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Preface

When I tried to design output feedback controllers for nonlinear control systems,
I found that design methods are limited. I thought that a cellular process in living
organisms, such as the blood glucose control system, would be a perfect feedback
control system because the cellular process should be tightly controlled so that cells
in the living organism can carry out numerous tasks to survive. Thus I was wonder-
ing whether I can get inspiration from cells to design feedback controllers and started
to read biology books. As I read more and more in biology, I found that there are
numerous perfect feedback control mechanisms in life, for instance, enzyme feed-
back inhibition, blood glucose regulation, and store-operated calcium entry in cells,
to mention a few. This motivated me to open a class to teach mathematical modeling
in biology with a focus on cellular processes and motivated me to write this textbook
for my class.

Because the general idea of establishing a model for every cellular control system
is similar, I have selected a number of cellular control systems that I have understood
most, such as the blood glucose control system and intracellular calcium control sys-
tem, to demonstrate how to model them mathematically in the setting of control the-
ory. Once one masters the methods of modeling these selected cellular systems, one
will be able to use them to handle other cellular systems.

This textbook contains the essential knowledge in modeling, simulation, analysis,
and applications in dealing with biological cellular control systems. In particular, the
book shows how to use the law of mass balance and the law of mass action to derive
an enzyme kinetic model - the Michaelis-Menten function or the Hill function, how
to use a current-voltage relation, Nernst potential equilibrium equation, and Hodgkin
and Huxley’s models to model an ionic channel or pump, and how to use the law of
mass balance to integrate these enzyme or channel models into a complete feedback
control system. The book also illustrates how to use data to estimate parameters in a
model, how to use MATLAB to solve a model numerically, how to do computer sim-
ulations, and how to provide model predictions. Furthermore, the book demonstrates
how to conduct a stability and sensitivity analysis on a model.

This textbook is self-contained and easy to read. Modeling, simulation, and appli-
cations are explained in details. Whenever possible, a schematic diagram is drawn to
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help understand the biology in a cellular process. A good background in ordinary
differential equations and molecular biology is sufficient to understand the materials
in this textbook.

This text is designed as a textbook for a one-semester course in mathematical
modeling in biology with a focus on cellular processes in living organisms. There
are exercises in the end of each chapter and preliminary MATLAB is introduced in
Appendix A.

Although all models in this textbook are ordinary differential equation (ODE)
models, a diffusion term can be easily added to these ODE models for some cellular
systems such as the intracellular calcium control system to lead to partial differential
equation (PDE) models. However, the PDE models will greatly increase the com-
plexity and difficulty of computer simulation.

Although I tried hard to make the text error-free, there are certainly still numerous
errors and mistakes of different types, such as typos, grammatical errors, and even sci-
entific mistakes. I apologize for making these mistakes and you are welcome to send
your comments and criticisms to me at weijiul@uca.edu or liuweijiu@hotmail.com.

I thank Dr. Fusheng Tang for collaborative work on mathematical biology, con-
stant inspirational discussions on biology, and insightful comments on this manu-
script. I thank the reviewer for evaluating this text and giving constructive comments.
I thank my students for using this text and correcting mistakes.

Conway (Arkansas), July 2011 Weijiu Liu
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1

Overview

1.1 Examples of Biological Cellular Control Systems

There are numerous cellular control systems in living organisms. These cellular sys-
tems are tightly controlled through numerous feedback control mechanisms so that
cells in the living organisms can carry out numerous functions to survive. In this
textbook, I select a number of cellular control systems that I have understood most
to demonstrate how to model them mathematically in the setting of control theory.

Pancreatic
Cellα

Pancreatic
Cellβ

Liver cell

> 6.7 mM< 4.4 mM

Blood glucose Blood glucose

Blood glucose

Insulin-independent glucose
utilization by brain and nerve cells

Glucose from food

Glucose from liver

Glycogen
Synthase

Glycogen
Phosphorylase

GLUT2

GLUT2

Muscle or
adipocyte

cell

GLUT4

Insulin

Glucagon

Glucose
uptake

Glycogen GlucoseGlucose

Insulin

Fig. 1.1. A schematic description of a simplified blood glucose control system. Molecular
control mechanisms of blood glucose sketched in this figure are described in the text
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Fig. 1.2. Schematic diagram of an intracellular calcium control system. The abbreviations
used are: SOC, store-operated channel; VGCC, voltage-gated calcium channel; PMCA, plasma
membrane Ca2+ ATPase; SERCA, sarcoplasmic or endoplasmic reticulum Ca2+-ATPase;
IP3R, inositol (1,4,5)-trisphosphate receptor. The diagram is explained in the text

The first cellular control system to be discussed in this textbook is the important
well-studied blood glucose control system. A simplified version of the blood glucose
control system is described schematically in Fig. 1.1. Glucose from food and liver
is utilized by cells in two different ways: insulin-independent and insulin-dependent.
Glucose is transported into and out of liver cells by the concentration-driven glucose
transporter 2 (GLUT2). In response to a low blood glucose level (< 80 mg/dl or 4.4
mM), pancreatic α cells produce the hormone glucagon, which activates the glyco-
gen phosphorylase to catalyze the breakdown of glycogen into glucose. In response
to a high blood glucose level (> 120 mg/dl or 6.7 mM), pancreatic β cells secrete
insulin, which activates the glycogen synthase to catalyze the conversion of glucose
into glycogen. Insulin also initiates a series of activations of kinases in muscle cells
to lead to the redistribution of glucose transporter 4 (GLUT4) from intracellular stor-
age sites to the plasma membrane (PM). Once at the cell membrane, GLUT4 trans-
ports glucose into the muscle or fat cells [6, 19, 35]. Because mathematical mod-
eling of the blood glucose control system could contribute to the treatment of dia-
betes, it has received intensive attentions and there have been numerous publications
on it, for instance [1, 2, 4, 12, 18, 24, 25, 26, 30, 35, 36, 37, 38, 41], to mention
a few.

The second cellular control system to be modeled is an important intracellular cal-
cium control system. As demonstrated in Fig. 1.2, calcium ions Ca2+ enter the cytosol
through store-operated channels (SOC) and voltage-gated calcium channels (VGCC).
The sarcoplasmic or endoplasmic reticulum Ca2+-ATPases (SERCA) pump Ca2+

from the cytosol into the endoplasmic reticulum (ER) and Ca2+ in ER are released
to the cytosol through the inositol (1,4,5)-trisphosphate (IP3)- and Ca2+-mediated
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inositol (1,4,5)-trisphosphate receptors (IP3R). Ca2+ exit the cytosol through plasma
membrane Ca2+-ATPases (PMCA) and Ca2+/Na+ exchangers. Depletion of ER
Ca2+ stores causes STIM1 to move to ER-PM junctions, bind to Orai1, and activate
store-operated channels for Ca2+ entry [11, 23, 28, 29, 31, 32, 39, 46]. Because rises
in cytoplasmic Ca2+ concentration are used by all cells as a signalling mechanism
for numerous cellular processes [5, 8], the cytoplasmic Ca2+ concentration must be
tightly controlled within a narrow range by the above mentioned calcium pumps or
channels.

Other cellular control systems to be considered include a mitochondrial calcium
control system and a phosphoinositide synthesis control system. Mitochondrial Ca2+

uptake has profound consequences for physiological cell functions. Intramitochon-
drial Ca2+ stimulates oxidative phosphorylation and controls the rate of adenosine
triphosphate (ATP) production. Mitochondrial Ca2+ uptake modifies the shape of
cytosolic Ca2+ pulses or transients [9, 13, 14] and regulates store-operated calcium
entry [10, 33]. Furthermore, for any repetitive physiological process dependent on
intramitochondrial free Ca2+ concentration, a kind of intramitochondrial Ca2+ home-
ostasis must exist and be controlled dynamically to avoid either Ca2+ buildup or
depletion in mitochondria [3, 13].

Phosphatidylinositol 4,5-bisphosphate (PIP2) is the predominant (99%) phospho-
inositide in mammalian cells [43]. PIP2 is synthesized from phosphatidylinositol-4-
phosphate (PIP) by PIP2 synthases while PIP is synthesized from Phosphatidylinosi-
tol (PI) by PIP synthases [19]. PIP2 in cells is normally hydrolyzed by phospholipase
C (PLC) to generate inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG),
which serve as second messengers for intracellular Ca2+ mobilization and PKC (pro-
tein kinase C) activation, respectively [31, 43]. Thus, PIP2 plays important roles in
PLC-mediated cellular processes, such as glucose-stimulated insulin secretion [15],
store-operated calcium entry [22, 42], and sterol trafficking [34, 44]. Hence phos-
phoinositide synthesis must be delicately controlled by molecular feedback mecha-
nisms.

1.2 Modeling Methodology

To simplify computer simulation, we assume that concentrations of molecules in-
volved in a cellular control system are uniform in space. So they can be modeled
by ordinary differential equations (ODEs). However, a diffusion term can be easily
added to these ODE models for some cellular systems such as the intracellular cal-
cium control system, leading to partial differential equation (PDE) models. The PDE
models will greatly increase the complexity and difficulty of computer simulation.

In modeling a cellular control system, we use the law of mass balance and the
law of mass action. The law of mass balance states that the input rate of mass into a
system is equal to the sum of the rate of change of mass in the system in time and the
rate of output from the system. Mathematically the law can be expressed as

dx
dt

= input rate−output rate,
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Fig. 1.3. A four state model of the IP3-receptor
proposed in [20]

where x denotes the amount of mass in the system. The law of mass action is a math-
ematical model that explains and predicts the kinetics of a chemical reaction. It states
that each individual forward reaction rate or backward reaction rate is proportional
to the product of the concentrations of the participating molecules.

In order to use the law of mass balance to establish a mathematical model for a
cellular control system, we first need to model enzymes, ionic pumps, ionic channels,
and glucose transporters involved in the cellular system. A general idea of deriving
such a model is to propose a chemical reaction model of multiple states of an enzyme,
a channel, a pump, or a transporter. As an example, we consider the IP3-receptor,
which is a tetramer and has four subunits. Keizer et al [20] proposed a four state
model for the IP3-receptor, as demonstrated in Fig. 1.3. Each subunit is endowed with
an IP3 and a Ca2+ binding site that interact with each other, such that when the Ca2+

site is occupied, the affinity for binding of IP3 is increased. Thus a subunit can exist
in four states: state s0 consists of a subunit with neither IP3 nor Ca2+ bound; s1 has
only IP3 bound; s2 has both IP3 and Ca2+ bound; s3 has only Ca2+ bound. An open
channel is assumed to result only when each one of the four subunits is in the state s1.
All other states of the tetramer are assumed to be closed. Thus, the open probability
of the receptor is equal to x4

1, where x1 denotes the fraction of subunits in state s1.
By an equilibrium analysis, x1 can be expressed in terms of the concentrations of IP3

and Ca2+. The parameters in this model can be determined by fitting the model into
experimental data.

In some cases, experimental data show that the kinetics of an enzyme or channel
follows the Michaelis-Menten function or the Hill function. In this case, a chemical
reaction model of multiple states is not needed. Instead, the model can be obtained
by fitting the function into data.

Usually, an enzyme can bind more than one substrate molecule and the binding
of one substrate molecule promotes the binding of subsequent ones. This results in a
positive cooperativity. The Hill function is a mathematical model to describe such a
positive cooperativity:

V =
Vmax[S]n

Kn
m +[S]n

,

where V is the velocity of converting substrate to product by an enzyme, Vmax is the
maximal velocity, Km is a positive constant called Michaelis-Menten constant, n is
a positive constant called the Hill exponent, and [S] denotes the concentration of the
substrate. If n = 1, the Hill function is called the Michaelis-Menten function.
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Because many ionic pumps or channels are electrogenic and are gated or con-
trolled by the membrane potential, current-voltage relations and the Nernst equilib-
rium potential equation are needed to model them. In many cases, the following linear
current-voltage relation

Iion = g(V −VI),

which is derived from Ohm’s law, is sufficient to approximate the current generated
by the movement of ions through a pump or channel across the plasma membrane. In
this current-voltage equation, Iion denotes the current, V denotes the electrical poten-
tial difference across the plasma membrane, VI is the equilibrium potential of the ion,
and g is a membrane conductance. The equilibrium potential VI is given by the Nernst
equation

VI =
RT
zF

ln

(
co

ci

)
,

where z is the valence of the ion, R is the universal gas constant, T is the absolute
temperature, F is Faraday’s constant, and co (ci) is the concentration of the ion outside
(inside) the membrane. This potential is called the Nernst potential.

In many cases, experiments showed that the conductance g is not constant and
varies with time t and voltage V [16]. Distinct models of the conductance g for dif-
ferent ionic channels or pumps were established and many of them were based on
Hodgkin and Huxley’s models [16] such as the model for the voltage-gated potas-
sium channel of the squid giant axon:

g = Gn4,

dn
dt

=
n∞−n

τ
,

where G is the maximal conductance, n∞ = n∞(V ) is a steady state of activation prob-
ability, and τ = τ(V ) is a time constant. n∞ and τ are determined by experimental
data.

Due to the complexity of cellular control systems, Lyapunov stability analysis in
many cases is difficult. So linear stability analysis will be used.

1.3 Computer Simulation

Mathematical models will be solved numerically by using the function ode15s from
MATLAB, the Mathworks, Inc. The function ode15s is a variable order solver based
on the numerical differentiation formulas (NDFs). MATLAB does not recommend
to reduce MaxStep in ode15s for the accuracy of solutions since this can significantly
slow down solution time. Instead the relative error tolerance and the absolute error
tolerance will be used.

A mathematical model of a biological system usually contains numerous parame-
ters. Estimation of these parameters is challenging because no universal methods can
be used and in some cases no complete sets of data are available for fitting a model
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into data. Hence we usually have to appeal to different means, such as adoption of
existing parameters in the literature, numerical simulations, use of optimization meth-
ods like the simulated annealing optimization [7, 21] and nonlinear least squares, and
use of built-in parameter estimation functions like “SBparameterestimation” from the
SBToolbox [47] and “sbioparamestim” from the SimBiology toolbox of MATLAB.

1.4 Impact

Mathematical models for cellular control systems are of potential interest to disease
treatments. Mathematical models are required for integrating a glucose monitoring
system into insulin pump technology to form a closed-loop insulin delivery system on
the feedback of blood glucose levels, the so-called “artificial pancreas” [17, 27, 37].
Calcium ions play a central role in the process of insulin secretion. Release of Ca2+

from intracellular stores is essential for the amplification of insulin secretion by pro-
moting the replenishment of the readily releasable pool of secretory granules, while
voltage-dependent Ca2+ entry is directed to the sites of exocytosis via the binding
of the L-type Ca2+ channels to SNARE proteins [39, 40]. Therefore, mathematical
models for intracellular calcium control systems would provide an important compo-
nent in building an artificial pancreas. It has been discovered that the proteins Orai1
and STIM1 control calcium influx from the extracellular environment to the inside
of cells [11, 23, 28, 29, 31, 32, 39, 46] and they are required for tumor cell migration,
invasion, and metastasis, being potential targets for therapeutic intervention to inhibit
tumor metastasis [45]. So a mathematical model for the calcium entry control system
would provide a theory for such therapeutic intervention.

Mathematical models for cellular control systems might serve as a tool for extract-
ing information from experimental data to obtain new insights into molecular mech-
anisms in living organisms and then provide guidelines for wet experiments. On the
other hand, since the design of output feedback controllers for nonlinear systems
is challenging, exploring mathematically cellular control systems in living organ-
isms will inspire the mathematical control design and advance mathematical control
theory.

1.5 Audience

The potential audience are applied mathematics students who are interested in apply-
ing mathematics to life sciences, biology students who like to use mathematics to
study biology, and researchers in mathematical biology. If you have a good back-
ground in ordinary differential equations and molecular biology, you will not have
any difficulties to read through this textbook.

This text is designed as a textbook for a one-semester course in mathematical
modeling in biology with a focus on cellular processes in living organisms. There
are exercises in the end of each chapter and preliminary MATLAB is introduced in
Appendix A.
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2

Enzyme Kinetics

Enzymes catalyze biochemical reactions by lowering the free energy of activation of
the reactions. In the reactions, other molecules called substrates are converted into
products, but the enzymes themselves are not changed. An enzyme is usually a large
protein, considerably larger than its substrate molecules. An enzyme protein has one
or more active sites, to which its substrates can bind to form a complex. Enzymes are
highly specific, usually catalyzing a reaction of only one particular substrate. They
are regulated by complex feedback control mechanisms. In this chapter, we give an
introduction to enzyme kinetics, which quantitatively studies how an enzyme cat-
alyzes a reaction. Detailed discussions can be found in biochemistry and enzyme
kinetics books such as [5, 18].

2.1 The Law of Mass Balance

The law of mass balance states that the input rate of mass into a system is equal to the
sum of the rate of change of mass in the system in time and the rate of output from
the system, as demonstrated in Fig. 2.1. Mathematically the law can be expressed as

dx
dt

= input rate−output rate, (2.1)

where x denotes the amount of mass in the system.

input rate output rate
input rate - output ratedx

dt
=

Fig. 2.1. The law of mass balance. The input rate of mass into a system is equal to the sum
of the rate of change of mass amount x in the system in time and the rate of output from the
system

LiuW.: Introduction to Modeling Biological Cellular Control Systems.
DOI 10.1007/978-88-470-2490-8 2, © Springer-Verlag Italia 2012
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Consider a simple system where the input rate is equal to 0 and the output rate is
proportional to x. Then the mass balance law (2.1) gives

dx
dt

= −kx, (2.2)

x(0) = x0, (2.3)

where k is a positive constant and x0 is the initial condition. Solving the equation
(2.2) gives

x = x0e−kt . (2.4)

Half-life of a substance undergoing decay is the period of time that it takes for
the substance to decrease by half. Let t1/2 denote the half-life of a substance. It then
follows from (2.4) that

1
2

x0 = x0e−kt1/2 .

Solving this equation gives

k =
ln2
t1/2

. (2.5)

This formula is useful for estimating the rate constant k if the half-life of a substance
is known.

2.2 The Law of Mass Action

Consider a chemical reaction:

aA+bB �
k+

k−
cC +dD,

where A,B are reactants, C,D are products, a,b,c,d are the stoichiometric coefficients
of the balanced reaction, and k+,k− are positive constants called rate constants. Reac-
tion rate (also called reaction velocity) is defined to be the rate of change of concen-
tration of reactant or product with respect to the change of time. Mathematically, it
is given by the derivative dA

dt , dB
dt , or dC

dt .
The law of mass action is a mathematical model that explains and predicts the

kinetics of a chemical reaction. It states that each individual forward reaction rate v+
or backward reaction rate v− is proportional to the product of the concentrations of
the participating molecules.

Applying the law of mass action to the above reaction, we obtain

v+ = k+[A]a[B]b, v− = k−[C]c[D]d ,

where the square bracket [·] denotes the concentration of a chemical. The exponents
a,b,c,d are called orders; a is called the order with respect to A, b is the order with
respect to B, and so on. Orders are usually positive integers, but they may be negative



2.3 The Michaelis-Menten Equation 13

integers, zero, or even fractions. The sum of all orders of the algebraic expression is
the overall order of reaction. The exponents a,b,c,d may be different from the stoi-
chiometric coefficients of the balanced reaction and must be determined experimen-
tally.

Note that a great number of chemical reactions do not follow the law of mass
action. Those reactions that follow the law of mass action are called elementary reac-
tions.

Using the law of mass balance, we derive a rate equation

d[C]
dt

= v+− v− = k+[A]a[B]b− k−[C]c[D]d .

At equilibrium, concentrations are not changing. So d[C]
dt = 0 and then

k+[A]a[B]b = k−[C]c[D]d .

The equilibrium constant of reaction is defined by

Keq =
k+

k−
=

[C]c[D]d

[A]a[B]b
. (2.6)

In the same way, we can derive the rate equations for other chemicals A,B,D as
follows:

d[A]
dt

= −k+[A]a[B]b + k−[C]c[D]d ,

d[B]
dt

= −k+[A]a[B]b + k−[C]c[D]d ,

d[D]
dt

= k+[A]a[B]b− k−[C]c[D]d .

Since d[A]
dt + d[C]

dt = 0, [A] + [C] = A0 is constant, that is, the quantity [A] + [C] is
conserved. It is clear that other three quantities [A]+ [D], [B]+ [C], [B]+ [D] are also
conserved.

For dimerization of two monomers of the same species A to produce species B:

A+A �
k+

k−
B,

a caution needs to be paid to the use of the law of mass balance. Since every B is
produced from and split into two of A, the rate equation for A is

d[A]
dt

=−2k+[A]2 +2k−[B].

The rate of production of B is half that of A:

d[B]
dt

=−1
2

d[A]
dt

= k+[A]2− k−[B].
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2.3 The Michaelis-Menten Equation

An enzymatic reaction is schematically described in Fig. 2.2. In this reaction, a sub-
strate binds to an enzyme to form an enzyme/substrate complex. After undergoing
a reaction, the enzyme/substrate complex is converted into an enzyme/product com-
plex and then a product is released. For the convenience of mathematical modeling,
we represent this enzymatic reaction by the following chemical reaction equation

E +S �
k1

k−1

C →
k2

P+E,

where E is an enzyme, S is a substrate, C is a complex formed from E and S, P
is a product, and k1, k−1, k2 are rate constants. The application of the law of mass
action and the law of mass balance yields a system of ordinary differential equations
governing the reaction

d[S]
dt

= −k1[E][S]+ k−1[C], (2.7)

d[E]
dt

= −k1[E][S]+ (k−1 + k2)[C], (2.8)

d[C]
dt

= k1[E][S]− (k−1 + k2)[C], (2.9)

d[P]
dt

= k2[C]. (2.10)

Since d[E]
dt + d[C]

dt = 0, we have

[E]+ [C] = [E0], (2.11)

where [E0] is the concentration of total available enzymes.
The mathematical model (2.7)-(2.10) for the enzyme kinetics is complex and

needs to be simplified so that it is useful in modeling more sophisticated biochemical
reactions. Experimental studies have shown that the concentration of the complex

Substrate

Active site

Enzyme/substrate
complex

Enzyme/product
complex

Product leaving
active site of enzyme

Substrate entering
active site of enzyme

Product

Fig. 2.2. A schematic description of an enzymatic reaction
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Fig. 2.3. The kinetics of glycogen phosphorylase follows the Michaelis-Menten equation.
Left: the kinetic data of glycogen phosphorylase obtained by Winston et al [20] are fitted by
the Michaelis-Menten equation (2.14). Right: A Lineweaver-Burk plot. The data are read from
[20] using the software Engauge Digitizer 4.1

reaches an equilibrium state much faster than the substrate. At equilibrium, the con-
centration [C] does not change in time. Thus we may assume that

d[C]
dt

= 0,

and then
k1[E][S]− (k−1 + k2)[C] = 0. (2.12)

This assumption is called the quasi-steady state approximation.
Solving the equations (2.11) and (2.12), we obtain

[C] =
[E0][S]

[S]+ k−1+k2
k1

, [E] =
[E0]

k−1+k2
k1

[S]+ k−1+k2
k1

. (2.13)

It then follows from (2.10) that

V =
d[P]
dt

= k2[C] =
k2[E0][S]

[S]+ k−1+k2
k1

=
Vmax[S]
[S]+Km

, (2.14)

where

Vmax = k2[E0], (2.15)

Km =
k−1 + k2

k1
. (2.16)

Vmax is called the maximal velocity and Km is called the Michaelis-Menten constant.
The equation (2.14) describes the rate of reaction and is called the Michaelis-Menten
equation [12].
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Example 1. The glycogen phosphorylase is an enzyme that catalyzes the breakdown
of glycogen into glucose. The kinetic data of this enzyme was obtained by Winston
et al [20] as follows:

Glycogen (mg/mL): 4.82 2.48 1.98 1.5 1.2 1.0
V (mg/mL/min): 0.0714 0.0623 0.0608 0.0568 0.0512 0.0500

The data are read from Fig. 1C of [20] using the software Engauge Digitizer 4.1.
Using the curve fitting toolbox in MATLAB, we fit the Michaelis-Menten equa-
tion (2.14) into the data. Fig. 2.3 (left) shows that the data can be well fitted by
the Michaelis-Menten equation (2.14) with Km = 0.6328 mg/mL and Vmax = 0.0802
mg/mL/min.

As done in the above example, the parameters Km and Vmax can be determined
by fitting the Michaelis-Menten equation (2.14) into data. Since fitting a nonlinear
function into data is more difficult than fitting a linear function into data, we write
the equation (2.14) as

1
V

=
1

Vmax
+

Km

Vmax

1
[S]

. (2.17)

Then 1
V is a linear function of 1

[S] . The plot of this linear function is called a Line-
weaver-Burk plot, as shown in Fig. 2.3 (right). The parameters Km and Vmax can be
determined by fitting this linear function into data: 1/Vmax is equal to the y-intercept
of the line, −1/Km is equal to the x-intercept of the line, and Km/Vmax is equal to
the slope of the line. For instance, fitting the linear function into the kinetic data of
glycogen phosphorylase from Example 1 gives

1
V

= 7.75
1
[S]

+12.55.

Thus we obtain that
1

Vmax
= 12.55,

Km

Vmax
= 7.75,

and then

Vmax =
1

12.55
= 0.0796812749, Km =

7.75
12.55

= 0.61752988,

which are very close to the estimate obtained by fitting the Michaelis-Menten equa-
tion (2.14) into the data as done in Example 1.

Consider a reversible reaction:

E +S �
k1

k−1

C �
k2

k−2

P+E.
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The system of ordinary differential equations for the dynamics of this reaction reads

d[S]
dt

= −k1[E][S]+ k−1[C], (2.18)

d[E]
dt

= −k1[E][S]− k−2[E][P]+ (k−1 + k2)[C], (2.19)

d[C]
dt

= k1[E][S]+ k−2[E][P]− (k−1 + k2)[C], (2.20)

d[P]
dt

= k2[C]− k−2[E][P]. (2.21)

The quasi-steady state approximation gives

−k1[E][S]− k−2[E][P]+ (k−1 + k2)[C] = 0. (2.22)

Solving the equations (2.11) and (2.22), we obtain

[C] =
k1[E0][S]+ k−2[E0][P]

k−1 + k2 + k1[S]+ k−2[P]
, [E] =

[E0](k−1 + k2)
k−1 + k2 + k1[S]+ k−2[P]

. (2.23)

It then follows from (2.21) that

V =
d[P]
dt

=
k1k2[E0][S]+ k2k−2[E0][P]
k−1 + k2 + k1[S]+ k−2[P]

− k−2[E0](k−1 + k2)[P]
k−1 + k2 + k1[S]+ k−2[P]

=
V f

max
Kms

[S]− V b
max

Kmp
[P]

1+ [S]
Kms

+ [P]
Kmp

, (2.24)

where

V f
max = k2[E0], (2.25)

V b
max = k−1[E0], (2.26)

Kms =
k−1 + k2

k1
, (2.27)

Kmp =
k−1 + k2

k−2
. (2.28)

In mathematical analysis, sometimes it is useful to nondimensionalize a system.
We use the system (2.7)-(2.9) to demonstrate how to do so. Let [S0] denote the initial

concentration of S. Since [S] and [S0] have the same unit, the fraction s = [S]
[S0] is

dimensionless. Therefore we divide the equation (2.7) by [S0] to obtain

ds
dt

=−k1[E]s+
k−1

[S0]
[C].
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To nondimensionalize [E], we divide this equation by [E0] to obtain

ds
d([E0]t)

=−k1es+
k−1

[S0]
c,

where e = [E]
[E0] and c = [C]

[E0] . To nondimensionalize this equation, we divide it by k1

to obtain
ds
dτ

=−es+
k−1

k1[S0]
c, (2.29)

where τ = k1[E0]t. Applying the above nondimensionalizing process to the equations
(2.8) and (2.9), we obtain

[E0]
[S0]

de
dτ

= −es+
k−1 + k2

k1[S0]
c, (2.30)

[E0]
[S0]

dc
dτ

= es− k−1 + k2

k1[S0]
c. (2.31)

There are other ways to nondimensionalize the system, which are left as an exercise.
Typically, the concentration of an enzyme is much smaller than that of the sub-

strate. Hence the parameter ε = [E0]/[S0] is very small. In mathematical analysis, it is
important to study the behavior of the system as ε → 0. This is a singular perturbation
problem and its detailed discussions are beyond this text and are referred to [19].

2.4 Bi-substrate Enzymes

An enzymatic reaction in which two substrates bind to an enzyme in order is schemat-
ically described in Fig. 2.4. It can be represented by the following chemical reaction
equations

E +A �
k1

k−1

CA,

CA +B �
k2

k−2

CAB →
k3

P+E.

Substrates

Active site

Enzyme/substrate
complex

Enzyme/product
complex

Products leaving
active sites of enzyme

Substrates entering
active sites of enzyme

Products

Enzyme/substrate
complex

Fig. 2.4. A schematic description of an enzymatic reaction with two active sites
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As before, we have

d[CA]
dt

= k1[E][A]+ k−2[CAB]− k−1[CA]− k2[CA][B], (2.32)

d[CAB]
dt

= −(k−2 + k3)[CAB]+ k2[CA][B], (2.33)

d[P]
dt

= k3[CAB]. (2.34)

Solving the system

k1[E][A]+ k−2[CAB]− k−1[CA]− k2[CA][B] = 0,

−(k−2 + k3)[CAB]+ k2[CA][B] = 0,

[E]+ [CA]+ [CAB] = [E0],

we obtain

[CAB] =
k1k2[E0][A][B]

k1k2[A][B]+ k1k−2[A]+ k1k3[A]+ k−2k−1 + k3k−1 + k2k3[B]
, (2.35)

and then the velocity

d[P]
dt

= k3[CAB]

=
k1k2k3[E0][A][B]

k1k2[A][B]+ k1k−2[A]+ k1k3[A]+ k−2k−1 + k3k−1 + k2k3[B]

=
K1Vmax[A][B]

Km +K1Km[A]+Kd [B]+K1[A][B]
, (2.36)

where

Km =
k−2 + k3

k2
, K1 =

k1

k−1
, Kd =

k3

k−1
, Vmax = k3[E0].

2.5 Inhibitors

Biochemical reactions occurring in cells can be grouped into metabolic pathways
containing sequences of chemical reactions, as shown in Fig. 2.5. Each reaction in
the sequences of chemical reactions is catalyzed by a specific enzyme, and the product
of one reaction is the substrate for the next one. The compounds formed at each step
are the metabolic intermediates (or metabolites) that lead ultimately to the formation
of an end product.

Cells are always in a homeostatic condition, and therefore the amount of product
present or produced is always within certain range of concentrations. If a metabolic
pathway is producing more of the end product than it needs, the end product or an
inhibitor may bind to one or more of the enzymes in the pathway to inhibit the reac-
tion, increasing the Michaelis-Menten constant Km or decreasing the maximal veloc-
ity Vmax [5]. Many naturally occurring compounds and pharmaceutical compounds
are inhibitors.
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P1

P2

P2 …
E1 E2

Pn

En

Pn

Pn+1P1

Feedback inhibition

Fig. 2.5. A generic metabolic pathway. The enzyme E1 converts its substrate P1 into the
metabolite P2, the enzyme E2 converts the metabolite P2 into the metabolite P3, and ultimately
the enzyme En converts the metabolite Pn into the end product Pn+1. If the metabolic pathway
is producing more of the end product than it needs, the end product or a byproduct may bind
to the active sites of one or more of the regulatory enzymes of the pathway, preventing the
binding of a substrate molecule, thus inhibiting the reaction

2.5.1 Competitive Inhibition

If an inhibitor competes with the substrate molecule for active sites, it is called a com-
petitive inhibitor. For example, malonate is a competitive inhibitor of succinic dehy-
drogenase [5, p. 396]. An enzymatic reaction with competitive inhibition is schemat-
ically described in Fig. 2.6. It can be represented by the following chemical reaction
equations:

E +S �
k1

k−1

C1 →
k2

P+E,

E + I �
k3

k−3

C2,

where I denotes the inhibitor. It follows from the law of mass action and the law of

Substrate

Enzyme/substrate
complex

Enzyme/inhibitor
complex

Enzyme/product
complex

Product leaving
active site of enzyme

Substrate or inhibitor
entering active site

of enzyme

ProductInhibitor

Fig. 2.6. A schematic description of an enzymatic reaction with competitive inhibition
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mass balance that

d[C1]
dt

= k1[E][S]− (k−1 + k2)[C1], (2.37)

d[C2]
dt

= k3[E][I]− k−3[C2], (2.38)

d[P]
dt

= k2[C1]. (2.39)

As before, we have
[E]+ [C1]+ [C2] = [E0]. (2.40)

Using the quasi-steady state approximation

d[C1]
dt

=
d[C2]

dt
= 0,

we obtain

k1[E][S]− (k−1 + k2)[C1] = 0, k3[E][I]− k−3[C2] = 0. (2.41)

Solving the equations (2.40) and (2.41), we obtain

[C1] =
[E0][S]

[S]+KiKm[I]+Km
, (2.42)

where

Km =
k−1 + k2

k1
, Ki =

k3

k−3
.

Defining

Vmax = k2[E0], (2.43)

we obtain the velocity of the reaction

V =
d[P]
dt

= k2[C1] =
Vmax[S]

[S]+Km (1+Ki[I])
. (2.44)

Note that the effect of the inhibitor is to increase the Michaelis-Menten constant from
Km to Km (1+Ki[I]) and then decrease the velocity of reaction, while leaving the
maximum velocity unchanged.

Consider a competitive inhibition in which two substrates bind to an enzyme in
order:

E +A �
k1

k−1

CA,

CA +B �
k2

k−2

CAB →
k3

P+E,

E + I �
k4

k−4

CI .
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As before, we have

k1[E][A]+ k−2[CAB]− k−1[CA]− k2[CA][B] = 0,

−(k−2 + k3)[CAB]+ k2[CA][B] = 0,

k4[E][I]− k−4[CI ] = 0,

[E]+ [CA]+ [CAB]+ [CI ] = [E0].

Solving this system, we obtain

[CAB] =
K1[B][A][E0]

Km(K4[I]+K1[A]+1)+K4Kd [I][B]+K1[A][B]+Kd [B]
, (2.45)

where

Km =
k−2 + k3

k2
, K1 =

k1

k−1
, K4 =

k4

k−4
, Kd =

k3

k−1
.

Then the velocity of the reaction is given by

V =
d[P]
dt

= k3[CAB]

=
K1Vmax[B][A]

Km(K4[I]+K1[A]+1)+K4Kd [I][B]+K1[A][B]+Kd [B]
, (2.46)

where Vmax = k3[E0].

2.5.2 Uncompetitive Inhibition

If an inhibitor can bind to the enzyme-substrate complex rather than the free enzyme,
it is called a uncompetitive inhibitor [5, p. 396]. Such a uncompetitive inhibition can
be represented by the following chemical reaction equations:

E +S �
k1

k−1

C1 →
k2

P+E,

C1 + I �
k3

k−3

C2.

Similar to the situation of competitive inhibition, we can derive the equations for [C1]
and [C2] as follows

k1[E][S]− (k−1 + k2)[C1]− k3[C1][I]+ k−3[C2] = 0,

k3[C1][I]− k−3[C2] = 0,

[E]+ [C1]+ [C2] = [E0].

Solving these equations, we obtain

[C1] =
[E0][S]

Km +[S](1+Ki[I])
,
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where

Km =
k−1 + k2

k1
, Ki =

k3

k−3
.

Then the velocity of the reaction is

V =
d[P]
dt

= k2[C1] =
Vmax[S]

Km +[S](1+Ki[I])
=

Vmax

1+Ki[I]
[S]

Km
1+Ki[I]

+ [S]
. (2.47)

Thus, a uncompetitive inhibitor decreases both the Michaelis-Menten constant and
the maximum velocity.

2.5.3 Noncompetitive Inhibition

If an inhibitor can bind to both the free enzyme and the enzyme-substrate complex,
it is called a noncompetitive inhibitor [5, p. 397]. This more complicated situation
is called noncompetitive inhibition. A situation of noncompetitive inhibition is illus-
trated in Fig. 2.7 and can be represented by the following chemical reaction equations:

E +S �
k1

k−1

Ces →
k2

E +P,

E + I �
k3

k−3

Cei,

Ces + I �
k3

k−3

Ceis,

Cei +S �
k1

k−1

Ceis.

Substrate

Active site
Enzyme/substrate

complex

Enzyme/substrate/inhibitor
complex

Enzyme/inhibitor
complex

Enzyme/product
complex

Product leaving
active site of enzyme

Product

Inhibitor

Fig. 2.7. A schematic description of an enzymatic reaction with noncompetitive inhibition
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For simplicity, we use a simple equilibrium analysis developed in [12] by assuming
that each reaction is at equilibrium. For the reaction from E +S to Ces, we derive that

k1[E][S] = k−1[Ces].

Repeating this for all other reactions, we obtain

([E0]− [Ces]− [Cei]− [Ceis]) [S]−Km[Ces] = 0,

([E0]− [Ces]− [Cei]− [Ceis]) [I]−Ki[Cei] = 0,

[Cei] [S]−Km[Ceis] = 0,

[Ces] [I]−Ki[Ceis] = 0,

where

Km =
k−1

k1
, Ki =

k−3

k3
.

As before, we have used

[E]+ [Ces]+ [Cei]+ [Ceis] = [E0].

Solving this system, we obtain

[Ces] =
Ki[S][E0]

([S]+Km)(Ki +[I])
.

Thus the velocity of the reaction is

V =
d[P]
dt

= k2[Ces] =
KiVmax

(Ki +[I])
[S]

([S]+Km)
, (2.48)

where Vmax = k2[E0]. In contrast to the competitive inhibition, the noncompeti-
tive inhibition decreases the maximum velocity of the reaction, while leaving Km

unchanged.
One can also use the quasi-steady state approximation to derive the rate equation,

but the result is more complicated and left as an exercise.

2.6 Cooperativity

Many enzymes are multimers and have more than one subunit for binding substrates
[5, p. 402]. If subunits of an enzyme act independently of each other, the enzyme
is said to exhibit non-cooperativity. If the binding of one substrate molecule in one
subunit makes the binding of a subsequent molecule to the second subunit easier,
the enzyme is said to exhibit positive cooperativity. If the binding of one substrate
molecule in one subunit makes the binding of a subsequent molecule to the second
subunit more difficult, the enzyme is said to exhibit negative cooperativity.
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Suppose that an enzyme can bind two substrate molecules. The reaction can be
represented by

k1 k2

E +S � C1 −→ P+E,
k−1

k3 k4

C1 +S � C2 −→ P+C1.
k−3

It follows from the law of mass action and the law of mass balance that

d[C1]
dt

= k1[E][S]+ (k−3 + k4)[C2]− k3[C1][S]− (k−1 + k2)[C1],

d[C2]
dt

= k3[C1][S]− (k−3 + k4)[C2],

d[P]
dt

= k2[C1]+ k4[C2].

As before, we have
[E]+ [C1]+ [C2] = [E0]. (2.49)

Using the Quasi-steady state approximation d[C1]
dt = d[C2]

dt = 0 and solving for [C1] and
[C2], we obtain

[C1] =
(k−3 + k4)k1[E0][S]

[S]2k1k3 + k1[S](k−3 + k4)+(k−1 + k2)(k−3 + k4)

=
K2[E0][S]

K1K2 +K2[S]+ [S]2
,

[C2] =
k3k1[E0][S]2

[S]2k1k3 + k1[S](k−3 + k4)+(k−1 + k2)(k−3 + k4)

=
[E0][S]2

K1K2 +K2[S]+ [S]2
,

where

K1 =
k−1 + k2

k1
, K2 =

k−3 + k4

k3
.

Thus the velocity of the reaction is

V =
d[P]
dt

= k2[C1]+ k4[C2] =
(k2K2 + k4[S])[E0][S]
K1K2 +K2[S]+ [S]2

. (2.50)

We now examine three cases. First we consider the case of non-cooperativity
where the binding sites act independently and identically. Then k1 = 2k3 =
2k+, 2k−1 = k−3 = 2k− and 2k2 = k4, where k+ and k− are the forward and back-
ward reaction rates for the individual binding sites. The factors of 2 occur because
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two identical binding sites are involved in the reaction, doubling the amount of the
reaction. Denoting K = k−+k2

k+
, we obtain K1 = K/2,K2 = 2K and then

V =
2k2E0(K +[S])[S]

K2 +2K +[S]2
=

2k2[E0][S]
K +[S]

.

Thus the rate of reaction with two binding sites is exactly twice that for the one bind-
ing site.

Next we consider the case of positive cooperativity where the binding of the first
substrate molecule is slow and the first binding makes the second binding fast. This
implies that k1→ 0 and k3→∞, but k1k3 is kept as a constant. In this case, the velocity
of reaction is

V =
Vmax[S]2

K2
m +[S]2

,

where K1K2 = K2
m and Vmax = k4[E0]. In general, if the enzyme has n binding sites,

then

V =
Vmax[S]n

Kn
m +[S]n

. (2.51)

This rate equation is called the Hill equation. The exponent n is usually determined
from experimental data and may be non-integer, not equal to the number of the active
sites.

Note that the equation (2.51) can be written as

ln

(
V

Vmax−V

)
= n lnS−n lnKm. (2.52)

So the plot of ln
(

V
Vmax−V

)
against lnS (called a Hill plot) is a straight line and the

slope of the line is the Hill exponent n.
An enzyme can also exhibit negative cooperativity, in which the first binding

decreases the next binding rate. This can be modeled by decreasing k3 in the rate
equation (2.50).

Example 2. The sarcoplasmic or endoplasmic reticulum Ca2+-ATPase (SERCA) is
an enzyme that resides on the membrane of intracellular sarcoplasmic or endoplas-
mic reticulum organelles and pumps Ca2+ from the cytosol into the organelles. The

Ca
2+

Endoplasmic reticulum

P

PP

Cytosol

Fig. 2.8. A schematic description of calcium uptake by the sarcoplasmic or endoplasmic retic-
ulum Ca2+-ATPase (SERCA)
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Fig. 2.9. Fitting of the Hill function (2.51)
into the kinetic data of the sarcoplasmic
or endoplasmic reticulum Ca2+-ATPase
(SERCA) with n = 2.1 and Km = 0.44
(μM). The data are read from [14] using
the software Engauge Digitizer 4.1

calcium uptake cycle by SERCA, as demonstrated in Fig. 2.8, is thought to include a
binding of two Ca2+ ions to the cytosolic portion of the Ca2+-ATPase (Ca2+

2 -E1), an
ATP-dependent phosphorylation (Ca2+

2 -E1-P), a translocation of Ca2+ to the lume-
nal portion of the Ca2+-ATPase (Ca2+

2 -E2-P), a presumably sequential dissociation
of Ca2+ to the Ca2+ store lumen (E2-P), a dephosphorylation of the enzyme (E2), and
finally a regain of the original conformation (E1) (see [7, 16]). Kinetic data of this
enzyme were obtained by Lytton et al [14] as follows:

[Ca2+](μM) : 0.01 0.0298 0.0505 0.101 0.199 0.298
V/Vmax : 0.044 0.049 0.047 0.091 0.153 0.352[
Ca2+](μM) : 0.493 1.03 2.07 3.09 5.07 10.4

V/Vmax : 0.584 0.815 0.924 0.964 0.970 0.976

The data are read from Fig. 4 of [14] using the software Engauge Digitizer 4.1. Fig. 2.9
indicates that the data can be well fitted by the Hill function (2.51) with n = 2.1 and
Km = 0.44 (μM). Thus a positive cooperativity exists in SERCA.

2.7 Chemical Potential

The rate constants depend on energy because reactants in a chemical reaction have to
accumulate enough energy to break down bonds before the reaction could occur. In
a chemical reaction, the energy is expressed by chemical potential. Thus, the chem-
ical potential of a substance, denoted by μ , is defined as the change in the Gibbs
free energy with respect to the amount of the substance at a constant temperature and
pressure. For the precise definition of Gibbs free energy, we refer to a thermodynam-
ics book such as [2, 9, 10]. The chemical potential is related to the concentration of
the substance as follows (see, e.g., [2, p. 171])

μ = μ◦+RT ln(c), (2.53)

where c is the concentration of the substance, R is the gas constant, T is the absolute
temperature in Kelvin, and μ◦ is the standard chemical potential of the substance.

For the chemical reaction

aA+bB� cC +dD,
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it follows from (2.53) that the change in the chemical potential is given by (see, e.g.,
[2, 3])

Δ μ = Δ μ◦+RT ln
[C]c[D]d

[A]a[B]b
. (2.54)

At equilibrium, Δ μ = 0. So

Δ μ◦ =−RT ln
[C]ceq[D]deq

[A]aeq[B]beq
=−RT lnKeq, (2.55)

where Keq =
[C]ceq[D]deq

[A]aeq[B]beq
is the equilibrium constant under standard conditions. It then

follows that

Δ μ =−RT lnKeq +RT ln
[C]c[D]d

[A]a[B]b
=−RT ln

Keq[A]a[B]b

[C]c[D]d
. (2.56)

2.8 The Arrhenius Formula

Reaction rates almost always increase when temperature is raised. For a reaction

B+C →k P,

the increase in the rate constant k is often found to obey an equation suggested by
Svante Arrhenius in 1889 (see, e.g., [1, p. 464]):

lnk = lnA− Ea

RT
, (2.57)

where A and Ea are positive constants that depend on the reaction, R is the gas con-
stant, and T is the absolute temperature in Kelvin. The constant A is called the fre-
quency factor and the constant Ea is called the activation energy. In applications, it
is more convenient to write Arrhenius’ formula in the exponential form

k = Aexp

(
− Ea

RT

)
. (2.58)

According to Eyring rate theory, the frequency factor A is given by (see, e.g., [12])

A =
kT
h

,

where k is Boltzmann’s constant and h is Planck’s constant.

2.9 Effects of Energy

We briefly discuss effects of energy on rate constants. For detailed discussions, we
refer to [18]. Consider the enzymatic reaction:

E +S �
k1

k−1

C →
k2

P+E.
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By (2.14), the velocity of this reaction is given by

V =
d[P]
dt

=
k1k2[E0][S]

k1[S]+ k−1 + k2
=

K1k2[E0][S]

1+ K1k2
k1

+K1[S]
, (2.59)

where K1 = k1
k−1

is the equilibrium constant. Using the free energy equation (2.55)
and Arrhenius’ formula (2.58), we obtain

k1 =
kT
h

exp

(−ΔG1

RT

)
,

k2 =
kT
h

exp

(−ΔG2

RT

)
,

K1 = exp

(−ΔG◦1
RT

)
,

where ΔG1 and ΔG2 are the activation energies for corresponding reactions, and ΔG◦1
is the standard free energy change. Substituting these equations into (2.59) gives

V =

kT [E0][S]
h exp

(−ΔG◦1−ΔG2
RT

)
1+ exp

(
ΔG1−ΔG◦1−ΔG2

RT

)
+[S]exp

(−ΔG◦1
RT

) . (2.60)

2.10 Effects of pH

We briefly discuss effects of pH on rate constants. For detailed discussions, we refer
to [18]. The effects of pH can be treated as the competitive inhibition:

E +S �
k1

k−1

C1 →
k2

P+E,

E +H+ �
k3

k−3

C2.

By (2.44), the velocity of the reaction is given by

V =
Vmax[S]

[S]+Km (1+Ki[H+])
, (2.61)

where

Km =
k−1 + k2

k1
, Ki =

k3

k−3
, Vmax = k2[E0].

Note that the effect of the proton H+ is to increase the Michaelis-Menten constant
from Km to Km (1+Ki[H+]).
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Fig. 2.10. An ion hopping model.
Above: Energy minima are the
preferred sites for ions. Ions
would pause there until they
acquire enough energy to hop over
an energy barrier with an energy
difference of ΔG to a neighboring
preferred position. Below: An
applied external electric field
lowers the energy barrier on one
side of the ion and raise it on the
other

2.11 The Ion Hopping Model

Consider how an ion moves through an ordered solid like a crystal. As proposed in
[11], the crystal lattice creates preferred resting positions for the mobile ion, with
energetically unfavorable regions between. The structure might be represented as a
periodic potential energy diagram as in Fig. 2.10A. Energy minima are the preferred
sites. Ions would pause there until they acquire enough energy to hop over an energy
barrier with an energy difference of ΔG to a neighboring preferred position.

Suppose that an external electric field is applied across the crystal. Then the
applied field lowers the energy barrier on one side of the ion and raise it on the other
as shown in Fig. 2.10B. The ion drifts down the field-electrodiffusion.

From Arrhenius’ law (2.58), the rate constants in the hopping model satisfy

k f = A f exp

(
−ΔG f

RT

)
,

kb = Ab exp

(
−ΔGb

RT

)
.

Assume that the electric field produces an electric potential drop of ΔV from one
barrier to the next. It follows from (B.2) in Appendix B that the potential energy
barriers for moving the ion from an energy minimum to the nearest maximum are
changed by ±FzΔV/2, where F is Faraday’s constant and z is the charge of the ion.
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Then the forward and backward hopping rate constants become

k f = A f exp

(−ΔG+0.5FzΔV
RT

)
, (2.62)

kb = Ab exp

(−ΔG−0.5FzΔV
RT

)
. (2.63)

Exercises

2.1. Assume that the half-life for maximal Protein Kinase B (PKB) activation is 1
minute (see, e.g., [17]). Use (2.5) to calculate the activation rate constant.

2.2. Consider the differential equations governing an enzymatic reaction

d[S]
dt

= −k1[E][S]+ k−1[C],

d[E]
dt

= −k1[E][S]+ (k−1 + k2)[C],

d[C]
dt

= k1[E][S]− (k−1 + k2)[C].

Introducing dimensionless variables

s =
[S]
Km

, e =
[E]
Km

, c =
[C]
Km

, τ = (k−1 + k2)t,

where Km = k−1+k2
k1

, derive the dimensionless equations

ds
dτ

= −es+
k−1

k−1 + k2
c,

de
dτ

= −es+ c,

dc
dτ

= es− c.

2.3. ([12]) The process of glucose transport can be modeled as follows: We suppose
that the glucose transporter (T) has two conformational states, Ti and Te, with its glu-
cose binding site exposed on the cell interior (subscript i) or exterior (subscript e)
of the membrane, respectively. The glucose on the interior Gi can bind with Ti and
the glucose on the exterior can bind with Te to form the complex Ci or Ce, respec-
tively. Finally, a conformational change transforms Ci into Ce and vice versa. These
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statements are summarized as follows:

Te +Ge �
k+

k−
Ce,

Ti +Gi �
k+

k−
Ci,

Te �
k

k
Ti,

Ce �
k

k
Ci.

1. Find the differential equations for [Ti], [Te], [Ci], and [Ce].
2. Find the steady state flux J = k−[Ci]−k+[Gi][Ti] by setting all derivatives to zero

and solving the resulting algebraic system.

2.4. ([12]) Consider the following trimerization reaction in which three monomers of
A combine to form the trimer C:

A+A �
k1

k−1

B,

A+B �
k2

k−2

C.

Find the rate of production of the trimerC using the quasi-steady-state approximation.

2.5. ([12]) Consider an enzymatic reaction in which an enzyme can be activated or
inactivated by the same chemical substance as follows:

E +X �
k1

k−1

E1,

E1 +X �
k2

k−2

E2,

E1 +S −→
k3

P+Q+E.

Suppose further that X is supplied at a constant rate and removed at a rate propor-
tional to its concentration. Use quasi-steady-state analysis to find the dimensionless
equation describing the degradation of X :

dx
dτ

= γ− x− βxy
1+ x+ y+ α

δ x2 .

2.6. ([12]) Using the quasi-steady-state approximation, show that the velocity of the
reaction for an enzyme with noncompetitive inhibition in Fig. 2.7 is given by

V =
k1k2k−3[E0][S] (k−3 + k1[S]+ k−1 + k3[I])

(k3[I]+ k−3) [(k1[S]+ k−1)2 +(k1[S]+ k−1)(k3[I]+ k2 + k−3)+ k−3k2]
.
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2.7. ([12]) Data for an enzymatic reaction are as follows:

[S](mM) 0.1 0.2 0.5 1.0 2.0 3.5 5.0
V (mM/s) 0.04 0.08 0.17 0.24 0.32 0.39 0.42

where [S] denotes the concentration of substrate and V denotes the corresponding rate
of reaction.

1. Plot V against [S]. Is this a Michaelis-Menten type reaction? If yes, fit Michaelis-
Menten function (2.14) into the data to determine Km and Vmax.

2. Plot 1/V against 1/[S]. Can these data be well fitted by a straight line? If yes, use
the straight line fit and (2.17) to determine Km and Vmax.

2.8. ([12]) Data for an enzymatic reaction are as follows:

[S](mM) 0.2 0.5 1.0 1.5 2.0 2.5 3.5 4.0 4.5 5.0
V (mM/s) 0.01 0.06 0.27 0.50 0.67 0.78 0.89 0.92 0.94 0.95

where [S] denotes the concentration of substrate and V denotes the corresponding rate
of reaction. The maximum velocity Vmax of the reaction is known to be 1 mM/s.

1. Plot V against [S]. Is this a Hill type reaction? If yes, fit the Hill function (2.51)
into the data to determine n,Km, and Vmax.

2. Plot ln
(

V
Vmax−V

)
against ln[S]. Can these data be well fitted by a straight line? If

yes, use the straight line fit and (2.52) to determine Km and the Hill exponent n.

2.9. ([12]) In the case of noncompetitive inhibition, the inhibitor combines with the
enzyme-substrate complex to give an inactive enzyme-substrate-inhibitor complex
which cannot undergo further reaction, but the inhibitor does not combine directly
with free enzyme or affect its reaction with substrate. Use the quasi-steady-state
approximation to show that the velocity of this reaction is

V =
Vmax[S]

Km +[S]+ [I]
Ki

[S]
.

2.10. ([4, 8, 13]) Copper, zinc superoxide dismutase catalyzes the conversion of
superoxide O−·2 into hydrogen peroxide H2O2 according to the following enzymatic
reactions

ECu2+ +O−·2 −→
k

ECu+ +O2,

ECu+ +O−·2 +2H+ �
k

k−
ECu2+ +H2O2,

where k = 2.4×109 M−1 · s−1 and k− = 3.1 M−1 · s−1. Derive the differential equa-
tions for the concentrations of O−·2 and H2O2 using the quasi-steady-state approxi-
mation.
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2.11. ([15]) Manganese superoxide dismutase catalyzes the conversion of superoxide
O−·2 into hydrogen peroxide H2O2 according to the following enzymatic reactions

EA +O−·2 −→
k1

EB +O2,

EB +O−·2 +2H+ −→
k1

EA +H2O2,

EB +O−·2 −→
k2

EC,

EC −→
k3

EA,

where EA is the native enzyme, EB, EC are reduced forms of the enzyme, k1 =
5.6× 108 M−1 · s−1, k2 = 4.8× 107 M−1 · s−1, and k3 = 70 s−1. Derive the differ-
ential equations for the concentrations of O−·2 and H2O2 using the quasi-steady-state
approximation.

2.12. ([6]) Xanthine oxidase (XO) catalyzes the conversion of hypoxanthine into xan-
thine and then into uric acid. A kinetic scheme of this sequential enzymatic reactions
is as follows

E +H +O2 �
k1

k−1

EHO −→
k2

E +X +O−·2 ,

E +X �
k3

k−3

EX −→
k4

E +U,

E +U �
k5

k−5

EU ,

where E is the xanthine oxidase, H is the hypoxanthine, X is the xanthine, and U is
the uric acid.

1. Using a simple steady-state approximation, show that the concentrations of
hypoxanthine ([H]), xanthine ([X ]), uric acid ([U ]), and superoxide ([O−·2 ]) satisfy
the following differential equations

d[H]
dt

= − V H
max[H]

KH
m +[H]+ KH

m [X ]
KX

m
+ KH

m [U ]
K1

,

d[X ]
dt

=
V H

max[H]KX
m −V X

max[X ]KH
m

KH
m KX

m +KX
m [H]+KH

m [X ]+ KH
m KX

m [U ]
K1

,

d[U ]
dt

=
V X

max[X ]

KX
m +[X ]+ KX

m [H]
KH

m
+ KX

m [U ]
K1

,

d[O−·2 ]
dt

=
V H

max[H]

KH
m +[H]+ KH

m [X ]
KX

m
+ KH

m [U ]
K1

.
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Because the simple steady-state approximation is used, the above equations can-
not be derived in a usual way. For instance, the d[H]

dt equation cannot be obtained

from d[H]
dt = k−1[EHO]−k1[E][H][O2]. Instead, d[H]

dt =− d[O−·2 ]
dt because the con-

sumption rate of H should be equal to the production rate of O−·2 . This remark

applies to X : d[X ]
dt = k2[EHO]− k4[EX ].

2. Solve the system numerically with the following values of parameters (estimated
with the concentration of 0.27 mg/ml of xanthine oxidase [6]): V H

max = 1.69 μM ·
s−1, KH

m = 1.86 μM, V X
max = 2.07 μM · s−1, KX

m = 3.38 μM, and K1 = 178 μM.
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3

Preliminary Systems Theory

In this chapter, we introduce preliminary systems theory. This includes controllability
and observability of a system, stability of equilibrium points of a system, feedback
control of a system, and parametric sensitivity of a system. These theories will be
used to analyze biological cellular control systems.

In this book, N denotes the set of all nonnegative natural numbers, C denotes the
set of complex numbers, Rn denotes the n-dimensional Euclidean space, and R=R1

denotes the real line. Points in Rn will be denoted by x = (x1, · · · ,xn), and its norm
is defined by

‖x‖=

(
n

∑
i=1

x2
i

) 1
2

.

The inner product of x and y is defined by

x ·y =
n

∑
i=1

xiyi.

3.1 Elementary Matrix Algebra

Let m and n be positive integers. An m×n matrix A is a rectangular array of numbers
with m rows and n columns:

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

... · · · ...
am1 am2n · · · amn

⎤
⎥⎥⎥⎦ .

For example,

A =

⎡
⎣ 1 3 1
−1 0 1
−1 −3 −1

⎤
⎦

LiuW.: Introduction to Modeling Biological Cellular Control Systems.
DOI 10.1007/978-88-470-2490-8 3, © Springer-Verlag Italia 2012
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is a 3× 3 matrix. It is convenient to write A = [ai j]. The size of a matrix tells how
many rows and columns it has. We say that two matrices A = [ai j] and B = [bi j] are
equal if they have the same size and if ai j = bi j for all i and j. If m = n, the matrix is
called a square matrix.

3.1.1 Matrix Sums

If A = [ai j] and B = [bi j] are m×n matrices, then the sum A+B is defined by

A+B = [ai j +bi j].

The sum A+B is defined only when A and B have the same size.

Example 3. Let

A =
[

4 0 5
−1 3 2

]
, B =

[
1 1 1
3 5 7

]
, C =

[
2 −3
−1 3

]
.

Then

A+B =
[

5 1 6
2 8 9

]
,

but A+C is not defined because A and C have different sizes.

3.1.2 Scalar Multiple

If r is a scalar and A = [ai j] is a matrix, then the scalar multiple rA is defined by

rA = [rai j].

We define −A as (−1)A and A−B as A+(−1)B.

Example 4. Let A and B be the matrices in Example 3. Then

4A = 4

[
4 0 5
−1 3 2

]
=

[
16 0 20
−4 12 8

]
and

A−B =
[

4 0 5
−1 3 2

]
−
[

1 1 1
3 5 7

]
=

[
3 −1 4
−4 −2 −5

]
.

Theorem 1. Let A, B, and C be matrices of the same size, 0 denote the matrix with
all zero entries, and let r and s be scalars. Then the following hold:

• A+B = B+A;
• (A+B)+C = A+(B+C);
• A+0 = A;
• r(A+B) = rA+ rB;
• (r + s)A = rA+ sA;
• r(sA) = (rs)A.
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3.1.3 Matrix Multiplication

If A = [ai j] is an m× n matrix and B = [bi j] is an n× p matrix, then the product
AB = [ci j] is the m× p matrix whose entries are given by

AB = [ci j] =
[
ai1b1 j +ai2b2 j + · · ·+ainbn j

]
.

Example 5. Let

A =
[

4 0
−1 3

]
, B =

[
1 1 1
3 5 7

]
.

Then

AB =
[

4 ·1+0 ·3 4 ·1+0 ·5 4 ·1+0 ·7
−1 ·1+3 ·3 −1 ·1+3 ·5 −1 ·1+3 ·7

]
=

[
4 4 4
8 14 20

]
.

In general, AB �= BA. For example, if

A =
[

0 1
2 3

]
, B =

[
2 3
4 5

]
,

then

AB =
[

4 5
16 21

]
, BA =

[
6 11

10 19

]
.

So AB �= BA.

3.1.4 Powers of a Matrix

If A is an n×n matrix and k is a positive integer, then the k-th power of A is defined
by

Ak = A · · ·A︸ ︷︷ ︸
k

.

3.1.5 Transpose of a Matrix

If A = [ai j] is an m×n matrix, then transpose of A, denoted by A∗, is the n×m matrix
A∗ = [bi j] with bi j = a ji.

Example 6. Let

A =
[

4 0 5
−1 3 2

]
.

Then

A∗ =

⎡
⎣4 −1

0 3
5 2

⎤
⎦ .

The identity matrix I = [ai j] is the n×n matrix with aii = 1 and ai j = 0 for i �= j.
For example

I =
[

1 0
0 1

]
.
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Theorem 2. Let A be an m× n matrix, and let B and C have sizes for which the
indicated sums and products are defined. The the following hold:

• A(BC) = (AB)C (associative law of multiplication);
• A(B+C) = AB+AC (left distributive law);
• (B+C)A = BA+CA (right distributive law);
• r(AB) = (rA)B = A(rB) for any scalar r;
• (AB)∗ = B∗A∗;
• IA = AI = A.

3.1.6 The Determinant

Let A be an n× n matrix. We define the determinant det(A) of A by induction as
follows. If n = 1, we define det(A) = a11. Suppose that det(A) has been defined for
n = k ≥ 1. Given an element ai j of a matrix A, Mi j, the minor of ai j, is the matrix
obtained from A by deleting the ith row and the jth column. Ai j, the cofactor of ai j,
is defined by

Ai j = (−1)i+ jdet(Mi j).

For n = k +1, we define

det(A) = a11A11 +a21A21 + · · ·+an1An1.

If

A =
[

a11 a12

a21 a22

]
,

then
det(A) = a11a22−a21a12.

If

A =

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ ,

then

det(A) = a11det

[
a22 a23

a32 a33

]
−a21det

[
a12 a13

a32 a33

]
+a31det

[
a12 a13

a22 a23

]
.

3.1.7 Eigenvalues

An n×1 or 1×n matrix is called a column or row vector, respectively. Let A = [ai j]
be an n× n matrix. A number λ is called an eigenvalue of A if there is a nonzero
solution (x1,x2, · · · ,xn) of the following linear system

a11x1 +a12x2 + · · ·+a1nxn = λx1,

a21x1 +a22x2 + · · ·+a2nxn = λx2,

...

an1x1 +an2x2 + · · ·+annxn = λxn.
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The solution vector (x1,x2, · · · ,xn) is called an eigenvector corresponding to λ . Intro-
ducing the vector

x =

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦ ,

the above system can be written in the matrix form

Ax = λx.

The eigenvalues of A are solutions of the equation

det(A−λ I) = 0.

This equation is called the characteristic equation of A.

Example 7. Find eigenvalues and eigenvectors of

A =
[

2 2
1 3

]
.

The equation for the eigenvalues is

det(A−λ I) = det

[
2−λ 2

1 3−λ

]
= (2−λ )(3−λ )−2 = 0.

Solving the equation, we obtain the eigenvalues

λ1 = 1, λ2 = 4.

For the eigenvalue λ1 = 1, we have the system for the corresponding eigenvector

x1 +2x2 = 0,

x1 +2x2 = 0.

Taking x2 = 1 and solving the equation for x1, we obtain an eigenvector

v1 =
[−2

1

]
.

For the eigenvalue λ2 = 4, we have the system for the corresponding eigenvector

−2x1 +2x2 = 0,

x1− x2 = 0.

Taking x2 = 1 and solving the equation for x1, we obtain an eigenvector

v2 =
[

1
1

]
.
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3.1.8 Rank of a Matrix

The set of vectors v1, · · ·vk is linearly dependent if there exist c1, · · · ,ck, not all zero,
such that

c1v1 + · · ·+ ckvk = 0.

Otherwise, it is said to be linearly independent. The vectors

v1 =
[

1
2

]
, v2 =

[
2
4

]

are linearly dependent because −2v1 +v2 = 0. The vectors

v1 =

⎡
⎣1

0
0

⎤
⎦ , v2 =

⎡
⎣0

1
0

⎤
⎦ , v3 =

⎡
⎣0

0
1

⎤
⎦

are linearly independent because c1v1 +c2v2 +c3v3 = 0 implies that c1 = c2 = c3 = 0.
The rank of A is the maximum number of linearly independent row (or column)

vectors of A. For example, the first two rows of the matrix⎡
⎣ 1 3 1
−1 0 1
−1 −3 −1

⎤
⎦

is linearly independent, but the three row vectors are linearly dependent. So the rank
of the matrix is 2.

The rank of A can be calculated by reducing A to a triangular matrix through
basic row or column operations. The rank of A is equal to the number of non-zero
row vectors in the reduced triangular matrix. For instance, adding the first row of the
above matrix A to the second and third rows, we reduce A to the following triangular
matrix ⎡

⎣1 3 1
0 3 2
0 0 0

⎤
⎦ .

So the rank of A is 2.
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3.2 Stability of Equilibrium Points

As demonstrated in Chapter 2, states of a dynamical biological system are frequently
described by a system of ordinary differential equations

dx1

dt
= f1(t,x1,x2, · · · ,xn,u1,u2, · · · ,up), (3.1)

dx2

dt
= f2(t,x1,x2, · · · ,xn,u1,u2, · · · ,up), (3.2)

...
dxn

dt
= fn(t,x1,x2, · · · ,xn,u1,u2, · · · ,up), (3.3)

x1(0) = x0
1, x2(0) = x0

2, · · · , xn(0) = x0
n, (3.4)

where fi are given functions, ui are specified input control variables, and x0
1,x

0
2, · · · ,x0

n
are specified initial conditions. We call the variables x1,x2, · · · ,xn state variables.
Sometimes another system

y1 = g1(t,x1,x2, · · · ,xn,u1,u2, · · · ,up), (3.5)

y2 = g2(t,x1,x2, · · · ,xn,u1,u2, · · · ,up), (3.6)

...

ym = gm(t,x1,x2, · · · ,xn,u1,u2, · · · ,up) (3.7)

is associated with (3.1)-(3.3). We call the variables y1,y2, · · · ,ym outputs. They con-
sist of variables of particular interest in a biological system, for example, a product
of a chemical reaction.

Example 8. Consider the enzymatic reaction:

u→ E +S �
k1

k−1

C →
k2

P+E,

where u is the rate of substrate input. In Section 2.3, we showed that the system of
differential equations governing the states S, E, P is

d[S]
dt

= −k1[E][S]+ k−1([E0]− [E])+u, (3.8)

d[E]
dt

= −k1[E][S]+ (k−1 + k2)([E0]− [E]), (3.9)

d[P]
dt

= k2([E0]− [E]). (3.10)

In this reaction, the output could be the product:

y = [P].
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3.2.1 Definition of Stability

If the functions fi in the system (3.1)-(3.3) do not depend on t, the system is said
to be autonomous. Otherwise, it is said to be nonautonomous. Evidently, the system
(3.8)-(3.10) is autonomous.

Let

x =

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦ , f(x) =

⎡
⎢⎢⎢⎣

f1(x)
f2(x)

...
fn(x)

⎤
⎥⎥⎥⎦ .

The autonomous system (3.1)-(3.3) can be written as the following vector form

dx
dt

= f(x). (3.11)

The solutions x̄ = (x̄1, x̄2, · · · x̄n)∗ of the system

f1(x1,x2, · · · ,xn) = 0, (3.12)

f2(x1,x2, · · · ,xn) = 0, (3.13)
...

fn(x1,x2, · · · ,xn) = 0 (3.14)

is called an equilibrium point (or steady state) of the system (3.11). If the states of
the system (3.11) start at the equilibrium point x̄, they remain at x̄ for all future time
since dx1

dt = 0, dx2
dt = 0, · · · , dxn

dt = 0 at the equilibrium point.

Definition 1. Let W be a closed set in Rn. The set W is said to be positively invariant
for the system (3.11) if for any initial conditions x(0)∈W, the solutions x(t) of (3.11)
are in W for all t ≥ 0.

Definition 2. Let W be a closed positively-invariant set for the system (3.11) in Rn.
The equilibrium point x̄ = (x̄1, x̄2, · · · x̄n)∗ ∈W of the system (3.11) is:

• stable in W if, for any ε > 0, there is δ = δ (ε) > 0 such that

‖x(t)− x̄‖< ε for ‖x(0)− x̄‖< δ , x(0) ∈W, and t ≥ 0;

• unstable in W if it is not stable in W;
• asymptotically stable in W if there is δ > 0 such that

lim
t→∞

x(t) = x̄ for ‖x(0)− x̄‖< δ and x(0) ∈W ;

• exponentially stable in W if there are C, ω , δ > 0 such that

‖x(t)− x̄‖ ≤Ce−ωt for ‖x(0)− x̄‖< δ , x(0) ∈W, and t ≥ 0.

If the above statements are true for any x(0) ∈W, that is, δ = ∞, then the equilib-
rium point is said to be globally stable, globally asymptotically stable, or globally
exponentially stable.
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Ω

Bε

Bδ

Ωr

x

W

Fig. 3.1. Illustration of sets in the proof of Theorem 3 with W = {(x1,x2) ∈ R2 | x1 ≥ 0,x2 ≥ 0}

3.2.2 Lyapunov’s Stability Theorem

We now establish stability tests.

Theorem 3. Let W be a closed positively-invariant set for the system (3.11) in Rn.
Let x̄ = (x̄1, x̄2, · · · x̄n)∗ ∈W be the equilibrium point of the system (3.11) and Ω ⊂W
be an open set in W containing x̄. Let V : Ω → R be a continuously differentiable
function such that

V (x̄) = 0, V (x) > 0 in Ω −{x̄}, (3.15)

and
dV (x)

dt
≤ 0 in Ω . (3.16)

Then x̄ is stable in W. Moreover, if

dV (x)
dt

< 0 in Ω −{x̄}, (3.17)

then x̄ is asymptotically stable in W.

Proof. For any ε > 0, define (see Fig. 3.1)

Bε(x̄) = {x ∈W | ‖x− x̄‖ ≤ ε}.
Then there exist r, δ > 0 such that

Ωr = {x ∈W |V (x)≤ r} ⊂ Bε(x̄),

and
Bδ (x̄) = {x ∈W | ‖x− x̄‖ ≤ δ} ⊂Ωr.

Hence, for x(0) ∈ Bδ (x̄), we have V (x(0))≤ r. It then follows from (3.16) that

V (x(t))≤V (x(0))≤ r,

which implies that x(t) ∈ Bε(x̄). So x̄ is stable in W .
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Next we prove that x̄ is asymptotically stable in W if (3.17) holds. We first show
that

lim
t→∞

V (x(t)) = 0.

SinceV (x(t)) is decreasing and bounded from below, the limit exists. If lim
t→∞

V (x(t))=

L > 0, then V (x(t)) ≥ L since V (x(t)) is decreasing. By the condition (3.17), we
deduce that

max
V (x)≥L

dV (x)
dt

= Vm < 0.

It then follows that

V (x(t)) = V (x(0))+
∫ t

0

dV (x(s))
ds

ds≤V (x(0))+Vmt.

Then V (x(t))) will become negative for sufficiently large t. This is a contradiction.
For any ε > 0, as argued at the beginning of the proof, there exists r > 0 such

that Ωr ⊂ Bε(x̄). Then there exists T > 0 such that x(t) ∈Ωr ⊂ Bε(x̄) for t ≥ T . This
proves that lim

t→∞
x(t) = x̄. ��

A continuously differentiable function V (x) satisfying (3.15) and (3.16) is called
a Lyapunov function. The construction of a Lyapunov function for a given system is
usually difficult.

We use Lyapunov’s stability theorem, Theorem 3, to investigate the stability of
the equilibrium point of the system (3.8)-(3.9). Solving the system

−k1
¯[E] ¯[S]+ k−1([E0]− ¯[E])+u = 0, (3.18)

−k1
¯[E] ¯[S]+(k−1 + k2)([E0]− ¯[E]) = 0, (3.19)

we obtain the equilibrium point of the system (3.8)-(3.9)

¯[E] =
k2[E0]−u

k2
, (3.20)

¯[S] =
(k−1 + k2)u

k1(k2[E0]−u)
. (3.21)

Since a biological system normally returns to its equilibrium after an initial distur-
bance, we can expect that the solution ([S], [E]) should converge to the equilibrium
point ( ¯[S], ¯[E]) as t → ∞. Indeed, the numerical solution (Fig. A.2 in Section A.11)
of the system (3.8)-(3.9) obtained in Section A.11 shows that this is true. This can be
further proved analytically. To this end, we define the closed set

KE0 = {(x1,x2) ∈ R2 | x1 ≥ 0 and 0≤ x2 ≤ [E0]}.

Theorem 4. If ([S](0), [E](0)) ∈ KE0 and the input u is nonnegative and constant,
then the solutions ([S](t), [E](t)) of (3.8)-(3.9) are in KE0 for all t ≥ 0.
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Proof. We need to prove that

[E](t) ≥ 0, (3.22)

[E] (t) ≤ [E0], (3.23)

[S] (t) ≥ 0 (3.24)

for all t ≥ 0. Define

t1 = max{T | [E](t)≥ 0 for all 0≤ t ≤ T},
t2 = max{T | [E](t)≤ [E0] for all 0≤ t ≤ T},
t3 = max{T | [S](t)≥ 0 for all 0≤ t ≤ T}.

We prove that t0 = min{t1, t2, t3}= ∞ by argument of contradiction in three cases.
(1). If t0 = t1 < ∞, then [E](t)≥ 0, [E](t)≤ [E0], [S](t)≥ 0 for all 0≤ t ≤ t0 and

[E](t0) = 0. It then follows from (3.9) that

dE
dt

∣∣∣
t0

=−k1[E](t0)[S](t0)+(k−1 + k2)([E0]− [E](t0)) = (k−1 + k2)[E0] > 0.

Thus [E](t) is increasing near t0 and then [E](t) < [E](t0) = 0 for some t < t0. This
is a contradiction.

(2). If t0 = t2 < ∞, then [E](t)≥ 0, [E](t)≤ [E0], [S](t)≥ 0 for all 0≤ t ≤ t0 and
[E](t0) = [E0]. It then follows from (3.9) that

dE
dt

∣∣∣
t0

=−k1[E](t0)[S](t0)+(k−1 + k2)([E0]− [E](t0)) =−k1[E0][S](t0).

If [S](t0) > 0, then dE
dt

∣∣∣
t0

< 0. So [E](t) is decreasing near t0 and then [E](t) >

[E](t0) = [E0] for some t < t0. This is a contradiction. If [S](t0) = 0, we consider
two cases: u≡ 0 and u > 0. If u≡ 0, then the system (3.8)-(3.9) has the unique solu-
tion [S](t) = 0 and [E](t) = [E0] for all t ≥ t0. This is in contradiction with t0 < ∞. If
u > 0, it follows from (3.8) that

dS
dt

∣∣∣
t0

=−k1[E](t0)[S](t0)+ k−1([E0]− [E](t0))+u = u > 0.

Thus [S](t) is increasing near t0 and then [S](t) < [S](t0) = 0 for some t < t0. This is
a contradiction.

(3). If t0 = t3 < ∞, then [E](t)≥ 0, [E](t)≤ [E0], [S](t)≥ 0 for all 0≤ t ≤ t0 and
[S](t0) = 0. It then follows from (3.8) that

dS
dt

∣∣∣
t0

=−k1[E](t0)[S](t0)+ k−1([E0]− [E](t0))+u = k−1([E0]− [E](t0))+u.

We consider two cases: u ≡ 0 and u > 0. If u > 0, then dS
dt

∣∣∣
t0

> 0. Thus [S](t) is

increasing near t0 and then [S](t) < [S](t0) = 0 for some t < t0. This is a contradiction.
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If u ≡ 0, we consider two cases: [E](t0) = [E0] and [E](t0) < [E0]. If [E](t0) = [E0],
then the system (3.8)-(3.9) has the unique solution [S](t) = 0 and [E](t) = [E0] for

all t ≥ t0. This is in contradiction with t0 < ∞. If [E](t0) < [E0], then dS
dt

∣∣∣
t0

> 0. Thus

[S](t) is increasing near t0 and then [S](t) < [S](t0) = 0 for some t < t0. This is a
contradiction. ��

Using Lyapunov’s stability theorem, Theorem 3, we obtain the following stability
theorem.

Theorem 5. If ([S](0), [E](0)) ∈ KE0 and u = 0, then the solutions ([S](t), [E](t)) of
(3.8)-(3.9) satisfy

lim
t→∞

S(t) = 0, lim
t→∞

E(t) = E0.

Proof. First note that Theorem 4 ensures that KE0 is a closed positively-invariant set
for the system (3.8)-(3.9). Define

V (E,S) =
k(k−1 + k2)

k−1
S +E0−E, (3.25)

where k−1
k−1+k2

< k < 1. Differentiating V with respect to t and using the equations
(3.8)-(3.9), we obtain

dV
dt

=
k(k−1 + k2)

k−1

dS
dt
− dE

dt

= −k1[k(k2 + k−1)− k−1]
k−1

ES− (1− k)(k−1 + k2)(E0−E)

≤ 0.

Hence, it is clear that the function V satisfies all conditions (3.15)-(3.17) with W =
KE0 and x̄ = (0,E0). It therefore follows from the Lyapunov’s stability theorem, The-
orem 3, that

lim
t→∞

S(t) = 0, lim
t→∞

E(t) = E0

for (S(0),E(0)) ∈ KE0 . ��

3.2.3 Lyapunov’s Indirect Method

To establish another stability test, we look at the stability of the linear system

dx
dt

= Ax, (3.26)

x(0) = x0, (3.27)

where A is an n× n matrix. The system has the equilibrium point x̄ = 0, that is,
A0 = 0. The stability of the equilibrium point 0 can be characterized by the locations
of the eigenvalues of A.

Given a polynomial f (λ ) = (λ −λ1)q1 · · ·(λ −λn)qn , the algebraic multiplicity
of the root λi (i = 1, · · · ,n) of f (λ ) is defined to be qi.
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Theorem 6. The equilibrium point 0 of (3.26) is globally stable if and only if all
eigenvalues of A satisfy Reλi ≤ 0 and for every eigenvalue with Reλi = 0 and alge-
braic multiplicity qi ≥ 2, rank(A−λiI) = n−qi, where n is the dimension of x. The
equilibrium point 0 of (3.26) is globally exponentially stable if and only if all eigen-
values of A satisfy Reλi < 0.

The proof of the theorem is omitted and referred to [2, Theorem 4.5, p. 134].

Example 9. Consider the system

dx
dt

= Ax, (3.28)

where

A =
[

0 1
−1 0

]
.

The characteristic equation of A is

det(λ I−A) = λ 2 +1 = 0.

Solving the equation, we obtain the eigenvalues λ =±i. It is clear that the algebraic
multiplicity of both i and −i is 1 and the ranks of iI−A and −iI−A are equal to 1.
So the conditions of Theorem 6 is satisfied and then the equilibrium 0 is stable. In
fact, the solution of the system is given by[

x1

x2

]
= c1

[
cos t
−sin t

]
+ c2

[
sin t
cos t

]
,

which shows that the equilibrium point 0 is stable.

Example 10. Consider the system

dx
dt

= Ax, (3.29)

where

A =
[

0 1
−5 −2

]
.

The characteristic equation of A is

λ 2 +2λ +5 = 0.

Then the eigenvalues are
λ =−1±2i.

Thus, by Theorem 6, the equilibrium 0 is exponentially stable. In fact, the solutions
are [

x1

x2

]
= c1

[
cos2t

−cos2t−2sin2t

]
e−t

+c2

[
sin2t

−sin2t +2cos2t

]
e−t ,

which decay exponentially.
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For higher order systems (n ≥ 3), it may be impossible to solve characteristic
polynomials explicitly. In this case, Routh-Hurwitz’s stability criterion is needed for
determining the signs of eigenvalues without actually solving for them. The proof of
the criterion is long and is referred to [1].

Theorem 7 (Routh-Hurwitz’s Criterion). Suppose that all the coefficients of the
polynomial f (s) = a0sn + a1sn−1 + · · ·+ an−1s + an are positive. Construct the fol-
lowing table:

sn : a0 a2 a4 a6 · · ·
sn−1 : a1 a3 a5 a7 · · ·
sn−2 : b1 b2 b3 b4 · · ·
sn−3 : c1 c2 c3 c4 · · ·

...
...

...
...

...
...

s2 : d1 d2

s1 : e1

s0 : f1

where

b1 = − 1
a1

∣∣∣∣a0 a2

a1 a3

∣∣∣∣ , b2 =− 1
a1

∣∣∣∣a0 a4

a1 a5

∣∣∣∣ , b3 =− 1
a1

∣∣∣∣ a0 a6

a1 a7

∣∣∣∣ , · · ·
c1 = − 1

b1

∣∣∣∣a1 a3

b1 b2

∣∣∣∣ , c2 =− 1
b1

∣∣∣∣ a1 a5

b1 b3

∣∣∣∣ , c3 =− 1
b1

∣∣∣∣a1 a7

b1 b4

∣∣∣∣ , · · ·
.
.
.

and any undefined entries are set to zero. Then all zeros of f have negative real parts
if and only if all entries in the first column of the table are well defined and positive.

Example 11. Consider the polynomial f (s) = (s+1)(s+2)(s+3) = s3 +6s2 +11s+
6, which has three negative zeros: -1, -2, -3. Routh’s table is as follows

s3 : 1 11
s2 : 6 6
s : 10 0
s0 : 6

All entries in the first column of the table are positive.

We now return to the nonlinear system (3.11). By a linear approximation, we have

fi(x)≈ fi(x̄)+
n

∑
j=1

∂ fi

∂x j
(x̄)(x j− x̄ j) =

n

∑
j=1

∂ fi

∂x j
(x̄)(x j− x̄ j).
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Let

A =

⎡
⎢⎢⎢⎢⎣

∂ f1
∂x1

(x̄) ∂ f1
∂x2

(x̄) · · · ∂ f1
∂xn

(x̄)
∂ f2
∂x1

(x̄) ∂ f2
∂x2

(x̄) · · · ∂ f2
∂xn

(x̄)
...

... · · · ...
∂ fn
∂x1

(x̄) ∂ fn
∂x2

(x̄) · · · ∂ fn
∂xn

(x̄)

⎤
⎥⎥⎥⎥⎦ .

This matrix is called Jacobian matrix of f. Then the nonlinear system (3.11) can be
linearly approximated at x̄ by the following linear system

dx
dt

= Ax.

Thus the stability of the equilibrium point x̄ of the nonlinear system (3.11) is deter-
mined by the stability of the linearized system.

Theorem 8. Let x̄ = (x̄1, x̄2, · · · x̄n)∗ be the equilibrium point of the system (3.11). Let
Ω ⊂Rn be an open set containing x̄ and let f : Ω →R

n be continuously differentiable.
Let A be Jacobian matrix of f. Then:

• the equilibrium point x̄ is exponentially stable if Reλi < 0 for all eigenvalues of A;
• the equilibrium point x̄ is unstable if Reλi > 0 for one or more of the eigenvalues

of A.

This theorem is called Lyapunov’s indirect method. Its proof is omitted and
referred to [2].

We now use Lyapunov’s indirect method to study the stability of the reaction
system (3.8)-(3.9). For simplicity, we assume that u = 0. Then the system has the
equilibrium point S̄ = 0 and Ē = E0. By a direct calculation, we can obtain Jacobian
matrix of the system at the equilibrium point as follows

A =
[−k1E0 −k−1

−k1E0 −k−1− k2

]
.

The characteristic equation of A is

λ 2 +(k−1 + k2 + k1E0)λ + k1k2E0 = 0.

Then real parts of the eigenvalues are negative and so the equilibrium point is expo-
nentially stable.

3.2.4 Invariance Principle

Consider the system

dx
dt

= y, (3.30)

dy
dt

= −sinx− y. (3.31)



52 3 Preliminary Systems Theory

Define

V (x,y) = (1− cosx)+
1
2

y2.

Then we have
dV
dt

=
dx
dt

sinx+ y
dy
dt

=−y2. (3.32)

Thus dV
dt = 0 on the whole line y = 0 and then the condition (3.17) is not satisfied.

Hence we need to modify Theorem 3 and introduce an invariance principle developed
by LaSalle.

Let x(t) be a solution of (3.11). A point p is said to be a ω-limit point of x(t) if
there is a sequence {tn}, with tn → ∞ as n→ ∞, such that x(tn)→ p as n→ ∞. The
set ω(x(0)) of all ω-limit points of x(t) is called the ω-limit set of x(t).

Let p be a point and W a set. The distance between p and W is defined by

d(p,W ) = inf
x∈W

‖p−x‖.

For a solution x(t) of (3.11), if d(x(t),W )→ 0 as t → ∞, then we denote x(t)→W
as t → ∞.

Lemma 1. If a solution x(t) of (3.11) is bounded for t ≥ 0, then its ω-limit set ω(x(0))
is a nonempty, compact, positively invariant set. Moreover, x(t)→ω(x(0)) as t→∞.

The proof is referred to [2, p. 127, Lemma 4.1]. We now present LaSalle’s theo-
rem, called LaSalle’s invariance principle.

Theorem 9. Let K ⊂Ω be a compact set that is positively invariant under (3.11). Let
V : Ω → R be a continuously differentiable function such that dV

dt ≤ 0 in K. Let

Z =
{

x ∈ K | dV (x)
dt

= 0

}
.

If M is the largest invariant set in Z, then x(t)→M as t → ∞ for every solution x(t)
of (3.11) starting in K.

Proof. Let x(t) be a solution of (3.11) starting in K. Since dV (x(t))
dt ≤ 0 in K, V (x(t))

is decreasing. Because K is compact and V (x(t)) is continuous, V (x(t)) is bounded
below and then converges to some a. For any p ∈ ω(x(0)), we have

V (p) = lim
n→∞

V (x(tn))) = a.

It therefore follows that dV (x)
dt = 0 on ω(x(0)). Since ω(x(0)) is invariant, we derive

that ω(x(0)) ⊂M ⊂ Z. It then follows from Lemma 1 that x(t)→ ω(x(0)) ⊂M as
t → ∞. ��

We now go back to the system (3.30)–(3.31). Define

K =
{

(x,y) ∈ R2 | (1− cosx)+
1
2

y2 ≤ 1
2

}
.
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Fig. 3.2. A numerical solution of the system
(3.30)–(3.31)

It follows from (3.32) that K is positively invariant, but not compact because it is
unbounded. Since (1−cosx)+ 1

2 y2 ≤ 1
2 implies that cosx≥ 1/2 and then 2nπ− π

6 ≤
x≤ 2nπ + π

6 (n = 0,±1,±2, · · · ), K is disconnected. Then the subset of K defined by

Kn =
{

(x,y) ∈ K | 2nπ− π
6
≤ x≤ 2nπ +

π
6

}
is also positively invariant. Since Kn is bounded and closed, it is compact. The set Z
is given by

Z =
{

(x,y) ∈ Kn | dV (x,y)
dt

= 0

}
=

{
(x,y) ∈ Kn | − y2 = 0

}
= {(x,0) ∈ Kn} .

For any initial condition (x,0) ∈ Z with x �= 0, it follows from the equation (3.31)
that y(t) �= 0 for some t > 0. So the largest invariant set in Z is {(2nπ,0)}. It then
follows from LaSalle’s invariance principle, Theorem 9, that the equilibrium point
(2nπ,0) is asymptotically stable. This is further confirmed by a numerical solution
of the system in Fig. 3.2.

3.2.5 Input-output Stability

Consider the system

dx
dt

= f(t,x,u), x(0) = x0, (3.33)

y = h(t,x,u), (3.34)

where x ∈Rn,u ∈Rm,y ∈Rq, f : [0,∞)×Ω ×Ωu →R
n is piecewise continuous in t

and locally Lipschitz in (x,u), h : [0,∞)×Ω ×Ωu → R
q is piecewise continuous in

t and continuous in (x,u), Ω ⊂ Rn is a domain containing x = 0, and Ωu ⊂ Rm is a
domain containing u = 0. Suppose that x = 0 is an equilibrium point of the system
(3.33) at the zero input:

f(t,0,0) = 0

for all t.
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Definition 3. The system (3.33)-(3.55) is small-signal stable if there exist a positive
constant r, a nonnegative increasing function α(t) with α(0) = 0, and a nonnegative
constant β such that

sup
0≤t≤τ

‖y(t)‖ ≤ α
(

sup
0≤t≤τ

‖u(t)‖
)

+β (3.35)

for all τ ∈ [0,∞) and all u with sup0≤t≤τ ‖u(t)‖≤ r. The system (3.33)-(3.55) is small-
signal finite-gain stable if there exist a positive constant r and nonnegative constants
γ and β such that

sup
0≤t≤τ

‖y(t)‖ ≤ γ sup
0≤t≤τ

‖u(t)‖+β (3.36)

for all τ ∈ [0,∞) and all u with sup0≤t≤τ ‖u(t)‖ ≤ r.

Theorem 10. Suppose that, in some neighborhood of (x = 0,u = 0), the function
f(t,x,u) is continuously differentiable, Jacobian matrices at (x = 0,u = 0)

∂ f
∂x

=

⎡
⎢⎢⎢⎢⎢⎣

∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xn

...
... · · ·

...
∂ fn
∂x1

∂ fn
∂x2

· · · ∂ fn
∂xn

⎤
⎥⎥⎥⎥⎥⎦ ,

∂ f
∂u

=

⎡
⎢⎢⎢⎢⎢⎣

∂ f1
∂u1

∂ f1
∂u2

· · · ∂ f1
∂um

∂ f2
∂u1

∂ f2
∂u2

· · · ∂ f2
∂um

...
... · · ·

...
∂ fn
∂u1

∂ fn
∂u2

· · · ∂ fn
∂um

⎤
⎥⎥⎥⎥⎥⎦

are bounded uniformly in t, and h(t,x,u) satisfies

‖h(t,x,u)‖ ≤ η1‖x‖+η2‖u‖ (3.37)

for all t and some nonnegative constants η1,η2. If x = 0 is an exponentially stable
equilibrium point of the system (3.33) at the zero input:

f(t,0,0) = 0 for all t,

then there exists a constant r0 > 0 such that for each x0 with ‖x0‖ < r0, the system
(3.33)-(3.55) is small-signal finite-gain stable.

The proof of the theorem is referred to Corollary 5.1 of [2].

Example 12. Consider the single-input-single-output first-order system

dx
dt

= −x+u, x(0) = x0,

y = x+u.

Solving the system, we obtain

y(t) = e−t x0 + e−t
∫ t

0
esu(s)ds+u(t).
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It then follows that for 0≤ t ≤ τ

|y(t)| ≤ |x0|+ e−t
∫ t

0
es sup

0≤s≤τ
|u(s)|ds+ sup

0≤t≤τ
|u(t)|

≤ |x0|+ sup
0≤s≤τ

|u(s)|(1− e−t)+ sup
0≤t≤τ

|u(t)|

≤ 2 sup
0≤s≤τ

|u(s)|+ |x0|,

and then
sup

0≤t≤τ
|y(t)| ≤ 2 sup

0≤s≤τ
|u(s)|+ |x0|.

Hence the system is small-signal finite-gain stable.

3.3 Controllability and Observability

Controllability and observability are structural properties of a system. Consider a
control system

dx
dt

= Ax+Bu, (3.38)

y = Cx+Du, (3.39)

x(0) = x0, (3.40)

where x = (x1,x2, · · · ,xn)∗ is a state vector, x0 is an initial state, y = (y1, · · · ,yl)∗ is
an output vector, u = (u1, · · · ,um)∗ is a control vector, and A,B,C,D are n×n, n×m,
l×n, l×m constant matrices, respectively.

Definition 4. The system (3.38) or the pair (A,B) is controllable if for any initial
state x0 and final state x f , there exists a control vector u such that x(T ) = x f for
some T > 0.

Theorem 11. The pair (A,B) is controllable if and only if Kalman controllability
matrix defined by

C = [B AB A2B · · ·An−1B]

has a rank of n.

The proof of the theorem is omitted and referred to [3, 4].

Example 13. Consider the system

d
dt

[
x1

x2

]
=

[
0 1
−1 0

][
x1

x2

]
+
[

0
1

]
u(t).

Since Kalman controllability matrix

C = [B AB] =
[

0 1
1 0

]
has a rank of 2, the system is controllable.
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The following example shows that not every system is controllable.

Example 14. The system

d
dt

[
x1

x2

]
=

[
1 0
1 1

][
x1

x2

]
+
[

0
1

]
u(t)

is not controllable since the rank of Kalman controllability matrix

C = [B AB] =
[

0 0
1 1

]
is equal to 1.

Consider an observation system

dx
dt

= Ax, (3.41)

y = Cx, (3.42)

x(0) = x0, (3.43)

where y = (y1,y2, · · · ,yl)∗ is an output vector and C is an l×n constant matrix.

Definition 5. The system (3.41)-(3.42) or the pair (A,C) is observable if any initial
state x0 can be uniquely determined by the observation y(t) over the interval [0,T ]
for some T > 0.

We define Kalman observability matrix O by

O =

⎡
⎢⎢⎢⎢⎢⎣

C
CA
CA2

...
CAn−1

⎤
⎥⎥⎥⎥⎥⎦ .

Theorem 12. The pair (A,C) is observable if and only if Kalman observability
matrix O has a rank of n.

The proof of the theorem is omitted and referred to [3, 4].

Example 15. Consider the system

d
dt

[
x1

x2

]
=

[
0 1
−1 0

][
x1

x2

]
,

y = [0 1]
[

x1

x2

]
.

Since Kalman observability matrix

O =
[

C
CA

]
=

[
0 1
−1 0

]
has a rank of 2, the system is observable.
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Example 16. The system

d
dt

[
x1

x2

]
=

[
1 1
0 1

][
x1

x2

]
,

y = [0 1]
[

x1

x2

]
is not observable since the rank of Kalman observability matrix

O =
[

C
CA

]
=

[
0 1
0 1

]
is equal to 1.

From Theorems 11 and 12, we can derive the following duality between control-
lability and observability.

Theorem 13. The control system

dx
dt

= Ax+Bu,

x(0) = x0

is controllable if and only if its dual observation system

dx
dt

= A∗x,

y = B∗x,

x(0) = x0

is observable.

3.4 Feedback Control

Consider the control system

dx
dt

= f(t,x,u,v), (3.44)

y = g(t,x,u,v), (3.45)

where x = (x1,x2, · · · ,xn)∗ is a state vector, u = (u1,u2, · · · ,up) is a control vector,
v = (v1,v2, · · · ,vl) is a disturbance vector, and y = (y1,y2, · · · ,ym)∗ is an output vec-
tor. The problem of control is to design a controller u so that the output y tracks a
specified reference signal r:

lim
t→∞

(y(t)− r(t)) = 0.

This control problems is referred to as asymptotic tracking and disturbance rejection.
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There are a number of ways to achieve the control goal. If all states are available
for feedback, we can design a state feedback controller

u = h(t,x,v).

Sometimes, we use a dynamical state feedback controller

u = h(t,x,z,v),
dz
dt

= w(t,x,z,v).

If only the outputs are available for feedback, we need to design an output feedback
controller

u = h(t,y,v),

or a dynamic output feedback controller

u = h(t,y,z,v),
dz
dt

= w(t,y,z,v).

We first show how to design feedback controllers for the following linear control
systems without disturbances:

dx
dt

= Ax+Bu, (3.46)

y = Cx+Du, (3.47)

x(0) = x0, (3.48)

where x = (x1,x2, · · · ,xn)∗ is a state vector, x0 is an initial state caused by external
disturbances, y = (y1, · · · ,yl)∗ is an output vector, u = (u1, · · · ,um)∗ is a control vec-
tor, and A,B,C,D are n×n, n×m, l×n, l×m constant matrices, respectively. The
equation (3.46) is called a state equation.

We assume that all state variables are available for feedback and design a con-
troller of the form

u =−Kx. (3.49)

Such a scheme is called a state feedback. The m×n matrix K is called a state feedback
gain matrix. Substituting the equation (3.49) into (3.46) gives

dx
dt

= (A−BK)x, x(0) = x0. (3.50)

Definition 6. The pair (A,B) or the system (3.46) is stabilizable if there exists K
such that the solution x(t) of (3.50) converges to zero exponentially as t →∞ for any
initial state x0. The matrix K is called the feedback matrix.
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If the pair (A,B) is stabilizable, then the solution x(t) tends to zero. Thus we
have that u(t) =−Kx(t)→ 0 and y(t) = Cx(t)+Du(t)→ 0. Therefore the problem
of regulating the output to zero is transformed into the stabilization of the pair (A,B).

Example 17. Consider the system

d
dt

[
x1

x2

]
=

[
0 1
− k

m 0

][
x1

x2

]
+
[

0
1
m

]
u, (3.51)

y = [1 0]
[

x1

x2

]
, (3.52)

where m and k are positive constants. Denote

A =
[

0 1
− k

m 0

]
, B =

[
0
1
m

]
.

Consider the state feedback control of the form

u =−Kx, (3.53)

where K = [k1, k2]. Let the reference signal be 0. Then y converges to 0 if all eigen-
values of the matrix A−BK have negative real parts. Let μ1,μ2 be the desired eigen-
values. Then we set

det(λ I−A+BK) = λ 2 +
k2

m
λ +

k + k1

m
= (λ −μ1)(λ −μ2).

Equating the coefficients gives

k1 = mμ1μ2− k, k2 =−m(μ1 + μ2).

We then obtain the following state feedback controller

u =−k1x1− k2x2.

To illustrate an idea of how to design an output feedback controller, we consider
the control system

dx
dt

= Ax+Bu, (3.54)

y = Cx, (3.55)

x(0) = x0. (3.56)

Because we assume that only the outputs are available for feedback, we need to esti-
mate the state variables using only input and output measurements. The estimate x̃ of
x can be generated by injecting the outputs into the system as follows

dx̃
dt

= Ax̃+Bu+Ke(y−Cx̃). (3.57)



60 3 Preliminary Systems Theory

This output injection system is called the state observer, known as Luenberger
observer. The matrix Ke is an output injection matrix (also called an observer gain
matrix). We then use the estimate x̃ for feedback and introduce an observer-based
output feedback controller

u =−Kx̃, (3.58)

which leads to an observer-based output feedback control system

dx
dt

= Ax−BKx̃, (3.59)

y = Cx, (3.60)
dx̃
dt

= Ax̃−BKx̃+Ke(y−Cx̃). (3.61)

To study the stability of this control system, we introduce the error vector

e = x− x̃.

Subtracting the equation (3.61) from the equation (3.59) gives

de
dt

= Ae−Ke(y−Cx̃) = Ae−Ke(Cx−Cx̃) = (A−KeC)e.

Also the state equation (3.59) can be written as

dx
dt

= (A−BK)x+BKe.

Combining these two equations, we obtain

d
dt

[
x
e

]
=

[
A−BK BK

0 A−KeC

][
x
e

]
. (3.62)

Since

det

(
λ I−

[
A−BK BK

0 A−KeC

])
= det(λ I− [A−BK])det(λ I− [A−KeC]) ,

it suffices to design matrices K and Ke such that the real parts of the eigenvalues of
A−BK and A−KeC are negative. Then x(t) converges to zero exponentially and
then so y(t) = Cx(t) does.

Example 18. Consider the system

dx
dt

= Ax+Bu,

y = Cx,

where

A =
[

0 1
0 −2

]
, B =

[
0
4

]
, C =

[
1 0

]
.
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Design an output feedback controller such that the eigenvalues of the closed-loop
system are

λ =−2+2
√

3i,−2−2
√

3i

and the eigenvalues of the observer system are

λ =−8,−8.

The feedback gain matrix K = [k1,k2] should be selected such that

det(λ I−A+BK) = (λ +2−2
√

3i)(λ +2+2
√

3i),

and then
λ 2 +(2+4k2)λ +4k1 = λ 2 +4λ +16.

Comparing the coefficients gives

k1 = 4, k2 = 0.5.

The observer gain matrix Ke = [ke
1,k

e
2]
∗should be selected such that

det(λ I−A+KeC) = (λ +8)2,

and then
λ 2 +(2+ ke

1)λ +2ke
1 + ke

2 = λ 2 +16λ +64.

Comparing the coefficients gives

ke
1 = 14, ke

2 = 36.

Then the output feedback controller is

u = −4x̃1−0.5x̃2,

d
dt

[
x̃1

x̃2

]
=

[
0 1
0 −2

][
x̃1

x̃2

]
−
[

0
4

]
[4 0.5]

[
x̃1

x̃2

]
+
[

14
36

]
(x1− x̃1)

=
[

0 1
−16 −4

][
x̃1

x̃2

]
+
[

14
36

]
(x1− x̃1).

To illustrate how to design a feedback controller for nonlinear systems, we con-
sider the system

dx
dt

= f(x,u), (3.63)

where f(0,0) = 0. To use the design method for linear systems, we linearize (3.63)
at (0,0) to obtain the linear system

dx
dt

= Ax+Bu, (3.64)
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where

A =
∂ f
∂x

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xn

...
... · · · ...

∂ fn
∂x1

∂ fn
∂x2

· · · ∂ fn
∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(0,0)

, B =
∂ f
∂u

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1
∂u1

∂ f1
∂u2

· · · ∂ f1
∂um

∂ f2
∂u1

∂ f2
∂u2

· · · ∂ f2
∂um

...
... · · · ...

∂ fn
∂u1

∂ fn
∂u2

· · · ∂ fn
∂um

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(0,0)

.

We then design a state feedback controller u = −Kx to stabilize the linear sys-
tem. This controller also stabilizes the original nonlinear system (3.63). This con-
trol design method via linearization can be also applied to the design of an output
feedback controller.

3.5 Parametric Sensitivity

Consider the system

dx
dt

= f(t,x,p), x(0) = x0, (3.65)

where x∈Rn is a state vector and p∈Rm is a parameter vector. A change in p results
in a change in x. The sensitivity is a measurement of the change in x as p changes.
In particular, the sensitivity of the state xi with respect to the parameter p j can be

measured by ∂xi
∂ p j

. To normalize the sensitivity, we define the sensitivity index

SIi j =
p j

xi

∂xi

∂ p j
. (3.66)

The system of the sensitivity ∂xi
∂ p j

can be obtained by differentiating (3.65) with

respect to p j as follows

d
dt

(
∂xi

∂ p j

)
=

n

∑
k=1

∂ fi(t,x,p)
∂xk

∂xk

∂ p j
+

∂ fi(t,x,p)
∂ p j

.

This system can be written in the following matrix form

d
dt

(
∂x
∂p

)
=

∂ f
∂x

∂x
∂p

+
∂ f
∂p

, (3.67)
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where ∂x
∂p is the sensitivity matrix

∂x
∂p

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂x1
∂ p1

∂x1
∂ p2

· · · ∂x1
∂ pm

∂x2
∂ p1

∂x2
∂ p2

· · · ∂x2
∂ pm

...
... · · · ...

∂xn
∂ p1

∂xn
∂ p2

· · · ∂xn
∂ pm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and ∂ f
∂x , ∂ f

∂p are Jacobian matrices

∂ f
∂x

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xn

...
... · · · ...

∂ fn
∂x1

∂ fn
∂x2

· · · ∂ fn
∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
∂ f
∂p

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1
∂ p1

∂ f1
∂ p2

· · · ∂ f1
∂ pm

∂ f2
∂ p1

∂ f2
∂ p2

· · · ∂ f2
∂ pm

...
... · · · ...

∂ fn
∂ p1

∂ fn
∂ p2

· · · ∂ fn
∂ pm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since x does not depend on p initially, we have ∂x
∂p (0) = 0. Therefore, the sensitivity

indices can be obtained by solving the system (3.65) and (3.67).

Example 19. Consider the enzymatic reaction system

dS
dt

= −k1ES + k−1(E0−E), (3.68)

dE
dt

= −k1ES +(k−1 + k2)(E0−E). (3.69)

Assume that the parameters have the values k1 = 0.5,k2 = 10,k−1 = 0.1. The Jaco-
bian matrices are given by (x = (S,E) and p = (k1,k2,k−1))

∂ f
∂x

=
[−k1E −k1S− k−1

−k1E −k1S− k−1− k2

]
,

∂ f
∂p

=
[−ES 0 E0−E
−ES E0−E E0−E

]
.

Evaluating ∂ f
∂x at the parameter k1 = 0.5,k2 = 10,k−1 = 0.1 gives

∂ f
∂x

=
[−0.5E −0.5S−0.1
−0.5E −0.5S−10.1

]
.

Let

x1 =
∂S
∂k1

, x2 =
∂S
∂k2

, x3 =
∂S

∂k−1
, x4 =

∂E
∂k1

, x5 =
∂E
∂k2

, x6 =
∂E

∂k−1
.
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Fig. 3.3. Sensitivity indices of the system (3.68)-(3.69)

We then obtain the sensitivity system

dS
dt

= −0.5ES +0.1(E0−E),

dE
dt

= −0.5ES +10.1(E0−E),

dx1

dt
= −0.5Ex1− (0.5S +0.1)x4−ES,

dx2

dt
= −0.5Ex2− (0.5S +0.1)x5,

dx3

dt
= −0.5Ex3− (0.5S +0.1)x6 +E0−E,

dx4

dt
= −0.5Ex1− (0.5S +10.1)x4−ES,

dx5

dt
= −0.5Ex2− (0.5S +10.1)x5 +E0−E,

dx6

dt
= −0.5Ex3− (0.5S +10.1)x6 +E0−E,

S(0) = 10, E(0) = 0.1, x1(0) = x2(0) = x4(0) = x4(0) = x5(0) = x6(0) = 0.

The system is solved numerically using MATLAB. The sensitivity indices plotted in
Fig. 3.3 show that the substrate S is more sensitive to k1, the rate constant of binding of
substrate to enzyme, than other parameters and that the enzyme E is more sensitive
to k2, the enzyme turnover rate, than other parameters. This agrees with what we
could expect from biology and then provides a theoretical support for the biological
observation.
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Exercises

3.1. Find A+B,AB, and BA when

A =
[

1 2
7 10

]
, B =

[
5 0
−3 2

]
.

3.2. ([5]) Establish the distributive laws for matrix multiplication:

(A+B)C = AC+BC, C(A+B) = CA+CB.

3.3. Prove that (AB)∗ = B∗A∗.

3.4. Find the solution of the system

Ax =

⎡
⎣1

0
1

⎤
⎦

when

A =

⎡
⎣1 0 1

0 2 0
1 3 0

⎤
⎦ .

3.5. Find A′(t) and
∫ t

0 A(s)ds if

A(t) =
[

5 3t2

sin t cos2t

]
.

3.6. Calculate the determinant det(A) of each matrix

A =

⎡
⎣1 4 1

5 1 0
1 1 7

⎤
⎦ , A =

[
2 −2
1 8

]
.

3.7. Find eigenvalues and their corresponding eigenvectors of each matrix

A =

⎡
⎣1 4 3

4 1 1
3 1 7

⎤
⎦ , A =

[
2 −2
5 3

]
.

3.8. Find the rank of each matrix

A =

⎡
⎢⎢⎣

1 4 1
5 1 0
1 1 7
1 8 10

⎤
⎥⎥⎦ , A =

⎡
⎣2 −2 0 1 7 9

1 8 6 2 9 1
3 6 6 3 16 10

⎤
⎦ .
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3.9. Calmodulin contains four copies of a Ca2+-binding EF-hand, each of which
binds one Ca2+ ion. Calmodulin senses the rise of the cytosolic calcium concen-
tration and transmits the calcium signal to calcineurin. The biochemical reactions in
this Ca2+ sensing and signal transduction process can be described as follows:

4Ca2+ + calmodulin �
k1

k−1

CaM →
k

calmodulin+[Ca2+]out ,

CaM + calcineurin �
k2

k−2

CaN,

where CaM denotes the Ca2+-bound calmodulin, CaN denotes the CaM-bound cal-
cineurin, [Ca2+]out denotes Ca2+ leaving the cell, and k’s are reaction rate constants:

1. Derive differential equations for Ca2+, CaM, and CaN.
2. Prove that, for nonnegative initial conditions with 0 ≤ [CaM](0) + [CaN](0) ≤

[CaM0], 0≤ [CaN](0)≤ [CaN0], the solutions of the derived system satisfy[
Ca2+](t), [CaM](t), [CaN](t) ≥ 0,

[CaM] (t)+ [CaN](t)≤ [CaM0], [CaN](t) ≤ [CaN0],
lim
t→∞

[Ca2+](t) = lim
t→∞

[CaM](t) = lim
t→∞

[CaN](t) = 0,

where [CaM0] is the total concentration of Ca2+-free, Ca2+-bound, and Ca2+-
calcineurin-bound calmodulin; [CaN0] is the total concentration of CaM-free and
CaM-bound calcineurin.

3.10. ([2]) For each of the following systems, use a quadratic Lyapunov function
candidate to show that the origin is asymptotically stable:

1. dx1
dt =−x1 + x1x2,

dx2
dt =−x2.

2. dx1
dt =−x2− x1(1− x2

1− x2
2),

dx2
dt = x1− x2(1− x2

1− x2
2).

3. dx1
dt = x2(1− x2

1),
dx2
dt =−(x1 + x2)(1− x2

1).

3.11. ([2]) Consider the second-order system

dx1

dt
=

−6x1

(1+ x2
1)2

+2x2,
dx2

dt
=
−2(x1 + x2)
(1+ x2

1)2
.

Let V (x) = x2
1

1+x2
1
+ x2

2. Show that V (x) > 0 and dV
dt < 0 for all x ∈ R2−{0}.

3.12. Consider the pendulum system

dx1

dt
= x2,

dx2

dt
= − g

L
sinx1− k

mL
x2.

Use Lyapunov’s indirect method to investigate the stability of the equilibrium points
(0, 0) and (π,0).
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3.13. Consider the system

dx
dt

= y,

dy
dt

= −x− y3.

Define

V (x,y) =
1
2
(x2 + y2).

Use LaSalle’s invariance principle to prove that the equilibrium point at the origin is
asymptotically stable.

3.14. Consider the system

d
dt

⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣−1 −2 −2

0 −1 1
1 0 −1

⎤
⎦
⎡
⎣ x1

x2

x3

⎤
⎦+

⎡
⎣2

0
1

⎤
⎦u,

y =
[

1 1 0
]⎡⎣ x1

x2

x3

⎤
⎦ .

Is the system controllable and observable?

3.15. Consider the system

d
dt

⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣2 0 0

0 2 0
0 3 1

⎤
⎦
⎡
⎣ x1

x2

x3

⎤
⎦ ,

y =
[

1 1 1
]⎡⎣ x1

x2

x3

⎤
⎦ .

1. Show that the system is not observable.
2. Show that the system is observable if the output is given by

[
y1

y2

]
=

[
1 1 1
1 2 3

]⎡⎣ x1

x2

x3

⎤
⎦ .

3.16. Consider the system
dx
dt

= Ax+Bu,

where

A =

⎡
⎣ 0 1 0

0 0 1
−1 −5 −6

⎤
⎦ , B =

⎡
⎣0

1
1

⎤
⎦ .
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1. Show that the pair (A,B) is controllable.
2. Find a state feedback gain matrix K such that the closed-loop system with the

feedback control u = −Kx has the closed-loop poles (eigenvalues) λ = −2± 4i
and λ =−10.

3.17. Consider the system

ẋ = Ax+Bu,

y = Cx,

where

A =

⎡
⎣ 0 1 0

0 0 1
−6 −11 −6

⎤
⎦ , B =

⎡
⎣0

0
1

⎤
⎦ , C =

[
1 0 0

]
.

Design an output feedback controller by observer approach such that the desired
closed-loop poles (the eigenvalues of A−BK) are located at

λ =−1+ i,−1− i,−5

and the desired observer poles (the eigenvalues of A−KeC) are located at

λ =−6,−6,−6.

3.18. Consider the system

dx1

dt
= x2,

dx2

dt
= −k1 sinx1− (k2 + k3 cosx1)x2.

Assume that the parameters have the values k1 = 1, k2 = 1, k3 = 0. Calculate the
sensitivity indices of x1 and x2 with respect to k1, k2, k3.
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4

Control of Blood Glucose

Some molecular control mechanisms of blood glucose are described schematically
in Fig. 4.1. Glucose comes from food and liver, and is utilized by brain and nerve
cells (insulin-independent) via the glucose transporter 3 (GLUT3) or by tissue cells
such as muscle, kidney, and fat cells (insulin-dependent) via the glucose transporter 4
(GLUT4). Glucose is transported into and out of liver cells by the concentration-
driven glucose transporter 2 (GLUT2), which is insulin-independent. In response to
a low blood glucose level (< 80 mg/dl or 4.4 mmol/L), α cells of the pancreas produce
the hormone glucagon. The glucagon initiates a series of activations of kinases, and
finally leads to the activation of the glycogen phosphorylase, which catalyzes the
breakdown of glycogen into glucose. In addition, the series of activations of kinases
also result in the inhibition of glycogen synthase and then stop the conversion of
glucose to glycogen. In response to a high blood glucose level (> 120 mg/dl or 6.7
mmol/L), β cells of the pancreas secrete insulin. Insulin triggers a series of reactions
to activate the glycogen synthase, which catalyzes the conversion of glucose into
glycogen. Insulin also initiates a series of activations of kinases in tissue cells to
lead to the redistribution of GLUT4 from intracellular storage sites to the plasma
membrane. Once at the cell surface, GLUT4 transports glucose into the muscle or fat
cells.

Mathematical models play an important role in addressing the problem of con-
trol of blood glucose. They can simulate oscillations of glucose and insulin and pro-
vide theoretical insights into the glucose control mechanisms. They are also required
for integrating a glucose monitoring system into insulin pump technology to form
a closed-loop insulin delivery system on the feedback of blood glucose levels, the
so-called “artificial pancreas” [16, 33, 38]. Therefore, many minimal mathematical
models describing interaction mechanisms between glucose and insulin have been
constructed since the pioneering work of Albisser et al [3, 4] and Clemens et al [11].
These models include the linear model of Ackerman et al [2] and nonlinear compart-
mental models proposed by researchers, including Bergman et al [6, 7, 8] , Bertoldo
et al [9], Li et al [25], Man et al [28, 29, 30], Pedersen et al [34], Sturis et al [39], and
Toffolo et al [40, 41]. In this chapter, we introduce a model developed in [26, 27].

LiuW.: Introduction to Modeling Biological Cellular Control Systems.
DOI 10.1007/978-88-470-2490-8 4, © Springer-Verlag Italia 2012
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Fig. 4.1. A schematic description of a simple blood glucose control system. Molecular control
mechanisms of blood glucose sketched in this figure are described in the text. Reproduced with
permission from [26]

4.1 A Control System of Blood Glucose

We classify glucose into glucose in liver and glucose in plasma. Since there is an
inter-conversion between glycogen and glucose in the liver, glycogen is taken into
account. Let gy,gl ,gp denote the concentrations of glycogen in the liver, glucose in
the liver, and glucose in plasma, respectively. The differential equations governing
gy, gl , and gp can be derived from the law of mass balance (2.1).

In the liver, the glycogen phosphorylase catalyzes conversion of glycogen into
glucose and the glycogen synthase catalyzes conversion of glucose into glycogen.
Experimental observations indicated that the glycogen phosphorylase [44, 45] and
the glycogen synthase [31] follow the Michaelis-Menten equation. So the rate of

conversion of glycogen into glucose is equal to p1V gp
maxgy

Kgp
m +gy and the rate of conversion of

glucose into glycogen is equal to p2V gs
maxgl

Kgs
m +gl , where V gp

max, V gs
max are the maximum veloc-

ities of glycogen phosphorylase and glycogen synthase, respectively, Kgp
m , Kgs

m are
the Michaelis-Menten constants of glycogen phosphorylase and glycogen synthase,
respectively, and p1, p2 are the percentages of activation of glycogen phosphorylase
and glycogen synthase, respectively. From the view point of control theory, p1 and
p2 serve as a feedback controller. It then follows from the law of mass balance (2.1)
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that
dgy

dt
=− p1V gp

maxgy

Kgp
m +gy

+
p2V gs

maxgl

Kgs
m +gl

. (4.1)

The glucose transporter GLUT2 transports glucose into or out of the live and
follows the Michaelis-Menten equation [12]. Thus, the rate of transport of glucose

into the liver can be modeled by V g2
maxgp

Kg2
m +gp

and the rate of transport of glucose from the

liver into blood can be modeled by V g2
maxgl

Kg2
m +gl

, where V g2
max is the maximum velocity of

GLUT2 and Kg2
m is the Michaelis-Menten constant. It then follows from the law of

mass balance (2.1) that

dgl

dt
=− p2V gs

maxgl

Kgs
m +gl

− V g2
maxgl

Kg2
m +gl

+
p1V gp

maxgy

Kgp
m +gy

+
V g2

maxgp

Kg2
m +gp

. (4.2)

The glucose transporter GLUT4 transports glucose into tissue cells and follows
the Michaelis-Menten equation [32]. Thus, the rate of glucose transport from blood

into the tissue cells can be modeled by p3V g4
maxgp

Kg4
m +gp

, where V g4
max is the maximum velocity

of GLUT4, Kg4
m is the Michaelis-Menten constant, and p3 is the percentage of GLUT4

on the cell surface. We lump all other insulin-independent glucose uptake into the
glucose transporter GLUT3. Since GLUT3 follows the Michaelis-Menten equation

[12], its glucose transport rate can be modeled by V g3
maxgp

Kg3
m +gp

, where V g3
max is the maximum

velocity of GLUT3 and Kg3
m is the Michaelis-Menten constant. We denote by gp

in the
exogenous glucose uptake from food. It then follows from the law of mass balance
(2.1) that

dgp

dt
=− p3V g4

maxgp

Kg4
m +gp

− V g2
maxgp

Kg2
m +gp

− V g3
maxgp

Kg3
m +gp

+
V g2

maxgl

Kg2
m +gl

+gp
in. (4.3)

The equations (4.1), (4.2), and (4.3) constitute a control system of blood glucose with
the feedback controllers p1, p2, and p3 to be designed.

4.2 Design of Feedback Controllers

Following the molecular control mechanisms of blood glucose, we design the feed-
back controllers p1, p2, and p3 in this section.

4.2.1 Insulin and Glucagon Transition

Plasma insulin does not act directly on glucose metabolism, but through remote cellu-
lar insulin [8]. We assume that this is also the case for glucagon. The transition from
plasma space to cellular space is described in Fig. 4.1. In this figure, u1 stands for the
glucagon infusion rate (GIR); u2 stands for the insulin infusion rate (IIR); positive
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Fig. 4.2. Left: Glucagon infusion rate (4.6). Right: Insulin infusion rate (4.7). Reproduced
with permission from [27]

constants a’s and b’s denote transition or degradation rate constants. Let hp
1 and hp

2 (h
for hormone and p for plasma) denote the concentrations of the plasma glucagon and
insulin, respectively. Then the transitional delay process can be modeled as follows:

dhp
1

dt
= −(a1 +a2)h

p
1 +u1, (4.4)

dhp
2

dt
= −(b1 +b2)h

p
2 +u2. (4.5)

Unlike the model proposed by Sturis et al [39], we assume that the intracellular insulin
does not come back to the plasma space. This is similar to the model proposed by
Bergman et al [8].

We use the following feedback glucagon and insulin infusion rates

u1 =
Gm

1+q1 exp(α1(gp−1000))
, (4.6)

u2 =
Rm

1+q2 exp(α2(C1−gp))
, (4.7)

where C1,Gm,q1,q2,α1,α2,Rm are positive constants. u2 is adopted from [39]. The
constants q1,q2,α1,α2 are selected such that the glucagon secretion increases rapidly
when the blood glucose level drops down to around 800 (mg/l) and the insulin secre-
tion increases rapidly when the blood glucose level rises up to around 1500 (mg/l),
as shown in Fig. 4.2.

4.2.2 Glucagon Signaling Pathway

For the glucagon signaling pathway, we treat it as a black box and propose a simple
model as follows. We assume that the glucagon receptor recycling is a closed sub-
system, that is, its synthesis is equal to its degradation. Let H1,Ri

1, and R1 denote the
cellular glucagon, the inactive and active glucagon receptors, respectively. Then the
biochemical process of activation of the receptors by the glucagon can be described
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by the diagram

H1 +Ri
1 −→

a4
R1 −→

a5
Ri

1,

where a’s are rate constants. It then follows from the law of mass balance and the law
of mass action that

dh1

dt
= −a4h1(R0

1− r1)−a3h1 +
a1Vp

V
hp

1 , (4.8)

dr1

dt
= a4h1(R0

1− r1)−a5r1, (4.9)

where lower case letters denote the concentrations of the corresponding molecules.
In the above equations, R0

1 is the total concentration of glucagon receptors, Vp is the
plasma glucagon volume, and V is the cellular glucagon volume. We have used the
receptor conserved equation

r1 + ri
1 = R0

1.

The term a1hp
1Vp is the total amount of the plasma glucagon per unit time trans-

ferred to the intracellular space and then a1hp
1Vp/V is the concentration of the cellular

glucagon per unit time.

4.2.3 Insulin Signaling Pathway

A molecular mathematical model for the insulin signaling pathway in muscle cells
was developed by Sedaghat et al [35]. We assume that the insulin signaling pathway
in the liver cells is analogous to the one in the muscle cells. Thus we adopt this model
for both muscle and liver cells. Since muscle and liver are two different organs, our
assumption needs to be justified biologically.

Insulin

P

P

Plasma
membrane

P

P

PTP

PTP

PTP

Fig. 4.3. Schematic description of insulin receptor binding. The binding and phosphorylation
precesses are explained in the text
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4.2.3.1 Insulin Receptor Recycling Subsystem

The binding process of insulin to its receptor is schematically descried in Fig. 4.3.
Once a molecule of insulin binds to an insulin receptor, it is rapidly autophosphory-
lated [1]. The phosphorylated receptor may either bind another molecule of insulin
or dissociate from the first molecule of insulin. Binding of a second molecule of
insulin does not affect the phosphorylation state of the receptor. However, the recep-
tor is dephosphorylated by protein tyrosine phosphatases (PTP) when it dissociates
from the first molecule of insulin. Free and phosphorylated surface receptors can be
internalized. When they dissociate from the molecules of insulin, they are dephos-
phorylated by the protein tyrosine phosphatases.

To build a model for the subsystem, we introduce the following state variables:

x j
1 = cellular insulin,

x j
2 = concentration of unbound surface insulin receptors,

x j
3 = concentration of unphosphorylated once-bound surface receptors,

x j
4 = concentration of phosphorylated twice-bound surface receptors,

x j
5 = concentration of phosphorylated once-bound surface receptors,

x j
6 = concentration of unbound unphosphorylated intracellular receptors,

x j
7 = concentration of phosphorylated twice-bound intracellular receptors,

x j
8 = concentration of phosphorylated once-bound intracellular receptors.

The superscript j is used to distinguish the insulin signaling pathways in liver and
muscle: j = l (l for liver) refers to the pathway in the liver while j = m (m for muscle)
refers to the pathway in the muscle.

The reactions between different receptor states are described as follows:

x j
1 + x j

2

k1�
k15

x j
3 (one molecule of insulin binds to the unphosphorylated surface

receptor)

x j
3

k3−→ x j
5 (the once-bound surface receptor is phosphorylated)

x j
2 ←−−−−−−

k17[PT P]
x j

5 (when the receptor dissociates from the molecule of insulin, it is
dephosphorylated by the protein tyrosine phosphatases (PTP))

x j
1 + x j

5

k2�
k16

x j
4 (a second molecule of insulin binds to the phosphorylated once-

bound surface receptor)

x j
2

k4�
k18

x j
6

k21−→ (endocytosis of the unbound surface receptor and degradation
of the intracellular receptor)

k5−→ x j
6 (zero order receptor synthesis)

x j
4

k19�
k20

x j
7 (endocytosis of the phosphorylated twice-bound surface receptor)
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x j
5

k19�
k20

x j
8 (endocytosis of the phosphorylated once-bound surface receptor)

x j
6 ←−−−−−

k6[PT P]
x j

7 (when insulin diffuses off the twice-bound intracellular receptor,
the protein tyrosine phosphatases (PTP) dephosphorylate it)

x j
6 ←−−−−−

k6[PT P]
x j

8 (when insulin diffuses off the once-bound intracellular receptor,
the protein tyrosine phosphatases (PTP) dephosphorylate it).

The protein tyrosine phosphatases that dephosphorylate the insulin receptor are
explicitly represented as a multiplicative factor ([PTP]) that modulates receptor
dephosphorylation rate. Using the mass action law and the mass balance law, the
governing equations for the state variables can be derived from the above reactions
as follows (see [35]):

dx j
1

dt
= −k1x j

1x j
2−b3x j

1 +b1Vphp
2/V (4.10)

dx j
2

dt
= k15x j

3 + k17[PTP]x j
5− k1x j

1x j
2 + k18x j

6− k4x j
2 (4.11)

dx j
3

dt
= −k15x j

3 + k1x j
1x j

2− k3x j
3 (4.12)

dx j
4

dt
= k2x j

1x j
5− k16x j

4 + k20x j
7− k19x j

4 (4.13)

dx j
5

dt
= k3x j

3 + k16x j
4− k2x j

1x j
5− k17[PTP]x j

5 + k20x j
8− k19x j

5 (4.14)

dx j
6

dt
= k5− k21x j

6 + k6[PTP](x j
7 + x j

8)+ k4x j
2− k18x j

6 (4.15)

dx j
7

dt
= k19x j

4− k20x j
7− k6[PTP]x j

7 (4.16)

dx j
8

dt
= k19x j

5− k20x j
8− k6[PTP]x j

8. (4.17)

4.2.3.2 Postreceptor Signaling Subsystem

It is assumed that the postreceptor signaling subsystem is a closed subsystem. Acti-
vated insulin receptors phosphorylate the insulin receptor substrate-1 (IRS-1), which
then binds and activates PI 3-kinase (Fig. 4.4). Define the following state variables:

x j
9 = concentration of unphosphorylated IRS-1,

x j
10 = concentration of tyrosine-phosphorylated IRS-1,

x j
11 = concentration of inactivated PI 3-kinase,

x j
12 = concentration of tyrosine-phosphorylated IRS-1/activated PI 3-kinase

complex.
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Fig. 4.4. Schematic description of postreceptor signaling subsystem. The postreceptor signal-
ing precess is explained in the text

The reactions in this system are described as follows:

x j
9

k7(x
j
4 + x j

5)/[IRp]
−−−−−−−−−−−−−→←−−−−−−−−−−−−−

k22[PT P]
x j

10 (phosphorylation of IRS-1 by activated insulin
receptors and dephosphorylation of IRS-1 by the
protein tyrosine phosphatases (PTP))

x j
10 + x j

11

k8�
k23

x j
12 (phosphorylated IRS-1 binds and activates

PI 3-kinase).

The dependence of IRS-1 phosphorylation on phosphorylated surface receptors is
assumed to be proportional to the fraction of phosphorylated surface receptors
(x j

4 +x j
5)/[IRp], where [IRp] is the concentration of phosphorylated surface receptors

achieved after maximal insulin stimulation. Thus the rate constant for IRS-1 phos-
phorylation is given by k7(x

j
4 + x j

5)/[IRp]. It then follows that differential equations
governing phosphorylation of IRS-1 and subsequent formation of phosphorylated
IRS-1/activated PI 3-kinase complex are (see [35]):

dx j
9

dt
= k22[PTP]x j

10− k7x j
9(x

j
4 + x j

5)/[IRp], (4.18)

dx j
10

dt
= k7x j

9(x
j
4 + x j

5)/[IRp]+ k23x j
12− (k22[PTP]+ k8x j

11)x
j
10, (4.19)

dx j
11

dt
= k23x j

12− k8x j
11x j

10, (4.20)

dx j
12

dt
= −k23x j

12 + k8x j
11x j

10. (4.21)
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Activated PI3-kinase converts the substrate phosphatidylinositol 4,5-bisphos-
phate (PI(4,5)P2) to the product phosphatidylinositol 3,4,5-trisphosphate
(PI(3,4,5)P3) (Fig. 4.4). Phosphoinositol phosphatases such as SHIP2 (SH2-
containing 5’-inositol phosphatase) convert PI(3,4,5)P3 to phosphatidylinositol
3,4-bisphosphate (PI(3,4)P2), whereas phosphoinositol phosphatases such as PTEN
(phosphatase homologous to tensin ) convert PI(3,4,5)P3 to PI(4,5)P2. Define:

x j
13 = percentage of PI(3,4,5)P3 out of the total lipid population,

x j
14 = percentage of PI(4,5)P2 out of the total lipid population,

x j
15 = percentage of PI(3,4)P2 out of the total lipid population.

These conversion reactions are described as follows:

x j
14
−−−−−−−→←−−−−−−−

k9

k24[PTEN]
x j

13 (conversion between PI(4,5)P2 and PI(3,4,5)P3

by PI3-kinase and PTEN)

x j
15
−−−−−−−→←−−−−−−−

k10

k25[SHIP]
x j

13 (conversion between PI(3,4)P2 and PI(3,4,5)P3 by SHIP2).

It is assumed that the rate constant k9 for generation of PI(3,4,5)P3 depends on x12

linearly as follows

k9 = (k9stimulated− k9basal)x12/[PI3K]+ k9basal, (4.22)

where [PI3K] is the equilibrium concentration of activated PI3-kinase obtained after
maximal insulin stimulation. As with [PT P], the lipid phosphatase factors [SHIP] and
[PT EN] correspond to the relative phosphatase activity in the cell and are assigned
a value of 1 under normal physiological conditions. It then follows that differential
equations governing these phosphatidylinositides are (see [35]):

dx j
13

dt
= k9x j

14 + k10x j
15− (k24[PTEN]+ k25[SHIP])x j

13, (4.23)

dx j
14

dt
= k24[PTEN]x j

13− k9x j
14, (4.24)

dx j
15

dt
= k25[SHIP]x j

13− k10x j
15. (4.25)

PI(3,4,5)P3 mediates activation of downstream kinases PKB (protein kinase B)
and PKC-ζ (protein kinase C). Define:

x j
16 = percentage of inactivated PKB,

x j
17 = percentage of activated PKB,

x j
18 = percentage of inactivated PKC-ζ ,

x j
19 = percentage of activated PKC-ζ .
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The activation of PKB and PKC-ζ can be described as follows:

x j
16 �

k11

k26

x j
17 (activation of PKB mediated by PI(3,4,5)P3)

x j
18 �

k12

k27

x j
19 (activation of PKC-ζ mediated by PI(3,4,5)P3).

The differential equations describing the activation are (see [35]):

dx j
16

dt
= k26x j

17− k11x j
16, (4.26)

dx j
17

dt
= −k26x j

17 + k11x j
16, (4.27)

dx j
18

dt
= k27x j

19− k12x j
18, (4.28)

dx j
19

dt
= −k27x j

19 + k12x j
18. (4.29)

We assume that, with maximal insulin stimulation, both PKB and PKC-ζ exist in
a 10:1 unactivated-to-activated distribution at equilibrium. It therefore follows from
the equations (4.26) and (4.28) that

k11 = 0.1k26, k12 = 0.1k27.

To model the PI(3,4,5)P3 mediation in activation of PKB and PKC-ζ , we assume that
the rate constants for activation of both PKB and PKC-ζ increase from zero to their
maximal values as a linear function of the increase in PI(3,4,5)P3 levels:

k11 = 0.1× k26× (x13−0.31)/(3.1−0.31), (4.30)

k12 = 0.1× k27× (x13−0.31)/(3.1−0.31), (4.31)

where 0.31 is the basal value of PI(3,4,5)P3 and 3.10 is the value of PI(3,4,5)P3 in
the cell after maximal insulin stimulation.

With 80% of the metabolic insulin signaling effect attributed to PKC-ζ and 20%
of the effect attributed to PKB, the insulin effect can be represented by (see [35])

effect = (0.2x j
17 +0.8x j

19)/APequil , (4.32)

where APequil = 100/11 is the steady-state level of combined activity for PKB and
PKC-ζ after maximal insulin stimulation.

4.2.3.3 GLUT4 Transport Subsystem

Under basal conditions, GLUT4 recycles between an intracellular compartment and
the cell surface. Insulin stimulation leads to additional GLUT4 trafficking from the
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intracellular compartment to the cell surface. Define

xm
20 = percentage of intracellular GLUT4,

xm
21 = percentage of cell surface GLUT4.

The GLUT4 recycling can be described as follows:

xm
20

k13 + Ig4
−−−−−−→←−−−−−−

k28

xm
21 (GLUT4 recycling)

k14−→ xm
20

k29−→ (zero order GLUT4 synthesis and first order GLUT4
degradation),

where Ig4 denotes the insulin effect on GLUT4. Thus the GLUT4 recycling is mod-
eled by (see [35]):

dxm
20

dt
= k28xm

21− (k13 + Ig4)xm
20− k29xm

20 + k14, (4.33)

dxm
21

dt
= −k28xm

21 +(k13 + Ig4)xm
20. (4.34)

We assume that the insulin effect on GLUT4, Ig4, depends on its effect linearly:

Ig4 = Imax[effect],

where Imax is the effect after maximal insulin stimulation. By assuming that the basal
equilibrium distribution of 4% cell surface GLUT4 and 96% GLUT4 in the intracel-
lular pool transitions on maximal insulin stimulation to a new steady state of 40%
cell surface GLUT4 and 60% intracellular GLUT4, we obtain

k13

k28
=

4
96

,
k13 + Imax

k28
=

40
60

.

It then follows that Imax =
(

40
60 − 4

96

)
k28 and then

Ig4 =
(

40
60
− 4

96

)
k28[effect]

=
(

40
60
− 4

96

)
k28(0.2xm

17 +0.8xm
19)/APequil . (4.35)

4.2.4 Dynamical Feedback Controllers

We assume that the activation level of glycogen phosphorylase is determined by the
percentage of activated glucagon receptors. This leads to the feedback controller

p1 =
r1

R0
1

. (4.36)
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Fig. 4.5. Fitting the solution of (4.5) into
the insulin data of Korach-André et al [21]
(courtesy of François Péronnet). In this fit-
ting, the glucose data of Fig. 4.7 (left) are
used for gp. Reproduced with permission
from [26]

The activation effect on the glycogen synthase resulted from insulin is determined
by (see [35])

Igs = 0.2xl
17 +0.8xl

19, (4.37)

where xl
17 is the percentage of activated PKB and xl

19 is the percentage of acti-
vated PKC-ζ . The inactivation of glycogen synthase by glucagon is assumed to be
determined by the reciprocal of the concentration of activated glucagon receptors
1/(1 + a6r1), where a6 is a positive inhibition constant. Then the control of activity
of the glycogen synthase can be expressed as

p2 =
Igs

1+a6r1
=

0.2xl
17 +0.8xl

19

1+a6r1
. (4.38)

Since only the cell surface GLUT4 transports calcium, we have

p3 = xm
21. (4.39)

4.3 Estimation of Parameters

As shown in the above mathematical model, a mathematical model of a biological
system usually contains numerous parameters. Estimation of these parameters is chal-
lenging because no universal methods can be used and in some cases no complete sets
of data are available for fitting a model into data. Hence we usually have to appeal to
different means, such as adoption of existing parameters in the literature, numerical
simulations, use of optimization methods like the simulated annealing optimization
[10, 20] and nonlinear least squares, and use of built-in parameter estimation func-
tions like “SBparameterestimation” from the SBToolbox [47] and “sbioparamestim”
from the SimBiology toolbox of MATLAB.

We now demonstrate how to fit a model into data to estimate parameters. Time-
dependent insulin data was obtained by Korach-Andre et al [21]. We use these data
to estimate the parameters b1,b2,C1,α2,q2, and Rm by fitting the solution of (4.5)
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into these data. To this end, we solve (4.5) to obtain that

hp
2 = e−(b1+b2)thp

2(0)+ e−(b1+b2)t
∫ t

0

Rme−(b1+b2)s

1+q2 exp(α2(C1−gp(s)))
ds.

Using the method of least squares, we then fit this solution into the insulin data of
Fig. 4.7 (right), as shown in Fig. 4.5. In this fitting, the glucose data of Fig. 4.7
(left) are used for gp. For the parameters b1 and b2, we can obtain only the sum
b1 +b2 = 0.0171 min−1 and the determination of each of b1 and b2 becomes a prob-
lem because we could not find the experimental rate b2 of plasma insulin degradation
in the literature. Part of the reason is that the degradation site is not on plasma mem-
brane. There is an intracellular pool of insulin in beta cells, which is delivered to the
plasma membrane of a cell upon certain stress. After the action of insulin in target
cells, the cells will uptake it via endocytosis and degrade it by endosome and lyso-
somes. Therefore, the overall degradation rate could be approximately equal to b3 and
then b2 is small. Hence we tried different combinations of b1 and b2 and found that the
combination of b1 = 0.0151 min−1 and b2 = 0.002 min−1 (much less than b3 = 0.01
min−1) gives the best fit of the simulated glucose and insulin time courses into the
data as shown in Fig. 4.7. Since the unit of the insulin data is mIU/L, with the insulin
conversion 1 mIU/L =6.945×10−12 M [46], the obtained value 0.64 (mIU/L/min) of
Rm is converted to

Rm = 0.64×6.945×10−12 M/min = 4.44×10−12 M/min.

The glucagon degradation rate a3 is assumed to be equal to the insulin degrada-
tion rate b3. The deactivation effect constant a6 of glucagon receptors on the glycogen
synthase and the maximum velocities V g2

max,V
g3
max,V

g4
max,V

gs
max,V

gp
max for various enzymes

are determined by hand in the way such that the simulated glucose and insulin profiles
fit best into the data of Korach-Andre et al [21] (Fig. 4.7). Since the maximum veloci-
ties depend on the total concentration of an enzyme, they could vary from experiment
to experiment. Thus we did not use the reported values in the literature. In fact, the
reported values resulted in a worse simulation by our model (simulation not shown).
The original unit mM of various Michaelis-Menten constants Kg2

m ,Kg3
m ,Kg4

m ,Kgs
m ,Kgp

m

is converted to mg/L. All other parameters are adopted from the literature as indi-
cated in Tables 4.1 and 4.2. As always, the reliability of these parameter values is
questionable biologically since they were determined by numerical simulations and
data fittings, not by experiments.

4.4 Simulation of Glucose and Insulin Dynamics

Using the feedback control system consisting of equations (4.1)-(4.39), we repro-
duce qualitatively the experimental results of Korach-André et al [21] (courtesy
of François Péronnet). The parameter values used in this reproduction are listed in
Tables 4.1 and 4.2 and the initial data are listed in Table 4.3. The exogenous glucose
input (gp

in) is the experimental data of Korach-André et al [21], which is reproduced
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Table 4.1. Model parameters adapted from [35]

Parameter Value

PTP 1.0
PTEN 1.0
SHIP 1.0
IRp 8.97×10−13 (M)
APequil 100/11
PI3K 5×10−15 (M)
k9stimulated 1.39 (min−1)
k9basal (0.31/99.4)×94/3.1× k9stimulated

k1 6×107 (M−1min−1)
k2 6×107 (M−1min−1)
k3 2500 (min−1)
k4 0.003/9 (min−1)
k5 10× k21 (M min−1) if x6 + x7 + x8 > 10−13

k5 60× k21 (M min−1) if x6 + x7 + x8 ≤ 10−13

k6 0.461 (min−1)
k7 4.16 ( min−1)
k8 10×5/70.775×1012 ( min−1)
k9 (k9stimulated− k9basal)× x12/PI3K + k9basal

k10 3.1/2.9×2.77 ( min−1)
k11 0.1× k26× (x13−0.31)/(3.1−0.31)
k12 0.1× k27× (x13−0.31)/(3.1−0.31)
k13 4/96×0.167 (min−1)
k14 96×0.001155 (min−1)
k15 0.2 (min−1)
k16 20 (min−1)
k17 0.2 (min−1)
k18 0.003 (min−1)
k19 2.1×10−3 (min−1)
k20 2.1×10−4 (min−1)
k21 1.67×10−18 (min−1)
k22 2.5/7.45×4.16 (min−1)
k23 10 (min−1)
k24 94/3.1× k9stimulated

k25 2.77 (min−1)
k26 10× ln(2) (min−1)
k27 10× ln(2) (min−1)
k28 0.167 (min−1)
k29 0.001155 (min−1)
effect (0.2× x17 +0.8× x19)/APequil

Ig4 (4/6−4/96)× k28× effect
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Table 4.2. Model parameters

Parameter Value Description

Kg2
m 15300 (mg/L) Michaelis-Menten constant of GLUT2 [12]

Kg3
m 1530 (mg/L) Michaelis-Menten constant of GLUT3 [12]

Kg4
m 774 (mg/L) Michaelis-Menten constant of GLUT4 [32]

Kgs
m 67 (mg/L) Michaelis-Menten constant of glycogen synthase [31]

Kgp
m 600 (mg/L) Michaelis-Menten constant of Glycogen phosphorylase [45]

V g2
max 50 (mg/L/min) Maximum velocity of GLUT2

V g3
max 10 (mg/L/min) Maximum velocity of GLUT3

V g4
max 4 (mg/L/min) Maximum velocity of GLUT4

V gs
max 28.4 (mg/L/min) Maximum velocity of glycogen synthase

V gp
max 258 (mg/L/min) Maximum velocity of Glycogen phosphorylase

R0
1 9×10−13(M) Total glucagon receptors [27]

a1 0.12 (min−1) Plasma glucagon transitional rate [27]
a2 0.3 (min−1) Plasma glucagon degradation rate [5, 13, 24]
a3 0.01 (min−1) Glucagon degradation rate
a4 6×107 (M−1min−1) Glucagon association rate to its receptors [18]
a5 0.2 ( min−1) Glucagon receptor deactivation rate [27]
a6 103/R0

1 (M−1) Deactivation effect of glucagon receptor on
glycogen synthase

b1 0.0151 (min−1) Plasma insulin transitional rate
b2 0.002 (min−1) Plasma insulin degradation rate
b3 0.01 (min−1) Insulin degradation rate [39]
V 11 (l) Volume of cellular insulin space [42]
Vp 3 (l) Volume of plasma insulin space[42]
Gm 2.23×10−10 (M/min) Maximum glucagon infusion rate [27]
Rm 4.44×10−12 (M/min) Maximum insulin infusion rate
C1 1162 (mg/L)
α1 0.005 ((mg/L)−1) [27]
α2 0.01594 ((mg/L)−1)
q1 10 [27]
q2 1.85

in Fig. 4.6. The data is converted into the glucose input rate (mg/L/min) by dividing it
by 0.23 (L/kg), the effective volume of glucose distribution [21]. The model is solved
numerically by using MATLAB.

Fig. 4.7 shows that the glucose and insulin dynamics simulated by the model
agrees qualitatively with the experimental data, although they do not match perfectly.
The difference between simulation and data could be resulted from a number of fac-
tors. First, definitely the model is just a phenomenological one and its accuracy needs
to be improved. Second, due to the complexity of the model, the values of numerous
parameters cannot be estimated accurately by fitting the model into the data. Third,
the plasma glucose and insulin dynamics depends critically on the exogenous glucose
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Table 4.3. Initial conditions

Variable Reference Variable Reference

hp
1(0) = 1.389×10−11 M hp

2(0) = 5.38×10−10 M

h1(0) = 0 r1(0) = 0

xm
1 (0) = 0 xm

2 (0) = 9×10−13 M [35]

xm
3 (0) = 0 xm

4 (0) = 0

xm
5 (0) = 0 xm

6 (0) = 1×10−13 M [35]

xm
7 (0) = 0 xm

8 (0) = 0

xm
9 (0) = 1×10−12 M [35] xm

10(0) = 0

xm
11(0) = 1×10−13 M [35] xm

12(0) = 0

xm
13(0) = 0.31 [35] xm

14(0) = 99.4 [35]

xm
15(0) = 0.29 [35] xm

16(0) = 100 [35]

xm
17(0) = 0 xm

18(0) = 100 [35]

xm
19(0) = 0 [35] xm

20(0) = 90 [35]

xm
21(0) = 10 [35] xl

1(0) = 0

xl
2(0) = 9×10−13 M xl

3(0) = 0

xl
4(0) = 0 xl

5(0) = 0

xl
6(0) = 1×10−13 M xl

7(0) = 0

xl
8(0) = 0 xl

9(0) = 1×10−12 M

xl
10(0) = 0 xl

11(0) = 1×10−13 M

xl
12(0) = 0 xl

13(0) = 0.31

xl
14(0) = 99.4 xl

15(0) = 0.29

xl
16(0) = 100 xl

17(0) = 0

xl
18(0) = 100 xl

19(0) = 0

gy(0) = 200 mg/L gl(0) = 0

gp(0) = 1935 mg/L gp
in(0) = 25.9 mg/L/min [21]

input (gp
in). However, there might be errors in measuring the exogenous glucose input

in the experiment and then the actual exogenous glucose that resulted in the plasma
glucose and insulin data might be different.

4.5 Model Prediction of Parametrical Sensitivity

We now analyze the sensitivity of glucose and insulin to parameters. The sensi-
tivity index of a state variable y with respect to a parameter p is defined by p

y
∂y
∂ p

[19, 43]. The sensitivity system is solved by using MATLAB over the time period
from 0 to 480 and the averaged sensitivity index is calculated according to the formula

1
480

∫ 480
0

∣∣∣ p
y

∂y
∂ p

∣∣∣dt. The simulated indices are listed in Tables 4.4 and 4.5 in a descend-
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Fig. 4.7. Comparison of blood glucose (left) and insulin (right) dynamics simulated by the
model consisting of equations (4.1)-(4.39) with the experimental data of Korach-André et al
[21] (courtesy of François Péronnet). Reproduced with permisson from [26]

ing order and they show that both glucose and insulin are most sensitive to the param-
eters PTEN (the multiplicative factor modulating k24 [35]), k24 (the rate constant for
conversion of PI(3,4,5)P3 to PI(4,5)P2 [35]), PTP (the multiplicative factor that mod-
ulates insulin receptor dephosphorylation rate [35]), and V g4

max (the maximum velocity
of GLUT4). This numerical evidence predicts that PTEN that converts PI(3,4,5)P3 to
PI(4,5)P2, PTP that dephosphorylates the insulin receptors, and GLUT4 that trans-
ports glucose into muscle cells play the most important role in the insulin signaling
pathway.

Fig. 4.8 shows that the insulin sensitivity index with respect to the maximum
velocity of GLUT4 is negative initially. This implies that an increase of the veloc-
ity will result in a decrease in the needs of plasma insulin. The figure also shows
that the insulin sensitivity index with respect to the rate constant k28 is positive. This
implies that if the GLUT4 internalization rate increases, then more insulin is needed
to stimulate the trafficking of GLUT4 from intracellular stores to the plasma mem-
brane. Other simulated index figures with respect to other parameters (not shown)
make a sense biologically. This might indicate that the model (4.1)-(4.39) could phe-
nomenologically simulate the molecular mechanisms of interaction between glucose
and insulin.
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Fig. 4.8. Sensitivity indices of insulin to different parameters simulated by the model consist-
ing of equations (4.1)-(4.39). Reproduced with permission from [26]

4.6 Simulation of Glucose and Insulin Oscillations

Experimental studies have revealed that there are at least two types of oscillations of
glucose and insulin: rapid oscillations with periods of 8-15 minutes [14, 15, 17, 22,
23] and ultradian oscillations with periods of 50-200 minutes [36, 37]. The mecha-
nisms that generate both types of oscillations remain to be elucidated. To analyze the

Table 4.4. Averaged glucose sensitivity indices to parameters

Parameter Index Parameter Index Parameter Index

PTEN 0.9039 k24 0.9038 PTP 0.8411

V g4
max 0.8293 k9stimulated 0.5315 APequil 0.4859

PI3K 0.4812 k8 0.4781 k23 0.4778
IRp 0.4377 k7 0.4377 k22 0.4358
k1 0.4222 k9basal 0.4166 k17 0.4054

Kg4
m 0.2805 k13 0.2570 k28 0.2535

b1 0.2182 Rm 0.1903 b3 0.1837

V g2
max 0.1733 Kg2

m 0.1575 V g3
max 0.1469

k14 0.0776 k29 0.0734 Kg3
m 0.0729

q2 0.0369 b2 0.0311 α2 0.0307
a4 0.0201 a5 0.0196 q1 0.0188
V gp

max 0.0163 α1 0.015 a1 0.0145
a2 0.0142 k18 0.0132 a3 0.0115
k4 0.0127 V gs

max 0.0076 Kgp
m 0.0073

a6 0.0063 k19 0.006 SHIP 0.0057
k10 0.0057 k25 0.0057 Kgs

m 0.0046
k27 0.0005 k5 0.0002 k2 0.0001
k16 0.0001 k26 0.0001 k3 0.0
k6 0.0 k15 0.0 k20 0.0
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Table 4.5. Averaged insulin sensitivity indices to parameters

Parameter Index Parameter Index Parameter Index

PTEN 3.0638 k24 3.0638 PTP 2.6993

V g4
max 2.8045 k9stimulated 1.7166 APequil 1.5881

PI3K 1.5542 k8 1.5442 k23 1.5428
IRp 1.4155 k7 1.4155 k22 1.4062
b3 1.3853 k1 1.3707 k9basal 1.3495

k17 1.2938 b1 1.0094 Kg4
m 0.9355

k13 0.8585 k28 0.8184 k14 0.6608

V g2
max 0.6483 k29 0.6233 Kg2

m 0.5900

Rm 0.5326 V g3
max 0.5053 α2 0.3421

Kg3
m 0.2421 α1 0.1445 q1 0.1266

a4 0.1298 a5 0.124 b2 0.126
a1 0.0938 a2 0.0908 k18 0.082
q2 0.0763 k4 0.074 V gp

max 0.0689
V gs

max 0.0633 a6 0.0628 a3 0.0563
Kgp

m 0.0276 k27 0.0025 k19 0.0214
SHIP 0.019 k10 0.019 k25 3.019
Kgs

m 0.0166 k5 0.0023 k26 0.0006
k2 0.0004 k16 0.0004 k3 0.0001
k15 0.0001 k6 0.0 k20 0.0
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Fig. 4.9. Oscillations of glucose and insulin simulated by the model consisting of equations
(4.1)-(4.39) with the constant exogenous glucose input gp

in = 25.7 mg/L/min. In this simulation,
the initial condition xm

3 (0) (the concentration of unphosphorylated once-bound surface insulin
receptors) is changed from 0 to 9× 10−10 M. We ran our program for 2000 minutes such
that the solutions reach their homeostasis, and then we set that moment as the initial time 0.
Reproduced with permission from [26]

oscillation causes theoretically, we simulate glucose and insulin oscillations with a
constant exogenous glucose input. Although the constant glucose intravenous infu-
sion of 4.5 mg/kg/min was reported in [36], we use the average rate gp

in = 25.7
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mg/L/min of the exogenous glucose input of Korach-André et al [21] because our
model is tested by this input. From the dynamic system theory, it is well known that
the period of oscillating solutions of a system depends on the initial conditions. Thus,
to produce the glucose oscillation with the period of 208 minutes reported by Shapiro
et al [36], the initial condition xm

3 (0) (the concentration of unphosphorylated once-
bound surface insulin receptors) is changed from 0 to 9×10−10 M. In this simulation,
we ran our program for 2000 minutes such that the solutions reach their homeostasis,
and then we set that moment as the initial time 0. Fig. 4.9 shows that both glucose
and insulin oscillate with a same period of about 208 minutes. If xm

3 (0) = 0, then the
period is about 360 minutes (simulation not shown).

There is a discrepancy between the simulation and experimental observations
reported by Shapiro et al [36]: the reported oscillation periods for glucose and insulin
were different, 208 minutes for glucose and 106 minutes for insulin, while the sim-
ulated oscillation periods are the same for both. This discrepancy strongly suggests
that this simple model is quite far away from modeling this sophisticated system accu-
rately. On the other hand, to my knowledge in dynamic system theory, it seems that
it is extremely difficult or impossible to construct a system of ordinary differential
equations such that its different states converge to different periodic functions with
different periods. Therefore, partial differential equations defined in different spa-
tial domains may be needed for modeling the system more accurately. As discussed
in [27], the simple static output feedback controller u2 defined by (4.7) may not be
able to model the complex process of insulin secretion from the pancreatic β cells
in response to the rise of blood glucose and a dynamic distributed parameter output
feedback controller may be necessary. Hence, we are facing a great challenge in this
modeling.

To examine mathematically whether the liver subsystem itself can cause oscilla-
tions of glucose, we need the Bendixson criterion for nonexistence of periodic solu-
tions from dynamical systems theory [19]. Consider the system

dx1

dt
= f1(x1,x2), (4.40)

dx2

dt
= f2(x1,x2), (4.41)

where f1 and f2 are continuously differentiable.

Theorem 14 (Bendixson criterion). If ∂ f1
∂x1

+ ∂ f2
∂x2

is not identically zero and does not

change sign on a simply connected region Ω ofR2, then the system (4.40)-(4.41) has
no periodic solutions lying entirely in Ω .

Proof. We argue by contradiction. If the system (4.40)-(4.41) has a periodic solution
lying entirely in Ω , then the graph of the solution in the phase plane is a closed curve
C. On the curve C, it follows from (4.40) and (4.41) that dx2

dx1
= f2

f1
. Therefore, we have

∫
C
[ f2(x1,x2)dx1− f1(x1,x2)dx2] = 0.
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Fig. 4.10. Steady states of glucose and insulin simulated by the model consisting of equations
(4.1)-(4.39) with constant exogenous glucose input gp

in = 25.7 mg/L/min and the fixed glucose
input gp = 1200 mg/L in the insulin infusion rate u2. Reproduced with permission from [26]

It then follows from Green’s theorem that∫∫
D

(
∂ f1

∂x1
+

∂ f2

∂x2

)
dx1dx2 = 0,

where D is the interior of C. This is impossible because ∂ f1
∂x1

+ ∂ f2
∂x2

is not identically
zero and does not change sign on D. Hence the system (4.40)-(4.41) has no periodic
solutions lying entirely in Ω . ��

We now consider the equations (4.1), (4.2), and (4.3) and define

f1(gy,gl) = − V gp
maxr1gy

R0
1(K

gp
m +gy)

+
V gs

maxIgsgl

(1+a6r1)(K
gs
m +gl)

,

f2(gy,gl) = − V gs
maxIgsgl

(1+a6r1)(K
gs
m +gl)

− V g2
maxgl

Kg2
m +gl

+
V gp

maxr1gy

R0
1(K

gp
m +gy)

+
V g2

maxgp

Kg2
m +gp

,

f3(gl ,gp) = −xm
21V g4

maxgp

Kg4
m +gp

− V g2
maxgp

Kg2
m +gp

− V g3
maxgp

Kg3
m +gp

+
V g2

maxgl

Kg2
m +gl

.

Computing derivatives of these functions gives

∂ f1(gy,gl)
∂gy = − V gp

maxr1Kgp
m

R0
1(K

gp
m +gy)2

,

∂ f2(gy,gl)
∂gl = − V gs

maxIgsK
gs
m

(1+a6r1)(K
gs
m +gl)2

− V g2
maxKg2

m

(Kg2
m +gl)2

,

∂ f3(gl ,gp)
∂gp = − xm

21V g4
maxKg4

m

(Kg4
m +gp)2

− V g2
maxKg2

m

(Kg2
m +gp)2

− V g3
maxKg3

m

(Kg3
m +gp)2

.

Then ∂ f1(gy,gl)
∂gy + ∂ f2(gy,gl)

∂gl and ∂ f2(gy,gl)
∂gl + ∂ f3(gl ,gp)

∂gp are negative. Hence it follows
from the Bendixson criterion that the system (4.1)-(4.2) has no periodic orbits lying
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in the region with gy ≥ 0 and gl ≥ 0 and that the system (4.2)-(4.3) has no periodic
orbits lying in the region with gl ≥ 0 and gp ≥ 0. This analysis suggests that the
oscillations of glucose and insulin are not caused by the liver, and they would be
caused by the mechanism of insulin secretion from pancreatic β cells.

To test this hypothesis numerically, we fix the glucose variable gp in the insulin
infusion rate u2 to be the constant blood glucose concentration of 1200 mg/L. Then
the insulin infusion rate is a constant and the system becomes an open-loop system,
which may simulate the case where the pancreatic β cells are separated from the
system. Fig. 4.10 shows that both glucose and insulin simulated with the constant
insulin infusion and the constant exogenous glucose input are no longer oscillating.

Exercises

4.1. Consider the system (4.1)-(4.3).

1. For a constant exogenous glucose input gp
in, find the equilibrium of the system.

2. Analyze the linear stability of the equilibrium (Analyze the eigenvalues of the Jaco-
bian matrix of the system at the equilibrium).

3. Linearize the system at the equilibrium and analyze controllability of the linearized
control system.

4. Let the plasma glucose gp be the output of the system. Analyze observability of
the linearized control system.

4.2. Use the model consisting of equations (4.1)-(4.39) to simulate glucose and
insulin oscillations with different constant exogenous glucose inputs gp

in and different
initial conditions.

4.3. Construct a nonlinear model (a nonlinear function of x13) for rate constants k11

and k12 given in (4.30) and (4.31) and then solve the control system consisting of
equations (4.1)-(4.39) with (4.30) and (4.31) replaced by your model.

4.4. Construct a nonlinear model (a nonlinear function of effect) for the insulin effect
on GLUT4, Ig4, given in (4.35) and then solve the control system consisting of equa-
tions (4.1)-(4.39) with (4.35) replaced by your model.

4.5. Derive the sensitivity system of the system consisting of equations (4.1)-(4.39)
and then solve it numerically.

4.6. Fit the following solution of (4.5)

hp
2 = e−(b1+b2)thp

2(0)+ e−(b1+b2)t
∫ t

0

Rme−(b1+b2)s

1+q2 exp(α2(C1−gp(s)))
ds
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into the following data obtained by Korach-André et al [21]:

t(min) : 0 30 60 90 120 180 240
hp

2(mIU/L) : 68.4 61.25 49.1 46.1875 33.2375 26.55 15.625
gp(mmol/L) : 10.750 9.450 7.963 7.150 7.213 6.725 6.525

t(min) : 300 360 420 480
hp

2(mIU/L) : 13.3 11.0625 6.775 5.77143
gp(mmol/L) : 6.325 5.988 5.475 5.213

4.7. Following the model of insulin signaling pathway, construct a model for the
glucagon signaling pathway. Then incorporate your model into the control system
consisting of equations (4.1)-(4.39).
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5

Control of Calcium in Yeast Cells

Yeast cells uptake calcium from their environment via Mid1p, Cch1p, and other
unidentified transporters [7], and maintain a normal cytosolic Ca2+ level of 50 - 200
nM by means of a feedback control system [1, 16, 23]. The rise of cytosolic cal-
cium activates calmodulin which in turn activates the serine/threonine phosphatase
calcineurin (Fig. 5.1). The activated calcineurin de-phosphorylates Crz1p and sup-
presses the activity of Vcx1p. Activated Crz1p enters the nucleus and up-regulates
the expression of PMR1 and PMC1 (for review, see [13]). Pmr1p pumps calcium ions
into the organelle Golgi and possibly endoplasmic reticulum (ER). When the calcium
concentrations in Golgi and ER exceed their resting levels of 300 μM [30] and 10
μM [1, 39], respectively, the calcium in ER and Golgi will be secreted along with the
canonical secretory pathways. Pmc1p pumps calcium ions into vacuole, an organelle
that stores excess ions and nutrients. While most calcium ions inside vacuoles form
polyphosphate salts and are not re-usable, a small fraction of calcium ions can be
channeled to the cytosol by Yvc1p. The total and free vacuolar calcium concentra-
tions are 2 mM and 30 μM, respectively [16]. When needed, Yvc1p channels calcium
to the cytosol and contributes to the rise of cytosolic calcium concentration [14].

Mathematical models for the calcium dynamics were established by Cui et al [9,
10] and Tang et al [41]. In this chapter, we present an age-dependent model developed
by Tang and Liu [41]. We divide the whole system (Fig. 5.1) into several subsystems,
model each subsystem individually, and then integrate them into a complete system.

5.1 A Model of Aging Process

As cells age, functions of proteins, such as calcium pumps, calmodulin, and cal-
cineurin, in the cells decline and they will die at a certain generation. The survival
rate of cells at a generation is defined to be the ratio of the number of cells that still
live at the generation to the number of the whole cells in an experiment. The graph
of the survival rate against generation is called a cell survival curve.

LiuW.: Introduction to Modeling Biological Cellular Control Systems.
DOI 10.1007/978-88-470-2490-8 5, © Springer-Verlag Italia 2012
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Fig. 5.1. A schematic description of intracellular calcium control system in a budding yeast
cell. The environmental Ca2+ ions enter the cell via an unknown Ca2+ pump X in the nor-
mal conditions and Mid1p-Cch1p under some abnormal conditions such as depletion of secre-
tory Ca2+. A rise of cytosolic Ca2+ level triggers a cascade of activations of calmodulin,
calcineurin, and Crz1p, leading to the transcription of PMC1 and PMR1, and suppression of
VCX1. Then Pmc1p pumps Ca2+ into the vacuole. Pmr1p pumps Ca2+ into the Golgi appa-
ratus and likely ER. Ca2+ ions in ER and Golgi can be secreted out of the cell by the conven-
tional secretory pathway and transported to the vacuole via the multivesicular body (MVB)
pathway. The organelle vacuole is an intracellular storage of calcium ions. The fission and
fusion of vacuole in response to environmental osmotic pressure variation or cell cycle pro-
gression changes the vacuolar membrane and activates the channel Yvc1, which also increases
the cytosolic calcium ions. Indirect evidences suggest that vacuoles release calcium ions to
assist the progression of the cell cycle (see text for detail). We thus hypothesized that there is a
cell cycle-dependent factor X-induced calcium channel on the vacuole membrane. Reproduced
with permission from [41]

Since a cell survival curve could be the overall result of such decline, we used
the experimental survival curve S(t) of wild type yeast cells (BY4742) to describe
the aging process of proteins (Fig. 5.2). For instance, the decay of the function of
the calcium pump Pmr1p will be modeled by S(t)Rpmr, where Rpmr is the Pmr1p
maximum velocity. The survival curve S(t) in Fig. 5.2 is obtained by linearly inter-
polating the experimental data. The unit of generation was converted into minute by
the conversion: a generation = 120 minutes.

5.2 Calcium Uptake from Environment

Experimental observations by Kellermayer et al [19] and Locke et al [21] suggested
that wild-type yeast cells uptake Ca2+ from the growth medium using primarily a
low-affinity Ca2+ uptake system and a second high-affinity Mg2+-resistant Ca2+
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Fig. 5.2. Experimental survival curve of
wild type yeast cells (BY4742) obtained
by Tang [41]. Reproduced with permis-
sion

uptake system operating at a much lower level. The second uptake system is coor-
dinately regulated by two distinct mechanisms. The first mechanism is similar to
the store-operated calcium entry (also known as the capacitative calcium entry) in
mammalian cells [32, 33, 34, 44]. Depletion of Ca2+ in the endoplasmic reticulum
(ER)/Golgi apparatus activates Ca2+ entry across the plasma membrane. The second
mechanism couples cellular Ca2+ uptake to the level of Ca2+ in the extracellular envi-
ronment. Locke et al [21] showed that Cch1p and Mid1p are both required for a high-
affinity Ca2+ influx system that can be stimulated up to 25-fold in situations causing
depletion of secretory Ca2+ pools. Since the second uptake system works only in the
situation of the Ca2+ store depletion and the low extracellular Ca2+ environment, we
consider only the first primary uptake system. Experimental observations [21] indi-
cated that the calcium uptake system follows the Michaelis-Menten equation. Hence
the uptake velocity of the system can be modeled by

rex =
u1Rex[Ca2+]ex

Kex +[Ca2+]ex
, (5.1)

where Rex is the maximum velocity, Kex is the Michaelis-Menten constant, [Ca2+]ex

denotes the concentration of extracellular calcium, and u1 is a feedback controller to
be designed. In living cells, the metabolic byproducts such as reactive oxygen species
(ROS) attack the intracellular membranes and membrane-bound channels and pumps.
For example, the vacuolar membrane begins to deteriorate at generations 6 to 7 for a
strain whose average life span is 15 to 17 generations [42]. Thus, we assume that intra-
cellular pumps such as Pmr1p and Pmc1p undergo an age-dependent decline. While
the plasma membrane also ages, its aging rate is different from that of intracellular
membranes. On the extracellular leaflet of the plasma membrane, sterol molecules
and sphingolipids form lipid rafts, a patch of ordered microdomain [2]. However,
such lipid raft in intracellular membranes is much smaller and more transient than that
of the plasma membrane [20]. Sterol molecules in intracellular membranes are easier
than those in plasma membrane to be attacked by intracellular ROS. Consequently,
the aging rate of the plasma membrane channels and pumps is different from that of
intracellular membrane proteins. Therefore, to allow us to focus on the intracellular
events, we assume that the plasma membrane pump X does not age in our model.
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5.3 Calcium Movement across the Vacuolar Membrane

The vacuole, which is the major Ca2+ storage compartment in yeast cells, plays an
important role in maintaining a normal cytosolic Ca2+ level of 50 - 200 nM [1, 16, 23].
It was estimated that over 95% of the total cellular Ca2+ is sequestered within the
vacuole [1, 23, 43]. The total vacuolar Ca2+ concentration is about 2 mM with about
30 μM free Ca2+ due to Ca2+ binding to vacuolar polyphosphates [16].

In response to an increase of cytosolic Ca2+ concentration, calcineurin-dependent
Ca2+ ATPase Pmc1p transports Ca2+ from the cytosol into the vacuole [11]. Experi-
mental results [40] showed that the transport kinetics of Pmclp follows the Michaelis-
Menten equation for log phase (young) cells. Therefore the transport velocity of
Pmc1p can be modeled by

rpmc =
u2S(t)Rpmc[Ca2+]i

Kpmc +[Ca2+]i
, (5.2)

where [Ca2+]i denotes the cytosolic calcium concentration, Rpmc is the maximum
velocity, Kpmc is the Michaelis-Menten’s constant, and u2 is a feedback controller to
be designed. Hereafter, the aging function S(t) is included to describe the function
decline of a pump or channel.

Another known protein mediating vacuolar Ca2+ sequestration is the Ca2+/H+

exchanger Vcx1p/Hum1p [12, 23, 27, 31, 43]. Experimental results [27] showed that
the transport kinetics of Vcx1p also follows the Michaelis-Menten equation:

rvcx =
u3S(t)Rvcx[Ca2+]i

Kvcx +[Ca2+]i
, (5.3)

where Rvcx is the maximum velocity, Kvcx is the Michaelis-Menten’s constant, u3 is
a feedback controller to be designed.

The sequestered Ca2+ in the vacuole is compounded with vacuolar polyphos-
phates in a relatively stable form [23]:

Ca2+ +polyphosphate−→
k f

complex.

Since the polyphosphate pool is huge in the vacuole and always available for calcium
to bind, we can assume that the polyphosphate concentration is a constant. Then the
compounding reaction rate is given by

rcom = k f [polyphosphate][Ca2+]v = k6[Ca2+]v, (5.4)

where k6 = k f [polyphosphate] is a positive constant. Thus this compounding reaction
rate is proportional to the concentration [Ca2+]v of free calcium in the vacuole.
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Until recently, this large store of vacuolar Ca2+ was thought to be relatively inert
due to its association with polyphosphates [1]. However, a study found that vacuolar
Ca2+ can be released at a very slow rate of 0.016 nmol/min [16] in a regulated manner
through the action of Yvc1p [29]. We assume that the transport velocity of Yvc1p can
be modeled by

ryvc = u4S(t)Ryvc
(
[Ca2+]v− [Ca2+]i

)
, (5.5)

where Ryvc is a positive constant and u4 is a feedback controller to be designed. The
difference

(
[Ca2+]v− [Ca2+]i

)
denotes the concentration gradient that powers the

passive channel.
Experimental observations suggest that the calcium release from vacuoles may be

induced by the inositol (1,4,5)-trisphosphate (IP3). In sea urchin embryonic cells, the
increase of cytosolic calcium during the mitotic phase is the IP3-stimulated calcium
release from calcium storages such as ER [6]. Vacuoles also release calcium upon
IP3 treatment [4]. Because there are no identified IP3 receptors in yeast, we assume
that there is a putative factor X on the vacuolar membrane that is responsible for IP3-
induced calcium release. Similar to Yvc1p, the release kinetics of Ca2+ through the
unidentified channel X is assumed to be modeled by

rx = u5S(t)Rx
(
[Ca2+]v− [Ca2+]i

)
, (5.6)

where Rx is positive constant and u5 is a feedback controller to be designed.
Therefore the Ca2+ dynamics in the vacuole can be modeled by

d[Ca2+]v
dt

= rpmc + rvcx− rcom− ryvc− rx + k7rgol

=
u2S(t)Rpmc[Ca2+]i

Kpmc +[Ca2+]i
+

u3S(t)Rvcx[Ca2+]i
Kvcx +[Ca2+]i

−k6[Ca2+]v−u4S(t)Ryvc
(
[Ca2+]v− [Ca2+]i

)
−u5S(t)Rx

(
[Ca2+]v− [Ca2+]i

)
+k7k9u6[Ca2+]g, (5.7)

where [Ca2+]g is the Golgi calcium concentration and u6 is a feedback controller
to be designed. The term rgol defined in (5.9) below describes how Ca2+ ions are
transported out of the Golgi by vesicles in response to a high Ca2+ concentration in
the Golgi.

5.4 Calcium Movement across the Golgi Membrane

The Golgi apparatus has also been shown to play an important role in maintaining
normal cytosolic Ca2+ levels in yeast cells through the action of the Golgi-localized
Ca2+-ATPase Pmr1p [1, 24, 30, 37]. Like Pmc1p, in response to an increase of
cytosolic Ca2+ concentration, Pmr1p transports Ca2+ from cytosol into Golgi and
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experimental results [45] showed that the transport kinetics of Pmrlp also follows the
Michaelis-Menten equation:

rpmr =
u2S(t)Rpmr[Ca2+]i

Kpmr +[Ca2+]i
, (5.8)

where Rpmr is the maximum velocity, Kpmr is the Michaelis-Menten’s constant, and
u2 is a feedback controller to be designed.

Ca2+ within the Golgi lumen controls essential processes, such as protein pro-
cessing and sorting. In resting living HeLa cells, the concentration of Ca2+ in Golgi
is about 0.3 mM [30]. Since it is not clear how the calcium homeostasis in Golgi is
maintained, we assume that the velocity of transport of Ca2+ out of Golgi by vesicles
is proportional to the concentration [Ca2+]g of calcium in Golgi:

rgol = k9u6[Ca2+]g, (5.9)

where u6 is a feedback controller to be designed and k9 is a positive constant.
In summary, the Ca2+ dynamics in the Golgi apparatus can be modeled by

d[Ca2+]g
dt

= rpmr− rgol + rer

=
u2S(t)Rpmr[Ca2+]i

Kpmr +[Ca2+]i
− k9u6[Ca2+]g + k8u7[Ca2+]er, (5.10)

where the term rer defined in (5.14) below describes Ca2+ transport from ER.

5.5 Calcium Movement across the Endoplasmic Reticulum
Membrane

The yeast endoplasmic reticulum (ER) appears to play a lesser role in cellular Ca2+

storage because the free Ca2+ concentration of this compartment has been reported
to be only about 10 μM [1, 39]. It was recently shown that the COD1/SPF1 gene
product is an ER-localized Ca2+-ATPase that sequesters cytosolic Ca2+ into the ER
and follows the Michaelis-Menten equation [8]:

rcod =
S(t)Rcod [Ca2+]i
Kcod +[Ca2+]i

, (5.11)

where Rcod is the maximum velocity and Kcod is the Michaelis-Menten’s constant.
A number of studies have also suggested that Pmr1p [39] and the vacuolar Ca2+-

ATPase Pmc1p [5] also play a role in maintaining ER Ca2+ stores under certain con-
ditions. Like Pmr1p in Golgi, the transport velocity of Pmr1p is modeled by

rerpmr =
u2S(t)Rerpmr[Ca2+]i

Kerpmr +[Ca2+]i
, (5.12)
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and the transport velocity of Pmc1p is modeled by

rerpmc =
u2S(t)Rerpmc[Ca2+]i

Kerpmc +[Ca2+]i
. (5.13)

The ER is the site of essential cellular processes that require stringent regulation
of lumenal ion levels. The ER also serves as a source of releasable Ca2+ that can be
mobilized for various cellular demands [8]. Consequently, the ion levels of the ER are
under continuous, dynamic control in order to serve these essential functions. Since
the control mechanism of maintaining the calcium homeostasis in ER is not clear, we
assume that the velocity of transport of Ca2+ out of ER by vesicles is proportional to
the concentration [Ca2+]er of Ca2+ in ER:

rer = k8u7[Ca2+]er, (5.14)

where u7 is a feedback controller to be designed and k8 is a positive constant.
In summary, the Ca2+ dynamics in ER can be modeled by

d[Ca2+]er

dt
= rerpmr + rerpmc + rcod− rer + k10rgol

=
u2S(t)Rerpmr[Ca2+]i

Kerpmr +[Ca2+]i

+
u2S(t)Rerpmc[Ca2+]i

Kerpmc +[Ca2+]i
+

S(t)Rcod [Ca2+]i
Kcod +[Ca2+]i

−k8u7[Ca2+]er + k9k10u6[Ca2+]g. (5.15)

Since part of calcium transported from Golgi by vesicles flows out of the cell, we
have k7 + k10 < 1.

5.6 A Calcium Control System

From Fig. 5.1, we derive the equation of calcium in the cytosol as follows

d[Ca2+]i
dt

= rex− rpmc− rvcx + ryvc− rpmr− rcod− rerpmr− rerpmc + rx

=
u1Rex[Ca2+]ex

Kex +[Ca2+]ex)
− u2S(t)Rpmc[Ca2+]i

Kpmc +[Ca2+]i
− u3S(t)Rvcx[Ca2+]i

Kvcx +[Ca2+]i

+u4S(t)Ryvc
(
[Ca2+]v− [Ca2+]i

)− u2S(t)Rpmr[Ca2+]i
Kpmr +[Ca2+]i

−S(t)Rcod [Ca2+]i
Kcod +[Ca2+]i

− u2S(t)Rerpmr[Ca2+]i
Kerpmr +[Ca2+]i

− u2S(t)Rerpmc[Ca2+]i
Kerpmc +[Ca2+]i

+u5S(t)Rx
(
[Ca2+]v− [Ca2+]c

)
. (5.16)

Then the equations (5.7), (5.10), (5.15), and (5.16) constitute an intracellular calcium
control system in yeast cells.
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5.7 Design of Feedback Controllers

Following molecular mechanisms, we design the feedback controllers proposed in
the above sections.

5.7.1 Control of Calcium Uptake from Environment

Calmodulin contains four copies of a Ca2+-binding EF-hand, each of which binds
one Ca2+ ion. In yeast, the most C-terminal EF-hand in yeast calmodulin (site IV)
is defective for Ca2+ binding [13, 22, 38]. The other three EF-hands bind Ca2+ with
high affinity. Calmodulin senses the rise of the cytosolic calcium concentration and
transmits the calcium signal to calcineurin and Crz1p, which up-regulates the expres-
sion of calcium-utilizing and dissipating pumps (Fig. 5.1). The biochemical reactions
in this Ca2+ sensing and signal transduction process can be described as follows [9]:

3Ca2+ + calmodulin �
k1

k−1

CaM,

CaM + calcineurin �
k2

k−2

CaN,

where CaM denotes the Ca2+-bound calmodulin, CaN denotes the CaM-bound cal-
cineurin, and k’s are reaction rate constants. Using the law of mass balance, the kinet-
ics of these reactions can be modeled by

d[calm]
dt

= −k1[Ca2+]3i [calm]+ k−1[CaM], (5.17)

d[CaM]
dt

= k1[Ca2+]3i [calm]− k−1[CaM]− k2[CaM][calc]+ k−2[CaN], (5.18)

d[calc]
dt

= −k2[CaM][calc]+ k−2[CaN], (5.19)

d[CaN]
dt

= k2[CaM][calc]− k−2[CaN]. (5.20)

Adding the equations (5.17), (5.18), and (5.20) together gives

d
dt

([calm]+ [CaM]+ [CaN]) = 0,

which implies
[calm](t)+ [CaM](t)+ [CaN](t) = [CaM0], (5.21)

where [CaM0] denotes the total concentration of Ca2+-free and Ca2+-bound calmod-
ulin. Adding the equations (5.19) and (5.20) together gives

d
dt

([calc]+ [CaN]) = 0,
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which implies
[calc](t)+ [CaN](t) = [CaN0], (5.22)

where [CaN0] denotes the total concentration of CaM-free and CaM-bound cal-
cineurin. It then follows from (5.17)-(5.22) that

d[CaM]
dt

= k1S(t)[Ca2+]3i ([CaM0]− [CaM]− [CaN])− k−1S(t)[CaM]

−k2S(t)[CaM]([CaN0]− [CaN])+ k−2S(t)[CaN], (5.23)

d[CaN]
dt

= k2S(t)[CaM]([CaN0]− [CaN])− k−2S(t)[CaN]. (5.24)

In the above equations, the aging function S(t) is included to describe the decline of
functions of calmodulin and calcineurin caused by reactive oxygen species (ROS).

It has been reported that calmodulin has the ability of directly inhibiting Ca2+

influx pathways [46]. Hence Cui et al [10] proposed the following feedback controller

u1 =
1

1+ Iex[CaM]
, (5.25)

where Iex > 0 is an inhibition constant.

5.7.2 Control of Ca2+/H+ Exchanger Vcx1p

The mechanism of regulating Vcx1p has not yet been completely understood. The
only knowledge is that calcineurin inhibits Vcx1 function possibly by posttransla-
tional mechanisms [11, 12]. Thus the feedback controller u3 for Vcx1p was designed
by Cui et al [9] as follows

u3 =
1

1+ k5[CaN]
, (5.26)

where k5 is a positive constant.

5.7.3 Control of Calcium Pumps Pmc1p and Pmr1p

Since the translocation of Crz1p is similar to that of NFAT (nuclear factor of activated
T-cells) in mammalian cells, we introduce the model of NFAT developed by Salazar
et al [36].

Nuclear factors of activated T-cells (NFAT) are highly phosphorylated proteins.
They are transcription factors and are regulated by the calcium-dependent phos-
phatase calcineurin. NFAT1, one of NFAT family members, is phosphorylated on
fourteen conserved phosphoserine residues in its regulatory domain, thirteen of which
are dephosphorylated upon stimulation. Dephosphorylation of all thirteen residues is
required to mask a nuclear export signal, cause full exposure of a nuclear localization
signal, and promote transcriptional activity [28].

NFAT1 can exist in two global conformations. An active conformational NFAT1,
in which the nuclear localization signal is exposed and the nuclear export signal is
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Fig. 5.3. Conformational switch model for activation of NFAT1. Cytoplasmic NFAT1 in the
active conformation and inactive conformation with n phosphorylated residues are denoted
by an and in, respectively, n = 0,1,2, · · · ,N. The corresponding nuclear NFAT1 in the active
conformation and inactive conformation with n phosphorylated residues are denoted by An and
In, respectively. Cytoplasmic NFAT1 in the active conformation is imported into the nucleus
with a rate constant r f . Conversely, nuclear NFAT1 in the inactive conformation are exported
with a rate constant rb. Conformational transitions, phosphorylation, and dephosphorylation
can take place both in the cytoplasm and in the nucleus

masked, is imported into the nucleus, as demonstrated in Fig. 5.3. An inactive confor-
mational NFAT1, in which the nuclear localization signal is masked and the nuclear
export signal is exposed, is exported from the nucleus. The switching between the
two conformations is regulated by the phosphorylation state in such a way that the
probability of the active conformation is high in the dephosphorylated state and low
in the phosphorylated state [36].

Calcineurin cleaves the phosphate group in the NFAT1 regulatory domain in a
sequential order, proceeding from the serine-rich region 1 (SRR-1) to the more C-
terminal SP motifs 2 and 3. The main kinases, glycogen synthase kinase-3 (GSK-3)
and casein kinase I (CK-I), sequentially phosphorylate NFAT1 from SP motifs to the
SRR-1. Thus we assume that dephosphorylation and phosphorylation are sequential
and proceed in the reverse order. For example, the changes of phosphorylation state
can be written as

0000PPPPPPPPP −−−−−−−→←−−−−−−−
calcineurin

kinases
00000PPPPPPPP

where 0s and Ps denote unphosphorylated and phosphorylated sites, respectively.
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In this sequential model, an and in (An and In) will be used to denote the active
and inactive conformations in cytosol (nucleus), respectively, with n phosphorylated
sites. Then the percentage of the active conformation in cytosol is given by

φa = ∑N
n=0 an

∑N
n=0(an + in)

(5.27)

and the percentage of the active conformation in nucleus is given by

φA = ∑N
n=0 An

∑N
n=0(An + In)

. (5.28)

We assume that the total number of NFAT1 is equal to 1. Let Z denote the nuclear
fraction of NFAT1. Then the inactive conformational NFAT1 in nucleus is (1−φA)Z,
the cytoplasmic fraction is 1−Z, and the active conformational NFAT1 in cytosol
is φa(1− Z). Since the active conformational NFAT1 in cytosol is imported into
the nucleus and the inactive conformational NFAT1 in nucleus is exported from the
nucleus, Z is governed by the differential equation [36]

dZ
dt

= r f φa(1−Z)− rb(1−φA)Z, (5.29)

where r f and rb are the rate constants.
We now use the simple equilibrium analysis to express φa and φA in terms of rate

constants. To this end, we assume the first-order kinetics

an+1�
c

k
an, An+1�

C

K
An, in+1�

ci

ki

in, In+1�
Ci

Ki

In

for dephosphorylation and phosphorylation, respectively, as shown in Fig. 5.3. The
rate constant c,C,ci, or Ci is the activity of calcineurin with respect to cleaving the
phosphate group n + 1. The rate constant k,K,ki, or Ki is the kinase activity with
respect to adding the same phosphate group. When the dephosphorylation and phos-
phorylation rates are equal, we obtain that

an+1

an
=

k
c
,

An+1

An
=

K
C

,
in+1

in
=

ki

ci
,

In+1

In
=

Ki

Ci
. (5.30)

At equilibrium of the conformational transition

an�
l+n

l−n
in, An�

l+n

l−n
In,

we derive that

Ln =
l+n
l−n

=
in
an

=
In

An
. (5.31)

By (5.30) and (5.31), we obtain

an =
(

k
c

)n

a0, in =
(

ki

ci

)n

i0 =
(

ki

ci

)n

a0L0 =
(

kλ
c

)n

a0L0,
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where

λ =
kic
kci

.

It then follows from (5.27) that

φa =
∑N

n=0

(
k
c

)n
a0

∑N
n=0

((
k
c

)n
a0 +

(
kλ
c

)n
a0L0

)
=

∑N
n=0

(
k
c

)n

∑N
n=0

((
k
c

)n
+
(

kλ
c

)n
L0

) . (5.32)

Assuming that kic
kci

= KiC
KCi

, in the same way, we obtain from (5.28) that

φA =
∑N

n=0

(
K
C

)n

∑N
n=0

((
K
C

)n +
(

Kλ
C

)n
L0

) . (5.33)

We now use the NFAT kinetics model (5.29) to model the nuclear import and
export of Crz1p. For simplicity, we assume that k/c = K/C in (5.29) and that the
kinase level k is a constant. Furthermore we may express c/k as the concentration
[CaN] of activated calcineurin in a relative unit. Let h denote the total nuclear fraction
of Crz1p. Then it follows from (5.29) that

dh
dt

= k3φ
(

1
[CaN]

)
(1−h)− k4

[
1−φ

(
1

[CaN]

)]
h, (5.34)

where k3 denotes the rate constant of import of Crz1p into the nucleus and k4 denotes
the rate constant of export of Crz1p from the nucleus. The function φ is given by

φ(x) =
1

1+L0
((λx)N+1−1)(x−1)
(λx−1)(xN+1−1)

. (5.35)

With notations for NFAT, we can derive that

h(t) =
N

∑
n=0

(An + In) = A0

(
xN+1−1

x−1
+L0

(λx)N+1−1
λx−1

)
(5.36)

and then

A0 =
h(t)

xN+1−1
x−1 +L0

(λx)N+1−1
λx−1

= h(t)θ (x) ,

where x = K/C and

θ(x) =
1

xN+1−1
x−1 +L0

(λx)N+1−1
λx−1

. (5.37)
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Since the synthesis of Pmc1p and Pmr1p depends on the transcriptionally active Crzlp
fraction in the nucleus and the fully dephosphorylated nuclear fraction of Crz1p is
required to promote the transcriptional activity, the feedback controller u2 for Pmc1p
and Pmr1p can be modeled by

u2 = h(t)θ
(

1
[CaN]

)
. (5.38)

5.7.4 Control of Channel Yvc1p

Zhou et al [47] found that Ca2+ presented from the cytoplasmic side activates Yvc1p.
There is very little Yvc1p activity at or < 10−6 M cytoplasmic Ca2+, but the activi-
ties are clearly present in 10−4 M [47]. Hence, we propose a feedback controller for
Yvc1p as follows

u4 =
[Ca2+]i

Kyvc +[Ca2+]i
, (5.39)

where Kyvc is a positive constant.

5.7.5 Control of X-induced Calcium Channel on the Vacuolar
Membrane

We have assumed that the unidentified channel X on the vacuolar membrane may
work in such a way as IP3 receptors work. Thus, the unidentified protein X may be
similar to IP3. Since the synthesis of IP3 depends on cell cycle, we assume that the
synthesis of the protein X also depends on cell cycle. Therefore, we introduce a simple
cell cycle model developed by Norel et al [26].

It has been suggested that the basic mechanism of activation and inactivation of
the M (mitosis) phase promoting factor (MPF) underlies the cell cycle progression in
all eukaryotic organisms [26]. MPF is activated by cyclin and inactivated by MPF-
inactivase. During the interphase, cyclin accumulates until the rate of MPF activation
by cyclin exceeds the rate of inactivation of MPF by MPF-inactivase. As a result,
active MPF accumulates, which leads to a series of modifications of other mitotic
substrates.

For formally describing MPF activation, we assume that (i) in the early embryos,
cyclin synthesis suffices for the activation of MPF and for the induction of mitosis
with each cyclin molecule activating more than one pre-MPF molecule, and that (ii)
MPF activity is autocatalytic [26]. Let C∗ and M∗ denote the concentrations of cyclin
and active MPF at any time. Then the equations that describe the dynamics of MPF
and cyclin are [26]

dM∗

dt∗
= e∗C∗+ f ∗C∗(M∗)2− g∗M∗

M∗+K∗m
, (5.40)

dC∗

dt∗
= i∗ − j∗M∗. (5.41)
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In equation (5.40), the first term describes the activation of MPF by cyclin, the sec-
ond term implies that MPF activity is autocatalytic, and the third term describes the
inactivation of MPF by a putative inactivase, which follows the Michaelis-Menten
equation. In equation (5.41), the first term is the constant rate of accumulation of
cyclin and the second term assumes that the degradation rate of cyclin is proportional
to the concentration of active MPF.

It is convenient to introduce dimensionless variables. Thus we define

[M] =
M∗

K∗m
, [C] =

C∗

K∗m
, t =

j∗t∗

p
,

where p is a dimensionless scalar. Substituting these dimensionless variables into
(5.40)-(5.41), we obtain

d[C]
dt

= p(i− [M]), (5.42)

d[M]
dt

= p

(
k11[C]+ k12[C][M]2− k13[M]

[M]+1

)
, (5.43)

where

k11 =
e∗

j∗
, k12 =

f ∗(K∗m)2

j∗
, k13 =

g∗

j∗K∗m
, i =

i∗

j∗K∗m
.

The models for IP3 synthesis have been developed by many researcher, for exam-
ples, Baran [3] and Keizer et al [18] to mention a few. Since the unidentified protein
X may be similar to IP3, we adopt the IP3 model from [3] and [18] with a modification
as the model of the protein X as follows

d[X ]
dt

=
k14[M]

k15 +[M]
[Ca2+]i

k16 +[Ca2+]i
− k17[X ], (5.44)

where k’s are positive constants. In this model, we assume that the protein X synthesis
is regulated by both MPF and the cytosolic calcium. Experiments by Mouillac et al
[25] indicated that intracellular Ca2+ modulates the production of IP3. This suggests
the possibility of a positive feedback mechanism of Ca2+ on the production of IP3.
The stimulation of IP3 production by Ca2+ may even account for some observations
of Ca2+-induced Ca2+ release (CICR) [18].

We propose that the induction of the channel by the protein X may be saturated
and is given by

u5 =
[X ]

Kx +[X ]
, (5.45)

where Kx is a positive constant.
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Fig. 5.4. Left: A feedback control of calcium homeostasis in Golgi. When the Golgi calcium
level is above the resting level of 300 μM, vesicles in Golgi are activated and transport calcium
out of Golgi. Right: A feedback control of calcium homeostasis in ER. When the ER calcium
level is above the resting level of 10 μM, vesicles in ER are activated and transport calcium
out of ER. Reproduced with permission from [41]

5.7.6 Control of Calcium Homeostasis in Golgi and ER

Since it is not clear how the calcium homeostasis in Golgi and ER is maintained, we
propose mathematically the controllers u6 and u7 as follows

u6 =
1

1+a1 exp
[
a2([Ca2+]g− [Ca2+]g)

] , (5.46)

u7 =
1

1+a3 exp
[
a4([Ca2+]er− [Ca2+]er)

] , (5.47)

where [Ca2+]g is the resting calcium level (300 μM) in Golgi, [Ca2+]er is the resting
Ca2+ level (10 μM) in the ER, and k8,k9,a1,a2,a3,a4 are positive constants. These
two controllers regulate the transport of Ca2+ out of Golgi and ER by vesicles, respec-
tively. They are plotted in Fig. 5.4, which shows that when the Golgi (ER) calcium
level is above the resting level of 300 μM (10 μM), vesicles in Golgi (ER) are acti-
vated and transport Ca2+ out of Golgi (ER). Here the logistic function is used because
a population of vesicles achieve the transport.

5.8 Simulation of Calcium Shocks

The model consisting of (5.7), (5.10), (5.15), (5.16), (5.23), (5.24), (5.34), (5.42),
(5.43), and (5.44) is solved by using the function ode15s of MATLAB, the Math-
Works, Inc. The values of parameters in the model are listed in Table 5.1. Initial
conditions for numerical codes are listed in Table 5.2. These initial conditions are
not the initial conditions shown in figures below because, in our numerical compu-
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Table 5.1. Values of parameters of the model

Parameter Value Description

Rex 200 (μM/min) Maximum velocity of pump X on PM
Rpmc 6000 (μM/min) Maximum velocity of Pmc1p on vacuole
Rerpmc 6000 (μM/min) Maximum velocity of Pmc1p on ER
Rvcx 10000 (μM/min) Maximum velocity of Vcx1p
Rpmr 2000 (μM/min) Maximum velocity of Pmr1p on Golgi
Rerpmr 200 (μM/min) Maximum velocity of Pmr1p on ER
Rcod 10 (μM/min) Maximum velocity of Cod1p
Ryvc 1.5 (/min) Maximum rate of the channel Yvc1p
Rx 1.5 (/min) Maximum rate of the channel X on vacuole

stimulated by protein X
Kex 500 (μM) Michaelis-Menten constant of pump X on PM [21]
Kpmc 4.3 (μM) Michaelis-Menten constant of Pmc1p [40]
Kerpmc 4.3 (μM) Michaelis-Menten constant of Pmc1p
Kvcx 100 (μM) Michaelis-Menten constant of Vcx1p [27]
Kyvc 100 (μM) Constant of giving half maximum rate of Yvc1p
Kpmr 0.38 (μM) Michaelis-Menten constant of Pmr1p on Golgi [37]
Kx 0.4 (μM) Constant of giving half maximum rate of the channel

on vacuole stimulated by protein X [4]
Kerpmr 0.38 (μM) Michaelis-Menton constant of Pmr1p on ER [37]
Kcod 15 (μM) Michaelis-Menton constant of Cod1p [8]
[Ca2+]i 0.06 (μM) Steady state of Ca2+ in the cytosol [1]
[Ca2+]v 30 (μM) Steady state of Ca2+ in the vacuole [16]
[Ca2+]g 300 (μM) Steady state of Ca2+ in Golgi [30]
[Ca2+]er 10 (μM) Steady state of Ca2+ in ER [1, 39]
[CaM0] 25 (μM) The total concentration of calmodulin [9]
[CaN0] 25 (μM) The total concentration of calcineurin [9]
N 13 The number of relevant regulatory phosphorylation sites [36]
L0 10−N/2 The basic equilibrium constant [36]
λ 5 The increment factor [36]
a1 50 Constant of determining the transport rate of calcium

out of Golgi at the resting level
a2 0.05 (1/μM) Vesicle sensitivity to the calcium rise in Golgi
a3 50 Constant of determining the transport rate of calcium

out of ER at the resting level
a4 1 (1/μM) Vesicle sensitivity to the calcium rise in ER
p 3/100 Cell cycle scaling
i 1.2 Cyclin input [26]
k1 30 (1/((μM)3 min)) The rate of Ca2+ binding to calmodulin
k2 5 (1/(μM min)) The rate of calmodulin binding to calcineurin [5]
k3 0.4 (1/min) The import rate of Crz1p into nucleus [36]
k4 28 (1/min) The export rate of Crz1p from nucleus
k5 0.1 (1/μM) Calcineurin inhibition efficiency on Vcx1p
k6 0.5 (1/min) The rate of Ca2+ binding to polyphosphate
k7 0.3 The percentage of Ca2+ from Golgi into the vacuole
k8 5 (1/min) The maximum rate of Ca2+ export from ER
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Table 5.1 continued

Parameter Value Description

k9 7 (1/min) The maximum rate of Ca2+ export from Golgi
k10 0.1 The percentage of Ca2+ from Golgi into ER
k11 3.5 The rate of MPF production from cyclin [26]
k12 1 The rate of MPF production from cyclin

under the activation of MPF [26]
k13 10 The degradation rate of MPF [26]
k14 50000 (μM/min) The maximum rate of production of the protein X
k15 100 The constant of giving half maximum impact of MPF

on the production of the protein X
k16 100 The constant of giving half maximum impact of Ca2+

on the production of the protein X
k17 0.3 (1/min) The degradation rate of the protein X
k−1 10 (1/min) The rate of Ca2+ dissociation from calmodulin [9]
k−2 5 (1/min) The rate of calmodulin dissociation from calcineurin [9]
Iex 0.15 (1/μM) Calmodulin inhibition efficiency on the PM pump X

Table 5.2. Initial conditions for the model

Parameter Value Description

[Ca2+]i(0) 0.089 (μM) Initial cytosolic calcium
[Ca2+]v(0) 0.0 (μM) Initial vacuolar calcium
[Ca2+]g(0) 0.0 (μM) Initial Golgi calcium
[Ca2+]er(0) 0.0 (μM) Initial ER calcium
[CaM](0) 0.0 (μM) Initial Ca2+-bound calmodulin
[CaN](0) 10−18 (μM) Initial calmodulin-bound calcineurin
h(0) 0.0 Initial nuclear fraction of Crz1p
[C](0) 0.8 Initial cyclin [26]
[M](0) 0.4 Initial maturation promoting factor [26]
[X ](0) 0.0 (μM) Initial protein X

tations, we ran our MATLAB codes for some time so that the solution of the model
reaches its steady state and then set that moment to 0.

The model can qualitatively reproduce calcium shocks observed in experiments.
Fig. 5.5 shows that the calcium shock simulated by the model agrees qualitatively
with the experimental data of Förster et al [17], although they do not match per-
fectly. It also shows that the Ca2+ steady state in the cytosol is established within
about 1 minute. This agrees with experimental observations of Dunn et al [16]. In
simulating this calcium shock, we ran our MATLAB programs with the environmen-
tal calcium [Ca2+]ex of 300 μM for 40 minutes so that the solution of the model
reaches its steady state. We then set that moment to 0. 12 seconds later, [Ca2+]ex was
suddenly changed to 50000 μM in accordance with the experiments. Therefore, this
simulation is independent of initial data.
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Fig. 5.5. Simulation of calcium shock.
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provided by Förster and Kane. Repro-
duced with permission from [41]

5.9 Simulation of Calcium Accumulations

Kellermayer et al [19] observed experimentally that the total cellular Ca2+ level
in the pmc1Δ strain was roughly 2-fold lower than the WT strain. By contrast, the
pmr1Δ /pmc1Δ strain contained 3.8-fold more Ca2+ than the WT strain, and 2.2-fold
more total cellular Ca2+ than the pmr1Δ strain. Using our model, we reproduce this
observation qualitatively in Fig. 5.6, which shows that our simulation is qualitatively
close to the observation, Fig. 3B of [19]. In this simulation, the environmental cal-
cium is set to 300 μM and calcium accumulates during a 30 minute time period,
following the experiment of Kellermayer et al [19]. The inhibition constant Iex is set
to 0. We found that the simulated Ca2+ accumulation of pmr1Δ is very close to that
of pmr1Δ /pmc1Δ if Iex = 0.15. This may suggest that the inhibition of the pump X
by calmodulin is very week. In simulating each mutant, its maximum velocity is set
to 0.
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Fig. 5.6. Simulation of calcium accumulations. Left: Total cell Ca2+ accumulations during
a 30 minute time period simulated by the model with the extracellular calcium [Ca2+]ex of
300 μM, following the experiment of Kellermayer et al [19]. Right: Modified from [19]. Data
were estimated by eye [19]. Reproduced with permission from [41]
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5.10 Prediction of Cell Cycle-dependent Oscillations of Calcium

Cell cycle-dependent calcium pulse was observed in Xenopus embryos [15]. This
pulse is likely caused by the oscillation of cyclins and MPF during the cell cycle.
Thus, we hypothesize that an unidentified protein X oscillates with MPF. This X
releases calcium ions from the vacuole and could cause calcium oscillations in the
cytosol, the Golgi lumen, and the ER lumen. Using our model, we simulate such
oscillations as shown in Figs. 5.7 and 5.8. If we set the S-phase as the initial time 0,
then Fig. 5.7 shows that as the cell cycle progresses from the S-phase to the G2-
phase, cyclin B and MPF increase, causing Ca2+ in the cytosol, ER, and Golgi to
increase and Ca2+ in the vacuole to decrease. The Ca2+ levels in the cytosol, ER,
and Golgi (in the vacuole) reach their maxima (minimum) in the M-phase and then
decrease (increase) to the previous S-phase level during the G1-phase. This applies
to the calmodulin, the calcineurin, the nuclear fraction h of Crz1p, and the protein X,
as shown in Fig. 5.8. These figures indicate that both oscillations and levels of the
cytosolic calcium in pmr1Δ are higher than the oscillations and levels in wild type
and pmc1Δ cells. This could suggest that Pmr1p plays a major role in controlling the
cytosolic calcium dynamics. The figures also show that calmodulin, calcineurin, and
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Fig. 5.7. Simulated cell-cycle-induced oscillations. Reproduced with permission from [41]
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Fig. 5.8. Simulated cell-cycle-induced oscillations. Reproduced with permission from [41]

nuclear Crz1p (h) in pmr1Δ are more active than wild type or pmc1Δ . This agrees
with the observation that the loss of a gene may result in the over-expression of other
genes [19, 21] to compensate for the loss. The simulation has not yet been validated
since no data about the calcium concentration in aged cells are available.

5.11 Prediction of an Upper-limit of Cytosolic Calcium Tolerance
for Cell Survival

Since a narrow range of cytosolic free calcium concentration (0.05-0.2 μM) is cru-
cial for cell viability, the time period when the calcium concentration was main-
tained in the normal range may be used to predict the lifespan. We hypothesize that
cells will die when calcium concentration exceeds an upper-limit. The determina-
tion of the upper-limit is difficult. We here provide a simple way by using exper-
imental survival curves. The idea is as follows. We generate a cohort (N) of cells
randomly and solve our model to obtain cytosolic calcium dynamics for each cell.
Let [Ca2+]b(i) denote the calcium upper-limit of cells at generation i, n([Ca2+]b(i))
denote the number of cells whose cytosolic calcium [Ca2+]i(i) at generation i is less
than or equal to [Ca2+]b(i), and S(i) be the experimental survival rate at generation
i. Then [Ca2+]b(i) is set to the calcium level such that n([Ca2+]b(i))/N ≤ S(i) and
(1+n([Ca2+]b(i)))/N > S(i).

To generate cells randomly, we analyze the random distribution of the wild type
lifespan data (Fig. 5.2). We use the following logistic function

F(x) =
1

a+bexp(−cx)
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Fig. 5.9. Normal distribution of wild type lifespan. Left: A logistic function (blue solid curve)
F(x) = 1

a+bexp(−cx) fits into the experimental cumulative distribution of the wild type lifespan
with a = 1.059,b = 43.088, and c = 0.166. Right: A normal probability density function (blue

solid curve) n(x) = 1
σ
√

2π
exp

(
− (x−μ)2

2σ2

)
with μ = 29.84 and σ = 12.13 can be fitted well into

the experimental probability density function (red dashed curve). Reproduced with permission
from [41]

to fit the experimental cumulative distribution of the wild type lifespan (Fig. 5.9
(left)). This results in the parameter values a = 1.059,b = 43.088, and c = 0.166.
We then obtain the probability density function

f (x) = F ′(x) =
bcexp(−cx)

(a+bexp(−cx))2 .

We find that the normal probability density function

n(x) =
1

σ
√

2π
exp

(
− (x−μ)2

2σ2

)
(5.48)

with μ = 29.84 and σ = 12.13 can be fitted well into f (x) (Fig. 5.9 (right)). Thus
the wild type lifespan follows the normal distribution. We then use the maximum
likelihood estimator to obtain the mean μ = 28.43 and the standard deviation σ =
11.47.

This analysis gives us a support to assume that maximum velocities of calcium
pumps or channels follow a normal distribution. For instance, Rpmc of Pmc1p can be
randomized according to

random Rpmc = Rpmc +
σ
μ

Rpmcωn = Rpmc +
11.47
28.43

Rpmcωn,

where ωn is a random number generated from the standard normal distribution and
Rpmc is the mean given in Table 5.1.

By randomizing maximum velocities of calcium pumps or channels (Rpmc,Rvcx,
Rpmr,Rerpmr,Rerpmc, Rcod ,Ryvc,Rx), we generated a cohort (N=200) of wild type cells.
The mutants pmc1Δ and pmr1Δ were simulated by setting Rpmc = Rerpmc = 0 or
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Fig. 5.10. Prediction of an upper-limit of cytosolic calcium tolerance for cell survival (Fig. D).
The simulated survival rate is defined by n([Ca2+]b(i))/N, where n([Ca2+]b(i)) is the number
of cells whose cytosolic calcium [Ca2+]i(i) at generation i is less than or equal to [Ca2+]b(i),
the upper-limit calcium [Ca2+]b(i) is set to the calcium level such that n([Ca2+]b(i))/N ≤ S(i)
and (1 + n([Ca2+]b(i)))/N > S(i), S(i) is the experimental survival rate at generation i, and
N is the number of total cells. In the simulation, the environmental calcium is set to 300 μM.
Reproduced with permission from [41]

Rpmr = Rerpmr = 0, respectively. The generation time was assumed to be 120 minutes.
We solve our model to obtain cytosolic calcium dynamics for each cell and then
determined the upper-limit [Ca2+]b(i) for wild type, pmc1Δ , and pmr1Δ , respectively
(Fig. 5.10D). The simulated survival curves n([Ca2+]b(i))/N and the experimental
survival curves are plotted in Fig. 5.10 A, B, C.

The upper limits of Fig. 5.10D show that pmc1Δ and pmr1Δ have a high cytosolic
calcium concentration of 0.35 μM for young (< 10 generations) cells. Examining
Figs. 5.10B and C, this could suggest that almost all young mutants can tolerate such
a high cytosolic calcium concentration. For aged cells (> 35 generations), no pmr1Δ
can tolerate the concentration of 0.1 μM while a very small fraction (1%) of aged
wild type cells (> 50 generations) can tolerate a high concentration of 0.5 μM.

Using the upper limit of cytosolic calcium tolerance for wild type cells, we simu-
late the life span of pmc1Δ and pmr1Δ . Since a narrow range of calcium concentration
(0.05-0.2 μM) is crucial for cell viability, the time period when the calcium concen-
tration was maintained in the normal range may be used to predict the lifespan. We
hypothesize that pmc1Δ and pmr1Δ will die when calcium concentration exceeds
the upper limit of cytosolic calcium tolerance for wild type cells. This way we obtain
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Fig. 5.11. Simulation of survival curves. The simulated survival curves were obtained by using
the upper-limit of cytosolic calcium of wild type. The data are the same as in Fig. 5.10. Repro-
duced with permission from [41]

survival curves as shown in Fig. 5.11. The figure shows that the simulated survival
curves are strikingly different from the experimental data. This difference could sug-
gest that while the increased cytosolic calcium ion concentration is one factor of
aging, some other factors in pmc1Δ and pmr1Δ may cancel the detrimental effect of
high calcium ions. For example, unlike wild type cells, pmr1Δ cells do not increase
intracellular hydrogen peroxide level after polychlorinated biphenyls treatment [35].
Thus, it is very likely that deletion of PMR1 triggers some protective responses that
may extend the life span. Because our model did not consider these beneficial effects,
our model either predicted a very high cytosolic calcium concentration (Fig. 5.10D)
or a very short life span (Fig. 5.11(right)) for pmr1Δ .

Note that the prediction of an upper-limit of cytosolic calcium tolerance for cell
survival depends on the generation of random numbers of a software.

5.12 Model Limitation

Fig. 5.12 shows that the simulated shocks are qualitatively close to the experimental
observation of Fig. 3A of Miseta et al [23], but vcx1Δ decays much faster than the
observation after the shock. This indicates that our modeling about Vcx1p may not
be accurate due to the lack of Vcx1p molecular regulation mechanisms. Since Vcx1p
is an exchanger of Ca2+ and H+, the deletion of VCX1 may alter cytosolic pH and
then may impact the function of calmodulin and calcineurin. Therefore the dynamics
of H+ may be needed to be included to refine the model.

In this simulation, we ran our MATLAB program with the environmental calcium
of 300 μM for 40 minutes so that the solution reaches its steady state. We then set
that moment to 0. 12 seconds later, the environmental calcium [Ca2+]ex is suddenly
changed to 50000 μM, following the experiment of Miseta et al [23]. In simulating
each mutant, its maximum velocity is set to 0. Because the loss of a gene may result
in the over-expression of other genes [19, 21], the maximum velocity Rpmr of Pmr1p
in pmc1Δ is increased by 2-fold.
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Fig. 5.12. Simulation of calcium shock.
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is suddenly changed to 50000 μM, follow-
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Exercises

5.1. The following are cell survival curve data [41]:

S 1 1 1 1 1 0.98667 0.98667 0.97333
0.96 0.96 0.96 0.94667 0.94667 0.93333 0.92 0.86667
0.84 0.8 0.8 0.74667 0.73333 0.72 0.68 0.66667
0.65333 0.62667 0.6 0.57333 0.56 0.52 0.49333 0.46667
0.44 0.38667 0.36 0.29333 0.26667 0.24 0.21333 0.21333
0.18667 0.18667 0.16 0.13333 0.093333 0.093333 0.066667 0.053333
0.04 0.026667 0.026667 0.013333 0.013333

t(min) 0 120 240 360 480 600 720 840
960 1080 1200 1320 1440 1560 1680 1800
1920 2040 2160 2280 2400 2520 2640 2760
2880 3000 3120 3240 3360 3480 3600 3720
3840 3960 4080 4200 4320 4440 4560 4680
4800 4920 5040 5160 5280 5400 5520 5640
5760 5880 6000 6120 6240

1. Construct a function to fit the cell survival curve data.
2. Define the cumulative distribution function by

cd f (t) = the probability that cell lifespan is less than or equal to t.

Then cd f (t) = 1−S(t). Fit the function

F(t) =
1

a+bexp(−ct)

into the experimental cumulative distribution cd f (t).
3. The probability density function can be obtained by calculating the derivative of

F as follows:

f (t) = F ′(t) =
bcexp(−ct)

(a+bexp(−ct))2 .
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Fit the normal probability density function

n(t) =
1

σ
√

2π
exp

(
− (t−μ)2

2σ2

)

into f (t).

5.2. Prove (5.32), (5.33), and (5.36).

5.3. Derive the dimensionless equations (5.42) and (5.43) from the equations (5.40)
and (5.41).

5.4. Construct different calcium transport velocities for Yvc1p and the channel X on
the vacuolar membrane and different feedback controllers for u4,u5,u6,u7 and then
simulate the calcium shock as in Fig. 5.5.

5.5. Following the statistical analysis in Section 5.11, write a program with the model
consisting of (5.7), (5.10), (5.15), (5.16), (5.23), (5.24), (5.34), (5.42), (5.43), and
(5.44) to reproduce Fig. 5.10D.

5.6. Assume that cells can sense the cytosolic calcium concentration. Then an output
equation can be set up:

y = [Ca2+]i.

1. Linearize the nonlinear control system (5.7), (5.10), (5.15), and (5.16) at a reason-
able equilibrium of the states and controllers.

2. Examine the controllability and observability of the linearized control system.
3. Design a state feedback controller and an output feedback controller to stabilize

the equilibrium point.
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6

Kinetics of Ion Pumps and Channels

Various ions, such as Ca2+, Na+, and K+, enter and exit a cell through selective
ion pumps and channels, such as potassium channels, voltage-gated sodium chan-
nels, voltage-gated calcium channels, sodium/calcium exchangers, and plasma mem-
brane (PM) calcium ATPases, as demonstrated in Fig. 6.1. Calcium ions Ca2+ enter
the cytosol through store-operated channels (SOC) and voltage-gated calcium chan-
nels (VGCC). The sarcoplasmic or endoplasmic reticulum Ca2+-ATPases (SERCA)
pump Ca2+ from the cytosol into the endoplasmic reticulum (ER) and Ca2+ in
ER are released to the cytosol through the inositol (1,4,5)-trisphosphate (IP3)- and
Ca2+-mediated inositol (1,4,5)-trisphosphate receptors (IP3R). Ca2+ enter the mito-
chondrion through uniporters and exit through Ca2+/Na+ antiporters. Ca2+ exit the
cytosol through plasma membrane Ca2+-ATPases (PMCA) and Ca2+/Na+ exchang-
ers. Depletion of ER Ca2+ stores causes STIM1 to move to ER-PM junctions, bind
to Orai1, and activate store-operated channels for Ca2+ entry [63]. Sodium ions Na+

enter the cytosol through sodium channels (NC) and Ca2+/Na+ exchangers, and
exit through N+/K+ ATPases (NKA). Potassium ions K+ enter the cytosol through
N+/K+ ATPases and exit through ATP-sensitive K+ channels (ATPKC), delayed
rectifying K+ channels (DrKC), and calcium-activated K+ channels (CAKC). H+

ions in mitochondrion are ejected by the respiratory chain driven by the energy
released from oxidation of NADP, which are produced from the tricarboxylic acid
cycle (TAC, also called Krebs cycle). The established electrochemical gradient drives
the electrogenic transport of ions, including ATP and ADP by adenine nucleotide
translocators (ANT). H+ ions in the cytosol flow back to the mitochondrion through
F1F0-ATPases to power the ATP synthesis.

Mathematical models for ionic pumps and channels have been developed. We
start with the Nernst-Planck equation that plays a key role in modeling the ionic
pumps and channels.

LiuW.: Introduction to Modeling Biological Cellular Control Systems.
DOI 10.1007/978-88-470-2490-8 6, © Springer-Verlag Italia 2012
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Fig. 6.1. Schematic diagram of ions fluxes in a pancreatic β -cell. The abbreviations used are:
SOC, store-operated channel; CaM, calmodulin; A6, annexin 6; PKC, protein kinase C; Glut2,
glucose transporter 2; CAKC, calcium-activated K+ channel; DrKC, delayed rectifying K+

channel; ATPKC, ATP-sensitive K+ channel; VGCC, voltage-gated calcium channel; NKA,
N+/K+ ATPase; NC, Na+ channel; PMCA, plasma membrane Ca2+ ATPase, SERCA, sar-
coplasmic or endoplasmic reticulum Ca2+-ATPase; IP3R, inositol (1,4,5)-trisphosphate recep-
tor; ANT, adenine nucleotide translocator; TCA, tricarboxylic acid cycle (also called Krebs
cycle)

6.1 The Nernst-Planck Equation

The flow of ions across a membrane is driven by both a concentration gradient and
an electric field. The relation among the flux of ions, the concentration gradient, and
the electric field is governed by the Nernst-Planck equation. The flux of ions due to
the concentration gradient is given by Fick’s law [33]

Jc =−D∇c, (6.1)

where the positive constant D is the diffusion constant and c is the concentration of
the ion. The flux of the ion due to the electric field is given by Planck’s equation
[26, 33]

Je =−u
z
|z|c∇φ , (6.2)

where u is the mobility of the ion, defined as the velocity of the ion under a constant
unit electric field, z is the valence of the ion, and φ is the electrical potential. The
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relationship between the ionic mobility u and Fick’s diffusion constant D is given by
(due to Einstein)

D =
uRT
|z|F , (6.3)

where R is the universal gas constant, T is the absolute temperature, F is Faraday’s
constant. Combining equations (6.1), (6.2) and (6.3), we obtain the Nernst-Planck
equation

J =−D

(
∇c+

zF
RT

c∇φ
)

. (6.4)

If the flow of ions and the electric field are transverse to the membrane, we can
assume that c and φ depends on x only and then the equation (6.4) becomes

J =−D

(
dc
dx

+
zF
RT

c
dφ
dx

)
. (6.5)

6.2 The Nernst Equilibrium Potential

At equilibrium, the ions do not move, and then J = 0. Thus we have

dc
dx

+
zF
RT

c
dφ
dx

= 0,

and then
1
c

dc
dx

+
zF
RT

dφ
dx

= 0.

Let the inside of the membrane be at x = 0 and the outside at x = L. Integrating the
above equation from 0 to L, we obtain

ln

(
co

ci

)
=

zF
RT

(φi−φo),

where co = c(L),ci = c(0),φo = φ(L),φi = c(0). Let VI = φi−φo denote the potential
difference across the membrane due to the concentration difference of the ion. Then
we obtain the Nernst equation

VI =
RT
zF

ln

(
co

ci

)
. (6.6)

This potential is called the Nernst potential.

6.3 Current-voltage Relations

The relation between the electric current produced by the flow of ions across a mem-
brane and the voltage potential across the membrane is generally governed by the
Nernst-Planck equation (6.5). This general current-voltage model needs to be simpli-
fied so that it can be used conveniently in modeling. To this end, we assume that the
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electric field dφ
dx is constant across the membrane:

dφ
dx

=−V
L

,

where V = φ(0)−φ(L) is the membrane voltage potential. The Nernst-Planck equa-
tion (6.5) becomes

dc
dx

=
zFV
RTL

c− J
D

. (6.7)

At the steady state and without production of ions, the flux J is constant. Solving
(6.7), we obtain

exp

(−zV F
RT

)
co =

JRT L
zDV F

[
exp

(−zV F
RT

)
−1

]
+ ci,

and then

J =
zDFV

[
ci− co exp

(−zVF
RT

)]
LRT

[
1− exp

(−zV F
RT

)] .

Because the ionic flux J is related to the ionic current I by the expression

I = zFJ, (6.8)

multiplying J by zF , we obtain the famous Goldman-Hodgkin-Katz (GHK) current
equation

Iion =
Pz2F2V

[
ci− co exp

(−zVF
RT

)]
RT

[
1− exp

(−zVF
RT

)] , (6.9)

where P = D/L is the permeability of the membrane to the ion.
If the electric field is not constant across the membrane, we then need Poisson’s

equation for the potential φ
d2φ
dx2 =−qc

ε
, (6.10)

where q is the unit electric charge and ε is the dielectric constant of the channel
medium. Then the steady-state flux J is governed by the system of equations (6.5)
and (6.10). In general, it is impossible to solve the system exactly.

While the nonlinear GHK current-voltage model (6.9) is needed in some cases,
such as the currents in open Na+ and K+ channels in vertebrate axons [33], a linear
current-voltage equation is sufficient to approximately model the currents in many
other cases, such as the currents in open Na+ and K+ channels in the squid giant
axon.

To derive such a linear current-voltage model, we assume that the voltage poten-
tial V across the plasma membrane consists of two components: the potential VI

caused by the concentration difference of the ion and the potential Vc caused by the
electrical current Iion due to the movement of the ion. Then Ohm’s law gives

Vc = rIion,
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where r is a channel resistance. Thus we obtain

V = VI +Vc = VI + rIion,

and then
Iion = g(V −VI), (6.11)

where g = 1/r is a membrane conductance. This is the linear current-voltage equa-
tion. Using the Nernst equation (6.6), we obtain

Iion = gV − gRT
zF

ln

(
co

ci

)
.

6.4 The Potassium Channel

The potassium channel is a protein found in the plasma membrane of almost all cells
[5]. It is a tube that links the cytosol with the extracellular fluid. Potassium ions, which
cannot pass through the lipid bilayer of the plasma membrane, can pass through the
potassium channel easily. The channel is selective for potassium and other ions can-
not pass through. Potassium channels include the voltage-gated potassium channel,
the calcium-activated potassium channel, and the ATP-sensitive potassium channel.

Potassium is much more concentrated in the cytosol than outside, typically 140
mmol/L in the cytosol but only 5 mmol/L in the extracellular medium. Thus there
is a tendency for potassium ions to leave the cell down the concentration gradient.
On the other hand, all cells have a voltage across their membrane when they are not
being stimulated. This voltage is called the resting voltage, about -80 mV in a relaxed
skeletal muscle cell (0 mV outside and -80 mV in the cytosol). Thus this negative volt-
age produces an electrical force pulling the positively charged potassium ions back
inside. When the opposing electrical and concentration gradient are equal, the overall
electrochemical gradient for potassium is zero and an equilibrium is established. The
transmembrane voltage at the equilibrium is called the equilibrium voltage for potas-
sium. For potassium, the equilibrium voltage is about -90 mV for a normal animal
cell. Because the potassium channels are the major pathway by which ions can cross
the plasma membrane of an unstimulated cell, the resting voltage has a value close to
the potassium equilibrium voltage. In the following, we use the word depolarization
to mean any positive increase in the transmembrane voltage.

6.4.1 The Voltage-Gated Potassium Channel

Voltage-gated potassium channels are potassium channels sensitive to voltage
changes in the cell’s membrane potential. Using the linear current-voltage equation
(6.11), Hodgkin and Huxley [27] modeled the voltage-gated potassium ionic current
of the squid giant axon as follows

Ik = GkPk(V −Vk), (6.12)
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Fig. 6.2. Rise of potassium conductance associated with different depolarizations. This figure
is modified from [27], using (6.13) with gk0 = 0.24 mS/cm2, gk∞ = 20.7, 17, 10.29, 5 mS/cm2,
τ = 1.05, 1.5, 2.6, 4.5 ms for V = 109, 76, 38, 19 mV, respectively. In [27], the voltage
potential was defined to be the difference between the outside and the inside of the membrane.
Thus the depolarization potentials were negative. In this text, the voltage potential is defined
to be the difference between the inside and the outside of the membrane. Hence, the negative
depolarization potentials are changed to the positive ones

where V is the potential difference between the inside and the outside of the mem-
brane, Vk is the equilibrium potential for the potassium ions, Gk is a maximal ionic
conductance, and Pk is a channel open probability. The units of potential, current
density, and conductance density are mV, μA/cm2, mS/cm2, respectively.

The experimental data showed that the conductance gk = GkPk is not constant
and varies with time t and voltage V , as shown in Fig. 6.2. Hodgkin and Huxley [27]
observed that the time course data of gk can be well fitted by the function

gk(t) =
[
g1/4

k∞ −
(

g1/4
k∞ −g1/4

k0

)
e−t/τ

]4
(6.13)

with appropriate parameters gk0, gk∞, and τ , as shown in Fig. 6.2. Since gk depends
on V , gk∞ should be a function of V . Thus we assume that

g1/4
k∞ =

G1/4
k αn(V )

αn(V )+βn(V )
,

where αn and βn are constants which vary with voltage but not with time. Substituting
it into (6.13), we obtain

gk(t) = Gk

[
αn(V )

αn(V )+βn(V )
−
(

αn(V )
αn(V )+βn(V )

−
(

gk0

Gk

)1/4
)

e−t/τ

]4

. (6.14)
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Fig. 6.3. Dependence of the potassium channel activation on voltage potential. αn, βn, and n∞
are defined by (6.17), (6.18), and (6.19), respectively

Note that n = αn(V )
αn(V )+βn(V ) −

(
αn(V )

αn(V )+βn(V ) −
(

gk0
Gk

)1/4
)

e−t/τ is the solution of

dn
dt

=−n
τ

+
1
τ

αn(V )
αn(V )+βn(V )

, n(0) =
(

gk0

Gk

)1/4

.

Selecting τ = 1/(αn(V )+βn(V )), we obtain from (6.14) that

Pk = n4, (6.15)
dn
dt

= αn(1−n)−βnn, (6.16)

where αn and βn have the dimension of [time]−1 and n is a dimensionless variable
which can vary between 0 and 1. Using the experimental data at the temperature of
6◦C, the rates αn and βn were estimated as follows (see Exercise 6.2)

αn =
0.01(10−V )

exp((10−V )/10)−1
, (6.17)

βn = 0.125exp

(−V
80

)
. (6.18)

Hodgkin and Huxley [27] gave a physical basis of the equation (6.16). If it is
assumed that potassium ions can only cross the membrane when four similar particles
occupy a certain region of the membrane, then n represents the proportion of the
particles in a certain position (for example at the outside of the membrane) and 1−n
represents the proportion that are somewhere else (for example at the inside of the
membrane). Thus, αn determines the rate of transfer from inside to outside, while βn

determines the transfer in the opposite direction, as demonstrated below:

n�
βn

αn

1−n.

When the membrane potential V increases, more K+ flow out of cells and then αn

should increase and βn should decrease, as shown in Fig. 6.3.
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The equation (6.16) has the steady state solution

n∞ =
αn

αn +βn
. (6.19)

This solution is plotted in Fig. 6.3, which shows that when the plasma membrane is
depolarized to a voltage potential great than 0 mV, the channel is well activated.

Using n∞(V ) and τ(V ) = 1/(αn(V )+βn(V )), the equation (6.16) can be written
as

dn
dt

=
n∞−n

τ
. (6.20)

Here τ is called a time constant. This form clearly specifies the steady state n∞ and
the time constant τ , and it is often used in the literature.

In summary, the voltage-gated potassium current can be modeled by

Ik = Gknl(V −Vk), (6.21)
dn
dt

=
n∞−n

τ
, (6.22)

where l is a positive number, n∞ = n∞(V ) is a steady state of activation probability,
and τ = τ(V ) is a time constant. Different l,n∞,τ were proposed in the literature.
Based on the experimental data of delayed potassium currents in mouse pancreatic
β -cell obtained by Rorsman and Trube [56] (Fig. 6.4), Sherman et al [58] proposed
the following first-order activation model:

l = 1, (6.23)

n∞(V ) =
1

1+ exp[(Vkh−V )/Ckh]
, (6.24)

τ(V ) =
c

exp[(V −V̄ )/a]+ exp[(V̄ −V )/b]
, (6.25)

where Vkh = −19 mV, Ckh = 5.6 mV (Exercise 6.3), a = 65 mV, b = 20 mV, V̄ =
−75 mV, and c = 60 ms. Bertram et al [3] used the following

l = 1, (6.26)

n∞(V ) =
1

1+ exp[(−9−V )/10]
, (6.27)

τ(V ) =
8.3

1+ exp[(V +9)/10]
. (6.28)

Based on the experimental result of Smith et al [59], Fridlyand et al [19] proposed
the following second-order activation model

l = 2, (6.29)

n∞ =
1

1+ exp[(−9−V )/5]
, (6.30)

τ = 25 ms (6.31)



6.4 The Potassium Channel 131

−40 −20 0 20
0

0.2

0.4

0.6

0.8

1

V (mV)

Ac
tiv

at
io

n 
pr

ob
ab

ilit
y 

(n
∞)

 

 

Fitting
Data

Fig. 6.4. Voltage dependence of out-
ward current activation of delayed rec-
tifier potassium channels. Data are read
from [56] using the software Engauge Dig-
itizer 4.1, and fitted by the function (6.24)

with Gk = 45000 pS and Vk = −75 mV. The steady n∞ in (6.30) is similar to Smith
et al’s activation curve [59]:

n∞ =
1

1+ exp[(−19−V )/8]
.

Note that the kinetic model (6.12) derived from the squid giant axon is not uni-
versal. For other types of cells, other models may be more appropriate. For instance,
for vertebrate axons, the nonlinear GHK current-voltage model (6.9) is required
[6, 15, 16, 17, 33].

6.4.2 The Calcium-Activated Potassium Channel

The slowly varying potassium current through the calcium-activated potassium chan-
nel can be modeled by the linear current-voltage equation (6.11) as follows

Ikca = GkcaPkca(V −Vk), (6.32)

where Gkca is the maximum conductance and Pkca is the probability of the channel
opening. Different models for the channel open probability Pkca were proposed. One
of such models was proposed by Plant [51]. Ca2+ were assumed to interact with the
potassium channel (denoted by E) by a first-order process

E +Ca2+ �
k1

k2

O,

where E and O represent the closed and open states of the potassium channel, respec-
tively. At equilibrium, the open and closed states satisfy

k1[E][Ca2+]i = k2[O],

and then
[E][Ca2+]i = Kkca[O], (6.33)

where Kkca = k2/k1 and [Ca2+]i is the concentration of free intracellular Ca2+. Let
[E] + [O] = [E0], where [E0] is the concentration of total potassium channels. We
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Fig. 6.5. Calcium dependence of outward
current activation of small conductance
Ca2+-activated potassium channels. Data
are read from [65] using the software
Engauge Digitizer 4.1, and fitted by the
Hill function (6.35)
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Fig. 6.6. ATP or ADP dependence of out-
ward current activation of ATP-sensitive
potassium channels in HEK293 cells. Data
are read from [29] using the software
Engauge Digitizer 4.1, and fitted by the
Hill function (6.37) with Kkat p = 11 μM
and n = 0.97 for ATP, and Kkat p = 95 μM
and n = 0.94 for ADP

deduce from (6.33) that the channel open probability Pkca is

Pkca =
[O]
[E0]

=
[Ca2+]i

Kkca +[Ca2+]i
. (6.34)

Later on, the experimental data [36, 38, 65] showed that the activation probabil-
ity of the Ca2+-activated potassium channels can be modeled by the Hill function
(Exercise 6.4)

Pkca =
[Ca2+]ni

Kn
kca +[Ca2+]ni

(6.35)

with Kkca = 1.5 μM and n = 1.3 (Fig. 6.5). Consequently, different Hill exponents
were used in the literature, for example, 3 in [10], 4 in [18], and 5 in [2, 48] with
Gkca = 130 pS and Kkca varying in the range of 0.05-0.9 μM.

6.4.3 The ATP-Sensitive Potassium Channel

An ATP-sensitive potassium channel is a type of potassium channel that is inhibited
by ATP. The current through ATP-sensitive potassium channel can be modeled by
the linear I-V model:

Ikat p = Gkat pPkat p(V −Vk), (6.36)

where Gkat p (7500 pS used by Keizer et al [34] and 3000 pS used by Magnus et al
[42]) is a maximum conductance and Pkat p = Pkat p([ATP], [ADP]) is a channel open
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probability to be found. There are two ways to determine the channel open probability
Pkat p. One way is to fit a function like the Hill function into data. The other way is to
propose a molecular model of multiple channel states and test the model with data.

The experimental data obtained by John et al [29] showed that Pkat p can be
described by the Hill function

Pkat p =
Kn

kat p

Kn
kat p +[AT P]n

(6.37)

with Kkat p = 11 μM and n = 0.97 (Fig. 6.6).
The experiments conducted by Kakei et al [31] showed that ADP shifts the ATP-

dose-dependent activation curve of current to the right as shown in Fig. 6.7. Thus
ADP promotes the activation of the ATP-sensitive potassium channel. Based on this
experimental result, Keizer et al [34] assumed that ADP and ATP bind to the channel
competitively:

E +ADP�
k1

k2

EADP,

E +ATP �
k3

k4

EAT P,

where E stands for the channel. At equilibrium, we derive that

[EADP] =
[E][ADP]

K1
, [EAT P] =

[E][ATP]
K2

,

where K1 = k2/k1 and K2 = k4/k3. If only the unbound state and ADP-bound state
are conducting, then the activation fraction of the channel is given by

Pkat p =
[E]+ [EADP]

[E]+ [EADP]+ [EAT P]

=
[E]+ [E][ADP]/K1

[E]+ [E][ADP]/K1 +[E][AT P]/K2

=
1+[ADP]/K1

1+[ADP]/K1 +[AT P]/K2
. (6.38)

Based on their experiments, Hopkins et al [28] proposed an ATP-sensitive K+

channel model as demonstrated in Fig. 6.8. They assumed that the channel has three
binding sites: one competitive site for ATP4− and ADP3− and two sites for MgADP−.
When the channel is free or bound by a single MgADP−, its open probability is 0.08.
When it is bound by two MgADP−, its open probability is 0.89. When it is bound by
ATP4− or ADP3− in all cases, it is closed.
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Fig. 6.7. ATP or ADP dependence of out-
ward current activation of ATP-sensitive
potassium channels in rat pancreatic β -
cells. Data are read from [31] using the
software Engauge Digitizer 4.1, and fitted
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Fig. 6.8. ATP-sensitive K+ channel model proposed by Hopkins et al [28]. It was assumed that
the channel has three binding sites: one competitive site for ATP4− and ADP3− and two sites
for MgADP−. When the channel is free or bound by a single MgADP−, its open probability
is 0.08. When it is bound by two MgADP−, its open probability is 0.89. When it is bound by
ATP4− or ADP3− in all cases, its open probability is 0

The binding reactions in Fig. 6.8 can be described by

E +MgADP− ⇐⇒
Kdd

E1MgADP,

E +MgADP− ⇐⇒
Kdd

E2MgADP,

E1MgADP+MgADP− ⇐⇒
Kdd

E2MgADP,

E2MgADP+MgADP− ⇐⇒
Kdd

E2MgADP,
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E +ATP4− ⇐⇒
Ktt

EAT P,

E1MgADP+ATP4− ⇐⇒
Ktt

E1MgADPATP,

E2MgADP+ATP4− ⇐⇒
Ktt

E2MgADPATP,

E2MgADP+ATP4− ⇐⇒
Ktt

E2MgADPATP,

E +ADP3− ⇐⇒
Ktd

EADP,

E1MgADP+ADP3− ⇐⇒
Ktd

E1MgADPADP,

E2MgADP+ADP3− ⇐⇒
Ktd

E2MgADPADP,

E2MgADP+ADP3− ⇐⇒
Ktd

E2MgADPADP,

where E denotes the free K+ channel, E1MgADP denotes the K+ channel with a
single MgADP− bound at the above site, E2MgADP denotes the K+ channel with a
single MgADP− bound at the site below, and Kdd ,Ktd ,Ktt are dissociation constants.
For a general reaction

AB� mA+nB,

the dissociation constant is defined as

Kd =
[A]m[B]n

[AB]
.

At equilibrium, we derive from the above reaction that

[E][MgADP−] = Kdd [E1MgADP],
[E]

[
MgADP−

]
= Kdd [E2MgADP] ,

[E1MgADP]
[
MgADP−

]
= Kdd [E2MgADP] ,

[E2MgADP]
[
MgADP−

]
= Kdd [E2MgADP] ,

[E]
[
ATP4−] = Ktt [EAT P] ,

[E1MgADP]
[
ATP4−] = Ktt [E1MgADPATP] ,

[E2MgADP]
[
ATP4−] = Ktt [E2MgADPATP] ,

[E2MgADP]
[
ATP4−] = Ktt [E2MgADPATP] ,

[E]
[
ADP3−] = Ktd [EADP] ,

[E1MgADP]
[
ADP3−] = Ktd [E1MgADPADP] ,

[E2MgADP]
[
ADP3−] = Ktd [E2MgADPADP] ,

[E2MgADP]
[
ADP3−] = Ktd [E2MgADPADP] .
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Fig. 6.9. ADP dependence of outward
current activation of ATP-sensitive potas-
sium channels in mouse pancreatic β -
cells. Data are read from [28] using the
software Engauge Digitizer 4.1, and fit-
ted by the function (6.40) with Kdd = 5.7
μM, Ktd = 8.2 μM, Ktt = 0.95 μM, and
[ATP] = 0.00001 μM

Let [ET ] denote the concentration of total K+ channels. Then we have

[ET ] = [E]+ [E1MgADP]+ [E2MgADP]+ [E2MgADP]+ [EAT P]
+[E1MgADPATP]+ [E2MgADPATP]+ [E2MgADPATP]
+[EADP]+ [E1MgADPADP]
+[E2MgADPADP]+ [E2MgADPADP]

= [E]+2
[E][MgADP−]

Kdd
+

[E][MgADP−]2

K2
dd

+
[E][ATP4−]

Ktt
+2

[E][MgADP−][ATP4−]
KddKtt

+
[E][MgADP−]2 [ATP4−]

K2
ddKtt

+
[E][ADP3−]

Ktd
+2

[E][MgADP−][ADP3−]
KddKtd

+
[E][MgADP−]2 [ADP3−]

K2
ddKtd

= [E]
(

1+
[MgADP−]

Kdd

)2(
1+

[ATP4−]
Ktt

+
[ADP3−]

Ktd

)
.

It then follows that the channel open probability is given by

Pkat p =
0.08([E]+ [E1MgADP]+ [E2MgADP])

[ET ]
+

0.89[E2MgADP]
[ET ]

=
0.08

(
1+2 [MgADP−]

Kdd

)
+0.89 [MgADP−]2

K2
dd(

1+ [MgADP−]
Kdd

)2 (
1+ [AT P4−]

Ktt
+ [ADP3−]

Ktd

) . (6.39)

The ions MgADP−, ATP4−, ADP3− are related to ADP and ATP as follows (see,
e.g., [43])

[MgADP−] = 0.165[ADP], [ADP3−] = 0.135[ADP], [AT P4−] = 0.05[ATP].
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It then follows from (6.39) that

Pkat p =
0.08

(
1+ 0.33[ADP]

Kdd

)
+0.89

(
0.165[ADP]

Kdd

)2

(
1+ 0.165[ADP]

Kdd

)2(
1+ 0.135[ADP]

Ktd
+ 0.05[AT P]

Ktt

) . (6.40)

This function after scaled to 1 at [ADP] = 1 μM can be well fitted into the data of
Fig. 2 of Hopkins et al [28] with Kdd = 5.7 μM, Ktd = 8.2 μM, Ktt = 0.95 μM, and
[AT P] = 0.00001 μM, as shown in Fig. 6.9.

6.5 The Voltage-Gated Sodium Channel

The cells in multicellular animals that are specialized for rapid conduction have
a voltage-gated sodium channel. When the transmembrane voltage is -70 mV, the
voltage-gated sodium channel is gated shut. When the plasma membrane is depolar-
ized, the channel opens rapidly and then, after about 1 ms, inactivates. After the chan-
nel has gone through this cycle, it must spend at least 1 ms with the transmembrane
voltage at the resting voltage before it can be opened by a second depolarization.

Like the potassium channel, the sodium ionic current of the squid giant axon was
modeled by Hodgkin and Huxley [27] as follows

Ina = GnaPna(V −Vna), (6.41)

where V is the potential difference between the inside and the outside of the mem-
brane, Vna is the equilibrium potential for the sodium ions, Gna is a maximal ionic
conductance, and Pna is a channel open probability.

As in the case of the potassium conductance, the experimental data showed that
the conductance gna = GnaPna is not constant and varies with time t and voltage V ,
as shown in Fig. 6.10. Hodgkin and Huxley [27] observed that the time course data
of gna can be well fitted by the function

gna(t) = Gna

[
m∞− (m∞−m0)e−t/τm

]3 [
h∞− (h∞−h0)e−t/τh

]
(6.42)

with appropriate parameters Gna, m∞, m0, τm, h∞, h0, and τh (Fig. 6.10), where Gna

is a constant with the dimension of conductance/cm2. In the resting state, the sodium
conductance is very small compared with the value attained during a large depolar-
ization. Therefore, m0 can be neglected if the depolarization is greater than 30 mV.
Further, inactivation is very nearly complete if V > 30 mV so that h∞ may also be
neglected. The expression for the sodium conductance then becomes

gna(t) = G∗na

(
1− e−t/τm

)3
e−t/τh , (6.43)

where G∗na = Gnam3
∞h0. The function (6.43) was fitted into experimental data as

shown in Fig. 6.10.
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Fig. 6.10. Changes of sodium conductance associated with different depolarizations. This
figure is modified from [27], using (6.43) with g∗nam = 40.3, 39.5, 20 mS/cm2, τm =
0.14, 0.189, 0.382 ms, and τh = 0.67, 0.84, 1.27 ms for V = 109, 76, 38 mV, respectively. In
[27], the voltage potential was defined to be the difference between the outside and the inside
of the membrane. Thus the depolarization potentials were negative. In this text, the voltage
potential is defined to be the difference between the inside and the outside of the membrane.
Hence, the negative depolarization potentials are changed to the positive ones

Note that h = h∞− (h∞−h0)e−t/τh and m = m∞− (m∞−m0)e−t/τm are the solu-
tions of

dh
dt

=
h∞−h

τh
, h(0) = h0, (6.44)

dm
dt

=
m∞−m

τm
, m(0) = m0. (6.45)

We then have that
Pna = hm3. (6.46)

Since gna depends on V , the parameters h∞,τh,m∞,τm are functions of V . To con-
struct these functions, we define αh,βh,αm,βm as follows

τh = 1/(αh +βh),
h∞ = αh/(αh +βh),
τm = 1/(αm +βm),

m∞ = αm/(αm +βm).

α’s and β ’s have the dimension of [time]−1. Using the experimental data at the tem-
perature of 6◦C [27], the rates αh,αm,βh, and βm were estimated as follows (see
Exercise 6.7)

αh = 0.07exp

(−V
20

)
, (6.47)

βh =
1

exp
(

30−V
10

)
+1

, (6.48)
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Fig. 6.11. Dependence of the sodium channel activation on voltage potential. Functions αh,
βh, αm, βm, h∞, and m∞ are defined by (6.47), (6.48), (6.49), (6.50), (6.53), and (6.54), respec-
tively

αm =
0.1(25−V )

exp
(

25−V
10

)−1
, (6.49)

βm = 4exp

(−V
18

)
. (6.50)

The equations (6.44) and (6.45) may be given a physical basis if sodium con-
ductance is assumed to be proportional to the number of sites on the inside of the
membrane which are occupied simultaneously by three activating molecules but are
not blocked by an inactivating molecule. For this, we rewrite the equations (6.44) and
(6.45) as

dh
dt

= αh(1−h)−βhh, (6.51)

dm
dt

= αm(1−m)−βmm. (6.52)

Then it can be explained that m represents the proportion of activating molecules on
the inside and 1−m the proportion on the outside; h is the proportion of inactivating
molecules on the outside and 1−h the proportion on the inside. αm or βh and βm or
αh represent the transfer rate constants in the two directions.
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Fig. 6.12. Relationship between voltage
(V) and relative current amplitude (h∞ =
Ina/Imax). Data are read from [21] using
the software Engauge Digitizer 4.1

The equations (6.51) and (6.52) have the steady state solutions

h∞ =
αh

αh +βh
, (6.53)

m∞ =
αm

αm +βm
. (6.54)

Fig. 6.11 shows that the dependence of the sodium channel activation on voltage
potential has a bell shape.

In summary, the voltage-gated sodium current can be modeled by

Ina = Gnam jhk(V −Vna), (6.55)
dh
dt

=
h∞−h

τh
, (6.56)

dm
dt

=
m∞−m

τm
, (6.57)

where j,k are positive numbers, h∞ = h∞(V ) and m∞ = m∞(V ) are steady states of
inactivation probability and activation probability, respectively, and τh = τh(V ), τm =
τm(V ) are time constants.

The other model of sodium ionic current used in the literature for pancreatic β -
cells [18, 21] is given by

Ina = Gna
V −Vna

1+ exp[(104+V )/8]
, (6.58)

where Gna is the maximum whole cell conductance. The relationship between voltage
(V) and relative current amplitude

h∞(V ) = Ina/Imax =
1

1+ exp[(104+V )/8]

is shown in Fig. 6.12, reproduced from Fig. 5B of Göpel et al [21].
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Fig. 6.13. Voltage dependence of inward current activation of voltage-gated calcium channels.
Data are read from [56] using the software Engauge Digitizer 4.1, and fitted by the function
(6.67). The function h∞ is defined by (6.68)

6.6 The Voltage-Gated Calcium Channel

The voltage-gated calcium channel is a protein in the plasma membrane [5]. It forms
a tube that opens to the extracellular medium, but closes at the end of the cytosol side
when the transmembrane voltage is at the resting voltage. If the membrane depolar-
izes so that the cytosol is less negative, the channel is open and then calcium ions can
pass through it to enter the cytosol. After about 100 ms, an inactivation plug can bind
to the inside of the open channel, resulting in the inactivation of the channel. If the
membrane is repolarized, the channel quickly recloses.

Like the potassium and sodium channels, the calcium ionic current through the
voltage-gated calcium channel can be described by the linear current-voltage equa-
tion (6.11) as follows

Ica = GcaPca(V −Vca), (6.59)

where V is the potential difference between the inside and the outside of the mem-
brane, Vca is the equilibrium potential for the calcium ions, Gca is a maximal ionic
conductance, and Pca is a channel open probability. A number of models for Pca were
proposed in the literature.

Since the calcium channel gating in the β -cells is similar to the sodium chan-
nel gating in the squid giant axon, Chay and Keizer [9] adopted the usual Hodgkin-
Huxley model (6.46) for the calcium current as follows

Pca = hm3, (6.60)
dh
dt

= αh(1−h)−βhh, (6.61)
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Fig. 6.14. Current-voltage relation of
inward current of voltage-gated calcium
channels. Data are read from [56] using
the software Engauge Digitizer 4.1, and
fitted by the function (6.59) with Pca

defined by (6.69) with scaling it to pA/pF
by dividing it by 1000× 5.31 (5.31 pF is
the total membrane capacitance)

dm
dt

= αm(1−m)−βmm, (6.62)

αh = 0.07exp

(−V −V ∗ca

20

)
, (6.63)

βh =
1

exp
(

30−V−V ∗ca
10

)
+1

, (6.64)

αm = 0.1
25−V −V ∗ca

exp
(

25−V−V ∗ca
10

)
−1

, (6.65)

βm = 4exp

(−V −V ∗ca

18

)
. (6.66)

They used the exact αh,βh,αm, and βm given by Hodgkin and Huxley except that
the voltage V was shifted to the left by V ∗ca = 50 mV. This shift is plausible because
Fig. 6.11 and Fig. 6.13 show that the voltage-gated calcium channel is activated at a
lower voltage than the voltage-gated sodium channel.

Based on the experimental data of voltage-gated calcium current in mouse pan-
creatic β -cell obtained by Rorsman and Trube [56], Sherman et al [58] proposed a
model for the calcium current. The data showed that the activation probability of the
voltage-gated calcium channel at steady state can be modeled by (Fig. 6.13)

m∞(V ) =
1

1+ exp[(Vmh−V )/Cmh]
(6.67)

with Vmh = 4 mV and Cmh = 14 mV (Exercise 6.8). They found that the current-
voltage relation (6.59) with Pca = m∞(V ) and Vca = 110 mV was inadequate to
describe all of Rorsman and Trube’s data for the calcium current (Fig. 6.14). Thus,
they introduced the following reverse sigmoidal factor

h∞(V ) =
1

1+ exp[(V −Vhh)/Chh]
. (6.68)

This factor is very similar to h∞ defined in (6.53) for the voltage-gated sodium channel
(Fig. 6.11). Then they obtained the following channel open probability

Pca = m∞(V )h∞(V ). (6.69)
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Fig. 6.15. Time constant of activation of
voltage-gated calcium channels in mouse
pancreatic β -cells. Data are read from [21]
using the software Engauge Digitizer 4.1,
and fitted by the function (6.74)

The current-voltage relation (6.59) with this channel open probability can be well
fitted into Rorsman and Trube’s data for the calcium current (Fig. 6.14) with Vhh =
−13 mV, Chh = 9 mV, and Gca = 2548 pS (Exercise 6.9).

Another model for the calcium ionic current in pancreatic β -cells was given by
Bertram et al [3] as follows

Ica = Gcam∞(V )(V −Vca), (6.70)

m∞(V ) =
1

1+ exp[(−22−V )/7.5]
, (6.71)

where Gca = 280 pS is the maximum whole cell conductance and Vca = 100 mV is
the Ca2+ resting potential. This model was used by Fridlyand et al [18] with different
parameter values.

While Ica is rapidly activated by membrane depolarization, its inactivation is con-
trolled by both Ca2+ and the membrane potential [22]. Binding of intracellular Ca2+

to calmodulin causes a channel conformational change to occlude the channel pore
[7, 44]. This Ca2+-dependent inactivation was not considered in the above models.

To account for the Ca2+-dependent inactivation, Fridlyand et al [19] proposed
the following model

Pca = pohvhca, (6.72)

where

p∞ = 0.002+
1

1+ exp[(−2−V )/8.8]
, (6.73)

τp = 2.2−1.79exp
[−((V −9.7)/70.2)2] , (6.74)

hv =
1

1+ exp[(9+V )/8]
, (6.75)

d po

dt
=

p∞− po

τp
, (6.76)

dhca

dt
= 0.007(1−hca)−0.0025(−Ica/Gca)hca, (6.77)
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Fig. 6.16. Steady I-V curve defined by
(6.78)

where Gca = 1500 pS and Vca = 100 mV. In this model, po is the variable of activation
of the channel upon membrane depolarization, hv is the voltage-sensitive inactivation
variable, and hca is the Ca2+-sensitive inactivation variable. Note that p∞ is close to
m∞ defined by (6.67) and hv is close to h∞ defined by (6.68). The equation for the
time constant τp was obtained by fitting the data from Fig. 4B of Göpel et al [21], as
shown in Fig. 6.15.

To model the Ca2+-sensitive channel inactivation, Fridlyand et al suggested that
the rate of inactivation is proportional to a Ca2+ current through a unitary channel (the
term Ica/Gca) rather than Ca2+ concentration as has been suggested in other models
[12, 40]. The dynamics of hca is determined by the relative rates of activation and
inactivation as described in (6.77).

Solving the steady state equation of (6.77) for the steady state hca∞, we can obtain
the steady I-V relationship:

Ica = Gca p∞hvhca∞(V −Vca). (6.78)

We plot the I-V curve in Fig. 6.16, which shows that the U-shape of the I-V curve
agrees well with experimental results obtained in [21, 49, 52, 56].

6.7 The IP3 Receptor

The action of an extracellular agonist, such as hormones, growth factors, and neuro-
transmitters, on its specific receptor typically activates the phosphoinositide-specific
phospholipase C (PLC). PLC breaks down the phosphatidylinositol 4,5 bisphosphate
(PIP2) to generate two second messengers, the inositol 1,4,5 trisphosphate (IP3) and
diacylglycerol (DAG) [53]. DAG is known to activate protein kinase C (PKC) iso-
forms, but can also regulate ion channels in a PKC-independent manner. IP3 diffuses
through the cytoplasm until it binds and activates its receptor to release Ca2+ from
the endoplasmic reticulum (ER) into the cytosol.

This IP3 receptor (IP3R) is a universal intracellular Ca2+-release channel predom-
inantly located on the endoplasmic reticulum (ER). The release of Ca2+ from the ER
into the cytoplasm controlled by IP3 is crucial for setting up complex spatio-temporal
Ca2+ signals, which control cellular processes as different as fertilization, cell divi-
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Fig. 6.17. An IP3R model proposed
by Sneyd et al [60]. R, receptor; O,
open; A, activated; S, shut; I, inacti-
vated. c is [Ca2+]; p is [IP3

sion, cell migration, differentiation, metabolism, muscle contraction, secretion, neu-
ronal processing, and ultimately cell death [64]. Since the ER calcium concentration
is much higher than the cytosolic one, we assume that the Ca2+ transport through the
receptor is driven by the calcium concentration gradient:

ripr = RiprPipr
(
[Ca2+]er− [Ca2+]i

)
(6.79)

where Ripr is a maximal rate, Pipr is a channel open probability, and [Ca2+]er denotes
the concentration of Ca2+ in the ER.

IP3R is a tetramer. Its four subunits have a similar general structure. Each subunit
consists of about 2700 a.a. (amino acids). The linear sequence of the IP3R consists
of three large regions, an N-terminally located IP3-binding region of about 600 a.a.,
a large modulatory and transducing region (about 1600 a.a.) and a small C-terminal
region (about 500 a.a.) containing the 6 transmembrane domains. More recently, it
has been shown that the N-terminal IP3-binding region is composed of a suppres-
sor domain and an IP3-binding core, while the C-terminal region is composed of a
channel region and a coupling region [64]. In addition, the IP3R structure undergoes
major conformational changes under influence of Ca2+. Today at least 12 different
protein kinases are known to directly phosphorylate the IP3R. Several mathematical
models for the IP3R kinetics have been established.

Sneyd et al [60] constructed an IP3R model as shown in Fig. 6.17. Although it
appears to contain a multiplicity of states, there are specific reasons for each one. The
background structure is simple. Ignoring the various tildes, hats, and primes, we see
that a receptor, R, can bind Ca2+ and inactivate to state I1, or it can bind IP3 and open
to state O. State O can then shut (state S) or bind Ca2+ and activate to state A. State
A can then bind Ca2+ and inactivate to state I2. This structure is clearer in Fig. 6.18.

To simplify the model, Sneyd et al [60] assumed that the transitions R̃� R̄, Õ�
Ō, Ã� Ā, and R̃� R′ are fast and in instantaneous equilibrium. They then obtained
that cR̃ = L3R̄, cR̃ = L1R′, cÕ = L5Ō, and cÃ = L1Ā, where c = [Ca2+], p = [IP3],
and Li = l−i/li for every appropriate integer i. They introduced the new variables
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Fig. 6.18. Simplified diagram of the IP3R
model. Given the fast equilibria described
in the text, this diagram is equivalent to
that in Fig. 6.17. This figure is modified
from [60]

R = R̃+ R̄+R′, O = Õ+ Ō, and A = Ã+ Ā. Solving these equations, we obtain

R̃ =
L1R

L1 + c(1+L1/L3)
, (6.80)

R′ =
cR

L1 + c(1+L1/L3)
, (6.81)

R̄ =
cL1R/L3

L1 + c(1+L1/L3)
, (6.82)

Ā =
cA

L1 + c
, (6.83)

Õ =
L5O

L5 + c
. (6.84)

To derive the forward rate from R to I1, we focus on the reactions among R̃, R̄,
R′, and I1 of Fig. 6.17, and obtain

k1cR̃+ l2R′ =
(k1L1 + l2)cR

L1 + c(1+L1/L3)
,

where we have used (6.80) and (6.81). This implies that the forward rate from R to I1

is equal to

φ1(c) =
(k1L1 + l2)c

L1 + c(1+L1/L3)
.

It is evident that the forward rate φ1(c) is saturable with respect to c, that is, the limit
of φ1(c) as c→ ∞ is a constant. In the same way, we can derive other reaction rates
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indicated in Fig. 6.18 as follows:

φ2(c) =
k2L3 + l4c

L3 + c(1+L3/L1)
, (6.85)

φ−2(c) =
k−2 + l−4c
1+ c/L5

, (6.86)

φ3(c) =
k3L5

L5 + c
, (6.87)

φ4(c) =
(k4L5 + l6)c

L5 + c
, (6.88)

φ−4(c) =
L1(k−4 + l−6)

L1 + c
, (6.89)

φ5(c) =
(k1L1 + l2)c

L1 + c
. (6.90)

From Fig. 6.18, we derive the governing differential equations

dR
dt

= φ−2O−φ2[IP3]R+(k−1 + l−2)I1−φ1R, (6.91)

dO
dt

= φ2[IP3]R− (φ−2 +φ4 +φ3)O+φ−4A+ k−3S, (6.92)

dA
dt

= φ4O−φ−4A−φ5A+(k−1 + l−2)I2, (6.93)

dI1

dt
= φ1R− (k−1 + l−2)I1, (6.94)

dI2

dt
= φ5A− (k−1 + l−2)I2, (6.95)

where R + O + A + S + I1 + I2 = 1. The parameters were determined by fitting to
experimental data from the type II hepatocyte IP3R [13] as follows: k1 = 0.64 μM−1 ·
s−1, k−1 = 0.04 s−1, k2 = 37.4 μM−1 · s−1, k−2 = 1.4 s−1, k3 = 0.11 μM−1 · s−1,
k−3 = 29.8 s−1, k4 = 4 μM−1 · s−1, k−4 = 0.54 s−1, L1 = 0.12 μM, L3 = 0.025 μM,
L5 = 54.7 μM, l2 = 1.7 s−1, l4 = 1.7 μM−1 · s−1, l6 = 4707 s−1, l−2 = 0.8 s−1, l−4 =
2.5 μM−1 · s−1, l−6 = 11.4 s−1.

The model assumes that the binding of IP3 and Ca2+ is sequential, not indepen-
dent. So, for instance, Ca2+ can bind to the activating site only after IP3 has bound.
Experimental data [46] indicated that the binding of IP3 and Ca2+ are not indepen-
dent events, with Ca2+ being unable to bind to the activating site until IP3 has first
bound.

Sneyd et al [60] assumed that the IP3 receptor allows Ca2+ current when all four
subunits are in state O, or all four are in state A, or some intermediate combination
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Fig. 6.19. A kinetic diagram of the IP3-
receptor proposed in [35]

(for instance, when three are in state O, and one is in state A). Furthermore, they
assumed that the more subunits there are in state A, the greater the open probability
of the receptor. With these assumptions, the open probability of the receptor is most
conveniently written as

Pipr = (0.1O+0.9A)4. (6.96)

The numbers 0.1 and 0.9 are not crucial. Others, for instance, (0.1O+A)4 or (0.05O+
0.9A)4 can be used as the open probability.

Another channel open probability model was established by Keizer et al [35], who
kinetically modeled the IP3-receptor as consisting of four independent and equivalent
subunits, as demonstrated in Fig. 6.19. Each subunit is endowed with an IP3 and
a Ca2+ binding site that interact with each other, such that when the Ca2+ site is
occupied, the affinity Kd for binding of IP3 is increased. Thus a subunit can exist in
four states: state s0 consists of a subunit with neither IP3 nor Ca2+ bound; s1 has only
IP3 bound; s2 has both IP3 and Ca2+ bound; and s3 has only Ca2+ bound. An open
channel is assumed to result only when each one of the four subunits is in the state s1.
All other states of the tetramer are assumed to be closed. Thus a rise in [Ca2+]i shifts
the channel into a blocked state. Another way to incorporate the inhibitory effect of
Ca2+ would be to assume that the tetramer remains open even with subunits in the
s2 state but that the rate of Ca2+ flux is reduced. For simplicity this possibility is
ignored.

Assuming mass action kinetics, the kinetic equations governing the state of a
subunit are

dx0

dt
= −a1[IP3]x0 +b1x1−a4[Ca2+]ix0 +b4x3, (6.97)

dx1

dt
= a1[IP3]x0−b1x1−a2[Ca2+]ix1 +b2x2, (6.98)

dx2

dt
= a3[IP3]x3−b3x2 +a2[Ca2+]ix1−b2x2, (6.99)

dx3

dt
= −a3[IP3]x3 +b3x2 +a4[Ca2+]ix0−b4x3, (6.100)

where xi denotes the fraction of subunits in state si, a1 = 50, a2 = 1, a3 = 20, a4 = 0.9
μM−1s−1, and b1 = 6.5, b2 = 0.5, b3 = 14.5, b4 = 0.0806 s−1. The open probability
of the receptor is equal to

Pipr = x4
1. (6.101)
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Fig. 6.20. Dependence of the IP3R
open probability on cytosolic Ca2+.
Data are read from [45] using the soft-
ware Engauge Digitizer 4.1, and fitted
by the function (6.102) with Pmax =
0.8, Krca = 0.077 μM, and Kinh =
39 μM

Other static open probability models of the receptor were proposed in the liter-
ature. The dependence of the IP3R open probability on cytosolic Ca2+ obtained by
Mak et al [45] (Fig. 6.20) was well fitted to a biphasic Hill equation as follows

Pipr = Pmax
[Ca2+]i

Krca +[Ca2+]i

K3
inh

K3
inh +[Ca2+]3i

. (6.102)

The dependence of the IP3R open probability on IP3 was also well fitted to a Hill
equation but with conflicting Hill exponents:

Pipr = Pmax
[IP3]n

Kn
ip3 +[IP3]n

. (6.103)

According to Hagar and Ehrlich [25] (Fig. 6.21), the Hill exponent n was found to be
1.9 in vitro. On the other hand, the Hill exponent n was estimated to 1 (Fig. 6.22) in
vivo for rat basophilic leukemia cells according to Meyer et al [47] (it was estimated
to be about 4 in their paper [47] because the function Pipr = Pmax

[IP3]n

(Kip3+[IP3])n was used

in their estimation). On the basis of these data, the following model was proposed
[18, 39]:

Pipr =
[Ca2+]i

Krca +[Ca2+]i

K3
inh

K3
inh +[Ca2+]3i

[IP3]n

Kn
ip3 +[IP3]n

. (6.104)
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Fig. 6.21. Dependence of the IP3R open
probability on IP3. Data are read from [25]
using the software Engauge Digitizer 4.1,
and fitted by the function (6.103) with
Pmax = 0.08, Kip3 = 3.2 μM, and n = 1.9
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Fig. 6.22. Dependence of the IP3R
open probability on IP3. Data are read
from [47] using the software Engauge
Digitizer 4.1, normalized, and then
fitted by the function (6.103) with
Pmax = 1, Kip3 = 0.25 μM, and n = 1

6.8 The Ryanodine Receptor

Similar to the IP3 receptors, ryanodine receptors (RyR) localized on the membrane
of sarcoplasmic reticulum (SR) transport Ca2+ from the sarcoplasmic reticulum into
the cytosol by recognizing Ca2+ on their cytosolic side, thus establishing a positive
feedback mechanism: a small amount of Ca2+ in the cytosol near the receptors causes
them to release even more Ca2+ from the sarcoplasmic reticulum into the cytosol, a
process called calcium-induced calcium release (CICR). Since the SR calcium con-
centration is much higher than the cytosolic one, it was assumed that the Ca2+ trans-
port through the receptor is driven by the calcium concentration gradient [37]:

rryr = RryrPryr
(
[Ca2+]sr− [Ca2+]i

)
(6.105)

where Rryr is a maximal rate, Pryr is a channel opening probability, and [Ca2+]sr

denotes the concentration of Ca2+ in the SR.
The plant alkaloid ryanodine, for which this receptor was named, has become an

invaluable investigative tool. At low concentrations (< 10 μM), ryanodine binding to
RyRs locks the RyRs into a long-lived sub-conductance (half-open) state and even-
tually depletes the store, while higher concentrations (about 100 μM) irreversibly
inhibit channel opening.

Ryanodine receptors are controlled by cytosolic Ca2+, SR lumenal Ca2+, the
Ca2+-binding protein calsequestrin (CSQ), and two junctional SR membrane proteins
triadin and junctin. Binding of cytosolic Ca2+ to the activation site of the RyR trig-
gers Ca2+ release from the sarcoplasmic reticulum, while binding of cytosolic Ca2+

to the inactivation site terminates the release [57]. Experimental studies demonstrate
that Ca2+-sensing sites exist in the SR lumen and high (low) SR Ca2+ load enhances
(decreases) the open probability of the RyR [11]. Gyorke et al [24] proposed that
CSQ, the SR lumenal Ca2+ buffer, inhibits (enhances) RyR activity at low (high)
SR Ca2+ load through its association (dissociation) with the RyR. Contact between
the RyR and CSQ is mediated by two junctional SR membrane proteins triadin and
junctin [23]. These four proteins, RyR, triadin, junctin, and CSQ, form a quarternary
“RyR complex”, as demonstrated in Fig. 6.23.
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Fig. 6.23. Schematic description of
RyR, CSQ, junctin, and triadin. The
RyR has two cytosolic binding sites
(activation and inactivation) and one
junctional SR lumenal CSQ binding
site. CSQ can bind either with Ca2+

or the RyR mediated by the linkage of
triadin and junctin. This figure is mod-
ified from [37]

Based on the above control mechanisms, Lee et al [37] constructed a model of the
RyR channel opening probability by modeling it as having three binding sites, one for
CSQ binding from the junctional SR lumen and two for Ca2+ binding from the diadic
space, one for activation and one for inactivation of the receptor. Thus, the RyR can
be in eight states: Si jk, where i, j,k = 0 or 1, and 0 and 1 represent the unoccupied and
occupied binding sites, respectively. The index i represents the CSQ binding site in
the junctional SR lumen, the index j denotes the cytosolic Ca2+ activation site, and
the index k indicates the cytosolic Ca2+ inactivation site. The open (i.e., conducting)
states of the RyR channel are those states S010 and S110 for which the activation site
is bound by Ca2+ and Ca2+ is not bound to the inactivation site. The rate constants
of the RyR kinetics depend on the concentration of free CSQ (denoted as [CSQ] or
q) and free Ca2+ concentration ([Ca2+]i or c) in the diadic space. The diagram of a
general eight-state model of the RyR channel is shown in Fig. 6.24.

We let xi jk denote the fraction of subunits in state Si jk. To reduce the eight-state
model to a four-state model, it was assumed that CSQ binding to the RyR occurs at a
faster time scale than the activation of the RyR. Thus, it was assumed that the states
S0 jk and S1 jk are in equilibrium, which leads to

k1qx000 = k−1x100, k3qx010 = k−3x110, (6.106)

k10qx011 = k−10x111, k8qx001 = k−8x101. (6.107)

Define the new state variables

x00 = x000 + x100, x10 = x010 + x110, x11 = x011 + x111, x01 = x001 + x101. (6.108)

Solving (6.106), (6.107), and (6.108) gives

x100 =
q

Kd
1 +q

x00, x000 =
Kd

1

Kd
1 +q

x00, x110 =
q

Kd
3 +q

x10, (6.109)

x010 =
Kd

3

Kd
3 +q

x10, x111 =
q

Kd
10 +q

x11, x011 =
Kd

10

Kd
10 +q

x11, (6.110)

x101 =
q

Kd
8 +q

x01, x001 =
Kd

8

Kd
8 +q

x01, (6.111)
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where

Kd
1 =

k−1

k1
, Kd

3 =
k−3

k3
, Kd

3 =
k−3

k3
, Kd

10 =
k−10

k10
. (6.112)

Using the law of mass action, we derive a system of differential equations gov-
erning the four states:

dx00

dt
= k−11x110 + k−2x010 + k−5x001 + k−4x101

−(k11c2 + k4c)x100− (k2c2 + k5c)x000,

dx10

dt
= −(k−11 + k7c)x110− (k−2 + k6c)x010 + k11c2x100

+k2c2x000 + k−7x111 + k−6x011,

dx01

dt
= −(k12c2 + k−4)x101− (k9c2 + k−5)x001 + k−12x111

+k−9x011 + k5cx000 + k4cx100,

dx11

dt
= k7cx110 + k6cx010 + k12c2x101 + k9c2x001

−(k−7 + k−12)x111− (k−6 + k−9)x011.
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Substituting (6.109), (6.110), and (6.111) into the above system gives

dx00

dt
=

k−2Kd
3 + k−11q

Kd
3 +q

x10 +
k−5Kd

8 + k−4q

Kd
8 +q

x01

− (k2Kd
1 + k11q)c2 +(k5Kd

1 + k4q)c
Kd

1 +q
x00, (6.113)

dx10

dt
= −k−2Kd

3 + k−11q+(k6Kd
3 + k7q)c

Kd
3 +q

x10

+
(k2Kd

1 + k11q)c2

Kd
1 +q

x00 +
k−6Kd

10 + k−7q

Kd
10 +q

x11, (6.114)

dx01

dt
=

k−9Kd
10 + k−12q

Kd
10 +q

x11 +
(k5Kd

1 + k4q)c
Kd

1 +q
x00

− (k9Kd
8 + k12q)c2 + k−5Kd

8 + k−4q

Kd
8 +q

x01, (6.115)

dx11

dt
=

(k6Kd
3 + k7q)c

Kd
3 +q

x10 +
(k9Kd

8 + k12q)c2

Kd
8 +q

x01

−k−6Kd
10 + k−7q+ k−9Kd

10 + k−12q

Kd
10 +q

x11. (6.116)

In this scheme, since the states S010 and S110 represent the open state of the RyR, the
open probability is given by

Pryr = x10. (6.117)

To reduce the number parameters, it was assumed that dissociation rates for the
three binding sites are independent of Ca2+ or CSQ binding:

k−2 = k−11 = k−9 = k−12, (6.118)

k−4 = k−5 = k−6 = k−7, (6.119)

k−1 = k−3 = k−8 = k−10. (6.120)

It was further assumed that the rate of Ca2+ binding to the activation site is indepen-
dent of whether the Ca2+ inactivation site is occupied or not, and the rate of Ca2+

binding to the Ca2+ inactivation site is independent of whether the Ca2+ activation
site is occupied or not:

k2 = k9, k11 = k12, k4 = k7, k5 = k6. (6.121)
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Fig. 6.25. Inhibition of ER Ca2+ on
SERCA Ca2+ uptake. Data are read from
[14] using the software Engauge Dig-
itizer 4.1, and fitted by the Hill-type
function (6.129) with R1 = 1.32 nmole
Ca2+/mg protein/min, Ker = 11.19 nmole
Ca2+/mg protein, and n = 6.14

Moreover, it follows from the detailed balance in each cycle that

k11k−3k−2k1 = k−11k−1k2k3, (6.122)

k−1k5k8k−4 = k1k4k−8k−5, (6.123)

k−8k9k10k−12 = k8k12k−10k−9, (6.124)

k−6k3k7k−10 = k6k10k−7k−3, (6.125)

k−2k5k9k−6 = k2k6k−9k−5. (6.126)

Under the conditions (6.118), (6.119), (6.120), and (6.121), these balance constraints
are not independent and they can be reduced to the following three independent con-
straints:

k11k1 = k2k3, k5k8 = k1k4, k3k4 = k5k10. (6.127)

Furthermore, detailed balance requires that

Kd
3 =

Kd
1 k11

k2
, Kd

8 =
Kd

1 k6

k7
. (6.128)

Therefore, the model parameters have been reduced to seven independent parameters,
the unbinding rate constants k−2 and k−6, the binding rate constants k2,k6,k7, and k11,
and the equilibrium constant Kd

1 . The values of these parameters were estimated by
Lee et al [37] as follows: k−2 = 60 s−1, k−6 = 5 s−1, k2 = 0.045 μM−2s−1, k6 =
0.3 μM−1s−1, k7 = 0.47 μM−1s−1, k11 = 0.0045 μM−2s−1, and Kd

1 = 1000 μM.

6.9 The Sarcoplasmic or Endoplasmic Reticulum Calcium
ATPase

The sarcoplasmic or endoplasmic reticulum Ca2+-ATPase (SERCA) resides on the
membrane of intracellular sarcoplasmic or endoplasmic reticulum organelles and
pumps Ca2+ from the cytosol into the organelles. The enzymatic cycle of Ca2+ trans-
port for SERCA is schematically described in Fig. 2.8.

Based on their experimental data, Favre et al [14] found that the ER Ca2+ inhibit
SERCA Ca2+ uptake into the ER. Moreover, they found that the rate of Ca2+ uptake
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depends on the ER Ca2+ concentration and can be well fitted by the following Hill-
type function (Fig. 6.25)

rserca =
R1Kn

er

Kn
er +[Ca2+]ner

(6.129)

with R1 = 1.32 nmole Ca2+/mg protein/min, Ker = 11.19 nmole Ca2+/mg protein,
and n = 6.14. Their experimental data further showed that the maximal rate R1

depends on the cytosolic Ca2+ concentration and can be well fitted by the Michaelis-
Menten function (Fig. 6.26)

R1 =
R2[Ca2+]i

Ki +[Ca2+]i
(6.130)

with R2 = 1.74 nmole Ca2+/mg protein/min and Ki = 0.54 μM. In addition, their
experimental data showed that the constant Ker also depends on the cytosolic Ca2+

concentration and can be well fitted by the Hill function (Fig. 6.27)

Ker =
K[Ca2+]ni

Kn
m +[Ca2+]ni

(6.131)

with K = 10.78 nmole Ca2+/mg protein, Km = 0.33 μM, and n = 1.3. Substituting
(6.130) into (6.129) gives

rserca =
R2[Ca2+]i

Ki +[Ca2+]i
Kn

er

Kn
er +[Ca2+]ner

. (6.132)

Other SERCA Ca2+ uptake rates were constructed. The experimental data of Lyt-
ton et al [41] (Fig. 2.9) showed that the Ca2+ uptake rate can be described by

rserca =
Rserca[Ca2+]ni

Kn
1/2 +[Ca2+]ni

, (6.133)

where Rserca is a maximum rate, K1/2 is the concentration [Ca2+]i which gives half of
Rserca, and n = 2 is the Hill exponent. Their experimental data showed that SERCAl
expressed in COS cell microsomes, one of SERCA family members, has a K1/2 of 0.4
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Fig. 6.26. Dependence of SERCA Ca2+

uptake rate on cytosolic Ca2+. Data are
read from [14] using the software Engauge
Digitizer 4.1, and fitted by the Michaelis-
Menten function (6.130) with R2 = 1.74
nmole Ca2+/mg protein/min and Ki =
0.54 μM
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Fig. 6.27. Dependence of Ker on cytoso-
lic Ca2+. Data are read from [14] using
the software Engauge Digitizer 4.1, and
fitted by the Hill function (6.131) with K =
10.78 nmole Ca2+/mg protein, Km = 0.33
μM, and n = 1.3

μM. SERCA2a expressed in COS cells also had a K1/2 of 0.4 μM, contrasting with its
apparent affinity in cardiac muscle sarcoplasmic reticulum (K1/2 of about 0.9 μM).
SERCA2b seemed to display a slightly higher apparent affinity for calcium (K1/2
of 0.27 μM). SERCA3 had a much lower apparent calcium affinity, K1/2 of about
1.1 μM, very similar to that observed for the Ca2+-ATPase of cardiac sarcoplasmic
reticulum. In all cases, the data for calcium dependence of enzyme activity were
best fitted by the Hill function with an exponent of about 2, exhibiting two highly
cooperative calcium-binding sites for activity.

Other different rates were also used in the literature. Atri et al [1] used the fol-
lowing rate:

rserca =
Rserca[Ca2+]i

Kserca +[Ca2+]i
, (6.134)

where Rserca = 2.0 μM ·s−1 and Kserca = 0.1 μM. Sneyd at al [62] used the following
rate:

rserca =
(

Rserca[Ca2+]i
Kserca +[Ca2+]i

)(
1

[Ca2+]er

)
, (6.135)

where Rserca = 120 μM2 ·s−1 and Kserca = 0.18 μM. The factor 1/[Ca2+]er was intro-
duced as a negative feedback control of ER Ca2+ as observed by Favre et al [14].

6.10 The Plasma Membrane Calcium ATPase

The plasma membrane calcium ATPase hydrolyzes ATP and the energy released
from ATP drives calcium ions out of the cell and the proton H+ into the cell [5]. For
every ATP hydrolyzed, one Ca+ ion is moved out and one H+ is moved in.

The calcium extrusion rate across the plasma membrane by the calcium ATPase
was modeled by (see, e.g., [48, 61, 62])

rpmca =
Rpmca[Ca2+]2i

K2
pmca +[Ca2+]2i

, (6.136)

where Rpmca = 28 μM · s−1 and Kpmca = 0.42 μM.
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Fig. 6.28. A six-step biochemical reaction scheme of Na+/K+-ATPase (denoted by E in the
figure) proposed in [8]

6.11 The Sodium/Potassium ATPase

The sodium/potassium ATPase is a single protein in the plasma membrane. It hydro-
lyzes ATP and the energy released from ATP drives sodium ions out of the cell and
potassium ions into the cell. For every ATP hydrolyzed, three Na+ ions are moved
out and two K+ ions are moved in, generating a net outward flow of cations [5]. Thus,
Na+/K+-ATPase is electrogenic.

Based on a six-step biochemical reaction scheme (Fig. 6.28) proposed by Chap-
man et al [8], a model for the Na+/K+ pump current was constructed by Miwa et al
[50] and was used with slight modifications by Fridlyand et al [18] as follows:

Inka =
Pnka(F1 f2 f3F4F5 f6−b1B2B3B4b5B6)

D
, (6.137)

where

D = f2 f3F4F5 f6 +b1 f3F4F5 f6 +b1B2F4F5 f6 +b1B2B3F5 f6

+b1B2B3B4 f6 +b1B2B3B4b5,

F1 = f1[Na+]3i , F4 = f4[K+]2o, F5 = f5[AT P]i,

B2 = b2[ADP]i, B3 = b3[Na+]3o, B4 = b4[P], B6 = b6[K+]2i ,

f5 = f ∗5 exp(V F/(2RT )), b5 = b∗5 exp(−V F/(2RT )).

In these expressions, Pnka is a coefficient for resulting current in the presence of sat-
urating level of ATP and [P] is an inorganic phosphate concentration. All others are
the rate constants. The parameter values used by Fridlyand et al [18] are as follows:
[P] = 4,950 μM, f1 = 2.5 · 10−10 μM−3ms−1, f2 = 10 ms−1, f3 = 0.172 ms−1,
f4 = 1.5 · 10−8 μM−2 ms−1, f ∗5 = 0.002 μM−1 ms−1, f6 = 11.5 ms−1, b1 = 100
ms−1, b2 = 0.0001 μM−1 ms−1, b3 = 1.72 ·10−17 μM−3 ms−1, b4 = 0.0002 μM−1

ms−1, b∗5 = 0.03 ms−1, and b6 = 6 ·10−7 μM−1 ms−1.
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6.12 The Sodium/Calcium Exchanger

Like channels, the sodium/calcium exchanger is an integral membrane protein that
forms a tube across the membrane to allow sodium and calcium ions to cross the
membrane [5, 66]. Unlike channels, the exchanger tube is never open all the way
through; it is always closed at one or other end. The exchange can exist in two shapes,
one open to the extracellular medium and one open to the cytosol. Inside the tube there
are three sites that can bind sodium ions and one site that can bind a calcium ion.

When the exchanger is open to the extracellular medium, three Na+ bind to the
sodium binding sites. It then switches its shape and opens to the cytosol so that the
three Na+ is released to the cytosol. After the Na+ release, one Ca2+ binds to the cal-
cium binding site and the exchanger switches its shape and opens to the extracellular
medium to release the Ca2+. The overall effect of one cycle is to carry three sodium
ions into the cell and one calcium ion out of the cell.

A number of mathematical models for the exchanger have been constructed. We
first present a simplified version (see [33]) of the four-state model constructed by
Kang et al [32]. Let Ei denote the conformation of the exchanger whose binding
sites are exposed to the interior of the cell and Eo denote the conformation of the
exchanger whose binding sites are exposed to the outside. Starting at the state Ei3Na+

(the exchanger bound with three Na+), the exchanger can bind Ca2+ inside the cell,
simultaneously releasing three Na+ to the interior. A change of conformation to Eo

allows the exchanger to release the Ca2+ to the outside and bind three external Na+. A
return to the Ei conformation completes the cycle. This binding cycle is summarized
as follows:

Ei3Na+
i +Ca2+

i �
k1

k−1

EiCa2+
i +3Na+

i , (6.138)

EiCa2+
i �

k2

k−2

EoCa2+
o , (6.139)

EoCa2+
o +3Na+

o �
k3

k−3

Eo3Na+
o +Ca2+

o , (6.140)

Eo3Na+
o �

k4

k−4

Ei3Na+
i . (6.141)

Let x1,x2,x3, and x4 denote the fraction of the exchangers in the state Ei3Na+
i ,

EiCa2+
i ,EoCa2+

o , and Eo3Na+
o , respectively. It follows from the reactions (6.138)-

(6.141) that the governing equations for x1,x2,x3, and x4 are

dx1

dt
= k−1x2[Na+

i ]3 + k4x4− (k1[Ca2+
i ]+ k−4)x1, (6.142)

dx2

dt
= k−2x3 + k1[Ca2+

i ]x1− (k2 + k−1[Na+
i ]3)x2, (6.143)
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dx3

dt
= k2x2 + k−3[Ca2+

o ]x4− (k−2 + k3[Na+
o ]3)x3, (6.144)

1 = x1 + x2 + x3 + x4. (6.145)

The steady-state solution of these equations can be found by using a mathematical
software such as Maple. Then the Na+ inward flux and the Ca2+ outward flux can be
found as follows

rcana = k4x4− k−4x1

=
k1k2k3k4

(
[Ca2+

i ][Na+
o ]3−K1K2K3K4[Ca2+

o ][Na+
i ]3

)
16 positive terms

, (6.146)

where Ki = k−i/ki.
Since each cycle of the 3Na+/Ca2+ exchanger transports two positive charges

out and three positive charges in, an electric current is generated. Thus the reaction
constants depend on the membrane potential difference. To find such dependence,
we look at the chemical potential of the reactions in the cycle. The overall reaction
in the cycle begins with three Na+ outside the cell and one Ca2+ inside the cell, and
ends with three Na+ inside the cell and one Ca2+ outside the cell. It can be written as

3Na+
o +Ca2+

i −→ 3Na+
i +Ca2+

o .

It then follows from (2.54) and (B.2) that the change in electrochemical potential of
this reaction is

Δ μ = Δ μ◦+RT ln

(
[Ca2+

o ][Na+
i ]3

[Ca2+
i ][Na+

o ]3

)
+FV,

where V = Vi −Vo is the transmembrane potential. At equilibrium, we must have
Δ μ = 0. Assuming that the standard free energy for the reaction is the same on both
sides of the membrane (Δ μ◦ = 0), it then follows that

[Ca2+
o ][Na+

i ]3

[Ca2+
i ][Na+

o ]3
= exp

(
−FV

RT

)
.

Around any closed reaction loop, the product of the forward rates must be equal to
the product of the reverse rates. This gives

k1[Ca2+
i ]k2k3[Na+

o ]3k4 = [Na+
i ]3k−1k−4[Ca2+

o ]k−3k−2,

and then

K1K2K3K4 =
[Ca2+

i ][Na+
o ]3

[Ca2+
o ][Na+

i ]3
= exp

(
FV
RT

)
.

It then follows from (6.146) that

rcana =
k1k2k3k4

(
[Ca2+

i ][Na+
o ]3− exp

(
FV
RT

)
[Ca2+

o ][Na+
i ]3

)
16 positive terms

. (6.147)



160 6 Kinetics of Ion Pumps and Channels
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Fig. 6.29. An electrical circuit model of cell
membrane

For the pancreatic β -cells, a detailed study by Gall et al [20] showed that the
electrogenic 3Na+/Ca2+ exchanger current can be modeled by

Icana = Gcana
[Ca2+]5i

K5
cana +[Ca2+]5i

(V −Vcana)

= Gcana
[Ca2+]5i

K5
cana +[Ca2+]5i

(
V − RT

F

(
3ln

[Na+]o
[Na+]i

− ln
[Ca2+]o
[Ca2+]i

))
, (6.148)

where [Na+]o ([Ca2+]o) and [Na+]i ([Ca2+]i) denote the Na+ (Ca2+) concentration
outside the cell and the concentration inside the cell, respectively. This model was
used by Fridlyand et al [18] with the parameter values: Gcana = 271 pS and Kcana =
0.75 μM.

6.13 Membrane Potential Models

Since a cell membrane can act as an insulator to separate charge, it can be viewed
as a capacitor parallel to a resistor (Fig. 6.29). The capacitance Cm of any insulator
is defined as the ratio of the charge Q across the capacitor to the voltage potential V
necessary to hold that charge:

Cm =
Q
V

.

If we assume that Cm is constant, then the capacitive current is given by

dQ
dt

= Cm
dV
dt

.

Assume that there is no net buildup of charge on either side of the membrane. Then,
according to Kirchhoff’s current law, the sum of the ionic and capacitive currents
must be zero:

Cm
dV
dt

+ Iion = 0.

If there are N different ions moving across the membrane, then we have

Cm
dV
dt

+
N

∑
n=1

In = 0, (6.149)

where In denotes the ionic current of the ion cn.
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Substituting the linear current-voltage equation (6.11) for In in (6.149), we obtain

Cm
dV
dt

+
N

∑
n=1

gn(V −VIn) = 0,

where gn denotes the membrane conductance of the ion cn. Using the Nernst equation
(6.6), we obtain a linear voltage potential model:

Cm
dV
dt

+V
N

∑
n=1

gn−
N

∑
n=1

gnRT
znF

ln

(
cno

cni

)
= 0, (6.150)

where cno and cni denote the concentrations of the outside and inside ion cn, respec-
tively.

Substituting the nonlinear GHK current-voltage equation (6.9) for In in (6.149),
we obtain a nonlinear voltage potential model:

Cm
dV
dt

+
N

∑
n=1

Pnz2
nF2V

[
cni− cno exp

(−znV F
RT

)]
RT

[
1− exp

(−znV F
RT

)] = 0. (6.151)

Due to its simplicity, the linear model (6.150) is used in modeling the membrane
voltage potentials more frequently than (6.151).

6.14 The Hodgkin-Huxley Model

A mathematical model for the electrical behavior of membrane of the squid giant axon
was established by Hodgkin and Huxley [27]. The electrical current was represented
by the network shown in Fig. 6.30. The current can be carried through the membrane
either by charging the membrane capacity or by movement of ions through channels
in parallel with the capacity. The ionic channels can open and close in response to
changes in the membrane potential.

The ionic current can be split into components carried by sodium ions Ina, potas-
sium ions Ik, and other ions such as the chloride Il . These ionic currents can be mod-

Outside

Inside

Il Ik Ina
Cm

Fig. 6.30. An electrical circuit model of
cell plasma membrane of the squid giant
axon proposed in [27]
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Table 6.1. Parameters of the model (6.156)-(6.167) from [27]

Cm = 1 μF/cm2 Gna = 120 mS/cm2

Gk = 36 mS/cm2 T = 6◦ C
Gl = 0.3 mS/cm2 Vk = -12 mV
Vna = 115 mV Vl = 10.613 mV
V (0) = 15 mV h(0) = 0.6
m(0) = 0.053 n(0) = 0.32

eled by the relations

Ina = GnaPna(V −Vna), (6.152)

Ik = GkPk(V −Vk), (6.153)

Il = Gl(V −Vl), (6.154)

where V is the potential difference between the inside and the outside of the mem-
brane, Vna and Vk are the equilibrium potentials for the sodium and potassium ions, Vl

is the potential at which the “leakage current” due to chloride and other ions is zero,
Gna,Gk,Gl are maximal ionic conductances, and Pna,Pk are channel open probabili-
ties to be found.

The total membrane current is divided into a capacity current and the ionic cur-
rent. It then follows from Kirchhoff’s current law and the equations (6.152), (6.153),
and (6.154) that

Cm
dV
dt

= −Ina− Ik− Il + Iin

= −GnaPna(V −Vna)−GkPk(V −Vk)−Gl(V −Vl)+ Iin, (6.155)

where Iin is an input current and the outward current is assumed to be positive. The
potassium channel open probability Pk was modeled by (6.15), (6.16), (6.17), and
(6.18). The sodium channel open probability Pna was modeled by (6.46), (6.47),
(6.48), (6.49), (6.50), (6.51), and (6.52).

We now collect all equations to form a complete feedback control system

Cm
dV
dt

= −GnaPna(V −Vna)−GkPk(V −Vk)−Gl(V −Vl)+ Iin, (6.156)

where the feedback controllers Pna and Pk are given by

Pna = hm3, (6.157)

Pk = n4, (6.158)

dh
dt

= αh(1−h)−βhh, (6.159)

dm
dt

= αm(1−m)−βmm, (6.160)

dn
dt

= αn(1−n)−βnn, (6.161)
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Fig. 6.31. Numerical simulation of sodium and potassium channel gating with the Hodgkin-
Huxley model (6.156)-(6.167). The initial depolarization of 15 mV results in an increase of
the potential and the opening of potassium and sodium channels. After a few milli-seconds,
the potential returns to its resting level and the channels return to their closing state

αh = 0.07exp

(−V
20

)
, (6.162)

βh =
1

exp
(

30−V
10

)
+1

, (6.163)

αm =
0.1(25−V )

exp
(

25−V
10

)−1
, (6.164)

βm = 4exp

(−V
18

)
, (6.165)

αn =
0.01(10−V )

exp
(

10−V
10

)−1
, (6.166)

βn = 0.125exp

(−V
80

)
. (6.167)

The units of potential, current density, conductance density, and capacitance density
are mV, μA/cm2, mS/cm2, μF/cm2, respectively. The system of equations (6.156)-
(6.167) is called the Hodgkin-Huxley model for the sodium and potassium channel
gating.

A numerical solution of the model is presented in Fig. 6.31 and the parameter
values for the numerical solution are given in Table 6.1. The figure shows that the
initial depolarization of 15 mV results in an increase of the potential and the opening
of potassium and sodium channels. After a few milli-seconds, the potential returns to
its resting level and the channels return to their closing state.
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Exercises

6.1. Typical values for intracellular and extracellular ionic concentrations of the
human red blood cell (T = 37◦C) at equilibrium are 19 mM, 155 mM for Na+, and
136 mM, 5 mM for K+, respectively [33]. Calculate their Nernst potentials.

6.2. Fit the following functions

αn =
α1(α2 +V )

exp
(

α2+V
α2

)
−α3

,

βn = β1 exp

(
V
β2

)

into the data of potassium conductance of the squid giant axon from Table 1 of [27]:

V −109 −100 −88 −76 −63 −51 −38 −32 −26 −19 −10 −6
αn 0.915 0.866 0.748 0.61 0.524 0.419 0.31 0.241 0.192 0.15 0.095 0.085
βn 0.037 0.043 0.052 0.057 0.064 0.069 0.075 0.071 0.072 0.072 0.096 0.105

The units of V , αn, and βn are mV, ms−1, and ms−1, respectively.

6.3. Fit the following functions

n∞(V ) =
1

1+ exp[(Vkh−V )/Ckh]
,

n∞(V ) =
ak exp((V −Vah)/Cah)

ak exp((V −Vah)/Cah)+bk exp((Vbh−V )/Cbh)

into the activation probability data of delayed rectifier potassium channels in mouse
pancreatic β -cells obtained by Rorsman and Trube [56]:

V (mV ) −40.80 −31.32 −20.98 −20.40 −11.49 −10.92 −2.012 6.61 17.24
n∞ 0.02 0.22 0.29 0.50 0.77 0.95 0.91 0.99 1

The data are read from Fig. 10B of [56] using the software Engauge Digitizer 4.1.

6.4. Fit the Hill function

Pkca =
[Ca2+]ni

Kn
kca +[Ca2+]ni

into the activation probability data of small conductance Ca2+-activated potassium
channels in smooth muscle cells of the mouse obtained by Vogalis et al [65]:

[Ca2+]i(μM) 0.15 0.3 1 3 10
Pkca 0.0420769 0.101626 0.383386 0.72532 0.904607

The data are read from Fig. 5D of [65] using the software Engauge Digitizer 4.1.
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6.5. Let

Pkat p([ADP]) =
0.08

(
1+ 0.33[ADP]

Kdd

)
+0.89

(
0.165[ADP]

Kdd

)2

(
1+ 0.165[ADP]

Kdd

)2 (
1+ 0.135[ADP]

Ktd
+ 0.05×0.00001

Ktt

) .

Fit the function f ([ADP]) = Pkat p([ADP])/Pkat p(1) into the data of ADP dependence
of outward current activation of ATP-sensitive potassium channels in mouse pancre-
atic β -cells:

[ADP](μM) 1.03197 10.088 50.0852 101.996 494.734 1004.35 10005.6
f 0.97685 1.10743 2.61544 2.49791 1.0622 0.548409 0.0707625

The data are read from Fig. 2 of Hopkins et al [28] using the software Engauge Dig-
itizer 4.1.

6.6. Fit the Hill function

O =
Kn

Kn + xn

into the activation probability data of ATP or ADP dependence of outward current
activation of ATP-sensitive potassium channels in HEK293 cells:

AT P(M) 1.04×10−5 2.05×10−5 4.13×10−5 0.000201687 0.000771298
O 0.502291 0.354306 0.206343 0.0558664 0.00988113

and
ADP(M) 4.01×10−5 0.000100331 0.000198058 0.00146967
O 0.675907 0.504508 0.336254 0.0544307

The data obtained by John et al [29] are read from Fig. 1F of [29] using the software
Engauge Digitizer 4.1.

6.7. Fit the following functions

αh = αh1 exp

(
V

αh2

)
,

βh =
1

exp
(

βh1+V
βh2

)
+1

,

αm =
αm1(αm2 +V )

exp
(

αm2+V
αm3

)
−1

,

βm = βm1 exp

(
V

βm2

)
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into the data of sodium conductance of the squid giant axon from Table 2 of [27]:

V (mV ) −109 −100 −88 −76 −63 −51 −38 −32 −26 −19 −10 −6
αh(ms−1) 0 0 0 0 0 0 0 0 0.02 0.03 0.05 0.06
βh(ms−1) 1.5 1.5 1.5 1.19 1.19 0.94 0.79 0.75 0.65 0.4 0.13 0.09
αm(ms−1) 7 6.2 5.15 5.15 3.82 2.82 2.03 1.36 0.95 0.81 0.66 0.51
βm(ms−1) 0.14 0.02 (−0.14) 0.13 0.15 0.33 0.58 0.56 0.72 1.69 3.9 4.5

6.8. Fit the following function

m∞(V ) =
1

1+ exp[(Vmh−V )/Cmh]

into the activation probability data of voltage-gated calcium channels in mouse pan-
creatic β -cells obtained by Rorsman and Trube [56]:

V (mV ) −32.14 −22.68 −13.03 −3.14 4.73 15.73 25.64 34.11 44.23 53.66 64.45
m∞ 0.07 0.12 0.23 0.37 0.53 0.66 0.79 0.93 0.92 1.00 0.93

The data are read from Fig. 6B of [56] using the software Engauge Digitizer 4.1.

6.9. Fit the following function

Ica(V ) =
Gca(V −110)

5310(1+ exp[(4−V )/14])(1+ exp[(V −Vhh)/Chh])

into the current-voltage data of voltage-gated calcium channels in mouse pancreatic
β -cells obtained by Rorsman and Trube [56]:

V (mV ) −50 −40.06 −30.11 −20.58 −10.22 0.12 9.67 20.03
Ica(pA/pF) −0.42 −2.78 −5.19 −6.63 −6.37 −4.86 −2.39 −1.01

The data are read from Fig. 3C of [56] using the software Engauge Digitizer 4.1.

6.10. Fit the following function

τ = a−bexp
[−((V − c)/d)2]

into the data of time constant of activation of voltage-gated calcium channels in
mouse pancreatic β -cells from Fig. 4B of Göpel et al [21]:

V (mV ) −29.9562 −19.8898 −10.0097 0.207763 10.2546 20.2763
τ(ms) 0.895937 0.675499 0.547328 0.478959 0.394263 0.483318

The data are read from Fig. 4B of Göpel et al [21] using the software Engauge Digi-
tizer 4.1.

6.11. Solve the steady state equation of (6.77) for the steady state hca∞, derive the
steady I-V relationship from (6.72), and plot the I-V curve.



Exercises 167

6.12. Find the steady state of the system (6.91)-(6.95). Plot the channel open prob-
ability P = (0.1O + 0.9A)4 against the calcium concentration c for a given IP3 con-
centration and against the IP3 concentration [IP3] for a given calcium concentration.
Fit the probability function into the data of Figs. 6B and 7B of Ramos-Franco et al
[55] and the data of Figs. 2B and 3C of Dufour et al [13].

6.13. Find the steady state of the system (6.97)-(6.100). Plot the channel open prob-
ability P = x4

1 against the calcium concentration c for a given IP3 concentration and
against the IP3 concentration [IP3] for a given calcium concentration. Fit the prob-
ability function into the data of Figs. 4a and 5 of Joseph et al [30] and the data of
Figs. 2b and 3b of Bezprozvanny et al [4].

6.14. Fit the IP3 receptor open probability function (6.104) into the data of Fig. 1B
of Hagar et al [25], the data of Fig. 4 of Mak et al [45], and the data of Fig. 2a of
Meyer et al [47].

6.15. Solve (6.106), (6.107), and (6.108) to obtain (6.109), (6.110), and (6.111).

6.16. Derive the equations (6.113)-(6.116).

6.17. Derive the equation (6.127) from the equations (6.118), (6.119), (6.120),
(6.121), (6.122), and (6.123).

6.18. The sarcoplasmic or endoplasmic reticulum Ca2+-ATPase (SERCA) is an
enzyme that resides on the membrane of intracellular sarcoplasmic or endoplasmic
reticulum organelles and pumps Ca2+ from the cytosol into the organelles. The cal-
cium uptake cycle by SERCA, as demonstrated in Fig. 2.8, is thought to include a
binding of two Ca2+ ions to the cytosolic portion of the Ca2+-ATPase (Ca2+

2 -E1), an
ATP-dependent phosphorylation (Ca2+

2 -E1-P), a translocation of Ca2+ to the lume-
nal portion of the Ca2+-ATPase (Ca2+

2 -E2-P), a presumably sequential dissociation
of Ca2+ to the Ca2+ store lumen (E2-P), a dephosphorylation of the enzyme (E2), and
finally a regain of the original conformation (E1) (see [14, 54]). Use this enzymatic
cycle and equilibrium analysis to construct a model for the rate of Ca2+ transport by
the SERCA pump.

6.19. Use an equilibrium analysis to derive the steady-state fluxes for Na+ and K+

from the six-step biochemical reaction scheme of Na+/K+-ATPase described in
Fig. 6.28.

6.20. ([33]) Simplify the model (6.138)-(6.141) of the Na+/Ca2+ exchanger by as-
suming that the binding and unbinding of Na+ and Ca2+ are fast compared to the
exchange processes between the inside and the outside of the cell. This assumption
of fast equilibrium gives

k1[Ca2+
i ]x1 = k−1[Na+

i ]3x2, k−3[Ca2+
o ]x4 = k3[Na+

o ]3x3.

Calculate the steady-state flux, introduce the new variables x = x1 + x2 and y = x3 +
x4, and derive the equations for x and y.
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21. Göpel S., Kanno T., Barg S., Galvanovskis J., Rorsman P.: Voltage-gated and resting
membrane currents recorded from β -cells in intact mouse pancreatic islets. J. Physiology,
521, 717-728 (1999).

22. Grandi E., Morotti S., Ginsburg K.S., Severi S., Bers D.M.: Interplay of voltage and Ca-
dependent inactivation of L-type Ca current. Progress in Biophysics and Molecular Biol-
ogy 103, 44-50 (2010).

23. Guo W., Campbell K.P.: Association of triadin with the ryanodine receptor and calse-
questrin in the lumen of the sarcoplasmic reticulum. J. Biol. Chem. 270, 9027-9030 (1995).

24. Gyorke I., Hester N., Jones L.R., Gyorke S.: The role of calsequestrin, triadin, and junctin
in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys. J.
86, 2121-2128 (2004).

25. Hagar R.E., Ehrlich B.E.: Regulation of the type III InsP(3) receptor by InsP(3) and ATP.
Biophys J. 79, 271-278 (2000).

26. Hille B.: Ion Channels of Excitable Memebranes. Sinauer Associates, INC., Sunderland,
Massachusetts (2001).

27. Hodgkin A.L., Huxley A.F.: A quantitativfe description of membrane current and its appli-
cation to conduction and excitation in nerve. J. Physicol. 117, 500-544 (1952).

28. Hopkins W.F., Fatherazi S., Peter-Riesch B., Corkey B.E., Cook D.L.: Two sites for
adenine-nucleotide regulation of ATP-sensitive potassium channels in mouse pancreatic
β -cells and HIT cells. J. Membr. Biol. 129, 287-295 (1992).

29. John S.A., Weiss J.N., Ribalet B.: ATP sensitivity of ATP-sensitive K+ channels: role
of the γ phosphate group of ATP and the R50 residue of mouse Kir6.2. J. Physiol. 568,
931-940 (2005).

30. Joshph S.K., Rice H.L., Williamson J.R.: The effect of external calcium and pH on inositol
trisphosphate-mediated calcium release from cerebellum microsomal fractions. Biochem.
J. 258, 261-265 (1989).

31. Kakei M., Kelly R.D., Ashcroft S., Ashcroft F.: The ATP-sensitivity of K+ channels in
rat pancreatic β -cells is modulated by ADP. FEBS Lett. 208, 63-66 (1986).

32. Kang T.M., Hilgemann D.W.: Multiple transport modes of the cardiac Na+/Ca2+

exchanger. Nature 427, 544-548 (2004).
33. Keener J., Sneryd J.: Mathematical Physiology I: Cellular Physiology, II: Systems Phys-

iology, Second Edition. Springer, New York (2009).
34. Keizer J., Magnus G.: ATP-sensitive potassium channel and bursting in the pancreatic

beta cell. A theoretical study. Biophys. J. 56, 229-242 (1989).
35. Keizer J., De Young G.W.: Two roles for Ca2+ in agonist stimulated Ca2+ oscillations.

Biophys. J. 61, 649-660 (1992).
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7

Control of Intracellular Calcium Oscillations

The voltage-gated calcium channel is closed at the end of the cytosol side when
the transmembrane voltage is at the resting voltage. If the membrane depolariza-
tion exceeds a threshold, most of the voltage-gated calcium channels stay shut, but
some open, and calcium ions rush into the cell down their electrochemical gradient.
The flow of positive charge inward on the calcium ions outweighs the outward flow
of positive charge on potassium ions, so the cytosol is gaining positive charge and
its voltages is moving in the positive direction. As a result, more voltage-gated cal-
cium channels open, and this allows more calcium ions to flood in to further ele-

Fig. 7.1. Glucose-dependent action potentials in pancreatic β -cells. Membrane potential was
recorded using intracellular microelectrodes. Sand rat islet (left): Traces are segments of a con-
tinuous recording, each showing the final 6 minutes of a 20-minute exposure to the glucose
concentration indicated at the left. Mouse islet (right): Traces are segments of a continuous
recording, each showing the final 5 minutes of a 10-minute exposure to the glucose concen-
tration indicated at the left. The time scale applies to all traces. Reproduced with permission
from [20]

LiuW.: Introduction to Modeling Biological Cellular Control Systems.
DOI 10.1007/978-88-470-2490-8 7, © Springer-Verlag Italia 2012



174 7 Control of Intracellular Calcium Oscillations

Fig. 7.2. Intracellular Ca2+ ([Ca2+]i) dynamics in sand rat and mouse islets. Time course of
[Ca2+]i measured in (A) a sand rat islet and (B) a mouse islet. Islets were loaded with the
fluorescent Ca2+ indicator fura-2. The extracellular glucose concentration was raised from 2.8
mM to 11 mM as indicated by the arrows. Traces are representative of 6 experiments with
islets from each species. Reproduced with permission from [20]

vate the voltage. This elevated voltage is called an action potential, as shown in
Fig. 7.1. After about 100 ms, the voltage-gated calcium channels begin to inacti-
vate and inward flow of calcium ions stops. As potassium leaves the cytosol through
its voltage-gated potassium channels, the transmembrane voltage returns to its rest-
ing level. Therefore, the depolarizing and repolarizing phases of the action potentials
have been attributed to inward Ca2+ and outward K+ currents, respectively, which
seem sufficient for the generation of the action potentials starting from the plateau
potential [14].

The intracellular calcium [Ca2+]i and the membrane potential in pancreatic
β -cells exhibit a bursting and oscillatory dynamics. Zimliki et al [20] made the first
intracellular electrical recordings from sand rat islets, which showed that sand rat
β -cells display bursting electrical activity over a wide range of glucose concentra-
tions, depolarizing the plasma membrane to a plateau potential (≈ -40 mV) and initi-
ate Ca2+-dependent action potentials, as shown in Fig. 7.1. Glucose with a concentra-
tion of 11 mM produced a regular pattern of [Ca2+]i oscillations (Fig. 7.2). Overall,
the pattern of glucose-induced [Ca2+]i changes in sand rat islets resembled the burst-
ing electrical activity. However, the [Ca2+]i oscillations, with a period range of 98 to
195 seconds, were somewhat slower than the electrical bursts.

Mathematical models for the action potentials and oscillatory calcium dynamics
have been developed. In this chapter, we first present a simple model constructed by
Atwater et al [1] and Chay et al [3], and then other comprehensive models.
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Ica Ik Ikca

Cytosol

Fig. 7.3. Schematic representation of ionic currents
through the plasma membrane of a β -cell. Ica: voltage-
gated Ca2+ current; Ik: voltage-gated K+ current; Ikca:
Ca2+-activated K+ current

7.1 The Chay-Keizer Feedback Control System

One of the first mathematical models for intracellular calcium oscillations was devel-
oped by Atwater et al [1] and Chay et al [3]. Since inward Ca2+ and outward K+

currents seem sufficient for the generation of the action potentials [14], they consid-
ered only the voltage-gated Ca2+ current Ica, the voltage-gated K+ current Ik, and the
Ca2+-activated K+ current Ikca in their model as shown in Fig. 7.3.

Since the potassium and calcium channel gating in the β -cell could be similar to
the gating of potassium and sodium channels in the squid giant axon, the Hodgkin-
Huxley model (6.156)-(6.167) was used with the sodium channel replaced by the
calcium channel. Thus the membrane potential can be modeled by the following sys-
tem [3, 8]

Cpm
dV
dt

= −GcaPca(V −Vca)− (GkcaPkca +GkPk)(V −Vk)−Gl(V −Vl), (7.1)

where the feedback controllers Pca and Pk are given by

Pca = hm3, (7.2)

Pk = n4, (7.3)
dh
dt

= αh(1−h)−βhh, (7.4)

dm
dt

= αm(1−m)−βmm, (7.5)

dn
dt

= αn(1−n)−βnn, (7.6)

αh = 0.07exp

(−V −V ∗ca

20

)
, (7.7)

βh =
1

exp
(

30−V−V ∗ca
10

)
+1

, (7.8)
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αm = 0.1
25−V −V ∗ca

exp
(

25−V−V ∗ca
10

)
−1

, (7.9)

βm = 4exp

(−V −V ∗ca

18

)
, (7.10)

αn = 0.01
10−V −V ∗k

exp
(

10−V−V ∗k
10

)
−1

, (7.11)

βn = 0.125exp

(−V −V ∗k
80

)
. (7.12)

Note that the voltage V is replaced by V +V ∗k in (6.166) and (6.167) and by V +V ∗ca in
(6.162)-(6.165). The Ca2+-activated K+ channel is assumed to follow the Michaelis-
Menten law. Then the feedback controller Pkca is given by

Pkca =
[Ca2+]i

Kkca +[Ca2+]i
, (7.13)

where Kkca is a positive constant.
To complete the model, an equation for intracellular Ca2+ in the cytosol is needed.

It was assumed that the calcium leaves the cytosol at a rate proportional to its concen-
tration and flows in at a rate proportional to the Ca2+ current Ica. Hence the equation
for the intracellular Ca2+ is

d[Ca2+]i
dt

= f (−k1GcaPca(V −Vca)− kca[Ca2+]i), (7.14)

where k1,kca are constants. The constant f is a scalar factor. The units of poten-
tial, current density, conductance density, capacitance density, and calcium are mV,
μA/cm2, mS/cm2, μF/cm2, μM, respectively.

A numerical solution of the model is presented in Fig. 7.4 and the parameter val-
ues for the numerical solution are given in Table 7.1. The figure shows that the model
can simulate the experimental action potential and calcium oscillations (Figs. 7.1
and 7.2).

Table 7.1. Parameters of the model (7.1)-(7.14) from [8]

Cpm = 1 μF/cm2 Gkca = 0.02 mS/cm2

Gk = 3 mS/cm2 Gca = 3.2 mS/cm2

Gl = 0.012 mS/cm2 Vk =−75 mV
Vca = 100 mV V =−40 mV
V ∗k = 30 mV V ∗ca = 50 mV
Kkca = 1 μM f = 0.007
k1 = 0.0275 μM cm2/nC kca = 0.02/ms
V (0) =−55 mV h(0) = 0.6
m(0) = 0.05 n(0) = 0.32
[Ca2+](0) = 0.8 μM
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Fig. 7.4. Numerical simulation of action potential and calcium oscillation by the model (7.1)-
(7.14)

7.2 The BSSMAMS Feedback Control System

Bertram et al [2] constructed a calcium oscillation model by adding an ATP-sensitive
potassium current Ikat p and a store-operated calcium entry (SOCE) current Isoce to
the Chay-Keizer’s model, which considered only the voltage-gated Ca2+ current Ica,
voltage-gated K+ current Ik, and Ca2+-activated K+ current Ikca. The resulted mem-
brane potential equation was then given by

Cpm
dV
dt

=−Ica f − Icas− Ik− Ikca− Ikat p− Isoce, (7.15)

where the various currents are modeled as follows. The voltage-gated Ca2+ current
is classified into a fast inactivation current Ica f and a slow inactivation current Icas,
which are modeled as follows

Ica f = Gca f Pca f (V −Vca), (7.16)

Icas = GcasPcas(V −Vca), (7.17)

where the feedback controllers Pca f and Pcas are given by

Pca f = m f , (7.18)

Pcas = msh, (7.19)
dh
dt

=
h∞(V )−h

τh(V )
, (7.20)

m f =
1

1+ exp[(−20−V )/7.5]
, (7.21)

ms =
1

1+ exp[(−16−V )/10]
, (7.22)

h∞ =
1

1+ exp[(53+V )/2]
, (7.23)

τh = 1500+
50000

exp[(53+V )/4]+ exp[−(53+V )/4]
. (7.24)
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The delayed rectifying potassium current is modeled by

Ik = GkPk(V −Vk), (7.25)

where the feedback controller Pk is given by

Pk = n, (7.26)
dn
dt

=
n∞(V )−n

τn(V )
, (7.27)

n∞ =
1

1+ exp[(−15−V )/6]
, (7.28)

τn =
4.86

1+ exp[(15+V )/6]
. (7.29)

The model for the Ca2+-activated K+ current Ikca is a little bit different from Chay-
Keizer’s model (7.13) and is given by

Ikca = GkcaPkca(V −Vk), (7.30)

where the feedback controller Pkca is given by

Pkca =
[Ca2+]5i

(0.55)5 +[Ca2+]5i
.

The ATP-sensitive potassium current is modeled by

Ikat p = Gkat p(V −Vk). (7.31)

The SOCE current is modeled by

Isoce = GsocePsoce(V −Vsoce), (7.32)

where the feedback controller Psoce is given by

Psoce =
1

1+ exp([Ca2+]er−3)
.

The calcium sequestration into and release from the ER plays a key role in con-
trolling calcium oscillations and are included in the model. Taking this into account,
the equations for the intracellular and ER Ca2+ are given by

d[Ca2+]i
dt

=
1
λ

[(
Pl

Pip3
+O∞

)
([Ca2+]er− [Ca2+]i)− rserca

Pip3

]
+

rpm

Vie f f
, (7.33)

d[Ca2+]er

dt
= − 1

σλ

[(
Pl

Pip3
+O∞

)
([Ca2+]er− [Ca2+]i)− rserca

Pip3

]
. (7.34)

In these equation, Pl is the calcium leakage permeability through the ER mem-
brane, Pip3 is the calcium permeability through IP3-activated calcium channels in
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Table 7.2. Parameter values of the model (7.15)-(7.37) from [2]

Cpm = 6158 fF Gca f = 810 pS Gcas = 510 pS
Gk = 3900 pS Gkca = 1200 pS Gsoce = 75 pS
Vca =100 mV Vk = -70 mV Vsoce = 0 mV
Rserca =0.24 μM λ = 250 ms Pl/Pip3 = 0.02
fi =0.01 Vie f f = 7.19×106 μM3 α/Vie f f = 3.6×10−8 fA−1 μM ms−1

σ =5 kca/Vie f f = 0.0007 ms−1 Gkat p = 150 pS
[IP3] =0 μM V (0) =−65 mV [Ca2+]i(0) = 0.12 μM
[Ca2+]er(0) = 4 μM h(0) = 0.68 n(0) = 0.2

the ER membrane, Vie f f and Vere f f are the effective intracellular and ER volumes,
λ = Vie f f /Pip3, and σ = Vere f f /Vie f f . The feedback controller O∞, the IP3 receptor
open probability, is modeled by

O∞ =
[Ca2+]i

0.1+[Ca2+]i
[IP3]

0.2+[IP3]
0.4

0.4+[Ca2+]i
. (7.35)

The calcium flux rserca through SERCA is modeled by

rserca = Pip3Rserca
[Ca2+]2i

(0.09)2 +[Ca2+]2i
. (7.36)

The calcium flux rpm through the plasma membrane is modeled by

rpm =−α(Ica f + Icas)− kca[Ca2+]i, (7.37)

where −α(Ica f + Icas) denotes the influx through the voltage-gated calcium channel
with α denoting the conversion factor from current to flux, and kca[Ca2+]i denotes
the efflux through the plasma membrane pump.

A numerical solution of the model is presented in Fig. 7.5 and the parameter val-
ues for the numerical solution are given in Table 7.2. The figure shows that the model
can simulate the experimental action potentials and calcium oscillations (Figs. 7.1
and 7.2). However, the ER calcium concentration is too low as the resting free Ca2+

in the ER is approximately 500 μM [16, 19].

7.3 The FTMP Feedback Control System

Fridlyand et al [5, 6] constructed a model that considers the plasma membrane poten-
tial, a variety of ionic channels and pumps, ATP/ADP-Ca2+ interactions, as well
as endoplasmic reticulum calcium sequestration. Using the current balance equation
(6.149), the equation governing the plasma membrane potential V is given by

Cpm
dV
dt

=−Ica− Ipm− Inaca− Icran− Ina− Inak− Idrk− Ikca− Ikat p, (7.38)
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Fig. 7.5. Numerical simulation of action potentials and calcium oscillations by the model
(7.15)-(7.37)

where Cpm is the total membrane capacitance, Ica is a voltage-gated Ca2+ current, Ipm

is a plasma membrane calcium pump current, Inaca is a Na+/Ca2+ exchanger current,
Icran is a Ca2+-release-activated nonselective cation current, Ina is an inward Na+

current, Inak is a Na+/K+ pump current, Idrk is a delayed rectifier K+ current, Ikca is
a voltage-independent small conductance Ca2+-activated K+ current, and Ikat p is an
ATP-sensitive K+ current. The models of these currents are discussed below.

The voltage-gated Ca2+ current was modeled by the function (6.70):

Ica = GcaPca

(
V − RT

2F
ln

(
[Ca2+]o
[Ca2+]i

))
, (7.39)

where Vcah and Kcah are positive constants, Gca is the maximum whole cell conduc-
tance, R is the universal gas constant, T is absolute temperature, F is Faraday’s con-
stant, [Ca2+]o denotes the extracellular calcium concentration, and the feedback con-
troller Pca is given by

Pca =
1

1+ exp[(Vcah−V )/Kcah]
.

The function (6.136) was used to model the Ca2+ current through the plasma
membrane calcium pump:

Ipm =
Ppm[Ca2+]2i

K2
pm +[Ca2+]2i

, (7.40)

where Ppm is a maximum current and Kpm is the value for the half-activation calcium
concentration.

The function (6.148) was used to model the electrogenic 3Na+/Ca2+ exchanger
current:

Inaca = GnacaPnaca

(
V − RT

F

(
3ln

[Na+]o
[Na+]i

− ln
[Ca2+]o
[Ca2+]i

))
, (7.41)
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where [Na+]o and [Na+]i denote extracellular and intracellular Na+ concentrations,
respectively, Gnaca is the maximum whole cell conductance, and the feedback con-
troller Pnaca is given by

Pnaca =
[Ca2+]5i

K5
naca +[Ca2+]5i

.

In their model, Fridlyand et al [5] assumed that only Na+ can penetrate into the
cell via the nonselective cation channel, reflecting experimental results under physio-
logical concentrations of cations [10, 16, 17]. This Na+ inward current was modeled
by

Icran =−GcranPcran

(
V − RT

F
ln

[Na+]o
[Na+]i

)
, (7.42)

where Gcran is the maximum whole cell conductance and Pcran is a feedback controller
to be designed. The current/voltage relationship of this current was roughly linear
[10, 16, 17] in V . In addition, It was suggested that the regulation of the nonselective
cation current depends on the endoplasmic reticulum Ca2+ concentration [Ca2+]er

[2, 4, 12]. In mouse β -cells, it could be activated indirectly by endoplasmic reticulum
Ca2+ store depletion [16, 17, 18]. Taking this dependence into account, the feedback
controller Pcran was modeled by

Pcran =
V −Vcran

1+ exp(([Ca2+]er−Ker)/3)
,

where Ker is the half-activation [Ca2+]er level, and Vcran is the reversal potential.
The function (6.58) was used to model the inward Na+ current:

Ina = GnaPna

(
V − RT

F
ln

[Na+]o
[Na+]i

)
, (7.43)

where Gna is the maximum whole cell conductance and the feedback controller Pna

is given by

Pna =
1

1+ exp[(104+V )/8]
.

The model (6.137) was used to describe the Na+/K+ pump current:

Inak =
Pnak(F1 f2 f3F4F5 f6−b1B2B3B4b5B6)

D
, (7.44)

where

F1 = f1[Na+]3i , (7.45)

f5 = f ∗5 exp((V F/(2RT ))), (7.46)

F5 = f5[ATP]i, (7.47)

B2 = b2[ADPf ]i, (7.48)

b5 = b∗5 exp(−(V F/(2RT ))), (7.49)

D = f2 f3F4F5 f6 +b1 f3F4F5 f6 +b1B2F4F5 f6 +b1B2B3F5 f6

+b1B2B3B4 f6 +b1B2B3B4b5. (7.50)
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The equation (6.23) was used to model the delayed rectifier K+ current Idrk:

Idrk = GdrkPdrk

(
V − RT

F
ln

[K+]o
[K+]i

)
, (7.51)

where Gdrk is the maximum whole cell conductance and the feedback controller Pdrk

is given by

Pdrk = n, (7.52)
dn
dt

=
n∞−n

τn
, (7.53)

n∞ = 1.0/(1.0+ exp(((Vn−V )/Sn))), (7.54)

τn = c/[exp((V −Vτ)/a)+ exp((Vτ −V )/b)]. (7.55)

The Hill-type function (6.35) was used to model the voltage-independent small
conductance Ca2+-activated K+ current Ikca:

Ikca = GkcaPkca

(
V − RT

F
ln

[K+]o
[K+]i

)
, (7.56)

where Gkca is the maximum whole cell conductance and the feedback controller Pkca

is given by

Pkca =
[Ca2+]4i

K4
kca +[Ca2+]4i

.

The equation (6.40) was used to model the ATP-sensitive K+ current Ikat p:

Ikat p = Gkat pPkat p

(
V − RT

F
ln

[K+]o
[K+]i

)
, (7.57)

where the feedback controller Pkat p is given by

Pkat p =
0.08(1.0+2[MgADP]/kdd)+0.89[MgADP]2/k2

dd

(1.0+[MgADP]/kdd)2(1.0+0.45[MgADP]/ktd +[AT P]i/ktt)
, (7.58)

The relation between MgADP and free ADP in the cytosol is

[MgADP] = 0.55[ADPf ]i.

Calcium enters β -cells primarily through voltage-gated Ca2+ channels by diffu-
sion. The calcium homeostasis in the cytosol is regulated by a Ca2+-extruding mech-
anism in the plasma membrane and Ca2+ sequestration by intracellular organelles.
At the plasma membrane, three processes are involved in transporting Ca2+ out of
the cell: a Ca2+ pump, an Na+/Ca2+ exchanger, and removal of Ca2+ sequestrated
in insulin granules by exocytosis. In addition, both the ER and mitochondria can
accumulate Ca2+ via pumps. Even though Ca2+ is critical for mitochondrial func-
tion, mitochondrial Ca2+ is not considered since it appears that both the volume of
mitochondria and its Ca2+ concentration are small relative to the ER.
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Ca2+ are transported into the ER by sarco(endo) plasmic reticulum Ca2+-ATPases
(SERCAs) with an unusually low value for the half-activation calcium concentration
(≤ 0.4 μM) [11]. The equation (6.133) was used to describe the calcium uptake rate
by SERCA:

rserca =
Rserca[Ca2+]2i

[Ca2+]2i +K2
serca

. (7.59)

Following the equation (6.79), a Ca2+ efflux from the ER was modeled by

rip3r = (Pleak +Pip3O∞)([Ca2+]er− [Ca2+]i), (7.60)

where Pleak is the rate of calcium leaking from the ER and the feedback controller
O∞, the IP3-activated channel open probability, was given by

O∞ =
[Ca2+]i[IP3]3

([Ca2+]i +Krca)([IP3]3 +K3
ip3)

. (7.61)

The Ca2+ leak from cells by insulin granule exocytosis was modeled previously [4]
as a rate proportional to [Ca2+]i.

The cytosolic and ER calcium concentrations are determined by the ion fluxes
across the plasma and ER membranes. However, calcium concentrations are strongly
buffered in cells [15]. This was modeled using special coefficients for the fraction of
free Ca2+ in the cytoplasm and ER. On the basis of the foregoing consideration, the
equations for Ca2+ concentrations were written as

d[Ca2+]i
dt

= fi

(−Ica +2Inaca−2Ipm

2FVi
− rserca +

rip3r

Vi

)
− ksg[Ca2+]i, (7.62)

d[Ca2+]er

dt
=

fer

Ver
(rsercaVi− rip3r) , (7.63)

where fi and fer are the fractions of free Ca2+ in cytoplasm and ER, Ver and Vi are
the effective volumes of the ER and cytosolic compartments, and ksg is a coefficient
of the sequestration rate of Ca2+ by the secretory granules.

Like Ca2+, the Na+ cytosolic concentration was determined by the ion fluxes
across the plasma membrane. The equation for the concentration was written as

d[Na+]i
dt

=
−3Inaca−3Inak− Ina− Icran

FVi
. (7.64)

The kinetics of IP3 in β -cells is unknown. It was assumed that [5, 9] IP3 is
degraded at a rate proportional to its concentration. Thus the kinetics of IP3 may
be modeled by

d[IP3]i
dt

= Rip3Pip3in− kipd [IP3]i, (7.65)

where Rip3 is the maximal rate of IP3 production and Pip3in is a feedback controller
to be designed. Experiments by Mouillac et al [13] indicated that intracellular Ca2+
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modulates the production of IP3. This suggests the possibility of a positive feedback
mechanism of Ca2+ on the production of IP3. On the basis of this information, the
feedback controller Pip3in was modeled by

Pip3in =
[Ca2+]2i

K2
ipca +[Ca2+]2i

, (7.66)

where Kipca is a positive constant.
Glucose is phosphorylated in a sigmoidal fashion, so the Hill equation was used

to model this process. Therefore, an empirically derived rate expression for glucose
phosphorylation by glucokinase was employed as follows

rglu = RgluPglu
[Glu]1.7

K1.7
glu +[Glu]1.7

, (7.67)

where Pglu is a feedback controller to be designed. The MgATP dependence of this
reaction could be well fit to a Michaelis-Menten-type saturation equation. Therefore,
the feedback controller Pglu is modeled by

Pglu =
[ATP]i

Kat p +[AT P]i
. (7.68)

Intermediate metabolites produced from glucose are used to produce ATP. Thus
the consumption rate of these intermediate metabolites is determined by ATP produc-
tion. ATP is synthesized through oxidative phosphorylation processes that use the
intermediate metabolites and free cytosolic MgADP. The dependence of oxidative
phosphorylation on free MgADP may be calculated using the Hill equation. Then,
assuming the simplest linear dependence of reaction rate on the intermediate metabo-
lites, an empirical equation for oxidative phosphorylation rate rop was written as

rop = Rop[IM]i
[MgADP]2

[MgADP]2 +K2
op

(7.69)

where [IM] is the concentration of the intermediate metabolites. Then the concentra-
tion of these intermediate metabolites were described by the following equation

d[IM]i
dt

= kimrglu− rop. (7.70)

Since 95% of energy supply derives from mitochondrial oxidative phosphoryla-
tion, the rate of oxidative phosphorylation (7.69) was used as the ATP production
rate. On the other hand, ATP is consumed by the plasma and ER Ca2+ pumps and by
the electrogenic Na+/K+-ATPase. In addition, there is some basal level of ATP con-
sumption and there is considerable evidence that other ATP consumption processes
are accelerated by an increase in Ca2+. On the basis of this evidence, the balance
equation for ATP was written as

d[ATP]i
dt

= rop− Inak + Ipm

FVi
− rserca

2
−(

kat pca[Ca2+]i + kat pd
)
[ATP]i. (7.71)
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Table 7.3. Parameter values of the model (7.38)-(7.73) from [5, 6]

Kcah= 9.5 mV kat pca= 8.0E-5 μM−1ms−1 Vcran = 0.0 mV
kat pd = 5.0E-5 ms−1 Gcran= 0.7 pS/mV f ∗5 = 0.0020 μM−1ms−1

Gca = 670.0 pS kdd = 17.0 μM f4 = 1.5E-8 μM−2ms−1

[K+]o= 8000.0 μM F4= f4[K+]2o Gna= 1200.0 pS
Kipca = 0.4 μM Cpm= 6158.0 fF Pleak = 1.0E-4 pl/ms
Kat p = 500.0 μM Kkca= 0.1 μM [N+]o= 140000.0 μM
Vcah = -19.0 mV Rip3= 3.0E-4 μM/ms b∗5= 0.03 ms−1

fi = 0.01 Kip3 = 3.2 b6 = 6.0E-7 μM−1ms−1

[K+]i = 132400.0 μM B6 = b6[K+]2i b4 = 2.0E-4 μM−1ms−1

[Pi] = 4950.0 μM B4 = b4[Pi] b3= 1.72E-17 μM−3ms−1

B3 = b3[N+]3o Kop = 20.0 μM kipd= 4.0E-5 ms−1

kadp f =2.0E-4 ms−1 kadpb = 2.0E-5 ms−1 Pip3 = 0.0012 pl/ms
Pnak = 600.0 fA Gdrk= 3000.0 pS fer= 0.03
f6 = 11.5 ms−1 f3= 0.172 ms−1 f2 = 10.0 ms−1

f1 = 2.5E-10 μM−3ms−1 [Glu]= 8.0 mM Kglu = 7.0 mM
Knaca= 0.75 μM Gkca = 130.0 pS F

RT = 26.73 mV
Vτ = -75.0 mV c = 20.0 ms Ver = 0.28 pL
b =20.0 mV [Ca2+]o = 2600.0 μM a= 65.0 mV
Vn = -14.0 mV Vi = 0.764 pL Rserca = 0.105 μM/ms
Gnaca= 271.0 pS Ppm = 2000.0 fA F = 96480.0
Krca = 0.077 μM ktt = 50.0 μM Rglu = 0.025 μM/ms
ktd = 26.0 μM kim = 31.0 b2 = 1.0E-4 μM−1ms−1

b1= 100.0 ms−1 ksg = 1.0E-4 ms−1 Gkat p= 24000.0 pS
Rop= 2.0E-4 ms−1 Ker = 200.0 μM Sn= 7.0 mV
Kpm = 0.1 μM Kserca = 0.5 μM [Ca2+]i(0) = 0.107 μM
[Ca2+]er(0) = 34.3 μM [ADPb]i(0) = 922 μM [ADPf ]i(0) = 92.2 μM
[AT P]i(0) = 2985 μM [IP3]i(0) = 0.5 μM [Na+]i(0) = 7281 μM
[IM]i(0) = 1260 μM V (0) =−57 mV n(0) = 0.0021

In ATP hydrolysis, ATP is converted into ADP and ADP exists in a free form
ADPf and a bound form ADPb. Only a small fraction of total cellular ADP is free.
Taking these facts into account and assuming that the interchange between ADPf and
ADPb is linear, the balance equations for them were written as

d[ADPf ]i
dt

=
Inak + Ipm

FVi
+

rserca

2
+
(
kat pca[Ca2+]i + kat pd

)
[ATP]i

+kad pb[ADPb]i− rop− kad p f [ADPf ]i, (7.72)

d[ADPb]i
dt

= kad p f [ADPf ]i− kad pb[ADPb]i. (7.73)

A numerical solution of the model (7.38)-(7.73) is presented in Fig. 7.6 and the
parameter values for the numerical solution are given in Table 7.3. The figure shows
that the model can simulate the experimental action potentials and calcium oscilla-
tions (Figs. 7.1 and 7.2). However, the ER calcium concentration is low as the resting
free Ca2+ in the ER is approximately 500 μM [16, 19].
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Fig. 7.6. Numerical simulation of action potentials and calcium oscillations by the model
(7.38)-(7.73)

Exercises

7.1. Modify the Chay-Keizer model (7.1)-(7.6) and (7.14) in the following different
ways:

1. Replace hm3 in the calcium current with the open probability (6.69) or (6.72) and
keep others unchanged.

2. Replace gkca in the calcium-activated potassium current gkca(V −Vk) with the con-
troller (6.35) and keep others unchanged.

3. Replace n4 in the potassium current Gkn4(V −Vk) with the activation model (6.23)
or (6.29) and keep others unchanged.

Solve each modified model numerically to see whether it can simulate calcium oscil-
lations.

7.2. Modify the BSSMAMS model (7.15)-(7.37) in the following different ways:

1. Replace m f in the fast inactivation calcium current Ica f with the open probability
(6.69) or (6.72) and keep others unchanged.

2. Replace n in the potassium current Gkn(V −Vk) with the activation model (6.29)
and keep others unchanged.

3. Replace the ATP-sensitive potassium current Ikat p with the current equation (6.36)
and (6.40) and keep others unchanged.

4. Replace the IP3 receptor open probability O∞ with the probability (0.1O+0.9A)4

of the Sneyd et al’s model (6.91)-(6.95), the probability x4
1 of Keizer et al’s model

(6.97)-(6.100), or the probability (6.104) and keep others unchanged.
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5. Replace the SERCA flux rserca with the flux (6.129) or (6.135) and keep others
unchanged.

6. Replace kca[Ca2+]i in the flux rpm with the flux (6.136) and keep others unchanged.

Solve each modified model numerically to see whether it can simulate calcium oscil-
lations.

7.3. Solve the Fridlyand et el’s model (7.38)-(7.73) numerically with different glu-
cose inputs such as [Glu] = 2,5,8,11,16 mM to see how the glucose concentration
affects the action potentials and calcium oscillations. Solve the model numerically
with different values of Pleak and Pip3 to see how the ER affects the action potentials
and calcium oscillations.

7.4. Modify the Fridlyand et el’s model (7.38)-(7.73) in the following different ways:

1. Replace the voltage-dependent open probability in the calcium current Ica with the
open probability (6.69) or (6.72) and keep others unchanged.

2. Replace the potassium current Idrk with the current equation (6.12) and keep others
unchanged.

3. Replace the sodium current Ina with the current equation (6.41) and keep others
unchanged.

4. Replace the IP3 receptor open probability O∞ with the probability (0.1O+0.9A)4

of the Sneyd et al’s model (6.91)-(6.95), the probability x4
1 of Keizer et al’s model

(6.97)-(6.100), or the probability (6.104) and keep others unchanged.
5. Replace the SERCA flux rserca with the flux (6.129) or (6.135) and keep others

unchanged.
6. Add the SOCE current (7.32) to the membrane potential equation (7.38) and the

intracellular calcium equation (7.62) and keep others unchanged.

Solve each modified model numerically to see whether it can simulate calcium oscil-
lations.
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Store-Operated Calcium Entry

Depletion of intracellular calcium stores such as the endoplasmic reticulum (ER)
activates store-operated channels for Ca2+ entry across the plasma membrane (PM),
as demonstrated in Fig. 8.1. This process is called the store-operated calcium entry
(SOCE), a common and ubiquitous mechanism of regulating Ca2+ influx into cells
[1, 7, 36, 38]. The best-studied store-operated channel (SOC) is the Ca2+ release-
activated Ca2+ channel (CRAC) [5, 12, 13, 30, 38, 41, 53]. SOCE is a key feedback
controller to stabilize ER Ca2+ and has been proposed as the main Ca2+ entry path-
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Fig. 8.1. A systematic sketch of an intracellular Ca2+ regulatory system. Calcium ions Ca2+

enter the cytosol through store-operated channels (SOCs). The sarcoplasmic or endoplasmic
reticulum Ca2+-ATPases (SERCA) pump Ca2+ from the cytosol into ER and Ca2+ in ER
are released to the cytosol through the IP3- and Ca2+-mediated Ca2+ channels. Ca2+ exit
the cytosol through the plasma membrane Ca2+-ATPases (PMCA). Depletion of ER Ca2+

stores causes STIM1 to move to ER-PM junctions, bind to Orai1, and activate SOCs for Ca2+

entry [28]
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way in non-excitable cells [37, 38]. SOCE, originally known as capacitative calcium
entry (CCE), was first proposed by Putney [42] and has been extensively studied later
(for review, see Berridge [2, 3], Bird et al [4], Chakrabarti et al [6], Dirksen [9], Lewis
[25], Parekh [37], Potier et al [39], Prakriya et al [40], Putney [43], and Shuttleworth
et al [47]).

8.1 A Calcium Control System

To construct a mathematical model for the calcium dynamics described in Fig. 8.1, we
need to model the calcium pumps or channels in this figure. Let [Ca2+]i and [Ca2+]er

denote the concentrations of intracellular and ER calcium, respectively. According to
(6.135), the rate of calcium transport by the sarcoplasmic or endoplasmic reticulum
Ca2+-ATPase (SERCA) can be modeled by

rserca =
Rserca[Ca2+]i

(Kserca +[Ca2+]i)(1+ Iserca[Ca2+]er)
, (8.1)

where Rserca,Rserca and Iserca are positive constants. According to (6.79) and (6.104),
the outward flux of Ca2+ from ER through the IP3 mediated channel is given by

ripr = (RiprPipr +Rleak)([Ca2+]er− [Ca2+]i), (8.2)

Pipr =
[Ca2+]i

Krca +[Ca2+]i

K3
inh

K3
inh +[Ca2+]3i

[IP3]3

K3
ip3 +[IP3]3

(8.3)

where Ripr is the maximum flow rate and Rleak is the leak flux rate. In this model, an
outward leak is taken into account. According to (6.136), the calcium extrusion rate
across the plasma membrane by the calcium ATPase is given by

rpmca =
Rpmca[Ca2+]2i

K2
pmca +[Ca2+]2i

. (8.4)

The Ca2+ entry mechanisms through store-operated channels have remained elu-
sive. In yeast cells, experimental observations by Kellermayer et al [22] and Locke
et al [29] indicated that budding yeast cells also have this store-operated calcium feed-
back control mechanism and the calcium uptake through the store-operated channels
follows the Michaelis-Menten equation. On the basis of these data, we assume that the
store-operated channels follow the Michaelis-Menten kinetics and then Ca2+ entry
into the cytosol from the extracellular environment is modeled by [28]

rsoce = Rsoce psoce
[Ca2+]o

Ksoce +[Ca2+]o
, (8.5)

where Rsoce > 0 denotes the maximum SOCE rate, Ksoce is the Michaelis-Menten con-
stant, [Ca2+]o is the extracellular calcium concentration, and psoce = psoce([Ca2+]er,
[Ca2+]i) ranging from 0 to 1 is an output feedback controller to be designed.
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Because the cytosolic calcium is strongly buffered in cells [44], we need to intro-
duce the buffered Ca2+ concentration [Ca2+]b as a state variable. Taking this buffered
Ca2+ into account, we then derive from the law of mass balance that the Ca2+ con-
centrations are governed by

d[Ca2+]i
dt

= −rpmca− rserca + ripr + rsoce

+ko f f [Ca2+]b− kon[Ca2+]i
(
[Ca2+]b,total− [Ca2+]b

)
, (8.6)

d[Ca2+]er

dt
= γer(rserca− ripr)+ rstim, (8.7)

d[Ca2+]b
dt

= −ko f f [Ca2+]b + kon[Ca2+]i
(
[Ca2+]b,total− [Ca2+]b

)
, (8.8)

where ko f f ,kon are positive constants, γer is the cytoplasmic-to-ER volume ratio, and
rstim is the net rate of Ca2+ binding to and releasing from STIM1. According to (7.65),
the IP3 concentration can be modeled by

d[IP3]
dt

= Rip
in pip3(t)+

Rip
ca[Ca2+]i

Kca
m +[Ca2+]i

+Rip
d ([IP3]− [IP3]), (8.9)

where Rip
in is the external IP3 input rate, pip3(t) is a pulse input caused by the extra-

cellular stimuli, Rip
ca is the maximum Ca2+ dependent IP3 input rate, Rip

d is the IP3

degradation rate, Kca
m is the activation constant that gives half of maximum rate of

Rip
ca, and [IP3] is the IP3 steady state.

8.2 Design of an Output Feedback Controller

In order to construct a feedback controller psoce, we look at the SOCE molecular
mechanism. Two major components of SOCE have been discovered: STIM1 (Stro-
mal interaction molecule 1) and Orai1. STIM1 is a transmembrane protein residing
primarily in the ER. STIM1 contains an EF-hand, an N-terminus directed towards the
lumen of the ER, and a C-terminus facing the cytoplasmic side. STIM1 functions as
an endoplasmic reticulum Ca2+ sensor. Orai1 is a transmembrane protein present in
the plasma membrane with intracellular N- and C-termini and is an essential compo-
nent of the store-operated channel (for review, see Lewis [25], Potier et al [39], and
Putney [42]).

The mechanism about how STIM1 senses the calcium in ER and communicates
with Orai1 was discovered in the late 2000s (see, e.g., [8, 14, 17, 20, 25, 35, 38, 39,
43, 57]). Emptying of the calcium from ER changes the conformation of STIM1 and
leads to oligomerization, which enables the polybasic region to target STIM1 to ER-
PM junctions, and causes a conformational change in STIM1 to expose its CRAC-
activation domain (CAD, amino acids 342-448 [38]; also called SOAR (STIM1 Orai
activating region), amino acids 344-442 [57]; called CCb9 (coiled-coil domain con-
taining fragment b9), amino acids 339-446 [20]). In the junctions, the exposed STIM1
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CAD binds to Orai1. STIM1-Orail1 interactions change the conformation of Orai1,
which drives the opening of CRAC channels and triggers calcium entry. Moreover,
the channel opening is optimized by phosphatidylinositol 4-phosphate (PI4P) (see,
e.g., [24, 52]) while the channel opening is disrupted by a large cell volume increase
[27]. On the other hand, the CRAC channel is inactivated by calmodulin [35], annexin
6 [34], and protein kinase C [33]. Inhibition of mitochondrial Ca2+ uptake decreases
SOCE [11, 45].

The dynamic binding of the ER Ca2+ to STIM1 and the ER Ca2+ dissociation
from STIM1 can be modeled by the differential equation

d[ST IM1]
dt

=− fs[ST IM1][Ca2+]ns
er +bs([T S]− [STIM1]), (8.10)

where fs is a binding rate, bs is a dissociation rate, ns is a positive exponent, and [T S]
is the concentration of total STIM1. Here we assume that as soon as the ER Ca2+

is released from the luminal EF-hand of STIM1, the STIM1 is immediately in the
ER-PM junctions. Thus [ST IM1] can be regarded as the concentration of the active
cytosolic part of STIM1 in the ER-PM junctions. The net rate of Ca2+ binding to and
releasing from STIM1 is given by

rstim =− fs[ST IM1][Ca2+]ns
er +bs([T S]− [STIM1]). (8.11)

The dynamic binding of the active cytosolic part of STIM1 to Orai1 (the region
of amino acids 70-91 [38]) and the dissociation from Orai1 can be described by

STIM1+Orai1 �
fo

bo

SO, (8.12)

where SO denotes the complex of STIM1 and Orial1. It then follows that

d[SO]
dt

= fo(1− [SO])[STIM1]−bo[SO], (8.13)

where fo is a binding rate, bo is a dissociation rate, and [SO] is the fraction of STIM1-
Orai1 complex among the total Orai1, that is, [SO] = the concentration of STIM1-
Orai1/ the total concentration of Orai1. The term bo[SO]− fo(1− [SO])[ST IM1] is not
included in the equation (8.10) because the binding of the cytosolic part of STIM1
to Orai1 does not affect the luminal part of STIM1. The equations (8.10) and (8.13)
constitute a dynamical output feedback controller:

psoce = [SO]. (8.14)

Experimental data about the dependence of the SOCE current on the ER calcium
concentration was obtained by Luik et al [30] (see Fig. 1C of [30]). These data can be
used to determine the values of parameters in the equations (8.10) and (8.13). Since
the data were obtained at equilibrium, we solve the steady state equations of (8.10)
and (8.13) to obtain

[SO] =
fobs[TS]

bobs + fobs[T S]+bo fs[Ca2+]ns
er

. (8.15)
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Fig. 8.2. Fit of the steady state [SO] of
the equations (8.10) and (8.13) to the nor-
malized data (red circles) of [30], which
were read by the software Engauge Dig-
itizer 4.1. Reproduced with permission
from [28]

Fitting the steady state [SO] into the normalized data (Fig.8.2), we obtain the values of
these parameters as listed in Table 8.2. The fitting was done by using the MATLAB
curve fitting toolbox. Note that different sets of parameter values can achieve the same
best fitting since the minimum difference between the data and the fitting function can
attain at the different sets of values. The set of parameter values is chosen such that
our model can simulate experimental data.

8.3 SOCE Computer Simulation

Thapsigargin is used to deplete the ER calcium store by inhibiting the ER calcium
pump SERCA in SOCE experiments [26, 55]. Cells grow initially in a medium with-
out Ca2+. An addition of thapsigargin to the medium raises cytosolic calcium concen-
tration due to the calcium release from the ER. A consequent addition of calcium to
the medium results in a sudden and bigger increase of cytosolic calcium concentration
because the added extracellular Ca2+ flood into the cells through the store-operated
calcium channels, as shown in Fig. 8.3 (left). We now use the above SOCE model to
simulate this experimental observation.

The model is solved by using the function ode15s of MATLAB, the MathWorks,
Inc. The relative error tolerance and the absolute error tolerance were set to 10−6.
The InitialStep is set to 0.01 and the MaxStep is set to 0.01. MATLAB does not rec-
ommend to reduce MaxStep for the accuracy of solutions since this can significantly
slow down solution time. Instead the error tolerances can be used.

Table 8.1. Non-zero Initial Conditions

Parameter Value

[Ca2+]i(0) 0.1 (μM)
[Ca2+]er(0) 150 (μM)
[IP3](0) 0.25 (μM)
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Table 8.2. Parameter Values

Parameter Value Reference

ns 3 [28]
fs 6.663·10−6 (s−1 · (μM)−ns ) [28]
bs 2.535 (s−1) [28]
fo 1.226 (s−1 · (μM)−1) [28]
bo 0.06774 (s−1) [28]
[T S] 1 (μM) [28]
Rsoce Varied (see text) [28]
Ksoce 500 (μM) [29, 50]
ko f f 500 (s−1) [19]
kon 100 (μM−1s−1) [19]
[Ca2+]b,total 660 (μM) [46]
Rip

in 20 (μM · s−1) [28]
Rip

ca 2.8 (μM · s−1) [54]
Kca

m 1.1 (μM) [21, 54]
Rip

d 1 (s−1) [54]
[IP3] 0.25 (μM) [54]
Rpmca 38 (μM · s−1) [48]
Kpmca 0.5 (μM) [48]
γer 5.4 [48]
Ripr Varied (see text) [28]
Rleak Varied (see text) [28]
Rserca 100 (μM−1 · s−1) [15]
Kserca 0.4 (μM) [15, 31, 48]
Iserca Varied (see text) [28]
Krca 0.077 (μM) [15, 32]
Kip3 3.2 (μM) [15, 18]
Kinh 5.2 (μM) [32]

Initial conditions are listed in Table 8.1. The values of parameters in the feedback
control system are listed in Table 8.2. Since no data about the total STIM1 concen-
tration are available, [T S] is taken to be 1 μM. The parameters ns, fs,bs, fo,bo are
determined by fitting the steady [SO] defined by (8.15) into the data of Luik et al [30]
(Fig. 8.2). Rsoce and Iserca are selected to result in the equilibrium calcium levels of
[Ca2+]i = 0.05 μM and [Ca2+]er = 450 μM when [Ca2+]o = 1500 μM. The param-
eters Ripr and Rleak are adjusted in simulation such that the simulations are close to
experimental observations.

The resting free Ca2+ in the cytosol is about 0.05 μM [56] and the resting free
Ca2+ in the ER is approximately 500 μM [16, 56]. Since the model solutions during
the initial transient period have no biological meanings, we solve the model with the
extracellular Ca2+ concentration [Ca2+]o of 1500 μM [10] for 1500 seconds such
that the cytosolic calcium concentration [Ca2+]i achieves a steady state of about 0.05
μM (Fig. 8.3(middle)) and the ER calcium concentration [Ca2+]er achieves a steady
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Fig. 8.3. SOCE simulations. Left: Reproduction from [55] (courtesy of S. Yang, J. Zhang, and
X.-Y. Huang). Middle and right: model simulations. In this simulation, pip3(t)≡ 0, Ripr = 0.18
s−1, Rleak = 0.002 s−1, Iserca = 0.025 μM−1, and Rsoce = 8.85 μMs−1. Other parameter values
are given in Table 8.2. Reproduced with permission from [28]

state of about 450 μM (Fig. 8.3 (right)), and then set this moment as the initial time
(t = 0).

Following the experiments of Yang et al [55], before the 320th second, [Ca2+]o
is set to 10 μM, and after the 320th second, [Ca2+]o is suddenly increased to 2000
μM. After the 20th second, the maximum velocity of the Ca2+ pump SERCA, Rserca,
is set to 5 μM/s to mimic the addition of thapsigargin. In this simulation, pip3(t)≡ 0,
Ripr = 0.18 s−1, Rleak = 0.002 s−1, Iserca = 0.025 μM−1, and Rsoce = 8.85 μMs−1.
Other parameter values are given in Table 8.2.

The simulated cytosolic calcium dynamics plotted in Fig. 8.3 (middle) agrees
qualitatively with the experimental data of Yang et al [55] (Fig. 8.3 (left)). The model
simulation also agrees qualitatively with the experimental Fig. 2Ai of Liao et al [26]
and Fig. 7E of Park et al [38].

It was reported by Yu et al [56] that thapsigargin reduced [Ca2+]er from about
500 μM to 50-100 μM over 10 minutes and the readdition of extracellular Ca2+ led
to a rapid increase in [Ca2+]er to about 10 μM. The decrease in [Ca2+]er was largely
complete in the first minute after stimulation [56]. Fig. 8.3 (right) indicates that the
simulated [Ca2+]er approximately agrees with this observation.
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Fig. 8.4. Simulated dynamics of STIM1 and STIM1-bound Orai1. Reproduced with permis-
sion from [28]
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Fig. 8.5. Simulation of rejection of agonist disturbances. After disturbed by an agonist distur-
bance pulse, the ER Ca2+ (B), cytosolic Ca2+ (C), STIM1 (D), and STIM1-Orai1 (E) return
to their resting levels, respectively. In this simulation, Rip

in = 100 μM · s−1, Ripr = 1.6 s−1,
Rleak = 0.02 s−1, Iserca = 0.00048 μM−1, and Rsoce = 8.85 μMs−1. Other parameter values
are given in Table 8.2. Reproduced with permission from [28]

Fig. 8.4 shows that as the ER Ca2+ decreases, the concentration of the cytosolic
portion of the active STIM1 in ER-PM junctions is increasing gradually, indicat-
ing that STIM1 is accumulating in ER-PM junctions. Simultaneously, the fraction
of STIM1-Orai1 is increasing gradually, indicating that the cytosolic portion of the
active STIM1 is binding to Orai1 and driving the opening of CRAC channels for Ca2+

entry. This is consistent with the static observation of Park et al [38]. This simulated
dynamics of STIM1 and STIM1-Orai1 might provide a promising phenomenological
prediction since the above argument suggests that the model could capture the main
SOCE features. No data are yet available for testing this simulated dynamics.
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Fig. 8.6. Simulation of rejection of agonist disturbances. The ER Ca2+, cytosolic Ca2+,
STIM1, and STIM1-Orai1 return to their resting levels, respectively, after each pulse of a
sequence of periodic agonist disturbance pulses. In this simulation, the pulse duration is 0.05
second and Rip

in = 20 μM · s−1. Other parameter values are the same as in Fig. 8.5 [28]

8.4 Simulation of Rejection of Agonist Disturbances

The action of an agonist on its specific receptor typically activates isoforms of
the phosphoinositide-specific phospholipase C (PLC). PLC breaks down the phos-
phatidylinositol 4,5 bisphosphate (PIP2) to generate two second messengers, the inos-
itol 1,4,5 trisphosphate (IP3) and diacylglycerol (DAG) [39]. Therefore, an agonist
disturbance pulse results in an IP3 pulse input. We assume that the pulse input is
given by

pip3(t) =

⎧⎨
⎩

0 if t < 20 s,
1 if 20 s≤ t ≤ 20.015 s,
0 if t > 20.015 s.
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Fig. 8.5A shows that the pulse input of 15 ms duration causes an IP3 pulse, and
in turn, the IP3 pulse causes Ca2+ release from the ER (Fig. 8.5B) and a transient
Ca2+ peak in the cytosol (Fig. 8.5C), resulting in STIM1 accumulations in ER-PM
junctions (Fig. 8.5D) and binding of STIM1 to Orai1 (Fig. 8.5E). The duration of
the transient cytosolic Ca2+ peak is about 3 seconds, equal to the one observed in
the experiment by Kim et al [23] (see Fig. 2B in [23]). In this simulation, Rip

in = 100
μM · s−1, Ripr = 1.6 s−1, Rleak = 0.02 s−1, Iserca = 0.00048 μM−1, and Rsoce = 8.85
μMs−1. Other parameter values are given in Table 8.2.

Furthermore, Fig. 8.5 shows that the ER Ca2+, cytosolic Ca2+, STIM1, and
STIM1-Orai1 return to their resting levels, respectively, after they are disturbed by
the agonist disturbance pulse. When a sequence of periodic agonist disturbance pulses
is applied, Fig. 8.6 shows that they can also return to their resting levels after each
pulse. This strongly indicates that the dynamical output feedback controller (8.10)
and (8.13) can well reject the agonist disturbances. In the simulation of Fig. 8.6, the
pulse duration is 0.05 second and Rip

in = 20 μM · s−1. Other parameter values are the
same as in Fig.8.5.

8.5 Stability Analysis

If the extracellular calcium input [Ca2+]o = 0, it is biologically obvious that [Ca2+]i(t)
and [Ca2+]er(t) converge to 0 as t → ∞. However, this stability result is not obvious
mathematically and, in fact, its rigorous mathematical proof is nontrivial. We use the
LaSalle’s invariance principle, Theorem 9, to establish this stability. If the extracel-
lular calcium input [Ca2+]o �= 0, the stability problem is open.

Theorem 15. Let [Ca2+]o = 0 and pip3(t) ≡ 1. For nonnegative initial conditions
with [Ca2+]b(0) ≤ [Ca2+]b,total , [STIM1](0) ≤ [T S], and [SO](0) ≤ 1, the solutions
of the system (8.6), (8.7), (8.8), (8.9), (8.10), and (8.13) satisfy

lim
t→∞

[Ca2+]i(t) = lim
t→∞

[Ca2+]er(t) = lim
t→∞

[Ca2+]b(t) = 0, (8.16)

lim
t→∞

[IP3](t) = [IP3]+
Rip

in

Rip
d

, (8.17)

lim
t→∞

[STIM1](t) = [T S], (8.18)

lim
t→∞

[SO](t) =
fobs[T S]

bobs + fobs[T S]
. (8.19)

In the following proof, we frequently use the result: If the real parts of all eigen-
values of a matrix M are negative and the vector function f(t) converges to L as
t → ∞, then the solution x(t) of the linear system

dx
dt

= Mx+ f (8.20)

converges to −M−1L.
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Let

R
n
+ = {(x1,x2, · · · ,xn) ∈ Rn | x1,x2, · · · ,xn ≥ 0} ,

B
4
+,Ca,K =

{
([Ca2+]i, [Ca2+]er, [Ca2+]b, [STIM1]) ∈ R4

+ | [Ca2+]b ≤ [Ca2+]b,total ,

[ST IM1]≤ [TS],
γer

(
[Ca2+]i +[Ca2+]b

)
+[Ca2+]er +[TS]− [ST IM1]≤ K

}
,

where K > 0 is selected such that γer
(
[Ca2+]i(0)+ [Ca2+]b(0)

)
+ [Ca2+]er(0) +

[ST IM1](0)≤ K. We show that B4
+,Ca,K is positively invariant and

[IP3] (t), [SO](t)≥ 0 (8.21)

for all t ≥ 0. Define

t0 = max{T | [Ca2+]er(t)≥ 0 for all 0≤ t ≤ T},
t1 = max{T | [Ca2+]i(t)≥ 0 for all 0≤ t ≤ T},
t2 = max{T | 0≤ [Ca2+]b(t)≤ [Ca2+]b,total for all 0≤ t ≤ T},
t3 = max{T | [IP3](t)≥ 0 for all 0≤ t ≤ T}},
t4 = max{T | 0≤ [ST IM1](t)≤ [T S] for all 0≤ t ≤ T},
t5 = max{T | 0≤ [SO](t)≤ 1 for all 0≤ t ≤ T}.

We claim that t0 = t1 = t2 = t3 = t4 = t5 = ∞. If it was not true, then t∗ =
min{t0, t1, t2, t3, t4, t5} < ∞. We may as well assume that t0 = t∗. Then [Ca2+]er(t),
[Ca2+]i(t), [IP3](t) ≥ 0, 0 ≤ [Ca2+]b(t) ≤ [Ca2+]b,total , 0 ≤ [STIM1](t) ≤ [T S], and
0 ≤ [SO](t) ≤ 1 for all 0 ≤ t ≤ t0 and [Ca2+]er(t0) = 0. It then follows from (8.1),
(8.2), and (8.7) that

d[Ca2+]er

dt

∣∣∣
t0

= γer
Rserca[Ca2+]i(t0)

(Kserca +[Ca2+]i(t0))

+γer(RiprPipr +Rleak)[Ca2+]i(t0)
+bs([TS]− [ST IM1](t0))

≥ 0.

If either [Ca2+]i(t0) > 0 or 0 ≤ [STIM1](t0) < [T S], then d[Ca2+]er
dt

∣∣∣
t0

> 0. Thus

[Ca2+]er(t) is increasing near t0 and then [Ca2+]er(t) < [Ca2+]er(t0) = 0 for some
t < t0. This is a contradiction. Hence [Ca2+]i(t0) = 0 and [STIM1](t0) = [T S]. Then
it follows from (8.6) that

d[Ca2+]i
dt

∣∣∣
t0

= ko f f [Ca2+]b(t0).

If [Ca2+]b(t0) > 0, then d[Ca2+]i
dt

∣∣∣
t0

> 0. Thus [Ca2+]i(t) is increasing near t0 and

then [Ca2+]i(t) < [Ca2+]i(t0) = 0 for some t < t0. This is a contradiction and so
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[Ca2+]b(t0) = 0. It then follows from (8.6), (8.7), (8.8), (8.9), (8.10), and (8.13)
that [Ca2+]i(t) = [Ca2+]er(t) = [Ca2+]b(t) = 0, [ST IM1](t) = [TS], [IP3](t)≥ 0, and
0 ≤ [SO](t) ≤ 1 for t ≥ t0. This contradicts with t∗ = min{t0, t1, t2, t3, t4, t5} < ∞.
Define

V = γer
(
[Ca2+]i +[Ca2+]b

)
+[Ca2+]er +[T S]− [STIM1].

It follows from (8.6), (8.7), (8.8), and (8.10) that

dV
dt

=−γerRpmca[Ca2+]2i
K2

pmca +[Ca2+]2i
≤ 0.

Thus B4
+,Ca,K is positively invariant. Because

Z =
{

([Ca2+]i, [Ca2+]er, [Ca2+]b, [STIM1]) ∈ B4
+,Ca,K

∣∣∣∣ dV
dt

= 0

}
=

{
(0, [Ca2+]er, [Ca2+]b, [STIM1]) ∈ B4

+,Ca,K

}
,

it follows from the LaSalle’s invariance principle, Theorem 9, that

lim
t→∞

[Ca2+]i(t) = 0.

For α > 1, we can deduce from the equations (8.7) and (8.10) that

d
dt

(
[Ca2+]er +α ([T S]− [STIM1])

)
= −F(t,α)

(
[Ca2+]er +α ([T S]− [ST IM1])

)
+ f (t),

where lim
t→∞

f (t) = 0 and F(t,α)≥ F0 > 0 for all t ≥ 0 if α is sufficiently close to 1.

It therefore follows that

lim
t→∞

(
[Ca2+]er(t)+α ([T S]− [ST IM1](t))

)
= 0.

In the same way, we deduce that

lim
t→∞

[Ca2+]b(t) = 0.

From the equation (8.9), we deduce that

lim
t→∞

[IP3](t) = [IP3]+
Rip

in

Rip
d

.

8.6 Remarks

In this modeling, we assumed that as soon as the ER Ca2+ is released from the luminal
EF-hand of STIM1, the STIM1 is immediately in the ER-PM junctions. This assump-
tion may be refined by introducing two state variables: [STIM1]er for the ER luminal
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portion of STIM1 and [STIM1]i for the cytosolic portion. These two states may be
connected by the equation

d[ST IM1]i
dt

= k([ST IM1]er− [ST IM1]i),

where the positive constant k is a rate of conformational change from [STIM1]er to
[ST IM1]i.

Stochastic factors were neglected in our modeling. Like telephone calls arriving
at a switchboard, agonists arrive at the plasma membrane randomly and indepen-
dently. Thus the agonist action on the plasma membrane, pip3(t), should follow a
Poisson process. In addition, the extracellular calcium [Ca2+]o may be fluctuated ran-
domly and then contain random “noises”. These stochastic factors should be taken
into account to further refine the model.

The distributions of Ca2+ in the cytosol and ER are not uniform and the Ca2+ con-
centrations near the ER are higher. The modeling of these spatial Ca2+ distributions
leads to a model consisting of partial differential equations [28].

Calcium ions play a central role in the process of insulin secretion. Release of cal-
cium ions from intracellular stores is essential for the amplification of insulin secre-
tion by promoting the replenishment of the readily releasable pool of secretory gran-
ules, while voltage-dependent calcium entry is directed to the sites of exocytosis via
the binding of the L-type calcium channels to SNARE proteins [49, 51]. Therefore,
the SOCE model will have potential applications in modeling insulin secretion.

Exercises

8.1. Solve the steady state equations of (8.10) and (8.13).

8.2. Fit [SO] defined by (8.15) into the normalized data of Fig. 1C of [30]:[
Ca2+

]
er

10 40 60 105 140 145 215 225 240[
SO

]
1.0000 0.8958 0.9292 0.7417 0.7292 0.5625 0.4250 0.3542 0.2708[

Ca2+
]

er
260 270 390 400 425 430 475[

SO
]

0.2417 0.1458 0.0292 0.1375 0.0004 0.0500 0.1042

8.3. Assume that the thapsigargin inhibition effect on SERCA is modeled by

Rserca =
{

5 if t ≤ 25000 ms,
(100−5)exp(Etg(25000− t))+5 if t > 25000 ms,

where Etg = 0.00006 ms−1. Use the control system (8.6), (8.7), (8.8), (8.9), (8.10),
and (8.13) to simulate SOCE with this thapsigargin inhibition model and explain how
this thapsigargin inhibition model affects the calcium release from the ER.

8.4. Instead of the dynamic feedback controller defined by (8.10) and (8.13), use
the static feedback controller defined by (8.15) to simulate SOCE and discuss their
differences.
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8.5. Solve the control system (8.6), (8.7), (8.8), and (8.9) numerically to find an
equilibrium, linearize the system at the equilibrium, examine the controllability and
observability of the linearized system, and then design an observer-based output feed-
back controller if possible.

8.6. Prove that if the real parts of all eigenvalues of a matrix M are negative and
the vector function f(t) converges to L as t → ∞, then the solution x(t) of the linear
system

dx
dt

= Mx+ f

converges to −M−1L.

References

1. Abdullaev I.F., Bisaillon J.M., Potier M., Gonzalez J.C., Motiani R.K., Trebak M.:
Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for
endothelial cell proliferation. Circ Res. 103, 1289-1299 (2008).

2. Berridge M J.: Elementary and global aspects of calcium signalling. J. Phyiol. 499, 291-
306 (1997).

3. Berridge M.J., Bootman M.D., Roderick H.L.: Calcium signalling: dynamics, homeostasis
and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517-29 (2003).

4. Bird G.S., DeHaven W.I., Smyth J.T., Putney Jr., J.W.: Methods for studying store-
operated calcium entry. Methods 46, 204-212 (2008).

5. Brandman O., Liou J., Park W.S., Meyer T.: STIM2 is a feedback regulator that stabilizes
basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131, 1327-1339 (2007).

6. Chakrabarti R., Chakrabarti R.: Calcium signaling in non-excitable cells: Ca2+ release
and influx are independent events linked to two plasma membrane Ca2+ entry channels.
J. Cellular Biochem. 99, 1503-1516 (2006).

7. DeHaven W., Jones B., Petranka J., Smyth J., Tomita T., Bird G., Putney J.: TRPC chan-
nels function independently of STIM1 and Orai1. J Physiol. 587, 2275-2298 (2009).

8. Derler I., Fahrner M., Carugo O., Muik M., Bergsmann J., Schindl R., Frischauf I., Eshaghi
S., Romanin C.: Increased hydrophobicity at the N-terminus/membrane interface impairs
gating of the SCID-related ORAI1 mutant. J. Biol. Chem. 284 15903-15915 (2009).

9. Dirksen R.T.: Checking your SOCCs and feet: the molecular mechanisms of Ca2+ entry
in skeletal muscle. J. Physiol. 587, 3139-3147 (2009).

10. Dvorak M.M., Siddiqua A., War, D.T., Carter D.H., Dallas S.L., Nemeth E.F., Riccardi D.:
Physiological changes in extracellular calcium concentration directly control osteoblast
function in the absence of calciotropic hormones. Proc. Natl. Acad. Sci. USA 101 5140-
5145 (2004).

11. Feldman B., Fedida-Metula S., Nita J., Sekler I., Fishman D.: Coupling of mitochondria
to store-operated Ca2+-signaling sustains constitutive activation of protein kinase B/Akt
and augments survival of malignant melanoma cells. Cell Calcium 47, 525-537 (2010).

12. Feske S., Prakriya M., Rao A., Lewis R.S.: A severe defect in CRAC Ca2+ channel acti-
vation and altered K+ channel gating in T cells from immunodeficient patients. J. Exper-
imental Medicine 202, 651-662 (2005).

13. Feske S., Gwack Y., Prakriya M., Srikanth S., Puppel S.H., Tanasa B., Hogan P.G., Lewis
R.S., Daly M., Rao A.: A mutation in Orai1 causes immune deficiency by abrogating
CRAC channel function. Nature 441, 179-185 (2006).



References 203

14. Feske S.: ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+

entry in the immune system and beyond. Immunological Reviews 231 189-209 (2009).
15. Fridlyand L.E., Tamarina N., Philipson L. H.: Modeling of Ca2+ flux in pancreatic β -

cells: role of the plasma membrane and intracellular stores. Am. J. Physiol. Endocrinol.
Metab. 285, E138-E154 (2003).

16. Frischauf I., Schindl R., Derler I., Bergsmann J., Fahrne M., Romanin C.: The STIM/Orai
coupling machinery. Channels 2 1-8 (2008).

17. Frischauf I., Muik M., Derler I., Bergsmann J., Fahrner M., Schindl R., Groschner K.,
Romanin C.: Molecular determinants of the coupling between STIM1 and Orai channels,
differential activation of Orail Orai1C3 channels by a STIM1 coiled-coil mutant. J. Biol.
Chem. 284, 21696-21706 (2009).

18. Hagar R.E., Ehrlich B.E.: Regulation of the type III InsP(3) receptor by InsP(3) and ATP.
Biophys J. 79, 271-278 (2000).

19. Hong D., Jaron D., Buerk D.G., Barbee K.A.: Transport-dependent calcium signaling in
spatially segregated cellular caveolar domains. Am. J. Physiol. Cell Physiol. 294, C856-
C866 (2008).

20. Kawasaki T., Lange I., Feske S.: A minimal regulatory domain in the C terminus of STIM1
binds to and activates ORAI1 CRAC channels. Biochem. Biophys. Research Communi-
cations 385, 49-54 (2009).

21. Keizer J., De Young G.W.: Two roles for Ca2+ in agonist stimulated Ca2+ oscillations.
Biophys. J. 61, 649-660 (1992).

22. Kellermayer, R., Aiello, D. P., Miseta, A., Bedwell, D.M.: Extracellular Ca2+ sensing
contributes to excess Ca2+ accumulation and vacuolar fragmentation in a pmr1Δ mutant
of S. cerevisiae. J. Cell Science 116, 1637-1646 (2003).

23. Kim S.J., Jin Y., Kim J., Shin J.H., Worley P.F., Linden D.J.: Transient upregulation of
postsynaptic IP3-gated Ca release underlies short-term potentiation of mGluR1 signaling
in cerebellar purkinje cells. J Neurosci. 28, 4350-4355 (2008).

24. Korzeniowski M.K., Popovic M.A., Szentpetery Z., Varnai P., Stojilkovic S.S., Balla T.:
Dependence of STIM1/Orai1-mediated calcium entry on plasma membrane phosphoinosi-
tides. J. Biol. Chem. 284, 21027-21035 (2009).

25. Lewis R.S: The molecular choreography of a store-operated calcium channel. Nature 446,
284-287 (2007).

26. Liao Y., Erxleben C., Yildirim E., Abramowitz J., Armstrong D.L., Birnbaumer L.: Orai
proteins interact with TRPC channels and confer responsiveness to store depletion. PNAS
401, 4682-4687 (2007).

27. Liu X., Ong H.L., Pani B., Johnson K., Swaim W.B., Singh B., Ambudkar I.: Effect of
cell swelling on ER/PM junctional interactions and channel assembly involved in SOCE.
Cell Calcium 47, 491-499 (2010).

28. Liu W., Tang F., Chen J.: Designing dynamical output feedback controllers for store-
operated Ca2+ entry. Math. Biosci. 228, 110-118 (2010).

29. Locke E.G., Bonilla M., Liang L., Takita Y., Cunningham K.W.: A Homolog of voltage-
gated Ca2+ channels stimulated by depletion of secretory Ca2+ in yeast. Molecular and
Cellular Biology 20, 6686-6694 (2000).

30. Luik R.M., Wang B., Prakriya M., Wu M.M., Lewis R.S.: Oligomerization of STIM1
couples ER calcium depletion to CRAC channel activation. Nature 454, 538-542 (2008).

31. Lytton J., Westlin M., Burk S.E., Shull G.E., MacLennan D.H.: Functional comparisons
between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps.
J. Biol. Chem. 267, 14483-14489 (1992).



204 8 Store-Operated Calcium Entry

32. Mak D.O., McBride S., Foskett J. K.: Regulation by Ca2+ and inositol 1,4,5-trisphosphate
(InsP3) of single recombinant type 3 InsP3 receptor channels. Ca2+ activation uniquely
distinguishes types 1 and 3 insp3 receptors. J. Gen. Physiol. 117, 435-446 (2001).

33. McElroy S.P., Drummond R.M., Gurney A.M.: Regulation of store-operated Ca2+ entry
in pulmonary artery smooth muscle cells. Cell Calcium 46, 99-106 (2009).

34. Monastyrskaya K., Babiychuk E.B., Hostettler A., Wood P., Grewal T., Draeger A.:
Plasma membrane-associated annexin A6 reduces Ca2+ entry by stabilizing the cortical
actin cytoskeleton. J. Biol. Chem. 284, 17227-17242 (2009).

35. Mullins F.M., Park C.Y., Dolmetsch R.E., Lewis R.S.: STIM1 and calmodulin interact
with Orai1 to induced Ca2+-dependent interaction of CRAC channels. Proc. Natl. Acad.
Sci. USA 106, 15495-15500 (2009).

36. Parekh A.B., Putney Jr., J.W.: Store-operated calcium channels. Physiol. Rev. 85, 757-810
(2005).

37. Parekh A.B.: On the activation mechanism of store-operated calcium channels. Pflugers
Arch. – Eur. J. Physiol. 453, 303-311 (2006).

38. Park C.Y., Hoover P.J., Mullins F.M., Bachhawat P., Covington E.D., Raunser S., Walz T.,
Garcia K.C., Dolmetsch R.E., Lewis R.S.: STIM1 clusters and activates CRAC channels
via direct binding of a cytosolic domain to Orai1. Cell 136, 876-890 (2009).

39. Potier M., Trebak M.: New developments in the signaling mechanisms of the store-
operated calcium entry pathway. Pflugers Arch. 457, 405-415 (2008).

40. Prakriya M., Lewis R.S.: CRAC channels: activation, permeation, and the search for a
molecular identity. Cell Calcium 33, 311-321 (2003).

41. Prakriya M., Lewis R.S.: Regulation of CRAC channel activity by recruitment of silent
channels to a high open-probability gating mode. J. Gen. Physiol. 128, 373-386 (2006).

42. Putney J.W. Jr.: A model for receptor-regulated calcium entry. Cell Calcium 7, 1-12
(1986).

43. Putney J.W. Jr.: Recent breakthroughs in the molecular mechanism of capacitative calcium
entry (with thoughts on how we got here), Cell Calcium 42, 103-110 (2007).

44. Rorsman P., Ammala C., Berggren P.O., Bokvist K., Larsson O.: Cytoplasmic calcium
transients due to single action potentials and voltage-clamp depolarizations in mouse pan-
creatic β -cells. EMBO J. 11, 2877-2884 (1992).

45. Ryu S.Y., Peixoto P.M., Won J.H., Yule D.I., Kinnally K.W.: Extracellular ATP and P2Y2
receptors mediate intercellular Ca2+ waves induced by mechanical stimulation in sub-
mandibular gland cells: Role of mitochondrial regulation of store operated Ca2+ entry.
Cell Calcium. 47, 65-76 (2010).
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9

Control of Mitochondrial Calcium

A mitochondrion is a membrane-enclosed organelle found in most eukaryotic cells.
Mitochondria are sometimes described as “cellular power plants” because they gen-
erate most of the cell’s supply of adenosine triphosphate (ATP), used as a source of
chemical energy. A mitochondrion contains outer and inner membranes composed
of phospholipid bilayers and proteins. The space between the outer and inner mem-
branes is called the inter-membrane space and the space within the inner membrane
is called the matrix.

Ions movements across the mitochondrial inner membrane are schematically
described in Fig. 9.1. H+ ions in mitochondria are ejected by the respiratory chain
driven by the energy released from oxidation of NADP. The established electrochem-
ical gradient drives the electrogenic transport of ions, including ATP and ADP by
the adenine nucleotide translocator (ANT), Ca2+ influx via the Ca2+ uniporter, and
Ca2+ efflux via the Na2+/Ca2+ antiporter. The H+ ions in the cytosol flow back to
the mitochondrion through F1F0-ATPase to power the ATP synthesis.

Mitochondrial Ca2+ uptake has profound consequences for physiological cell
functions. Intramitochondrial Ca2+ stimulates oxidative phosphorylation and con-
trols the rate of ATP production. Mitochondrial Ca2+ uptake modifies the shape of
cytosolic Ca2+ pulses or transients [4, 7, 8] and regulates store-operated calcium entry
[5, 13]. Furthermore, for any repetitive physiological process dependent on intrami-
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Fig. 9.2. Six state model of the respiratory chain proposed by Pietrobon and Caplan [11]. A
counter-clock cycle of the diagram’s perimeter corresponds to the transfer of 1 e− and the
ejection of a maximum of 6 H+, as driven by the oxidation of 1/2 NADH in the mitochondrial
inner membrane

tochondrial free Ca2+ concentration, a kind of intramitochondrial Ca2+ homeostasis
must exist and be controlled dynamically to avoid either Ca2+ buildup or depletion
in mitochondria [1, 7].

Ca2+ transport both inward and outward across the mitochondrial inner mem-
brane is controlled by an elaborate set of mechanisms and processes. Three mecha-
nisms or modes of influx are the mitochondrial Ca2+ uniporter, the rapid mode and
the mitochondrial ryanodine receptor (mRyR). Two mechanisms of Ca2+ efflux are
the Na+-dependent and the Na+-independent mechanisms [8]. We present a minimal
model for the mitochondrial Ca2+control system developed by Magnus and Keizer
[9] and refined later by Cortassa et al [3].

9.1 Respiration-driven Proton Ejection

Most ATP is synthesized in mitochondria by the process of oxidative phosphory-
lation, as demonstrated in Fig. 9.1. In this process, energized electrons liberated
from the oxidation of NADH and FADH2 are delivered to O2 via an electron trans-
port chain (respiratory chain), which consists of four complexes. When passing
through the chain, these electrons power proton H+ pumps located in the chain. These
powered pumps eject H+ from the mitochondrial matrix to the outer compartment
between the outer and inner mitochondrial membranes to establish a H+ gradient
across the inner mitochondrial membrane. The electrochemical energy of this gradi-
ent is then used to drive ATP synthesis by the F1F0-ATPase [10].

Pietrobon and Caplan [11] modeled the respiratory chain as a bidirectional proton
pump, as demonstrated in Fig. 9.2. The pump is powered by a single electron, which
is energized by the oxidation of NADH in the mitochondrial inner membrane. The
powered pump then ejects a maximum of 6 H+ from the matrix to the cytosol. It was
assumed that the pump can stay in six different states. In the state 1 (S1), the H+

binding sites of the pump is oriented to the matrix and the pump is free to bind H+
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from the matrix. The pump is transited into the state 2 (S2) when the mitochondrial
H+ binds to it. After energized by the oxidation of NADH, the pump is transited into
the state 3 (S3) and then the state 4 (S4) with the production of NAD+. The energized
pump is able to undergo a conformational change reorienting its H+ binding sites
from the matrix to the cytosol and transited into the state 5 (S5). After H+ are released
into the cytosol, the pump is transited into the state 6 (S6) and then returns its original
state 1 through a conformational change. The transition of the state 2 to the state 5
represents an outward H+ leakage while the transition of the state 5 to the state 2
corresponds to a reaction slip that NADH oxidation occurs without H+ ejection.

Rate constants may be functions of extrinsic quantities affecting pump turnover,
such as membrane potential, ligand and metabolite concentrations. The rate constants
a21 and a56 for the proton unbinding involve boundary potentials that are measured
at each membrane surface with respect to the nearest bulk phase, and sum to a con-
stant boundary voltage difference (Vb = 50 mV). Since the conformational changes
between the state 1 and the state 6 occur within the membrane itself, the correspond-
ing rate constants a16 and a61 depend on V −Vb, where V is the membrane potential
difference.

The H+ ejection is driven by the chemical potential in the reaction

1
2

NADH+
1
2

H+ +
1
4

O2�
1
2

NAD+ +
1
2

H2O. (9.1)

Assuming that the concentrations of H+, O2, and H2O are constant in the reaction
(9.1), we derive from (2.56) that the chemical potential change is given by

μres = −RT ln

(
Kres

√
[NADH]
[NAD+]

)
, (9.2)

where Kres is the equilibrium constant. Mitochondrial NAD+ is assumed to be con-
served as follows

[NAD+] = Cpn− [NADH]

with Cpn as the total concentration of pyrimidine nucleotides.
On the other hand, the electrochemical gradient, or the proton motive force (Δ p),

drives mitochondria to uptake H+. Let φo denote the electrical potential on the out-
side of the inner mitochondrial membrane, φi the electrical potential on the inside (the
matrix side), and V = φo−φi the potential difference. Let pHo denote the outer com-
partment pH, pHi the inside pH, and ΔpH= pHo−pHi the pH difference. It follows
from (2.53) and (B.2) that the electrochemical gradient is given by

Δ p = φo−φi +
RT
F

(
ln[H+

o ]− ln[H+
i ]

)
= V +

RT
F loge

(
log[H+

o ]− log[H+
i ]

)
= V +2.303

RT
F

Δ pH. (9.3)
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The reactions in Fig. 9.2 can be written as follows:

S1 +6H+
m �

a12

a21
S2, (9.4)

S2 +
1
2

NADH +
1
2

H+
m +

1
4

O2 �
a23

a32
S3, (9.5)

S3 �
a34

a43
S4 +

1
2

NAD+ +
1
2

H2O, (9.6)

S4 �
a45

a54
S5, (9.7)

S5 �
a52

a25
S2, (9.8)

S5 �
a56

a65
S6 +6H+

i , (9.9)

S6 �
a61

a16
S1, (9.10)

where H+
m denotes the proton H+ in the matrix of mitochondria and H+

i denotes
the proton H+ in the cytosol. At equilibrium, these six states satisfy the following
equations

a12[H+]6m[S1]+a16[S1]−a21[S2]−a61[S6] = 0, (9.11)

a23[H+]1/2
m [NADH]1/2[O2]1/4[S2]

+(a21 +a25)[S2]−a12[H+]6m[S1]−a23[S3]−a52[S5] = 0, (9.12)

a32[S3]+a34[S3]−a23[H+]1/2
m [NADH]1/2[O2]1/4[S2]

−a43[NAD+]1/2[H2O]1/2[S4] = 0, (9.13)

a43[NAD+]1/2[H2O]1/2[S4]+a45[S4]−a54[S5]−a34[S3] = 0, (9.14)

(a54 +a52 +a56)[S5]−a45[S4]−a25[S2]−a65[H+]6i [S6] = 0, (9.15)

[S1]+ [S2]+ [S3]+ [S4]+ [S5]+ [S6] = [S0], (9.16)

where [S0] denotes the total concentration of the pump. Using a mathematical soft-
ware such as the Maple, we can solve the above system to obtain [S1], [S2], [S3], [S4],
[S5], [S6], which are large fractions with denominators containing nearly 100 terms,
each a product of 5 rate constants. Magnus and Keizer [9] approximated numerous
terms and factors in the full expressions and greatly simplified them to obtain the
following H+ flux

rres =
6ρres

[
ra exp

(−μres
RT

)− (ra + rb)exp
(

6gFΔ p
RT

)]
[
1+ r1 exp

(−μres
RT

)]
exp

(
6FVb
RT

)
+
[
r2 + r3 exp

(−μres
RT

)]
exp

(
6gFΔ p

RT

)

=
6ρres

[
raKres

√
[NADH]
[NAD+] − (ra + rb)exp

(
6gFΔ p

RT

)]
Dres

, (9.17)
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where

Dres =

[
1+ r1Kres

√
[NADH]
[NAD+]

]
exp

(
6FVb

RT

)

+

[
r2 + r3Kres

√
[NADH]
[NAD+]

]
exp

(
6gFΔ p

RT

)
.

In the original H+ flux model of Magnus and Keizer [9], Δ p was the potential dif-
ference V , which was changed to the current Δ p by Cortassa et al [3]. This equation
indicates that if the ratio

[NADH]
[NAD+]

>
(ra + rb)2 exp

(
12gFΔ p

RT

)
r2

aK2
res

,

then H+ are rejected from the matrix. Otherwise, H+ flow back into the matrix due
to the insufficient energy from NADH.

The H+ ejection is also powered by the chemical potential

μres, f = −RT ln

(
Kres, f

√
[FADH2]
[FAD]

)
(9.18)

from the complex II of the electron transport chain. The H+ flux has the same form
as rres except for a little adjustment as follows

rres, f =
6ρres, f

[
ra exp

(−μres, f
RT

)
− (ra + rb)exp

(
4gFΔ p

RT

)]
[
1+ r1 exp

(−μres, f
RT

)]
exp

(
4FVB
RT

)
+
[
r2 + r3 exp

(−μres, f
RT

)]
exp

(
4gFΔ p

RT

)

=
6ρres, f

[
raKres, f

√
[FADH2]
[FAD] − (ra + rb)exp

(
4gFΔ p

RT

)]
Dres, f

, (9.19)

where

Dres, f =

[
1+ r1Kres, f

√
[FADH2]
[FAD]

]
exp

(
4FVB

RT

)

+

[
r2 + r3Kres, f

√
[FADH2]
[FAD]

]
exp

(
4gFΔ p

RT

)
.

The H+leakage from the outer compartment into the matrix is considered to be
a linear function of the Δ p through a proportionality constant given by the H+ con-
ductance, Gh, described as follows:

rhleak = GhΔ p. (9.20)
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Fig. 9.3. Six state model of the F1F0-ATPase proposed by Pietrobon and Caplan [11]. A
counter-clock cycle of the diagram’s perimeter corresponds to the production of 1 ADP and
the ejection of a maximum of 3 H+, as driven by the hydrolysis of 1 ATP by the F1F0-ATPase
in the mitochondrial inner membrane. The pump functions in the reverse direction in vivo

9.2 ATP Synthesis and Proton Uptake by the F1F0-ATPase

In analogy to the respiratory chain, the mitochondrial F1F0-ATPase was also modeled
as a bidirectional proton pump [9, 11], as demonstrated in Fig. 9.3. If the respiratory
chain is inhibited, ATP is hydrolyzed by the F1-ATPase in the reaction

AT P+H2O� ADP+H2PO−4 . (9.21)

The energy from the ATP hydrolysis powers the proton pump to eject H+ through the
pore-like F0 sector. This corresponds to the counter-clockwise cycle of the perimeter
of Fig. 9.3. By (2.56), the chemical potential in the reaction (9.21) is given by

μ f1 =−RT ln

(
Kf1

√
[ATP]m

[ADP]mPi

)
, (9.22)

where Kf1 is the equilibrium constant for the reaction (9.21). Mitochondrial ATP,
[ATP]m, is assumed to be conserved as follows

[ATP]m = Cm− [ADP]m

with Cm as the total concentration of adenine nucleotides and [ADP]m as the mito-
chondrial ADP concentration.

On the other hand, the system in vivo operates in the reverse direction. The elec-
trochemical gradient Δ p provides the essential energy to drive ATP synthesis by
complex V (ATP synthase) with the H+ backflow into the matrix. As in the deriva-
tion of the proton ejection rate (9.17), it can be derived that the ATP production
rate r f 1 f 0,at p and the H+ uptake rate r f 1 f 0,h into the mitochondrial matrix are given
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by [3, 9]

r f 1 f 0,at p = −ρ f1

{[
102 pa + pc1 exp

(
3FVB

RT

)]
exp

(−μ f1

RT

)

−
[

pc2 exp

(−μ f1

RT

)
+ pa

]
exp

(
3FΔ p

RT

)}
÷

{[
1+ p1 exp

(−μ f1

RT

)]
exp

(
3FVB

RT

)

+
[

p2 + p3 exp

(−μ f1

RT

)]
exp

(
3FΔ p

RT

)}

= −ρ f1

{[
102 pa + pc1 exp

(
3FVB

RT

)]
Kf1

√
[AT P]m

[ADP]mPi

−
[

pc2Kf1

√
[AT P]m

[ADP]mPi
+ pa

]
exp

(
3FΔ p

RT

)}
÷

{[
1+ p1Kf1

√
[AT P]m

[ADP]mPi

]
exp

(
3FVB

RT

)

+

[
p2 + p3Kf1

√
[AT P]m

[ADP]mPi

]
exp

(
3FΔ p

RT

)}
, (9.23)

r f 1 f 0,h =
−3ρ f1

{
102 pa

[
1+ exp

(−μ f1
RT

)]
− (pa + pb)exp

(
3FΔ p

RT

)}
[
1+ p1 exp

(−μ f1
RT

)]
exp

(
3FVB
RT

)
+
[

p2 + p3 exp
(−μ f1

RT

)]
exp

(
3FΔ p

RT

)

=
−3ρ f1

{
102 pa

[
1+Kf1

√
[AT P]m

[ADP]mPi

]
− (pa + pb)exp

(
3FΔ p

RT

)}
D f 1 f 0,h

, (9.24)

where

D f 1 f 0,h =

[
1+ p1Kf1

√
[AT P]m

[ADP]mPi

]
exp

(
3FVB

RT

)

+

[
p2 + p3Kf1

√
[ATP]m

[ADP]mPi

]
exp

(
3FΔ p

RT

)
.

In the original rate model of Magnus and Keizer [9], Δ p was the potential difference
V , which was changed to the current Δ p by Cortassa et al [3].
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9.3 ATP and ADP Transport by the Adenine Nucleotide
Translocator

Adenine nucleotide translocator (ANT), also known as the ADP/ATP transloca-
tor, is a mitochondrial protein and functions as a monomer in mitochondrial mem-
branes. ANT activity was modeled according to a sequential mechanism proposed
by Bohnensack [2]. Oppositely oriented sites bind either ATP4− or ADP3−, and both
sites must be filled before the protein isomerization causes a ligand exchange across
the inner membrane. These binding activities may be described by the following reac-
tions:

ADP3−
i +ANT+ADP3−

m � [ADP3−
i ANTADP3−

m ] −→
kdidm

ADP3−
m +ANT+ADP3−

i ,

ADP3−
i +ANT+ATP4−

m � [ADP3−
i ANTATP4−

m ] −→
kditm

ADP3−
m +ANT+ATP4−

i ,

ATP4−
i +ANT+ADP3−

m � [ATP4−
i ANTADP3−

m ] −→
ktidm

ATP4−
m +ANT+ADP3−

i ,

ATP4−
i +ANT+ATP4−

m � [ATP4−
i ANTATP4−

m ] −→
ktitm

ATP3−
m +ANT+ATP4−

i .

The subscripts i and m denote the cytosolic side and the matrix side of mitochondria,
respectively. The total concentration [ANT0] of ANT is then given by

[ANT0] = [ANT ]+ [ADP3−
i ANTADP3−

m ]+ [ADP3−
i ANTATP4−

m ]

+[ATP4−
i ANTADP3−

m ]+ [AT P4−
i ANTATP4−

m ]. (9.25)

Assuming that each binding reaction is at equilibrium and defining the dissociation
constants by

Kdidm =
[ADP3−]i[ANT ][ADP3−]m

[ADP3−
i ANTADP3−

m ]
,

Kditm =
[ADP3−]i[ANT ][ATP4−]m

[ADP3−
i ANTATP4−

m ]
,

Ktidm =
[ATP4−]i[ANT ][ADP3−]m

[ATP4−
i ANTADP3−

m ]
,

Ktitm =
[ATP4−]i[ANT ][ATP4−]m

[ATP4−
i ANTATP4−

m ]
,

we derive from (9.25) that

[ANT0] = [ANT ]+
[ADP3−]i[ANT ][ADP3−]m

Kdidm
+

[ADP3−]i[ANT ][ATP4−]m
Kditm

+
[ATP4−]i[ANT ][ADP3−]m

Ktidm
+

[AT P4−]i[ANT ][ATP4−]m
Ktitm

,
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and then

[ANT ] =
[ANT0]

Dant
, (9.26)

where

Dant = 1+
[ADP3−]i[ADP3−]m

Kdidm
+

[ADP3−]i[ATP4−]m
Kditm

+
[ATP4−]i[ADP3−]m

Ktidm
+

[ATP4−]i[AT P4−]m
Ktitm

.

It then follows that the rate equations for the four types of exchanges are

rdidm = kdidm[ADP3−
i ANTADP3−

m ]

=
kdidm[ANT0][ADP3−]i[ADP3−]m

KdidmDant
, (9.27)

rditm = kditm[ADP3−
i ANTATP4−

m ]

=
kditm[ANT0][ADP3−]i[ATP4−]m

KditmDant
, (9.28)

rtidm = ktidm[AT P4−
i ANTADP3−

m ]

=
ktidm[ANT0][ATP4−]i[ADP3−]m

KtidmDant
, (9.29)

rtitm = ktitm[ATP4−
i ANTATP4−

m ]

=
ktitm[ANT0][ATP4−]i[ATP4−]m

KtitmDant
. (9.30)

Experimental observations showed that the dissociation constants and the first-
order rate constants satisfy the following relations [2]

Kditm = Kdidm, Ktidm = Ktitm, kditm = ktitm = kdidm. (9.31)

The exchange between ADP3−
i and ATP4−

m

ADP3−
i +ATP4−

m � ATP4−
i +ADP3−

m

is electrogenic due to the charge difference. It then follows from (2.54) and (B.2) that
the change in electrochemical potential of this reaction is

Δ μ = Δ μ◦+RT ln

(
[ATP4−]i[ADP3−]m
[ADP3−]i[ATP4−]m

)
−FV,

where V = Vo −Vi is the transmembrane potential. At equilibrium, we must have
Δ μ = 0. Assuming that the standard free energy for the reaction is the same on both
sides of the membrane (Δ μ◦ = 0), it then follows that

[ATP4−]i[ADP3−]m
[ADP3−]i[AT P4−]m

= exp

(
FV
RT

)
. (9.32)
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Since, at equilibrium, the net flux rditm−rtidm is zero, it follows from (9.28) and (9.29)
that

Ktidmkditm

Kditmktidm
=

[AT P4−]i[ADP3−]m
[ADP3−]i[AT P4−]m

= exp

(
FV
RT

)
. (9.33)

The dependence of Ktidm on the membrane potential was estimated experimentally
as follows [2]

Ktidm = Kdidm exp

(
f FV
RT

)
, (9.34)

where the empirical factor f expresses the fraction of the membrane potential pro-
ducing the energy-dependent shift of the Michaelis-Menten constant for ATP. With
these relations, we derive from (9.28) and (9.29) that the rate of the ADP3−

i −ATP4−
m

net exchange assumes the form [2, 3, 9]

rant = rditm− rtidm

=
kditm[ANT0]

(
[ADP3−]i[ATP4−]m− Kditmktidm

Ktidmkditm
[ATP4−]i[ADP3−]m

)
KditmDant

=
{

kdidm[ANT0]
(

[ADP3−]i[ATP4−]m− [ATP4−]i[ADP3−]m exp

(−FV
RT

))}
÷{

Kdidm +[ADP3−]i
(
[ADP3−]m +[ATP4−]m

)
+ [ATP4−]i exp

(− f FV
RT

)(
[ADP3−]m +[AT P4−]m

)}

=
kdidm[ANT0]

(
[ADP3−]i[AT P4−]m− [AT P4−]i[ADP3−]m exp

(−FV
RT

))
Kdidm +

(
[ADP3−]i +[AT P4−]i exp

(
− f FV

RT

))
([ADP3−]m +[AT P4−]m)

.

Since in general the concentration of the adenine nucleotides on both sides of the
membrane is high enough, the constant Kdidm can be neglected in the denominator.
The rate equation may then be approximated as

rant = Rant

1− [AT P4−]i[ADP3−]m
[ADP3−]i[AT P4−]m

exp
(−FV

RT

)
[
1+ [AT P4−]i

[ADP3−]i
exp

(
− f FV

RT

)][
1+ [ADP3−]m

[AT P4−]m

] , (9.35)

where Rant = kdidm[ANT0]. The relations among ADP3−,ATP4−,ADP, and AT P are
given by [9]

[AT P4−]i = 0.05[AT P]i, (9.36)[
ADP3−]

i = 0.45[ADP]i, (9.37)[
ATP4−]

m = 0.05[AT P]m, (9.38)[
ADP3−]

m = 0.45 ·0.8[ADP]m. (9.39)
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9.4 Calcium Uptake by the Uniporter

A uniporter is a mechanism which facilitates passive transport of Ca2+ across the
mitochondrial membrane without coupling Ca2+ transport to the transport of another
ion. The uniporter has both a transport site and a separate activation site. These sites
have different binding affinities and the activation site can be activated by other diva-
lent ions and also by trivalent lanthanides, such as Pr3+, or by Ca2+. These results
suggest that the rate of [Ca2+]i transport by the mitochondrial Ca2+ uniporter is given
by a second order Hill equation of the form (see Gunter et al [8])

runip = R∗unip
[Ca2+]2i

K2
0.5 +[Ca2+]2i

,

where R∗unip is a function of membrane potential. The fastest reported R∗unip (1750
nmol/mg/min) was measured in dog heart mitochondria. The published values of
K0.5 were pretty diverse, ranging from 1 to 189 μM [8].

The membrane potential dependence of Ca2+ uptake is also an important char-
acteristic of uniporter behavior. Since a uniporter facilitates the transport of an ion
down its electrochemical gradient without coupling it to the transport of any other
ion, the membrane potential dependence should be consistent with the equations for
electrochemical diffusion. This membrane potential dependence has been shown in
liver mitochondria to fit the form [8]

bF(V −V0)
2RT

[
exp

(
2bF(V −V0)

RT

)
−1

]
,

where V is the mitochondrial membrane potential difference in millivolts, F , R, and
T are the Faraday constant, the gas constant and the Kelvin temperature, respectively,
and b = 1 and V0 = 91 mV are fitting parameters. Then the combined concentration
and membrane potential dependence is then given by

runip = Runip
F(V −V0)

2RT

[
exp

(
2F(V −V0)

RT

)
−1

]
[Ca2+]2

K2
0.5 +[Ca2+]2

. (9.40)

Another similar model developed by Magnus and Keizer [9] is as follows

runip = Runip

[Ca2+]i
Ktrans

(
1+ [Ca2+]i

Ktrans

)3 2F(V−V0)
RT⎡

⎣(1+ [Ca2+]i
Ktrans

)4
+ L(

1+ [Ca2+]i
Kact

)na

⎤
⎦[

1− exp
(−2F(V−V0)

RT

)] . (9.41)

9.5 Calcium Efflux via the Sodium/Calcium Exchanger

Na+/Ca2+ exchangers (NCX) are present in the mitochondrial inner membrane and
are the primary mechanism of Ca2+ efflux in brain, heart, skeletal muscle and many
other types of mitochondria [8]. The kinetics of this mechanism in both heart and
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liver mitochondria have been determined to be first order in Ca2+ and second order
in Na+. Thus, the ionic flux was described mathematically by (see, e.g., [8])

rncx = Rncx

(
[Na+]2i

K2
na +[Na+]2i

)(
[Ca2+]m

Kca +[Ca2+]m

)
. (9.42)

For liver mitochondria, Rncx has been found to be 2.6 ± 0.5 nmol/(mg·min), Kca to
be 8.1 ± 1.4 nmol/mg protein, and Kna to be 9.4 ± 0.6 mM. For heart mitochondria,
the corresponding parameters have been found to be 18 nmol/(mg·min), around 10
nmol/mg protein, and 7 - 12 mM Na+, respectively, whereas for brain mitochondria,
Rncx has been found to be around 30 nmol/(mg·min).

Another rate equation of the exchanger was established by Wingrove et al [14],
and modified later by Magnus et al [9] and Cortassa et al [3]. Under normal condi-
tions, the major Ca2+ efflux channel through the inner mitochondrial membrane is
the Na+/Ca2+ exchanger. However, the exchanger may import Ca2+ while extrud-
ing Na+ under ischemic conditions. Experimental observations showed that the
exchanger is able to sense both [Ca2+]m and [Ca2+]i based on the reversal of its activ-
ity under pathological conditions [6]. Like the Ca2+ influx uniporter, the exchanger
is controlled by the inner membrane potential V and its rate is

rncx = Rncx

exp
(

bF(V−V0)
RT

)
(

1+ Kna
[Na+]i

)n(
1+ Kca

[Ca2+]m

) . (9.43)

Furthermore, a model of fifteen states for the nNa+/Ca2+ exchangers was pro-
posed by Pradhan et al [12]. Because this model is complex, we do not discuss it
here and refer to [12] for interested readers.

9.6 Governing Equations of Calcium Dynamics

Using the electric circuit model (6.149) for the membrane potential, we obtain the
governing equations for the dynamics of mitochondrial calcium as follows

d[ADP]m
dt

= rant − r f 1 f 0,at p, (9.44)

Cmito
dV
dt

= rres + rres, f − r f 1 f 0,h− rant − rhleak− rncx−2runip, (9.45)

d[Ca2+]m
dt

= f (runi− rncx). (9.46)

In these equations, rres is defined by the equations (9.17), rres, f is defined by the
equations (9.19), rhleak is defined by the equations (9.20), r f 1 f 0,at p is defined by the
equations (9.23), r f 1 f 0,h is defined by the equations (9.24), rant is defined by the equa-
tions (9.35), runip is defined by the equations (9.41), rncx is defined by the equations
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Table 9.1. Parameter values of the model (9.44)-(9.46) from [3]

Symbol Value Description

ra 6.394×10−10 s−1 Sum of products of rate constants
rb 1.762×10−13 s−1 Sum of products of rate constants
r1 2.077×10−18 Sum of products of rate constants
r2 1.728×10−9 Sum of products of rate constants
r3 1.059×10−26 Sum of products of rate constants
ρres 0.0006-0.05 mM Concentration of electron carriers
Kres 1.35×1018 Equilibrium constant of respiration
ρres, f 0.0045 mM Concentration of electron carriers
Vb 0.05 V Phase boundary potential
g 0.85 Correction factor for voltage
Kres, f 5.765×1013 Equilibrium constant of FADH2 oxidation
[FADH2] 1.24 mM Concentration of FADH2 (reduced)
[FAD] 0.01 mM Concentration of FAD (oxidized)
pa 1.656×10−5 s−1 Sum of products of rate constants
pb 3.373×10−7 s−1 Sum of products of rate constants
pc1 9.651×10−14 s−1 Sum of products of rate constants
pc2 4.585×10−14 s−1 Sum of products of rate constants
p1 1.346×10−8 Sum of products of rate constants
p2 7.739×10−7 Sum of products of rate constants
p3 6.65×10−15 Sum of products of rate constants
ρ f 1 0.06-1.8 mM Concentration of F1F0-ATPase
KF1 1.71×106 Equilibrium constant of ATP hydrolysis
R 8.315 V C mol−1 K−1 Gas constant
T 310.16 K−1 Mammalian body temperature
F 96480 C mol−1 Faraday constant
Pi 20.0 mM Inorganic phosphate concentration
Cm 15.0 mM Total sum of mitochondrial adenine nucleotides
Rant 0.05-24.0 mM s−1 Maximal rate of the ANT
[ADP]i 0.05-0.2 mM Cytoplasmic ADPi concentration
[AT P]i 6.5 mM Cytoplasmic ATPi concentration
Gh 0.01 mM s−1 V−1 Ionic conductance of the inner membrane
Δ pH -0.6 pH pH gradient across the inner membrane
Cpn 10.0 mM Total sum of mito pyridine nucleotides
Cmito 1.812 mM V−1 Inner membrane capacitance
Runip 0.625-1.25 μM s−1 Maximum rate of uniporter Ca2+ transport
[Ca2+]i 2.0×10−2-1.2 μM Cytosolic Ca2+ concentration
V0 0.091 V Offset membrane potential
Kact 3.8×10−4 mM Activation constant
Ktrans 0.019 mM Dissociation constant for translocated Ca2+

L 110.0 Equilibrium constant for conformational transitions in
uniporter

na 2.8 Uniporter activation cooperativity
Rncx 0.005-0.2 mM s−1 Maximum rate of Na+/Ca2+ exchanger
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Table 9.1 continued

Symbol Value Description

b 0.5 V dependence of Na+/Ca2+ exchanger
Kna 9.4 mM Exchanger Na+ constant
[Na+]i 10.0 mM Cytosolic Na+ concentration
Kca 3.75×10−4 mM Exchanger Ca2+ constant
n 3 Na+/Ca2+ exchanger cooperativity
f 0.0003 Fraction of free [Ca2+]m
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Fig. 9.4. Numerical solutions of the model (9.44)-(9.46)

(9.43), and f denotes the fraction of free [Ca2+]m. This system is solved numerically
with the parameter values given in Table 9.1. Fig. 9.4 shows that, for a constant intra-
cellular calcium concentration [Ca2+]i = 0.1 μM, all three states [ADP]m,V, [Ca2+]m
converge to a steady state, which is close to experimental observations.

Exercises

9.1. Solve the proton ejection system (9.11)-(9.16) with a mathematical software and
find the proton ejection rate rres = a56[S5]−a65[S6][H+]6i .

9.2. Convert Fig. 9.3 to reaction equations, write the steady state equations for the
six states S1,S2,S3,S4, S5,S6, solve them with a mathematical software, and find
the proton uptake rate r f 1 f 0,h = a21[S2]− a12[S1][H+]3m and the ATP synthesis rate
r f 1 f 0,at p = a32[S3]−a23[S2][ATP]m[H2O].
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10

Control of Phosphoinositide Synthesis

Phosphatidylinositol 4,5-bisphosphate (PIP2) is the predominant (99%) phospho-
inositide in mammalian cells [7]. PIP2 is synthesized from phosphatidylinositol-4-
phosphate (PIP) by PIP2 synthases while PIP is synthesized from Phosphatidylinos-
itol (PI) by PIP synthases. PIP2 in cells is normally hydrolyzed by phospholipase C
(PLC) to generate inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), which
serve as second messengers for intracellular Ca2+ mobilization and PKC (protein
kinase C) activation, respectively [4, 7]. Thus, PIP2 plays important roles in PLC-
mediated cellular processes, such as glucose-stimulated insulin secretion [1], store-
operated calcium entry [2, 6], and sterol trafficking [5, 8]. Mathematical models for
the process of phosphoinositide synthesis have been established (see, e.g., [3, 7]). In
this chapter, we present the model developed by Xu et al [7] because of its simplicity.

10.1 PIP Synthesis from PI

The PIP synthesis from PI can be described by

PI −→
kpip

PIP. (10.1)

The PIP synthesis is controlled by both PIP concentration and synthesis time. When
the synthesized PIP reaches a basal level, the synthesis should stop to avoid over-
production. Moreover, the synthesis rate could decrease in time. Taking this into
account, Xu et al [7] expressed the PIP synthesis rate kpip as the sum of the basal
rate of PIP synthesis and the stimulation rate of PIP synthesis due to PIP synthase
activity:

kpip = Rpipb +Rpips. (10.2)

The basal rate of PIP synthesis depended on the PIP concentration and was given by

Rpipb =

{
0.581kpipb

(
exp

(
[PIP]b−[PIP]

[PIP]b

)
−1

)
if [PIP] < [PIP]b,

0 if [PIP]≥ [PIP]b.
(10.3)

LiuW.: Introduction to Modeling Biological Cellular Control Systems.
DOI 10.1007/978-88-470-2490-8 10, © Springer-Verlag Italia 2012
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The stimulation rate of PIP synthesis depended on time and was given by

Rpips =
{

0 if t ≤ τpip,
kpips exp((τpip− t)/Dpip) if t > τpip.

(10.4)

10.2 PIP2 Synthesis from PIP

The PIP2 synthesis from PIP can be described by

PIP−→
kpip2

PIP2. (10.5)

Like the PIP synthesis, the PIP2 synthesis is also controlled by both PIP2 concentra-
tion and synthesis time. Thus, the PIP2 synthesis rate kpip2 was expressed as the sum
of the basal rate of PIP2 synthesis and the stimulation rate of PIP2 synthesis due to
PIP2 synthase activity [7]:

kpip2 = Rpip2b +Rpip2s. (10.6)

The basal rate of PIP2 synthesis depended on the PIP2 concentration and was given
by

Rpip2b =

{
0.581kpip2b

(
exp

(
[PIP2]b−[PIP2]

[PIP2]b

)
−1

)
if [PIP2] < [PIP2]b,

0 if [PIP2]≥ [PIP2]b.
(10.7)

The stimulation rate of PIP2 synthesis depended on time and was given by

Rpip2s =
{

0 if t ≤ τpip2,
kpip2s exp((τpip2− t)/Dpip2) if t > τpip2.

(10.8)

10.3 PIP2 Hydrolysis

PIP2 in cells is normally hydrolyzed by phospholipase C (PLC) to generate inositol
1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), respectively [4, 7]. The hydrol-
ysis can be described as follows:

PLC �
kplc

bplc

PLCa, (10.9)

PIP2 +PLCa −→
kpip2h

IP3 +DAG+PLCa, (10.10)

where PLCa denotes the active form of PLC. The activation rate of PLC depended
on time and was constructed by Xu et al [7] as follows

kplc =
{

0 if t ≤ τ0,
kplca exp((τ0− t)/Dplc) if t > τ0.

(10.11)
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10.4 A Control System for Phosphoinositide Synthesis

Using the law of mass balance (2.1) and the law of mass action, we derive from the
reaction equations (10.1), (10.5), (10.9), and (10.10) the control system governing
phosphoinositide synthesis:

d[PI]
dt

= −kpip[PI], (10.12)

d[PIP]
dt

= kpip[PI]− kpip2[PIP], (10.13)

d[PIP2]
dt

= kpip2[PIP]− kpip2h[PIP2][PLCa], (10.14)

d[IP3]
dt

= kpmcytkmolekpip2h[PIP2][PLCa]−dip3([IP3]− [IP3]b), (10.15)

d[DAG]
dt

= kpip2h[PIP2][PLCa], (10.16)

d[PLCa]
dt

= kplc([PLC]T − [PLCa])−bplc[PLCa], (10.17)

where [PLC]T is the concentration of total PLC. In the equation (10.15), it is assumed
that the rate of IP3 degradation is proportional to its concentration (dip3[IP3]) and there
is a basal IP3 synthesis rate (dip3[IP3]b).

The unit for the surface molecules, [PI], [PIP], [PIP2], [DAG], [PLCa], is mol-
ecules/μm2 and the unit for the cytosolic molecule [IP3] is μM. In the equation
(10.15), the constants kpmcyt and kmole are used to convert the surface concentration
unit, molecules/μm2, to the cytosol volume concentration unit, μM. kpmcyt is the ratio
of plasma membrane area to cytosol volume. Let fnuc denote the fraction of nucleus
volume and define the ratio of plasma membrane area to cell volume by

Rstv =
area of plasma membrane

volume of cell
.

Then the cytosol volume is equal to (volume of cell)×(1− fnuc) and then kpmcyt can
be calculated by

kpmcyt =
area of plasma membrane

(volume of cell)× (1− fnuc)
=

Rstv

1.0− fnuc
.

We note that the unit of kpmcytkpip2h[PIP2][PLCa] is molecules/μm3/s. Thus the unit
conversion ratio kmole is determined by

molecule
μm3 = kmoleμM.
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Table 10.1. Parameter values for the system (10.12)-(10.17)

Parameter Value Reference

[IP3]b 0.16 μM [7]
kpip2h 2.4 (s·molecules/μm2)−1 [7]
kpipb 0.0055 s−1 [7]
kpip2b 0.048 s−1 [7]
kplca 5.0×10−4 s−1 [7]
dip3 0.08 s−1 [7]
kmole 0.0017 [7]
bplc 0.1 s−1 [7]
kpips 0.019 s−1 [7]
kpip2s 0.92 s−1 [7]
[PIP2]b 4000.0 molecules/μm2 [7]
Dpip2 1.0 s [7]
[PIP]b 2857.0 molecules/μm2 [7]
Dpip 1.0 s [7]
Dplc 1.0 s [7]
Rstv 0.5 μm−1 [7]
τ0 0.05 s [7]
τpip2 0.05 s [7]
τpip 0.05 s [7]
fnuc 0.1 [7]
[PLC]T 100 molecules/μm2 [7]
[PI](0) 142857 molecules/μm2 Initial condition [7]
[PIP](0) 2857 molecules/μm2 Initial condition [7]
[PIP2](0) 4000 molecules/μm2 Initial condition [7]
[DAG](0) 2000 molecules/μm2 Initial condition [7]
[PLCa](0) 0 molecules/μm2 Initial condition [7]
[IP3](0) 0.16 μM Initial condition [7]

It then follows that

kmole =
molecule

μm3×μM

=
molecule

μm3×10−6 mole
liter

=
molecule

μm3×10−6 6.022×1023molecule
1015μm3

=
1

6.022×102

≈ 0.0017.

The parameter values for the system (10.12)-(10.17) are listed in Table 10.1.
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Fig. 10.1. A numerical solution of the system (10.12)-(10.17). The data are read from [7]
using the software Engauge Digitizer 4.1. The original data in [7] is in percentage of change,
which is converted into concentration with the basal concentration of 4000 molecules/μm2 for
[PIP2] and of 2857 molecules/μm2 for [PIP] (their initial concentrations) using the formula:
concentration = basal ·(1+percentage of change)

The system (10.12)-(10.17) is solved numerically with MATLAB and the numer-
ical solution is plotted in Fig. 10.1. The solution shows that a plasma membrane
stimulation activates PLC and the activated PLC converts PIP2 into IP3 and DAG,
resulting in a decrease in PIP2 and an increase in IP3 and DAG. Since PI is converted
into PIP, which is, in turn, converted into PIP2, the concentration of PI is decreasing
while the concentrations of PIP and PIP2 are increasing to a steady state.
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Exercises

10.1. The functions in (10.4), (10.8), and (10.11) are not continuous. Construct a con-
tinuous function to replace these models such that they are not essentially changed.

10.2. Solve the system (10.12)-(10.17) numerically with following periodic plasma
membrane stimulation pulses:

kplc =
{

0.0005 if 10n≤ t ≤ 10n+0.01 s,
0 if 10n+0.01 < t < 10(n+1) s.

Because of the periodic pulses, PIP2 will be used up. Introduce a control input u in
the equation (10.12) as follows

d[PI]
dt

=−kpip[PI]+u.

Then design a feedback controller u to maintain PIP2 around its basal level.
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Appendix A

Preliminary MATLAB

The name MATLAB stands for matrix laboratory. MATLAB was originally written
to provide easy access to matrix software. So MATLAB is a high-level matrix/array
language with control flow statements, functions, data structures, input/output, and
object-oriented programming features. This brief introduction to MATLAB is adapted
from the help documents of MATLAB, MathWorks, Inc., Natick, MA [2].

A.1 MATLAB Desktop

A.1.1 Command Window

This is the primary place where we interact with MATLAB. The prompt >> is dis-
played in this window, and when this window is active, a blinking cursor appears to
right of the prompt. This cursor and prompt signify that MATLAB is waiting to per-
form a mathematical operation. In this window, we can enter variables, mathematical
expressions, MATLAB commands, and run them as demonstrated below:

Enter

>> 1+1

and hit the enter key:

ans =
2

>> x = 1
x =

1

>> y = 1
y =

1

LiuW.: Introduction to Modeling Biological Cellular Control Systems.
DOI 10.1007/978-88-470-2490-8 A, © Springer-Verlag Italia 2012
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>> z = x+y
z =

2
>>

The expression x = 1 means that the value 1 is assigned to the variable x. Multiple
commands are separated by commas or semicolons and they can be placed on one
line:

>> x = 1, y = 1;
x =

1
>>

Commas tell MATLAB to display results; semicolons suppress printing.
Performing mathematical operations one by one as above is not convenient for

solving complex mathematical problems. Also the operations performed as above
cannot be saved for later uses. Therefore, we usually write many MATLAB com-
mands in one file, called an M-file, save it, and run it in this window. The next section
will tell you how to do so.

A.1.2 Help Browser

Use the Help browser to search and view documentation and demos for all your Math-
Works products. The Help browser is a Web browser integrated into the MATLAB
desktop that displays HTML documents.

To open the Help browser, click the help button in the toolbar, or type helpbrowser
in the Command Window.

The Help browser consists of two panes, the Help Navigator, which we use to
find information, and the display pane, where we view the information.

The following are useful commands for online help:
• help lists topics on which help is available;
• helpwin opens the interactive help window;
• helpdesk opens the web browser based help facility;
• help topic provides help on topic;
• lookfor string lists help topics containing string.

A.1.3 Editor / Debugger

Use the Editor/Debugger to create and debug M-files, which are programs we write
to run MATLAB functions. The Editor/Debugger provides a graphical user interface
for basic text editing, as well as for M-file debugging.

We can use any text editors to create M-files, such as Microsoft Word, and can
use preferences (accessible from the desktop File menu) to specify that editor as the
default. If we use another editor, we can still use the MATLAB Editor/Debugger for
debugging, or we can use debugging functions, such as dbstop, which sets a break-
point.
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A.2 Creating, Writing, and Saving a MATLAB File

To create a new M-file, click on the icon “New M-File”. Then a blank m-file editor
window is open. In this window, we will write MATLAB programs that consist of
MATLAB statements and commands. The following is an example:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Matlab code welcome.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp(’Hello, Welcome to MATLAB class’);

% disp is a built-in function to display a string.

% compute the area of a circle

r = 2; %radius of a circle.
A = pi*rˆ2

The percent % is used for comments. Any things after it are ignored by MATLAB.
If our comments cannot be finished in one line, we can use

%{
comments
%}

disp is a built-in function to display a string. A string is put between two single quotes.
To set up the radius, we type

r = 2.

The semicolon here suppresses the display of variable. To compute the area, we type
the MATLAB mathematical expression:

A = pi*rˆ2

where pi is built-in constant π .
To save this file, go to “File” and select “Save As”. Use “welcome” (can be any

other string) as the file name. The M-file extension is .m. Save it in your directory.
To execute this program, go to the directory where the file is saved. Then type

the file name without the extension .m and hit “Enter”. You should see

Hello, Welcome to MATLAB class
A =

12.5664

After the execution of the file is complete, the variables r and A remain in the
workspace.
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A.3 Simple Mathematics

A.3.1 Variables

MATLAB does not require any type declarations or dimension statements. When
MATLAB encounters a new variable name, it automatically creates the variable and
allocates the appropriate amount of storage. If the variable already exists, MATLAB
changes its contents and, if necessary, allocates new storage. For example,

>> numOfSudents = 25

creates a 1-by-1 matrix named numOfSudents and stores the value 25 in its single
element.

Variable names consist of a letter, followed by any number of letters, digits, or
underscores. MATLAB uses only the first 31 characters of a variable name. MAT-
LAB is case sensitive; it distinguishes between uppercase and lowercase letters. A
and a are not the same variable. To view the matrix assigned to any variable, sim-
ply enter the variable name. Variable names can contain up to 63 characters. Any
characters beyond the 63rd are ignored.

A.3.2 Operators

Expressions use familiar arithmetic operators and precedence rules:

• +: Addition;
• −: Subtraction;
• ∗: Multiplication;
• /: Division;
• ˆ : Power;
• ( ): Specify evaluation order.

A.3.3 Built-in Functions

MATLAB provides a large number of standard elementary mathematical functions,
such as abs(x), sqrt(x), exp(x), and sin(x). For example, we can enter

>> sqrt(2)

to compute
√

2. Taking the square root or logarithm of a negative number is not
an error; the appropriate complex result is produced automatically. MATLAB also
provides many more advanced mathematical functions, including Bessel and gamma
functions. Most of these functions accept complex arguments. For a list of the ele-
mentary mathematical functions, type

>> help elfun
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For a list of more advanced mathematical and matrix functions, type

>>help specfun

>>help elmat

Some of the functions, like sqrt and sin, are built in. They are part of the MAT-
LAB core so they are very efficient, but the computational details are not readily
accessible. Other functions, like gamma and sinh, are implemented in M-files. You
can see the code and even modify it if you want.

Some useful constants are built in MATLAB:

• pi: 3.14159265...;
• i: Imaginary unit,

√−1;
• j: Same as i;
• Inf: Infinity;
• NaN: Not-a-number.

Infinity is generated by dividing a nonzero value by zero, or by evaluating well
defined mathematical expressions that overflow. Not-a-number is generated by trying
to evaluate expressions like 0/0 or Inf-Inf that do not have well defined mathematical
values.

The function or constant names are not reserved. It is possible to overwrite any
of them with a new variable, such as

>> pi = 10

and then use that value in subsequent calculations. The original constant can be
restored with

>> clear pi

A.3.4 Mathematical Expressions

Like most other programming languages, MATLAB provides mathematical expres-
sions, but unlike most programming languages, these expressions involve entire
matrices. Here are a few examples and the resulting values.

>> rho = (1+sqrt(5))/2
rho =

1.6180

>> a = abs(3+4i)
a =

5
>>

Sometimes expressions or commands are so long that it is convenient to continue
them onto additional lines. In MATLAB, statement continuation is denoted by three
periods in succession, as shown in the following code:
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>> b = 10/ ...
2
b =

5
>>

A.4 Vectors and Matrices

A.4.1 Generating vectors

A vector can be generated in different ways:

• Enter an explicit list of elements

>> v1 = [16 3 2 7]

v1 =

16 3 2 7

>>

• Use the colon operator

>> v2 = 1:10

v2 =

1 2 3 4 5 6 7 8 9 10

>>

In this statement, 1 is the starting number, 10 is the ending number, and the step
is 1. We can specify a different step by inserting the step between the starting and
ending numbers: 1:step:10. For example,

>> v3 = 1:0.5:10

v3 =

Columns 1 through 5

1.0000 1.5000 2.0000 2.5000 3.0000

Columns 6 through 10

3.5000 4.0000 4.5000 5.0000 5.5000
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Columns 11 through 15

6.0000 6.5000 7.0000 7.5000 8.0000

Columns 16 through 19

8.5000 9.0000 9.5000 10.0000

• Use MATLAB function linspace(a, b, n). This function creates a vector of n
evenly-spaced elements with the starting element a and the ending element b.
For example,

>> v4 = linspace(0,1,10)

v4 =

Columns 1 through 7

0 0.1111 0.2222 0.3333 0.4444 0.5556 0.6667

Columns 8 through 10

0.7778 0.8889 1.0000

>>

A.4.2 Generating matrices

A Matrix can be generated by entering an explicit list of elements

>> A = [16 3 2 1; 3 5 8 9]

A =

16 3 2 1
3 5 8 9

>>

MATLAB provides four functions that generate basic matrices:

• zeros all zeros;
• ones all ones;
• rand uniformly distributed random elements;
• randn normally distributed random elements.
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Here are some examples.

>> B = zeros(2,4)

B =

0 0 0 0
0 0 0 0

>>

> F = 5*ones(3,3)

F =

5 5 5
5 5 5
5 5 5

>>

In the function zeros(m,n), the first argument m specifies the number of rows and the
second argument n specifies the number of columns.

A.4.3 Array Addressing or Indexing

The element in row i and column j of A is accessed by A(i,j).

>> A(1,3)

ans =

2

>>

The element in row i and column j of B can be changed by

>> B(1,1) = 1

B =

1 0 0 0
0 0 0 0

>>
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A.4.4 Arithmetic Operations on Arrays

• Transpose: A’

>> C = A’

C =

16 3
3 5
2 8
1 9

>>

• Addition: A+B

>> A+B

ans =

17 3 2 1
3 5 8 9

>>

• Multiplication: *

>> A’*B

ans =

16 0 0 0
3 0 0 0
2 0 0 0
1 0 0 0

>>

• Element-by-element multiplication: .*

>> B.*A

ans =

16 0 0 0
0 0 0 0

>>
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• Element-by-element division: ./

>> B./A

ans =

0.0625 0 0 0
0 0 0 0

>>

• Operation between scalars and arrays: Addition, subtraction, multiplication, and
division by a scalar simply apply the operation to all elements of the array.

>> B./A+1

ans =

1.0625 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000

>>

• Change the first column of B to 1:

>> B(:,1) = 10

B =

10 0 0 0
10 0 0 0

>>

• Concatenation is the process of joining small matrices to make bigger ones. The
pair of square brackets, [ ], is the concatenation operator. For example,

>> [A B]

ans =

16 3 2 1 10 0 0 0
3 5 8 9 10 0 0 0

>>
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• Deleting rows and columns: We can delete rows and columns from a matrix using
just a pair of square brackets. To delete the second column of A, use

>> A(:,2) = []

A =

16 2 1
3 8 9

>>

A.5 M-Files

MATLAB is a powerful programming language as well as an interactive computa-
tional environment. Files that contain codes in the MATLAB language are called
M-files. There are two kinds of M-files:

• scripts, which do not accept input arguments or return output arguments. They
operate on data in the workspace;

• functions, which can accept input arguments and return output arguments. Inter-
nal variables are local to the function.

A.5.1 Scripts

The following is a script M-file named as circle area.m.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Matlab code circle_area.m
% Compute the area of a circle
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

r = 2; %radius of a circle

% compute the area

A = pi*rˆ2

Typing the file name

>> circle area

causes MATLAB to execute the statements in the file and compute the area of the
circle. After the execution of the file is complete, the variables r and A remain in the
workspace.
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When we invoke a script, MATLAB simply executes the commands found in the
file. Scripts can operate on existing data in the workspace, or they can create new data
on which to operate. Although scripts do not return output arguments, any variables
that they create remain in the workspace, to be used in subsequent computations.

A.5.2 Functions

Functions are M-files that can accept input arguments and return output arguments.
The name of the M-file and of the function should be the same. Functions operate on
variables within their own workspace, separate from the workspace we access at the
MATLAB command prompt. The following is an example of function M-files:

function y = square(x)
% Compute the square of x
% Comments from this line are not displayed
% when you use the lookfor
% command or request help on a directory

y = xˆ2;

The first line of a function M-file starts with the keyword function, followed by
output arguments, the equal sign, the function name, and input arguments. The input
arguments must be enclosed in the parenthesis. In the above example, x is the input
argument, y is the output argument, and the function name is “square”. The next
several lines, up to the first blank or executable line, are comment lines that provide
the help text. These lines are printed when we type

>> help square

The first line of the help text is the H1 line, which MATLAB displays when we use the
lookfor command or request help on a directory. The rest of the file is the executable
MATLAB codes defining the function.

The function can be used in several different ways:

>> square(10)
>> x = 10;
>> y=square(x)

To view the contents of an M-file, for example, square.m, use type square.m:

>> type square.m

function y = square(x)
% Compute the square of x
% Comments from this line are not displayed
% when we use the lookfor
% command or request help
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y = xˆ2;
>>

If we duplicate function names, MATLAB executes the one that occurs first in
the search path.

A.6 Basic Plotting

To learn basic plotting, go to MATLAB Help→Getting Started→Graphics. The
following example demonstrates how to use the plot function.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Matlab code basic_plotting.m
% Plot the graph of a function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x = 0:pi/100:2*pi;
y = sin(x);
figure(1)
plot(x,y) % produce a graph of y versus x

xlabel(’x = 0:2\pi’) %label the axes
ylabel(’Sine of x’)
%add a title
title(’Plot of the Sine Function’,’FontSize’,12)

y2 = sin(x-.25);
y3 = sin(x-.5);
figure(2)
%create multiple graphs with a single call to plot
plot(x,y,x,y2,x,y3)
% provide an easy way to
% identify the individual plots.
legend(’sin(x)’,’sin(x-.25)’,’sin(x-.5)’)

x1 = 0:pi/100:2*pi;
x2 = 0:pi/10:2*pi;
figure(3)
% specify color, line styles, markers, and line width
plot(x1,sin(x1),’r:’,x2,sin(x2),’r+’, ’linewidth’, 2)

Saving this program as basic plotting.m and executing it by typing

>> basic plotting

we obtain three figures, as shown in Fig. A.1.
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Fig. A.1. Figures obtained by executing the program basic plotting.m

A.7 Relational Operators

The relational operators are < (less than), > (greater than), <= (less than or equal
to), >= (greater than or equal to), == (equal to), and ∼= (not equal to). Relational
operators perform element-by-element comparisons between two arrays. They return
a logical array of the same size, with elements set to logical 1 (true) where the relation
is true, and elements set to logical 0 (false) where it is not. The operators <, >, <=,
and >= use only the real part of their operands for the comparison. The operators
== and ∼= test real and imaginary parts. The following is an example:

>> a = [1 2]

a =

1 2

>> b = [1, 3]

b =

1 3

>> tf = a==b

tf =

1 0
>>

Here 1 is returned because a(1) = b(1) = 1 and 0 is returned because a(2) = 2 �=
b(2) = 3. The following is another example:

b =

1 3



A.8 Flow Control 243

>> c = [2 3]

c =

2 3

>> tf = (c>b)

tf =

1 0
>>

Here 1 is returned because c(1) = 2 > b(1) = 1 and 0 is returned because c(2) = 3 is
not greater than b(2) = 3.

When an array is compared with a scalar, the scalar is compared with every ele-
ment of the array. The following is an example:

>> a = 1

a =

1
b =

1 3

>> tf1 = (a==b)

tf1 =

1 0

>>

A.8 Flow Control

A.8.1 If-Else-End Constructions

The if statement evaluates a logical expression and executes a group of statements
when the expression is true. The optional elseif and else keywords provide for
the execution of alternate groups of statements. An end keyword, which matches
the if, terminates the last group of statements. The groups of statements are delin-
eated by the four keywords–no braces or brackets are involved. The following is an
example:
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>> a = 1

a =

1

>> if a ==1
A = zeros(3,3)

else
B = ones(4,4)

end

A =

0 0 0
0 0 0
0 0 0

>> a = 0

a =

0

>> if a ==1
A = zeros(3,3)

else
B = ones(4,4)

end

B =

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

>>

A.8.2 For Loops

The for loop repeats a group of statements a fixed, predetermined number of times.
A matching end delineates the statements.

The following program uses the for loop to compute the sum: 1+2+ · · ·+9+10.
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>> sum = 0

sum =

0

>> for n=1:10
sum = sum +n;

end
>> sum

sum =

55

>>

A.8.3 While Loops

The while loop repeats a group of statements an indefinite number of times under con-
trol of a logical condition. A matching end delineates the statements. The following
program uses the while loop to compute the sum: 1+2+ · · ·+9+10.

>> sum = 0

sum =

0

>> n = 1

n =

1

>> while n<=10
sum = sum + n;
n = n +1;

end
>> sum

sum =

55

>>
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A.9 Logical Operators

The symbols &, |, and ∼ are the logical array operators AND, OR, and NOT. These
operators are commonly used in conditional statements, such as if and while, to deter-
mine whether or not to execute a particular block of codes. Logical operations return
a logical array with elements set to 1 (true) or 0 (false), as appropriate.

“expression 1 & expression 2” represents a logical AND operation between val-
ues, arrays, or expressions “expression 1” and “expression 2”. In an AND operation,
if “expression 1” is true and “expression 2” is true, then the AND of those inputs is
true. If either expression is false, the result is false. Here is an example of AND:

>> x = 1;
>> and = x==1 & x>0
and =

1
>> and = x==1 & x<0
and =

0

“expression 1 | expression 2” represents a logical OR operation between values,
arrays, or expressions “expression 1” and “expression 2” . In an OR operation, if
“expression 1” is true or “expression 2” is true, then the OR of those inputs is true. If
both expressions are false, the result is false. Here is an example of OR:

>> x = 1;
>> or = x==1 | x>0
or =

1
>> or = x==1 | x<0
or =

1
>> or = x˜=1 | x<0
or =

0

“∼expression” represents a logical NOT operation applied to expression “expres-
sion”. In a NOT operation, if “expression” is false, then the result of the operation is
true. If “expression” is true, the result is false. Here is an example of NOT:

>> x = 1;
>> not = ˜(x<0)
not =

1
>> not = ˜(x==1)
not =

0
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The expression operands for AND, OR, and NOT are often arrays. When this is
the case, The MATLAB software performs the logical operation on each element of
the arrays. The output is an array that is the same size as the input array or arrays.

If just one operand is an array and the other a scalar, then the scalar is matched
against each element of the array. When the operands include two or more non-scalar
arrays, the sizes of those arrays must be equal. Here are examples:

>> A = [1, 2, 0];
>> B = [0, 3, 4];
>> and = A&B
and =

0 1 0
>> or = A|B
or =

1 1 1
>> and = 2&A
and =

1 1 0
>> C = [3, 4];
>> and = A&C
??? Error using ==> and
Inputs must have the same size.

A.10 Solving Symbolic Equations

Using Symbolic Math Toolbox, we can solve different types of symbolic equations.
The following is such an example:

%To declare variables as symbolic objects,
%use the syms command:
syms x y

%Equations to be solved
eq1 = ’a*x+b*y = f’;
eq2 = ’c*x+d*y = g’;

%Use the method "solve" to solve the
%system of equations for x and y
solution = solve(eq1, eq2, ’x’, ’y’)

%To see the solution, enter
x = solution.x
y = solution.y
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After running the program, we obtain the symbolic solution

x =

-(b*g - d*f)/(a*d - b*c)

y =

(a*g - c*f)/(a*d - b*c)

A.11 Solving Ordinary Differential Equations

In general, a system of nonlinear ordinary differential equations cannot be solved
analytically. For example, the following system

dS
dt

= −k1ES + k−1(E0−E)+u, (A.1)

dE
dt

= −k1ES +(k−1 + k2)(E0−E) (A.2)

cannot be solved. Thus, we need to solve it numerically.
MATLAB has a number of built-in solvers to numerically solve ordinary differen-

tial equations. One of them is the ode15s solver. To use it, we first write a MATLAB
function file to implement the system (A.1)-(A.2) as follows:

function f = reaction_kinetics(t, x)

global k1 k2 k_1 u E0;

f = zeros(length(x), 1);
S = x(1);
E = x(2);

f(1) = -k1*E*S +k_1*(E0-E) +u;
f(2) = -k1*E*S+(k_1+k2)*(E0-E);

We then write a program to solve the system:

clear all;
close all;

global k1 k2 k_1 u E0;
%specify the parameters
k1 = 0.5;
k2 = 10;
k_1= 0.1;
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u = 0.2;
E0 = 3;

%specify the initial conditions
x_0=zeros(1,2);
x_0(1) = 0.0;
x_0(2) = 0.1;

%use ode15s to solve the system
tspan =0:0.02:5;
[t,y] = ode15s(@reaction_kinetics,tspan, x_0);

%plot the solution S
figure(1)
plot(t, y(:, 1),’k-’, ’linewidth’, 3);
grid on
box on
axis([0, max(t) 0 max(y(:, 1))*1.1]);
xlabel(’t’, ’fontsize’, 20);
ylabel(’S’, ’fontsize’, 20);
set(gca,’fontsize’, 20);

%plot the solution E
figure(2)
plot(t, y(:, 2),’k-’, ’linewidth’, 3);
axis([0, max(t) 0 3.1]);
grid on
box on
xlabel(’t’, ’fontsize’, 20);
ylabel(’E’, ’fontsize’, 20);
set(gca,’fontsize’, 20);

%plot the phase portrait
figure(3)
plot(y(:, 2),y(:, 1),’k-’, ’linewidth’, 3);
grid on
box on
xlabel(’E’, ’fontsize’, 20);
ylabel(’S’, ’fontsize’, 20);
set(gca,’fontsize’, 20);

Numerical solutions of the system (A.1)-(A.2) with k1 = 0.5,k2 = 10,k−1 = 0.1,u =
0.2,E0 = 3 and the initial conditions S(0) = 0.0,E(0) = 0.1 are plotted in Fig. A.2.
The plot of S against E in the right figure of Fig. A.2 is called a phase portrait and
the E−S plane is called the phase plane.
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Fig. A.2. Numerical solutions of the system (A.1)-(A.2) with k1 = 0.5,k2 = 10,k−1 = 0.1,u =
0.2,E0 = 3 and the initial conditions S(0) = 0.0,E(0) = 0.1

We can also combine the function file and the program file into one function file
as follows:

function no_ouput = enzyme_reaction_simulation()
%Solve the enzymatic reaction system

clear all;
close all;

global k1 k2 k_1 u E0;

%specify the parameters
k1 = 0.5;
k2 = 10;
k_1= 0.1;
u = 0.2;
E0 = 3;

%specify the initial conditions
x_0=zeros(1,2);
x_0(1) = 0.0;
x_0(2) = 0.1;

%use ode15s to solve the system
tspan =0:0.02:5;
[t,y] = ode15s(@reaction_kinetics,tspan, x_0 );

%plot the solution S
figure(1)
plot(t, y(:, 1),’k-’, ’linewidth’, 3); % S
grid on
box on
axis([0, max(t) 0 max(y(:, 1))*1.1]);
xlabel(’t’, ’fontsize’, 20);
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ylabel(’S’, ’fontsize’, 20);
set(gca,’fontsize’, 20);

%plot the solution E
figure(2)
plot(t, y(:, 2),’k-’, ’linewidth’, 3); % E
axis([0, max(t) 0 3.1]);
grid on
box on
xlabel(’t’, ’fontsize’, 20);
ylabel(’E’, ’fontsize’, 20);
set(gca,’fontsize’, 20);

%plot the phase portrait
figure(3)
plot(y(:, 2),y(:, 1),’k-’, ’linewidth’, 3);
grid on
box on
xlabel(’E’, ’fontsize’, 20);
ylabel(’S’, ’fontsize’, 20);
set(gca,’fontsize’, 20);

function f = reaction_kinetics(t,x)

global k1 k2 k_1 u E0;

f = zeros(length(x), 1);
S = x(1);
E = x(2);

f(1) = -k1*E*S +k_1*(E0-E) +u;
f(2) = -k1*E*S+(k_1+k2)*(E0-E);

A.12 Data Fitting

Let data be as follows:
x : −109 −100 −88 −76 −63 −51 −38 −32 −26 −19 −10 −6
y : 0.915 0.866 0.748 0.61 0.524 0.419 0.31 0.241 0.192 0.15 0.095 0.085

(A.3)
We want to fit the following function

y =
a1(a2 + x)

exp
(

a2+x
a2

)
−a3

(A.4)

into the data.
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MATLAB has a curve fitting toolbox for fitting a function into data. The curve
fitting toolbox software allows us to work in two different environments:

• an interactive environment with graphical user interfaces;
• a programmatic environment that allows us to write object-oriented MATLAB

codes using curve fitting methods.

To work in the interactive environment, enter the following command:

>> cftool

A graphical user interface (GUI) named “Curve Fitting Tool” is opened.
Before we can import data into Curve Fitting Tool, the data variables must exist

in the MATLAB workspace. Thus we enter:

>> x = [-109 -100 -88 -76 -63 -51 -38 -32 -26 -19 ...
-10 -6];

>> y = [0.915 0.866 0.748 0.61 0.524 0.419 0.31 ...
0.241 0.192 0.15 0.095 0.085];

We can now import the data into Curve Fitting Tool with the Data GUI. Open the
Data GUI by clicking the Data button on Curve Fitting Tool. Then load x and y into
Curve Fitting Tool as follows:

1. Select the variable names x and y from the X Data and Y Data lists. The data
is displayed in the Preview window. If we do not import weights, then they are
assumed to be 1 for all data points.

2. Specify the name of the data set.
3. Click the Create data set button to complete the data import process.
4. Click Close.

We then fit the data with the fitting GUI. We open the fitting GUI by clicking the
Fitting button on Curve Fitting Tool. Then the data fitting procedure follows these
steps:

1. From the Fit Editor, click New Fit. The new fit always defaults to a linear polyno-
mial fit type. Use New Fit at the beginning of our curve fitting session, and when
we are exploring different fit types for a given data set.

2. To use a customized equation for the fit, select Custom Equations from Type of
fit. Edit the Fit name to myFunction.

3. Click the New button to open the New Custom Equation GUI. Select General
Equations, type the function (A.4) in the Equation field, set Lower to 0, edit
Equation name, and click OK.

4. Click the Apply button or select the Immediate apply check box. The function,
fitted coefficients, and goodness of fit statistics are displayed in the Results area of
the fitting GUI. Our new fit is plotted in Curve Fitting Tool. To export the figure,
select Print to Figure from the File list.

5. To improve fitting, click Fit options from Fit Editor. Then a Fit Options GUI is
opened. We can adjust the StartPoint field to improve our fitting.
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Data fitting can be also done by writing programs that combine curve fitting func-
tions with MATLAB functions and functions from other toolboxes. The following is
such a program:

%Use the method "fit" to fit a function into data

%Data
x = [-109 -100 -88 -76 -63 -51 -38 -32 -26 -19 ...

-10 -6]’;
y = [0.915 0.866 0.748 0.61 0.524 0.419 0.31 ...

0.241 0.192 0.15 0.095 0.085]’;

%Use the method "fitoptions" to set up fit options
s = fitoptions(’Method’,’NonlinearLeastSquares’,...

’Lower’,[0,0, 0],...
’Upper’,[Inf,Inf,Inf],...
’Startpoint’,[0.005 9 1]);

%Use the method "fittype" to create a fit type
f = fittype(’a1*(a2+x)/(exp((a2+x)/a2)-a3)’, ...

’options’,s);

%Use the method "fit" to fit a function into data
[myfit,gof] = fit(x,y,f)

%Plot the fitted curve and the data
plot(myfit, ’b’, x,y,’ro’)

In addition, if the curve fitting toolbox is not available, we can also write a simple
program to do so by using the built-in function “fminsearch”. The following is the
program to do the fitting:

function output = data_fitting()
% Fit a function into data

global x_data y_data;
% Data
x_data = [-109 -100 -88 -76 -63 -51 -38 -32 -26 -19

... -10 -6 ];
y_data = [0.915 0.866 0.748 0.61 0.524 0.419 0.31 ...

0.241 0.192 0.15 0.095 0.085 ];

% use the built-in function fminsearch to find
% the parameter values where the error between
% the data and the fitting function is minimized
a = fminsearch(@error, [0.01, 10, 1], ...

optimset(’TolX’,1e-8, ’MaxFunEvals’, 10000000));
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output = a;
% Fitting function
x = -120:20;
y = a(1)*(a(2)+x)./(exp((a(2)+x)/a(2))-a(3));

figure(1)
plot(x, y, ’b-’, x_data, y_data, ’r*’, ...

’linewidth’, 3)
grid on
box on
xlabel(’x’, ’fontsize’, 20);
ylabel(’y’, ’fontsize’, 20);
legend(’Fitting’, ’Data’);
set(gca,’fontsize’, 20);

% calculate the error between the data and
% the fitting function
function f = error(a)
global x_data y_data;

y = a(1)*(a(2)+x_data)...
./(exp((a(2)+x_data)/a(2))-a(3));

f = (y-y_data)*(y-y_data)’;

Fig. A.3 shows that the function is fitted well into the data with a1 = 0.0096, a2 =
10.35, and a3 = 1.
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Fig. A.3. Fitting of the function (A.4) into
the data (A.3)
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A.13 Parameter Estimation

In biological modeling problems, we often need to estimate parameters in differen-
tial equations such that the solutions of the differential equations agree with data.
Consider the system of differential equations (A.1) and (A.2). Assume that we have
collected the time course data of S as follows:

t : 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
S : 100 98 95 91 86 80 72 62 50 46 44 38 32 28 23 19 15 10 8 7 6

We need to estimate the parameters k1,k−1, and k2 such that the solution S of the
system (A.1)-(A.2) is as close to the data as possible.

Functions of parameter estimation were implemented in the Systems Biology
toolbox [1] and the SimBiology toolbox of MATLAB. The following program de-
monstrates how to use the function “SBparameterestimation” implemented in the
Systems Biology toolbox to estimate parameters:

function no_output = parameter_estimation()
%%%%%%%%%%%%%%
% parameter estimation example
%%%%%%%%%%%%%

model = SBmodel(’enzymeReaction.txt’);
data = SBdata(’enzymeReactionMeasurements.xls’);
parameters = [];
parameters.names = {’k1’,’k_1’,’k2’};
parameters.initialValues = [0.1 0.01 2];
parameters.signs = [1 1 1];
options = [];
options.optimizer =’fminsearch’; %’simannealingSB’;
new_parameters = SBparameterestimation(model, ...

parameters, data, options)

global k1 k2 k_1 E0;

%use the estimated parameters
k1 = new_parameters.parameterValues(1)
k_1= new_parameters.parameterValues(2)
k2 = new_parameters.parameterValues(3)
E0 = 3;

%specify the initial conditions
x_0=zeros(1,2);
x_0(1) = 100;
x_0(2) = 0;
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%use ode15s to solve the system
tspan =0:0.02:40;
[t,y] = ode15s(@reaction_kinetics,tspan, x_0 );

%read the data from a file
read_data = importdata( ...

’enzymeReactionMeasurements.xls’,’ ’, 6);
x_data = read_data.data.Sheet1(4:end,1);
y_data = read_data.data.Sheet1(4:end,2);

%plot the solution S
figure(2)
plot(t, y(:, 1),’k-’, x_data, y_data, ...

’r o’,’linewidth’, 3); % S
grid on
box on
axis([0, max(t) 0 max(y(:, 1))*1.1]);
xlabel(’t’, ’fontsize’, 20);
ylabel(’S’, ’fontsize’, 20);
legend(’Solution’,’Data’);
set(gca,’fontsize’, 20);

function f = reaction_kinetics(t,x)

global k1 k2 k_1 E0;

f = zeros(length(x), 1);
S = x(1);
E = x(2);

f(1) = -k1*E*S +k_1*(E0-E) ;
f(2) = -k1*E*S+(k_1+k2)*(E0-E);

To use this function, a text file for the differential equations needs to be created
in the following format and saved as “enzymeReactoin.txt” with the extension “.txt”:

********** MODEL NAME
Enzyme reaction Model

********** MODEL NOTES
Developed by Weijiu Liu in 2010

********** MODEL STATES
d/dt(S) = -k1*S*E+k_1*(3-E)
d/dt(E) = -k1*S*E+(k_1+k2)*(3-E)
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Table A.1. Make-up Data

Name enzyme reaction
Notes make-up data
Components S
StimulusFlag 0
NoiseOffset 0
NoiseVariance 0
0 100
2 98
4 95
6 91
8 86
10 80
12 72
14 62
16 50
18 46
20 44
22 38
24 32
26 28
28 23
30 19
32 15
34 10
36 8
38 7
40 6

S(0) = 100
E(0) = 3

********** MODEL PARAMETERS

k1 = 0.5
k_1 = 0.02
k2 = 5

********** MODEL VARIABLES

********** MODEL REACTIONS
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Fig. A.4. Comparison between the solu-
tion and the make-up data

********** MODEL FUNCTIONS

********** MODEL EVENTS

********** MODEL MATLAB FUNCTIONS

An Excel file for the data needs to be created in the format as shown in Table A.1 and
saved as “enzymeReactionMeasurements.xls”.

The functions “SBmodel” and “SBdata” are used to read the text file and the Excel
data file, respectively. The function “SBparameterestimation” gives the estimation
for the parameters as follows:

k1 = 0.2144, k−1 = 0.0058, k2 = 0.9344.

Fig. A.4 shows that the solution of the system (A.1)-(A.2) with these estimated
parameter values is close to the make-up data.

Exercises

A.1. Write the following expressions in MATLAB:

1. 3×5+102

2×3 .
2. 42×5.
3. 1.5×10−4 +2.5×√2 (the square root of x in MATLAB is sqrt(x)).
4. ln(e2)− log10(10) (ln(x) in MATLAB is log(x), log10(x) is log10(x), ex is

exp(x)).
5. sin(π/4)+2 cos(1)

tan(π/4) (π is pi in MATLAB).
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A.2. Use MATLAB to evaluate the following expressions:

1. 1
2×3 .

2. 22×3.
3. 1.5×10−4 +2.5×√2.
4. e3 + ln(e3)− log10(10).
5. sin(π/3)+2 cos(1)

tan(π/3) (π is pi in MATLAB).

A.3. Create the vector v = [2 3 −1] and then perform the following operations:

1. Add 1 to each element of the vector.
2. Multiply each element of the vector by 3.
3. Square each element of the vector.
4. Find the length of the vector.

A.4. Create a 3×3 matrix A with all elements of zero and a 3×3 matrix B with all
elements of 10, and then perform the following operations:

1. Change the value of the element in row 2 and column 3 of A to 5.
2. Change the values of all elements in row 3 of A to 10.
3. Compute A+B, A−2B, and AB.

A.5. Create a 2×3 matrix A with all elements of zero and a 2×3 matrix B with all
elements of 10. Perform the following arithmetic operations:

1. Change the value of the element of A in row 2 and column 3 to 100.
2. Change the values of all elements of A in column 1 to 2.
3. Addition of A and B.
4. Element-by-element multiplication of A and B.
5. Transpose of A.
6. Matrix multiplication between the transpose of A and B.

A.6. It has been suggested that the population of the United States may be modeled
by the formula

P(t) =
197273000

1+ e−0.03134(t−1913.25)

where t is the date in years.

1. Write a function M-file for the formula P(t), where t is allowed to be a vector.
Name your function M-file as “population.m”

2. Write a script M-file to do the following:
a) Call your function “population.m” to compute and display the population

every ten years from 1790 to 2010.
b) Plot your population function by calling it. Label the x-axis by “t” and y-axis

by “population”, and add a title and legend to the figure.

A.7. If C and F are Celsius and Fahrenheit temperatures, the formula

F = 9C/5+32
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converts from Celsius to Fahrenheit. Write a MATLAB code to convert a temperature
of 37◦ (normal human temperature) to Fahrenheit (98.6◦).

A.8. Write a function M-file to compute sin(πt)+ cos(πt).

A.9. Write a function M-file that finds roots of

ax2 +bx+ c = 0.

Your function should take three input arguments a, b and c, which are allowed to
be vectors. You should test the sign of b2− 4ac. Then write a program to test your
function with a = 3, b = 1, c = 1 and a = [3 1 2], b = [1 −4 9], c = [1 3 −5].

A.10. Write MATLAB codes to compute the factorial n!.

A.11. Use Symbolic Math Toolbox to solve the following system for E and S

−k1ES + k−1(E0−E)+u = 0,

−k1ES +(k−1 + k2)(E0−E) = 0.

A.12. Write MATLAB programs to numerically solve the Lorenz system

dx
dt

= −σx+σy,

dy
dt

= rx− y− xz,

dz
dt

= xy−bz,

x(0) = 1, y(0) = 2, z(0) = 3,

where σ = 2, r = 5, and b = 10.

A.13. Fit the following function

y = b1 exp

(
V
b2

)
into the data from [3]:

V : −109 −100 −88 −76 −63 −51 −38 −32 −26 −19 −10 −6
y : 0.037 0.043 0.052 0.057 0.064 0.069 0.075 0.071 0.072 0.072 0.096 0.105
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Units, Physical Constants and Formulas

We collect frequently used units, physical constants and formulas in this appendix.
They can be found in a general chemistry textbook, a physical chemistry textbook,
or a mathematical biology textbook, such as [1, 2, 3].

B.1 Physical Formulas

• 1 atm = 760 mmHg.
• R = kNA.
• F = qNA.
• pH = − log10[H

+] with [H+] in M.
• 273.15 K = 0◦C.
• TKelvin = TCelsius +273.15.
• TFarenheit = 9

5 TCelsius +32.

• Capacitance of the cell membrane ≈ 1 μF·cm−2.
• 1 Liter = 10−3 m3.
• Dielectric constant for water = 80.4 ε0.
• Free energy of ideal dilute solutions:

G = G0 +RT ln[X ], (B.1)

where G0 is the standard Gibbs free energy defined to be the free energy at a
concentration of 1 mole per liter and the concentration [X ] is in unit of moles per
liter.

• Relation between the cell potential E and the free energy change ΔG for a reaction
is given by

ΔG =−nFE, (B.2)

where F is Faraday’s constant and n is the moles of electrons moved from the
anode to the cathode.

LiuW.: Introduction to Modeling Biological Cellular Control Systems.
DOI 10.1007/978-88-470-2490-8 B, © Springer-Verlag Italia 2012
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• Mole of ions:

1 mole of ions = zF Coulombs, (B.3)

where z is the charge of the ion.
• Voltage:

Volt =
1 joule(J)

1 Coulomb(C)
. (B.4)

• Ampere: 1 A = 1 C/s.
• The capacitance is given by

C =
Q
V

. (B.5)

The SI unit of capacitance is the farad; 1 farad is 1 coulomb per volt.
• Electrical conductance is a measure of how easily electricity flows along a cer-

tain path through an electrical element. The SI derived unit of conductance is the
siemens (also called the mho, because it is the reciprocal of electrical resistance,
measured in ohms). Conductance is related to resistance by:

G =
1
R

=
I
V

, (B.6)

where R is the electrical resistance, I is the electric current, and V is the voltage.
• Energy Joule:

J = N ·m = C ·V. (B.7)

• Ideal gas law:
pV = nRT, (B.8)

where p is the absolute pressure, V is the volume of gas, n is the number of moles
of gas, and T is absolute temperature.

B.2 Units, Unit Scale Factors and Physical Constants

Units, unit scale factors and physical constants are listed in Tables B.1, B.2, and B.3,
respectively.
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Table B.1. Units

Quantity Unit Symbol Dimension

Amount mole mol

Electric charge coulomb C

Mass gram g

Temperature kelvin K

Time second s

Length meter m

Volume liter L

Force newton N kg·m·s−2

Energy joule J N·m
Pressure pascal Pa N·m−2

Electric current ampere A C·s−1

Potential difference volt V N·m·C−1

Capacitance farad F A·s·V−1

Resistance ohm Ω V·A−1

Conductance siemen S A·V−1

Concentration molar M mol·L−1

Atomic mass dalton D g· N−1
A

Table B.2. Unit scale factors

Name Prefix Scale Factor

femto f ×10−15

pico p ×10−12

nano n ×10−9

micro μ ×10−6

milli m ×10−3

centi c ×10−2

deci d ×10−1

kilo k ×103

mega M ×106

giga G ×109
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Table B.3. Physical constants

Physical Constants Symbol Value

Boltzmann’s constant k 1.381×10−23J·K−1

Planck’s constant h 6.626×10−34 J · s

Avogadro’s number NA 6.02257×1023 mol−1

Unit charge q 1.6×10−19 C

Gravitational acceleration g 9.78049 m·s−2

Faraday’s constant F 9.649×104 C·mol−1

Universal gas constant R 8.315 J·mol−1·K−1

Permittivity of free space ε0 8.854×10−12 F·m−1

Atmosphere atm 1.01325×105 N·m−2
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ω-limit point, 52
ω-limit set, 52

Action potential, 174
Activation energy, 28
Adenine nucleotide translocator (ANT), 214
Algebraic multiplicity, 48
Arrhenius’ formula, 28
Artificial pancreas, 69
Asymptotic tracking, 57
Asymptotically stable, 44
ATP-sensitive K+ channel model, 133
ATP-sensitive potassium channel, 132
Autonomous, 44

Bendixson criterion, 88
Blood glucose, 69
Blood glucose control system, 2

Calcineurin, 95, 102
Calcium

calcium-activated potassium channel, 131
dynamics in ER, 101
dynamics in the Golgi apparatus, 100
dynamics in the vacuole, 99
shock, 111
uptake, 96
uptake velocity, 97

Calmodulin, 95, 102
Capacitance, 160
Capacitative calcium entry, 97
Capacitative calcium entry (CCE), 190
Cell cycle model, 107

Cell cycle-dependent oscillation of calcium,
113

Characteristic equation, 41
Chemical potential, 27
COD1, 100
Cofactor, 40
Competitive inhibitor, 20
Compounding reaction rate, 98
Conductance, 127
Control system of blood glucose, 70
Control variables, 43
Controllability, 55
Cooperative effects, 4
Crz1p, 95, 102, 103

Depolarization, 127
Determinant, 40
Disturbance rejection, 57
Duality between controllability and

observability, 57
Dynamic output feedback controller, 58
Dynamical state feedback controller, 58

Eigenvalue, 40
Eigenvector, 41
Electron transport chain, 208
Elementary reactions, 13
Endoplasmic reticulum (ER), 100
Enzyme, 11

kinetics, 11
Equation of calcium in the cytosol, 101
Equilibrium

constant, 13
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point, 44
voltage, 127

Exogenous glucose input, 81
Exponentially stable, 44

Feedback controller
for Pmc1p and Pmr1p, 107
for Vcx1p, 103
for Yvc1p, 107
of calcium uptake, 103

Feedback gain matrix, 58
Feedback matrix, 58
Fick’s law, 124
Frequency factor, 28

Gas constant, 27
Glucagon, 2, 69

infusion rate, 71
receptor, 72
signaling pathway, 72
transition, 71

Glucose, 2, 69
transporter 2 (GLUT2), 2, 69
transporter 3 (GLUT3), 69
transporter 4 (GLUT4), 2, 69

GLUT4 transport, 78
Glycogen phosphorylase, 2, 16, 69
Glycogen synthase, 2, 69
Goldman-Hodgkin-Katz (GHK) current

equation, 126
Golgi apparatus, 99

Half-life, 12
Hill

equation, 26
exponent, 4
function, 4
plot, 26

Hodgkin-Huxley model, 163

Insulin, 2, 69
infusion rate, 71
receptor, 74
receptor substrate-1 (IRS-1), 75
signaling pathway, 73
transition, 71

Inter-membrane space, 207
Intracellular calcium control system, 2

Invariance principle, 52
IP3 receptor, 144

Jacobian matrix, 51

Kalman observability matrix, 56

LaSalle’s invariance principle, 52
Law of mass action, 4, 12
Law of mass balance, 3, 11
Linear

current-voltage equation, 127
dependence, 42
voltage potential model, 161

Lineweaver-Burk plot, 16
Luenberger observe, 60
Lyapunov function, 46
Lyapunov’s indirect method, 51
Lyapunov’s Stability Theorem, 45

M (mitosis) phase promoting factor (MPF),
107

M-file, 230
Matrix, 37, 207

multiplication, 39
sum, 38

Maximal velocity, 15
Membrane potential model, 160
Metabolic pathway, 19
Michaelis-Menten constant, 4, 15
Michaelis-Menten equation, 4, 15
Mitochondrion, 207
Model of protein X, 108

Na+/Ca2+ exchangers (NCX), 217
Negative cooperativity, 24
Nernst

equation, 5, 125
potential, 5, 125

Nernst-Planck equation, 125
NFAT model, 103
Non-cooperativity, 24, 25
Nonautonomous, 44
Noncompetitive inhibition, 23
Noncompetitive inhibitor, 23
Nonlinear voltage potential model, 161
Nuclear factor of activated T-cells, 103

Observable, 56
Observation system, 56
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Observer gain matrix, 60
Open probability of IP3 receptor, 148
Order, 12
Order of reaction, 13
Oscillation

of glucose, 86
of insulin, 86

Output, 43, 55, 58
feedback control, 60
feedback controller, 58
injection matrix, 60

Pancreas, 2, 69
Phase

plane, 249
portrait, 249

Phosphatase homologous to tensin (PTEN),
77

Phosphatidylinositol 3,4,5-trisphosphate
(PI(3,4,5)P3), 77

Phosphatidylinositol 3,4-bisphosphate
(PI(3,4)P2), 77

Phosphatidylinositol 4,5-bisphosphate
(PI(4,5)P2), 77

PI 3-kinase, 75
Planck’s equation, 124
Plasma membrane calcium ATPase, 156
PMC1, 95
Pmc1p, 95, 98
PMR1, 95
Pmr1p, 95, 99
Poisson’s equation, 126
Positive cooperativity, 24, 26
Positively invariant, 44
Postreceptor signaling, 75
Potassium channel, 127
Power of a matrix, 39
Protein kinase B (PKB), 77
Protein kinase C (PKC), 77
Protein tyrosine phosphatases (PTP), 74

Quasi-steady state approximation, 15

Rank of matrix, 42
Rapid oscillation, 86
Rate constants, 12
Reaction

rate, 12
velocity, 12

Respiratory chain, 208
Resting

calcium level in Golgi, 109
calcium level in ER, 109
voltage, 127

Routh-Hurwitz’s Criterion, 50
Ryanodine receptors, 150

Sarcoplasmic or endoplasmic reticulum
Ca2+-ATPases, 2, 26, 154

Scalar multiple of matrix, 38
Sensitivity

index, 62
of glucose and insulin to parameters, 84

SH2-containing 5’-inositol phosphatase
(SHIP2), 77

Small-signal finite-gain stable, 54
Small-signal stable, 54
SOCE output feedback controller, 192
Sodium/Calcium Exchanger, 158
Sodium/potassium ATPase, 157
Square matrix, 38
Stabilizable, 58
Stable, 44
State, 55, 58

equation, 58
feedback, 58
feedback controller, 58
observer, 60
variables, 43

Steady state, 44
Store-operated calcium entry, 97, 189
Substrates, 11
Survival

curve, 95
rate, 95

Time constant, 130
Transport

kinetics of Vcx1p, 98
velocity of Pmc1p, 98
velocity of Yvc1p, 99

Transpose of a matrix, 39

Ultradian oscillation, 86
Uncompetitive inhibitor, 22
Uniporter, 217
Unstable, 44
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Upper limit of cytosolic calcium tolerance,
116

Vacuole, 95, 98
Vcx1p, 95, 98
Velocity of transport of calcium out of Golgi,

100

Velocity of transport of calcium out of ER,
101

Voltage-gated calcium channel, 2, 141
Voltage-gated sodium channel, 137

Yvc1p, 95
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