiliar languages, namely that as we read more and maore of the texl
we learn some of the structure of the new knguage. This leads us to revise
our estimates of the probability distribution for strings of symbols, and hence
changes the nominal information content of subsequent text. 1t is even possible
that this information about the structure of the language or the writing style
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always dominates the information about the particular text. As one angly
longer and longer texts, this linguistic structure reveals itself gradually 4
eslimates of the entropy per letter become progressively smaller, so thy
limit of an infinitely long text the rate at which we gain information by ,-éa'
15 very small compared to the initial rate (Ebeling and Poschel 19944
reminds us that the application of information theoretic concepls to langy
is subtle, and hence that one should be careful in using language as an f:):am S
of the limitations on Shannon’s formulation. We cannot resist puinting'
that these issues are closely connected w the classic story ubout monkeys
typewrtters (Kittel and Kroemer P9S80,

Assigning an information content o, lor example, a visual image
guires knowledge of the distribution the image came from. If we assume—

incorrectly—that images are drawn from a simple probubility distribution sueh

as spatial white noise, then many images of very different “significance” wil
be assigned the same information. But natural images come {rom highly s
wired probability distributions, and the carrect information measure must
computed using the relevant distribution. Thus, the appeatance of a threat

=

ing predator is (one hopes) a rare event, Once a predator appears, its patterm.

of moton, for example, is very unusuval relanve to the motions of other
jects in the environment, The Shannon measure of information tells ug
per evend, rare events convey more information than common ones. [n th
limit. the rarest events can convey arbitrarily large amounts of informati
per event. Thus the appearance and motion of a predator would be assigne
o high information content, much higher than that of typical scenes, p
vided that the observer understands the statistics of nawral scenes. One
even make the argument that rarity alone is sufficient o generate “bioloj
cal interest” and, Tor example, attract our attention. The decision that a
event i or is not threatening (or edible) might be a second and specializ
slep.

Another important application of information theory is to decompose th

total available information into information carried by different features of th
signal, In the visual world of a frog, for example, it is usually assumed that th
tracking of flying bugs is a biological specialization (Lettvin et al, 1959). B
since a static background provides zero information per unit time (no. ol
how complex it might appear!), it may be that by tracking just a few bugs il

4, Huving reached this point in the book, 1he rerder mny have collected enongh doin o 1esERE
clim,

3| Why information theory?

frog in fact captures i large fraction of the available visual information, This
serves 1o emphasize the general point that “information” is not an absolule
&m[im but rather a measure of how much one can learn refative 10 what
.c_m"ﬂ knows a prior. To say that certain neural or receptor cell signals “provide
information” about different aspects of the world, we therefore must state our
gssumptions ahout the world itsell.

* part of the difficulty in applying information theory to signals in a biologicul
context is that the probahility distributions for natural signals are very sub-
tle objects. und we know very little about their structure; some of what we
do know is described in chapter 5. Roughly speaking, the world is a very or-

 dered place, and so the sensory signals that denve from the world have strong

internat correlations, This lowers the entropy of the signals and limits the -
Formation available m our senses. But rare events stll stand oul, conveying

~ a disproportionately large number of bits: Shannon tells us that a bear in the

woods is interesting even (F we don't know that bears can eat us,

ropy of spike trains
The entropy plays a key role in our thinking about the neural code. On the

one -hand, the amount of information available 15 limited by the entropy of the
input sensory signals, and we must be careful in the design of experiments 1o

- insure that we are ol creating an artificial world of anomalously low entrapy,

O the other hand, the entropy al the spike trains themselves limits how much
information these spikes could, even m principle, provide about the sensory
input,

The entropy of spike truins was estumated by MacKay und McCulloch

. (1952), in what was probably the first application of information theory 1o

the nervous system; u scant four vears after Shannon’s onginal work, They
envisioned the spike train as being observed with some limited time resolution
Ar, o thal inepeh time slice (bin) a spike is either present or absent, as shown
in Fig, 3.4 1f we think of u spike as representing 1 “17 and no spike os repre-
senting a ‘0. then, if we look at some time interval of length 77, each possible
spike train is equivalent to o 7/ AT digit binary number. But not all of these
numbers occur with equal probability. In fact we know that some of these
numbers never ocour at all—for example, if T s very laige and At s res-
sonably small, the string 1111 --- [T never necurs becanse real neurons
don’t maintain very high liring rates over long periods of lime,

Suppose that spikes oceur at some mean rate 7. so that the probability of a
18 just p =FAT. IF we choose very small hins, so that p is small, & long
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sut we are dealing with long strings, so all the numbers N, Ny, M are large,

=m 5
E.E |1|0[1]D|1|1|n|1|n|n|1iu|ﬂll1ﬂ|ﬂh]1|l|u| wgcﬂnlhunu.n'eStirling‘sapprﬂximminnfnrmu.-"-’!'s.

28 ¢ Inx!=xllny — 134 -, (3.14)
Ez ;Whem the correctians ire nugligiblc as y — oo, Substituting Stirling’s apprax-
(! aron 1nto Eq. (3.13), we find
a.00 0.05 0 018 @20 . |
fime (3) el 5 [In A= InNy! = In No!
FigurE o —_— L [."\rl:ll'.l a"'. A 1] - .NL“EI N| =3 ” L ..!"'-ru[ll'l J"i"” g T':I + -- ] f_’l HSJ

Binary representation of spike truns, By dividing the time axis into discrete bi
spike train, represented here as o series of impulses, can be represented s a ge

hinary digits, where o | denotes o spike in the time bin, and a 0 denotes no spike, g = L [;u,.' InN — Ny InN| — Noln Ny — (N = N — Ntﬂ] : (3.16)

sepment of the spike train will map 1o a binary string with very few 15
estimate the entropy ol the spike train we need to know how many such
strings are possible. For simplicity let us assume that the spikes in di
bins are uncorrelated, so tha the possible sirings are not constrained

=J—|_-} [N!ﬂe"."— Niln Ny — Myln Npg — (N = Ny = Nni]
n=

| R y
by the bias toward having more 0's; we shall see later that this leads usit T [(N) + No) In N = Ny In Ny — Noln Nol @17
overestimate the entropy. _ ¥
We can calculate the entropy of these strings by appealing to Shannon® =7 [Miln &~ In M)+ Mplln N — In Nin) | (3. 18)
m &

defimtions, but Brillowin (1962} explans nicely how we can stick with.
intwition dbout numbers of possible signals and in some sense recov . [(ﬂ) In (ﬂ) N (ﬂ) In (ﬂ)} (3.19)
formal definition of entropy. The idea is to imagine a very long string, of ot > in2 N N N N

duration ', so that there are N = T'/At hins. With a very long string the i
will be Ny = pN 1's (spikes) and My = (1 — p)N s The number of poss
strings is just the number of different ways of arranging Ny 1's and Ny

= 3 [_r,-ln g+l —pyn(l — p'll. (3.20)

‘where in the last step we recall that p = N/N and | — p = No/N. Finally, if
~our spike train is of duration T, then the total number of bins N = Tiar, and,
by definition, p = raT, so that

this # standard counting problem. The answer is that the number of po
strings is

N
Nﬁhin[.'srz N NG _ " . _ . (3.21)
M IN! [(rfﬁrjlnfr.ﬁ.r] 4+ (] = FAT)Inll r.-l‘rll], 321)

Arin2

It is important to note that, from Eyg. (3.21), the entropy of spike trains is
proportional o their length, so that § oo T This is the same as in physics,
where we have the notion that entropy is an extensive quantity, Thus, it we
have 1 pas or liguid with fixed density, then if we increase the volume of the
system the entropy increases in proportion. The spikes are like the molecules
of a one dimensional gas. so fixing the density 15 like ixing the average fring
rate, and once we do this the entrapy is proportional o the length of the spike

where we recall that N =N = (N — 1) % (N =2) = ... 3 x 2 x |, Theefs
tropy is the logarithm of this number,

, N
H=les [-"‘-’I!NUJ

|
w2 [In N1 — L V! — In Ng!].
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trainn. It thus makes sense w think about the “entropy e 8/ 7, which -'l.'l'.' o — la
unils of bits per second. This rate is, ns we will see, the miaximum possible.
at which the spike train can convey information about signals in the g s
crvironment. =

T use our-digital picture of the spike train as consisting of 1°s and ()
must be the case that the probability of abserving a spike in one bin 5 - Wi
small, that is, p=FA7 == 1. As expluined in section A1, this allows uy
approximate the eniropy rate in Eq. (3.21) as e |

£ - T T T L |
SI?'%FIW;;(_—). @3 0 : . : ‘ :
AT _ timing precision [ms)

The entropy of the spike train is shown in Fig, 3.3a a5 a [unction of the timj
precision Az, Perhaps the most important point is that the entropy of the sp
iriin can be larger thun one bit per spike. This is because interspike inten ] b
are distributed over a range of approximately 1 /7 seconds, and these times: AL
measured with an accuracy of ~ Ar, so that ench interval is chosen fro . ;E 2]
(FAT)™! possibilities. Each interval {and hence each spike) is thus assoc; %.a—
with ~ log,(1/FAT) bits of entropy, With 7 ~ 50s ' and At ~ Ims, t &
corresponds 1o 5.76 bits per spike, or 288 bits/sec, \ E-z -

The calculmion of spike train entropy also provides a method for asses g
the capabilities of different candidate coding schemes, As an example, let i1
contrast the result in Eyg. (3.22)—which 1s the entropy of the spikes ass i i | : : : |
that we track each spike to & temporal precision Ar—with a scheme in wh o 3 4 B 8 10
we count spikes in some large window of duration T or equivalently meas mean spike coun|
the rate of spiking in this window, In this case information can be carried '

- Figure 3.5

by the spike count #, and s0 we need o know the entropy of the spike o
distribution, that is,

S{spike count) = — Z pledlogs pin), (3.

]

where p(n) is the probability of observing o spikes in the window of width
T. What should we choose for pini? We know that probability distributio
must be normalized, so that 3 pln) = |- We also know that the averd
spike count in a window of duration 7 should he (n) =F7, where 7 15
mean spike rate, as before. These two constraints do not oniguely dete .
the spike count distribution. We can ask, however, what spike count distribil=
tion cansistent with these construints will mavimize the spike count entropy "
This is @ general strategy in the application of information theary-—given 500
knowledpe, we try to find the distribution that has the maximum entropy

' Spike train entropy as @ function of timing precision. (a) The entropy e 85/ i5
Ceileulated from Eq (3,210 assuming o (ring mte of 50 spikesfs, and we divide by the
- medn spike rate 7ot give the entropy per spike, (b The entropy is caleulated from the

upper bound in Eq. (3.24), and we divide by the mean count () e give, onee again,
the entropy per spike. Note that in (b the timing precision is expressed as the men
ntmher of spikes in one time hin; with the rie of 50 spikests, a mean spike count of |
comesponds 1o A fiming precision of 20 ms,
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sistent with our knowledge. This distribution is the most random deserin  §(spike count} = log,(1 + {rd ) -+ () Togo (0 4+ 1fn)) bits, (3,24
that is not climinated by what we already know, conversely it deseri
structure heyond that which is established by the given facts.” This t‘;umi
tion allows us 1o make firm statements about mformation Eansmissign
from limited data

The answer to our maximum entropy problem (see section A1) twmg
to be an exponential distribution. that 15, pir) o expl—2an), where the cq
ficient A& s set by the mean firing rate; & = In|l + (FTy Y. Using thig
tribution we can calculate the entropy of spike counts, and we know th
entropy of spike counts in any real neuron will always be less than whé;l
caleulate. The result is that

In Eq. (3.24) we have written the entropy of spike counts inoa window of
Cize T in tetms of the mean spike count (1), To obtuin the entropy per unit
ng-wc divide by ¥, and to obtain the entropy per spike we divide by (1),
J 'fmmt we se in Fig. 3.5b is that the entropy per spike always decreases as the
¥ counting window zets larger, corresponding 1o larger mean spike count. Thus
 the capacity of the spike train to carry information declines as our “rate code”
" hecomes more and more coarse in its time resolution. Indeed, if the windows
";_:};inmin very large numbers of spikes, then the available information capacity
' Pér spike or per unit time goes  zera! To achicve a capacity of one hit per
: Eﬁi'ke requires (1) < 3.4
[t is perhaps amusing to note that if we choose to count spikes in windows
whose size is equal to the mean interspike interval. so that (n] = 1, then the en-
Eupy is precisely two hits per spike, Thus, even a “rate code” can carry more
0 4 . ihun_nne bit per spike if we measuare the rate on g Lime scale comparahle to
the interspike intervals themselves. [f we imagine trying to count the numbers
of spikes in very small windows, so that {n) < 1, then the distinetion between
f:fﬂhi: and liming codes hecomes blurred—we are counting the presence or ab-
sence of a single spike in a small bin as a change in rate—and the entropy il
the spike count distribution in Eq. (3.24) approaches the entropy of the full
spike train given by Eqg. (3.22)8
If the signals in the natural sensory world are varying sullicientdy slowly,
then it makes sense 1o divide the spike train into time windows, cach of which
contains many spikes. The spikes in cach window are presumably responsible
for telling us about the {approximately) static parameters of the signal aver-
aged over that window, and the distinction between rate and timing codes s
;]e&r;dt-r we gain more information aboul the static stimulus parameters by
looking at the detailed timing of the spikes within the window, or is all the
information contained in the spike count? If stimuli are varying on time scales
comparable o the interspike intervals, the natural tme windows contain ot
most o few spikes, and the rate code will fransform smoothly into a timing

am
5, Entropy provides a measore of variability or svailable information [ comparing twi sy g
the oo with the larger entropy is the more virable oF the maore “rundom.” Wi can ilso s
the lrger entropy means it the system is “less prdered:” 1 we huvie observed some, b
propertics of o syatem—suy the mewn and varance of o sndom varinhle v—3 s natural fo og
the probuhility distribution tharis congistent with our data but does oot intnetece any s
strctue; the intuition is tha this shoukd be the “most random’” distribation. consistent
b, wnil this s adepnfied with the distribation thal has the largess possible entropy, 5
mechanics is based on the idea that, in thermal eqeilibrium, configuratons of o physical
are drawn Trom the probalility distribution that his musinum @ntpy consistent with the (ko
averige cnergy, wnd this puinl of view has been emphasized by Juynes (1983). The solution to U il
mxdmim entropy problem s thie Holtzmann distiiboton (Brilloam 1962, Landas wod. Lif I
LUED), The fet thit el noise sources are offen Cuussion, usin Fig, 3.7, is also o manifes i
of maximum eptropy hehavior, since the Gaussian is the distribution baving masimm g
at lixed vamance (section AL 130 In the text we ube The muaxhoum enmoepy iden o deten
examplc) the limits on the inlonmation available 1o oan observer of the spike i, But “ma
entropy methods™ often refer to a different set of ideas, in which entropies are defined o
for probabitity distibotions bot also for other positive quantites such as the intensites in
pinels of animage. These nolions of “jmiage entropy” ateicted considemble wlention w
and Draniell {1978) found matimum entropy umages that wene consistent with duta 0
teleseope observations, and the resulting maps of e sky revealed remurkuble levels of det
could e confinmed using other astronomical techmigues; recen books inclade Bevensee (19
Buck and Mucanlay (19913 snd Skilling (19893, In tact neither Shannon noe Bolizmion (o]
dbasing the enteopy of an image, amd indeed (08 emplosized in section 3001 nfurimation
does not nssign an entropy o & single image, only 10 the ensemble from which images e di
Consider then he following remerks from Gull and Daniell (1978); “Let my denote the inten
il point yof o st map . There s some dispute aboul the correct dedinition of the entropls
helieve that the brumients of Freiden dee correet for our problem, He concludes that the
prishabile s is it which maximizes — 37 oneg log my, Thes Tonnok expresses the cﬂliﬂgtmlﬂl
cntropy of & map; this 15 oot the same as e themsdynamic entropy of a bean of phatons
is 1 the same as the infiormution-theoretical enfropy . . - " Althosgh progress has been e
these faundutionul issues. 15 deseribed in the essays collected by Buck and Mucanlay (1991
certiinly not clesr how “magimum entropy methods” is alvocaed by Gull, Daniell, Shlling
others are connected 1o the idews of entropy in physics and information theory, This ts one o
why mention of “maxinum entropy™ muay tHgeer concermns it some readers’ minds. We hope
plear that our use of “rasimm enteopy™ i quite lierml—we Tind tie probabiliny distribution
buits e entropy, 4 defined by Shannen and Boltgnun, subject By some stated constl
We cilculate the maximumt entropy Tor thee simple rewsen il we want o Kpow e s
possible Yalue of the entropy

"

|
M

fi. Notice than we have found the peaomen entropy given the e spike count, und this mes-
Amum goes smoothly e the Mackay-MeCulloch entropy as we let the time resolution &
hecome smull, But this mesns tha the MacKay-MeCullogh result itel] is the masimum ps-
sible entropy of spike trins i the small At Hiwil where the spike train can be viewed 45 a
binary siring. This makes sense because MicKay and McCullug ignored any corelutions among
Huccessive spikes, fixing only the mean spike mte. and comrelations can ouly reduce the en-
triapy, '
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code, as we sée from e entropy caleulation. Thos, from an j"f“rmﬂtiun' :
aretic poinl of view, the lisst question s ot male versus tming, by
the number of spikes per interesting Ume window, as we have ¢"1F'1135'iz_a;;
chapter 2. .
In computing the entropy af the spike train we are just counting the numjy
af different spike trains that can be distinguished given our time resolug
In an ideal code. each of these distinguishable spike trains would stand
a unigue signal or class of signals in the ouside world, Then, if there
& distinguishable spike trains, corresponding to an entropy logs K, we t
distinguished K possible signals i the world, When we observe g Pill‘Lic‘l:i.
spike train we know wlich of these possitalives actoally occurred, so log)
it the spike train is equivalent o observing one ol K sensory signals, Und
these conditions the information available about the world is exactly equal
the entropy of the spike trains, whereas if we move away from this ideal
we will disuinguish fewer signals m the world and hence gain less informatiog
Thus, the entropy of the spike truin sets a physical limil to the information i
neuran can convey about external signals. =
There are two important points about the entropy caleulstions. First, the o
sults dispel the surprisingly persisient notoen that cach spike conveys at most
one bit of information. Even though the sipnaling events are all-or-none,
are sparse, which means that the information per event can be large, The
tormation per bin can never be bigger than one bit, bul this is an unintere
canstraint as long as bins are moch smaller than typieal interspike interva
Second, the entropy gives us a standard against which to measure the perfor-
mance of real neural codes: How close da real animals come to using all of the
spike train entropy for information transmission? ]
We want to emphasize this notion of putting the performance of the n

ral code on an absolute seale. When we think abowt building an imagi
syslerm in the laboratory, or analyze the performance of a visual system, |
know that our intensity resolution is limied by the random armival of
tons. Suntlarly, our angular resolution is limited by diffraction. These |
sic physical limits help organize our thinking, as will be described in ch
ter 4. In the lab, photon shot noise tefls us how bright our light sources mu

i

be to tesolve small changes in image brightness, and in biology there
clear experimental questions ty be asked about response of pholoreceptors
single photons and the processing of these signals by subsequent layers 08
the visual system, In the shsence of these ideas we have no way of know=
ing whether an imaging system which is sensitive to 15 contrast is '“'1
or bad, Similarly, 1o find out whether the French cove heetle Speopliyes lu=

- tion.

| Why information thewry?

julus that detects lemperature changes of 1/1000 of 4 degree i really do-
well,” we must compare this performance with the physical limits set
o thermodynamic temperature fluctuations (Bialek 1987), In the ubsence of
ﬁ.nhsu]um standards we don't reallv know if, for example, u change In
ing rate of so many spikes per second in response W a given stimulus rep-
ats a large or a small change. In the same way that guantom and ther-
al Avctuations set the standard for the detectability of small signals, the

:‘..BIIIT-I":JP}" of the spike train sets the standard Tor the transmussion of informie-

al information and the Gaussian channel

ow we returi ta our origingl problem, characterizing the amount of informa-

ﬁm that some outputs ¥ carry ohout input signals X. We have seen that, 1o
‘Eu;re the problem a clear formulation. we must assume that X is chosen from

known probability distribution P[X |, The variability of X is then men-

“,ﬁtm_*cd by the entropy of F[X]. roughly the logarithoy of the number of pessible

élgfla!s. Oince we ohserve ¥, however, the range of possible inputs is restricted,
as schematized in Fiz. 3.1, This reduced variahility is deseribed by the condi-
tional distribution P[X Y |, which measures the relative Tikelihood of different

t"'ﬁiﬁm sipmals X given that we have observed a particular output value ¥. Pre-

iﬂ_imably, anly a limited set of signals X are consistent with our ohservations
on ¥, so the condittonal entropy,

S[X|Y|=—f[u’XiFlelr‘llnggﬂ.‘-{:}'l, (3.25)

7. This remarkable sensitivity 3 descrited in p series of papers by Lofws and Corbigee - Tichans
(1981, 1987; Corbikre-Ticluné and Lofius 19831 In addition to demenstating millidegree ther-
mommetey, this wirk provides a clear sxample of how the full performaznce of a biclogioal system
thay be revealed only by arention o the natoral stimolus ensemble, Toitinl expeniments tL:uI'rl.u
wid Corbitre-Tichand 19517, in which the tniennae were stinulided with puffs of air L!:1|.:_n'_n_.:_
from the ambient temperature by as much as severil deprees {Celsius); sugpested nearl sensity-
ities on e order of ~ 10 ispikesfs idepree with inteemation times of cnder ooe secand. For the
second ser ol experiments, Corbidre- Tichané and Lofus {1931 measured the temperatire in the
eaves where they collected the beethes and found tht it was stable to o precision of (T v
periods of half un hour This suegested stimolation with small, stow emperetone Tuctslions, gen-
erntedd essentinlly 05 o residual afier attempteag o stabilize the fempersture of the prepariling.

experiments indicated thut the receplor neurons responl 10 slow femperaiure drifts with
sensitivities as high us — 107 spikesfdepres. Finally, improvements o the stimulation apparitis
llowed controlied application ol still sliwer emperatire drifes, companshle W these chserved
in the caive, wnd this resolted in sensitivitics mveraging more than 3 I spikesidegree (Toftus
and Corbiere-Tichané 19875 With spumtancouws fring mtes of oy [ spikests, any reasosahle
inlegration time will be sufficient to detect reliably 1 few extra spikes, comespondiing to @ sensi:
Lvity of bettar than o millidesres. and this is extremely ¢lose to the Timits set by thermodynanic
temperatre fiuctuntions {Bidlek 19571
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by ]. In this warld, the entropy of the whole svstem, 5[ X, Y], 15 just the sum
e entrapies STX ] and S[¥] associated with the individual coordinates. But
¥ 5thg real world X and ¥ are correlated, so that observing ¥ tells us about
: 0 the entropy uf the whole system is Jess then the entropy. of the two
rdinates added together, and the amount by which it is less is exactly the

mutual information:

st =-STX | +81¥] —S[X ¥ L (3.23
One important example of mutual mlormation s the Giaussian channel.
T discuss this example we change notation u bit. We imagine that out in
‘}J}e world there is some signal 5 (instead of the “input™ X). We have an "5-
detector’” that provides a readout v (instead of the “output™ ¥). On average, ¥
%h}mpﬂninnul to 5 with somme gain g, but there s added nose:

Chmntifving information fransmission

is smaller than the rotal entropy S|X . Intuitively, S{X[Y] counts the logg
of the number of X's consistent with Y, and this number is smaller ‘
overall number of possible X's) which 1s counted by the total entropy
reduction in entropy s defined 1o be the information gained by ohservip
we average over all values of ¥, we obtain the mean information gainﬂﬂi_

f=f[dr|F|1fm;|X| — S[X|¥Y]D

PIX|Y
:f[fnf]PH"lfidh’lf”-'“:” logs (%) '

We emphasize that this is the average information gained by observing ¥
information gained by observing u particular ¥, say ¥y, is the entropy
ence 5[ X | — 5| X[ ¥y, and this can he much larger or smaller than the av
If X and ¥ are continuous variables, one typically finds that some partic

l!

y=gs+ 1. 13,300

observations of ¥ provide arbitrarily large amounts of information—but. | We assume that the noise 1 has a Gaussian distribution, which is ofien a very

- good approximation, and we assume that the signal & also is chosen from a
 Qaussian distribution, These assumptions are formalized by the probability

unusually informative events. distributions P(s) and P (n):

We recall from cur discossion of conditional distributions in chapter
the probability £{X Y| of the input X given the nhserved output ¥ e

written as Pls) =

| 5 i
L _ » ; {3.31)
- 2w (e?) ﬂp[ 2':5:::|

I n’
Pl = ——vip| =57 | - (3.32)
() NorTE] I [ lih“}j|

~ Because the output v is completely determined by the input and the noise, we
‘can write the conditional distribution £{v|s) by finding the probahility that the
noise has the value required to satisiy Fe. (3.301%

PIX.Y]

R =

Then we can write the information in a more symmetric form,

-”U'f.'l".l)
PLX|

= =fmﬂfuxwm}’"“El(ﬁ?i:l;‘;[’;i)

This quantity, the average information that ohservations of ¥ provide aboul
signal X i also called the muial informention of X and V. Note that it 18
metric under interchange of the two variables. This symmetry menns that
can think of ohservations on the spike train as telling us what is happenin;
the ouside world, or we can think of observations on Lhe state of the world
pridicting the spike wrain, and in either view the average information (rans
is the same. This reminds us once more of Bayves” rule, '

Another way of thinking about the mutual information is to imaging
X and ¥ are chosen independently from the marginal distributions P[X

/ =f[n’l”].’*[i’] [[n’}L’JJ'J[J'L’llr’[lugE (

Piyls)= Py =y —gs)

i3.33)

1 (y = el
el | |n
NEEITS p{ 24} }

Then we can caleulate the distrbution of readouts v avernged over the inputs,

i 1 ¥
. Fliyi= f dsPlv|syPisr= W oXp [_m] ' (3.34)

where the output variance (v*) = g7 (s%) + (n*). Finally, we recall that the
Joint distribution can be written in terms of the conditional distribution and
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3 ' ) '
the prior, Py, s) = P(¥]s1Pix). These are all the ingredients we e
caleulite the mutoal information by substituting into Eq. (3.28). The Step
the caleulation are outlined i section AL12, and the result is

comes Gaussian at higher light intensities heeause large numbers of imdepen-

dem events are being summed by the photoreceptors. Similarly, if we observe
gle ion channels we see discrete transitions among states with different cur-
mw flowing across the membrane, but for a whale cell with many channels

e can describe the noise as 1 Gaussian fandom current. Note that in each of

hese examples the clementary evenls have finite variance and they are inde-

.,*penrlf:m of one another. If either of these assumptions is violated, the predic-

-’uﬂﬂh of the central limit theorem can also be violated, and we should check

for non-Gaussian distributions.

l In information theory, Gaussian distributions are even more privileged,
I jmg.gme that we are trying to transmit information electronically, by driving
_gurrent into @ transmission line. The power we dissipate is proportional to the

"g.quam of the current, assuming for the moment that the transmission line acts

gs a simple resistor, Efficient information transmission presumably means that

~we transmit as much information as we can at lixed average power cosl, This
 means that we need to choose current signals from a distribution with a fixed

* mean square current—that is, with fixed variance, To transmit as much infor-
mation as possible we need to maximize the entropy of these signals, so we
need to know the distribution that has maximal entropy at fised variunce. The

 answer is the Gaussian distribution, as explained in section A13, This resuli

gunr.mh;.ua If we have multiple variables and we fix the covariance matrix,

5 . _'th¢ maximum entropy distribution is again a Gaussian distribution with this

effective noise level that determines the detectability and discriminability of - govariance matrix.

Gaussian distributions thus play a key role in information theory hecause

Cthey solve the problem of maximizing the entropy at fixed varance. To sce
how we use this fact, let us go back 1o our simple example of a detector that
responds in proportion 1o the signal with added noise, Eq. (3.30). Suppose
that the noise i is Gaussian because it arises from lots of elementary randam

-~ events, like ion channel noise, but that we don’t really know the distribution of

the signal s, The mutual information between the input s and the output v is,

from Eq. (3.29). the difference in entropies,

=8z +5(y) — S5, v): {3.38)

a

(57}

L TP hits.
{n-)ies

f= E |L:|E‘:| 1+
\"-"e can c*‘.prt*ﬁ lhi»‘ result irl i more intuitive form h}-‘ Ihink[ng ﬂhﬂut

@5 il du- ice that 1r.1n-ducm the qmm[ | nm]tuph ing by the gain £) and then ag
nodse, we can imagine that the noise is added to the sipnal iself, and thy
transduction 15 noseless:

yo= g5 + o), (3

This procedure, which in this simple case defines the effective noise t
ferr = 1/ 4 is called “relerring noise o the input” { Horowite and Hill I‘:';-El;_l}'l, y
general, the signal and the readout cannot be directly compared—for examp
the signal could be mechanical (displacement in microns) and the rﬁaﬂ i
could be electrical (Volts). This is especially true in the nervous system, w
the inputs are continuous analog signals and the outputs are discrete sp
Thus, to characterize the noise of the system we cannot simply measure
voltage noise or the variance of neural firing rate in some window: rather, we

signal level, determines the mutual information. To see this we note that

s offective noIe 18 2.} = trd /el : | the
#'ﬂi‘:hl.!'ll..,t._ l.}lf the fﬂJTLEIWL noise is (5, ) = (57 /g7, so that in Eq. {3.35) ne.
mutual information hecomes

= loga] 1 4+ SN R,

I\J|-—

where we define the stenal ty noise ratia (SA ) to be the ratio of the si
variance o the effective noise variance, This signul to noise ratio is dime
stonless; sl s independent of the units we use for measuring the inpul

ot But the output v is completely determined onece we know the inpul 5 and the
utput. : y

noise 1, and these two variables are independent of one another. Thus we can
- think of the combined entropy of 5 and v as really being the combined entropy
of 5 and 7;

Why is the Gaussiun channel an important example? First, Gaussian di
butions appear naturally when the quantity we observe is the sum of a [z
number of independent random variables: this is the content of the cenf

limit theorem, The noise due to random arrival of phatons at the reting be Sls,y) = Ss) + 5w, Gl
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Substituting, we see that the mutual information is just the entropy of ~hout signals in the outside world must be less than or equal o the entropy
' of the spike train. Thus, as emphasized in the previous section, the result of
MacKay and McCulloch, Eq. (3.22) above, gives us a physical limit on the
ﬁmnt'o“ﬂrﬂrmﬂti““ that neurons can transmit given the mean spike rate and

&L‘rl'llf limited time resolution.

ottt minus the entropy ol the noise,

I =5(y)— Sy). :
This makes sense: In the ubsence of neise, every possible input sipnal carm

sponds (o a unique output signal, and the information we gain by obg
the output is the entropy of the outputs. In the presence of noise, the ;:_;n : ¢ dependent signals
E,' use these ideas in a biological context we need to generalize a bit and
an overestimate of the information transmission because different outputs i Ei::ﬁsidar signals that vary in time. From some sufficiently seneral point of
};iiew. nothing new happens when we think about time dependence, bat in
practice we need some new mathematicul teols, Until this point we have talked
* ghout a signal X, and imagined that one could write down some set of numbers
. ﬂmt defines this signal. When we think about time dependence. one example
of asignal is already o function of time, and in principle one needs an infinie
number of parameters (o describe o [unction, The same problem arlses in
vision, where even at ane instant of time the stimulus is a function of wo
spatial variables.

TIntuitively we know that this infinity of parameters can’t really be a prob-
Jem. All the signuls we are discussing can be filtered and digitized if we are
careful enough, which means that iff we look in a time interval 1 at a fune-
tion digitized with temporal precision At, there are only T/AT parameters,
no matter how complex the function. Appealing to digitization in this way may
settle any problems we have in talking about signals generated in the lubo-
ratory, but it is unsatsfying because it doesn’t address the notion of “eareful
enough ™ One might worry that any digitization misses a little bit of the signal
at each time step, and that these little bits add up to give a substantial contribu-

obtained by subtracting the entropy of this noise from the entropy of the
Pits.
Mow we can vse the maximum entropy property ol Gaussians to obtaip

the entropy of the Gaussian distribution with the same vartance. But the
ance of v has two pieces, one from the vanance of the noise and one
the variance of the signal. Since y 5 just the sum of signul and noise, and
hypothesis the noise is Gaussian, assuming that v is Gaussian is the sama
assuming that the signal is Gaussian, Thus S(y) is less than what we woulg
calculate assuming that the signal & comes from i Gaussian distribution wh
variance is fixed at the true value of (s%). But if $(y) is less than calcula
from this' Guussian approximation, Eq. (3.40) shows us that the muotual
formution is less than what we calculate in the Gaussian approximation.
conclude that, if the noise is Gaussian, the mutual information is always
than what we caleulsted in Eq. (3.37), that 1s,

| st I 4 ' i srniative is that w
I = ;Jug: I+ {:} = logs[ 1+ SN R tion to the entropy or the mutoal |t:!’n1'm11t:nn."r}ic Hllt..ﬂ'l-:“.ﬂrt. is th_.il we learn
= Weir to deal with the infinite numbers of parameters that describe contiuous. (not

digitized) functions, which is what we do here,

In building up the 1wols to think about random functions of time, we take
what maty seem a rather long digression from our main themes. But we hope to
communicate some understanding of the objects, like power spectri and corre-
Tation functions, that form the basis of the subsequent quantitative discussion.
Our description of these ideas makes no pretense to mathematical nigor; we
suspect that readers inclined toward rigor are already familiar with the ideas.
Standard references on these matters include Papoulis (1965) and the delight-
fully brief 1ext by Lighthill (1958), Translation ol the mathematical ideas into
computer programs for the analysis of real daty is discussed by Press et al.
(1992),

signals are chosen from a Gaussian distribution. The maximum mutual i
mation is sometimes called the information capacity, although this is a sl
abuse of the terminology (Shannon W),

Finally, the idea expressed in Eq. (3.40) is quite general. The information
that & system transmits is equal 1o the entropy of its outputs minus the entl
of the ‘noise' seen at the output. Since entropy must be positive—it i$
logarithm of the number of allernatives, and the number of alternatives.
least ane—ihis means that the transmitted information is always less than:
equal 1o the outpwt entropy. For us the most important application of this id g
is 0 spike trains, where it fmplies that the information that a cell transois
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We are interested o describing a function of time, whicl we call f{ifjl

!

we confine our attention to a time interval of size T, 0 <1 < T, Ay ,

|

functions cun be written as Fourier series, that is, as a sum of sine and gq
{unctions with different frequencies, as schematized in Fig. 3.6:

|

I

[ [ w]
fi = fo+ Za,, it ) + an sinimgt ),

=l n=|
To make this work, vne has o choose the frequencies wy o “fir i“_"
Ui interval T, that s, e, T = 2an, where o s an integer. Because of:
fitting condition, all the sine and cosine terms have zero time average,
time average component of f{r) is carried by the constant term fiy; f
most part we ignore this term, since it can always be subtracted away, jus
we teline zero voltage when we make an electrical measurement, Notie
that, at least in principle, one needs an infinite number of Fourier coefficients,
itz by By o deseribe the function. 15 we know the {unction, we, .
find these coclficients by doing the Fowder integrals:

component number

||||h.

=
)

¥ 143 05

3 T
i —,f et 1) coso,t ).
T

2 T
b= i dt i) sinfugr ),
il

componan numbsr

L i
fo= _—,f drfirh.
Iy

It 15 ofen convenient to combine the sine and cosine terms into the com
Fourier functions exp{—imt) = costaf ) — § sinfat ). In terms of these

lions the Fourier series are written as

fe- ]
fi= 3" fuexpl—iayt),

H=—0

~ Figuredn
:':E@S_lmﬂliun of Fourier series. We consider o function which is delined in o window
) =, \ l}f 40 ms, so the frequency components are oy, = 2ral25Hz), (a) Amplitudes and
fn= T j defr) expliant). (3470 ~ phases of the first 20 campenents, (b1 Contributions of each compunent to the Fourier
! “sum in Eq. (3,510 (e} The function f(t) obinined by successive approximations in
- which we carry out the Fourier sum only with the fisst N components, that is, with
=n =N Bq (351 Nowe that as we inclade more terms, more detwls of the
Munction become visible, but this process stabilizes so that there are only very small
- ~ changes afier we have included ten companents: n fact we can see from (a) and (b
fo = A exp(+ighy). {300 ' '[hﬂl only the first nine components, corresponding o freguencies below 250 Hz, rnu.l:e
I '."iﬁ‘?iﬁi'ﬂlll contributions 1 (he function, The function we construet here by Fourier
“synthesis is the graded voltage response of a blowlly large monopolar eell to a briet
Rishiof light, us measured in the experiments of de Ruyter van Steveninck and Luughlin
(19964,

Notice that each Fourier coefficient [, is a complex number, and it is 0
convenient 1o refer to the amplitude and phase of the 2" component; these !
real numbers A, and iy, respectively, defined by

If the ariginal function £(¢) is real then the coeflicient with index n has 10
the complex conjugate of the coefficient with index —n, that is fu = [f-n
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ey z .
Then the amplitudes of the positive and negative freguency Compone

: Thus we see that Gaussian random functions are simpler than we thought
equil, and the phases are opposite. that 13 ]

- consist of functions in which the Fourier coefficients (e, by} are cho-

An=A-n from independent Gaussiun distributions. A complete description of the
o— N stribution for the random function 1s given by listing the variances ol these
S 3 coefficients. In the complex Fourier representation of Ey. (3.46) we have 1o bz

itile more careful, in that the coefhicient f, is the complex conjugate of f_,.
¢, in this case, we wrife the variances us

Because of these symmetries, real functions are completely specified b
amplitade and phase of the positive components alone:

I. {fofemt = (il fm]) =0 o=
tfnf i = {fal ful™}

o0
fit)=fo+ ) Aucosiwnt — da).

If we imagine choosing a function (£} at random—perhaps scribbling

Y
a piece of graph puper without looking, or making a tape recording of St | =l
in the wouds starling from some random time—then the Fourier coeffie ! ) (3,529

fu of this function are chosen at random. Thus, if we want to give a pre

definition 1o the “distribution of random functions.” we can define this where o~ () is the varianee or “power 1n the Fourier component with fre

tribution £ firy] by the distnbwion of the Fourier coefficients, The quency wy. Note that we can write the complex number f, in terms of its real
eeneralization of the Gaussian disinbution for random variables is the no 'f{;tmj imaginary parts,
of Gaussian random lunctions, by which we mean functions constructed fro fo=Ref, +ilmfy, (3.53)
~and then Re f, und Im f,, are independent Gaussian random variables lor each
: p_::i's_iﬂve component i, and they have equal varanees

((Re fu)?) = ((Im fi)") = @ (en) /2. (3.54)
These ideas about the probability distribution of the coefficients Re f, and

Im f,; are illustrated in Fig. 3.7.

Let us now use the expressions for the vanances of Fourier coefficients to
calculate something we can observe more directly, namely the variance of the
function f(r} itself. The variance of f(r) is given by substituting its Fourier
expansion from Eq. (3.46):

this distnbution, stemming from the fact that our choice of the instant of 1
where + =0 was arbitrary, That is. when we talk about random funetio
of time we uswally assume tha there is no clock that {avors certain tm
ower athers—this is a notion of iwvariance with tespect W Lime translat
“stationarity.” Thus, if one of the Fourier coefficients f;, had a nonzero avers
value, then whatever random stff was happening [rom all the other te
wie could always hind buried under it o nice clean oscillitor of frequency

and this would give o clock with which 1o distinguish, for example. diffe
2

phases n the cycle of that sine wave. Therefore. the averages of the Fo He It
i ! LF(O)1) = L eXp{—itnt) (3.55)
coellicients must all be rero. ] I= S EXpi—tig
Maore subtly, i two different Fourier coefficients, say fir and fss, e
zero average but nonzero correlations, then these two sine waves will ! % L
; : ; : - L enpl—I e —1 150
against cach other, and this beat will have an average amplitude, mak =, E Ju expl—ldint) Z S expl—itom!) ( !
[ , = ! - i —
clock with frequency = |wsy — wss|. Again this clock destroys the no o
that, on averdge, all instants of time are equivalent, Similar arguments tell o s _ _ _
; hith s = 3 3 (ffulexpl-imn exp—iwn).  (5T)

that the cocllicients of sine and cosine have o be independent of 2ach o
so that the phase gy, at any given frequency is distributed uniformly from
2, again because the definition of phase is linked o our chioiee of £ = (k.

fi=—ad mr=—00

We notice from Eq. (3.52) that [, is correluted andy with f_,. This means that
when we sum over all the values of m, only one term survives, the one with
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g, and all the other wrms vamsh, This Tives us
T
LAOT = Y U Fa) expl—iot) expl—iarqt). (3.58)
B =

ut the frequencics ey are just o times the basic frequency 2= /7, and o, =
: . This means that the exponential terms cancel, and all the (-dependence
ij.lsappﬂﬂfb as it must: The variance of the random function must be the same
r all values of 1, because our definition of t = () was arbitrary istaronarity !,
nally, we use Fq. {3.52) to express the varance,

a0
*
([FOF = D o w), (3.59)
N=—%5
'Tiu.'i result is very simple—1the random function is made of many Fourier
yponents, and the total variance of the function 15 the sum of the varances

!in the different components,

 We should remember at this point that our characterization of the [unection
f(1) is tied to our choice of a fixed time window 0 < < T. This in wrn
ﬁi&nﬂs that our basic unit of frequency is wy = 2/ T. But if we let the time
u.mduw become laree. then this basic unit of [reguency becomes very small.
Fur example, if we look in o window of length one minute, we have

=2x/T =2 /(60 sec) = 2x ((LO16666. .. Hz). {3.60)

For many systems it makes sense to assume that if most of the “action™ 15 in
the neighborhood of, say, 10 Hz, which is e, the power at ago—that 15

Figure 3.7

Example of the prohability distibutions of Fourier components, Panel (0] shows o
short segment from o 152 s recording of Nuctuations ina blowfly photorecepior cell
in 11024 s bins. Pancl (b shows four periods of o cosine and & sine wave, each with
i period of 16 hins. corresponding o 64 Hz. At every point of the recording we com-
pute the inner peoduct of the fuctuniion weveform with the cosiie component (real
purt) and with the sine component (imaginary part), and normalize this o the time win-
dm’-' T = 6471024 5. The joint probability distribution of the Fourier compunents 4t 64
Hz is the pormalized 2-dimensional histogram of these two random variahles shown
in (e), This distribution .Lppmmrnmu g 2 d.uuuusmnu] circular-sy mrnl.,tnc Gaessian,
Blfs) exp —|Re(f13° + dmif307] = exp — || f31°|. Thus the power, | fa]*. hiis a nega-
tive exponential distribution, as shown in (db 1t is o property of the negative exponentisl
distribution that its standard deviation equals its mean. The dot i (d) represents the po-
sition of the mean, and the horizontal bar extends one standard deviation o the left and
one to the right. Therefore, in measuring power spectra of a noise waveform, the stan-
dlard deviation of the measured power is equal o the actual power, To make 4 more
teliable estimute of fhe power at a certain frequency one can for example average the
power specirs from independent spmples of the waveform, See also Fig. 3.8,
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ETial e 3.8
a struction of the power speciral density, Panel (&) shows the mean square value
oo 2y of positive frequency Faurier components computed from the same data as used
i, 3.7, This was done for difterent window lengths T, specified here by the nimbes
— ins, n (with T =n /1024 51, The tonnl length of the nobse tace was 1535638 bins, so
?E e the 8-bin window we have 155638/8=19450 examples of coch Fourier coethicient,
s mcumpumd fronn this large number of examples have correspondingly small
g_ 10 - i with these small windows we bave only 8 independent Fourier components,
g number of independent Foorier components increases linearly with », while at the
i g time the number of independent examples ol each component decreases, going
w10 19 for n=#192, The decreasing number of examples means that the statisticil
s in computing the means are larger, ind hence the spectra look neisier for higher
10 ﬂ With one exception, the mean squane valus of each coefficient is propertional 1o 1/n,
2. 1 1 100 10040 Jns expected fron the discussion of Guussian randem functions: this is Jemonstrated
frequency (Hz) or the 236 Hz companen! ihluck dotsy in panel (b), The exceprion to this behaviar
wund at 50 He, where there is n component that behaves as i f, has @ nonzera
‘ean value, independent of the window size. The experiment was dene i the Uniled
i Kingdom, which has o 50 Hz line frequency. The 50 Hz component can b clearly seen
g b 2 :L’M ‘the higher noin ), amd s wean squane value 15 essentally constant, as shown
B \ < (b, This distinguishes a pure sine wave, for which (| |7} measures the square of
o &+ \.' E g (the sine wave amplitude, from rondom noise, for which {| fal?) mensures the vadance
,E, z ‘\.\W 'E‘ E vof the Fourier cocfficients (because {fu) i rero for random waveforms). Panel {c)
g " L a E 5 section of the data in () on linear scales, making it clear thit increasing the
a & size of the window leads 10 decreasing variance per component, and (o an increasing
—o— EOHz ¢ ity of components. 1f we multiply the values of the vadance in () by the densily
5 - —e— 266 He . P Gt R :
X = frequency components, we finally amive at the power spectrul densily shewn in
P _H'jl A = 5, *({d), This s physically meaningful result in the sense that the value of the power
z - “spectrum stabilizes @l large #. The exception is again the peak m the neighborhood
. E 80 Hz. which becomes marrower and higher as n increases, preserving 1ls total area.
£ % . This makes sense, because a pure sine wave is represemted by a delta function in the
E i ~ frequency domain tsee Lighthill 1958,
-
E— = ] 1 | |

o ER A0 B a0 00 - we can think of the sum as an approximation to the integral of this function, s

Iragusncy (Hz) shown in Fig. 3.8, Thus we have

1 rI 2
at 10.016660 - -« He—is almost the same as ot 10 Mz, This means that @ (LFnr) = Ex” ey ) (3.61)
- ; g f Whs e
15 becoming a smooth function of the ey, and the fact that we sampies
fumction at discrete frequencies becomes less and less mmportant as the (s = o =g ) cry
f N Z it S s, (3.62)

window T gets larger. To rid ourselves of a dependence on the window e B
we would like to get at this underlying smwoth function,

To see how this all works, let's go back to our formula for the varia
fea Eg 03:59) The idea is that although we are ssimming over o eyl

. . . " 2
at discrete frequencies ay, there is really some smooth function o “(ah

H=—ing

- but we notice that the frequency diflerences are related to the size of our time
window,

Wnp) — by = Ao =2min + T =20/ T =207, {3.63)




136

Cuantifving information transmission Why informution theary

mes and udd up the results, we obtain the total variance of Eg. (3.67). This
: .: e same restlt as ifwe don’t [lter or average. because then we are sensitive

el = Z dm" Iﬁf (o] 3.5 ull frequencies instend of just a narrow band.

7 ! the signal we ure measuring is 4 velocity, say in cofsec, then the power
m has units of a diffusion constant, (em/sec] ¥ ox sec=com” 2sec, Indewd
[.. diffusion constant of a particle can b computed from the low frequency
Timit of the power specirum for velocity Nuctuations. In the same way, Lhe
er spectrum of the spike train his units of spikes fsee, which is the dif-

_ on constant for the spike count. Thus, if we count spikes in a windaw ol
where the natural abject that emereges from the calculation is the smuﬁm &t T, the variance of the spike count will grow i proportion o T at large T,

S0 W can write the variance as
-

Finally. we replace the sum by the integral it approximates, a replaceney
15 strictly valid only in the limit that 7" becomes very large. Thus, s -

(A1) — f ol [7o%@)].

.U.__;

Lo and lhn coefficient of proportionality is the low frequency Timit of the power
S(ew) = lim Toliw), sectrum of the spike train. Some details are given in section A2,
1 o w'h'ﬂn we think about ordinary Gaussian random variables, the natural gen-
00t o+

1 tion of the variance is the covariance matrix. Thus, if we have variables

lﬁbélmd by an index n, and these vanuble have zero meéan, then Cpn =
i) 15 the govariance mutrix. This matrix can be disgonalized by chang-
pordinates, that is, by considering appropriate linear combinations of the
Once we transform to these new coordinates, the different vartables are in-
endent and their variunces are given by the eigenvalues of the covariance
matrix. The underlying independent variables are sometimes called principal
components, How does this structure relate to our discussion of power spee-

s
(LFOF) =f fﬁa‘{w;.
o 20T
The function Siew) 1s the power spectrum, also called the power spe
Hlt}’ and we sce that it has units of the variance of f times a [actor of [
“variance per Hz.” Thus the units for the power spectrum of vnllﬂge il
tions are (Volis)*/Hz, For the power spectrum of fluctuations in firing rate of
a neuron the units are {spikesfsec’/Hz or (spikes) fsec. The relation b

the variance and the power spectrum, Eq. (3.67). is a special case of Par 3
_ ; ' ¥ : FaiE Wh ontinuous functions of time, we can think of the tme 1
theorem (Lighthill 19581.F oy g v Siscuss copth

: : : i ; ; 2 q analop of the index  used for ordinary random variables: i we digitize
The mierpretation of the power spectrum is as [ollows. Imagine that we ﬂw 5 i

at signals in the neighborhood of frequency w and average for about:

onds, so that we are looking through a bandwidth of Awm ~ 1 /1. Theny
see a variance S{w) Aw ~ S{w) /1. Note that this is dimensionally com
we measure volage fluctuations. for example, the product 5{w) A
||"‘l-"ulT_ﬁ,'|11"H;r.]f[sei:| = (Volts)?. As we average for o longer and longer 116
the variance that we see through our averaging filter goes down in propo i
to r, which means that the standard deviation of the Auctuations goes d
proportion /. This is the continuaus lime version of the familiar ided U
we can reduce Auctuations by A if we make N independent measurens
and is illustrated in Fig, 3.8b, If we make measurements at lots of different IS

the signal, then this analogy is exact. Then the analog of the covariance matrix
s the correlation function

Clty= (LI, (3.68)

ich we notice has the same units as the variance of f. Stationarity tells
that this function cannot depend on the absolute times (remember. they
L 'mea'surcd relative to an arbitrary time zero) but only on the time differ-
ences, Thus C(r,1) = Cit — 1') is a function of only ene time variable. We
“ean compute this function in terms of the Fourier coefficients, as outlined in
‘.;_!f__g'[:.'tinn AL14, and we find

2
C'h‘“r:f ;S{wrexp{—iwr]. (3.69)

. . 217
& In modem expenments power spectra are almost always measured 1sing numerical 20

digitized data (Press et al, 19923 In this process it i very casy 1o luse ek of the unis in;
the spectrum shonld be measured. This is wnfofunite, becase then we also lose the pe
checking that the integeal of the powier spectrum 15 equal to the ol vidance,

Thus the correlation function is the Fourier trunsform of the power spectrum,
‘which is called the Wiener-Khinchine theorem (Papoulis 1965). More impor-
'D!nt for our discussion, we see that although the values of f(r) at different
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times are el independent, the different frequency components are ‘ngd e ——— a
dent, This means that the frequency components provide the ;:uﬂ:.,.,..]imm-= !
in which the covariance matrix is diagonal {principal components), g
power spectrum measures the variances of these independent variph) :
As owith the power spectrum, the correlation function has g -a:mﬁ P
nomenalogical interpretation, [ we imagine ohserving the function f
all time up to some point fy, the correlation function tells us how far by
we can predict f(r). Indeed, for Gaussian random functions with zerg
if you observe only the value of f at 1, then your best guess about the :
It some other time ¢ 05 fouew(t) = C0 — md S G}/ € (0) As 1 moye
from £y into the past or future one's knowledge at o becomes less and |
dictive. and the fluctuations of the true f(¢) around the value fi,..(1) b
larger. These ideas are illustrated in Fig, 3.9, One often ks about th
fation e, which measures the (approximate) width of C{r). and he

time scale over which knowledge of the function f can be extrapolated, .

To summarize, the power spectrum, which is a funetion of frequency, e “E
alizes the concept of variance to the case of time dependent signals, For € o E
sian distributions, stationarity tells us that different frequency compone . £
statistically independent, which means that Gaussian random wavefo :i E
really just a large collection ol independent Gaussian random varabls 4

this makes things easy. Equivalently, we can say that the Fourier ser
vides us with a coordinate svstem that diagonalizes the coviriance o
correlation function, for time dependent signals, The Gaussian distributio
again singled out as the distribution that has maximal entropy consistent
the power spectrum.

tirma [mis)

Figure 3.9 o r
\Correlation Function and corretation time. The correlation function Ol — 11 =
 (#(e15(:")), shown in the top panel, measures the extent o which the :'.igngl sl |1'ru_: [
s correlated with the signal at time 1. Beeause of stationarity, the comelation funchon
depends only on the nme difference ¢ ¢! amdd not on the absolute dme £ The CD]'.H:]H-
tion function is ofien condensed into 2 corcelation fime, which measures how quickly
cture in the cormelation function dies out 4s ¢ — ¢ inereases, The middle pancl illus.
trates this. Here we selected porfions of the signal that passed through | mV between
t=—1msandr =1 ms Itis clear that, on average, the signal around £ =0 is fugher
than the mean, Also, near £ = 0 the signals are closer to one another than they are at
times far from ¢ = 0. This is summarized in the botom panel, which shows that the
Aaverage waveform peaks st = {1, whereas the variimee of the set I_-]l. wavielorms has o
‘minimum. The shape of the conditional mean waveform vs. time in the botam pa{ml
mtches the shape of the corrclation function in the top panel, as expeeted for Gaussian
hﬂlﬂf and this demonstrates that the correlation time defines & window of prm.i':-.:tuh_:lﬂ}'
in the waveform, The data are from the same photoreceptor cell as used in the previous
two figures, but at a much lower light intensity, for which the cell’s voltage noise hass 4
- Substantially longer correlativn fime.

To compute the informition transmission for signals in the pre
noise, we note that since different Fourder coefficients are independent, 1
formation carried by each coefficient can just be added up to give the
information. Once more we look at signuls and noise in 3 fixed tme
0 <t <7, and then we define a signal 1o noise ratio at each of the dis
frequencies ay, SN Rie, ). Then the information trunsmitted by each Fe
companent is, from Eq. (3.37), 4, = 1 logs[ 1 + §N Rim,)|. and the total in
mation [ENsnss0nn is ‘

I = Z fp= = Z lug:“ + SN Ry )]
& i ol

=== e

If we now let the tme window become larpe, we can use the same TR
in Eq's. (3.62) w (3.65), replacing the sum over discrete (requencies
mtegral, so tha
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| =
F :ITII af logs [J + S'N.‘Hrm] bats,

e 2

Thus. the amount of information transmitted is proportional to the lithe.
which we observe the signal, which makes sense. It is natural 1o
mformation transnission rate, *

Kinn = Itm =

s |

Eod | bmma

= dew
-/:-x. S log, Il + .5."'-’-‘?t-:rJ]I bits/see,

10%

For a single variable, the signal 1o noise ratio is constructed by taking tly e
af the signal variance to the vadance of the effective noise, as in Eg;
In the case of time dependent signals, we form the same ratio, but o
power spectra rather than variances, since the spectra measure the vanm

the Fourier coclficients, so that '

5i
SN Rile) = _a.:j —

N ¢ ﬁ'l:_(u]

fraquency (Hz)

I ]?Igun’: 3.10

Noisu whitening. To transmut the maximam amount of information possible given o
fixed total signal varance, the power spectrum of the signals 1o be coded should be
matched to the power spectrum of the noise in the system, The optimal situntion shown
~ here is one in which the total power—the signal power plus the noise pawer—is equal
at each frequency. The power spectral density, given by the solid ling, 35 the effective

hed area rep-
i . mntras[ noise power density of @ hlowfly photeregepton. The cross-hate
s J:-':"”““f-ﬂﬁ e Mgndh‘ S6. el i e noleLEe ;ﬂthls the optimal distribution of & Gxed amount of signol contrst power over the

we can maximize information transmission by choosing Gaussian sig  various frequencies. This contrast power 15 distributed as if it were water n 4 vessel
how should we choose the power spectrum? Suppose that our only co [ ~ shaped as the effective contrast noise power specirum, Henee the procedure is some:
is on the total signal variance. This variance is an integral over the times referred 10 as the “water filling analogy." See also de Ruyter van Stevemnck and
spectrum, as in Eq. (3.63), and we would like 1o maximize Ry, in Eg - Laughlin (1996:)

while holding this integral fixed. The solution tw this aptimization |
i5 quite remarkable (Shannon 19491, and is shown graphically in Fi
for the derivation, see section A.15. The optimal signal spectrum is one
exactly complements the noise spectrum over a limited handwj_dth';_ 0
the total of signal plus noise is flat over that bandwidth, We must choose
bandwidth so that the variance comes out to the correet value. This me
aptimal coding schemes produce an output that looks as much like white
as possible, given the constraints.

Wi have seen that to maximize informalion ransmission at ﬁxerI /i
we should choose Gaussian signals, assuming that the noise is Gauss

sum of signal and noise is as close us possible to the “completely rundom”
Whlte noise. This is a crucial result, since it means that if one were recording
:[l't_':m a neuron that optimized transmission from one point in the brain 1o an-
other, its spike trains would look like complete junk! This is a cautionary tale,
singe it tells us that the observation of highly random spike trains might indi-
cate extremely noisy neurons or it might indicate optimal coding. The way to
distinguish these limiting pictures is to measire the information Iransmissnn
mt‘-“& and see if they are in any sense optimal. We will show how 1o do this in
the following sections.

As an example of these ideas, consider a single photoreceptor cell in the
- fy's eye. At reasonable background light intensities, these cells respond lin-
early to changes in the contrast C (1), so that the cell voltage has a time depen-
dence

The result in Fig. 3.10 is a special case of something more general.
wants to maximize information transmission subject o some constraind
optimal strategy 15 alwavs o make the output of the comimunication ¢
look as random and “noise-like” as possible, Thus we have seen that if i
noise comes from a Gavssian distribution, maximum information transmi
oceurs when the signal also comes from o Gaussian distribution, Similarl
tme dependent sigrals, maximum information transmission oceurs whe
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o0
Vi) —.f dr it —oi1+48Vie,
i

where T(r} i5 the response of the cell o o contrast pulse at time T n
SV s the viltage noise. This 15 an example of the linear response.
discussed in section 2, 1.3, and we can measure the response function T
its Fourier transform T (e), with methods in the spirit of Wiener's wh
technique. The important addition to the discussion in section 2,13 i8] :

Il we present a time dependent contrast stimulus C{2), and then
input signal many times, we can average away the noise and thus
averige vollige response,

e
(Vi = [ dr{r)C(r — 7).
Ji
As in the discussion of electrical impedance in section 2.1.3, we can’
transform both sides of Eq. (3.75) to find that each Fourier uurnpani::pl;
average voliage is proportional o the corresponding Fourier componeg f'
stimulus, and the proportionality constant is just the response function T

{‘:"[{.-_rj} = ?[ar}i’:‘[m].

Thus equation relates the Fourier components of the average voltage, whic
mieasure, o the Fourier components of the stimulos, which we control,
we know both {V(w)) and Ciw). and can lind the response function T
tuking their ratio, Obviously we hove o choose o stimulus 10 which'r
the Fourier components € (i) are e,

Onee we have charactérized the averaoe voliage response, we can Tak
responses 1o each individual présentation of the stimulus and subtract
erage, as in Fig, 3,01, which leaves us with muny examples of the
wirveform 8V (), one for each presentation. We can then Fourier trins
each example, and compute the variance of the Founer coefficients ac
ensemble of examples. When the variances of the Fourer um_zfﬁuieniﬂ'll‘ﬁf §
malized by the time window, as in Fig. 3.8 and Eq. (3.66), we obtain th
spectrum of the voltage noise Ny fw) shown in Fig. 3012, This analys
been done for both the photoreceptors and the large monopelar cells:
fly’s visual system (de Ruyter van Steveninek and Laughlin 19964); the:
monopalar cells are second order neurons that receive synaptic input i
the photoreceptors. Results from both types of cells are shown in Fi
and 3.12 .

stimius H

wwwwuwwm%

<1 T T

o 001 LR 1

lirne {ms) Probability density

 Figure 3.11
Stimmlus and voltape responses o photreceptors and LMCs, Ledt column; portions ol

thee stimulus contrast signal o) ap), and the averaged voltage respanses (hick lines
with three samples of the flucteations around the average (thin lines) recorded respec-
tively from a blowily photoreceptor imiddlet and an LMC thotom ), TMOs, short for

Clarge monopolar celis, are diveetly pestsynapic o six photoreceptors i parallel. In the

experiment the Ny saw a light imensity modulmed withoa function | |+ ¢ 4], withoeit)
the contrast wive form. This stimualus was repeated many times, and the responses n(i]
0 i) were averaged to pet the ensemble-average wivelorm {r(eh). The fuctuatiens

are the individual traces minus this avere wavelorm: dogde )= 100 — (et} The

rght column gives the probabilicy distributions correspending o these sigpals (illed
cireles: average wavelorms, open circles: Huetuations around the averagel,
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Following the discussion of Eq. (3.36), we can characterize the photan
tor noise by referring it to the inpul, generating an equivalent contras
shown in the bottom panels of Fig. 3.12. The spectrum of this equivalent
trast noise, NE'(w), is determined by the response function and the
noise power specirim defined above,

Nf-ﬁ{ru} = ."n"-,-iru]flf"lu:hF.

g1 Why information theory

Figure 312

Contrast power trnsfer functions (top), noise power spectral densities (micddle). and
effective conlrast neise power spectral densities (hotton) for o blowdly photoreee plor
(left) and an LM (right), Data are shown for iwe light intensities, o factor of TO0 apart,
'I;hﬂ transter function is defined s the Fourier ransform of the sverage wavelonn di-
vided by the Fourier tronsform of the stimulus contrast waveform. The noise power
'm.gc_;rdi density is the average power spectral density of all the fluctuation traces, And
finally, the effective contrast noise power spectral density 1s the measured notse power
spectril density divided by the square of the contrast transfer functon. Thes simply
yransfers the measured noise power spectrl density o an equivalent stimulus con-
trast. Shot notse analysis shows that an ideal photon detecior should have an equivalent
contrast noise power spectral density equal to one divided by the photon capture rite,
-Iﬁ'dﬂpcnrjcnl of frequency. The dotred Tines m the Tower two panels give these physi-
il limmits. They represent 3.8 = 107 and 3.8 = 109 quantum bumps per second for the
photoreceplor. ind 7.5 = 0% and 7.5« 10F bumps per second for e LMO. They are
ohtained by counting single photon abserptions ineach cell ot light levels that were o
:iﬁ[ge:rﬂlihnllud factor lower than those wsed heee, Over an apprecible frequency rnge
the photoreceptor comes quite close 10 the fleal detector for both Tight intensities, The
LMC starts 1o depart from ideal behaviar only at the highest Tight mtensay, probably as
i_j"};:su]r. of the Himited information capacity of the chemical synapse,

If each photon counted by a receptor cell triggers a stereotyped voltage pulse,
or “quantum bump,” then if the photons arrive from an ordinary light source
we will have N2 (w) = | /R, where R is the photon counting rate, The effec-
tive noise level cannot be lower than this physical liot, often called the shot
noise limit. This limit is approached over o wide range of light intensities, at
least up to some cutoff frequency where cxcess noise beging 1o appear due
1o randomness in the wansduction mechanism itself. In the large monopolir
cells one also expects 10 see excess noise due to randomnpess in synaptic trans-
mission. To moke a ¢lean comparison between effective noise levels and the
photon shot noise fimit, one must calibrate the photon counting rate ol each
cell individually, This is done by muintaining the cell in o dark sdapted state
ind counting the quantum bumps in response (o dim, steady lights.

Given the effective contrast noise spectra ol the receptor eells and of the
lurge monopolar cells, how much information can the voltage responses of
these tells provide about the visual world? This is an interesting computa-
Hion because information that arrives at the: large monopaolar cells must have
crossed a synapse, and <o in this way we can make an estimate ol the infor-
mation capacity of the synapse isell. The difficulty is that we don't know
the real ensemble of signals the Ty encounters as it flies through the world.
Recent work has characterized some of the spatial structure in randomly cho-
Sen snapshots of nataral scenes (Field 1987: Ruderman (9493; Ruderman and
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pacity of the synapse itself. The final result is that receptor/ LMC synapse can
mmﬂmi’nfmauun at a rate of 2 = 107 hits/s (de Ruyter van Steveninck and
ghlin 1996a).
~ Both the photoreceptor and the large monopolar cell produce praded re-
onses, but there is an clement of discrereness to synaptic transmission itsell.
‘Ghemical synapses such as this one work by relensing transmitters, which are
. packaged in vesicles (Katz 1960). By analogy with our discussion of spike
| counting, we can imagine that the postsynaptic cell is a vesicle counter, and
i ﬂ:mt vesicles are released (or counted) with some limited time resolution At.
Then, if we know the mean rate of vesicle release. we can compute the mix-
* jmum possible entropy of the vesicle count distribution, which is the same as
for the spike count distribution in Eq. (3.24).

“The synapse from photoreceptor to large monopolar cell has been very well
ﬁtud’u:d anatomically (Meinertzhagen 19933 There is a convergence ol £ix
receptors onto one monopolar cell; because of the optics of the fly's eve, these
six cells “look” in the same direction in space, and their signals are pooled.
 Each réceptor makes roughly 200 synaptic contacts with the monopaolar ecll.
.- that the synaptic input to this one cell reflects a superposition of 1.2 = 10
huumns or active zones. This is comparable to the number of synaptic inputs
Cconverging onto a neuron in primary visual cortex,
~ Recent experiments suggest that the rate of vesicle release from a single ac-
e zone (albeit in a different species) does not exceed 150 vesicles/s (von
| Gersdorff and Matthews 1994). Using these observations us u guide. we ex-
-~ pect that, with 1.2 = 107 active zones, the vesicle counting rate at the large
"iﬁﬁﬂﬂpﬂlﬂl‘ cell is less than 1.8 = 107 s, The effective contrust noise level
~af the cells saturates at photon counting rates of this order, suggesting that
~information transmission can be limited either by the discreteness of photon
arrivals or by the discreteness of vesicle release. What s the time window the
monopolar cell uses in counling the vesicle arrivals? The observed frequency
tesponse of these neurons suggests that this basic time resolution js of order
3=5ms (de Ruyter van Steveninck and Langhlin 19964, 1996h). We conclude
that, viewed as a vesicle counter. the large monopolar cell is sampling time
'E"iﬂdUWS which contain an average count of (it most) 540-200 vesicles. From
Eq. (3.24), the entropy of the vesicle count distribution must therefore he at
En_n:'is'l 10-11 bits in cach tme window, With 3 ms tme resolution this corre-
Sponds to ~ 3.7 = 1P bitsfs, and of course informution capacity declines as
the effective time windows become larger. We sce that the observed informa-
tion capacity of the large monopolar cell is within a factor of two of the limit
SeLby vesicle counting statistics,

1400 —
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Figure 3.13

Tnfermustion capacities of photoreceptors and large monopolar cells o5 a fung
average light intensay, The informanen capacity is determined from the effectiven
spectra in Fig, 30012, vsing o total stimuliss contast variaonce of (L1, and aptim
the stimulus contrast spectmim vsing the water Blling snalogy depicted in Fig
We then get the rate of information transter from Eq. (3720 Information about
level conveyed by the LMO voliage must be transmitted through the phote
LM synapse; thus these measurements determine o lower bound on the H.rnni[
information the synapse is capable of ansmiting. The information transmitted | hy
LBCs is higher as o resull of the convergence of six photoreceptors. See alsode
van Steveninck and Lovghlin (1996a).

Bialek 19943, but this docsa’t tell us ubout the dynamics seen by any, i
receptor cell in time. What we do know is that the viariance of the contras
reasonably natural environments is about 0.1 1f we look through an gp
the same size as that of the fly photoreceptor (Laughlin 1981; Rudermin
Bialek 1994). Thus we cun formulate the problem as before: Given the el
tive noise spectrum and the contrast variance constraint, how can we chogse
the signal spectrum (o maximize the information rae?

The procedure for maximizing the rate of information transmission pre
is piven again by the schematic of Fig. 3,10, and in Fig. 3,13 we see the
ing information rates plotted versus the photon counting rates for eac
of cell, The information rates can be enormous, up o 1.65 = 107 bits/s int
larze monopolar cells. Again we emphasize that this information must
the synapse, and one can separate the LMC valtage noise into a comp
that Is wansmitted from the receptor cell and a component that is added b
synapse, and it is this synaplic noise that defines the lmiting Iﬂﬁmnﬂﬁ‘m
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~ This problem is fundamental, as can be seen through connections belween
&uférmmi:m theory and thermodynamics. Shannon’s measure of svailuble in-
magmn is the thermodynamic entropy, so that the entropy of o gas is the
mount of information we would gain if we learned the positions and veloc-
: of each individual gas molecule (Brillouin 1962). Measuring the infor-
;ﬁmﬁﬂ,“ carried by a neural spike train must thus be something like measuring
the entropy of a box of gas or liguid, The problem is that, strictly speaking,
 he entropy is not an “ohservahle” of the system—there are no cntropy meters.
) nﬂL‘ﬂl‘ measure entrapy changes, but only because of the connection between
 entropy change and heat fiow, As far as we know there is no information theo-
retic analog 1o heat Ao that can be measured by universal instruments,
Given the thermodynamic analogy, we see that we cannot, in lact, "mea-
re’” information transmission in the literal sense. We can. however, oy o
timare the relevant entropies, We would hike to make controlled estimates, so
 that we know, for example, that the true value of the information transmission
pate is larger than some directly measurable guantity,
‘Making reliable, controlled estimates requires that we understand some-
~ thing about how the system works. In the thermodynamic setting, we might
 start by approximating our system as an ideal gas, in which motions of all the
* molecules are independent. Of course, for many fluids this is a terrible appros-
* imation; near a critical point. for example, macroscopic numbers of molecules
- participate in correlated motions. To make meaninglul estimates of the en-
tropy, we thus need some ideas about the structure of the correlations in the
-i_iuid, Similarly, to make meaninglful estimates of the information transmission
- in sensory neurons we will need 1o understand something about the structure
of the neural code.

The fact that one cun estimate bul nol measure information transaiission
thus means that there is no automatic information theoretic approach that boils
the behavior of a neuron down to one number, the information trunsmission

© rate. On the contrary, the attempt 1o pull such o number out of experiments
forces us to examine our understanding of the neural code iself,

This example of the first synapse in fly vision brings together severy] i
the dehnition of effective noise levels; the comparison 1o physical limg
phatan shet noise; the wse of maximum information areuments 1o de
the information capocity: and, inally, the use of maximom entropy irgum,
to determine the physical limit set by the discreteness of vesicles, We
size that, in computing the limit o informution transmission |lnpusg-,d5 :
need 1o count vesicles, we have not used any model for the statisties af.
cle release. The bound that we caleulate may be very generous if there §
simple mechanism 1o encode the receptor cell voltage variations in:&
counts with the appropriate statistics. Nonetheless, the observed perfo
of the synapse comes close o the physical limit, encouraging us to thin
the theoretical limits on information transmission are relevant to real ne
We shall see this conclusion borne out in the analysis of spiking ne;
well.

3.2 INFORMATION TRANSMISSION WITH SPIKE TRAINS

Since the uppearance of Shannon’s pioneering papers in 194849,
thors have expressed the hope that information theary would provide a ng
language for the discussion of neural coding, and perhaps even for the an
sis of higher computational functions of the brain. Despite considerable eff
even measuring the information carried by a single spike train has been s
cult. Some of the problems are related o the usual plague of insufficient
bul there are soime more fundamental guestions abour what it means to
such measurements. Here we try to clarify these qoestions, then review:
cxperiments that build an information theoretic analysis on top of the clas
Adrian-Hartline experimental design. Finally we discuss the use of thesti
lus reconstruction technigue 1o quantify informuation transmission rates U d
conditions of continuous sensory stimulation,

L1 Can we really “measure” information transmission?
Information theory s formulated by Shannon (and as taught in mod
courses) is not an experimental science, Information theory is concerned
marily with caleulating the limits on information trunsmission in a phy$
system slarting from a hypothesized model of that svstem. The problent &
neural coding is that we are given a real physical system (u sensory o
and asked to measere the information the system can transmit. $hannon did
really tell us how 1o do this,

..:-_I"_mﬂtlun transmission with discrete stimuli
The earliest application of information theory to newral coding 1s, as far as we
“can find,” the theoretical paper of MacKay and McCulloch (1952), which we

Y I s of somie historical interest that Shinsoh hinsell used informition theery 1o analyze the
Testilis of paychological caperimeits, osing the linguistic knowledpe of pative speakers 10 place
bounds on the entropy of English Shanoon 19511
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Figure 3.14
Responses of a complex cell in monkey striate corlex to two different spatial pe
The durstion of the stimulus presentation is piven by the dark horizontal
individinl spikes are represented by dots as in Fig. 2.0, The mein number of
generated during the 400 ms following onset of the stimulus s similar in respon

the twi patterns, However, the probability of firing clearly has a transient peak shan
after stimulus onsel for the pattern in the bottam pavel; this peak is largely miss
the stimulus shown in the top panch. Furthermore, this distinetion between the
hehaviors in response to the two stimuli i clear in cach individual wial. Rﬁl:'l‘il‘lt'!’.,l.|r
thie eriginal data of Richmond, Optican, and Spitzer {1990), with our thanks 1t
authors.

stimulus onset is specific to the stimulus, and we emphasize that this p
independent of the use of principal components or even the technical A
tus of information theory, We suspect that similar results would be foun
Many syslems.

}ri Information rransmission with spike trains

. For example, in the auditory nerve it 1s known that the transient respanse Lo
onset of & pure tone can depend on the fregquency of the tone even when
eumpﬂﬂﬂi- two tones that give the sume steady liring rate after the ransients
H ve qettled. Carrying the paint a lintle further, the conventional anmalysis of

~ guditory neurons maps out contours in the amplitude—frequency plane corre-

ﬁ:ﬂndlﬂ“ to constant steady firing rate, as shown in Fig, 2.7, But, if we modu-
ate a tone so that it moves along this amplitude—frequency trajectory, we don’l
y expect that the modulations will be undetectable in the cell’s output. The

et that @ cell gives the same steady firing rate all along a particulur stimulus

i{ﬁmﬂnfﬁlﬂn does not mean that the cell is blind (or deaf, in this cased 1o realistic

ﬂmn}j{,s of the stimulus along this dimension.

Remmm“ 1o the visual svstem, 1t s an old ideu that the center and sur-
mund of clussical receptive fields (Barlow 1953b; Koffler 1953) have different

dynamics, s0 that inhibition associated with the surround is slower than exels

tation in the center. Agam this means that if we design two stimuli that each
differcntially excite center and surround, we can arrange that the steady finng
rates for the two spatial patterns are the same, but the timing of the spikes at

~ the onset of the stimubi will be different. Recently Golomb et al. (1994} have
shown how this idea can be {ormalized for cells in the lateral geniculate nu-

elens. They studied o model in which neural firing is a Poisson provess {see
section 2.1.4) whose rate is modulated by the visual stimulus as seen through
the spatiolemporal receptive field, For simplicity they assumed that modula-
tions are linear, and the receptive fields were measured using the reverse cor-
relution technique (se¢ section 2.1.3}% Golomb et al. found that many of the
results from a principal components analysis of these cells (MeClurkin e al,
19915, 1991h) can be reproduced by the model. In addition, the model allows
us 1o g0 back and study the dependence ol information transmission on time
following stimulus onset, as was also done in the experiments of Tovee et al.

- (1993

Also working in IT cortex, Tovee et al. did a principal components analy-
"ii_i‘_-i very similar to that of Richmond, Optican, and their collaborators but with
varying time windows, Remarkably, they found that the majority of the avail-
able information could be extracted from observations of the spike train in
very small windows, as small as 20 ms (Tovee et al. 1993), In their model
fﬂf!ﬁwl’:ﬂ geniculate nucleus responses, Golomb et al. (1994) found, in qual-
Hative agreement with Tovee et al.. that the bulk of the information the spike
train carries ubout the “static” visual pattern is conveyed rapidly, within 100
ms of the stimulus onset. OF this 100 ms, the first 30 ms would seem (o be true
lﬂtf:ncy, since no information is conveyed in this time, In these time windows
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the cells fire on average justa few spikes, so that an analysis that coarse—g
the neural output into firing rates or even principal components may be
ceptually misleading. Both the work of Golomb et al. and that of Tovee et ;
support our claim o secton 2.2.1 that, for many sensory neurons, the Tlatum
time windows contain on the order of one spike.

Further evidence foar the transmission of substantal information by ﬁmﬁﬂ
numbers of spikes.can be found in the classic paper of Werner and Moumcasﬂg
(1965), who studied the skin mechanosensors in monkeys. This remains ope
of the standard references on the statistics of interspike intervals as a function
of firing rate, and it is one of the first examples of & connection hetween the
reliability of neurons and the reliability of perception, a topic we explore
detail in the next chapter, Part of their study, however, had an infuﬂﬂnﬁdﬁ
theoretic flavor, |

Werner and Mounicastle chose the amplitude A of the stimulus—a statie
deflection of the skin—at random from K possibilities. They then counted the
spikes in some fixed time window following the stimulus onset. and repeated
the stimuli enough times to obtain a reasonable estimate of the C_Undiﬁnnﬁi
probability distribution P{n|A) of spike counts given the stimulus amplitude,
Then the information the spike count provides about the stimulus amplitude is;
by analogy with Eq. {3.28),

Z Z PlnlA) logs [P[LL“:]] | (3.78)

where the averall probability of observing n spikes is

Piny = % ; FinlAl (3.79)

By chianging the number of possible sumuli & it was pussible 1o saturate the
vitlue of f, suggesting that a limit of performance for the neuron had been
reached, rather than a limit imposed by the choice of stimulus ensemble. This
saturation value of [ is approximately 3 bits, so that the spike count is suf-
ficient to distinguish reliably among ~ 8 = 27 different stimulus amplitudes;
and very similar results were obtained for several different neurons,

Wemmner and Mountcastle tried to conneet the observation of 3 bils of in-
formation with the apparent limits to human cognitive processing studied by
Miller (1956) in his famous paper “The magical number seven, plus or minus
two,” In retrospect this seems a it far fetched, and perhaps this is one of the
rensons that the information theoretic analysis i tos paper s not widely cited.

32 Information transmission with spike oains

For our present discussion, however. the most interesting aspect of the paper

s that the authors studied information transmission by spike counts taken n

windows ol different sizes. In particular, they Tound that more than two bits of
information could be gained by counting spikes i windows as small s 20—
50 ms. But, for the tvpical firing rates of these neurons, these small windows
contain, on average, just 5 to 15 spikes. From Eq. (3.24) we know that the en-
tropy of the spike count distributions must therefore be less than 4 o 5 bils, si
that the information about the stimulus is ronghly hall the availuble entropy. In

Cpne case (cell 25-1) Werner and Mountcastle provide the raw data from which

we can compute the spike count entropy, and we find 4.2 hits under conditons
where the information about the stimulus is reported as 2.5 bits,

We have emphasized the fact that the spike tain entropy provides an abso-
lute upper hiound on the amount of information a neuron ¢an transmit. Coding
sehemes that look only at the spike count are further limited by the entropy
of the counting distribution. Werner and Mountcastle found that the amount of
information carried by the spike count distribution could be as large as 605 of
the count entropy, so that most of the variability in the spike count is in fact
being used 1o encode the stimulus amplitude. Unless we look at the timing of
spikes within the 20 ms windows, it is thus impossible to observe significantly
higher information transmussion rates, In addition, the information transmis-
sion saturates with integration windows of order 100 ms, comparable to the
transient response time ol the neurons, suggesting that the cell s optimized
for transmitting information about rapidly varying signals,

IF we return to our discussion in the introdoction, we see that the Werner
and Mounteastle results are very much in the tradition established by Adrian:
Stimuli are static displacements, and responses are quantified by counting
spikes. But now we see that cells can transmit almost all of the availuble
information before the trinsient responses to stimulus onset have settled, and
that this information is comparable to the limits imposed by our choice to
count spikes. To determine the true information content of the spike train, then,
we must choose stimuli with more realistic ime dependencies and examine the
neuril response spike by spike.

We end this section with a note of caution concerning the amount of datu
required o draw meaningful conclusions about neural information transmis-
sion (Kjuer, Herte, and Richmond 1994: Treves and Panzeri [993), I we
describe neural responses in terms of spike counts or firing rates, then it is rel-
atively easy 1o collect data seis large enough to sample the distribution of spike
counts conditional on each stimulus, as in the work of Werner and Mount-
castle (1963), On the other hand, once we consider the possibility that the
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arrival] time ol each spike carries information, the number of l.'.llmengiuns_:
our deseription increases dramatically and the number of “bins” in which
have to sample the probability distribution explodes. The spike train en
guantifies this explosion. If we fook at a time window of size T oand
the arrival of spikes to accuracy Ar, then the entropy is, from Eq. (3,
5=V logsle/rAr) bits, where 7 is the average firing rate over the wi;::dg. %
We recall that the entropy measures the h;;:urrfhm of the number of possik
spike trains, so that there are roughly 2* ~ (¢/FAT)™" distinguishable
trains, and in principle we need o see every one of these responses o few
belore we can make model-independent estimates of the full probability: g
tribution. But with 7 ~ 30 57" and T ~ 300 ms, a time resolution of At
ms gives us 2% ~ 10! Thus the number of possible spike trains is of the's
order as the (1995) United States government budget measured in dollars,
experiment will ever sample even a tiny fraction ol these possibilities; no ex
perimental animal fand few experimenters!) will experience even one-ten :
this number of 300 ms intervals ina lifetime. Clearly one cannot jump f
counting spikes to o "complete™ analvsis of tming codes without some
ahout how o control this explosion of possibilites,

In this section we will show that by learning 1o read the neural code we
place a rigorous lower bound on the amount of information a sensory o
ron is transmitting (Bialek et al, [993). The key idea is that our estimate
the stimulus cannet contain any information that wasn't actually present in'the.
spikes. But the estimate is u continuous waveform, and we have lots of an-
alytical techniques for asking how much information one analog signal (the
eslimale) provides ahout another (the stimulus). The result, Eq. (3.95), is
the rate of information ransmission by the spike truin is larger than a simpls
guantity that measures the guality of the reconstruction. This in turn [!l'ﬂ‘-’idéﬂ'f
us with an experimental sirategy for estimating the rate of information rans=
mission in real neurons, as schematized in Fig, 3.15. In the following sections
this approach 15 used as an expenmental ool

This section is the most mathematical of all the main text, and it is really Bﬁ"
about aveiding o mistake in the unalysis of experiments. Specifically, we will
discuss experiments that cluim to estimate the rate of information trdn%mlﬁlm
by sensory neurons. These experiments indicate that information rates are "l’ﬂf.'ﬂ
larze, close 1o the physical limits imposed by the spike train entropy- Bﬂt
we have emphasized that one cannol really measure information ralés, nn]_j_fr_
estimate them. Estimates contuin random errors, which we can control by the

3.2 Information transmission with spike fnting
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Figure 3.15

Strategy for measuring information rate. We can place @ lower Tound on the rite at
which observation of the spike tron provides information about the mput signal by
the procedure outlined here. First we estimate the input signal. We then measure the
rndom errors, Jled, in the estimate, These mndem emors determing the Signal to
nodse tatio (SNR) ol the estimate, and from the SNR we compute a lower biund 1o
the information transmission rate. This bound will be close w the actoal information
tromsmission rate i the errors in our estimate are nearly Gavssian and if our estimation
strategy adequately captures the structure of the code,

usual methods, Bul the entire estimation procedure may be biased. so that
evern with infinite data sels we do not converge to the correct answer, We wani
to.control these systematic errors. and in particular we would like 10 ba sure
that we do not overestimate the performance of the nevron. Thus we want to
make the conservative statement—ithis neuron transmits af legst so many bits
per spike—and be sure that the statement is correct. Technically this means
that we want to give a4 lower bound on the informution rate, and all of the
mathematics in this section is concerned with constructing this lower bound.

From the general definition in Eq. (3.28) the information that the spike train
provides nbout the stimulus is given by
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where we use the shorthand notation in which Dy stands for integration g
all arrval times £, 62, --- 0y and summation over all spike counts N g
time interval 0 < ¢ = 7. In a similar shorthand, [ Ds denotes an intew
over all functions sir) for ) =1 < 7. Plait)] is the a prion dfsh‘ihuh’,un‘
which the signal is drawn in o given experimental oF natural ﬁitu:]lj{}ni.
goal of the caleulations here 15 1o massage this expresston for info
into a form in which we recognize terms thal are aceessible 10 experiment
ohservation, N
We can rewrite the information by remembering that the joint distributio
signals and spike trains, Pls(r {r]] can be decomposed into the conditio
distribution of signals given the spikes—the response-condiional ensem Y
of section 2,2 3—and the distribution of spike truins £|{5]]: .

PlsitiAnl = Plsioilin 1P -

Rut, with this factoring, the distribution of spike trains cancels from inside t
fogarithm of Eg. (3.8, and we expand the log into 115 twe terms, oblaining:

H[.r,ll—v-.-.-{r:lt=—f.stF[J-Ir]JIugz Plstr)] (3.82)

--fﬂn £l |:—fﬂ-* Plstolln]] log, Fiﬂﬂllﬁl]ﬂa‘

The first term s the entropy ol the stimulus distribution, and the second term s
just the entropy of the conditional distribution P[s(7)|{#]], averaged over thes
distribution of spike trains £[{t,}], The entropy of the signals is determined by
the setup of the experiment. so we need 1o work on the second term,

In the discussion of response-conditional ensembles (section 2.2.3), W
lustrated the structure of the conditional distributions Plsiri|{4]] for sim
chaoices of the spike sequences [¢4). Even with these stmple choices, we ¢o
only approximate these distributions as multidimensional Gaussians, or elsé
we run vt of data almost immediately. To evaluate the informuation transmiss
sion in B, (3.2.3) we really need 1o characterize the response-conditional ers
sembles for arbitrarily long spike sequences. This is, at first sight, completely’
lhopeless. The escape from this apparemt dead end heging with the maximum
entropy idea,

The entropy of a distribution is always less than that of @ Guussian I.J,islriIIU'_‘I]
tion having the same mean and variance, To exploit this fact we need Lo work

Informution transmissicn with spike trains

3.2

with the mean stimulus wavelorm and the variance of these waveforms given

come particular spike train. Then we can put a forwer bound on { by approx-

mating the conditional distribution as Gaussian, The mean stimualus wavetorm

given a particular spike train is defined w be

sl = I D Plstzhl{t s (3.83)

Todefine the variance of the conditional distribotion, we have to remember that
the fluctuations in s (£} given the spike teain are not stationary, since the spikes
pick out certain specilic times: surely the fuctuation in sir) would b large ina
Jong time interval completely devoid of spikes. Thus we need a full covariance
matrix, which we wrile as

Nit t' = [ D Plaioy| (6] Is0) = St {nDllse =50 s Dl (334

If we think about digitized signals, where time is measured in discrete Leks
of a clock, this 15 a large but gquite ordinary matrix that can be manipulated
with the usial rules of aleebra. Indeed, tos is the same sort of nonstationary
correlation matrix that appeared in the discussion of the response-conditional
ensembles. More generally, Eq. (3.84) describes a correlation function for the

fluctuations &s(1) = xit) — ¥tz {4} under conditions where the usunl invari-

ance with respect t tme translation is broken by the choice of particular spike
times,

In the simple case that the ensemble of stimuli is iself Gaussian (although
not necessarily white noise) the prior distribution Pls(e)| can be completely
characterized by the power spectrum or correlation function, as we have de-
scribed before (section 3.1.4). For the moment it is useful tw think about the
correlation function or covariance mautrix, which we write as .;?{.f, 7). We recall
that this matrix depends only on the tme difference 1 — ¢, that we can diag-
onzlize the matrix by going 1o o Fourier representation, and that the resulting
cigenvalues are just proporionul to the power spectrum. These facts become
important a bit later, but for now we just manipulate Serot’) and N 40D
as ordinary matrices.

For Gaussian signals our problem reduces to computing the dilterence in
entropy between two multidimensional Gaussian distributions with covarance
matrices given by S, 1% and Nir, s (1)), We've already done this in the case
of one dimensional Gaossians, in Bg. (3,100 and the surmounding discussion.
One can solve the analogous muludimensional problem by transforming to
coordinates where the covariance matnices are dingonal, doing the entropy
calculation for each independent degree of freedam, summing up the results,
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and transforming back to the original coordinates. One then has to cheek
the result 5 independent of the choice of coordinates, and it is, The ¢

thit
f= % j D PG T (10;_11 |:f de'Ste N e !n]]]) )

where Tri- - <) denotes the trace of the matrix (-« +). The logarthm §
expression has o matrix as its argument. This matrix log can be compL
by changing coordinates once uguin o diagonalize the malrix, replacing eag
diagonal element (eigenvalue) with its logarithm, and then transforming bag

to the origingl coordinate system. Note that the expression i

I‘d‘ifr'{h YN ) (3.86)

i5 the product of the two matrices §and N1, and that N~ is just the ma
imverse ol A, that is,

fffr‘ﬁ’ Vet o' i AN 27 [)) = & — 7).

interpretation: From the covariance matrix of the fluctuations in the signa
given a particular spike triin and the covariance of the signal iself we ca

gives about the signal. Then we average over all spike trains. weighted by )
probability of occurrence, 16 find a lower bound on the average information
Eransmission.

Although the ided behind Eq. (3.85) is simple, the mathematics is still a
complicated, because we have to compute N for each spike train, then ay
over spike trains after faking a loganthm. We can make things a little bit b
by noticing that for any distribution of x, the average of the logarithm of x
smaller than the logarithm of the average, thatis (log 1} < log(x). This ralanon:
is a restatement of the fact that a plot of log v versus 1 curves downward
illustrated in Fig, 3.16, and this means that we can take the average 'lﬂs:l.dﬂ _
logarithm and preserve the inequality. I we write log,| N = — loga (V) and
take the average inside the log, then we need

(NG 5 1) = [ D PIGTIN G, 5.

agag w = ! : o 1‘.
This average covariance then measures the fluctuations of the signal around
its conditional mean. but the fluctuations are themselves averaged over _Ill_,I

37 Information trnsmissien with spike trams
0.0 0.5 .o 15 &0
i 1 I
2 -t
d

P

i
=
o
=
=
1
T 2
0 1 2
X Plinix)]

Figure 3.16

Concavity of Inix) and the ineguality {Inix})) < Infr). The concave shape of Indx)
causes the verage of Into) over © 1o be tess than the [oganth of the averge ol v, In the
example shown in panel (a), © has o symmetrie distribution with mean [ The natumal
Togarithm of @ shown in (b} hos the skewed disiribution shown in (c). This concave
transformation compresses the region of v where v = 1, and expands (he region where
o= |, As o resull, the mode of P)inic)] is shifted up, boo the mean of Pllodc)] is
lowered: (In(ad) = Intix),

possible spike trains, These average fluctuations are stationary, since we are
no longer keeping track of paticalar spike arrival times, Thus, the average
covariance is a function only of the time difference ¢ — ¢, that is,

(N M =N = 1), (3,89)

WNow the correlation matrix of the noise has the same structure as the correlation
matrix of the signal, namely that it depends only on time differences, so we
know that the cigenvalues of S are the power spectrum of the signal and the
eigenvalues of N are the power spectrum of the paise. To lix the notation, we
define explicitly the noise spectrum:
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Niw) = [JT expi+fwr )N {T).

Instead of fiddling with matrix manipulations, we can now just work: wig
the eigenvalues, Then taking the trace means that we have o sum u\re.f |
the discrete frequencies, and we have already seen how these sums b
wtegrals when we let our time window T become large, as in the dL-acu.ssinﬂ
!:"q. (3.65). When ull the dust settles, we find that the transmitted informay

is bounded by a simple expression: f

i T O d 3
o= fim 1) > solT 25 [ Svom| 7).

e 1]‘? B .l'lf[m}

where Niw) is the power spectrum of Nuctuations around the conditional
mean wavelorm, avernged over spike trains, and (i} is the signal puwgr_ﬁ'
trum, as beloee,
We are still not quite fimshed, since the power spectrum N(w) descy
fluctvations of the stimulus around the conditional mean, but we have
expluned how to find the conditional mean. In the analysis of I‘Ehpn
conditional ensembles, the mean is constructed by searching througﬁ:
experiment for many examples of each spike train, but this is impossible for
long spike trains. What can we do? The conditional mean is i function
maps the spike arrival times (&) into o value of 5 at each time 1, which
have written as §(¢: {1 1), Suppose that we try o guess this function. {]imu._.
guess, we can subtract it from the real stimulus to form 85(1) and compa
the power spectrum of these deviations. What if our guess is wrong? T
the power spectrum we compute will always be larger than the true power
spectrum A (n)! .
We can think of our guess at the conditional mean as being an estimate 0 P
the stimulus given thar we have seen the spike train. The resulting 85(r) i
the error in our estimate, and the power spectrim ol these errors is juEt:ﬂ;!ﬁ':
conventional mean sguare error measure (or ¢} taken frequency cumppﬁ
by frequency component. The crucial point is that, to minimize the mean
stuare error, the best estimator is the conditional mean—we have already used
this in section 2.3.1, and details are in section A.7. Thus the mean squang
error of any other estimator will be larger than the fluctuations of the Siﬁﬂﬂ]. -
around its conditional mean, We emphasize that these statements are useful
even though we don’t know the true conditional mean. Specifically, suppose
that we construct some arbitrary estimator that takes as input the spike train
{ri] mid returns some estimate of s(r), which we call s (t2 {254, Then the
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power speciTuin of errors in this estimate Ny ien will always be greater than
orequal to N (e Hence,

1 ™ dw Slew)
info = = — lags | ———= |5 (3.92)
.Hllltl"‘ =] -/:1: 5t £ [hruhlﬂr”}

where the noise speetrum is defined by

Nest ) = f.u’r explepfam) (1o (0 — et i Ds0) = seatt s 40 P13
{3.93)

and now the average (- -) denotes an average over the ensemble of signals
and spike trains that pecur in response to those signuls, 16 we choose u bad
estimator, this bound will be far below the true information rate.'" The ratio
of this bound to the true information rte gives us the fraction of the available
information ahout ¥ 1) that is captured by the estimuted waveform.

We thus arrive at g stratepy Tor experiments: Construct o box that tikes
as input the spike train i4] and delivers as output an estimate sea i {1 of
the unknown, continuous stimulus chosen from the ensemble Plsit)] 1T we
can patameterize this box, choose the parameters so s to minimize the mean
square deviation (x~) between the estimate and the true signal. Finally, the
power spectrum of the errors will provide a lower bound on the information
rate through Eq. (3.92),

We emphusize that the statements in the preceding paragraph are statements
of mathematical {act. There is no assumption that the nervous system is “in-
terested” in reconstructing the sumulus waveform exactly. nor that #%is the
biologically relevant measure of error in the reconstruction. In the present con-
text, stimulus reconstruction is just i tool to transform the variability of spike
trains back into an equivalent variability of the stimulus, and the ¥ measure
of error is singled out by the maximum entropy property of Gaussian distribu-
tions,

We have defined severa] different noises in this discussion, all of which are
called & {(and we will define one more helow): There is N, that deseribes
the true Huctuations in the signal 500 given some particular spike traim. Then
there is N, which is the average of N over all possible spike trains. Finally

L0 I wee eisne o sufticiently bad estimator it could even tuen out thae the rght land side of
Eg. (3.92) is negitive. Then we koow that the toe information rate s buger than some negative
number. This is earrect (we sl that vou could chonse any estimaror), just ool very helpful,




Cuantifying information transmission

there is Megr, which describes the errars i estimating the signal. Still, o
nal expression, Eq. (3,92, looks a bit funny when compared with the
comvenuonal Eg. (3.37) The reason 1s that the “spectrum of erropg™ in
(3.92) may include both systematic and random errors. Thus, i for s0me
som we fail completely in our attempl to reconstruct the signal from the s
train, the best we can do is 1o guess that the signal was zero, which is §
erage value in the ensemble Pls(7)]. But then, our errors arc just as hig
signal, so Negtio) = Stw) and Rig, — 0, which makes sense. In this ex
example, our errors are not randam, but rather are perfectly correlated with the
signal.

Although estimating the information rate does not require us to distinguisy
random from systematic error, it is conceptually useful to make this disting
tion. Thus we would like to characterize the guality of the reconstruction i
terms of an effective noise referred to the input. as in the discussion of Eq :
(3.30) and (3.37) To separate systemuatic and random errors, we write, for e
frequency,

Feal) = gl [F(w) + Aorlw)].

errors, and e leo) 15 effective input noise. To caleulate g and nag, we divide
the experiment ito segments, each of length . Then we Fourier transfol
the stimulus and reconstruction in cach segment. The result is i collection

Fourier coefficients [ (), 52

Seglenl ] where s numbers the segments. For
frequency e we make a plot of sumulus Fourier cocfficients $7(w) apains
reconstruction Fourier coeflicients £, (o) Each segment contributes one point
to this plot, The pgain giw) 15 the slope of the best linear fit through these:
points. ind the effective noise i) measures the scatter, along the stimul
axis, about this best fit line. Two such scatter plots ure shown in Fig.
corresponding to the reconstructions of Fig. 2.20. _

One reason it is useful to separate random from svstematic errors is that
the optimal estimator in the least squares sense afways underestimates the tries
signal. In the limit that noise in the system is very large, this underestimation
becomes very serious, and the estimate approaches zero. Under these L':m'ﬁ'f.
tions, the spectrum of errors Vo (o) approaches the spectrum of the signal,’
as noted above. The effective noise, on the other hand, removes the system=
atic compenent of the errors, so that frequency bands where the mcﬂnsu'ucﬁﬂif
is very poorare revealed as having a large effective noise level. Furthermore,
by removing svstematic errors we ahtain o noise mensure that is uncorrelated
with the stimulus,

Tm‘mﬁl‘lﬂﬁm amplitude (%/5)
1
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Figure 3.17

* Seatter plots of estimation errors from H1 experiment at 2 He () and 50 Hz (b1, The
“aihmulis and estimate are each broken into segments of fxed duration, approximately

e seconds in this example. We take the Fourier transform of cach segment o gen-

erate o set af points [# (e, 81 )], where the superseript | counts the sepments, We
thien ereate, a1 each frecquency, s scaner plot of 5 (m) aguinst & (w); each segment cor-
tributes one point Lo the sestter plot. The slope of the best-fit line is the gain, @ lw), and

the seatter about this ne measored along tie c-axis is the effective noise, il

The effective noise level can be quantified by measuring its power spectrum
Negr (), which is just the variance of the Fourier componems gy () normal-
ized by the time window 1o, Nyl = |:|ﬁﬂf{w}]1‘,| iy (see the discussion in
section 3.1.4 and Fig. 3.8). If we plot the effective noise speetrum as 4 fune-
tion of frequency, we expect that the usual idea of a neuron being wned to

‘certain frequency bands, as in the auditory system, will be recovered as a band

of frequencies where the effective noise is low. Finally, if we rewrite Eg. (3.92)
for the information wransmission rate in terms of the effective noase level, we

- find, by analogy with Eq. (3.72), that

™0 )
Rinfa = l [ i::'_f-ﬂ lngl [] =+ m:l . (3.95)

20 ey T Noagr Lo

=

Thus there is & natural notion of signal i noise ratio in the reconstructinns,
and this is the ratio of signal power spectrum to the effective noise spectrum,
SN Riew) = S(ew)/ Negrten). Then we can use the standard Shannon formula,
Eq. (3.72), and calculate the rate of information transmission, The wark ol this
section has been to show that this procedure is guaranteed to underestmite the
true information transmission rate. This strategy (or bounding the information
transmission rate is summarized in Fig, 3,15,
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The approach described 1 the previous section has now been used (g o
sure inlormulion ransmission rates inoa wide vinety of sensory neuroms,
tial experiments on the movement sensitive neuron H1 in the fly visual o
tem (Bialek et al. 1991) were followed by a series of experiments g
mary sensory nenrons, the cells that first convert continuous SCTSOTY §
into discrete spikes, The lirst generation of these experiments !nm]vad
mechunosensitive cells in the cricker cercal system (Warland 1991+ wnﬂ .
et al. 1992) as well as the acoustic and vibratory sensors from the frog inne;
ear (Rieke 1991; Rieke et al. 1992), These experiments revealed surprising
high rates of information transmission, approaching the physical limits set b
the entropy of the spike trains themselves (Rieke, Warland, and Bialek 1
Subsequent experiments have used the same methods to charncterize informas
tion flow in higher order newrons of the cricket system { Theunissen 1993,
1o explore the way in which more natralistic stimuli are coded by the-
ear {Rieke, Bodnar. and Bialek 1992, 1995), Stimulus reconstruction me
ods have also been used to quantify information transmission by the ar
of ganglion cells in the tiper salamander retina (Warland and Meister 19
1995) and by the “prohability coding” afferents of electroreceptive fish (
sel, Koch, and Gahbiani 1996), '

It is clear that cach different sensory system poses new questions, but at the

sume nme, measurements of information transmission have revealed some els
ements of universality ucross the systems studicd. In rying o present

results, it thus makes sense o start with the “simplest™ system and work our

way toward the more complex, OF course, this is a dangerous classifica
i matke, but there is-a sense in which the cricketr experiments are the cleﬁn.

st probe of the coding problem. In this case no sypapses intervene between:
the physical stimulus and the spike train of the first spiking cell in the sensery”

pathway, and one can deliver controlled stimuli by grabbing hold of the sens
sary hair. We thus study the encoding of time dependenm signals in spike traif

without the complications of preprocessing by a network of neurons, as m the -
retina, or hy the mechanical structures of the vertebrate inner ear, [n this seg=
tion we therefore look first in some detail st the ericket cereal system, and th'F;—

turm to neurons that are attached (distantly) 1o backbones,

Mechanical sensors in the ericket cercal system
Crickets, cockroaches, and related insects huve two pronglike structures pro=
truding from their rear ends (Huber, Moore. and Loher 1989). These are the
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. perci. Each cercus is covered with up 1o several thousand hairs of various sizes

i shapes, each of which grows out of a single sensory cell; each cell in twrn
eands an axon inte the abdominal ganglion, Haies can be divided into three

elasses: touch sensitive bristle hairs that are too short 1o be significantly de-

Aected by air flow; long, thin filiform hairs that are primartly esponsive o
air displacement; and massive clavate or “gravity sensitive” hairs. In addition,
there are campaniform sensilla that sense deflection of the cercal surfuce; these
a}e [ocated in pairs near the sockels of the Gliform hairs,

Many vears ago there were serious debates about whether insects can hear
{Pumphrey 1940). When humans hear, we sense the variations in sound pres-
Q_un: at onr curdrums: these typically vesult from sound sources that are very far
away, In particular, if we are listening to someane singing an A above middle
C, the wavelength of the sound is three-quarters of a meter, so that the distance

- from our ears 1o the sound source is usoally much greater than the wavelength

of the sound. For many insecis the situation is very different. A cricket listen-
ing to a potentially dangerous wasp beating its wings at 150 Hz is inside one
wovelenath as soon as the wasp 1s 2 meters away. This is the near held, where
one cannol only “hear” the pressure variations but also “feel” the movements
of the air. We can e.‘mlly experience this phenomenon by cranking up the bass

~ina stereo system with a large woofer. The cercal sensory hairs serve W mea-

stre the air displacements, although the dynamics of coupling to the hair can
be quite complex (Humphrey et al. 1993}, as illustrated by messurenients on
analogous structures in spiders (Barth et al. 1993),

JThe erucial point ahowt @ near ficld acoustic sensor s that it provides the
animal with a spatially filtered image of the world, bul an image in which
directional information is available {ram o single sensor. Each filiform hair
is therefore confined to move in a plang, so that displacements of the hair
signal air motions m a particular direction, The cercus is covered with hairs
of different orientations, und their alferents project 1o @ set of interneurans that
construct a directional map (Miller, Jacobs, and Theunissen 1991 Jacobs and
Mevin 1991),

Under natiral conditions, the complex patterns of air movemeant that result
from, for example, the wing beats of predators are transduced into hair dis-
placements, and these signals are then encoded imo spike trains. The cricket
presumably vses these spike tains o construct 2t lepst o erude image of ils
surroundings, and o initiate behaviors appropeiate o that image. We are inler-
ested here in o relutively stmple question: How much infarmation is contained
in the spike train of a single sensory neuron? To address this issuc, it makes
sense to bypass the complex mechanics of coupling between air motion and
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hair motion and just grab hold of the sensory hair while recording frg
axan, The guestion is then very direct; By ohserving the spike train, how
information have we pained aboutl the trajectory of the hair?

The basic experiment, schematized in Fig. 3.18a, is o deliver random
placements & (£} of the sensory hair, and record (with an intracellular elegy 1:
the resulting spike arrival times (Warlamd 1991; Warland et al. 1992), 4
stretch of such recordings is then used o optimize the decoding flter K
as in . (2.25), and the decoding algorithin is lested on some new stieich
data that did not enter the optimization procedure. This insures that the fil
ler K. gcncml':zeq 0 t.icscribe coding of the %imulm‘ cmcmh]e and nm-.)

reconstruction is shown in Fig, 3.18b,c. The reconstructed waveform o
interpolates between the spikes and, in some places, gives a close maich
tails of the stimulus on very short time scales, This tells us that the band
of the system is lurge, On the other hand, the typical errors are comparab
the stimulus itself, so the overall signal to nowse ratio s about unity.

The quantitative analyvsis of the reconstructions proceeds. as deseri
abave, by separating the estimate of the stimolus into a signal that is

effective noise that 15 uncorrelated with the stimulus, The distribution nf_¢
tive noise amplitudes seems very well approximated by a Gaussian, as sho
in Fig. 3.19a. In relating the information ransmission rate 1o the power
trum of the effective noise, we made use of the maxinum entropy prop
for Guussian distributions o be sure that we are not overestimating the B
inlormation rate: the closer the real noise distribution is to being Gaussian,
tighter this bound becomes. The effective noise spectrum is shown mgaﬂi,
with the signal spectrum in Fig. 3.19b; we see that the signal to noise tabi
SN R~ | over a bandwidth of ~ 300 Hz, Finally, doing the integral, the in'f{':_*
mation rate in this experiment is 2946 hits/s which corresponds to 3.24£0.00
bitsfspike (Warland et al, 1992),

The result that o single neuron could transmit nearly 300 bits per secc-nﬂ‘
came as quite a surprise. MacKay and McCulloch, however, had reali 3
nearly forty years earlier that information rates of several bits per spike wefﬁ'
possible, at least in principle. Still, one must careful in trying to visnalize
these results, Since 300 bits per second are being transmitied, one could ar=
pue that, over a tme window of one second, the neuron is providing a spike.
train which uniquely identifies one signal out of 2% ~ 10" possible signals.
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Figure 3,18
(a) Schematic of experiment on a cricket mechanoreceptor. A probe is placed over a
filiform hair cell protruding from one of the two cerci, The probe is then moved hori-

- epntally while spike ocourmences are measured with an intrscellular electrode inserted

into the newron innervated by the heir (b1 Sections of the stimulus (angular displace-
ment of the hair, doted line) and estimate (solid Hnedaee shown (e, Adapred from
Warliand et al. (19973 and Warland (19913,
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This is true. A more useful point of view, however, is that the neurnn 'f'
pable of telling us (roughly) about only one of two possible signals (posit
or negative deflection of the sensory hair), but this information is updated i
every few milliseconds. These are equivalent statements with respecy -

informution runsmission rate, but the second view explicitly i““ﬂrpnnug',.' ;

fact that the high inlormation rate s achicved through a moderate signal
notse ratio ueress @ broad handwidth. Nature might have chosen a system
achicves the sume information transmission rate with a large signal o no
ratio across o narrowy bandwidth, but such a system introduces laroer ;jﬂﬂﬁ
the transmission af transient signals. As in the analysis (section 3.2,7) of
matosensory afferents by Werner and Mounicastle (1965), it scems that the
cercal afferents are specialized for conveying large amounts ol jnfnrmﬁﬁ"i,
about rapidly varying signals. L

In huilding up our strategy for bounding the information ansmission
we emphasized that one could in principle use any estimator o place a lo
bound on the bit rate. The results shown in Fig, 319 make vse of 4
simple estimator, namely the optimal linear filler, If one tries to improve
estimate by adding nonlinear terms, it doesn’t seem o decrease the effec
noise level. More precisely, after adding the second arder term of Eq. (2.25),
the bound on Riyp, is not increased by a statistically significant amount. Tt
combination of high bit rates with the linear filter and the lack of improvem
with the nonlinear lilter certainly suggests thit the relatively simple lin
reconstruction strateey is capturing muoch of the available information,
shall see that this can be made more precise.

Let us recall that MacKay and McCulloch did not compute the information
transmission in any model coding scheme, but rather the masimum po@sihl%
information transmission allowed by the statistical structure of the spike tr
itself. As we have emphasized, the spike train entropy sels a physical limit (o
information transmission in much the same wiy that diffraction sets a Timit to
the spatial resalution of an imaging system. The entropy measures | mughl}f}\
the number of distinguishable spike sequences, and the information rate medi=
sures the number of distmguishable stimulus waveforms: clearly one cannot
distinguish more waveforms than spike trains in uny coding scheme, Thus-We
arrive ol g messore of coding efficiency,

€= R/ 05/ T,

where §7T is the entropy per umit time of the spike train, 1deally, every -mﬁ%i-
tion in the spike train would correspond 1o a unique change in the input signily
and we would have efficiency € = |. Notice that our experimental approach.

(3.96)

power spectral density ((*°/Hz)
2

33 Entropy and information with continuous stimuodi

a
E— 0.4 —
02
0= T I I
] & L] F 4
nommatized nolse amplitude
10!
b

7

b

1 N & [

o 10 200 30 400 sid

3

fragquancy (Hz)

Figore 3.19

() Distribotion of effective nosse moplitudes from experiment on g ericket mechanore-
ceptor, The effective noise amplitude, e, wis measured inoeach of P20 sections of
the experiment. Bach elTective noise amplitode was normalized by the standard devia-
ton of the noise o pte) 7/ 2 at that frequency. A histogram is then construcied Trom
these normalized noise amplitodes. The noise histogram constrocied in s way isowell
fit by 4 Goussinn with v standand deviation of 1 (smooth curvel, (b Signal (solid line)
and effective noise (dashed ling) piower spectrd for cricket mechanoreceplor exper-

- ment. Although the sigral 10 noise s is never particularly highs o signal o nosse

Tatio close to one 15 maintained across o bendwidih of nearly 300 Ha.
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gives us a lower bound on the information rate Rigg. 1T we use the g
periments o generate an upper bound on the spike train entropy, then
conclude thal the coding efficiency 15 greater than some Expcrimunmlly i
mined gquantity. i
The key 1o providing an experimental upper bound on the spike try
tropy is again the maximum entropy idea. Although we can't m};a_gurﬁ
entropy, we can measure, for example, the average firing rate of the fe
Then we can ask for a probability distribution of spike armival times thap
the lagpest possible entropy per undt time given the construint that the
firing rate has w agree with experiment. The answer to this maximum epg
problem is exactly the model of independent spiking in cach time hin, whi
was considered by MacKay and McCulloch and reviewed in section 2,
Thus we know that the Mackay—MoCulloch result is actually an wpper i
on the entropy of a spike train given the mean firing rate. a
More accurate bounds can be obtiined by assuming that interspike inte
are independent but consistent with the measured distribution rather than j
with the first moment 1/r, and so on (Rieke, Warland, and Bialek 1993
practice, one can seldom collect encugh data o go beyvond the double-inte
distribution, The important point is that the real entropy is less than wha
calculate from these low-order approximations. In Eg, (3.96) this means
we always underestimate the efficiency of coding,
The MacKay-MceCulloch upper hound on the spike train entropy is the s
fundamental, since it makes use only of the mean spike rate and no o ._&1‘
information about the spike statistics. Thus ne coding scheme could use
same number of spikes to transmit more information. Tudging the perform
of sensory neurons against this standard 15 the most stringent test of the i
that the neural code is an eflicient code in the sense of information theory:
It is obvious that the spike trmn entropy depends on the assumed i
precision of the nervous system, At. In the shsence of quantitative estima
for At in this particular sensory system, we take an empirical approac
given experimental setup has an implicit At related to the properties of i
electrode, the spike shape, and the noise level of the recording electron
This finite precision is made explicit when we digitize the spike arrival tim
defining bins within which all arrival times are viewed as equivalent. In
cricket experiments the bin size was 0.1 ms (Warlund 19913, Thus, when ¥
say that the reconstructions carry 3 bits per spike of information about the
stimulus, this applies to conditions when At = 0.1 ms. When we increase &
we change both the information rate and the entropy rate, as shown in Fig:
3.20. To compute the information rate we redigitize the spike arrival tim _
at lower resolution and carry through the same reconstruction analysis—find
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Ingredients of coding efficiency. Top panel shows the entropy rate (upper curve ) and in-

formation rate (lower cerve ) as a function of timing precision for a cricket mechanore-
veptor. The infonmation tote at each fiming precision At is calculated by placing cach
measured spike ab modom within o bin of width At centered on the onginal spike time.

- The estimation procedure is then repeated with this jittered spike trin, and the guality

of the reconstructions is again quantified by the effective noise level, leading 1w the
information rate through g (3.95), The emropy rte sets o fundanental upper lin
to the information e, The entropy rate is calevlated from Eq. (3.22) using the mean
firing rate of 96 !, mensured from tie same section of data that went into the -

- formation rote caloulwtion, Ermor bars are caleslated by dividing the experiment into 4

sections und computing the standard deviation of each quantity nmong sections. The
error bars on the information rote are obscured by the data points. Bottom panc| shows
the cading efficiency, delined in Eq. (3963, for the cricket mechanoreceptor, calcolited
from the information and emropy rites above. The coding efficiency sets a lower bound
on the fraction of the degrees of freedom in the spike wain code (hal 15 used w represent
the sensory inpur..
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the aptimal kernels, separate errors into systematic and random Cotmponen
measure the noise power spectrunt, and compute the information rage,
information rate is not terribly fragile—bins as large as (L3 ms preserve g
of the oniginal information rate. The loss of information with decreasing t'm,
resolution s gradual and not catastrophic. By changing At we also change th _
entropy rate, and from Eqo (3.22) we expect the effect to be fairly dramg
Spectfically, at small At every factor of tao increase in bin size causes g |
in entropy ol one bit per spike, Comparing the information and entropy rag
wie see that at very small Az the entropy s large but the information ra
hounded—wae are not gatning anything by keeping track of timing on this fing
scale. But the two curves approach cach ather ar larger Az, and in Fig. 3.20
wie see thut their ratio, the eoding efficiency &, hovers at € ~ 0.5 over a hroad.
range of AT, 4
The coding efficiency resulls demonstrate that the information rates nfj."_
bitsfs are within a factor of two of the phyvsical Timits set by the statistics of th
spike train itsell. No coding scheme could use these spike trains to carry’'m
than twice w5 much inlormation about the input signal waveform, .
The resulls on information transmission rates and coding efficiency have
three implications. First, the strategy followed here establishes only o lower
bound on the information tansmission rate, and we argoed thist the qoality.
of this bound is directly refated to our undersianding of the neural code. Evi
dently the bound is very gpood, since it 5 close to the physical limit Thus the
linear decoding scheme not only “works™ 10 the perturbative sense that sm
nonlinear terms don't seem 1w help, it works in the eslobal sense that no des
coding scheme could be much beter. This 15 a very strong conclusion—
undersiand the neuril code well enough o extract at least half of all the
tormation that could possibly be present in spike ramns sampled at reasonable
time resclution. In experiments on the frog auditory system we will see infor-
mation rates that come even closer to the physical limits, strengthening ours
claim of understanding the code. .
The second conclusion concerns the contrast between rate and timing codes.
We have argued that it is difficult to give a precise formulation of this disting=
ticn, and 1o particular that this distinction cannot be discossed without siter
tiom Lo the dynamics of the input signals, On the ather hand, rate coding ma
the clear qualitative prediction that the precise arrival times of the Spikﬁﬁ:dh
ool carry information—although we can record spike times with submillisets
und precision, this precision does not give us more knowledge about the iden=
tity of sensory signals, For a neuron that makes use of n timing code we expeche
on the contrary, that more precise measurements of spike arrivals will yield

33 Entropy and informelicn with continuous sl

more detailed knowledge of the sensory world, The difficulty, then, is o at-
gaching numbers 1o the ideas of “precision” and “knowledge.” but these are
exactly the problems addressed by information theory: The spike tran entropy
quantifies the effort we make to record spike times more accurately, and the
information transmission rate quantifics what we gain in exchange for this in-
creascd precision; both guantties are 1 unctions of the time resedution sell,
and are defined only in the context of the stimulus ensemble. We suggest thal
the distinction between rate and timing codes can be quantified by the de-
pendence of coding efficiency on time resolution: If the intuitive rale coding
picture is valid, then coding cfficiencies must be very low when we sample
the spike tratn at small Ar. Conversely, the intuitive notion of o liming code
predicts that the efficiency should remain high even for At a small fraction
of the typical interspike intervals. The data of Fig. 3.20 show thal, least
in this one stimulus ensemble, coding efficiency in the cricket cercal afferent
remains near 509 at time resolutions just a few percent of the typical inter-
spike intervals. The rather constant efficiency means that the effort of marking
spike arrival times with increasing time precision is rewarded with propor-
tional increases in information transmission. down to (0.4 ms resolution. In
this quantitative sense. the submillisecond timing of action potentials provides
knowledge about the sensory inpus,

The third and more speculative conclusion concerns the funclion of the pri-
mary sensory newron. At the outset, ane might imagine that the physical ca-
pacity of nearons to carry information is not relevant to the Tunetion of real
organisms. On the contrary. the issue might be to parcel out the “imtercsting”
picces of the world as soon as possible, using a presumubly large information
capacity 1o convey only these important features with high reliability, At least
under the conditions of this one experiment, it is clear that the limits to neu-
ral information capacity are relevant, and that the coding strategy adopted by
primary sensory neurons involves the trunsmission ol large amounts ol infor-
mation at relatively modest signal 1o noise ratio. If we take these conclusions
seripusly, it should be possible to stale some general principles that govern
the “design” of the neural code, But first let us Took at a completely different
system to sce which (if any) of these conclusions can he peneralized.

Amphibian eyes and ears
The ideas and methods of the previous sections have also been applied o lwo
very different vertebrate sensory systems, the frog saceulus (Rieke et al. [992;
Ricke, Warland, and Bialek 19937 and the salamander retina (Warland and
Meister 1993, 19957 In each case, the amount of information available from
the afferent spike triins in these systems also is a substantial fraction of the
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spike train entropy. We will return 1o the implicatons of these results, byt
the data, |

Frogs and salamanders are examples from two of the three orders
phibians, Frogs are members of the order Aoura, and salamanders gre
bers of the order Urodela.!' If one measures the success of in ordep by ,' .
diversity of the member familics . then the order Anura is by far the
successtul of the amplibians with 3 400 species (Frost 1985), In contrast,
order Urodela has abowt one tenth the number of species. Both ordeps
exquisitely adapted to their particular environmental niche. Part of this
clalization is reflected in these creatures’ sensory systems.

Vibrations of the ground are one source of information that frogs use to
termine the location of predators. Precise sensing of these vibrations is
by a specialized sensory organ called the sacculus, The saceulus utilizes
cells similar to those in the cochlea, and the primary alferent neurons inner-
vating the succulus join auditory afferents in the cighth nerve. The coding in
these afferents can be studied by recording from a single alferent fiber w
shaking the entire frog. Fortunately, the system is exquisitely sensitive and,
shaking does not dislodge the electrode! The strategy in such experiments
similar to those already discussed: A random stimulus approximating Gau
sian white neise 15 defivered to the system while the spike times are monito
The stimulus waveform and spike times are then used o caleulate the estimit-
tion kernels [ K, ). (o the experiment discussed here, the inclusion of nonl
terms in the estimation procedure improved the information rate by 7%:; sind
this contribution was small we will restrict our discussion o linear estimation,

The power spectra of the stimulus and effective noise for an experiment ¢
an afferent from the sacculus are shown in Fig. 3,21, The signal to no
tio of the estimutes is 3 to 4 for frequencies between 40 and 70 Hz, reflecting
the tuning of the sacculus to low frequency vibrations, Outside this frequent
range the quality of the estimates rapidly degrades. Thus, as in the cricket
mechanoreceptors, these vibration sensors code at modernte SNR over 4 |
wide bandwidth. Integrating over frequencies vields an information trans
sion rate of 155 4 3 hitsfsec, or nearly 3 bits/spike, Notice that the range
frequencics encoded hy the sacculus is very different from that in the cercus:
and that the total information rates and spike rates ure different, but the num=-
ber of bits per spike is very similar. The coding efficiency is plotted in Fil
3.22. As in the cricket, the efficiency reaches 0.5-0.6 over a range of timi
resolutions.

o

LE The b, eelubvely ancommean, amphibian onder is appropraately named Apodi hecuuse the
creatures i not have feet,
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Figure 3.21 . ) o
Power spectrum of stimulus (dushed line) and effective noise (solid lined for sacculus

experiment, The signal in these experiments wis Chuission nose W‘ill.l an :i;!pruximumiy
Aat power spectrim between 30 dnd 10K He. The dip in the ;:f.fucm'_e NOISE SPECirm
hetween A0 and 80 Hy reflects the tuning of the cell e vibrations 1 this fregquency
range. The signal to noise ratio of the estimate reaches peak of shout 3. and a signal
1o noise rutin greater than' | 3% maintained From about 0w 70 Hz,
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Figure 3.22 .
Cl:ld_il‘lg_ rfﬁcicnf_}' in ﬁng hEICI:LI.IlIS. [:|:|'|'|1|1:|J.1.Ed. s lJ.vI.‘;'iLTH]CIj in FIE’- 320 for the expen-

ment descrbed in Fig, 3.21.
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The salamander eye 15 widely used as 2 model for the vertebrate visg] o
tem. In part, this choice is motivated by large and robust retinal cells thay
more experimentally aceessible than those of their mammalian COouerpr
While not as visually scote as frogs, salamanders sull exhihit E'ur-acinming m
ally guided behavior. Most notably, salamanders respond 1o drifting gr"
with a stripe separation of 1,1 degrees. This corresponds 1o aboot 2 m whi 1
perlectly focused onto the reting and 1s somewhat smaller than a 5-10 e pho-
toreceptor diameter (Himstedt and Griisser-Clornehls 1976). Although it can i
dilficult to convinee yoursell ol this by casual observation, these CRpermen
indicate that salamanders, like other animals, can respond o visual stimu
vary on the scale of individual photoreceptors and ganglion eells.

The salamander retina has been the subject of reconstruction experi
using 4 preparation in which un isolated reting is placed, ganglion cell side
down, an an array of extracellulur electrodes (Meister, Pine, and Baylor |
Using this amray it is possible to record action potentials from about 40 g
glion cells. This apportunity for simultanecus recording from several neuro
ullows an attack on many questions abhout the way in which information
spatiully varving signals is shared among the spike trains of different cell
We defer these questions 1o seclion 5.1, and focus on & much simpler prol
leny, the encoding of a ﬂpaii:ll]}f uniform stimulus that varies in time=—fuall

at random from a {mus_smn d1.-l|1buuun L..HL['} 15 ms. The flickering light
transduced by the photorecepiors and processed by subsequent retinal neura
teading eventually to patterns of action potentials in the retinal gﬂ]‘lgliﬂl‘l-ﬂf-.:

The spike trains Irom this ensemble of ganglion cells were decoded using &
generalized version ol the decoding algorithmn, b

N (1) = Z Z Ee—r)
# i

where n IiLI'lLTLLH cell number and ¢ denotes the accurrence time of the
spike in the n™ cell. Notice that each cell has its awn “private” filter f”
the choice of filters that give the best reconstructions depends on the '
tions among the difterent cells. The filters were varied as usual o mlﬂlfﬁi
the mean syuare error between the stimulus and the estimate, but now ong
to find many filters, one for each cell. The top punel of Fig, 3.23 compares i
resulting optimized reconstruction with the true stimulus as a function of tif
The reconstruction was made with spike trains from 4 cells. About 18 spike
vecurred in this 2 second window, Notice that in places where the true
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Figure 3,23
Multi-cell recomstructions (rom salamander retinal ganglion cells. Responses from
multiple retinal ganghon cells were recarded simultaneousty. while presenting the
reting with a dim, full field stmulos. (a) The stimulus intensity {thin line) wis cho-
sen randomly from s Gaussum distribution every 13 mis Stimulus contiast B shown
it units of its standard deviation. The tme course of the resulting stimulus was esti-
miated from the spike trains of 4 ganglion cells. Each spike train was fillered through
a linear estimation filer calculated as described in the text. The eutputs of the 4 filters
were summed to nhtain the stimulus estimate shown (thick line). (b) Power spectra of
the sizgnal (thin ling) and estimate (thick lined A1 low fregquencies the estimate cap-
tures much of the structure in the stimulus, and the power in the estimate approaches
the stimulus power. As the frequency increases. filtering m the retinal cells upstream
of the ganglion cells causes the power 1 the estiimate o [l From experiments by
D. Warland and M. Meister,
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lus is changing rapidly, the reconstrucuon does poorly and estimates the me
intensity, but in places where the light has been bright or dim for g while,
reconstruction does much better,

We have explained in section 3.2.3 how the quality of reconstructions
be quantified by defimng an effective noise level, and hence a signal 1o
ratio (SN R, at cach frequency, This approach separates the random e

the magnitude of the systematic errors s related in a very simple way g
SNE. Instead of measunng the effective noise lével, we can, equivile
quantify the systemitic errors: In linear reconstructions, the power spe:':'
of the estimated signal,
redl signal,

Sealim), will be less than the power spectrum of th
Sreatlead, by @ factor that depends only un the signal to noise ratig,
Seal@)  SNR(w) 1
Speaf (o) 1+ SN Riw)

Mote that s the signal (o noise ratio becomes large, estimation becomes
sentially perfeet and the power in the reconstruction approaches the true si
power. Al a signal to noise ratio of one, the reconstruction contains only half
the power in the stimulus, and as the noise level becomes lurger the reconst i
tion caplures less and less of the wotal power, ]

In Fig. 3.23b we compare the power spectra of the signal and the recot-
structed signal for the salumander experiment. The upper curve shows
pewer in the stimules s o function of frequency, which is constant over
range 060 Hz. The lower curve shows the power spectrium of the reconstr
tion. This curve peaks ata frequency near 2 Hz and has power overa much
smaller range of frequencies, Al high ltequencies, the power falls off and
nearly zerp by 15 Hie, This decline at high frequencies parallels the frequend
response of the photoreceplors, 4

From Eq. (3.98) we can convert the spectra of Fig. 3.23b into a measure
ment of signal to noise ratio, and then estimate the rate of information trans=
mission as in the discussion of the frog and cricket experiments. The result
is that this small group of cells in the sulamander retina conveys about 9, ﬁ
bitsfsec of information about the tme course of (ull Geld Nicker, mrre*-:pﬂnli* y
g toa coding efficiency of € = 0.2 if spike arrival times are measured with a
precision of At = 15 ms,

Thus, in three quite different systems we have seen coding efficiencies i
the 20-60% range, and we begln to be confident that coding ait high efficiency
is a general property of peripheral sensory processing. It is elear from these
restilts that linear reconstructions capture abowt half of the information these

3.3 Eowepy and information with continueos stimuli

spike truins could possibly carry about the sensory world. What happens with
the other hall”? One answer emerges in the next section from the analysis of
experiments with more nuturalistic stimuli

FNBS and frog calls

The world around us is, thankfully. a highly structured place. This stiucture
is reflected in the fact that the signals that reach our sense organs are not
gompletely random. but rather exhibit correlations in space and in time. What
does the nervous system do with this structure? One possibility, first raised by
Barlow in 1959, is that even the first stages of neural signal processing exploit
the statistical structure of signals to create more elficient representations of
the sensory world (Barlow 19613, In this section we explore the use of the
reconstruction method to test this idea directly, comparing the information
ransmission and coding efficiency for single auditory afferents responding fo
stimuli chosen from difterent ensembles (Rieke, Bodnar, and Bialek 1995),

We discuss in section 5.2 the more general problem of characterizing patural
signals in different sensory modalities. Here we focus on the bullfrog auditory
system, which spends much of its time processing rather stereotyped sounds—
frog ealls—one of which is illustrated in Fig, 3.24. Frogs and toads use species
specific communication signals, called advertisement calls, in their social and
reproductive hehavior. The power spectrum of frog calls consists of approxi-
mately 20 nearly harmonic bands, with a fundiumental frequency near 100 Ha
(Capranica 1965, [Y68), This power spectrum endows the cnsemble of call
‘stimuli with a finite correlation time, which measures how fur into the future
the waveform can be predicted given knowledge of the past (see section 3.1.4).
Roughly speaking. the correlution time is the inverse of the width of each spec-
tral band, ~ 30} ms for these signuls,

Though animals use the temporal correlations of natural stimuli in muking
behavioral decisions, it is not known at what stage in processing these cor-
relations hecome important. We can imagine a family of different stimulus
ensembles, starting with the “most random” Gaussian white noise and pro-
gressing toward the “most structured” sounds that actually oceur at the frog
pond. Ideally, we would like 1o understand how cach of the naturalistic strue-
tures that can be built into the stimulus ensemble influences processing and
coding,

The first step along this path is to take the Gaussian white noise and Lilter 1L,
‘shaping its power spectrum inta hands thut match the spectrum of the naturally
occurring calls, As a second step, one could replace these bands of Gaaussian
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Bullfrag advertisement call, Single croak of bullfrag sdventisement call recorded
Lake Carnegie in Princeton, New Jersey. Panels (a). (b and re) show the sound p
sure wavelform of the call on three different time scales. The periodic structure of it
call, particularly clear in (b), mdicates nonrandom phase relations between di
Ireguency components. Panel (d) shows the power spectrum of the call. The call has
harmonic stroeture with @ fundamental Frequency close to 10 He. Thus the adve
ment call has highly structered phase and amplitode spectr.

noise with tones that are rundomly frequency or phase modulated to give 3_'
same power spectrum. Finally, one could oy to give these modulations th e
same structure that occurs in reud calls, Again we emphasize that to follow this
progeam 1o completion one needs o understand much more ahout the statisti
of nutural sounds. In particular, o analyze information transmission usin
reconstruction methods we have o know the entropy of the distribution from
which the signals are drawn. Here we review experiments (Ricke, Bodnaf, -
and Bialek 1995) that take the first step, comparing the encoding of white
noise stimuli with the encoding of stimuli that have naturalistic power spectri
Perhaps surprisingly, this small step woward nutural sound has o big effect

the effictency of the neural code,

Figure 3.25
Stimull, filters and estiates for experiments comparing coding of hroad-band Guis-

sian noise and Gaussian noise shaped 1 have o natural power spectnim. Fower spectr
of the experimental stimuli are shown in (a) for the broad-hand stimulus amd in (d) for

the call-spectium stimulus, Reconstruction fillers are shown o {hyand (eh Sectons of
the stimulus, spike train and estimate are shown it pc) and (1 Timing bars are 20 ms n
(b and (b amd 10 ms in (eyand (0. Redrmwn from Rigke, Bodnar, and Bialek ¢ [945).

Figure 3.25 shows results {rom an experiment on i single auditory nerve
fiber that originates in the amphibian papilla, o frog suditory organ that is
tuned to frequencies below 600 Hz, Neutons from this organ show o vari-

ety of response features that are broadly typical of the vertebrate auditory

nerve—phase locking to low [requency sounds, two-tone suppression, and dif-
ference tone nonlinearitics—us described in the review by Lewis, Leverena,
and Bialek (1985), We sce immediately, even without guantitative analysis,
that the attempt to reconstruct the stimulus is much more successful in the case
of the stimulus with the shuped spectrum. Another obvious difference between
the two experiments is the temporal width of the filters. A spike in the broad-
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evenat frequencies where the power in the call-spectrum stimulus is 10-15 dB
pelow that of the broad-band noise.

B Asop final step in the analysis of the reconstructions, we use the signal o
. joise ratio at euch frequency (o compute the lower bound on the information
 ransmission rate, a8 0 Bg, (3.95% The result is Riprs = 406 £ | hitsfsec, or
1.4 bits/spike, for the broad-band stimulus, which increases to R = 13345
.r  hits/sec for the call-spectrum stimulus. This last result cortesponds to the cell
fransmitting 7.8 bits per spike. Similar results were obtained in many cells
{(Rieke, Bodnar, and Bialek 1995}

The dramatic improvement in information rate in response 0 a seemingly
-'small step toward naturalistic stimuli leads us o ask how much additional
-~ increase in information rate is possible, 1t is physically impaossible for a nearon
N ,tu (ransmit sensory information at o rale greater than the cntropy per it
time of the spike train, This entropy is in turn smaller than that calculated
b}r MacKay and McCulloch (1952) and reviewed in section 3.1.2. The coding
efficiency, or ratio of information rate to entropy rate which we defined in Eg.
~ (3.96), is shown in Fig. 3.27 as a function ol time resolution, by analogy with
Fig 3,20 in the crickel experiments. We see that, for the call-spectrum stimuli
“but ot for the white noise stimuli, the efficiency reaches 90%, indicating thal

band noise experiment contributes 1o the estimate for o period of 5. ;
whereas a spike in the call-spectnom experiment contributes [or 100-200
The width of the filter in the broad-band experiment s set by the tunig '
actenistics of the neuron, because the correlation tme of the stimulys

itself is longer than the correlation time introduced by the cell's tunip
result, a single spike contributes 1o the cstimate for a longer time reriod.
for the call-spectrum stimuli, however. the reconstuction filters overly
few interspike intervals,

As in previous analyses the reconstruction can be separated into a de = ||
The distibution of effective nose amplitudes is nearly Gaussian both
broad-bund and for the call-spectrum stimuli, Signal (o noise ratios {S.ﬂuf-ﬁ,}
the experiment of Fig, 3.25 are shown in Fig, 3,26, With the broad-band st
uli. the frequency tuning of the cell measured from the effective noise leve
similar 1o that measored using standard methods, The signal to noise rat
reconstructions of the call-spectrum stimulus is significantly higher than 1
for the broad-bund stimutlus at most frequencies: this increase in SN R (ot

0.5 =
10 - shaped specirum
oa | call spoctrum
2 L
B
2 043
:
: Bos -
£ 2 - E
L :
broad band E broacd band
aA T /
g a T T T T T i
[+ 250 500 ¥ao 10040 0 0.5 1 1.5
frequency (Hz) timing precision (ms)
l":gmvz 326 Figure 3.27

Coding efficiency for broad-band and call-spectrum stimuli. Error bars on the Droad-
band measurements sre obscured by the data points. Redrwn from Rieke, Bodnar, and

T Bise :m.hl‘- qurm.jLLun riitey of 133 Ij:lafﬁm_ fot the |_-||[ -spectram itimUll-lb uEHZI
Bialek (1595).

bitsfsiec Tor the broad-band stimulus, Redrawn foovm Ricke, Bodnar and Bialek ( I"Hﬁi‘




18

Cluantifving informetaen transmission

the coding of the call-spectrum stimulus comes very close Lo the fnds .
limits on information transfer, i

These results indicate that the dynimics of the coding process in py
auditory neurons exploits the correlation structure of naiural sounds o

signals at higher information rates and efficiencies. This Improvement y
not be passible if the auditory system acted lingarly with additive npfgg;_iﬁ_
were the case, lowering the power al o given frequency would lower the sign
fo noise ratio at that frequency, and broad-band stimuli would provide [
highest possible rate of information transler. Instead, nonlinearities i
processing increase the information rate and coding efficiency for natural
stmuli,

The idea that nenlinearities play an inpartant role in the coding of {:gi__ﬁ‘ig:,
sounds has come from many different experiments. Tn the frog, Schwariz
Simmons (1990} found that auditory neurons tined 1o high frequencies ph
lock to the fundamental frequency of the frog call, although the power of th
second and third harmonics s considerably areater than the power at the | :
damental frequency, Schwartz and Simmons suggest that the neurons d
the fundamental frequency from nonlinear interacions among the ha
les within their tuning curve, und this meehanism of “periodicity extracti
has been studied by Simmons and Ferragamo (1993) and by Simmons, Re
and Ferragame (19930, These nonlinear responses of the frog auditory sysi
are strongly reminiseent of the “missing fundamental” phenamencn in i i
pitch perception, reviewed by de Boer 976). In a series of experiments on
mammalian auditory nerve, Young, Sachs, and coworkers ( Young and §
1979: Sachs and Young 1980; Miller and Sachs 1953, 1984: Winslow. B
and Sachs 1987) have emphasized the role of nonlinear interactions in il
ing information about spectral structure iy comples sounds such as 5
The notion that these nonlinear interactions should enhance the efficiency with
which the car encodes more natralistic sounds captures the spirle of the class
sical ethological studies (Capranica 1965, 1965).

Coding efliciency is a measure of reproducibility—what feaction of the
ral response 15 uniquely related 1o the signal, and what fraction is noise?
crewsed coding efficiency for naturalistic signals means that the response (o
those signals is more reliable or reproducible. This reminds us of the results
of Miller and Mark (1992) as well as those of Mainen and Sejnowski (199300
which showed how—in very differem systems—signals with more it
time dependencies produce spike trains that are more teproducible from trisl
trial, and Strong et al. (1996) show how this reproducibility can be quantified
and used to provide an independent measure of information transmission. All

of these resul
~ peurons miy

Hamount we Cl

44 Summary

ts emphasize that the [ull performance of even peripheral sensory
be revealed only in response to the most nutural of signals.

We have sech thiat Shanoon's information theory :'iLL}.'lChES _:1 n.wl_unher T8 IJ::
o learn ahout the world™ by observing cerilaun signals. []n 1 L-
cise of spike trains, by abserving each spike 10 wui'lunt “. given lu_n]_:? :I .PFrL
cision it is possible w gather ai most an amount _i.‘lf inlorination gﬂ;-'ti,. -!: H..:i_:;
{3 27), whereas il we restrict vurselves 1o counting the number :‘:. \5:-“ i'q i
Im:gt hins the amount of information is limited by Eq. 3.24.}. Th_wf |lt1?|1| .!Eq
:'mj‘urmaijon wransmission clarify the distinction he.t\-t-een rite surlrl]:r.mr.:ﬁ L; 4; !
'whifh we have argued is more subtle than one 1I'_I:Ight haw:-‘ mmfginl:, I. mg .I_
Tar limits apply to information transmission by vesicles .ut a I.I'ten;urs} nc‘:& ;
even if the presynaptic and postsynaptic neurons both give gmdf_-‘ r;hpm!: w;
4 Experiments in severul systems I.qumn_.qirfur that real nuuFEm .m jjl; F"_h_
approach the limits to information :mrmmmsu_tn 5.E:Il h}: tlhu 51:|r| r:i:;:_ e
entropy. Rather than throwing away information in ﬂmj vl.- :pe i R
ciall}' relevant”’ signals, these cells seem to pack u.l.a much in r_arn : bih,;] Sm_.ﬂ
sible into the spike sequences they send to Lt.m brain. The notion o ; n“; -
relevance reappears is a matching of Ihr:‘::udmg stralegy [1_1 s‘.nn:w.ur?,'lu:n: w:.; "
specifically, to the temporal features of nalurall_}' uecurring ﬁlgT-i.l_ -.—b i
the same number of spikes can be used to transmit more information abau

more structured signals that occur in the real world.




of computation

We all share the qualitative impression that our perceptions are reliable. Hlu-
ans notwithstanding, this impression is supported by experience: we can run
thmugh the woods at relatively high speeds, aveiding collisions and missed
footings—lestimony 1o the reliability with which our senses signal the loca-
tion of obstacles. There is a long tradition of quantifying the reliability and
~ precision of aur perceptions: this is the subject of psychophysics. In this chap-

ter we explore several dilterent experimental and theoretical approaches, all of
- which aim at understanding the neural basis of reliable perceplion. We shall
_see that, for several sysiems, there is agreement among twi of three funda-

mental quantities: The reliability of behavior, the reliability of single neurons.

- and the reliability of an aptimal processor that makes use of all relevant seo-
L an:;-' input down to the physical limils imposed by noise in the sense data
itself.

JABILITY OF NEURONS AND RELIABILITY OF PERCEPTION

Understanding the reliability of the nervous system is fundamentally a guan-
titative problem (Bullock 1970} Indeed, this is one of the few areas in the
- investigation of biological systems where it is clear from the outset that our
~ qualitative view of function and mechanism will necessarily be influenced
by quantitative experiments. Quantifying the reliability of spiking neurons
. is difficult, however, because we must decide whether a particular sequence

of spikes is close to the “correct answer” to some computational problem.

Clearly, this requires an understanding ol the neural code, or else we run the

risk of confusing a complex encoding with & wrong or random answer. It is
- equally important, however, to find a seale on which to meusure the deviations
between the result of a neural compuiation and the “correct answer” [or thit
particular prohlem, One approach to developing such a scale s 1o compare the
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4.1.1

Relishility of computation

reliability of individual neurons with the reliahility of the nervous syste
whole, Allernatively, we can compare neural perforinance to the fung
limits on reliability that arise from neise at the input w the computation,

Historical background
[n the 194405 and 1950s, several investigators realized thar undersian
reliability of computation in the nervous system posed significant
cal challenges, Awempts (o perform relishle computations with the g
electronic computers certainly posed serivus practical problems, and th
sibility that the problems of natural and anificial computing are relage
explored. Guided by the practical difficulties of electronic computing,
Neumann (1956) formulated the theoretical problem of “reliable comp
with unreliable components” Many authors seem 1o take us self-evident

claim that this is a problem faced by the nervous system as well. The g
tive picture adopted in this approach envisions the nervous system as o hi
interconnected network of rather noisy cells, in which meaningful signal
represented only by large numbers of neural firing events averaged over
merous redundant neurons. This has led to a widespread beliel that neus
are inherenty naisy. and ideas of redundancy and averaging pervade mug
the literature, Interestingly, von Newmann himself did not seem o hol !

view (von Newmann 1958), 3

Qualitatively, most sensory neurons seem unrelinble in the obvions s
that repeated presentations of the same sensory stimulus do not lead to ide
tcul spike trains, as in the example of Fig. 2.1, But it is not so clear ho
we should quantify these observations. nor is it clear on what scale relia
ity should be measured; How much of the apparent noise in neural respo
is the mevitable result of noise in the stimulus isell, how much resides in
mechanisms of spike generation, and how much is added by the many 8
af processing as the signals pass through the beain?

There ure a few strong voices objecting to the view of the brain as a 0l
processor. For example. Barlow has emphasized the ddea that nenronal
cessing of sensory signals is efficient in an information thearetic sense, M
mizing redundancy between the signals carried by neighbaring neurons (
Tow 19610 and reaching decisions with a reliability Limited by the :.'Laliﬁ_'tr
structure of the sensory input (Barlow 1956, 1980), In a similar spirit, Bullg
(1970, 19761 has collected o number of examples in which individual neard
provide highly reliable signals. or, more subtly, where apparent unreliabili
may serve (o optimize the overall refiability of the system’s function. From &
thearetical point of view. these different sets of ideas about neuronal reliabilite
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_ ke us in very different dircctions: If cells are very noisy, then something like
e o - . a
B it Neumann's problem really 15 an issue for the brain, On the other hand,

if newronal operations maximize reliability and efhciency and effectively sup-
E.“'gss the ever threatening sources of noise in single cells and synapses, then
there should be a theory of this vptimization process that predicts some of
the essential features of neural function. Thus, as emphasized in section 1.3,
aur qualitatitive view will be influenced by the outcome of quantitative exper-
iments. Rather than developing these theoretical ideas in isalation, we want o
see if experiment can decide hetween the alternative directions.

Comparing the reliability of perception to the reliability of individual neu-
rons is difficull because information of relevance wa particular behavior may
ﬂ&_shared among a large number of cells. This distribution of information does
not mean that signals from individual cells are unreliable, nor does it mean

 that the different neurons are redundant, It just means that we need to be care-

ful in phrasing our questions. For example, information about the trajectory
of a large moving object is distributed across many photoreceptors and retinal
sanglion cells, and hence, even if the brain is an optimal and noisehess proc-

* essor. the reliability of individual ganglion cells will be less than that of the

organism if we pose the problem of discriminating small changes in trajectory.

“There is a case for which these issues can be avoided. and this is the audi-
tory system of the Noctuid moths, which was studied extensively by Roeder
and coworkers. We describe it here not because it provides un example of ex-
tensive quantitative analysis, but rather because the simplicity of the system
allowed Roeder to pose the problem of computational reliability in a stark and

- straightforward manner. Perhaps our review will stimulate someone to take up

this preparation again and give a gquantitative solution to Roeder's problenm.

- For reviews of this work see Roeder and Payne ( 1966) and Roeder’s mono-

‘graph (Roeder 1963).

Noctuid moths have spectacular bat-evading flight sirategies, acrobatics that
dre triggered by auditory inputs. In effect, the moth hears the bat coming and
tries to fly away. Because the moth cannot outrun the bat, its enly hope is to
detect the hat's echolocation pulses when the bat 15 stll sufficiently fur away
that returning echoes do not yet provide a clear image of the moth. The moth
then flies away from the bat and hopes that the bat gets interested in something
‘else. If this fails and the bat closes in, the moth can sull try a power dive, which
‘bats apparently prefer not to follow. Whereas the dive appears 1o he riggered
st by the presence of a hat 1o close for comfort, the earlier “flying away™ is
adirectional response. Clearly, un important step in making this strategy work
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is for the moth to tune its car to the frequency bands which dominage _
echolocation calls; this leads woun interesting natural history of cobyaly o .1.
the sensory systems of predator and prey, ]

It is worth remembering thal work on the NMocmeidae began at g time,'
the whaole question of whether insects “hear™ in any way comparable g
own hearing was hotly debated (Pumphrey 19400, Much of the war
also done at the same time as the key experiments demonstrating thay
ceholocate, using some of the early wltrasonic transducers (Roeder an
1957). Not only do moths hear, they do it in an especially simple way. R
was able to show that each Noctuid ear has just two primary sensory netirg
One of these cells is activated by relatively guiet ultrasonic pulses, presumg
corresponding o bats a o distance, and the second cell begins o fire once
pulses become much leuder, presumably corresponding (o one bat ¢losing
In the early experiments, Roeder was worried that his ultrasonic sourées m
produce artifactual signuls outside the bunds that bats use for echolo
so that the moth would be “hearing”™ a sound in the luboratory that di
correlate with the approach of bats in the field, The solution was 1o record
the neurons while someone held a bat near the preparation. This exper
worked, and the cells respond o real bat calls,

Under the acoustic conditions where moths give directional responses, |
ing away from bats rather than just diving. it seems clear that only the
sensitive of the two auditory neurons is activated., Indeed. there are speci
Noctuidae that have only one cell per ear—which is a remarkable fact all b
itsell (Surlykke 1984). This especially simple situation means that with
ful dissection it is actually possible to record all of the auditory input i
moth's hrain just by making extracellular recordings from two nerves, o
did this, not in the contines of the luboratory but in the field with bats fly
around him (Rocder and Treat 1961, L

Figure 4.1, taken from Roeder's “feld physiology” experiment, 15 an

has woowork with as it attempts to detect and evade oncoming bats. Toge
these two spike trains must convey enotgh information for the moth to decide
that a bat is close enough 10 be threatening, and hence that evasive actiol
warthwhile. In addition, the spikes must provide a dircctional signal so 8
the moth s wway from the bat rather than Aying into is clutches. The oM
purison of neural spike trains with behavior raises several questions thit a.rﬂ
the heart of our discussion: How reliable are the neural signals? What 15 :
code by which direction is represented? How does the reliobility of the mﬂ'ﬂ

Reliability of neurons and relinhility of perception

r ﬂ.l 50C

Figure 4.1
oeder's field recordings: Binaural lympanic nerve responses ul the moth Feltia sp.
1o the cries of red bas Bying in the field. The slow waves on both channels are the
electrocardiogram of the moth, Large spikes appear regularly, but without synchrony in
i bnth traces. (A An approaching bat. DfTerentinl tympanic responses (tatency. munsber
\of spikes) between right and left is marked an first, but has practically disappeared in
e final response. (B A “buzz” registered mainly by one ear. (C) A “buze” registered
o few seconds later by both ears. Bedriwn from Roeder {15963 ).

directional response compare with the limits imposed by the reliability of its
two afferent neurons?

& Despite the apparent simplicity of the moth, most of the literatare on the
reliability of neurons is concerned with mammalian systems. We will try to
redress this balance a bit in subsequent sections, but here we review the pi-
oneering experiments and theoretical work, mostly from the 1960s and early
1970s,

Photon coun ling
Barlow and Levick (1969) set out to measure the reliahility of retinal ganglion
cells as they signal brief Aashes of light superposed on a background {Intensity
discrimination) or in a completely dark adapted state (detection). One of the
erucial motivations for this work was to compare the performance of single
neurons with the known ability of human observers 1o count small numbers
of photons, of, alternatively, to compare the performance of pearons with the
absolute physical limits imposed by the random arrival of photons at the reu"nu.
It thus seems appropriate to review here the beautiful story of photon counting
in the visoal system.

In the nineteenth century several investigators measured the minimum en-
ergy (at the cornea) required for a human to see a dim flash of light againsl
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a dark background. 1t was apparently the physicist Lorentz who first
that this energy corresponds to less than one hundred phatons {Boumag
if 50 — 910 of these photons are Jost due to scattering in the eye '[Whlnh
unreasonahle), then we can see less than 1 — 50 photons ar the reting,
test this idea directly? Could the true threshold of vision be just one photg ,"

Suppose that we are looking at dim light flashes from a conventiong
source. Setting the ‘intensity” [ of the flash really amounts to setfing the
energy delivered by the light source. This mean energy. in turn, determj
mean number of photons (i} counted by the photoreceptor cells, so tha I
o, The constant & inclodes lots of complicated things—the prabability

the recepior responds to the absorbed photon. Much of the cleverness in th
experiments is designed to get around the lack of u precise value for thi
constant, “

With conventional light sources, the actual number of photons & in s

This is the same Poisson distribution that we discussed in section 21,4
madel for spike statistics; for photons under certain conditions this model
exact. If the observer is willing to say “1 saw it” when at least K photons
counted, then the probability of seeing is just the sum of P{n} over all the
counts 1 greater than or equal o the threshold £ -

o I
Poll) =exp(—al) Y L ‘r.) :
n=K

@l

There are two key idess here. First, the response of humans to dim light flash
is predicted 1o be probabilistic—there is a probabilite of seeing—but this
domness reflects the stochastic arrival of photons at the retina rather than som
internal biological variability. Second, the function Pu.(1) is diagnostic of
threshold photon count K, Indeed, if we look at u plot of the probability of
seeing versus the logarithm of the light intensity, its shape is invariant to vari=
ations in « but does depend on K, ..

In one of the classic experiments of modern biophysics, Hecht, Shlaer, and:
Pirenne (1942) measured P (/) and found excellent fits 1o Eq. (4.1) with
K =5107, as shown in Fig. 4.2, It would thus seem that humans can “see”
lew us five photons, and under the conditions of these experiments these pl
tuns are distributed over many photoreceptors. This implies that single photon:
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Frequency of secing curves, Top panel illustrates the (thearetical) probabilities th
more than & photons will be counted at o detector dluminated by a light source with
Poisson stafistics, shown as functions of the average photon count, Hecht, Shlaer and
Pirenne (1942 fit megsurements of the frequency of seeing as a function of fash mten-
sity ot the comen by choosing the best fitting member from this family of curves. Re-
sults are showe in the bettom panels. The broad trnsition from flashes which are never
seen to flashes which are always seen arises {rom statisteal fluctuntions in the number
of phiotons absorbed in each individual flash. The threshold & for seeing determined
in this way is 5-7 photon absorpions wial, Because the flash stimulates photorecep-
tors drawn ot random ol of @ large area on the teting, the probability of double lits s
very low. From this one can conulude that individual photoreceptors reliably signal the
absorption of a single photon. Adapted from Hecht, Shlaer and Pirenne (19423
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arrivals at individual photoreceptors must generate signals tha contrik
the detection process.

In an independent series of experiments, van der Velden (1944, also!
sured P (1) and found that Eq. (4.1 was a pood fit with £ =2,
(1956) sugpested a resolution of the apparent conflict between the two a
iments by recognizing that there must exist o {probably quite small) .I.u
noise in the viswal system, so that even i the dark there is some pm
of registering a nonzero photocount at the output of the receptor, In thi
an ohserver could avoid reporting falsely that he “sees™ in the dark by |
ing o high threshold K on the other hand, this means that some real fi

It was against this background of psyvchophysical experiments and the
ical ideas that Barlow and Levick set out, in the lawe 1960s, to measu
relinbility of detection and discrimination in relinal ganglion cells of the cal
These are the same ganglion cells where Kuffler (1953) had made the fi
measurements of receptive fields in mammalian vision, and where Buls
FitzHugh. and Kuffler (1957) had demonstraied that receptive fields adapt

l. As e:l_cp!aiu-ed by Green wnd Swets (1966), this understanding emerged, in large pus, th
the application of modern statistionl decision and sigiil detecton theories to the anplysis o
chophysical experiments, These thevries, in tum, are ofien presenied as having been crmrie
either os solutions (o porely mathematical problems ar as tools for te design of manmpde 58
tems lu tact much of the matematicnl theory wis worked oot doring World War 11 i conpect
with the development of radar In the sarly radar systems, as for gir i controfiers
t_hl: tusk was ultimately b moke signals derectable 1o human ohservers, soin this sense the
tire ‘3l|bj‘L":':l hus 115 ungins in a payvchophysical context, The resuls of the American radar
are deseribed inoa series of volumes-orginally published by MeGraw-Hill as the MIT B i
Lahoratary Series; the volome by Lawsan and Ublenbeck (195000 deseribies the developmett t

desection theory as well a8 experimens done on bodl the electrosic instruments and the B
ohyervers.

Al Reliability of neurons and reliabality of perception

changes in mean light level. Note that at this point there had been no direct ob-
gervations of single photon responses in individual cells from vertebrate visual

systems. although Fuortes and Yeandle (1964) had seen “quantum bumps™ in

. the response of receptors from the horseshoe crab Limufus polyphemus.

Barlow and Levick characterized the response of retinal ganglion cells by
counting the number of spikes in a fixed time window following the presen-
wition of a brief flash of light. For dim flashes, the spike count increases i
pmpuniun 1o Aash intensity, so that there is o constant ratio between photons
and spikes. Furthermore, if one examines the distribution of spike counts in
the absence of a (lash, the distribution is roughly Gaussian, as shown in Fig.
4,34, so that it is characterized by its mean and its variance. Clearly, hoth these
pammeters vary with the width of the time window t, but it turns ot that the
variance o= of the spike count in the steady discharge s proportional to the
mean count (1),

The problem of mtensity discrimination is that we observe 4 spike count
n and must decide if it represents background activity or i in fact o fash
was present. If the distribution of background spike counts is Gaussian, and
the extru spikes [tom the flash just add. then we have the situation shown in
Fig. 4.3h. We cun choose some criterian o, and puess that a flash occurred if
= i1 Clearly if ni; 15 very small, we never miss any flashes, but we also have
many “false alarms" where we assign the background discharge to a real fash,
On the other hand, if i, is very large, then we have u low false alarm rate bt
we also miss many of the real flashes. Thus by changing our eriterion we can
trade different types of errors against one another. This criterion dependent
trading is the basis for Barlow's explanation of the difference between the
Hecht, Shiaer, Pirenne and the van der Velden experiments,

If we don't know the absolute intensity of the light flash, we have to set
our criterion in relation to the statistics of the background discharge. Thus
we will say the flash is present if the spike count n = {0} + ka, where the
constant & determines the probahility of a false alarm. This means that the fash
will be detected if it produces An = ko spikes, but we know that the number
of spikes is proportional to the number of ahsorbed photons. In addition, we
know that the variance o7 is proportional to the mean spike count {n}, which
is in trn determined by the background light intensity, All of this means that
we can turn the threshold change in spike count An into a threshold change
in light intensity A7 and stady the dependence of this increment threshold on
the intensity of the background light 7. The results are shown (for one cell) in
Fig. 4.4,




154

Reliabily of computsticn

firing rata
[spikasls)

0% =
time (s}

0.

Pin,)

0G5 —

irezramaent stimulus (coim®)

Figure 4.3 '
Spike counts and diserimination problem adapted from Barlow and Levick (1969
Burlow and Levick measured the firing rate, ss in Fig. 2.1, in response o a | s siep
light of intensity AT superposed on a background. They then compired the mﬁlh-
:iulnng a (L5 5 period prier o the light step and riuring- the light step, Mepsoremes
prior to the sumulos described (e probability distribution for spike counts showi
(b1 The criterion chosen Tor relishle detection was that the spike count during the |
step '1|_'II'JI.i|L| excerd 288 standard deviations from the measn of distribution. As the;

intensity A is incroased, the spike counts increase, evenlually reaching this cri :
e In ) this eriterion count is converted into a crteTion inte[};;iw increment Ay
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Threshold intensity as o function of background redrawn from Barlow end Levick
(1969). The increment threshald determines the difference in light intensity AT such

Cthat flashes of intensity ¢ and intensity £+ AJ can be distinguished, as explained in

~ Fig. 4.3.

Crudely speaking, we see that the threshold for reliable discrimination in a

;!i_ii'_lglt_: cell is proportional 1o the light intensity, Af o [, in bright backgrounds:

this is the fumiliar “Weber's law"™ behavior of psychophysical thresholds, At
intermediate intensities there is a hint that Af e 1172, which is consistent

~ with discrimination being timited by the random arrival of photons at the

reting, as discussed by de Vries (1943) and Rose (1948). Finally, at very
low light levels the inerement threshold becomes constant, presumably Hmited
by dark noise (Barlow 1936). Certainly these observations are in qualitative

“accord with the behavior of humans in response to similar stimuli, The fact

- that spike/photon ratios vary widely across intensities suggests that this hasic
unit of visual transduction is contralling the sensitivity of the whole animal,
‘but the point is far from proven. In particular, one would like 1o work at
very low light intensities where the retina is dark adapted, comparable to the
conditions used in the Hecht, Shlaer, and Pirenne (1942) experiments. This
was done by Barlow, Levick, and Yoon (19715,

A dramatic example of the sensitivity of dark adapted ganglion cells is
shown in Fig. 4.5. Here we sce the average response to flashes that deliver
{on average) 5 photons at the cornea. The spike rate s elevated by more than
a factor of three for 4 brief period, producing an extra 2.5 spikes in a 200 ms
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© Frequency of seeing curves for retinal ganglion cells, Barlow, Levick, and Yoon mei-
Figure 4.5 ' sured the probability that a dim flash produced at least a enterion number ol spikes

' in a retinal ganglion cell as a function of the flash intensity. Ploted here arc the re-
"F-u_lts of an experiment of this type for 4 number of different spike count critena. Thlcsa;
] urements of the probihility of reaching a particular spike count are plotled agal nst
the intensity of the stimulius delivered plus an added number of random photon-like
ents (the “dark light”) 1o account for noise penerated in the retina. Both the nimber
of photon shsorptions produced by the stmulus and the number of random photon-
- like events are assumned 1o follow Paisson stitistics, The resulting curves, analogous 0

the frequency of sceing curves of Heeht, Shizer, Pirenne, can be fit assunng that each
1 ;'p!mmn absorbed produces 3 spikes. Redrown from Barlow, Levick and Yoon (19715

Post-stimulus time histogram for dark-adapted ganglion cell 1o fash delivering St
tons an average s the comnea. The stimulus produces abiut 2.3 extra spikes
the counting window shown. The ability of this cell and others like it (o resp
fashes producing only i few photon ahsorptions indicates that the dark-adapted
miay indeed respond o individual light quanta, Redrswn from Barlow, Levick and
(1971},

window. IF 2 {= 3/2 5} photons at the cornea are sufficient (o rigger an
spike, we have 1o take seriously the idea that individual photons arris
the retina in fact produce more than one spike. Once again, estimatii
exact fraction ol light reaching the retma is difficult, bot one can try
statistical arguments,

Let us suppose that each counted photon produces exactly m spikes. T
since photons arrive at random from a Poisson distribution, the change in1
photon count is necessarily accompanicd by identical changes in variance!
call the discussion of the Poisson distribution in section 2.1.4). But, for
spikes, the changes in mean couni are amplified by the factor m, while e
changes in variance are amplified by m”. Thus the variance of the spike
distribution should also vary linearly with the flash intensity, which it
and by comparing the slopes of excess mean and excess variance we cale
the spike per photon ratio m. This analvsis leads o values of 1.65 < m < 3.8
clearly indicating that one photon produces several spikes, _

I1. for example, one photon produces 3 extra spikes, then by setting a €t
rion of 3 spikes we should produce “lrequency-uf-seeing” curves analogouss

il
those measured by Heeln, Slaer, and Pirenne, but these curves should be fit by

Eq. (4,1) with & = 1. If we set a criterion of 6 spikes, we should find & =2,
I :ﬂ_rid__‘sn on. As shown in Fig, 4.6, this is exactly whuat one finds. Thus we see
- that the statistics of decisions based on spikes from a single neuron, just like
the decisions of human observers. reflect the statistics of photon arrivals st the
- reting. To get o precise fit to the data we must assume that the visual system
has a finite level of dark noise, and that this noise is indistinguishable from
i '-[ﬂ:I_'I_dDI‘n photon amivals at some effective rate (Barlow 1956).

- Itiselear that, when recording from a retinal ganglion cell in the cat, we {as
- external observers) can manipulate our criterion, so that the apparent threshold
photon count can take any value, including unity. Can human observers sim-
Alarly lower their threshold down to one photon? Equivalently, can aur brain
‘ehange its rules for interpreting the spike trains from our own retinal ganghion
‘cells?
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Sakin (1972) generalized the P meusurement by asking ubservers
their perception of the intensity of dim flashes using integers from 0
She found that the mean rating varied linearly with the flash intens
more importantly, the probability of giving & rating larger than & gk
equation of the sume Tform as Eq. (4.1) for each K. with all seven L“T"'t.‘-ﬁf
fir by the sume e, To achieve the hest fit requires. in addition to the phot
delivered in the ush, a small rate of spontaneous photonlike events, whit
identify with Barlow's dark noise: this experiment {as well as iy
gives un estimate for the rate of these photonlike events, Up to this dar
the observer is behaving as expected if the rating number is just the n :
photons counted!

By now it 15 elear that individual photoreceptors must give a reli
sponse to single photons i we are to understand the performance of
observers or of cat ganglion cells. As soon as it was possible to make goo
tracellular recordings of voltages in vertebrate photoreceptors, several aron
searched unsuccessfully for single photon voltage responses. As it tu)
the receptor cells are electrically coupled into a nelwork, so that curren
duced in one cell are spread as voltage responses over many cells. To
single photon responses thus requires direct measurement of the receptor
current, which was uccomplished by Baylor, Lamb, and Yau (1979%).
to the ebservation of highly reproducible single photon photocurrents in to
(Baylor, Lamb, and Yau 1979%h) and in macague monkeys (Baylor, Nunn,
Schnapf 1984); an example of these single photon experiments is showr
Fig. 4.7,

In recordings from single rod cells one also observes spontaneous photon:
like events, which almost centainly reflect the spontaneous isomerization ;
visual pigment rhodopsin (Baylorn, Matthews, and Yau 1980). IT we co I
Sakitt’s estimate of the dark noise into o rate per rod cell, the rate we obt
i in excellent agreement with the observed spontaneons event rate in monkey
rods (Baylor. Nunn, and Schnapf 1984). This agreement strongly suggests.
the limits to the reliability of night vision are set by noise in the photoree
array itself, not by noise or inefficiencies in the subsequent neural pro¢
It is yet another remarkable fact about the visual system that, to be con
with the measured dark noise levels, the spontaneous isomerization ral
rhodopsin molecule must be less than once per 3,000 years at room e
ture {in toads ) or once per 300 years at mammalian body temperatures.

For cold blooded vertebrates it is possible w make a more direct compt
son ol dark noise levels at different stages in visual signal processing. In-
and twads, Aho et al, (1988) measured the dark noise both in hehavioral

L1

tirna ()

Eigure*ﬂ

5[1151: photon responses in o toad rod, Dim Aashes, resulting in ahsorption of an iver-
“age of less than | photan, were delivered at the times indicated by the stumulus trace,
_1|.|.th]: the current Howing into the ouler segment was mezsured with o soction elecirode.
Some Aashes fail to elicit a response, some elicit a response of about | pA, and one elic-
fts response toughly twice this size. These responses reflect the absorption ol zero,

~one, or two photons. This section of the expenment also shows twe events, marked by

arrows, due to the spontaneous or thermal activation ol the photopigment rhodopsin,
Such evenis occur at random, mimicking single photon abserptions, dnd provide the

'Hntk noise that limits the reliability of phown counting, From experments by DA

Ea}flﬂr and F. Rieke.

periments and in recordings from relinal ganglion cells, which are the output
cells of the retina. More importantly, one can vary the temperature of frogs
and toads (this is difficult with people). and it wits shown that the behavioral
diurk noise varies with temperature exactly as predicted from measurements on
thﬂ activation energy of the sponlaneous event rate in photoreceptors. 1F one
t‘-xtmpnhtc:-, o mammalian body temperatures, this correspondence between
behavioral and rod cell noise levels perfectly interseots the data point for hu-
mans and monkeys.

The agreement between hehavioral and physiological data, especially over
such a wide range of wemperatures, strongly supports the conclusion that the
organism is reaching a fundamental limit to the reliability of seeing, namely
the noise in the photoreceptor itself (Barlow 1988; Donner 1989). It has been
Appreciated for many yeurs that the ability of the visual system to count pho-
tons places important constraints on the mechanisms of phototransduction
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Auditory discrimination

Reliability ol commputation

within the rod cell. To account far the near optimal processing of th
nals, neural computation must be very reliable. The many stages of
pracessing that culminate in the behavioral response 10 a dim light flag
add little if any noise to the tod cell output, and the rod cell outputs
processed in a maximally efficient manner so as to extract all the info
available regarding the number of absorbed photons (Bialek and Owen
Ricke, Crwen, and Bialek 19915, 4

Ini the early 19605, a group at MIT set out to give a quantitative chag
ization of neural responses at various levels of the cal auditory sys
the group’s first results were becoming available (Kinng et al. 1965)
(19651 and Weiss (1966) set oul to make models of the auditory neg
sponse and to connect these models both o the mechames of the i
and ta the phenomenalogy of auditory perception. This was an ambitio
gram, and probably there is no sensory system in which such a pro
been brought to completion, On the other hand, these carly papers p
rather rigorous mathematical formulaton of issues that are sull with us
role of temporal versus rate coding, the sharing of information among
neurons. and the connection between neuronal reliability and psychop
discrimination performance. Here we focus on this last problem, alth
issues are (perhaps inextricably) intertwined.

We should warn the reader that o straightforward attempt to relate
ability of auditory discrimination 1o the statistics of auditory nerve respor
actually fails. It seems that we should be able to discriminate [requencit
exarmple, with at least an order of magnitude more precision than is obsers
The resolution of this paradox forees us to think carefully about the nal
the estimation problems the brain is solving, and along the way we ﬂﬁ_
velop methods and ideas that will be useful throughout the remainder OF
Lext l

As described in sections 2.1.2 and 2.1.4, the response of a primary audi
neuron (o # pure tone stimulus approximates a Poisson process in which
rate is modulated by the stimulus waveform. There are corrections 1@
picture, but let us first try 1o understand the consequences of the Pa
approximation. We are interested in conneeting the statistics of neural
to the reliability of perceptual judgments, in the spirit of the Barlow
cxperiment. Indecd, what follows is a peneralized Barlow—levick expe
performed on o model neuron. The advantage of the Poisson approxim

4l Reliubility of neurons and reliability of perception

gs indicated in section 2.1.4. is that we can mike considerahle progress using
:.‘-ﬁen and paper rather than compuler simulation.

 gigbert was concerned particularly with the problem of frequency diserini-
*jnation. In the neighborhood of | = 10" Hz. humans can distinguish reliably
petween pure tones that differ in frequency by as little us Af - | =3 Hei We
- know that the response aof auditory neurons o pure tones chunges as we change
he stimulus Trequency. but we also know that primary anditory neurons do not
| éj*l!re deterministic responses, The Poisson model is an approximate description
of this nondetermnii nistic bebavior, The fact that newrons do not always give the
game response will limit our ability 1o make fne discriminations. How does
this limit compare with human performance!!

[magine that we are trying o discriminute between two different stimuli,
‘say stimulus + and stmulus —, We are going o observe the spike train of
" pne neuron over a time window () < ¢ = T, und in this windew the two slim-
uli give rise to time dependent firing rates r.(f) and r_ (1), respectively. The
discrimination problem is thal we observe the sequence of spike arrival times

ts f2, 0 - o 0y and pust decide whether the neuron was driven by stimulus + or
—. This is an example of the broad class of decision or discrimination prob-
lems that have often been used to probe the reliability of the nervous system,
starting with the traditional psychophysical experiments an human observers
{Green and Swets 1966), We measure performance by counting the fraction of
decisions that are made correctly, so to find the limits ol reliability we need
to process the data |r;] 5o as to maximize this fraction. The optimal stralegy
in this sense is maxvinm likelihood—given the data (1), choose the stimulus
4+ or — to maximize the probahility thut the spike train was generated by that
stimulus, The fuct that maximum likelihood is the correct strategy 10 mixi-
mize the fraction of correct decisions is one of the most useful facts from the
general mathematical theory of signal processing und decision making, so we
sketch the proof in section A, 16, and a simple example of the discrimination
problem is shown in Fig, 4.8,

For our discussion here, the important point is that if we process the spike
arrival times using the maximum likelihood decision rule we are guaranteed
that we will calculate the maximum possible raction of correet decisions that
'-THI' be made using these spike sequences, In this sense the caleatation gives us
g rue limit to the reliability of discrimination. Our task now is to carry through
this maximum likelihood culeulation in the case of a Poisson neuron,

We recull (from sections 2.1.4 and A.4) that, in the Poisson upproxination,
t_|1¢ probability that # neuron produces spikes al Limes £y, 2, <<+ fy in response
1o stimulus + is given by Eqg. {2.18), that is,
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 have to decide whether the stimulus was + or —. To dn this, we caleulate the
likelihood ratio, which is just the ratio of probabilities that this spike train was
Sroduced by either of these stimuli. It is convenient to take the logarithm of
* this quantity. and this “log-likelihood ratio™ Al fzo-o- T,

i
Plojita,-» --ml+])
Pl oyl =1/

I T
Pl ...ty = T"'v” exp| — [| dreg () | e egdr g dea) o 'r-.L{fNj;

Each factor o (4 ) measures the probability thata spike oceurred at the b,
abserve it, the exponential enforces the lact that no spikes oceur af;&."
times. and the & ! divides out the number of different ways of assigniij,g.-
to the N spikes. When we have seen a particular spike train 1y, 13, -5 |

J._{Fl,fzi“-,f,'c.'1=|n( (4.3)
provides a convenient decision variable: maximum likelihood is the stalement
that if & = 0 we guess that the spike train was produced by stimulus +. and
}}‘J, < () we puess —, Again, this procedure is optimal in that it will muximize
the probability of a correct decision.

In the Poisson model, 11 is easy to find the Torm of A, substituting Eq. (4.2)
(and its analog for stimulus — b into Fo (431 The result is that

g " . _' f
Attty =In [r—{i +In [ﬂ} B ] [r‘ ”"‘}}
rednd r_(fz) ol

T
—f ety —r_ii)]. (4.4}
@10 i}
Pinle=10%s) | i S U EER S R
2! Pnlve-10%s} '_ﬂms_we see Lhast oprimal dlhl:!’!ll'un.lir.lun n:.vum.:- adding up contributions from
e edch individual spike. then subtracting off a constant. The constant just insures

that we can pul our discrimination threshold at 4 =0 1F we carry through
this optimal discrimination procedure—uobserve the spikes, compute A, make
adecision depending on whelher & comes oul pn.*;iﬂvc or negative—Ihow often
~will we get the right answer?

Our discrimination procedure works beciuse, as illustrated in Fig. 4.8, the
:sllimulus + generates, on average, spike trains thut map o positive values of
A, and the converse is true for stmulus —. 5o leUs start by computing these
‘average values. The average al' &, given that stimulus + is being presented, is,
by definition,

Binly)

Figure 4.8 ¢
Construction of the log-likelihood function. The botom panel shows the proba
Pinfuy of ohserving a spike count # given o stimulus v of enthber 107 see (thick:
ar —10°sec™" (1hin linel, in 4n experiment on the fly H1 neuron. These cond
distributions are slices through the three dimensional plot shown in Fig. 2
decision variable ain) plotted in the wop panel s defined as

X or T i
til‘”'r:'l--ﬂl."v'.]':'l — f f,”! / ,r.lrF_!"" [ f.“,'\' J\U].irz."'.-r.'."
Z 0 S

A= Al
wo Pt - ot 4] (4.5

We can now substitute Faq. (4.4) into this expression and go to work reducing
things down to something managzeuble. The key to the calculation is recogiiz-
ng that A is a sum of terms that refer o the occurrence of individual spikes,

din)=log [FMILI =10"sec™ ") Pinju= —10 'mc""l] !
Whereas £ey 13, - ry|+] 15 a product of such terms. This means that when

IF & =0, then the most likely stimulus is v = 10%sec™ ' iF & = 0 the most
stimulus 75 0= — 1) sec !,
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we integrate over all the spike arrival times, we can break things up i - Ar(). Details are piven in section A, 17, and we find

i | T ; 2
1 ,f_'s.m‘xf mM. (4.11)
i Firl

and products over integrals that invelve just one arrival time, Then
1o count how many ol these terms oceor, and add them up, hﬂing. i

iddentify the infinite series which adds up to cancel the exponential i
Pl w10 All these same steps can be used to compute the ¢
of the sum Ef‘;l Sty where [ is an arbitrary function; in the case
est. f{0) = lnfrodri/r (0] Mathematical details are in section A,17, 5
senerdl result is

N !
<Zﬂm> =f dre e fien
il
.

i=|

Cwhere r{t) = {1/ 2Hr ey +r_it)] is the average of the two rates,
The reliahility of discrimination s determined by comparing the mean sig-
pal with its variance: higher moments turn out not o he important. By the
came arguments used to arrive at Eq. (4.6). one can compute the variance of
. '@y sum E:‘_1 Fi The result has the simple form

>

(5] ) =[] ), (£,

T
=[ diro(DLf P (4.12)
w i)

Now we can use this general result to compute the average value of A
that the stimulus was “+™

N Fodt) w7
(Rt i, ) = ) In L_ “_J] —j difro(t) — r_(0)}
=N b 1l

i=]

T A T
=f dir () n [-n'“’} —f delry(r) —r2(0)],
0 Folih {

T 1

" In our case, with (1) = Inlry (r)/r_(1)], we find the variance of & to be

: 7 Ty
{[Bhtrnrz---oiw| ?+=_[, d”"'”('" [r.{f!])

T R I
[ gl RET
Y]

and we can do the sume caleulation given that the stimulus was

i

rir)

! L) ] 4 !
(At dgas oo B M) = =f dtr ;;]g,,[f...ﬂ._ —f dtfrs () — r2)L
, Jeolis

F-Aih ] i
where in the Tast line we make the approximation onee again that Ar s small.
Note that in this limit the variance of & is the same in response Lo cither the
+ ar the — stimulus, Thus it makes sense to think of the discrimination task
with @ signal corresponding to the difference in means AM and o noise with

Thus we see, as we hoped, that our decision variable 15 different, on av
i response 1o the two signals, The magnitude of this difference is the “si
for making the discrimination. The fact that L Auctuates around these a
vitlues provides the “noise™ against which we must fight,

The magnitude of the discrinination signal is varance
T 2 I
AM = (Al t7 .. B — R b L I e 'ﬂ'z:f dliﬂr’“” (4.14)
T 1 rir)
T ;
el _ _
:_[1 | rel—rcieyIn L ”]:| ’ Then we have a signal-to-noise ratio

SNR =(AM)/a®

T A2 T AR
(f m!_.ﬁ.rirhi) ([ LY }|)
1 rit} ¥ it

T vl
f g HBrOr, (4.15)
Jil il

Wi arc especially interested in cases where different stimuli are just ba
discriminahle, so that the difference in rates Ar(r) = e, (¢} — r_(r) is smd

is also zern, We would like 1o find the value of AM at small but no
Arit), and to do this we use a Taylor series expansion and systematically
card higher powers of Ar(r) which are progressively less important af SIme

Il
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This gives us the signal to noise ratio for discrimination between gy
signals using the output of a neuron with firing statistics comesponding
Puisson process, at least i the limit where the stimuli are very similr,

To understand the result of Bg. (4.15) it is convenient o think i
special case, Suppose that the rates are not time dependent, Then it dg
matter exactly when the spikes oceur, and all we have to do is co
number of spikes, We know that the two stimuli, on average, will gixr_g"
counts of No=r 0 and N =r_T, respectively, so the difference iii. o
count is AN = ArT. We also know that for a Poisson process the viriane
the spike count is equal to the mean, so that the signal 1o noise ratio becoy

SNRE=(ANYV/N

[&rl‘
= (AFT)* ,-’frﬂ—!— -
e

which is the same resull as we gel [rom doing the inlegral in Eq, (¢

counting result fo very small tme windows of size ot and then addir
the resilting SNRs: we are allowed just to add them because, for a Pois
process, the spikes in different time bins occur independently. Then the
SME is exactly the imtegral in Eq. (44 15),

Huctuations. Mow we can get back to Siehert™s problem, the limit to [reque
discriminalion, |

Firing rates of auditory neurons have o time dependence locked to the
quency and phase of the stimulus, as described in secton 2012 This me
thut

rit) = R,

where R is the average firing rate in response o tone of Irequency o, oot
deseribes the shape of the “phase histogram,” that is, the probability of spik
ocetrring at different phases relutive o the sine wave stimulus as in Fig
Bath K and g also depend on the intensity of the sound, but we don’t Wit

is, fram a change in R—and from the change in g. Sicbert showed that w
we compute the signal to noise ratio for frequency discrimination, these [6HE
contribute independently.

4.1 Relinbility of neurons andl relability of perceplion

When we add up contributions from the many auditory neurons, this sepa-
ation info WO lerms quantifies our intuition that there are two very differem
sources of information about frequency (Siebert 19705 de Boer 1976): place
information. corresponding to the fact that cells emerging from differcnt lo-
eations in the cochlen are wned o different frequencies: and timing nformu-
tion, corresponding to the fact that interspike intervals tend oy cluster around
‘multiples of the perind of the sound, These intuitive “sources of information’”
correspond mathematically to the contributions of’ & and g, respectively,
Siehert found that there is more information available in the tming cues,
“and certainly for one cell we can arrange this o be true by studying frequen-
cies near the characteristic frequency of that cell, that is, the frequency where
R is maximal. This maximum is in fact quite broad for loud tones, which is
part of the reason timing is so much more informative. $o, 1o simplily our dis-
cussion, let’s assume that £ doesn’t change when we change frequency. Then
the change in time dependent rate is just

el
Arir) == . jﬂ.{u

(X ek

ch g aet
Rt *"{ }&
el
= Rro'lar) A, i4.18)

where, as usual, ¢’ denotes the derivative of the function g. Now we can com-
pute the signal to noise ratio for discrimination, substituting into Eq. (4.13):

T [Aar(n))P
SNRE = it -
[A]

20
r 3.
=f mi-‘l‘i‘.&m} [,:, [f}f]] . (4.19)
0 f 2t}

The function g is by defimtion a periodic function of wt = ¢, since ¢ is the
phase of firing relutive 1o the sine wave. [f we can ussume that the interval
0 <t = T contains many of these periods, which just means that we listen to
many cycles of the pure tone, then we can replace the terms that depend on g
by an average over one cycle 0 < ¢ = 27, and then do the remaining integral
of t*. The result is

" ddig @) (4.20)

i .&I’H
= ar i} LT 511[}5,
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This equation tells us that an observer of a single anditory newron
processing the spike train optimally. make I'ruqucncy discrimination wigh
SN R, With a typical firing rate of £ ~ 50 s~ and integration time 0
100 ms. the signal to noise ratio for discriminating a frequency diffeps,
Af Hz (Aw =2 Af) s then given by 4

- .H 1'5!_,r- pu T 3 B | ﬂ [H’{Iﬁj]l
THR 4(5ns—ﬂ)(tfu) (]UHmﬁ) j. I o)

The function g is something that has been measured for thousands of ay
neurons. Furhermore, we have defined it so that it 15 normalized,

Im drl:b
,[1 2ir

sounless something very strange happens, the integral we need to eviluat
Eq. (4.21 ) can't bea very large or smull number, but is most likely sum}_g ;
ol order one. In any case we know that our model of neurons as a Pe
process isn't exactly right, so maybe we shouldn’t work too hard ch
factors of two, Then we can summarize all the work of this section b

simple conclusion: I

R T )1 AF Y
SN R~
; (5ﬂs-')(1ﬂnnm, (I}m)

This means that we should achieve reliable discrimination, that is SNVR :
when the frequency difference is Af ~ | Hz, and this results from “listening
tiy just one newron for (K ms,

11

Although it seems to be a nice, simple result, Eq. (4.23) is a disaster, Indee
the whole message of Sichert’s original work was that this simple picture
optimal discrimination based on spike trains is completely inconsistent
the phenomenology of human [requency discrimination (Sieberr 19700,

The first problem is one of scale. With reasonably loud tones, many T
roms will exhibit strong phase locking, and so the signal o noise ratio f
ohserver ol the entire cochlea must be much larger than in Bg. (4.23)
respondimgly, the threshold for reliable regquency discrimination should
much smaller than 1 Hz, and it is not: Sicbert estimated that the discrepancy’
15 at least two orders of magniude. The second problem 1s the dependence
time-—human frequency diserimination thresholds improve appmximﬂl‘ﬂl-
T-Y2 not 772 as predicted fram B (4.23). Again this discrepancy is 1
oulside reasonable experimental error

4.1 Reliahility of neorons and reliabilicy of peréeplion

Trour discussion of the homunculus in the introduction, we emphasized that
the strategies adopted by the homunculus depend on the nature of the sensory
world. I we can really assume that the world consists of one out of two pos-
sible pure tones, then ull of the cells in the anditory nerve phuse lock to one
tone or the other, and hence all these cells provide some information about the

~ frequency of the tone; frequency discrimination performance should be, there-

fore, much better than in Eq. (4. 23}, This means that (Tor example) cells uned

o frequencies near 100 kHz are piving information relevant to discrimination

in the neighborhood of | kHz. For patoral stimuli this 4 seldom il ever the
cise—events in very distant frequency bands are uncorrelated unless they are
in near-harmanic relation,
Similarly, the world of pure tones is also a world of infinite correlation
umes so that the frequency at one instant of time and the frequency 100
ms later are identical, Again this does not happen in natoral stimuli, where
fm:;ue.nue,s are modulated and phase coherence is lost. The assumption that
signals are coherent ueross the entire interval of stmulus presentation is wliat
“allows for the T-/% improvement of discrimination performance.
Goldstein and Srulovicz have presented a model [or optimal processing of

interspike intervals that addresses some of these discrepancies between the
strict frequency discrimination task and the more patural problem of pich

‘estimation in dynamic stimali. {Goldstein and Sruloviez 1977; Srulovicy and

‘Goldstein 1983). To begin, by focusing on interspike intervals one throws
“away information that could be carried by the long term phm. colerence ni

—1y2
the spike train, and hence one immediately recovers 77 * pather than 7

'lmprnvements with integration time. This strategy is optimal lor estimation af

‘signals that are modulated on time scales comparable to the typical inferspike
Antervals,
Like Siebert { 19700, Srulovicz and Goldstein ( 1983) focus on the task of fre-

quency discrimination, but they insist on a model that generates an estimale of

the stimulus frequency without knowing mn advance that one of two frequen-

“cies will be presented. This implies that information about discrimination in

the neighborhood of frequency s indeed dominated by neurons tuned near
f, 48 one might intuitively expect. The effective number of cells contributing
to the estimate is therelore smaller, and this restriction of the frequency band
plays a crucial role in generating the correct predictions for the frequency dis-
‘erimination threshold,
In carlier work. Goldstein and colleagues (Goldstein 1973: Goldstein et al.
1978) had shown how the problem of [requency discrimination for pure tones

~could be linked to the more natural task of pitch discrimination for complex
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sounds, The central idea of this work is that freguency discrimination
iments measure the precision with which mdividual Irequency comy
are represented, and from these data one can work out the oplimal
for identification of harmonic complexes. Applying these optimal g-
one generates predictions for the accuracy of pitch discrimination i g
th: already measured accuracy of frequency diserimination. In pn'nuip]é,-
predictions are parameter [ree, and they are indeed reasonably succeggfﬁ
optimal processor theory ulso makes correct predictions for the pq:rcgmd -
of sounds which are not quite harmonic complexes, including the ¢g
for ambiguous percepts, -
We want 1o emphasize that, although there are many open questions,
seape of the problem addressed in this work 15 extremely broad, The prﬁ .'
is 1o go from the statistics of auditory nerve responses 10 the accurac_-,;!
quency diserimination und finally to pitch perception, at each stage auj
the principle of optimal processing, We have learned that 1o make this p
plausible one must be careful o define reasonably natural tasks, closaf.'
general estimation problem than to the more classical discrimination proble
and that one must think carefully about the dynamics of naturally oeelr
sigmals. ..

.

414 Maotion diserimination in monkey vision
The spirit of the Barlow-Levick experiment is to explore the reliabilit
neurons ina diserimination task for which we know the performance of U
organism us a whole. In the case of phaton counting, the pcrfnmlancc.nf-‘?
organism is equal to the physical hmit imposed by the quality of the inpuf
nal, so that comparing a single neuron 1o the oulput behavior is the same |
comparing it to the input receptor cells. In the case studicd by Barlow and
ick, there is no doubt that all the information the animal uses in moking
ceptual decisions pusses through the optic nerve, so one needn’t demﬂﬂé: d

the mummalian cortex, where aspects of visual information are shared
billions of neurons?

Ferhaps the most direet attack on the problem of reliability in cortical nets

rons has come from Newsome and coworkers (see Newsome et al, 1990, f0
summary), studying cells in area MT of the monkey visual cortex. A num
ol experiments indicate that area MT plays a vital role in visual motion 8
mation. Cells in this area give direction selective responses to moving pate

41 Reliability of nenrons and eeliability of pereeption

the response Lo motion is relatively robust to changes o the spatal pattern,
<o long as something is moving in the cell’s receptive field. Damage to MT
produces an immediate impairment of the monkey's perlormance in tasks re-
quiring diserimination of the direction of motion, but not in tasks requiring
;ﬂﬂl}’ ihe detection of contrast i Newsome and Pare, 1988), and direct electrical
stimulation of small regions in MT can bias the monkey's decisions ubout mo-
tion direction during performance of a diserimination task (Salzman, Britten,
and Newsome 1990 Salzman et al, 1992). Starting from this foundation, Brit-
ten et al. (1992} set out o compare the performance of the monkey with that
:ﬁf individual MT neurons on the same motion discrimination task,

The key point about the Britlen ¢t il experiments is that the monkey 15 do-
ing the discrimination task at the sane Hme that one 1s recording the sctivity
of single neurons, This has three implications. First, one can compare neurl
and behavioral performunce under wentical conditions in one animal. rather
than relying on population averages. Second, one can choose the parameters
of the hehavioral task to match the seleetivity properties of the neuron being
studied, thus maximizing the chances that the activity ol this particular neuron
s relevant to the behavior. Finally, one can compare neural activity and behav-
foral decisions to see if they are correlated on a trial by trial basis—does the
mionkey actually “say yes” more often when this one cell fires more spikes?

The task used in the MT experiments involves discrimination of the direc-

tion of motion in random dot panerns. Dots appear randomly on the screen
and persist at fixed locations for a shart time, less than the time resolution of
the visual system. A small raction of the dots are refreshed al new locations,
displaced in space und time to simulate motion at a fixed velocity, and the re-
maining dots are refreshed at random locations, 1f all of the dots are replaced
with a fixed spatiotemporal displacement, one sees completely coherent ma-
tion, and it is trivial 1o discriminate between motions in opposite directions,
As the fraction of dots participating in coherent motion declines, the appear-
ance of the display becomes more random and the reliability ol discrimination
declines, us shown schemutically in Fig. 4.9, The result of a psychophysi-
cal experiment is the probability of correct discrimination as a function of
the fraction of dots participating in coherent motion. as in Fig. 4.%¢. To make
meaningful comparisons with neural data, dots are displayed in a region of
space that matches the receptive ficld of the recorded neuron, and the axis of
motion s along the axis to which the cell 1s most selective. In most of the ex-
periments, the stimulus is displayed for two seconds, und the monkey must
indicate u response by making an eye movement in the estimated direetion of
motion,
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Figure 4.9

Brserimunability of random motion stimuli. The stimulus in these experiments i i field
of dots that are genersted ar mandom lecations and refreshed either ot random o
Im?atjnmc that simulate constant velocity motion; the fracton of dots with ‘direct
retresh positions is called the correlation of the motion stimulus. The panels in (a) sh
three vises with correlations of 0%, 50%, amd 100%. The panels in () show
con| distributions from un MT neuron at different correlation levels, The hﬂSﬁﬁdb
FEpresent responses o motiom in the prefemed direction of the neuron, and the dark
rcpre.'iem_ruﬁpnnses ter metien in the null dirccton. (o) Summary of measurcments
s those in (b)—when more than 5% of the dots panticipate in coherent motion
dlf.‘.u.'rmn|n.'1|hni!jt1'.-I of motion i the prelerred va, null disection hased on Iﬂﬂpﬂﬂﬁﬂ.
this simgle cell is quite relishle, Adapted from Newsomie et al, L.
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Britten et al. chose to quantify the neural response by counting spikes
throughout the two seconds of stimulus presentation, so this aspect of the
analysis is a direct application of the ideas developed by Barlow amd Lev-
ick (1969) for retinal ganglion cells, For mast ceells, the probability of correct
discrimination hased on spike count is very similar to the probubility of cor-
rect discrimination by the monkey: in some cases the monkey is more sensitive
than the individual cell, in some cuses the cell is more sensitive, and in most
cases the dependence on the fraction of coherent dots is similar. The best per-
formance in either case corresponds 1o 82% correct discrimination when just
936 of the dots are moving ¢oherently, Although neural and hehavioral per-
farmance are, on average, the same, since each task 15 tuned to the particular
‘neuron bieing recorded one can ask whether there is a cell-by-cell correlation
in the varfahility of the threshold, and this does not appear to be the case.

‘Monetheless, when the [raction of coherently moving dots falls to zero, so that

the monkey is forced to guess, this guess is (weakly) correlated with the spike
count on & trial by trial basis (Newsome et al, 1995; Britten et al. 1996). These
results raise a number of interesting new quest TehER

The question that seems most ohvious i¢ why the monkey should not per-
form significantly hetter than an observer of one neuron. Adfter all, there are
many neurons in MT that are responding to the stimulus; why shouldn't the
monkey average the responses of these cells o mmprave its perfurmance? Zo-
hary, Shadlen, and Newsome (1994) have given a simple answer., namely that

the spike counts of different cells are correlated, so averaging does not signil-

icantly reduce the variance. More specifically, when they record from pairs of
neurons in MT they (ind that, so long as both cells respond to the stintus, the

Muctuations in spike count are correlated. Thus it 1s not the case that one cell

is correlated anly with its nearest neighbor on some lattice, but rather that es-
sentially all cells that have a chance of contributing to the behavioral decision
exhibit small but significant pairwise correlations.

To appreciate the implications of this ohservation, imagine that we have N
identical neurons. each of which responds with a change in the mean spike
count by an amount Am spikes, and each of which has a variance @ in the
spike count distribution. 1f we add up all the spikes, the ttal spike count will
change by N Am, and, hecause the cells ure independent, the vanance af the
total spike count 15 Jusi N2, Thus the siznal to noise ratio,

SN R = (change in mean) /variance = N{AmY o, i4.24]

is improved by a factor of A [l threshald corresponds to a fixed signal to noise
ratio, averaging over N cells means that we can detect u change in spike count
thiit is /N times smaller, as expected. How is this changed by correlations?
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Forsimplicity let us consider o model in which all cells that contriby
diseriminution have equal puirwise correlations, with correlation coeffic
Each cell produces m; spikes, and the correlations are summirized by

{8mdm ) = e i=f
{midm ;) = pa” i #4,

Mo the change in the total number of spikes is stll N A, but the varia
the totul spike count is

N 2 N N
Z: dm; — Z Z{éiur;ﬁm il
=] =l =1
N N

-- Zfiﬁnrf]g'} + Z Z{ﬁnr;ﬂ:ﬁm il

= f=1 ji
= No®+ MN—1 Jpal.

Then we see that the signal 1o noise ratio becomes

(N Ayt ] .
— —{Amife

ENR=— 5
Na-+ NN — lpa- il

where we indicate the limiting behavior for lurge numbers of cells, ¥ — &
We see that. in the presence of correlations. the signal toy noisé ratio
improves by more than o factor of 170, no matter how many cells we ind
in our average. Correspondingly the threshold for the organism can n
more than a factor of 1/, smaller than the threshold of a single cell.
Shadlen, and Newsome (1994 report an average p ~ (112, so we expectU
behavioral thresholds shouldn't be more thun o factor of three better
neural thresholds, and this is about right,
A further interesting feature of the MT data 15 that neural performian
proximates behavioral performance even when the response of the neyron s
summarized by the total spike count, withowt regard Tor the temporal S
ture of the response, Does this mean that the monkey is unable to “listen™
the timing of cortical spikes? Or, perhiaps. that the temporal strecture, €
principle, provides no information of relevance to the behavioral task?
conclusions certainly seem in opposition to the view developed in the B
ceding chapters, namely that individual spikes can carry detailed informd o
about the time variation of the sensory stimulus. 1t s, of course, pﬂsSlH’?-__ 3

4.1 Relighiliny of newrons and reliability of pereeption

the mammalian corlex is just different from systems we have described so far,
put the available data suggest o more interesting possibility,

Most of the MT experiments focus on a discrimination task in which the
moving random dot stimulus is presented continuously for two seconds; the
magﬂlludﬂ and direction of motion are constant over this period, but of course
the display fluctuates wildly when the [raction of coherently moving dots is

small. If the task is changed so that slimuli are presented for only 100 ms, the
behavioral thresholds for both humans and monkeys increase. but Lypically by
nl;mﬂ_” factor (less than three ). On the other hand, 1f one counts spikes for only
100 ms, the neural threshold for direction discrimination nses dramatically,
and none of the individual cells described hy Britten et al. (1992) approaches
the performance of the most sensitive human or animal observers in the 100
ms window, Clearly, there is something different about the connection between
neural and behavieral discrimination on these shorter time scales.

* We have emphasized that questions ahout spike count versus spike timing
codes must be phrased in the context of the stimulus dynamics, In several
cases, there dre interesting stimulus variations on time scales comparable to

~ typical interspike intervals, so these variations must be represented by roughly
one spike. In this view, “timing codes” are not mysterious—the timing of

individual spikes signals the timing of particular events in the sensory world,
as is made especially clear when we reconstruct the stimulus wavelorm, If we
hold a stimulos constunt for two seconds, we have defined a world in which
there are no events o be timed, and we misht therefore expect that the timing

of individual spikes is irrelevant.

For the random dot displavs used in the Britien et al. experiments. |06 ms

of viewing in a 10° diameter receptive field corresponds to seeing roughly 130

dots, of which only 8% participate in coherent motion at threshold for the best

‘human observers. In this limit the correct motion percept is thus carried by

~5 pairs of dots, With these stimulus paramefers, the average spike count in
4 100 ms window is no more than 5 spikes, and most likely is of order |
103, This raises the possibility that hidden in the “constam™ stimuli of these
experiments there are indeed interesting sensory events—the oceurrence of if-
dividual dot pairs or clusters—whaose timing could be indicated by the LitTng

‘of individual spikes, It is even possible that under normal conditions our per-
‘ceptions are dominated by these individual events. Preliminary psychophysical

experiments (Bair 19935) indicate that human observers can report fluctuating

‘estimates of motion direction at various times in the presentation of the ran-

dom dot stimulus, but that the pattern of these fluctuations is reproducible and
tied to the details of the particular dot pattern heing presented.
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Figure 4.10 _
Raster plots of mdividual spike tmes and tme dependent finng mate from experin
on MT peurons such as those in Fiz. 4.9, The stimulus was presented from (/102
[n this cose. there s no coherent motion, and dots appear at rndom on the sone
and disappenr after o shorl Gme, Repetition of the stimolus comesponds to 8 pre
repetition of the lecation and smmival me ol each dot melative o the =10
Adapred from Bair and Kok | 1996),

Bair and Koch { 1996) have reanalyzed some of the experiments from &
some and coworkers, focusing on those experiments where precisely the 58
rundom dot display was presented repewtedly on several trials, As shown
Fig, a4, L, repeated presentation of the sume dots results in rather reproduc
spike traing, o result that is certainly consistent with the hypothesis that th
timing ol particular sensory events 1s represented faithfully in the Gming.
individual spikes.

One of the most appealing aspects of the MT experiments is the trial by
correlation of psychophysical and neural response. It seems possible that _
could perform similar experiments, but force the monkey to respond o VEE
brief stimuli, and in such a context one could search for correlations bet
behavior and the occurrence and timing of individual spikes. Not so long
it might have seemed far fetched o suggest that the behavior of a monkey
correlated with the number of spikes in just ane cell out of the hillions |
cortex, although this is what Barlow (1972) proposed explicitly in his “ne

| are associd
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* sactrine for perception.” and it is now clear thut these correlations exist. We

Pethaps the most remarkable examples of reliability in neural computation
P ¢ ted with situstions where the absolute numerical data—thresholds
‘for reliable discrimination, or equivalent noise levels at the output of a
.!';-gmpumlion—rsurpass our ntuilive estimates by orders of magnitude. In the

 extréme, echolocating bats can apparently resolve jitter in the arrival time of

their echoes with a precision of 10 nanoseconds {Simmoens 1989). The weakly
*EIectric fish are not far behind, adjusting their own electrical signals in re-

~sponse to several hundred nanosecond shifts in signals from neighboring fish

(Carr, Heiligenberg, and Rose 1986; Carr 1993). These results are surpris-
jng hecause the natural scale of neural activity seems to be milliseconds, not
microseconds, and certainly not nunoseconds.

ere is the limit?
 The experiments on extreme temporal acuity have their antecedents in exper-
Aments on spatial acuity in the visual system, experiments that date back well
into the nineteenth century. What is our intuitive expectation about the scale of
“spatial precision? We know that the eye samples the world with a discrete [at-
ice of photoreceptors, and in the human foveu this lattice spacing on the reting
5-:§uﬁﬂspunds 1o an angular spacing of ~ 0.01 degrees in the visual world. Inde-
pendent of the receptor lattice, diffraction through the pupil and lens will blur
our image of the world, and this also washes out details smaller than ~ 0.01
degrees. These physical and geometrical considerations strongly suggest that
the acuity of our foveal vision should correspond to angular displacements ol
about 0.01 degree, or (roughly) a displacement of one fool seen from a mile
away, which gives a good feeling for how some of the early experiments were
done,
Suppose that we ask a human ohserver 1o tell us whether the visual field
contains two dots or a single dot of twice the brightness. Reliable discriming-
tion occurs when the dots are separated by about 0,01 degrees, in agreement
with our estimates of visual acuity. But something new happens if’ we ask
the observer to disciminate the displucements of vernicr patlerns—now the
threshald for relishle discrimination is roughly five times smaller, ~ (LOO2 de-
grees. The smallest displacement thresholds reported for human observers are
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Figure 4.11
Hyperacuity sumuli studied by Klein and Levi (1985 The task is o decide
middle ling is displaced up or down from the center defined by the other four ]iI
I 1his figure 15 viewed [rem o distanee of rmooghly 10 meters, then the spacings bet
the lines corresponid to the angular displacements shown at right, aned the displac
af the middle line is 0.06 minutes of are, or 3,6 seconds of are, up from the center
i5 four times larger than the best cheesholds found by Klen and Levi, which wene 0,
second ol are, or O002F deprees. The angular seperation of receptor cells in the 4
15~ A seconds of arc, so hypersculty inthis sk cormesponds to the diserimination i
displacements 30 nmes smaller than the nominal limit set by receptor sampling.

~ L0003 degrees {1 second of are) for the task of centering a line between §
other lines, as in Fig. 4,11 (Klein and Levi 1985),

One might imagine that there is something special about vernier patie
since displacement information can be collected from many locations, In f
the discriminability of these small displacements is quite robust, and can
exhibited by asking observers 1o detect changes in the separation of (WOES

termed fvperacuite Muny ol the experiments that established hyperacilt
a general phenomenon were done by Westheimer and colleagues, and W
heimer {1981 has written a review that describes not only these experime
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but also the long historical backeround. At some point In the history, the idea
thut our brains could resolve displacements smaller than the nominid “diffrac-
tion limit" seems 10 have cavsed considerable consternation, More recently
we have noticed that theoretical papers purporting to explain hyperacuny
have appeared almost without reference 1o the fundamental physical limita-
tions. In some sense we have gone from a time when hyperacuity seemed

impossible 10 4 tme in which it seems obvious. Netther extreme view is

correcl.

Hyperzacuity is surprising in two respects, First, the detected displacements
are smaller than the spacing between photoreceptors. Second, the displace-
ments are smaller than the “resolution” ol the eve's optics. It i5 crucial o
undersiand that these are only apparens Timits, and thit the real Timat to spa-
tial discrimination is set by these effects together with noise. To get the basic
idea, we can think about trying to measure the pasition of a single dot using a
linear array of photodetectors, as in Fig. 4.12, Each photoreceptor avernges
over some region of the viswil field determined by the eye's optics and hy
the receptor’s own geometry. In fact, photoreceptors are usually small enough
that they act as optical waveguides, and this effect can give a nontrivial (and
wavelength dependent) structure to the photoreceptor’s integration region. All
of these effccts can be summarized, as in Fig. 4120 by an empirical angu-
lar sensitivity profile Mig)—if cell number st in the array is stimulated by o
point light source at angular position ¢, then the photocurrent generated by
the receptor is proportional to M (g — ¢, ), where ¢y, 15 the direction that this
cell is “looking™ in the visual lield, If we know these angular sensinvity pro-
files, then we can construct the response of an array of cells to a single spol
stimulus and ask what happens when that stimulus moves by a small amount.
What we see is that, even for arbitrarily small displacements, something al-
ways changes—photoreceptors are not onfofl switches, so they can respond by
giving fractional changes in output when the stimulus is moved by fracuons of

A Teceptor spacing.

To tie these idens down 1o concrete experiments, we show (Fig, 4.12) raw
data used to measure the angular sensitivity profile of 4 photoreceptor in the
fly's eve. Note thut the cell produces graded voltage changes as the spot is
moved by tiny fractions ol the spacing between photoreceptors. Obviously, for
very small displacements the resulting voltage changes are very small, and the
fquestion is whether these changes can be resolved above the background of
voltage noise. If the signal o noise ratio is sufficient, however, it is clear that
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s thian the roughly one micron resolution of the light microseope—ure 4 routine
biefore stap 'E' (echnigue in many fields, including cell hiology. Simularly, the entire image
E can be enhanced by sdeconvalution” of the blur introduced by diffraction,
5 Again the key question 15 whether one has sufficient signal relative 1o the

alter sfep = Iiﬂiﬁﬂ-
What does all of this teach us about the visual system? First, we learn thal
the observation of hyperacuity is ool fundamentally mysterious, Our friends
phatcracopior § with microscopes do essentially the same task an o daily buasis, and the as-
?ﬁ{,ﬁﬁ;m E—, ﬁnﬂmum div the same (and more) with their telescopes, Second, diffraction
“ and photoreceptor latlice strueture by themselves do not set a limit o dis-
placement discrimination, but these eflects fogether with soise seta limit that
cannot be beaten down by the brain, no matter how clever. This physical limit
Eﬂ}‘;’ﬂ;"’“"’“ N :{n displacement diserimination can be calculated quantitatively from a realistic

' ki ~ model of the imaging system anil the noise in the recepror cells,

B beiors stop 2 : When we first leamned ;!.huul hyperdeuily, we were impmsrsed that the abso-
[ after step ' ute performance of the visual system should be so good. Now we know thal
by comparing the performance to the naive diffraction limit we were making
Fhiunicuglar pasion ‘ B i mistake—the diffraction limit is not a real limit so we shouldn’t really be
. surprised that the system surpasses it But we have also lesarned that thers is o
Figure 4.12 real limit imposed by diffraction and noise together. If the system reaches this

Spatial sampling in the fly visoal svstem, (a) Schematic of responses ol Ty ph
ceplor army o displacement of 8 point stimulus, The top two pancls show the inte
pattern before and after the siep. These intensity patterns are filtered by the pho
tor point spread function o determine the photereceptor voltages before and
step, where for simplicity we assume the voltage 1o be directly proportional to
intensity. (b) Measurement of the point spread function of iy photoreceptors, e
from Smakman. van Hateren. and Stavenga (1984,

limit, then it is, in 4 sense, the perfect processor, making use of all the available
“spatial information and computing displacement with the maximum possible
reliability. Hyperacuity thus gives us an ppporiunity 1o probe the reliability of
neural computation: Can the visual system diseriminate displacements with a
reliability that reaches the fundamental physical limits imposed by diffraction
“and noise in the photoreceptor array, or does the central nervous system add
?;f.‘f_gniﬁcamumuumu; of noise in the process of computation”? Geisler | L) -
- dressed this issue and gave a simple and general argument about the rélation
of acuity and hyperacuity.

In an acuity task we are nsked to distinguish one point source from Lwao point
“sources of the same total intensity, When projected through the eye’s optics.
the single point souree produces o pattern of intensity uh the retina fy(x ). The

two sources, separated by a distance ¢, produce a pattern that is just the sum
of two fy(x) patterns, each of half the inensity:

Ll By = (1 /2 fple — £/2) + Tolx + £/ (4.28)

one cun, in principle, resolve displacements moch smaller than the e
lattice spacing.

What ubout the diffraction Timit? Diffraction sets the width of the ‘an
sensitivity profile, and the changes in receptor response o small displﬂ!’-‘é
become much smaller if this profile is very wide. Bul again there 155§
small response even to displacements that are much smaller than the widt
the sensitivily profile, which is the nominal resolution of the optical
With sufficient signal to noise ratio in the images, we can detect thes
changes, and we can improve our signal to noise by appropriately -ﬂdd_
signatl from all the pixels at the “edge” of the abject we are looking at. B
nat just o matter of principle. Imaging of small clp_.;placc[nems-—mudh 5'. i

For small displacements I, the differcnce between Lthe pattern from one point
source and the pattern from two point sources can be found by expanding [z in
a Taylor series and keeping only the leading term:
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We see that the intensity changes are proportional to £2—the signal
ond order in the displacement. If the two sources are already separg
a distance £y, however, a change in separation Al produces a change ir
puttern of light on the reting Af o A¥, so that the signal is of first onde
the displacement. If displacements are very small, the separated source
give a much larger signal for the same displacement, Since the noise is 4
the same—random arrival of photons at the reting or other noise so
the pholoreceptor themselves—the displucement threshold should be
when the points whaose position we are judging are already separated

to hyperacuity should occur as the points {or lines} are displaced by an
related 1o the point-spread function of the eve’s optics, and this isin m
ngreement with experiment.

Let us imagine that the effects af photon shot noise and other noise
photoreceptors can be summarized by an effective spatial white noise:
to the image. Then the signal to noise ratio for discrimination between B
signals is, as explained in section A.LB, an integral of the (squared) intensi
differences over the entire image,

1 3 2
ENR = N_U I[d'.tlﬂfi.t"i_1

whiere Ny s the effective noise level, We see that, for acuity tasks,
)
SNR o 8412/ No,
whereas for hyperacuity tasks,

SN R o (AP IE /N,

f4i2  Hyperacuity

1 photon shot noise is domimant, then the noise level is propormional to the
mean intensity itself, Ny o fo. so at some fixed SN A corresponding to the
threshold for religble discrimination we hiave
i
Beuity ¢ L) 1%,

—17
Adbbyperacuny % () wE, (4300

The intensily dependence of acuity and hyperacuity are thus predicted to be
very differcnt if the visual system mukes optimal use of the imlormation ifl th.c
receplor Tay. The qualitative statement is correct even il photon shol notse 15
a0t dominant, as long as the signal to noise ratio in individual receptors is a
monotonically increasing function of light intensity.

~ Unfortunately, the predictions of Eqg. (4.36) do not provide a very pood ac-
count of the data on intensity dependence of acuity and hyperacuity, On the
other hand, these predictions suggest the robust qualitative effect that at smeall
intensities one should find that acuity is better than “hyperacuity,” essentially
hecause (o) is larger than (£ "% at small fy. Geisler and Davila (1985) set
out to scarch for this effeet and found it MeKee (1991) has cmphasized that
it is very difficult to account for the intensity dependence of hyperacuity in
any theory, whether one [ocuses on physical limits, as in Gueisler's discussion,
or an the properties of feature detectors or “channels”™ in the central visual
pathways that might provide additional noise sources. Clearly, 1t would help
to know more ahout the signal and noise characteristics of cones (Schnapt
et al. 1990), but McKee also suggests that, even when we ask a suhject Lo
perform a simple hyperacuity task, the brain may be working on the more
.:E'D'mpltx problem of describing the shapes of objects in the visual chviron-
ment. Theareticully, then, we should try to understand the physical limits (o
these apparently more cognitive tasks,

We close this section by drawing attention w an analog of hyperacuity so fa-
‘miliar that it passes almost without comment—color discrimination. We have
three types of cone, each of which has a very broad absorption profile. This
collection of three receptors samples the range of wavelengths in much the
same way that the spatial array of photodetectors samples the visual field. In
the case of angular displacements, the basic seales ure set by diffraction, while
here the analog of the “diffraction liit” is set by the width of the absorprion
profiles; as shown in Fig, 4,13, If we change the wuvelength of a moenochro-
matic light source, we can distinguish changes much smaller than the spacing
between peaks of the absorption hands or the widths of the individual bands
themselves. Even without the quantitative discrimination experiments, the fact
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Wavelength discrimination () and photosensitivity of cone photoreceptars (B)
mans are able 10 match the wavelengths of two light stimuli to about | nnid
matching experiments. as shown in (1), However, cone photorceeptors sample ditfel

wivelengths with the rather coarse tuning curves shown in panel (b). These mesife

ments are from red, green, and bloe cones from the macague reting, and they o
with standard Dartnall corves, To Tacilitate comparison, the race of error bars
tep of (h) replots the Ad values in (a) oo the same scale as the abscissa in {h}
deawen Trom Mollon, Estéves, and Cavonius {1990, (b Redrawn from Nonn, S
pnel Baylor (1984, )

that our language provides more thun three distinet color names strongly
pests Ul we can make diseriminations beyond the limit of receptor samph

4.2.2  Experiments with single neurons
The difficulties of comparing human behavior with the physical hmits st
that we louk for systems where hyperacuity is ohserved in the responses
individual newrons. Uneil the mid-1980s there were no such systems. In 19
preliminary results were reported from an experiment in the fly visual systet
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(de Ruyter van Steveninck, Bialek and Zasgman 1984), demonstrating that
pbserving just a lew spikes from a single motion sensitive neuron is sullicient
(o discriminate reliably hetween displacements that ditfer by roughly one tenth
~ of the spacing between photareceptors in the compound eve, The performunce
~ of this system will be explored in detail in the following seetions, AL about
 the same time, three groups reported performance in the hyperucoity regime
 for single neurons in the mammalian visual system {Parker and Hawken 1985;
Shapley and Yictor 1986 Swindale and Cynader 1956),

Working in the primary visual cortex of monkeys, Parker and Hawken
~ (1985) studied displacement diserimination by measuring the probability that
~ cell fires in response Lo presentation of a pattern in a piven location, They

found that this probability varies extremely rapidly with location, so that a
~ simple spike/no spike criterion is sufficient 1o discriminate positions that dif-
. fgr by much less than the nominal width of the cell's receptive field. In the best
[ J;‘,ases. the threshold for retiable discrimination corresponds to a displacement

of 11 seconds of arc, which is essentially equal to the humin threshold for this
task at comparable retinal vecentncities.

The results of Parker and Hawken provide one more example if a system
~ where the reliability of signaling by one neuron, in this ¢ase one spike from
~ one neuron, approaches the reliability of the whole organism. In addition. we

can give this experiment an information thearetic interpretation. When we

have enough information to choose correctly between two alternatives, wie
have exactly one hit, At the threshold for reliable discrimination, one makes
errors 25% of the time (by convention), and this noise reduces the information

transmission to 0,19 bits. But this information is carried by on average, half a
spike, so the information transmission rate is 038 bits per spike,

Recently Lee et al. (1993) have returned to the problem of hyperacuity in
monkey vision, this time recording from retinal ganglion cells, as Shapley and
Victor (1986) had done in cats. Lee et al. studied ganglion cell responses to the
‘sudden displacement of an edge. with displacements in the range of 15— min-
utes of arc. Psychophysical thresholds at the relevant retinal pecentriciiies are
| arc min or less for edpes with contrast greater than 20%. For magnocellular

- ganglion cells, analysis of post-stimulus time histograms demonstrates that the
 slep motion produces @ irnsienl response of the cell, with peak changes in fir-
“ing rate of 23 spikes per secand per min of arc at 20% contrast. But these rute
changes decay with @ time constant of less than 40 ms, so that detectable dis-
placements produce somewhat less than one extra spike in one ganglion cell.
~ Nonetheless a single extea impulse would be detectable, because the variance
Jof the maintained discharge (in the absence of a step displacement) is less than
one spike in & 40 ms window. Parvacellular ganglion cells are more numerous
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but also more than an order of magnitude less sensitive Tor this displac ~stimulus conditions in which human observers detect not ten, bur perhaps just
5 0

detection tosk, and Lee et al. argue that performance at this ask iy Ih gng.extra spike in the entire optic nerve.
determined by the mugnocellular pathway.

The comparison of human hyperacuily performance with the physie
may be confounded by cognitive factors, but this 15 not the case for gyq
cells. 1t should be possible 1o compare ganglion cell performance in ﬂm
al. experiment to cone noise levels as measured by Schnapf et al. (199¢),
generally, we know from Barlow, Levick, and Yoon (1971} and from A
al. (1988) that, under dark adapted conditions, the “noise” at the ganglj :
reflects random photon arrivals and dark noise in the rod photoreceptors

some excess noise contributed by the retinal circnitry. One would like tom

aporal hyperacuity
Tt is perhaps natural that, as highly visual creatures, we are drawn 10 the in-

Cyestigation of the visual system in humins and in other animals. Bul we muslt
ﬂmgmher tlat many creatures view the world through rather different senses,

‘Many onimals navigate guided primarily by odors, and we know of visual
systems, such s the bee's, that are sensitive to different regions af the elec-
m-mmgncm speolrurn, Bur in some way these are extensions or extrapolations
gf our own sensory experiences. There are at least two systems for imaging
the environment thit have 1o COUNETpart wmong our DWI Senses; echolocation
“and electrolocation. In both cases, the synthesis ol 4 spatial image depends in
‘welear and obvious way on the processing of information in the fime doman,
“and the evolution of precise imaging in these systems has given us spectac-
ujm' evidence concerning the temporal precision of the pervous system. In
¥ pértiaulari the echalocating bats Epresicus fuscrs can diseriminate echo delay
 differences as small as 10=50 nanoseconds (Simmons 19859, Simmons el al.
- 1990), and the weakly elecine fish Eigenmannia responds to |00 nanosecond
shifts of phase in an oscillaling electric ficld (Rose and Heiligenberg 1985),
WB focus here on the echalocation problem.

A schematic of the bat behavioral experiments is shown in Fig. 4.14. Briefly.
bats stand at the foot of & ¥ and will have o decide which arm of the ¥ carries
4 ‘the signal. Each arm has @ microphone and loudspeaker to produce synthetic
Eﬂlﬂﬂ’*‘- of the bat’s ulirasonic pulses. On one side, the echo i always given
~ with fixed delay, and on the other side the delay changes from pulse 10 pulse
by 87, The sipnal is this jitter of the synthetic target. The bat’s ultrasonic
~ pulse has a width of several milliseconds, and one might naively suppose that
'.r-'ﬂ@'is sets a basic time seale for discrimination of arrival times, But sound triavels
;'m'llg'hl;.r one foot in o millisecond, and so coarse an image of the world would
seem of little use 1o the bat.
One can do a rather elegant, il elementary. experiment to get & feeling for

the precision of hat echolocation {Trappe 1982; reviewed in Simmons 19849,
If One tosses a small mealworm into the air, a bat will catch the warm und
‘eatit, bringing its wings under the targert like a scoop. Stroboscopic films of
 this maneuver demonstrate that the bat has its head locked onto the target very
- tapidly, perhaps in response 1o just one echolocation pulse, But if one dips
- the mealworm in flour one can find the dust mark on the wings, so that we
know where the targetl was intercepted. Repeating the experiment muny times

a similar comparson under dayvhzhe, cone dominated conditions;

The notion that religble responses in the hyperacuily regime are card
single spikes is. at first sight, surprising. We emphasize, however, that
sume result emerees from many different experiments: in the fly motion 5
tive neurons (de Ruyter van Steveninck. Bialek. and Zaagman 1984; de Ry
van Steveninck and Bialek 1992, 1995), as deéscribed in detail below, i
monkey primary visoal cortex (Parker and Hawken 1985) and retinil san
cells (Lee et al, 1993), and, most recently, in the direciionally selective
alion cells of the rabbit retina {Grzywacz, Amthor, and Merwine [994);

As Shapley and Victor (1986) emphasized, some combination of
eanglion cells wruse provide the information that makes possible perf
in the hyperacuity regime. For the particular task they consider, Lee &
cowaorkers argue from the anatomy of the monkey retina and the sizes of
ceptive fields that at most ten ganglion cells are really “tuned” o the

giving near maximal responses (o the step, This certainly makes it plaus
that thresholds for discrimination hased on spike trains of single cells wi
close to thresholds for the whole organism, and we could have ouesse
this would he true even before the experiment of Lee ¢t al.. The 5!111:![‘!5'3‘1
the 1otal number of spikes involved is 5o small. It would seem that the €
number of extra spikes al psychophysical threshold is of order ten or 1885,

to in making the decision (and when to listen 1o them) could reduce still
the effective number of neurons contributing Lo the perceptual decision
might be tempted to draw the analogy with photon counting, where :
vriginal caleulntion suggested that the visual system gives reliable res
ta 1100 phatons, and several generations of experiments pushed thi
her diwn 1o one photon. The results of Lee et al, should inspire the seare
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Figure 4,14
Experimental setap for bat behavioral studies, The bat is trained (o land onw
platform. Along each erm of the v are & microphone and & speaker. The b
prckied up by the microphone, and then delaved and plaved back throogh the
one direction the delay is fixed. In the other direetion the dieloy alternates bet
call, The bar's task o5 tweostep along the plaform m the direction of the movi

Redrawn from Simumons {1989, i

o 10 20 aa &0
echo jitler time [js)

| _ﬁgurn 4.15

Performance of two bats fopen and closed circles) deteeting jitered echoes, In the op
iﬂqﬂ, synthetic echoes are returmed 10 the bal with oo phase shift ithe 07 condition]
and discrimination must be hased on the temporat displacement or jitter alone. In the
: tom paiel, the bat discriminates heiween echoes that differ both by a temporal jiller
and by o 1807 phase shift. fn the 0 phise condition the hats make errors at zero jitter,
s they most, but also nrotnd 335 s, close o the period of the echolocation waveform.
The 1807 condition dats indicate that the b can discriminate o phase reversal alone
At zero jitter), and that confusion arises at delays of 13220 s and also dround 45 s
ain these regions of confusion are separated (rughly) by the period ol the wivelarm,
Adapted from Simmons ( 1989),

should leave a dust mark whose size measures the variance in the loca
the interception point and hence (roughly!) the varance of the bat's
of the target position. The result of this experiment is o dust mark of o
one centimeter across, which, given the speed of sound, corresponds
microsecond accuracy in the measurement of pulse arrival times, Tt isn't
that the bat is interested in maximizing the precision with which the
hits its wing, but the fact that the bat can reach this precision tells us
measurements mist be at least this accurate. The 35 microsecond
matches not the width of the pulse but rather the fundamental period
underlying sound pressure waveform, which is a combination of two0
harmoenics with o fundamental frequency thiat is swept downward throdg
pulse. )

The experiments by Simmans (1979) demonstrate that bats reliably
inate echo jitters Below 30 ges, down o 1 s or perhaps 500 nangsee
More surprisingly. bats that achieve essentially perfect discriminatio
{is jitter become confused (errors increase) when the jitter is incred

the confusion peaks ata jitter &7 that brings the sound pressure waveform of
the pulse back into phase with itself, as shown in Fig. 4.15. Put differently.
‘errors are maximal at delay dilferences that correspond to peaks in the uu-
~ tocorrelation funciion of the sound signal, as il the bat makes measurements
i ith reference to a perfect copy of the signal waveform—including details at
frequencies of order 30 kHz.

- Suppose the hat really does have a perfect reference signal, so it is listening
for a known pulse shape sy(¢ — 7} in o huckground of noise yit). The noise
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yoe on our reting has a width determined by the diffraction pattern of the

upﬂ-lens system: hyperacoity corresponds to seeing beyond this diffraction
; Jimit. and is possible only at sufliciently J{I.ﬂ:,ﬂ SN R In the time demain rele-
?ﬂ.rﬂlﬂ 1o the bat, the basic scale of the “image” is set hy the tme dependence of
! iﬁm pulse waveform sair) itself, We can define this time scale AT in terms of

might arse within the auditory svstem itsell, but, 1o make the Pl"-".l L
posed, one can add a buckground of white naise 10 the synthetic pch
behavioral experiment, and then manipulate this nose level (Sim
1990}, This noise sets a physical limit to the reliability with which g
detect the difference between a reference value of the delay t and g4
different value © + &, and we would like 1o see how close the bag con
this limit. As explained in section A 18 (see also Menne and Hackhy
the signal (o noise ratio for this disenimination task is given by an j
the (squared) time derivative of the pulse shape, normalized by the spe
density Ny of the added noise, ]

ﬂhg time derivatives of the echo pulse,

: i i
y E;_lefrfr [‘”‘;‘:”] Hfm [.n.{u]l] . (4.38)

Then the threshold for relighle discrimination of target jiter is

2 | Lot = : R -
SNR = (51— [ di [””{d—”] . i . AT (4.39)
Nﬂ s - & '_EI,"N”r

The performance of the bat is essentially équal to that predicted ft
oplimal signal fo noise ratio, down to noise levels for which the |
responding ta SN R = 1) is 40-30 ns (Sinunons et al. 1990), The pe
of the hat at still smaller noise levels plateans at a discrimination thre
about 10 ns, as shewn in Fig, 4,16,

[n what sense does performance at the level of Eqg. (4.37) mrrespp":"lc

rracuity (Adles 198917 Tn vision, when we view o poinl sourc i 3 g
PE g 4 e point source of li e series of experiments on the blowlly Calliphara vicina, o hus besn pos-

le 1o demonstrate that an identificd motion sensitive neuron in the visual
stem encodes the trajectory of rigid motions with a precision well within the
:l;?pnlm:uu}r regime. Indeed, this precision approaches the limits impaosed by
nmsc in the photoreceptor array, and this noise is in turn dominated by photon
“shot poise. In o very direct sense, the precision of movement computation i
this system is thus limited by physical considerations,

100 =

‘to discrimination

We besin the discussion of relighility in fly vision with experiments thal em-
st the classic discamination parudigm of human psychophysics. These ¢X-
riments are generalizations of the Barlow-Levick (1969} experiments de-
.Ilhﬂd in section 4.1.2, and they lead to a precise desceiption of neural re-
'ﬂ'ﬂhﬂﬂ}' i@ highly restricted task (de Ruyter van Steveninck, Bialek. and
| Zaagman 1984; de Ruyter van Steveninck, 1986; de Ruyter van Steveninck
L' Bialek 1992, 1995), Then we will see how stimulus reconstruction exper-
~ iments demonstrate the same precision in a real-time estimation Lask that is
- much closer to the problem the Ay is solving in natral Hight (Bialek et ul.

percenlage correct

| —e— haf |, cabe
20 == bl {, delay e
—4— bal 2, delay iina

B0 T T T —

@ 10 20 oo 40 a0 ]

acha jitter tima (ns)

Figure 4,16 ]
Performince of two bats in the tosk described in Fig. 4,14, The percentige Ur
decisions is plotted against the fme jinter Ar. Adopting o criterion of 755 o0
arg able W diseriminate o tme jitler of 10-12 s, Adapeed from Simmaons {IHE?]'- 1
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bafore step

1991 Ricke et al, 1996). Before embarking on the study of neura]
however, we would like to understand the limits (o reliability impo
properties ol the photoreceptors. To do this we will put ourselves in.
ton of the Ay, looking only at the receptor voltages and Irying to decide
different possible stimuli.

The compound eye of Calliphora samples the world quite coars
photoreceptors form a hexagonal lattice with a horizontal spacing .;,f
What docs the fly actually “see” when we displace o pattern by a simal}
of the photoreceptor spacing T From experience in the laboratory we
the effective noise level for an image (or any measurement) s dete
the available averaging time. Clearly, if the {1y can average forever, it o
in principle resolve arbitrarily small displacements, But for an insect flyj
several meters per second, forever is a very long time. Even one mnﬂ
long o time to wiit hefore adjusting one’s flight path to stabilize strai
ar to turn in response to interesting stimuli in the environment. As.
discussed in section 2.2.1, Nies can produce flight torgques within 30
visuul stimulus,

Let us recall that 30 ms is the duration of one video frame—in a tim
we cannot see any variations at all, the fy can complete the comp
of motion and begin its motor response. This time is short even fo
however, since it takes roughly 10 ms [or the photoreceptors 0 read
peak response, and the motion sensitive neurons are several synapses re
from the sensory periphery. Even il we deliver a very large motion Sfr
it a high contrast environment, the moton sensitive cells have a rough
ms latency. The fly must thus be able (o compute motion based on d
s average of the photoreceptor outputs, But the noise in the phote
voltage has a correlation time of $-10 ms, so that averaging over 10 mS@
fot “average away” the noise at all. In effect. the fly is capable of jud
motion based on two successive snapshots of the receptor voltage array, = )

Under the conditions of the experiments on the ily’s H1 nearon, the in

__ bafore Giep

. afler stop, size=0.24 dagrees alter step, size=0.36 degroos

~ Figure 4.17
Schematic of response of the fy photoreceptor array 1o a displacement step of a random
bar pattern. The valtage in each photoreeeptor, represented by a gray level, s the sum
ol two terms—ithe average voltage, telated 1o the stimuolos, and @ randem deviation
or noise; The average photoreeeptor voltage at each position is computed by filtering
tht‘- bar pattern through the measured point spread function of the photoreceptars [see
deviation of the voltage noise in the photoreceptors is 049 mV, The sensif ]:.-15 4.12b). The statistics of voltage nuise in the photoreceptor have been characterized
of the cell is ~ 3 mV/unit contrast, but the expenimental stimuli have a 0 experimentally (see Fig. 3120 for the conditions relevant here the noise has a 0.72
of 0,16 when viewed through the photoreceptor aperture. Thus the sIgnAs J -fﬂv'ﬂﬁﬂdﬂrd deviation, and so the random voltage deviations in each pixel are drwn
m-dEand.Ellll.} from o Ganssion distribution with o 072 m¥ standard deviabon, The
two images on the left are two snopshots of the photoreceptor cutpis e fore-and pfier
S U'E-l' step (1o the ;-|bi11_j of the visual pattermn; an 1he nbt!l are the responses 1o i
10367 step, We nssume the snapshots are separated by more than 5 ms so that the noise
'ﬂ.ﬂtn,gc-: i differemt P;'II'IUH are uncorrelaed, Forced choige discrimination o Eperiments
o H1 show that this single neuron is able w discriminate between these two steps with
dreliability of 66%.

noise ratio is about 1in each cell, In Fig, 4.17 we show simulated snap
the photoreceptor voltage array at this signal to noise ratio, We emphasiZ
these images are generated using parameters actually mensured for lh'i“
photoreceptlor sensitivity, noise, and blur under exactly the same Lﬂl]dlu

the H1 experiments (de Ruyter van Steveninck 1986), 2




234 Relinhibity of computiation

Figure 417 makes 1t clear that on the time scales of relevanece 1y
iay; the sensory input {s very noixy, The noisiness becomes even mMore g
when we look at motion, that is, at two successive snapshots thag
a small displacement of the stimulus pattern. The experiments o '
crimination in H1 are in the hyperacuity regime, where we ask if
of H1 is sufficient 1o distinguish between displacements of (.18 and g
ceptor spacings (.24 and 0.367, respectively). Voltage armays in
these displacements are shown in the different panels of Fig, 417, 1p
very hard to distinguish which 15 the larger displacement, yet we will «
the Iy extructs enough information from these noisy signals to aflow:
discrimination. The key to doing this, of course, is that H1 can imt
tion signals from the 2,506 photoreceptors heing stimulated in the ex
Hew well could the Ay do by integrating all of this information?

The images in Fig. 4,17 provide strong qualitative evidence that hyp
in motion estimation will be hard. To quantify this impression and e .
the real limit to movement discrimination requires a precise math
tormulation of the problem (de Ruyter van Steveninck and Bialek 1
Bialek 1992). The essential conclusion is thae, on the 30 ms time scale
Lo behavior, movement diserimination should reach  signal to riﬂi_s_g.'
unity for a displacement difference of 0.06% To see whether HI' canin
approach this limit, we need w measure diserimination performance base
single examples of the spike train in response (o movement sLEps.

4.3.2 Discrimination experiments with 11 i
To analyze the relinbility of discrimination based on the spike train of us
ncuron we generalize the approach of Barlow and Levick (1969). Rather|
counting the spikes produced hy the cell, we try 1o give a complete and
ndependent description of the spike train, keeping track of the armi
of individual spikes. This is feasible because we know that the fly res
quickly, so that small numbers of spikes are relevant, and because

preparation is sufficiently stahle that one can present each stimulus mol
ten thousand temes. These long recording times imply that one ¢a
very complete statistical information about the spikes in response o pil
stimuli (de Ruyter van Steveninck 1986; de Royier van Steveninck and B
1992, 1995),

The most general approach is 1o divide time into discrete bins, then
cach spike ram s a sequence of 75 and U's representing the pres
absente of u spike in each bin, As explained in the discussion of Spi
entropy (section 3,124, this associates cach spike train with o binary

43 Motion procesaing in the Ay vistal system

ar tword” (2. I we could make very small bins and very long binary words,
th]!- would converge to an exact description of the neural response. In practice
ane is limited 1o pather short words, since the number of dilferent possible
words grows exponentially as we include more digiis. In the {y. the first 15
ms following a step displacement is just futency, and after 40 ms the fly will
fhave made a decision. There are enough data (~ 1 presentations) to analyze
DIF_- 1o 13 digit binary words, so one possihility is 1o choose a 2 ms bin size
and cover the time window from 15 to 41 ms. Interval distributions are st
on the 2 ms time seale, so this bin size seems reasonable. and one cun check
::1iml (over a smaller time window) smaller bins give identieal results. Thus it
is possible 1o give a complete description of the finng patterns over the full
window for behavioral decision making, limited only by the 2 ms bin size.
The step discrimination task (Fig. 4.18) is to decide which of two possible
motions occurred. To quantity the performance of the fly, we make this dev-
smn using only a single example of the spike train. To be precise, we observe u
particular spike train, deseribed by the hinary number &, and we must decide
‘whether this arose from the step ol size oy or the step of size @, Ay we have
‘mentioned, and as explained in detail in section A.16. the strategy thut will
;:ﬁ_vé the maximum fraction of correct decisions is maximuin likelihood. In the
case that the two stimuli are shown with equal probahility, the decision rule
is that, having observed (2, we choose oy if PUQ|uwy) = P1Q|az). and vice
wersa, On average. the probability of correctly idemifying step ey is then

Pilee)) =Y | PiQley) - H[P(Q]ar) — P(Qlea)]. {4,400
(L
‘where the summation is over the set of all possible neural firing patterns {J],
The Heaviside step function f[x | is defined by
1)
(4.42)

Hlx=0]=0
Hx=0]=1.

- Aninterchange of indices 1 and 2 in Eq. (4.40) vields the formuls for correct

~ddentification of o5, The proportion of correet judgments in the entire exper-

Tim!:m is then simply P, (g, 00) = [ Pole) 4+ Poiw) /2, which from pow on
Wil be referred 10 as P

1t is convenicnt 1o think about the fraction of correct diseriminations, £, in
“terms of an equivalent “discriminability parameter” o', © The basic idea (Green

2 Note that what we have called the signil to moise Flio i previous ssctlons is e squans ol the
.'.!'.ﬂﬁf-ﬂﬂ‘lllﬂﬂbi-[it}' piirameter, that is S8 8 = 17
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count
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Figure 4.18

Schematic of step disceimination task, The fly observes o random spatisl pi
¢ =1 the partern is stepped either (L24° o 0.367 while the response of H1 is mai
Wi can ask. as described in the texl, with what reliability an observer of the H
trains can discriminate between these two steps. This requires setting up distr
al respanse, Three examples of such distributions are shown. In all of these WeS
4 lateney time f,=15 ms from analysis. In () @ histogram is formed of the tf
the first two spikes following the stivulus, and in {h) we construet hiztogrofs
tota] eount i oncreasing me windows following the stimulus. In (o) we .
spike train as a hinary sequence at a cerfain time resolution {2 ms in this case)d
characterize the probability of finding cach possible binary string (Fig. 4.20), Of e
H1 uses the sipnals contained in the photoreceptor responses (see Fig, 4,170
wide field movement of the visunl scene. From the charcteristics of those:
we can compute the relisbility of movement discimination of an ideal nbse
photareceptor signais. This can then be compared to H1's mepsured performanesy

43 Motion processing u the fly visual sysiem

and Swets 1966) is to consider the idealized problem of detecting a fixed signal

of amplitude A in u background of Gaussian noise with standard deviation
. The probability of correet detection must be lunction only of the ratio
d' = Ajo. and from Fig. 4149 we see that this probability 15 simply related o
the area under the Gaussians. Thus, il we define a function

I ! 1 .
Pix) = —— dzexpl—z7/2), {4.43)

the probabilily of correct discrimination s
Pid'y = ®d'), (4.44)

and we note that Pd" =01 = 172 and P’ — o0) = Loas we expect. Wecan
ise Eq, (4.44) to caleulute the probability of correct discrimination, but we can
also use it to transhate un observed P into an equivalent signal to noise ratio.
In what follows. we describe the performance of HI in terms of &', which is
directly comparable to the signal to noise ratio in the optimal discriminator.
How do we think about the conditional probabilities (0 |} Experimen-
tally, the conditional probability of finng patterns P((er) is determined by

 counting the number o occurrences of each possible O for a large number of
 presentations of stimulus . The resulting family of probabilities is described
. conveniently by a tree branching at each time bin, as in Fig. 4.20. Such a tree

is constructed by ordering all recorded liring patterns according 1o the binary
number represented by (0, At each node, the probability splits into two parts.
Euch of these parts describes the probability of occurrence or nonoccurrence
of a spike in time bin &, given a history of spike occurrences specilied by all
the ancestral nodes up to the rool. Matice that we can stop this procedure at
any point, having characterized the spike trains only up o some finite me af-

ter the step. If we analyze discriminability under these conditions, we can see

how diserimination power improves with time.

Firing pattern distributions for three step sizes are represented by the trees
shown in Fig. 4.21. Given these probability trees, we can caleulate the prob-
ability of correct discrimination according to Eq. (4.40), and, as mentioned
earlier, we can do this for cach possible value of the time window following
the step. The resulis are summurized in Fig, 4.22 as a plot of &' versus tme
for discrimination between various pairs of steps. As a check, the performance
"_F"!'ils'uumpuwd for (0.5 ms and for 1 ms bins as well, and the results for the first
6.5 ms and 13 ms, respectively, were essentially the sume as for the case with
2 ms time hins, justifying the choice of bin size.

At first sight it may seem contradictory o construct a continuous measure
of ‘fiﬁt‘riminability from the spike train, in which information is encaded in the
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gort &

probability dansiy

0,00

161

Figure 4.1%
Definition of d', Suppose we are asked to infer the value of an input varighle
observation of an output variahle ¥ In the case we consder bere, X can b

that of ¥ given X1, then we can in principle make an inference better than chang
simple cuse s losteted i the figure. Here, PV X | and P1¥|X2] are both |
distributions, the Arst with mean 45, the second with mean 55, and both with,

is that this obscrvation was caused by ¥, as can be seen from the figure. (W
we dlso assume that, @ priori, the chances for Xy amnd X2 are equal). Conver
¥z 50 we would infer Xz to be the input, We would like to know how well wie
average when we maoke repeated estimates. This can be read off from the .::u“
distributions on top, 158 s the mput, then in 695 of te cases ¥ will be less
in which case we draw the correct concluston, Tn 315 of the cases will we be
because of the actual value of ¥ Being greater than 500 Conversely, il X2 was/
then ¥ will be greater thim 300 in 69% of the cascs. Thus with the decision
chiosing Xy (Xz) Tor ¥ < 50 (F = 50) we will be right 09% of the time and
% of the time. Here the distributions are made Ciaessian, and (he distanoe
their maxima is equal w their standard desviation. This corresponds (o the com
criterion for discriminabiliey o = 1, Serictly spesking, for nonGaussian distrl
d’ s not defined. However, from experimentally determined probability distribi
and o decision rule one can always compute the probahility of responding
From this on can then get an equivalent valoe of o,

ot

feme (ms)

Figure 4.20

Construction of probability distributions of fikng pattems, or trees, for diserimination
experiments on H1. Raster plots of the response of H1 to repetitions of the same siep
stimuliss are shown (punel 01, These raw data are partitened in s subset with a spike in
the first bin, and one without a spike in the first bin (panel 1), Each of these two subsets
15 partitioned separately, accarding to the presence or absence of a spike in the second
bin (panel 2). This bipartitioning is shown here for four consecutive partitions. 'I_'J1c
Probability of a particular pattern is given by the number of cvents in the corresponding
Partition, nommalized by the total number of presentations
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firma (ms) tirme {ms)

Figure 4.21
Dustribution of fiving patterns for three step sizes. The probahility of each

form of discrete events. The neuron's response can be considered contis
because nol omly the oceurrence, but also the nonoceurrence of a sp
certam time window carnes information, as was clear from the discuss
response-cenditional ensembles in section 2,23, This symmetry is ox

diseriminability o'(¢) is @ monotonically nondecreasing function, beca
time hin of the firing pattern distribution adds 1o the available informa

within the 40 ms window ol this analvsis. We recall that the theo
o discrimination is Al - 0067, so thut the performance of HI is
factor of two of the physical it In {act, one can draw a stronger cong
by analyzing the time dependence of &'(¢): If we include a correction
latency of H1's response, the observed (4} tracks the theoretical limit
a factor ol two up to 30 ms after the step (de Ruyter van Steveninck and Bid
1995), as seen in Fig 4,25, h

Which features of the spike train make possible this extreme reliab .
We emphusize that this analysis collects aff the infinrmation available in :
spike sequence in a certain observation window. up to the approximation
measuring spike times in 2 ms hins, Starting from this complete dese
of the neural response, we can discard different aspects of the spike seque
and ask how well we can discriminate based on this redugced description
the neural response. In the extreme, we discard all timing information
count spikes in a window of size ¥ following the step. This brings Us B
to the Barlow-Levick experiment, but with a variable tme window,
results dre shown in Fig. 4.22 together with the more complete analys
firing patterns.
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Figure 4.22

Discriminability versus time computed from firing patten Ij'ih'tl'il?ll.lli.l.ﬂ'l."p like lhn}w it
Fig. 4.21 (thick lines), or {rom time dependent spike-count dismhujlmns (thin lines),
see Fig 4.18. Each trace shuws the value of (¢} for a pair of step sizes asd f}m:t].un
of the time window in which the spikes arc observed. The 15 ms delay bc:nrc.d .hE‘E‘t!'I.S
l,u inerease is due 1o delays in signal ransmission, The ligure shows that diserimination
~ Based on counting spikes is roughly eguivalent o that based on firing patterns, up to
. she first spike. After that. the spike count distribution is much less informutive than 1he
pattern distrbution

|

There are two key points about discrimination based on spike counts, First,
 this discrimination is always worse than if one keeps track of all the informa-
tion in the spike train, as it must be, but the discrepancy is negligible at short

' times. Second, discrimination saturates near the physical limits with windows

* that contain on average one spike or less. This parallels the results of Zohary.
Hillman, and Hochstein {1990) on the orientation diserimination ol simple
“cells from area V1 of the monkey visual cortex. They found tha diserimina-
tion performance based on spike count saturates rapidly with time windows
Jargerthan 60 ms. but that these windoas contain an average of one spike,

If optimal discrimination oceurs for windows that contain just one spike.
s misleading to say that discrimination 15 based on counung alone, "Count-
‘ing” zero or one spike in a window of carefully chosen size is really equivalent
o logging the arrival time of the first spike and deciding (in the conlext of step

- discrimination} that if a spike has not occurred by a purticular time, then we

must be looking at the smaller step size. This can he made precise by plotting
probability distributions for the first spike arrival time, or the “zeroth interval,
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Dastribations of spike intervals Tor 0,247 and (0.36° steps, T 08 the interval f a.08 p24 0,48 072 088

ulus presentation to the first spike fired after 15 ois, and i 1% the interval bebwe
spike and the next one. The probability densities are shown helow and 1he |
probabilities are shawn on top. If one had 10 decide on o step size of either D2
.36°, each being equally likely a prion, then based on the nrmival time af the fi
the best eriterion (see wxt) would be to chonse 0.247 when =, = 32 ms, and (.36
erwise. [n.that case the proportion of correct identifications can be read- off. frof
cumulative distributions, us indicated by the dot-dash lines: IF a 0,367 step wis
sented, corvect identification will he made in 78% of the cases, For o 0,24 slep, co
ientitication oceurs in o fraction (| — .48) = 0,52% of the cases, and the 1 £
rect performance is 63%,

slza of small slep {7}

Eﬂi?r::mtlﬁmn performance for simgle and double imervals, (01 Vidues of o L'i!:(:.:ﬂ'ﬁltﬁd
from probability distnbutions such as those in Fg, -’.ﬁ.23_ These values are furr |.1I:hi:'!1!11'
*imation between a small step (size given by the abscissa) and a step thiat is 0 127 larger
 than the small one. i) Values of o' bused on the combination {1y, 7;]. These F'-‘_!'r“"lh e
. Fum;mred with the perlormance compuied from 1y and IT1 assurming these two mt.:.:n-ulh
|,|iﬂﬂ'fﬂ11'ihult: independent information for the discrimination task, '_Tt_!'-i ugn.ememm “:I;;'
~ sonably good, indicating that the redundancy hetween successive intervals is minimal.
1 v ‘b least pnder these conditions,
as shown in Fig. 4.23. Clearly, a large fraction of the available discrimin
power resides in this one timing measurement, Discrimination based
time from the first spike to the second spike (the first interspike interval]
mast as good, and disermination with both intervals improves as if the
intervals carry independent information. as shown in Fig. 4.24. 1
We can make the point about the significance of the first spike more cle
by comparing neural discrimination performance with the physical limi
Fig. 4.25 we see that discrimination based on the first spike arrival time
the discriminability based on the full spike pattern over the entire Lime inte
i which neural performance tracks the physical limit. Thus the fly’s VIS

system extracts a motion signal with o reliability that approaches I[I:e limit
. imposed by noise in the photoreceptor cells, and, furthermore, this signal can
be recovered by timing the ecourrence of 1 single spike in one neuron.

ontinuous estimation
The discussion of the step discrimination experiments gives us a clear mea-
surement of neuronal reliabiliy, but under very limited conditions u.nalugul_ds
to human psychophysical experiments. In a natural setting, the ily must ulse 1l~=
visual system to guther information about an angular frajectory #(r), which 1s
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& s — mate of the waveform at one instant of Lime is controlled by the timing of, at
Szt most, 1 handful of spikes.

i WL physicz! limit / As in the analysis of Fig. 3,17, we separate the reconstructed velocity wave-

pihysice! limiy v 10 A /! form into signal and noise components, We recall that the effective noise is the

noise in our ability to estimate the sumulus wavetorm from real time observi-
E:;n of the spike train, If the noise in the reconstructions is Cranssian; then the
effective noise spectrum, Ny (e), is 1 complete characterization of how wccu-
rately the cell can cacode the stimuolus, Experimentally, the distritation of aeg
turns out to be essentially Gaussian, as shownin Fig. 4.26a. The reconstruction
.;:Im.:thﬂd maps the (discrete!) spike train into a continuous signal that bears a
simple statistical relation o the original stmulus—it is o Altered version of the
stimulus with added Gaussian noise. and hence the effective noise speetrum
Negr provides the meaningful description of the precision of the neural code.

{ Instead of thinking aboul the effective velocity noise, we can imagine thi
we use the ouput of H1 to estimate angular displacement. OF course, our cs-
timates will be very bad at low frequencies, since the cell is not sensitive 1o
4 constant displacement. This should be revealed s a large effective displace-
;iﬁém noise at Jow frequencies. Since the Fourier components of velocity are
jﬁ;-.t those of the displacement multiplied by a factor of the frequency, the spec-
tral density of displacement naise 1s obiained by dividing the velocity noise
spectrum by the square of the frequency. The resulting spectral density of dis-
placement noise, shown in Fig. 4.26b, measures the ability of an abserver of
the HI spike train to judge the amplitude of a horizontal dither or escillation
* asa function of frequency,

At low frequencies, the displucement noise rises rapidly, as expected, For
frequencies in the range of 10-25 Hz, however, the noise is relatively Hat at g
:,I_Hifﬁl of 107 dep?/Hz, or ~ 0.01°/+/Hz. What does this noise level mean? I
:-*‘_i.'!‘.ﬁ; us ohservers of the H1 spike train, could alford w integrale for one second,
the reconstructions would have an accuracy ol ~ 0.01°, much smaller than ei-
ther the spacing of receptors vn the retina or the nominal diffraction limit from
~ the facet lenses. While it is unreasonable to suppose that the {ly infegrates for
L _ﬁﬁh_secmtdmwz know that it can respond in 30 ms—any sensible integration
- time will lead to motion estimation in the hypercuity regime, in agrecment
With the discrimination experiments discussed in the previous section, The [irst
ceonclusion from Fig. 4.26 is thus that the Ay visual system is capable of hyper-
;fﬁ‘-'lnl{t}' not just in discrimination tasks, hut also in the much harder problem of
EXfimation,
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Figure 4,25
Companson of discrimination performance using the single interval 1, and
paton [y, £, with the optomal discriminator (physicad fimi) vsing realisti
cepior signals as as nput. For long tmes. the model owtperforms HT gui
illy, as shown mothe left panel. For short times, up o about 30 ms, ho
performance of H1 is only about a factor 2 less than the model’s, This mak
we realize that 30 ms ds o typical scale for Bies to make course commection
Also, we can reasonably pssume that the Ty is nol interested jnomaking very
discraminalions a long tme seales. For details see de Buyter van Stevenine
[ 1995},

some unknown, continuous function of time, One can think of this @
as belng random, drawn from some probabilivy distribution P]:HI,’T"}'_I. which |
flects the statistics of flight, The estmation process s limited in prlrlu e
the signal to noise ratio in the photoreceptor array, s in the case of the
diseriminution task discussed above. Thus. another approach to det
the ability of HI 1o signal movements is to ask how well an cnhs::n{.ér J
TeSPONSEs can esfiniate a continuous, lme varying movement signal.
To study the problem of continuous estimation, we again have the
ing a4 computer generated pattern, bt now the pattern is moved contini
with u random angular velocity f{r1. As described in chapter 2, itis)
to decode the spike train of H1 and recover estimates of the angulir
Fig. 2.20 showws an example of these reconstructions, These results prove
idence that the spike train of HI contains enough information to infer—1
time, withoot averaging—details of the stimulus waveform on times :_
ble 1o the typical interspike interval, as suggested by the hehavioral &

What computations must the fly carry out—what processing of the pho-
Limes. The structure of the decoding algorithm confirms that the op

Aoreceptor voltages—in order to achieve this level of precision in maotion es-
timation? Information about movement across the visual field is carried in the
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 epatiotemporal correlations of photoreceptor outputs—roughly speaking. we
.51&,,;“ that an object is moving because a receplor at site v in the photorecep-
1tﬁ|‘ jattice “sees’” the same signal s receptor o — | saw some short time in the
*ﬁast. Tri an elegant experiment, Franceschini, Riehle, and le Nestour (1984)

have recorded from HI while stimulating Just pwo individual photoreceptors

=2
N
|

=
=]
1

' that occupy neighboring positions in the retinul lattice, and they find that this
most elementary “apparent motion” stimulus 1s indeed sufficient to trigger a

probability density

cnonse of the fiy's motion sensitive neurons.
1f we are looking at small motions of some particular pattern on the screcn.
I*ﬂ]ﬂ'ﬁ the voltage in a photoreceptor consists of two components, There is a
constant voltage related to the static pattern, and there is a luctuating voltage
that has contributions both from the motion and from the photoreceptor nose.
é_Iui:e, the pattern itself is random (by construction, in these experimentis) we
: a_::'::mmul extract the movement signal by combining photoreceptor voltages lin-
early, unless we hive some extra knowledpe about how Lo weight the different
erms. More formally we can say that any translation invariant linear ecombina-
'i'l:'li_ﬂn'ljf voltages will vanish as we integrate over larger areas of the retina
~ Since lincar combinations of photoreceptor outputs cannot result in a
nonzero signal, the simplest possible movement sensor will necessarily in-
yolve multiplying pairs of photoreceptor voltages. This is the basic idea of the
eorrelation model for motion estmation, first proposed in the context of insect
vision roughly forty vears ago (Hassenstein und Reichardt 1956). There is an
normous body of evidence that fly optomator behavior can be described. at
least approximately, by a correlation mode! (Poggio and Reichardt 1976: Re-
ichardt and Poggin, 1976: Buchner 1984}, and the swme can be said for the
responses of H1 and the other movement sensitive neurons (Zaagman, Mas-
~tebroek, and Kuiper 1978; Borst and Egelhaal 1989), One can show that, for
~ discriminating among small step displacements, as in the experiments of the
previous section, the compulation of delayed nearest-neighbor correlations is
i fact optimal—no other computation will lead to better discrimination per-
formance in the sume integration time (Bialek 1992; Ricke ct al. 1996). We
- ¢in find the limits o continuous estimation by making the guess that, so long
a5 the displacements remain small, nearest neighbor correlation provides not
DIII;.r the optimal discrimination strategy but the optimal estimation strategy as
RS '-E'f"ﬂm For details, including a more mathematical justification of the focus an
I nﬂﬂfe—ﬂ neighbar correlation, see Bialek (1990, 1992) and Rieke el al, (195%6);
for & more general attack on the problem of optimal motion estimation, see
~ Pouters and Bialek (1994}, Our concern here is not with the mathematical de-
tails but with the orders of magnitude; is a noise level of 10~ deg” Hz close
the physical limit?
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Figure .26
{a) Distribution of errors in an H1 estimation experiment, We normalize cach
ijlen) of the effective noise (computed Tor cach of 400 sections of the s[{mu]_,ua"
timate) by the standard deviation /{|5{a0]71/2. We then compute & histogram
normalized noise pmplitudes including points from each frequency w. A Gaussi
stundard devistion of unity is also plotted for reference. () Power spectrum of 21
displacement noise in HI estimation experiment, The two solid curves show
from experiments in which the bars composing the random panern seen by the:
(.29 wide (thick ling) and 0.025° {thin line). The stmulus power spectium
by the dashed line. Because HIT is a movement sensor and not o displacenent
low frequency displucements are not coded nearly as securately as high freque
placements, Ahove 10 He the effective displacement noise level for the “-m,g:'ﬂ
such that an ohserver of the HI spike traim could estimate the amplitde of & i
modulation in the position of the patlern to an secarpey of abou 006" with
inlegration time; this is similar 10 the sensitivity measured in the step discri
Eaperiments.
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Hellability of compitation a4 Summry

Motion estimation, as well as all other visual tasks, must hecorme N .:': f__ a
we counl more photons. This suggests that the physical limit 1o lth . %g 02 A |
noise level, A™ | is inversely proportional to the photan fu““ﬂn_g_ : 0.0 4 " ' '
each receptor cell. Since we are interested in rigid motion, which js ¢ N N

10

across the entive visual field, we should also be ahle to lower iy
noise kevel by averaging the signals from N photoreceptor cells;

displacement noise has units of deg®/Hz, so we need an angular scale, == 5
know that this is set by diffraction through the lens, as in the dls«c ¥ E
human visual acuity; for fies this scale is much larger, ¢y ~ 1,29 4e i 0
Fig. 412, From these urguments, and dimensional analysis, we expect. g

N,rj;im“ i i . q&”
10 1
This is wlmost right. We also need to include the effect of the cont - ;
images—if the world is uniformly grey, we cannot see it move, ng 1 ~ i ’ ] ® v =
section 314, photan shor noise contribiotes an equivalent contras i
1/, so that the signal to noise ratio in images with contrast C is RC ﬂﬂlﬂ'ﬂ 4,27

Bntt:m of stimulus wavelorm (doted line) and reconstruction (solid line) over o 4 5
'ﬁmn window, during which the 1000 mein sguire contrast is switched fron (k5 to 1L02,
During 10 s the Iy warches i high-contrast pailern move ramiloraly: A 10 s, the contrasi
sudelenly is switched 10 very Tow (0021 Clearly in Jow-gontrast conditions it is more
difficult 1o make accurate reconstructions than at hagh contrast, This is to be expected
if the performance of HI s limited by peripheral noise sources, stch s photon arrival
“llistics.

i the integration time. Thus increasing the mean square contrast is
increasing the photon counting rate, so that

|
RC2 N

and this is (nearly) the result from a maore rigorous analysis (Bialek
which shows that there is a constant factor in front with a relatd s
magnitude, so that the true physical limit is = 6{ {imes larger than the
expression in Eg. (4.46).

In the experiments on HI, the typical photon counting rates were . "C g
photons/s, the typical contrust of the images as seen through the phot
ceptor aperture was € ~ (L 16, and roughly 2,500 receptor cells we
nated. These parameters, subsututed nto Eg. (4.46) including the
factor from the more rgorous theory, set the limiting noise level
10~ deg®/Hz. In Fig. 4.26 we see that the displacement noise from the
reconstriction approaches this limit imposed by photon shot noise ﬂﬂ
tion, at least at high frequencies where this theory of the limiting noisé
valid (Bialek et al. 1991). We can increase the contrast seen by the pholo
tors by presenting randomni patterns with wider stripes, and if the iy con
to perform optimally this should, from Eq. (4.46), reduce the effective
level still further, and this is also observed. The fly visual system th

NI""“ L

¢"1I

forms an optimal and nearly noiseless extraction of the motion signal [Tom the
ﬂliﬂ:-' of photoreceptor voltages, and this is accompl ished in real time.

The comparison of noise levels in reconstruction experiments at dilferent
_contrast values may seem i hit indirect, Adter all, when the fly emerges from a
~ wooded area into an open field, the contrast and other parameters of the visual
“environment change immediately, Certainly a sudden drop in contrast should
dramatically n:duEe the precision of motion estimation—again assumng thit
~ the fly is limited by the physics of its inputs and not by some spurious internil
noise generator. We can see this effect directly in the experiments of Fig, 4.27.

As a first aempt at quantifying the reliability of neural computation, we can
Iy 1o perform psychophysical discrimination experiments with single cells.




Relinhility of computation

This approach, which began with Barlow and Levick, has given
examples in which the performance of individual cells appm'a,g]mé
formance of the organism as a whole or the limits imposed by the ph
the input signals, The method of stimuhss reconsttuction allows ug 1o
these ohservations from discrimination o the more natural task of gs
and apain we see a precision that approaches the physical limit The
these very precise computations can be represented by very small o i
spikes, demonstrating clearly that the nervous system need not rely an
of lurge numbers to synthesize reliable percepis.

i the preceding three chaplers we have tried 1o develop o procise lungusge for
cing about the neural code, and then we have used this language 1o address
small set of questians. In this brief chapter we allow ourselves w look a litde
it beyond these questions o three areas where we expect substantial progress
~ over the next few years. In cach case the issues are at least three decades old,
and in some cases we can find the origins of the modern issues in discussions
start of the twenticth century, Perhaps the ideas of the previous chapters
allow us to come back Lo these problems with a new point of view,

In the preface o the paperback edition of his classic text on nuclear mag-
‘metic resonance, Abragam (1983) cautions prospective authors o “never put
i book (as opposed to a research paper) anything that you do not under-
d thoroughly.” In this chapter we run the risk of vialating this dictum, but
We hope not to go too far. We hope that the reader enjoys these less complete
| w.‘lbs::nptmns of ideas in progress in the spint they are intended,

YS OF NEURONS

‘Most of the text has been ubout the problem of the impoverished homunculus
swho tries to make inferences about the world by looking at the spike train
f mn only one neuron, One possibility is that each cell can tell the organism
pmething completely unique and independent, so that a picture of the whole
- Sensory world can be built ina simple way by adding up the pieces provided
by individual neurons. In the other extreme, the owtputs of individual cells
i ?ﬂﬂlﬂd be completely ambiguous, and meaningful inlerpretations might require

Eomparisons among spikes from different cells,

In the context of simple models for neural firing, one can answer the ques-
tion of how the signals from different cells should be combined 1o reach the
‘Most relinble estimates of the sensory stimulus, This mathematical approach
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has o long tradition, going back to Siebent’s work on the auditory nepy
scribed in section 4,13 (Siebert 1965, 19701 A number of gr.:.upﬂ_.}'L
at the experimental analog of Siebert’s problem, asking how one cag
estimates of frequency or, more generally, the power spectrum h'y
ing the whole populution of auditory nerve fibers. There has beeq g
imterest in the encoding of continuous seunds that approximate the
ements of speech, such as perivdic wavelorms that match the power 5
spoken vowels, For some of these developments see Young and Sa '
Miller and Sachs (1983, [954), and Winslow, Barta, and Sachs (1987),

There has been o steady stream of theoretical papers devoted 1o/ ¢

. From & quantitative point of view, there are many open guestions about the
-fpﬂpl.““li”” yector picture. Salinas and h’r_ﬂmllu ll}?%: have emphasized that the
. population vector is subject to systematic biases if one records from a popu-
ation of cells that do not uniformly cover the sphere af possible movement
"_dim;g[igﬂs, But the population vector is just one possible linear combination of
| 1.h~= firing rates in the different cells. Salinas and Abbott show that the optimal
Jiﬂﬂﬂ_‘[' combination can generate cstitmates that are dramatically more accurate
ﬂmn the usual population vector, at least on the assumption that the spikes fired
',;:bi.,-diﬁi:rem neurons are statistically independent. .
| The notion of statistical independence is a convenient approximation Lo
theoretical developmients, but, as in the discussian of reliability in MT neurons
'J(s-cclinn 4.1.41, we should be mindtul that violations of this assumption ¢an
:Euq.r'e; qualitative effects on the performance of the system. For the motor sys-
D " there has been less gquantitative analysis of reliability than on the sensory
_E},dﬂf but all of the theoretical work (Seung and Sompolinsky 1993 Salinas
*and Abbott 1994) encourages us to think that the problems are analogous. We
trt morcor less.identical except that elich i lined to-a difforn IR ‘might, then. expect that the pattern of correlations among cortical cells cod-
stumulus parameter, such as {reguency 1o the suditory system or arien i o visual moveinent difection (Zohaty, Shadlen, and Newsome 1994) will
il - subc found in the cortical cells coding for arm movement direction. But we
N ﬁ:'huuld worry that, as in MT, correlation blocks the VN improvement of es-
timation nccuracy as the number of cells increases. In the case of MT. this
ohservation is actually quite satisfying, since the rehiability: of single neurons
is close to the reliability of the orgunisin as a whole, but in the motor system it
*is less clear that single cortical neurons represent direction with an accuracy
- comparable to the accuracy of actual arm movements (Donchin and Bialek
- 1995),
- The coding of direction in the motor cortex has analogics in the much
smaller network of the cricket cercal system, where a handful of cells encode
 the direction of air motion. These cells take inputs from the primary afferent
neurons, whose coding properties were discussed in section 3.3.1. Miller, Ta-
€obs, and Theunissen (1991) have described the array of interneurans inaway
- that makes explicit the analogy to cortical maps or population codes, and The-
‘.‘.'_51'559-'!1 and Miller ( 1991) have given an information theoretic characterization
of these cells, assuming that the spike count is the relevant output and that
‘wind direction is the important stimulus variable. In richer, dynamic stimulus
ensembles, the outputs of individual intermeurons can be decoded using the
Near reconstruction methods (Theonissen 1993), and the spike trains of these
eells convey lurge amounts of information about the time dependence of the

by populations of neurons, but Few have addressed the central Ffﬂ
Siebert’s discussion, namely the connection of the code o the apey v
the percepts the organism can form. More recently Seung and Sompo
(1993} have revived this theoretical problem, focusing on the encodi
sular variables such as onentation or dircction. either for the visual

for the motor system. In all of this work, one imagines an array of

the visual system, In the simplest case we are interested in estimating i
stimulus parameter. and we would like 1o know how 1o combine the |
the many cells 1o form the best estimate. In addition, as emphasized b
and Sompolinsky (1993), we would like 10 know how the rules for
information of relevance o, for example, @ particular psychophysical di
ination task. could be learned through feedback.

From the experimental side, much of the stimulus for renewed inl
these problems comes from Georgopoulos and coworkers, who stud
representation of movement directions in the primate motor cortex
popoutlos, Tair, and Lokashin 1993), At least in the context of certdln
havioral paradigms, cach cell seems to have o preferred direction af
and the firing rate of the cell is related to the cosine of the angle betw
actual dircetion and the preferred direction. As a simple hypothesis It

information from many such cells can be combined, Georgopoulos, Seb
and Ketiner (1986) suggested the construction of a population vector:
vector pointing toward the preferred direction of each cell is weighted
firing rate of that cell. and all the vectars are summed. This vector B

inleresting properics. [n particolar, it seems that the population vecta
in anticipation of movement, inspiring us to believe that we are reading

maonkey's intentions (Georgoponlos et al, [98%),
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wind velocity. Thus the array of spike counts has been used 1o infer
rections, and the spike times of individual cells have heen used tg
time dependence of wind velocity. The availability of simultaneoys -
of the spike trains from essentially all of the cells in this smal] tha
and Miller 1994) should make it possible o trv experiments that qi
reconstruction of fully natural time-dependent patterns of air Hnw_. 4

The cricket cercal system provides an example in which the idegs of
ulation coding—which are based, tradinonally, on a firing rate or
deseription of coding in single cells—meet the ideas of temporal coi
generally, we have argued that, for single cells, the dynamics of nagy
nals are such that significant information must be contained in the oee
times of single spikes. In the case of the fiy's motion sensitive nag o
have seen explicitly how the occurrence time of the first spike afie the
of a stimulus provides much of the information available for discrimin
among different possible stimulus seltings (section 4.3.2) I the ocoun
time of one spike in one cell can represent the value of the stimulus g
coded by that one cell. then in a multiparameter stimulus encoded b
ray of cells, stimulus identity will be represented by the relative am
of individual spikes from each ¢ell. Such a representation in terms of
timing, as opposed 1o relative rates. has been advocated by Hupﬁeid{ !
who identifies several computational advantages for this scheme,

Another system that seemis amenable w analysis of multineuron co
the rat hippocampus, From the work of O Keele and collaborators,
strong evidence that the responses of cells in this region provide the
information about its Tocation in space. In particular, there are “placec
that fire when the rat is in particular small regions of an enclosed en
(0 Keefe and Nadel 1978), Improvements in electrode technology m
it possible to record from large numbers of place cells as the rat explo
surroundings (O Keefe and Recce 1993; Wilson and McNaughton 19 3).

Wilson and MceMNaughton (1993) have used the spike trains from 5
place cells, recorded simultancously, 1o reconstruct trajectories of the
motion through an enclosed region, This is very much in the spinl
“organisin's point of view” introduced in chapters 1 and 2—given the
of the place cells, what can the rat learn abput where she 157 The P
recanstruction strategy used by Wilson and McNaughton involves h
time into discrete windows and then accumulating the spike count of S

in this window, Then the array of cells gives o vector of spike counts, A
(158

can try 1o map these vectors into spatial locations. One sirategy is 1@
that each cell “points™ o a definite location in space, and tuke an aye

.._-,p.;iCE
- mathematically neither scheme is optimal. The weighted averaging approach

can be improved to find the optimal lincar estimator, as expluined by Salinas
and Abbott (1994).

Rt

- colleagues (Warland and Meister 1993,

5.1 ATrays of nedrons

these locations weighted by spike counts in the same way that the population

yector in the motor system tukes a weighted average of movement direclions,
Another approach is to try and match the vector to ane of a set of stored
yectors that represent the avernge spike coumts in each small region of the
Both procedures seem to lead to reasonable reconstructions, although

n addition 1o the work an place cells, the hippocampus is one of the key

systems for the study of cellular and synaptic mechanisms in learning and

memory. Recently, Blum and Abbott (1996) have brought these themes to-
gﬂthr.:r They consider a network of cells with some fixed rules for reading

| gnt the signals, such as the rat’s |location, thal are encoded by this wrray of
 gells. Then the synapses connecting the cells are modified according w some
plausible rules, and if we hold fixed the rules for reading the code. then these
‘wynaptic modifications will change what the network tells us, Fora simple set

of leaming rules, Blum and Abbart have found that when synapses in a place

~ cell network are moditied by the experience of moving along certain paths,

then decoding the network’s response generates a prediction of the next lo-
cation along the most often used paths. rather than a measure of the current
location. This suggests that the combination of place cells and sy paptic plas-
ticity could yield a simple mechanism of navigation, and they consider the
application of this idea to some of the classic experiments on ral behavior
Mew recording echniques have also made their way to the sensory pe-

. dphery. Meister, Pine and Baylor (1994) developed 4 multi-electrode array
- that allows simultanecus recording from ~350 retinul gunglion cells. By mon-

itoring activity in many nearby cells in the salamander retina, Meister and
1995; Meister, Lagnado, and Bay-
lor 1995) found that the message conveyed by a single spike in one retinal
ganglion cell depends on the activity of neighboring cells, Single ganglion
cells penerate spikes that are either coincident or noncoincident with spikes
in neighboring cells, with coincidences defined as spikes that pccur within the
narrow peak of the correlution function, and these coincident spikes seem (o

- Ustand for” intensity variations in different regions of the visual ficld, as indi-

Cated in Fig. 5.1, Information theoretic analyses suggest that these coincident

bvents allow the pair of cells to carry more information than the sum of the

two cells in isolation (Warland and Meister 1993, 1995, DeVrics and Baylor

 (1996) have used the electrode array to study how different types of ganglion

cells sample the visual world. Several different classes of ganglion cells have
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' 1% have emphasized that the problem of neural coding must be phrased with
tm}pﬂct {0 some assumed sensory environment: Bayes® rule tells us that Lh_u
'_j:ﬁm]'pl'ﬁlil.[.iﬂﬂ ol spike trains depends on our prior hypotheses about what s
fikely, Ideally, we would like to study the nervous system in the most n;?,tum}
'kﬂf.envjmnmcms. but this is difficult. One problem is that frue natural stimuli
have an enormous amount ol structure, and in studying o single cell or a
small region of the brain we need to discover which structures are actually
~ jmportant for these particular cells: Do retinal ganglion cells “know™ thlat the
visual world is built out of objects, or does this hecome important only in the
N ;-'}ﬁ'ghi:r stages of cortical processing? To address these ssues it is not enough to
present the visual system with “natural™ stimuli, we have to understand these

Figure 5.1

Drecoding flters for twa ganglion vells, A and B, in the silamander reting, §pj

from two cells were filtered o estimate the e course of a randomly virving.
Bowrd stimulus. To search for messages carried specifically by currulﬂti;lrg'll.:'!ﬂ
[win ceIJ:I_. the ariginal two spike teins were reeoded from a pair of cells A
three trains of events, comespending to cell A firing within 30 ms of cell B
cell A firing alone. and cell B liring alone, The decoder for each event i

n.ppnlximillﬁ'd by o product of u function of space and g function of time, and:
Lol components are shown here. The hexagon represents the '
of electrodes used 0 these ex

~stimuli in some detail.
. Understanding the structure of natural stimuli s really a physics problem.
In the case of olfaction, we actually know the cyuations that give rise 1o the

._ ;jﬂynnmius af natural stimuli, since odors are carried o the nose (or antenna)
u;-jﬁy a combination of diffusion and advection. For very small creatures, like
 hacteria, diffusion is dominant, and the physics of this diffusion—dominated
regime determines many of the signal processing strategies for chemical sens-
ing in bacteria (Berg and Purcell 1977). For an insect seeking a pheromone
source or finding food in an open field, transport of odorants is dominated by
advection—the odor molecules are simply carried along as the air moves. Fur-
thermore, the motion of the air itself is turbulent, What do we know aboul the
Sspatiol and temporal dynamics of edorants (or any fracer molecules) carmied by
turbulent flows?

The dynamics of odorants in turbulent Hows has certain universal features—
~ qualitative and even quantitative features that are independent of the detailed
mechanism generating the low. Because the equations are the same, we €x-
pect similar behavior in air and in water, provided that we look on appropri-
_ate scales. Turbulent flows act to dissipate |ocal variations in the density of
odor molecules, while macroscopic gradients are concentrated into short, steep
~ stepsin the otherwise smooth concentration profile. Thus while the pheromone
‘concentration tends to be highest near the source, there is no smooth gradi-
- ent which can be followed “uphill” to the source. Instead the concentration
~ gradient is a very intermittent signal, having long spatial and temporal epochs
near zero, punctuated by farge briel pulses, One way of revealing this intermit-
tency is to look at the probahility distribution of the concentration signal. or of
its time derivative; this distribution has a long, nearly exponential il (Cas-

. cf . area spanned by ¢
trude persments. The joint firing pattern A&B conir
the estimation process m g spatial region in between the contributions
B. suggesting that higher visual Processing cerlers can resolve finer s,
:?E} E.-::nguim.: thitt twis cells lired together. From cxperiments by Wur]lui]d

).

been characterized in mammalian retina. In the rabbit, each of these
of ganglion cell “tiles” the retina (DeVries and Baylor 1996), so tha
ceptive field centers of ganglion cells of the same class form a nearly
lattice. and the lattice constant is given by the width of the receptive fie

Neurascientists once spoke wishfully of the iay when one would be
record from large numbers of neurons. At the time of this writing, sim
ous recordings from tens of cells are routine in many lnbotataries. In
}:‘If’ﬂ[ﬂarillit}nﬁ of vrder one hundred simultancous spike trains are :
il one works very hard, and it is not difficult to imagine that of orde
thousand will become accessible within the next several years, Serions
tions arise about how 10 understand and process the rcxu[ling volumes ol
which are at the same time 1o large to sift through by hand and t
to allowy an exhaustive analysis of all possible interactions among the
seems that the idea of decoding—how can one read out the response ol
nevral population to say something about what is going on in the wor
provides a useful framewnrk for anulysis, at least in the systems studi
Far, .T he possibility of asking this question in the context <1I"-na1ural':stic
environments is especially exciting,
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taing et al, 198%; Gallub et al. [991), Understanding these distrihuﬁ‘;
first principles remains an imponiant theoretical problens. For recent
Shratman and Siggia (1994) and references therein,

The intermittent structure of concentration profiles is crucial to unyd
ing olfactory navigation, Not so long ago, much of the literature ¢
olfaction in particular worked on the tacit assumption that turbule
were equivalent to enhanced dilfusion, so that concentration profile
out smoothly fron the source. This s wrong; instedd the cn‘.'ln::t.m:mhn
files consist of very thin plumes that meander outward. Navigation mg
assume the insect could follow a smooth gradient toward the sourca
works, in principle. in the bacterial environment) are therefore also wig
they are wrong because of the physics, not the biology (Murlis, Elkintg
Cardé 1992), .

Recent experiments strongly suggest that insects “know™ about the i
af turbulent Hows and expect to see (smell, actually) these structures, B
sure to steady gradients docs not seem to drive insects up the eradient,
exposures o repeated pulses (Vickers and Baker 1994} or simula
{Mafra-Neto and Cardé 1994 lead 10 clear and steady Hight toward
source. Similar considerations seem to apply to chemical navigation b
sters {Atema F995) It seems likely that by proper combination of expen
physics and ethology, it will be possible to do behavioral experime
trolled models of the natural environment, studying the evolution of navi
strategies as i function of the cructal parameters in the wrbulent flow
ready these experiments teach us that there must be interesting features
newral circuits that are responsible for encoding and processing these com|
dynamical signals.

Ohne way 1o generate reasonably “natural” images is to visualize @

lent flow. For example, if we look at the concentration profiles of an odor

carried by the flow, we see “ohjects” thal correspond to the plumes discus
ahove. These plumes move uround, bending and swaying, bul retain
tity, This is one hint that the statistical structures of olfactory and visual
might be related. which 1s at first sight (or smell) o strange idea.

Exploration of the statistics of natural images has been driven in p
Barlow’s (1961) suggestion that the visual system “knows™ about these
tics and uses them o provide more efficient representations of the -
world, We review some more recent attempts to quantify this idea in
section. Laughlin (1981) presented a very simple version of this pro
which a single cell must encode contrast variations with a graded vol

52 Natural signals

we might expect that this distribution has 3 lomg il (see below), But with a
]imltcd range of voltages one would like (o use the full range equally, maxi-
mizing the entropy of the voltage distribution and hence (with reasonable as-
sumptions) maximizing the wiformation the voltage can convey about the con-
trast signal, Laughlin measured the distribition of contrasts as seen through

~ an aperture the size of a Hly photoreceptor as it moves through the woods,
* and computed the ideal contrast-to-voltage conversion. This can be compured

to the inputfoutput relation of the second order neurons (the large monopolar
cells) in the fiy visual system, and the match is very good. Although it is just
4 beginning, Laughlin’s result strongly suggests that this first synapse in fly
vision is adapted 1o the statistical structure of natural scenes.

 One evident feature of the visual world is that structure appears on all
scales. Even if objects have a characteristic linear dimension, they can appuear
at any distance from us, and hence there is no charactenistic angular scale. This
notion of scale invartance was explored by Field (1987), whor showed that the
power spectra of vurious natural images hus approximately the form one would
expect from scaling considerations. The argument runs as follows, Imagine

' that we measure the contrast @(x) ut each point in a two dimensional gruy-

scale image. The contrast is defined as the difference between the intensity
at point x and the mean intensity in the image, normalized by the mean in-
teusn}r Thus the contrast is a dimensionless number. Images are (statistically}
dnvariant under translaions, since we imagine that any object can appear o
any location, as long as we stay away from the honzon or other large seale
boundaries. Thus, if we average over an ensemble of similar images—for ex-
ample, all the pictures we encounter on a walk through the woods—then we
should find that the correlution function of the contrast (see section 3.1.4 for a
discussion of the analogous functions in the time domain) has the form

(plxip(x)y =Cix —x) (5.1)
© d%k
:j m-_.;.ﬂk]::xp[—fk-{s —x'}]. {5.2)

In this expression. ((x) is the correlation function and S(k) is the power
Spm:trum The spatial variuble X is a vector in two dimensions with the units of
(for example) degrees, and the Fourier variable K is the spatial frequency with
units |/degree. The contrast is dimensionless, and therefore the correlation
‘function is also dimensionless. To satisfy Eq. (5.2), the power spectrum has
1o have unils (degrees)®. But then, if there is no charncteristic angular scale,
We must have (it seems)
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with A& dimensionless constant,

Field {19873 found that several images have a nearly 1742 power s
and he argued that this particular distribution of power across spatial §
cies is well matched to the spatial frequency selectivities of cells ip g
visual cortex. Specifically, he suggested that the pattern of spatial i
and orientation tuning in cortex builds a set of filters such that each
cepts an equal fraction of the total contrast variance in the image ;
simple and thought provoking idea, and Field's work sparked a g
interest in the relation of natural image properties to the properties of
sual system.

Not all images huve u simple sealing power spectrum, as emp
Tolhurst, Tadmor, and Chao (1992), But we should recall that, as di
for time {rather than spuce) dependent signals in seclion 3.1.4,
spectrim is the unalog of the varance, and hence should be defined an
over an ensemble of images. Ruderman (1993, Ruderman and Biale
studied the siatistics of an ensemble of images taken in the wmdsjl% ;
was motivaled in part by o search for @ more general form of e
physics we know that svsiems can exhibit scale invariance across o very
range of length scales but the correlation functions need not obey the
rules derived from dimensional analysis. The best studied examples ure
order phase transitions, such as the gas-liquid crtical point, where the
spectrum of density fluctuations in the Quid is almast of the form in Eg:
hut instead of 1/ 4% one observes I,-"R'z_‘|. The anomalons dimension g
meusured in Tight—seattering experiments, and there wre a set of oth
relations for thermodynamic quantities, such as the specific heat,
have anomalous behaviors, The correct caleulation of these scaling bel
15 one of the triumphs of the modern renoomalization group theory
phenomena (Wilson 1975, 1983: Ma 1976), )

Power spectra measured for an ensemble of images taken in the
show scale invariance over three orders of magnitude in spatial frequent
an anomalous dimension of 3§ = 0,19 4 0,02 (Ruderman and Bialek
But measuring the power spectrum is only one test of scale invariance
really believe in scaling, then the particular choice of digitizing an i
pixels should be arbitrary—it should be possible to form “block
uvernging over 22 blocks, and the statistics of the hlocked images:s
the same as those of the original ensemble, We have to be careful, e

|
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| pecause when we average over blocks we reduce the total contrast ol e

{mages, 50 We have 1o renormalize the contrast, This sequence of blfu:f-cing un_d
repormalization is the essence ol renormalization group theory (Wilson 1975,
1983), and in fact the block construction was wWentified as o crucial step long

-.béﬁ:.rc the full theory was in place {Kadanoff 1966). .

For the ensemble af images in the woods, most local statistical properties—
the distribution of contrast, the disiribution of contrast gradients, efc.—are
pvariant to the construction of block pixels, and an example of this scaling
behavior is shown in Fig. 5.2. This is direet evidence that whatever statistical

structure is present in these images is present on all angular scales. But the
gexamination of the contrast and contrust gradient distributions also reveals

&

] blockslze {plkels)
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|
0 &4 B O

. . —
-8 -4 2 i 2 4

e feas)

3

‘Figure 5.2

Local variances and sculing in natural images. The local varimice oy s defined s the

b varance among the intensities in o 2 = 2 aray of peighboring pixels. Histograms of

the locyl varisnce are acenmulated from sn ensemble of images gathered in the wouls,
and then the local varance is normalized by its ensemble average. The histograms
‘ire converted into probahility distributions for the natural Ingarithm of this normalized
quantity, and the distributions are shown here on # loganthmic scale. Belore analyzing
' the images, however, we are free to redigitize them into pixels that ane larger than the

- pixels provided by the camera, in effeet creating new pisels out of Blocks of the original

pixels. As explained in the text. this blocking changes {for example) the avernge local

: j'-'ﬁﬂanul:. but this effect is removed by the normalization procedure. Probahility distri-

Zji’-‘“’-"“?i of the (normalized) Tocal variance measured on these blocked images averfay
hose measured in the orginal imoges, o1 least up to block sizes of 32 x 32 original
pixels, demonstrating the seale invariance of the image ensemble. From experiments
by D Ruderman (1993).
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that these distributions have long fails, very much like the distribyg, AL CODING AND COMPUTATION
odorant concentrations in a turbulent flow (Ruderman and Bialek 1994
particular, if we llter images through the sorts of center-surround re
ficlds that are thought to charucterize the carly stages of visual
then the distribution of outputs from this filierning is precisely exponen
irvariant to the overall scale of the receptive field (Rudermun ]993j__-.

Although much of the recent interest in image statistics was trig
Field's ( 1987) ohservations on power spectra, the presence of long ta
contrast distribution is one of several hints that the spectrum alone d
capture the statistical structure of these signals, and this is again remi e
the situation in wrbulent lows, One can construct Images that are cho
Gaussian probability distributions, and henee miss the long tails, but.
less have power spectra like those of natural images. These syntheti
lave no “ohjects " —they are much too soft and smooth to depict objee
aries. Alternatively, one can filter natural images so that the power
becomes flat. like white noise, vel most images and the objects inside

At the beginning of this book, we warned the reader that much of vur discus-
sion would be driven by the desire to quantify the behavior of neurons, We
hope that the discussions of chapters 3 and 4 have refined this notion ol guan-
tification to include the idea that one must place the performance ol nearons
on-an absolute scale. Thus, being absolutely sure that & particular pattern of
‘motion actoss the visual field increases the firing rate of a neuron hy 23.5 =
00,7 spikes per second isn't really interesting. 1s this a large or a small change?
| :1_5- this chunge enough to indicate reliably some paramelers of the motion tra-
jectory? Are the modulations of firing rute fast enough to convey information
ahout interesting dynamic signals in the natural environment™?
" In trying to establish an absolute scale Tor newural performance, we were
guided on the one hand by the behavior of the whole antmal, and on the other
hand by the notion of a physical Hmit. The intuitive example of o physical
_ * limit is diffraction, where we know that no optical system ¢an be completely
perfectly recognizable. There is clearly some importint statistical structus devoid of blur—there i5 a minimal blur set by the laws of physics. In the same
do nat yet know how to quantify. ' - sense, there is a maximum amount of information that neurons can transmit.
Nearly twenty vears ago, Vass and Clarke (1977) showed that speech am *and there is a maximum reliability with which the nervous system can estimale
music exhibit slow fluctuations in amplitude and frequency, These flu nontrivial features of the sensory environment. At the outsel we have o reason
pecur on all time scales, and an analysis in terms of power specima to think that these physical limits are relevant to real hrains—the design of the
an approximate |/ f spectrum, the time domain analog of the 1/ & : - nervous system could be driven by completely independent eriterin. Indeed
dimensional images. Remarkably, music synthesized at random wat the biology of 1oday is the product of & lonz evolutionary history, and many
statistics has a rather pleasing sound. Probability distributions of the | authors have emphasized that artifacts of this history may dominate any notion
tuneous sound pressure in musical pieces have the same exponential £ of efficient or optimal design [or today's organism.
the distribution of the local contrast in images, and recently Nelkin (1953)
found that some of the hierarchical structures of the nonGaussian Auct
in images (Ruderman 1993) are also found in natural sounds, '
At present, the exploration of statistical structure in putural signals i
very early but also a very enjoyuble stage. The 1dea that there is Sf_‘_ *"3
similar in the statistics of odor concentrations, image contrast, :md-_.
waveforms is certainly appealing. After all, the cortex that understunds
is not so different from the cortex (hat writes music. On the other hand,
be that these universal features of natural signals, even if horne oul by
detailed investigations, are irrelevant to our pereeption of the world. Was
the outcome, even our current crude understanding of natural signals i-‘f
10 taise questions about how the nervous system encodes and processe
with these very peculiar statistical properties.

T’.

It may come as a surprise, then, that in several different systems the parfor-
mnn::e of neurons does approach the relevant physical limits, Many anthors
ave explored the idea thar such near optimal performance 15 ot o coinei-
~dence, but is rather u general principle from which many aspects of neural
-~ coding and computation can be understood. Given the evidence for perfor-
i '5¥3D¢B close to the physical limits, it corlainly makes sense 1o ask which
' _II ?@.ﬂlmﬁ of newral coding and computation ane essential 1o this remarkable per-
formance. What is the structure of 2 neural code that allows such high rates of
f;i!lfﬂm‘lﬂtiun transmission? What computations are necessary for maximum re-
liability in estimation problems? These are challenging theoretical problems,
¥ 0o means trivial applications of known results. A large part of the difficulty
5 connected, again, with the deseription of the natural sensory environment.
OSL progress to date has, therefore, been made by studying a model world
that s 4 simpler and less structured place than the real world, hoping that the
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optimal strategies for dealing with this simple world will at Teagy oy
about optimal strastegies for the real world. s

Considerable attention has been given 1o the problem of optimal
the early stages of vision. These ideas go back. ar least, to Barlow's
of retinal ganglion cells, where he suggested thar the uenter—su:mﬁ
zation of receptive ields serves to make the responses of neighbarip
less correlated than the intensity values in neighboring pixels af
stimulus (Barlow 1961). This is the idea of decorrelution, or redung
duction. If we imagine that each retinal ganglion cell has a limited ¢g
carry information about the visual seene, then, to the extent that diff s
are telling the brain about the same feature of the scene, we are not m
maximum use of this limited capacity. More subtly, if one cell telly
some lfeature of the world and a second cell wells us about o differen ; L.
we still may not have an efficient code if one feature can be predict
the other. In the case of written English, for example, () and U are se
signals, but elearly it is often possible o predict the oceurrence of g
the observatian of Q. and it would be inefficient o have separate ‘)
nedrons. There exists instead some optimal combination of Q=17 sens|
that minimizes the redundancy of messages carmed by the different
and therefore makes maximum vse of the information capacity of thes

Formaily, the redundancy & of two neurons A and & can be defined
suring the information they provide when observed simulianeously,
comparing this with the information they provide when observed s
fyand Iy, The redundancy is

R=Tyg+Tg— Tan.

We can generalize this definition to include whole arrays of neurons:
Lwo. One candidate optimization principle for the neural code is, then, 10 miz
mize the redundancy £. But minimizing redundancy 1s not, by itself, as
principle, since it ignores the role of noise. Thus an array of completely
pendent messages is indistinguishable from an armay of random bits, $00
reduce redundancy 1o zero we lose the ability to distinguish meanin;
nals from random variations. Put another way, redundancy is good --- !
affords the signal some protection against the additon of noise. Presuims
the correct principle involves minimiang redundancy while hfﬂdiﬂﬂ.
thing fixed, such as the ol information transmission (£ inour ﬂx. i
given some model of the noise in the system, This is exactly the Pl'iﬂﬂf__]’ll-
plored by Atick and coworkers, who show how many of the observed W
field properties of retinal ganglion cells can be derived from the solution

53 Optimyl coding and computation

this constrained optimization problem; for o review of these ideas, see Atick
(1992).

As an alternative to mintmizing redundaney, we can imagine that the early
stages of neural coding are desipned to maximize information transmission,
Again, by itself this is nota well posed problem, and one needs to introduce
same constraints. For proper choices of canstrainis, the minimization of redun-
dancy and the maximization of information are actually the same problem, We

have seen an example of information maximization in section 3,14, and to get
' gome intuition for optimal coding problems we will look at a related example

here.
Imagine that we have a time dependent signal s(1) embedded in a back-

~ground of Gaussian white noise (1), This might be, for example, o visual

signal, and #j(r) may be the noise due to random photon arrivals that in-
evitably accompanies visuul stimulation. Let us imagine that our “neuron” is
1 device that converts this signal into a voltage and then adds some additional
Giaussian white voltuge noise na(r). For simplicity, we assume that the con-
yersion process is linear, so it is completely described by a transfer function
F+ as in our discussion of fly photoreceptors and large monopolar cells in sec-
tion 3.1.4. Thus we have a cell that gives an output voltage

La u)
Vit =[ drFit) [.'.'{.* — 1)+ mit = T:I] +nalth, (5.5}
i

and the question is how much information the output of the newron, Vi), pro-

 vides about the input signal s(r). If the world is simple, we can assume that

the signal () is also chosen from a Gaussian distribution, so it is completely
characterized by its power spectrum Siew). Then, as discussed in section A, 1Y,
we can calculate analytically the rate of information transmisseon, and we
can solve the problem of optimizing this rate subject o some reasonable con-
Straints, For example, it is clear that the larger the magnitude of F the less
important is the noise nait), but this comes at the cost of very large excur-
sions in the output voltage of our cell. We discuss the filter that maximizes
information transmission while holding fixed the variance of these vollage
fuctuations, corresponding to u limited dynamic range of the cell.

From what we learned about nataral signals in the last section, we might
expect that the power spectrum has an approximately scale invariant form, that
8 8(w) ~ 1/, with @ ~ 1. Under these conditions the signal to noise ratio
15 always high at very low frequencies, and in this limit the optimal filter is a
_=.hiEhiJ41.~;s filter. Specifically. if we look at the Fourier trunsform of Fit), which
we call F(w), then | Flas)| ~ 1/4/Sier). This means that once the signal is
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white noise, so lang as the signal to noise ratio is large. This is decorre
or redundancy reduction in the time domain, as emphasized by .3 i
Laughlin, and Dubs { 1982) and then by van Hateren {1992) in their 4
of signal transfer across the first synapse in Ay vision, i
If we take seriousty the nuuralistic spectrum =~ 1 /e, then there jg
prediction that the optimal encoding filter has zero gain at zero frequ
same argument can be made Tor an array of cells coding a spatially.
signal—if the spatial power spectrum has the natural form S(k) ~
then the optimal spatial filters have zero gain for & = 0—the cell that pr
maximal information ransmission does not respond 1o spatially onifi
uli. Usoally this is explained by saving that these copstant stimuoli ‘*_'
information,” but 1 the opumization of information transmission somet
else 15 happening: Tow lmequency (not strictly constant) signals have lol
power, so they can he attenvated without concern about losing them
noise, and this frees up the limited dynamic range of the cell to represe
more fragile signals at intermediate frequencies.
At sufficiently low [reguencies. the signal to noise ratio is high, 2
mal filter hay u highpass chardcter, but, as the frequency is increased
power deereases and we eventually reach o point where the signal ge
the noise. Since neurons have a limited dynamic range, there is no
wasting this dynamic range to represent frequency components that are;
certainly noise alone, The optimal filter rolls off at high (requencies, SUpp;
ing this noise. As emphasized by Atick (19923, one cun think of the
enceding filter as having two pleces—a lowpass filter W0 separate signal
noise, and a highpass filter to reduce redundancy. The combination
bandpiss characteristie, and if we translorm back into the time domain, th
ters look like a smoothed version of u time derivative operation, In e
spatial stimuli, the bandpass filter turns into the classical cenler—sumo
ganization of ganglion cell receptive fields. The overall scale of the
field depends on the location of the bandpass peak, and this in turms
a function of the overall signal to noise ratio, Atick and Redlich {199(}:{5;5
that this gives a good account of the changes in receptive field organiz on
the retinn adapis 10 different light itensities. These changes are refl
only in the responses of individual ganglion cells, but also in the s€
of human observers, which is compared to the theory in Fig. 5.3. In
spirit, van Hateren (1992) has shown that the teimporal fltering in fiy

-.mth-aslaamﬁlﬁ'ty-

53 Opumil coding and computation

10003 1
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Figure 5.3

Contrast sensitivity at different adaptation levels, comparing human performance with
the theoretically derived filters that minimize redundancy in retinal coding. Sobd lines
show the optimal [ilters at buckgroand light imensitics mereasing by factors of ten, The
eurve with the lowes! sensiivity correspomels to-the lowest light intensity, where we
see lowpass bohavier, und higher intensities corespond o higher sensitivities. Note
also the bandpass hehavior at high intensities. As explained in the tesl, this crossover
from Towpass 1o bandpass filtering is driven by the increase ol signal (o noise ratio with
increasing light imensicy. Paings ane from psychophysical experinents by van Ness anod
Bouman (1967), Redrawn from Atick {1992,

adapts to mean light intensity as expected from signal o noise considerations
for the optimal encoder.

We hope this example makes clear the structure of any optimal coding prob-
lem. One starts with a model of what the neuron can do 1o encode the signal—
in this case just n linear filter or receptive ficld. Then one has to calculate
various information theoretic guantities, and this requires assumplions about
the statistics of the input signals and noise: in general even the gualitative fea-
tures of the optimal filters can depend on the signal statistics, as in the problem
discussed by Bialek, Ruderman, and Zee (1991). One would like o show that
the system is optimized for signals that occur in the real world, so the maodel
of the input statistics should capture some aspects of the natural signals. Fi-
nally, one must add some constraints to make the problem well posed. The
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current state of our theoretical and experimental abilities is such that,
step. we miake approximations. Nonetheless, many features of the sp
poral. and chromatic (Atick. Li, and Redlich 1992) filtering in the f
of visual processing can be understood, at Teast qualitatively and ofia
quantitatively, as solutions to thess optimization problems,
We have emphasized the application of information theoretie opti
principles 1o the early stages of sensory processing, where there jg now
experimental evidence for eflicient coding, as described in chapter 3. F
inception of information theory, however, there has ulso been the b
these ideas could be used o deseribe higher level processing, Iﬁ this
severnl authors have discussed the application of optimization pr]n-_&'i'.
the transnussion of miormation between lavers of cells deeper in
(Linsker 1990), There are also a number of algorithms for practic
processing problems that emerge from the ideas of information ma.xmu
and redundancy reduction—see, for example, Bell and Sejnowksi { 1995y
the review by Becker (1996).
We want to emphasize that theories of optimal coding do not just predi
form of receptive felds or temporal Glters, The fundamental quanﬁ:ics'{n i
theories are the magnitudes of the transmitted information and the red
among different cells. It should be clear that the development of tee
for the analysis of information transmission in arrays of neurons will
possible to provide a much more stringent test of this theoretical point
The theoretical work discussed thus far has not addressed itself to
havior of spiking neurons, Rather than considering a cell that can t
continuwous, filtered version of the input signals and noise, one could
instead a cell that produces a spike cach time this Ghered waveform
threshald. The first problem is to caleulate the rate at which the resulting
train can provide information about the mpot signal, and this is far from U
ll. DeWeese {1995) has developed a general perturbation theory app
this problem, Given the information transmission rate, one can ask agai
the form of the optimal filter, but now there is also the fuestion of the
setting for the threshold. 1f the threshold is set very high, spikes are infre
and, by the arguments of section 2.3.1. we expect that it will be poss
decode the spike train using linear filters. Alternatively, if the optimal thre
old is small, then the information is maximized just by maximizing the
ol spiking, which certainly leads toward the maore classical rate codin
In this broad class of models, the maximization of information transmi
determines the optimal setting of the threshold, and this in turn contro
strictire of the code.

53 Optimal codisg and compulation

peWeese (1993) finds that there are indeed parameter regimes in which the
optimal setting of the threshold produces very few spikes per characternstic
time of the signal. One way of understanding this resilt is 1o think about a
nearon in which spiking 15 a Poisson process modulated by the stimulus. We
recall, as deseribed in section 2,14, that a Poisson process is one in which
spikes oceur with some probability per unit tme, r{f;s(r)]. which depends on

the stimulus waveform s(7) but not on the imes of previous spikes. One can
sk again how much information {in bits per second) the spike train provides

about the time dependent stimulus, In general, this 1s very difficult to caleulate,
even for the Potsson model. But one can prove that the information transmitted
by a Poisson neuran is fess than a sitple upper bound,

rlrxit) .
R < | rltis{n) ) logs [1—5] hits/s, (5.6}

‘where the average { - -} denotes an average over stimulus wavelorms, and F i
the average firing rate, that is, 7 = {r[rs(7)]). Natice that this bound is not

sensitive to correlations hetween different times, only to the distribution of
rates at one time. Thus, no mutter how quickly the rates are varying, the trins-
mitted information is never greater than that in Eq. (5.6). Different choices
of time dependence, however, determine how close the neuron can gel 1o this
maximum, Indeed, the inequality is saturated, indicating maximal information
transmission, precisely in the limit where the correlation time of the rute vari-
ations, and hence of the signal, is small, rr, — (. But, from our discussion in
section 2.3.1, this is the limit that would guarantee linear decoding. These the-
aretical results raise the interesting possibility that the observation of sparse
coding in the time domain is intimately connected to the observation of high
information rates and coding efliciencies,

Animals are not interested in capturing and encoding information about
the environment [or its own sake, but rather in processing these input data to
compute several very specific quantities, We emphasized in chapter 4 that the
results of these specific computations can be extremely accurate, approaching
the limits imposed by the signals and noise at the sensory input. We would like
to have a theory of the computations required to make estimates and decisions
at this limiting level of reliahility.

In general, we know the answer to the problem of making optimal estimates:
the brain should compute the mean vatue of the quantity it is trying 1o estimale,
given the data provided by the receptor cells. The problem is to work out the
form of this conditional mean in some cases of interest, and ask if the brain
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really does this computation. We empliasize that, at least in P"iﬂﬂiple;,'-'
of optimal estimation provides o parameter free prediction of what the ' !
svstem shonld compute. The problem is that we don't really know
calculate the optimal estimator for most interesting tasks, and again p
problem is that the form of the optimul estimator depends on the distrik
from which signals are drawn.

We reviewed in sectiom 4.1.3 the theory of optimal pitch estima : |
here we emphasize that the theory makes nontrivial (and correet) - ,
ahout the pitch of inharmenic signals (de Boer 1976). Human
provides several examples where the theory of optimal processing yie
cessful predictions of intercsting features in our perceptions. These
range from the detection of density variations und symmetry in randog ' .
patterns {Barlow 19801 to aspects of three dimensional object
{Blake, Bulthoff, and Sheinberg 1993; Liu, Knill, and Kersten 1995),
include the seemingly paradoxical case of ambiguous percepts (Bialek ¢
Weese 1903), Bul these tests of the theory relate to the behavior of the entip
human observer, Can we construct theores of optimal estimation () |
predictions about the responses of individual neurans?

Returning to the prohlem of photon counting in the dark adapted i
systern, we can ask whether we can understand processing strategie
the reting given that this processing adds fittle or no noise to the signals
in the photoreceptors. The problem is to estimate the photon arrival 1
more generally, a functional of the photon armval rate, from the curren
phatoreceptors, In the limit of low photon flux, all such estimation tg
a common stage—a liltering step matched (w the signal and noise spectra
photoreceptors. It seems that such a universal stage of visual processingsh
oeeur early, perhaps in the transfer of photoreceptor signals to the
order cells such as bipolar cells. The hypothesis that the rod-bipolar b
function implements such a matched filter allows successful, paramets
prediction of the bipalar cell's response 1o a din flash (Bialek and Owen'
Ricke. Owen, and Bialek 1991). _

The problem of counting photons is a very simple one, not invul*._r‘
extraction of complex features in the image. The problem of estimatn
tion, which the fly seems to solve optimally as well, 15 4 bit richer. Potte
Bialek {1994) discussed the theory of optimal motion estimation in 1‘-.1::'-"
motivated by the [y experiments and found that, as mentioned in section
there are limits in which the optimal estimate of motion across the VISUES
is based simply on the computation of delayed correlations among nElL
ing photoreceptors. But the problem has a structure bevond this simple

53  Optimal coding and computation

More generally. because of Bayes' rule, we know that our best estimate of
what is happening in the world combines the data that we recewve from our
sensory receptors with aur prior knowledge about what to expect. It is not just
that the optimal computation reaches different answers in different sensory en-
vironments, cven the structure of the computation itself is different in different
environments. Sinularly, the maximally informative encoding of incoming sig-
nals also depends on the statistical structure of the ensemble from which these
signals are drawn, as discussed for spiking neurons by DeWeese (1995

If the sensory world were a simple place, completely characterized by 2
{ew low order statistical properties, then the mutching of computational strate-
zies to the stimulus ensemble, as required for optimal performance, could be
achieved on evolutionary lime scales, But we have seen, for example in the
analysis of natural images (section 5.2, that the world does not have such

~ a simple statistical structure. While the local structure of an image might be

described with a simple statistical model, the parameters of this model fluctu-
ate as we move through different regions of the scene, and these Ructoations
have the same sorts of scale invariant structures found in the original imige
(Rudermin 1993). In such an inhomogeneous world, the optimal srategy for
j;rrnccssini: ar encoding a small region of an image depends on the structure
~ of the image on larger scales, and one can make a similar argument in the

time domnin—the optimal strategy for estimating motion, for example, on the

short time scales of relevance to fiy hehavior will depend on features of the

* visual signal that can be measured only on longer time scales. Thus, given the

‘complexity of the real world, optimal coding and computation arc necessarily

~adaptive processes,

The word “adaptation’ has multiple meanings. For neurobiology. the firse

- meaning refers w the adaptation that Adrian discovered (Fig. L4}, in which
~ the response of a sensory neuron gradually fades away as sumuli are kept
“constant. A second meaning denotes the adaptation that is so difficult to char-
acterize with Wiener kerels (section 2.1.3), in which the dynamics of neural
- tesponses o small signals depend strongly on the Tevel of a large, constanl
‘background signal. There is o gap. however, between these nations of adapti-
tion, describing the phenomenalogy of individual nearons, and the adaptation

~of organisms in the parlance of evolutionary biology. The theary of aptimal
“toding and computation suggests a bridge between these different levels—
“adaptation in single neurons and circuits is a mechanism allowing maximally

- efficient use of resources for the crucial tasks of capturing and processing sen-
- sory information, and this can be viewed as ong component of the organism’s
“adaptation to jts environment. In the same way that evolutionary adaptation
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involves mteractions between the orgamism and all the parameters of
vironmenl, optimal signal processing requires, in principle, uda{,lﬂﬁuﬁl
entire probability distribution of sensory inpuls.

Can the carly stages of visual processing, for example, adapt to th,
ability distribution ol images or movies projected onto the reting? As
step one can generate movies with Gaussian statistics, and ask if :
sponses adapt to the variance, the correlation time, or the correlation len, ]
contrast fluciuations in these movies. If the movies include true motion
ulating either the movement of ubjects or of the organism itself, then w
alse ask nhout adoptation to the medn. varnance, and correlation timg
moton velocity, Experiments of this type have been done in the fiy!
system, probing the responses of the motion sensitive neuron HI

de Ruyter van Steveninck, Zaggman, and Mastebroek 1986; de Ru
Steveninck et al. 1996), and in the verlebrate reting, probing the res ._ i
the ganglion cells (Smimakis et al. 1995, 1996). Both systems provide
evidence of adaptation to statistics, with the newral circuitry adjusting botl
sensitivity and the time constants of 1s response (o the statistical so
the movie seen over the past few sceconds.

The idea that the computations carried out by individual neurons
soime form of optimal desizn is really an exiension 1o the central nerv
tem of ideas that were applied long ago to the compound eye, as ¢
by Bartow (1981). Already in the nineteenth century, Mallock {_I’E
ized that, because of the small facet lenses in the compound eye, dif
is o much more serious limit o insect vision than to our own visio
(1952) arpued that the sizes of the lenses should be chosen o maxi

well with data from a variety of insect species, Rarlow’s argument
have heen rediscovered by Feynman, who made it part of his underg
lectures on physics (Feynman, Leighton, and Sands 1963), As in the an
of neural computation, the proper formulation of the optimization pro
compound eves requires that we take account of the sensory environ '
Snyder. Stavenga, and Lavghlin (1977} showed how one could give
general information theoretic approach o eye design, taking into &
only diffraction but also phaton shot noise and image statistics. In a2 .
similar spirit, Barlow (1982) has discussed the origins of trichromatic
as un optimal strategy for dealing with naturally occurming rcﬂectarlf?
and Chittka and Menzel (1992) show that the particular choice of triehts

5 3 Dpﬁnml coding and computation

receptors made by bees and refated insects serves to maximize the information
-E,q;hemd abont floral identity. .

Tt is somehow not surprising W learn that the design of the eye's oplics is
distermined by very basic physical considerations. The fact that individeal pho-
tareceptors count single photons tells us that the phivsics of signals and noise
in the molecular amplification processes of phototransduction must he taken
very seriously inany attempt to understand the biological function of these
cells, There is a vague feeling that as we move deeper into the nerveus system
these physical considerations become less important and some more uniguely
hiological considerations must dominate, But we have seen that primary sen-
sory neurons can transmit iformation at rates very close to the physical limits
set by spike train entropy, and that central neurons can give responses that are
mearly as reliable as pussible given the signals and noise al the receptor cells. T
wonld seem that, at least for some msks, nature has built computing machinery
of surprising precision and adaptability,




to the single spike

When we set out Lo write this book we had in mind several disparate idess
that we hoped 10 communicate to a more genetal audience. What emerged
s we wrole was i surprising convergence toward one simple idea: Linchivacual
‘spikes are important, In the billions of neurons that are active as you read this
text. each firing perhaps tens of spikes per second. it is difficult o helieve
that one spike more or less could matter. Yel we have seen that, under many
_conditions, behavioral decisions are made with of order one spike per cell
(chapter 2), that individual spikes can convey several bits of information about
incoming sensory stimuli (chapter 3, and that precise discriminations coukd.
at least in principle, be based on the occurrence af individual spikes ar spike
‘pairs at definite times (chapter 4). These different resulis encourage us W take
seriously the possibility that each spike that stredms inter our hrain really does
make a difference.

Long ago, Valbo and colleagues sel out 1o correlate the human perception
of touch with the activity of skin recepror afferents, The beawty of these ex-
periments was that the activity of individual afferents could be recorded by
placing a fine needle in the arm of an alert human subject. Although (here are
many issues concemning the interpretation of these datd, there 1% strong evi-
dence thit the threshold of touch sensation {or the observer is very close Lo
the thresholds of individual afferents, But, more importantly, there is a trial by
trial correlation hetween the presence or absence of a single action patential
and the response of the observer (Valbo 1995), These CRpEriments come very
¢lose to a direct demonstration that we can “feel” individual spikes.

Our story began, more of less, with Adrian's discovery that spikes are the
nits out of which our perceptions must be built, We end with the idea that
eich one of these units makes a definite and measurable contribution 1o those
perceptions. The individual spike, so atten averaged in with its neighhors,
deserves more respect,




LI Here we collect some of the mathematical detuils that are necessary derive
~ the results in the main text, as well as hrief discussions of u few concepiual
. points. We try to give a fuir bit of explanation ahout what is going on in the
various manipulations, particularly when new tricks are introduced, minimiz-
_:_i'ng the number of skipped steps at the cost of extri pages. We 2o to some
i 5:1'=n\gtj1s {guite literally) so that we never say “it can be shown that ... . "..On
the other hand, many of the same mathematical tricks appear again and again,
and we hope that by the last lew asides the reader can begin to fill in the details
if the ingredients are made clear.

ES AS EXPECTATION VALUES

Let us see how the empirically defined rate versus time, rif), relutes (o the
‘probability distribution #[{r;}[x(7)]. In analyzing real data we divide tme nto
bins, cach of width At. and we assume that these bins are sufficiently small
(smailer than the refractory period) that we never observe more than one spike
in each bin. Thus. if we look at a bin centered un ume r, we can define a
function n(r) thut is n = | if there is a spike in the bin and n = 0 il there is
ot

Suppose we define a function f(x) that is equal to zero if the magnitude of
s larger than one half, and equal to one if the magnitude of x is less than one
~ half. That is,

filxy=1 f —=1/2=x=1/2 1A
flxy=0 if xr=—1/2orl/2=x, (A2)

Nm\r if we look at the arrival time of one particular spike, 7, we can evaluate
5 FIGt = 1)/ Ax], and this will count whether that particular spike is in a bin of
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size A centered on time ¢ To find whether any spike is in this bin
sum over all possible spikes, so the function (1) that counts spikes
bz written as

nm—z,r [F_;'].

Again, the function n(s} is what we get by counting spikes in the
way; the expression in terms of £ and the (4] s 0 more formal rnu' L
description.

Il we repeat the stimulus many tmes then we can find the avers,
af rir). which we have called pir) in the text. This is the probabiliy
spike will accur in a bin of width At surrounding the time r, given |
havve presented a particular stmulus s (). 15 we divide this pmhnb;]ig,g_,
size of the bins, then we abtain a probability per unit time, the firig
Stretly speaking. we want to define the rate versus time as the res
procedure carried out with arbitearily small bins, To describe Lhii_._
with un equation, the rate {s defined by dveraging nir), normalizing g
siee, and then letting the hin size go o reno:

I
rlt;xitl] = lim —{nir)).
l | AT ﬂ.t{ \'h

But now we can substitute our formal cxpression for a{r ) in terms o
arrival times, Eq. (A3, to reswrite the rate as an average over these i

1
Lxit) = lim — ,
rltixit}] ]ml,ﬁrl:””:l}

AT

. I PR—
_*J:EHH(IZ ! |: AT :I )

; | P =¥
1 A L
(e [

So il seems that the firing rate is naturally related to a slightly funny 0
functicn

— 'rf
lim —f i
J.r—~u ar’ Fay
w - - < + N H i H v I-I
This function has some interesting propertics. First of all, since we dre b
the bin size 1o zero, it s clear that the Tunclion must equal zero unless HE

Al Rates s expectntion values

ime 4 15 exactly the time i, On the other hand, at the point where £ = ¢ the

funiction is infinite because f(0) = | and we are dividing by Az — (L Finally,

il we arc careful in applying the definition of [ given above, then we can show
hat this function has an integral over fime of precisely one, That is,

(AR

W r
[ i -na"[ A F'-

we leave this calculation to the reader, The function with these three properties
has a name: 1 is the “delta funcoon™ introduced by Dirac. Itis ohviously & bit
strange, since it's value is either zero or infinity, so Iram a rigorous point of
Cyiew it is not an ordinary function. Bul, as emphasized by Lighthill { 1958),
g can construct a rigorous theory along the lines used here, dehining the
Cdelta function and other “peneralized functions” as the limit of a sequence of
functions where some parameter is taken to zero (in this case the bin width).

Lighthill’s discussion is exceptionally elear and concise. and has the added
virtue of treating concepts from Fourier analysis thut will be nseful in con-
nection with later chapters of the text.

 The Dirac delta function §ir) is defined as having the following properties:

alri=0 &0 {AN)

-
j dtdltl=1, (A, 1)

oa

“Then the funny object that arose in our discussion of the liring rate can be

wiritten in much more compact form;

-1
lim =5t — ). (A
Ar—s0) AT’ 'r[ At } '
This means that we can rewrite the firing rate itself;

| | | |f =1

rltisiti| = im -

sl Arst) AT AT
= (A.12)

Z Alr— i
4

This is a very simple expression, telling us that the firing rate is an average

over a set of delta functions that pick out the times when the spikes arrive. The

delta functions themselves are singular objects, being either zero or infinity,

but the avernge of these functions is a perfectly reasonable funciion of time.
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In Eq. (A.12) we have writlen the rate as an average quantity, fq
(as cmphasized in the texty the Fact that rate 15 defined as an nveraéa'
rfmﬁcntatiﬂmi of the same stimulus, Let us flesh this out a litde
umlr: we present the stimulus 5 (1) we see slightly different values fo
arrival tmes {1}, Thus these tmes are random variables, and Whaﬁ-

an average in Eq. (A 12) it is this randomness that we mean to ayers
But this randomness is described by o probability distribution, the g

of spike arrival times given the stimulus waveform, P[[y] |s(z)]. IF)
that our experiment covers a ime window from s =0t =T, thl:lll
average over the arrival times of the spike we need {o integrate 1.1.
individoal spike arrival times £y, s, - -y and sum over all spike " b
window 0 < r < T, being careful to weight cach of these possibiliti
distribution P[{r;)|s{1)]. Thus 3

rltisfr)) = 25“ — 1)
f

T T T n
_gﬁ ‘“lfl ﬁ“:'--_/I; r.l’F_ﬁ.-'PHHH.'r[T".I]Z.E[;

The spike train is o set of pulses that oceor exaetly at times 1,
of pulses can be described as the sum of dela functions, which we
Pl

aley = Za‘fr — 1)
i

The whale point of the discussion ahove has been 1o show that the |
is just the average spike train,

Flti etz = (plih,

where the average is taken with respect to the distribution P[ (5 }15(T
emphasize that this formulation in terms of pir), which is extremely
and useful in subseguent mathematical discussions. is a bit tricky. We
tur deseription of the spike triin with a function w7 that is ohtained
data in a straightforward fashion by counting spikes in hins of finite
and p(r) is reluted to the limiting behavior of this counting function a5
shrink to zero size (At — 0). [n analyzing real experiments we il
need 10 keep some finite At, and it can be a delicate problem to deci
smadl we can make the bins given a data set of fixed size. As an exampl

of

A2 Twe-point functions

- compute the average in Eq. (A 153) as an average over K repeated presentations
the stimulus s(t). it is elear that we will not recover 4 smooth function
rlit:s()] unless we keep At at some small but nonzero value; we can aceept
smaller values of Az at larger K, but we can never. in practice. let AT shrink
) the way Lo 2ero.

POINT FUNCTIONS

n the same way that we define the rate as the average of the spike train, asn

Fij. (A.15), we can consider averages of products of spike trains, such s

cit, = {pipth). (A 1G)
~ From the definition of pir} we can see that
Cir.t') = Pispike at time ¢ & spike at time £') (AT

= P(spike a1 time ¢|spike at time 1) = Pispike at time 1),
{AL18)

But the second term in this equation, the probability that 4 spike is fired at liine
! is just the firing rate r(t"). The conditional probability

P(spike at time f|spike at time 1)

‘i be thought of as a conditional rate, that is the rate of spiking at time 1
;gim:n that there was o spike al time . When we define the average in Eq.
5_{1@1.16}. we can choose to average over any dependence on the absolule time,
for example by choosing sumuli from a stationary probability distribution (sec
‘section 3.1.4), Then the conditional rate, which is ofien called simply the
‘correlation function of the spike train, depends only on the time dilference
1 —t', and the probability of spiking is just the average rate 7,

When we talk about correlations in the spike train, as in the correlation func-
tion of Fig. 2.5, it seems natural to hope that these correlations are character-
ized by a dimensionless number that measures the strength of the correlations.
“Thus, if we have two rundom variables 1 and v, we know that we can define
their correlation coeflicient and that it is a pure number independent of the
‘units in which we measure v and v. Can we do the same thing for spike trains?

When the times 1 und 1 that enter the correlation function are very fur apart,
e expect that the correlations between spikes hecome small, essentially bi-
cause the systemn must, after some time, forget that a spike was fred. This
CBIves us @ plot as in Fig. 2.5, where the conditional rate decays as [t — '




2hh

Mathemancal asides 15 Twoperint fungtions

becomes larger, reaching & platead al the mean rate iself, Ay short:
conditional rate is smull, because cells cannot produce spikes | in ra

' the mean square spike count, But the mean spike count is the time integral
of the firing tate, which is in turn the average aof pi). Thus we cun write the
cession; this s called refracioriness. The area of this lobe ig {h= : ya‘dﬂncﬂ of the spike count in terms of averages of gio):
function has the dimensions of Litime, or rate. This is the amoyp .
the mean firing rate is reduced as a result of refractoriness. Altergs

we look at the normalized correlation function, or conditional rg
sponding area is dimensionless. We can think of this area as the fr
spikes that are “deleted” from the spike train as a resolt of refrac
tlarly, pne can look ot other features o the correlation function and
their areas on the plot; each area gives 4 rate, or a dimensionless f

UENTIR = (NP — (N (A.26)

" - . :
=j r.l’rf dr' i ey — f dtpit) (A2T)
i i i
T T
=j m[ dt' tpitipte’))
i Ju

p .
—f n’:f de'tp (e e (A28
il Ik

we analyze the conditional rates, 1 these rates ane small compared fo |
vate of spiking, or if the [ractions are small compared to 1, then
are weak. 11 the rates computed from the integrals of the correlation fung
are compatable o the mean spike rate, then correlations are strong,

There 15 another useful mierpretation of the correlation function,

that
o) = Zr‘if: -t
i

and that the delta function has unit area, so tha

; .
=f r:’r[ cr'r'(lﬁ-{r]—{ntrnllp{f’}—iﬁtf’ﬁl) {A.29)
) +11

T i
I m[ dr' (Bp(rdpie’)). {A.30)

Thus the variance in spike counts is related to the integral of the correlation
function (ot 1do(t")) of luctuations in ().

 As we supgpest in the discussion above, and as we explain more fully in
~ section 3.1.4, correlation functions measure the “memory” that u system has
'fnr its previous states, and we expect that this memory will decay. This means
,'!'th'ul 'ﬂé,b{r}ﬁp{r“n will be small us ¢ and +* become widely separated, and when
" we do the integral in Eq. (A30) for large values of T most of the area in the
fegion of integration will have the integrand pear zern. Thus when we do the
two dimensional integral over ¢ and (', it is convenient o change coordinates
and integrate over time differences 1 — ' = 1 and the average time (t ') /2 =
1

o
f didir—11=1 iD=y =T
]

=1  otherwise.

Thus if we integrate o{{) itself we count the spikes,

r
f dt plt)y=N(T),
a

where N (T} is the number of spikes in the time window from 0 1o T
integrate the correlation function we find

T T T r
f d.rf a’r'C[m’}.:f n'f[ di'{pit)pie’))
i il 11 Wil

T r
BN =[ di [ di{8p (80 )
Wil o0

T r
. ' ! ! I
_(./u d’j; HERERE 1’) =f i [ drisp + /2030 ~ 1/2) (A31)
il 4 =F
= ; , . N
= ﬁ di p(f) [! di’ p(r) xf m‘[ driipit + t/2¥8pd — /). (A.32)
I il of =

'_'ﬁhEre in the last step we use the fact thai T is typically ~ T /2 and hence the

= ([N{T)],
integral over ¢ runges over large values that completely cover the “memory™
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structure on short time scales, This idea was used by Bair, Zohary. and Koch
I ..{.|g.95: to analyze the correlation among MT neurons observed by Zohary,
::..Shnd_lgn, and Newsome (19947 and discussed in section .14 They find that
the correlation functions hive memory over time sciles that are, on average,
shorter than 10 ms, but that spike count correlations observed in 2 s windows
. are nonetheless consistent with predictions from Eq. (A.33).

of the correlation function. Finally, we can do the integral over f gy
factor of T, 5o that ¥

SN(TIF) = DT

iy 4
D=f dr{dplt + 1/ 208p(r — o/23).
53

Notice that the variance in spike count grows in proportion to the tiy
same way that the mean square displacement grows as time for ; 3 WIE
particle, provided thot the “diffusion constant™ £ is finite. If the eg
function has long tails, then the integral that defines £ need not
the variance in spike count can grow as a different power of T {T&_iﬁ

Notice that, with well behaved correlations, the variance of the spi
m arhitrarily large windows T s determined by an integral of the o
function which has structure only on muoch shorter time scales, A
is anglogous o diffusion, where the mean square displacement ¢
moving through a fluid is determined by the statistics of collisions th
only a few picoseconds.

Al of the discussion we have given here for correlations among
one spike triin can be repeated for correlations among spikes pene
cells, We can define the functions gi(1) and g (r) for the two cells,
generally gi(t) and g;(1) for any two cells in a group. The natural @
of the crosscorrelation function is (g (1)p; (1)), or we could subtract
mean values o define {8,110, (1)} The quuntities that are called
correlation function in the literature are all related o these objects, |
in different wavs." In particular there is an analog of Eg. (A33), W

R KERNELS

. Methods developed by Volterra (1930} and Wiener { 1938) provide a system-
atic characterization of a nonlinear system in terms of aset of filters or kernels,
 We recall, as explained in the Lext, that when we look ata function of one num-
ber x, we can expand the function v = f{x) in a series of powers,

i,
y=flx)= fixo)+ fllo)x =)+ 5 o) —x)t 4 (A3T)

= fo+ fily — )+ f2be *'11*! Ty (A.38)

t}us is the Taylor series. Eq. (2,6). We want to gencralize this to the case we

ke as “input” not @ single number x but a function ol time x{7}. and similarly

the “output” is not a single number ¥ but another function of tme ¥(f). We

write, symbolically, the analogy to vy = f(x),

~ and the transformation £ x(r)] is called a funciional, The Vollerra series 15 the
analog of the Taylor series:

the covariance in spike counts to an integral of the crosscorrelation fi
vit) = hp+ fdn il = 11)
ENTEN () = Dy T

n.-,-=fw dr{dm(F+ /2l — /20 +frfr1fdrz halry, Tahe(t = 7 )xlt — 1)

8.
Again the important consequence of this equation js that correlatio
spike counts in very large windows are determined by the crossed
function of the spike trains, and these correlation functions (YR

=+ , dr) [n"r; I drydealTy T Tl [t — odals — t2)ald — 13l
ey I A

- Where the i, are called the Volterra kernels. The [unctions f, acl as expan-
“sion coefficients 1o describe the transformation from input x(t) to output yir)
inthe same way that the coefficients f;, describe the mapping from x o v. M-
(tice that now the expansion coefficients themselves are functions ruther than

numbers, This description can be extended to multiple inputs, and 1o the case

1. The guestion of which nomalization i best inspires passionuie debie, and we L
tov avoid the fssue since it is o bt peripheral o our discussion, We do renark thit
difficulties cun be gvodded by beang caurgfnl (o repon the correlution funetons with 1
units, whatever normalization procedure yoo clnose.
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where the input at cach instant of time is itself a lunction of spatig)
as in vision; see, for example. the discussion by Poggio and Reichy
There are theorems (Volterra 19300 which guarantee that, under
tions. the proper choice of the kemels fy, will provide a cﬂmplete;ﬂé
of any transformation x (£ == virl. |

In principle the integrals in Eq, (A 40} should range over all poss
of the time variables 7, 12.--- In practice we are interested in
approach to characterize real physical devices, in which the output
only on inputs that have already oceurred—ihis is causality, the staten
your current state depends on events in the past, but not on &
future. From causality, then, y(0) can be wiitten in terms of x(r
anly positive values of toand hence the integrals can always be re
positive T

Ls v}
vt =g + f drpd{r)xir — i)
il

[ fﬁ'g[ drsfizlt), T2hair — Tdallt — 12)

[ u"r;j d'nf drifralty, 1z, 13)
[ i

® x{f — 1 )x{l — Tolxl(f — T3)
+ -

Maotice that, since the functions /i, appear only under integral ;sigiia.'
ways choose these functions to be symmetric when we interchange tk
of the different 1, that is,

halrp, t2) = halta 11}
figiey, dg, 0 = Hilra ¥, 1)
= fia(T), T3, T0)
= fig{r3, 73, T1),

and w0 on.

Wiener reformulated Volterra's expansion in a way thit mﬂ!ms' clet

ane can measure the idividual coefficients, He imagined that * P_
tions x(r) would be drawn from a probability distribution, so that
in the series would become a random variable. Then, one could simpli
ters by choosing an expansion in which different ierms are statistics

AT Wiener kernels

pBIII‘.lETlL In principle one can carry through this procedure (somelimes called
sorthogonalization™ of the terms) for uny probubility distribution £ (1)), but
the simplest case is where x(r) is Gaussian white noise. For Gaussian white
npise. the average value of x(7) is zero, and all odd order correlation functions
;rﬁnish, that is,

(=10, (A 460)
i tzieiid =10, (N
(et elezdriedx (rdxdis)) =0, [ALAR)

The “white™ description means that all frequency components are present with
equal srength (the power spectrum is independent of frequency: see sec-
Hon 3.1.4, and in the time domain this means that correlations extend only
over vanishingly short times. Thus, the wsual comelation function—which we
should now be careful to call the two-point correlation function, for obvious
reasons—hus the form

fetx(e’y) = 8,80 — '), (A49)

where 8, is the power spectrum of v and the delta function 15 discussed in
section ALl All of the higher, even order correlation functions have the same
feature of being nonzera only when the different time variables are equal
one another, and one can find these correlation functions by cnumerating all
possible wavs of pairing up the factars of xi¢), For example. the Tour point

- comrelation function has the form

{xfepx (bl = (el iy (il iy}
+ fx(f )il s i)
+ dxinp s ixle(m)) (AL500)

= S28(1 — )81 — t3)
+ 53t — b8tz — 1)
+ 5380t — sz — 1) (AS1)

A e i X :

We can use these definitions of Gaussian white noise 1o analyze the Volterra
‘expansion in Eq. (A.41), We notice, for example, that the term with two factors
OF x(t)—that is, the term o fia{r), Ta)—has a nonzero avernge, which we

lf-'ﬂﬂu]d have chosen 1o be pant of the constant term hy. Similarly, the term with

three factors of vi7)—the term o hadTy. T2, T30—is correlated with the term
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that has only one factor of x(1), and 50 on. The Wiener series remoyes _'I ~ und we can evaluate each of the terms iichividial by

§ by w a -
caorrelitions by writing (x(t — T)Gp) = {x(r — e (A.58)
¥l = Gy G||_I“"|| + Gralaled] + Galatr)] 4 - -, =i [ A, 50
where the individual terms are defined by s
xlt — o leIEREaIN =f dry gl — pixlt — 1)) [ A6l
Crp = &y b 0
e = P
G1[.l'|f”|= [ drigpnodxit — 1) = [ drpe(n)8dir — 1) (M0l
Fls 1
= Slrh (A6

L T 1
Galelr)] = l dr]j drapalmy. olxft — rixli — 13)
S {1
an
—_Tij d gt

1
20 s w o
(ralxity] = [ d 1 f d T I dt3 2401y, T2, T3)
S (1] al)

T [ %)
(e — TGl ]} =j u’nf drypatry rad el — mpixdy — w2dald — 1)}
' 1}

[ =
— 8y f dr) palr, it — 1) {A.63)
]

= (AL

1

el — TGl (n]) = f a1y f dtz [ dry gty T2, T30
i i i Ju

w lxlt — 1adr = ool — i — 1))

o xlf = T b — Tl — T3)

— 35, f el Tl Ty Ty T — 12,

by b 4
= 35;[ iy [ drs gyl T, max (il — 2 — 1))
0 i

{ALGBS)
T b ¥} = .
=[ rfnf drg/ dts palry T, 13) 5,
0 0 Ju

® I.Sfﬁ[n — Ta)diTa — ) + .':.‘E.Em —nlilTa—1r)

The coelficients of the Wiener expansion, g, £1071), g2t 72), -4 @
Wicner kernels. Like the Volterru coefficients h,. we can choose the ¥
kernels to be causal, so that they vanish for negative values of the 17
symmetric under the interchange of the different r;. The beauty of
expansion is that successive terms in the expansion are independent;
subtracted from each term in Eq, (A.3) impose this independence
of Gaussian white noise inputs. The independence of each term in
mieans that we can measure the terms individually—unlike the usuil st
in fitting a polynomial to sel of data points, for example, we can determi
correct coefficient of the first order term without knowing in advance v
we will need to use a second or a third arder term 1o provide a bette

The kernels can be measured by correlating the output v(s) with e
sive powers of the white noise input x{f), For example, correlating (£
x{7) we oblain

+ 8280t — 1812 — T3}

o= o
— a5, f iy [ drs galTi . 58T — 12) (A6}
0 R

il
=5.2f dry [gatzioTior) + galr, T, m)
0

dglr, ) — 3glr, 1, 1) (A6T)

vttt — 7)) = (x(f — T)Ga) + {x(r — )G Lx )] =0, (A.68)

L it — DGO + (el — )G

Thus all the terms except the one o Gy [x ()] vanish, and we find

it lr = ey =8 mich (A69)
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Evidently correlating the output with the inpul isolates the first ke,
correlation with higher powers of the input isolates higher kernels, g
solve for the kernels in terms of these crosscomrelations:

2o= (¥t

1
(r) = — {vitixlt — 7)Y,
g Sr{' }

1
gy, T2) = ﬁf_'r{.fj,rlfl — bl — w2,

As in the case of the Volterra series, there are theorems to guaranh
Wiener series with sufficienty many terms provides 4 complete d
u broad class of nonlinear systems.

For the case of spiking neurons we tuke the input to be the stimuly
and the ouput 1o be the function pit) defined in section A.l; we reeall
the expectation value of pir) is the time dependent fiting rate s
we follow the Wiener prescription summarized by Eq. (A.3), the fi
kernel of a spiking neuron is given by

|
ol = Eﬂpf."l-.'.'{r — T,

Bul p(1) is a sum of delta functions at the times where spikes ocour, 45 d
in Eg. (A 14 so that

{plrsit —th

©| -

M) =

|
=§(Z“’_""J“'” -r+>
]
|
=3 Zﬁfr—.r.-].'rtr,—tl )

where in the last siep we make use of the fact that the delta function:
is zero unless 1 = £, so we can replace ¢ by ¢ in uny function that
the delia function. But now we recall that the Wiener kernel, whi
the response of the system, should be independent of the ume at whit
measure this response. 1 we wint, then, we can integrate over £, W
from 0 to T in our experiment, and then divide by T'. This is useful b
Eg's. (A.19, A.20), which tell us that when we integrate the delia fun
obtain one if the time & is 10 owr integration window, and zero othet

A4 Powsson model |

then the time imntegral of the sum of delta functions just counts the number of
spikes in the window, as in Eq. (A 211 and in this case we take the window to
be the whale experiment:

|
5(25[: — 1yt — rJ>
i

gilz)

DT e
=?_/; dfg(ZJrh[I—r.-in:f - r}) (A.T6)
: Z'[Thﬁ:r b5l — 1) (ATT)
=— — it — -
S\, AR
(A.78)

1 N{T}afr )
= — | —— — 1Pk
Sy T !

MNow if the duration of our cxperiment is long enough, the aumber of spikes

we ohserve per unit time, N (7')/ T, will just be the average liring rate 7, with

wvanishingly small (o ] /+/T) fluctuations. Then, finally,

gilrl= %{-"ffj - (ATY

Thus, up to normalizing factors, we see that the first Wiener kernel of a spiking

meuron, gq(r) is exactly the average stimulus measured a time 7 before the
‘ocourrence of a spike. as promised in the text (de Boer and Kuyper Y681,

SON MODEL 1

The Poisson madel for spike finng is defined by the assumption that the -
currence of each spike is independent of all the others, given that the stimulus
waveform s(T) is fixed, This stimulus determines the firing rate as a funetion
of time, which we write as r[t;s(71] to remind ourseives {as before) that it
depends both on time and on the particular stimulus being presented.

As discussed in the tex), the fact that cach spike is independent of the others
means that the probability of observing spikes at times #y, 12, -~ &y must he
Proportional to a product of the rates evaluated at these times, thal 15

Pl sty sl stndrbisss (o)) v eas sizhl

N

=I—[f'|hi-'-'[1']'|-

(A80)
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But to get the exact form of the distribution we must include a factor ¢
sures the probability of me spikes occurring al any other times, We
the probability of o spike occurring in a bin of size AT surroundin
hy the original delinition of the rate, pir) =r|e:5(T1]AT. Then the
of no spike must be 1 — pit). So we need to form a product of faciy 1

where we must be careful to remember that [, denotes a product over alf
passible times t,. To simplify this product we remember that products can be
wrned into sums by taking logarithms. Thus if we have a product of terms
¥yxz - -+ oy, we can write each o as the exponential ol its logarithng:

. =X 5 AR

fiar all times not equal to the special ¢ where we observed spikes, Ler? r=explnx) (AT

{actor F, = pyx1--- iy =expilnr bexpllne) - --explln sy} {ALHE)
- I—[ [1— pita)l; =eap(lnxg +Inaz + -+ Inawl, | ALHE)

A ES I
a5 i shorthand we write

F=T]I~ plwl.

Then the probability of ohserving spikes in bins surrounding the ¢ 15

where in the last step we vse the fact thal explAiexpi 8) =exp(A + ). We
are interested in using this trick on the product over all times in Eq. (A86),
that is

]_[ (1 = rituis(T)AT) = Hexp[tnu — rlty:5(T)|AT)] (A.90)

Plialstoiiany = it ]'] (rlriss(TI]ATY,

= exp |:Z!ntl —rlr,.:.w'iri]ﬁth}, (A9])

where the N corrects for all the different ways of assigning labels I-.%t . spthat when we substitute back into Eq. (A 86) we find
Lo the spikes we observe,
To procesd we pull out all the fuctors reluted Lo the 1 and isolate |

1
PUGsoATY = = [T = rinismlar)
independent of these times: e

N
.rlt,,'.{'rj]r_‘.:' )
. 1_[ ( I — rlr; ¢[rJ]ﬂ.r

——pr[zlntl ,,:.-;fr}].ﬂ-.r]:|

M
i g f

* | (—r“““”l i ) (AN}
o | — st AT

Il

Pln)|stzian™ ,\ran“lr“-‘[“mTJ

= }—[[l — plia)] ]_[{r[r, s(r)]AT) (A

1
= o l_[ {l = ¢t siTHAT)

by \a
ety 4
N I?Nﬂw At is very small, which means that we need to take the logarithm of
% ]_[ {rltsirifar) fumbers that are almost equal to one, We recall that the log of one is zero, and
i=l Ahe Taylor series of the logarithm in the neighborhood of one is
:%H“—Flhﬂ.\-{f”ﬂr] I | +.fi=.f—é.rz+%.fi—'-~. lf_.i\.QT,l
" 2 :

l_:Ill this case we apply this expansion to

N
stz AT )
. H ( | — rf.r,-',.s'{r}l]&! :

- | 4
. In(1 = rlrss(2)AT) = —rlty: s(T)AT — 5 Uritgrstie] Ay + -+, (A94)
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5o, when the dust clears, the expression for the probability of the spike arrivil
times hecames

s0 our expression for the probability can be written as

1
Pllslstryian® = —exp [ZIHH - rltg: 5(e)] Av) Lo .
' [ F”n”””l_ ‘H&”.\ N|fx]3 Z‘_"IF‘““T”&T}
i ﬁ ( rlisin)]Ar ) |
f=i V= rliistz)]ar = 2 Y (=rlnise)]ATY + - ]
T
=—¢x]1[z: Fligisiti]an ¥ rltisiT|iT ) (A%
x H | —rliain)]Ar '
== i Z (—rftes SLT)]AT)E 4 2o I . N
25 =—exp|— [ derleisicdl l_[r[rr-::r{rJ!. (4,99
' Nl i=1

eleair A
% I“[( [tis8(T)]AT ]
1 —rli; n;r}l.s}r
What does it mean that we sum over bins, with cach bin weighted by :

AT? We recall that this son of sum converges, as the bins become
integral. That is,

tor any function f(¢}. In the present case this means that

The integral over time should refer to the whole duration of our observations,
whicl we will say ranges from e = 0wy =1, Thus

i ; Y
P Pl siT)] = chp|: f dt r'if;-'il;ﬂ]:l nr[f,-:.'r{r}l, (A.100}
K =1

as promised in the text, Eq. (2. 151,

Now we indicate the steps invalved in checking the normalization of the
probability distribution in Eq, (A 100), We want to calculate the total probi-
bility, which invalves taking the term with N spikes and integrating over all ¥
arrival imes, then summing on v:

o T T !

Zf u‘:.[ dr:---f dtw PUEHA Y

g0 0 il
j u’nf dta--- f n’r,x,-—t.xp[ f ﬁ’fr!f;j[?:]]]
it 1 0
N

I—[vln;s(r}l- (A.101)

A _ ! 4 1
&I:rrjﬂﬂp [; (—rltyisim) &) — 3 Z: (—r[taostTi]aT)s -2

e T ]
= exp [—fﬁfrrh:ﬁ;ir}l— E.-'_‘.r/ 't {r[:;s{r}]}"‘-i---*:|

Now we notice that the second integral in the exponential has an extra
Ar. which comes from the (A7) in the previous expression, but if W
let At go to zero this must be negligible as long as the rate doesn’ :
infinite. Similarly, we have in Eqg. (A95) factors like

FlisirhAr
I —rltzsizijar’

Motice that the exponential does not depend on the [r] or on ¥, so we can take

. E it outside the sum and integral,
and again as At — () we can expand this in powers of At and drop all

first term. This is eguivalent to replacing the denominator of the fractiol
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o0 T o7 4
Z [ ‘“1j f”‘-*.--'[ din P xi)]
N=p 0 0 A0
- i [,r'mI T J ]"! ] T .
_.~.'=n~” IrI-L ”1“-.,; ”wmucp _,lr: dirle;s(y .

N

¥, nr‘[r,-'..sl.’rﬂ

1=l

T
zexp[—[ n"n'lr:x['rll]
a1
) Z F[ rf?lf ti'fz---j dtprtisit)l
Ne=n Mt i 1

orltaiste ) ---rliyiaitil

Although we have to integrate over all the N different 5 together (;
menstonal integraly, we see that the mtegrand is just a product of b
depend on cach individual 5. This means that really we have o produge
one dimensional integrals; i

o0 1 T T
Zf fmf .-n:---f diy PN ()]
=040 L 0
.
= exp —[ drr[r;.;[r]]]
Ju
'.'-:.“||I | T i) T
. me dnf drlr--f diprlfyrei)]
Nr=n 1T L o

®orltzisln)]---rlenysiT)]

T o | T
=cxp —f dirftixin] Z—f dtyrltis(rll
] N=d NSy

. o
® f edrar{ra siTh] - / digrliassiry]
ih Jn

T 0o, | T N::.
= exp —f :Hrl:‘.stﬂl:| Z Vi (f z.rrr|r:,-rlirJ]) !
i * i

N=l)

A5 Poisson muodel [

Now we have to remember that the series expansion of the exponential fune-

tion is (with 0! = | by delinition)

T
L
expl¥) = m.\"'". (A.104)
M=

5o we can actually do the sum in Eq. (A 103):

-|" f e T
exp [:— L II'I:-[I:J'IT]]:I ;.F (ﬁ di r1f:.l.'[r]])
T T
:exp{— l di‘f'[f:xﬂ!j]}cxp -|—f dirlezsfr)]
i) 4]

N

(A S

which completes our check on the normalization of the distribution in Ed.
(2.18).

POISSON MODEL 11

It is a useful exercise to derive the expressions for the spike count distribution,
Eq. (2.19), as well as the mean and varianee of the spike count. Eg's (2.200
and (2.21). The derivation serves to remind us that all these yuantities follow
from the general definition of the Poisson model in Eq. (2.18).

Ta find the distribution of spike counts we take the full probabality distribu-
tion Pf{r;1e(r )], pick out the term involving N spikes, and then integrate over
all the possihle arrival nmes of these spikes. That is.

i I T
P{N]=j L”If .- [ diy P Hs(T)].
1k 0 I

Substituting from L. (2,18}, we have

i T i
HN}=[ dn[ rhg---f diw B0 )]
Wil all

o T ! 1 T
=j dnf u’r;---[ eliw — eXp —f dirftisiti]
[H] 11 k] f\f (4]
i

w l_[ rlisalrll].

AL TG

(A07)
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T

As o the discussion of Eg. (AL103) we notice that the cxponential B | o (A.115
be taken outside the integral, and that really we have a produgg = expl=@) E1E£ o Wy

dimensional integrals rather than a full N dimensional integral:

T T T I T 9
PW}:[ it [ n’::-“[ iy —ex —f dt F[fs(zy
! il I.l:] Jo NN B i} t 'S'{t_,
. :

= l_[rlr,-:.ﬁ'[r','l]

i=l

1 L
maxp —j:l derli;aiti]

Now we have already made use of the series expansion for the exponential,
Eq. (A.104), and to sum this last series we notice that

. i
Q"',ﬂ.r-_hga_é;_ﬂ, (A6

50 that

o |
(M) =exp(—{) L EQNN

il ]
T T ro& = exp(—{J) i ooV (ATIT)
xf u’nf rf{g---[ ffr.vnrlz'.-:.'rl{t}] = e NIHO >
0" ] Ji bl N
| ' v 4 —exp(-00-L 3 LoV (AL18)
= exp| — [ dtrfe;sirl] ([ dr r[.';,.g'{t}]) ag =N
s S Wil
i
1 = expl— (2 — exp(+0), (A1)
= — exp- Q}Q""r A P {.- QIJQ P

N1

where we have defined

=
o =f dt rltisic)].
{1

fn particular, the probability that no spikes occur in the time from t =
r=Tis Pilh =exp(—0). ar

T
P} =-exp [u f el r[:'.:.'{r‘.l]:| .
i

With the probability distribution of spike counts from Eq. (;’Lll'ﬂ']"
compute the mean and the variance of the count, To obtain the meany
pule

where in the last step we recognize the series for the exponentiul. Now the
derdvative of the exponentiil is just the exponential itsell,

:n{-% expl+ Q) = expi+ 0, (A 200
56 that

il
— expl— 010 — exp(+0
[N} = expi {_}L’ﬂﬂexp{ o

=expi— M dexp+0) =@ (A 121)

We see that the meun spike count is what we have called @2, the integral of the
firing rate, as pronused in the text,
We can do a very sumilar caleulation to lind the varance of the count distri-

(N)= ;I PININ - bution. We start by compuring the average of N7,

. 3 Zx 2 A.122)
I . {N=h= NPING. !
= NI exp(— Q)@ N V=)
N=ll ' R
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Substituting for PN from Eq. (A 1T and rearranging, we haye

(N = i NEP(N)

=0

e e Nl ) | M
= Z exp(~ Q)= 0

M=l

—um—mz m” to¥,

The trick is once again to write the extra factors of N (here N?) in
derivatives with respect to . Now we know that

= N{N = 11g"V "

.iIQ
0 wie can wrile
2 o N a N
M=M= N .
o P Q3 Q i e
which is almost what we want. But we can use the formula in Eq, (/
finish the joh, nhlﬂining

3
Qd}? QdQQ.

Now we can substitute into Eq. (A_124) and [ollow the steps corn
Eq's. (A1 17) through (A 121):

HI Q.N Q-

(N7 =expl— ) Z AI”N"Q”

=l

i - PR
—exp-0) Y — | @ Nt O
L YT [Q i0i? T e3¢ }

_pri—Q]Q' }': N,Q“ + exp(— QJQ :

2

=
_ex[‘[—QJQ' < exp(+Q) + gxpl__ﬂ,gd,a epo.Q].

A6 Bstimanon from imdependent responses

—expl— Q107 expi+ Q) + expl— Q) Q exp(+Q) {A.131)

=@*+0 (A.132)
Now since we have already identified @ as equal to the mean spike count, this
nieans that the mean square spike count can be written as

N2y = (N} + (W), (A.133)

But the variance of the count is defined by
(BNIE) = (N — (V)P (A.134)
= [{N}* + (N)] = (N} = (V). (A.135)

" Thus the variance of the count for a Poisson process is cqual to the mean count.

TIMATION FROM INDEPENDENT RESPONSES

fmagine that we have observed a sequence of responses [rom a neuron, Ry,
R, -+, Ry, and from these responses we would like to reconstruct the sum-
ulus 5(r). To simplify the calculation we assume that each of the responses s
statistically independent of all the others if the stimulus is lxed.

The assumption that each response & is independent of the others can be
stated mathematically as

:
PRy, Ry Rels] = | PIRls] (A.136)

That is, given the stimulus s, the probability of observing all of the responses
Ry, Ra,- -, R is the product of the probabilities of observing the responses
individually, Now, hy Bayes' rule, we can write the probability distribution for
the stimulus given the responses in terms of the distribution of responses given
the stimulus:

PRy, Ra,--- . Rils] Fols]

Pls|Ry, Ry oo Ryl = Pl_ri' Ri] . (A.137)
1= 7"y

But then we can use Eq. (A.136) to substitute for PRy, Rz, -, Rels]

PIR B RelsHPuls]
PlE By oo Ry

Pals]
| | S A R 38
( flfhl'-]) PIR| Ry, Ryl el

Pls|Ry Ra--- Ryl =
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In the experiments discussed in section 2.2.3 we have learned abogg ¢
butions s R], not P[R{s], soowe vse Bayes' rule once more, now in

Pls| ki P&
Fals]

Substituting into Eq. (AL 138) we find that

PlRis] =

3
Fuls]
PlslBy, Ba,e Ri] = PIR |5 <L
| * (;I;[g | ll) PIR Ra,oo Ry
Fi"’l“]lplﬁll Folx]

)

(P[R! Rz Rg'l n PLRi] )
E
w Pals] = (I—[ )
|

WB' notice that the firse faclor is a I..UI'l‘\td.TIL gwcn Lhat this pa:ncu.lm‘

i
=(H 'P”["f PRy Ra, o

Frls

vani conditional vetﬂciiy wavelorms o those of the a priuri waveforms. Thes
conditional probabilities correspond to the response-conditional ensem
fined in section 2,2.3, |
In the experiments on H1 (de Ruyter van Steveninck and Biale
the response-conditional ensembles were approximated as Gaussian.
concrete, we discretize time so that the stimulus s(¢) becomes a ve
ne--) al discrete times 4y, ta, - oo, fy, - Given U
have seen the response &; the mean sumulus waveform is a veck :
call wy , and the fluctuations arcund this mean are described by 2
matrix that we write a8 Cp,, Somewhat schematically, then, we can’ all
relevant conditional probability as

values (57,84, -,a

I
Pls1R;] o exp [ Sis—wg)' - Cpl-(s— w:.:,-‘a] .

where v/ denotes the transpose of the vector v. In similar notation, t
ensemble of stimuli ean be written as

Conditional mean as oplimal gstmstor

AT

.y
Fufl.locsxp[ 58 Y i ] (AL 143)

and now we hive the ingredients to substitule into Eqg- {A.141 4. Dropping all
the constant factors—that is, the factors independent of s—we find:

Pls| Ry, Ra---. Rl (A.144)
. ke PLsiRi
(Plhﬁ Ry il l_l il ) sl (Q'Fuu]
k —l[s—wfj Ol els —wa)
o exp [_lsr cils ]l_[ Bxi’[ : R ,sj ]
2 i=] cxp[—%s‘T-C” -s]

{AL145)

Cy' - (s— W)

k
L4 I o
x eXp |:a—;s'r-f.‘”‘.5— . E (5 —wg,)

==
li“ i ! ] (A.146)
A g« G 48 46
2.i'-'l
! L
v:-:cxpl——s [ +Z{(_"I _']:l-s+ZCHr Wg s
=1 r-E
1A.147)

Mow we can sce that, given the observed responses, the maost likely value
of the stimulus, which iy also the mean value (hecuuse the distibution is

Gaussian), is our hest estimate:

Spgr = l:L{C_I U T+L’: j|

Note that the R, occur at different instants, and the corresponding veloctly
vectors and covariances must be shilted in accordance with these occurrence

LT
Doy (A.148)

=l

limes.

CONDITIONAL MEAN AS OPTIMAL ESTIMATOR

One of the mast useful Facts in the theory of eslimation is that if we choose
X % as our measure of errors, then the estimator that makes the smillest errors
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is always the conditional mean. Thus, i we ebserve v, then to estim,
showld compute the average vilue of 1 in the conditional Probabiligy. i
tian £ L]y We will call this conditional mean (v}, and it 5 defined py

. by

iy = [rf.r Plxlyix.

Here we review the prool that (x}, is indeed the optimal estimag,
it minimizes x*. In the process we shall introduce the notion of
differentiation, which plays a key rale in several of the caleulations d
in these asides.

Let us imagine that we observe v and compute some function F{y)
call our estimate of x. Our mean syuare error is, by definition, an ave
the joint distribution Pix, v}, b

1% =17 — 5P?)

=fu’_r [rf_'t-‘PLl‘._‘t'][Fﬂ_‘&'.ﬁ 1

To find the minimum value of ¥* we must try different functions F(y!
we do an ordinary minimization problem, we know that the rn.1.mt|1
function is o place where the dervative 15 equal o zero, and we 56
1o check that the second dervative is positive. Here x7 is a function
function, which is called u frinetional, The idea is the same, ho
can find the minimum of x* by asking what happens when we make &
change Fiv)— F{y)+48F{v), where d F(v) is an arbitrary small fu
the minimum, the change 15 zero to first order in & F and 15 positive
order. :

Soowe want to eviluate the change 4 ¥ when we make the change F().
Fiy) 4+ &F () '

KEIF[J'}+5F{_‘-'H=IE'I [n’}' Plx v F(y) +§Fiy}—1]:"
- [f.r_: [u’_v Pla.nlFiy) —x)
-I-Zf:f.-.'f:f}' Flx, visF(nFiy) —x]

+ fd,r;fd}'F[x,}"JléF{_‘l"J]:.

A7 Conditional mean as optinl estiator

Now we notice that, of the three terms in this expression. the first one is just
K 21F ()], so we have:

xIFU) + .sn;.-n:fm—f;r_»- Ple, WIF(x) —x]
—':—Zfdxf:!y Pl widF v Fivi— x|
+f.:!x l-.r_.f_g.- Pix, BFOF
= ¥ [ F ()] +2 [:h‘ [rf_r Plx, v F O Fiy) —xl

+ [d.r [:fy Plx, NIBFOOT. (A.153)
The change in ¥ consists of one “first order” term 208 F(y), one “second
order” term o [§F ()%, and no other terms; this is becavse x7 is quadratic
in F(v). Furthermore, the second order term is obwipusly positive oo matter
what function we choose for §F(y), so all we really have to do is find the
place where the first order term vanishes.

By analogy with ordinary derivatives and the Taylor series expansion, we
define the funcrional derivatives of ;{2 with respect to F(yv):

:'i_xl

HEGY + EF )] = X 1F () 1y SF(y)——
KHUFO) +5F )] =% If[_ﬂ]+f:_1 Fes

lxl

t I Id'[ﬁf":t'}135—+---
! [ avisr .

: (AL 154
SF({x)&F(v)

where in this simple case the higher powers of §F indicated by -- - are not
present, Comparing Eeq. (A.153) with the definition of functional derivatives
in Eq. (A.154), we identify the first order terms:

Sy ? )
fd_v.‘iﬂyj%m =2f:f.rfd_r Plx, v FlefFiy) —x]

=2fr_i’_1.'ﬁf"i_'ul fﬂ'x Plx v Fiv) — xl (A55)

To procecd we interchange the order of the v and v integrations and expand the
Joint distribution P(x, ¥} in terms of the conditional distribution for ¥ siven v,
that is, P(x.v) = P(x|y) P (v}, 1o obtain




Muathematical asides

"

marm[m Pla, i Fiyi—x)

2[:!1. FF() j dr Piu|viPivilFiv) —x]

=2 |:dy EF{HP['I}fﬁ!’.t Plx| v F ) —x]

2| dvEFiviPiy)

w |:f dx Plely)Fiy)— fﬂ’x P{x]}'j_r:[ h

Of the two terms m brackets, the first one 15 easy o evaluate be
can take Fiv) outside the integral over x. and then use the normaliz;
Py vk Thatis,

[d.r PixlyiFiyvi= F{_\.'de.r Plx|y)

= F{y)

sinee the normalization condition is

fﬂ’x Pixiyl =1,

The second bracketed term in Eq. (A.156) is [dx P(x]y)x, and ¢
with Eq. (A.149) we see that this 15 the conditional mean (x},. S0
back o Eq. (A 156) and substitute for both of the terms in brackels:

Ax® e
ayafiy - =72 [ dvdFiviPiv)
f ! t'”ﬁF{_'r] f ARy ;

x U dx PLx|vIFIy) — frfx P[II,?J*‘T

=2f{|r_'|' SR (YD !_F'[_‘t':l = ':‘-}'.]

This equation must be true for an arbitrary choice of the functi
which allows us to identily the terms inside the integral:
1

4
[ f.*'l.'-:ﬁﬁ'i,'.']é;{{—ﬂ £ 2.[ dy P [F(_‘b‘} - 4:-1’:'}']
.!i;.{l

=2Pvi[Fiv) — {x)y
= 3F Y [Fi3) = {xhy]

AR Prachcal caleulations of reconstruction lilters

The condition that first order changes in »° vanish for any choice of the
function &£ (v) s that this Tunctional derivative be equal 10 zero;

S‘:H (A.162)

=2Piy) [F(y) — x}] (A.163)
=[Fiy) — {x)] (A.164)

= Fiv) =i (A 16RS)

Thus we see that, 1o minimize x°, the best estimator is equal to the conditional
mean, is promased.

PRACTICAL CALCULATIONS OF RECONSTRUCTION FILTERS

In Chapeer 2 we discuss estimation of a continueus sensory stimulus by filter-
ing the spike tain: the estimate tukes the form

-:mu:—z_'ﬁ]u—r,:+z.=fﬂr—r,.r—rJH (AL 166)
inf
where the spikes ccour at times (1] and the K, are estimation fillers. With this
formulation, estimating the stimulus becomes a matter of choosing the K. We
choose the filters to minimize the eoror [unction

E= {fm $10} — s (OGS (), (A.167)

where 4] imposes a variable weight on large deviations in the stimulus s,

We begin by setting (5] = 1, in which case the error function is the mean-
square error, £ = x-. For simplicity we also assume that the average value of
the stimulus is zero.

¢ “acansal-shifted”” caleulation

Let us start the analysis by restricting ourselves to linear liltering, that is
Ky}, and ignoring the constraint of causality, Then our problem is 1o find

the kernel K () that minimizes

I_"
xIIK|1r:|=< [c.fr (i z Kodr = I,:b| ) (ACl6R)
I i

Although we cun proceed with x* in this form, it is easier 1o change to the
r"e"]'-lﬂl'lu}' domuarn, using the ideas discossed i section 300 and in the est by
Lighthill (TO5E). In particular, Parseval s theorer tells us that the integral over
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time can be converted into an intcgral over frequency. In general

. 1 R
[m F) = [‘1—"’|f-':uu|“..
. J e

where F(w) is the Fourier transform of F (1), defined by

_ i - 4 ‘ ; |1
Tfﬂ-ua,tmn (IZI_:prl+mnh| ) (A.173)

We see that each frequency compeonent of the kernel makes an independent
contribution to ¥~ so we can follow the procedure of section A7 for each
component. The result is that #% will be minimized if we choose, al every
frequency m, a kernel that satisfies the condition

(E{rg:}Zc}apt—irme] = (K () Zcxrll."w[r,- — 1 h. [A.176)
i il

Fle) = f di Flerexpl+iat|.

The filter & depends only oo the stimulus ensemble, so it can be taken out of

Fourter trunsform of (1) s §lew), and the Fourier transform of our e
i the average. Then we can sulve Eq. (A.176) or the filer,

can be written in a simple forim:

[u’r Z Kot — r)expl-tieowt]
! 1

Kilw) = {Flew) 3 expl—ion))

= - < ATH
- (3 explio )<} {

The filter is the Fourier transform of the average stimulus surrounding i spike
divided by the power spectrum of the spike train (see sections 3.1 4-and A2),
Thus the filter is completely determined by the experimental stimulus i) and
measured spike times {4} in response wo this stimulus,

Equation (A.177) represents the best acansal filter. To carry out real-time
estimation of the stimulus we turn this filter intooa cavsal filler, We can insure
that the filter K(7} is causal by setting K (7 = —Tjeny) = U and shifting the
filter by a delay Taeay. Thus we define a filter K‘]"R{I}I = ({7 (T — Tgelwy)
where {i[r = H: =0 and #{r = {1} = L. In general h"'“” will no longer min-
imize ¥ if, however, the main features of the I:Iu,r are confined o times
T > —Tdelay 111; truncation process will not significantly change the hilter char-
acteristics. We can check the influence of imposing causality in this wiy using
the second approach to caleulating the filter,

A limitation of this approach t the ealeulation is the inability 1o go be-
yond the first term in B (AL166), As we discuss in section 2.3.1, {rom stud-
ies of models for spike gencration we believe that the contribution of higher
order terms will be relatively small, but this statement clearly requires verifi-
cation. Such verification is provided by the second approach to caleulating the
filter,

= Zfdr Kl = fbexpl+icdir — )] expl+fwt]
i

= Z expl o] fu’r Fylrhexp[+iwr]

= I:Z exp[-|—r'.'u.r,]:’ Kiti),

where K () is the Fourier trunsform of the kernel &) (7). Now we can'te
our expression for ¥~ s an integral over frequencies.

-

Flin) — f&j{&”[z exp| 4wk |:” } fﬁ L

f [

e ilies
:f S |.5¢u-..lj|"" —j —-‘Hiw:l( fcar) (ZMP[-l'I'

e -
= f :;: K}'imi{.ﬂar? (thp[—iwﬁl))

!

- Power series expansions of the &,

To caleulate the causal filters directly we expund the filter in a power series
of explicily causal functions, f,{r) where f.(1 = 01 =1 In this cuse, our
eslimate of the stimulus is
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S 1) =Za,4 fﬂ'r _ﬂliﬂzﬁlr b=
M i

+3 by [dnfr"_,l'},,[r].,l".,-li‘r":lzﬁ{? —5=1)) St —yp 2
v i I Bl

L

Al Pracucal caleslations of reconstruction filters

Note that the coetficients depend on the experimental stimulus s () and spike
times [¢}; in particular, & depends on the two-point correlation function {or
autocorrelation function) of the spike train and the average stimulus surround-
ing a spike: this is much the same structure we saw for the acausal-shifted
filier, Eq. (A.177).

The caleulation is essentally the same for higher order terms. We can
rewrite Eq. (AGE.2) in o more general fonm:

+rng

where the expansion coefficients a,, determine the shape of the li

by determine the shape of second order filter, ete. For computat Fag{f) = Z Xp¥alt) (AL L83
poses the power series expansion must be truncated after a finite k

terms, which limits the culeulation to filters that can be created fr where

sulting finite basis se.. Comparing filters calculated using this me X={m.as ... (i TD B D PR - L B - TR | (AL

the acausal-shifted filters serves w check if this truncation limits th
of fillers, s well as telling us something about the influence of the ¢
constraint on the form of the filters. 1

We choose a particular delay time for the reconstruction, and \rm}r.tﬁg,
series coefficients a,,, By, - -- 1o minimize

i @ veclor containing the expansion coefficients, and

r" Z‘-fﬂ.’—!,"l- b
E] _ﬁ{lr —1}

Y Al =w)fie—t)

Ll tgeny) = (fdf [$0f — Taetny) — .'-',:_-,|I:IH:G[EI:I - Tdclay]l)*
Yo htt =) fale — 1)

Again we consider G|y =1 so we are minimizing the mean square. ! (A.185)

y%. Restricting ourselves for the moment to the linear coefficients
condition 87 /day = 0 leads to b
g R P |
api= 2._. Fil W™ Dups

M

Yoo falt = k) fatt —1p)
2t — R e — 1)

\ : /

contains products of the basis functions £, (1) convolved with the spike Lrain.
Our minimization condition {8 now 8 Taelay } /81y = 0, which leads ro

where N denotes the inverse of the matrix N,

i ([rﬂ 30— Tastay) D fult =1 :>

Ly __'Z‘rr:u{ﬁl_l]r.lm (A.186)
(g
=fu’r ﬂ,tn(Z.ﬂr-l-n}l), - where
i BH L i
and = < I di s(r = I.!nl.-.yJ_'-'mEH) (ALLBT)
and
NJ“ =<ff!i" Z,f;u':r_h:'fr“ —I_f}) I

I, N =(f;;r _1_.'mfr‘,|_1_.',,{:]}_ (AL LHE)

These higher order filters depend on correlation functions of the spike train
and correlation lunclions of the stimulus and spike trains,

:fdrffT'_.I‘Jr[T]_.l"L-tr’l [{J’I (Zr’iu — =) =t
N 5
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A0 ENTROPY OF GAUSSIAN DISTRIBUTIONS

Here we indicate the steps in calculating the entropy of the Gaussian
tion. We begin with the definition ol entropy for distributions of cop

varables, Eq. (3.4,

§=- I daPixitogs Plx) bits

It is convenient 1o work with nutural logarithms, so we rewrite this as

Y¥=— j dx Plx)logs Plx)

I ;
=—— dx PlxdIn Pix).
tnl?'.'.lI

For a Gausstan distribution we have

] | =My
F:.n_mexp =7z |

In Pixy=—1In (v’ri‘..ﬂm: -

P i

5o the entropy can be obtained hy doing the following integral:

[
g T dxfPiayin Pix)

.

I {x — M)?

|
e L R

L") |:In (w.j._?zrrz 4 LE = 28): Mﬁl] .

2ol

We can do this integral explicitly, or we can notice that it has the 1
an expectation value, or average over the Gaussian distribution. We adopt!

potation

¥ —M £
ifixny = : dvexp [—u] fix)

V2mra® 20°

for the average of any function f(x). Then the entropy is

A Approximating the entropy of spike rins

5= —L fﬂ'.tf’[.r}ln Pl
In 2

|
LI (A.195)
In2
] ey {x— M)
P a F o " - & A
=ie [I[] (wf._.nﬁ ) | 53 Wy — M) :Iil (A 19T)

Motice that the averaze ((x — M7} is, by definition, the variance o L and then
& ] i
this cancels the &= in the denominator:

{ )
' o oy (L :
S-—]n—z -]n(\.lu'a )+ﬁ“}. M :!]
| 2 |
| .y — ‘
(A _lnz_m(*"”“)'*g} (A.108)
| 'I] it 1 5
ey _E nilwo j't-j (AL199)
I = Zlnzlntﬂrmzh bits, (A.200)

where in last step we make use of the fact that Ine = I Finully we go back 1o
using logs to the hase tea:

=
In{2mea™)

5= 33

|
=3 Ing:{?_rrc'r:rzl hits. {A201)
which completes the calculation.

APPROXIMATING THE ENTROPY OF SPIKE TRAINS

We begin with Eq. (3.21) for the entropy of spike trains:

_ T 4 E = s ] )
5 s [(FAT In(FAT) + (1 —FATHIn(l =7 At)].  (A.202)

We are interested in the limiting behavior when the bin size At is small. To
find this limit we make use of the Taylor expansion for the natural logarithm,
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!
In{l+x:|=.r—;.t"+---. (

as illustrated in Fig. 2.8, In this case we identify x = —r Ax, so that.

b= 1
In{l =FAT)=—FAT — E{r!.\.rr+-- 2 (A,

Substituting into Eq. (A.202), we find

5= _ﬁr};nl [iFi\rJ Im(FAT) 401 —rAT)Ini] —F.f_'s:}]
=- FATIINGFATY {1 —FATH—FAT+ -]
ﬂ.rln’l![r ik ] {
22— £ [{Fﬁr}In{Fﬁr}—Fﬂr],
Atln2

where we drop terms proportional to the square of the bin size (A )%

- - " 0 - Il
we pull out the common factor of rAT and write the extra *1" as the

Jugarithm of e as in Eq. (A.200):

[(FAT)In(FAT) —FAL]

Arin2

T
=— —(FAT)|In{FAT) =]
ﬂ.rln’_‘[ [ I

T
= —;;1—2 [In(F.&r] - Ine]

FTl (F.ﬁr)
=TIz N e

FT I | J
= 'E‘I n(h:n

£
= (T lop (—)
M e

where in the last step we change back 10 a logarithm to the base tW
dividing the entropy by the duration T of the spike wraim we pbtain thet
for the entropy rate with small bins,

S/T =rlog, (r:i) .

which {5 Eqg. (3.22) of the text,

|

i

Al Maximum entropy and spike counts
AXIMUM ENTROPY AND SPIKE COUNTS

One of the most useful techniques in the application of information theory is
maginnt entropy, We use this idea literally, 10 mean the probahility distri-
bution that has muximum entropy given the values of certain average quan-
tities. As a first application, we derive the maximum entropy distribution of
spike counts given the mean count or average liring rate. This problem is more
general—we could be counting spikes, vesicles al a synapse, photons ariving
at a rod cell, or cars arriving al un intersection. We wanl w lind the probability
distribution for the count » that has the largest entropy, given that we know the
mean count {n),
We have some distribution pin b, and the entropy of this distribution is

X0
S[P[”J]=—Zp{n‘.llugz_n1n:|. (A2L3
n=ll

We would like (o search all possible distributions and And the one for which
S[p(n]is maximal. As in the discussion of optimal estimation in section A7,
the idea is o examine the changes in 8§ when we make small changes in the
function pin}. and look for a function p(n) such that these changes are zero at
first order and negative (since we are looking for a muximom} at second order,

The difficulty 15 that we cannot make arbitrary changes in the function plr),
First of all. this function is a probability distmbution, and henee i must obey

the normalizaton condition
bu

fres me}. (A214)

=f
Second, we assume that the average count is known, and so the distribution
has to abey the cquation

iriﬁzz:!pw}. (A215)
w={

Our problem, then, is to maximize the entropy while holding lixed the two
sms in Eg'so (A2 1 rand (A215),

There is a general approach o solving such constrained maximization prob-
lems, and this is the method of Lagrange multipliers (Mathews and Walker
1964, If we have some function (1), x2, -, xx) and we want to find the
miximum of this function while holding some other function gx, rzo- - ax)
fixed and equal to gy, we look for the maximum of the new function

Flx), xa,--+ tnihl = flan am - an) — Ap(xy, xa,---.an), (A216)
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where 2 15 called the Lagrange multiplier. When we find the set of
¥y, xa, -,y that maximizes P, this extremal point depends on
the end of the calculation we adjust & w the point where g hag ﬂtu
value gp.
Let us see how this technigque works lor masimizing the Enwﬂr
we have two constraints, normalization and the mean count, we ppe
Lagrange multipliers, that we will call &) and 23, Then we want to i

the function
'

oo o
Slpiny=— }: pintlog, pie) — &y Z pluy—da Z np(ny.

HE =il =l
We want to examine what happens when we make a small but arbitrary
piny = pin}+dpin), and identify the functional derivatives of 5 with p
to g {see section ALTY We begin with the expression for 3', 5

-
S[pin) +dptni] = — Y [pla) + pin)| logsl pn) + Sp(n)]

szl
] i)
— a1 Y Lpim) +&pim)] — 22 Y nlptn) +8p(
n=ll nall

Of the three pieces in this expression, it is clear that all the hard w
involved in evaluating the first one, which involves the logarithm;

dplnd,

Let uss pull out the first picce on the right side of Eq. (A.218), work th
all the steps, and then put it back together with all the other terms. We.
converting to natural logarthms and breaking the log into a sum of
one af which depends on Sp(n) and one of which does not:

o
ZI;JHH Fapind] logs| pla) 4 &pind]
na=dl

Z[;}[rr] +dpl | In] pday + dpind]
=l

b
prfn] +dpinilin (Pf"] |:k G %})

=l

[n

Al Masimum entropy and spike counes

- In"-' Z[pm}—kﬁp{nrlln Pl
ne=l}

rﬁpfn}i| (A221)

() + 4 tn| 1
Elﬂ n)+dpiny] r![ - e

I "u =[h

T proceed further we need the Taylor series expansion of the natural loga-
rithin,

I,
In{l $x)=x— 2"+ et = (A.222)
A A

which is useful for small v Looking at By (A221), we can use this expansion
to write

il ,spm} _dptmy 1 (,s;mn): .
il pin 25 pim

Substituting back inte Eq. (A221), we find

(A4.223)

Lo =]
E[p{nj + i ] loga[ pin) + dpind]
=0

ol
Z P+ Sptad) In pia)

.Ep:nj-:|

] oG
ey I
+ Inngpfn}+£p{rHHn[ L

I o
~ing Elp[rrl dpind]In pind
oL o,

dp(n) 1 (Bpin} :
_I_F.Z[FUI:I-FSF(””[ 1) 1(;:{1‘1?) - :|

={]

(A:224)

Sy Z”’i”} + dpte)]in pin)
E =il

1 = aptn) L {dpln) dpln)
=L _ § g
+ Inzg[ (n)- o) plnlg ( e }) +dpin) R I-

(A:225)
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Al Muximum entropy and spike counts

We wan! Lo wrile

=h=s Zp{nﬂnp(n}+ Z:’iﬂ{ﬂ} [—-— In pin) +

n=ll n=l}

,S[Ir;r[:r] +dpinl| = .SI;J{HEII 4 Z —&-pt Il

¥ £If:lﬂimnll1 3 I =
2:a= In2  pinl
fav e
Now we are ready to substitute from Eq. (A.226) back into oap Z &p[n]épt ;]I AU (4:229)

expression, Eq. (A 218, for Sl pin) + dplmy] and collect terms that tasd

same powers of Spin): Comparing this with Eq. (A.228), we notice that the terms in the first line of

the equation, which do not involve dpin). really do add up 1o give Slpini] as
defined in Eq, (A.217). This has to be true, so it is a good way to check that
we didn’t mike the mistake of dropping any of the terms. Then we match up
the terms o dpir ) o find the first functional derivative:

=
Stptm) +ptndl = =3 L ptn) + dpini|logsl p(n) + Sp(n))

n=Ir J

o o
— i Y _Lptm)+aptm] =22 Y nlpn) + Spm)], T ! :
=il n=0 i Z W?}p[ 1= Zﬁpim |:—— In pin) — e hj— n.rr}

n=il

T “E””(”“" pn) (A.230)
- 85 I 1
= = | e i e X 2
- L dpin) |:— Inpin)+ ﬁ} E: dpdnd |:!n 7, In2 T 1] A1)
a=ll

Similarky, we match up the terms o [4p(n))* 1o find the second functional

fo
= ,1? E[*'i,t-"[ﬂil]1 I:L .. } - derivative:
o In2 pin) ) .
e o= J e pini|" = = p( | ==~ ¥,
— ki Y [pln) + 8p(n)] — i z:![p{u}-l*ﬁp 2 =i dpindip(m) 154 2 pin)
= o - ) 525 L

. D (1 (A.233)
dplmidpin In2 pin)
Note that the second derivative is always negative, so if we can find the place
where the first derivative 15 zero then this point is guaranteed (o be o maximuonm.
The first functional derivative of § is zero when the probability distribution
satisfies the equation

= |t] - Z plndln pin) — Ay Z pln) — k2 Z

=il JI=¢

+ z&i_{;{u} I:—I—lnp(r:} - ]L — & —Mﬂ]|

astl

a8

" = (A234)
Zfﬁ,ﬂtn]] [ s }+ (A Spirn) §
2 n=il I” i PE,”} | |
A : _ ; =) — — A 233
This equation provides all the ingredients necessary to identify the []n 2 in -+ T ¥ ”}'2} (s

derivatives of S '
erivatives of 5, In plin) = =1 — (&) +nk2){In2). (A.230)
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P
or To fix the averdze count we must have

) I . el
pln)= Eﬁxp!—uﬂ. () =anfn'|l (A.246)

: =i

Z=exp[l + & In2| i

= |

A=1kalnd =an expl—an] (4. 247)

Al this point we have proved that the maximum entropy distributig e
exponential form of Eq. (A.237). Next we have to choose the values o | —2n) A 248
“ha 1o insure that the two conditions in Eq's (A 214) and (A.215) are 2 ;J" L (Aiaas)

Equivalently. we have to choose the parameters 2 and A,

The normalization condition is We know how ta sum the series 3 expl —hn) thut arose in satisfyving the nor-

malization condition, bul now we have to sum a slightly different series. To do
this we notice that

o]

b= pin)

=i}

= L ! expl—in)
= == = XM
2 7 P t

=1k

i
i expl—in) = l_”.';_}. expl—an), (A.249)

50 that

= . | &=
= Z expl = ko) () = = Z nexpl—an)
d n=1l el
i . 1 = dexp(-in)
== 2 [exp=2]"- =R =—— (A.250)
wi=ll il
So we sce that, o mantain nermalizaton, we must have = _i i i“”‘ k) (A251)
= n B £ da ri=ll g " -
L= Z fexpi—i)]". =
={} [ L I
This is a geometric series, which can be summed exactly. In general, T zﬂ:’ [CKP(—H] (A.252)
=
i-fﬂ: l . S (A.253)
=0 I —x o i b EKP{—)L} R
50 in the expression for 2 we identify x = expi -4} and tind = _l.[_ _.._.—MP{_H (AL254)
. Z [1 —expi—i)]*
=) [exp(=n)]" = (SRR (A.255)
=l l —expl(—2) ; S
- l whete in the last step we substitute the expression for Z from Eq. (A.245)

1 —exp(—A) Thuss, 1o fix the average counl, we must have
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) = P THE GAUSSIAN CHANNEL
1 —expi—i)
I Here we indicate the steps leading 10 Eq. (3:35), the mutual information for a
- éx—pii - Gaussian channel. We begin with the definition of the informition,
Ply.x)
ar i 1
!=fd'}'fd.rF[‘|'..ﬁ][u « [—] (A 266
’ 52 Mfivelis) )

pxplal =14 1/{n}

= 1001 4 1/ We simplify this expression by writing the joint distribution (3,50 in terms
of the conditional distribution P{v|s) and the prioe distribution i), using
us promised in the tesl,

Piv,s) = Plv|sy = Pis). (A267)

Finally, we need o compute the entropy itself:

- Z pinkin pim)

Substituting inwo Eq. (A266), we can cancel the prior distribotion from the

5 numerator and dencminator in the logarithm:

il

n=Afl s [j [_fF: g Filv, 5}
’ — R
o~ | , 8 FRR- R Be
== Z —expl{—hiIn | = expl—in)
e = . j dy [mmmma}l Firm ) (A.268
| ] ' B2 TPPG) o
=— eapl—Ani{—InZ — i)
a Pl
Ind n=dl =fd.r [nf.l.' Pivjs 1 P{x) Iug:|: IU“]]. {A269)
i £iy)

|
= ———[=Inf — ain})

in2 It will be convenient to transform our logarithms into natural Togarithms, und

then to expand out the log of a ratio as the difference of logs:

1= [ [ a2
Pivis)
_ v [ aspoisipis in| 28 2
nzfr_ﬁ.fﬂ'ff’[}lﬁ}f"h]lll[ P{_\']] (A270)

1
= frij.'frf.rF(_vls}F(sJ [In P{y]s) = In Piw]. (A1)

- 1 Y
= log. (&) + EMH}' {

Now we substitite for 2 lrom By, (A245) and for 4 from Eg. (ﬁ-ﬁﬂ}f;

I
8§ = log.{ £ + —Ain)
&2 mz

for i : din
=lagy | —m————— | + —=+
e [ el —a) In2"

] i We are interested in the cuse of the Gaussian channel, where both the distri-
= loga (] + {n}) + {"}I_" ln{1 4+ 1/{n}
[

bution of the signal Pix) and the conditional distribution of the auput given
the signal P{v|s) are Gaussian, as discussed in section 3.1.3:

= logs0 1 + {n)) + {n) bogat | + 1/{n})  bits.

I i~
Plsi= ——exp | ——=
NerTE) p[ 2{-:-}}

T e - [ L (A272)
A - vl
v 2 (n%) 2{n"}

To summarize, Eq. (A.265) gives us the maximum possible entropy of
g disteibution, given that we fix the mean count {1,




328 Mebithematical asices

Each of the variables 5 and v can take on any values from —oo o +oa,
the integrals in Eq. (A 27 1) hive 1o be tiken over this range. From Eq, {,6{
it 15 clear that we also need to know Py}, the distribution of LTI
turns out to be Gaussian, but it takes o few steps to find the final form
Gaugssian: We begin with the definition of P{y) as an integral over g

input s1gnals:

i
Piy) = f ds POvlsiPis)

—og

- I\,-“'E:rinz} ' 2{n?) V253 P o

1—3.1‘}: ¥
2/ zb{n [ d“m[ 2{n?) _EIFJ %

i
2w

"“ Ui £ . 8 % _1"1'--'._ F
"f_md”""[ (ia }+E)+ (m})‘zm?-}_'?

1 i
2 SN ) up[ -?I:rrz}:|

== ] 1 HT‘. #h
SN “‘""”[ ({Fﬁ f Eﬁ) i ({rﬁ)]

To do the integral over 5, we need the general form of Gaussian integrals,

2 | 2 i
f dyexp ——A!.' + B 'J'_Ircxp 2
- Y a 24

We see that Eq, (A.277) is of the same form as the integral in Hq. (A2 '-‘
we make the following identifications:

A12 The Gaussian channel

1 g”
T FrrTe
L b
_ &
R

Thus we have

. 1 wt
Piyv) = o -
! znmwzf“p[ mZJ

2
= Lafi L, 2, [y
x| “”[_i’ (-:sﬂ} v rﬁ})“({n-ﬁ)]

| yZ
2y 2 ind) ﬂmp[ 2':711}:[

. 2 i (v tn*)?

1/ 52+ g2/ i) LA™+ 22 %)
- |
U 2me 0 + )

2
® Exp [——2- (— P

|
T @D )

N [ O S N e B
ERTEATEE T W o+ ey

I y*
- S2rlgZis?) + ) exp [_z{g’-'{slb - {r::}h}

AR,
T Hmﬂ

-
V:rre i T |
where we have identified the variance at the output,

) = g 5+ (07,

(A.279)

(A.280)

(A2B1)

{A2E2)

(A 283)

(A284)

(AZES)
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o o (v — gs '._
=— [ a'x.F‘L.\'}f AT e
- —n 2inY)

MNow we have the ingredients to substitue back into Eg. (42717

L

¥ (e 5]
=3 _md.v f_m ds P{y[0) Ps) [In Py]s) — In P(y))

Tt | 5, 4
= f da P8 ) ——- [ dy Plyv|si(y — gs)~, (AL 200
i o O] —oc Etﬁ'_? o =
= — dy / ds Pivjs 1 P{s)
. _

In2 o

(v — g5 ¥t
* |:—]n1.'2r1.'{n3} T}}+Jn 21:}-1}+m}!

But remember that P{y}s) deseribes v asa Ganssian varable with a mean of
s and a varance {7, 5o that
™
f dy Plv|sily — g:.-]2 = i:}‘j"}. (A.291)
— &0
Thus we see that

(y— g8
o v Pivie) PUs)
f ..Tf i Py »[ j{'”:|

:—f .—hP{r} ij d*.'Ph]v]f'y—gn]‘

L il
=— s Pls)—=1{n"}
j::x: 2{1?‘}

od |
=—f n’.rFt.'-'J;
o 2

f ds PLx) L ot (A.202)
i 2

OF the four terms that we need o evaluale, two are JUst CONSLANES 50 we
the integruls over v and s easily:

i o — -
f d.ﬁ'f ds Piv|sPis) [— In v"ZJT{:TII‘!':? +In \,-"21':{_1-'1}
= [—m J2xin?) 4 In \fznt_u-lz. ] a’_rf ds P(yls) P{s).

= |:— In Jlfrfr;z‘,l +1n 1II|.l"l?.;-wr|:.';'1:l j drP[Hf. dy P[}if.r}

— [— In v'lfzﬂ{ﬂ:l," +1n ,',l"rlarli_‘l'zi'

== 1III." 2w ity + In v 2 {3,

where in each af the last two steps we use the normalization conditions,

Essentially the same arguiment allows us 1w evaluate the fourth termy:

f ds [ dy PLy|sHPIs) o= —- I:
:f dV?g—j d\'P{‘II'I]F[S}

Be 1I,1
= dy —— P{y}
f.?{. ' 2{}'2}

_

2{v%

1 —f. dy Ply|sh (A

! —f ds Pix). (

The other two terms are also quite simple if we do the integrals in the.
order. Cne of the terms is

ey}
f dff :J’\'F{*rli”’fﬂ[ .«Z: il

(4. 253)

bl | —
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Finally we can put all of the picces together to compute the infopmag Mext, we know the mean value of x,

: . = W]
itself: f dx Plaix = {x). (A300)
W — 0

] pee a
= —

In2 Finally, we know the variance o¥ of x. Tt is easier to write this constraint by

- & iy
saying thit we know the average value of =, that is

o (v—gs)* ey ol 2 o :
% [‘ Wy 2wy = gy o2 (y2) + 'l'%f.r;] f_wz!_r!’fx}xz = x3) = () + o, (A.302)

As in A3.2, we define a function § that adds to the entropy one Lugrange
multiplier term for each of the constraings:

| e ik 1
= iy — — Do fydy o
_1“2[ In'f 2 (g% 2+I11|.,.|' wiye) A 1}

e = futd
L N (6 S1Pix)) = —f dx Px) logs P(x) —l,f dx P(x)
In2 (n3y’ —oo B
[ v] e =
1 | ) — A2 [ dx Plxie — Ay [ dy Pxixt. {A.303)
=— x=In|— -0 oo
In2 2 ey

Now we try 1o find the function £{x) that maximizes 5.
We want to evatuate 5 with a function P{x) + 8P (x), and expand in powers
of & P(x), identifving the functional derivatives. We start with

(s u]

SIPX) +8P(x)) = _f dx[ Pix) 4+ 8P ()] logal Plx) + 8P (x]]
—

_ill g (s
= E Iﬁgl [I + —l:r'i;g] '

which completes the caleulation.

b
- Jqf de[ Py EPIx)

o T

S 1 ! -
Ad3 GAUSSIANS AND MAXIMUM ENTROPY . 2N [ dx[P(0) + 8P (x))x

o vy
We want to lind the probability distribution £4x) that has the largest e : _
ble entropy assuming that we know the mean and vartance of x, The i — k3 f dx[ P+ 8P ()] (A.304)
—nc

the caleulation is the same as in section A.11, where we discussed max
entropy for distributions of spike counts. Again we nse the technique of
grange multipliers.

We want 1o maximize the quantity

As before, all of the difficulty comes from the frst, logarithmic, term, So
we isolate this term and work out its cxpansion, then substitute back into
Eq. (A.304) at the end. We begin by converting to natural logarithms, then

s breaking the log apart into two terms:
i = j dx Pl log; Plx), &
.. f dx| P(x) + 8P (x)] logy P (x) + P ()]

hut we have several constraints to obey. First, we know that the function i

heing a probubifity distribution, must be normalized, so that

(o
f dof{e)=1.
—

b )
= ]]—1f dxl Ply 8P Inl Pl P} (A.3058)
LU GO e
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™

! R A BP@Y S T,

:ml_xrh[Fr.H+éF1.I.‘.I||n(P{.1}[]+ P ] n3 D.'.d.t {(x31n Pix)
+ —j drd iy [in Pixl+ i]
In2 Jon
=

= — drlPixy+ a2 0x0]In Pix) 1 a8 -4 1

3} g sPF| = 30

0% s g [ dxtePeo) [2 P{_ﬂ]+ (A3H1)

L7 dd P 4 5P| 14 2R :
e et il il bl i Now we go back to the definition of STP(x) + 4P(e)] in Eq. (A.304) and

substitute [or the logarithmic term:
oo

S[Pix) + 8P = —f dxl Pix) + P logs [ Plx) + P50

=%

Now we use once more the Taylor expansion of the natural logari
{A93), in thns case approximaling

SPC)T AR 1 fEPY
|14+ 2| = - +
iy Px) 24 Pix)
Substituting inte Eg. (A307) and collecting terms that have the same p
of §F (1), we lind:

m = |
—,J.,,f dx| Plx) +4P(x)]

<0

g =]
= A;f dx[Plx)+8P(x)]x

<=

a
[ dx| Pixd+ P00 ] logs Pla) + &P (x)]

L

—l.;f dx[Plx)+ 8 P(x)lx?

o
I o . s | e
= _f dx[P(x) + EP(] Tn PUx) = | axPeimrE
InZJ 4 In2 Jons
Lo 8P () 1 -
— f.' P{_ | x il STEA W I R ¥
+I|12 _T; v Pix +6Ff1}]ln[1 4 Ff.t}} +lnE,_NdléH”“"“”-l_IJ
= frx falPixy + 8P In Plx) ot : f‘l drldPix))” ] ! ;
T2 _xf' ' ' ' I KRG 2 Piay
2 2%
- o Teew i :'SPI{x-J) p A [ dx| Px) + P
L APy - et N il S - A xlPixy+aPixl]
+1|12 _.\d””” 1 Mh”l: i) E(_F'f.t‘]' \ I--r\-
=
—E.;If dr|Pix)+ 6P () |x
.
l i X 5 % oo "
:]rl—1 TVLIl.i.[FI:.'L'|+r5.Ir1.lJ“ﬂ Pi-lJ _:‘_.1 [ !fllP{'{ﬂ-FEP['I.HT' |,.|!'L1l|2}
: Joa

The functional dervatives are delined by the eqguation

[ e ) [ SEE(x) 2
4+ dr 8P+ = J T
(ol ) P 2N Pix)

) . ! 85
SIP )+ 8P0x)] = S[ P+ j da == P}
L E )

/'J, S speaf 4 (A313)

N=
3 S e P

i =
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If we identify the terms proportional o §P{x) we can isolate the fiy
tional derivative,

58 I
fd;;amﬂé!’{nj=—fd.r3P(x}{ﬁ1—Eiln Pla) 114+ +dax 4

55
= e I PO 1) A= R A
= Th A=A A hax’.

Similarly, we identify terms proportional to [8£(x)]% 1o find the seca
tional derivative.

58

1 T e Z_'_Ef 1_1 -!
Efdx”m”mié!{xn = [ dslsP(x)] ___

§15 | I

= PSP 2 Plx)

Ay in the discussion of previous sections, the maximum is ubtnmed "
the first functional derivative is zero and the second functional deriva
negative. Clearly the sccond derivative is automatically ncganve, so all
need to do is solve the problem of the first derivative being zero:

B a5
TEP(x)

!
= —— _[In Plx) + 1] = & — hax — Az,
In2

We rewrite this equation and collect the dependence on x into a slightly
suggestive (if cumbersome) form: '

I
O e[l B ) ] — g — g =Yg
In2
| i :
— InPlx) =—— — &) —daxr — Az~

In2 In2
In P{x) = —(1 + 2 In2) — £(Az1n2) — x*(A3In2)

=—{A3ln2) [.1'2 +2x (%)] — (1 + & In2}

A13 Gavssions and maximum entropy

= Loy |2 () + —‘h)z
=cghataived | ST e g 233
l-IJ-.|1n'-'—l[”f3|n2]- 2\’
2 2h3

| ( e A 2
P — Pt
2{2azn ! 2k

I 5 ¥

[1 -+ .-l".] InZ - —{2:"-] 03] j_:l (:;1—) } iﬁ-}zﬂ}

- 4

Py =] =1 — K2 L2k Inl}(i)-

=P Tt F TP
| A3 :
_ . o A321

. E"P[ 2han 2y (x+ 213) ] S

where in the last step we have taken the exponcntial of both sides of the
equation,
We recall that a Gaussian distribution is of the form

Pla) = (A.322)

1 1 s
Weap [_F X —ixh :l

Comparing this with the maximum entropy distribution in Eq. (A.321), we see
that they have the same form if we make the following identifications ol the
pararmelers:

=== {A.323)

[

(4,324

T e

.
| 2
'}ﬂﬂ-- =gxp {—] —},] l||'|F'|'-I-—{i:..l‘n.'-l.I|'|2-l] (‘}Jqﬂ) } y

When we do calculations with Lagrange multipliers we have to sct the values
of these multipliers at the end of the calculation to make sure that the con-
straints are satisfied. In this case we have to make sure that the average x has
the correct value, and this is the condition expressed in Eq. (A.323). Then we

(A325)
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have to fix the varance. and this is the condition expressed in Eq, (A 324
nally, we have 1o make sure that the distribution is normalized, and this 3
condition expressed in Eq. (A.325), All three of these equations can he
giving the following values [or the Lagrange multipliers:

7

; I+!1¢ A2y o+ Uik

h=——— = logs{d —_—

"= Tz B2 T2 62
]

At =—

= a-n2

. |

T 222’

To summarize, we have found thal the maximum entropy distribution
sistent with a given mean and variance is Eq, (A.321), where the t]'qug
grunge multipliers must be set to the values in BEq's, (A326-A328) But o
we make these substitutions, the distribution we have found is exactly th
miliar Gaussian distribution of Eqg. (A322). So the complete answer m&-
problem is: Given a certain mean and a certain variance, the maximum en
dhistnbution is Gaussian.

In this section we review the connection between the correlation funati
the power spectrum. The teo quantities tum out to be a Fourier transform
and this fact is the theorem referred 1o in the title af this section.

of the product of Tunctions evaluated af times separated by )
Ciry={fifu =1

Note that in this definition the average is taken over the probability dis
tion of randem functions fir). so we should imagine taking many snm
of the function in successive cxperiments, then avernge over these samp
In practice one aften averages over a single long experiment, rtplﬂﬂiﬂﬂ
ensemble average by a time average. As discussed in the text, the idea th
this replacement should work is called ergodicity, and one often sees the €0
relution function defined explicitly in terms of a time average. We prefs

ensemhle approach because it forces us to keep in mind the picture of the
tion f(r) being chosen from a probability distribution in exactly the same !

Ald Wiener—Khinching theorem

that the occurrence ol heads or rails is chosen from a probability distribution
when we flip 2 coin.

We have discussed in section 3.1.4 that we can describe a random [unction
in terms of 15 Fourier coeflicients, and that at least for Gaussian random
functions this description is especially simple. 50 we wrile

fsc e
fin= )" foexpl—iwat]. {A.330)

R=—0x

Substituting into the definition of the correlation function we have

Clel={fl)f{t—r1))

( Z frexpl—fat] Z S expl =iy r—rﬂ) (A58

Hi=-=20

[ =] S0
S > (fufu)expl—iontlexpl—iwn(t — 1), (A332)
r=-—50 n=—0nC
whiere in the last step we notice that the only random elements that we need 1o
average ara the fi.
The reason (hat the Fourier representation is so convenient is thal the co-
variance matrix of the s is simple, a5 in Eq. (3.52),

E LA™ = o i) =07 o) (A.333)
{fufmpy=0 o= =i 4,334

These elations imply that in the expression for the correlation function, the
only terms that survive the averaging 1o give nonzero contributions are those
with m = —n, and we recall thal w_, = —a,!

0 oG

Ciry= 3 3 Ufufm)expl—iwnt] expl—iwnm(t — )]

A==00 mS—od

D

= z {FaFond expl—rwgt  expl—ia=u it — 1] {A335)
H=—no
]
= Z ) expl—iugt | expl4-fw{t — 1] (4. 330)
H=—00
=]
= 3 o fwy)expl—ianT), (A.337)

Jre= = 0
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Finally, we recall that sums over discrete frequencies become integrals
continuous frequency variable once we let our time window T beco
as discussed in connection with the manipulations from Eg. (3.62) 1 (3.
Thus

oo

B = z rrz{wn}expt—fmnr}

A=—00

(4w
i
—rj —m!Tr‘.l'zim}]l:x]:lf—Iwrj
L 20T

e Ty
_j:w Ao Slen) expl—iwtl, (AL
where i the final step we recognize the power spectrum as dcﬂn;&_ in
(3.66). Thus we see that the correlation function is the Fourier Lransf
the power spectrum, as promised.

If we choose signals from a Gaussian distribution and these signals are o
rupted by the addition of Gaussian noise, then the rate of information trans-
mission is given by Eq. (3.72):

) [Mdw S}
le’n— 3 _mg__ﬁ' I'DE: [I -+ N{nﬂ} .

where S(w) is the power spectrum of the signal and N (e) is the power
trum of the noise. We are interested in knowing the maximum value o
given that we have a fixed noise spectrum M{w) and a fixed total va in)
the signal. More precisely, we would like to know how to take our
for signal variance and distribute it over frequency so s lo maximize
formation transmission.

The total signal vaniance is related to the power spectrum by Eq. (3.63)

:_-:2}=f d—wS{m}. (A
2

—ag

So the problem we want to solve is maximizing Rigr, while holding 15-3}-
As in previous sections, we introduce a Lagrange multiplier and maxime
new function

AdS Maximizing information transmission
R = Rigjo — d1s%) (A.341)

T ™ dw S{ew) ™ dew
= —1 1+ -k — Sle). A3
2 ,/;m 2 ﬂgz|: N(:{U}j| f_m 2w tes) ¢ )

W want to evaluate R with a signal spectrum Sfe) + 65(w) and expand to
find the funciional derivatives, so we start with

1[ i:_mlngz[1+5{m}+ﬁ.?{i;]

RIS} + 450w = =

2o 2 N L)
o
= 1[ 215 (@) + 55(w)] (A343)
T

Once again all of the difficulty comes from the logarithmic term, so we tackle
this first. W convert to natural logarithms then rearrange the log to isolate the
dependence on 8.5 (o)

f:\: d-r_r_:l o l:] I Sie) + A8(a)
T £2 N i)

1 = Slen) + 55 (0)
A e e o en A344
Inlf_{,;lrr]n[l-l_ N () } s
| Rl 1V Slew)  B5(e)
= — o | + ——— 4 = A345
In2 J_ s 2w ln[ Nl i N[m}} { )
[ ] ¢ J '
N TP I TR
In2 J_o Zm Ty |+ Slan/N(w)
i A 346)
1 f‘* i |: 5w :|
= — —In|l+
In2 Joa 2 M)
| e S5 (et N (e
e — |l +— AT
ST ”[ T .":?{'m},l’N{cu}i| (ki

Onee again, to proceed we make use of the Taylor expansion of the patural
logarithm, Eq. {A.222). ln this case we expand
il B8 e}/ NV () :| _ BS(w)/N(w)
L4+ Sla)/Niw) | 1+ Slw)/Niw)

_1( 58 (e /N () )1
2\ T Sen /N (e

(A.348)
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R[Stw) + &S] = RIS (w)

i f”‘: e S8 (er) /N ()
2In2 f 2w L4 Slewd SN (o)

I ffﬁ dol { 85(w)/N(w) )3
2 f_. 27 2 \ T+ Sta)/N(w)

Substituting into Eq. (A.347) we have

i | il Stea) + A8 ()
f—m E 082 N

1 = dm i Ea e}
= — n
In2 f 437 Nl

[ dr:ul |:I A8 N (w) ] fives
it i g R R A
e 1+ 5 N ™
In s 2 (o) /N () . l‘ ﬂlﬁﬁﬂhu‘l A1)
l f“" i |: S{ru}i| o
= e —In| 1+ - _
In2 S a3 Niw) = RS
1 w851 N 26 i A
-+ —f ﬂ—iu” i - —&JESI.‘:U} : l:ﬁ ) — A
In2 J 027 |+ S{ewd/Niw) T 2Un2 14 Stew)/N(w)
I (™ dw (88w Niw) | : o0 LI 2
o j = (f—) + (A ! - I dw[ﬁﬂ{wﬂz W {c:u}l . )
2102 J oo 3m \ 1+ Slan/N(w) E a2 [ 27 I+ Stw)/Nw)
Now we can substitute back into the definition of R[S(a) + 885(w)], + e (A352)

" o SRS
=R|."§'fw,‘|]+f —MJS[\MJ'- S ()]

RIS(e) + 85(w)] 2 58 (ew)
—e T o ek

B l fw dﬁ]ng; [l i Sl +#S{ruh:|

| =24 5 SZR[S(en)
2 2w M) i ;f ;[6.5'{::;;,‘11‘ - | I[:‘u | . (AJ53)
f«; n ] 2ol e A8 N
=Y — [ S(a) + 55(w)
o 27 where we have identified the functional derivatives
1 = o 5 ~
“In2 f ;%: I [1 * ﬁ.rf({:::] RN} | Litatesy (A.354)
LT ) B8(w)  2In2 | +S(w)/N () )
L[ do 55w/ Nw) : ]
In2 f 27 1+ 8{w)/Niw) . = s S T NG - 1A 355)
e = 2 R B
~Im I 2 [ Ej_m ( sl ) 2 T ( 0 ) (A.356)
212 Jogo 2 \ 1 S N(w) BS(wiasla)  2In2 N1+ Stw)/Niw)/ o

We see from Eq. (A.356) that the second derivative 15 automatically nega-
tive, which means that 1T we find a function S(er) such that the frst derivative
vanishes this will maximize R, as required, The vanishing of the first func-
tional derivative requires, from Lg (A 353),

= g
= lf “2 S (w) + 8S ()], (A.350)
g 2T

we notice that all of the terms that are independent of 85(w) add up 10
RIS{w)], as they must, and we collect the terms proportional 10 #.8 (e
[S5 e |2
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B SR[S(an]
T 8(w) (A
1 I :
e (2
2in 2 Slew) + Nl ;
I 1

*= 3102 Sla) + Niw)

S(@) + Nlon = 3=

S5 we see that to maximize information transmission we must shape the '

spectrum to complement the noise spectrum, with the sum of the two
constant or “white.” as schematized in Fig. 3.10.
Obviously the condition in Eq. (A.360) cannol be satisfied at frequen:
where the noise is too large, that is where Niw) = 1/251n 2. At these: i
den frequencies it turns out that the oplimum is just tosel S{e) =10
the graphical implementation of these ideas is shown in Fig. 3.10, To se
things work numerically, it is worthwhile to study i simple example, '
Suppose that the power spectrum of the noise is given by

Nie) = Null + (w1)7],

where T sets the rime resolution of the system, since frequencies above T
buried in much higher noise levels. Then to optimize information transa
we should choose the signal spectrum as

Sppele) = m — N ie)
1 ;
=S Noll + {wT)7L

Now this works only for frequencies in some range —w, < @ < o, whi
is defined hy the vanishing of the optimal spectrurm:

D= Sl.'lpl:{mr'}

! 2
= s N1+ {es1)).

we can solve this equation to determing e, o we could just trade @
unknown!) parameter & for a new parameter w,. Let's follow this latter
which leads us to write

ALl5 Muaximizing information transmission

| 2

Sopilon) = e e Mall -+ (errdy*]
= Nl 1 + (7)) = Nol 1 + (wr)?) (A.366)
= Nilwet)]1 = (wfw)?], (A.367)

where we remeimber that S, (es) =0 for [w] = @,
Mow we have to impose the constant varance constraint from Eg. {3.65),
that will determime o,

5 = dw
ll.f"}=f =—5(u)

oy LIT
- CL dme‘l.' ¥ I T ‘&‘
=7 g eyl et (A.368)
. oy dl‘l
= Mj{(ufr‘.lzlf _u“ - {:a},-"w(.}i] (A.3649)
n 27
2 ! I:'I.r a
= Nplw.t] Zmrf —fl —x~], (A 370)
1 2T

where in the last step we change the integration variable to x = w /o Then

" bt
i5%) = Nolan ) 20, _r“ — %)
n 2w

g l
=Nt )™=={1 — =) (A371)
4 3
2 z
= i”ﬂwr.".fﬂc'fj i (A372)

To obey this condition requires that we choose @, correctly:

2 2
57 = Eﬁna.r,-q‘cu.,ﬂ-

3y 1"
.
= ity = |: ] . {A3TH

Tt

Thus the optimal signal spectrum is spread over a bandwidth that increases as
the 2/3 power of the signal to noise ratio {s7)/ Mo
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How much information 15 actually ransmitted when we chooge ag T dylosall + j] 1 & T e ‘j] e
[ y i i i 1 ¥ ¥ L] }I_ == oy L] _.-— e €
trum to have the aptimal form? This information transmission rate b ¥10k2 n2 fy :
Eq. (3.72y, : ] ]
= — et In| | + (ewet)7] = 2evet 4+ 200~ ot
T Fo-alm [ Slehd % |1]2H | 171 { il
Rupo= 3 — logs | 1 + —— | bits/s
Rl .:! L ?.JT L ! N{w} ! [ﬁ.:ﬁﬂ?.j
r 2 o P 2
" }‘ /-mr d_w i | 1 MNiptea, 111 = (oo )=] = w, 1 log,| | + {r_u,-r}'j'] s J—1|lll.l'l_|{r:.:.l,_-rj — ez,
o e Rk Nalt + (w1)2] 12
(A 383
_ 1 f e dw logs I+ '[‘”f"j: . Sao finally we can substitute back into the expression for the information rate:
N, SO W o
i ] X ) A T i
It appears that the natural units of e are related 10 7. 50 we introduce:; R = e [u dylogs[1 4 (wr)] = ./u v loga|l + ]
integration variable v = wr and find :

1
e |:{f»¢.r log,l1 + (e, 1))
Flisr & -

| [ da 1 4 (wer)?
Roo=3 [, 5% | T Gane

2
1 T a‘_;. o |+ (weT)* - (cu,-r loga[1 + (1)) + ]—i[lﬂn_]twfr‘] ~- tuﬁj):l
Tl T B TI1y "

i
| tihe T . 5 ) (A.384)
=— dyv {logs| 1+ (1)1 — logsl1 + 7] 2
2t .l; (toz2 w BB I::u,_.r - m—‘;wfn] (A.385)
; 2at In2
LT wipk 4
_ . 2 _ i | _ .
= b { ﬁ ely ]DE‘;{“ 4+ {fanr)’] f dy lDEE“ = 1 i —s [:u,_.'r i I{LUL-?.',I'] bIISI.I'S. (A 386

T make sense out of this answer it is useful to study the limit as the signal

The first integral we have to do is simple. because we are just infegratin to noise ratio becomes large, so that from Eq. (A373) the cotoff frequency oy

COHSTGE also becomes large. Tn the brackets of the last expression, this makes the first
. e . = term hecome large, while the second term approaches a constant (tan Iy =
f dy logs|] + (w11 = w.t logs| 1 + (e 1), (4 7/2 as v —» no). Thus we can approximite
i

The second integral is more difficult, but the related integral with a natut
can be found in maost integral tahles,

[

rrln? " 7ln2

i Rintalogr 3 1)~ bits /s, {A3RT)

which is u rather simple result.

It is convenient to define a dimensionless signal o noise ratio, SNR =
{737/ No. and then the expression for the cutoff frequency, Eq. (A.373), be-
comes

[ 4 W...
f dyln[l + y7] = w.rIn[] + (. 7)] — 2T + 21an ). (A
i

Remembering that log, Z = In Z/In2 for any Z, the integral we want
can be written @5
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3 ) l.l:]' 1
o = [Jﬁ} = —(3SNR/V,
T

Then the information rate hecomes

w1327

; ~ = SN RV
R (SN R2>1) #in2 r© win2 t )
53 :
L }q.’i.i'-.’R}'“" hits/s. (
T

The rate of information transmission is measured naturally in units of the
resolution 1, and the number of hits per time 7 incredses with the
noise ratio. The interesting point is that by optimizing the spectrum wi
the information to grow as the |3 power of the SN R, where from
Shannon formula one might have expected that the information grows
logarithmically with $8 K. This difference—which is large when the §
larse—is what we gain by optimization.

I this section we develop the optimal strategy for discrimination between two
alternative signals that are presented in a background of noise. Let us cal
two alternatives + and —, and assume that we must base our decisions on
ohservation of a single variable x. If the signal is 4, then the observab
will be drawn from the distribution P(x]4+), and if the signal is — then
abservable © will he drawn from the distribution (x| —). These distribu
tell us that if we know the signal, then we can predict the statistics.
ohservables, But we are interested in the opposite problem: If we have
seen a particular value of ¥, can we tell which signal was presented?
We are making a choice between just two alternatives, so cach valu
must be assigned either 0 + or to —. Intuitively we might think that on
the signals is bigger than the other. so that large vitlues of x—Ilarger thian 50
eritical value xg—should be assigned o the signal + (tor example) & ;
values of v to the signal —, We will come back at the end of the discussia
a case where we need a more complex decision nile, 2
With aur simple rule we divide the x axis at the critical point xg; eVel
to the right is ealled + and everything to the left is called —. How's
choase the location of the dividing line or threshold x,? We want 10
correct decisions as often as possible, so we should compute the Pfﬂh--~

A e Maximum hkelihood

of a correct decision P.{xg) as a function of the threshold, then find the value
of the threshold that maximizes this probability,

 the signal really was + then vadues of x are chosen from P lx|4+). But we
will assign x 1o + only if x = 2. Thus the probability of correctly identifying
the signal + ix

P{“say +"|signal 1s +) = F{+[4) (A39])

o)
=f dx Plx|+). (A.392)
x|

O the other hand, if the signal really was — then values of v are chosen from
Px|—) and we assign v to — only if x = xp, Thus the probability of comrectly
identifying the signal - is

FP(say ="|signalis =) = P{—]-) (A4.3975)
R

=[ dx Pix|=). (4304
—5C

Mow the total probahility of making the correct identification 15 determined by
these factors and by the overall probability that the signal is + or —,

Py = Plsignalis+) = P("say +"|signal is +)

+ Pisignalis —) = P{“say —"|signal is —) (A.395)

= PP+ + PI=IP(=]=) (A.396)
o X0

= P{+Jf dxPlx|+) + Pt—}f dxPix|=) {A30T)
Al —0

Nowy we have to find the maximum of the expression in Eg. (A397).

We recall that to find the maximum or minimum of a function we have
to find a place where the derivative of the function is zero. In this case our
function is defined as an integral. So it is useful to recognize that derivatives
of integrals are especially simple;

d ao
E[ dxft.’.'}="‘ft}'_}.

d [
E}Tf dxfix) =+ Fi¥). (A.398)

To find the condition that £.(xg) 15 maximized we need ta solve the equation

- d Polxp) .
dxp

(A.399)
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We substitute the expression for Py from Eq, (A397), and then
rules from Eqg. (A 398

_d Pl

{l
i

d o *An
= — P[J.-]f dx Pix|+} + P(=) d.t'Pf_t|—j:|
d.xy W o

= P41} 4 fwdrFm-H +P;—:[d fmd P :I
= il L e U x I{xi—-.!-‘_

= Pi+)[=Plxgl)] + Pi=) [Pilxgl—)] .

S0 we see that o maximize the probability of a correct decision, we |
choose the theeshold oy o satisfy the eguation N

0= Pl+) [~ FPlaol+)] + Pl—} [ Ptaxol=)]
Pl+1Pleal+) = P(—=pPleal—)

In words, the threshold has to be set at the point where the two prol
distributions cross, as in Fig, 4.8, A
Maore generally the threshold vy has to be chosen to satisfy Eq. (A.403)

that, for example, the probability of the signal + given that we have,
the value x is

Pl+|xi= Pix|+) = P{+) =
(+|x) [+ Plx)

PiHiPlxi+)
Pla)
where Pi{x) s the overall prnhuhili;ty of seeing the value x, ﬂver'.igﬂ‘d (1)
two possible signals,
Fixvi=Pi+1Pix|+)+ P(=1Pix|—)

Similarly, the probability that the signad was — given that we observed :

AT Poisson averages

P{=1P{x]—)

Pl—x) =
I Hlxd

(AA0T)

Mow the equation for the threshold vy can be manipulated u bit, starting with
Eq. (A403);
Pt Pl = Pl—)Flol-)
Pl Pilagl+)  Pi=1FPxn|-)
Pl - Fixo)
Pitlxgl = Pl=lvo) {A409)

{AA0R)

Thus the threshold must be set w the point where the signals -+ and - are
cqually probable, This means that we will maximize our probability of cor-
rectly idemtifyving the signal i we always choose that signal that has the Targer
probabality given the duta we have observid: the decision boundary between
the alternatives is the point where the probabilities are equal. This rule 15 called
“maximum likelihood, " and it generalizes w choosing wnong muliple aliema-
Lives.

W othe Povl-bp and Pix|—) are both Gaussians with same variance but dif-
ferent means, then there is only one point xy that satsfies the condition i Bg.
(AA09), On the other hand, if the two distributions are Ganssians with sume
mean but different variances, then there are two solutions and henee two di-
viding lines. But these are both special cases of the peneral rule: Assign the
observed data v to the siena tha s most probable,

'- T POISSON AVERAGES

Here we indicate the steps involved in computing an-average over the Poisson
distribution of spike arrival times, as in B (<R30 The quantity of interest is of

the general form

¥ - 7
U = i I
<Z_;{:1>+ 54 ;.fu dr

i=1 Napsi

i N
= / diy Y fUDPI .t ]+, (A1)
dip =
Wi substitute the expression lor P[4, -+ 0y ] from the Paisson model,
pull oot the exponential factor that 15 independent of the {1, F and expand oot
the sum:
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N

N b, T ‘¥ T
<Zf1fr]} = z [ :fﬁf digees [ diy Z,fﬂ;]
i=1 4 N=pe 0 +0 i=1

5 |
X ERp [— l; iy |”:| F[‘.l‘...[fj I ) B -r_!_{;N}.

T
=.exp [— [ drry f!}:|
J

= — :Hu'i(n]f drarg (i)
gu Ny 0 L

z
f diwr () [ £ + [l 4+ fi]s

(A4
In doing the integrals for Eq. (A 4110, we notice that there are & terms ey
of which is like

= i i
f d:]r+{n'||f diari () e - [ dipr(in) find.
0 o Ju

In doing this intepral we see that there are & — | integrals over #{r) and of
integral (1) in this case) over the product r(t) ft):

i T T
f dnre i) [ dizriita)--- /. dipriland fieg)
] Ji Ji

o AT T ¥
= f dnr‘u;_nf{m} {f :fIg!'.,.tr_;}:I P l:[ dtprs (I
1l & il

(A

[ IJ-I T Iﬁ‘l_L - o
= [ i ’+U}',fff]] * [f e r|.i_.f]i| ; (A413)
J 1

But it doesn’t really matter that we focused on the term with f(r): the an
would have been the same for any (1;). Thus when we sum over the N ter
we obtain N times the previous result,

r X1 i -
f dipraind [ drar () { df,u?'_,.{!‘_r.,':l[f{h}-l—-f{fg}“i' B L |
] Jo A1

AT Puosson averages

T T et
=N [[ ra'I.r',lil'Jj'H_l:| = |:f drrai) (A4l
1 1

So now we can substitnte back imo Eg (AATTE

M T
(Z,I'EM) =exp[—f elt r.p[.f]:|
i

| 57 T
® dor [n]f diar i diz)
.;: R ’ "

T
[ df,.-.,-ri1!,x']1f[-l':|l+f'|'-!'1]'+"' f f{f.-'-.-']]
i

T i | T N—1
=exp| — i rpltl — N [ et r ()
CXp ﬁ | Ig; NI u |

i
® f dt'ry (e 1"
1l

= . .
=exp(—Q4) % ) FNQ"; -t % FL, {A415)

L H !

where we have defined the integral of the rate by anilogy with Eq. (A LLL,

e
(0 =j diry(t), (A410)
i

and the factor
¥
F-=[ dtry () fir). (A417)
LS

To complete our caleulation we have to sum the infinite series which ap-
pears in Eg. (A.415). As discussed in section A5, the trick 1s to recognize thut
N QY s the derivative of 2, and then see that we have the expansion of
the exponential:

] = 1 8

—nglt=3" —-——0of (A418)
.ng N o M0y
a o
e S (A419)
i+ =4 M
] .
i expl ) =exp{Q4). {44200

d{ly
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Finally we substitute back into Ego (A 315) and cancel the exponentiz

oive
L o .
;ﬂm ) =cap{—(:] % IEFENQQ—I i
=exp{—Q. ) xexpl@ ) x F.=F. (A
¥
=.£ dirolryfin), (A

which is the resull promised in the text. We leave it as an exercise for the
reader to show, using these same technigues, that 1

W

2 i 2 .
E}'{.r,-] = / dtredenfio | + [ dr e (DO,
ol J1

i=l

(A
so that the varance
1Y : T
ﬁL.m,-: = / dir (L, (A
II' | + adl

asin BEq. (4.12). _
The results of this section are used in section 4,13, where we find tha
change in mean of the log—likelihood ratio, Eq. (4,100, can be written a5

! A
.ﬂM:f dt [r() —r_(t)] ln[“m}
1i

it
! 5 i
=f dit |Ar(t)]in [M] (A.423)
i Folth
F 4
fﬁ'
:[ At | Ar ()] In [1 + ””] (A42
o1 r_ir) i

We recall that this problem is interesting in the limit where diseriminatio
difficult and hence Ar(r) is very small, Then we can expand the logarithim
using the Taylor series illustrated in Fig, 2.8.

MAriy Arit) | 2 -
m[u_ﬂ_ﬁ LA RO, (A420)
r—o{t} r{¢) 2 r_{r) ]

A8 Signal o noise ranos with white noise

which is valid if Arir) is smull. We substitnie into Eqg. (A.426) and keep only
the first teem ol the series, which will be the dominant contribution when the
change in rute Ar () s very small:

r Arit)
AM = et fAarityin] 1 +
1l

1
E Arlry L {ARDY
= di [l - = Hai (A 42K
Al oty 2% ()
o T el
ArinF
%j s (A429)
i o)

Now we can write the factor (1) in this expression in terms of the average
of the two rates, #00 = (123 e () - r_(ed] that is, r (Y =rie) — Arlt) /2,
We could expand onee more in a Taylor senes, but ir is clear that all but the
first term in this series—which we obtain just by replacing r— (1) with rirj—
will involve higher powers of Ar(1) and hence the errors we make by dropping
these terms will he negligible, So we amive, nally, at a simple formula for the
change in mean value of the log-likelihood rutio,

T p;
Artt)
ﬂ.M:c[ P g (A430)
i)

When we ohserve one variable, the pieture in Fiz. 419 shows how to compute
the detectubility of chunges in this variable against a background of Gaussian
noise. But we would like to generalize this picture Lo the case where the sig-
nals 1o be distinguished are functions of pesition in space, for the discussion of
visual hyperacuity in section 4.2.1, or time, for the discussion of bat echolo-
cation in section 4,230 11 tirns out thit in hoth cases it is useful w stady the
limit in which the noise 1s “white”—statistically independent in cuch pixel of
the image or a1 each instant of time in the echo waveform. We diseuss explic-
itly the case of signals thut vary in time, and then make what we hope 1s an
nhvious gencralizaion W the problem of images.

Let us starl by discretizing time into hins of size A5 at the end of the cal-
culation we will ler these bins become arbitrarily small, so this discretization
is not a significant restriction. Gaussian white noise is, by definition, a Gaus-
siun rundom variable that Auctuates independently in each time hin, and we
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call the variance of these fluctuations (7). Imagine that we observe g g
sir) added o this background of noise, and let's call the observable qu "
i time bin i

Aty = 8{) + T

where (1, ) is the signal in Gme bin e and 5, is the noise in this bin, G
signal g{fy;), the probability that we observe a particalar x {1, ) is given h'jr;'

Plait astrg)] = Pl =al) =5ty 1) (A,

] |-'“-E'.'r:I = -"'“n”: u -
=————ep —T . (A,

W 2m{n)

Now suppose that we want 1o know what happens not in one bin but in.
entire interval of tme from =010 r =T, which contains ¥ =7/ Az i
Because the naise is statistically independent in every bin, we can com
the condutional probahility for the ser of vilues v, o) - xiiy) h}r’.'h

tiplving the probabilities in the individual bins,

e
Pl s )= [T PLxtils 0]
=]
== ﬁ I l-r[uru.l' _"'.1'!.!!.:']: J
=| | —=—=——=enp{ ————
st v 27 () 25"}
r - N r "
j— I ﬁ I"':“.ll.:_-'f“u]]*
W=y o T T
| v 2rinT) | as (=) I
r M
| Al [x(s} — -"'“J:J]?' e
i expy— —_———— (AA3T)
o { B T
- | T lar i
] T L . i I} 3 |
| V2l “’”’{ e Ml b

Now we said at the start that we would let the bins size At become Sl
Then we know that sums over the discrete bing approximate integrals @
continuous time. that is

/AT

i ..
E F[lrrj.l - f elt .Ir'I“] {J‘!'i_‘; gl
AT

n=|

AR Siznal to noise ratios with white noise

fur any reasonably smooth function F1). In Eq. (A 4380 the relevant sum s

Fiar aT

Y Lxltn) = st 1 :
k — 5l = —
& A

n=| ar Ju

dt [x(e) — s(0)]*, (A 440

50 thut

T/as i
Elain a0 = [ - m:| ex ‘ ) zhfrn}—-.u,,}] ]

25

| T | y
— ————— P —mmra o dr |.'l'|...f':| —,_';'“H_J .
|:‘.-..rrl:!}= ] ! [ 2(nt)Ar j(; :|

(L)

Now as we pitss to the limit of small bins, the probubility distribution describ-
ing the values of the x(t,) in each hin becomes the probability distribution [
the function v(1), which is sometimes called a probability distribation func-
tional {Feynman and Hibbs 1965). We write this schematically as
Pl x(tal, oo xUra ) sy ), 8e2). - < s 0a0)] — Plelrils(od],
{A_442)
and from Eg. A4 ) we have

| i s
Pletti]|s(t1] rxcxp[ 7':'|' ‘,ulr j dr () — .-s[fili':l : (A4

The guantity that seems 1o arise naturally in this discussion 1s Nu = (n"} AT,
and we notice that this has the units of (noise)® - (lime), or (noise)” /frequency,
which are also the units for the spectral density of the noise (7). Indeed. hl'._. i5
exuctly the power spectrum of the noise as we have defined it in section 3.1.4,
and the fact thal the entire spectrum comes oul as one number is because we
have assumed that the noise is white, so the spectrum is constant,

Thus, if the hackground noise 15 Gaussian and white, with spectral density
Ny then the probability of abserving a particular waveform (s} is

| 2
Flalr)s (o)) ocexp |:__'\-' fﬁ'l’ |xét) —.~r|tr:||'j| , Ak
Ay

where §;(} is one possible signal. Similarly, if the signal s s27), the distribu-
tion has the same form but with the mean waveform (1) replaced by 52000
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e |
dt (] —gsalep)
2N

Now in a standard foreed choice experiment, 1f we observe i particular waye
form x 7}, we can decide whether the signal is 51 (1) or s2(7) by computin
logarithm of the relative likelihood. as in the discussion of Eq. (A.258):

Pl H.-.'ltf_ll_i_ )
Plaitilesitd]

F[H:Hntrjirxev;p[

e

Al =1n( (2

I .
ST / d:[|r{n—a;tr1| — |ty — sadr)|” ]+ constant
2N

(A

1 a P
— dt [amie) — 2l + 5700
NG [ [a7{} i P
i .
- ”___I d:[1 ( —...m|-.vtrj-|—-.«.1’H]+ constant:
2Ny

(A W

i "
e fr.h‘ {=2xedfs(ry = g2l | + 57001 — .\-g[:}}-i' co

=17()

| i
— | dr ity — 500} + stofl.
Nil j

In these minipulations we have introduced “constam”™ to keep track of the
portionality constants in Fq's. (A.444) and (A445), and we collect in et
all the terms o ZLo ] that don’t depend on v (1),

We see that the log-likelihond ratia, A x(r)], which is all we need
optimal discriminations hetween the two stimuli sy(t) and sa(t), 15
functional of x(7). But the waveform vir) consists of the signal plu
sian white noise, which means that 1) is a Gaussian random variable;
any linear combination of the x(r) at different times, such as Al ()] 08
a Guussian random variable. But this means that our original problem
criminating hetween functivns has been reduced to the problem of disc
tion bused on one variable, numely A itself, and this discrimination pm 2
is exactly the problem described in Fig, 4,19, The “signal” for discriminafic
comes from the fact that the average values of Alx(r)] are different in the
distributions £le(e1|s o)) and PLete] ] To caleulue this differem

ALE Sipnal to nelse ratios with while noise

note that the average value of vir) always the signal; so that

(i = o i {x0h [waley — 5900 4 stuff (A451)
i
I
= L f,f; Fidaste) — & (1] + sl (A452)
NI:I
and simtlarly
rieiia=— f de{vte)ialsait) — 50| + swifl (AA53)
i
|
e fd; spltdsate) —wyle) )+ stoff, (Ad5d)
oy

g0 that the difference inomeans is given by
I .
Al = Glxinllz = o j dt spinlsate) = s ()] + stoff
(1]

I -
— — | et st} w2ty = syi0d] = stutt
T

(A455)

— L dt [5p00) — s200 ) |[8208) = 5 () [ AA56)
Mu

1 a
=—— | dt |5 — &2t )T, (AA457
Nuf Plagie) — saled] ]

This determines the “signal™ for the diserimination, and to lind the nose we
need o compule the variance of A[xir}].

To find the variance of AJx(e)] we can throw oway any lecms hat do not
Nuctuate, Thus we can discard “swff” which is independent of xit), and we
can subtract from x() its mean valoe o leave just the noise i), Then the
Muetuation in afx ()] 15 given by

dhlxir = !\.L' /'dr i sadth — sl (A458)

SRV

and the variance 15

. [ :
flaalxir|imy = ( [F fﬂ"l‘ it il — .-.|[.HI:| } (ALd5T
il
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. _]:(fd; nilsadr) —-‘~'|Lf‘rffdr‘u{:’#[..,-z{:‘}-—.rj-{iu
NG :
(A
- Jilrgl [ . fdrl':r””"'“a}”-fllr: — st ][8201") —ﬂﬁﬁ_
(A

Now white noise has a very simple correlation function, proportional |
Dirac delta function defined in section AL 1, and the constant of proporiona
is just the power spectrum, so that

(iomie’)) = Nodir — 7). (A4

Substituting into Eq, (A 461), we lind that

(Ec'i,‘-.l.rml'l]) = éfﬂ'r / de (e s — s[5 — 55
= ;?f;!rfrfx".\-'“ﬁr_r — iy - "'"':r’][-"'lﬂ'l}—'i?ll‘;f_:;
(A4
= VL” I dt I dr'8(t — )s200) — s1 015207 — 51N
[A46
== ern f ef [ dt'St — 1)ty — s )% (A.465

where in the last step we use the fact that §(r — ) =0 for t # ¢ 50 we Knows
that for any smooth function in the integral we can set £ = f', But now we eafs
do the integral over t', since, as in Eq. (A 10},

fn'r“r“il;.r -t"=1,

50 thal

5 | . ; 1
<H}.[.1'[HIH‘) = it [dr A — " sale) — sp{0)]”

0

L 3 ]
= — Jdt[sptr) — s} [ de’Bir —1)
%Y1

Adld Signal o noise ratios with white noise

1 1
s e /n’rlnu} — s ()" (AA468)
'h‘"l!' o

Finally we can put the picces together and find the signal to noise ratio for
diserimmnation between signals 503 and g24r) in a while noise background:

-1
L. [{m;.erw‘ )] (A.d60)

SNE = [(aletr)]h — (ALe()]h2

l AN % i
=|—— Jdtlmity =m0 | | — [ dt [s108) = salr)]"
[ N“frrjvttr] u_[r?[} [N.,.l”l”l \;Hff:l|:|
CALATOY
1 i -
- / i [s1(8) — 530} (AATI)
M,
| -
= ot [Asit], (AAT
Mo,

where we wrile the answer in lerms of the differepce in signals, Asii) =
Spbl) = salrh

The resilt in Eq. (A.472) has a clear generalization to the discrimination
hetween twa images. Wi imagine that these two imsges generate patterns of
light intensity £yie) and f00h and that the white noise is equivalent to noise
in the measurement of these intensities. Then the sigpal to nose mto for
diserimination is cssentudly the same as for the time dependent signals, with
the pisels in the image plaving the role of the diserete time bins. so that

| . o
SNR=— {l'lh.-'l'lf:'l.f[.'l.',lll'. (A4TH)
-h'l“ .

This 15 the formula we need inosection 4,201,

For the discussion of bat echolocation in section 4.2.3, the two waveforms
that the hat must discriminate between are hoth stercotyped echo waveforms
splt — o1 with 1 the echo delay, The difference between syt ) and s200) 1s.only
the value of the delay, so tha

ML) =splt — 1} (A474
sxtl=splt — T —drh, (A,475)

where 1 is the small target jitter. Now the difference waveform is
Axlt)=s0r) — 52lt)
=gylr = 1] —slt — 17 — &7) i AATH)
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—

it — 1
Zuplt = 1) — | aplt' = 1y —dr _ +---

5 diplt — 1)
=8 ——
uft
where we use the Taylor expansion {see Eg. (A.371] for small 7. Substig

into Eq. (A.472), we find the signal 1o noise ratio for jitter disci'imin_ﬂ.tigh';

.

| ;
SNR= _"." f di [ Asii]

10

"
| g ) ﬂl.'{”U —T) |
oo g | e SR —
My j L [ T :l
v tf.‘ﬁ:][f —= ] 2
= T —_ e 7
(@7} Mo I[ & [ s 1

as promised in the Lexl,

In this section we consider the problem of maximizing the information (g
mission through o filer. Signals are presented in o hackground of nois
output of the filter has limited dynamic range. and there is also noise
output, Our task is to shape the filler churactenistic both to protect the.
mal and to make magimum use of the available dynamic range. For simp
we take the signals and noises to come from Gaussian distributions, s
are deseribed completely once we know their power spectra, Furﬂmrm_
assume that the fikier is lincar, which ulso simplifies the calculations €
mously, 1t turms out that this isn't really an assumption, since with Ga
sipnals and noise one can show that our oplimization problem is Eﬂi\fﬁdﬂﬂ
linear lilter — given our phrasing of the constraints, nonlinearities won'El

=

to transmit more informaotion. )

The setup of our problem is from section 5.3: We have a signal s1) w
is added to a background of noise g1}, then this combination is filtered
device with impulse response (1), und finally a noise na(r) is added
nutput o praduce a voltage V{0,

Vit = l dt’ Fir —ysty+ mu'y ] 4 nalrh (A
It is useful o think ubout how this works i the frequency dnmfun.'
Fourier transform both sides of the equation, as in the discussion of impedan!
in section 2,03, from Ea. (2.7) 10 BEg. (2014

Ale Optaal fileers
I-n"r expl-+iat ) Vi = [n’r EXP et ) [rh"Ffr — s+ ')

l d 1 et it {A4E2)

b

i

Ff;;:]:j it expl+ior) [rf.r’ Fie =[5t + i)
+frf: expl-tfeaf bt (AHE3)

:j di /d.r’ expl-imt ) F (it — )]s () + ]
+ Fafi) (A4R4)
:fd; Idr' explHwit —1]

w Fir— " yexplie 0 4 0 0]+ Gala).
(4485
T finish the calculation 1t §s convenient to change variahles in the integral.
Instead of integruting over + and ¢, we switch 1o 0" and . where the new
variahle is defined as T =1 — t'. Then we have
Vi) = fﬂ't [:.r:‘ expliwit — ) F 0 — P rexpliwe st + (|
=+ Al
= f:!f expumrJFirdeI' explian )sle') + ()]

+ ) {A4E6)

= |:f dr ::.‘&i'ﬁ[fml’}Fllei|
5 U

+ fj2lem) (AAET

dt’ exp{:’mrr]x(r’] + / 't cxph'u.u’hu“"l:l

= Flao)[Flew) + Ty leod | + Fzle) (A.488)

Soowe see thal, frequency component by frequency component, the oniput
voltage consisis of one lerm proporional to the signal Ste) und two terms
which reflect the noises an the input and autpu, iy and 7z, respectively,




Mathematical nsides

We are interested in knowing how muoch information the output yof
Ve ) provides about the input sigoal s (eh 15 we look at frequency compa
e, 11 1s clear that the piece ol Vi) cum:fpﬂnding 1o the signal is ?'[m]
while the piece corresponding 1o noise 15 Fleobiy o) + 5200, Recall frg
{3.66) that we can find the power spectrum of thee signal (1) by nomm
the variances of the Fourier coefficients, so that

Flad{—m)) = ([Fan]*) = TS, or

S{i) = %nf{wnf}.

In the present case the effective sipnal has Fourier componenis F?(m‘_i;{m :
the effective signal power spectrum s given by 1

D
Serr(w) = (| F ()il
IS
= | F ) |‘? LEGed |7 = | Flol|" St
The effective notse spectrum 15 found by the same manipulations:

b o=
Nogle) = T O e o) + 12 ffu}l]l}l

= |Ffm:u|=}f|rurm}|~'b ¥ %Hn:{w}!l?. (A

where in the last step we use the fact that the two noise sources rn(r]_‘ IJ
nz(r) are statistically independent. We see that the eflective noise spectry

be written in terms of the power spectra for the individual noise compon
which we call ¥ and N>, and we assume lor simplicity that these noise
white, Thus

2 | ; | . .
Negriw) = [thjlz-i,:{lrnffuﬁl"‘.l + ?{Ira:r(wﬁib = | F(e)|* Ny + N2 (A

Finally we put these expressions together to oblain the signal 1o noise ratio ok
each frequency,
SNRtw) = et
Moaprd )
B _[F'[w:II:S'[:uJI
[F(m)|*Ny + N2

A0S Optimal filters

The rate at which the output V() provides information about the input
signal #(t)can be caleulated from Shannon's formula in Eq. (3.72),

| ™ d
Ry = 3 [ i E‘-“g:ll + SN R
2

P

I ™ dw [
=— log. | 1+

|E ()2 S(am)
3 iE E :| (A498)

IF(@)|* Ny + N2
we want to find the filter characteristic £ {0} which maximizes this information

flow subject to the constraint that the variance of the output is fixed, The outpwt
varance is related to the power spectra by a generalization of Eq, (3.65),

5 " o
(W) = 5y LSeft () + Nt (en) ] (A.499)
R
= e - - = ~
= f 2 F @) FStw) + [F@)F N + Val. (A.500)
a2

As in previous sections, we use the method of Lagrange multipliers to maxi-
mmize Rinp while holding {V7) fixed.
We define a new quantity R and a Lagrange multiplier &,

= oo JL{VJ':I (A501)
1 ™ dw | F () S (w)
== —loga | 1 + =——F7—
2/ 2 |Fla) >Ny + Na
s dl‘l'- = il =, a
= ;Lf — | F @) "8 (w) + | Flw)|"N| + Nzl (A.502)
B

We want to examine how R changes when we make o small change in the filter
Fios), isolate the functional derivatives and find the condition for 2 maximuom,
We notice that R depends on | F ()], so we will use this as the independent
variable. So we begin with

RIIF()]? + 8 F(w)]?]

1 ™ dw
= EPie ] 4
Z,I:..,;Z:'r “gﬂ[ i

- :Lf 49| F(w)ES(@) + |F )N + Na)

o 2m

(F ) + 8| F () 215 ew)
[ F{en]® + 81 F ()2 1INy + Na

- :-.f_ f—“’mhmnlmwn N1l (A.503)
s ZIT

=




A6h Muthematical asides

Asin previous caleulations, all of the difficulty comes Irom the loeg
term, which we waork on first, stading by converting to natural logarith

i ‘.-I'_'I.rfJJI I
3 —xE UEn

1 f“ i o [F ()| + 81 () ) S () 1
= N e " IFtan |+ 8 F PNy + Na |

[ Ften)|2 + 81 F (e 2| Stan)
[ F )2 4+ 81 F ()2 IN) + Na

X N WA Y v N i
Mow since 8| F (el 15 small, it s uselul o recall that

| o | .
P T TR L SR (A
ALEE A R sl A

| I | 4 )
=—(1— -8R+ —[d8]"— -],
.J'I.( A {'ll.'l t

for any small S8, The steps should now be familiar: We vse this expo
together with the Taylor expansion of the natural logarithin, then colleg
which have the same powers of 4| F ()], This allows us to identify the
tonal derivative of &
iR 1 Slea) M3 A
SFE 22 [FlalPN + Na [FenSte) + N+ N
— A Sl + N -

We can use this w find the optimal filter, seting the functional deriy
zera and solving for | £ (w)|%, But is more enlightening to look at some lin
Cases. .
If the signal to noise fatio is large, we can take S{w) — 0o in Eq. (A3

s that
SR 2. Na

- e - | — _‘—}_S!{rl}. t*ﬁi
S|F(e? 202 [ Filan PNy 4+ Nao [ F L))

Then the condition that the functional derivative equal zero, optimizing i
LN [Ensmission, 1s just
iR
h ﬁ_lf_'_ (en]?
1 Na
2ln2 i |F_{ru}|'].l"l.r| + Na “"_[H}:IF

B

==

— AN

ALY Optbnsal filters

M |
|.17'_{er#|1;"~?1 + A5 Ef"ifu]l‘j‘

[ N2
Stew) 20InZ2 |F'{UJII|:."'-"| +4 N_u_l

I
Aiim) = o (ASTD)

2n

I3

[Flon]' = (AS1D)

Now with St very larse. this equation is telling us that the filter | Fiaw)|?
should be very small, so we can neglect |[Flan PN, compared w N2 on the
right hand side of Eq. (A5125 Thus we have the simple resull

|

_ _ AS13
Stw) 2AIn2 Lt

IJi'“[m:IIj =

This is the idea discussed in section 53—t high signal w noise ratos, the
sptimal encoding filler has o fregquency dependence that cancels the input
power spectrum. so that the output voltage of the Rlter has o power spectram

Hllllr{r-f” = f;_[{rJJIE.’i'Im} |:.|'-‘|I..5]-!-'|

that is constant or white: Tt 1s clear from the more general Eq. (A07) that
this cannot continue once we reach o frequency range where the signal to
noise rutio s snuller. but the details of how the optimal filker “rolls over™ w
exclude the noise Ny depends on the precise value of Ay und the exact shape
ol the signal spectrum 8w, Fora more expanded view of these optimization
arguments see Aok (1992),
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