
 

  
• Table of Contents
• Index
Bioinformatics Computing

By Bryan Bergeron
 

Publisher: Prentice Hall PTR

Pub Date: November 19, 2002

ISBN: 0-13-100825-0

Pages: 439

Slots: 1    

In Bioinformatics Computing, Harvard Medical School and MIT faculty member Bryan Bergeron 
presents a comprehensive and practical guide to bioinformatics for life scientists at every level of 
training and practice. After an up-to-the-minute overview of the entire field, he illuminates every key 
bioinformatics technology, offering practical insights into the full range of bioinformatics applications-
both new and emerging. Coverage includes: 

●     Technologies that enable researchers to collaborate more effectively 
●     Fundamental concepts, state-of-the-art tools, and "on the horizon" advances 
●     Bioinformatics information infrastructure, including GENBANK and other Web-based resources 
●     Very large biological databases: object-oriented database methods, data 

mining/warehousing, knowledge management, and more 
●     3D visualization: exploring the inner workings of complex biological structures 
●     Advanced pattern matching techniques, including microarray research and gene prediction 
●     Event-driven, time-driven, and hybrid simulation techniques

Bioinformatics Computing combines practical insight for assessing bioinformatics technologies, 
practical guidance for using them effectively, and intelligent context for understanding their rapidly 
evolving roles. 
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About Prentice Hall Professional Technical 
Reference
With origins reaching back to the industry's first computer science publishing program in the 1960s, 
Prentice Hall Professional Technical Reference (PH PTR) has developed into the leading provider of 
technical books in the world today. Formally launched as its own imprint in 1986, our editors now 
publish over 200 books annually, authored by leaders in the fields of computing, engineering, and 
business.

Our roots are firmly planted in the soil that gave rise to the technological revolution. Our bookshelf 
contains many of the industry's computing and engineering classics: Kernighan and Ritchie's C 
Programming Language, Nemeth's UNIX System Administration Handbook, Horstmann's Core Java, 
and Johnson's High-Speed Digital Design.

PH PTR acknowledges its auspicious beginnings while it looks to the future for inspiration. We 
continue to evolve and break new ground in publishing by today's professionals with tomorrow's 
solutions.



 

Preface
Bioinformatics Computing is a practical guide to computing in the burgeoning field of 
bioinformatics—the study of how information is represented and transmitted in biological systems, 
starting at the molecular level. This book, which is intended for molecular biologists at all levels of 
training and practice, assumes the reader is computer literate with modest computer skills, but has 
little or no formal computer science training. For example, the reader may be familiar with 
downloading bioinformatics data from the Web, using spreadsheets and other popular office 
automation tools, and/or working with commercial database and statistical analysis programs. It is 
helpful, but not necessary, for the reader to have some programming experience in BASIC, HTML, or 
C++.

In bioinformatics, as in many new fields, researchers and entrepreneurs at the fringes—where 
technologies from different fields interact—are making the greatest strides. For example, techniques 
developed by computer scientists enabled researchers at Celera Genomics, the Human Genome 
Project consortium, and other laboratories around the world to sequence the nearly 3 billion base 
pairs of the roughly 40,000 genes of the human genome. This feat would have been virtually 
impossible without computational methods.

No book on biotechnology would be complete without acknowledging the vast potential of the field to 
change life as we know it. Looking beyond the computational hurdles addressed by this text, there 
are broader issues and implications of biotechnology related to ethics, morality, religion, privacy, and 
economics. The high-stakes economic game of biotechnology pits proponents of custom medicines, 
genetically modified foods, cross-species cloning for species conservation, and creating organs for 
transplant against those who question the bioethics of stem cell research, the wisdom of creating 
frankenfoods that could somehow upset the ecology of the planet, and the morality of creating clones 
of farm animals or pets, such as Dolly and CC, respectively.

Even the major advocates of biotechnology are caught up in bitter patent wars, with the realization 
that whoever has control of the key patents in the field will enjoy a stream of revenues that will likely 
dwarf those of software giants such as Microsoft. Rights to genetic codes have the potential to 
impede R&D at one extreme, and reduce commercial funding for research at the other. The resolution 
of these and related issues will result in public policies and international laws that will either limit or 
protect the rights of researchers to work in the field.

Proponents of biotechnology contend that we are on the verge of controlling the coding of living 
things, and concomitant breakthroughs in biomedical engineering, therapeutics, and drug 
development. This view is more credible especially when combined with parallel advances in 
nanoscience, nanoengineering, and computing. Researchers take the view that in the near future, 
cloning will be necessary for sustaining crops, livestock, and animal research. As the earth's 
population continues to explode, genetically modified fruits will offer extended shelf life, tolerate 
herbicides, grow faster and in harsher climates, and provide significant sources of vitamins, protein, 
and other nutrients. Fruits and vegetables will be engineered to create drugs to control human 
disease, just as bacteria have been harnessed to mass-produce insulin for diabetics. In addition, 
chemical and drug testing simulations will streamline pharmaceutical development and predict 
subpopulation response to designer drugs, dramatically changing the practice of medicine.

Few would argue that the biotechnology area presents not only scientific, but cultural and economic 
challenges as well. The first wave of biotechnology, which focused on medicine, was relatively well 
received by the public—perhaps because of the obvious benefits of the technology, as well as the lack 
of general knowledge of government-sponsored research in biological weapons. Instead, media 
stressed the benefits of genetic engineering, reporting that millions of patients with diabetes have 
ready access to affordable insulin.

The second wave of biotech, which focused on crops, had a much more difficult time gaining 
acceptance, in part because some consumers feared that engineered organisms have the potential to 



disrupt the ecosystem. As a result, the first genetically engineered whole food ever brought to 
market, the short-lived Flavr Savr™ Tomato, was an economic failure when it was introduced in the 
spring of 1994—only four years after the first federally approved gene therapy on a patient. 
However, Calgene's entry into the market paved the way for a new industry that today holds nearly 
2,000 patents on engineered foods, from virus-resistant papayas and bug-free corn, to caffeine-free 
coffee beans.

Today, nearly a century after the first gene map of an organism was published, we're in the third 
wave of biotechnology. The focus this time is on manufacturing military armaments made of 
transgenic spider webs, plastics from corn, and stain-removing bacilli. Because biotechnology 
manufacturing is still in its infancy and holds promise to avoid the pollution caused by traditional 
smokestack factories, it remains relatively unnoticed by opponents of genetic engineering.

The biotechnology arena is characterized by complexity, uncertainty, and unprecedented scale. As a 
result, researchers in the field have developed innovative computational solutions heretofore 
unknown or unappreciated by the general computer science community. However, in many areas of 
molecular biology R&D, investigators have reinvented techniques and rediscovered principles long 
known to scientists in computer science, medical informatics, physics, and other disciplines.

What's more, although many of the computational techniques developed by researchers in 
bioinformatics have been beneficial to scientists and entrepreneurs in other fields, most of these 
redundant discoveries represent a detour from addressing the main molecular biology challenges. For 
example, advances in machine-learning techniques have been redundantly developed by the 
microarray community, mostly independent of the traditional machine-learning research community. 
Valuable time has been wasted in the duplication of effort in both disciplines. The goal of this text is 
to provide readers with a roadmap to the diverse field of bioinformatics computing while offering 
enough in-depth information to serve as a valuable reference for readers already active in the 
bioinformatics field. The aim is to identify and describe specific information technologies in enough 
detail to allow readers to reason from first principles when they critically evaluate a glossy print 
advertisement, banner ad, or publication describing an innovative application of computer technology 
to molecular biology.

To appreciate the advantage of a molecular biologist studying computational methods at more than a 
superficial level, consider the many parallels faced by students of molecular biology and students of 
computer science. Most students of molecular biology are introduced to the concept of genetics 
through Mendel's work manipulating the seven traits of pea plants. There they learn Mendel's laws of 
inheritance. For example, the Law of Segregation of Alleles states that the alleles in the parents 
separate and recombine in the offspring. The Law of Independent Assortment states that the alleles 
of different characteristics pass to the offspring independently.

Students who delve into genetics learn the limitations of Mendel's methods and assumptions—for 
example, that the Law of Independent Assortment applies only to pairs of alleles found on different 
chromosomes. More advanced students also learn that Mendel was lucky enough to pick a plant with 
a relatively simple genetic structure. When he extended his research to mice and other plants, his 
methods failed. These students also learn that Mendel's results are probably too perfect, suggesting 
that either his record-keeping practices were flawed or that he blinked at data that didn't fit his 
theories.

Just as students of genetics learn that Mendel's experiment with peas isn't adequate to fully describe 
the genetic structures of more complex organisms, students of computer science learn the exceptions 
and limitations of the strategies and tactics at their disposal. For example, computer science students 
are often introduced to algorithms by considering such basic operations as sorting lists of data.

To computer users who are unfamiliar with underlying computer science, sorting is simply the 
process of rearranging an unordered sequence of records into either ascending or descending order 
according to one or more keys—such as the name of a protein. However, computer scientists and 
others have developed dozens of searching algorithms, each with countless variations to suit specific 
needs. Because sorting is a fundamental operation used in everything from searching the Web to 
analyzing and matching patterns of base pairs, it warrants more than a superficial understanding for 



a biotechnology researcher engaged in operations that involve sorting.

Consider that two of the most popular sorting algorithms used in computer science, quicksort and 
bubblesort, can be characterized by a variety of factors, from stability and running time to memory 
requirements, and how performance is influenced by the way in which memory is accessed by the 
host computer's central processing unit. That is, just as Mendel's experiments and laws have 
exceptions and operating assumptions, a sorting algorithm can't simply be taken at face value.

For example, the running time of quicksort on large data sets is superior to that of many other stable 
sorting algorithms, such as bubblesort. Sorting long lists of a half-million elements or more with a 
program that implements the bubblesort algorithm might take an hour or more, compared to a half-
second for a program that follows the quicksort algorithm. Although the performance of quicksort is 
nearly identical to that of bubblesort on a few hundred or thousand data elements, the performance 
of bubblesort degrades rapidly with increasing data size. When the size of the data approaches the 
number of base pairs in the human genome, a sort that takes 5 or 10 seconds using quicksort might 
require half a day or more on a typical desktop PC.

Even with its superb performance, quicksort has many limitations that may favor bubblesort or 
another sorting algorithm, depending on the nature of the data, the limitations of the hardware, and 
the expertise of the programmer. For example, one virtue of the bubblesort algorithm is simplicity. It 
can usually be implemented by a programmer in any number of programming languages, even one 
who is a relative novice. In operation, successive sweeps are made through the records to be sorted 
and the largest record is moved closer to the top, rising like a bubble.

In contrast, the relatively complex quicksort algorithm divides records into two partitions around a 
pivot record, and all records that are less than the pivot go into one partition and all records that are 
greater go into the other. The process continues recursively in each of the two partitions until the 
entire list of records is sorted. While quicksort performs much better than bubblesort on long lists of 
data, it generally requires significantly more memory space than the bubblesort. With very large files, 
the space requirements may exceed the amount of free RAM available on the researcher's PC. The 
bubblesort versus quicksort dilemma exemplifies the common tradeoff in computer science of space 
for speed.

Although the reader may never write a sorting program, knowing when to apply one algorithm over 
another is useful in deciding which shareware or commercial software package to use or in directing a 
programmer to develop a custom system. A parallel in molecular biology would be to know when to 
describe an organism using classical Mendelian genetics, and when other mechanisms apply.

Given the multidisciplinary characteristic of bioinformatics, there is a need in the molecular biology 
community for reference texts that illustrate the computer science advances that have been made in 
the past several decades. The most relevant areas—the ones that have direct bearing on their 
research—are in computer visualization, very large database designs, machine learning and other 
forms of advanced pattern-matching, statistical methods, and distributed-computing techniques. This 
book, which is intended to bring molecular biologists up to speed in computational techniques that 
apply directly to their work, is a direct response to this need.



 
Organization of This Book

This book is organized into modular, stand-alone topics related to bioinformatics computing according 
to the following chapters:

●     Chapter 1: THE CENTRAL DOGMA

This chapter provides an overview of bioinformatics, using the Central Dogma as the 
organizing theme. It explores the relationship of molecular biology and bioinformatics to 
computer science, and how the purview of computational bioinformatics necessarily extends 
from the molecular to the clinical medicine level.

●     Chapter 2: DATABASES

Bioinformatics is characterized by an abundance of data stored in very large databases. The 
practical computer technologies related to very large databases are discussed, with an 
emphasis on object-oriented database methods, given that traditional relational database 
technology may be ill-suited for some bioinformatics needs. Data warehousing, data 
dictionaries, database design, and knowledge management techniques related to 
bioinformatics are also discussed in detail.

●     Chapter 3: NETWORKS

This chapter explores the information technology infrastructure of bioinformatics, including 
the Internet, World Wide Web, intranets, wireless systems, and other network technologies 
that apply directly to sharing, manipulating, and archiving sequence data and other 
bioinformatics information. This chapter reviews Web-based resources for researchers, such 
as GenBank and other systems maintained by NCBI, NIH, and other government agencies. 
The Great Global Grid and its potential for transforming the field of bioinformatics is also 
discussed.

●     Chapter 4: SEARCH ENGINES

The exponentially increasing amounts of data accessible in digital form over the Internet, 
from gene sequences to published references to the experimental methods used to determine 
specific sequences, is only accessible through advanced search engine technologies. This 
chapter details search engine operations related to the major online bioinformatics resources.

●     Chapter 5: DATA VISUALIZATION

Exploring the possible configurations of folded proteins has proven to be virtually impossible 
by simply studying linear sequences of bases. However, sophisticated 3D visualization 
techniques allow researchers to use their visual and spatial reasoning abilities to understand 
the probable workings of proteins and other structures. This chapter explores data 
visualization techniques that apply to bioinformatics, from methods of generating 2D and 3D 
renderings of protein structures to graphing the results of the statistical analysis of protein 
structures.

●     Chapter 6: STATISTICS

The randomness inherent in any sampling process—such as measuring the mRNA levels of 
thousands of genes simultaneously with microarray techniques, or assessing the similarity 
between protein sequences—necessarily involves probability and statistical methods. This 
chapter provides an in-depth discussion of the statistical techniques applicable to molecular 
biology, addressing topics such as statistical analysis of structural features, gene prediction, 
how to extract maximal value from small sample sets, and quantifying uncertainty in 
sequencing results.

●     Chapter 7: DATA MINING



Given an ever-increasing store of sequence and protein data from several ongoing genome 
projects, data mining the sequences has become a field of research in its own right. Many 
bioinformatics scientists conduct important research from their PCs, without ever entering a 
wet lab or seeing a sequencing machine. The aim of this chapter is to explore data-mining 
techniques, using technologies, such as the Perl language, that are uniquely suited to 
searching through data strings. Other issues covered include taxonomies, profiling 
sequences, and the variety of tools available to researchers involved in mining the data in 
GenBank and other very large bioinformatics databases.

●     Chapter 8: PATTERN MATCHING

Expert systems and classical pattern matching or AI techniques—from reasoning under 
uncertainty and machine learning to image and pattern recognition—have direct, practical 
applicability to molecular biology research. This chapter covers a variety of pattern-matching 
approaches, using molecular biology as a working context. For example, microarray research 
lends itself to machine learning, in that it is humanly impossible to follow thousands of 
parallel reactions unaided, and several gene-prediction applications are based on neural 
network pattern-matching engines. The strengths and weakness of various pattern-matching 
approaches in bioinformatics are discussed.

●     Chapter 9: MODELING AND SIMULATION

This chapter covers a variety of simulation techniques, in the context of computer modeling 
events from drug-protein interactions and probable protein folding configurations to the 
analysis of potential biological pathways. The application of event-driven, time-driven, and 
hybrid simulation techniques are discussed, as well as linking computer simulations with 
visualization techniques.

●     Chapter 10: COLLABORATION

Bioinformatics is characterized by a high degree of cooperation among the researchers who 
contribute their part to the whole knowledge base of genomics and proteomics. As such, this 
chapter explores the details of collaboration with enabling technologies that facilitate 
multimedia communications, real-time videoconferencing, and Web-based application sharing 
of molecular biology information and knowledge.



 
How to Use This Book

For readers new to bioinformatics, the best way to tackle the subject is to simply read each chapter 
in order; however, because each chapter is written as a stand-alone module, readers interested in, 
for example, data-mining techniques, can go directly to Chapter 7, "Data Mining." Where appropriate, 
"On the Horizon" sidebars provide glimpses of techniques and technologies that hold promise but 
have either not been fully developed or have yet to be embraced by the bioinformatics community. In 
addition, readers who want to delve deeper into bioinformatics are encouraged to refer to the list of 
publications and Web sites listed in the Bibliography.



 
The Larger Context

Bioinformatics may not be able solve the numerous social, ethical, and legal issues in the field of 
biotechnology, but it can address many of the scientific and economic issues. For example, there are 
technical hurdles to be overcome before advances such as custom pharmaceuticals and cures for 
genetic diseases can be affordable and commonplace. Many of these advances will require new 
technologies in molecular biology, and virtually all of these advances will be enabled by 
computational methods. For example, most molecular biologists concede that sequencing the human 
genome was a relatively trivial task compared to the challenges of understanding the human 
proteome. The typical cell produces hundreds of thousands of proteins, many of which are unknown 
and of unknown function. What's more, these proteins fold into shapes that are a function of the 
linear sequence of amino acids they contain, the temperature, as well as the presence of fats, sugars, 
and water in the microenvironment.

As the history of the PC and the Internet has demonstrated, the rate of change in technological 
innovation is accelerating, and the practical applications of computing to unravel the proteome and 
other bioinformatics challenges are growing exponentially. In this regard, bioinformatics should be 
considered an empowering technology with which researchers in biotechnology can take a proactive 
role in defining and shaping the future of their field—and the world.
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Chapter 1. The Central Dogma
 Human Insulin, PDB entry 1AIO. Image produced with PDB Structure Explorer, which 

is based on MolScript and Raster 3D.

If I have seen further it is by standing on the shoulders of Giants.

—Isaac Newton

To many pre-genomic biologists, computational bioinformatics seems like an oxymoron. After all, 
consider that the traditional biology curriculum of only a few years ago was heavily weighted toward 
the qualitative humanities, while advanced numerical methods, programming, and computerized 
visualization techniques were the purview of engineers and physicists. In a strict sense, 
bioinformatics—the study of how information is represented and transmitted in biological systems, 
starting at the molecular level—is a discipline that does not need a computer. An ink pen and a 
supply of traditional laboratory notebooks could be used to record results of experiments. However, 
to do so would be like foregoing the use of a computer and word-processing program in favor of pen 
and paper to write a novel.



From a practical sense, bioinformatics is a science that involves collecting, manipulating, analyzing, 
and transmitting huge quantities of data, and uses computers whenever appropriate. As such, this 
book will use the term "bioinformatics" to refer to computational bioinformatics.

Clearly, times have changed in the years since the human genome was identified. Post-genomic 
biology—whether focused on protein structures or public health—is a multidisciplinary, multimedia 
endeavor. Clinicians have to be as fluent at reading a Nuclear Magnetic Resonance (NMR) image of a 
patient's chest cavity as molecular biologists are at reading X-ray crystallography and NMR 
spectroscopy of proteins, nucleic acids, and carbohydrates. As such, computational methods and the 
advanced mathematical operations they support are rapidly becoming part of the basic literacy of 
every life scientist, whether he works in academia or in the research laboratory of a biotechnology 
firm.

The purpose of this chapter is to provide an overview of bioinformatics, using the Central Dogma as 
the organizing theme. It explores the relationship of molecular biology and bioinformatics to 
computer science, and how informatics relates to other sciences. In particular, it illustrates the scope 
of bioinformatics' applications from the consideration of nucleotide sequences to the clinical 
presentation and, ultimately, the treatment of disease. This chapter also explores the challenges 
faced by researchers and how they can be addressed by computer-based numerical methods that 
encompass the full range of computer science endeavors, from archiving and communications to 
pattern matching and simulation, to visualization methods and statistical tools. Specifically, the 
section called "The Killer Application" examines at least one of the biotechnology industy's (biotech's) 
holy grails, that of using bioinformatics techniques to create designer drugs. "Parallel Universes" 
provides a historical view of how the initially independent fields of communications, computing, and 
molecular biology eventually converged into an interdependent relationship under the umbrella of 
biotechnology. "Watson's Definition" explores the Central Dogma, as defined by James Watson, and 
"Top-Down Versus Bottom-Up" explores the divergent views created by scientists who are working 
from first principles and those working from heuristics. The "Information Flow" section examines the 
parallels of information transfer in communications systems and in molecular biology. Finally, the 
convergence of computing, communications, and molecular biology is highlighted in "Convergence of 
Science and Technology."



 
The Killer Application

In the biotechnology industry, every researcher and entrepreneur hopes to develop or discover the 
next "killer app"—the one application that will bring the world to his or her door and provide funding 
for R&D, marketing, and production. For example, in general computing, the electronic spreadsheet 
and the desktop laser printer have been the notable killer apps. The spreadsheet not only 
transformed the work of accountants, research scientists, and statisticians, but the underlying tools 
formed the basis for visualization and mathematical modeling. The affordable desktop laser printer 
created an industry and elevated the standards of scientific communications, replacing rough graphs 
created on dot-matrix printers with high-resolution images.

As in other industries, it's reasonable to expect that using computational methods to leverage the 
techniques of molecular biology is a viable approach to increasing the rate of innovation and 
discovery. However, readers looking for a rationale for learning the computational techniques as they 
apply to the bioinformatics that are described here and in the following chapters can ask "What might 
be the computer-enabled 'killer app' in bioinformatics?" That is, what is the irresistible driving force 
that differentiates bioinformatics from a purely academic endeavor? Although there are numerous 
military and agricultural opportunities, one of the most commonly cited examples of the killer app is 
in personalized medicine, as illustrated in Figure 1-1.

Figure 1-1. The Killer Application. The most commonly cited "killer app" of 
biotech is personalized medicine—the custom, just-in-time delivery of 

medications (popularly called "designer drugs") tailored to the patient's 
condition.

Instead of taking a generic or over-the-counter drug for a particular condition, a patient would 
submit a tissue sample, such as a mouth scraping, and submit it for analysis. A microarray would 
then be used to analyze the patient's genome and the appropriate compounds would be prescribed. 
The drug could be a cocktail of existing compounds, much like the drug cocktails used to treat cancer 
patients today.



Alternatively, the drug could be synthesized for the patient's specific genetic markers—as in tumor-
specific chemotherapy, for example. This synthesized drug might take a day or two to develop, unlike 
the virtually instantaneous drug cocktail, which could be formulated by the corner pharmacist. The 
tradeoff is that the drug would be tailored to the patient's genetic profile and condition, resulting in 
maximum response to the drug, with few or no side effects.

How will this or any other killer app be realized? The answer lies in addressing the molecular biology, 
computational, and practical business aspects of proposed developments such as custom 
medications. For example, because of the relatively high cost of a designer drug, the effort will 
initially be limited to drugs for conditions in which traditional medicines are prohibitively expensive. 
Consider the technical challenges that need to be successfully overcome to develop a just-in-time 
designer drug system. A practical system would include:

●     High throughput screening— The use of affordable, computer-enabled microarray 
technology to determine the patient's genetic profile. The issue here is affordability, in that 
microarrays costs tens of thousands of dollars.

●     Medically relevant information gathering— Databases on gene expression, medical 
relevance of signs and symptoms, optimum therapy for given diseases, and references for 
the patient and clinician must be readily available. The goal is to be able to quickly and 
automatically match a patient's genetic profile, predisposition for specific diseases, and 
current condition with the efficacy and potential side effects of specific drug-therapy options.

●     Custom drug synthesis— The just-in-time synthesis of patient-specific drugs, based on the 
patient's medical condition and genetic profile, presents major technical as well as political, 
social, and legal hurdles. For example, for just-in-time synthesis to be accepted by the FDA, 
the pharmaceutical industry must demonstrate that custom drugs can skip the clinical-trials 
gauntlet before approval.

Achieving this killer app in biotech is highly dependent on computer technology, especially in the use 
of computers to speed the process testing-analysis-drug synthesis cycle, where time really is money. 
For example, consider that for every 5,000 compounds evaluated annually by the U.S. 
pharmaceutical R&D laboratories, 5 make it to human testing, and only 1 of the compounds makes it 
to market. In addition, the average time to market for a drug is over 12 years, including several 
years of pre-clinical trials followed by a 4-phase clinical trial. These clinical trials progress from safety 
and dosage studies in Phase I, to effectiveness and side effects in Phase II, to long-term surveillance 
in Phase IV, with each phase typically lasting several years.

What's more, because pharmaceutical companies are granted a limited period of exclusivity by the 
patent process, there is enormous pressure to get drugs to market as soon as a patent is granted. 
The industry figure for lost revenue on a drug because of extended clinical trials is over $500,000 per 
day. In addition, the pharmaco-economic reality is that fewer drugs are in the pipeline, despite 
escalating R&D costs, which topped $30 billion in 2001.

Most pharmaceutical companies view computerization as the solution to creating smaller runs of 
drugs focused on custom production. Obvious computing applications range from predicting efficacy 
and side effects of drugs based on genome analysis, to visualizing protein structures to better 
understand and predict the efficacy of specific drugs, to illustrating the relative efficacy of competing 
drugs in terms of quality of life and cost, based on the Markov simulation of likely outcomes during 
Phase IV clinical trials.

Despite these obvious uses for computer methods in enabling the drug discovery and synthesis 
process, the current state of the art in these areas is limited by the underlying information 
technology infrastructure. For example, even though there are dozens of national and private 
genome databases, most aren't integrated with each other. Drug discovery methods are currently 
limited to animal and cell models. One goal of computerizing the overall drug discovery process is to 
create a drug discovery model through sequencing or microarray technology. The computer model 
would allow researchers to determine if a drug will work before it's tried on patients, potentially 
bypassing the years and tens of millions of dollars typically invested in Phases I and II of clinical 
trials.



In addition to purely technological challenges, there are issues in the basic approach and scientific 
methods available that must be addressed before bioinformatics can become a self-supporting 
endeavor. For example, working with tissue samples from a single patient means that the sample 
size is very low, which may adversely affect the correlation of genomic data with clinical findings. 
There are also issues of a lack of a standardized vocabulary to describe nucleotide structures and 
sequences, and no universally accepted data model. There is also the need for clinical data to create 
clinical profiles that can be compared with genomic findings.

For example, in searching through a medical database for clinical findings associated with a particular 
disease, a standard vocabulary must be available for encoding the clinical information for later 
retrieval from a database. The consistency and specificity in a controlled vocabulary is what makes it 
effective as a database search tool, and a domain-specific vehicle of communication. As an 
illustration of the specificity of controlled vocabularies, consider that in the domain of clinical 
medicine, there are several popular controlled vocabularies in use: There is the Medical Subject 
Heading (MeSH), Unified Medical Language System (UMLS), the Read Classification System (RCS), 
Systemized Nomenclature of Human and Veterinary Medicine (SNOMED), International Classification 
of Diseases (ICD-10), Current Procedural Terminology (CPT), and the Diagnostic and Statistical 
Manual of Mental Disorders (DSM-IV).

Each vocabulary system has its strengths and weaknesses. For example, SNOMED is optimized for 
accessing and indexing information in medical databases, whereas the DSM is optimized for 
description and classification of all known mental illnesses. In use, a researcher attempting to 
document the correlation of a gene sequence with a definition of schizophrenia in the DSM may have 
difficulty finding gene sequences in the database that correlate with schizophrenia if the naming 
convention and definition used to search on are based on MeSH nomenclature.

A related issue is the challenge of data mining and pattern matching, especially as they relate to 
searching clinical reports and online resources such as PubMed for signs, symptoms, and diagnoses. 
A specific gene expression may be associated with "M.I." or "myocardial infarction" in one resource 
and "coronary artery disease" in another, depending on the vocabulary used and the criteria for 
diagnosis.

Among the hurdles associated with achieving success in biotech are politics and the disparate points 
of view in any company or research institution, in that decision makers in marketing and sales, R&D, 
and programming are likely to have markedly different perspectives on how to achieve corporate and 
research goals. As such, bioinformatics is necessarily grounded in molecular biology, clinical 
medicine, a solid information technology infrastructure, and business. The noble challenge of linking 
gene expression with human disease in order to provide personal medicine can be overshadowed by 
the local issues involved in mapping clinical information from one hospital or healthcare institution 
with another. The discussion that follows illustrates the distance between where science and society 
are today, where they need to be in the near future, and how computational bioinformatics has the 
potential to bridge the gap.



 
Parallel Universes

One of the major challenges faced by bioinformatacists is keeping up with the latest techniques and 
discoveries in both molecular biology and computing. Discoveries and developments are growing 
exponentially in both fields, as shown in the timeline in Figure 1-2, with most of the significant work 
occurring within the past century. Initially, developments were independent and, for the most part, 
unrelated. However, with time, the two became inseparably intertwined and interdependent.

Figure 1-2. Computer Science and Molecular Biology Timelines. The rapid 
rate of change in the 20th Century is significant for both computing and 
biology, as seen from this timeline of discoveries and inventions for both 

areas.



Consider, for example, that at the dawn of the 20th Century, Walter Sutton was advancing the 
chromosome theory just as transatlantic wireless communications was being demonstrated with a 
spark-gap transmitter using Morse code. The state of the art in computing at the time was a 
wearable analog time computer—the newly invented wristwatch. The remarkable fact about the 
status of computing, communications, and biology at the dawn of the 20th Century is that all three 
were nascent curiosities of a few visionaries. It's equally remarkable that the three technologies are 
so pervasive today that they are largely taken for granted.

Two key events in the late 1920s were Alexander Fleming's discovery of penicillin and Vannevar 
Bush's Product Integraph, a mechanical analog computer that could solve simple equations. In the 
1930s, Alan Turing, the British mathematician, devised his Turing model, upon which all modern 
discrete computing is based. The Turing model defines the fundamental properties of a computing 
system: a finite program, a large database, and a deterministic, step-by-step mode of computation. 
What's more, the architecture of his hypothetical Turing Machine—which has a finite number of 
discrete states, uses a finite alphabet, and is fed by an infinitely long tape (see Figure 1-3)—is 
strikingly similar to that of the translation of RNA to proteins. Turing theorized that his machine could 
execute any mathematically defined algorithm, and later proved his hypothesis by creating one of the 
first digital electronic computers.

Figure 1-3. The Turing Machine. The Turing Machine, which can simulate 
any computing system, consists of three basic elements: a control unit, a 

tape, and a read-write head. The read-write head moves along the tape and 
transmits information to and from the control unit.

By the early 1940s, synthetic antibiotics, FM radio, broadcast TV, and the electronic analog computer 
were in use. The state of the art in computing, the electronic Differential Analyzer occupied several 
rooms and required several workers to watch over the 2,000 vacuum tubes, thousands of relays, and 
other components of the system. Not surprisingly, for several years, computers remained commercial 
curiosities, with most of the R&D activity occurring in academia and most practical applications 
limited to classified military work. For example, the first documented use of an electronic analog 
computer was as an antiaircraft-gun director built by Western Electric Company. Similarly, the first 



general-purpose electronic analog computer was built with funds from the National Defense Research 
Committee. This trend of government and military funding of leading-edge computer and 
communications technologies continues to this day.

With the declassification of information about the analog computer after World War II, several 
commercial ventures to develop computers were launched. Around the same time, Claude Shannon 
published his seminal paper on communications theory, "A Mathematical Theory of Communication." 
In it, he presented his initial concept for a unifying theory of transmitting and processing information. 
Shannon's work forms the basis for our understanding of modern communications networks, and 
provides one model for communications in biological systems.

As illustrated in Figure 1-4, Shannon's model of Information Theory describes a communication 
system with five major parts: the information source, the transmitter, the medium, the receiver, and 
the destination. In this model, the information source, which can be a CD-ROM containing the 
sequence information of the entire human genome or a human chromosome, contains the message 
that is transmitted as a signal of some type through a medium. The signal can be a nucleotide 
sequence in a DNA molecule or the dark and light patches on a metal film sandwiched between the 
two clear plastic plates of a CD-ROM. The medium can be the intracellular matrix where DNA is 
concerned, or the clear plastic and air that the laser must pass through in order to read a CD-ROM. 
Regardless of the medium, in the propagation of the desired signal through the medium, it is affected 
to some degree by noise. In a cell, this noise can be due to heat, light, ionizing radiation, or a sudden 
change in the chemistry of the intracellular environment causing thermal agitation at the molecular 
or nucleotide level. In the case of a CD-ROM, the noise can be from scratches on the surface of the 
disc, dirt on the receiver lens, or vibration from the user or the environment.

Figure 1-4. Information Theory. Shannon's model of a communications 
system includes five components: an information source, a transmitter, the 
medium, a receiver, and a destination. The amount of information that can 
be transferred from information source to destination is a function of the 
strength of the signal relative to that of the noise generated by the noise 

source.

When the signal is intercepted, the receiver extracts the message or information from the signal, 
which is delivered to the destination. In Shannon's model, information is separate from the signal. 
For example, the reflected laser light shining on a CD-ROM is the signal, which has to be processed to 
glean the underlying message—whether it's the description of a nucleotide sequence or a track of 
classical music. Similarly, a strand of RNA near the endoplasmic reticulum is the signal that is carried 
from the nucleus to the cytoplasm, but the message is the specific instruction for protein synthesis.

Information theory specifies the amount of information that can be transferred from the transmitter 
to the receiver as a function of the noise level and other characteristics of the medium. The greater 
the strength of the desired signal compared to that of the noise—that is, the higher the signal-to-
noise ratio—the greater the amount of information that can be propagated from the information 
source through the medium to the destination. Shannon's model also provides the theoretical basis 
for data compression, which is a way to squeeze more information into a message by eliminating 



redundancy. Shannon's model is especially relevant for developing gene sequencing devices and 
evaluation techniques.

Returning to the timeline of innovation and discovery in the converging fields of molecular biology 
and computer science, Watson and Crick's elucidation of the structure of DNA in the early 1950s was 
paralleled by the development of the transistor, the commercial computer, and the first stored 
computer program. Around the same time, the computer science community switched, en masse, 
from analog to digital computers for simulating missile trajectories, fuel consumption, and a variety 
of other real-world analog situations. This virtually overnight shift from analog to digital computing is 
attributed to the development of applied numerical integration, a basic simulation method used to 
evaluate the time response of differential equations. Prior to the development of numerical 
integration, simulating analog phenomena on digital computers was impractical.

The 1950s were also the time of the first breakthrough in the computer science field of artificial 
intelligence (AI), as marked by the development of the General Problem Solver (GPS) program. GPS 
was unique in that, unlike previous programs, its responses mimicked human behavior. Parallel 
developments in molecular biology include the discovery of the process of spontaneous mutation and 
the existence of transposons—the small, mobile DNA sequences that can replicate and insert copies 
at random sites within chromosomes.

The early 1970s saw the development of the relational database, objectoriented programming, and 
logic programming, which led in turn to the development of deductive databases in the late 1970s 
and of object-oriented databases in the mid-1980s. These developments were timely for molecular 
biology in that by the late 1970s, it became apparent that there would soon be unmanageable 
quantities of DNA sequence data. The potential flood of data, together with rapidly evolving database 
technologies entering the market, empowered researchers in the U.S. and Europe to establish 
international DNA data banks in the early 1980s. GenBank, developed at the Los Alamos National 
Laboratory, and the EMBL database, developed at the European Molecular Biology Laboratory, were 
both started in 1982. The third member of the International Nucleotide Sequence Database 
Collaboration, the DNA Data Bank of Japan (or DDBJ), joined the group in 1982.

Continuing with the comparison of parallel development in computer science and molecular biology, 
consider that shortly after the electronic spreadsheet (VisiCalc) was introduced into the general 
computing market in the late 1970s, the U.S. Patent and Trademark Office issued a patent on a 
genetically engineered form of bacteria designed to decompose oil from accidental spills. These two 
events are significant milestones for computing and molecular biology in that they legitimized both 
fields from the perspective of providing economically viable products that had demonstrable value to 
the public.

The electronic spreadsheet is important in computing because it transformed the personal computer 
from a toy for hobbyists and computer game enthusiasts to a serious business tool for anyone in 
business. Not only could an accountant keep track of the business books with automatic tabulation 
and error checking performed by electronic spreadsheet, but the electronic spreadsheet transformed 
the personal computer into a research tool statisticians could use for modeling everything from 
neural networks and other machinelearning techniques, to performing what-if analyses on population 
dynamics in the social sciences. Similarly, the first patent for a genetically engineered life form, 
issued in 1980, served to legitimize genetic engineering as an activity that could be protected as 
intellectual property. While detractors complained that turning over control of the genome and 
molecular biology methods to companies and academic institutions provided them with too much 
control over what amounts to everyone's genetic heritage, the patent opened the door to private 
investments and other sources of support for R&D.

Other developments in the 1980s included significant advances in the languishing field of AI, thanks 
to massive investment from the U.S. Government in an attempt to decode Russian text in real time. 
In addition, by 1985, the Polymerase Chain Reaction (PCR) method of amplifying DNA sequences—a 
cornerstone for molecular biology research—was in use.

The next major event in computing, the introduction of the World Wide Web in 1990, roughly 
coincided with the kickoff of the Human Genome Project. These two events are significant in that 



they represent the convergence of computing, communications, and molecular biology. The Web 
continues to serve as the communications vehicle for researchers in working with genomic data, 
allowing research scientists to submit their findings to online databases and share in the findings of 
others. The Web also provides access to a variety of tools that allow searching and manipulation of 
the continually expanding genomic databases as well. Without the Web, the value of the Human 
Genome Project would have been significantly diminished.

By 1994, the Web was expanding exponentially because of increased public interest around the time 
the first genetically modified (GM) food, Calgene's Flavr Savr™ Tomato was on the market. Cloning of 
farm animals followed two years later with the birth of Dolly the sheep—around the time the DVD 
was introduced to the consumer market.

At the cusp of the 21st Century, the pace of progress in both computer science and molecular biology 
accelerated. Work on the Great Global Grid (GGG) and similar distributed computing systems that 
provide computational capabilities to dwarf the largest conventional supercomputers was redoubled. 
By 1999, distributed computing systems such as SETI@home (Search for Extraterrestrial 
Intelligence) were online. SETI@home is a network of 3.4 million desktop PCs devoted to analyzing 
radio telescope data searching for signals of extraterrestrial origin. A similar distributed computing 
project, Folding@home, came online in 2001. It performed molecular dynamics simulations of how 
proteins fold. The project was started by the chemistry department at Stanford University. It made a 
virtual supercomputer of a network of over 20,000 standard computers.

Like most distributed computing projects, SETI@home and folding@home rely primarily on the 
donation of PC processing power from individuals connected to the Internet at home (hence the 
@home designation). However, there are federally directed projects underway as well. For example, 
the federally funded academic research grid project, the Teragrid, was started in 2001—around the 
time Noah, the first interspecies clone and an endangered humpbacked wild ox native to Southeast 
Asia, was born to a milk cow in Iowa. This virtual supercomputer project, funded by the National 
Science Foundation, spans 4 research institutions, providing 600 trillion bytes of storage and is 
capable of processing 13 trillion operations per second over a 40-gigabit-per-second optical fiber 
backbone. The Teragrid and similar programs promise to provide molecular biologists with affordable 
tools for visualizing and modeling complex interactions of protein molecules—tasks that would be 
impractical without access to supercomputer power.

On the heels of the race to sequence the majority of coding segments of the human genome—won by 
Craig Venter's Celera Genomics with the publication of the "rough draft" in February of 2000—IBM 
and Compaq began their race to build the fastest bio-supercomputer to support proteomic research. 
IBM's Blue Gene is designed to perform 1,000 trillion calculations per second, or about 25 times 
faster than the fastest supercomputer, Japan's Earth Simulator, which is capable of over 35 trillion 
operations per second. Blue Gene's architecture is specifically tuned to support the modeling, 
manipulation, and visualization of protein molecules. Compaq's Red Storm, in contrast, is a more 
general-purpose supercomputer, designed to provide 100 trillion calculations per second. As a result, 
in addition to supporting work in molecular biology, Red Storm's design is compatible with work 
traditionally performed by supercomputers—nuclear weapons research. Interestingly, IBM and 
Compaq are expected to invest as much time and money developing Red Storm and Blue Gene as 
Celera Genomics invested in decoding the human genome.

As demonstrated by the timelines in biology, communications, and computer science, the fields 
started out on disparate paths, only to converge in the early 1980s. Today, bioinformatics, like many 
sciences, deals with the storage, transport, and analysis of information. What distinguishes 
bioinformatics from other scientific endeavors is that it focuses on the information encoded in the 
genes and how this information affects the universe of biological processes. With this in mind, 
consider how bioinformatics is reflected in the Central Dogma of molecular biology.



 
Watson's Definition

The Central Dogma of Molecular Biology, as originally defined by James Watson, is deceptively 
simple: DNA defines the synthesis of protein by way of an RNA intermediary. Documenting, 
controlling, and modifying this process, which is illustrated from a high-level structural perspective in 
Figure 1-5, is the focus of bioinformatics. It's also the basis for genetic engineering, mapping the 
human genome, and the diagnosis and treatment of genetic diseases. For example, genetic 
engineering involves modifying the process so that new proteins are synthesized; these new proteins 
in turn form the basis of everything from new drugs to new types of plants and animals.

Figure 1-5. The Central Dogma of Molecular Biology. DNA is transcribed to 
messenger RNA in the cell nucleus, which is in turn translated to protein in 

the cytoplasm. The Central Dogma, shown here from a structural 
perspective, can also be depicted from an information flow perspective (see 

Figure 1-9).



The simplified version of the Central Dogma, shown in Figure 1-5, in which DNA is duplicated through 
replication, transcribed to RNA, which is in turn translated to protein, only hints at the complexity of 
the information transfer process that is the driving force for bioinformatics. Consider that the archive 
of an individual's genetic information or genome is encoded in DNA as a sequence of four different 
nitrogenous bases on a sugar-phosphate backbone. This deoxyribonucleic acid can adopt a variety of 
conformations, including the infamous right-handed double helix first described by Watson and Crick 
in 1953. The sequence of four nitrogenous bases—some combination of Adenine (A), Thymine (T), 
Cytosine (C), and Guanine (G)—in each strand of the double helix mirror each other in a predefined 
manner; Adenine on one strand always binds with Thymine on the other, and Cytosine always binds 
with Guanine.

In human cells, DNA is organized and compressed into 23 pairs of chromosomes, with one member 
of each pair inherited from each parent. Most of this DNA—on the order of 98.5 percent—is 
considered "junk," in that its function is unknown. The remainder of the DNA is in the genes—the 
stretches of DNA involved in the transcription process.

Not only are there duplications in the remaining DNA, but there are additional non-coding nucleotide 
sequences. Interrupting the sequences of base pairs that will be expressed (the exons), there are 
interruptions in the sequence by segments that aren't expressed (the introns). Like the much larger 
expanses of "junk DNA" in the chromosome, these smaller interruptions in the DNA have unknown 
functions. Whether some of the non-coding DNA are remnants of provirus infections during hominoid 
evolution or somehow involved in compacting the DNA is open to conjecture.

In the process of RNA synthesis within the cell nucleus, DNA is transcribed to single-stranded nuclear 
RNA (nRNA), which is then processed to form mature messenger RNA (mRNA), as illustrated in 
Figure 1-6. Small nuclear RNA (snRNA) is involved in this maturation process, which includes excising 
the introns from the mRNA strands and concatenating the remaining exons according to their original 
order in the mRNA. As an information transport medium, RNA differs from DNA in that it's single-
stranded, much shorter, and the nitrogenous base Uracil (U) is substituted for Thymine.

Figure 1-6. Messenger RNA (mRNA) Synthesis. DNA is transcribed to 
nuclear RNA (nRNA) this is in turn processed to mature mRNA in the 

nucleus. Maturation involves discarding the junk nucleotide sequences 
(introns) that interrupt the sequences that will eventually be involved in 

translation (exons).



Mature mRNA is transported through the nuclear membrane to the cytoplasm where the translation 
of mRNA to protein occurs with the aid of ribosomes. These ribosomes contain a variety of different 
proteins and an assortment of RNA molecules, collectively known as ribosomal RNA (rRNA). These 
short-lived but abundant rRNAs are involved in the binding of mRNA to the ribosome during the 
translation process.

The translation of mRNA to protein is facilitated by transfer RNA (tRNA), which associates with the 20 
common amino acids (there are 22 genetically encoded amino acids) and controls the sequential 
binding of the amino acids according to the 3-letter base sequences (codons) on the mRNA. In this 
way, the tRNA is responsible for positioning the correct amino acid residue at the ribosome, as 
dictated by the base pair sequence in the mRNA.

Information is transmitted in transcription and translation processes through three-letter words and 
an alphabet of four letters. Because there are 3 base sequences, there are 43 or 64 possible codons 
(see Figure 1-7), 3 of which are used as stop codons, and 1 for the start codon, to mark the end and 
start of translation, respectively. The remaining codons are used as redundant representations of the 
amino acids. In most cases, the first two bases are fixed, and the redundancy occurs in the last base. 
For example, the codons CCC, CCT, CCA, and CCG all code for the amino acid Proline.

Figure 1-7. RNA-Protein Codon Transcription Wheel. The 64 possible codons 



represent the 20 common amino acids, as well as one start (ATG) and three 
stop (TAG, TAA and TGA) markers. Redundancies normally occur in the last 

nucleotide of the three-letter alphabet.

During translation, amino acids are added to the growing protein sequence one at a time as the 
ribosome moves from codon to codon along the mRNA. The starting point for translation is marked 
by a start codon. At the end of the coding sequence, marked by a stop codon, the translation ends 
and the protein is released by the ribosome. Before the protein is transported outside of the cell to 
perform or promote a variety of tasks, it is usually modified by adding a sugar, for example, and it 
takes on a characteristic folded three-dimensional form—the focus of proteomics research.



 
Top-Down Versus Bottom-Up

Although times were simpler when Mendel was tending his garden of Pisum sativum in the 1860s, the 
scientific method used by the father of genetics is virtually identical to that used by a contemporary 
molecular biologist. There is the formation of a hypothesis followed by observation and controlled, 
documented experiments that produce results. These data are in turn interpreted to determine 
whether they support or refute the hypothesis. Regardless of whether the experiments focus on the 
color of pea plant petals in a monastery garden or on the results of a microarray assay performed on 
a murder suspect's DNA, data are generated, and they must be accurately recorded for interpretation 
and future reference.

Mendel recorded experimental findings with paper and pen, and he shared his hypothesis and 
experimental methods and results with the scientists of the time through traditional journal 
publishing mechanisms. His opus, "Experiments in Plant Hybridization," appeared in the obscure 
Transactions of the Brunn Natural History Society, where it was promptly ignored by scientists in the 
hundred or so organizations that subscribed to the journal.

In part because his journal article describing his experiment with peas was very limited in 
distribution, and in part because the relevance of his work was at best unclear, Mendel failed to stir 
the imaginations of the thinkers of the time. After all, many of his observations were practiced by the 
horticulturists of the day; quantifying the breeding practice wasn't viewed as a contribution to 
science. As a result, he lost interest in genetics and turned to administration. When he died in 
obscurity in 1884, Mendel was an unknown in the world of science.

Mendel's work illustrates the tension between the top-down and bottom-up approaches to 
experimental and applied biology. For example, consider how a clinician's top-down view of the 
human condition contrasts with that of molecular biologist regarding what contributes to health. As 
shown in Figure 1-8, heredity, as defined by an individual's genetic structure, is only one of many 
variables that a clinician evaluates in assessing overall health. Environmental factors, including 
radiation and a variety of chemical and biological agents can modify an individual's genetic structure, 
resulting in cancer or genetic changes that may be passed on to offspring. In addition, clinicians 
focus on the normal aging process, trauma from accidents, parasitic infestation, and infection by 
bacteria and viruses. Lifestyle factors, including smoking, drug use, diet, exercise, and factors that 
contribute to stress are also considered.

Figure 1-8. Observations and Heuristics. Top-down approaches are often 
based on heuristics and observations, whereas bottom-up approaches are 

usually based on first principles.



In contrast, molecular biologists typically take a bottom-up approach to evaluating the human 
condition, working from first principles. Nucleotide sequences and genetic mutations that predispose 
the individual or the population to diseases are the primary focus. Neither approach is correct nor 
incorrect. The simultaneous top-down and bottom-up approaches to evaluating the human condition 
are common research methods of virtually every field. A bottom-up approach starts at the most 
detailed level, and seeks the big picture from the details. For instance, the examination of DNA 
sequences to study the human organism is analogous to studying alphabets to research written 
language. Eventually, the interrelated works converge on some greater understanding of the 
underlying culture (the human organism)—the point of expressing thought and feelings through 
language.

The dual top-down and bottom-up views of the human condition illustrate the interrelatedness of high-
level observations and nucleotide sequences as well as the practical significance of perspective. For 
example, many animals, plants, and insects directly affect human health in ways that may not be 
obvious from first principles derived from human nucleotide sequences. Many plants produce 



beneficial compounds, while animals and insects are common vectors for parasites and pathogens. 
An individual's genetic constitution may provide information on what is best for his or her survival, 
but it may not indicate what is best for the population as a whole. For example, there are times when 
individuals must suffer so that the general population can survive and thrive.

Consider the interrelatedness of public health and molecular biology. Public health officials rely on 
population statistics, education levels, vaccination compliance, and other predictors of disease 
prevention. For example, thanks to efforts orchestrated in part by the World Health Organization, 
smallpox was eradicated from the general population in the last century through vaccination. For the 
sake of protecting the entire population, the health of a subset of the population was jeopardized. 
Many children were subject to side effects of the smallpox vaccine, which ranged from fever to death.

From a slightly different perspective, consider that while smoking is considered detrimental to the 
health of the population as a whole, there are exceptions. For individuals at risk for developing 
Parkinson's Disease, smoking can reduce the risk of developing this neurologic disorder. This 
protective effect of smoking is only present with patients with a genetic profile that makes them 
susceptible to developing Parkinson's. Individuals without genetic susceptibility can increase their 
chances of contracting Parkinson's if they smoke. Given the relatively low incidence of Parkinson's 
Disease (less than 1 person per 1,000, predominantly in their 50s), prescribing smoking for the 
general population would have a negative effect on public health overall.

Another example of the need for simultaneous top-down and bottom-up approach to studying the 
human organism is the interrelatedness of personal and public health. A significant issue worldwide is 
the interrelatedness of sickle-cell anemia and the Plasmodium falciparum parasite responsible for 
malaria. Sickle-cell anemia is caused by a change in the chemical composition of the hemoglobin 
protein that carries the oxygen inside of the red blood cells. These chemical changes in hemoglobin 
cause the molecule to elongate, distorting the shape of the whole red blood cell. These sickle-shaped 
red blood cells can damage the capillaries around them and the tissues that depend on the vessels 
for oxygen and nourishment, resulting in clotting, and, in some cases, death of surrounding tissues.

The homozygous form of sickle-cell disease that is associated with an anemia is universally fatal; few 
individuals suffering from sickle-cell disease live beyond 20. What's more, in a population free of 
Anopheline mosquitoes carrying the Plasmodium falciparum parasite, individuals with the sickle-cell 
trait (heterozygotes) are also at a distinct disadvantage to those without the trait. However, in 
malaria-infested areas of the world, the sickle-cell trait has a protective effect against the malaria 
parasite. Women with the trait have more offspring, compared to women without the trait, and more 
of their offspring reach maturity because they are relatively unaffected by malaria.

Although malaria can be cured by drug therapy, treatment is extensive and usually associated with 
numerous side effects. However, because the DNA of the Plasmodium falciparum parasite was 
sequenced in 2002, there is increased likelihood of an engineered drug that will free those infected 
from extensive medical regimens.

The pharmaceutical industry provides additional examples of the tension between bottom-up and top-
down approaches to evaluating the human condition. Consider that when the antibiotic penicillin was 
discovered by Alexander Fleming, he observed, by chance, that bacterial growth on a piece of bread 
was inhibited by a contaminating mold. When it was first used as an antibiotic, penicillin was effective 
against the majority of bacterial infections. To a practicing clinician, there was no need to understand 
penicillin's mechanism of action. All that mattered was whether the antibiotic was effective in 
inhibiting or eradicating a particular pathogen, and the potential side effects, such as allergic 
reactions.

As soon as penicillin was introduced into the general patient population, bacteria developed a 
resistance through mutation and the natural selection process. As a result, many patients were 
unable to benefit from penicillin as an antibiotic, and the market for synthetic pharmaceuticals was 
born. Since the 1950s, many synthetic derivatives of penicillin have been widely used for a variety of 
diseases. For example, ampicillin is one of the most useful of these derivatives and serves as a highly 
effective agent against bacterial infections. As with penicillin, the side effects are normally relatively 
minor, and usually limited to minor allergic reactions.



Because bacteria can mutate faster than pharmaceutical firms can create engineered antibiotics, 
newly introduced antibiotics have shorter useful lifetimes than their predecessors. Clinicians attempt 
to minimize the growing of resistant strains of bacteria by using analogs of penicillin and other first-
generation antibiotics whenever possible. However, because antibioticresistant bacteria are 
increasing in relative numbers, more powerful drugs have to be introduced to the market frequently. 
For example, the cephalosporin class of synthetic antibiotics has a much wider spectrum of activity 
against pathogens than penicillin and its derivatives.

Synthetic, engineered antibiotics such as the cephalosporins are resistant to the penicillinases 
produced by penicillin-resistant bacteria and are therefore useful in treating bacterial infections that 
don't respond to penicillin derivatives. However, bacteria are also developing resistance to the 
cephalosporins. In addition, these later-generation antibiotics also tend to have more significant side 
effects than penicillin-based drugs. For example, common side effects of cephalosporins range from 
stomach cramps, nausea, and vomiting, to headache, fainting, and difficulty breathing.

Molecular biologists are in a constant time-limited battle with mutating bacteria. One of the latest 
trends in the pharmaceutical industry is the synthesis of drugs that interfere with the bacteria at 
multiple sites. As a result, for a pathogen to survive, it must develop multiple mutations in one 
generation—an unlikely event. A dual-site antibiotic interferes with two or more processes that not 
only function independently within the bacteria but aren't linked in any way. However, developing 
these next-generation antibiotics requires the use of new visualization techniques, simulations, and 
other computationally intensive processes—as well as the data on a pathogen's nucleotide sequence. 
The relevance and relatedness of the pharmaceutical industry's rush to bring product to market to 
address bacterial resistance and other issues can be appreciated from an information flow 
perspective.



 
Information Flow

Shannon's information theory applies equally to the flow of information during replication as it does 
to translation, as depicted in Figure 1-9. For example, in the replication of DNA during mitosis, the 
information source is the original DNA, and the message is represented by the nucleotide sequence of 
some combination of Adenosine, Tyrosine, Guanine, and Cytosine. This message is transmitted and 
reconstituted as a second DNA molecule.

Figure 1-9. Information Theory and the Central Dogma. Information theory 
applies equally to the replication, transcription, translation, and the overall 

process of converting nucleotide sequences in DNA to protein.

During the replication process, there is a possibility that the noise in the system will upset this ideal 
information transfer process. For example, a random mutation may occur during the replication 
process because of, for example, ionizing radiation. Similarly, viruses and other sources of noise may 
interfere with the replication process, resulting in an imperfect copy of the original DNA molecule.



Viewing the Central Dogma from the perspective of Information Theory enables researchers to apply 
computer-based numerical techniques to models and evaluate the underlying processes. Evaluating 
the Central Dogma in terms of information flow also brings metrics into play—such as the 
effectiveness of the underlying data archiving capacity, the effectiveness of the information flow 
process, error rate, the degree of data compression, and the degree of uncertainty in the data 
translation process.

Each of these concepts is related to computer science information theory technologies and 
approaches. For example, DNA functions as a data archive and, as such, can be evaluated as any 
other information archive. There are issues of information capacity, how data are represented within 
the DNA molecule, whether there is provision for automatic error correction, the longevity of the 
information, the various sources of error at different points in the system, and how the information 
embedded in DNA is shared with other systems.

Even though there are apparently only about 40,000 coding genes in the human genome, a typical 
human DNA strand would extend several feet if uncoiled. The physical compression of the nucleotide 
sequences into tightly coiled chromosomes has parallels in the digital processing world where there is 
a constant tradeoff between storage capacity and access speed.

As a final example, consider that there is a degree of uncertainty inherent in the communication of 
information from DNA to protein. For example, the process of information flow can be analyzed to 
model the sources and types of errors (such as mutations) in the flow of information from nucleotide 
sequences in DNA to protein in the cytoplasm. In addition to modeling and simulation, resolving or at 
least quantifying this uncertainty entails the use of data mining, pattern matching, and various other 
forms of statistical analysis.

From Data to Knowledge

In viewing the Central Dogma as an information flow process, it's useful to distinguish between data, 
knowledge, and metadata. For our purposes, the following definitions and concepts apply:

●     Data are numbers or other identifiers derived from observation, experiment, or calculation.
●     Information is data in context—a collection of data and associated explanations, 

interpretations, and other material concerning a particular object, event, or process.
●     Metadata is data about the context in which information is used, such as descriptive 

summaries and high-level categorization of data and information.

In addition to data, information, and metadata, the concepts of knowledge and understanding are 
worth noting because these terms often surface in the computer science literature. There's a trend, 
for example, to re-label databases as knowledgebases—a term borrowed from the AI research 
community. Knowledge is a combination of metadata and an awareness of the context in which the 
metadata can be successfully applied. In the same context, understanding is the personal, human 
capacity to render experience intelligible by relating specific knowledge to broad concepts.

Both knowledge and understanding are normally considered uniquely human. For example, a so-
called knowledgebase of protein folding rules may contain contextual information of folding as a 
function of the extracellular environment, but the program using the knowledgebase doesn't have an 
awareness of when this context applies. Furthermore, one of the major failings of expert 
systems—pattern matching programs that use heuristics or IF-THEN rules stored in a database in 
order to make decisions—is the inability to fail gracefully when they are used outside of the narrow 
domain for which they are designed.

Similarly, although understanding is often touted as the inevitable holy grail of AI research, even with 
the current rate of innovation in computer science, it will be well into the middle of the 21st Century 
before machines demonstrate understanding. To illustrate how the concepts of data, information, and 
metadata compare with those of the Central Dogma in evaluating the human condition, consider that 
to a practicing clinician, a reasonable perspective on a disease such as hereditary disease like 



neurofibromatosis would be:

●     Data (from direct observation)

Patient Age: 5. Physical Exam Findings: Freckling in the armpits and masses on and just 
below the surface of the skin.

●     Information (from a molecular disease database)

Neurofibromatosis is a genetic disorder causing tumors to form on nerve tissue anywhere in 
the body. The pattern of inheritance is autosomal dominant.

●     Metadata (from an online publications database)

The incidence of neurofibromatosis is about one out of every 2,500 people worldwide. It is 
associated with difficulty seeing, hearing, and in some cases (NF2), with paralysis and early 
death. In contrast, type 1 (NF1) is more of a cosmetic disorder.

For the clinician, the importance of the databases—whether they contain data, information, or 
metadata—is to aid in correctly diagnosing the patient and to correctly counsel the parents about the 
possibility of the disease occurring in children born later. Because neurofibromatosis is an autosomal 
dominant disease, the clinician would expect each additional offspring to have a 50-50 chance of 
having the abnormality and could counsel the parents accordingly. This example illustrates how, in 
general, progressing from data to metadata involves moving from more to less granularity, from 
direct to indirect observation, and from the verifiable to the theoretical.

For a geneticist studying neurofibromatosis, the relevant data, information, and metadata would 
likely include:

●     Data (from NCBI's Map View)

Position of NF2 gene on chromosome 22, in area 22q12 (see Figure 1-10).

Figure 1-10. Visualization of NF2 Gene on Chromosome 22. As it 
would appear through National Center for Biological Information's 
Web-based Map View program, the NF2 gene appears at position 

22q12 on chromosome 22.



●     Information (from an online molecular disease database)

The NF2 gene has been mapped to chromosome 22 and is thought to be a so-called "tumor-
suppressor gene."

●     Metadata (from an online publication database)

The pattern of inheritance is autosomal dominant, caused by a spontaneous mutation in the 
egg or sperm before fertilization.

To the typical practicing clinician, the position of the gene on chromosome 22 and even the fact that 
it's a tumor suppressor gene is of no practical interest. In treating the patient and, more importantly, 
offering genetic counseling to the parents, the inheritance pattern and how the mutation occurs are 
much more relevant than whether the responsible gene is on chromosome 2 or 22. However, for the 
researcher, the position on the gene and proximity to other genes is of paramount importance in the 
core data to be gleaned from online databases. How the condition appears on the patient—brown 
spots on the skin, for example—is of peripheral interest at best.

This difference in perspective affects what constitutes data, information, and metadata, and 
illustrates the multiple uses of the genomic databases and the difficulty the database designers have 
in assuming typical users. From the molecular biologist's perspective, the hierarchy of data, 
information, and metadata is based on first principles. These differences are relative and a matter of 
degree, in that what is considered data by one researcher might be considered information or 
metadata by another. For example, to typical clinical researchers, molecular disease databases may 
represent the finest-grained level of data in which they have an interest. In this case, even the 



details of protein structure are too far removed from their research interests to constitute relevant 
data. The typical molecular biologist dealing with DNA sequences regards protein structure as 
information that provides context to the data—nucleotide sequences.



 
Convergence

From the previous discussions, it should be no surprise that the co-evolution of computer science and 
molecular biology has led to the current state where bioinformatics and computer science are 
inextricably linked. In this regard, the primary roles of computers in bioinformatics are to serve as 
controllers, information archives, asynchronous communications devices, and numerical processors. 
To highlight the part technology plays in molecular biology research—these roles—consider the 
prototypical DNA sequencing process, depicted in Figure 1-11.

Figure 1-11. Automated Gene Sequencing.



In automated gene sequencing, purified genomic or complementary DNA is first fragmented by 
restriction enzymes, and these fragments are separated by size on a gel. This is followed by isolating 
single fragments and using the Sanger chain-termination method to sequence each fragment 
individually with chain-terminating ddNTS (dideoxy nucleoside triphosphates) labeled with 
fluorochromes according to the base present. For example, a green fluorochome is typically used for 
Adenine (A), red for Tyrosine (T), blue for Cytosine (C), and yellow for Guanine (G).

The fragments arising from the Sanger method are then separated by size through polyacrylamide 
gel electrophoresis. A scanning argon laser is used to excite the fluorochromes attached to the 
ddNTP, terminating the different fragments and thus identifying a sequence for the fragment. The 
sequence data are then stored in a database for later analysis.

Before examining the gene sequencing process in terms of computer-mediated and enabled control, 
information archiving, asynchronous communications, and numerical processing, consider that the 
data can be characterized as:

●     Valuable— Because the sequencing data are valuable, they are worth archiving for future 
use and for sharing with others, whether internal to the R&D laboratory or through worldwide 
publication. In this example, the equipment for sequencing is typically in the $300K range, 
with additional funds required for trained personnel and supplies. As such, the replacement 
cost for data inadvertently lost can be significant.

●     Plentiful— A single gene sequencing run can produce thousands of data points, and 
sequencing a gene can result in millions of data points.

●     Incomplete— Even though data are plentiful, they are often considered incomplete because 
even though the nucleotide sequence of a genome may be nearly complete, there are 
typically major gaps in data on the proteins that code from the DNA or RNA sequences.

●     Of questionable quality— Even though the sequencing process may be under computer 
control, there are limits of data accuracy, repeatability, precision, and reliability. There is a 
variety of potential error sources that can affect the quality of data, from failure of the 
detector to register florescent dyes correctly to inconsistencies in pattern matching.

Now, consider the four basic application areas of computers in bioinformatics, summarized in Table 1-
1 and described in more detail there.

Control

As noted in Table 1-1, control encompasses technologies including equipment control, robotics, and 
automatic data collection. For example, the typical gene sequencing machine, like most automated 
laboratory equipment, is under the control of an embedded computer. Everything from timing the 
overall process to recording the fluorescing colors as the dyes on the DNA fragments are excited by 
the laser is controlled by a computer that is an integral part of the underlying electronics. Not only 
would it be practically impossible to manually track the tens of thousands of base sequences as they 
are read by the optical scanner, but the computer-enabled pattern-matching function makes the 
system tenable. Although a desktop computer can be used in control applications, most often 
computer controllers are integrated or embedded into the device, and support a standard interface 
for communications with an external PC.

Table 1-1. Application Areas of Computers in Bioinformatics. There is 
considerable overlap in the technologies associated with each application 

area.



Application Area Associated Technologies

Process Control Equipment control

Robotics

Automatic data collection

Archiving Databases

IT infrastructure

Vocabulary

Numerical Processing Pattern matching

Simulation

Data mining

Search engines

Statistical analysis

Visualization

Communications Desktop publishing

Web publishing

Internet

Control is unique in the computer science arena in that it involves directly interfacing the physical 
world with the digital one through stepper motors (electric motors that rotate a fixed number of 
degrees in fixed steps), robotic arm assemblies, event counters, and other input and output devices 
other than the traditional keyboard, mouse, and monitor. However, except for this feature, the 
underlying computing issues, from complexity and logic to language, are relevant to computing and 
numerical processing, archiving, and communications. These computing concepts are introduced 
here.

For example, in addition to the Turing model, digital computing is inexorably tied to Boolean logic, 
advanced in the 1840s by the self-taught professor of mathematics, George Boole. That is, in 
addition to the arithmetic operations such as addition, subtraction, and multiplication, the digital 
computers deal with operations such as AND and OR, illustrated by the truth tables in Figure 1-12. As 
shown in the truth table for the AND operator, the output is high (1) only when both inputs (A AND 
B) are high. Conversely, as shown on the truth table for the OR operator, the output is high when 
either inputs (A OR B) are high.

Figure 1-12. Boolean Operators. The AND and OR logic operators form the 
basis of digital computer operations. Compare the truth tables for each 

operator with the translation wheel in Figure 1-7.



Although digital computers have evolved considerably since Turing's day, the basic elements are the 
same. Memory, in the form of RAM, ROM, or hard-disk storage, together with the digital 
microprocessor, forms the basic building blocks for a digital computer, as illustrated in Figure 1-13. 
As the brains of a microcomputer, the microprocessor directs the flow of data within the computer 
and performs mathematical operations on the data. Within the microprocessor, the Arithmetic Logic 
Unit (ALU) performs mathematics and Boolean logic operations according to the truth tables in Figure 
1-12. Registers provide temporary storage, a clock provides for the timing of events, and a common 
bus supports communications among the components. The most important component, from a 
process control perspective, is the input/output unit that communicates data to and from external 
devices, such as the instructions to the stepper motors that control the positioning of samples in a 
gene sequencing machine and accept the output of optical scanners.

Figure 1-13. Digital Computer Physical Architecture (left) versus 
Abstraction (right). Process control applications emphasize input/output 
hardware (left), which corresponds to the peripherals abstraction (right).



One of the distinguishing characteristics of the digital computer is the development of several layers 
of abstraction above the hardware through the use of a software program referred to as the 
operating system. The significance of the operating system for end users of computer systems is a 
relatively recent phenomenon. Prior to the introduction of the PC, programmers and users never 
interacted with the operating system. It was the computer operator's job to work with the utilities 
that read data from punched cards, tape, and large disk packs. For everyone else, the user interface 
consisted of a keypunch machine that could create a single line of code or data. Rearranging lines of 
code consisted of rearranging stacks of punched cards. Still, users could write in FORTRAN or other 
high-level languages, without having to worry about the individual registers in the microprocessor.

Operating systems allow users to upgrade their underlying hardware, often without having to learn 
new applications. They allow users with different hardware—even with different underlying operating 
systems—to share data. The transition hasn't been smooth, however, and there are still 
incompatibility issues because of the constant evolution of Macintosh, Windows, UNIX, Linux, and 
other operating systems. The operating system has undergone tremendous market and technologic 
evolution since its introduction, with thousands of operating system–specific applications and utilities 
forced into evolutionary dead ends in the process. Today, UNIX, Microsoft Windows, and Linux rule 
the desktop PCs, and even these systems are in flux as the developers jostle for market share.

Although process control programmers may have to deal with the base hardware and basic 
input/output system (BIOS), written in Assembly language, most programmers use a higher-level 
language. In this way, programmers don't have to concern themselves with the intricacies of the 
underlying microprocessor or other hardware, but work at a level of abstraction with a "virtual 
machine," as shown in Figure 1-13.

Although a process control program can be written in Assembly language, abstraction allows the 
programmer to focus on the real-world problems, such as controlling the progression of a laser beam 
across a sample of dyed base sequences. The level of abstraction is often a function of the language 
used to communicate to the hardware. There are dozens of computer languages, many developed for 
niches in the digital computer world. For example, LISP (LISt Processing) and Perl have been used 
extensively in pattern-matching research, and SIMULA is popular in the simulation and modeling 
world. BASIC, PASCAL, and Smalltalk have enjoyed popularity in academic settings, because they are 
easy to use or demonstrate important programming concepts. MUMPS continues to be used for 
medical databases, and PHP, XML, Python, and JAVA are increasingly popular for Web development. 
FORTH, one of the first process control languages, developed initially to control observatory 
telescopes, continues to be used in equipment controllers. Outside of relatively small niche areas, 
many of these languages turned out to be evolutionary dead ends, in favor of industry standard 
BASIC and C++.



As the number of transistors in a microcomputer and the number of lines of code in operating 
systems climb into the millions, there is the challenge of dealing with increasing complexity. 
Complexity theory explains how extremely small errors in initial conditions within complex 
systems—a single mistake in a million-line piece of code, for example—can grow to influence 
behavior on a much larger scale. It's no surprise that PCs occasionally fail or crash because of 
"memory leaks" and other non-specific reflections of a system characterized by complexity. 
Sometimes, the results are more insidious, such as the math errors caused by a defect in Intel's 
original Pentium chip.

Fortunately, technologies have been developed in an attempt to resolve potential problems before 
they surface. For example, decision tables—matrices of possible input and output states—can help 
identify combinations of input conditions that should be tried when testing a microprocessor. When 
the number of possible input conditions rises to the hundreds, decision tables and other state-
validation tools make an otherwise impossible task doable.

Archiving

As illustrated by the gene sequencing machine, the end result of processing the DNA fragments is 
volumes of data that must be stored for a variety of uses. For example, the sequence data can be 
compared with other investigators' data to look for inconsistencies or validation. The data can be 
processed locally in order to visualize the most likely protein structures that would result from 
translation of the nucleotide sequences. In addition, the data can be submitted to one of the national 
databases to support the work of other microbiologists or to give the researcher academic credit for 
the electronic publication. As such, a reason for creating biological databases is to support the 
analysis and communication of data, information, and metadata relevant to molecular biologists. In 
many respects, the functions of archiving, processing, and communications overlap significantly.

Just as the transfer of data from DNA to RNA to protein relies on an information infrastructure, data 
archives rely on an information technology (IT) infrastructure. This IT infrastructure includes network 
and database technologies as well as standard vocabularies to store and access information. Even 
though sequencing and other molecular biology data is vast and growing daily, there are huge gaps 
in our understanding of the relationships of databases to each other and with higher-level disease 
databases. One of the motivations for constructing archives and linking them together is so that this 
gap can be closed as quickly as possible.

For the molecular biologist involved in developing or using databases, it's important to consider the 
processes involved in managing data before focusing on the technology. That is, the process of data 
collection, use, and dissemination should drive technology. After all, Mendel's notebooks didn't 
dictate his experiments with garden-variety peas, but they empowered him by leveraging his 
capacity to recall previous experiments, to plan for future experiments, and publish his findings.

Numerical Processing

Computers are recognized foremost for their computational or numerical-processing capabilities. In 
bioinformatics, applications for numerical-processing techniques range from sequence analysis, 
microarray data analysis, and site prediction to gene finding, protein structure prediction, and 
phylogenetic analysis. These applications in turn rely on methods ranging from pattern matching, 
simulation, and data mining to machine learning, statistics, cluster analysis, and decision trees. For 
example, consider the pattern-matching challenge associated with multiple string alignment—aligning 
multiple polypeptide sequences—as a means of discovering potential homologous relationships 
between proteins. Because millions of calculations may be involved in examining three or four 
relatively short sequences, the much more formidable task of matching multiple sequences of several 
hundred polypeptides in length is usually computationally prohibitive on even the fastest desktop 
hardware.

In numerical-processing applications such as pattern matching, speed of computation is valued over 
all else. As every computer hardware manufacturer knows, speed sells. A PC or workstation that was 



leading-edge two years ago now seems slow, given that the next processor will provide leaps in 
processing power according to the prediction of Intel Computer's CEO, Gordon Moore. Moore's Law, 
which states that microprocessor capacity doubles every 18 months, has held up thus far, and will 
likely do so for the next decade. Processing speed is critical for analysis of biological data, especially 
when there are vast amounts of processing-associated visualization, sequence alignment, and 
sequence prediction. For example, Craig Venter of Celera Genomics backed up his statement of 
"Speed matters, discovery can't wait" with an $80 million supercomputer. Similarly, for the 
researcher using Web-based tools to search for sequences, the processing time required for each 
search effectively limits the number of searches that can be performed in a working day.

In addition to string matching and manipulation operations using string-manipulation capabilities 
inherent in languages such as Perl, JAVA, or PHP, the most significant pattern-matching tools are 
rules-based expert systems, artificial neural networks, and genetic algorithms. Rules-based systems, 
all of which have been developed on the digital computer, rely on IF-THEN clauses. For example:

IF First Codon = "T" AND Second Codon = "A" 

  AND (Third Codon = "A" OR Third Codon ="G")

THEN Codon = "Stop"

Rules-based systems are often developed in a language such as LISP and then recoded in JAVA, 
C++, XML, or another efficient language.

Another class of pattern-matching programs is machine learning, typified by the artificial neural 
network (or neural net). Unlike expert systems, neural nets don't rely on conventional algorithmic 
programming techniques, but work by altering the strength of connections between input and output 
nodes. The advantage of artificial neural networks over conventional, algorithm-based systems is that 
they can learn from examples, and generalize this learning to new situations. For example, the input 
nodes can be associated with amino acid sequences and the output nodes can be associated with 
specific protein folding patterns. When a novel amino acid sequence is presented to the neural net, it 
can make a guess as to the folding pattern of the protein. A rule-based system, like a conventional 
algorithm-based system, would simply fail with a novel sequence. In addition to protein structure 
prediction, neural networks are used as "gene finders," typified by the applications GRAIL, 
GeneParser, and Genie.

Artificial neural networks are commonly created in layers, with one or more hidden layers sandwiched 
between the input and output layers. It is the hidden layer that does most of the work involved in 
classifying or recognizing the pattern presented to the input layer. Learning is represented by the 
relative strengths of the connections between the individual nodes, which are defined during training 
of the network. That is, the internal simulation is inherently analog in nature, even though the input 
and output states are mapped to binary values. During training, important pathways are 
strengthened, and unimportant ones diminish with experience (repeated training).

In the elementary artificial neural network schematic shown in Figure 1-14, the network consists of 
three input and two output nodes, with each input node connected to both output nodes. The 
possible truth table shown in the figure is the result of the specific training of the network. Other 
truth tables would result from other training.

Figure 1-14. Artificial Neural Network. This machine-learning technology 
relies on tightly interconnected input, hidden, and output layers to map 

input patterns to output patterns. One of many possible truth tables (right) 
illustrates the mapping of input to output patterns. Learning is signified by 
the thickness of lines joining nodes, and node values are indicated by color 
(white = 0 and black = 1). Hidden nodes can take on values between 0 and 

1.



Artificial neural networks and other forms of machine learning are only one form of pattern matching 
that have application in bioinformatics. Other approaches to pattern matching include techniques 
such as genetic algorithms, which work by identifying the best fit for a function that is used to select 
future generations. Hybrid systems of artificial neural networks supplemented by genetic algorithms 
rule-based expert systems, and conventional, algorithmic programming hold particular promise in 
bioinformatics.

In addition to simulating neural networks, the numerical processing capabilities of a computer are 
commonly used to simulate the interactions of various proteins and drugs at their active sites. Data-
mining applications include searching patterns of known gene structures for newly discovered 
patterns. Search engines are similarly instrumental to uncovering patterns or key works in local or 
online databases. Pairwise sequence comparison, based on either BLAST or Smith-Waterman 
dynamic programming techniques, form the basis for most sequence alignment operations. Using 
online tools based on BLAST, it's possible for anyone with a connection to the Internet to evaluate all 
possible ways of aligning one sequence against another in a reasonable time, even though the 
number of such possible alignments grows exponentially with the length of the two sequences.

Statistical analysis is an important component of searching and pattern matching, especially in 
dealing with uncertainty. For example, in the multiple sequence alignment problem in Figure 1-15, 
statistical methods can be used to determine the best alignment of the four polypeptide strings 
consistent with an alignment score that rewards perfect matches, and penalizes for imperfect 
matches and the number and length of the gaps introduced in the final sequence. Non-statistical 
methods of multiple sequence alignment can be used as well.

Figure 1-15. Multiple Sequence Alignment Problem. The unaligned 
polypeptide sequences are shown at the top of the figure, and the resultant 
sequence with gaps is shown at the bottom. Statistical and non-statistical 

methods can be used to identify the optimum position of gaps and the 
relative location of the high-scoring polypeptide sequences, as a starting 

point for evolutionary modeling, for example.



The most numerically intensive application of computers to bioinformatics is in predicting protein 
structure, especially when the modeling process begins with first principles—so-called ab initio 
modeling. Once a protein has been modeled, any number of online or desktop applications can be 
used to visualize the structures in three dimensions. Although affordable workstations can handle 
most visualization needs, modeling protein structure and interactions often requires distributed 
computer systems or supercomputers.

It's important to note that many of the numerical techniques used in bioinformatics provide an 
answer, but not necessarily the answer to data analysis, classification, and prediction problems. For 
example, a neural network can be trained to predict the location of exons on a segment of DNA, but 
the answer is never a certainty until it is verified experimentally. Similarly, numerical methods can be 
used to predict the structure of proteins, but the accuracy of the prediction varies significantly, 
depending on the methods used and the problem set. The challenge is identifying the methodology 
that provides adequate results with the time and computer resources available.

Communications

As a communications system, the computer is like an asynchronous communications medium, 
typified by server-based e-mail. Data are deposited in the system and retrieved later. As in an e-mail 
system, the information can be retrieved by the person who originally created it, or more often by 
another party. Similarly, biological database systems can be private or public, where the former is 
intended to provide asynchronous communications to the same user, and the latter approximates 
sending mail to others.

From a data-management perspective, computers are increasingly used as asynchronous 
communications devices. That is, unlike a telephone or other synchronous communications device, 
communications through computer networks don't necessarily occur in real-time and are independent 
of any clock. Instead, communications are event driven. For example, in the normal operation of a 



database server, data are sent to a computer where they may be stored for a few microseconds or 
for a decade before they are output to a printer or monitor. When computers are configured as a 
communication device, the users who generate the data tend to be different from the users who 
receive the results, and the response time may be hours or days.

The difference between e-mail and a typical biological database is that contribution to biological 
databases such as GenBank are meant for others, but the identity of the recipients is unknown and 
largely unknowable by the sender. Unlike an e-mail that is automatically deleted by the server after 
the e-mail is read, the data in a biological database is considered permanent or at least not altered 
by the process of accessing the data.

The communications of sequencing and protein structure information is hindered because of the lack 
of a standard format for creating and storing gene data, even within companies. Several contenders 
for the standard include Gene Expression Markup Language (GEML), based on the eXtensible Markup 
Language (XML), and Microarray Markup Language (MAML). The latter is based on collaboration 
between the National Center for Biotechnology Information, Stanford University, and the European 
Bioinformatics Institute.



 
Endnote

The history of innovation and development in computing and molecular biology is much more 
complicated than that suggested by the timeline in Figure 1-2 or by the Central Dogma. The flow of 
information through replication, transcription, and translation is more involved than described here, 
and there are unknowns and exceptions to most of the theories put forth by investigators. For 
example, the Central Dogma is only partially correct, in that the flow of information isn't 
unidirectional as Watson initially proposed. In contrast to the Central Dogma, information can flow 
from external sources into the genome. For example, retroviruses or RNA-based viruses such as HIV 
copy their genetic information into the host cell's DNA, where the cell's machinery obediently 
duplicates the retrovirus.

In addition, there are many more unknowns than the role of introns and other apparently non-coding 
DNA in the chromosomes. Many of the proteins in the human proteome haven't been cataloged, and 
the roles of those that have been cataloged are poorly understood. Similarly, the processes of 
replication, transcription, and translation are exceedingly complex, involving hundreds of thousands 
of operations mediated by hundreds of factors, only a few of which are understood. Furthermore, the 
information-transfer process described by the Central Dogma differs somewhat from that used by 
mitochondria and some microorganisms.

What's more, it's possible that the source of much of the work in bioinformatics—the human 
genome—is inherently biased. Because much of the sequence data is derive from analysis of Craig 
Venter's DNA, with minimal contributions from five other donors, the data necessarily reflect Venter's 
genotype. Although it was recognized early on that his DNA carries a variant gene associated with 
abnormal fat metabolism and Alzheimer's disease, other variants carried by Venter that have not yet 
been studied may be considered normal for the human genome until more research is performed. 
Undoubtedly, over the next decade, when scientists finally finish and verify the genome sequence, 
other discoveries will be made as well. For example, it's unclear what the sequences in the 
centromeres will reveal, especially because the sequences in those regions of each chromosome have 
been resistant to sequencing techniques used on the other parts of the chromosomes.

Similarly, developments in computer science have not been as straightforward as suggested by the 
timeline. For example, the promise of AI, the darling of the computer science community throughout 
the 1980s, never materialized. After the massive military funding for language translation 
evaporated, the few companies that attempted to survive in the commercial world folded. Even the 
notable academic systems, such as MYCIN—the first rule-based expert system in medicine—were 
never put to practical use. What survives today are the various pattern-recognition methods and 
object-oriented programming techniques that are invaluable in genome and proteome research.

The timeline offered here also glosses over much of the human struggle involved in the discoveries 
and triumphs in both molecular biology and computing. For example, James Watson was initially in 
charge of the Human Genome Project, but resigned after only a few years because of a feud with the 
director of the National Institutes of Health over gene patenting. His successor, Francis Collins was 
then embroiled in competition with Craig Venter's private research institute over methodology. 
Although Venter prevailed and won the race to decode the majority of what is currently understood to 
be the human genome, the commercial viability of his company is less certain. Similarly, there is 
turmoil—and millions of dollars at stake—over determining who should be credited with the basic 
sequencing technique.

Just as the hype of what AI was supposed to deliver served to kill the industry for many years, many 
of the favored genomics research firms have performed less profitably than expected on Wall Street. 
Some genetically engineered drugs have not taken off as expected, and companies such as Genetech 
have been forced to turn to modifications of conventional pharmaceuticals to stay in business.

When exploring the computational methods described in this book, the reader is encouraged to apply 
basic business metrics to the information. For example, what is the added value of each step in the 



computerization process? How can the computing method described save time, provide a more 
accurate result, or save valuable resources? In the end, computers and computational methods are 
simply tools. Like a sculptor, chipping away at the rock covering a statue, it's up to the readers to 
select the tools that can best help create their vision.



 

Chapter 2. Databases
 Prefoldin Chaperone, PDB entry 1FXK. Image produced with PDB Structure Explorer, 

which is based on MolScript and Raster3D.

What a piece of work is man! How noble in reason! How infinite in faculty! In form, 
and moving, how express and admirable! In action how like an angel! In 
apprehension how like a god! The beauty of the world! The paragon of animals! And 
yet, to me, what is this quintessence of dust?

—William Shakespeare, Hamlet

Computers serve four interdependent functions in bioinformatics: communications, computation, 
control, and storage. Embedded computer controllers in sequencing machines, fermentation tanks, 
and bioreactors direct the programmable robotic arms that automate intricate processes and 
markedly decrease the need for human operators. When time is of the essence, computer-controlled 
devices are superior to manual operations, in part because they can operate virtually unattended 
around the clock. Venter's company, Celera Genomics—followed by government-funded sequencing 
laboratories—was able to make unprecedented gains in sequencing throughput primarily through 
computer-directed robots that automated the tedious sequencing process.



As a communications device, not only has the computer helped researchers craft more journal 
articles in less time than at any other point in history, but an increasingly large proportion of 
academic research information appears online. Up until the mid-1990s, newly discovered nucleotide 
sequences from human and other species of DNA were published in printed journals, requiring that 
researchers interested in using computer techniques to explore the sequence either key in the 
sequences by hand or use optical character recognition (OCR) systems to automatically capture the 
printed sequences and translate them into in machine-readable form. Today, no researcher would 
think of consulting a printed journal for a nucleotide sequence, but would immediately turn to either 
one of the numerous public databases on the Web or one of the value-added commercial databases. 
Furthermore, if a printed journal article isn't referenced by one of the electronic databases, such as 
PubMed, then the chances of the article ever being read in any form are low.

As computational devices in bioinformatics, computers are used for tasks that range from searching 
for nucleotide sequences and visualizing protein folding patterns to simulating complex 3D protein-
protein interactions, for applications ranging from drug discovery to biomaterials research and 
development. As an example of computer processing power focused on numeric computation in 
bioinformatics, consider that Celera Genomics' network of 800 Compaq AlphaServers has the capacity 
to compare up to 250 billion genomic sequences per hour generated by its hundreds of robotic gene 
sequencing machines. Even lesser-endowed companies and academic centers are creating high-
performance Beowulf clusters for bioinformatics work. These massively parallel systems that are 
constructed from dedicated PC hardware are generally affordable and available to anyone.

Researchers at another pharmacological powerhouse, GlaxoSmithKline (GSK), are studying how 
individual variations in the genetic code cause adverse drug reactions in some patients. To pursue 
this research, GSK partners with biotech research firms who store clinical data from drug trials and 
correlate it with the patient's genetic information to create a genetic profile of patients at risk. 
Similarly, clinicians with the Mayo Clinic in Minnesota are working with researchers to identify gene 
markers that indicate which patients should respond to specific anticancer therapy. Elsewhere, 
pharmaceutical research firms are using genetic traits to predict whether a patient will respond to 
therapy as well as the likelihood of serious side effects. Several biotech startups are developing 
panels of DNA tests that will allow clinicians to quickly determine how patients metabolize drugs so 
that dosage regimens can be tailored to their individual metabolism.

All of these activities revolve around database technology. For example, both communications and 
computation operations in bioinformatics depend on data that have to be maintained. Electronic 
databases maintain data in a persistent, non-volatile form that allows operations to be repeated and 
compared with other operations, with the results communicated to other researchers and developers. 
The electronic database—a file composed of records, each containing fields together with a set of 
operations for searching, sorting, recombining, and other functions—is the silicon, plastic, and iron-
oxide equivalent of the experimenter's private notebook, and the basis for electronic publishing to the 
scientific community.

As an illustration of how central databases are to the molecular biology research and development, 
consider a sampling of the public bioinformatics databases listed in Table 2-1. Perhaps the best-
known of the hundreds of DNA sequence databases accessible through the Internet are the 
international nucleotide sequence database collaborators GENBANK, supported by the National Center 
for Biological Information (NCBI), the DNA DataBank of Japan (DDBJ), and the European Molecular 
Biology Laboratory (EMBL). Another major database, PubMed, which is maintained by the U.S. 
National Library of Medicine, is a key resource for biomedical literature.

Table 2-1. Public Bioinformatics Databases Accessible via the Internet.

Database Type Example Note



Nucleotide Sequence GenBank

DDBJ

EMBL

MGDB

GSX

NDB

One of the largest public sequence 
databases

DNA DataBank of Japan

European Molecular Biology 
Laboratory

Mouse Genome Database

Mouse Gene Expression Database

Nucleic Acid Database

Protein Sequence SWISS-PROT

TrEMBL

TrEMBLnew

PIR

Swiss Institute for Bioinformatics and 
European Bioinformatics Institute

Annotated supplement to SWISS-
PROT

Weekly, pre-processed update to 
TrEMBL

Protein Information Resource

3D Structures PDB

MMDB

Cambridge Structural 
Database

Protein DataBank

Molecular Modeling Database

For small molecules

Enzymes and Compounds LIGAND Chemical compounds and reactions

Sequence Motifs (Alignment) PROSITE

BLOCKS

PRINTS

Pfam

ProDOM

Sequence motifs

Derived from PROSITE

A superset of BLOCKS

Protein families database of 
alignments and hidden Markov 
models

Protein Domains

Pathways and Complexes Pathway Metabolic and regulatory pathway 
maps

Molecular Disease OMIM Online Mendelian Inheritance in Man

Biomedical Literature PubMed

Medline

Contains Medline

Medical Literature

Vectors UniVec Used to identify vector contamination



Protein Mutations PMD Protein Mutant Database

Gene Expressions GEO Gene Expression Omnibus

Amino Acid Indices Aaindex Amino Acid Index Database

Protein/Peptide Literature LITDB Literature database for proteins and 
peptides

Gene Catalog GENES KEGG Genes Database

The nucleotide sequence databases and PubMed represent the extremes of the spectrum from 
sequences of base pairs to their relevance in disease and the practice of medicine. Other online 
databases, such as the protein sequence database SWISS-PROT, and the Online Mendelian 
Inheritance in Man (OMIM) database—a molecular disease database that links human genes and 
genetic disease—provide data that is somewhere between the two ends of the spectrum. For 
example, SWISS-PROT contains sequence motifs (where a motif is a small structural element that is 
recognizable in several proteins, such as the alpha helix) that are often associated with particular 
functions, linking structure and function. Popular representatives of so-called alignment databases 
are PROSITE and BLOCKS, for sequence motif and motif alignment data, respectively.

Public structural databases are represented by the Cambridge Structural Database for small 
molecules and the Protein Data Bank (PDB) for macromolecules. The PDB, which is maintained by the 
Research Collaboratory for Structural Bioinformatics (RCSB), includes publicly available 3D structures 
of proteins, nucleic acids, and carbohydrates, as determined by X-ray crystallography and NMR 
spectroscopy. The PDB serves as the source data for other databases, such as the Molecular Modeling 
Database (MMDB), which is used to construct 3D images of the molecules involved.

In addition to the public databases, there are a rapidly increasing number of private databases 
created and maintained by for-profit companies and laboratories associated with academic 
institutions. For example, the LifeSeq database from Incyte Genomics, Inc. contains gene sequences 
from humans, rats, and mice. Regardless of whether databases are public or private, most have 
particular functions and uses in bioinformatics, and entire books could easily be devoted to their 
construction, maintenance, and use. However, because of volatility in the commercial database space 
and evolving associations among academic laboratories, the specifics of particular databases will 
change markedly over time. As such, it's more important for the reader to understand the general 
concepts and issues that apply to all biological databases, whether they're custom, in-house systems 
or public databases administered by the federal government.

For example, one characteristic of biological databases that is virtually universal is the enormity of 
their contents. To the delight of the sagging post-eCommerce information technology industry, the 
data-handling requirements associated with even modest biological databases often necessitate 
considerable investment in hardware, software, and personnel. Consider that as of mid-2002, 
GenBank, the repository of nucleotide sequences for a variety of species that forms the basis for 
much bioinformatics research, contained data on over 17 billion base pairs stored in over 15 million 
sequence records. Similarly, Incyte Genomics' LifeSeq commercial database contained over a 
terabyte (1,000 gigabytes) of data, with a system capacity of 70 terabytes. Many companies in the 
bioinformatics space have database system capacities in excess of 200 terabytes (200,000 gigabytes, 
equivalent to about 310,000 CD-ROMs), in the form of multiple, refrigerator-sized racks of hard 
drives. Creating archives is an inherent challenge in any database system. So is integrating 
information in different formats from multiple databases. The difficulty of these tasks is accentuated 
by the sheer enormity of the volume of data involved.

Given the central role databases and database technology plays in bioinformatics, at a minimum, 
researchers, managers, and scientists in the field should not only become fluent in the language of 
database technology, but should also understand how biomedical databases form the basis of all 
bioinformatics research and development efforts. In addition, readers should appreciate that 
database technology is most valuable in the biotech industry when it enables the integration of 
research, development, clinical activity, manufacturing, and selling and marketing. Data take on 
added value when they leave the confines of a workstation and become incorporated into shared 



public and private databases, applications, and products.

To this end, this chapter gives an overview of database technology and its uses in bioinformatics, 
with a focus on shared or multi-user database systems. Topics range from the database management 
process, database models, interfacing databases to the Internet for collaboration, archiving, to the 
practical challenges associated with establishing a local database. The likely future of bioinformatics 
database technology is also discussed. The first section, "Definitions," provides a review of key 
definitions that readers should be familiar with to understand the following discussions. The "Data 
Management" section provides a functional overview of the typical data-management challenges 
faced by researchers in the biotechnology field. These researchers typically work with locally 
generated data, the public genomic databases, and data from collaborators in associated areas, such 
as clinical medicine. The "Data Life Cycle" section continues the functional overview by exploring the 
normal life cycle of data, from creation to disposal, and how this cycle can be managed. "Database 
Technology" reviews the more technical issues associated with biomedical databases, from the 
architecture of databases and database management systems to database models and data capture. 
The "Implementation" section illustrates how an understanding of these technical issues translates to 
practical database installations. Finally, "Endnote" looks to the near horizon and suggests impending 
developments in biomedical databases and the challenges of moving forward to a fully integrated 
biomedical database system.



 
Definitions

Databases, which provide the long-term memory of computer operations, take on a variety of names, 
depending on their structure, contents, use, and amount of data they contain. Two technologies often 
confused with databases are disk servers and file servers. A disk server is a node in a local area 
network that acts as a remote disk drive. A disk server can be divided into multiple volumes, some of 
which are shared by all users on the server, and others of which can be accessed only by a specific 
user, as defined by username and password login. At the next level in sophistication is the file server, 
which can be thought of as a disk server with intelligence. A file server not only stores files, but 
manages the network requests for them and maintains order as users request and modify files.

The file server, like the disk server, supports movement and cataloging of files, but, unlike a true 
database, the contents of a file server are unavailable without the use of some other application. 
With both disk servers and file servers, separate applications must be used to open documents for 
reviewing and editing. In this regard, most disk and file servers work like extensions to the computer 
operating system. Files can be identified, copied, deleted, and otherwise managed at a very high 
level. For our purposes, file servers and disk servers can be considered as extensions to the internal 
workstation hard drive that may be configured as a shared volume so that collaborators on the same 
network can share data stored on the server.

At the simplest level of a true database is the data repository, a database used as an information 
storage facility, with minimal analysis or querying functionality. A data repository is a structured, 
systematically collected storehouse of data distilled or mirrored from a single application, such as a 
sequencing machine, microarray analyzer, or clinical system (see Figure 2-1).

Figure 2-1. Database Nomenclature. Data repositories, data marts, and data 
warehouses differ primarily in the diversity of data sources that contribute 

to their contents.



One advantage of using a data repository instead of the original database in the host application or 
device is that longitudinal studies are possible because all data in the host application are mirrored 
and stored in the repository. For example, because of storage limitations, or because the local 
database is always in use, it may be virtually impossible for a researcher to compare data from 
multiple runs of a sequencing machine. Another advantage of using a data repository instead of the 
original database is that it offloads the query functions that are available through native applications 
to the database management system that enables efficient control and management of the data 
repository.

Next up the hierarchy of complexity and capability is the data mart, a searchable database system, 



organized according to the user's likely needs. Like a data repository, a data mart has a narrow focus 
on data that is specific to a particular research project or task. That is, a data mart contains a subset 
of the data contained in other databases as opposed to an indiscriminate mass copying of all the data 
from another database. The major difference between a data mart and a data repository is that a 
data mart contains data extracted or mirrored—copied in real time—from multiple application 
databases.

One step up from the data mart is the data warehouse, a central database, frequently very large, 
that can provide authenticated researchers with access to all of an institution's information. That is, a 
data warehouse is usually populated with data from a variety of non-compatible sources, such as 
sequencing machines, clinical systems, or national genomic databases. Because a data warehouse 
combines data from a variety of application-oriented databases into a single system, data from 
disparate sources must be cleaned, encoded, and translated so that a standard set of analytical tools 
can be used with the data. Furthermore, the data in a data warehouse are nonvolatile in that new 
data are appended to the database and never replace existing data. In addition, the data warehouse 
is considered time-variant in that the data are time-stamped.

The data warehouse is also distinguished from application-specific databases in the way the data 
destined for incorporation in a data warehouse are selected, prepared, and loaded, and how the 
underlying database is optimized for use. Once data to be included in a data warehouse have been 
identified, the data are cleaned, merged, and the original database structures are manipulated to 
mirror those of the data warehouse. For example, data redundancy may be intentionally built-in to 
the data warehouse architecture, thereby minimizing the processing required for a typical query, 
which in turn maximizes the efficiency of the underlying database engine.

It's important to note that when the specialized vocabulary is peeled away, data repositories, data 
marts, and data warehouses are simply databases. The three architectures share the usual issues of 
database design, provision for maintenance, security, and periodic modification. Similarly, data 
repositories, data marts, and data warehouses are built with some form of a database management 
system, a program that allows researchers to store, process, and manage data in a systematic way.

One of the uses of a fully functional data warehouse or data mart is that it supports data mining—the 
process of extracting meaningful relationships from usually very large quantities of seemingly 
unrelated data. Specialized data-mining tools allow researchers to perform complex analyses and 
predictions on data. A prerequisite to data mining and the archiving process in general is the 
availability of a controlled vocabulary that provides a single term for a given concept. This controlled 
vocabulary is most often implemented as part of a data dictionary—a program that maps or 
translates identical concepts that are expressed in different words, phrases, or units into a single 
vocabulary. A popular controlled vocabulary is the Medical Subject Heading (MeSH), maintained by 
the U.S. National Library of Medicine, and used with the government-sponsored PubMed biomedical 
literature database.

Related to the concept of databases is the data archive—a non-volatile holder for data that are 
infrequently accessed—that is optimized for data recovery and data longevity. Strictly speaking, an 
archive needn't be a database. Archives are commonly made on multi-gigabyte tape cartridges that 
are stored offsite in environmentally controlled conditions to minimize the chances of data loss.

Armed with these core definitions, the reader can proceed with this chapter, which considers 
databases from a functional, data-management perspective before exploring the core technologies.



 
Data Management

A central tenet in applied information technology is that process should drive technology. If there is 
an obvious need that is only partially or inefficiently addressed, it's much easier to introduce a 
technology to address the need than it is to eradicate the need through technology alone. There are 
exceptions, of course, in that some individuals will adopt a new technology simply because it's new. 
Marketing professionals refer to these prospects as innovators and early adopters—technophiles who 
take joy in owning the first model of a new technology before it's available to the public or their 
peers. However, for most of the population—the early and late majority—technology is a means to an 
end.

For most researchers in bioinformatics, database technology is the means to handling the enormity of 
data and information that is created, manipulated, and communicated every day. Consider the 
various components in the biological data-management scenario in the pharmacogenomic laboratory 
depicted in Figure 2-2.

Figure 2-2. Data Management. In this data-management scenario for a 
pharmacogenomic laboratory, data of various types are acquired from a 

variety of sources, incorporated into the data warehouse, used by a variety 
of applications, and archived for future use. Data created locally may be 

published electronically, serve as the basis for a paper publication, and may 
be used in a variety of applications, from drug discovery to genetic 

engineering.

This data-management scenario is similar to that followed by several commercial biotech ventures, 
such as deCODE Genetics, the commercial venture in Iceland that is headed by a former Harvard 
Medical School professor who recognized the advantage of having access to a genetically 
homogeneous population for pharmacogenomic R&D. Because the majority of Iceland's population 



dates back only to the time of the original Viking settlers around 800 AD, and there are meticulous 
records of family history, every native's genetic heritage is available online through a government-
run database. In addition, the researchers at deCODE, through a hotly debated arrangement with the 
Icelandic government, purchased the exclusive rights to access every citizen's medical records, most 
of which are in electronic form.

Because of the similarity of the genetic code in the closed population, DNA samples from families that 
suffer from particular diseases can be compared to those of closely related families who are disease-
free. Through data mining, researchers at deCODE hope to identify the genes responsible for a 
variety of diseases, such as osteoarthritis. The competitive advantage of the company isn't the latest 
sequencing or microarray machines; it's their ability to integrate data from Iceland's family tree and 
medical record databases with deCODE's own patient DNA database and to manage that data in a 
way that supports the company's research objectives.

In this scenario, patient medical records are combined with genomic data in order to associate genes 
with particular diseases. Researchers in the laboratory also have access to the public and private 
online databases, such as those from the National Center for Biological Information and Celera 
Genomics, respectively. In addition to numerous application-specific databases in the clinical 
departments and local databases associated with the sequencing machines, researchers query local 
data repositories of aggregated data, data marts, and a data warehouse. Some of the information 
technology components in this scenario, such as the data sources, are obvious, whereas others, such 
as standards for data formats, would only be apparent to the researchers who work in the 
environment on a daily basis.

Pharmacogenomics and Aggression

To illustrate the data-management issues associated with a biotech research effort that depends on 
multiple, disparate systems and accompanying databases, assume that the laboratory depicted in 
Figure 2-2 focuses on understanding the genetic basis for aggression, with a goal of creating new, 
more effective medications to control the behavior. The challenge is formidable on a number of 
fronts. For example, there is no universally accepted definition for aggression. The standard source 
for the definitions of human behavior for clinicians and third-party payers in the U.S., the Diagnostic 
and Statistical Manual of Mental Disorders, Fourth Edition-Text Revision (DSM-IV-TR), doesn't contain 
a definition of aggression or violence. Furthermore, some clinicians use the terms "agitation" and 
"aggression" interchangeably. However, the DSM-IV-TR describes agitation as excessive, 
nonproductive, and repetitious motor activity—such as pacing, fidgeting, and an inability to sit 
still—secondary to feelings of inner tension. Other clinicians view agitation and aggression as 
representing the spectrum of behaviors from simple anxiety to overt physical aggression against 
others.

Despite the lack of a clear definition, a commonly used method of classifying the behavior of 
individuals thought to be aggressive is to use a questionnaire and then evaluate the results according 
to rating scales designed to systematically evaluate the signs of aggression. For example, the Overt 
Aggression Scale (OAS), quantifies verbal aggression (from making loud noises to threatening 
violence), physical aggression against self (from pulling hair to deep cuts), physical aggression 
against objects (from slamming doors to breaking windows), and physical aggression against other 
people (from threatening gestures to breaking bones). However, even this widely recognized scale 
isn't all-inclusive. For example, it doesn't distinguish between acute and chronic aggression. Although 
there is no universally accepted boundary between acute and chronic aggression, a one-month 
timeframe is often used as the breakpoint. The distinction between acute and chronic aggression has 
practical significance because patients diagnosed with chronic aggression are eligible for insurance 
coverage for behavioral modification and pharmacological treatment, including the use of 
antipsychotic drugs, while drugs for patients diagnosed with acute aggression are not covered by 
insurance.

Researchers in the lab might use an online literature reference database, such as PubMed, to identify 
prior research in academia and perhaps published reports from other companies working on the 
genetic basis of aggression. A reasonable place to start in the search for prior research would be the 



National Library of Medicine's online MeSH browser, shown in Figure 2-3. The browser offers a 
definition for the term "aggression," and provides two MeSH trees to indicate there are two applicable 
contexts—behavioral symptoms and social behavior.

Figure 2-3. National Library of Medicine Medical Subject Heading Descriptor 
Data and Tree Structure for "Aggression." The tree structure puts the term 
in the context of a behavioral symptom. A second tree that defines a social 

behavior context for the term is not shown here.



In addition, the browser lists the Allowable Qualifiers for aggression that can be used to restrict or 
limit search results. As defined on the MeSH site (www.nlm.nih.gov/mesh/MBrowser.html), these 
qualifiers are:

●     CL (classification)— Used for taxonomic or other systematic or hierarchical classification 
systems.

●     DE (drug effects)— Used with organs, regions, tissues, or organisms and physiological and 
psychological processes for the effects of drugs and chemicals.

●     PH (physiology)— Used with organs, tissues, and cells of uni- and multi-cellular organisms 
for normal function. It is used also with biochemical substances, endogenously produced, for 
their physiologic role.

●     PX (psychology)— Used with non-psychiatric diseases, techniques, and named groups for 
psychologic, psychiatric, psychosomatic, psychosocial, behavioral, and emotional aspects, 
and with psychiatric disease for psychologic aspects; used also with animal terms for animal 
behavior and psychology.

●     RE (radiation effects)— Used for effects of ionizing and non-ionizing radiation upon living 
organisms, organs and tissues, and their constituents, and upon physiologic processes. It 
includes the effect of irradiation on drugs and chemicals.

The most relevant of these qualifiers for the researcher's work is probably drug effects (DE), to 
identify articles that deal with the physical and psychological aspects of drugs and chemicals dealing 
with aggression. In addition, articles dealing with radiation effects (RE) may also be relevant, 
especially if the articles describe radiation-induced genetic mutations associated with aggression in 
rats or primates.

With the relevant MeSH search terms and contexts defined, the next step would be to conduct an 
online search of the biomedical literature dealing with aggression using the online bibliographic 
database PubMed. The search on PubMed would likely return citations such as Antonio Moniz's 
surgical removal of the frontal lobes of the brain to control aggressive behavior—a procedure for 
which he won the Nobel prize in medicine in the late 1940s. The search would also reveal work on 
twin studies in Denmark in the late 1980s that suggests aggressiveness is a personality trait with a 
genetic component because twins raised apart have similar aggressiveness scores.

The PubMed search would also reveal work on attempting to identify the genetic basis for aggression 
in other animals, including lobsters, rats, and fruit flies. For example, researchers at Harvard and the 
University of Basel in Switzerland experimented with fruit flies to quantify aggressive behavior as a 
function of genetic makeup. Pairs of fruit flies were allowed to fight over females and the genetic 
profiles of the winners were studied for systematic differences among those of more submissive 
losers. One difference noted in the study is that there are significant variations in levels of certain 
neurotransmitters, including serotonin and dopamine, in the brains of the more aggressive 
combatants. However, these studies leave many questions unanswered, such as the contribution of 
physical strength or experience to winning a bout. As in human conflicts, the better fighter, not 
necessarily the more aggressive fighter, may be victorious.

Armed with information on aggression from the medical literature, the researchers might hypothesize 
that a new drug that moderates the production of serotonin in the brain may be useful in controlling 
aggressive behavior. They establish a study using volunteers who have been screened according to 
the Overt Aggression Scale and they use a battery of clinical studies to rule out non-genetic causes 
for aggressive behavior. The clinical examination includes a general history and physical, with a 
neurological examination, medication history, and mental status examination, as well as Chest X-ray, 
EEG, MRI, and lumbar puncture. The objective of this testing is to identify patients in which abnormal 
behavior might be due to causes such as head trauma, infection, or brain tumors. For example, 
meningitis, an infection of the spinal fluid, can result in behavior consistent with aggression and 
apprehension. Volunteers for the study would also be subject to standard laboratory tests, including 
urine drug screening, blood-alcohol concentration, serum drug concentrations, and a thyroid profile 
to screen for patients who are taking illicit drugs or who have metabolic diseases that could 
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contribute to abnormal behavior. These and similar clinical data are stored in an electronic medical 
record (EMR) in the format described in Table 2-2.

Table 2-2. Typical Electronic Medical Record (EMR) Contents. The EMR 
contains both objective signs, such as physical examination findings, as 

well as subjective patient symptoms, including chief complaint and review 
of systems.

Data Category Description

Chief Complaint Patient's primary reason for the medical visit

History of Present Illness History of onset of clinical signs and symptoms

Medications Current list of medications the patient is using

Past Medical History Relevant past medical history, including hospital admissions, surgeries, 
and diagnoses

Family History History of family diseases, such as diabetes, cancer, heart disease, and 
mental illness

Social History Use of drugs, smoking, job stability, housing, living conditions, 
incarceration

Review of Systems Patient's recollection of symptoms and current medical problems, such as 
trouble sleeping at night or panic episodes, and results of tests

Physical Examination The clinician's hands-on examination of the patient, including head, eyes, 
ears, nose, throat, chest, and extremities

Labs Includes blood glucose, cholesterol, and drug levels

Studies X-ray, MRI, CT, and EKG

Progress notes Record of temporal progression of signs and symptoms, labs, and studies 
for the length of the study or admission

The components of the EMR report rarely exist in a single, unified database, but reside in the 
separate, domain-specific databases that may exist within a single hospital or clinic or be dispersed 
geographically across a region or country. Regardless of their relative proximity to each other, 
laboratory, radiology, cardiology, hematology, internal medicine, and other clinical departments 
typically maintain their own medical-record systems. What's more, each application may be 
supported by a different operating system, use a different underlying database—some of which may 
be outdated—and execute on a completely different hardware platform. For example, the pharmacy 
system might run under UNIX on a Sun Server using a Sybase database, whereas the clinical 
radiology system might run under VMS on a VAX server with an Oracle database. Within each 
department or clinic, these differences are usually irrelevant unless data have to be shared with other 
departments. The traditional method of creating a composite view of a patient's clinical status is to 
generate custom reports, which is time-consuming and expensive. The modern approach to the EMR 
is to create one or more central databases derived from, and yet completely independent of, each of 
the application databases, and to optimize these databases for research and analysis.

In order to create a comprehensive record that can be queried, the data from the various clinical 
systems have to be integrated, usually with the assistance of a data dictionary that translates various 
clinical databases to common formats so that the data can be more easily combined. The data 
dictionary is, in simplest terms, a collection of information about naming, classification, structure, 
usage, and administration of data that originates from a variety of sources. The data dictionary is 
perhaps most useful in addressing the problem of data element ambiguity. For example, within a 



biotech enterprise composed of variety of commercial and in-house applications, a given data 
element may be defined differently within different applications.

Patient age might be defined in months within a clinical pathology system, whereas patient age 
within the microarray database and the data dictionary might be represented in years. The data 
dictionary can be used to reconcile the two systems, providing an appropriate data transform 
between the two representations. For example, the appropriate transforms to move between the 
representations used by the pathology and microarray systems for patient age might be:

PatientAge (Data Dictionary) = PatientAge (Microarray) = PatientAge (Pathology)/12

The data dictionary can also impose a standard vocabulary on the system so that clinical findings can 
be identified unambiguously. For example, one clinical system might refer to heart attack as "M.I.," 
another as "Myocardial Infarction," and yet another as "Heart Attack." By imposing a standard 
vocabulary, the data dictionary allows data from the various systems to be combined into a unified 
view of the patient that can be more easily mined for patterns. This view is typically maintained in a 
data mart, as illustrated in Figure 2-4. The data mart contains a subset of the data that resides in the 
individual databases combined with contents from these databases translated into a standard format 
that can be efficiently mined for data.

Figure 2-4. Integration of Clinical Data. To create an EMR capable of 
supporting efficient data mining, a data dictionary is used to impose a 

standard format and vocabulary on data stored in the clinical data mart.

A parallel situation exists in the bioinformatics component of the patient data management. As 
depicted in Figure 2-5, patients provide DNA source material for analysis in the form of tissue 
samples, which are processed for microarray analysis, generating thousands of data points. These 
data are then processed by a pattern-recognizer program to identify significant patterns. Researchers 
rely on local databases of gene expression, medical relevance, and a data dictionary to provide a 
common language and format for the data. Links to the large public genomic databases provide 
additional reference material. As with the clinical data, the composite genomic data are stored in a 
data mart for efficient manipulation and analysis through a suite of applications. Ideally, relevant 
data from clinical applications are combined in the data mart as well.

Figure 2-5. Integration of Bioinformatics Data. Like clinical data, 
bioinformatics data from a variety of sources and in numerous formats are 

combined in a data mart to enhance data management.



One advantage of building and maintaining a data mart that combines data from genomic and clinical 
sources is that data can be manipulated and visualized by applications that offer a single, combined 
view of the data that may provide a unique insight into their correlation and relevance. As shown in 
Figure 2-6, when clinical laboratory (Serotonin), psychological (Overt Aggression Scale or OAS), and 
genetic (Gene) data are readily available in a common format, they can be combined to provide a 
quick qualitative and quantitative view of how behavior, gross biology, and genomic information 
relate to each other and how they correlate with aggressive behavior.

Figure 2-6. Aggressive Behavior versus Microarray Data. A view of 
aggressive behavior in two closely related patients as a function of clinical 
laboratory (Serotonin), psychological (Overt Aggression Scale or OAS), and 
genetic (Gene) data. Compared to Patient 002, Patient 001 has a relatively 
high score on the physical aggressiveness against the objects component of 

the OAS, and low scores on serum serotonin and microarray patterns.



In addition to locally generated clinical and genetic data, the typical pharmacogenomic laboratory has 
access to data in private and public online databases. Ideally, subsets of often-used data are 
integrated with local data in the laboratory's data warehouse, making the data readily available for 
searching, statistical analysis, visualization, simulation, and communications. In addition to 
homogenizing and standardizing data representations through a data dictionary, the data warehouse 
serves as the central repository for the laboratory's intellectual property that can be easily archived. 
Although separate archives are typically maintained for genomic and clinical systems, an additional 
archive of the central data warehouse provides assurance that the data that have been cleaned, 
reformatted, indexed, and otherwise enhanced in value aren't lost to human error or natural disaster.

As illustrated in Table 2-3, the applications typically used to manipulate and analyze genomic data 
range from sequence searching to visualization. For example, researchers can upload new sequence 
data to the major databases through applications such as AceDB, Audit, BankIt, Sakura, Sequin, or 
WebIN. Most laboratories have access to these and similar applications through the Internet, as well 
as a suite of internally developed and commercial applications.

Table 2-3. Genomic Applications. A variety of public and private applications 
are available for analysis of genomic data, many of which are designed to 

work on the large public databases. Listed here are publicly funded 
applications.



Application Examples

Sequence Search BLAST, BLASTN, CLUSTALW, FASTA, MOTIF, PBLAST, 
TBLASTIN

Submission AceDB, Audit, BankIt, Sakura, Sequin, WebIN

Information Retrieval Entrez, DBGET, IDEAS

Linkage LocusLink

Portal KEGG

Structure Match CD, DALI, SCOP, Searchlite, Structure Explorer, VAST

Visualization CAD, Cn3D, Mage, RasMol/WebMol, SWISS-PDBViewer, VRML, 
WebMol

Protein-Protein Interactions BRITE

Microarray Gene Expression Profiles Expression

Open-Reading Frame Locator ORF Finder

Continuing with the example of research on aggression, the data warehouse might contain a 
compilation of data on the fruit fly's genome, with a particular focus on the sequence that relates to 
genes responsible for serotonin production. Researchers might want to compare sequences in the 
fruit fly's genome with those in the human genome suspected of contributing to serotonin 
neurotransmitter control, using an application such as the BLAST sequence alignment tool. One 
consideration in using one of the online applications is data format.

The most popular data formats in bioinformatics include FASTA, PHYLIP, MAML (Microarray Markup 
Language), NEXUS, PAUP, FASTA+GAP, and MmCIF. Some formats are specific to particular data 
types and applications. For example, MmCIF is used to describe 3D structures, whereas FASTA is 
used to describe sequence data. As shown in Figure 2-7, the FASTA format begins with a single-line 
description, followed by lines of sequence data. The description line is distinguished from the 
sequence data by a greater-than (>) symbol in the first column. Sequences, which should be shorter 
than 80 characters in length, are represented in the standard International Union of Biochemistry- 
International Union of Pure and Applied Chemistry (IUB/IUPAC) amino acid and nucleic acid codes. 
Exceptions are that lower-case letters are accepted and are mapped into upper-case; a single hyphen 
or dash can be used to represent a gap of indeterminate length; and in amino acid sequences, U and 
* are acceptable letters.

Figure 2-7. The FASTA Format. This is a standard data format for use with 
online sequencing databases.



Complexity

The pharmacogenomic laboratory exploring the genetic basis for aggression illustrates several key 
characteristics of data management in the biotech industry. Foremost is the complexity of data 
management, as summarized in Table 2-4. There are numerous data sources, including the volunteer 
patients, clinical studies, genomic studies, and public and private online databases. Similarly, there 
are a variety of applications that can be brought to bear on genomic and clinical data and the 
biomedical literature, including search engines, statistical analysis applications, visualization tools, 
simulations, communication applications, database management systems, electronic medical record 
(EMR) systems, and genomic analysis recognition and manipulation, including sequence recognition.

Table 2-4. Complexity and Data Management. The typical R&D environment 
in a biotech firm encompasses an array of data sources, applications, 

formats, interfaces, and integration tools.



Data Category Examples

Data Sources Patient, Clinical Studies, Genomic Studies, Public Databases, Private Databases

Applications Search Engines, Statistical Analysis, Visualization, Simulation, Communications, 
Database Management System, Electronic Medical Record, Genomic

Databases Public, Private, Taxonomy, Clinical, Genetic, Local, External, Archives

Data Formats FASTA, PHYLIP, MAML, NEXUS, PAUP, FASTA+GAP, and MmCIF, Proprietary 
Clinical Formats, Local Application Formats

Interfaces Local Databases, Online Databases, Data Warehouse, Application

Integration Tools Data Dictionary, Network, Standards

Furthermore, many of the dozens of databases involved in pharmacogenomic research and 
development use proprietary formats. This is especially true of clinical systems, many of which are 
specialty-specific. For example, standard image formats for radiology databases include Digital 
Imaging and Communications in Medicine (DICOM) and the American College of Radiology/National 
Electrical Manufacturers Association (ACR/NEMA) standards. These standards were developed 
primarily to facilitate multi-vendor connectivity to promote the development of Picture Archiving and 
Communications Systems (PACS), but they have no provision for linking images with genomic 
systems, such as gene expression databases.

The typical research laboratory must develop and maintain numerous interfaces between applications 
and databases to provide the logical connectivity for data communications through the network 
infrastructure. The simple network illustrated in Figure 2-2 glosses over the inner complexity of the 
dozens of standards used through a typical information system, a problem at least partially 
addressed by data dictionaries and conversion utilities. For example, few laboratories or medical 
facilities provide the degree of connectivity suggested by this discussion. The vast majority of 
hospitals in the U.S. use paper charts to record patient history and physical findings, for example.

Perhaps 5 percent of hospitals have a functional EMR, and most of these are partial implementations 
that provide only summary information. Furthermore, these systems typically require researchers 
and clinicians to learn several arcane languages and procedures to access all data that may be 
relevant to a given patient. For example, clinicians may have to log in to a pathology system to check 
urinalysis results, a radiology system to read the report on a patient's latest image studies, and an 
admission, discharge, transfer (ADT) system to verify the patient's insurance provider. Similarly, 
although many clinical studies are multimedia-rich, most radiology and pathology images, EKG 
tracings, pulmonary function test curves, and other graphical materials are maintained in separate 
databases that aren't connected to the main hospital or clinic network.

One approach to minimizing or hiding the complexity of the data-management process is to create a 
single, integrated user interface. Just as the Windows or Macintosh operating systems hide the 
complexity of computer operations from users, a unified user interface to a network of disparate 
applications can hide the complexity of the data sources and various applications used to manipulate 
the data. This unified user interface may take the form of a Web portal or the workstation's operating 
system. For example, the flavors of UNIX for the PC, Macintosh, and dedicated UNIX workstations 
each provide various views of local and networked applications. The challenge with hiding complexity 
this way is that the constant changes in how data are actually managed in the background requires 
parallel updating of the user interface that provides a front end to the system.

The data-management process is much more involved than simply sending data to a database and 
retrieving it later. As discussed in the following sections, the databases used in bioinformatics 
research presents a variety of challenges, many of which pertain to all phases of the data life cycle, 
issues such as security, standards, interoperability, longevity of data, access and version control, the 
use of encryption, and minimizing access time. The data life cycle and the relevant issues that arise 
at each stage in the life of data are discussed in the rest of this chapter. Finally, issues that pertain to 



data repositories are discussed: database technology, database architecture, and data base 
management systems.



 
Data Life Cycle

In the data-management process, data are authored by clinicians and researchers and generated 
directly by research and test equipment, used by a variety of applications, repurposed or modified for 
other uses, and archived for future study. Eventually, the data are disposed of, freeing the data 
warehouses and other hardware from the overhead of maintaining low-value data. The overall 
process, from data creation to disposal, is normally referred to as the data life cycle, as depicted in 
Figure 2-8. The highlights of each stage are described there.

Figure 2-8. Data Life Cycle. Key steps in the process include data creation 
and acquisition, use, modification, repurposing, and the end 

game—archiving and disposal. The same process applies to data in a 
desktop workstation or, as in this illustration, to a large pharmacogenomic 

operation with multiple, disparate systems.

Data Creation and Acquisition

The process of data creation and acquisition is a function of the source and type of data. For 
example, in the scenario depicted in Figure 2-8, data are generated by sequencing machines and 
microarrays in the molecular biology laboratory, and by clinicians and clinical studies in the clinic or 
hospital. Depending on the difficulty in creating the data and the intended use, the creation process 
may be trivial and inexpensive or extremely complicated and costly. For example, recruiting test 
subjects to donate tissue biopsies is generally more expensive and difficult than identifying patients 
who are willing to provide less-invasive (and painful) tissue samples.



In addition to cost, the major issues in the data-creation phase of the data life cycle include tool 
selection, data format, standards, version control, error rate, precision, and accuracy. These metrics 
apply equally to clinical and genomic studies. In particular, metrics such as error rate, precision, and 
accuracy are more easily ascribed to machine-generated data, whether from clinical laboratory 
studies or microarray analysis. For example, optical character recognition (OCR), which was once 
used extensively as a means of acquiring sequence information from print publications, has an error 
rate of about two characters per hundred, which is generally unacceptable.

Subjective information created by hands-on clinical analysis and entered into the computer system 
through the use of manual transcription, voice recognition data-input systems, or desktop or 
handheld computers, is much more difficult to validate. What's more, there is significant variation in 
subjective interpretation of clinical studies. For example, five seasoned radiologists will typically 
provide five different interpretations of the same chest film or other radiographic study. In addition to 
the quality of the initial clinical observation, there are errors introduced by the hardware, software, 
and processes involved in capturing data, from keyboard and mouse to optical character recognition, 
and voice recognition.

The creation and acquisition of patient data raises several ownership and privacy concerns. One of 
the greatest challenges regarding acquisition of clinical data is the Health Insurance Portability and 
Accountability Act (HIPAA), which mandates security and privacy of patient data. The act requires all 
health plans, clearinghouses, and providers of healthcare services to adopt national standards for 
electronic transactions and information security by mid-2004. Technologies that support user 
authentication, from password-protection schemes to biometric security technologies and data 
encryption are key to ensuring compliance with the act. Although there is not yet a parallel guideline 
for genomic data, it is likely that legislation in this area will materialize as soon as public awareness 
of the privacy issues becomes widely apparent.

Use

Once clinical and genomic data are captured, they can be put to a variety of immediate uses, from 
simulation, statistical analysis, and visualization to communications. Issues at this stage of the data 
life cycle include intellectual property rights, privacy, and distribution. For example, unless patients 
have expressly given permission to have their names used, microarray data should be identified by 
ID number through a system that maintains the anonymity of the donor.

Data Modification

Data are rarely used in their raw form, without some amount of formatting or editing. In addition, 
data are seldom used only for their originally intended purpose, in part because future uses are 
difficult to predict. For example, microarray data may not be captured expressly for comparison with 
clinical pathology data, but it may serve that purpose well. The data dictionary is one means of 
modifying data in a controlled way that ensures standards are followed. A data dictionary can be 
used to tag all microarray data with time and date information in a standard format so that they can 
be automatically correlated with clinical findings (see Figure 2-9).

Figure 2-9. Data Dictionary-Directed Data Modification. The time and date 
header for microarray data can be automatically modified so that it can be 

easily correlated with clinical findings.



Data that are modified or transformed by the data dictionary are normally stored in a data mart or 
data warehouse so that the transformed data are readily available for subsequent analysis without 
investing time and diverting computational resources by repeatedly reformatting the data. In the 
example in Figure 2-9, the relationship between microarray data and clinical data, such as activity at 
a particular gene locus and overt aggression score, can be more easily computed because the data 
can be sorted and compared by date of birth. That is, the more likely transformed data will be used 
in analysis in the future, the more valuable the data warehouse and the data dictionary.

Archiving

Archiving, the central focus of the data life cycle, is concerned with making data available for future 
use. Unlike a data repository, data mart, or data warehouse, which hold data that are frequently 
accessed, an archive is a container for data that is infrequently accessed, with the focus more on 
longevity than on access speed. In the archiving process—which can range from making a backup of 
a local database on a CD-ROM or Zip® disk to creating a backup of an entire EMR system in a large 
hospital—data are named, indexed, and filed in a way that facilitates identification later. While 



university or government personnel archive the large online public databases, the archiving of locally 
generated data is a personal or corporate responsibility. Regardless of who takes responsibility for 
the process, the issues associated with archiving are numerous, as suggested by Table 2-5.

The archiving stage of the data life cycle usually involves making decisions about the most 
appropriate software, hardware, storage medium and archiving process to use. There are the obvious 
issues of media cost and longevity, security standards, the type of hardware to use to store the data, 
and the software that will facilitate storage and later retrieval. For example, selecting the optimal 
storage medium for the archiving process is a function of the frequency with which archived data are 
accessed, the budget, and the volume of data involved.

Table 2-5. Archiving Issues. Key issues in bioinformatics in the archival 
process range from the scalability of the initial solution to how to best 

provide for security.

Issue Description

Indexing Vocabulary, metadata, language, completeness, efficiency

Space Requirements Index space versus data space

Hardware Requirements Hard drives, network

Scalability Ability to expand functionality without investing in new hardware and 
software

Database Design Data model

Archival Process Responsibilities for overseeing the process

Space Requirements Current and projected archival capacity

Completeness Relative quantity of total data that are archived

Media Selection Compatibility, speed, capacity, data density, cost, volatility, durability, 
and stability

Location Local, server-based, or network

Infrastructure Requirements Network and computer hardware

Relative Value Value of data vs. archival overhead

Hardware Configuration RAID and other configurations

Longevity Technical obsolescence of media and MTBF rating of related 
equipment

Security Limited access to data

The hardware involved in the archiving process may include a PC-based CD-ROM burner, a large 
database server that's networked to a number of workstations and routinely backed up onto 
magnetic tape, or a network-based storage that may be located offsite. As discussed later in this 
chapter, each option has security, cost, and performance issues. The software tools selected for 
archiving data also define the usability and performance of the data archive, especially regarding 
data indexing and retrieval functions.

After data have been created and, if necessary, modified for use, and before it can be archived, it's 
typically named, indexed, and filed to facilitate locating it in the future. As such, the filing system, 
naming conventions, and accuracy and specificity of indexing limit the efficiency with which the data 



can be located later. For example, each document can be assigned one or more keywords, but if the 
keywords aren't appropriate, the keyword vocabulary is undefined or not enforced, or too few 
keywords are used, then a document may be effectively lost in the system. Not only the choice and 
number of keywords, but the indexing hierarchy can make data hard to find.

The process of data archiving is far more important than the associated technology, in that the best 
software and hardware are useless if they aren't used. Of the technical issues involved in archiving 
gene sequences, microarray analysis, and other bioinformatics data, scalability is typically the most 
important. Even relatively small laboratories generate megabytes of data every week, which is 
fueling demand for very-large-capacity archival storage devices.

One of the primary determinants of archive capacity is the storage media—the physical material used 
to form a tape, disk, or cartridge. In addition to capacity, media can be characterized in terms of 
compatibility, speed, data density, cost, volatility, durability, and stability. Compatibility is the ability 
of media to function within a particular software and hardware environment. Speed is a multi-faceted 
performance characteristic that encompasses both the time to locate data (seek time) and the time 
to write it to or download it from the media (data transfer rate), all of which are functions of the 
construction of the supporting hardware and electronics. Seek time may be several hundred 
milliseconds for a CD-ROM, a few milliseconds for a hard drive, and a few microseconds for a flash 
memory card. Capacity—the maximum amount of data the media can store—is a function of the 
media construction, the tolerance of the casing or cartridge for tape- and disk-based media, and the 
technology used to read and write the data. Capacity is also a function of data density, which is in 
turn a function of the media, the drive mechanism, and the error coding and compression 
technologies. Error-control and compression schemes in hard drives and other media allow higher 
data densities than the raw media would support otherwise.

Cost is a function of the raw materials involved in the creation of media, but has more to do with 
what the market will bear and what the competition has to offer. Volatility, a characteristic normally 
ascribed to solid-state memory, refers to the status of the data when external power is removed. 
Flash memory, like magnetic disk or tape, is considered relatively non-volatile, and can hold data for 
years without loss.

Durability refers to the physical properties of the media that contribute to the longevity of the 
surface, mechanisms, and housing, if any, during normal use. For example, the bearings and other 
components in the rotational system of a hard drive undergo wear and tear over time. Stability 
reflects the physical properties of the media in a given environment that contribute to the longevity 
of the media and therefore the data, in a dormant state. For example, the bearings, metal, and 
plastic parts are subject to the same problems that beset every complex electro-mechanical device. 
Lubrication dries out, leaving bearings dry and without protection, rubber becomes brittle, plastic 
parts deform, and dust and lint accumulate in the cooling system. Furthermore, the magnetic 
patterns induced in the iron-oxide coating on the disk platters fade over the years, especially in the 
heat. Similarly, the plastic-based optical media of a CD-ROM is susceptible to damage from high 
humidity, rapid and extreme temperature fluctuations, and contamination from airborne pollution. 
Over time, oil from our fingers can also damage the plastic surface of a CD-ROM. Fluctuations in 
temperature and humidity can also cause shrinking and expansion of magnetic tape, distorting the 
position of data tracks, resulting in data loss.

The longevity or life expectancy of the devices in an archive system is usually expressed in the Mean 
Time Between Failure (MTBF) rating. The MTBF, an estimate of the failure rate of a device during its 
expected lifetime, is one metric that can be used to estimate the life span of an archive. Typical MTBF 
ratings for tape drives and commercial-grade hard drives are over 20 years. However, this figure 
assumes ideal conditions of constant low temperature and humidity, freedom from biological agents, 
static-electricity discharges, and mechanical abuse. Another consideration is that even if a tape 
survives a decade or more in fireproof safe, it's likely that the data it contains will be inaccessible 
because of changes in tape-drive standards. Most of the disk packs, tapes, and magnetic cartridges 
that were standard archival media a decade ago are incompatible with current computer hardware.

Archives vary considerably in configuration and in proximity to the source data. For example, servers 
typically employ several independent hard drives configured as a Redundant Array of Independent 



Disks (RAID system) that function in part as an integrated archival system. The idea behind a RAID 
system is to provide real-time backup of data by increasing the odds that data written to a server will 
survive the crash of any given hard drive in the array. RAID was originally introduced in the late 
1980s as a means of turning relatively slow and inexpensive hard disks into fast, large-capacity, 
more reliable storage systems.

RAID systems derive their speed from reading and writing to multiple disks in parallel. The increased 
reliability is achieved through mirroring or replicating data across the array and by using error-
detection and correction schemes. Although there are seven levels of RAID, level 3 is most applicable 
to bioinformatics computing. In RAID-3, a disk is dedicated to storing a parity bit—an extra bit used 
to determine the accuracy of data transfer—for error detection and correction. If analysis of the 
parity bit indicates an error, the faulty disk can be identified and replaced. The data can be 
reconstructed by using the remaining disks and the parity disk.

For example, in Figure 2-10, disks A–D are dedicated to data and disk P is used to store the parity 
bit. In this case, an odd number of "1" bits corresponds to a high ("1") parity bit. When data are 
written in parallel to the data disks, the corresponding parity bit is stored on the parity disk. 
Immediately after the data are written to the data disks, the data are read and the parity bits are 
compared. The discrepancy noted in Figure 2-10 is typical of a case when there is an error on one 
disk. The error on disk "C" can be repaired, or if groups of errors are suddenly becoming apparent 
indicating imminent disk failure, then the entire disk can be replaced.

Figure 2-10. RAID-3. Data disks are read and written to in parallel, 
providing speed, while a dedicated parity disk provides increased reliability 
through error detection and correction. In this example, an error in disk C is 

detected by a different parity bit (P), indicating that the data read from 
disks A–D don't agree with what was written to the disks. Although the 

parity bit is usually based on a comparison of bytes on the data disks, bits 
(0 or 1) are used here for clarity.

Another approach is to create archives on separate media on a regular basis and transport the media 
offsite to a safe location that would survive natural or man-made disaster at the main computing 



facility. A related tactic is to use network-based storage from a third-party vendor and export data to 
the offsite storage electronically. However, third-party archives have greater security risks than 
archives that can be controlled and maintained locally.

Repurposing

One of the major benefits of having data readily available in an archive is the ability to repurpose it 
for a variety of uses. For example, linear sequence data originally captured to discover new genes are 
commonly repurposed to support the 3D visualization of protein structures.

One of the major issues in repurposing data is the ability to efficiently locate data in archives. The 
difficulty in locating data once it's been incorporated into a storage system depends on the volume of 
data involved. Efficient retrieval is a function of the hardware and database management software, 
the effectiveness of the user interface, and the granularity of the index. For example, nucleotide 
sequence data indexed by chromosome number would be virtually impossible to locate if the 
database contains thousands of sequences indexed to each chromosome.

Issues in the repurposing phase of the data life cycle include the sensitivity, specificity, false 
positives, and false negatives associated with searches. The usability of the user interface is also a 
factor, whether free-text natural language, search by example, or simple keyword searching is 
supported. In addition, the provisions for security can affect the ease with which data can be located 
and repurposed. An overly complex security procedure that requires revalidation of user identity 
every five minutes could deter even the most well-intentioned researcher.

Disposal

The duration of the data life cycle is a function of the perceived value of the data, the effectiveness of 
the underlying process, and the limitations imposed by the hardware, software, and environmental 
infrastructure. Eventually, all data die, either because they are intentionally disposed of when their 
value has decreased to the point that it is less than the cost of maintaining it, or because of 
accidental loss. Often, data have to be archived because of legal reasons, even though the data is of 
no intrinsic value to the institution or researcher. For example, most official hospital or clinic patient 
records must be maintained for the life of the patient. As such, earmarking data for disposal is 
normally based on the quality and relevance of the data, as opposed to the age of the data. 
Researchers in a laboratory working with sequence data might be investigating single genes in turn, 
moving from one gene to the next. When sequence data from one gene is no longer necessary, it can 
be discarded from the local data warehouse leaving room for the next gene's sequence 
data—whether the data are stored on an internal disk in a Linux workstation or a central data 
warehouse.

Managing the Life Cycle

Managing the data life cycle is an engineering exercise that's a compromise between speed, 
completeness, longevity, cost, usability, and security. For example, the media selected for archiving 
will not only affect the cost, but the speed of storage and longevity of the data. Similarly, using an in-
house tape backup facility may be more costly than outsourcing the task to networked vendor, but 
the in-house approach is likely to be more secure. These tradeoffs are reflected in the 
implementation of the overall data-management process.



 
Database Technology

The purpose of a database is to facilitate the management of data, a process that depends on people, 
processes, and as described here, the enabling technology. Consider that the thousands of base pairs 
discovered every minute by the sequencing machines in public and private laboratories would be 
practically impossible to record, archive, and either publish or sell to other researchers without 
computer databases. At the current stage of database technology evolution, bioinformatics databases 
are housed on large hard drives in locker- or refrigerator-sized local servers and online sequence 
databases such as GenBank. Thanks to modern computer technology, a modern bioinformatics 
researcher can compare and contrast the genomes of a dozen species while sitting on the beach with 
a laptop computer connected through a wireless modem to the Internet. While this image makes for 
good advertising copy, in practice, most researchers are tied to wet laboratories that generate, 
manipulate, and store vast quantities of experiment-specific data. In this context, the database 
technology empowers researchers to store their data in a way that it can be quickly and easily 
accessed, manipulated, compared to other data, and shared with other researchers.

The concept of a database is necessarily colored by the current state of the technology. Just as a 
state-of-the-art bioinformatics workstation, operating at Gigahertz clock speeds with a gigabyte or 
more of RAM and banks of hundred-gigabyte hard drives, would easily outperform one of the early 
supercomputers, database technology is constantly evolving. Within our lifetimes, the contents of 
GenBank will easily fit into the working memory of a handheld computer, and our concept of what 
constitutes a "large" database will have to be adjusted accordingly. Even so, there is more to the 
concept of a database—whether it's referred to as a repository, data warehouse, data mart, or local 
database—than raw capacity.

The volatility of the data, the concept of working memory, and the interrelatedness of data, 
regardless of the volume of data involved, are distinguishing features of the various forms of memory 
systems or databases. For example, from the perspective of working memory, the function of a data 
warehouse is to move data from a variety of sources and prepare the data for incorporation into 
working memory. Similarly, a data warehouse or other database is distinguished from an archive in 
that the data in an archive are much further removed from working memory. An archive might be 
stored on optical platters, magnetic tapes, or other media that is held in an offsite fireproof safe or 
underground building. Furthermore, the archive is typically engineered for longevity and the ability to 
be reconstituted, and not for speed of access. A database, in contrast, is a live, working system that 
forms the centerpiece for biotech R&D activities.

Functionally, the relationship between various database technologies can be compared to the 
information stored in the body, as depicted in Figure 2-11. Just as it's inefficient to have papers 
strewn about an office, out of order, difficult to identify, and distracting the user's attention from the 
documents that should be addressed, our genetic information is stored in the genome, tightly 
packed, out of harm's way, and yet accessible. The data are there, as in an archive, but not 
immediately available. Focusing on the individual chromosomes, data are more readily available, but 
still packed away so that they don't interfere with cellular processes. As subsets of data are moved 
out of the chromosome to the work environment, through the process of transcription, data are more 
readily available for use. Finally, at the translation stage, the data serve as the basis for the current 
work (as data do for computer applications), whether creating proteins according to the Central 
Dogma, or attempting to locate a matching gene in a pattern-matching application.

Figure 2-11. Organic Analog of Database Hierarchy. The database hierarchy 
has many parallels to the hierarchy in the human genome. Data stored in 
chromosomes, like a data archive, must be unpacked and transferred to a 

more immediately useful form before the data can be put to use.



The analogy depicted in Figure 2-11 highlights the concept of working memory. Data are pulled from 
archives, whether they reside in the double helix of a chromosome or on a tape cartridge, and are 
put in position where they can either be acted upon or direct other activities. In the cell, the activity 
is protein synthesis. In the workstation, this activity can be identifying a nucleotide sequence, 
predicting the 3D structure of a protein, or modeling how multiple proteins interact at the molecular 
level.

For example, as illustrated in Figure 2-12, a pattern-matching program that is searching for a match 
in a long nucleotide sequence works on the sequence in local, high-speed, active (and volatile) 
memory—the computer's RAM. As soon as the length of nucleotide sequence that can fit in RAM is 
searched, it is discarded and replaced by a new sequence that is copied (akin to transcription) from 
the hard disk, flash memory, or other non-volatile storage media. Just as RNA is discarded after it 
has been involved in the translation process to make room for the next set of instructions from the 
DNA, the data in RAM are constantly refreshed and updated under the direction of the computer's 
CPU.

Figure 2-12. Working Memory. Limited working memory in volatile RAM is 



used for program execution, whereas an expansive disk or other non-
volatile memory serves as a container for data that can't fit in working 

memory.

Volatility, working memory, and the volume of data that can be handled are key variables in memory 
systems such as databases. In addition, there is the quality of interrelatedness; just as the genes in 
the chromosomes are associated with each other by virtue of their physical proximity, the data in a 
database are interrelated in a way that facilitates use for specific applications. For example, 
nucleotide sequences that will be used in pattern-matching operations in the online sequence 
databases will be formatted according to the same standard—such as the FASTA standard.

As reflected in the data life-cycle model discussed earlier, the data-archiving process involves 
indexing, selecting the appropriate software to manage the archive, and type of media as a function 
of frequency of use and expected useful life span of the data. From an implementation perspective, 
the key issues in selecting one particular archiving technology over another depends on the size of 
the archive, the types of data and data sources to be archived, the intended use, and any existing or 
legacy archiving systems involved. For example, the size of the archive is measured in terms of the 
number of items and the space requirements per item. Text-only archives of nucleotide or amino acid 
sequences generally require less space per item than archives of 3D images of protein molecules and 
other multimedia. Not only are space requirements generally much greater for multimedia data than 
they are for text, but images usually require additional keywords and text associated with them so 
that they can be readily located in an archive.

Similarly, a single source of data is generally much easier to work with than data from multiple, 
disparate sources in different and often non-compatible formats. In addition, hardware and software 
used in the archiving process should reflect the intended use of the data. For example, seldom-used 
data can be archived using a much less powerful system, compared to data that must be accessed 
frequently. Finally, it's rare to have the opportunity to initiate a digital archiving program from 
scratch. Normally, there is some form of existing (legacy) system in place whose data has to be 
converted to be suitable for archiving.

The simplest approach to managing bioinformatics data in a small laboratory is to establish a file 
server that is regularly backed up to a secure archive. To use the hardware most effectively, 
everyone connected to the server copies their files from their local hard drive to specific areas on the 
server's hard drive on a daily basis. The data on the server are in turn archived to magnetic tape or 
other high-capacity media by someone assigned to the task. In this way, researchers can copy the 
file from the server to their local hard drive as needed. Similarly, if the server hardware fails for some 
reason, then the archive can be used to reconstitute the data on a second server.

As noted earlier, from a database perspective, file servers used as archives have several limitations. 
For example, because the data may be created using different applications, perhaps using different 
formats and operating systems, searching through the data may be difficult, especially from a single 
interface other than with the search function that is part of the computer's operating system. Even 



then, there is no way of knowing what particular files hold. For example, the files in a library of 3D 
protein-folding images created in a graphics modeling package may be labeled according to one 
researcher's experiment and not for general use. That is, there is typically no automated way of 
instituting a controlled vocabulary for all users to abide by.

There are other practical limitations as well. For example, in a small workgroup of perhaps a dozen 
researchers, it's tempting to make an open file-sharing system without security procedures. 
However, this practice can result in accidental loss of information through inadvertent deletion or 
modification of files. In addition, without a database, it's difficult to control for versions or updated 
copies of particular files, other than with file-naming conventions. Furthermore, combining data from 
different applications in a meaningful way to assist in analysis may be arduous and time-consuming 
without a database system in place.

The need for greater control over the intellectual capital of a biotech R&D laboratory usually 
necessitates the understanding and use of database technology. Just as particular wet-lab equipment 
provides a mix of features that supports some experiments and yet hinders others, databases are 
available in a wide spectrum of designs that are optimized for specific types of operations at the 
expense of others. The overall architecture, the underlying models supporting the database, and the 
database management system that supports the model provided by one database system may be 
ideal for managing nucleotide sequence data, but unwieldy for managing 3D protein structures, for 
example. Furthermore, a homegrown database that is developed without knowledge of outside 
standards may be unusable or inefficient when used with public-domain software, such as the locally 
executable BLAST application.

Database Architecture

One of the greatest challenges in bioinformatics is the complete, seamless integration of databases 
from a variety of sources. This is not the case now, primarily because when databases such as 
GenBank and SWISS-PROT were designed, their architectures were designed primarily to support 
their particular function. Working with other systems was a secondary concern. However, with the 
proliferation of data and the standardization on the Web as the main means of access to these data, 
integration has become a major concern. Without some form of database integration, the researcher 
who seeks to correlate a symptom such as aggression with a genetic abnormalities must query 
several databases to compare clinical behavior with genetic abnormalities. Furthermore, because the 
amount of data in many of the molecular biology databases is growing at an exponential rate, there 
usually aren't sufficient resources to modify the basic architecture of these databases.

There are exceptions, such as PubMed Central, where data from disparate databases, each with their 
own data formats and underlying architectures, have been combined into one common structure. 
However, because of the time and cost involved in converting database architectures, a better 
approach, when the option is available, is to use an architecture that not only supports immediate 
needs, but that also makes provision for future integration with other database systems. For this 
reason, knowledge of database architecture is key to anyone practicing bioinformatics. In addition, an 
understanding of database architectures can facilitate working with existing or legacy systems.

From a structural or architectural perspective, database technology can be considered either 
centralized or distributed. In the centralized approach, typified by the data warehouse, data are 
processed in order to fit into a central database. In a distributed architecture, data are dispersed 
geographically, even though they may appear to be in one location because of the database 
management system software. In each case, the goal is the same—providing researchers with some 
means of rapidly accessing and keeping track of data in a way that supports reuse. This is especially 
critical in large biotech laboratories, where large, comprehensive patient and genomic databases 
support data mining and other methods that extract meaningful patterns from potentially millions of 
records.

A centralized architecture, such as that illustrated in Figure 2-13, concentrates all organizational 
activity in one location. This can be a formidable task, as it requires cleaning, encoding, and 
translation of data before they can be included in the central database. For example, once data to be 



included in a data warehouse have been identified, the data from each application are cleaned (typos 
and other errors are identified and removed or corrected) and merged with data from other 
applications. In addition, there are the usual issues of database design, provision for maintenance, 
security, and periodic modification.

Figure 2-13. Centralized Database Architecture. A centralized database, 
such as a data warehouse, combines data from a variety of databases in 

one physical location.

A data warehouse isn't simply a large hard disk, but a database system implemented on a tiered 
storage system that reflects access time, cost, and data longevity constraints. For example, some 
data may reside on fast magnetic media, such as hard disks, and other data may reside on slower 
optical media. The goal is to keep the right information flowing to the right people in the most 
intelligent form as quickly and efficiently as possible, which includes making provision for the storage 
of both frequently and seldom-accessed data.

In contrast to a centralized architecture, distributed database architecture is characterized by 
physically disparate storage media. One advantage of using a distributed architecture is that it 
supports the ability to use a variety of hardware and software in a laboratory, allowing a group to use 
the software that makes their lives easiest, while still allowing a subset of data in each application to 
be shared throughout the organization. Separate applications, often running on separate machines 
and using proprietary data formats and storage facilities, share a subset of information with other 
applications. A limitation of this common interface approach, compared to a central database, is that 
the amount of data that can be shared among applications is typically limited. In addition, there is 
the computational overhead of communicating data between applications.

A challenge of using an integrated approach is developing the interfaces between the databases 
associated with each application. When there are only a few different applications and operating 
systems to contend with, developing custom interfaces between different databases may be tenable. 
However, with multiple applications and their associated databases, the number of custom interfaces 
that must be developed to allow sharing of data becomes prohibitive. For example, with 5 different 
databases, 9 different custom interfaces would have to be developed. For 6 different databases, 11 
interfaces would be needed. Because of the work involved, a typical scenario is incomplete 
integration, as shown in Figure 2-14.



Figure 2-14. Distributed Database Integration. Distributed databases can 
be configured to share data through dedicated, one-to-one custom 

interfaces (left) or by writing to a common interface standard (right). 
Custom interfaces incur a work penalty on the order of two times the 

number of databases that are integrated.

A better solution to integrating incompatible databases is to write interfaces to a common standard. 
For example, in clinical medicine, most application vendors are compatible with the Health Level 7 
(HL7) interface protocol, which allows Radiology, Laboratory, and Pathology systems to exchange a 
subset of their data, such as patient demographics, diagnosis, drug allergies, and current 
medications.

Full database integration is much more than simply moving data to a single hard disk. A file server 
can store data from dozens of various applications and yet have no integration between applications. 
Similarly, just as a single hard disk can be formatted so that it appears as several logical volumes or 
drives, a distributed physical architecture can function like a logical centralized database. Taking this 
analogy one step further, there are hybrid database architectures that combine aspects of centralized 
and distributed architectures to provide enhanced functionality or reduced cost. For example, the 
Storage Area Network (SAN) architecture is based on a separate, dedicated, high-speed network that 
provides storage under one interface (see Figure 2-15). With the appropriate software, a SAN can be 
configured to provide the functionality of a central data warehouse, including provision for making 
available an unlimited subset of the data from each application database.

Figure 2-15. Storage Area Network Architecture. A SAN is a dedicated 
network that connects servers and SAN-compatible storage devices. SAN 
devices can be added as needed, within the bandwidth limitations of the 

high-speed fiber network.



In addition to SANs, there is a variety of other network-dependent database architectures. For 
example, Network Attached Storage (NAS) is one method of adding storage to a networked system of 
workstations. To users on the network, the NAS acts like a second hard drive on their workstations. 
However, a NAS device, like a file server, must be managed and archived separately. A similar 
approach is to use a Storage Service Provider (SSP), which functions as an Application Service 
Provider (ASP) with a database as the application.

With the increased reliance on the Internet, outsourcing storage through Internet-based SANs and 
SSPs is often used instead of purchasing huge servers in-house. The advantage of technologies such 
as SANs and SSPs is that they can provide virtually unlimited storage as part of huge server farms 
that may be located in geographically disparate areas. The downside is loss of control over the data 
and archiving process, as well as the risk that company providing the service may fail, resulting in 
the loss of valuable research and production data. In addition, like NAS, SANs and SSPs only address 
additional storage space, not integration.

Database Management Systems

The database management system (DBMS) is the set of software tools that works with a given 
architecture to create a practical database application. The DBMS is the interface between the low-
level hardware commands and the user, allowing the user to think of data management in abstract, 
high-level terms using a variety of data models, instead of the bits and bytes on magnetic media. The 
DBMS also provides views or high-level abstract models of portions of the conceptual database that 
are optimized for particular users. In this way, the DBMS, like the user interface of a typical 
application, shields the user from the details of the underlying algorithms and data representation 
schemes.

In addition to providing a degree of abstraction, the DBMS facilitates use by maximizing the efficiency 
of managing data with techniques such as dynamically configuring operations to make use of a given 
hardware platform. For example, a DBMS should recognize a server with large amounts of free RAM 
and make use of that RAM to speed serving the data. A DBMS also ensures data integrity by 
imposing data consistency constraints, such as requiring numeric data in certain fields, free text in 
others, and image data elsewhere. A researcher isn't allowed to insert a numerical sequence in the 
space assigned for a nucleotide sequence, for example.

The DBMS also guards against data loss. For example, a DBMS should support quick recovery from 
hardware or software failures. A DBMS can guard against data corruption that might result from two 
simultaneous operations on a given data item. The most common example is prohibiting two users 
from simultaneously manipulating the same data. In addition, a DBMS adds security to a database, in 
that a properly constructed DBMS allows only users with permission to have access to specific data, 
normally down to the level of individual files. Multi-level user password-protection schemes can be 
used to allow only graphic designers to view intermediate graphic data, and those in marketing to 
view only final versions. Using intranets that limit data communications within a predefined group of 
workstations can add greatly to the security of a database.



A key issue in working with a DBMS is the use of metadata, or information about data contained in 
the database. Views are one application of metadata— a collection of information about naming, 
classification, structure, and use of data that reduces inconsistency and ambiguity. For example, as 
shown in Figure 2-16, one way to think about the application of metadata is to consider the high-
level biomedical literature a means of simplifying and synthesizing the underlying complexity of 
molecular disease, protein structure, protein alignment, and protein and DNA sequence data. From 
this perspective, data are base pair identifiers derived from observation, experiment, or calculation, 
information is data in context, such as the relationship of DNA sequences to protein structure, and 
metadata is a descriptive summary of disease presentations that provides additional context to the 
underlying information. The use of metadata as an organizational theme makes the centralized data-
management approach easier to maintain and control. For example, a simple file-server system 
typically lacks the contextual framework and interrelatedness of information and data provided by a 
database management system. As a result, there is no automated way to manage the contents of 
individual files and folders that may be included on the file server.

Figure 2-16. Metadata, Information, and Data in Bioinformatics. Metadata 
labels, simplifies, and provides context for underlying information and data.



Commonly used commercial DBMS packages in bioinformatics include products from Microsoft, 
Oracle, Sybase, IBM, MySQL AB, and InterSystems. In addition, there are dozens of proprietary and 
academic systems developed for particular niche applications that many bioinformatics researchers 
employ as well. Regardless of whether the technology is rooted in academia or business, virtually 
every DBMS can be described using three levels of abstraction: the physical database, the conceptual 
database, and the views. The point of using these abstractions is that they allow researchers to 
manipulate huge amounts of data that may be associated in very complex ways by shielding 
database designers and users from the underlying complexity of computer hardware. The physical 
database is the low-level data and framework that is defined in terms of media, bits, and bytes. This 
low-level abstraction is most useful for anyone who has to deal directly with data and files.

The conceptual database, at a somewhat higher level of abstraction than the physical database, is 
concerned with the most appropriate way to represent the data. This level of abstraction more closely 
approximates the needs of database designers who deal with DBMS data representation and 
efficiency issues such as the data-dictionary design. The conceptual database is defined in terms of 
data structures (an organizational scheme, such as a record) and the properties of the data to be 
stored and manipulated. The most common methods of representing the conceptual database are the 
entity-relationship model and the data model.

The entity-relationship model focuses on entities and their interrelationships in a way that parallels 
how we categorize the world. For example, common database entities in bioinformatics are the 
human being, protein sequences, nucleotide sequences, and disease processes about which data are 
recorded. Similarly, every entity has some basic attribute, such as name, size, weight (a particular 
protein may have a known weight), or charge. Relationships within the model are classified according 
to how data are associated with each other, such as one-to-one, one-to-many, or many-to-many. For 
example, a length of DNA may be translated to one mRNA sequence (a one-to-one relationship) and 
a gene may give rise to several proteins (a one-to-many relationship). These and other relationships 
can be used to maintain the integrity of data. For example, a gene (one entity) may generate more 
than one protein, but the gene, having a one-to-one relationship with a nucleotide sequence, 
shouldn't be associated with more than one nucleotide sequence. The data model can enforce this 
one-to-one relationship.

The conceptual database can also be represented as a data model. Like entity-relationship models, 
data models provide a means of representing and manipulating large amounts of data. A data model 
consists of two components—a mathematical notation for expressing data and relationships, and 
operations on the data that serve to express manipulations of the data. Like entity-relationship 
models, data models may also contain a collection of integrity rules that define valid data 
relationships. These various components work together to provide a formal means of representing 
and manipulating data.

The most common data models supported by DBMS products are flat, network, hierarchical, 
relational, object-oriented, and deductive data models, as illustrated graphically in Figure 2-17. Even 
though long strings of sequencing data lend themselves to a flat file representation, the relational 
database model is by far the most popular in the commercial database industry and is found in 
virtually every biotech R&D laboratory. However, virtually every data model illustrated in Figure 2-17 
has applications in bioinformatics, from flat to semi-structured.

Figure 2-17. Data Models. The most common data models in bioinformatics 
are relational, flat, and object-oriented.



The flat data model is simply a table without any embedded structure information to govern the 
relationships between records. As a result, a flat file database can only work with one table or file at 
a time. Strictly speaking, a flat file doesn't really fit the criteria for a data model because it lacks an 
embedded structure. However, the lack of an embedded structure is one reason for the popularity of 
the flat file database in bioinformatics, especially in capturing sequence data. A sequence of a few 
dozen characters may be followed by a sequence of thousands of characters, with no known 
relationship between the sequences, other than perhaps the tissue sample or sequence run. As such, 
a separate flat file can be used to efficiently store the sequence data from each sample or run. In 
order to make the management of large amounts of sequence or other data more tenable, a model 
with an embedded structure is required.

The relational model, developed in the early 1970s, is based on the concept of a data table in which 
every row is unique. The records or rows in the table are called tuples; the fields or columns are 
variably referred to attributes, predicates, or classes. Database queries are performed with the select 
operation, which asks for all tuples in a certain relation that meet a certain criterion—for example, a 
query such as "Which authors write about neurofibromatosis?" To connect the data of two or more 
relations, an operation called a join is performed. A record is retrieved from the database by means 
of a key, or label, that may consist of a field, part of a field, or a combination of several fields. 
Supporting this data model so that it's easy for someone to direct a search for the record that 
contains the particular value of the key is the purpose of a relational DBMS. Consider querying a 
bibliographic database with an "author_subject_table," using the Structured Query Language (SQL) 
statement:

SELECT *.* FROM author_subject_table

   WHERE subject = "Neurofibromatosis"

A useful feature of the relational model is that records or rows from different files can be combined as 
long as the different files have one field in common. Theoretically, records with a common field can 
be combined or joined with an unlimited number of files. The price paid for this flexibility is extended 



access time. That is, in a database design that doesn't take likely use patterns into account, 
performance suffers. A large amount of processor time will be spent extracting information from the 
system as the database program performs joins and other operations. This performance penalty is a 
reason for not simply polling application databases for data. It's far better, from a performance 
perspective, to move the data into a separate data repository, a second database that is optimized 
for the desired searching and analysis.

The attraction of the ubiquitous relational model is that it is mature, stable, reliable, well understood, 
and well suited for a number of different applications in bioinformatics. The basic concepts involved 
with the relational model are easily grasped; data are populated into rows and columns in a table, 
and tables are associated with one another by joining fields that match in the two tables. However, 
the relational model has several limitations. Because the relational model is based on rows and 
columns, it's most efficient working with scalar data such as names, addresses, and laboratory 
values. That is, all relationships between objects must be based on data values as opposed to a 
location or place-holder in the database. This limitation often requires the database designer to 
create additional relations to describe logical associations between data elements. For example, in a 
relational database containing both nucleotide and amino acid sequences, the researcher can't relate 
the two without the aid of tables that relate nucleotide sequences to proteins and protein sequences 
to specific amino acids.

An even greater limitation of the relational model from a bioinformatics perspective is that the 
metaphor of rows and columns often isn't a natural fit for sequence or protein shape data. Recall that 
one reason for using a DBMS is to allow users to think of data management in abstract, high-level 
terms, instead of the underlying algorithms and data representation schemes. Although tables of 
rows and columns can be considered a simplification over hard disk platters, they can seem obtuse to 
a researcher working with thousands of sequences, genes, and other data that don't fit neatly into a 
tabular metaphor. That is, the relational model often doesn't hide the complexity of genomic data. As 
a result, various other data models are used by professionals in the biotech industry.

One alternative to the relational model is the hierarchical model, which predates the relational model 
by a decade. Unlike the flexible relational model, permanent hierarchical connections are defined 
when the database is created. Within the hierarchical database model, the smallest data entity is the 
record. That is, unlike records in a relational model, records within a hierarchical database are not 
necessarily broken up into fields. In addition, connections within the hierarchical model don't depend 
on the data. The hierarchical links, sometimes called the structure of the data, can best be thought of 
as forming an inverted tree, with the parent file at the top and children files below. The relationship 
between parent and children is a one-to-many connection, in that one parent may produce multiple 
children.

The basic operation on the hierarchical database is the tree walk, proceeding from parent to child. 
Data can be retrieved only by traversing the levels of the hierarchy according to the path defined by 
the succession of parent fields. This unidirectional convention causes certain relationships to be 
difficult to extract from the database, even though they may be explicit in the data. For example, one 
characteristic of the hierarchical model is that information must often be repeated. Returning to the 
author-subject database example, under the topic of neurofibromatosis, if an author wrote more than 
one paper on the subject, the author's name and contact information would be repeated throughout 
the database.

The hierarchical model was once very popular in medicine, in the form of the Massachusetts General 
Hospital Utility Multi-Programming System (MUMPS) database language, which was used to develop 
one of the first electronic medical record (EMR) systems. A reason for the initial popularity of MUMPS 
in the early 1960s was that the data model is a good fit for clinical data, which tends to follow a 
standard topic outline, which is hierarchical. For example, patients at the top of the hierarchy have 
child nodes containing the elements of the EMR, including chief complaint, diagnosis, and laboratory 
results, as defined in Table 2-2. The limitation, noted earlier, is that for every patient admission, 
certain data must repeated, such as the patient's address, billing information, and other demographic 
information.

The hierarchical model remains significant in bioinformatics if only because a library of clinical 



information resides in databases following this model. For example, a descendent of MUMPS called 
simply M is the standard for EMRs in the Veterans Administration hospitals throughout the U.S.

Because of the storage inefficiency of the hierarchical model for some types of data, the network 
model was developed in the late 1960s. For example, the network model is more flexible than the 
hierarchical one because multiple connections can be established between files. These multiple 
connections enable the user to gain access to a particular file more effectively, without traversing the 
entire hierarchy above that file. Unlike the one-to-many relationship supported by the hierarchical 
model, the network model is based on a many-to-one relationship. The network model is significant 
in bioinformatics in that it may play a significant role in the architecture of the Great Global Grid and 
other Web-based computing initiatives.

One of the most significant alternatives to the relational database model is the object-oriented model 
in which complex data structures are represented by composite objects, which are objects that 
contain other objects. These objects may contain other objects in turn, allowing structures to be 
nested to any degree. This metaphor is especially appealing to those who work with bioinformatics 
data because this nesting of complexity complements the natural structure of genomic data (see 
Figure 2-18).

Figure 2-18. Object-Oriented Data Representation. The object-oriented data 
model is natural for hiding the complexity of genomic data.

The object-oriented model combines the natural structure of the hierarchical model with the flexibility 
of the relational model. As such, the major advantage of the object-oriented model is that it can be 
used to represent complex genomic information, including non-record-oriented data, such as textual 
sequence data and images, in a way that doesn't compromise flexibility. Furthermore, with an object-
oriented DBMS, it's possible to use arbitrary data types, and complex relationships can be queried 
without having to create resource-intensive joins between tables. The object-oriented model is 
considered optimum for handling genomic data, because it allows combinations of data to be treated 
as single entities. Instead of thinking about a gene with exons, introns, mRNA, nucleotide sequences, 
associated proteins, and their 3D shapes as a separate sound file, a separate video file, and a 



separate text document, researchers can simply work with the gene object.

Although the object-oriented approach holds great promise in bioinformatics, it still lags far behind 
relational technology in the global database market. In addition, because of the flexibility and power 
of the relational design, many of the object-oriented DBMS products on the market are based on 
extensions of commercial relational database packages. Because of the added overhead, the 
performance of these hybrid object-oriented systems is necessarily less than that of either a pure 
relational or an object-oriented system.

In addition to object-oriented models built on relational model technology, a variety of other models 
that are optimum for bioinformatics work can be constructed from relational technology. For 
example, the deductive model is an extension of the relational database with a logic programming 
interface based on the principles of logic programming. The logic programming interface is composed 
of rules, facts, and queries, using the relational database infrastructure to contain the facts.

The database is termed deductive because from the set of rules and the facts it is possible to derive 
new facts not contained in the original set of facts. Unlike logic programming languages such as 
PROLOG, which search for a single answer to a query using a top-down search, deductive databases 
search from bottom-up, starting from the facts to find all answers to a query.

For example, using the format "patient (Patient ID, Sex, Mother Carrier, Father Trait)," data in the 
deductive database describing a sex-linked recessive gene such as red-green color blindness could be 
represented in a relational table as in Table 2-6.

Table 2-6. Data for a Deductive Database. Columns, from left to right, 
represent Patient ID, Sex, Mother Carrier, and Father Trait.

Patient ID Sex Mother Carrier Father Trait

001 Male Yes Yes

002 Female Yes No

003 Male No Yes

004 Female No Yes

005 Male Yes No

006 Male No No

007 Female Yes Yes

A relevant rule in a deductive database would be:

Potential Carrier  (Sex = Female) AND (Mother Carrier = Yes)

That is, the patient is a potential carrier if the sex of the patient is female and the patient's mother is 
a known carrier. Males with the gene exhibit the disease, or red-green color blindness. However, 
because the gene involved in color blindness is maternal, then the state of the father's color acuity is 
irrelevant.

The query:



 Patient ID (X, potential carrier)

Would return the list of patients that should be tested for the genetic anomaly, in this case Patient 
002 and Patient 007 from Table 2-6. Despite the obvious uses of deductive databases in 
bioinformatics, most deductive databases are either academic projects or internally developed and 
have yet to enter the ranks of commercial relational database products.

One more model worth mentioning is loosely defined as the semi-structured model. This model is a 
hybrid between a flat file and a hierarchical model, typically written as a text document in eXtensible 
Markup Language (XML). The major advantage of the semi-structured model (which, like a flat file, 
isn't really a model per se) includes the ability to revise the structure to match new requirements on-
the-fly. Like the hybrid model, however, there is a likely repetition of data.

Regardless of the model, at the highest level of abstraction of the DBMS is the view. That is, views 
are abstract models of portions of the conceptual database. Each view describes some of the 
database entities, attributes, and relationships between entities in a format convenient for a specific 
class of user or application. For example, researchers in a pharmacogenomic firm working with an 
application to report sequencing results do not need to know about patient findings. Similarly, 
clinicians in the pharmacology department may not need access to sequence results, but may require 
access to patient files. Thus, there may be one view of the database for the sequencing department 
and one for the proteomics department. As described in the following section, the view abstraction 
has application in user interface design.



 
Interfaces

Databases don't stand alone, but communicate with devices and users through external and user 
interfaces, respectively. Getting data into a database can come about programmatically as in the 
creation of a data warehouse or data mart through processing an existing database. More often, the 
data are derived from external sources, such as user input through keyboard activity, or devices 
connected to a computer or network.

Common sources of input data include mouse and keyboard activity, voice recognition, bar-code 
readers, wireless devices, and RF-ID tags. Electronic data recorders, sequencing machines, and a 
variety of test equipment can also provide data for inclusion in the database, according to device 
communications standards. A variety of standards, such as the IEEE 1073 Point of Care Medical 
Device Communications standard, define the format, speed, and protocol of communications between 
workstations and external devices (see Figure 2-19).

Figure 2-19. External Interfaces. Databases communicate with equipment 
and users through a variety of external interfaces.

Getting data into a database is of little value unless the data can also be retrieved. As illustrated in 
Figure 2-19, the most common methods for extracting data from a database are based on the 
Internet or an intranet and languages such as the Common Gateway Interface (CGI), the PHP: 
Hypertext Processor (PHP), and Java. In each case, the user issues a command from the workstation 
that is interpreted in the server. Results of the database query are then processed by language 
system and HTML is sent to the user's browser. In this scenario, the computational overhead is borne 
by the server.

Each system handles high-level database queries differently. For example, to perform a query using 
CGI, the user submits a query through a Web browser and the server executes a program, a CGI 
script, and the user's query is passed to the database via CGI. The program then returns information 
to the server via CGI, and this information is formatted into an HTML Web page that is displayed 
through the user's browser.

Similarly, the PHP interface offloads database query functions to the server, which handles the query, 
formats results, and conveys these to the user via standard HTML. Although PHP, which was 



originally referred to as Personal Home Page/Forms Interpreter (PHP/FI), is less established than 
CGI, it is considerably more powerful as a database interface. For example, unlike other scripting 
languages for Web page development, PHP offers excellent connectivity to most of the common 
databases, including Oracle, Sybase, MySQL, ODBC and many others. Java is also a server-side 
language that shares many of the database interface features of CGI and PHP. In addition, like PHP, 
Java uses a language that loosely resembles C.

CGI, PHP, and Java are all dependent on the server hardware for performance, and don't make 
additional demands for space or execution time on the workstations that are accessing data. This is 
in contrast with JavaScript, which has little to do with Java. JavaScript runs on the client side of the 
interface and, as such, can be malicious because of JavaScript viruses. JavaScript, while providing 
interactivity to Web pages, is much less useful as a database query tool compared to CGI, PHP, or 
Java.

Regardless of the language used to extract data from a database, the data have to be displayed on 
the user's monitor in an appropriate, understandable, and attractive way. This component of the user 
interface is most easily handled with a separate style sheet that defines the characteristics for the 
display device. In this paradigm, data to be displayed are first extracted from the database and 
coded in XML, a markup language for the Web that classifies content, but doesn't define how it 
should be displayed. A separate style sheet, in the form of an Extensible Stylesheet Language (XSL) 
document, specifies how the data are to be displayed in the user's browser.

Using the XML/XSL approach, modifying the manner in which data are displayed can be done without 
changing the XML Document, and involves simply modifying the relevant style sheet. Similarly, if the 
data change, only the XML document need be changed, not the style sheet. For example, consider 
the differences in how wireless content appears in HTML, XML, and XSL for the following database 
report.

Genetic History: The patient's mother is carrier for BCG1.

In standard HTML, which combines data and formatting instructions, the source code could appear 
as:

<HTML>

<BOLD> Genetic History: </BOLD>

The patient's

<I> mother </I>

 is a

<I> carrier </I>

for

<I> BCG1 </I>.

</HTML>

Notice that <BOLD> and </BOLD> are the HTML instructions to display in boldface type whatever 
comes between these two tags. Similarly <I> and </I> are the instructions to italicize the type 
between these two commands. By decoupling content from format instructions, changes in content 
can be made without the need to modify the formatting instructions given in the style sheets. Here's 
an example (formatted for clarity), using XML to categorize the data and XSL source code to describe 



formatting:

<PHRASE>

<GENETIC_CATEGORY> Genetic History: </ GENETIC_CATEGORY >

The

<SUBJECT> patient's </SUBJECT>

<PARENT> mother </PARENT>

 is

<GENOTYPE> recessive </GENOTYPE>

 for

<GENE> BCG1 </GENE>

.

  </PHRASE>

Assuming that the data are destined to be displayed on a wireless PDA with a monochrome display, 
one that supports bold and italic text formatting, the associated XSL source code could take the 
form:

FORMAT "GENETIC_CATEGORY" = BOLD

FORMAT "PARENT" = ITALICS

FORMAT "GENOTYPE" = ITALICS

FORMAT "GENE" = ITALICS

Furthermore, because the data in XML is decoupled from the display information in XSL, the 
symptom can be displayed in italics on the PDA and, for example, in red bold text on a laptop with a 
color display.



 
Implementation

Even with all of the public-domain databases accessible through the Internet, there will be research 
tasks that necessitate using a local database. The reasons vary from a need to collect, analyze, and 
publish sequence information inside a small laboratory to establishing a massive data warehouse as 
part of a pharmacogenomic R&D effort. In either case, the general issues and challenges are the 
same, albeit in different degrees of severity. As shown in Table 2-7, the major database 
implementation issues range from the storage capacity requirements and cost to scalability and 
security.

Table 2-7. Bioinformatics Database Implementation Issues.

Issue Description

Accessibility Ease of use, support for multiple mental models and database 
abstractions

Archiving Support for the archival process, including software and hardware, and 
offsite storage facilities

Capacity Local and remote data storage capacity, including space for expansion 
of the database

Connectivity Connectivity through local and wide area networks, intranets, and the 
Internet

Control Internal vs. third-party control of data, which may be an issue with 
storage service providers and other Internet-based commercial storage 
options

Cost Initial, operating, and indirect (need to upgrade current network 
hardware and software, purchase additional peripherals) costs

Data Dictionary Design, implementation, and maintenance of the data dictionary

Data Formats Data formats supported by the database

Data Input Hardware, software, and processes involved in feeding data into the 
database, from keyboard and voice recognition to direct instrument 
feed and the Internet

Data Model Flat files, relational, hierarchical, network, object-oriented, or semi-
structured

DBMS Software Robustness, scalability, performance, cost, vendor reputation (if 
commercial), support available (if open source)

Dependencies Dependence on primary databases for populating the database, 
especially regarding update frequency provision for validating data to 
minimize propagation of errors

Disaster Recovery Procedural, hardware, and software provisions for disaster recovery, 
including error recovery mechanisms

Export/Import Capabilities Provisions for importing and exporting data to and from different file 
formats

Hardware Requirements Hard disks, controllers, backup hardware, production and staging 
servers for large database projects



Indexing Indexing methodology, including selection and use of the most 
appropriate controlled vocabulary

Integration Integration with other databases

Intellectual Property Ownership of sequence data, images, and other data stored in and 
communicated through the database

Interfaces Connectivity with other databases and applications

Legacy Systems How to deal with legacy data and databases

Licensing For vendor-supplied database systems, the most appropriate licensing 
arrangement

Life Span The MTBF for the hardware as well as the likely useful life of the data

Load Testing The maximum number of simultaneous users that can be supported by 
the DBMS

Maintenance Cost and resource requirements

Media The most appropriate disk, tape cartridges, and CD-ROM media

Normalization Avoiding errors by representing data one way, one time, and in one 
place

Operating Environment Ensuring proper power and operating temperature and humidity

Operating System UNIX, Linux, Windows, MacOS, or mini/mainframe OS

Output Format of database output

Performance Access time and data throughput

Privacy Provision for preserving confidentiality of data

Query Language Proprietary or standard query language

Redundancy Hot backups, shadowing, and RAID systems

Resource Requirements Hardware, software, and operating and development personnel

Scalability Ability to handle greater data volume with added hardware and/or 
software upgrades

Security Limits on user access, from username-password combinations to 
biometrics, as well as encryption of sessions

Stand-Alone vs. Network And multi- vs. single user

Standards From media format to operating system, query language, and data 
models

Utilities Availability of software tools for data recovery

Vendor Viability Commercial viability of the hardware and software vendors supplying 
database tools and platform

For example, a milestone in designing and implementing a database is defining the type of data to be 
stored. This decision will then imply the most appropriate data model and type of DBMS to employ. If 
the data are nucleotide sequences, then a reasonable choice would be a semi-structured database 
based on XML-tagged text files. However, if the data are images of 3D protein structures and 
keywords, then either an object-oriented or a relational database would likely be more appropriate. 
Even though the representation of rows and columns may not be optimum for mapping protein 
structures onto a database, factors such as support from a commercial relational database vendor 
and support might dictate use of a relational product.

Consider the process involved in creating a central data warehouse of a scale appropriate for the 



pharmacogenomic laboratory discussed at the beginning of this chapter. The six-stage process 
usually involves these phases: planning; data consolidation; data transformation; selective archiving; 
data distribution; and ongoing maintenance.

In the planning stage, arguably the most important phase of data warehouse development, 
representatives from administration, R&D, and information technology departments decide exactly 
what to include in the data warehouse. Ideally, the data warehouse content should reflect the 
questions likely to be asked. For example, researchers might want to correlate microarray values 
with specific clinical diagnoses, and administrators might want to compile summaries of average 
sequence run costs. Because of practical cost, resource, and performance limitations, it's normally 
impossible to store every data element from every application in a data warehouse. The planning 
phase directly impacts the eventual cost and functionality of the data warehouse.

In the consolidation phase, the selected data from each application database are restructured. This 
typically involves adding fields and relations to reflect how the data will be used in the data 
warehouse. The goal in the consolidation phase is to provide an efficient framework that supports 
queries likely to be asked, as determined in the planning stage.

The data transformation stage of data warehouse development involves transforming the 
consolidated data into a more useful form through summarization and packaging. In summarization, 
the data are selected, aggregated, and grouped into views more convenient and useful to users. 
Packaging involves using the summarized data as the basis of graphical presentations, animations, 
and charts.

Selective archiving involves moving older or infrequently accessed data to tape, optical, or other long-
term storage media. Archiving saves money by sparing expensive magnetic, high-speed storage, and 
minimizes the performance hit imposed by locally storing data that is no longer necessary for 
outcomes analysis.

The distribution phase makes data contained in the data warehouse available to users. Providing for 
distribution encompasses front-end development so that users can easily and intuitively request and 
receive data, whether in real-time or in the form of routine reports. Push technologies, including e-
mail alerts, can be used to distribute data to specific users. The Web is also a major portal for 
accessing the data.

Maintenance is the final, ongoing stage of data warehouse development. However, creating a data 
warehouse involves much more than simply designing and implementing a database. Even if there is 
a process in place for extracting, cleaning, transporting, and loading data from sequence machines, 
bibliographic reference databases, and other molecular biology applications, and distribution tools are 
both powerful and intuitive, the data warehouse may not be sustainable in the long-term. For 
example, the process of extracting, cleaning, and reloading data can be prohibitively expensive and 
time-consuming. A sustainable data warehouse provides a real benefit to users to the degree that not 
only is the return worth the original development, but that it is valuable enough to warrant continual 
redesigning and evaluation to meet changing demands.

Infrastructure

From a hardware perspective, implementing a database requires more than servers, large hard 
drives, perhaps a network and the associated cables and electronics. Power conditioners and 
uninterruptible power supplies are needed to protect sensitive equipment and the data they contain 
from power surges and sudden, unplanned power outages. Providing a secure environment for data 
includes the usual use of username and passwords to protect accounts. However, for higher levels of 
assurance against data theft or manipulation, secure ID cards, dongles, and biometrics (such as 
voice, fingerprint, and retinal recognition) may be appropriate.

Secure ID cards are credit card–sized pseudorandom number generators that are synchronized with a 
similar generator on the server. Users enter the 16-digit number displayed on the secure ID card for 



their password to gain access to the system. Biometric security systems use personal biological 
characteristics, such as a fingerprint, voice, or the pattern of capillaries on the retinae to verify the 
identity of a user. Dongles are hardware keys that applications look for on either the serial or USB 
port of a workstation before users can access their data and applications. Dongles can be considered 
as a form of hardware-based encryption. Dedicated, high-speed hardware capable of high-speed 
encryption and decryption are available options as well.

Encryption is the use of a key or code to scramble a message so that it can only be deciphered by 
someone with knowledge of the key and the algorithm used to encrypt the original message. From a 
practical perspective, encryption is the processing of data so that it's at least challenging for casual 
eavesdroppers to read, even if the data are intercepted.

For Web-based databases, Secure Socket Layer (SSL) is the dominant security protocol. Information 
transmitted over the Web using SSL is automatically encrypted, and only when the user's Web 
browser and the computer serving content have the same key can they communicate. Both Netscape 
and Internet Explorer support the optional use of SSL.

One of the limitations of SSL is that it's wedded to the client/server architecture, where a secure 
session is established, through which any amount of data may be securely transmitted for the 
duration of the session. A complementary communications protocol that makes use of encryption is 
Secure Hypertext Transfer Protocol (S-HTTP), a protocol that is designed to transmit individual 
messages securely over the Web. That is, SSL provides a secure communications channel for the 
length of the connection between the client and the server, regardless of whether or not data is 
flowing from one to the other. In contrast, S-HTTP is more appropriate for short communications that 
only uses the channel when data are moving from sender to receiver.

Regardless of whether SSL or S-HTTP is used, at the core of communications over the Internet is an 
encryption technology called Public Key Encryption (PKE), which is based on a pair of keys or data 
strings. One key is public, known or at least knowable to everyone, and one key is private, known 
only to the sender. The private key, which is not shared with anyone, is used to decrypt information 
that's been encrypted by someone using the public key. In other words, encoding uses a generally 
available public key and decoding is performed using a private key available only to the intended 
recipient. PKE is like a physical padlock, where one key is used to lock a padlock and another key to 
open it.



 
Endnote

Looking to the immediate future, the database technologies that will most likely have a significant 
impact on bioinformatics are the ones that deal with systems integration, the process in which 
disparate computer applications and systems can share data. Because the applications in a typical 
biotech laboratory are often cobbled together from different vendors and custom, in-house 
development, and may be running on multiple generations of hardware, system integration is still a 
custom-programming task. As a result, integrating every database in an organization can take 
months of effort, considerable expense, and have only mixed results. Part of the challenge is that, 
due to the relative youth of the bioinformatics arena, the market has yet to respond to the need for 
commercial integration tools that address the specific needs of the community. Two areas in which 
rapid innovation is required for database integration and overall improved interoperability of 
bioinformatics tools are vocabulary standards and DBMSs.

Although organizations such as NCBI and the National Library of Medicine are actively involved in 
developing tools for the molecular biologist working in the field of bioinformatics, a vocabulary of 
bioinformatics has yet to be defined. As a result, most data warehouses and data dictionaries are 
based on ad-hoc compilations of existing vocabularies with additions made on an as-needed basis. 
Part of the challenge of creating a standard bioinformatics vocabulary is determining the appropriate 
level of granularity needed to adequately describe everything from nucleotide sequences and protein 
structure to species data. This challenge is intensified as the focus of bioinformatics research shifts 
from nucleotide sequencing to proteomics, which necessarily includes phenotypic expression data 
stored in clinical systems. As a result, an all-encompassing vocabulary must increasingly incorporate 
data in the medical record and public health as well.

In the area of DBMSs, although the relational model currently dominates the market, the complexity 
of clinical and laboratory data is driving many researchers to seriously consider other DBMS 
technologies, such as object-oriented DBMSs. While there is a great deal of interest in object-oriented 
approaches to supporting bioinformatics computing, the information technology community is still 
expressing caution toward the technology. This is partly because many object-oriented database 
systems are incomplete, in that they lack backup and recovery functions. In addition, data models 
often conflict, the languages supported by vendors are proprietary, scalability is unproven, and the 
systems require huge amounts of memory and computational resources. In the recent past, vendors 
have partially addressed these and other limitations of ODBMs, but performance and scalability 
concerns remain.

Several vendors are building what they consider the next generation of bioinformatics database 
systems, but it's uncertain which of these systems will establish a standard. As such, the most 
promising technologies in the systems integration arena are aimed at the general computing market, 
such as Web Services, Storage Area Networks, Storage Service Providers, or Application Service 
Providers. Time will tell which of these models, if any, can be shown to be economically—as opposed 
to simply technologically—viable. In most cases, this translates to technologies that are transparent 
to the research workflow, thereby augmenting current processes and contributing to effectiveness of 
R&D.

By far the most significant challenges surrounding the effective use of database technology in 
bioinformatics relate to issues of security, privacy, and bioethics, and how these issues will eventually 
affect legislation that will either support or hamper advances in the field. Consider the privacy and 
security issues associated with having an individual's medical records and DNA analysis available 
online and instantly available to teachers, employers, the courts, police, the FBI, and, inevitably, 
hackers. For now, the challenge is achieving the level of database integration that would make these 
issues a reality. At best, integration is limited to what Internet and intranet technology can support, 
through both fixed or hard-wired links and, more commonly, through dynamic links provided by 
online search engines. As described in Chapter 4, "Search Engines," significant progress in molecular 
biology database integration is being made in this arena.



 

Chapter 3. Networks
 Ebola Virus structure, superimposed over its PDB summary information. Image 
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People seldom improve when they have no other model but themselves to copy after.

—Oliver Goldsmith

Comparing a data network to a living organism, the hardware provides the skeleton or basic 
infrastructure upon which the nervous system is built. Similarly, a few hundred meters of cable 
running through the walls of a laboratory is necessary but insufficient to constitute a network. 
Rather, the data pulsing through cables or other media in a coordinated fashion define a network. 
This coordination is provided by electronics that connect workstations and shared computer 
peripherals with the networks that amplify, route, filter, block, and translate data. Every competent 
bioinformatics researcher should have a basic understanding of the limits, capabilities, and benefits of 
specific network hardware, if only to be able to converse intelligently with hardware vendors or to 
direct the management of an information services provider.

According to Chaos Theory, the ability to adapt and the capacity for spontaneous self-organization 
are the two main characteristics of complex systems—systems that have many independent variables 
interacting with each other in many ways and that have the ability to balance order and chaos. In 
this regard, computer networks qualify as complex systems, always at the edge of failure, but still 
working. In some sense, it's difficult to define success and failure for these systems, in part because 
of the so-called law of unintended consequences that stipulates these systems can provide results so 
beneficial, so out of proportion to the intended "success" that they overshadow the significance of the 
intended goal. Consider that gunpowder was intended as an elixir to prolong life, or that the adhesive 
on 3M Post-It Notes® was intended to be a superglue, Edison's phonograph was intended to be a 
telephone message recorder, and Jacquard's punch card was intended to automate the loom, not to 
give the computer its instructions or determine presidential elections. Such is the case with the 
Internet, one of the greatest enabling technologies in bioinformatics, allowing researchers in 
laboratories anywhere on the globe to access data maintained by the National Center for Biological 
Information (NCBI), the National Institutes of Health (NIH), and other government agencies.

The Internet was never intended to serve as the portal to the code of life, but was a natural 
successor to the cold war projects in the 1950s and early 1960s. During this time, the military 
establishment enjoyed the nearly unanimous respect and support of politicians and the public. 
Universities with the top science and engineering faculties received nearly unlimited funding, and the 
labors of the nation's top scientists filtered directly into industry. Military demand and government 
grants funded the development of huge projects that helped establish the U.S. as a Mecca for 
technological developments in computing and communications networks.

The modern Internet was the unintended outcome of two early complex systems: the ARPANET 
(Advanced Research Project Agency Network) and the SAGE system (semiautomatic ground 
environment), developed for the military in the early 1950s and 1960s, respectively. SAGE was the 
national air defense system comprised of an elaborate, ad hoc network of incompatible command and 
control computers, early warning radar systems, weather centers, air traffic control centers, ships, 
planes, and weapons systems. The communications network component of the SAGE system was 
comprehensive and extended beyond the border of the U.S. and included ships and aircraft. It was 
primarily a military system, with a civil defense link as its only tie with civilian communications 
system.

Government-sponsored R&D increasingly required reliable communications between industry, 
academia, and the military. Out of this need, and spurred by the fear of disruption of the civilian 
communications grid through eventual nuclear attack, a group of scientists designed a highly 
redundant communications system, starting with a single node at UCLA in September of 1969. By 
1977, the ARPANET stretched across the U.S. and extended from Hawaii to Europe. The ARPANET 
quickly grew and became more complex, with an increasing number of nodes and redundant cross-
links that provided alternate communications paths in the event that any particular node or link 
failed.

Although the ARPANET's infrastructure was an interdependent network of nodes and 
interconnections, the data available from the network was indistinguishable from data available from 
any standalone computer. The infrastructure of the system provided redundant data communications, 



but no quick and intuitive way for content authors to cross-link data throughout the network for later 
access—the mechanism that allows today's Internet users to search for information. In 1990, 
ARPANET was replaced by the National Science Foundation Network (NSFNET) to connect its 
supercomputers to regional networks. Today, NSFNET operates as the high-speed backbone of the 
Internet.

Fortunately, and apparently coincidentally, during the period of military expansion in the 1950s and 
1960s, federally funded researchers at academic institutions explored ways to manage the growing 
store of digital data amid the increasingly complex network of computers and networks. One 
development was hypertext, a cross-referencing scheme, where a word in one document is linked to 
a word in the same or a different document.

Around the time the ARPANET was born, a number of academic researchers began experimenting 
with computer-based systems that used hypertext. For example, in the early 1970s, a team at 
Carnegie-Mellon University developed ZOG, a hypertext-based system that was eventually installed 
on a U.S. aircraft carrier. ZOG was a reference application that provided the crew with online 
documentation that was richly cross-linked to improve speed and efficiency of locating data relevant 
to operating shipboard equipment.

In addition to applications for the military, a variety of commercial, hypertext-based document 
management systems were spun out of academia and commercial laboratories, such as the Owl 
Guide hypertext program from the University of Kent, England, and the Notecards system from Xerox 
PARC in California. Both of these systems were essentially stand-alone equivalents of a modern Web 
browser, but based on proprietary document formats with content limited to what could be stored on 
a hard drive or local area network (LAN). The potential market for these products was limited 
because of specialized hardware requirements. For example, the initial version of Owl Guide, which 
predated Apple's HyperCard hypertext program, was only available for the Apple Macintosh. 
Similarly, Notecards required a Xerox workstation running under a LISP-based operating system. 
These and other document management systems allowed researchers to create limited Web-like 
environments, but without the advantage of the current Web of millions of documents authored by 
others.

In this circuitous way, out of the quest for national security through an indestructible communications 
network, the modern Internet was born. Today, the Internet connects bioinformatics researchers in 
China, Japan, Europe, and worldwide, regardless of political or national affiliation. It not only provides 
communications, including e-mail, videoconferencing, and remote information access. Together with 
other networks, the Internet provides for resource sharing and alternate, reliable sources of 
bioinformatics data.

As an example of how important networks are in bioinformatics R&D, consider that the typical 
microarray laboratory involved in creating genetic profiles for custom drug development and other 
purposes generates huge amounts of data. Not only does an individual microarray experiment 
generate thousands of data points, usually in the form of 16-bit tiff (tagged image file format) files, 
but the experimental design leading up to the experiments, including gene data analysis, involves 
access to volumes of timely data as well. Furthermore, analysis and visualization of the experimental 
data requires that they be seamlessly and immediately available to other researchers.

The scientific method involves not only formulating a hypothesis and then generating creative and 
logical alternative solutions for methods of supporting or refuting it, but also a hypothesis that will 
withstand the scrutiny of others. Results must be verifiable and reproducible under similar conditions 
in different laboratories. One of the challenges of working with microarrays is that there is still 
considerable art involved in creating meaningful results. Results are often difficult to reproduce, even 
within the same laboratory. Fortunately, computational methods, including statistical methods, can 
help identify and control for some sources of error.

As shown in Figure 3-1, computers dedicated to experimental design, scanning and image analysis, 
expression analysis, and gene data manipulation support the typical microarray laboratory. The 
microarray device is only one small component of the overall research and design process. For 



example, once the experiment is designed using gene data gleaned from an online database, the 
microarray containing the clones of interest has to be designed and manufactured. After hybridization 
with cDNA or RNA from tissue samples, the chips are optically scanned and the relative intensity of 
fluorescent markers on the images are analyzed and stored. The data are subsequently subject to 
further image processing and gene expression analysis.

Figure 3-1. Microarray Laboratory Network. The computers in a typical 
microarray laboratory present a mixture of data formats, operating 

systems, and processing capabilities. The network in this example, a wired 
and wireless local area network (LAN), supports the microarray laboratory 
processes, from experimental design and array fabrication to expression 

analysis and publishing of results.

In this example, the server provides a gateway or access point to the Internet to access the national 
databases for gene data analysis. Individual computers, running different operating systems, share 
access to data generated by the microarray image scanner as soon as it's generated. For example, 
even though a workstation may be running MacOS, UNIX, Linux, or some version of the Windows 
operating system, and the microarray image scanner controller operates under a proprietary 
operating system, the network provides a common communications channel for sharing and 
capturing data from the experiment as well as making sense of it through computer-based analysis. 
The network also supports the sharing of resources, such as printers, modems, plotters, and other 
networked peripherals. In addition, a wireless extension of the network allows the researchers to 
share the wireless laptop for manipulating the data, such as by transforming spot data from the 
image analysis workstation to array data that can be manipulated by a variety of complex data-
manipulation utilities. In this context, the purpose of the LAN is to provide instantaneous connectivity 
between the various devices in the laboratory, thereby facilitating the management, storage, and use 
of the data.

Consider the process without the network depicted in Figure 3-1. The gene analysis workstation 
would have to be connected directly to the Internet—a potentially dangerous proposition without a 
software or hardware firewall or safety barrier to guard against potential hackers. Similarly, the 



results of any analysis would have to be separately archived to a floppy, Zip® disk, or CD-ROM. In 
addition, sharing experimental data would require burning a CD-ROM or using other media 
compatible with the other workstations in the laboratory. Simply attaching a data file to an e-mail 
message or storing it in a shared or open folder on the server would be out of the question. Data 
could also be shared through printouts, but because the computers aren't part of a network, each 
workstation requires its own printer, plotter, modem, flatbed scanner, or other peripherals. For 
example, unless the expression analysis workstation has its own connection to the Internet, results of 
the experiment can't be easily communicated to collaborating laboratories or even the department in 
an adjoining building. Furthermore, even though many of the public online bioinformatics databases 
accept submissions on floppy or other media, the practice is usually frowned upon in favor of 
electronic submission.

Without the wireless component of the LAN, researchers in the lab would not be able to instantly 
explore the data generated by the scanning and analysis workstation, but would have to wait until 
the other researchers operating a workstation have time to write the data to a disk or other media. 
More importantly, every workstation operator would be responsible for backing up and archiving their 
own data—a time-consuming, high-risk proposition. It's far more likely, for example, that a 
researcher in the laboratory will fail to manually archive local data on a regular basis than it is for a 
central, automated backup system to fail.

This brief tour of this prototypical microarray laboratory highlights several applications of networks in 
bioinformatics. The underlying advantage of the network is the ability to move data from one 
computer to another as quickly, transparently, and securely as possible. This entails accessing online 
databases, publishing findings, communicating via e-mail, working with other researchers through 
integrated networked applications known as groupware, and downloading applications and large data 
sets from online sources via file transfer protocol (FTP) and other methods.

Although many of these features can be had by simply plugging in a few network cards and following 
a handful of instruction manuals, chances are that several key functions won't be available without 
considerably more knowledge of network technology. For example, selecting and configuring a 
network requires that someone make educated decisions regarding bandwidth, reliability, security, 
and cost. Furthermore, mixed operating system environments typical of bioinformatics laboratories, 
which tend to have at least one workstation running Linux or UNIX, presents challenges not found in 
generic office networks.

What's more, it may not be obvious from the simple network depicted in Figure 3-1 that 
bioinformatics networks present unique networking challenges that typically can't be addressed by 
generic network installations. The first is that there is a huge amount of data involved. The network 
isn't handling short e-mail messages typical of the corporate environment, but massive sequence 
strings, images, and other data. In addition, unlike networks that support traditional business 
transaction processing, data are continually flowing from disk arrays, servers, and other sources to 
computers for processing because the data can't fit into computer RAM. As a result, the network and 
external data sources are in effect extensions of the computer bus, and the performance of the 
network limits the overall performance of the system. It doesn't matter whether the computer 
processor is capable of processing several hundred million operations per second if the network 
feeding data from the disks to the computer has a throughput of only 4–5 Mbps.

This chapter continues the exploration of the Internet, intranets, wireless systems, and other network 
technologies that apply directly to sharing, manipulating, and archiving sequence data and other 
bioinformatics information. The following sections explore network architecture—how a network is 
designed, how the components on the system are connected to the network, and how the 
components interact with each other. As illustrated in Figure 3-2, this includes examining networks 
from the perspective of:

●     Geographical scope
●     Underlying model or models used to implement the network
●     Signal transmission technology
●     Bandwidth or speed
●     Physical layout or topology



●     Protocol or standards used to define how signals are handled by the network
●     Ownership or funding source involved in network development
●     Hardware, including cables, wires, and other media used to provide the information conduit 

from one device to the next
●     Content carried by the network

Figure 3-2. Network Taxonomy. Networks can be characterized along a 
variety of parameters, from size or geographical scope to the contents 

carried by the network.

This chapter also explores the practical network implementation issues, especially network security, 
and considers the future of network technology.



 
Geographical Scope

The geographical extent of a network is significant because it affects bandwidth, security, response 
time, and the type of computing possible. For example, it is only because of the high-speed Internet 
backbone that real-time teleconferencing and model sharing are possible on a worldwide basis.

Although the geographical boundaries are somewhat arbitrary the networks are commonly referred to 
as personal area networks (PANs), LANs, metropolitan area networks (MANs), or wide area networks 
(WANs), as depicted in Figure 3-3. Although many networks are interconnected, they can also 
function alone.

Figure 3-3. Network Geographical Scope. Bioinformatics R&D incorporates 
network resources on worldwide (WAN), institution-wide (MAN), and 

laboratory-wide (LAN and PAN) levels.

PANs, which are limited to the immediate proximity of the user, or about a 10-meter radius, are 
typically constructed using wireless technology. LANs extend to about 100-meters from a central 
server, or a single floor in a typical research building. MANs take over where LANs leave off, covering 
entire buildings and extending tens of kilometers. MANs are typically implemented with digital 
subscriber line (DSL), cable modem, and fixed wireless technologies. WANs extend across the 
continent and around the globe, and are typically composed of a combination of terrestrial fixed 
satellite systems, coaxial cable, and fiber optical cable. The public switched telephone network and 
the Internet are examples of WANs.

Grid computing, in which multiple PCs are interconnected to form a distributed supercomputer, can 
take advantage of LAN, MAN, and WAN technology, as a function of computer processing speed, 
network connection bandwidth, and the effectiveness of the software that coordinates activities 



among computers on the grid. For example, relatively slow-speed DSL and cable modem connections 
are used by many of the experimental grid systems, such as the Folding@home project at Stanford 
University. The system uses standard DSL and cable modem networks, which provide between 125 
Kbps and 1 Mbps throughput, to connect over 20,000 PCs to form a grid computer. The higher-speed 
grid systems are necessarily limited to MAN distances using conventional Internet connections or 
WAN distances with much higher-speed network connections. For example, the Department of 
Energy's Science Grid project is based on a 622 Mbps fiber network running a suite of software that 
includes Globus grid software.



 
Communications Models

In the traditional client-server model, a server provides data to one or more clients. In contrast, in a 
peer-to-peer network, every computer acts as a server and client to other computers on the network. 
As such, a particular computer might function as a server one moment and as a client the next (see 
Figure 3-4).

Figure 3-4. Communications Models.

The simplest type of computer network to construct in a small workgroup is a peer-to-peer network. 
In this model, every workstation acts as both a server and a client for every other workstation (see 
Figure 3-4). The disadvantage of the peer-to-peer model is uneven use of resources, in that the 
workstations with the most relevant content are accessed more often than workstations with less-
frequently accessed content. The result is decreased performance for computational tasks of the 
frequently accessed workstations. Another limitation of this design is that data management is more 
challenging. Everyone in the workgroup must perform tasks such as archiving and updating antiviral 
utilities, for example.

In contrast, a client-server model employs a central server to provide programs and data files that 
can be accessed by client workstations on the network. An advantage of this model is that the 
network operating system running on the server provides for security, tiered access privileges, and 
no degradation of individual workstation performance because files are accessed from the server. In 
addition, the data and programs on the central server can be more easily and consistently archived, 
backed up, accessed, and shared.



 
Transmissions Technology

One of the major technological innovations initiated by pioneers of the Internet was the development 
of alternatives to the traditional switched network model first used by telephone switchboard 
operators at the turn of the 19th century. Even though some communications networks, including 
many of the cell phone networks, still follow the switched model, computer networks such as the 
Internet are based on a more complex but bandwidth-sparing packet model. The major disadvantage 
of the much simpler switching model is that it can't provide more communications channels than 
there are switches.

As shown in Figure 3-5, in a switched communications network, once a connection is established, it 
monopolizes the circuit until the switch is released, even though the data has been transferred from 
source to destination and the connection may remain idle. As such, the switching circuit in the figure 
is capable of supporting only six simultaneous bi-directional communications channels. That is, the 
communications path through the network is identical, regardless of which party originates the 
message.

Figure 3-5. Switched Communications. In switched communications 
networks, a fixed, continuous bi-directional connection is established 

between the message source and recipient.

Packet communications makes use of the pauses and breaks in typical communications allowing a 
single physical communications circuit to establish multiple, virtual channels. In the packet paradigm, 
messages are parsed into small segments and packaged into labeled packets by the message 
disassembler and packet generator (see Figure 3-6). These packets travel via various routes through 
the network to the destination, as determined by the traffic density at nodes along the way. Because 
packets are dynamically routed to different nodes as a function of the momentary demand for virtual 
communications channels, some packets may arrive ahead of others, out of the original sequence.

Figure 3-6. Packet Communications. Multiple, virtual communications 
channels are established by breaking up messages into small packets and 

reassembling them at the destination.



At the destination, the data packets are captured by the packet organizer and re-assembled in their 
original order by the message assembler. Even though the recipient is capable of receiving 
information at any time, the communications channel is capable of carrying packets to and from 
other subscribers. That is, the recipient can receive messages at any time without blocking the use of 
the communications channel for other communications. This is in contrast with switched 
communications, which holds the channel captive until the subscriber releases it, even if no data are 
being transferred. Even though packet communications uses separate channels for two-way 
communications, it is nonetheless several orders of magnitude more bandwidth-efficient than 
switched communications. This is especially true with intermittent communications with relatively 
long periods of idle time, such as sending and receiving e-mail or reading content on the Web.



 
Protocols

Bioinformatics R&D involves the generation, capture, management, and repurposing of vast amounts 
of data. Furthermore, robotic sequencers, nucleotide pattern matchers, and other sources of data can 
communicate with workstations and other devices on the network only to the extent that the network 
supports the appropriate protocols or sets of standards that enable unencumbered communications. 
One of the primary benefits of a computer network is interoperability—the ability of different 
computers running different operating systems to share data and resources over a network. 
Furthermore, the more devices that can communicate with each other over a network, the more 
valuable the network becomes. This interoperability can occur by accident, by a single powerful 
vendor defining standards, or, more commonly, by a proposal put forth by a recognized standards 
organization.

The key standards organizations that define or suggest network protocols include the Open Systems 
Interconnection (OSI) group, the Institute of Electrical and Electronics Engineers (IEEE), the 
Consultative Committee on International Telegraphy and Telephony/International 
Telecommunications Union-Telecommunications Sector (CCITT/ITU-T), the American National 
Standards Institute (ANSI), and the Exchange Carriers Standards Association (ECSA), also known as 
the Alliance for Telecommunications Industry Solutions (ATIS).

These organizations define protocols by consensus. Unlike laws enacted by the Federal 
Communications Commission (FCC) or other government agencies, there is no legal penalty for 
ignoring a standard—other than potential economic peril. As such, most companies abide by these 
and other protocols.

OSI, begun by the International Organization for Standardization in the late 1970s, defines high-level 
communications architectures, including the OSI Reference Model (see Table 3-1). The model, which 
defines everything from the physical medium to the semantics of the messages on the network, 
corresponds to the original ARPANET model. TCP/IP, the model upon which the current Internet is 
based, omits layers 5 and 6, the session and presentation levels. As such, TCP/IP illustrates the 
status of standards in the bioinformatics industry. Because the field is expanding so rapidly, there are 
multiple "standards," each of which solves a particular problem.

Table 3-1. The OSI Reference Model. OSI defines the communications 
process into seven different categories that deal with communications and 

network access.

Layer Name Focus

7 Application Semantics

6 Presentation Syntax

5 Session Dialog coordination

4 Transport Reliable data transfer

3 Network Routing and relaying

2 Data Link Technology-specific transfer

1 Physical Physical connections

The IEEE develops standards for the entire computing industry, including wired and wireless 



networks. Unlike the OSI protocols, these standards define specific low-level functionality, such as 
operating frequency, bandwidth, message format, signal voltage, and connector style for computer 
networks. For example, the IEEE-802.3 10BaseT standard defines Ethernet over ordinary twisted pair 
cable. The standard defines the cable, the connector type, pin connections, voltage levels, and noise 
immunity requirements. The most important IEEE standards in bioinformatics are listed in Table 3-2.

Table 3-2. Key Network Protocols.

Standard Description

IEEE 488 Computer to electronic instrument communications; also known as GPIB and 
HPIB

IEEE-802 LAN and MAN standards

IEEE-802.3 Ethernet; the most common LAN specification

IEEE-802.3 10Base-T Ethernet over twisted pair cable

IEEE-802.11 Wireless LANs

IEEE-802.11a 5 GHz, 54 Mbps wireless LAN; shorter range than 2.4 GHz systems, higher 
bandwidth, and more channels than WiFi

IEEE-802.11b 2.4 GHz, 11 Mbps wireless LAN; the most common, most mature; limited 
channels, also known as WiFi

IEEE-802.11e 2.4 GHz, 11 Mbps wireless LAN; enhanced quality of service

IEEE-802.11g 2.4 GHz, 22 Mbps wireless LAN; higher-bandwidth version of 802.11b, 
limited channels

IEEE-802.11i 2.4 GHz, 11 Mbps wireless LAN; enhanced security

CCITT/ITU-T ISDN Digital communications over standard phone lines

CCITT/ITU-T X.25 Switched packet communications

ANSI FDDI High-speed (200 Mbps) fiber backbone LAN

ECSA SONET Very high-speed (10 Gbps) optical network standard

DARPA TCP/IP The protocol of the Internet

The relatively short list of standards in Table 3-2 may give the false impression that there are only a 
few basic standards that network manufacturers abide by. In reality, there are dozens of extensions 
to these and other protocols. For example, the extensions shown for IEEE 802.11 illustrate how the 
standard for wireless LANs has several extensions, each of which provides for significant differences 
in the frequency, bandwidth, and feature of the communications. The relative contribution of each 
factor to the overall bioinformatics project depends on the nature of the project. For example, when 
working with 3D images, bandwidth becomes an issue.

The CCITT/ITU-T develops international network standards that generally involve the telephone 
network. For example, a prominent standard developed by CCITT/ITU-T is Integrated Services Digital 
Network (ISDN). The ISDN standard defines digital communications at a rate of up to 128 Kbps over 
ordinary twisted pair cable. The X.25 protocol, also known as packet switched network, forms the 
basis for packet communications that is similar to that used by the Internet. ANSI is a U.S. 
equivalent of the CCITT/ITU-T, in that it publishes voluntary protocols for use by the U.S. computer 
industry. The most significant ANSI standard that applies to computer networks is the Fiber 
Distributed Data Interface (FDDI). This networking standard defines a fiber-optic network that 
operates between 100 and 200 Mbps. A FDDI LAN is often called a Backbone LAN because it's used to 



join LANs together. The ECSA, a relatively new domestic standards organization, is involved in 
defining network interconnection standards. An example of a significant ECSA protocol is the 
Synchronous Optical Network (SONET) a very high-speed (in excess of 10 Gbps) optical 
communications network.

The most significant protocol used on the Internet is TCP/IP, developed by the Defense Advanced 
Research Project Agency (DARPA). The Transmission Control Protocol (TCP) component of the 
standard defines rules for exchanging information with other Internet points at the packet level. In 
addition, the Internet Protocol (IP) standard defines exchange of information at the Internet address 
level. TCP/IP, the protocol that defines communications on the Internet, is a packet system. It is the 
TCP component of the standard that defines how a message is broken down into packets, sized 
appropriately, and then transmitted over the Internet.



 
Bandwidth

Given the amount of data generated by a typical bioinformatics laboratory, adequate network 
bandwidth—commonly expressed as speed or throughput in thousands or millions of bits per second 
(bps)—is essential to efficient computation and communications. As shown in Figure 3-7, the 
applications operating on data retrieved from a storage area network disk array are typically 
supported by a tiered network system comprising a Gigabit Ethernet. This protocol provides 1 Gbps 
communications throughput between the storage area network disk array and the servers. A Fast 
Ethernet protocol provides 100 Mbps interprocess communications between the server-based 
applications. Finally, a standard Ethernet provides 10 Mbps throughput between workstations, which 
make relatively light throughput demands.

Figure 3-7. Network Bandwidth. Gigabit Ethernet, Fast Ethernet, and 
Ethernet provide a tiered network system that provides a compromise 

between system data throughput, cost, and maintenance.

Although it's tempting to simply put every device on Gigabit Ethernet, there is a cost and 
maintenance issue with a Gigabit or other high-speed network compared to Fast or regular Ethernet. 
For example, Gigabit Ethernet has a limited range compared to regular Ethernet. In addition, 
whereas standard Ethernet works well over twisted pair and coaxial cable, most Gigabit Ethernet 
installations are based on fiber cable and expensive fiber-based electronics.



What constitutes "standard" and "high-speed" is a moving target, in that applications in the general 
networking industry are pushing standard and Fast Ethernet toward retirement. For example, Fast 
Ethernet isn't especially fast compared to the latest Gigabit Ethernet standard, 10 GigE, which 
provides a throughput of about 10 Gbps. As network electronics compatible with 10 GigE proliferate 
and Gigabit Ethernet electronics for workstations become more affordable, the throughput on 
virtually every scientific network, like the minimum workstation clock speed, will be in the giga-
range.



 
Topology

The physical layout of a network, referred to as its topology, is a function of the practical constraints 
imposed by the environment, the protocols that must be supported, and the cost of installation. The 
most common protocols used with LANs, Ethernet and token ring, assume a bus and ring topology, 
respectively. The star topology is often used as a hub to connect several networks and in wireless 
networks, where multiple devices connect via radio frequency, it links to a central wireless access 
point or wireless hub.

The three pure topologies—ring, bus, and star—illustrated in Figure 3-8, rarely exist alone. More 
likely, they are part of a hybrid network such as a small workgroup connected by bus to a star 
network in another workgroup, perhaps supporting computers running under a different operating 
system as well.

Figure 3-8. Network Topologies.

The practical implications of network topologies are material and labor costs associated with running 
cable and purchasing and installing the new network electronics. For example, in establishing a 
laboratory with a new network, running cables from one workstation position to the next to support a 
bus topology is usually cheaper and less labor-intensive than running cables from each workstation 
and device position to a central closet to support a star topology. However, although wiring a 
laboratory to support a star topology is much more expensive in terms of cable required and the 
labor involved in pulling all cables to a central closet, the cables pulled for a star topology can be 
easily reconfigured in a bus to support Ethernet or token ring protocols.

Similarly, a network wired in a ring topology can easily be converted to support an Ethernet bus by 
breaking the ring and installing the appropriate electronics. These modifications are illustrated in 
Figure 3-9. This conversion of topologies is most difficult going from ring or bus topology to a star 
topology, because the electronics in the hub or center of the star typically controls each spoke of the 



hub individually, normally requiring a separate cable from the hub to each device.

Figure 3-9. Network Topology Conversion. Network topologies initially 
configured to support one protocol can be modified to support others. For 
example, a star topology can be converted to a bus or ring topology, and a 

ring can be converted to a bus topology.



 
Hardware

The major network hardware components are the media and network electronics, as described here.

Media

At the lowest level of the hardware infrastructure is the media used to connect the workstations, 
sequencing machines, and microarray readers in a network. The most common media are coaxial 
cable, twisted pair wiring, fiber optics, and, for wireless networks, the ether (see Figure 3-10).

Figure 3-10. Media Characteristics. Bandwidth, cost, security, flexibility, 
and range reflect the innate physical characteristics of the media as well as 
the current state of the art in the associated electronics. In this example, 

ether refers to wireless LAN signals; satellite and point-to-point microwave 
communications links provide the bandwidth comparable to that of fiber 

and coaxial cable.

Coaxial Cable. Coaxial cable is popular as a medium for LANs because it's inexpensive and provides 
the greatest flexibility in installation; it can be folded and kinked with minimal signal loss. The coaxial 
design, where the center conductor is shielded by a copper or aluminum mesh or foil, provides a 
relatively secure connection and a high bandwidth. However, from a security perspective, it's virtually 
impossible to determine if an eavesdropper has tapped a run of coaxial cable. In addition, unlike 
fiber, it's possible for someone with a sensitive receiver and antenna to remotely pick up signals 
traveling through coaxial cable, amplify them, and decode the digital stream. This is especially true in 
coaxial cable designs in which the outer shield is formed by a copper or aluminum wire mesh, which 
provides incomplete shielding of the inner wire compared to cable made with a solid foil outer shield.



Fiber. As summarized in Figure 3-10, of the most popular media used in networks, glass fiber 
provides the greatest bandwidth, highest level of security, greatest range, and resistance to electrical 
noise. Although fiber provides a working range of up to several kilometers with standard electronics, 
it's less flexible to install compared to copper cable. For example, unlike twisted pair or coaxial cable, 
fiber can't be snaked through very tight turns because the glass fiber is more fragile than the copper 
or aluminum wire used in the coaxial cable, twisted pair, or power line cable.

From a security perspective, fiber is the superior medium because, unlike the other copper cables or 
wireless, there is no radio frequency signal that can be intercepted by a nearby receiver. A wire run 
in parallel with a twisted pair or coaxial cable acts as an antenna to pick up the signals traversing 
through the cable that can be amplified and interpreted. In contrast, the light in a fiber cable is 
confined to the optical fiber, which is additionally shielded by a tough sheath. Furthermore, whereas 
coaxial cable or twisted pair can be tapped without detection, tapping into a fiber strand results in a 
marked, detectable drop in signal level because of the loss associated with a physical tap.

Twisted Pair. Twisted pair cable, the wiring used in virtually every office and residence for 
telephone communications, is a comprise between cost, bandwidth, security, and availability. It's 
more affordable than coaxial cable or fiber, but the bandwidth isn't as great, and security is a much 
greater concern. When used with radio frequency network signals, twisted pair cables don't perfectly 
cancel out the signals traversing the two wires, but act as antennas. As a result, not only are signals 
in the cable more readily intercepted, but the twisted pair cable is more susceptible to electrical noise 
in the environment. For this reason, twisted pair may not be able to be used in laboratory settings in 
which electronic equipment may interfere with the network signals, or in which the radiated network 
signals may interfere with sensitive laboratory equipment. One option is to use shielded twisted pair 
cable, but this usually involves running the special cable in walls because standard telephone twisted 
pair cable is unshielded.

Power Line Cable. Power line cable is a low-cost, low-bandwidth solution to networking. Although it 
may be suitable for exchanging text-only e-mails and other small files, the limitations of the medium 
prevent it from being a serious network medium for bioinformatics applications. It may be a viable as 
part of a redundant backup network system, however.

Ether. As a conduit for light or radio frequency signals, the ether provides the greatest flexibility of 
the options listed here, but also presents the greatest security risk. Typical internal installations for 
wireless LANs are limited to the same floor in a building. However, within that space, users may have 
complete mobility with laptops or desktop workstations that are frequently moved. Optical LANs, 
based on infrared (IR) links are line-of-sight only, and are limited to a single work area.

Radio frequency communications are also commonly used between buildings, in the form of 
microwave links. These links tend to be line-of-sight and limited to perhaps 30 miles, depending on 
terrain and buildings that may interfere with line-of-sight communications. Unlike the radio frequency 
technology used with LANs, the bandwidth of these links is on the same order as coaxial cable. 
Similarly, radio frequency satellite links that extend thousands of miles support high-bandwidth 
transmission rates comparable to that provided by coaxial cable and fiber media.

Note that the media characteristics summarized in Figure 3-10 reflect the physical properties of the 
media as well as the current state of the art in network electronics. For example, although wireless 
LANs are limited to a range of about 200 meters because of legal restrictions on the power of the 
electronics, the ether is capable of supporting communications across virtually infinite distances, and 
satellite-based wireless Internet connectivity is a viable alternative to wire, fiber, and cable in remote 
areas. Similarly, although glass fiber is less expensive than coaxial cable, the associated electronics 
and connectors are more expensive and more difficult to use.

The type of media used for Internet access depends primarily on the types of service available, and 
secondarily on the bandwidth, security, and cost constraints. For example, the TV cable companies 
that offer Internet service use coaxial cable to feed cable modems. Conversely, DSL companies 
provide access to the Internet through the same type of twisted pair used by the telephone 
companies. Because of the losses associated with ordinary twisted pair cable, DSL service is limited 



by the distance from a telephone switching station, and the maximum bandwidth diminishes with 
distance from the station. Many academic institutions and some well-funded biotech firms have 
access to the Internet through high-bandwidth, secure fiber.

In contrast to the media used for Internet access, the choice of media that can be used to support an 
internal LAN is more a function of cost, bandwidth requirements, security, ease of installation, and 
type of existing wiring, if any. For example, many older buildings have spare twisted pair cables 
running throughout their structure from the telephone service. In some of these buildings, running 
cables through asbestos or concrete structures many be prohibitively expensive or time-consuming, 
making wireless the only viable media. Another option is to use the power wiring as a data network 
medium. However, because the wire isn't twisted but is run parallel, it's more susceptible to noise 
than the other common types of media, resulting in a significantly lower maximum bandwidth.

Network Electronics

The media running from office to office and across the country become a useful communications 
channel with the addition of electronics capable of sending and receiving signals through the media. 
These electronics serve a variety of functions, including:

●     Generating signals destined for a recipient somewhere in the network
●     Coordinating signals through media in order to minimize interference

Amplifying and conditioning signals so that they can continue error-free to their destination
●     Blocking signals from certain paths to minimize interference in those paths
●     Routing signals down the quickest or least-expensive route from source to destination
●     Translating signals originally designed to work with one protocol so that they are compatible 

with networks designed to support other protocols
●     Connecting different networks
●     Monitoring the status of the network, including the functioning of network electronics and the 

amount of data on segments of the network

Although there are hundreds of devices on the market that transmit, receive, manage, convert, 
block, redirect, and monitor signals on the network, most fit into the categories listed in Table 3-3.

Several of the network devices listed in Table 3-3 are illustrated in context in Figure 3-11 on page 
130. However, it's important to note that the physical layout of the network depicted in this figure 
may have little relation to the logical functioning of the network electronics. For example, even 
though the workstations or clients are connected directly to the printer, all printing requests or jobs 
may be directed to the print server, which manages the printing queue and buffers printing requests, 
freeing the processors in the workstation clients to handle other computations instead of devoting 
machine cycles to managing individual print jobs.

Figure 3-11. Network Hardware. The physical architecture shown here may 
support a markedly different logical architecture.



Table 3-3. Network Electronics. In addition to these major classifications, 
many devices combine features common to multiple categories.

Device Application

Bridge Connects multiple network segments and forwards data between them

Content Filter Prevents access of restricted external Web content

Firewall Prevents unauthorized users from accessing the network

Gateway Links two networks that use different protocols

Hub Provides a central connection point for a network configured in a star topology

Modem Connects a workstation or LAN to an outside workstation or network, such as the 
Internet

Monitor Monitors activity on the network by node and by network segment

Router Sends data transmissions only to the portion of a network meant to receive them

Satellite Transmits signals from a server in orbit

Server Supplies files and applications to clients



Switch Selects network paths at high speeds

UPS Provides uninterruptible power for network electronics, especially servers

Wireless Hub Provides mobile, cable-free access to servers, shared resources, and the Internet 
from anywhere within range of the hub

Wireless Modem Allows workstations and laptops to communicate with a wireless hub (access 
point)

Servers

The centerpiece of most bioinformatics networks is a server (or more than one) that supplies files 
and applications to workstations, printers, and other clients. Servers are typically high-speed 
dedicated computers with several GB of RAM, multi-GB fast hard drives, and over-engineered power 
supplies that can withstand power surges and other challenges. Servers vary in size and shape, 
degree of redundancy, performance, expansion options, amount of noise generated in normal 
operation, the type of operating system supported, management software, security features, power 
supply design, amount of cache memory, and price.

Servers are no longer relegated to footlocker-sized cases, but are available in units as small as a 
pizza box that can be easily stacked in racks to provide high server densities. Related to form factor 
is the operating environment, in that the compact size often necessitates the use of high-volume fans 
that not only move large quantities of air over the densely populated motherboards, but that 
generate considerable noise as well. As such, servers may need to be mounted in a separate room or 
closet, away from researchers whose work the noise may disrupt. Also related to form factor is the 
provision for redundancy in the two most common server failure points—the mechanical disks and 
the power supplies. Many server designs provide internal redundant disks and power supplies that 
take over as soon as the main units fail.

The typical server used in a bioinformatics laboratory has between 1 and 8 GB of RAM, several 
hundred GB of disk storage distributed between 2 and 8 drives, 2 power supplies, BIOS password 
protection, and virus protection. Performance, as measured by throughput in Mbps average response 
time in milliseconds, and thousands of requests handled per second, is a function of the processor, 
operating system, amount of RAM available, cache memory, and overall design.

The most common server operating systems are Microsoft Windows 2000, Linux, Solaris, UNIX, and 
Microsoft .NET. Windows 2000 commands about a third of the server market, in part because of the 
familiar graphical user interface (GUI) and compatibility with relatively inexpensive server hardware. 
The relatively new Microsoft .NET Server is Windows 2000–based with added Web development tools. 
Linux, an increasingly popular operating system for servers and bioinformatics workstations, accounts 
for only about 5 percent of the overall server operating system market. An advantage of using Linux 
as a server operating system is cost savings and an abundance of license-free (albeit Spartan) 
utilities. Linux is considered more stable and reliable than Windows 2000, but more difficult to use. In 
comparison, Solaris commands a little over 15 percent of the server market, followed by IBM AIX and 
HP's UX. These various flavors of UNIX account for over a third of the server market, especially in 
high-end applications, such as massive sequence databases.

In addition to generic servers that serve content to clients on the network, there are specialized 
server designs, such as cache, file, print, mail, proxy, and terminal servers. A cache server 
dynamically pulls frequently accessed content from the main servers and maintains the content in 
cache for later use. The purpose of a cache server is to speed content to clients and to reduce 
network traffic at the server site. One of the challenges with cache servers is ensuring that the 
cached files are current and synchronized with the files on the source server. Cache servers usually 
double as proxy servers, which are designed to intercept and manage client requests in a way that 
provides increased security by matching incoming messages with outgoing requests. A proxy server 
acts as a filter that passes valid requests on to a file or Web server or, if it's configured as a cache 
server, serves the content from its cache. Because the functionality of proxy, firewall, and caching 
servers is so tightly integrated, they are commonly combined in a single device.



A file server is a server configured to allow workstation clients on the network to use the disk storage 
on the server for collaborative work, to facilitate archiving, and to provide additional disk storage. File 
servers typically contain large, high-speed hard drives and comprehensive data management 
software. Print servers provide buffering and queuing for networked printers.

Web servers provide HTML pages or files to a Web client. A mail server hosts the e-mail system for 
users on the network, providing processing and storage for e-mail messages. Terminal servers 
connect several terminals, including dial-up modems, to a single LAN connection. A terminal server 
has a single network interface and several ports for terminal connections, allowing several terminals 
to be connected to the network by a single LAN cable.

Remote access servers, also known as communications servers, provide access to users seeking to 
use a network remotely, especially while traveling away from the main office. A remote access server 
is typically configured with a firewall and a router to provide security and to limit the remote access 
to a specific subset of the network. For example, a remote access server may allow access to e-mail 
and non-confidential files. In this way, if a hacker manages to somehow gain access to the network 
through the remote access server, he won't be able to destroy or steal confidential data. A remote 
access server is typically configured with one or more telephone modems so that remote users can 
call in to the network and read their e-mail and access files from any location with telephone access.

Bridges

A bridge connects two or more network segments and forwards packets between them, amplifying 
the signal to compensate for the loss associated with splitting a signal across multiple segments. So-
called dumb bridges are protocol-specific and are designed to connect networks running the same 
protocol. These devices simply accept data packets from one segment of a network and forward them 
on to the other segments. They have no built-in intelligence.

In addition to these bridges, several varieties of bridge design provide processing, enabling data 
sharing between otherwise incompatible networks. For example, encapsulating bridges encapsulate 
network data with header information so they are compatible with devices in the destination network. 
A translating bridge goes one step further and actually translates the data from the source network 
so that the protocol is compatible with that of the destination network. A filtering bridge, also called a 
multi-port bridge, directs data from the source network to a specific segment of the destination 
network, thereby reducing unnecessary traffic on some segments of the network. In addition, there 
are numerous bridge designs that combine filtering, routing, and security functions.

Routers

A router directs data to the portion of a network meant to receive it rather than broadcasting data to 
every node of a network. Instead of merely passing information like a dumb bridge, routers monitor 
network activity and change traffic patterns if necessary to maintain efficiency or throughput. 
Intelligent routers dynamically reconfigure the communications path to improve availability and 
reliability.

Routers are rarely used alone but are combined with other devices. For example, routers are located 
at every gateway and are often included as part of a network switch. Routers are also commonly 
combined with a network bridge in the form of a brouter. In contrast to switches, routers are typically 
used at the edges of a network, where intelligence is needed to determine the best path for data.

Switches

A switch is a device that selects a circuit for sending data through a network. A switch, which tends 
to be simpler, faster, and less expensive than a router, lacks information about the network that a 
router may use in determining the best circuit or path to use to move data from one part of a 



network to another. Switches, which lack the intelligence of a router, are normally used in the 
network backbone and at gateways, where speed is of the essence. Also called LAN switches, data 
switches, and packet switches, they typically contain buffer memory to hold packets briefly until 
network resources become available.

Gateways

A gateway links two networks running different protocols by functioning as a router and providing 
translation and amplification of network signals. Because gateways can connect networks using 
different protocols, they are slower than simple routers.

Hubs

A standard wired hub is the center of a network physically connected in a star configuration. These 
hubs generally have little intelligence and serve primarily as a common connection point. However, 
hubs can also be complex devices that provide bridging and routing between multiple LAN 
architectures.

Wireless hubs, also known as access points, function like wired hubs but use different protocols that 
provide for different levels of interoperability. With a wireless hub, a wireless LAN can be established 
quickly with only a server and wireless modem cards (or PCMCIA cards for laptops). Except for the 
wired connection to the Internet, there is no need to drill holes in walls and pull cables to individual 
workstations.

Content Filters

A content filter is a device that prevents workstations from accessing specific types of external Web 
content, such as high-bandwidth streaming video entertainment. Content filters, which can also be 
implemented in software, maximize available network bandwidth for work-related content.

Firewalls

A firewall is a dedicated device or suite of programs running on a server that protects a network from 
unauthorized external access. Firewalls are especially relevant in establishing collaborative intranets 
that allow, for example, researchers in China to work with information in a U.S. laboratory's intranet 
around the clock. A flexible firewall is one component in a system that allows external collaborators 
to freely access the laboratory's internal intranet. Firewalls are typically used in conjunction with 
routers, gateways, and proxy servers to limit access to internal network resources.

Modems

Modems (short for modulator/demodulator) provide connectivity between a workstation or network 
with a remote network such as the Internet. Telephone modems translate digital data into analog 
signals for transmission over a twisted pair telephone line and convert incoming analog data into 
digital form. Telephone modems have a maximum bandwidth of about 56 Kbps. Cable modems 
provide the same digital-to-analog and analog-to digital conversion as telephone modems, but they 
connect to a cable TV circuit and provide a bandwidth of about 1.5 Mbps.

A wireless modem, the equivalent of a telephone modem or NIC, allows a computer to access a 
wireless hub or access point through radio frequency (RF), or, less frequently, IR light. Wireless 
modems are protocol-specific, in that they only work with access points following the same 
communications standard.

Satellites



Orbiting satellites are special cases of servers connected to workstation clients through long-distance 
radio frequency links. The major complicating factor is the need for local uplink and downlink 
hardware, including a satellite dish, on the client side. The capabilities of communications satellites 
are defined by their orbit—GEO (geostationary earth orbit), MEO (medium earth orbit), or LEO (low 
earth orbit)—as well as their operating frequency and bandwidth. The orbit affects the availability and 
reliability of communications, the terrestrial antenna requirements, and the latency or lag time 
associated with transmit and receive operations.

For example, a GEO satellite provides continental coverage and can be used with a fixed terrestrial 
antenna, but has a significant latency because the satellite is orbiting at 36,000 kilometers. In 
contrast, a LEO satellite provides only a few Km ground coverage but latency is low because of the 
500 to 2000 km orbit. Latency is an issue when data need to be frequently retransmitted because of 
errors, which is often the case when the receiver is operating at the fringe of the satellite coverage 
area. As a result, a LEO satellite can provide greater throughput than a GEO satellite, all else being 
equal.

Network Interface Cards

A Network Interface Card (NIC) is a card or, more often, the part of the workstation motherboard 
that provides the client-side connectivity to the network. The NIC is connected to the network 
through a variety of media, including coaxial cable, twisted pair, and fiber.

Network Monitors

A network monitor is a specialized device that can monitor or sniff packets and determine throughput 
of hardware, as well as detect sources of error, such as a defective network interface card. A network 
monitor can also be implemented in the form of a software utility running on a workstation attached 
to the network.

Uninterruptible Power Supplies

An Uninterruptible Power Supply (UPS) is a battery and power-filtering device that can provide 
emergency power for up to several hours, allowing the hardware to be automatically shut down 
without data loss. UPSs, especially those with built-in power conditioners, protect sensitive 
equipment and the data they contain from power surges and sudden, unplanned power outages.



 
Contents

Networks are sometimes defined by the nature of the content they carry. For example, some 
networks capable of sustained high-bandwidth connections are dedicated to video and other 
multimedia, whereas others are limited to text. Networks may also be relegated to database or 
equipment communications. The former is especially prominent in bioinformatics, in the form of 
storage area networks. These networks, typically based on fiber optics, are maintained for high-
speed communications between disk arrays and computers involved in sequencing and other 
applications that require almost constant access to data stored on high-speed hard drives.



 
Security

Network security is an increasingly important factor in bioinformatics because of the central role that 
online databases, applications, and groupware such as e-mail play in the day-to-day operation of a 
bioinformatics facility. Opening an intranet to the outside world through username and password-
protected restricted access may be the basis for collaboration as well as a weak point in the security 
of the organization. In addition, because many biometric laboratories are involved, even if indirectly, 
with applied genomics, there is a group of politically active opponents to this research. The computer-
savvy members of these activist groups represent a potential threat to network security.

Every network presents a variety of security holes through which potential hackers and disgruntled or 
simply curious employees can implement random threats, such as viruses. Many of these threats are 
network- and operating system–specific. For example, Microsoft typically announces a service pack 
within a few weeks after the introduction of a server-based operating system to patch security holes 
discovered by users.

The most secure method—physical isolation from outside networks—isn't usually a viable option. 
Even a closed network without dial-in or any other wired access to other networks can be breached 
by someone with enough motivation and time. For example, wireless networks are notorious for their 
potential to disseminate data to nearby listeners. A hacker with a high-gain antenna, receiver, and 
laptop computer can monitor wireless network activity from a mile or more away. A similar setup, 
configured to a slightly different frequency, can be used to reconstruct whatever data is displayed on 
a video screen, including username and password information. Every cable, peripheral, and display 
device emits a radio frequency signal that can be captured, amplified, and read. For this reason, 
computer facilities used by military contractors are frequently located in shielded, windowless rooms 
that minimize the chances of the radiation emitted from a computer reaching someone who is 
monitoring the building.

Although it may be practically impossible to maintain security from professional industrial spies, a 
variety of steps can be taken to minimize the threat posed by modestly computer-savvy activists and 
the most common non-directed security threats. These steps include using antiviral utilities, 
controlling access through the use of advanced user-authentication technologies, firewalls, and, most 
importantly, low-level encryption technologies.

Antiviral Utilities

In addition to threats from hackers, there is a constant threat of catastrophic loss of data from 
viruses attached to documents from outside sources, even those from trusted collaborators. The risk 
of virus infection can be minimized by installing virus-scanning software on servers and locally on 
workstations. The downside to this often-unavoidable precaution is decreased performance of the 
computers running antiviral programs, as well as the maintenance of the virus-detection software to 
insure that the latest virus definitions are installed.

Authentication

The most often used method of securing access to a network is to verify that users are who they say 
they are. However, simple username and password protection at the firewall and server levels can be 
defeated by someone who either can guess or otherwise has access to the username and password 
information. A more secure option is to use a synchronized, pseudorandom number generator for 
passwords. In this scheme, two identical pseudorandom number generators, one running on a credit 
card–sized computer and one running on a secure server, generate identical number sequences that 
appear to be random to an observer.

The user carries a credit-card sized secure ID card that displays the sequence on an LCD screen. 
When a user logs in to the computer network, she uses the displayed number sequence for her 



password, which is compared to the current number generated by a program running the server. If 
the sequences match, she is allowed access to the server. Otherwise, she is locked out of the 
network. Because the number displayed on the ID card—and in the server—changes every 30 
seconds, the current password doesn't provide a potential intruder with a way in to the system. The 
major security hole is that a secure ID card can be stolen, which will provide the thief with the 
password, but not the username.

More sophisticated methods of user authentication involve biometrics, the automated recognition of 
fingerprint, voice, retina, or facial features. Authentication systems based on these methods aren't 
completely accurate, however, and there are often false positives (imposters passing as someone 
else) and false negatives (an authentic user is incorrectly rejected by the system) involved in the 
process. In addition to errors in recognition, there are often ways of defeating biometrical devices by 
bypassing the image-processing components of the systems. For example, fingerprints are converted 
into a number and letter sequence that serves as the key to gaining access to network assets; 
anyone who can intercept that sequence and enter it directly into the system can gain access to the 
network.

A researcher employed by a biotech firm to analyze nucleotide sequences probably has no need to 
examine the files in a 3D protein visualization system in the laboratory a few doors down from his 
office. Similarly, payroll, human resources, and other administrative data may be of concern to the 
CFO, but not to the manager of the microarray laboratory. Authentication provides the information 
necessary to provide tiered access to networked resources. This access can be controlled at the 
workstation, the server, and firewall levels to limit access to specific databases, applications, or 
network databases.

Firewalls

As introduced in the discussion of network hardware, firewalls are stand-alone devices or programs 
running on a server that block unauthorized access to a network. Dedicated hardware firewalls are 
more secure than a software-only solution, but are also considerably more expensive.

Firewalls are commonly used in conjunction with proxy servers to mirror servers inside a firewall, 
thereby intercepting requests and data originally intended for an internal server. In this way, outside 
users can access copies of some subset of the data on the system without ever having direct access 
to the data. This practice provides an additional layer of security against hackers.

Encryption

Encryption, the process of making a message unintelligible to all but the intended recipient, is one of 
the primary means of ensuring the security of messages sent through the Internet and even in the 
same building. It's also one of the greatest concerns—and limitations—of network professionals. 
Many information services professionals are reluctant to install wireless networks because of security 
concerns, for example.

Although cryptography—the study of encryption and decryption—predates computers by several 
millennia, no one has yet devised a system that can't be defeated, given enough time and resources. 
Every form of encryption has tradeoffs of security versus processing and management overhead, and 
different forms of encryption are used in different applications (see Table 3-4).

Of the encryption standards developed for the Internet, most are based on public key encryption 
(PKE) technology. One reason that PKE is so prominent is because it's supported by the Microsoft 
Internet Explorer and Netscape Navigator browsers. PKE is a form of asymmetric encryption, in that 
the keys used for encryption and decryption are different. Aside from the added complexity added by 
the use of different keys on the sending and receiving ends, the two forms of encryption and 
decryption are virtually identical. As such, the illustration of PKE in Figure 3-12 assumes symmetric 
encryption for the purpose of clarity.



Figure 3-12. PKE. Workstations in California and Massachusetts exchange 
bioinformatics data by first exchanging public keys. These public keys are 

then used with private keys to generate a session key, which defines 
encryption and decryption. Although true PKE is asymmetric, the session 

keys illustrated here are identical (symmetrical) for clarity.

Table 3-4. Encryption Standards. PGP (Pretty Good Privacy) is one of the 
more popular encryption standards used on the Internet. Most of these 

standards are based on PKE technology.

Standard Description

AES Advanced Encryption Standard—Eventual replacement for DES, based on 128-bit 
encryption.

DES Data Encryption Standard—Used by the government, based on 64-bit encryption.

IDEA International Data Encryption Algorithm—Used by the banking industry, developed by 
the Swiss Federal Institute of Technology, 128-bit encryption.

PGP Pretty Good Privacy—Popular on the Internet, effective, free, simple to use.

RSA Rivest-Shamir-Adelman System—Popular in business and government.

S-HTTP Secure Hypertext Transfer Protocol—For transmitting individual messages over the 
Internet.

SSL Secure Sockets Layer—Developed by Netscape Communications Corp. for the Internet.



PKE allows two sequencing laboratories—in Figure 3-12, one in a biotech firm in San Francisco (left) 
and one in a research facility in Cambridge (right)—to securely exchange data. Assuming a 
researcher in San Francisco wants to send a message to the lab in Cambridge, he first acquires the 
public key (26) of the facility in Cambridge and, using his private key, generates a session key (2). 
That is, the private key for the lab in San Francisco is 8, the lab's public key is 16, and the key for 
this particular session with the lab in Cambridge is 2. A subsequent communication with the lab in 
Cambridge might use a session key of 4, 7, or some other random number. Similarly, the private key 
for the lab in Cambridge is 6 and the public key is 26. The session key is 2, identical to the session 
key used by the lab in San Francisco.

To decrypt a message from the lab in San Francisco, the lab in Cambridge uses its private key (6) 
and the public key (16) from the lab in San Francisco to generate a session key (2) that is identical to 
the key used by lab in San Francisco to encrypt the message. Note that only their respective owners 
know the value of the private keys and that the public keys are generally available. The session key 
is a function of the other lab's public key. For clarity, not shown is the public key infrastructure, 
which provides authentication of the public and private keys.

A more secure symmetrical encryption approach, and one used by most governments and 
corporations to send secure communications over networks, is to use a multi-digit key. The greater 
the key length, the more difficult and time-consuming it is to crack. The goal is to create a key that is 
long enough to either deter someone from attempting to hack the code, or one that requires so much 
computer time to decrypt that the encrypted message is of no value by that time.

Process

More important than the specific encryption algorithm or user-authentication technology used is the 
process of implementing a security strategy. For example, the best firewall, proxy server, and user-
authentication system is valueless if a researcher has a habit of losing his secure ID card. Similarly, a 
wireless hub capable of supporting the latest security standards is vulnerable to attack if the person 
who configures the hub doesn't take the time to enable the security features. Similarly, a researcher 
who leaves her username and passwords on a Post-It Note stuck to her monitor provides a security 
hole for everyone from the janitorial staff to a visitor who happens to walk past her office.



 
Ownership

Networks are often characterized by the way they are funded. Private networks are owned and 
managed by private corporations. For example, many of the major pharmaceutical corporations have 
internal bioinformatics R&D groups that manage workflow and data with the help of privately owned 
and highly secure networks. These private networks may be completely isolated, connect to the 
Internet through a secure firewall, or communicate with academic and commercial collaborators 
through dedicated, secure lines. Private networks may also be open to researchers and other 
companies—for a fee.

In contrast, public networks such as the Internet and the public telephone network are at least 
partially funded by public coffers. They are also freely open to anyone who is capable of paying for 
their services. Cooperative networks are supported and managed by their users. One of the best-
known cooperative networks was BITNET (Because It's Time Network), started by universities in the 
early 1980s. Before it was replaced by NSFNET (National Science Foundation Network) in the early 
1990s, it connected about 3,000 mainframe computers at universities in the U.S., Canada, South 
America, Europe, Asia, and Australia.



 
Implementation

The National Science Foundation (NSF), Department of Energy, and other government agencies, 
often in collaboration with industry and academia, have virtually unlimited resources available for 
developing and maintaining networks that have bioinformatics applications. However, for small- to 
medium-sized biotech firms and bioinformatics departments within pharmaceutical companies, 
implementing in-house databases presents a formidable challenge. Part of this challenge is that the 
traditional information services department is ill-equipped to deal with the throughput issues that 
typically must be addressed by a bioinformatics-compatible network. The typical corporate CIO needs 
background education on how to implement gigabit fiber networks dedicated to data storage as well 
as high-speed routers and associated network electronics.

Despite the differences between bioinformatics computing and traditional institutional computing, the 
process for implementing a high-speed bioinformatics network is identical to that of implementing 
any other major network. The major steps in the implementation process are the same, regardless of 
whether they are performed by staff in the bioinformatics laboratory or corporate information 
services staff. These steps include:

1.  Create a Requirements Specification. This document includes a high-level description of 
the tasks to be supported by the network, such as routing sequencing data from sequencing 
machines to analysis workstations and data warehouses, as well as the desired response 
times and storage capacities. For example, the requirements specification document may 
stipulate the need to support 35 workstations, provide access to storage in excess of 1 
terabyte with an access time of less than 50 milliseconds, with tiered password protection, 
and secure, high-speed access to the Internet.

2.  Create a Functional Specifications Document. The functional specifications document 
defines, in detail, how the high-level needs outlined in the requirements specification will be 
met. This document quantifies many of the qualitative terms in the requirements specification 
to the degree that anyone competent in information sciences can determine exactly what 
equipment, personnel, and costs will be associated with the project. Once the functional 
specifications document has been finalized, the remaining steps are largely straightforward.

3.  Select Hardware. Assuming the functional specifications document is complete, the next 
step is selecting network and workstation electronics and media. Often the functional 
specifications document is authored with particular hardware and software in mind, which 
further simplifies the selection process.

4.  Select Software. Again, following the functional specifications document, this step of the 
implementation process involves selecting the network operating system, as well as database 
publishing software and tools such as PHP, XML, CGI, Java, or JavaScript editors and runtime 
systems.

5.  Select Utility. Software and hardware utilities, such as network monitors and antiviral 
utilities, should be defined during the design process, not as an afterthought.

6.  Select Internet Access Service. Most larger institutions have high-speed Internet access 
available throughout their offices. However, bandwidth requirements may necessitate 
alternate Internet services, such as supplementing a corporate-wide cable modem service 
with a high-speed dedicated line, satellite link, or high-speed microwave link.

Each of the steps in the implementation process requires different levels of expertise with the 
bioinformatics requirements, the information technology capabilities, and the likely return on 
investment of each approach. As a result, network implementation is necessarily a collaborative 
process involving programmers, hardware technicians, vendors, management, and perhaps the 



assistance of a consultant.



 
Management

After a network is established, it must be managed to realize its full potential. Network management 
issues include making provision for disaster recovery, load balancing, bandwidth management, and 
maintaining network security. For example, disaster recovery plans and support for inevitable 
network electronics and media failure should consider fire, electrical disturbances, power outages, or 
intentional destruction. Part of disaster recovery planning includes securing redundant systems, such 
as running extra cables when installing a wired network, and installing a bank of 56K dial-up modems 
available for Internet access in the event that the high-speed Internet connection fails.

Load balancing, in the context of network management, refers to a method of distributing data 
volume among multiple paths so that the throughput of the overall system is maximized. For 
example, if there are two equivalent network paths, one carrying 10 percent of the network traffic 
and the other 90 percent, then the first path is underutilized, and the second path is likely degraded 
because the routers and other electronics are saturated with traffic. Load balancing involves 
configuring routers and other network electronics so that the network traffic is spread as evenly as 
possible among the various network segments and devices to maximize throughput of the network.

Bandwidth management involves load balancing as well as upgrading equipment when necessary in 
order to support the increasing computational needs of bioinformatics R&D. Bandwidth management 
is in part dependent on the cost and availability of higher-bandwidth electronics and the work 
involved in laying new cable.

Perhaps the greatest management challenge is maintaining adequate security. This task entails 
monitoring the Internet on a daily basis to check for word of new viruses or security holes in the 
operating system, and installing the appropriate software patches and utilities to address the new 
threats.



 
On the Horizon

The most significant changes on the horizon for networking include a higher degree of 
interconnectivity, greater bandwidth, and increased access to supercomputer-level computational 
resources. Much of the research in this area is federally funded, while some is being undertaken by 
deep-pocketed corporations such as IBM. The most notable federally funded initiatives include the 
Very High-Bandwidth Network Service (vBNS) initiative by the NSF that provides connectivity 
between about 45 and 155 Mbps. In addition, the Next-Generation Internet (NGI) initiative is aimed 
at supporting the NSF and other agencies in developing advanced networks, such as Grid computing.

The goal for most of this advanced network research is aptly referred to as ubiquitous 
computing—the anywhere, anytime access to computing power and data. For example, the Grid, 
when and if it is established, will put affordable supercomputer power in the hands of researchers 
who would otherwise be limited to workstation power. Virtual reality, simulation, data mining, and 
other bioinformatics endeavors that demand high-bandwidth computational support are expected to 
be commonplace as the focus of bioinformatics research extends from sequence analysis to gene 
expression and proteomics.

Many challenges remain before ubiquitous computing is an everyday reality. For example, the 
primary impediment to distributing information to a grid of computers that cover a large geographic 
area is security because each node in the grid represents a potential security risk. Similarly, the 
extension of the wireless Web is limited as much by the need for a high-bandwidth network 
infrastructure as it is by security concerns. After all, consider that genomic data that might indicate a 
subject's predisposition for, as an example, Alzheimer's disease or schizophrenia, are data that could 
indelibly ruin that person's prospect for employment and lower his social standing in his community.



 
Endnote

Bioinformatics is populated by a disparate group of specialists—mathematicians, statisticians, 
biologists, fellows, pharmaceutical scientists, marketers, programmers, clinicians, forensic scientists, 
and public health officials—each of whom has different needs, work styles, vocabularies, and focus. 
For example, clinicians may be primarily interested in visualization tools, whereas statisticians may 
be focused on statistical analysis tools and large samples of data.

As many biotech firms have discovered, it's virtually impossible for one application to fulfill every 
need to everyone's satisfaction. However, networks provide the glue and, with the Web and other 
interfaces, veneers that can be used to make a suite of tools appear and work as one. With the 
appropriate network technology, professionals of all disciplines can work on data and share their 
findings in a way that matches their mental model of the workspace and promotes efficient use of 
R&D resources.



 

Chapter 4. Search Engines
 Crystal structure of a DNA duplex containing 8-hydroxydeoxyguanine-adenine base 

pairs. PDB entry 178D. Image produced with PDB Structure Explorer.



A little knowledge that acts is worth more than much knowledge that is idle.

—Kahil Gibran, the prophet

In the year 2020, a visit with your dentist will likely consist of a teleconference with an intelligent 
software robot (or "bot") that guides you through a self-administered test for acid-producing bacilli 
on and around your teeth. Based on the test results, which will be communicated wirelessly through 
the communications grid, the bot will prescribe a mouthwash to displace your native bacilli with a 
genetically engineered version that is specific to your genetic profile. The mouthwash, a custom 
prophylaxis designed to protect you from caries and heart disease, arrives the next day by Priority 
Mail, direct from the factory.

Making this scenario a practical reality requires someone or some intelligent agent to establish or 
discover the links between the bacteria in your oral cavity and tooth decay, your predisposition for 
heart disease, your work environment, personal habits, and a multitude of internal and external 
factors. These factors include your genetic profile, the relationship between your proteome, bacteria 
in your oral cavity, your history of encounters with pathogens, prior diseases, as well as your 
likelihood of developing caries, heart disease, and other diseases, based on factors such as your 
genetic profile, family history of disease, diet and exercise habits, and work-related stress level.

Figure 4-1 illustrates a partial view of this mesh of interrelationships, in which everything is related to 
everything else to some degree. The linking isn't limited to relationships between major categories 
such as demographics and medical history, but links exist within each sub-mesh as well. For 
example, within the genomic profile, there are links to nucleotide sequences, protein sequences, 
enzyme profiles, and disease predisposition. At issue is the fact that these links may not be explicit, 
or even known. In this regard, linking or associating facts from disparate fields is a metaphor for 
knowledge. The dynamic links or associations that are defined by a human- or computer-directed 
search represent knowledge discovery when the user becomes aware of the links and the contexts in 
which they can be successfully applied.

Figure 4-1. Relationship Mesh. Dynamic links created by searching medical, 
genomic, and other databases can make use of this multi-dimensional mesh 

of relationships.



Today, most of the potential links between data in digital form aren't readily available because the 
relevant data, when they exist, are in disparate databases. In addition, each database is typically 
based on different and incompatible database technologies and uses different languages and 
vocabularies to access data. These incompatibilities are especially significant when non-textual data, 
such as 3D images of protein structures, accessed by author-specified keywords, need to be linked 
with nucleotide sequences in other databases. Because each database is typically created as a stand-
alone application to support one function, linking between databases is most often an afterthought. 
Although static links between databases can be established programmatically, a more common 
approach is to create links dynamically by using search engines. In addition, even when static links 
are established between databases, extracting meaningful content from these linked databases 
invariably involves using a search engine of some sort.

As anyone who has surfed the Internet has discovered, a search isn't necessarily successful, and may 
turn up nothing or thousands of irrelevant links. Thus, the relevance of the dynamic database links 
created by interacting with a typical Web-accessed search engine is primarily a function of the search 
engine's selectivity and sensitivity, the ingenuity and knowledge of the search engine user, and the 
availability of relevant content. In addition, the amount of irrelevant content and its similarity with 
the desired content, together with the peculiarities of database design, limit the ease of finding the 
sought-after data.

The exponentially increasing amounts of data accessible over the Internet, from gene sequences and 
clinical disease findings to related issues in other fields, is primarily accessible through search engine 
technologies. As such, this chapter explores the status of search engine technology, focusing on 
bioinformatics resources, within the context of the overall knowledge management of online data.

"The Search Process" section of this chapter introduces many of the challenges and concepts involved 
in a typical search of molecular biology databases accessible through the Internet, based on the 
Entrez integrated searching environment. "Search Engine Technology" explores the various 
technologies that researchers can use to differentiate required data from the noise, from portals and 
intelligent agents, to natural-language processing (NLP) and other user interface tools. In particular, 



this section explores dynamic, search-based linking as a form of database integration. The "Searching 
and Information Theory" section explores the basic Information Theory model as it relates to online 
searching, and defines the concepts of the sensitivity and specificity of a search, and the issues of 
false positives and negatives in search results.

"Computational Methods" explores several exact and approximate search algorithms, and provides an 
overview of methods applicable to searching for text as well as sequence data. The "Searching, 
Dynamic Linking, and Knowledge Management" section explores searching and the underlying 
process of dynamic linking from the perspective of knowledge management. The "On the Horizon" 
section examines the likely future of search engine technologies designed to access online resources, 
especially those related to the prospect of ubiquitous computing. Finally, "Endnote" explores the 
technical challenge of not only providing a unified image of scientific knowledge in the hard and 
biological sciences, but of the societal implications of achieving this capability.



 
The Search Process

Pursuing a solution to a molecular biology problem with bioinformatics methods invariably involves 
significant backtracking, stepping, and jumping around from one database to the next. In support of 
this typical work process, integrated information-retrieval systems have been created to provide a 
mesh of "hard" or pre-computed links between the key online molecular biology databases. By far, 
the most popular of these integrated systems is the National Center for Biotechnology Information's 
Entrez, which includes many of the key molecular biology databases listed in Table 4-1.

Table 4-1. Databases Included in the Entrez System.

Database Description

PubMed Biomedical literature.

Protein Protein sequences from the Protein Information Resource (PIR), SWISS-PROT, Protein 
Research Foundation (PRF), and Protein Data Bank (PDB), and from the translated 
coding regions from DNA sequences in GenBank, the European Molecular Biology 
Laboratory (EMBL) and the DNA Database of Japan (DDBJ).

Nucleotide Nucleotide sequence data from GenBank, EMBL, and DDBJ, the Genome Sequence 
Data Base (GSDB), and patent sequences from U.S. Patent and Trademark Office 
(USPTO) and other international patent offices.

Structure Experimental data from crystallographic and NMR structure determinations obtained 
from the Protein Data Bank (PDB).

Genome Views of genomes, chromosomes, contiged sequence maps, and integrated genetic 
and physical maps.

PopSet Aligned nucleotide and protein sequence data submitted as a set resulting from a 
population, a phylogenetic, or mutation study.

OMIM Human genes and genetic disorders.

Taxonomy Names of all organisms represented NCBI's genetic database.

Books A collection of biomedical books.

ProbeSet The Gene Expression Omnibus (GEO) gene expression and hybridization array.

3D Domains Protein domains from NCBI's Conserved Domain Database.

The Entrez system supports both inter- and intra-database linking. For example, not only are there 
links between PubMed and the Nucleotide database and between proteins and the nucleotide 
sequences from which the proteins were generated (see Figure 4-2), but there are BLAST-computed 
links between all similar sequences within the Nucleotide database.

Figure 4-2. Entrez Database Integration. Entrez is a link-integrated search 
system for accessing a growing number of linked molecular biology 

databases. In addition to the major databases shown here, Entrez includes 
PopSet, ProbeSet, and 3D Domains.



There are two versions of the Entrez system—one that uses an application that runs locally on the 
user's workstation, called Networked Entrez, and one that is accessible through a Web browser (see 
Figure 4-3). Networked Entrez communicates directly to the NCBI's dispatcher through a client-server 
connection. Each version provides the same core functionality—that of providing a single interface 
through which all databases in the Entrez suite of databases can be accessed. However, because the 
Networked Entrez can make use of local computing power, it can execute much faster than the 
browser-based version. In addition, it provides a more flexible user interface with multiple windows 
and graphical viewers for genome sequences and 3D protein structures.

Figure 4-3. Home Page of the Web Version of Entrez.



The major downside of Networked Entrez is that data outside of the Entrez system aren't available by 
simply clicking on hypertext links, as they are in the Web version of Entrez. A minor limitation of the 
local version is that it must be updated periodically in order to have the latest version. The most 
obvious benefit of a Web-delivered system that runs under a browser is that updates to the interface 
and the underlying search engine are transparent and instantaneous. The burden of application 
maintenance is fully on the shoulders of the NCBI staff and their affiliates, freeing users from having 
to manually update local copies of a search engine or user interface.

Trading a more flexible user interface and faster execution for lack of instant connectivity to other 
online resources and the need to periodically update the local application is more of a personal 
decision that doesn't affect the quality of data available through the Entrez system. Both versions of 
Entrez provide a common user interface, specifying subjects, ranges, Boolean operators, and other 
search criteria. Search results may be reviewed in a variety of formats, saved to disk or to the 
clipboard, or printed. In addition, the results can be incrementally refined if the user continually 
narrows the search criteria, working from the results of previous searches that are temporarily 
maintained in the system's memory. The discussion that follows assumes that the more popular Web 
browser version of Entrez is used.

The major search features of the Entrez system include a variety of tools to define and refine a 
database search (see Figure 4-4). These tools support selecting a database, linking, imposing limits 
on searches, using indexes and the search history in searches, and saving results to a clipboard. In 
addition, the tools support searching by a variety of topics, searching within a specified range, 
truncating searches, using Boolean operators to narrow searches, and advanced search authoring 
capabilities to supplement menu-driven search commands.

Figure 4-4. Entrez-Enabled Search Process. Entrez hides the underlying 
complexity of online molecular biology databases, facilitating the iterative 

process of submitting search criteria, viewing results, and refining or 
narrowing the search until the desired results are achieved.



The Search

The first step in the process of initiating a search in the Entrez system is to define, through the use of 
a pull-down menu system, which database to search. Once a database is selected, the next step is to 
specify a search topic. Entrez supports searching by subject, subject phrase, author, unique 
identifier, and, where applicable, molecular weight. Search topics are defined by keying terms into a 
free-text query box. As in the most popular general-purpose search engines on the Web, such as 
Google and Yahoo!, the words in a phrase are automatically treated as a Boolean AND unless they 
are included in double quotes. That is, the sequence of words in a non-quoted phrase is ignored. 
Conversely, a quoted phrase results in a much narrower search, because word order and position are 
additional search criteria.

A search can also be specified by a unique identifier, which can be an accession number for the 
complete sequence record in a database or a sequence number assigned by NCBI. The format for the 
accession number depends on the database. For example, the format of an accession number in 
GenBank is one letter followed by five digits, compared to a series of six or seven digits followed by a 
letter for the PRF database. Entrez also supports a search based on molecular weight, including a 
range of weights, based on calculations of protein structures. This search capability applies only to 
the Entrez Protein database.

Regardless of the topic, searches can be narrowed and refined by the use of Boolean operators AND, 
OR, and NOT, which are interpreted from left to right, except that expressions enclosed in 
parentheses are evaluated first. Boolean operators are especially helpful in performing advanced, 
manual searches that bypass menu-driven search choices. Complex, multi-parameter searches can 
be defined by keying a search directly in the Query field.

In addition to operations on the search topics, the results of a search can be narrowed through the 
use of limits. Limits can be used to restrict a search to a particular database or database field, 
exclude certain types of sequences, limit the search to a particular molecule type or gene location, 
only the master or only the parts of segmented sets of sequences, or by date. Limits, which can be 
used singly or in combination with other limits, are defined through standard browser pull-down 
menus, a free-text query box, and check boxes in the Web browser version shown in Figure 4-5.



Figure 4-5. Elements of the Entrez Limits Web Browser Interface. Limits 
available are a function of the database selected. The limits shown here 

apply to the Nucleotide database.

For example, to perform a search in the Nucleotide database for mitochondria carriers that excludes 
working drafts of nucleotide sequences, the researcher first selects the Nucleotide database from the 
Search pull-down menu, then types "mitochondria carrier" in the query box, and then select Limits. 
From the Limits panel, the researcher puts a check next to the "exclude working drafts" check box, 
and then selects the "Go" button. The particular limits available are a function of the database used. 
For example, when the Protein database is selected, exclusion check boxes are limited to "exclude 
patents."

A search can be further refined through the use of indexes, which are alphabetical lists of terms from 
searchable database fields. The indexes available through Entrez are a function of the particular 
database selected. Indexes can be specified by the usual Web browser tools—by selecting terms from 
a pull-down menu, by typing a term into the query box, and by browsing through a scrolling list of 
terms.

Search histories, which are maintained by the Entrez system, can be used to review, revise, or 
combine results of the most recent 100 searches. Search histories, which are database-specific, are 
maintained as a numeric list. That is, search history sets can be combined to increase or decrease 
the specificity of searches within a given database. For example, the common elements of searches 
#45 and #56 based on the Nucleotide database can be identified by entering "#45 AND #56" in the 
Search field. Histories are automatically deleted by the system after one hour of inactivity.

Results

The results of an Entrez search can be displayed in a variety of formats (including FASTA), or they 
can be saved to a temporary clipboard area, printed directly from the browser, or saved to disk. Links 



to external systems, such as fee-for-use databases, are listed when available. The clipboard feature 
of Entrez extends the history function by providing a temporary place to save search results, in 
addition to the history feature that automatically saves the search criteria. Each database has its own 
clipboard area, which holds up to 500 items. Like the history feature, the clipboards are cleared after 
one hour of inactivity. However, unlike the history feature, the clipboard isn't automatic; the 
researcher must intentionally place results in the clipboard area for later retrieval.



 
Search Engine Technology

Working with the Entrez system illustrates several points regarding search engine technology. The 
first is that the state of the art in search engine integration provides only partial, high-level 
integration with the growing number of rapidly expanding molecular biology databases. As a result, 
most intra- and inter-database links are database-specific. Furthermore, the granularity or depth of 
integration depends on the features that front-end or portal developers have the time and resources 
to implement.

Even a well-designed system such as Entrez is a compromise from the perspective of user interface. 
One purpose of a user interface is to hide the complexity of the underlying data structures and 
database systems. However, Entrez requires users to have some low-level knowledge of the 
databases included in the system. For example, different limits options are available as a function of 
the database selected, and it's up to the user to understand the lack of uniformity in options available 
through the user interface. That is, it's possible for a relatively naive user to try a search that will fail 
because he or she assumes that what works in the search of one database will also work in any 
other. As a result, for optimum use of Entrez or any other Internet-based, link-integrated database 
system, users should be familiar with the underlying databases.

The popular Entrez system also illustrates that the links available through specialized search engines, 
like general-purposes systems, yield results of varying quality. A researcher will quickly discard many 
results. Furthermore, data contained in so-called secondary databases are calculated from data 
contained in primary databases. Entrez supports searches on molecular weight, for example, based 
on molecular weights calculated from the amino acid sequence data. As a result, errors in the 
primary databases propagate to secondary databases in a way that may not be obvious by examining 
the data in the secondary database because it's internally consistent. Furthermore, errors may not be 
discovered until the data are validated by a wet lab experiment months or years later. The point is 
that data validation isn't ensured simply because databases are integrated at some level. In contrast, 
the process of creating a central integrated database, such as PubMed Central (PAC), necessarily 
involves the validation of data during the integration process. PAC provides integration of life-science 
journal literature in a common format and in a single repository, providing a single, unified access 
portal to scientific literature instead of combination of links to disparate databases, each with their 
own idiosyncrasies in vocabularies and infrastructures.

Working with the Entrez system demonstrates several knowledge management issues and 
challenges, beyond data validation. These include what to do with search results, how to update 
databases so that propagation of errors is controlled and traceable, how to determine who is 
responsible for maintenance, and how to communicate information to users on database updates and 
corrections. For the databases included in the Entrez system, third parties provide the maintenance. 
However, for private and commercial databases, these and other knowledge management activities 
must be assigned, monitored, and assessed.

In addition to the shortcomings of link-based database integration, Entrez also highlights the benefits 
of a high-level database search system. Without a system like Entrez or a related system like the 
NCBI Discovery Space that is designed to facilitate Single Nucleotide Polymorphism (SNP) research, 
users would have to alternatively login, copy, and paste or otherwise transfer results from one search 
to the input of another. Entrez saves users time and minimizes errors owing to mistakes made by 
transferring data from one database to another. Unfortunately, creating systems such as Entrez is a 
major endeavor. Most search engines simply create dynamic links to content that last for the 
duration of the session, or that at best can be saved for future reference.

Intelligent Agents

As illustrated in Table 4-2, search engine technology isn't limited to dynamically inter-linking 
databases, but includes a range of capabilities that apply to bioinformatics work. One particularly 
active area of R&D is in the area of intelligent agents—search engines with advanced pattern-



matching capabilities. They automatically search multiple databases using a variety of heuristics and 
return results preformatted according to user preferences. Although intelligent agents vary in 
capabilities, in general they automatically convert simple keyword searches to advanced pattern-
matching searches and, in some systems, concept searches. Instead of basing a search on a literal 
match for a keyword, intelligent agents increase search resolution through restriction of word 
proximity and exclusion of user-specified associations through Boolean operators.

Table 4-2. Search Engine Technologies. Many of the technologies applicable 
to general-purpose search engines can be applied to searching 

bioinformatics databases.

Search Engine Technology Example

General-Purpose Intelligent Agents (Desktop) Intelliseek, Copernic, Lexibot, WebFerret, 
SearchPad, WebStorm, and NetAttache

General-Purpose Intelligent Agents (Internet) Dogpile, Ixquick, MetaCrawler, QbSearch, ProFusion, 
SurfWax, and Vivisimo

Internal (Intranet) Search Engines AskMe, Cadenza

General-Purpose Search Engines Google, Lycos, Yahoo!, Excite, AltaVista, AllTheWeb, 
CompletePlanet

Sequence Match (Desktop and Internet) FASTA, BLAST and BLAST derivatives

Utilities Connection optimizers, browser extensions, personal 
firewalls, file-transfer programs, download managers

Bioinformatics Portals Entrez, SRS, BioKRIS, PubMed Central, Discovery 
Space

Interface Tools Natural Language Processing (NLP), Query by 
example, controlled vocabulary

Intelligent agents that support concept searching perform searches based on the concept represented 
by the keywords entered by the user. A concept search can be as simple as executing a search on a 
synonym list, or as complex as inferring relationships between the keywords entered in the system. 
For example, an agent-mediated search on "hypertension" could perform multiple keyword searches 
on "hypertension" as well as "high blood pressure." A more sophisticated system could infer 
additional search terms, such as co-morbidities of hypertension—specific renal and retinal diseases 
resulting from high blood pressure, for example.

Concept-based searching is especially applicable in instances where the vocabulary may not be 
consistent. For example, in a patient's medical record, a clinician might record the patient's complaint 
of "chest pain" as "angina." A simple keyword search, whether mediated by an agent or submitted 
directly to a search engine, would miss the alternate phrasing.

Advanced pattern search techniques don't necessarily involve concepts or recognizable keywords. 
Nucleotide sequence searches use advanced techniques to identify incomplete or approximate 
sequence matches. At this point in the development of molecular biology databases, higher-level 
concept searches are still rare. However, researchers are quickly moving to provide the capability of 
searching a database with a term such as "obesity" and viewing not only the physiological and 
psychological components of obesity, but related protein structures and nucleotide sequences as well.

Portals



Entrez is an example of a portal—a pre-linked gateway to databases selected by the portal designer. 
Sequence Retrieval Service (SRS), and BioKRIS (as well as Entrez) are examples of portals that 
provide access to link-integrated databases through a variety of special support tools. For example, 
SRS allows users to search multiple databases simultaneously because of a powerful and unique set 
of link operators that dynamically link multiple databases. Portals can make better use of intelligent 
agents because the search engine designer can design the heuristics to fit the databases included in 
the portal, as opposed to working with every database on the Internet. Similarly, special operators 
can be defined to facilitate working with the databases encompassed by the portal.

For example, SRS uses two link operators "<" and ">" to combine two sets from different databases 
in the portal system, such as SWISS-PROT and PDB. The statement SWISS-PROT > PDB gives those 
entries in the PDB database of solved tertiary protein structures that are referenced by or linked to 
entries in SWISS-PROT. Conversely, the statement SWISS-PROT < PDB gives those entries in SWISS-
PROT that reference or are linked to entries in PDB. As a result, the statement [swissprot-def:kinase] 
> PDB retrieves all kinase sequences from the SWISS-PROT protein sequence database, which are 
then linked to the PDB. The result is a set of all the PDB entries with atomic coordinates for all 
kinases for which the tertiary structure has been determined.

The SRS portal supports linking from any database to any other database in the system. If two 
databases are not directly connected by a link, then a series of intermediary links is created. As 
illustrated in Figure 4-6, SRS attempts to find the shortest possible way for linking two databases. 
Ideally this is the direct link as between EMBL and SWISS-PROT However, with a link request such as 
EMBL > PDB, when there are no nucleotide sequences in EMBL that are referenced by the PDB 
database of tertiary protein structures, then SRS automatically links the two databases through a 
SWISS-PROT intermediary, which relates both databases.

Figure 4-6. SRS Database Linking. When instructed to link databases 
without relevant references, SRS identifies the best intermediary database 

to support the link. In this example, a link between EMBL and PDB is 
automatically facilitated by SRS-directed links through the SWISS-PROT 

database.



User Interface Tools

Getting information out of a database is as important as putting it in. The point of human-computer 
communication—the user interface—is to maximize the quality and efficiency of the interchange. The 
better the search engine interface, the easier it is for users to interact with the data. A major function 
of the user interface is to decrease the cognitive load on the researcher so that the data created by 
the underlying application can be quickly and easily absorbed. It also provides a mechanism for the 
user to painlessly communicate to the application. A variety of visualization tools have been 
developed to aid researchers by presenting data so researchers can evaluate complex protein 
sequences, identify the location of genes on chromosomes, and, in general, make the otherwise 
unintelligible and seemingly endless strings of data intelligible. Visualization techniques are discussed 
in depth in Chapter 5, "Data Visualization."

From a data input perspective, the pull-down menus and check boxes supported by a standard Web 
browser, as demonstrated by the Web version of Entrez, represent standard user interface tools. Of 
the tools available to extend database search functionality within a Web browser environment, the 
most popular are free-text entry, query by example, and controlled vocabulary.

NLP is the technology that allows free-text searches of databases, whether in a Web browser or local 
application. A statement such as:

What is the molecular weight of the hemoglobin molecule?

automatically generates a different statement, for example, a SELECT statement for a SQL database 



of the form:

SELECT molecular_wt FROM protein_database

   WHERE protein = hemoglobin

In addition to NLP, there are a number of technologies that are useful in locating textual and graphic 
data in very large databases as well. One of them is image-based query by example, where the user 
selects from a library of images to create and then refine a search. Using this technology, the user 
selects an image of a protein structure and then either selects the closest fit or a representative of 
additional image libraries, depending on the extent of the database. The same approach is often used 
in commercial search engines, where the user is able to specify a search for "more like these." The 
system takes the exemplars and creates a search that may include terms and constraints that may 
not have been included in the user's initial search. The advantage of a search-by-example tool is that 
refining a search is relatively painless and doesn't require any particular knowledge of vocabulary, 
database contents, or other low-level details. However, the disadvantage of most query-by-example 
systems is that the search query that is actually generated is hidden from the user. As a result, an 
expert may not be able to manually refine the search even further. The ability to override a computer-
generated search, such as the utility provided in Entrez where a user can edit the search criteria 
generated through the use of pull-down menus, may or may not be an issue, depending on the 
expertise of the user.

One of the advantages of using NLP or query by example is that it frees the user from having to learn 
a controlled vocabulary. An NLP engine can map concepts and use the appropriate synonyms that the 
underlying database management systems expect in order to provide optimum search results. 
However, the power of an NLP engine or an ability to manually override a search query lies in the 
granularity of the vocabulary used to index the data originally. For example, if all genes dealing with 
the heart are indexed under "cardiac," without distinguishing between normal and diseased 
conditions, then a researcher won't be able to narrow a search to normal heart pathology.

The optimum condition exists when the controlled vocabulary is made available to users during the 
search process. For example, PubMed is indexed using the Medical Subject Heading (MeSH) 
vocabulary, maintained by the U.S. National Library of Medicine. Knowing this, a researcher can use 
the online MeSH browser to identify the most appropriate search terms to use to retrieve the data of 
interest.

For a research group establishing an internal database, MeSH may not be the most appropriate 
controlled vocabulary for indexing and searching. Even within the relatively narrow domain of clinical 
medicine, there are several popular controlled vocabulary systems in use. In addition to MeSH, there 
is the Unified Medical Language System (UMLS), the Read Classification System (RCS), Systemized 
Nomenclature of Human and Veterinary Medicine (SNOMED), International Classification of Diseases 
(ICD-10), and Current Procedural Terminology (COPT). Each system has its strengths, weaknesses, 
and primary purpose. For example, SNOMED is optimized for accessing and indexing clinical 
information in human and veterinary medicine databases, whereas the COPT is optimized to identify 
medical procedures.

The advantage of using one of these public controlled vocabularies is that the vocabulary is 
immediately available. Time-consuming tasks such as removing redundancies in the vocabulary, 
which ultimately limits scalability, have been performed by someone else—presumably experts in the 
field. Another advantage is that databases indexed with a public controlled vocabulary can more 
readily share the database with others without having to distribute the indexing vocabulary. For 
example, if an academic research center wants to publish its research on SNPs and drug responses 
on the Internet, it can provide a simple keyword search interface to the database and simply list the 
appropriate search vocabulary, such as MeSH.

The major disadvantage of using a public controlled vocabulary, or its given representation, is that its 
granularity may not exactly fit the needs of the laboratory. Another limitation is that the public 



vocabulary may be updated periodically, forcing whoever manages the database to expend the 
resources necessary to re-index areas of the index affected by the updates. Failing to do so would 
likely lead to user frustration, because users may not have the latest version of the vocabulary, 
either because they aren't aware of the update or because they don't have access to an older version 
of the vocabulary for reference.

For internal databases where the user population can be informed about changes in indexing, there is 
much more flexibility in selecting or developing an indexing and search vocabulary. The most 
common approaches to developing an in-house controlled vocabulary range from a totally 
unconstrained ad-hoc system to creating a huge, potentially unwieldy combination of public 
vocabularies. The ad-hoc approach of creating a new vocabulary as data are generated is reasonable 
only if the vocabulary is relatively small and isn't expected to grow beyond 1,000 or 2,000 words. For 
larger indexing tasks requiring the breadth of a published controlled vocabulary, a reasonable 
approach is to modify a standard vocabulary, adding granularity in specific areas. This approach 
takes advantage of an extensive vocabulary that may exceed 100,000 terms, but comes at a cost of 
incompatibility with the published standard. The approach of combining standards is clearly the most 
challenging because of the inevitable redundancies and internal inconsistencies of the vocabularies 
used that must somehow be controlled. Whether or not the advantage of this approach—a vocabulary 
that exceeds several hundred-thousand terms and is likely to cover the spectrum of indexing 
needs—is worth the investment depends on the scope of the database project and the resources 
available.

Regardless of whether a controlled vocabulary is designed from scratch or is based on a published 
standard, the main technological issue is providing a means of using it consistently and without error. 
For example, without rudimentary utilities such as text auto-completion, simply misspelling a search 
term can render the sought-after data inaccessible.

Utilities

Many of the generic utilities originally intended to extend the functionality of browsers can be used to 
facilitate searching molecular biology databases. These utilities include connection optimizers, 
browser add-ons, personal firewalls, file-transfer programs, and download managers. Connection 
optimizers are designed to improve Internet connection speed and reliability. Optimizers work by 
allowing manual override of network communications configuration settings so that the connection 
throughput can be optimized for sequence data (text strings), 3D protein structures (graphics), or 
specific combination of data formats.

Browser extensions enhance browsers with features, such as automatic form-filling, supporting 
searching within a document, dictionary tools that define or complete the spelling of words on-the-
fly, providing visual previews of Web pages before they are accessed, and adding buttons of 
frequently accessed sites to the browser. Privacy and security utilities include personal firewalls that 
take up where network firewalls leave off. They block advertisements, cookies, and other nuisances 
that can interfere with the efficient use of a browser-based search engine.

Download managers are intended to accelerate searches by opening multiple connections to one or 
more servers simultaneously, grabbing different parts of the file through each connection and 
reassembling the file on the workstation. File-transfer managers add flexibility to standard FTP clients 
by adding additional security through encryption, and by providing users with a graphical user 
interface instead of a command-line prompt. Most of these utilities are available on Windows, Linux, 
and UNIX environment platforms.



 
Searching and Information Theory

Information Theory forms the basis for our understanding of modern communications networks, and 
provides a model for understanding the principles of search engines. Information Theory specifies the 
amount of meaningful information that can be communicated from the Web server to the browser as 
a function of the signal-to-noise level and the bandwidth of the medium. The greater the strength of 
the desired signal compared to that of the noise—that is, the higher the signal-to-noise ratio—the 
greater the amount of relevant data that can be propagated from the database through the Internet 
to the user (see Figure 4-8).

Figure 4-8. Signal-to-Noise Ratio. Line height corresponds to the amount of 
data available on a particular topic.

Figure 4-7 shows the application of Information Theory to search engine technology, where the 
molecular biology database constitutes the information source, a Web server is the transmitter, the 
Internet or other network serves as the medium, the search engine is the receiver, and the user's 
Web browser or local application is the destination. Similarly, the relevant data in the database 
constitutes the message to be transmitted, irrelevant data constitutes the noise source, and the 
message presented to the user through a Web browser consists of both relevant and irrelevant data.

Figure 4-7. Searching and Information Theory. Following information 
theory, both relevant and irrelevant data reach the user through the 

Internet as a function of the search engine (receiver) and the relative 
amounts of relevant and irrelevant data in the information source.



Information Theory specifies the amount of meaningful information that can be communicated from 
the Web server to the browser as a function of the signal-to-noise level and the bandwidth of the 
medium. The greater the strength of the desired signal compared to that of the noise—that is, the 
higher the signal-to-noise ratio—the greater the amount of relevant data that can be propagated 
from the database through the Internet to the user (see Figure 4-8).

Searches generally fail in one of two ways: Either they retrieve too much noise with the desired data, 
so that the time it takes to look through results isn't worth the trouble, or they retrieve the wrong 
data, because the search criteria were incorrect. The best searches are sensitive enough to return all 
or most of the desired data and selective enough to limit undesired data or noise to the least level 
possible.

One way to limit the amount of noise returned by a search is to increase the selectivity of a search by 
using a Boolean operator, such as AND, OR, or NOT. As illustrated in Figure 4-9, the OR operator 
provides the least amount of selectivity. Conversely, the AND operator provides the greatest 
selectivity, returning data that contains all of the keywords submitted in a query. The NOT operator 
generally provides an intermediate amount of selectivity. The relative selectivity of the Boolean 
operators assumes that there is a significant signal-to-noise ratio—that there are a significant 
number of Web sites or nucleotide sequences that fulfill the search requirements compared to the 
other results that may be returned by the search.

Figure 4-9. Boolean Operators. Most search engines support the Boolean 
AND, OR, and NOT operators, illustrated graphically here. Shaded areas in 

each image represent the data returned by the search.



Regardless of the search technology used, the retrieval process is a tradeoff between sensitivity and 
selectivity. A non-selective search using only general terms normally returns a large amount of 
irrelevant data. As shown in Figure 4-10, a more selective search, while returning less noise or 
irrelevant data, may miss some of the desired data. Using an excessively selective search results in 
less noise at the expense of relevant data.

Figure 4-10. Search Sensitivity versus Selectivity. Search 1 is more 
selective, resulting in less noise in the search results, but also misses 

relevant data. Search 2 is more sensitive, including more relevant data but 
more noise as well.





 
Computational Methods

A common activity in bioinformatics work is to search through a database and locate a substring—a 
nucleotide sequence, for example—that matches a target string. Some computational methods 
provide results faster, allowing a researcher to check the results of an experiment frequently, at the 
expense of more false positive matches. Later, more selective, albeit slower techniques can be used 
to verify the results of these quick screening techniques. The performance and selectivity of a search 
are also a function of the search string and how the data are represented in the database to be 
searched.

Most programming languages provide string search capabilities, but these tend to be unacceptably 
inefficient when performed on large data sets typical of nucleotide sequence databases, and most 
don't support approximate match capabilities. Because the built-in algorithms tend to use brute-force 
methods that don't make use of heuristics or algorithmic tricks to increase efficiency or to accelerate 
the search process, special-purpose algorithms have to be used with computationally intensive tasks 
such as sequence searching.

Search Algorithms

Regardless of their intended purpose or design, search algorithms can be characterized by setup 
time, running time, and need for backtracking. The first two elements, setup time and running time, 
are related by the function:

search time = setup time + (comparisons x characters)

In this relationship, comparisons is the number of comparisons made per character in the text body 
to be searched, and characters is the number of characters in the body of text or sequence data that 
is to be searched. Setup time is the time invested prior to the actual search, and includes 
programming to establish lookup tables and other data that can be used to simplify or accelerate the 
search once it's initiated.

A search algorithm is considered inefficient if, in the process of a search, the number of comparisons 
made is equal to or greater than the number of characters in the source text. For example, a search 
algorithm in which the number of comparisons per character is greater than one is considered 
inefficient. Conversely, an efficient algorithm is one that makes less than one comparison per 
character to complete a search. Making less than one comparison per character might seem 
counterintuitive at first, but this is possible through the use of heuristics that involve skipping 
characters and repeating characters. Heuristic techniques use previous information to identify a 
solution.

To illustrate the first heuristic, skipping characters, consider the search scenario in Figure 4-11 where 
a search for the string "RNA" progresses from left to right in the search text "The synthesis of protein 
is by way of an RNA intermediary". At the initial stage of this example, the search position is at the 
right end of the first word, as indicated by the underline "e" in "The". Now, consider the progression 
of the marker as the search string is compared with subsequent characters in the search text.

Figure 4-11. Character Skipping. The search, indicated by the marker box, 
progresses from left to right, skipping ahead up to three characters at a 

time until a character in the search string "RNA" is found in the skipped-to 
region of the search text.



At each step, the number of characters in the search string—in this case, three—advances the search 
unless a character in the search text corresponding to the length of the search string is also in the 
search string. For example, in line 2 of Figure 4-11, there is no space in the search string and so the 
search advances three characters. However, in line 3, the "n" character in "nth" is also in the search 
string, but the n's don't line up. In this way, skipping continues until line 6, where the "rot" in 
"protein" contains the "r" character in the search string. A comparison of the first characters is made, 
which matches, and so the second characters are compared. This comparison fails, and the search is 
again advanced. In line 7, there is again a possible match, and the search string is advanced one 
character to verify a match, as in line 8. However, the space at the end of "protein" doesn't match 
the "A" in "RNA", and the search position is shifted three places to the right, as in line 10.

This process continues, stopping to check for matches whenever the next three characters contains 
an "r", "n", or "a". That is, if the algorithm is examining a character that doesn't occur in the search 
string at all, the algorithm moves ahead by the length of the entire search string. If a character does 
appear in the search string, the algorithm advances the search marker by the distance between that 
character and the right end of the string. By step 18, the search is complete, on a total of 44 
characters (including spaces). The number of comparisons per character is approximately 0.4—an 
efficient search algorithm.

A second search heuristic makes use of repeating patterns in the search string, such as "hand to 
hand, door to door", and attempts to match the first repeating word, according to the algorithm 
described for skipping characters. When a match is made, the search string is advanced to the point 
that the first occurrence of the repeated word is aligned with the first occurrence of the matching 
term in the main text. A comparison is now made for the second occurrence of the search term in the 
text. Obviously, the major gain in computational efficiency and performance is obtained by the first 
heuristic, and the advantage of the second heuristic is dependent on the appearance of repeating 
words in the search pattern.

In addition to running time, another major metric for characterizing search algorithms is the need for 
backtracking. Some search algorithms are linear, working efficiently from the beginning of the 
sequence to be searched to the end, whereas others move back and forth in the text to be searched 
during processing. For example, the skipping search algorithm moves the index ahead by the number 



of characters in the search string but then backs up to compare characters if a possible match exists.

Approximate Searches

Algorithms that efficiently locate exact matches have many applications in bioinformatics, including 
searching for data in PubMed or some other bibliographic reference database by a specific disease or 
author, searching a clinical database by a specific disease or patient identification number, or 
searching any database where data are indexed by a known, controlled vocabulary. However, search 
algorithms that look for approximate matches are more useful in one of the most computationally 
challenging tasks in bioinformatics—that of searching sequence databases for homologies of 
particular sequences. Approximate match algorithms vary from the use of templates, to the use of a 
distance function, and the use of how words sound when spoken.

String search algorithms based on templates use metacharacters to specify the range of permissible 
strings that must be matched exactly. For example, the UNIX utility "grep" (general regular 
expression parser) uses metacharacters such as "*", "\", "$", "+", and "^" to perform a brute-force 
search. As such, applications such as grep don't do true approximate searches. Similarly, the Find 
function in the Windows operating system allows a search string such as "*research.doc" to locate 
Microsoft Word documents that include "MyResearch.doc", "DNAResearch.doc", and 
"ProteinResearch.doc". However, the search wouldn't locate documents such as "MyReserch.doc", 
"DNAResaerch.doc", or "ProteinRsch.doc", because of missing or transposed characters in the file 
names compared to the search string.

True approximate search algorithms allow approximate matches, permit the transposition of adjacent 
characters, substitution of characters, and assign different weights to different types of errors. An 
approximate match algorithm for nucleotide sequences should be able to locate nucleotide sequences 
despite the presence of single nucleotide polymorphism, for example. Searching with an approximate 
match algorithm for a nucleotide sequence that contains the string "AAGGTTAA" should be able to 
locate the sequence "ATGGTTAA", where the second "A" in the first string is replaced by a "T" in the 
second string.

Phonetic comparison algorithms, typified by Soundex and Metaphone, are examples of true 
approximate search algorithms that have application in bioinformatics. For example, they can be 
used to search bibliographic databases by author name when the exact spelling of the author's name 
may be unknown, or search a taxonomy database by phonetically spelling a species name. The 
Soundex approximate search algorithm addresses the problem of uncertain spelling by indexing and 
searching databases by an encoded string. These encoded strings are created by dropping vowels 
and silent consonants and assigning one of six values to the remaining consonants (see Table 4-3).

Table 4-3. Soundex Codes. Vowels and silent consonants are dropped from 
the word and the consonants are converted to a three-digit numeric codes, 

headed by the first character in the word. The Soundex algorithm is 
especially useful in performing approximate searches for names of authors, 

taxonomies, and other text strings that can be pronounced.

Characters Value

AEIOUHWY Dropped

BFPV 1

CGJKQSXZ 2

DT 3



L 4

MN 5

R 6

Soundex encoding uses the first letter of the word, followed by up to three codes, depending on the 
length of the word. Double consonants and repetitions of the same consonant group are dropped. For 
example, "protein" is converted to "P635", and "Pill", "Phil", and "Philly" are converted to "P4". 
Soundex errs on the side of sensitivity instead of specificity, in that it tends to pick up strings that 
are only vaguely similar to the search string. The major limitations of Soundex are that the first letter 
of a word must match exactly and that the string must be intended to be spoken. That is, Soundex 
isn't intended to work with a text string such as "ATTAATTGGA". Similarly, a search for a word that 
begins with "ph" won't find a word that actually begins with "f", even though the words may sound 
identical.

A major improvement on the Soundex approach of encoding search and index strings is the 
Metaphone algorithm. Like Soundex, Metaphone disposes of vowels—unless the word begins with a 
vowel. However, Metaphone encoding is based on diphthongs rather than consonants. For example, 
the Metaphone algorithm transforms "X" to "KS" before encoding the text string. As a result, a search 
using Metaphone is generally more specific than Soundex. However, the Metaphone encoding scheme 
doesn't overcome the limitation of being unable to encode and search for unpronounceable text 
strings, such as nucleotide sequence data.

When it comes to searching sequence databases for sequence homologues, the gold standard is to 
use a search engine based on a dynamic programming algorithm. Dynamic programming is a 
computationally expensive but thorough search algorithm that recursively searches through a 
database for a sequence that approximates the search string. Not only does a dynamic programming 
algorithm search a database from beginning to end, but it keeps the results of previous match 
attempts in memory. As a result, running a search for a sequence only a few dozen nucleotides long 
against a database such as the human genome database can take hours, even with a dedicated 
supercomputer.

Because the routine use of dynamic programming search techniques is unreasonably expensive in 
time and computer resources, modified versions of dynamic programming, such as the FASTA 
algorithm, are more practical. FASTA makes a dynamic programming approach to string search 
tenable by limiting the area of the sequence database that is searched. The downside to an algorithm 
such as FASTA is that it's possible to miss potential matches because the search isn't exhaustive.

When it comes to performing approximate searches on sequence data, by far the most popular 
algorithm is the Basic Local Alignment Search Tool (BLAST), which achieves computational efficiency 
by using heuristics that are weighted toward local sequence alignments. The BLAST heuristic 
assumes that sections of protein are often conserved without gaps, so that the gaps can be ignored. 
As such, it's able to detect relationships among sequences that share only isolated regions of 
similarity. BLAST is used by virtually all of the major bioinformatics centers, including NCBI. Using 
BLAST over the Internet, sequence searches against the full human genome can be completed in only 
a few seconds, even when the system is being used by multiple users.

Because of the statistical techniques used to narrow the focus of the BLAST algorithm, it can miss 
potential matches in a nucleotide database. To extend the capabilities of BLAST so that it finds 
additional matches, NCBI developed Position-Specific Iterated BLAST (PSI-BLAST) that extends the 
original BLAST algorithm using a position-specific scoring matrix that is capable of detecting subtle 
nucleotide sequence similarities. NCBI and other research centers have similarly created specialized 
versions of BLAST that are tuned to specific problems or areas. As described in more detail in Chapter 
8, "Pattern Matching," there are versions of BLAST that are optimized for human, microbial, and 
malaria genomes, vector contamination, and immunoglobins.



 
Search Engines and Knowledge Management

The ability to search through a molecular biology database assumes that an effective knowledge 
management process is in place. Using the DNA sequencing process as an example, consider the 
steps involved in making sequence data available to a researcher through a search engine. First, 
there is the lengthy process of acquiring the data from a sequence machine. This involves identifying 
a set of clones that span a region of the genome to be sequenced, making sets of smaller clones from 
mapped clones, purifying DNA from the smaller clones, and finally setting up and performing the 
sequencing using gel electrophoresis. Then there is the verification and annotation of the sequence 
data. Annotation is especially critical, because it enables the sequence data to be accessed by name 
and linked to other databases. In this way, researchers in other labs and in other fields can access 
the sequence data. A newly discovered nucleotide sequence might be linked to (and linked from) a 
protein database, an inherited disease database, and perhaps a drug interaction database, for 
example. Ultimately, providing name and linking hooks to the new data facilitates discovery of 
associations or links between different but related fields in a way that extends our knowledge.

As involved as this initial stage of knowledge management can be, it's a waste of time and resources 
without a comprehensive knowledge management program. This includes a defined means of 
transforming data for other purposes, such as using the data in a tightly linked secondary database 
of clinical disease. It also includes archiving data so that they can be recovered in the event of failure 
in the primary database system, and providing the infrastructure capable of tracking the location of 
particular data elements and of controlling access to the data.

Although every component of the knowledge management process is critical, the data that are 
managed are of little value unless they can be easily accessed in a timely manner. From a practical 
perspective, knowledge management should support the retrieval of data from an online database 
with a search engine while making provision for security through user authentication or other 
methods. As such, factors that affect usability include the quality and appropriateness of the user 
interface, the vocabulary used to index and retrieve data, ease of use, ease of learning, and the time 
required for specific data to be searched for and retrieved define the value of the system.

As described earlier, using one of the integrated database systems such as Entrez, SRS, or BioKRIS 
can significantly reduce the time and difficulty associated with performing a successful search. 
Although having databases online facilitates link integration through the search process, the interface 
challenges begin at the time databases are first defined. The issue with creating databases of any 
type is that they are necessarily defined for a particular use. For example, the HomoloGene online 
database is optimized to manage putative homologies among the human, mouse, rat, and zebra fish 
genomes, whereas SWISS-PROT is optimized to locate protein sequence data. Moving outside of the 
molecular biology arena, the online professional databases including LexisNexis, Dialog, and Ingenta 
each provide comprehensive, efficient access to information in their domains. Similarly, PAC provides 
integration of life-science journal literature in a common format and in a single repository, providing 
a single, unified access portal to scientific literature instead of a combination of links to disparate 
databases, each with their own idiosyncrasies in vocabularies and infrastructures.

Information technology challenges aside, there is a limit to how far systems like Entrez can be further 
refined, because of our incomplete understanding of how a database can and should be linked. For 
example, molecular biology has yet to fully explain how single genes can code for multiple proteins or 
how all of the proteins in the human proteome interact with each other and the cellular environment 
under various conditions. That said, the future of bioinformatics lies clearly in the integration of 
disparate databases in molecular biology as well as with those in other fields to provide a unified view 
of life.

As an illustration of the degree of linking that will eventually be needed to even approximate this 
unified view, consider the experiences—which can be represented by links—typical of physician 
training in the United States. As listed in Table 4-4, the traditional pre-medical curriculum includes 
the basic sciences, including chemistry, physics, and genetics. Medical school provides exposure to 
pre-clinical studies such as physiology and anatomy, followed by clinical exposure to everything from 



nutrition and dermatology to psychology and oncology.

It's possible for someone to practice medicine without learning the interconnectedness of the 
underlying anatomy with the biochemical basis for disease—many advances in medicine were based 
on accidental discoveries, as opposed to reasoning from first principles. However, for true 
understanding of the disease process and how to treat it, the interconnectedness of organic 
chemistry, biochemistry, anatomy, and physiology generally have to be mastered. Because of human 
memory limitations, most clinicians specialize in relatively limited areas that they can master—that 
is, areas in which they can develop and maintain linkages.

An orthopedic surgeon may not need to understand the intricacies of the Central Dogma in his daily 
practice. Similarly, real understanding of the germ theory isn't required to perform an aseptic 
operation, such as a hip replacement—as long as proper procedure is followed. However, when things 
don't go as expected—for example, if the patient requires a new hip replacement after three years 
instead of the usual five—it's in 88the patient's best interest if the surgeon can reason from first 
principles, using his interlinked knowledge of skeletal and muscle anatomy, engineering, and clinical 
experience with hip prostheses to prevent a reoccurrence of premature failure. Often, as in the use of 
a search engine, the solution involves innovation—creating new links between existing knowledge.

Table 4-4. Typical Physician Training. The typical pre-clinical and clinical 
curricula, with a sampling of a possible pre-medical experience, illustrate 
the mesh of knowledge required for physicians to adequately understand 

and manage the disease process.

Pre-Medical Pre-Clinical Clinical

Differential Equations Anatomy Anesthesia

Physics Biochemistry Dermatology

Calculus Microbiology Endocrinology

Chemistry Parasitology Geriatrics

Genetics Pharmacology Hematology

Molecular Biology  Internal Medicine

Organic Chemistry  Neonatology

Strength of Materials  Nutrition

Statistics  OB/GYN

Dynamics  Oncology

Computer Science  Orthopedics

Art  Pediatrics

History  Plastic Surgery

Languages  Psychology

Sociology  Pulmonary Medicine

Psychology  Radiology

Engineering  Surgery



Management  Tropical Medicine

Biology  Urology

Innovators rely on predefined links and create links on their own. For example, substituting a 
beneficial organism for a potentially hazardous one, as in replacement therapy, has been practiced 
for decades. Eating yogurt, for example, populates the stomach with benign acidophilus bacilli, 
displacing less beneficial bacteria. The same technique is being used with Streptococcus bacteria that 
have been modified by recombinant DNA techniques so as not to produce cavity-producing acids that 
attack the tooth's enamel. The idea is to displace the natural bacteria that cause tooth decay by 
using a mouthwash composed of benign bacteria that will displace the acid-producing variety.

Innovation in bioinformatics is occurring in the same way. Researchers are using the links provided 
by Entrez and other online services and supplementing them with their own to test new hypotheses, 
verify the findings or theories of others, and otherwise advance their understanding of life.



 
On the Horizon

The current interest in bioinformatics is primarily focused on accelerating the expensive drug 
discovery process. Bioinformatics is currently viewed by the Pharma industry as a means of weeding 
out problem drugs more quickly and earlier in the R&D process. Although this view has yet to be 
validated by a viable product produced by bioinformatics methods alone, firms that rely heavily on 
bioinformatics techniques are projecting an R&D investment of 20 percent on sales. This may seem 
prohibitively expensive, given the industry standard of 12 percent on sales. However, the hope is that 
new bioinformatics methods will more accurately reject drugs that may cause serious side effects, 
drugs that as of now aren't discovered until millions of dollars have been invested in marketing and 
sales efforts.

Over the life of a drug, the initial R&D investment in bioinformatics methods could more than pay for 
itself if computational methods could be used to identify molecules that behave like other molecules 
known to cause serious side effects. Over the past 25 years, half of the dangerous side effects of 
drugs were recognized over 7 years after the drugs were approved. Pulling a drug from the market 
because of lethal side effects at this late stage is not only expensive, but these findings typically 
extend the FDA's approval time because of public pressure to be more vigilant.

Clearly, if bioinformatics is to solve the drug side-effect dilemma, practitioners in the field will have to 
work not only with gene expression and proteomic databases, but with clinical medicine databases as 
well. However, given the exponential growth of data in molecular biology as well as in virtually every 
clinical medicine domain, it's unlikely that molecular biology researchers will have sufficient 
knowledge or resources to manually establish and maintain links between findings in their field. 
Furthermore, it's even less likely that complete, up-to-date predefined links to databases in other 
fields can be maintained. More likely is continued work in the area of search engine technology that 
can create dynamic links between protein folding, DNA sequence, and inherited disease databases, as 
well as links between these databases and those in fields as diverse as physics, biochemistry, and the 
law.



 
Endnote

One potential endpoint of creating search capabilities that dynamically and completely integrate 
databases in medicine, law, the genome, individual IQ and education test scores, and personal 
employment records is revealed in Aldus Huxley's Brave New World, in which everything is known 
about every citizen before their birth. In this novel, embryos are immunized in vitro in a central 
hatchery against all known infectious diseases; old age itself is a disease. Furthermore, citizens are 
indoctrinated at birth to the social order, based on their made-to-order genetic profile that 
determines whether they are leaders or obedient followers.

Another possibility is that, like other disruptive technologies—the electric light, antibiotics, the PC, 
and the automobile, for example—our ability to manipulate nucleotide and amino acid sequences will 
simply become an invisible part of the social fabric. Thanks to bioinformatics, new, more powerful 
drugs will be available to treat HIV and similar acquired diseases, as well as correct for genetic errors 
that would otherwise result in lifelong suffering for individuals and a cost burden for the healthcare 
system.



 

Chapter 5. Data Visualization
 Deoxy Human Hemonglobin. PDB entry 1A3N. Image produced with PDB Structure 

Explorer.

When you are inspired by some great purpose, some extraordinary project, all your 
thoughts break their bonds; Your mind transcends limitations, your consciousness 
expands in every direction, and you find yourself in a new, great and wonderful 
world.

—Patanjali

We evolved as visual creatures, highly dependent for our survival on our virtually instantaneous, 
visual pattern-recognition skills. When faced with predator or prey, our ancestors who were able to 
assess the situation quickly and take the appropriate action survived. Day-to-day survival favored the 
quickest pattern recognizers.

In the modern, digital society, when it comes to communicating or understanding complex concepts 
and vast amounts of data quickly, the optical cortex is still the best processor going. The rise of TV as 



a universal portal for disseminating image-intensive news and entertainment, joined recently by the 
multimedia-rich Web, is a testament to our ability to immediately evaluate graphical content without 
conscious, focused mental processing.

Although there are exceptions, it's often difficult for even highly trained professionals to intuitively 
evaluate strings of text or tables of data so that they can act on them quickly. This is especially true 
when we are inundated throughout the day with data from a variety of sources, each source 
competing for attention. Everyone from aircraft pilots, drivers, anesthesiologists, and nuclear power 
plant operators to molecular biologists rely on graphical displays to operate equipment and 
communicate findings to others.

Consider that the typical physician understands or is at least familiar with the concepts of statistical 
sensitivity and specificity as applied to the interpretation of routine laboratory test results. However, 
when asked to apply these concepts to their everyday practice of reviewing tables of numerical 
laboratory test values, most cannot calculate when a test result is far enough from normal to warrant 
further investigation. For this reason, many laboratories report laboratory results to physicians in a 
tabular, numeric form in which each value is accompanied by a normal range and a simple graphic to 
show how it relates to what is generally accepted as the normal range.

The list of blood values for a male patient shown in Figure 5-1 is representative of how simple 
graphics are used at many hospitals and clinics to allow physicians to quickly visualize significantly 
abnormal results. In this example, the fasting blood glucose and hematocrit levels are outside of their 
normal ranges. The degree of abnormality can be calculated by looking at the range of normal 
values. However, because of the difference in ranges, it isn't immediately clear that the fasting blood 
glucose level is significantly out of normal range and that the hematocrit is just outside of normal. 
The advantage of the graphic is that the data ranges are normalized so that the distance outside of 
the normal range brackets has the same relative significance across all laboratory results.

Figure 5-1. Visualization Aids to Tabular Clinical Laboratory Data.



Although the hemoglobin level is outside of its normal range, it may be acceptable clinically. It may 
be temporarily elevated if the patient is dehydrated, for example. Making this clinical decision is the 
physician's responsibility, based on her experience. However, before the physician can make this 
assessment, she must be able to quickly identify values that are significantly out of normal 
range—which is where visualization aids are most valuable.

The value of using graphical representations of data to provide added meaning and context is also 
evident in the field of neuroscience, where 3D visualization technologies such as functional magnetic 
resonance imaging (fMRI) have supplanted the squiggly lines of the electroencephalograph (EEG). 
Functional MRI, which is based on the nuclear magnetic resonance of protons to produce proton 
density maps, empowers researchers to observe activity in the brain—as a 3D color image of the 
gross brain—when the patient is asked to perform different mental tasks. Particular patterns of 
activity are also associated with personality traits, from aggression and risk-aversion to depression.

Although these and other data have been available in the form of EEGs, before such advanced 
visualization technologies as fMRI, these patterns were not readily discernable, even to researchers 
who spent most of their time interpreting EEGs. Thanks to fMRI, researchers and clinicians with only 
minimal knowledge of neuroanatomy and neurophysiology can see changes in patterns of color on 
the brain surface and correlate the patterns with a patient's mental activity.

A major challenge in molecular biology has long been making sense of an abundance of potentially 
confusing data—even prior to the start of automated nucleotide sequencing of the human genome. 
Perhaps for this reason, some of the most influential advances in the field have been based on highly 
visual research. For example, in performing the basic research that formed the basis for his laws of 



inheritance, Mendel focused on readily visible, obvious traits of pea plants that he could definitively 
recognize and categorize. He and his attendants could unequivocally determine whether the peas 
were round or wrinkled, if the plants were tall or short, and whether the flowers were white or purple. 
He avoided measuring non-visual parameters such as weight days to flowering. Perhaps Mendel's 
findings would have been noticed by his contemporaries if he had included graphics in his publication 
similar to the type currently used in textbooks to describe his experiments. Similarly, Thomas Morgan 
decided to use Drosophilae melanogaster to understand genetics, evolution, and development, in part 
because he could easily observe visual changes in the flies, such as eye color. It also helped that he 
could house thousands of experimental subjects in a few jars.

In bioinformatics, the majority of data is in an abstract form that needs visualization technologies to 
enhance user understanding. This need is most pronounced in the areas of sequence visualization, 
user interface development, protein structure visualization, and as a complement to numerical 
analyses, especially statistical analysis. In each application area, the rationale for using graphics 
instead of tables or strings of data is to shift the user's mental processing from reading and 
mathematical, logical interpretation to faster pattern recognition.

A common activity in protein structure prediction is comparing the predicted structure with one 
experimentally determined by X-ray crystallography and the same Nuclear Magnetic Resonance 
Imaging (NMR, also referred to as MRI or Magnetic Resonance Imaging) technology used in clinical 
medicine. The degree of similarity is often expressed as a Root Mean Squared Deviation (RMSD) 
figure, which represents the distance between the corresponding atoms in each molecule. Similar 
structures typically have an RMSD in the 1–3 Angstrom range, with larger RMSD values 
corresponding to greater deviations in similarity. However, as the size of the protein increases, the 
minimum RMSD to qualify for what is considered a good fit increases. Whereas an RMSD of 10 
Angstroms would be considered a poor fit for a small protein, it might be considered excellent for a 
longer protein with several hundred amino acids.

Consider the challenge of comparing the protein structures depicted in Figure 5-2. Although the 
RMSD value provides a quantitative measure of closeness of fit, visualizing the overlap of structure 
pairs is more intuitive. In addition to being more intuitive than simple RMSD values, the visualization 
provides additional information—just as the graphics in Figure 5-1 add value to a simple tabular 
listing of clinical data. Even though the RMSD values for the four pairs of structures is identical, there 
is clearly a difference in what the value represents in each case.

Figure 5-2. The Challenge of Structure Comparison. Each pair of protein 
backbones has the same RMSD value, but different relative amounts of 

structure similarity. Visualization, together with the RMSD value, provides 
the best indicator of structure similarity. A—Uniformly Distributed 

Difference; B—Localized Difference; C—Significant Difference with Few 
Atoms; D—Small Difference with Many Atoms.



The difference between the experimental and predicted structures in (A) is uniformly distributed. 
However, in (B), most of the molecules match exactly. The single point of deviation is responsible for 
the majority of the RMSD score. In (C), there is considerable mismatch in structure, but because of 
the small number of atoms involved in the calculation, the RMSD score seems to indicate a good 
match. For example, even though the larger molecules in (D) have the same RMSD score, the 
overlap is much tighter along the entire length of the proteins.

Regardless of the visualization technologies used, the underlying assumption is that, for most 
researchers, the perceptual clues in graphical displays can enhance immediate understanding of the 
data being presented. Visualization technologies can provide an intuitive representation of the 
relationships among large groups of objects or data points that could otherwise be incomprehensible, 
while providing context and indications of relative importance.

This chapter explores data visualization techniques applicable to bioinformatics, from methods of 
generating 3D renderings of protein structures to creating maps of the physical location of genes on 
the chromosomes. The "Sequence Visualization" and "Structure Visualization" sections explore the 
technologies available to help researchers visualize nucleotide sequence data and protein structure 
data, respectively. The remainder of the chapter deals with the underlying technologies. For example, 
the "User Interface" section looks at how visualization techniques can make bioinformatics 
applications more easily understood and learned. "Animation Versus Simulation" explores difference 
between the two technologies, as applied to visualization. The "General Purpose" section explores the 
use of general-purpose software and hardware technologies that can be applied to bioinformatics. 
The "On the Horizon" and "Endnote" sections consider the prospects of practical virtual reality and 
other near-future visualization technologies.



 
Sequence Visualization

Working with strings that represent nucleotide sequences is like programming in machine code. 
Although it's humanly possible to program a computer with strings of 0s and 1s, it's an arduous, 
error-prone, time-consuming process that doesn't lend itself to efficiency or easy maintenance and 
one that requires extensive program documentation. A step up from machine code is Assembly 
language, which allows programmers to use mnemonics such as "CLR" to clear a buffer and "ADD" to 
add two values. However, the programmer is still forced to think in terms of low-level CPU 
instructions. As a result, the programmer is constantly switching between a high-level problem such 
as how to best rotate a molecule in 3D space and a low-level problem, such as whether to use 
integer or floating-point math in the rotation algorithm.

Further up the programming hierarchy are languages such as C++, BASIC, and HTML that insulate 
programmers from the underlying computational hardware infrastructure and allow them to work at a 
level nearer the application purpose. Higher still are the flow diagrams or storyboards—maps of 
sorts—that provide a graphic overview of the application that can be understood and critiqued by non-
programmers. Returning to nucleotide sequence work, the parallel to these storyboards are gene 
maps—high-level graphic representations of where specific sequences reside on a chromosome.

Sequence Maps

When it comes to visualizing nucleotide sequences, the obvious organizational metaphors are the 
amino acids, proteins, chromosome segments, and genes. Just as flow diagrams can be used to 
provide content and a high-level description of how the various components of a program are 
organized and function, gene maps provide a high-level view of relative and absolute gene and 
nucleotide sequence location. The quintessential gene mapping application is NCBI's Web-based Map 
Viewer, shown in Figure 5-3.

Figure 5-3. Map Viewer. NCBI's Map Viewer program integrates physical 
and genetic map information for specific sequences, proteins, and genes. 

This view shows the position of the gene associated with type 2 
neurofibromatosis, located on chromosome 22.



The Web-based Map Viewer program, which is part of NCBI's Entrez integrated system, provides a 
composite interface to several of NCBI's online databases. Map Viewer enables users to identify a 
particular gene location with an organism's genome, the distance between genes, and the sequence 
data for a gene in a particular chromosomal region. Map Viewer illustrates how the main 
computational challenge in visualizing linear nucleotide sequences lies in integrating data from 
multiple databases. Map Viewer runs inside a Web-browser; all of the graphics processing and 
database integration is handled by NCBI.

Unlike working with three-dimensional protein structures, there is relatively little computational 
overhead involved in visualizing one-dimensional sequences. Sequences culled from NCBI's 
sequential databases are mapped onto the appropriate graphic and relevant links are provided to the 
corresponding databases that define the gene sequence and that are related to specific diseases.

Map Viewer provides a graphic depiction of nucleotide sequences through a composite of genetic, 
cytogenetic, physical, and radiation hybrid maps, each of which have their particular uses. Genetic 
maps show the relative position and order of genes and other sequences on a chromosome, and 
serve as high-level approximations of relative distances between sequences. Cytogenic maps provide 
a gross indication of the position of exons and entrons along a chromosome, based on optical 
microscope techniques. Physical maps show the actual physical location of sequences on a 
chromosome. Radiation hybrid maps link genetic and physical maps.

These different representations of a sequence along a chromosome have a variety of applications. For 
example, a cytogenic map is probably most appropriate for a researcher interested in quickly 
estimating the relative amount of DNA on a chromosome that is involved in coding. A physical map 
would be too detailed and difficult to work through, compared to a simple visual inspection of the 
relative percentage of exons to entrons across several chromosomes. Conversely, a researcher 
interested in the probability that the genes will separate during meiosis would be more interested in a 
genetic map, which shows distances between genes and markers (variations at a single genetic locus 
due to mutation or other alteration), measured in terms of recombination frequency. The 
recombination frequency figure reflects the tendency of genes located close together to be inherited 
together, while those that are far apart are more likely to be separated during meiosis. Markers 
include single nucleotide polymorphisms (SNPs), which are individual point mutations or substitutions 
of a single nucleotide anywhere in the genome.



The resolution provided by a physical map depends on the methodology used to create the map. The 
simplest form of physical mapping is cytogenic mapping, which is based on the banding of stained 
chromosomes that is visible through light microscopy. Generally more useful in bioinformatics work is 
high-resolution sequence-based physical mapping, which defines distances between markers and the 
intervening sequence in terms of base pairs. One of the most popular sequence-based physical 
mapping techniques uses sequence tagged sites (STSs), which are short, unique DNA sequences. A 
common source of STSs are expressed sequence tags (ESTs), which are short sequences derived 
from analysis of complementary DNA (cDNA). STSs can also be obtained by sequencing random 
pieces of cloned DNA.

Some of the most valuable mapping techniques provide connections between physical and genetic 
maps. The most common methods of identifying these connections involve radiation hybrid (RH) 
mapping and simple sequence length polymorphisms (SSLPs). Radiation hybrid mapping, which can 
be used to reveal the distance between genetic markers, is performed by exposing DNA to measured 
doses of radiation, which causes the DNA to break up. By varying the amount of radiation, the 
average distance between DNA sequence breaks can be modified. As a result, RH mapping can be 
used to localize virtually any genetic marker. Another approach to linking genetic and physical maps 
is based on SSLPs, which are arrays of repeat sequences that display length variations. Because 
SSLPs can serve as both a genetic marker and as the basis for sequence mapping—a Rosetta Stone 
of sorts—the technique is valuable in connecting physical and genetic maps.

The accuracy of the mapping process is highly dependent on computational methods used to 
manipulate the data acquired by experimentation or modeling. The typical mapping process, 
illustrated in Figure 5-4, involves an integration of several mapping approaches. Using link mapping, 
the chromosome is cut into relatively large pieces, and markers are assigned in stages to make a 
more detailed map. Cytogenic mapping is used to create a first-pass, a low-resolution chromosome 
map that becomes more detailed as more marker data are collected and assigned to positions along 
the chromosome.

Figure 5-4. Gene Mapping Processes. A variety of techniques are available 
for creating physical and genetic maps.



Sequence mapping involves first breaking up the chromosome at random into large fragments, which 
are then cloned with bacteria to make a bacterial artificial chromosome (BAC). These BACs are 
ordered in such a way as to maximize the contiguous regions while using the minimum number of 
BACs. Because BACs are too long to sequence, each one is broken at random into fragments that can 
be handled by a sequencing machine—less than around 500 nucleotides—and each fragment is 
sequenced. In this way the sequence of each BAC, and eventually of each contiguous region, are 
defined. The result is a physical map that may have a few gaps between contiguous regions.



 
Structure Visualization

One of the primary activities in proteomics R&D is determining and visualizing the 3D structure of 
proteins in order to find where drugs might modulate their activity. Other activities include identifying 
all of the proteins produced by a given cell or tissue and determining how these proteins interact. The 
current methods available for realizing these later activities include time-consuming protein 
purification and X-ray crystallography—both activities that take significant time, even with robotic 
automation. As such, it's generally understood by the molecular biology research community that the 
sequencing of the human genome, which will likely take several more years to complete, is relatively 
trivial compared to definitively characterizing the proteome.

Barring the introduction of some new technology, cataloging, interpreting, and dissecting the 
proteome will take many years. Unlike a nucleotide sequence, which is a relatively static structure, 
proteins are dynamic entities that change their shape and association with other molecules as a 
function of temperature, chemical interactions, pH, and other changes in the environment. Grasping 
the static structure of the approximately 30,000 proteins of the human proteome is difficult enough 
for many researchers, much less their potentially unlimited variation.

In contrast to visualizing the sequence of nucleotides on a strand of DNA, visualizing the primary 
structure of a protein adds little to the knowledge of protein function. More interesting and relevant 
are the higher-order structures. For example, understanding the docking of two proteins is greatly 
facilitated by visualizing the two 3D structures interacting in 3D space. Visualizing a protein's tertiary 
structure is valuable in comparing protein structure predictions.

Visualization Tools

The list of technologies in Table 5-1 only hints at the hundreds of available visualization tools that are 
either available or under development in bioinformatics. The vast majority of bioinformatics-specific 
tools are shareware utilities developed with government funding, supplemented with a few dozen 
commercial offerings. Many tools are hardware or process-specific. For example, there are dozens of 
graphical interfaces or visualization tools made expressly for microarray devices and the data they 
generate. Some of these tools are written in low-level computer languages such as C++, and others 
are adaptations of high-level tools, such as the graphical user interface editors that ship with 
commercial database engines. In addition to these bioinformatics-centric tools, there are general-
purpose visualization technologies that can be used in bioinformatics applications.

Table 5-1. Visualization Technologies. Visualization tools leverage the 
pattern-recognition capabilities of the viewer's visual apparatus as opposed 

to the logical, intellectual capabilities that can be more easily saturated.

Visualization Tool Examples

Nucleotide Location Map Viewer

Protein Structure SWISS-PDBViewer, WebMol, RasMol, Protein Explorer, Cn3D, VMD, 
MolMol, MidasPlus, Pymol, Chime, Chimera

User Interface Third-Party Browsers, VRML, Java Applets, C++

General-Purpose Software Microsoft Excel, Strata Vision 3D, Max3D, 3D-Studio, Ray Dream 
Studio, StatView, SAS/Insight, Minitab, Matlab

General-Purpose Hardware Stereo Goggles, Data gloves, 3D (Stereo) Displays, Haptic Devices



Rendering Tools

Most of the imaging work in bioinformatics involves data from the Protein Data Bank (PDB) or the 
Molecular Modeling Database (MMDB). Searching for a structure is typically through protein name or 
ID. For example, data in the PDB is accessible by name or four-letter identifier. As illustrated Figure 5-
5, the identifier for Glutamine Synthetase is 1FPY. Note from the summary information in PDB that 
the Glutamine Synthetase molecule is represented by almost 46,000 atoms, which explains in part 
why rendering the data is so computationally expensive. The resolution listed for the data—the 
RMSD—is 2.89 Angstroms.

Figure 5-5. The Protein Data Bank (PDB). Here, the PDB shows summary 
data for Glutamine Synthetase, and the four-letter code for the protein, 

1FPY. Note that there are almost 46,000 atoms and over 5,600 residues in 
the structure.

Representative protein structure rendering programs available as free downloads from the Internet 
include RasMol, Cn3D, PyMol, SWISS-PDBViewer, and Chimera. A summary of the features of these 
programs appears in Table 5-2.

Table 5-2. Application Feature Summary. Some of the more popular protein 
structure rendering programs are summarized here. All of these programs 

are available from the Internet at no cost for non-commercial users.

Feature RasMol Cn3D PyMol SWISS-
PDBViewer Chimera

Architecture Stand-alone Plug-in Web-
enabled

Web-enabled Web-enabled



Manipulation 
Power

Low High High High High

Hardware 
Requirements

Low/Moderate High High Moderate High

Ease of Use High; command-
line language

Moderate Moderate High Moderate; 
command-line 
language and GUI

Special Features Small size; very 
easy to install 
and use; 
established user 
base; highly 
portable

Powerful; 
GUI

Powerful; 
GUI; ray-
tracing 
option

Powerful; GUI Powerful; GUI; 
built-in 
extensions for 
collaboration

Output Quality Moderate Very high High High Very high

Documentation Good Good Limited Good Very good

Support Online and users 
groups

Online and 
users 
groups

Online and 
users 
groups

Online and 
users groups

Online and users 
groups

Speed High Moderate Moderate Moderate Moderate/Slow

OpenGL Support Yes Yes Yes Yes Yes

Extensibility No No Yes; 
supports 
Python

No Highly extensible; 
supports Python

Operating 
Systems

Universal Universal Universal Universal Universal

The selection of a protein structure rendering program should be a function of ease of use, power, 
speed, special features, cost, hardware requirements, documentation and support, and overall 
functionality. For example, rendering 3D protein structures can be extremely computationally 
intensive. The more complex the rendering output, the greater the computational load, and the more 
time required to render each image. Often, time and performance limitations dictate the use of a 
simple, fast rendering package such as RasMol (see Figure 5-6) for day-to-day rendering, and one of 
the higher-end packages, such as Chimera, for publication-quality output.

Figure 5-6. Rendering Output from RasMol. RasMol is one of the oldest and 
easiest to use molecular rendering programs available for bioinformatics 

work. This example shows the basic display options available. The molecule 
is Deoxy Hemoglobin.



The minimum functionality of the open-source (source code is available for free or low-cost non-
commercial) rendering programs available on the Web includes the selective viewing and 
manipulation of subsets of atoms, wireframe, ball-and-stick, or ribbon renditions of a protein. Each 
representation emphasizes different protein properties. For example, the ball-and-stick PyMol 
rendering of Glutamine Synthetase in Figure 5-7 emphasizes atoms and bonds. Wireframe views, 
such as the PyMol renderings in Figures 5-8 and 5-9, emphasize the molecular bonds. Ribbon 
diagrams, such as the Chimera rendering of Glutamine Synthetase shown in Figure 5-10, emphasize 
the protein's secondary structure, whereas the Van der Waals surface diagram of Deoxy Hemoglobin 
in Figure 5-11 rendered in SWISS-PDBViewer emphasizes the atomic volumes. Another popular 
format is the backbone, which shows the overall molecule structure (see Figure 5-12).

Figure 5-7. Ball-and-Stick Display of Glutamine Synthetase Rendered in 
PyMol. A close-up of the center of the molecule is shown on the right. The 

ball-and-stick format emphasizes atoms and bonds.



Figure 5-8. Wireframe Diagram of Glutamine Synthetase Rendered in 
PyMol. The wireframe view, shown here rendered edge-on (left) and face-

on (right), emphasizes the atomic bonds. Compare with Figure 5-9.

Figure 5-9. Close-Up of a Wireframe Diagram of Glutamine Synthetase 
Rendered in PyMol. In this view, bonds are highlighted without being 

obstructed by atoms.



Figure 5-10. Ribbon Diagram of Glutamine Synthetase Rendered in 
Chimera. Ribbon diagrams emphasize the protein's secondary structure.



Figure 5-11. Van der Waals Surface Diagram of Deoxy Hemoglobin 
Rendered in SWISS-PDBViewer. This view emphasizes atomic volume.



Figure 5-12. Backbone Diagram of Glutamine Synthetase Rendered in 
RasMol. This view emphasizes the protein's overall structure.



RasMol, placed in the public domain in 1993 by Roger Sayle and maintained today by the University 
of Massachusetts, Amherst, is the easiest-to-use molecular rendering program available on the 
Internet. Although this stand-alone program has been supplanted in functionality by a host of 
derivative programs, such as Chime and Protein Explorer, RasMol remains one of the standard tools 
in bioinformatics visualization. RasMol is limited in functionality compared to programs introduced in 
the past decade. However, it has a small footprint of less than a megabyte, runs on a standard laptop 
computer, and is computationally efficient.

Cn3D, which is closely linked with NCBI's MMDB, is a browser plug-in that supports interactive 
viewing of 3D protein structures in a Web browser environment. In addition to standard features such 
as selective coloring of subsets of the protein structure to emphasize certain regions of interest, 
Cn3D can correlate structure and sequence data to locate residues in a crystal structure that 
correspond to known disease mutations and can display structure-structure alignment. Cn3D can also 
export images in a variety of formats for publications and for use in other rendering engines, 
including high-end commercial rendering programs.

PyMol is a Web-enabled rendering program that emphasizes power and functionality over ease of 
use. PyMol is often used to produce graphics for publication, in part because of its built-in ray-tracing 
function. Ray tracing is a computationally challenging method of rendering an image so that 
shadows, highlights, and other photo-realistic features appear in the final image. The technique 
involves calculating the color and intensity of each pixel in an image by tracing single rays of light 



backward and determining how they were affected on their way from the light source illuminating the 
molecular structures in the image. In addition, PyMol supports the Python scripting language (hence 
the name), allowing automated processing of images.

SWISS-PDBViewer was acquired by GlaxoSmithKline and then made available to non-commercial 
users at no cost. Like RasMol, SWISS-PDBViewer emphasizes ease of use over power and 
functionality. Even so, as illustrated in Figure 5-13, SWISS-PDBViewer is feature-laden. In terms of 
functionality, it's somewhere between RasMol and Pymol. As such, computer hardware requirements 
are moderate. Like RasMol, it's capable of reasonable performance on a low-end desktop or a laptop 
computer. The graphical user interface provides access to a variety of features. Unlike Pymol, 
however, there is no scripting language, which limits extensibility of the program.

Figure 5-13. SWISS-PDBViewer. The Preferences menu hints at the 
extensive rendering capabilities of the program. The image in the 

background is a wireframe view of Deoxy Hemoglobin.

Chimera is a high-end, highly extensible rendering program from the Computer Graphics Laboratory, 
University of California, San Francisco. Of the programs reviewed here, Chimera is clearly the most 
powerful, most feature-packed, and most demanding application. Features include multiple view 
tools, labeling of amino acids by a variety of criteria, alignment of molecules, and the ability to mix 
multiple renderings, such as transparent surfaces with ball-and-stick views. In addition to extensive 
online user documentation, there is an online programmer's guide that describes how the plug-in can 
be integrated with custom applications. The prices for this functionality are a relatively steep learning 
curve and the need for a high-end workstation for productive work. For example, the download is 
over 27 MB, and the developers recommend a 1 GHz Pentium with high-end video hardware. One of 
the downsides of Chimera is that it is still under development, so some of the features may not be 
fully implemented. Chimera is the successor to the popular UCSF Midas and MidasPlus programs.



In addition to Cn3D, RasMol, PyMol, SWISS-PDBViewer, and Chimera, there are dozens of alternative 
free and commercial rendering systems available. Most of these programs tend to be predecessors of 
more functional programs either under development or recently released. Even though many of these 
programs overlap each other and the programs discussed here in functionality, they are typically very 
good at a particular function and require less hardware power than the latest do-everything 
packages. For example, MolMol supports the display of electrostatic potentials across a protein 
molecule. MidasPlus, a predecessor to Chimera, has a sequence editing feature that allows the user 
to define a point mutation—substitute one amino acid for another—and visualize the result on the 
protein structure. MolSript, Ligplot, and Dimplot are specifically designed to create images for print 
publication, in that they support fine control over the output formatting. Ligplot additionally 
generates 2D schematic drawings of bonds and structure, and Dimplot, a variant of Ligplot, renders 
interactions among multiple protein chains.

General-purpose rendering systems can be used to obtain images that fulfill special criteria, such as 
extra high-resolution images for publication, enhanced color or transparency options to emphasize 
specific regions on the protein, and other, custom applications. For example, a general-purpose 3D 
rendering engine such as Strata3D Pro, Bryce, Max3D, or LightWave can render molecules within the 
context of cell wall or other structure as part of an illustration for print or film production. Similarly, a 
fly-through of protein structure can be rendered in one of these programs for teaching purposes. 
Aside from cost, which can range from a few hundred dollars to several thousand dollars, the 
downside of using one of these commercial, general-purpose rendering programs is that setup time 
may be dozens of hours per molecule. Most of this time is typically spent translating data from PDB 
or MMDB into a format supported by the rendering engine.

One of the challenges of working with multiple rendering engines is that the expected file format and 
contents may vary from one system to the next. Most rendering applications, including RasMol, are 
compatible with the PDB format, which contains a simple description of amino acid sequences. 
Programs that use the PDB format are required to use rules—which may vary from one program to 
the next—to construct the protein structure, based on sequence data alone. That is, these programs 
not only render the image, but perform modeling of the underlying data as well.

The result is potentially wide variations between displays of rendering systems using the same PDB 
data. In contrast, the MMDB contains data on the molecular bonds in the protein structure in ANS.1 
(Abstract Syntax Notation number One) format. Because the data on molecular bonds is provided, 
and not generated by the rendering engine, programs that render ANS.1 data tend to produce results 
that are highly consistent with each other. This doesn't necessarily translate to greater accuracy in 
the rendered image, however.

In addition to the PDB and ANS.1 formats, another common format for protein structure rendering 
engines is mmCIF (Macromolecular Crystallographic Information Format). Note that the PDB supports 
both PDB and mmCIF formats, as shown in Figure 5-14. Because reading in data in the mmCIF 
relational format is so extensive, it generally requires too much in computational resources for 
continual use. As such, it's much better used as an archival format. In contrast, data in the 
hierarchical ANS.1 format loads quickly, which is one reason why the ANS.1 format supported by the 
MMDB is preferable for viewing applications designed for browsing 3D protein structures.

Figure 5-14. Protein Structure Rendering Formats. Protein Data Bank data 
for Glutamine Synthetase is available in PDB and mmCIF file formats.





 
User Interface

The user interface is the veneer that hides the intricacies of the computer hardware and software and 
presents users with images, sounds, and graphics that they can interact with on a cognitive level. 
Properly constructed, the user interface focuses the computer user's attention on what's being 
presented—a protein structure, for example—not on the image-rendering software or the display 
hardware. Every computer application and every workstation has a user interface defined by 
hardware and software. Whether the workstation is running a computer operating system such as 
Microsoft Windows, a Web browser extension designed to draw 3D protein structures, such as 
WebMol, or a Web-based nucleotide sequence viewer, such as Map Viewer, it's the user interface that 
defines the usability and usefulness of the underlying application and accessibility of the associated 
data.

The user interface determines the density of information that can be presented to the user, as 
defined by Information Theory, for which the user interface is the medium through which the data 
flow. As shown in Figure 5-15, the application—a 3D protein visualization tool, for example—is the 
information source, and the data created by the application is the message. The computer interface 
hardware, including the video card and monitor, is the transmitter. The user interface, including the 
buttons and other graphics rendered on the computer monitor, serves as the medium. In this model, 
the irrelevant data includes components of the system that interfere with the message generated by 
the application, such as superfluous graphics, distracting colors, and other irrelevant data that appear 
on the computer monitor, which only serves to confuse the user.

Figure 5-15. The User Interface and Information Theory.

One purpose of the user interface is to simplify and focus the user's attention—superfluous data 
detracts from this purpose. The receiver in the Information Theory model is the user's perceptual 
apparatus, including eyes for visual content, ears for audio content, and proprioceptors for tactile or 
haptic content. Finally, the message, now containing relevant and irrelevant data, reaches the 
ultimate destination—the user's awareness.

The user interface is the medium and therefore a major bandwidth-limiting element in the delivery of 
data from the application to the user; everything that affects the effectiveness of the user interface 
affects delivery of data. Regardless of the complexity and technical marvel of the underlying 
molecular biology database and any related visualization tools, users see and interact with the user 
interface. This interaction with the user interface defines the utility of the 3D molecular models and 
other data displayed on the screen. Designing an interface to support bioinformatics, or any niche 



area for that matter, involves more than simply deciding on the layout for buttons and check boxes 
on a display.

User Interface Components

Even the simplest user interface can be viewed as a complex, multi-tiered structure that supports a 
dialogue or a communications channel between the user and the computer and between the user and 
the concepts presented by the software executing on the computer. The user interface minimally 
consists of a physical interface between the user and the computer. The user interface may also 
include graphical, logical, emotional, or intelligent interface components, as illustrated in Figure 5-16.

Figure 5-16. User Interface Hierarchy. The typical user interface consists of 
four basic components: the physical, graphical, logical, and intelligent 

interfaces. Higher-level components may be intentionally left out of the 
user interface in some systems.

This hierarchical model is especially relevant when discussing multimedia interfaces, which may 
incorporate graphics, video, and tactile feedback. A user interface may support sound, but sound has 
limited applicability in making molecular biology data more understandable. The model reflects our 
heavy reliance on visual information for communications, and most user interface work is graphical in 
nature. The hierarchical interface model also highlights the tactical aspects of human-computer 
interfaces, which may be critical in virtual reality presentation of data. Many concepts, such as 
energy wells, Van der Waals forces, and structural stability can be perceived more naturally through 
haptic devices, negating the need for the user to interpret graphics and colors used to represent 
physical forces.



The low-level interface layer, the physical layer, is concerned with the physical input and, more 
relevant as a component of visualization, physical output. With virtual reality visualization systems, 
this layer includes data gloves and other devices to manipulate synthetic 3D molecules or other 
objects. The physical layer also includes monitors of all types, haptic controls, speech synthesizers, 
and complex mechanisms such as robotic arms.

A major component of the physical interface is the monitor. Traditional cathode ray tube (CRT) 
monitors and LCD panels limit the quality of graphics and text that can be displayed. Although LCD 
monitors are more space and energy-efficient, higher-end CRT monitors are considered superior for 
extended use because of their higher maximum refresh rate, and greater maximum resolution, 
brightness, and contrast. LCD monitors are clearly superior as head-mounted displays because of 
their lighter weight and the safety afforded by their lower operating voltage. The most promising 
display technology for virtual reality applications in bioinformatics uses a low-powered laser to paint 
an image directly on the wearer's retina. The result is a virtual, wide-screen display in which protein 
molecules or other objects appear to float in space directly in front of the wearer.

One of the more intriguing physical interface components is the haptic controller, which is a specially 
constructed electromechanical mouse, or joystick, or other controller that provides the computer user 
with computer-mediated tactile sensations (see Figure 5-17). Haptic devices use electric motors to 
provide variable resistance to the movement of the controlling device, allowing users to experience 
the elasticity, the viscosity, the texture of surfaces, and vibrations. In bioinformatics, the major use 
of haptics is in manipulating and testing protein binding sites in a virtual reality environment, with 
the amount of force provided by the interface used to provide an indication of the ease or difficulty in 
manipulating the quaternary structure of a protein introducing a molecule at a particular binding site.

Figure 5-17. Haptic Joystick and Part of a Virtual Reality Workstation. Force 
feedback joysticks and 3D (stereo) goggles can be used to create virtual 

reality workstations in which proteins and other molecules exhibit 
attraction and repulsion as they are manipulated like physical objects.

Moving up the user interface hierarchy, the graphical user interface represents everything displayed 



on the computer display. Good graphical interface design is an art that's difficult to master. For 
example, even subtle differences in the relative size of objects displayed on the screen can 
profoundly affect how they are perceived. The graphical user interface typically makes use of mental 
models, which are the metaphors that give a graphical interface meaning. The desktop metaphor, 
with its desktop, trashcan, documents, and file folders, exemplifies how a metaphor can be used to 
provide a large number of users who have diverse backgrounds with a conceptual model of how and 
where information in a computer operating system fits together. Graphical interface designers have 
to make assumptions about the previous experiences of the typical user for an interface to work. The 
level of graphic complexity most appropriate for a graphical interface balances the need to focus a 
user's attention on a 3D model or other data, with hardware limitations, and the resources necessary 
to create a graphical interface.

The logical interface level is about rules, guidelines, and standards of interface behavior, such as how 
an interface should display the image of a molecule. A well-designed logical interface layer, like a 
properly executed graphical interface layer, allows users to focus on the problem at hand, such as 
identifying the location of a specific gene on a physical map, rather than on the mechanics of 
operating the interface. Logical interface design relies heavily on the concept of information design, 
which deals with the organization, presentation, clarity, and complexity of information. Information 
design focuses on communications and on developing a framework for expressing information, not 
aesthetics. The primary metric for assessing the degree to which an interface supports a logical 
model is commonly referred to as cognitive ergonomics.

Intelligent interfaces rely on a variety of pattern-recognition techniques to adapt to the user's 
behavior. Ideally, an intelligent interface learns user preferences by monitoring the user's responses 
to certain situations, tailoring the experience to the user's current interests, and never demands that 
users explicitly state their preferences. The inner workings of an intelligent interface may be very 
complex and rely on an elaborate knowledge base coupled to an expert system or statistical analysis 
program. Intelligent interfaces share many properties in common with intelligent agents, which are 
independent programs capable of completing complex assignments without intervention, as opposed 
to tools that must be directly manipulated by a user. By monitoring a user's activity on a Web site or 
within an application, an intelligent interface may learn, for example, user preferences for the color of 
a protein's acute region or the responsiveness of the protein rotation to mouse or joystick movement.

Alternative Metaphors

Visualization, whether as part of the user interface or as a means of presenting structure or sequence 
data, is largely about creating and supporting metaphors, which transform the data into a form that 
means something to the user. The pie chart is a useful metaphor only to the extent that users 
understand the difference between the slices of the pie and how that translates to relative quantities. 
The pie chart works for most of us because we intuitively understand the metaphor. However, the pie 
chart, like the Windows desktop metaphor, isn't very data-dense and doesn't lend itself to 
communicating advanced biotechnology concepts, such as tertiary protein structures. As a result, 
visual metaphors for user interfaces intended to present molecular biology data are necessarily more 
sophisticated than ordinary business graphics, especially when the challenge is to present large 
volumes of complex data.

One of the challenges of creating a suitable metaphor for bioinformatics work is the variety of 
potential users of the applications and their level of expertise. For example, bioinformatics 
researchers, high-school and college students studying molecular biology, research fellows, clinicians, 
and even the marketing departments of international pharmaceutical companies may use a given 
suite of applications. Devising a reasonable interface metaphor is therefore a compromise between 
information density, ease of use, and power—the ability to quickly and easily manipulate data 
communicated through the interface.

Bioinformatics is pushing the metaphor component of visualization technology to new levels. For 
example, even though the desktop, folder, and trashcan user interface—introduced by the Xerox 
Star, popularized by the Apple Lisa and Macintosh, and fully exploited and commercialized by 
Microsoft—is the dominant metaphor on desktop computers, it fails to reflect the needs of 
bioinformatics. Many researchers in bioinformatics contend that a new user interface is in order, one 



not based on folders and trashcans, but on molecular biology metaphors such as the Central Dogma, 
where chromosomes and genes provide organizational hierarchies in which form and function are 
mapped.

Work on interface design in clinical medicine provides one model for how a niche-specific interface 
can become the de facto standard. In clinical medicine, the metaphor of a paper medical record is 
pervasive. Many clinicians interact with a patient's electronic medical record through the metaphor of 
a paper medical chart in which the data are arranged by the patient's chief complaint, medical 
history, review of systems, physical exam, and laboratory results and never see or interact directly 
with the underlying operating system. Whether a bioinformatics-centric user interface evolves out of 
academic or commercial molecular biology laboratories depends on the creativity and resources of 
those in the field.

Developing a completely new user interface from scratch is a formidable task. It's easier to extend 
current interfaces through commercial utilities or by writing browser extensions, than to specify a 
new interface. For example, eXtensible Markup Language (XML), Virtual Reality Modeling Language 
(VRML), PHP: Hypertext Processing (PHP), and similar high-level languages can be used to extend 
browser functionality to work with manipulating 3D images and to create a new interface metaphor.

Another option is to select from commercial or shareware alternative front ends to desktop and Web-
based applications that use alternative metaphors. TheBrain Technologies, illustrated in Figure 5-
18,is but one of many alternatives to the business-oriented desktop metaphor. It uses the metaphor 
of a non-hierarchical mesh of linked associations, in which concepts are related to each other through 
logical association. For example, a mesh of associations based on the Central Dogma can be 
established in which nucleotide sequences are associated with protein structures through an 
intermediary link that associates proteins with both 3D structures and with genes that code for the 
specific protein.

Figure 5-18. Alternative User Interface. This example of an alternative 
desktop and Web browser, TheBrain Technologies Corporation's 

PersonalBrain, illustrates how an alternative metaphor can be used to 
provide access to computer and Web-based bioinformatics applications and 

data.



Often the task defines the most appropriate user interface. For example, if the data are from a DNA 
microarray device, then an interface that mirrors the array of florescent markers may be the most 
appropriate, especially if the user is the same person who works directly with the microarray 
equipment. However, if the user is removed from the device and works more closely with the binding 
sites, then an interface based on a metaphor of nucleotide sequences may be more effective in 
support of his work.

Display Architecture

The user interface is defined and limited by the overall system architecture, especially as it relates to 
how the data and interface are communicated to the workstation and its display. As illustrated in 
Figure 5-19, system architectures range from standard Web-browser–based systems based on native 
Web browsers to stand-alone systems that use the Internet only as an asynchronous data source.

Figure 5-19. Bioinformatics Visualization System Architectures. (A) Native 
browser; (B) Extended browser; (C) Web-enabled application; (D) Stand-

alone application.



In the native browser model (A), the user interface is defined by the application running on the 
server, within the constraints of the browser environment. The user interface to the application—a 
graphic sequence display, for example—can range from a simple, static line art display to an 
interactive, graphically rich environment with color graphics and links to numerous web-based 
resources. Furthermore, since the program actually executes on the server, the responsiveness of the 
application is a function of the server performance and the bandwidth of the communications link to 
the Internet.

In the model in which a Java applet is employed (B), the server sends Java script to the workstation 
browser environment, which interprets and executes the script locally. This approach, typified by the 
Chime plug-in, provides potentially greater interactivity and responsiveness because the code runs 
locally and can take advantage of local workstation's processing power. In addition, the bandwidth 
limitation of the Internet isn't normally an issue nor is the degree of interactivity possible because 
only data and Java strings are communicated from server to the workstation. The primary downside 
of this architecture is that the user must periodically download the latest version of the applet or plug-
in.

In example (C), a Web-enabled application interactively makes use of data over the Internet, but the 
application runs locally and extends the browser environment. As exemplified by PyMol, high levels of 



user interactivity are possible with this approach, and performance isn't affected by the potentially 
slow-speed Internet connection. The application can use any metaphor, input devices, and user 
interfaces within the limits of the operating system, local hardware, programming language, and the 
designer's skill and imagination. The other major approach to system architecture (D) is a stand-
alone application, such as RasMol, that uses data from a local database. These data may be 
downloaded from local experiments or downloaded asynchronously from the public databases on the 
Internet.

Given this range of possible architectures, what remains to be defined are the implementation-
specific capabilities that support visualization of data, such as nucleotide sequence or protein 
structures, and the format of the results of data analysis. Due to the wide range of open-source tools 
available, the new tools under development, and the additions being made to existing tools, selecting 
the best tool for a particular application generally begins with exploring the bioinformatics Web sites.

A summary of the characteristics of the four basic architectures is provided in Table 5-3. Note that a 
native browser application, such as Map Viewer, generally has high marks for portability and ease of 
maintenance. Portability is not a concern because virtually every computer platform is compatible 
with Netscape Navigator and/or Internet Explorer. In addition, because the graphics-rendering 
program sits on the server, there is nothing to update on the workstation running Map Viewer—with 
the possible exception of the Web browser if an application requires a later version than is installed 
on the workstation. The downside of this third-part maintenance of the application is that the user 
interface is limited to whatever the original designers defined; there isn't an easy way to alter how 
data are displayed in the Map Viewer program, for example. Similarly, the performance of Map 
Viewer is limited to that of the server, so there is little in the way that be done on the workstation to 
increase performance other than assuring a high-speed connection.

Table 5-3. Visualization Program Architecture Characteristics.

Architecture Portability Performance User Interface 
Flexibility Ease of Maintenance

Native Browser X   X

Extended Browser X X X  

Web-Enabled  X X  

Stand-Alone  X   

The extended browser model gets high marks for portability, performance, and user interface 
flexibility, and, compared to a native browser application, less than stellar marks for ease of 
maintenance. Most, but not all, plug-ins are compatible with every platform that supports a Web 
browser. Some plug-ins are optimized for Netscape Navigator and don't perform well or at all with 
Microsoft's Internet Explorer. The Chime plug-in, for example, requires a Netscape browser. Moving 
from a native browser environment to a plug-in that executes on the local workstation means that 
local hardware can be used to improve program performance.

Most of this performance increase is due to support for high-performance OpenGL-compatible 
graphics cards. OpenGL is a cross-platform standard (Windows, MacOS 9 and X, Linux, and UNIX) for 
3D rendering and hardware acceleration. The underlying architecture of an OpenGL-compatible video 
card is usually some variation of that depicted in Figure 5-20. An application communicates through 
the workstation bus to the controller hardware in the video card that drives a monitor.

Figure 5-20. Interface Display Architecture.



OpenGL-compatible video cards are designed to accelerate specific graphics procedures. These cards 
have their own high-performance microprocessor, high-speed video RAM, and support programs 
stored in firmware that can be accessed through software drivers. Image data communicated to the 
video card from the workstation through the main bus are buffered and processed according to the 
type of content. Content such as windows, buttons, and icons common to the Windows interface is 
sent to the 2D graphics coprocessor that contains instructions in firmware optimized for rendering 
these objects. These and other graphical interface elements are rendered to the Video RAM, which is 
configured as a frame buffer. In this way, the processor can be rendering the next frame or image 
while simultaneously driving the monitor with the current image, allowing a high-speed refresh rate 
that eliminates flicker.

In a similar way, 3D structures are rendered at high-speed by the dedicated 3D graphics 
coprocessor. The processor is optimized for making the many calculations required for rendering 3D 
images—including smoothing image edges, shading, applying texture maps to objects, providing 
perspective corrections, and mapping polygons over wireframe skeletons—thereby freeing the 
computer's main CPU(s) to do other tasks. High-end, specialized workstations from Sun, Silicon 
Graphics, DEC, and other manufacturers often use proprietary graphic support hardware that may 
not be OpenGL-compatible. Programs that work on these computers must use special video driver 
software in order to take full advantage of proprietary high-performance hardware.

Returning to the discussion of visualization program architectures, both Web-enabled and stand-
alone applications receive high marks for performance, for the same reasons cited for extend browser 
applications. Web-enabled programs such as PyMol and stand-alone applications such as RasMol are 
designed to take advantage of local RAM and CPU power, as well as OpenGL-compatible video cards. 
Because updates to programs must be downloaded from the Web, maintenance is an issue, and it's 
up to the user to maintain the latest version of the program and keep associated drivers up-to-date. 
Portability is also an issue for Web-enabled and stand-alone programs because they have to be 
installed on every workstation that may be used for rendering. In addition, stand-alone applications 
tend to have a fixed user interface that can't be easily modified. In contrast, others, such as Chimera 
from the Computer Graphics Laboratory, University of California, San Francisco, can be heavily 
modified and integrated into other programs.



 
Animation Versus Simulation

Visualization tools can be grouped into three major categories: simulation, animation, and static 
graphics. Simulation involves the dynamic, computationally intensive interaction of the user with a 
program that reevaluates the underlying data and renders the results. Animation, in contrast, 
involves the display of pre-computed data that can be accessed and analyzed as needed to illustrate 
certain findings or relationships. The data in the PDB, for example, serves as the data for a rendering 
program such as SWISS-PDBViewer that can be used to create animations of rendered molecules 
from various perspectives. Rotating a protein structure, as in Figure 5-21, doesn't result in a change 
in the underlying data. Static graphics, like animations, use fixed data. As in animations, viewing an 
image from different perspectives doesn't modify the underlying data.

Figure 5-21. Animated Rendering of Deoxy Human Hemoglobin Created by 
SWISS-PDBViewer. Rotating structures doesn't result in a recomputation of 
the underlying data, but only affects the visualization of the data previously 

computed. This figure illustrates two separate frames captured from the 
spinning animation.

Some of the rendering packages provide limited simulation capabilities. For example, SWISS-
PDBViewer allows the user to create point mutations along a molecule and then visualize the results. 
This is a limited form of simulation, in that a more powerful system can compute the 3D interaction 
of multiple proteins as well as alter underlying sequences.



 
General-Purpose Technologies

The bioinformatics research community is characterized by cooperation in the sharing of data and in 
application development. Thanks to the efforts of thousands of researchers in laboratories around the 
world, there are libraries of bioinformatics-specific applications that are freely shared among 
members of the community. Many of these applications deal with visualization, given the 
overwhelming need to have an intuitive means of manipulating the vast amounts of molecular 
biology data being generated daily worldwide.

Many general-purpose data-analysis programs provide reasonable visualization capabilities that can 
be used in bioinformatics work. The challenge is identifying a proprietary or open-source software 
package that either accepts standard bioinformatics data formats or that uses a utility to convert 
bioinformatics data into a format suitable for the package.

When it comes to hardware, few laboratories can afford high-end, dedicated visualization 
workstations from Silicon Graphics and other manufacturers, much less develop custom hardware to 
supplement their visualization needs. The problem with high-end commercial visualization 
hardware—from 3D or stereo goggles, data gloves, 3D displays, and haptic devices—is a lack of 
standards. A visualization system designed around a particular model of stereo goggles likely won't 
work with other hardware because the proprietary software drivers may require a specific operating 
system and the display drivers may be incompatible with displays from other manufactures. As a 
result, sharing research findings with others is more difficult. The more standard the general-purpose 
hardware and software used to support visualization in a laboratory, the more easily the system can 
be shared with others. In addition, using a general-purpose tool shifts the maintenance and 
standards challenge to the hardware vendors, allowing R&D teams to focus on their own work.

A common approach taken by software developers in aiding the visualization of complex molecules is 
to create a stereo pair that can be printed or viewed on a computer screen. This low-tech alternative 
to stereo goggles, most of which work by opening and closing an LCD shutter on either of the two 
lenses in concert with the display, is based on the cross-eyed technique. If you hold this book a 
comfortable reading distance from your face and stare at the point between the two proteins while 
crossing your eyes, you should be able to mentally fuse the two images, differing in only a few 
degrees of perspective into one single 3D structure. For example, the stereo pair in Figure 5-22 
illustrates a cross-eyed stereo pair of Deoxy Hemoglobin. Because the computational load of 
stereoscopic rendering is approximately twice that of a single image, rendering times can be painfully 
long.

Figure 5-22. Cross-Eyed Stereo Pair of Deoxy Hemoglobin Created with 
RasMol. To view the molecule in stereo, with the image about 10 inches 

from your face, stare at the area between the two molecules and cross your 
eyes until a third image forms in the center of the two original molecules. 
The original images will remain visible, but will be located in the periphery 

of the visual field.



The degree to which visualization can be supported by a generic workstation is a function of the 
workstation's overall system performance, specific hardware characteristics, the standards supported 
by the system, and their affect on overall performance, including the availability of software drivers 
and other interface technologies that may affect researcher's use or system performance. 
Visualization is one of the most computationally intensive processing challenges for workstation-
based applications. Dedicated rendering workstations typically have the multiple, highest-speed 
processors commercially available, a gigabyte or more of RAM, and at least one fast hard drive for 
maximum image throughput. Special hardware or firmware graphics accelerators are typically used 
to handle operations such as providing perspective, shading of figures, and refreshing the screen 
quickly between redraws of images being manipulated in hardware that would otherwise have to be 
communicated through the computer bus, executed on the main CPU, and then communicated to the 
video card.

Software also profoundly affects the range of possibilities for visualizing simple graphics or complex 
3D models. A visualization package written in Assembler by an accomplished programmer may 
outperform a poorly written application even when the later is running on higher-performance 
hardware. For example, if the application doesn't recognize the hardware graphics accelerator or 
make up for the maximum amount of RAM available, the visualization application won't deliver as 
much performance as possible. Similarly, the operating system may enhance or limit the 
performance of the visualization application. Support for OpenGL-compatible graphics accelerators 
and multiple processors is a basic requirement. Compatibility with industry-standard drivers, storage 
media, and networking protocols is also essential.

When it comes to visualization on generic hardware, standards are a double-edged sword. The high 
performance that is possible with specific graphics accelerators and software drivers and applications 
may make the workstation virtually incompatible with any other applications, even other visualization 
applications. The creation of a dedicated, high-speed visualization workstation by adding coprocessor 
boards and special drivers on an otherwise generic workstation may be a viable option if the 
enhanced performance and time savings is worth the additional expense and resources required to 
maintain an additional system.



 
On the Horizon

Virtual reality—the use of computers to immerse the user in a multimedia environment that's rich 
enough in synthetic cues to make the simulated environment seem real—has great potential in 
bioinformatics R&D. In the general marketplace, the commercial uses of virtual reality technology 
include virtual prototyping, museum displays, design evaluation, architecture, trade show displays, 
engineering, aerospace simulation, collaborative engineering, game development, and education. 
Most of these applications of the technology translate directly to bioinformatics applications. For 
example, the virtual prototyping of the functionality of running shoes or tractors isn't conceptually 
different from prototyping drugs and their effects on different human protein binding sites. Just as 
many of the traditional museums have been placed online to allow access to those who don't have 
museums in their communities, so virtual tours of protein molecules allow researchers and students 
access to data in a form that they couldn't otherwise access.

Design evaluation, which involves illustrating how a device or apparatus will look, can also be applied 
to protein structures. Virtual reality visualization methods can illustrate, for example, the different 
shapes that a protein molecule might assume with changes in local pH or temperature. Similarly, just 
as virtual architecture applications allow potential clients to experience the finished product before 
it's built, a virtual reality model of a protein structure allows researchers to work with 3D images of 
molecules before they're actually synthesized. The advantage of this approach is that it allows 
potential problems to be identified before resources are invested in developing the molecule.

To date, the greatest commercial use of virtual reality in molecular biology is in the form of booth 
attractions at trade shows. The pharmaceutical industry spends several hundred-million dollars 
annually on the marketing of drugs at major medical conferences, and virtual reality and other forms 
of visualization technology are commonly used to attract future prescribers to their booths and to 
quickly communicate the mechanism of action and relative efficacy of their drugs.

Similarly, in the aerospace industry, the practical application of virtual reality includes everything 
from turbine design to flight simulation training for pilots and support personnel. Much of this is in 
the form of collaborative engineering, where engineers share models and interact online. 
Collaborative engineering has been used for years in the automotive and aerospace industries to 
design subsystems and test their functionality before actually creating them. The result is that 
ineffective designs are disposed of before they make it to the prototyping stage, saving the 
companies time and money.

Closely related to virtual reality entertainment systems in which combatants donning virtual reality 
helmets immerse themselves in battle situations is the use of virtual reality in education. Several 
medical boards have invested heavily in virtual patient encounter systems in which physicians 
interact with animated, talking 3D patient simulations. These virtual reality systems allow medical 
students, residents, and physicians to develop their clinical pattern-recognition skills before 
interacting with patients suffering from the conditions being studied.

These and other applications of virtual reality have obvious application in molecular biology and 
bioinformatics research. For example, in the area of education, there is a significant gulf in what 
traditionally educated health care professionals and researchers understand about the bioinformatics 
arena. Similarly, virtual reality technologies can be used to enable students, researchers, and 
professionals in other fields to understand and help address the challenges in bioinformatics.



 
Endnote

Visualization is one of the most active areas of R&D in bioinformatics. One reason that visualization 
technology is so advanced today is the huge investment over the past several decades in the area by 
the military establishment. Consider that the development of the first bitmapped screens were 
supported by the military because the screens could track the trajectory of missiles more precisely 
than a simple grid of "Xs" on a character-oriented screen. Another reason for the rapid advances in 
the field is the parallel work in visualization being conducted in fields as diverse as the military, 
medicine, and weather forecasting. For example, based on the interfaces developed for use in clinical 
medicine, such as fMRI, the next generation of user interfaces used in bioinformatics will likely inherit 
some of this higher-level biological focus.

Bioinformatics visualization requirements, especially those related to 3D rendering of protein 
structures and modeling protein-protein interactions in real time, will certainly drive development in 
high-end computing, including supercomputer and grid computing. The challenge for the 
bioinformatics community is to devise visualization techniques and related technologies that are 
easily shared, capable of being supported in the long-term, and ones that provide developers of next-
generation hardware and software with a viable target to support.



 

Chapter 6. Statistics
 X-ray structure of a DNA decamer containing 7,8-dihydro-8-oxoguanine. PDB 

entry183D. Image produced with PDB Structure Explorer.

A mathematician is a blind man in a dark room looking for a black cat which isn't 
there.

—Charles Darwin

Although Gregor Mendel is often credited with quantifying biology, in reality the ancient Babylonians 
created tabulations of agricultural yields and related transactions several millennia earlier. Even 
earlier civilizations tracked the population of herds using pictographs on the walls of caves. However, 
not much changed in the way that population data were recorded for several decades after Mendel's 
death. For example, the 1870 and 1880 U.S. censuses were tabulated by hand—a process requiring 
about as much time as it took to sequence the human genome. As a result, the analysis of census 
data was not available until just before the next census was started. Things changed in 1890 when 



Herman Hollerith's tabulating machine was used to analyze the census—and they changed within 
about a year. Buoyed by this success, the Tabulating Machine Company evolved to service other 
areas, and eventually became known as IBM.

The U.S. Census Bureau collected samples from the U.S. population in the 1940 census, a modern 
statistical technique, instead of collecting data from every citizen. Because even this task was 
daunting using manual methods, the census bureau commissioned the UNIVAC Division of Remington 
Rand to build the first commercial non-military digital computer in the U.S., a UNIVAC model, in the 
late 1940s. Today, many molecular biologists routinely work with data sets that are considerably 
larger than those produced by the latest U.S. census, and they use a variety of advanced statistical 
techniques to do so.

This chapter explores the practical considerations involved in applying statistical techniques to 
modern bioinformatics challenges. It illustrates the range and complexity of issues that arise in 
controlling for the variability (which, in this discussion, encompasses errors) associated with 
microarray experiments and other bioinformatics work. "Statistical Concepts" introduces the 
underlying concepts of randomness and variability, while the "Microarrays" section provides an 
overview of the microarray experimental process. The "Imperfect Data" section reveals the numerous 
potential sources of variability in microarray experiments.

The "Basics" section relates microarray experiments to fundamental statistical concepts, while 
"Quantifying Randomness" discusses how randomness and variability are assigned to devices and 
processes. "Data Analysis" discusses how experimental output data are evaluated, and "Tool 
Selection" examines the criteria for statistical analysis tool selection. The "Statistics of Alignment" 
and "Clustering and Classification" sections illustrate the practical application of statistical concepts. 
"On the Horizon" introduces the technological innovations that bioinformatics is pushing forward, 
often ahead of the theoretical statistical underpinnings. "Endnote" addresses the implication of 
succumbing to the pressure to treat statistics as a black box solution to modern research challenges.

This chapter, like any book on statistical methods, should be considered a roadmap to potential 
issues to consider in discussing the selection of statistical methods with an expert statistician familiar 
with bioinformatics issues.



 
Statistical Concepts

Given the breadth of bioinformatics, the statistical concepts relevant to the field could easily fill a 
bookcase, much less a single chapter. As listed in Table 6-1, typical applications of statistics in 
bioinformatics range from clinical diagnosis and descriptive summaries to gene hunting and 
nucleotide alignment. Many of these applications are far removed from the traditional definition of a 
statistic, which is simply a value calculated from a sample. For example, consider that clinicians 
dealing with the efficacy of specific therapy in treating a genetic disease typically focus on disease 
prevalence (the number of cases of an illness or condition that exists at a particular time in a defined 
population). They also assess clinical and genetic tests for the probability of a negative result, given 
that the condition under consideration is absent (their specificity), and for the probability of a positive 
result, given that the condition under consideration is present (their sensitivity), and for the 
predictive value (the probability that a condition is present, based on the results of a test). The 
process of diagnosing patients potentially suffering from genetic disorders typically encompasses 
quantifying uncertainty and using statistical methods to predict long-term outcomes.

In most cases, statistics are gathered in order to estimate population characteristics or parameters. 
Furthermore, these parameters are typically unknown and unknowable. Further still, because a 
statistic is an estimate of a parameter, it is likely in error, and much of statistical work is devoted to 
quantifying the magnitude of this error.

Table 6-1. Applications of Statistics in Bioinformatics.

Clinical Diagnosis

Descriptive Summaries

Equipment Calibration

Experimental Data Analysis

Gene Expression Prediction

Gene Hunting

Gene Prediction

Genetic Linkage Analysis

Laboratory Automation

Nucleotide Alignment

Population Studies

Protein Function Prediction

Protein Structure Prediction

Quantifying Uncertainty

Quality Control

Sequence Similarity

At this point in the discussion of statistics, it's important to consider the basic concepts of 
randomness and probability as they relate to bioinformatics. Biological systems are inherently 
random, meaning that they involve variables that have undetermined value but definite probability. 
The first fruit fly to escape from a container of 50,000 flies when the container lid is opened may be 
male or female, for example. Even though the sex is a random event, the probability is 0.5 that the 



sex of the fly is male—assuming no external forces have been at work to affect the natural balance of 
fruit fly sex. Probability, the likelihood that an event will occur, is expressed as the ratio of the 
number of favorable outcomes in the set of outcomes divided by the total number of possible 
outcomes. Similarly, a stochastic system involves or shows random behavior.

Despite the apparent randomness at the organism level, when the same events are viewed at the 
population and ecosystem levels, they often appear as deterministic behaviors. That is, they have an 
outcome that can be predicted because all of its causes are either known or are the same as those of 
previous events. The concepts of evolution and chaos theory describe patterns in apparently random 
events that appear systematic and predictable over several generations. Chaos theory describes the 
unpredictability inherent in every system, in which apparently random changes occur because of a 
system's extreme sensitivity to small differences in initial conditions. A small increase in the earth's 
average temperature may drastically alter life on earth over several centuries, for example.

Mutations, chance mating, random environmental pressures, and the relative contribution of parents 
to the genotype of their offspring all lend themselves to statistical interpretation. An important 
distinction in biological systems is that some processes or measurements are either present or absent 
(discrete), while others are variable within some range (continuous). For example, a particular 
nucleotide is either at a location within a sequence or it isn't, just as a pea from one of Mendel's 
sweet pea plants either was round or wrinkled. In contrast, the expression of a gene, as measured by 
the fluorescence of a spot on a microarray slide, may range from absent to weak or pronounced. For 
example, consider a patient genetically predisposed to adult onset or Type II Diabetes. In many 
cases, by altering their behavior to include a low-calorie diet and regular exercise, a patient can 
control the symptoms of the disease—and presumably the expression of some genes. As such, 
bioinformatics methods encompass not only traditional statistics, but probability and stochastic 
processes, with both continuous and discrete variables.

Progress

Many advances in statistics were rooted in anecdotal observations that predated the development of 
formal mathematical proofs or models. For example, the first model of Mendel's work, Punnet 
Squares (see Figure 6-1), was developed about 50 years after Mendel's original observations. R.C. 
Punnet developed the model to illustrate the range of possible allele pairings, and to calculate the 
probability of each pairing. Using Mendel's mating of pea plants with round and wrinkled peas, 
Punnet's model predicts that the offspring will have four genotypes and a probability ratio of:

1 RR : 2 Rr : 1 rr

Figure 6-1. Probability and Punnet Squares. The model illustrates how the 
relative probability of a genotype relates to a given genotype mating.



with a phenotype of:

3 round : 1 wrinkled

Punnet's model was soon extended by others, including his associate G.H. Hardy, to a more 
generalizeable form. For example, the Hardy-Weinberg Principle, proposed in 1908, states that, in 
the absence of forces that change gene ratios in populations, when random mating is permitted, the 
frequencies of each allele will tend to remain constant throughout the following generations. Work by 
subsequent scientists, such as the British statistician Ronald Fisher, further quantified the 
observations of Mendel, Punnet, Hardy, and others.

When Fisher applied his statistical methods to Mendel's work in the 1930s, he showed that Mendel's 
figures were too perfect. With the small sample size used by Mendel, his findings, which agree with 
the ratios predicted by Punnet's squares, would be unlikely to be observed. Whether this apparently 
intentional error was the result of Mendel's manipulation of the data or, as some historians assert, 
due to incorrect reporting by his support staff, is unknown.

In terms of complexity, Mendelian genetics, while a milestone in the development of our 
understanding of genetics, pales in comparison to many of the statistical challenges of modern 
molecular biology. Even though many researchers work with statistics through the special function 
keys on their calculators or a dedicated statistical analysis program, the application of statistics is 
much more than simple data analysis. For example, statistical methods provide the basis for modern 
genomic and proteomic laboratory automation. Automating manual operations like pipetting not only 
saves time but, properly implemented, automation can eliminate or minimize many sources of 
variability and provide for a more robust experimental procedure. The rapid advances in 
bioinformatics, such as sequencing most of the human genome, have been possible because of the 
availability of statistical methods that compare and manipulate data representative of nucleotide 
sequences and computer-enabled laboratory automation. Machines—perhaps more appropriately 
referred to as robots—have been used to automate error-prone, manual procedures such as micro-
pipetting to the point that computer-based tools can quickly analyze the data they produce in the 
time that it would have taken to simply set up a manual experiment.

Moving to the wet lab, sequencing machines generate data on thousands of base pairs per hour, and 
microarray experiments can collect data on the expression of tens of thousands of genes in a few 



hours. There are numerous potential sources of variability in the microarray experimental process 
and consequently a concomitant need for statistical processing. For these reasons, an examination of 
microarray technology represents a reasonable avenue to introducing many of the practical statistical 
concepts relevant to bioinformatics.



 
Microarrays

Microarrays offer an efficient method of gathering data that can be used to determine the expression 
patterns of tens of thousands of genes in only a few hours. Microarray methods allow researchers to 
examine the mRNA from different tissues in normal and disease states to determine which genes and 
environmental conditions can lead to disease. Similarly, microarray methods can be used to 
determine which genes are expressed in which tissues and at which times during embryonic 
development. Spotting, the first widely used method of gene expression analysis using microarrays, 
is described by the process flow diagram in Figure 6-2 and depicted graphically in Figure 6-3. In 
preparation for a traditional spotting microarray experiment, several microarrays are created on a 
membrane, in a gel matrix, or, most often, on a scrupulously clean microscope slide made of low-
fluorescence glass. When glass slides are used as a substrate, they are coated with a non-fluorescing 
compound to which known DNA sequences can easily adhere. Next, a solution containing expressed 
genes is applied to (spotted on) the treated face of each slide. This spotting is performed by 
mechanical robot controlled by micro pens or sprayers at a density of tens of thousands of spots per 
square inch. After the spotting process, the slides are heated and dried.

Figure 6-2. Microarray Spotting Process Flow.



Figure 6-3. Microarray Spotting. Labeled probe and reference cDNA is 
competitively hybridized on a microarray prepared with known DNA 

sequences. Hybridization may not occur (no fluorescence or black), may be 
solely from the reference (green fluorescence), solely from the probe (red 

fluorescence), or a mixture of reference and probe (yellow). Other ratios of 
probe-to-reference mixtures result in colors between green and red in the 

spectrum.

Because loosely attached DNA can migrate from one spot to another during an experiment, the next 
step in processing involves removing loosely attached DNA from the microarrays by washing each 
slide in alcohol and then immersing them in boiling water for several minutes. A control is then run 
on one microarray with a known cDNA probe to verify that the reagents are active and on the 
microarrays in sufficient density to run additional experiments. With the prepared microarrays in 
hand, the next step is to create an experimental sample or probe.

To create a probe, a tissue sample is harvested by laser capture micro-dissection or other 
comparable method. Next, the mRNA from a few cells is isolated, purified, amplified, processed, and 
labeled with fluorescent nucleotides, eventually yielding fluorescent (typically red) cDNA. The sample 
is then incubated with a similarly processed cDNA reference (typically green). The labeled probe and 
reference are then mixed and applied to the surface of one of the prepared DNA microarrays, 
allowing fluorescent sequences in the probe-reference mix to attach to the cDNA adherent to the 
glass slide.

The attraction of labeled cDNA from the probe and reference for a particular spot on the microarray 



depends on the extent to which the sequences in the mix complement the DNA affixed to the slide. A 
perfect complement, in which a nucleotide sequence in a strand of cDNA exactly complements a DNA 
sequence affixed to the slide, will attach more strongly (hybridize) to the DNA sequence than will a 
strand of cDNA in which alignment isn't perfect. The strength of adherence, as well as the success in 
competing for a spot on the slide, is directly proportional to the degree to which the cDNA and DNA 
sequences complement each other.

The populated microarray is then excited by a laser and the resultant fluorescence at each spot in the 
microarray is measured. If neither the experimental nor the reference samples hybridize with the 
genes at a given spot on the slide—indicating that there are no sequences in either the probe or the 
reference that are complementary to the DNA on the slide—the spot won't fluoresce. However, if 
hybridization is predominantly with the probe, the spot will be red. Conversely, if hybridization is 
primarily between the reference and the DNA affixed to the slide, the spot will fluoresce green. If 
cDNA from the probe and reference samples hybridize equally at a given spot—indicating that they 
share the same number of complementary nucleotides in the appropriate sequence—the spot will be 
yellow. Similarly, various ratios of probe-to-reference hybridization with the slide-mounted DNA 
result in colors somewhere in the spectrum between red and green. An analysis of the location, 
extent, and exact proportions of red-to-green fluorescence provides a semi-quantitative measure of 
gene expression in the tissue sample. That is, even though the fluorescence is digitized and read by 
computer, the relative value of the ratios is more exactly determined than is the absolute 
fluorescence value, in part because of the variability in the quantity and quality of DNA that is affixed 
to the slide during microarray preparation.

An obvious point for the application of statistical methods is at the final stage of the experiment, 
where tens of thousands of data points, each indicating relative gene activity, may need to be 
analyzed. However, the random variability associated with every stage of the process has to be 
considered before the final data can be analyzed in a meaningful way.

A quick check for data validity is to create a scatter plot of fluorescence data from two identically 
treated microarrays. As shown in Figure 6-4, the ideal condition is when gene expressions as 
measured by the microarrays are identical, as indicated by data on the 45-degree ID line, as in (A). 
If the amplitude of gene expression on one microarray is greater than the other, data fall off the ID 
line, as in (B) and (C). The scatter plot also provides a measure of gene expression amplitude, in that 
the greater the distance from the origin, the greater the expression amplitude. For example, the gene 
plotted at position (C) has a greater expression amplitude than the gene at position (A).

Figure 6-4. Microarray Results Analysis. Scatter plot illustrating inter-
microarray variability in two identically treated microarrays, Microarray 1 

and Microarray 2. Ideally, all data points fall on the ID line, as illustrated by 
data point (A).



The common reasons for variability in spotting, as reflected by deviation from the ID line, are listed 
in Table 6-2. Reasons for variability in spotting results include variability in the microarray surface 
chemistry, inaccuracies in the various instruments used to prepare the reagents and monitor the 
environment, and fluctuations in the temperature, humidity, and other hybridization conditions. 
Variations in the degree of DNA attachment to the slide, in the volume of cDNA applied during the 
spotting process, and in the location of spots on the microarray slide are often caused by the robot 
and other mechanical equipment.

Assuming a microarray passes scatter plot analysis, the microarray data are typically arranged in the 
form of an expression matrix. Whereas data on the microarray don't necessarily follow a particular 
pattern, the standard expression matrix is arranged by gene and experimental condition, as 
illustrated in Figure 6-5. Conditions may indicate elapsed time since some event, such as the 
activation of another gene, or local environmental changes, such as an increase in temperature, or 
the start of drug therapy. Although four experimental conditions are shown for each gene in this 
illustration, there is no inherent limitation in the relative number of conditions or genes that can be 
represented in the expression matrix, within the total capacity of the microarray. For example, there 
may be seven experimental conditions applied to one gene and three to another.

Figure 6-5. Mapping Microarray Data to an Expression Matrix. Note the lack 
of correlation between physical experimental position on the microarray 

and the mapping of data in the expression matrix. Although shown here in 
grayscale, the individual squares in the gene expression matrix are 

normally represented by the fluorescence color of the corresponding 
microarray spot.



Table 6-2. Sources of Variability in Spotting.

Binding of cDNA to Microarray

cDNA Volume Deposited

Digitization of Spot Intensities

Environmental Conditions

Experimental Design

Hybridization of RNA to DNA

Instrument Error

Locating Spotted Areas

Microarray Surface Chemistry

Quality of Spotted Genes on Array

Reagent Preparation

Spot Placement (Robot Arm Accuracy)

The expression matrix format is a more human-readable form than a reproduction of arbitrarily 
arranged microarray data. A color version of an expression matrix is more useful in publications and 
for quick visual inspection of experimental results than is a table of relative red and green 



fluorescence amplitude values. The standard expression matrix format also means that it's possible 
to spot a microarray with an arbitrary pattern of genes-condition cDNA without regard to how the 
data will eventually be displayed. Note that the data used for analysis is actually based on the 
digitized (numerical) value of the relative red and green fluorescence of the spots on the microarray.

In many respects, the spotting process, which was developed at Stanford University, has many 
parallels with the early digital electronic computers. The first commercially successful digital 
computers, such as the UNIVAC line, used discrete components and mechanical means—including 
punched paper cards—to work with the system. Individual components were soldered by hand to 
create the thousands of circuits. Because of variability in the tubes and components, the circuits had 
to be tuned by hand. There were often failures of individual components because of device failure or 
because the solder joints of components and cables eventually failed. Because construction was done 
by hand and because every computer was built with thousands of components—each of which varied 
somewhat from their ideal values and performance—it took a month or more to produce a computer 
system. This investment in time was well worth it. Compared to earlier computational methods, the 
early digital electronic computers shaved countless hours off the time required to compile a census or 
compute the trajectory of a projectile.

Even though the first discrete-component electronic digital computers worked well, because of the 
time required to create and test each computer, customers were limited to large corporations, the 
military, and the government. The situation changed with the introduction of the integrated circuit 
(IC). Not only did the development of the IC allow for much smaller computers, but component count 
and variability dropped precipitously. As a result, reliability increased, prices dropped, and computers 
became affordable to a mass market.

The process used to make ICs is based on photolithography. Instead of soldering discrete 
components by hand or with mechanical jigs, transistors, diodes, resistors, and capacitors are formed 
by a process in which multiple layers of semiconductor material are alternatively laid down on a 
ceramic or silicon substrate. Masks or barriers block the light used to sensitize the surface, allowing it 
to accept the next layer of semiconductor, insulator, or resistive material. As a result, tens of 
thousands of ICs can be produced in days. Furthermore, because most of the process is performed 
with high-tolerance, mostly non-mechanical methods, failure rates are low and performance is 
consistent from one IC to the next.

The approach used in IC fabrication has been applied to microarray preparation and analysis. For 
example, the process of microarray preparation based on photolithography and solid-phase chemistry 
commercialized by Affymetrix® is illustrated in Figures 6-6 and 6-7. The overall process depicted in 
Figure 6-6 illustrates how commercial process begins with a 5-inch square quartz wafer, similar to 
the quartz discs used to create ICs. The wafer is washed and then placed in a silane bath that forms 
a matrix of covalently linked molecules on the surface of the wafer. Linker molecules on the silane 
matrix provide a surface that may be light-activated.

Figure 6-6. Affymetrix Microarray Preparation Process. The process 
parallels that used in the microcomputer industry used to create ICs. The 

technology offers much higher capacity and more quantitative results 
compared to microarray spotting.



Figure 6-7. Details of the Affymetrix Microarray Fabrication. L—Linker 
molecules. S—Silane matrix. P—Protective layer. The process is repeated 

until the oligonucleotides are around 20 nucleotides long.



In the photolithography process, illustrated in Figure 6-7, fenestrated masks are placed over the 
coated wafer and exposed to UV light. The UV light exposes linkers, which are then available for 
nucleotide coupling. A solution containing a single type of deoxynucleotide (A, T, C, or G) is flushed 
over the surface, where the nucleotide attaches to the exposed linkers. The process is repeated with 
additional masks until the oligonucleotides on the surface of the wafer are 20–25 nucleotides in 
length.

Each wafer can produce between about 50 to 400 individual microarrays, each of which can hold up 
to 500,000 probes, depending on the yield of the process. In comparison, each glass slide in the 
spotting process can hold perhaps 30,000 spots. The quartz wafer is diced and each of the individual 
arrays is packaged for use, just as the semiconductor wafers are diced and the individual components 
are mounted in a plastic or ceramic housing. A sample of the packaged microarrays is tested by 
running control hybridizations. A quantitative test of hybridization is run using standardized control 
probes before the microarrays are available for use in competitive hybridization experiments. The 
hybridization process is essentially identical to that used in the spotting process outlined in Figure 6-
3.

A comparison of spotting and the Affymetrix process, summarized in Table 6-3, reveals that spotting 
is associated with quicker setup and modification times. What's more, the spotting process results in 
more variability and lower density because it relies on mainly mechanical means. The Affymetrix 
process excels at providing absolute, quantitative results instead of qualitative results, in part 
because the oligonucleotides are of a fixed length and known quantity. A discussion of the variability 
of the spotting technique, in terms of statistical concepts, follows.

Table 6-3. Microarray Fabrication Comparison. Spotting is more variable 
than the Affymetrix process.



Factor Spotting Affymetrix

Source of Variability Mechanical Pin Positioning

Bonding of cDNA to Slide

Reagent Purity

Environment

Mask Positioning

Mask Fenestrations

Reagent Purity

Environment

Repeatability Moderate/Low High

Layout Design Time Low High

Analysis Possible Qualitative Quantitative

Inter-Array Variability High Low

Modification Time Low High

Intellectual Property Public Domain Proprietary



 
Imperfect Data

As in every other physical system, the data generated by a microarray experiment are imperfect. 
Determining the magnitude and pervasiveness of these imperfections is one reason for employing 
statistical techniques. One way to conceptualize these imperfections is as noise in the 
communications channel. This noise is due to limitations of the equipment, reagents, tissue samples, 
and deficiencies in the overall process. Some of this noise is unavoidable, and can at best only be 
reduced. For example, microarrays are commonly created on glass slides. However, the glass, like 
the coating that allows DNA to adhere to the slides, fluoresces slightly when it is excited by the laser 
light used to read spots on the microarray.

Similarly, the background noise level is directly proportional to the ambient temperature, in that all 
conductors operated above absolute zero produce thermal or Johnson noise. It's possible to operate 
the image sensors and amplifiers associated with reading fluorescence signals from microarrays close 
to absolute zero, and thereby significantly reduce the noise level contributed by the electronics 
equipment associated with the experiment. However, for most bioinformatics applications this 
approach to noise reduction isn't practical.

Variations in the preparation of a microarray can make the accuracy of results questionable. For 
example, in preparing a glass slide for spotting, slight variations in the volume of substrate deposited 
on the slide, or variations in the chemistry of the substrate, can severely compromise subsequent 
analysis. Although some applications of microarray expression data, like genetic mapping, are 
associated with binary measurements (either present or absent), most applications benefit from 
consistent volumes of materials deposited precisely on the microarray so that at least rudimentary 
qualitative measurements can be made.

Sources of variability in microarray spot analysis include the stability of the spotting technology used 
to create the microarray and the stability of the environmental conditions. For example, the 
reproducibility and accuracy of the robotic assembly that determines the location and volume of DNA 
material deposited at each spot are critical factors. Furthermore, the environment, including 
humidity, temperature, and amount of particulate matter in the air, can add additional variables that 
must be considered. For example, if the relative humidity is too high, then the samples in the 
microarray may not evaporate as fast as expected. Because of unavoidable variability in the spotting 
process, active areas on microarrays are commonly printed in triplicate to provide an internal control.

Variability in microarray experimental results is also a function of the methods used in the data 
acquisition phase of a microarray experiment. For example, the two most popular methods of 
capturing data from a microarray are scanning and spotting. In scanning, a laser illuminates each 
point in the microarray separately. Variability in the data is commonly due to inaccuracies in 
positioning the laser over each area where a spot is expected, as illustrated in Figure 6-8. In 
addition, there is a tradeoff between the diameter of the excitatory laser beam and the relevance of 
the fluorescence data. A beam that is only slightly larger than the expected spot size (high 
specificity) theoretically provides the least amount of extraneous fluorescence noise, assuming that 
the spot in the microarray is in the expected location, with the reading laser superimposed over the 
spot. A wider excitatory beam will control for variability in spot location, at a cost of more chances of 
fluoresce from contamination, slide coating, and the underlying glass contributing to the fluorescence 
signal.

Figure 6-8. Sources of Variability in Reading Microarray Spots Through 
Spotting. The ideal situation (A) is when the excitatory laser beam is tightly 

focused on a single microarray spot. However, achieving this level of 
perfection requires accurate positioning of both the spot and the reading 

equipment. If beam position is off the mark (B), gene expression data will 
be underrepresented. Using a larger beam than absolutely necessary (C) 
incorporates a full spot in the analysis, even if the spot placement isn't 



ideal.

In the starring approach to gene expression analysis, a large swath of laser light excites many spots 
in the microarray at a time (see Figure 6-9), producing a fluorescence pattern resembling a field of 
stars—hence the name. The fluorescence pattern is captured by a photo detector, processed, and 
analyzed. In starring, the major sources of variability are non-uniformity in illumination intensity and 
differences in the sensitivity of the image-detection circuitry over the area of the microarray being 
read. For example, because the intensity of the florescence signal is a function of the power of the 
reading laser, if the power of the laser beam falls off significantly near the edges of a field, then the 
level of gene expression represented by those spots will be underrepresented. Similarly, the 
expression of genes represented by spots excited by the center of the beam will be overrepresented. 
Even if the excitation intensity is uniform across the area of the microarray being read, the 
characteristics of the image capture optics and associated circuitry can introduce artifacts in the 
fluorescence signal strength because of non-uniform sensitivity to light across the area being 
measured. For example, the sensitivity of the detector may vary from one edge of the detector to the 
next. As a result, unless these effects are addressed in the final analysis, the gene expression figures 
will be invalid.

Figure 6-9. Sources of Variability in the Starring Method of Reading a 
Microarray. Not only may the laser intensity be nonlinear across the area of 

the microarray that is excited by the swath of laser light, but the 
photodetector may exhibit variations in sensitivity across the detector 

aperture as well.



Even if the starring and scanning processes are tightly controlled, the data they produce may be 
highly variable because of limitations of the microarray preparation process. Figure 6-10 illustrates 
several sources of variability associated with microarray preparation, including variations in relative 
spot location (A), variations in spot density (B), variations in spot shape (C), and contamination (D).

Figure 6-10. Common Sources of Variability Associated with Microarray 
Preparation. These sources of error affect both the spotting and starring 

methods of microarray reading.



The first source of variability to consider—a shift in relative location of a spot in the microarray—is 
problematic for several reasons. First is that when a microarray is scanned by a laser, a displaced 
spot won't read as strongly as it would otherwise because part of the spot may be outside of the field 
of the exciting laser beam. This type of variability can be addressed somewhat if starring is used to 
read the microarray because image-recognition technology can be used to identify spot location on 
the captured image. Image-recognition software can search the immediate vicinity where a spot is 
expected and appropriately adjust the location of the image pixels that are read.

Variations in spot density due to uneven adherence of cDNA to the slide during the spotting process 
may result in erroneous output signal interpretation, depending on the statistical method used to 
analyze spot intensity. Variations in spot shape and deviations from expected spot location result in 
errors in intensity reading of spot fluorescence. Starring and scanning are both susceptible to 
variations in spot shape. In starring, a mask is used to limit the extent of the area read on the 
captured image, even though the excitatory laser beam covers many spots at once. The opposite is 
true of scanning, in that the image capture device is receptive to fluorescence signals from anywhere 
on the microarray. However, only a small area of the array is excited at a time. As a result, a 
misshapen spot may not contribute fully to its expected fluorescence intensity.

Contamination of the microarray, whether from dust or extraneous organic material in the slide 
coating, is another source of variability that is difficult to counteract. Contamination can interfere 
with automated spot-locating technologies used with starring and partially obscure spots in the 
microarray so that they can't be properly scanned. Contamination can also give false positive 
indications of the level of gene expression when it is highly fluorescent and falls on spots that would 
otherwise not fluoresce.

At a higher level is variability due to the overall system operation and processes. Sources of process 
variability include photobleaching, in which the exciting laser or other light bleaches the fluorescing 
dye, rendering the scanned spots useless for subsequent analysis. Photobleaching, which is a 
function of laser intensity and the time the laser dwells on each spot, is problematic when the 
microarray reading process is interrupted mid-way through a reading cycle and re-started. The 
previously excited area on the microarray may be faded relative to the unread area in the 
microarray. This may be problematic when gene activity corresponding to dual or multiple excitations 
is compared with areas of single excitation.

In addition to process variation, there is also variability due to the particular equipment used in the 
microarray system. Some of this variability or noise may be due to improper design or because of 
overwhelming noise level in the environment. For example, data acquisition devices are subject to 



noise from magnetic fields from nearby wiring and devices. There are also short-term errors due to 
equipment warm-up, and long-term drift with time because of aging of the electronic components.

Variation can be introduced by instrument loading and perturbation of the system under study, or by 
crosstalk. Crosstalk occurs when, for example, light from one channel or florescent color bleeds over 
to a detector intended for another signal. Using emission filters that block potential interfering light 
signals can minimize it. Variability can be introduced by noise in the power supply, by memory 
effects (image persistence) on the image sensors due to previous exposures, and by drift of sensor 
sensitivity and amplifier gain with time. Simply using the measuring equipment as it's intended to be 
used can demonstrate susceptibility to errors. For example, there is the issue of instrument loading, 
in that following Heisenberg's Uncertainty Principle, it's generally impossible to measure something 
with absolute accuracy without changing its value to some degree. For example, because of 
photobleaching by the laser, the process of reading a microarray also erases data from the 
microarray, making subsequent readings less accurate.

Imperfections in measuring equipment can introduce variation in the data. For example, because 
insulation used on wires is imperfect, there is current leakage and equipment noise. In addition, 
spurious signals can be induced by mechanical stress on wires and electronic components (the 
Piezoelectric effect), by friction, such as when materials rub together (the Triboelectric effect), or 
when insulation quality changes due to high humidity or because of surface contamination. Noise can 
also be induced by current-carrying cables and wires located near the measuring equipment.

Deciding on components to use in constructing a microarray system or other complex measuring 
system is a compromise between price, performance, and the intended use. For example, ceramic 
insulators have a high volume resistance but compared to cheaper polyvinyl chloride (PVC) 
insulators, they are a source of noise at high humidity and when subject to physical stress. Noise can 
also be produced by electrochemical effects on the circuit board and through thermoelectric 
potentials induced by conductors of different composition touching each other. Although these and 
other sources of low-level noise may not be relevant in typical bioinformatics work, it's important to 
realize the spectrum of possible sources of variation that, taken together, can affect the data 
produced by microarray experiments.



 
Basics

The overview of a typical microarray experiment underscores the dependence of bioinformatics work 
on an awareness of error sources and variability so that statistical methods can be used to control for 
their effects on experimental results.

Randomness

One of the key statistical concepts highlighted by the microarray experiment is that data are 
inherently noisy and that randomness is inherent in any sampling process. Furthermore, randomness 
is inherent in, and a necessary component of, biological systems. Whereas the randomness in 
mechanical systems and electronic circuitry is often minimized as much as is economically possible, 
randomness is an integral component of the workings of biological systems. Mutations and the 
distribution of maternal and paternal genetic material during meiosis are biological processes that 
reflect the dependence of biodiversity on the randomness of biological processes.

Every measurement system introduces noise—random variability—into the desired signal. This noise 
can be minimized by controlling the external environment (for example, by reducing the ambient 
temperature in a system designed to make very low-level measurements), or, more often, by 
reducing the bandwidth of the system, using statistical techniques. For example, by reducing the 
bandwidth of acceptable (good) data, it can be more readily differentiated from bad data and made 
more apparent and available. Even though statistical techniques can be used to filter data during the 
final analysis of a gene expression experiment, reliance on statistical analysis of the final results 
alone isn't optimal. For example, although analysis of intra-array spot fluorescence intensity can be 
used to control for contamination and other sources of variability, a better approach is to minimize 
variability in the overall process. As a result, there will be more experimental data, and less need to 
run controls that add to the experimental overhead without contributing directly to gene expression 
discovery.

The microarray experiment also illustrates how conventional mechanical systems are more variable 
than their electronic counterparts. Compared to computers and other so-called finite-state machines 
defined in silicon and software, conventional mechanical systems such as robotic arms and micro-
pipettes are much more variable in their operation. One of the greatest potential sources of variability 
in the placement of cDNA solution on a prepared glass slide microarray is the robotic assembly that 
performs the spotting of the microarray. What's more, the amount of cDNA that actually adheres to 
the slide can vary widely as well, as a function of the slide coating, the ambient environmental 
conditions, and the presence of contaminants. Estimating the variability contributed by the 
mechanical and biochemical systems—through computer modeling or direct measurement—provides 
an indication of the expected value of the data. Nanotechnology may eventually reduce the variability 
of computer-enabled mechanical systems to the point that it is comparable to that of digital 
electronic circuitry.

Variability Is Cumulative

Regardless of whether the source is mechanical, biological, or electronic, variability is cumulative, in 
that noise introduced in the early stages of a system propagates and is amplified by later activity in 
the system. For example, extraneous genetic material commingled with the cDNA used to create a 
microarray will add to the fluoresce activity measured from each spot. This not only adds to the noise 
level of the system and decreases the effective dynamic range of the experiment, but the fluoresce 
activity at otherwise quiescent locations in the microarray will be amplified by the PMT or CCD-based 
system and digitized. Unless the variability can be quantified through control experiments, the gene 
expression conclusions suggested by the data analysis will be incorrect.

Controlling variability is a key component of process management. Managing the chain of processes 
in the microarray experiment involves controlling variability through computer-enabled statistical 



controls. For example, correlating gene expression of microarray runs in a timely manner is 
impractical without computer-based statistical analysis and visualization tools. One reason is that 
noise and variability are dynamic; most complex systems get noisier and accumulate variability with 
time—hence the need for timely recalibration.

Approximation

The microarray experiment also illustrates that statistical summaries, probability-based predictions, 
and estimates of variability introduced by various processes are at best approximations. For example, 
Punnet's square allows a researcher to predict, with some degree of certainty, the outcome of mating 
pea plants with specific characteristics. The degree to which the predictions hold is based on sample 
size and the extent to which the explicit and implicit assumptions of the model are upheld. That is, 
sample size, external variables that may affect pea plant phenotype, the method of recording and 
analyzing data, and the basic design of the model all affect the accuracy of results.

Interface Noise

Much of bioinformatics work involves interfacing mechanical, biological, and electronic systems, each 
of which has its own non-linearities, variability, and noise sources. Furthermore, each interface 
introduces noise and variability in the overall process. For example, translating analog fluorescence 
intensity to a digital signal introduces noise, decreases overall system dynamic range, and adds non-
linearities and variability to the gene expression data. Similarly, the mechanical and optical-to-digital 
interfaces in a nucleotide sequencing machine contribute noise, errors, and random variability to 
sequence data.

Assumptions

Most statistical methods assume basic premises that hold regardless of the specific application in 
bioinformatics. For example, one of the most popular statistical pattern classification methods is 
Bayes' Theorem, developed by the clergyman Thomas Bayes in the 18th Century. His theorem, 
applied to such problems as determining the probability that disease is present given that a gene is 
shown to be expressed in a microarray experiment, combines the prior probabilities of outcomes 
together with the conditional probabilities of various input features in order to reach a conclusion. 
Using the odds-likelihood form of Bayes' Theorem, the probability that a patient has a particular 
disease can be calculated from three parameters: the pretest probability of the patient having the 
disease, the probability that the test is positive in diseased people, and the probability that the test is 
positive in non-diseased people.

For example, given that probability (p) and odds are related as follows:

In addition, the relationship between pretest and post-test odds is:



Post-test odds = pretest odds x likelihood ratio

Expressed in the odds-likelihood form of Bayes' Theorem, this relationship appears as:

Using this equation, assume that the pretest odds of a patient having a particular genetic disease is 
0.50, and that it's known that the probability that a gene expression test is positive in people with 
the genetic disease is 0.65 and that the probability that the same gene expression test is positive in 
people without the disease is 0.20. The post-test odds that the patient has the disease given a 
positive gene expression test result is calculated as:

Converting odds to probability:

That is, the post-test odds that the patient is suffering from the disease is 0.77, up from even odds 
prior to the gene expression test results. A better test—one with a greater likelihood ratio—would 
have provided a greater increase in post-test odds that the patient has the disease.

The most significant limitation of Bayes' Theorem is that the input features must not only be 



independent of each other, but they must be either present or absent. Furthermore, the possible 
outcomes must be mutually exclusive, and there can be only one outcome.

A basic assumption in many statistical analyses is that the sample mean tends to approach the 
population mean, given a large enough sample size or enough smaller samples. Descriptive statistics 
such as mean, mode, median, and variance—a measure of how dispersed the values are around the 
distribution mean—are measures of this central tendency. For example, the Punnet Square accurately 
predicts the expected probability of genotypes and phenotypes, but only for sufficiently large sample 
sizes. A single, random sample of only four plants might reveal all wrinkled peas, despite the 
expected result of one wrinkled to three smooth offspring.

Sampling and Distributions

Much of statistics deals with obtaining as much information as possible from small samples. The 
question is how large a sample is large enough considering it's usually unrealistic to measure every 
data element, even if they are generated by a sequence machine or other automatic device. We 
estimate population mean and variance by sampling population data and drawing inferences from the 
sample data, based in part on assumptions of how the data are distributed in the population.

Popular distributions used in statistical analysis of discrete random variables include the Binomial, 
Hypergeometric, and Poisson distributions. The more well-known Normal distribution is used for 
analysis of continuous random variables. A special case of the Normal distribution is the z-
distribution, which is normally distributed data with a mean of zero and a standard deviation of one 
(see Figure 6-11). The distinction between distributions of continuous and discrete variables is 
important because many statistical methods are valid only when used with data drawn from 
populations with specific distributions. For example, the analysis of discrete random variables, such 
as the position of a nucleotide on a given sequence, may use techniques based on a binomial 
distribution, but may not use techniques that assume a normal distribution. If assumptions of 
distribution aren't valid, then the relevance of the analysis should be downplayed accordingly.

Figure 6-11. The Z-Distribution. This distribution is a special case of the 
Normal distribution, with mean of zero and a standard deviation of one.

Returning to the starring method of capturing fluorescence intensity data, the response 
characteristics of the image-capture electronics results in a skewed distribution (see Figure 6-12). 



Aberrations in the exciting laser and fluorescence intensity detector in a microarray experiment result 
in a peaked and skewed distribution, compared to the ideal (dotted line) distribution that is flat 
across the area excited by the laser.

Figure 6-12. Deviations from the Normal Distribution. Although statistical 
analysis of continuous random variables assumes a normal distribution, 

many distributions are not normal, as illustrated by the skewed and 
expected distributions.

Hypothesis Testing

Hypothesis testing, in which a hypothesis (often termed the "null hypothesis" because it is a 
negatively stated hypothesis that a researcher suspects is incorrect) is assumed to hold unless there 
is enough evidence to reject it, is another basic statistical method. In microarray work, a typical 
hypothesis is that two microarrays that have been subjected to the same spotting and hybridization 
process will produce identical gene expression fluorescence results. The degree to which this 
hypothesis is true can be estimated by examining the gene expression scatter plots created from 
data gleaned from each microarray and correlating the values mathematically.



 
Quantifying Randomness

From the earlier discussion, it should be clear that randomness—which refers not to the data, but 
how they are obtained—is inherent in every measuring device. In general, the lower the randomness, 
the better. Randomness is commonly quantified in the equipment's published specifications 
document, which characterizes the equipment's performance in terms of accuracy, resolution 
(precision), repeatability, stability, and sensitivity.

Accuracy—the degree to which a data value being measured is correct—is usually expressed as plus 
or minus a percentage of the reading, as "± (0.2%)". The accuracy of digital systems is further 
defined in terms of the number of counts of the least significant digit, such as "± (0.2% + 1 count)". 
Resolution, sometimes referred to as precision, is the ability of an instrument to resolve small 
differences. In a digital system, resolution is often expressed in terms of the number of bits available 
to represent a signal. For example, in a 4-bit digital device, there are 24 or 16 discrete steps.

Consider an analog-to-digital (A-to-D) converter, a device that converts continuously variable analog 
signals, such as the intensity of fluorescence emitted by a spot in a microarray, to digital values. If a 
4-bit A-to-D converter has full-scale capacity of 16 volts, then the resolution is one volt. Signals are 
rounded to the nearest integer, so that 0.5, 1.2, and 3.6 volts are represented as 1, 1, and 4 volts, 
respectively. In general, the higher the resolution, the greater the accuracy of a device.

Sensitivity—the ability of a device to detect low-level signals—is a function of the resolution and the 
amount of noise in the system. For example, continuing with the example of the 4-bit A-to-D 
converter with a 16-volt full-scale capacity, the maximum sensitivity would be 0.5 volts, assuming a 
perfect, noiseless system. However, as noise is added to the system, the sensitivity decreases as a 
function of the amplitude and time distribution of the noise. That is, the higher the signal-to-noise 
ratio, the higher the effective sensitivity of the device.

Repeatability is the ability of an instrument or system to provide consistent results. For example, the 
initial intensity of a spot's fluorescence, as measured with a photomultiplier tube, should ideally agree 
with a subsequent measurement. Repeatability is related to stability, which is the ability of an 
instrument or device to provide repeatable results over time, assuming certain environmental 
conditions, such as ambient temperature, are maintained within a certain range and the process of 
photo bleaching is consistent. Repeatability is also affected by any changes in the data source caused 
by the measurement process.

An instrument may provide highly repeatable results, but the results may be inaccurate unless the 
instrument is properly calibrated. All instruments are subject to changes in accuracy over time, 
whether or not they are operating. For example, an ordinary mercury thermometer is subject to a 
change in accuracy because of changes in the glass housing, which crystallizes and contracts over 
several years. Accuracy specifications are therefore stated in terms of time, such as within one year 
of calibration. The accuracy of a calibration standard limits the maximum accuracy of the equipment 
being calibrated.

In assessing the capabilities of a microarray experiment system, one measure of overall system 
performance is the dynamic range of the system—the ratio of the maximum signal level to the 
minimum signal level that can be measured or represented. The dynamic range of a microarray 
system, which is typically expressed in terms of orders of magnitude, is a function of the scanner 
electronics, the chemical dynamic range of the chemicals used, and the biological dynamic range of 
the system under investigation. All else being equal, a system with a greater dynamic range is 
capable of greater precision and accuracy in quantifying the relative gene expression. Furthermore, 
the dynamic range of the system is limited by the element in the signal chain with the smallest 
dynamic range.

Although the biological dynamic range is usually an unchangeable parameter, there is some latitude 
in selecting reagents with the greatest dynamic range and even more choice in the microarray 



electronics. Consider that the detector used in the image-acquisition component of a microarray 
system is commonly either a solid-state charge-coupled-device (CCD) or a glass and vacuum 
photomultiplier tube (PMT). The choice of one device over the other involves a tradeoff between cost, 
sensitivity, complexity, and dynamic range. A PMT is larger and much more fragile than a solid-state 
CCD and requires a more complex power supply because of the PMT's much higher operating voltage. 
In addition, a PMT is also more easily damaged than a CCD. However, a PMT provides superior 
sensitivity and dynamic range compared to a CCD.

Both CCD and PMT components exhibit non-linearities outside of their optimal operating ranges. For 
example, both devices saturate at some input level, so that increases in signal strength aren't 
matched with corresponding increases in output, as illustrated in Figure 6-13. In general, there is a 
tradeoff between the amplification possible and the extent of the linear region. For example, 
operating a PMT at the highest voltage and gain that the device will tolerate may produce 
phenomenal signal gain, but at the expense of a severely compressed linear operating region. This 
non-linearity has the effect of compressing the dynamic range of the device.

Figure 6-13. Detector Operating Curve. Although only one curve is shown 
here, most signal detectors are associated with a family of operating 

curves.



 
Data Analysis

Once a fluorescence signal is detected, it has to be quantitized or digitized before it can be 
manipulated statistically. The digitization or A-to-D conversion is performed at a fixed sampling 
frequency, with a converter rated at a certain dynamic range, as measured in bit depth (see Figure 6-
14). For example, a 16-bit A-to-D converter can process a signal into one of (216) or 65,636 levels, a 
dynamic range of over 4 orders of magnitude—which is generally considered the minimum for gene 
expression applications. The output of the digitizer, typically a 16-bit TIFF (.tif) file, is fed to the 
workstation for analysis and visualization. One reason that the TIFF format is used over the more 
common and space-efficient JPEG (.jpg) format, is that JPEG format uses lossy compression. If data 
from the image digitizer are discarded in the compression process, the result is a compressed 
dynamic range of the overall system.

Figure 6-14. Analog-to-Digital Conversion. The dynamic range of the 
microarray experiment is limited by the resolution or bit depth of the A-to-

D conversion process, as illustrated by the magnified view of the digital 
signal.

Analysis of the fluorescence data includes a check for microarray-to-microarray variability using a 
scatter plot, as illustrated earlier in Figure 6-4. However, assuring microarray-to-microarray 
agreement in gene expression levels first assumes that the fluorescence associated with each spot 
can be adequately quantified. The most common methods of accomplishing this is to rely on simple 
descriptive statistics, such as mean, mode, and median.

The mean is the average pixel density over a spot, corresponding to the average fluorescence 
intensity (see Figure 6-15). The advantage of using the mean intensity level is that it decreases error 
due to variance in DNA deposition during microarray preparation. The mode is the most likely 
intensity value, represented by the highest peak in the fluorescence plot. The mode is resistant to 



outlier values, but the measure is unstable when the intensity plot is bimodal (has two major peaks). 
The median, the mid-point in the intensity plot, is also resistant to outliers.

Figure 6-15. Microarray Fluorescence Statistical Analysis.

Other measures of assessing spot intensity include the total pixel intensity—the sum of all pixels 
corresponding to fluorescence in an area. However, the total intensity value is sensitive to the 
amount of DNA deposited on a spot in the microarray. The volume measure is the sum of signal 
intensity above background noise for each pixel. Although there are several additional means of 
quantifying spot fluorescence, the most common measure is the mean, followed by the mode and 
median descriptive statistics.

Possible fluorescence intensity distributions associated with common spotting errors are illustrated in 
Figure 6-16. Notice that each distribution results in a different mean and median intensity reading, 
even though the gene expression in each case is identical. The role of statistical analysis in reading 
the intensity value associated with each spot is to control for variability—a challenge that isn't always 
possible. For example, when a microarray is contaminated, simple statistical analysis on individual 
spots offers little in the way of reducing variability or noise. However, inter- and intra-microarray 
comparisons can be used to identify contamination and other sources of variability.

Figure 6-16. Microarray Spot Intensity Distributions.



Intra-microarray comparisons, in which spotting is duplicated within the same microarray, allow the 
statistical analysis to control for variability in the spotting process at the expense of fewer gene 
expression experiments per microarray. If three spots are used per expression experiment, then one 
of the three spots that are contaminated can be identified through statistical analysis of the relative 
intensities (see Figure 6-17).

Figure 6-17. Intra-Microarray Intensity Comparisons. Statistical analysis of 
the means of relative fluorescence intensity can be used to 

programmatically identify a contaminated sample (far right) that can be 
discarded from the final gene expression analysis, thereby reducing 

variability in the experiment.

Although the mean intensity of fluorescence from Sample 3 in Figure 6-17 is, by visual inspection, 
obviously different from the means of Samples 1 and 2, the issue is whether this difference is 
statistically significant—that is, if the difference can't be explained by chance alone. Whether or not 
the differences in mean values (depicted in a frequency plot in Figure 6-18) are significant depends 



on the cutoff criteria.

Figure 6-18. Observed Frequency of Differences Between Means. The 
intensity values associated with sample 3 appears to be different from the 
values derived from samples 1 and 2. The scale of intensity mean values is 

arbitrary.

Mathematically, the mean intensity value is computed as:

The standard deviation (s), a measure of variability in the sampled data, is computed as:



The standard deviation is useful in defining the distribution of data in terms of z-scores, which are 
measures that represent the deviation of a specific observation from the mean divided by the 
standard deviation. Given a standard deviation (s) of 3.54, the mean intensity levels of the three 
samples are all within about one standard deviation of the mean—much better than the typical 
criterion for inclusion of within the typical four z-scores (four standard deviations from the mean), as 
illustrated in Figure 6-19.

Figure 6-19. Z-Scores of Mean Intensity Values. All values are within one z-
score (one standard deviation from the mean).



 
Tool Selection

An arbitrary decision to use median spot fluorescence intensity instead of a mean or mode 
measurement, for example, can drastically alter gene expression analysis. Ideally, the selection of a 
statistical method reflects the researcher's knowledge of the underlying biological principles as well 
as the inherent limitations of the statistical methods used to analyze the data. Researchers typically 
consider the statistical methods used when determining whether the data from a particular 
experiment is valuable to them.

With the proliferation of multifunction calculators, dedicated statistical analysis software packages 
(see Table 6-4), and statistical analysis available through general-purpose database and spreadsheet 
programs, it's all too easy to statistically analyze research data without considering the underlying 
assumptions of the statistical tools used. For example, many of the descriptive statistics assume that 
the population data—the parameters—follow a known and definable distribution, even though the 
distribution may be unknown. Similarly, even though Bayes' Theorem assumes independence of 
variables, it's often used to estimate probabilities of co-occurring events that may be linked in some 
way. In addition, it's possible to spend months on an experimental design and end up with worthless 
data because the sample size or composition of the experimental groups is insufficient to address the 
question at hand. In the vernacular of statisticians, the experimental design has insufficient power to 
reject the null hypothesis.

Table 6-4. Statistical Analysis Tools. This sample is representative of the 
thousands of tools available on the market for statistical analysis.

Type of Tool Examples

Dedicated, General-Purpose SAS, Minitab, Matlab, Decision Pro, MVSP, SimStat, NCSS, PASS, 
SISA, Statistica, S-Plus, R, Splus, SPSS, Perl, SigmaStat, Statview, 
Prism, Mathematica, ProStat

Ancillary, General-Purpose Microsoft Excel

Bioinformatics-Specific BLAST, VAST, BioConductor

Excel Add-Ons Analyse-it, XLStat, XLStatistics

Selecting the statistical methods and tools most appropriate for a problem requires an understanding 
of the assumptions of the available statistical methods, the underlying biology, the data 
requirements, the validity of the overall experimental design, and computational requirements. One 
way of assessing the performance of a set of statistical tools is to determine its sensitivity and 
specificity. Given a criterion for when to call a test abnormal, sensitivity is the percentage of actual 
positives that are counted as positive, whereas specificity is the percentage of actual negatives that 
are rejected. Expressed another way, sensitivity is the number of true positives divided by the sum of 
true positives and false negatives, as illustrated in Figure 6-20. Similarly, specificity is the number of 
true negatives divided by the sum of false positives and true negatives.

Figure 6-20. Sensitivity and Specificity. Both are a function of the number 
of true and false positives and negatives. Moving the cutoff value (vertical 

bar) to the right (dotted line) results in almost no false positives at the 
expense of fewer true positives.



Another way to evaluate the sensitivity and specificity of a statistical test is to determine its receiver 
operating characteristic (ROC) curve, as in Figure 6-21. The ROC curve is a plot of a test's sensitivity 
versus 1 – specificity, or true-positive rate versus false-positive rate. The higher the curve of a test, 
the greater its discriminative ability. Every point along an ROC curve corresponds to test sensitivity 
and specificity at a given threshold of abnormal. All else being equal, a test with the greatest 
discriminative ability (Test A) is superior to a test with lower discriminative ability (Test B).

Figure 6-21. Receiver Operating Characteristic (ROC) Curves For the two 
tests shown here, Test A provides superior discrimination over Test B.





 
Statistics of Alignment

Given that much of the day-to-day statistical work in bioinformatics involves using tools that utilize 
statistical principles to explore nucleotide and protein sequences, a review of some of the principles 
related to the statistics of alignment are in order. Because good alignment of nucleotide sequences 
can occur by chance alone, statistical methods, often combined with heuristics, are used to help 
determine the significance of an alignment. For example, the BLAST algorithm computes the 
expected frequency of matching sequences that should occur in an alignment search in order to 
conduct a more efficient search.

In calculating an alignment score (S), the underlying question is usually "is the alignment score high 
enough to suggest homology?" The first part of the answer is to determine how high a score could 
occur by chance alone. However, the challenge here is no mathematical theory adequately describes 
statistics of the scores that can be expected for global alignments. In lieu of an underlying 
mathematical basis for computing the significance of global alignments, ad-hoc methods have been 
devised for comparing alignment scores with scores of random sequences that seem to align, using 
sequences the same length and composition as those under study.

The situation is different for local alignment, because extreme value distribution adequately describes 
the expected distribution of random local alignment scores. By relating the observed direct score to 
the expected distribution, the statistical significance of alignment can be assessed.

A statistic commonly used in alignment searches is the z-score, which is a measure of the distance 
from the mean, measured in standard deviation units. If each sequence to be aligned is randomized 
and an optimal alignment is made, the result is a series of scores (S) for the alignment of two 
sequences, with a mean (µ) and standard deviation (δ). In this scenario, the z-score (z) is computed 
as:

The advantage of a z-score over a simple percentage score is that it corrects for compositional biases 
in the sequence and accounts for the varying length of sequences. The problem with using a z-score 
to assess whether an alignment occurred by chance is that a z-score assumes a normal distribution. 
However, alignment data don't follow a normal distribution. As a result, a higher z-score should be 
taken as a threshold of significance.

Distributions have different uses in bioinformatics statistical works. Binomial distributions are used for 
spotting stretches of DNA with unusual nucleotide sequences and pair-wise sequence comparisons. 
Normal distributions are used for modeling continuous random variables, with applications such as 
the statistical significance of pairwise sequence comparison. Multinomial distributions are used for 
spotting stretches of DNA with unusual content, distinguishing tests for introns by composition, and 
quantifying relative codon frequency.

Relying solely on purely mathematical methods for statistical analysis without incorporating heuristics 
or knowledge of the underlying biology can often lead to incorrect conclusions. For example, a run of 
pure C-G sequences in a sequence to be aligned will likely match many C-G–rich regions in a 
sequence database. Based on this knowledge, masks can be used to hide these regions from the 
database search, allowing the search algorithm to ignore these regions during the search process.



 
Clustering and Classification

Two statistical operations commonly applied to microarray data are clustering and classification. 
Clustering is a purely data-driven activity that uses only data from the study or experiment to group 
together measurements. Classification, in contrast, uses additional data, including heuristics, to 
assign measurements to groups.

Two of the most common methods of clustering gene expression data are hierarchical clustering (see 
Figure 6-22) and k-means clustering (see Figure 6-23). Mathematically, hierarchical clustering 
involves computing a matrix of all distances for each expression measurement in the study, merging 
and averaging the values of the closest nodes, and repeating the process until all nodes are merged 
into a single node. One of the many options of computing the matrix of distances involves evaluating 
the relative ranking of the measures of red and green fluorescence intensities taken from the 
expression matrix associated with a given microarray study.

Figure 6-22. Hierarchical Clustering. Data in the expression matrix can be 
clustered to an arbitrary depth.

Figure 6-23. K-Means Clustering. Items are assigned to the nearest cluster 
and the cluster centers (squares) are recalculated. This process is repeated 

until the cluster centers don't change significantly. In the end, there are 
two clusters, one with filled circles and one with empty circles.



K-means clustering involves generating cluster centers (squares in Figure 6-23) in n-dimensions and 
computing the distance of each data point to each of the cluster centers. Data points are assigned to 
the closest cluster center. A new cluster position is then computed by averaging the data points 
assigned to cluster center. The process is repeated until the positions of the cluster centers stabilize.

Clustering microarray gene expression data is useful because it may provide insight into gene 
function. For example, if two genes are expressed in the same way, they may be functionally related. 
In addition, if a gene's function is unknown, but it is clustered with genes of known function, the 
gene may share functionality with the genes of known function. Similarly, if the activity of genes in 
one cluster consistently precedes activity in a second cluster, the genes in the two may be 
functionally related. For example, genes in the first cluster may regulate activity of genes in the 
second cluster.

Common classification methods applied to gene expression data include the use of linear models, 
logistic regression, Bayes' Theorem, decision trees, and support vector machines. For example, 
consider using Bayes' Theorem to classify microarray data into one of two groups, illustrated 
graphically in Figure 6-24.

Figure 6-24. Bayes' Theorem Example. The data points A, B, and C can be 
classified using Bayes' Theorem.



Using Bayes' Theorem to determine whether given a data point should be classified as a member of, 
for example, the open-circle group, the following equation applies:

p(OpenCircles | XiYi) = p(OpenCircles | Xi) x p(OpenCircles | Yi)

For the data point A (x = 7, y = 3), B (x = 10, y = 5), and C (x = 14, y = 3) the equations take the 
form:

p(OpenCircles | XaYa) = p(OpenCircles | 7) x p(OpenCircles | 3)

p(OpenCircles | XbYb) = p(OpenCircles | 10) x p(OpenCircles | 5)

p(OpenCircles | XcYc) = p(OpenCircles | 14) x p(OpenCircles | 3)

Visually, the data point C in Figure 6-24 can reasonably be classified as a member of the open-circle 
group. Conversely, the probability that data point A is a member of the open-circle group is high. The 
main issue surrounds the cutoff probability for evaluating the equations. If the probability must be 
high in order to accept the hypothesis that a given data point is a member of the open-circle group, 
then data point B may not be able to be classified in the open-circle group, and may best be assigned 
to another group.



 
On the Horizon

For decades, statistical analysis has been recognized as a necessary component of scientific R&D. 
Since the work of Ronald Fisher and others in the 1930s, statistical methods have been applied to 
everything from process control in automobile factories to predicting the results of presidential 
elections to estimating crop yields. Many computer-aided statistical methods, such as Monte Carlo 
methods, were first applied in nuclear physics and migrated soon thereafter to research and 
engineering. Today, the desktop microcomputer has made it possible for every researcher, student, 
and layperson to explore statistical principles. With the ever-decreasing cost of computation, this 
trend of moving statistical concepts out of the laboratory and into the public domain is expected to 
continue.

Consider that, since the introduction of genetically modified crops in the mid-1990s, a great deal of 
public attention has been focused on the likelihood that these crops could either contaminate 
traditional crops or have an adverse effect on consumers. Statistical methods have been embraced 
by politicians, scientists, and farmers in the EU and elsewhere to back their particular perspective on 
the issues. For example, the British government has established buffer zones to separate organic and 
genetically modified crops, based on statistical models. For example, genetically modified maize can't 
be planted within 200 meters of organic crops, thereby preventing the genetically modified maize 
from cross-fertilizing organic maize. With the various special interest groups involved, each using 
statistical analyses to back their positions on genetically modified foods, it's likely that statistical 
methods could easily hold the key to whether at least one end-product of bioinformatics R&D 
survives.



 
Endnote

Modern bioinformatics methods are considerably more complicated than simple Mendelian genetics. 
Advanced methods, such as BLAST, are based on statistical methods that aren't completely 
understood by the average researcher. With the thrust into post-genomic bioinformatics, it's likely 
that many more statistical methods will be created to solve practical problems—long before 
researchers fully grasp their theoretical foundations and limitations. Because of the number of 
variables and underlying assumptions involved in experimental design and the even relatively trivial 
statistical analysis, unless you're well versed in statistical methods, the best approach is to consult 
with a statistician before investing time and resources in a research project.



 

Chapter 7. Data Mining
 Structure of the reduced form of Merp, the periplasmic protein from the Bacterial 

Mercury Detoxification System. PDB entry 1AFI. Image produced with PDB Structure 
Explorer.



Where is the knowledge we have lost in information?
Where is the wisdom we have lost in knowledge?

—T.S. Elliot, "The Rock"

Getting at the hard-won sequence and structure data in molecular biology databases and the 
functional data in the online biomedical literature is complicated by the size and complexity of the 
databases. Often, it's assumed—sometimes incorrectly—that certain data are contained in a 
database. However, exhaustively searching for the raw data and performing the transformation and 
manipulations on the data through manual operations is often impractical. Similarly, in cases where it 
isn't certain what relationships can be garnered from searching through a database, the odds of 
finding every biologically relevant relationship through manually authored query statements are low. 
When it's known in general what resides in a database and there is a need to extract it, the challenge 
is more of a translation problem. Conversely, when very little is known about what resides in the 
database, the work is primarily data discovery. In either case, the time and computational resources 
required to locate and manipulate the data are limiting factors.

Camouflaged by the size and complexity of a database, the millions of data points from genomic or 
proteomic studies are of little value. Only when these data are categorized according to a meaningful 
theme are they useful in furthering our understanding of sequence, structure, or function. Regardless 
of whether this categorization is at the base pair, chromosome, or gene level, an organizing theme is 
critical because it simplifies and reduces the complexity of what could otherwise be a flood of 
incomprehensible data. For example, the individual databases managed by the NCBI represent 
generally recognizable organizational themes that facilitate use of their contents. At a higher level, 
our understanding of health and disease is facilitated by the organization of clinical research data by 
organ system, pathogen, genetic aberration, or site of trauma.

Ideally, the creator and the users of the database share an understanding of the underlying 
organizational theme. These themes, and the tools used to support them, determine how easily 
databases created for one purpose can be used for other purposes. For example, in a relational 
database of gene sequences, the data may be arranged in tables, and the user may need to 
construct Structured Query Language (SQL) statements to search for and retrieve data. However, if 
inherited diseases organize the relational database, it may not readily support an efficient search by 
protein sequence.

The challenge for researchers looking in the exponentially increasing quantities of microbiology data 
for assumed and unknown relationships can be formidable, even if the number of data elements and 
dimensionality are relatively small. For example, a relational database with a few hundred records 
(rows) and a small number of fields per record (low dimensionality) can probably be searched 
manually for new interrelationships in the data. However, the task may involve creating relatively 
complicated, computationally intensive joins in order to create views that support a given hypothesis 
of how data are related. In addition, even within a relatively small database, it may be practically 
impossible to specify a relationship query exactly. At issue is how best to support the formulation of a 
hypothesis-based query. In addition, even if the technology is available that allows a researcher to 
specify any hypothetical query, the potential for discovering new relationships in data is a function of 
the insights and biases imposed by the researcher. While these limitations may be problematic in 
relatively small databases, they may be intolerable in databases with billions of interrelated data 
elements.

To avoid the computational constraints imposed by these large molecular biology databases, 
researchers frequently turn to biological heuristics to avoid exhaustive searches or processes with a 
low likelihood of success. For example, in hunting for new genes, a good place to start, from a 



statistical perspective, is near sequences that tend to be found between introns and exons. However, 
even with heuristics, user-directed discovery is inherently limited by the time required to manually 
search for new data.

An alternative to manual searching—and one that has had considerable success in the travel, 
banking, and telecommunications industries—is to use computer-mediated data mining, the process 
of automatically extracting meaningful patterns from usually very large quantities of seemingly 
unrelated data. Unlike human-directed exploration of databases, data mining can initiate queries that 
aren't limited to the user's fluency in authoring effective database queries. This isn't to say that data 
mining reduces the need for the researcher to establish a strategy or to evaluate the results of a data-
mining session. When used in conjunction with the appropriate visualization tools, data mining allows 
the researcher to use her highly advanced pattern-recognition skills and knowledge of molecular 
biology to determine which results warrant further study. For example, mining the millions of data 
points from a series of microarray experiments might reveal several clusters of data, as visualized in 
a 3D cluster display. The researcher could then select data belonging to one or more of the clusters 
and use a variety of tools to determine the parameters that distinguish it from the other data.

Given the ever-increasing store of sequence and protein data from several worldwide genome 
projects, data mining the sequences has become a major research focus in bioinformatics. This is in 
part because molecular biologists can now conduct basic bioinformatics research from their desktop 
workstation, without the overhead of establishing a wet lab. The aim of this chapter is to explore data-
mining techniques as an automated means of reducing the complexity of data in large bioinformatics 
databases and of discovering meaningful, useful patterns and relationships in data. The "Methods" 
section explores data mining from the perspective of the process of knowledge discovery. 
"Technology Overview" reviews the underlying computer infrastructure and algorithms that make 
data mining a practical endeavor. "Infrastructure" reviews the hardware and software requirements 
of an efficient data-mining operation. "Pattern Recognition and Discovery" explores the basic 
patternrecognition process and how it can be extended to pattern discovery.

The "Machine Learning" section reviews the numerous technologies that can be applied to support 
data mining, from neural networks to Hidden Markov Models. "Text Mining" focuses on the 
importance of mining the biomedical literature for data on functions to complement the sequence and 
structure data mined from nucleotide and protein databases. The "Tools" section introduces some of 
the practical general-purpose and bioinformaticsspecific tools available for data mining. The "On the 
Horizon" section looks at the leading-edge data-mining technologies, especially real-time transaction 
monitoring that promises to decrease the infrastructure requirements. The "Endnote" section 
explores the long-term role of machine learning versus human-directed data-mining efforts.



 
Methods

Data mining isn't an endpoint, but is one stage in an overall knowledge-discovery process. It is an 
iterative process in which preceding processes are modified to support new hypotheses suggested by 
the data.

As illustrated in Figure 7-1, given a data warehouse or separate databases, the knowledge-discovery 
process involves:

1.  Selection and sampling of the appropriate data from the database(s)

2.  Preprocessing and cleaning of the data to remove redundancies, errors, and conflicts

3.  Transforming and reducing data to a format more suitable for the data mining

4.  Data mining

5.  Evaluation of the mined data

6.  Visualization of the evaluation results

7.  Designing new data queries to test new hypotheses and returning to step 1

Figure 7-1. Data Mining. Data mining operations are shown here in the 
context of a larger knowledge-discovery process.



The relative timing of sequences in the knowledge-discovery process depends on whether the source 
of data is a data warehouse or one or more separate databases. A data warehouse is a central 
database in which data have been combined from a variety of non-compatible sources, such as 
sequencing machines, clinical systems, textual bibliographic databases, or national genomic 
databases. In the process of combining data from disparate sources, the data are selected, cleaned, 
and transformed to support user-driven analytical and data-driven mining tools.

Whereas a data warehouse is a ready store of data to be mined at any time, using separate 
databases requires much more work on an as-needed basis. The processing up to the point of data 
mining may take hours or weeks, depending on the complexity and size of the databases involved in 
the process.

The advantage of using a data warehouse approach to data mining is timesavings. Assuming that 
everything needed for data mining is available in the data warehouse, a typical mining operation may 
be able to be completed in a matter of hours, depending on the processing power available, the size 
of the data warehouse, and the complexity of the mining operation.

However, this ability to begin mining operations at any time comes at a cost. A data warehouse that 
is capable of efficiently supporting data mining is significantly larger and the associated data 
processing takes much longer than in a simple database, one designed to provide a central, unified 
data repository that can be accessed through a single user interface. The reason for the increased 
data warehouse size and increase in complexity of associated processing is the increasingly fine-
grained data required for data-mining support, as well as the need to incorporate contextual or 
metadata to support the data-mining process. For example, data mining requires a controlled 
vocabulary, usually implemented as part of a data dictionary, so that a single word can be used to 
express a given concept. Similarly, the extra attention to cleaning the data and other processing is 
necessary to maximize the odds that the conclusions based on data mining are valid.



What's more, there is no guarantee that the data in the data warehouse will be sufficient to support 
the desired data-mining activities. Additional data may be needed from the source databases, which 
then must also be cleaned, transformed, and stored, activities that obviate the time advantage of the 
data warehouse. One approach to guarding against this eventuality is to incorporate more data into 
the data warehouse when it is built, at the cost of increased complexity and size, with no guarantee 
that any of the additional data in the warehouse will ever be used in mining activities.

The primary advantage of using a database approach to data mining is that resources are used on an 
as-needed basis. Only those data from the separate databases that are involved with a specific data-
mining operation are processed. Although it may take days or weeks in order to arrange for the 
appropriate processing in preparation for data mining, the resources required for just-in-time data 
mining are generally much less than those associated with data warehousing.

Regardless of the data source, knowledge discovery is an iterative process that involves feedback at 
each stage, as illustrated in Figure 7-1. This feedback can be used programmatically or can serve as 
the basis for human decision-making. For example, if the preprocessing and cleaning of data from a 
data warehouse results in an insufficient quantity of cleaned data, or inappropriate data altogether, 
then the researcher may redefine the selection and sampling criteria to include more or different 
data.

Although the methodology seems straightforward, data mining and the overall knowledge-discovery 
process involve much more than the simple statistical analysis of data. For example, difficult-to-
describe metrics, such as novelty, interestingness, and understandability, are often used to define 
data-mining parameters for data discovery. Similarly, each phase of the knowledge-discovery process 
has associated challenges, as outlined here.

Selection and Sampling

Because of practical computational limitations and a priori knowledge, data mining isn't simply about 
searching for every possible relationship in a database. In a large database or data warehouse, there 
may be hundreds or thousands of valueless relationships. For example, a researcher interested in the 
relationship of SNPs with clinical findings can reasonably ignore the zip code of the tissue donors or 
the dates that the tissue samples were obtained. There are exceptions, of course, such as if there is a 
concentration of a specific ethnicity in a geographical area defined by a zip code.

Because there may be millions of records involved and thousands of variables, initial data mining is 
typically restricted to computationally tenable samples of the holding in an entire data warehouse. 
The evaluation of the relationships that are revealed in these samples can be used to determine 
which relationships in the data should be mined further using the complete data warehouse. With 
large, complex databases, even with sampling, the computational resource requirements associated 
with non-directed data mining may be excessive. In this situation, researchers generally rely on their 
knowledge of biology to identify potentially valuable relationships and they limit sampling based on 
these heuristics.

Preprocessing and Cleaning

The bulk of work associated with knowledge discovery is preparing the data for the actual analysis 
associated with data mining. The major preparatory activities, listed in Table 7-1, are normally 
performed to some extent in the creation of a data warehouse. However, data mining may be 
performed on one or more independent databases, or the data in the warehouse may not have been 
cleaned initially, at least to the degree necessary for optimum data-mining results. In either case, 
these activities need to be performed as part of the preprocessing and cleaning phase of the overall 
knowledge-discovery process.

Table 7-1. Data Mining Preparatory Activities.



Data Characterization

Consistency Analysis

Domain Analysis

Data Enrichment

Frequency and Distribution Analysis

Normalization

Missing Value Analysis

Data characterization involves creating a high-level description of the nature and the content of the 
data to be mined. This stage in the knowledge-discovery process is primarily for the programmers 
and other staff involved in a data-mining project. It provides a form of documentation that can be 
referred to by those who may not be familiar with the underlying biology represented by the data.

Consistency analysis is the process of determining the variability in the data, independent of the 
domain. Consistency analysis is primarily a statistical assessment of data, based solely on data 
values. Outliers and values determined to be significantly different from other data may be 
automatically excluded from the knowledge-discovery process, based on predefined statistical 
constraints. For example, data associated with a given parameter that is more than three standard 
deviations from the mean might be excluded from the mining operation.

Domain analysis involves validating the data values in the larger context of the biology. That is, 
domain analysis goes beyond simply verifying that a data value is a text string or an integer, or that 
it's statistically consistent with other data on the same parameter, to ensure that it makes sense in 
the context of the biology. For example, values for physiological parameters can be validated to the 
extent that they are within physiologically possible ranges consistent with life. A blood pH of 13, a 
body temperature of 45 degrees Celsius, a protein with molecular weight of 20 milligrams, and a 
patient age of 120 would be flagged as invalid values that should be excluded from the knowledge-
discovery process. Domain analysis requires that someone familiar with the biology create the 
heuristics that can be applied to the data.

Data enrichment involves drawing from multiple data sources to minimize the limitations of a single 
data source. For example, two databases on inherited diseases might each be sparsely populated in 
terms of proteins that are associated with particular diseases. This deficit could be addressed by 
incorporating data from both databases, assuming only a moderate degree of overlap in the content 
of the two databases. Data enrichment may be tied to consistency analysis, so that outliers that 
would skew knowledge-discovery results aren't included in the final analysis.

Frequency and distribution analysis places weights on values as a function of their frequency of 
occurrence. The effect is to maximize the contribution of common findings while minimizing the effect 
of rare occurrences on the conclusions made from the data-mining output. For example, a clinical 
database of genetic diseases might contain 500 entries for one disease and only 1 entry for another, 
based on the number of patients with each disease who were admitted to a given hospital or clinic. 
Ignoring the relative frequency of each disease in the database could lead a researcher to conclude 
that the odds of patients expressing either disease is the same.

The normalization process involves transforming data values from one representation to another, 
using a predefined range of final values. For example, qualitative values, such as "high" and "low," 
and qualitative values from multiple sources regarding a particular parameter might be normalized to 
a numerical score from 1 to 10.

The major issues in normalization are range, granularity, accuracy, precision, scale, and units. Range 
is the difference between the highest and lowest values that are represented, whereas granularity is 



a static property of the scale. For example, length might be measured with a granularity of either 
nanometers or millimeters. Accuracy is a measure of how close measurements come to actual values, 
and precision is a measure of the repeatability of the measurements.

The most common scales used in the normalization process are listed in Table 7-2. Absolute scales 
are based on quantities, such as the number of amino acids in a protein. Nominal scales are based on 
unique identifiers, such as names and descriptions. Categorical scales assign data to numerical or 
textual categories. Ordinal scales put things in order, according to some organizational theme. For 
example, proteins can be ordered according to molecular weight. Rank scales are like ordinal scales 
with the addition of a natural ranking, such as "more stable" and "less stable" protein configurations. 
Interval scales have a natural ordering, such as time. Ratio scales are expressed as a multiple or a 
fraction of a unit or interval, such as micrometers and milligrams.

Table 7-2. Scales Used in Normalization.

Scale Example

Absolute Count (3 amino acids)

Nominal List of Protein Names (Lysine, Arginine, Tyrosine)

Ordinal Process Phase (first, second, third)

Categorical Types of Amino Acids (essential, non-essential)

Rank Protein folding (primary, secondary, tertiary)

Interval Time (seconds)

Ratio Weight (micrograms)

With the exception of absolute scales, these scales can be converted to another scale if they are the 
same type and measure the same attribute. When data are defined with the same scale, the 
normalization process depends on the type of data. For example, nominal scales are converted to 
other nominal scales by a mapping function. However, mapping can introduce errors when there is a 
one-to-many mapping or many-to-one mapping between the two nominal scales. For example, the 
name of an amino acid can be mapped to a triplet of base pairs, but if there are multiple possible 
base pairs that code for a given amino acid, then the alternative base pair sequences are lost in the 
translation.

Both ordinal and rank order scales are translated by a function that maintains their relative order. As 
in the mapping of nominal scales, errors of omission are introduced by the conversion process when 
there isn't a one-to-one mapping between the two scales. Interval scales are converted to other 
interval scales through linear functions that preserve the ordering but shift the relative values, as in 
the conversion of degrees Fahrenheit to degrees Celsius. Ratio scales are converted to another ratio 
scale by a constant multiplier. For example, a ratio scale of 0 to 2 meters could be multiplied by a 
factor of 100 to provide a scale of 0 to 200 centimeters.

The units used in the process of normalization may be primary, such as seconds of time or 
micrograms of mass, or derived, such as density (grams per cubic centimeter) or volume (cubic 
millimeters). The standard Systeme International (SI) measurement units for primary units include 
meter for length, kilogram for mass, second for time, ampere for electrical current, degree Kelvin for 
temperature, and the mole for molecules.

The final preprocessing and cleaning activity, missing-value analysis, involves detecting, 
characterizing, and dealing with missing data values. One way of dealing with missing data values is 
to substitute the mean, mode, or median value of the relevant data that are available.



Transformation and Reduction

In the transformation and reduction phase of the knowledge-discovery process, data sets are reduced 
to the minimum size possible through sampling or summary statistics. For example, tables of data 
may be replaced by descriptive statistics, such as mean and standard deviation.

Transformation involves translating one type of data to another through mathematical or mapping 
operations that, for example, map numerical data onto textual data (or vice versa). Transformation 
differs from the normalization process in the preprocess and cleaning phase of knowledge discovery 
in that the purpose of the transformation isn't to allow the combination of data from multiple sources, 
but rather to directly support the data-mining and knowledge-discovery process. For example, 
normalized data may be transformed from floating-point (such as 3.14) to integer data to increase 
computer processor performance.

Data-Mining Methods

The process of data mining is concerned with extracting patterns from the data, typically using 
classification, regression, link analysis, segmentation, or deviation detection (see Figure 7-2). 
Classification involves mapping data into one of several predefined or newly discovered classes. In 
the former case, a set of predefined examples is used to develop a model that can be used to classify 
data culled from the data warehouse or database. In the latter case, the system develops its own 
models that it uses to classify data according to analysis of the data. In the illustration, there are 
three groups or classes of data, (A), (B), and (C). The classification rule may specify minimum 
proximity to the center of a particular group, as defined by numerical range or statistical spread, for 
example.

Figure 7-2. Data Mining Methods. Classification—Mapping to a class or 
group. Regression—Statistical analysis. Link Analysis—Correlation of data. 
Deviation Detection—Difference from the norm. Segmentation—Similarity 

function.

Data mining based on regression methods involves assigning data a continuous numerical variable 



based on statistical methods. One goal in using regression methods is to extrapolate trends from a 
few samples of the data. In the example in Figure 7-2, the extrapolation formula is a simple linear 
function of the form:

y = mx + b

where x and y are coordinates on the plot, m is the slope of the line, and b is a constant. In practice, 
more complex extrapolation formulas are used to describe data trends.

Link analysis evaluates apparent connections or links between data in the database or data 
warehouse. Link analysis highlights correlations in data that can suggest linkage, but not causality. In 
the illustration, the two pairs of data points are apparently linked, in that the value of one data 
element in the pair can be predicted by the value of the other data point in the pair.

Deviation detection identifies data values that are outside of the norm, as defined by existing models 
or by evaluating the ordering of observations. The outlier in the illustration is an example of a data 
value outside of the expected spread of data in a sample. The data may represent a particular 
sequence of amino acids or the molecular weight of a protein, or a vital sign, for example.

Segmentation-based data mining identifies classes or groups of data that behave similarly, according 
to some metric. Segmentation is akin to link analysis applied to groups of data instead of individual 
data points. In the figure, groups (A) and (C) behave similarly.

These methods of data mining are typically used in combination with each other, either in parallel or 
as part of a sequential operation. For example, segmentation requires classes to be defined through a 
classification process. Similarly, link analysis assumes that statistical analysis, including correlation 
coefficients, are available. Likewise, deviation detection assumes that the data have been properly 
classified and evaluated statistically to define the "normal" model. As described later in this chapter, 
there are a variety of technologies available to support these methods.

Evaluation

In the evaluation phase of knowledge discovery, the patterns identified by the data-mining analysis 
are interpreted. Typical evaluation ranges from simple statistical analysis and complex numerical 
analysis of sequences and structures to determining the clinical relevance of the findings.

Visualization

Visualization of evaluation results is an optional stage in the knowledge-discovery process, but one 
that typically adds considerable value to the overall system. Visualization can range from converting 
tabular listings of data summaries to pie charts and similar business graphics, to using real-time data 
to create 3D virtual reality displays that can be manipulated by haptic controllers.

Designing New Queries

Data mining is an iterative continual activity, in that there are always new hypotheses to test. 
Sometimes the new hypotheses are suggested by the data returned by the mining process, and other 
times the hypotheses originate from other research. In either case, testing the new hypotheses 
requires formulating new queries and revisiting the selection and sampling stage of the data-mining 
process.



 
Technology Overview

The remainder of this chapter provides an overview of the key technologies that can be applied to 
data mining, especially those capable of supporting the basic data-mining methods outlined earlier. 
As a prelude to this discussion, it's important to note that an efficient and effective data-mining 
system requires, above all, an experimental design that reflects the biology of the data being mined. 
In this regard, technology is an empowering agent that provides leverage to facilitate a well-designed 
data-mining initiative—technology isn't a solution in itself. Simply connecting a black box to a 
database with hopes of it turning up fruitful information on previously hidden relationships in the data 
is unlikely at best.

Given this caveat, data mining requires a hardware and software infrastructure capable of supporting 
high-throughput data processing and a network capable of supporting data communications from the 
database to the visualization workstation. With a robust hardware and software infrastructure in 
place, processes such as machine learning can be used to automatically manage and refine the 
knowledge-discovery and data-mining processes. This work can be performed with minimal user 
interaction once a knowledgeable researcher has established the basic design of the system.

The core technologies that actually perform the work of data mining, whether under computer control 
or directed by users, provide a means of simplifying the complexity and reducing the effective size of 
the databases. This focus isn't limited to genome sequences and protein structures, but extends to 
the wealth of data hidden in the online literature. Advanced text-mining methods are used to identify 
textual data and place them in the proper context.

Finally, as discussed later in this chapter, although data mining was once relegated to internal 
research groups, the technology is readily available today through a variety of commercial and 
academic shareware tools. These tools range from shrink-wrapped, general-purpose software tools to 
bioinformatics-specific commercial and academic systems designed for highly specific data-mining 
applications.



 
Infrastructure

At first glance, data mining can be performed with little more than a laptop and a connection to the 
Internet. Although it's possible to work with such a system, serious data-mining work typically 
requires much more in terms of infrastructure. As illustrated in Figure 7-3, a typical laboratory data-
mining infrastructure includes high-speed Internet and intranet connectivity, a data warehouse with a 
data dictionary that defines a standard vocabulary and data format, several databases, and high-
performance computer hardware. Not shown are the software tools, including the database 
management system (DBMS) software that supports queries and searching and ensures data 
integrity and the data mining software.

Figure 7-3. Centralized Data-Mining Infrastructure. In this example, a data 
warehouse, data dictionary, high-bandwidth access to data on the Internet, 

and a high-performance workstation form the basis for an effective data-
mining operation.

In the example in Figure 7-3, the data-mining operations take place on a workstation with a high-
speed connection to the data warehouse. However, this centralized data-mining infrastructure is only 
one of several configurations possible. For example, a competing infrastructure involves distributing 
the data-mining operation to process-specific workstations, as illustrated in Figure 7-4. In this 
configuration, a server doles out data in a format appropriate to the process performed by a 
particular workstation. In this way, greater overall throughput can be achieved, using inexpensive 
desktop hardware that is configured with the appropriate hardware and software tools to support a 
specific process. A distributed architecture also supports parallel processing, so that intermediate 
results from one workstation can be fed to another workstation. For example, link analysis performed 
on one workstation can be fed the regression analysis results from another workstation.

Figure 7-4. Distributed Data-Mining Infrastructure. A server to specialized 



workstations distributes data from a central data warehouse or single 
database. The distribution refers to the processing, not the data source.

The trend of distributed data mining using relatively inexpensive desktop hardware is largely a 
reflection of the economics of modern computing. Not only is the price-performance ratio of desktop 
hardware superior to that of mainframe computers, but the cost of desktop software licenses is 
typically several orders of magnitude less than that for mainframe computer systems. Of course, if 
time is the primary issue, then a mainframe computer optimized for data mining can provide superior 
performance compared to small networks of desktop computers.



 
Pattern Recognition and Discovery

Data mining is the process of identifying patterns and relationships in data that often are not obvious 
in large, complex data sets. As such, data mining involves pattern recognition and, by extension, 
pattern discovery. In bioinformatics, pattern recognition is most often concerned with the automatic 
classification of character sequences representative of the nucleotide bases or molecular structures, 
and of 3D protein structures.

As illustrated in Figure 7-5, the pattern-recognition process starts with an unknown pattern, such as 
a potential protein structure, and ends with a label for the pattern. From an information-processing 
perspective, pattern recognition can be viewed as a data simplification process that filters extraneous 
data from consideration and labels the remaining data according to a classification scheme.

Figure 7-5. The Pattern-Recognition and Discovery Process. Pattern 
discovery differs from pattern recognition in that feature selection is 

determined empirically under program control.

The major steps in the pattern recognition and discovery process are:

●     Feature Selection. Given a pattern, the first step in pattern recognition is to select a set of 
features or attributes from the universe of available features that will be used to classify the 
pattern. When pattern recognition is directed at known patterns, the researcher defines a 
priori the features that will be used to distinguish the pattern from other data. Feature 
selection often takes the form of exemplars or representative examples of the features that 
will be measured, such as the tertiary geometry of a protein. In pattern discovery, which is 
more complex than simple pattern recognition, feature selection is under program control. 
Instead of an a priori definition of pattern attributes defining a class or group of data that are 



similar or equivalent in some way, samples are classified programmatically into empirically 
established groups, based on groups or clusters in the unlabeled collection of samples. That 
is, simple pattern recognition is assumption-driven, in that a hypothesis is developed and 
tested against the data. In pattern discovery, the extracted data serve as the seed of a new 
hypothesis. Clustering techniques are used to group samples that are more similar to each 
other than to other groups, and that have a low internal cluster variability or scatter.

●     Measurement. The measurement phase of the pattern-recognition and discovery process 
involves converting the original pattern into a representation that can be easily manipulated 
programmatically. For example, a 3D vector image of a protein might be represented as a 
series of 2D matrices. Similarly, a nucleotide sequence may be represented by a series of 
integers (for example, A = 1, T = 2, C = 3, and G = 4), depending on the underlying 
technology used to perform the pattern-matching operation.

●     Processing. After the measurement process, the data are processed to remove noise and 
prepare for feature extraction. Processing typically involves executing a variety of error 
checking and correction routines, as well as specialized processes that depend on the nature 
of the data. For example, images may undergo edge enhancement and transformation to 
correct for size and orientation variations (normalization) in order to facilitate feature 
extraction.

●     Feature Extraction. Feature extraction involves searching for global and local features in 
the data that are defined as relevant to pattern matching during feature selection. Clustering 
techniques, in which similar data are grouped together, often form the basis of feature 
extraction.

●     Classification and Discovery. In the classification phase of pattern recognition and 
discovery, data are classified based on measurements of similarity with other patterns. These 
measurements of similarity are commonly based on either a statistical or a structural 
approach. In the statistical approach, exemplar patterns are represented by points in a 
multidimensional space that is partitioned into regions associated with a classification. In the 
structural approach, the structures of the exemplar patterns are explicitly defined. In either 
case, the similarity of the data to be classified is compared with the exemplar data to assess 
closeness of association.

●     Labeling. The pattern-recognition process ends when a label is assigned to the data, based 
on its membership in a class.

As illustrated in Figure 7-5, the pattern-recognition process isn't unidirectional, but is iterative to the 
extent that failures at the classification and feature-extraction stages can be corrected by 
reevaluating the preceding phase. For example, if the feature-extraction phase fails to identify 
relevant data, then the processing of the original image may need to be modified by removing 
extraneous data from consideration and by taking other, more relevant data, into consideration.

Feature extraction and classification and discovery, which represent the core of the pattern-
recognition and discovery process, are performed by using some combination of classification, 
regression, segmentation, link analysis, and deviation detection methods, depending on the nature of 
the data. Similarly, these methods are supported by a variety of technologies and approaches, 
collectively referred to as machine learning, as described here.



 
Machine Learning

The pattern-matching and pattern discovery components of data mining are often performed by 
machine learning techniques. Machine learning isn't a single technology or approach, but 
encompasses a variety of methods that represent the convergence of several disciplines, including 
statistics, biological modeling, adaptive control theory, psychology, and artificial intelligence (AI). 
Although many computer scientists consider the entire field of machine learning to be an outgrowth 
of traditional statistical methods, biological modeling is clearly a source of several machine learning 
approaches. These include genetic algorithms and neural networks. Similarly, adaptive control 
theory, in which system parameters change dynamically to meet the current conditions, and 
psychological theories, especially those regarding positive and negative reinforcement learning, 
heavily influence machine learning methods. AI techniques, such as pattern matching through 
inductive logic programming, are designed to derive general rules from specific examples. As 
illustrated in Table 7-3, the spectrum of machine learning technologies applicable to data mining 
includes inductive logic programming, genetic algorithms, neural networks, statistical methods, 
Bayesian methods, decision trees, and Hidden Markov Models.

Table 7-3. Machine Learning Technologies and Their Applicability to Data-
Mining Methods.

Machine Learning 
Technologies

Data-Mining Methods

Classification Regression Segmentation Link 
Analysis

Deviation 
Detection

Inductive Logic 
Programming

X X    

Genetic Algorithms X X X   

Neural Networks X X X   

Statistical Methods X X X X X

Decision Trees X  X   

Hidden Markov 
Models

X     

Regardless of the underlying technology, most machine learning follows the general process outlined 
in Figure 7-6. Input data are fed to a comparison engine that compares the data with an underlying 
model. The results of the comparison engine then direct a software actor to initiate some type of 
change. This output, whether it takes the form of a change in data or a modification of the underlying 
model, is evaluated by an evaluation engine, which uses the underlying goals of the system as a 
point of reference. Feedback from the actor and the evaluation engine direct changes in the model. 
In this scenario, the goals can be standard patterns that are known to be associated with the input 
data. Alternatively, the goals can be states, such as minimal change in output compared with the 
system's previous encounter with the same data.

Figure 7-6. The Machine Learning Process.



The feedback loops and a mechanism capable of responding to feedback enable two types of machine 
learning: supervised and unsupervised. In supervised learning, the system is trained with a set of 
examples, called the training set. The goals are specific outputs that are associated with each input. 
For example, a specific amino acid sequence on the input can be associated with the name of a 
protein on the output. The performance of a supervised learning system can be evaluated by 
presenting the system with a known testing set that is similar to the training set.

In unsupervised learning, there is no specific output associated with a given input, and the system 
must invent new categories and ways to classify the input data. In machine learning systems based 
on unsupervised learning, it isn't known a priori whether the input data contains a biologically 
significant pattern, where it is, or even what it looks like.

One of the key issues in supervised learning is that the training set must be sufficiently large relative 
to the number of categories or different outputs provided by the machine learning system. When 
there are too many categories or recognized patterns that are consistent with the input data, the 
training data is said to be overfitted. That is, overfitting is the process of assigning undue importance 
to random variations in the data.

Whether supervised or unsupervised, the machine learning process requires bias. It isn't enough to 
simply open a database up to a machine learning algorithm and sit back while it automatically 
discovers all of the interrelationships in the data. Bias is created in a machine learning system by 
placing constraints on the data that can be examined, by using different underlying models, and by 
altering the machine learning system goals. Bias can increase the efficiency of the machine language 
process and provide more meaningful results. For example, the process can probably ignore a 
correlation between the time of day a sample was evaluated and gene expression in a microarray. In 
practice, the bias can be a single heuristic, such as preferring the single, simplest rule that explains 
the data to a more complex solution. This "simplest solution" bias is often used with machine learning 
approaches to mining nucleotide sequence data.

Inductive Logic Programming

Inductive logic programming uses a set of rules or heuristics to categorize data. A common heuristic 
is to use change in entropy to iteratively choose an attribute of the data that will subset the data 
according to the attribute. That is, an entropy-based classification system based on an induction 
algorithm works by incrementally dividing the data into the largest possible spaces until all data has 
been assigned to a collection.

Consider the scenario depicted in Figure 7-7, in which the data to be classified includes 20 circles and 
10 squares, 16 of which are white and 14 of which are black. With two dimensions to 
compare—shape and color—an entropy-based inductive classifier bifurcates the space first according 
to color because it provides the maximum change in entropy, resulting in one group of 14 black 
circles and squares and one group of 16 white circles and squares. After dividing the space by color, 
it's further subdivided by shape, as shown in the figure.



Figure 7-7. Induction-Based Classification. Using changes in entropy (a 
measure of disorder) as an organizational heuristic, the induction algorithm 

divides the unorganized data (top left) first by color and then by shape.

The alternative, bifurcating the circles and squares initially by shape would have resulted in a split of 
10 to 20, which is less than the spread (increase in entropy) associated with a 14-to-16 split. In a 
typical bioinfomatics data-mining problem, there may be 10 or more attributes to consider, according 
to entropy change or some other driving heuristic.

Genetic Algorithms

Genetic algorithms are based on evolutionary principles wherein a particular function or definition 
that best fits the constraints of an environment survives to the next generation, and the other 
functions are eliminated. This iterative process continues indefinitely, allowing the algorithm to adapt 
dynamically to the environment as needed. Genetic algorithms evaluate a large number of solutions 
to a problem that are generated at random. The members of the solution population with the highest 
fitness scores are allowed to "mate" with crossovers and mutations, creating the next generation.

Figure 7-8 illustrates the typical operation of a genetic operation. In this example, the possible 
solutions to a problem defined by the fitness function are represented by bit strings. Each bit 
represents the presence or absence of some quality that is mapped to the real-world solution. If 
there is a need to represent gradations of quantities, then integers or floating-point variables could 
be used instead of bit strings. However, in this example, 12 bits are used to represent the problem 
matrix.



Figure 7-8. Genetic Algorithm Operation.

When the algorithm is initialized, a population of bit strings is generated, using a random number 
generator. Although only four bit strings are shown here in the initial population, a typical population 
may include hundreds or even thousands of patterns. The larger the initial population, the more likely 
a high-scoring or "fit" solution will emerge, at the expense of computation time. From this initial 
population, two children are selected, based on the two highest-scoring patterns. All other bit strings 
are discarded. These children are then allowed to "mate" with crossovers (bottom, left) and point 
mutations (bottom, right).

As in the initial population, there are hundreds or even thousands of crossovers and mutations 
created, and each resulting bit string is ranked by the fitness function to identify two new children. 
There are various combinations of crossover and mutations possible. For example, the fittest two 
children from the crossover population can each be subject to point mutations at each position in 
their strings, and the fittest children with mutations can be mated with the highest-ranking crossover 
children or with the parents. In this way, the string with the highest score from the fitness function is 
iteratively generated. The process can continue indefinitely or, as is normally done, terminated after 
a set number of generations.

Both the encoding of bit strings and the fitness function are domain-specific. For example, the first 
position in the bit string might represent the presence of a particular amino acid in a protein, the 
presence of a start codon in a nucleotide sequence, or the presence of a hydrogen bond at a position 
on an alpha helix. Similarly, the fitness function can be as simple as positive and negative weightings 
for each of the 12 bits (for example, 1s at odd positions are weighted with –1, and 1s at even 
positions are weighted with +1) for a sequence analysis problem or as a complex trigonometric 



function for a structure prediction problem.

Neural Networks

Neural networks are simulations loosely patterned after biological neurons. They are said to learn, or 
be trainable. In molecular biology, they learn to associate input patterns with output patterns in a 
way that allows them to categorize new patterns and to extrapolate trends from data. In operation, a 
neural network is presented with a pattern on its input nodes and the network produces an output 
pattern, based on this learning.

The power of neural networks is that they can apply this learning to new input patterns. For this 
reason, neural networks, like genetic algorithms, are often referred to as a form of "soft" or "fuzzy" 
computing because the answers or pattern matching provided by these methods represent best 
guesses, based on the data available for analysis. Neural networks always produce an output pattern 
when presented with an input pattern. However, the resultant categorization isn't necessarily the 
best answer. The best answer, computed using traditional algorithms, may require weeks of 
computing time on a desktop workstation. In comparison, a neural network may be able to 
categorize the data in a few seconds using the same hardware.

The inner workings of a neural network are independent of the problem domain, in that the same 
neural network configuration (with different training) can be used to recognize a nucleotide triplet, or 
a critical pattern on a patient's EKG tracing, or a potential mid-air collision when used with radar 
data. It's up to the researcher to determine what the input and output patterns represent. That said, 
neural networks, like other fuzzy systems, work best in a narrowly defined domain in which input 
patterns are likely to follow the same progression or logic. As the number and complexity of the 
possible input patterns increases, the ability of a neural network to classify input patterns 
deteriorates. For example, a neural network that works well classifying proteins within a given 
protein family will likely fail to classify the universe of known proteins, despite additional training.

An increase in the number and complexity of input patterns typically requires reconfiguring or 
rewriting a neural network with more layers and different interconnections. For example, the simple 
three-layer neural network shown in Figure 7-9 may have to be replaced by a four-layer neural 
network with double the number of interconnections. As a result, training time—the time required for 
a neural network to consistently associate an input pattern with an output pattern correctly—may be 
extended from a few minutes to several hours, even on high-performance hardware. Recognition 
time should be relatively unaffected.

Figure 7-9. Neural Network. One of the limitations of a neural network is 
that the significance of the strength of the internal interconnections is 

unknown. As a result, as a pattern recognizer or categorizer, the neural 
network can be treated as a black box.



The challenge of using a neural network to recognize and categorize data, especially novel data that 
haven't been presented to the system before, is that of validating the results and of communicating 
the rationale behind the results to the user. The greatest drawback of neural networks is that it's 
practically impossible to assess the significance of what's happening inside of a complex network. 
Even though the "wiring" of the nodes may be known, the relevance of changes in the strength of the 
connections is difficult to assess, even when the strengths are known. As a result, the inner workings 
of a neural network are difficult to validate.

Because a pure neural network presents such a formidable validation challenge, many neural network 
data-mining systems are used in conjunction with rule-based expert systems that contain human-
readable rules in the form:

IF condition THEN outcome

These hybrid systems can categorize novel patterns and provide researchers with insight into the 
operation of the biological system. The challenge in creating hybrid classification systems is 
integrating the neural networks and rule-based expert systems in a way that doesn't compromise 
classification performance while providing enough information on internal operation to allow the user 
to assess the validity of the classification results. One approach to maximizing performance is to 
develop a neural network and then use a tool that converts the network into a rule base that can be 
compiled in C++ or Assembly language.

Statistical Methods

The statistical methods used to support data mining are generally some form of feature extraction, 
classification, or clustering. Statistical feature extraction is concerned with recovering the defining 
data attributes that may be obscured by imperfect measurement, improper data processing, or noise 
in the data.

A variety of statistical pattern-classification methods may be applied to data mining. For example, 
probabilistic classifiers are based on the principle that a pattern should be assigned to the class that 
is most probable. Bayesian techniques that estimate the joint probability of distributions can also be 
used to assess this probability. Although this method of classification generally provides excellent 
results, it has a major drawback of requiring more complete data than other methods.



Geometric classifiers are based on template matching in which the observed pattern is compared to a 
geometric template that represents data in each category. The nearness of the mined data to the 
template can be assessed in terms of the number of features in the observed data that match the 
template. Conceptual classifiers rely on biological heuristics to define categories, and fuzzy logic 
techniques can be used to assign data to a class by degree. Similarity measures may also weight 
certain features more than others, according to some measure of separateness. For example, if the 
distribution of data is spherical, the data mean may be used.

Statistical data-mining methods based on structural pattern recognition attempt to describe complex 
patterns in terms of simpler patterns. They extract features from the data and represent the 
structural features as vectors that are used with statistically determined discriminant functions. They 
use a rule base to define structural features in a given class, or transform the data into a descriptive 
language based on pattern primitives. The descriptions are then analyzed syntactically to provide the 
classification.

Predictive modeling, which uses data within a database to predict other missing data, can be based 
on continuous numerical variables (regression) or, more frequently, on categorical data 
(classification). The major challenge in predictive modeling is to select the input criteria that are most 
influential in defining missing data and in identifying the most appropriate transformation. With 
continuous numerical variables, nonlinear transformations on the input data are often used. With 
categorical data, feature extraction serves the same purpose.

Cluster analysis, also known as data segmentation, groups data into subsets that are similar to each 
other. Cluster analysis is a technique that can take a large amount of data about a number of objects 
and construct a simple, unique tree diagram that expresses those objects' similarities and 
differences. Cluster analysis involves sorting data so that members of the same cluster are most alike 
and members of different clusters are least alike. In this way, each cluster describes the class to 
which its members belong.

The results of cluster analysis are commonly reported in human-readable form as a dendogram, 
illustrated in Figure 7-10. In this dendogram, groups (D) and (E) are the most alike, as indicated by 
the shortest bracket. The next level of similarity is between (F) and the (D)-(E) complex. In addition, 
Groups (A) and (B) are similar. Group (G) shares the least similarity with the other groups.

Figure 7-10. Dendogram Showing the Results of a Cluster Analysis. Groups 
(D) and (E) show the greatest similarity, whereas Group (G) shows the 
greatest differences between groups, based on cluster analysis criteria.



Cluster analysis may reveal associations and structure in data that, though not previously evident, 
are sensible and useful once found. The results of cluster analysis may contribute to the definition of 
a formal classification scheme, such as a taxonomy for related bacteria. It may suggest statistical 
models with which to describe populations, or indicate rules for assigning new cases to classes for 
identification and diagnostic purposes.

Cluster analysis includes metric-, model-, and partition-based methods (see Figure 7-11). In metric-
based clustering, the data are partitioned so that they are closer to the centroid or center of mass 
than they are to other data in the cluster. In model-based clustering, a hypothetical model for each 
cluster is defined and the data that best fit the model are considered part of that cluster. A problem 
with model-based approaches is overfitting—by chance, a model may fit data that is irrelevant to it. 
Partition-based methods, which are general cases of metric- and model-based methods, use an ad 
hoc method of dividing the data space.

Figure 7-11. Cluster Analysis Methods.



Decision Trees

Decision trees are hierarchically arranged questions and answers that lead to classification. As shown 
in Figure 7-12, decision trees are formed by input nodes and tests on input data and whose leaf 
nodes are categories of those data. In the decision tree in the figure, the tests (Test 1–Test 8) result 
in textual categories (categories (A)–(H)), but they can also result in numerical categories. An 
advantage of using decision trees in data mining is that they can be easily read and modified by 
humans. For example, the results of Test 1 may lead to Test 2, 3, or 4. Once Test 2 is selected, the 
only options are to characterize the input as belonging to category (A), or to select Test 7. Category 
(A) can represent a particular family of proteins, for example. The only options from Test 7 are to 
place the data into category (A) or category (F).

Figure 7-12. Decision Trees. A decision tree categorizes a pattern by 
filtering it down through the tests in a tree.



The tests can be binary (yes/no) as in Test 2, or multi-variant (high, medium, low) as in Test 1. For 
example, in operation, a decision tree can be used to categorize a protein based on a combination of 
molecular weight, length, and configuration. As illustrated in the figure, the terminal or leaf nodes 
needn't result in mutually exclusive categorization of the input data. Both Test 2 and Test 7 classify 
the input into category (A), for example.

A potential limitation of using decision trees is related to their inability to represent relative 
occurrence frequencies. For example, with a very small training set, it's likely that the terminal leaves 
of a complex tree are defined by chance alone. Consider the typical evolutionary tree that represents 
the speciation over the past several hundred-million years. A single fossil may be responsible for a 
bifurcation in the tree, even though the fossil may represent a relatively small, insignificant mutation 
in a much larger population. However, in the tree representation, the populations have equal 
weights.

In some cases, this inability to represent the relative frequency of occurrence can be used to 
advantage. For example, in classifying globins from a variety of species, multiple samples from the 
same or closely related species may skew the relative abundance of some properties over others. 
However, if these properties are represented as a decision tree, then the skew due to sample 
anomalies can be avoided.

Hidden Markov Models

A powerful statistical approach to constructing classifiers that deserves a separate discussion is the 
use of Hidden Markov Modeling. A Hidden Markov Model (HMM) is a statistical model for an ordered 



sequence of symbols, acting as a stochastic state machine that generates a symbol each time a 
transition is made from one state to the next. Transitions between states are specified by transition 
probabilities. A Markov process is a process that moves from state to state depending on the 
previous n states. The process is called an order n model where n is the number of states affecting 
the choice of the next state. The Markov process considered here is a first order, in that the 
probability of a state is dependent only on the directly preceding state.

In order to understand HMMs, consider the concept of a Markov Chain, which is a process that can be 
in one of a number of states at any given time (see Figure 7-13). Each state generates an 
observation, from which the state sequence can be inferred. A Markov Chain is defined by the 
probabilities for each transition in state occurring, given the current state. That is, a Markov Chain is 
a non-deterministic system in which it is assumed that the probability of moving from one state to 
another doesn't vary with time. A HMM is a variation of a Markov Chain in which the states in the 
chain are hidden.

Figure 7-13. Markov Chain. (A), (B), and (C) represent states, and the 
arrows connecting the states represent transitions.

Like a neural network classifier, a HMM must be trained before it can be used. Training establishes 
the transition probabilities for each state in the Markov Chain. When presented with data in the 
database, the HMM provides a measure of how close the data patterns—sequence data, for 
example—resemble the data used to train the model. HMM-based classifiers are considered 
approximations because of the often unrealistic assumptions that a state is dependent only on 
predecessors and that this dependence is time-independent.



 
Text Mining

For mankind to benefit from bioinformatics research, the sequence and structure of proteins and 
other molecules must be linked to functional genomics and proteomics. The primary store of 
functional data that links clinical medicine, pharmacology, sequence data, and structure data is in the 
form of biomedicine documents in online bibliographic databases such as PubMed (see Figure 7-14). 
Mining these databases is expected to reveal the relationships between structure and function at the 
molecular level and their relationship to pharmacology and clinical medicine.

Figure 7-14. PubMed Home Page. This source of biomedicine literature 
contains over 11 million citations, and has an annual growth of about 3 

percent.

Text mining—automatically extracting this data from documents, which is published in the form of 
unstructured free text, often in several languages—is a non-trivial task. Although computer 
languages such as LISt Processing (LISP) have been developed expressly for handling free text, 
working with free text remains one of the most challenging areas of computer science. This is 
primarily because, unlike the analysis of the sequence of amino acids in a protein, natural language is 
ambiguous and often references data not contained in the document under study. For example, a 
research article on the expression of a particular gene in PubMed may contain numerous synonyms, 
acronyms, and abbreviations. Furthermore, despite editing to constrain the sentences to proper 
English (or other language), the syntax—the ordering of words and their relationships to other 
elements in phrases and sentences—is typically author-specific. The article may also reference an 
experimental method that isn't defined because it's assumed as common knowledge in the intended 
readership. In addition, text mining is complicated because of the variability of how data are 
represented in a typical text document. Data on a particular topic may appear in the main body of 
text, in a footnote, in a table, or imbedded in a graphic illustration.

Natural Language Processing



The most promising approaches to text mining online documents rely on natural language processing 
(NLP), a technology that encompasses a variety of computational methods ranging from simple 
keyword extraction to semantic analysis (see Figure 7-15). The simplest NLP systems work by 
parsing documents and identifying the documents with recognized keywords such as "protein" or 
"amino acid." The contents of the tagged documents can then be copied to a local database and later 
reviewed.

Figure 7-15. Text Mining with NLP. Simple keyword extraction is useful in 
identifying documents, analysis of keyword distribution identifies document 

clusters, and semantic analysis can reveal rules and trends.

More elaborate NLP systems use statistical methods to recognize not only relevant keywords, but 
their distribution within a document. In this way, it's possible to infer context. For example, an NLP 
system can identify documents with the keywords "amino acid", "neurofibromatosis", and "clinical 
outcome" in the same paragraph. The result of this more advanced analysis is document clusters, 
each of which represents data on a specific topic in a particular context.

This capability of identifying documents or document clusters is used by the typical Web search 
engines, such as Google or Yahoo!, or the native PubMed interface. This approach is also used in 
commercial bibliographic database systems, such as EndNote®, ProCite®, and Reference Manager®, 



which create a local subset of PubMed data by capturing the native field definitions, such as author 
name, publication title, and MESH keywords. However, these products don't support the automatic 
integration of structure and sequence data with functional data. Their support for text mining of the 
data within a document is limited to simple user-directed keyword search.

The most advanced NLP systems work at the semantic level—the analysis of how meaning is created 
by the use and interrelationships of words, phrases, and sentences in a sentence. Unlike a typical 
search engine, these advanced systems attempt to automatically populate a database with, for 
example, functional genomic and proteomic data relevant to a specific gene, protein, or disease, 
including rules and trends not explicitly stated or defined in the documents. These systems, which 
represent the leading edge of NLP R&D, are less reliable than systems based on keyword extraction 
and distribution techniques in that they sometimes formulate incorrect rules and trends, resulting in 
erroneous search results.

Regardless of the level of NLP, most systems follow the basic process outlined in Figure 7-16. Online 
documents are first parsed into words, word collections, or sentences, depending on the NLP method 
used. The simplest systems simply look at individual words, whereas systems that support mining of 
document clusters focus on word collections to establish context. The most advanced NLP systems, 
which attempt to extract meaning from words and word order, parse the documents at the sentence 
level.

Figure 7-16. The NLP Process.

The processing phase of NLP involves one or more of a variety of the following techniques:

●     Stemming— Identifying the stem of each word. For example, "hybridized", "hybridizing", 
and "hybridization" would be stemmed to "hybrid". As a result, the analysis phase of the NLP 
process has to deal with only the stem of each word, and not every possible permutation.

●     Tagging— Identifying the part of speech represented by each word, such as noun, verb, or 
adjective.

●     Tokenizing— Segmenting sentences into words and phrases. This process determines which 
words should be retained as phrases, and which ones should be segmented into individual 
words. For example, "Type II Diabetes" should be retained as a word phrase, whereas "A 
patient with diabetes" would be segmented into four separate words.

●     Core Terms— Significant terms, such as protein names and experimental method names, 
are identified, based on a dictionary of core terms. A related process is ignoring insignificant 
words, such as "the", "and", and "a".

●     Resolving Abbreviations, Acronyms, and Synonyms— Replacing abbreviations with the 
words they represent, and resolving acronyms and synonyms to a controlled vocabulary. For 
example, "DM" and "Diabetes Mellitus" could be resolved to "Type II Diabetes", depending on 
the controlled vocabulary.



The analysis phase of NLP typically involves the use of heuristics, grammar, or statistical methods. 
Heuristic approaches rely on a knowledge base of rules that are applied to the processed text. 
Grammar-based methods use language models to extract information from the processed text. 
Statistical methods use mathematical models to derive context and meaning from words. Often these 
methods are combined in the same system. For example, grammar-based methods and statistical 
methods are frequently used in NLP systems to improve the performance of what could be 
accomplished by using either approach alone.

Heuristic or rule-based analysis uses IF-THEN rules on the processed words and sentences to infer 
association or meaning. Consider the following rule:

IF <protein name>

  AND <experimental method name> are in the same sentence

THEN the <experimental method name> refers to the <protein name>

This rule states that if a protein name, such as "hemoglobin", is in the same sentences as an 
experimental method, such as "microarray spotting", then microarray spotting refers to hemoglobin. 
One obvious problem with heuristic methods is that there are exceptions to most rules. For example, 
using the preceding rule on a sentence starting with "Microarray spotting was not used on the 
hemoglobin molecule because…" would improperly evaluate the sentence.

Grammar-based methods use language models that serve as templates for the sentence- and phrase-
level analysis. These templates tend to be domain-specific. For example, a typical patient case report 
submitted by a clinician might read:

"The patient was a 45-year-old white male with a chief complaint of abdominal pain 
for three days."

A template that would be compatible with the sentence is:

<patient> <patient age> <race> <sex> <chief complaint><complaint duration>

Templates tend to work better in clinical publications than they do in basic research publications 
because much of physician education involves learning a strict method of reporting clinical findings. 
However, scientists involved in basic research tend to have less indoctrination in a particular way of 
revealing their findings, and so the statement of findings doesn't follow a syntactic formula.

Most statistical approaches to the analysis phase of NLP include an assessment word frequency at the 
sentence, paragraph, and document level. Word frequency is relevant because words with the lowest 
frequency of occurrence tend to have the greatest meaning and significance in a document. 
Conversely, words with the highest frequency of occurrence, such as "and", "the", and "a", have 
relatively little meaning.

In one statistical approach based on word frequency, a document is represented as a vector of word 
frequency, with the individual words or phrases forming the axes of the multi-dimensional space. This 
vector can be compared to a library of standard vectors, each of which represents a particular 
concept. Because the closeness of the two vectors represents similarity in concepts or at least 
content, this method can be used to automatically classify the contents of the document under 
analysis.For example, in Figure 7-17, a document represented by a vector is compared with a vector 
that represents the use of microarray spotting of the hemoglobin extracted from patients with sickle-



cell anemia. Similarly, documents dealing with other proteins and experimental processes can be 
identified by comparing their vectors with a library of vectors representing other concepts.

Figure 7-17. Documents Represented as Word Frequency Vectors. The 
vector of a document under analysis (left) is compared to the standard 

vector (right) that represents spotting of hemoglobin from patients 
suffering from sickle-cell anemia. A vector library (top) contains vectors 

representing a variety of concepts relevant to the researcher.

Text Summarization

In addition to NLP, text mining is facilitated by text summarization, a process that takes a page or 
more of text as its input and generates a summary paragraph as the output. Because each summary 
paragraph represents a sample of the source document, analysis of the summaries can be used as an 
initial screen for data on a particular topic described in documents or document clusters. In effect, 
text summarization utilities, such as the "AutoSummarize" feature within Microsoft Word, are useful 
in creating a rough abstract of a document when none has been provided by the author. Like 
semantic-level NLP, text summarization is an imperfect, evolving technology that works well in niche 
areas, but not universally.



 
Tools

For most applications, data mining needn't involve writing neural networks or genetic algorithms in a 
traditional programming language. Instead, it can make use of a variety of general-purpose and 
bioinformatics-specific tools, as well as several high-level languages (see Table 7-4).

The most common languages used to perform data mining in bioinformatics are Perl, Python, and 
SQL. Perl and Python are scripting languages that are useful for implementing custom character- and 
string-based data mining for textual and sequence data. As true programming languages, they are 
flexible and powerful. The greatest limitation of Perl and Python is that they are interpreted scripting 
languages. That is, unlike C++ or other high-performance languages, the scripts are not compiled, 
but instead execute at runtime in an interpreter. As a result, data mining with Python or Perl is 
slower than using a well-written program using the same algorithms in C++. The time penalty 
associated with Python is considerably less that that associated with Perl, however, because it is 
based primarily on modules written in C++. Using either Perl or Python, a script defining a data-
mining routine can be modified and executed within a few seconds without taking the time to compile 
source code. This advantage often outweighs the runtime speed penalty of using an interpreted 
language. In addition, Python and Perl are open-source, free programs.

Table 7-4. Examples of Data Mining Tools.

Tool Examples

Languages Perl, Python, SQL, XML

General-Purpose Angoss, Clustran, Cross-Graph, Cross-z, Daisy, Data Distilleries, Database 
Marksman, DataMind, GVA, IBM Intelligent, Miner, Insightful Miner, Integral 
Solutions, KXEN, Magnify, MatLab, NeoVista Solutions, Oracle Darwin, 
Quadstone, SAS, Spotfire, SPSS Clementine, StatPac, Syllogic, 
ThinkAnalytics, Thinking Machines, Weka

Bioinformatics-Specific MEME, PIMA, Pratt, PrattWWW, SPEXS

SQL is also an interpreted language. However, SQL lacks the flexibility of Perl or Python, in that it's 
useful only for querying a relational database. This specificity results in high performance, even as an 
interpreted language. In addition, SQL isn't a stand-alone application, but is normally part of a 
vendor-specific DBMS. The advantage of using SQL is that the language is portable from one 
relational database system to the next, independent of the vendor, allowing a researcher to query 
different database systems without having to learn a new query language. The SQL commands are 
identical, regardless of whether the database is manufactured by Oracle, Microsoft, or IBM. Although 
SQL statements can be manually submitted in real-time, they are frequently embedded in another 
language, such as Perl, so that the other language can perform operations on the returned data, such 
as writing the data to a new database, plotting the data, or translating it to a new format.

XML is a data format that's the current darling of online database development because of its 
extensibility and use of tags that can provide contextual clues helpful in data mining. A database or 
data warehouse built around XML can more readily support data mining than one that only supports 
standard relational tables and SQL database queries. A major disadvantage of XML is the lack of 
constraints on how it can be extended. Unless external standards are used, databases written by 
different programmers using XML may bear little resemblance to each other.

In addition to programming languages, there are hundreds of general-purpose stand-alone and Web-
based data-mining applications. Of the commercial data-mining applications, many of the more 



popular offerings are listed in Table 7-4. Some of these applications, such as Oracle Darwin, are tied 
to specific database products, whereas others, such as SAS, can be used with any major database 
system. Similarly, some of these applications, such as MatLab, support a wide variety of data-mining 
capabilities. MatLab is an example of a commercial application that can be extended through a 
variety of commercial and public-domain add-ons. If performance isn't a primary concern, then a 
researcher with knowledge of Perl or Python, SQL, and MatLab can probably handle any data-mining 
challenge.

A sampling of the many academic bioinformatics-specific data-mining tools available include MEME, 
Pratt, PIMA, and SPEXS. MEME (Multiple Em for Motif Elicitation) is a motif discovery tool. Pratt, a 
stand-alone pattern discovery tool, is designed to uncover patterns conserved in sets of unaligned 
protein sequences. The user can specify what kind of patterns should be searched for, and how many 
sequences should match a pattern to be reported. The Web-based version of Pratt, PrattWWW, 
includes a visualization tool written as a Java applet to display patterns discovered in different 
sequences. PIMA (Pattern-Induced Multi-sequence Alignment program) can be used to perform a 
multi-sequence alignment of a set of sequences. All pairwise comparisons between sequences in the 
set are performed and the resulting scores clustered into one or more families. SPEXS (Sequence 
Pattern EXhaustive Search) is a sequence pattern discovery tool.

Because most of the other bioinformatics-specific data-mining tools tend to be optimized for a 
specific data-mining application, they tend to be very efficient. The downside of using these specific 
tools is the need to learn several different packages if data mining extends from nucleotide 
sequences to protein structures.



 
On the Horizon

Real-time data mining, sometimes referred to as transaction monitoring, is rapidly gaining in 
popularity because of its increased value over the traditional mining of a data warehouse or 
database. In many industries, just-in-time analysis of data is much more valuable than analysis of 
data dredged up from the past—even if the past is only an hour or two removed from the present. 
For example, transaction monitoring is used by the credit card industry to detect fraud. As soon as a 
questionable transaction—a major purchase from a vendor not frequented by the legitimate card 
holder, for example—is detected, the system flags the point-of-sale system and the retailer has to 
call the credit card company for authorization. Mining the data even 30 seconds after the transaction 
is complete is of relatively little value, especially if the thief disposes of the card after the purchase.

In clinical medicine, real-time data mining is being used to detect potential drug-drug interactions, 
allergic reactions, and other side effects at the time a prescription is ordered. In some instances, a 
drug already in the body can potentiate another drug, causing the patient to overdose on the second 
drug, even though the dosage would be therapeutic without the other drug in the body. An overdose 
may result, for example, because both drugs are eliminated by the same pathway in the liver, and 
one drug completely saturates the metabolic pathway for drug elimination. Obviously, data on 
possible interactions is pertinent only before a patient is accidentally given the wrong drug or wrong 
dose of the appropriate drug.

The same technology can be extended to provide real-time analysis of drugs against a patient's 
genome, enabling the just-in-time delivery of custom drugs or as a means of detecting likely side 
effects of standard drugs on a given patient. In the bioinformatics laboratory, real-time data mining 
of results as they are generated by a sequencing machine or microarray reader can provide 
researchers with indicators as to the value of the data, error rate, and relatedness of the data to 
previous studies.

Three technologies that support real-time data mining are real-time capture, message-oriented 
middleware, and rule-based systems. Real-time data capture intercepts data from the source, before 
it is written to the database or data warehouse. This allows comparison of data to be made without a 
time-consuming data extraction process. Similarly, message-oriented middleware captures 
transactions, takes them off-line in batches, and stores the data in high-speed RAM (see Figure 7-
18). While in RAM, the data are mined using a high-performance database manager with powerful 
RAM-based data handling features. The third technology, rule-based systems, can be used to create 
filters that intercept only those real-time transactions fitting a profile defined in easily edited rules. 
The data selected by the filter can then be rapidly mined using conventional processors or RAM-based 
technologies, as dictated by the performance limitations of the system.

Figure 7-18. Real-Time Data Mining.



Each of these technologies supports different levels of data mining and has unique architectural 
limitations, such as the maximum number of transactions that can be monitored per minute. 
Overcoming these limitations at a reasonable cost is the focus of many computer scientists and 
corporations involved in data mining R&D.



 
Endnote

The technologies and methodologies associated with data mining and knowledge discovery, while 
mature in areas such as fraud detection in credit card use, are not yet fully developed for 
bioinformatics applications. One issue is that, while fraud can be defined on an intuitive 
basis—sudden expenditure for luxury goods, transactions through vendors not frequented in the past, 
out-of-state transactions, and the like—much of the nature of genetic material under scrutiny is 
unknown.

Because researchers provide the final filtering in the knowledge-discovery process, it's likely that 
unfamiliar concepts—truly new discoveries—will more likely be attributed to chance clustering than to 
some underlying process. What's more, labels such as "junk DNA," for example, influences the 
amount of time and energy that a researcher will invest in applying data-mining tools to the non-
coding regions of a genome, in favor of areas more likely to provide meaningful results. Similarly, for 
years scientists took for granted that there were only 20 genetically coded amino acids. When 
additional amino acids were discovered, they were first verified by arduous wet-lab work that 
required several years of work. For example, it took scientists over two years to crystallize and 
determine the structure of pyrrolysine, the 22nd amino acid. Given the existence of an additional 
amino acid, however, searching through a database for occurrences ignored in the past is 
comparatively trivial.

Despite the effects of bias, humans are an indispensable part of the data-mining process. One reason 
for their continued inclusion in what would otherwise be an automated process is that current 
technologies assume uniform and relatively simple data structures. Very large, complex databases, 
replete with multiple potential relationships present scalability issues that may require significant 
computational time on powerful computer systems. In addition, many of the traditional data-mining 
methods were developed for homogenous numerical data. However, bioinformatics databases 
increasingly hold text sequences, protein structure, and other data sets that are anything but 
homogeneous.

The technical challenges associated with data mining are compounded by the lack of statistical 
methods that can adequately assess the significance of figures calculated from very large database 
sets. Similarly, because few bioinformatics databases are static, but are growing exponentially with 
time, the statistical concept of a fixed population from which samples are drawn is violated. As a 
result, a statistical analysis of a particular relationship at one point in time may provide a different 
result a month or two later. These and similar challenges remain for those in the bioinformatics arena 
to solve.



 

Chapter 8. Pattern Matching
 Human Transthyretin (Prealbumin), PDB entry 1BMZ. Image produced with PDB 

Structure Explorer.

Do not be desirous of having things done quickly. Do not look at small advantages. 
Desiring to have things done quickly prevents their being done thoroughly. Looking at 
small advantages prevents great affairs from being accomplished 

—Confucius

Automated pattern matching—the ability of a program to compare novel and known patterns and 
determine the degree of similarity—forms the basis for automated sequence analysis, modeling of 
protein structures, locating homologous genes, data mining, Internet search engines, and dozens of 
other activities in bioinformatics. Some of the key bioinformatics applications of pattern recognition 
and matching—often referred to as simply pattern matching—are listed in Table 8-1. For example, as 
explored in Chapter 7, "Data Mining," data mining relies on heuristic and algorithmic pattern 
matching to locate patterns in online and local databases, using a variety of technologies, from 
simple keyword matching to rule-based expert systems and artificial neural networks.



Table 8-1. Pattern-Matching Applications in Bioinformatics.

Constructing Controlled Vocabularies

Data Mining

Functional Genomics

Functional Proteomics

Genome Sequencing

Homologous Gene Identification

Homologous Protein Identification

Natural Language Processing

Neural Network–Based Structure Classifiers

Nucleotide Sequence Alignment

Protein Sequence Alignment

Protein Structure Prediction

Rule-Based Structure Classifiers

One of the major challenges associated with using pattern matching in bioinformatics is that, in most 
cases, the task isn't simply one of finding a match for a given pattern, but finding one or more 
matches quickly from large databases using affordable and readily available hardware. In addition, 
the task is often complicated by the need to identify patterns that are "similar" to a target pattern, 
but the concept of similarity isn't well-defined from a programmatic and biological sense. Not only is 
the degree of similarity defined in part by the technology underlying a particular software tool, but 
the relationship of a technology based on mathematical principles to the biological reality is often 
unclear. This ambiguity is common in the bioinformatics literature in the confusion of homology with 
similarity, for example.

This challenge of relating computational methods in pattern matching to our knowledge of the real 
world isn't limited to bioinformatics. For example, it's been a major focus of Artificial Intelligence (AI) 
research for several decades. Consider the illusion in Figure 8-1. We can quickly decide that this 
picture could not denote a real object because of our knowledge of what constitutes the fundamental 
physical properties of objects. Even so, it has taken decades to formulate this knowledge into 
algorithms that confer the same capabilities on computer-based pattern-matching devices. Now, 
consider the challenges of extending this example to a complex protein-protein interaction, in which 
physical principles that act at an atomic level must be considered in systems designed to 
automatically classify proteins and other complex molecular structures. Despite these and other 
hurdles, pattern matching has been applied with varying degrees of success in areas as diverse as 
voice, image, and optical character recognition, as well as the monumental task of sequencing the 
human genome.

Figure 8-1. Three- or Four-Prong Illusion. Endowing computational pattern-
recognition systems with knowledge of physical reality remains a challenge 

in AI and in other fields that rely on pattern-recognition methods.



This chapter explores the application and methodology behind pattern matching, with a focus on 
nucleotide and protein sequence alignment. The "Fundamentals" section explores the challenges of 
sequence alignment, and the following five sections, from "Dot Matrix Analysis" to "Bayesian 
Methods" review the key pairwise sequence alignment approaches. "Multiple Sequence Alignment" 
extends the discussion to more challenging multiple sequence alignment tasks. The "Tools" section 
examines the more popular of the Web-based tools available for sequence alignment. "On the 
Horizon" explores the future of pattern matching, given the surge in proteomic research, and 
"Endnote" considers the ultimate fate of user-directed pattern recognition, given the move to 
intelligent agents and other technologies.



 
Fundamentals

Sequence alignment is fundamental to inferring homology (common ancestry) and function. For 
example, it's generally accepted that if two sequences are in alignment—part or all of the pattern of 
nucleotides or polypeptides match—then they are similar and may be homologous. Another heuristic 
is that if the sequence of a protein or other molecule significantly matches the sequence of a protein 
with a known structure and function, then the molecules may share structure and function. The 
issues related to single pairwise sequence alignment, global versus local alignment, and multiple 
sequence alignment are introduced here.

Pairwise Sequence Alignment

Pairwise sequence alignment involves the matching of two sequences, one pair of elements at a time. 
The challenge in pairwise sequence alignment is to find the optimum alignment of two sequences 
with some degree of similarity. This optimum condition is typically based on a score that reflects the 
number of paired characters in the two sequences and the number and length of gaps required to 
adjust the sequences so that the maximum number of characters are in alignment. For example, 
consider the ideal case of two identical nucleotide sequences, (A) and (B):

A) ATTCGGCATTCAGTGCTAGA

B) ATTCGGCATTCAGTGCTAGA

Assuming that the alignment scoring algorithm counts one point per pair of aligned characters 
(shown in bold type), then the score is one point for each of the 20 pairs, or 20 points. Now, consider 
the case when several of the character pairs aren't aligned:

C) ATTCGGCATTCAGTGCTAGA

D) ATTCGGCATTGCTAGA

In this case, the score would be 11, because only 11 pairs of characters in sequences (C) and (D) are 
aligned. However, by examining the end of the sequences, it can be seen that the sequence of the 
last six characters are identical. By moving these last six characters ahead in sequence (D) by adding 
four spacers or gaps, the sequences become:

E) ATTCGGCATTCAGTGCTAGA

F) ATTCGGCATT----GCTAGA

Now the score, based on the original algorithm of character pairings, is 16. However, because the 
score would have been 11 without the inserted gaps, a penalty should be extracted for each gap 
inserted into the sequence to favor alignments that can be made with as few gaps as possible. 
Assuming a gap penalty of –0.5 per gap, the alignment score becomes 10 + 6 + (4 x –0.5) or 14.

A more likely scenario is one in which the areas of similarity and difference are not obvious. Consider 
the sequences (G) and (H):



G) ATTCGGCATTCAGAGCGAGA

H) ATTCGACATTGCTAGTGGTA

Unlike the previous cases, there are no relatively long runs of character pairings, and the matching 
pairs are separated by unaligned characters. The alignment score is 1 point per aligned pair, or 13. 
One attempt at visual alignment by adding four gaps into sequence (H) results in:

G) ATTCGGCATTCAGAGCTAGA

I) ATTCGACATT----GCTAGTGGTA

This alignment results in a score of 12, or 14 alignments minus 2 points for the 4 gaps introduced 
into sequence (H), transforming it to sequence (I). In addition, a penalty of –0.5 per character pair is 
scored for an inexact match. In the case of sequences (G) and (I), there are 6 inexact matches, for a 
penalty of (6 x –0.5 = –3). Using this new alignment-scoring algorithm, and ignoring the length 
difference between the two sequences, the alignment score for the (G)-(I) alignment becomes:

Alignment Score = 14 alignments + 4 gaps + 6 inexact matches

= 14 + (4 x –0.5) + (6 x –0.5)

= 14 – 2 – 3

= 9

In this example, adding gaps results in a lower alignment score, illustrating how the relative worth of 
exact matches, inexact matches, and gaps determines the eventual alignment of two sequences. For 
example, if gaps are penalized heavily and inexact matches are minimally counted, then sequences 
will have few gaps.

Although a simple gap penalty of –0.5 point per gap has been used to illustrate the role of alignment 
scores on sequence alignment, gap penalty is typically calculated as:

Penaltygap = Costopening + Costextension x Lengthgap

In this formula, Penaltygap is the total gap penalty, Costopening is the cost of opening a gap in a 
sequence, Costextension is the cost of extending an existing gap by one character, and Lengthgap is 
the length of the gap in characters. The minimum value of Lengthgap is one. Returning to sequence 
pair (E)-(F), assuming that Costopening is (–0.5) and Costextension is (–0.5), the gap penalty becomes:

Penaltygap = Costopening + Costextension x Lengthgap

= –0.5 + (–0.5 x 4)

= –2.5

With the expanded method of computing gap penalty, the score becomes 10 + 6 – 2.5 = 13.5 points. 
The gap penalty formula can be extended to include a penalty for alignments for the gaps at the end 
of a sequence to make the sequences of equal length. However, if the sequences are of very different 
lengths, then it probably doesn't make sense to penalize for these end gaps.



It's important to realize that picking arbitrary gap opening and extension costs typically has no real 
relationship to the underlying biology of the protein or DNA involved. One solution is to use gap 
penalty values that relate to biologically relevant data, as described in the "Substitution Matrices" 
section later in this chapter.

Local Versus Global Alignment

Sequence pair (E)-(F) is an example of a global alignment—that is, an attempt to line up the two 
sequences matching as many characters as possible, for the entire length of each segment. Global 
alignment considers all characters in a sequence, and bases alignment on the total score, even at the 
expense of stretches in the sequence that share obvious similarity (see Figure 8-2, top). Global 
alignment is used to help determine whether two protein sequences are in the same family, for 
example.

Figure 8-2. Local (top) versus Global (bottom) Alignment. In local 
alignment, the alignment of local, high-scoring sequences takes precedence 
over the overall alignment. In global alignment, the best overall alignment 
is sought, regardless of whether local, high-scoring subsequences are in 

alignment or not.

There are several methods of performing local sequence alignment, each of which has particular 
uses, advantages, and computational overhead. For example, the Smith-Waterman dynamic 
programming method, which uses a scoring system that penalizes the total score for a mismatch, is a 
computationally intensive sequence alignment method that favors local over global alignment.

Multiple Sequence Alignment



Multiple sequence alignment, in which three or more sequences must be aligned, is useful in finding 
conserved regulatory patterns in nucleotide sequences and for identifying structural and functional 
domains in protein families. Unfortunately, multiple sequence alignment is much more challenging 
than single pairwise alignment. For nucleotide sequences, the problem appears as:

J) TCAGAGCGAGA

K) ATCCGGCCCGGCAGCGAGA

L) CAAAATTCAGAGCGAGA

M) ATCCGCAGAGCCCGGGGAGA

N) CCCGGCAGCGAGA

0) ATCCGTTTTTTTTTGAGA

Instead of simply considering gaps, inexact matches, and global-versus-local alignment for a pair of 
sequences, multiple sequences must be considered—in this example, six sequences. Of course, in an 
actual multiple sequence alignment, each sequence may consist of several hundred characters, 
making manual gap insertions and other non-computational methods infeasible. Although most of the 
following discussion deals with single pairwise alignment, multiple alignment is an area of active 
research in bioinformatics because of the computational challenges involved.

Computational Methods

Fortunately, a variety of computational methods is available for sequence alignment, whether single, 
multiple, global, or local. A sampling of major computational approaches to pattern matching and 
sequence alignment is listed in Table 8-2.

Table 8-2. Computational Methods of Sequence Alignment.

Bayesian Methods

Dot Matrix

Dynamic Programming

Genetic Algorithms

Hidden Markov Models

Neural Networks

Scoring Matrices

Word-Based Techniques

Of the methods listed in Table 8-2, word-based techniques, followed by dynamic programming 
methods, are used most often. The popularity of word-based techniques is in part because of the 
ready availability of Web-based tools that use these methods, such as Fast Alignment (FASTA) and 
Basic Local Alignment and Search Tool (BLAST). Similarly, dynamic programming techniques, such as 
the Smith-Waterman algorithm, while computationally expensive, are also popular because of free 
access to Web-based tools. Dot matrix methods, once a mainstay of manual and computer-enabled 
sequence alignment, have become less popular since the advent of BLAST and its derivatives. 



However, dot matrix methods are still studied because of the insight they provide into other 
techniques, including dynamic programming.

Many of the other approaches to sequence alignment, such as the use of artificial neural networks, 
genetic algorithms, Bayesian approaches, and Hidden Markov Models (HMMs), are either 
experimental or combined with dynamic programming or word-based methods to provide users with 
practical tools. Similarly, many adjunct technologies, such as scoring matrices, have become integral 
to the operation of the major sequence alignment methods.



 
Dot Matrix Analysis

Because alignment by visual inspection of linear sequences hundreds of characters or more in length 
was impractical, researchers developed a more visually intuitive method of pattern detection called 
the dot matrix method. This method of sequence alignment, which was first performed manually and 
then computerized, makes the similarities in patterns more obvious to visual inspection. Using this 
method, one sequence appears along the top, and one along the side of the matrix, and a dot is 
placed at the intersection of matching character pairs. Contiguous diagonal rows of dots indicate 
sequences of matching pairs, as in the dot matrix plot of sequences (G) and (H) in Figure 8-3.

Figure 8-3. Dot Matrix Pairwise Alignment of Nucleotide Sequences (G—top) 
and (H—side). Diagonal sequences of dots indicate areas of contiguous 
sequences of aligned pairs. In a typical plot, there may be hundreds of 

characters in each sequence.

The dot matrix pattern for a pair of perfectly matching sequences would include a contiguous 
sequence of dots running down the center diagonal of the matrix. However, this pattern is rarely 
seen in practice. Most often, the diagonal patterns are difficult to discern without additional 
processing. In addition to the use of color and other methods of highlighting matching sequences, a 
variety of filters are often applied to the data. For example, a common filter is a combination of 
window and stringency. The window refers to the number of data points examined at a time, while 
the stringency is the minimum number of matches required within each window.

With a filter in which the window size is set to 2 and the stringency to 1, a dot is printed at a matrix 
position only if 1 out of the next 2 positions is identified, as in Figure 8-4. Similarly, with a window 
size of 6 and a stringency of 3, a dot would be printed at a matrix position only if 3 of the next 6 



positions in the sequences are identified. A typical window-stringency combination is 15/10 for 
nucleotide sequences and much narrower combinations for polypeptide sequences, such as 1/1 or 
3/2.

Figure 8-4. Dot Matrix Pairwise Alignment of Sequences (G—top) and 
(H—side). The filter, with a window of 2 and stringency of 1, emphasizes 

contiguous aligned sequence pairs.

Dot matrix analysis is especially useful in identifying repeats—repeating characters or short 
sequences—within a sequence, as in mapping the repeated regions of whole chromosomes. Repeats 
of the same character, as in sequence (P), create alignments with artificially high scores and make 
sequence alignment more difficult. Dot matrix methods are most applicable to single pairwise 
alignment problems, especially those with relative high degrees of similarity. Sequences with lower 
degrees of similarity as well as multiple sequence alignment require methods that are more powerful.

Although window-stringency values are often established heuristically, they may also be based on 
dynamic averages, scores based on the occurrence of matches in aligned protein families, or on 
various methods of scoring the similarity of amino acids. For example, scoring matrices provide 
scores for alignment based on their statistical occurrence in aligned protein families. Using these 
matrices, described in the following section, a sliding window feature can be implemented, in which 
only dots above a certain average score can appear in the matrix.



 
Substitution Matrices

Protein structure and function are surprisingly resistant to polypeptide substitution, to the degree 
that the substitutions don't alter the chemistry of the protein. Substitutions are common over large 
expanses of time and from one species to the next. In many cases, the substitution of polypeptides 
through evolution can be predicted. In this way, a matrix of likely polypeptide substitutions can be 
constructed. As in a dot matrix analysis, the amino acids are listed across the top and side of a 
matrix, typically using the amino acid code letters listed in Table 8-3. At each intersection, the matrix 
is filled with a score that reflects how often one polypeptide would have been paired with the other in 
an alignment of related protein sequences. An underlying assumption is that this association is 
symmetrical, in that either polypeptide can be substituted for the other.

Two popular substitution matrices are Percent Accepted Mutation (PAM) and Blocks Amino Acid 
Substitution Matrix (Blosum), examples of which are shown in Figures 8-5 and 8-6, respectively. 
Unlike dot matrix analysis, these matrices are static. Furthermore, these matrices aren't mere 
mathematical constructs designed simply to facilitate computational sequence alignment, but they 
reflect the biology of the molecules represented by the sequences. For example, each PAM matrix in 
the series is named after the level of change assumed by the matrix. For example, the commonly 
used PAM-250, shown in Figure 8-5, assumes a 250-percent change in the probability matrix.

Table 8-3. Amino Acid Code Letters. Courtesy NCBI.

Code Meaning

A Alanine

B Aspartate or Asparagine

C Cysteine

D Aspartate

E Glutamic Acid

F Phenylalanine

G Glycine

H Histidine

I Isoleucine

K Lysine

L Leucine

M Methionine

N Asparagine

P Proline

Q Glutamine

R Arginine

S Serine

T Threonine



V Valine

W Tryptophan

X Unknown

Y Tyrosine

Z Glutamate or Glutamine

The figures used to populate the matrices are based on the formula:

A matrix value of "0" signifies that a substitution typically occurs at a random base rate, whereas a 
negative matrix value infers that the substitution is less likely than by chance alone. A positive matrix 
value means that the substitution occurs more often than suggested by chance. For example, in the 
PAM-250 matrix, A and N (Alanine and Asparagine) substitute for each other at a rate (0) that is 
expected by chance alone. Conversely, A and W (Alanine and Tryptophan) substitute for each other 
at a rate (–6) much lower than expected for a random substitution.

From the perspective of supporting sequence alignment, the main diagonal reveals the relative value 
of maintaining matches in the pairwise sequence alignment process. For example, in the PAM-250 
substitution matrix, given a choice of shifting a sequence by adding gaps or other means that affect 
either an A-A (Alanine-Alanine) alignment or a C-C (Cysteine-Cysteine) alignment, the C-C alignment 
should not be disturbed. This is because the C-C alignment is rated at 12, compared to only 2 for the 
A-A alignment.

Figure 8-5 The Percent Accepted Mutation Substitution Matrix 250 (PAM-
250).

                     PAM-250 SUBSTITUTION MATRIX

   A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V  B  Z  X

A  2

R -2  6

N  0  0  2

D  0 -1  2  4

C -2 -4 -4 -5 12

Q  0  1  1  2 -5  4

E  0 -1  1  3 -5  2  4

G  1 -3  0  1 -3 -1  0  5

H -1  2  2  1 -3  3  1 -2  6



I -1 -2 -2 -2 -2 -2 -2 -3 -2  5

L -2 -3 -3 -4 -6 -2 -3 -4 -2  2  6

K -1  3  1  0 -5  1  0 -2  0 -2 -3  5

M -1  0 -2 -3 -5 -1 -2 -3 -2  2  4  0  6

F -4 -4 -4 -6 -4 -5 -5 -5 -2  1  2 -5  0  9

P  1  0 -1 -1 -3  0 -1 -1  0 -2 -3 -1 -2 -5  6

S  1  0  1  0  0 -1  0  1 -1 -1 -3  0 -2 -3  1  2

T  1 -1  0  0 -2 -1  0  0 -1  0 -2  0 -1 -3  0  1  3

W -6  2 -4 -7 -8 -5 -7 -7 -3 -5 -2 -3 -4  0 -6 -2 -5 17

Y -3 -4 -2 -4  0 -4 -4 -5  0 -1 -1 -4 -2  7 -5 -3 -3  0 10

V  0 -2 -2 -2 -2 -2 -2 -1 -2  4  2 -2  2 -1 -1 -1  0 -6 -2  4

B  0 -1  2  3 -4  1  2  0  1 -2 -3  1 -2 -5 -1  0  0 -5 -3 -2  2

Z  0  0  1  3 -5  3  3 -1  2 -2 -3  0 -2 -5  0  0 -1 -6 -4 -2  2  3

X  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

Although the values in the Blosum matrix mean the same as in a PAM matrix, the Blosum matrices 
incorporate substitution scores that encompass a range of evolutionary periods and in some cases 
provide greater sensitivity over PAM matrices. Blosum takes its name from the blocks—areas of 
conserved amino acids—used to define substitution patterns. Unlike PAM, which is based on a 
relatively small set of closely related proteins, Blosum is based on a large-scale analysis of over 500 
families of related proteins. Similarly, Blosum doesn't explicitly consider evolutionary factors.

Matrices aren't necessarily symmetric or based on the same alphabet. For example, it's possible to 
relate polypeptides to experimental or environmental conditions. Furthermore, although this 
discussion of matrices has centered on polypeptides, they can also be designed for use with nucleic 
acids. The matrix values of these matrices are necessarily different from those used with 
polypeptides.

Figure 8-6 The Blocks Amino Acid Substitution Matrix 62 (Blosum62).

                    BLOSUM62 SUBSTITUTION MATRIX

   A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V  B  Z  X

A  4

R -1  5

N -2  0  6

D -2 -2  1  6

C  0 -3 -3 -3  9

Q -1  1  0  0 -3  5

E -1  0  0  2 -4  2  5

G  0 -2  0 -1 -3 -2 -2  6



H -2  0  1 -1 -3  0  0 -2  8

I -1 -3 -3 -3 -1 -3 -3 -4 -3  4

L -1 -2 -3 -4 -1 -2 -3 -4 -3  2  4

K -1  2  0 -1 -3  1  1 -2 -1 -3 -2  5

M -1 -1 -2 -3 -1  0 -2 -3 -2  1  2 -1  5

F -2 -3 -3 -3 -2 -3 -3 -3 -1  0  0 -3  0  6

P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4  7

S  1 -1  1  0 -1  0  0  0 -1 -2 -2  0 -1 -2 -1  4

T  0 -1  0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1  1  5

W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1  1 -4 -3 -2 11

Y -2 -2 -2 -3 -2 -1 -2 -3  2 -1 -1 -2 -1  3 -3 -2 -2  2  7

V  0 -3 -3 -3 -1 -2 -2 -3 -3  3  1 -2  1 -1 -2 -2  0 -3 -1  4

B -2 -1  3  4 -3  0  1 -1  0 -3 -4  0 -3 -3 -2  0 -1 -4 -3 -3  4

Z -1  0  0  1 -3  3  4 -2  0 -3 -3  1 -1 -3 -1  0 -1 -3 -2 -2  1  4

X  0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2  0  0 -2 -1 -1 -1 -1 -1

As noted in the earlier discussion of gap penalties, arbitrarily selecting opening and extension costs 
so that the output "looks nice" from a mathematical perspective likely has no relevance to the actual 
biology of the protein under study. It's commonly assumed that a better approach is to assign gap 
extension and opening costs relative to the substitution matrix used for a given protein. If the gap 
penalty figures are too high relative to the matrix scores, the gap penalty figures will override the 
matrix scores, and gaps will never appear in the sequence alignment. Conversely, if gap penalty 
figures are too low relative to the matrix scores, gaps will be used wherever possible in order to align 
the sequences. That is, simply because a substitution matrix is used doesn't guarantee biologically 
relevant results. The matrices and related calculations must be used appropriately, and in 
consideration of the underlying biology.



 
Dynamic Programming

One way to be certain that the solution to a sequence alignment is the best alignment possible is to 
try every possible alignment, introducing one or more gaps at every position, and computing an 
alignment score based on aligned character pairs and inexact matches. However, the computational 
overhead of evaluating all possible alignments of one sequence against another grows exponentially 
with the length of the two sequences. For reasonable length sequences of several hundred characters 
each, an exhaustive evaluation of potential alignments could take days of computer time without 
using specific algorithms developed for sequence alignment, such as dynamic programming.

Dynamic programming is a form of recursion in which intermediate results are saved in a matrix 
where they can be referred to later by the program. The comparison can be likened to solving a 
series of complex mathematical equations, with the results of one equation feeding the input of 
another, with and without the benefit of pen and paper or other temporary storage and retrieval 
mechanism. With pen and paper (as with dynamic programming), the intermediate results can be 
recorded and the next equation can be solved without regard to the previous or following equation. 
Without the pen and paper, it may be impossible for some people to solve the series of equations. 
Dynamic programming is processor- and RAM-intensive, but the technique of storing intermediate 
values in a matrix can transform an otherwise intractable problem requiring immense computational 
capabilities into one that is computationally feasible.

To illustrate the value of dynamic programming in sequence alignment, consider the function:

MaxValue = f (Ai, Bj)

In this equation, MaxValue is some function of variables Ai and Bj, where i and j are indices to the 
variables defined in the tree structure illustrated in Figure 8-7. That is, the possible values of Ai are 
represented by A1 through A5, and the possible values of B are represented by B1 through B11. The 
best solution to MaxValue depends on the equation that defines MaxValue. For example, consider the 
following possible definition of MaxValue:

MaxValue = (Ai x Bj)

Figure 8-7. Dynamic Programming Problem. Values for A and B are defined 
in the tree structure. Maximizing MaxValue requires evaluating the 

equation for every combination of i and j.



In this example, the solution is simply the largest value of A and the largest value of B. However, 
consider the following definition of MaxValue:

In this example, the solution to MaxValue is less obvious and much more computationally intensive.

The brute-force method of solving for MaxValue is to recursively walk down each of the trees and try 
the various combinations of A and B in the MaxValue equation. However, as illustrated in the upper-
right of Figure 8-7, evaluating every value of B in the MaxValue equation entails evaluating every 
value of A. For example, assume that the values for Ai and Bj are defined as:



Solving for the first value of Ai (A1 = 2) and ignoring the specific equation for MaxValue for clarity:

MaxValue1,1 = f (A1, B1) = f (2, 9) = 5

MaxValue1,2 = f (A1, B2) = f (2, 11) = 3

MaxValue1,3 = f (A1, B3) = f (2, 1) = 0

MaxValue1,4 = f (A1, B4) = f (2, 0) = 2

MaxValue1,5 = f (A1, B5) = f (2, 3) = 8

MaxValue1,6 = f (A1, B6) = f (2, 8) = 0

MaxValue1,7 = f (A1, B7) = f (2, 1) = –2

MaxValue1,8 = f (A1, B8) = f (2, 7) = 1

MaxValue1,9 = f (A1, B9) = f (2, 5) = 2

MaxValue1,10 = f (A1, B10) = f (2, 3) = 8

MaxValue1,11 = f (A1, B11) = f (2, 2) = 4

If the branches of A and B have hundreds of sub-branches, representing hundreds of values, then the 
problem is likely computationally infeasible. This is especially true if the MaxValue function, which 
must be evaluated for each combination of variables, is also computationally intensive.



Dynamic programming can address this computational and time dilemma by creating a matrix to 
store the values for Ai, Bj, and MaxValue for each combination of i and j. Instead of solving one 
complex CPU- and RAM-intensive problem, the task is decomposed into hundreds or even thousands 
of easily and quickly solved problems. For example, consider the solution matrix for MaxValue in 
Figure 8-8. The solution set to MaxValue computed earlier for A1 appears in the first row of the 
matrix. Examining only this first row, it can be seen that there are two solutions to MaxValue, B5 and 
B10, each of which results in a value of 8.

Figure 8-8. Solution Matrix for MaxValue for Ai and Bj. The solution to 
MaxValue is A3 and B3 with MaxValue = 12.

With the completed solution matrix available for examination, it's a trivial matter to locate the best 
values for i and j, second-best, and so on. The same approach can be extended to any number of 
dimensions. For example, consider adding a third variable, as in Figure 8-9. The equation for 
MaxValue now takes the form:

MaxValue = f (Ai, Bj, Ck)

Figure 8-9. Dynamic Programming Problem with Added Dimensionality. 
Values for Ai, Bj, and Ck are contained in the tree structure (left). The 

exhaustive solution to MaxValue involves evaluating every combination of i, 
j, and k.



In this new equation, MaxValue is some function of variables Ai, Bj, and Ck, where i, j, and k are 
indices to the variables defined in the tree structure illustrated in Figure 8-9. The best solution to 
MaxValue is in the form [i = 3, j = 3, k = 2], for example. As in the simpler 2D problem, a matrix of 
solutions can be constructed. However, the matrix of solutions is now much larger, and is better 
represented as a 3D structure, as in Figure 8-10.

Figure 8-10. Solution Matrix for MaxValue = f (Ai, Bj, Ck). Only one value for 
k (k = 0) is shown here for clarity.

Even though there are now many more solutions to consider, the process of evaluating MaxValue for 
three variables and saving intermediary results in the 3D matrix is the same as in the previous 2D 
example. Adding additional dimensions, although computationally intensive, makes it possible to 
evaluate all possible ways of aligning the three sequences against each other in a reasonable time, 



even though the number of such possible alignments grows exponentially with the length of the two 
sequences. Similarly, just as adding a dimension to the problem doesn't fundamentally change the 
evaluation process, the alignment of multiple strings can be evaluated using this process as well.

To bring the power of dynamic programming into the realm of pairwise sequence alignment, consider 
MaxValue to be the alignment score for pairwise alignment of two sequences. MaxValue takes into 
account gap penalties, correct alignments, and imperfect alignments. After the matrix is filled in 
using the alignment score to determine MaxValue, the highest scoring path is followed back to the 
beginning of the alignment to define the best alignment of elements in the sequence, including gaps.

Graphically, this approach to the local alignment of two sequences is illustrated in Figure 8-11. The 
starting point is the best score in the matrix, the C-C alignment with a value of 11. Working 
backwards to the row and column to the upper left, step (1), the best score is for the G-G alignment, 
with a score of 10. Because the value is on the diagonal immediately adjacent to the value for the C-
C alignment, there is no gap penalty. Now, moving to step (2), the highest score, 8, is also 
immediately adjacent and therefore free of a gap penalty. In step (3), there are three high scores, 
each of which has a gap penalty. The minimum gap penalty is associated with the closest alignment 
with a score of 5, the A-A alignment. Continuing to step (4), there are two competing high scores. 
Because there is no penalty for the C-C alignment that is diagonally adjacent to the A-A alignment, 
with a value of 6, the process continues to the G-G bond with a value of 8, to completing the local 
alignment. That is, the local alignment appears as:

Q) ATCGAGCA-GCATG...

R) -----GCATGCT...

Figure 8-11. Matrix Scores and Optimum Local Alignment for Two 
Sequences.



In this example, sequence (Q) appears across the top and sequence (R) is listed across the side of 
Figure 8-11. The characters involved in the local alignment appear in bold.

Mathematically, the algorithm for this form of local alignment, known as the Smith-Waterman 
algorithm, is defined as:



Where Ai and Bj are the two sequences to be aligned; Hij is the score at position Ai, Bj; s(Ai Bj) is the 
score for aligning the characters at positions i and j; wx is the penalty of a gap of length x in 
sequence A, and wy is the penalty for a gap of length of y in sequence B.

The three special provisions of this algorithm that favors local alignments are:

●     Negative numbers are not allowed in the scoring matrix.
●     Inexact matches are penalized.
●     The best score is sought anywhere in the matrix, and not simply in the last column or row.

Even though dynamic programming guarantees to find the best local or global alignment because the 
technique considers all possible alignments, the technique is computationally intensive. Short 
pairwise comparisons using the Smith-Waterman algorithm can require several hours of workstation 
processing. High-end parallel processing hardware, such as the UCSC Kestrel server, which provides 
the equivalent of 40 times the processing power of a desktop workstation, requires several minutes 
for pairwise alignment using the Smith-Waterman algorithm. Given the computational overhead of 
dynamic programming, a variety of first-pass, heuristic-based methods have been developed to 
support alignment on the desktop workstation. These techniques, often referred to as word methods, 
include the ubiquitous FASTA and BLAST algorithms, as described in the next section.



 
Word Methods

BLAST and FASTA are called word methods of sequence alignment because these algorithms work at 
the level of words—multiple polypeptides or nucleic acids—instead of with individual polypeptides or 
nucleic acids. Both methods of sequence alignment are fast enough to support searching for 
alignments of query sequences against entire nucleotide or protein databases.

The high-level flow of the FASTA algorithm, which predates BLAST, is shown in Figure 8-12. The first 
step in the FASTA algorithm is to create a hash table of words from the query sequence. Hashing is a 
function that maps words to integers to get a smaller set of values so that the search space is 
minimized, for example. A hash table, such as the one in Figure 8-13, maps words to array positions, 
based on the hash function. For proteins, word length is typically one or two amino acids long. For 
nucleic acid sequences, the word length is usually from four to six characters. In either case, the 
longer the word length, the more rapid and the less thorough the search.

Figure 8-12. FASTA Algorithm Flowchart.

Figure 8-13. Hash Table for FASTA. The possible words are keyed to index 
numbers (right), which are used to represent words in the hash table.



Next, the characters are compared to those in the database, which has previously been processed 
into words of the same length. FASTA uses the Blosum50 substitution matrix to score the top-10 
alignments (without gaps) that contain the most similar words. These words are then merged into a 
gapped alignment, which is scored, producing an "optimized score." FASTA produces an expectation 
score, E, which represents the expected number of random alignments with z-scores greater than or 
equal to the value observed, thereby providing an estimate of the statistical significance of the 
results.

Although FASTA was the first widely used program for sequence alignment against genome-length 
sequences, and is still actively supported in both Web and workstation versions, BLAST is by far the 
more popular of the word-based algorithms for sequence alignment. Like FASTA, BLAST is a heuristic 
approach to sequence alignment that provides speed through a hashing technique. BLAST also differs 
from FASTA in that words are typically 3 characters long for proteins and 11 characters in length for 
nucleotide sequences.

Like FASTA, BLAST also searches a pre-computed hash table of sequences in the protein or DNA 
database. However, where BLAST excels is that the matching words are then extended to the 
maximum length possible, as indicated by an alignment score. The top-scoring alignments in a 
sequence, called maximal-scoring pairs (MSPs), are combined if possible into local alignments. The 
latest version of BLAST can attempt gapped alignment. However, this tends to extend computational 
time significantly, compared to ungapped alignments. One of the major issues of both BLAST and 
FASTA results is how to interpret the significance of results. An individual score depends on a number 
of variables, including the lengths of the sequences being aligned, the gap penalties, and the 
alignment scoring system used.



 
Bayesian Methods

Although not considered mainstream by many researchers in the bioinformatics field, Bayesian 
statistical methods can be used to determine pairwise sequence alignment and to estimate the 
evolutionary distance between DNA sequences. Bayesian methods involve examining the probabilities 
of all possible alignments, gap scores, and substitution matrix values (the prior probabilities) to 
assess the probability of an alignment (the posterior probability). Proponents of the Bayesian 
approach to sequence alignment cite as advantages over the limitations of dynamic program the 
method's ability to fully and exactly describe uncertainty, derive exact significance measures, and 
eliminate the need to specify all parameters.

In practice, Bayesian-based tools, such as the Bayes Block Aligner, a workstation-based tool available 
from the Center for Bioinformatics at Rensselaer and Wadsworth Center of the New York Department 
of Health, performs better than dynamic programming in some cases, and not as well in others. The 
Block Aligner manipulates two sequences to find the highest-scoring contiguous regions (blocks), 
which are then joined in various combinations to form alignments. Unlike a dynamic programming or 
word-based approach, the Bayes Block Aligner, which works with both DNA and protein sequences, 
doesn't require the user to specify a particular substitution matrix or gap scoring system. Instead, it 
bases the posterior probability distributions of alignments on the number of blocks expected in an 
alignment and a range of substitution matrices. A Web-based Bayesian analysis tool, the Bayesian 
Algorithm for Local Sequence Alignment (BALSA) is also available from the center. BALSA is 
described in the "Tools" section later in this chapter.



 
Multiple Sequence Alignment

Applications of multiple sequence alignment—aligning three or more sequences—range from 
suggesting homologous relationships between several proteins to predicting probes for other 
members of the same family of similar sequences in a proteome. Although multiple sequence 
alignment can be performed on nucleotide sequences, it's more often performed on polypeptide 
sequences, and draws upon many of the techniques used for single pairwise sequence alignment. In 
addition, several novel methods have been devised to deal with the challenge of aligning multiple 
sequences. An overview of several key multiple sequence alignment technologies follows.

Dynamic Programming

Dynamic programming methods used for pairwise sequence alignment are easily extended to 
encompass multiple sequences, at least in theory. Algorithmically, there is little difference between a 
two- or three-dimensional alignment problem, as discussed earlier. However, the computational 
requirements for 10 or more relatively short polypeptide sequences are beyond the reach of most 
research laboratories. Three- or four-sequence alignment is the limit for workstation-class hardware. 
As a result, for desktop work in multiple sequence alignment, several heuristic methods have been 
developed that provide results in reasonable time, even though it's usually impossible to prove that 
the results achieved through these methods are the best attainable.

Progressive Strategies

Progressive strategies take the salami-slice approach to multiple sequence alignment. Instead of 
addressing the multidimensional problem head-on, progressive strategies break the multiple 
sequence alignment challenge into a series of pairwise alignment problems. The first pair of 
sequences is aligned, and then that result is aligned with the third sequence, and so on, aligning each 
subsequent search with the previous alignment. Alternatively, the first pair of sequences can serve as 
the basis for aligning all subsequent sequences, which are then combined at the end of the process. 
Other alignment schemes are possible as well.

For example, the approach used by the PILEUP program is to start with pairwise alignments that 
score the similarity between every possible pair of sequences. These similarity scores are used to 
define the order of alignment. That is, PILEUP first aligns the two most-related sequences to each 
other in order to produce the first alignment. It then aligns the next most-related sequence to this 
alignment or the next two most-related sequences to each other in order to produce another 
alignment. A series of such pairwise alignments that includes increasingly dissimilar sequences and 
alignments of sequences at each iteration eventually creates the final alignment.

The problem with progressive methods is that the validity of the result varies greatly as a function of 
the order in which pairs of sequences are aligned. Errors in the earlier alignments are propagated to 
the later alignments. In addition, progressive strategies are a heuristic approach in that they don't 
necessarily return best possible alignment. In addition to PILEUP, programs that use a progressive 
strategy are CLUSTALW, CLUSTALX, MSA, and PRALINE.

Iterative Strategies

Because of the limitation of progressive strategies due to sensitivity to errors introduced by early 
alignments, iterative methods have been developed that correct for the problem by repeatedly 
realigning subgroups of sequences. Iterative methods include the use of genetic algorithms and 
HMMs.

Approaches based on genetic algorithms generally start with a random definition of gap insertions 
and deletions and use the alignment score as the fitness function. The pattern that defines the gaps 



and the relative position of each sequence is allowed to mutate and mate with other patterns. 
Offspring of these original patterns that maximize the alignment score are in turn allowed to mate 
and mutate, creating other patterns. In this way, an optimal—but not the optimal—multiple 
alignment solution is obtained.

Multiple alignment methods based on HMMs have been incorporated into a variety of tools. As 
introduced in Chapter 7, "Data Mining," a HMM is a statistical model for an ordered sequence of 
symbols, acting as a stochastic state machine that generates a symbol each time a transition is made 
from one state to the next. A limitation of a HMM approach is that the model must be trained before 
it can be used. As such, HMMs tend to be problem-specific, albeit powerful.

Other Strategies

There are dozens of approaches to multiple sequence alignment, some relegated to specific 
laboratories, and others vying for use as a standard in the bioinformatics arena. Many of these 
methods are highly specialized at solving specific types of multiple sequence alignment problems. For 
example, the eMOTIF Method is optimized for identifying motifs in protein sequences. Profile analysis 
is used for localized alignments in multiple sequence analysis. BLOCK analysis is used for working 
with conserved regions (blocks) in a multiple sequence alignment. Expectation Maximization (EM) is 
used to perform local multiple sequence alignment (as in Multiple EM for Motif Elicitation or MEME). 
These and other approaches are constantly evolving, thanks to feedback and support from the 
worldwide bioinformatics user community.



 
Tools

Although general-purpose pattern-matching tools can be used in search engines and data-mining 
applications, nucleotide and polypeptide sequence alignment applications generally dictate the use of 
bioinformatics-specific tools. As illustrated in Table 8-4, in addition to the sequence alignment tools 
designed for nucleotide and polypeptide pattern alignment, there are support utilities for format 
conversion, sequence editors, and protein and nucleotide databases.

Table 8-4. Sequence Alignment Tools. These examples typify the dozens of 
pattern-matching tools available to the bioinformatics community.

Tool Examples

Nucleotide Pattern Alignment BLASTN, BLASTX, TBLASTX, DotLet, BALSA

Polypeptide Pattern Alignment BLASTP, PHI-BLAST, PSI-BLAST, Smith-Waterman, ScanPROSITE, 
ExPASy, DotLet, BALSA

Utilities READSEQ, Text Editors

Protein Sequence Databases SWISS-PROT, TrEMBL, PROSITE, BLOCKS

Nucleotide Sequence Databases GenBank, Entrez Nucleotide Database

Sequence Editor CINEMA, GeneDoc, MACAW

Nucleotide Pattern Matching

BLAST

The best known and most used nucleotide pattern-matching programs are the original Nucleotide-
Nucleotide BLAST—sometimes referred to as BLASTN—and its derivatives. In addition to the most 
recent version of BLAST, two popular derivatives are BLASTX (Nucleotide Query BLAST) and TBLASTX 
(Nucleotide Query–Translated Database). Figure 8-14 shows the Web interface to NCBI's BLASTN, 
developed for nucleotide-nucleotide pattern matching.

Figure 8-14. NCBI's Nucleotide-Nucleotide BLAST (BLASTN) Web Interface.



Executing a BLAST search for a pattern match involves simply filling out the template depicted in 
Figure 8-14. The search string representing the nucleotide sequence to be searched for is entered, in 
FASTA format, in the "Search" field. The entire string can be used in the search, or only a subset of 
the string. To use a subset, the researcher enters the subset sequence locations in the "From" and 
"To" fields of the "Set subsequence" area. For example, to limit matches to the region in the search 
string from nucleotide 10 to nucleotide 20, the researcher would enter "From" = 10 and "To" = 20. 
The default search includes the entire search string.

The only other parameter that must be defined for a basic BLAST search is the database to use for 
the search. Database options available through a pull-down menu include, among others, "nr" (all 
GenBank, EMBL, DDBJ, and PDB sequences), "est" (GenBank, EMBL, and DDBJ sequences from EST 
Divisions), "pat" (nucleotides from the Patent division of GenBank), "pdb" (sequences derived from 
the 3D structures in the Protein Data Bank), and "month" (all new or revised GenBank, EMBL, DDBJ, 
and PDB sequences released in the last 30 days).

Options are also available for advanced searches, as shown in the bottom half of Figure 8-14. The 
"Limit by entrez query" option allows BLAST searches to be limited to the results of an Entrez query 
against the selected database. Because Entrez supports a powerful query engine, the search can be 
significantly narrowed through an Entrez query. Alternatively, the search can be limited to one of 
several dozen organisms from a pull-down menu.

The "Choose filter" option enables masks for low compositional complexity, human repeats, lookup 
table, and lowercase characters in the search sequence; all or none of these options can be selected. 



The low complexity filter masks off the regions of the query sequence (the sequence entered in the 
"Search" field) that have low compositional complexity. Areas of low complexity, such as those 
composed of only a few characters repeated, are not likely to be biologically interesting. The "Human 
repeats" option masks repeating sequences, speeding the search, especially against databases 
containing sequences with large numbers of repeats. The "Mask for lookup table only" option is an 
experimental mask that eliminates hits based on low-complexity sequences. The "Mask lower case" 
option causes only the uppercase sequences in the "Search" field to be executed.

The "Expect" field represents the statistical significance threshold for reporting matches against 
database sequences. The lower the threshold, the more stringent the alignment criteria, resulting in 
fewer chance matches being reported. The default value is "10," meaning that of the reported match 
values, 10 will occur by chance alone. In comparison, a search with an "Expect" value of "1" would 
likely return only 1 result by chance alone. Too small a value in the "Expect" field will result in too 
few search results. "Word Size" can be set to 7, 11, or 15 nucleotides through a pull-down menu.

In addition to the pull-down menu and checkbox options, the "Other advanced" field accepts 
command-line entry of advanced options, including the cost to open and extend gaps, the 
specification of penalties for nucleotide mismatch, the reward for a match, and the ability to adjust 
output formatting. The "Other advanced" field can also be used to override many of the program 
default settings. For example, the command "-W12" sets the word size to 12, an option not available 
through the pull-down menus.

The other major options of BLAST deal with formatting the output. Formatting options range from 
color graphics in which the colors represent alignment scores to page formatting. Perhaps the most 
useful output utility is a Database Linkout feature, which provides reference links from the BLAST 
Results to various NCBI databases and other resources.

BALSA

The BALSA tool, from the Center for Bioinformatics at Rensselaer and Wadsworth Center of the New 
York Department of Health, provides Web-based access to Bayesian-based sequence alignment (see 
Figure 8-15). A virtually identical tool, BALSA Database Query, is available for database queries using 
either the PDB or the Structural Classification of Proteins (SCOP) databases.

Figure 8-15. BALSA Pairwise Sequence Alignment Tool. This Web-based tool 
is provided by the Center for Bioinformatics at Rensselaer and Wadsworth 

Center of the New York Department of Health.



BALSA determines the probability that a given pair of sequences should be aligned by sampling 
alignments in proportion to their joint posterior probability. Probabilities are based on alignments 
produced by specific combinations of substitution matrix, gap penalty, and gap extension. In 
operation, the two sequences to be aligned are entered in FASTA format. BALSA supports copy-paste 
as well as local file retrieval to populate the query and comparison sequences.



Up to four sets of scoring matrix, gap penalty, and gap extension penalty combinations can be 
specified. The PAM-250 as well as Blosum30 to Blosum80 scoring matrices are available. Output, 
which consists of the posterior probability for each scoring matrix/gap penalty/gap extension 
combination, is sent to the e-mail address entered on the form. A separate output is provided for 
each matrix-gap entry specified.

Polypeptide Pattern Matching

BLASTP

Protein-Protein BLAST (BLASTP) shares many of the features and options of BLASTN, with a focus on 
polypeptide sequences instead of nucleotide sequences. The BLASTP interface is similar to the 
interface used with BLASTN, as illustrated in Figure 8-16. The major differences are in the databases 
available and in the advanced options available in BLASTP. For example, the peptide parallels to the 
nucleotide sequence databases are available to BLASTP, including "nr" (non-redundant GenBank CDS 
translations, PDB, SWISS-PROT, PIR, and PRF), "swissprot" (SWISS-PROT protein sequence 
database), and "month" (the GenBank CDS translation, PDB, SWISS-PROT, PIR, and PRF data 
released in the last 30 days).

Figure 8-16. NCBI's Protein-Protein BLAST (BLASTP) Web Interface.



A feature in the basic BLASTP search is the "Do CD-Search" option, which is checked to compare 
protein sequences to the conserved domain (CD) database maintained by NCBI. The "Do CD-Search" 
option may be used to identify the conserved domains (modules with distinct evolutionary origin and 
function) present in a protein sequence.

Advanced options include the ability to specify a substitution matrix and gap costs. The substitution 
matrix is used to assign a score for aligning residue pairs, and should reflect the types of sequences 
being searched. The default matrix is BLOSUM62, which assigns a probability score for each position 
in an alignment that is based on the frequency with which that substitution is known to occur among 
related proteins. The "Gap Costs" field allows the penalties to be specified for opening and extending 
a gap. Increasing the gap costs results in alignments with fewer gaps.

The PSSM field holds the matrix automatically computed by PSI-BLAST (Position-Specific Iterative 
BLAST). A Position-Specific Scoring Matrix (PSSM) is a matrix of scores representing a locally 



conserved region of a sequence of motif. A PSSM is used in the scoring of multiple alignments with 
sequences. A PSSM plots the probability score for the occurrence of each amino acid along the length 
of a motif.

PSI-BLAST, which is based on the BLAST algorithm, is enhanced to be more sensitive than BLASTP. 
This sensitivity comes from the use of a profile of the position-specific scores for every position in the 
alignment that is constructed from a multiple alignment of the highest-scoring hits in the initial 
BLAST search. The profile or matrix created by PSI-BLAST can be formatted, saved, and then pasted 
into the PSSM field of BLASTP.

A feature recently added to BLASTP is the ability to specify a PHI pattern, which is used by PHI-
BLAST (Pattern Hit Initiated BLAST) to search for similarities that are presumably also homologues. 
PHI-BLAST, which expects as input a protein query sequence and a pattern contained in that 
sequence, searches the current database for other protein sequences that also contain the input 
pattern and have significant similarity to the query sequence in the vicinity of the pattern 
occurrences. PHI-BLAST filters out cases where the pattern occurrence is probably random and not 
indicative of homology.

Smith-Waterman

The Smith-Waterman dynamic programming algorithm is available on the UCSC Kestrel Server, which 
is an experimental, high-performance, 512-processor system. As shown in Figure 8-17, compared to 
the BLASTP interface with its array of options, the interface presented by the Kestrel Server appears 
somewhat limited. The parameters are simply costs to open and extend gaps, the substitution 
matrix, the database to search, and the number of alignments to report.

Figure 8-17. Smith-Waterman on the High-Performance UCSC Kestrel 
Server.



The Kestrel implementation of Smith-Waterman supports the use of PAM-10 through PAM-500 and 
BLOSUM30 through BLOSUM100 substitution matrices against the SWISS-PROT or NR protein 
databases, or a nucleotide search against the dbEST part 1 database. A maximum of 40 alignments 
can be e-mailed to the address specified in the query form.

DotLet

The DotLet dot matrix analysis program, available on the Expert Protein Analysis System (ExPASy) 
server, is one of the most popular of the Web-based dot matrix analysis programs. As shown in 
Figure 8-18, the program—a Java applet—supports the pairwise analysis of nucleotide or polypeptide 
sequences that are pasted into the pop-up input fields accessed by the "input" button. DotLet also 
supports a variety of matrices (Blosum30 to Blosum100 and PAM-30 to PAM-250), sliding window 
size (1 to 15), and zoom (1:1 to 1:8) through pull-down menus along the top of the screen.

Figure 8-18. DotLet Dot Matrix Analysis Program on the ExPASy Server. 
This plot of the Drosophila melanogaster SLIT protein, plotted against 

itself, illustrates perfect alignment of two polypeptide sequences. At lower 
magnification, patterns of repeated protein domains are visible.



Each pixel in the main display (center, left) corresponds to a residue in the horizontal and vertical 
sequences, with the darker pixels representing higher scores. The histogram window to the right of 
the main display window supports the interactive adjustment of the display. The height of the 
histogram peak indicates the quality of data, in that the higher the peak, the greater the signal-to-
noise ratio. The alignment panel along the bottom of the figure shows the actual sequence alignment 
and supports interactive manipulation of the sequence positions.

Utilities

Most pattern-matching programs accept data in the FASTA format. Format conversion can be 
performed manually with a text editor or a sequence editing utility such as READSEQ. A Web-based 
version of READSEQ (see Figure 8-19) is available through the Bioinformatics & Molecular Analysis 
Section (BIMAS) of the National Institutes of Health.

Figure 8-19. WWW READSEQ Format Conversion Utility (courtesy of 
BIMAS).



READSEQ accepts and automatically recognizes 16 different input formats, including IG/Stanford, 
GenBank/GB, NBRF, EMBL, Plain/Raw, Fitch, and Pearson/FASTA. Output formats include support for 
the major formats, including ASN.1, EMBL, PAUP/NEXUS, DNAStrider, GenBank/GB, Phylip, and 
IG/Stanford. READSEQ, like most file translation utilities, doesn't handle every format conversion. 
This is in part due to the hundreds of application-specific file formats used in bioinformatics work.

Sequence Databases

The key protein sequence databases used for sequence alignment are SWISS-PROT, TrEMBL, and 
PROSITE. These and other databases and tools are available through the ExPASy server of the Swiss 
Institute of Bioinformatics. SWISS-PROT is a highly annotated protein sequence database that is 
highly integrated with other databases in the ExPASy system. The TrEMBL database is a supplement 
of SWISS-PROT that also contains translations of the EMBL nucleotide database that have not yet 
been integrated into the latest official release of SWISS-PROT. PROSITE is a database of protein 
families and domains that contains high-level profiles such as categories of toxins, inhibitors, 
chaperone proteins, and hormones. The major source of nucleotide sequence data for alignment 
research is NCBI's integrated Entrez system, which contains data from GenBank, RefSeq, and PDB. 
BLOCKS is a database of ungapped multiple protein sequence alignments. Finally, SCOP, which 
incorporates all PDB entries, is a structural classification database expressly designed for the 
investigation of protein sequences and structures.



 
On the Horizon

The latest version of BLAST available from the NCBI illustrates movement toward integration of 
methodologies within the same toolset. As in other areas of computing, the hundreds of 
bioinformatics methods and tools have grown out of niche areas to address specific needs of 
investigators. However, as the field of bioinformatics matures and methodologies are extended out 
from their original niche areas, researchers are clustering around standards and a small subset of the 
many tools that have been developed, and rely less and less on translation utilities such as 
READSEQ. Similarly, whether traditional methods, such as dot matrix analysis and still-experimental 
methods, such as genetic algorithms, survive into the next generation of tools depends on how these 
techniques can be adapted to support current challenges in a computationally robust and user-
friendly manner.

Web portals, such as Entrez and, to a lesser extent, ExPASy, represent the first level of integration of 
bioinformatics data, methodologies, and tools. They also illustrate the central role that funding from 
the government and academic institutions plays in the continued development and maintenance of 
tools to support the bioinformatics community.



 
Endnote

The pattern-matching approaches using scores for gaps and inexact matching or black-box neural 
network technology discussed here are statistically valid for assessing the degree of string similarity. 
However, in selecting gaps and other methods to make the matches "look good," it's important to 
remember that these techniques don't necessarily relate to the biology of the nucleotide or 
polypeptide chains represented by the symbols manipulated by BLAST or other algorithms. It's easy 
to rationalize the need for gaps because of the computational infeasibility of solving long string 
comparisons without the provision for gaps. However, even a short gap in a polypeptide sequence 
can disrupt the secondary and tertiary structures of a protein, and probably alter its function as well.

Heuristic approaches, such as match matrices, attempt to add some sense of biological relevance to 
the mathematical equations that define the relative similarity of nucleotide and polypeptide 
sequences. It's up to individual researchers to consider the biological implications of the techniques 
and assumptions they make in simply filling out a form on a Web page during the course of their 
daily work.



 

Chapter 9. Modeling and Simulation
 Colicin Ia, PDB entry 1CII. Image produced with PDB Structure Explorer.

The formulation of a problem is far more often essential than its solution, which may 
be merely a matter of mathematical or experimental skill.

—Albert Einstein

Experimental molecular biology research is often a painstakingly slow process that typically involves 
a long sequence of carefully performed experiments, using a variety of equipment and laboratory 
specialists. For example, positively identifying a protein by structure may take years of work. The 
protein must be isolated, purified, crystallized, and then imaged. Because each step may involve 
dozens of failed attempts, many scientists not primarily interested in the experimental methods, but 



simply needing the structure data, look to other non-experimental methods.

In determining protein structure, the primary alternative to experimental or wet-lab techniques is 
bioinformatics. Although computational methods may be able to deliver a solution to a molecular 
biology problem such as structure determination in days or weeks instead of months or years, the 
solution is only as good as the formulation of the problem. In the case of protein structure 
determination or prediction, formulating the problem entails creating a model of the molecule and the 
major environmental factors that may influence its structure. With a valid model definition, arriving 
at a solution—that is, using the model to drive a simulation of the molecule's behavior and 
structure—is simply a matter of executing a program and then evaluating the results.

In order to appreciate the significance of modeling and simulation in bioinformatics, consider that the 
first "killer app" on the desktop microcomputer— the one application that raised the status of the 
technology from a hobbyist's plaything to a "must have" in business and in the laboratory—was the 
now-defunct electronic spreadsheet, VisiCalc. This spreadsheet enabled accountants, engineers, and 
physicists to interactively run a variety of what-if scenarios or implicit attempts at problem 
formulation to predict the outcomes of virtually any activity that they could express mathematically. 
VisiCalc's initial success was due largely to its easy-to-understand user interface of rows and columns 
of cells interrelated by position and formulas and a powerful back-end that interpreted the formulas 
and graphed the output. Working with Microsoft Excel, Lotus 1-2-3, or other modern electronic 
spreadsheets involves creating or using a pre-defined model—a logical, simplified description of how 
a real-world system performs. With a valid model—that is, one that adequately describes 
relationships in the real world—the spreadsheet provides an environment in which the model can be 
brought to life, simulating the activity of the real-world system over time or in response to specific 
events. For example, an accountant might look at the expected profits from a business, given a 
spreadsheet model that describes sales and business expenses over the course of a year. An 
engineer might use a model of a steel beam to explore its dynamic stability when used as a 
supporting structure in a bridge. Similarly, a biologist might examine the population dynamics in a 
closed ecosystem of various strains of bacteria, based on a model that describes the relationships 
between population, food supply, and the environment. A spreadsheet model is a set of linear 
equations relating the values of several variables (cells).

Equipped with a spreadsheet and a few equations, a molecular biologist might define a model of a 
neural network that can learn to recognize amino acid sequences and assign protein structures to 
certain sequences, as in Figure 9-1. The model of a single neuron in the artificial neural network 
defines the output of the neuron as the weighted sum of inputs to the neuron, including feedback 
from the output: The model of the entire neural network additionally specifies the interconnection of 
the individual neuron models. Mathematically, the model of an individual neuron that can accept four 
outputs (o) with their associated fixed weights (w) can be expressed as:

Figure 9-1. Model of a Single Neuron. This model is used in the simulation 
of a neural network (inset) that can be used to classify patterns, such as 

protein structures associated with specific amino acid sequences. The 
model and associated simulation can be created in a general-purpose 

spreadsheet or in a computational environment specifically designed for the 
simulation of neural networks.



Note that this model for an individual neuron is a greatly simplified representation of the function of 
an actual neuron in the human nervous system. For example, neurons in the brain are regularly 
bathed in substances—from naturally produced endorphins to drugs such as seratonin release 
inhibitors—that dynamically alter the strength of connections, represented by the fixed weights (w) in 
the neuron model. The advantage of ignoring the intricacies of the actual nervous system is 
computational efficiency and lower overhead associated with developing a model. A simpler model is 
also easier to develop and maintain compared to developing and maintaining a more complex model. 
The challenge is defining a model that is simple enough computationally and yet is rich enough to 
accurately define the behavior of the system.

Although spreadsheets are still used for modeling and simulation applications in business, science, 
and engineering, all but the simplest modeling is performed with software optimized for particular 
domains. For example, nuclear physicists use custom modeling and simulation programs running on 
supercomputers to simulate the power of nuclear explosions. Similarly, life scientists use a variety of 
microcomputer-based simulations to explore everything from population dynamics to the docking of 
proteins.

The downside of using a general-purpose spreadsheet as a platform for modeling and simulation is 
related to performance, flexibility, visualization capabilities, standards, and startup time. A general-
purpose spreadsheet, like a general-purpose language such as eXtensible Markup Language (XML) or 
C++, is designed to solve a variety of problems. As such, it represents a compromise between 
flexibility and performance. Although a spreadsheet can be used to prototype virtually any type of 
simulation, the simulation will likely run several orders of magnitudes slower than a simulation 
developed in an environment designed for modeling and simulation.

Similarly, coding a simulation in C++ may result in a system with a higher performance than can be 
obtained with a dedicated simulation system. However, the startup time associated with a domain-
specific simulation will likely be several orders of magnitude lower that that associated with the 
general-purpose language. For example, classification systems based on a neural network simulation 
are typically outperformed by classification systems developed in C++ or some other compiled 
language. However, creating a classification system with a neural network system may take only 



minutes. Neural network systems typically provide a library of predefined models that the user can 
incorporate in a neural network by connecting icons graphically instead of making extensive use of 
mathematical equations. Like using a high-level programming language, there is no need to develop 
or even fully understand low-level neuron model operation in these systems to create functional 
classifiers.

Even if a general-purpose language is used to develop a simulation, there are numerous reasons for 
going through the time and hassle of developing a model of a real-world system. Simulations allow 
conditions in the real world to be evaluated in compressed or expanded time and under a variety of 
conditions that would be too dangerous, too time-consuming, occur too infrequently, or that would 
otherwise be impractical in the real world. Instead of taking days or weeks to set up and run a series 
of biological experiments on the population dynamics of yeast under a variety of environmental 
conditions, the effect of, for example, an increase in temperature, can be explored in a few minutes 
through a simulation.

Common uses of modeling and simulation include predicting the course and results of certain actions, 
and exploring the changes in outcome that result when actions are modified. Several bioinformatics 
R&D groups are focused on developing simulation-based systems to determine, for example, if a 
candidate molecule for a new drug will exhibit toxicity in patients before money is invested in actually 
synthesizing the drug. In this regard, simulation is a means of identifying problem areas and 
verifying that all variables are known before construction of the drug development facility is begun. 
As an analysis tool, simulations help explain why certain events occur, where there are inefficiencies, 
and whether specific modifications in the system will compensate for or remove these inefficiencies.

As listed in Table 9-1, the range of possible applications of modeling and simulation in bioinformatics 
is extensive. These applications range from understanding basic metabolic pathways to exploring 
genetic drift. One of the most promising application areas of modeling and simulation in 
bioinformatics—and the most heavily funded—is as a facilitator of drug discovery, which in turn 
depends on modeling and simulating protein structure and function. Given the exponentially 
increasing rate at which models of proteins are being added to the Protein Data Bank (PDB), 
modeling and simulation of proteins and their interaction with other molecules are the most 
promising means in our lifetimes of linking protein sequence, structure, function, and expression, 
with the clinical relevance of the proteome.

Table 9-1. A Sample of the Applications of Modelingand Simulation in 
Bioinformatics.

Clinical What-If Analysis

Drug Discovery and Development

Experimental Toxicology

Exploring Genetic Drift

Exploring Molecular Mechanisms of Action

Personal Health Prediction

Drug Efficacy Prediction

Drug Side-Effects Prediction

Gene Expression Prediction

Protein Folding Prediction

Protein Function Prediction

Protein Structure Prediction



Metabolic Pathway Visualization

Pharmacokinetic Visualization

This chapter provides an overview of the usual modeling and simulation techniques used in 
bioinformatics. The "Drug Discovery" section introduces many of the concepts of modeling and 
simulation in the context of the drug discovery process. "Fundamentals" examines the fundamentals 
of modeling and simulation techniques, including the numerical processes associated with modeling 
and simulation. The "Protein Structure" section explores the most popular application of modeling 
and simulation in bioinformatics. The "Systems Biology" section provides an overview of modeling 
and simulation designed to operate at the cellular and organ levels. The "Tools" section provides a 
survey of general-purpose and bioinformatics-specific modeling and simulation hardware and 
software tools. "On the Horizon" looks at the future of modeling and simulation in bioinformatics, and 
"Endnote" considers the relative merit of human-based heuristic approaches in the face of increased 
reliance on computer-based methods of using modeling and simulation to predict protein structure.



 
Drug Discovery

Pharma, the primary backer of bioinformatics R&D worldwide, is keenly interested in automating and 
speeding the drug discovery and development process. The typical drug discovery and development 
process, shown in Figure 9-2, involves an often arduous series of events that starts with perhaps 
5,000 candidate drug molecules and ends with a single product that can be brought to market.

Figure 9-2. The Drug Discovery and Development Process (top) and 
Application Areas of Modeling and Simulation (bottom).

Because any technology that can shorten the discovery and development process has the potential to 
save the industry billions of dollars, there is considerable R&D involved in replacing or supplementing 
the drug discovery process with modeling and simulation. A better understanding of the underlying 
metabolism of a particular disease or condition can suggest which molecules will be most effective for 
treatment, and which ones may cause toxic reactions in a patient. Similarly, assuming that protein 
molecules with similar structure also have similar function, modeling protein structure and comparing 
it with known drugs can potentially serve as a more effective screener for candidate drugs, compared 
to wet-lab techniques.

Later in the drug discovery process, modeling and simulation of pharmacokinetics and of drug 
absorption can potentially be used to shorten clinical trials. Currently, each phase of the clinical trials 
takes a year or more. Phase I, involving about 100 subjects, deals with safety. Phase II, which 
involves about 200 subjects, deals with evidence for efficacy at various dosages. Phase III, involving 
up to about 5,000 subjects, deals with assessing the clinical value of a molecule. Phase IV, which 



begins with the release of the drug, involves monitoring patients for adverse reactions. The FDA 
approves only about 1 molecule in 5 that makes it to Phase I clinical trials.

As illustrated in the bottom half of Figure 9-2, modeling and simulation techniques can also be 
applied to various aspects of the drug development process. For example, process modeling can be 
used, starting around year nine of the drug discovery and development process, to develop the most 
efficient and cost-effective development processes. Similarly, the manufacturing process can be 
modeled to determine the best use of materials, product stability, and best method of product 
synthesis—all without modifying the actual process. Before delving into one of the key modeling and 
simulation areas, protein structure determination and prediction, consider the following review of the 
fundamentals of modeling and simulation.



 
Fundamentals

The numerous potential applications of modeling and simulation in the drug discovery process 
illustrate that whether the intent is to predict the toxicity of a candidate drug or to streamline the 
screening process, the fundamental components and processes are identical. However, as described 
here, the drug discovery process also illustrates how there are also domain and implementation-
specific issues, including numeric considerations, selecting the most optimum algorithms for a given 
problem, determining which simulation perspective best fits the problem, and hardware 
requirements.

Components

Every modeling and simulation system is composed of a model, a database, a simulation engine, and 
a visualization engine. The user and some form of feedback device, such as a computer monitor, are 
normally considered key elements as well. These components aren't necessarily separate entities as 
illustrated in Figure 9-3, but may be combined and integrated in various ways. For example, the 
model and data may be combined within the simulation engine, or the simulation engine and 
visualization engine may be combined. Regardless of how they are represented in a system, each 
component is necessary for operation of the simulation.

Figure 9-3. Components of a modeling and simulation system include a 
model, database, simulation engine, and visualization engine.

The components of a simulation system typically vary in form, complexity, and completeness, as a 



function of what is being modeled and the required fidelity of the simulation. For example, the model, 
which can be a mathematical equation, a logical description encoded as rules, or a group of 
algorithms that describes objects and their interrelationships in the real world, defines the underlying 
nature of the simulation.

The database may take the form of a few lines of data imbedded as statements within the model 
code, or consist of a separate text file that describes variables and constants that can be used with 
the underlying model. However, in most bioinformatics applications, the database consists of a large, 
complex system that contains libraries of data that can be applied to the underlying model. The 
contents of the database typically range from physical constants, such as the bond lengths of 
covalently bound atoms, to user-defined input, such as heuristics regarding situations in which the 
underlying model can be applied.

The simulation engine consists of functions that are evaluated over time, and triggered by time, 
events, or the value of intermediate simulation results. The simulation engine takes the model, data 
from the database, and direction from the user to create an output that corresponds to a condition in 
the real world, such as a description of the folding of a protein molecule in an aqueous solution. 
Finally, the visualization engine takes the output of the simulation engine and formats it into a more 
user-friendly form. For example, a string of digits can be formatted into a 3D rendition of a protein 
structure. The visualization engine may be little more than a text-formatting utility or it can take the 
form of a high-performance, real-time, high-resolution 3D rendering engine.

Process

The basic modeling and simulation process outlined in Figure 9-4 is applicable to most problems in 
bioinformatics. The first step is to define the problem space, such as predicting protein structure from 
amino acid sequence data—one application of modeling among the many depicted by Figure 9-4. 
Defining the problem space involves specifying the objectives and requirements of the simulation, 
including the required accuracy of results. This phase of the process also involves establishing how an 
observer in some experimental frame observes or interacts with some part of reality. The 
experimental frame defines the set of conditions under which a system will be observed, including 
initial states, terminal conditions, specifications for data collations, and observable variables and their 
magnitudes. The system represents a collection of objects, their relationships, and the behaviors that 
characterize them as some part of reality. The underlying assumption in defining the problem space 
is that the phenomenon or problem to be modeled can be positively identified and measured.

Figure 9-4. The Modeling and Simulation Process.



Once the problem space has been defined, the next phase in the modeling and simulation process is 
conceptual modeling, which involves mapping the systems objects, relationships, processes, and 
behaviors to some sort of organized structure. For example, in predicting protein structure from 
sequence data, the conceptual modeling might entail using ab initio methods—that is, working from 
first principles, such as bond lengths and angles—to construct the protein's secondary and tertiary 
structures.

Activities at this phase of the process also include documenting assumptions about the system so 
that the appropriate simulation methods can be selected. For example, if ab initio methods are going 



to be used to predict protein structure from sequence data, then an underlying assumption is that the 
data on amino acid sequence, bond length, bond angles, and related atomic-level data are not only 
available, but the data are accurate to some verifiable level.

Given the underlying data and a conceptual model, the next phase of the modeling and simulation 
process is translating the conceptual model into data structures and high-level descriptions of 
computational procedures. Designing the computer model involves extracting from the conceptual 
model only those characteristics of the original system that are deemed essential, as determined by 
the model's ultimate purpose. For example, the purpose of predicting protein structure from 
sequence data may be to allow the end-user to visualize the protein structure, so that a high degree 
of accuracy isn't that essential. In this example, the purpose of the model is to simplify and idealize, 
and the characteristics selected from the conceptual model should reflect this purpose.

Designing the computer model, like defining the problem space and conceptual modeling, is largely 
an art. Designing a simple model that adequately mimics the behavior of the system or process 
under study is a creative process that incorporates certain assumptions. The art of making good 
assumptions may well be the most challenging component of modeling, considering success depends 
as much on the domain experience of the modeler as it does on the nature of the system to be 
modeled. Biological systems are seldom presented in a quantitative manner, often requiring that the 
model designer derive or invent the needed mathematical formalisms or heuristics.

Coding of the computer model involves transferring the symbolic representations of the system into 
executable computer code. Model coding marks the transition of the modeling process from an 
artistic endeavor to a predominantly scientific one, defined by software engineering principles. Model 
coding may involve working with a low-level computer language, such as C++, or a high-level shell 
designed specifically for modeling and simulation.

Once a model is in the form of executable code, it should be subject to verification and validation. 
Verification is the process of determining that the model coded in software accurately reflects the 
conceptual model by testing the internal logic of a model to confirm that it is functioning as intended, 
for example. The simulation system and its underlying model are validated by assessing whether the 
operation of the software model is consistent with the real world, usually through comparison with 
data from the system being simulated. For example, in a system designed to predict protein 
structure, the validation process would include comparing model data with protein structure data 
from NMR and X-ray crystallography. Validating X-ray crystallography data might involve comparing 
it with the pattern resulting from bombarding the crystal lattice of a purified protein with X-rays. In 
contrast, validating NMR data might involve comparing it with actual data produced by scanning a 
pure protein in solution.

Validation also involves certifying that the output of the system as a whole is adequate for the 
intended purpose and is consistent with the presumptions of expert opinion. As such, validation is at 
least in part a subjective call. The validity of a model is a function of the objectives of the model 
designer and the context of its application. For example, the usefulness of a model of protein 
structure for a decision-making application is a function of the accuracy of prediction. There are no 
concepts such as "best" or "correct" in model validity assessment, considering that the degree to 
which a model needs to reflect or mimic a real-world system varies with each case. In addition, 
because verification is a check for internal consistency, it's possible for a model to be verifiable and 
yet fail validation because of errors in the conceptual model.

Executing the simulation ideally generates the output data that can illustrate or answer the problem 
initially identified in the problem space. Depending on the methods used, the amount of process and 
time required to generate the needed data may be extensive. For example, predicting protein 
structure using ab initio methods can involve thousands of iterations and take days of supercomputer 
time in order to arrive at statistically reliable results.

Visualizing the output data opens the simulator output to human inspection, especially if the output is 
in the form of 3D graphics that can be assessed qualitatively instead of in tables of textual data. For 
example, even though the structure of a protein may be described completely in a text file that 
follows the PDB format, the data take on more meaning when they can be visualized as a 3D 



structure that can be rotated in 3D space using a visualization program such as RasMol, Chimera, or 
SWISS-PDBViewer. Data are typically subject to numerical analysis as well as visualization, in order 
to provide a quantitative measure of accuracy and to determine whether the underlying model needs 
to be improved upon.

Documentation, although not represented as a formal step in Figure 9-4, is key to model validation, 
reuse, and communication with others. For example, the data format used by many molecular 
modeling systems follows the PDB format, which includes extensive documentation with each 
molecule described in the database. The partial listing of structure 1A3N from the PDB, shown in 
Figure 9-5, documents the geometry and stereochemistry of the Deoxy Human Hemoglobin molecule.

Figure 9-5 Documentation of Data. Data documentation in the PDB is in the 
form of header data in each description of protein structure. This example, 
taken from Deoxy Human Hemoglobin (PDB ID 1A3N), describes factors 
relating to geometry and stereochemistry of the data described in the main 
body of the file.
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Perspectives

During the design of a computer model, one of the major decisions is what perspective to use. The 
three basic simulation perspectives are continuous, discrete, and hybrid discrete/continuous. These 
perspectives, which differ in how the system states change with time and events, define the tools, 
methods, and algorithms that should be used in the model coding phase of the modeling and 
simulation process.

Continuous Simulation

The continuous simulation methods are most appropriate when what is of primary interest is the time-
varying nature of objects or processes in some real-world system. The variables in a continuous 
model are assumed to vary continuously with advancing time. Because there is no instant of time 
when the system is not in flux, continuous simulations are said to be time-driven. Behavior patterns 
modeled as a mixture of differential and algebraic equations provide the basis for this simulation 
perspective.

A differential equation defines a relationship between a continuous variable and its own rate of 
change. To take an example from pharmacokinetics, consider the time-varying nature of the plasma 
level of a drug ingested. Given the initial concentration of the drug in the body, the time since the 
drug was ingested, and the rate at which the drug is absorbed in the gut, we can model the current 
concentration of drug in the body with the following relationship:

In this equation, the fraction of the drug lost from the plasma per-unit time is represented by KT, 
where K is a constant and T is time. The elimination of constant K is a function of the type of drug 
administered, administration route, method of elimination or conversion, health of the patient, and 
renal function. Drugs with a large number for K will be eliminated faster from the body than those 
with a smaller number for K.

When this model of drug elimination is coded, the formula for drug plasma concentration becomes a 
DO LOOP in which the value for T is incremented by an appropriate value, dt, with each loop. 
Depending on what is being studied, dt might be 1 millisecond or 10 seconds. In pseudocode form, 



the solution to the preceding equation during the first 100 seconds after drug administration, 
assuming an initial dose of 1000 milligrams, a plasma volume of 6000 ml, an elimination constant of 
0.4, and a dt of 0.1 seconds, appears as:

DOSE = 1000
PLASMA VOLUME = 6000
T = 0
K = 0.4
DT = 0.1

FOR INDEX = 1 TO 1000
DO
 CONCENTRATION = (DOSE/plasma volume) x EXP(–K x T)
  T = T + DT
LOOP

This differential equation is solved by advancing time in relatively small increments dt and 
recomputing the continuous variable concentration at each step. Larger steps may be taken to 
decrease computation time at the expense of greater approximation error. Termination of the 
program occurs after 1000 iterations of the DO LOOP. However, termination could also be linked to a 
maximum runtime, or a maximum or minimum concentration, or some combination of the two. The 
drug concentration, as described in the preceding differential equation, isn't limited to integer values, 
but is instead most accurately expressed in real values, such as 3.457 mg per ml. When run, the 
output of the simulation results in a plasma drug concentration that initially decreases rapidly and 
then more slowly as the concentration approaches zero.

Discrete Simulation

A discrete event simulation perspective lends itself to modeling systems in which an object or process 
arrives at a stage, waits in a queue until it receives attention, and then moves on to the next stage. 
Discrete event simulation is characterized by relatively large quantities of time during which the 
underlying system doesn't change. Advancing the simulation from one event to the next simulates 
time. Another characteristic of discrete methods is that the progress of objects or processes moving 
through the system are typically measured as integers.

Hybrid Simulation

Hybrid simulation methods are useful when the system to be modeled displays a variety of behaviors, 
some of which lend themselves to discrete event methods, and some of which are more easily solved 
through continuous simulation techniques. Consider the challenges faced by a modeler attempting to 
simulate a complex neuromuscular system involving individual packets of neurotransmitter 
substances, receptor sites, and resulting muscular contraction. Describing the release, transport, and 
subsequent absorption of neurotransmitter packets might be most easily mapped in a discrete event 
model. The resulting time-varying contraction, however, is likely to be most easily described in terms 
of differential equations within a continuous simulation model.

In general, any system can be simulated with models adhering to continuous, discrete, or hybrid 
perspectives. However, the perspective that most closely maps to the actual system characteristics 
will minimize development effort. The optimal modeling perspective is also a function of the 
characteristic of the system to be modeled. For example, a system can be modeled with discrete and 
continuous methods, with each method answering a different question. In addition, in extremely 
complex simulations, computation consideration may dictate the most appropriate perspective. For 
example, it's often more economical, in terms of computational time and hardware requirements, to 
approximate an event-driven system with a continuous simulation.

Numeric Considerations



The algorithms underlying a model necessarily reflect the scope and nature of the simulation. 
Depending on the simulation requirements, the algorithms used may vary from simple and 
approximate to very complex, computationally expensive, and as accurate as possible.

Errors

There is a limit to the degree of accuracy available in every simulation, as dictated by the software 
and hardware available. For example, all complex digital computations, especially those employing 
multiple operations on floating-point numbers, are prone to errors. Because of the way in which the 
two components of a floating-point number are handled, computations involving numbers in this 
format are not exact. Given enough iterations, the cumulative errors of multiple operations will 
become significant.

Floating-point relationships such as 2/3 (0.666666…) are represented in a digital computer system to 
only so many decimal places. Errors of this type, sometimes referred to as roundoff errors, can be 
minimized at the expense of computational speed by working the highest precision possible. For 
example, double-precision variables can be used for operators in computations. Rearranging the 
sequence of computational events so that significant figures aren't lost can also minimize round-off 
errors. In comparison, computations involving strictly integer numbers are exact as long as the 
results are within the range of the data type used. The primary benefit of using an integer over a 
floating-point number is speed.

Round-off errors are due to computer hardware limitations. They can be minimized by the judicious 
use of appropriate data types and algorithms. The other major type of error, truncation error, is 
independent of computer hardware, and is attributable instead to the algorithms used in the 
simulation. These errors occur when the algorithms use approximations to arrive at an answer. For 
example, instead of computing the sum of an infinite series, a practical algorithm might stop after a 
sufficient number of elements have been added. Truncation error can best be thought of as the 
difference between the actual answer and the answer obtained by way of a practical calculation. 
Unlike round-off errors, which are a function of the computer hardware, operating system, and 
programming language, truncation errors are a function of the algorithms used to solve a given 
problem.

Differential Equations and Integration

Solving differential equations and performing numerical integration are two common computational 
operations performed in continuous simulation. A differential equation defines a relationship between 
a continuous variable and its own rate of change. In general, the goal in solving a differential 
equation is to be able to predict the value of a function at any point in time. Differential equations 
involving one independent variable are said to be ordinary differential equations. Ordinary differential 
equations can be further classified as either initial value problems or boundary value problems 
depending on whether information about the problem is known at a particular value of the 
independent variable, or at two different values of the independent variable, respectively.

It's often the case that a problem to be modeled can't be solved by an ordinary differential equation 
such as described previously for drug concentration. Accurately determining the total amount of drug 
remaining in the plasma will require numerical integration techniques that are based on one or more 
differential equations. In many instances, it isn't possible to obtain an exact or analytical solution to a 
differential equation. In these situations, numerical solutions can be used to prove an approximation 
of the solution, within some degree of accuracy.

Numerical integration methods differ in accuracy, speed of execution, complexity, and the nature of 
the underlying assumptions that must be made for their use. In general, they work by evaluating a 
function at a finite number of points and performing a weighted sum of the function values. 
Eventually, the weighted sum should converge to the correct value of the integral. Some numerical 
integration methods use a constant time slice or step size (see Figure 9-6), while others change the 
step size as needed to increase computational efficiency.



Figure 9-6. Euler (left) versus Runge-Kutta (right) Integration Methods. 
The Euler method is simpler to implement, but the Runge-Kutta method is 

more accurate and more efficient.

Two of the most popular integration methods are the Euler and Runge-Kutta methods. The Euler 
method is simple to implement but the least elegant, with truncation errors inversely proportional to 
step size and round-off errors directly proportional to step size. A larger step size or time slice results 
in fewer round-off errors, which are cumulative, at the expense of increased truncation errors. In 
addition, because the Euler method ignores the underlying change in the equation, it becomes 
unstable with a relatively large step size.

The Runge-Kutta method of numerical integration is more elegant, more efficient, more stable, and 
more accurate than the Euler method. The basic Runge-Kutta method allows the use of a larger step 
size for a given round-off error, and so reduces computational time, even though the algorithm is 
more complex than that of the Euler method. A variation of the basic Runge-Kutta method, the 
Adaptive Runge-Kutta method, adjusts step size dynamically during program execution to reflect the 
rate of change in the equation. For example, it decreases step size with an increasing rate of change 
in the equation, and increases step size when the rate of change diminishes. As a result, while the 
Euler method might require 1,000 steps to evaluate an equation, the Runge-Kutta method might 
involve only 100 steps.

As illustrated in Figure 9-6, the Euler method of numerical integration involves repeatedly 
accumulating slices of area, of constant width, to determine the area under the curve defined by the 
differential equation. In contrast, the Runge-Kutta method considers the slope of the equation at 
multiple points along each time slice, resulting is better curve fit and less truncation error.

Random Numbers

Random numbers from a variety of distributions form the basis of many simulation techniques. At 
best, most digital methods produce nearly random numbers, typically through programs called 
pseudorandom number generators. Figure 9-7 shows that the output from the pseudorandom 
generator of a popular simulation package running under Windows on a Pentium III hardware 
platform isn't perfect. Ideally, the numbers would be evenly distributed throughout the range, with 
no significant peaks and no holes, such as the band of missing numbers around 22,000.

Figure 9-7. Frequency Plot of a Pseudorandom Number Generator. The plot 
represents the cumulative output of 20,000,000 iterations of the generator 



over the range of 0 to 65,535, using the same numerical starting point 
(seed).

One of the most common methods of implementing a pseudorandom number generator is through 
the use of a Linear Congruential Generator (LCG) algorithm, which produces a series of numbers in 
which each successive term is computed from its predecessor. As such, the LCG produces a 
pseudorandom sequence because each number isn't independent of all earlier numbers.

The arbitrary starting point for the LCG algorithm is called the seed. Because an LCG algorithm 
computes successive terms from predecessor terms, including seed values, a new seed value results 
in a different random number sequence. Conversely, the same seed will result in the same 
pseudorandom sequence. As a result, one way to help ensure that the same pseudorandom sequence 
isn't generated at each run of a simulation is to use a new seed value.

Another limitation of pseudorandom number generators is that the series of random numbers repeats 
with a finite period. Furthermore, in some implementations of the LCG algorithm, the numbers 
between zero and the period aren't fully represented in the output of the generator. If the nature of 
the output of the system-supplied pseudonumber generator is unacceptable, there are a number of 
possible solutions. The simplest is to add a randomizing shuffle to the output of the LCG to alter the 
deterministic nature of the series. The effect of this shuffle is to randomize the output of the LCG. 
However, the simple shuffle can't overcome the problem of a sparse period, because a shuffle will not 
produce additional numbers, but instead alters only the sequence of the numbers produced. If a 
richer period is required, then a substitute for the LCG will have to be developed.

Algorithms

Modeling in bioinformatics is a multidisciplinary activity that borrows algorithms from statistics, 
mathematics, Artificial Intelligence (AI), and even robotics. For example, robotics algorithms are 
being used to explore the manipulation of proteins by chaperone molecules. Instead of defining a 
rotation or unfolding of a protein in 3D space, the space is split into n-dimensions. As a result, the 
movements of molecules can be described with simple linear functions that are much less 
computationally intensive than vector algebra. In addition to the esoteric algorithms that are useful in 
niche areas of bioinformatics, there are several algorithms that have general applicability in modeling 



and simulation, notably the Monte Carlo methods.

Monte Carlo Method

An approach developed through the collaboration of a computer scientist, physicist, and 
mathematician, the Monte Carlo method, forms the basis for much modeling and simulation activity 
in bioinformatics. The Monte Carlo method, named after the famous Monaco casino, involves running 
multiple repetitions of a model, gathering statistical data, and deriving behaviors of the real-world 
system based on these models. Each run of a model represents chance behaviors that cannot be 
modeled exactly, but only characterized statistically. Monte Carlo methods are particularly useful in 
modeling systems that have a large number of degrees of freedom and quantities of interest. The 
first uses of the method were in nuclear physics and various military applications. Today, Monte Carlo 
methods are used in bioinformatics for applications ranging from optimizing the drug discovery 
process to protein structure prediction.

Metropolis Algorithm

The most important variant of the basic Monte Carlo method used in bioinformatics work is the 
Metropolis Algorithm. The Metropolis Algorithm is useful in the minimization problems that are 
common in performing likelihood fits and optimization problems. For example, consider the function 
graphed in Figure 9-8. Within the boundaries defined by x1 and x2, A and B are local minima and C is 
the global minimum. The general problem is to find x so that it minimizes f(x) with as few function 
calls as possible. The caveat is that the formula for solving f(x) is non-trivial and may be 
computationally intractable using ordinary means. One of the pitfalls of solving for f(x) through 
ordinary means is that the solution may be stuck at a local minima, such as A or B in the figure. That 
is, the algorithm determines that f(x) increases to either side of a local minima, and therefore settles 
down in the local minima, ignoring the global minimum.

Figure 9-8. A function with local minima (A and B), global minimum (C), 
and global maximum (D) within the boundaries defined by x1 and x2.



The value of using the Metropolis Algorithm is that it offers a means of maximizing the odds of 
jumping out of a local minima and into the global minimum—and staying there. In nature, molten 
materials, such as quartz, when allowed to cool slowly, find the global local minimum state—they 
crystallize. However, when the material is cooled quickly, the material ends up in local minima—an 
amorphous state.

Algorithmically, the probability that a system at temperature T is in a state of energy E (not at the 
global minimum) appears as:

Assuming a temperature of T is assigned to the system, the probability of changing from state 1 to 
state 2 is:

The initial value of T should be great enough to allow all local minima and the global minimum to be 
evaluated. As long as T is greater than zero, there is a probability of a jump from a local to a global 
minimum. Consider the method graphically in Figure 9-9.

Figure 9-9. The Metropolis Algorithm Applied in a Simulated Annealing 
Method. As the temperature (T) of the system decreases, the number of 
local minima available to evaluate f(x) decreases. Whereas three minima 

are available at the initial temperature (left), at a lower temperature 
(right) only two minima are available.

As the temperature is decreased, the maximum value of the function f(x) decreases as well. f(x) is 
represented by the black circle in Figure 9-9, which can be thought of as a particle with kinetic 
energy defined by the temperature. As random values of x are evaluated by the annealing function, 
the function locates local minima and maxima by chance. Assuming enough iterations of evaluating 



f(x) and lowering the system temperature T, the maximum function value will be trapped somewhere 
in the global minimum. A major issue in simulated annealing is the cooling schedule, because 
abruptly decreasing T may trap the function at a local minima. However, extending the cooling 
schedule may lengthen the time required for the algorithm to locate the global minimum 
unacceptably. Typical runs of the Metropolis Algorithm involve 100 to 1,000 iterations.

Execution time is often a significant issue in bioinformatics applications because many problems are 
multidimensional. That is, instead of simply locating the global minimum in one plane, the 
minimization problem is often one best represented in n-dimensional space, as in Figure 9-10. 
Because thousands of iterations in each dimension may be required to determine the global 
minimum, computational time becomes prohibitive with increasing n.

Figure 9-10. 3D View of a Minimization Problem. Solving for global 
minimum in a multi-dimensional space is computationally expensive.

Hardware

Simulations, especially those involving tens of thousands of data points and relationships, such as 
those dealing with protein structure prediction, are extremely hardware-intensive. Many simulations 
are beyond the capabilities of all but the most powerful general-purpose desktop workstations 
operating at over 1 GHz with dual CPUs and several GB of RAM—and even these systems may take 
days of processing time per simulation. The most affordable general-purpose alternatives to 
mainframe hardware are to create a Linux cluster of affordable, modest-power workstations. A 
cluster of 20 or more workstations can provide the computational power approaching that of a 
mainframe at a fraction of the cost.

Depending on the nature of the simulation, specialized hardware may be available to make some 
modeling and simulation tenable on desktop systems. For example, there are graphics accelerator 
cards to enhance the rendering of molecules and other 3D structures. Similarly, for neural 
network–based simulations, there are cards designed to represent the individual nodes in hardware, 
speeding the lengthy learning process by several orders of magnitude.



True ab initio methods of predicting the structure of large protein molecules, which are based on 
modeling of atomic-level forces, are beyond the capabilities of even the fastest supercomputers. For 
all but the smallest protein molecules, true ab initio modeling will have to wait for affordable, higher-
performance computing.

Issues

Two major concerns in modeling and simulation in bioinformatics are consistency and performance. 
Consistency is an issue in tasks such as protein structure prediction because different assumptions 
and simplifications result in different protein structures, even with the same source data. For 
example, if two different computer systems use the Metropolis Algorithm to solve for the global 
minimum of a function used to define protein structure, and one system provides a more random 
distribution without major holes in the distribution while the other system produces much more 
pseudorandom data, each system will produce different analytical results. As a result, two different 
tools designed to predict protein structure will likely predict two different structures, for example. The 
difference in the predicted structures may be significant, depending on how poorly the pseudorandom 
number generator on the inferior system performs, and how reliant the system is on the Metropolis 
Algorithm for predicting protein structure. As such, it's important for the user to determine the 
underlying assumptions and intended purpose of a simulation-based tool before blindly relying on it 
to provide credible results.

As noted in the discussion of hardware, performance is always an issue in modeling and simulation 
systems intended to work with large data sets exemplified by protein data. Many commercial 
programs claim significant performance advantages over the academic versions of the same program 
due to more efficient coding or the use of proprietary algorithms. Whether the expense of commercial 
systems is warranted depends the amount of modeling and simulation work routinely performed in 
the course of R&D, the available hardware, and cost considerations.

However, even with an unlimited hardware budget, it's currently impossible to simulate the 
interaction of each of the thousands of atoms in a large protein molecule with each of the hundreds 
of thousands of atoms in the surrounding aqueous environment. Assumptions and simplifications 
have to be made to realize reasonable performance, and these simplifications and assumptions will 
inevitably have an adverse affect on consistency.



 
Protein Structure

Knowledge of protein structure is generally considered a prerequisite to understanding protein 
function and, by extension, a cornerstone of proteomics research. Because months and sometimes 
years are involved in verifying protein structure through experimental methods, computational 
methods of modeling and predicting protein structure are currently viewed as the only viable means 
of quickly determining the structure of a newly discovered protein. This section explores the role of 
modeling and simulation methods in determining protein structure.

Proteins, like genes, don't exist as linear sequences of molecules, but assume complex, compact 3D 
shapes. Protein shapes or configurations are characterized as secondary, tertiary, or quaternary. The 
primary protein configuration—the simple linear sequence of covalently bound amino acids—is 
functionally uninteresting. The secondary structure is the local geometry along the sequence, 
typically in the form of sheets, coils, loops, and helices. Most proteins are composed of a combination 
of secondary structures. A protein's tertiary structure describes how the molecule folds in 3D space. 
Quaternary structure describes the complex configuration of a protein that is interacting with other 
molecules in 3D space.

There are two main computational alternatives to experimental methods of determining or predicting 
secondary and tertiary protein structures from sequence data. The first approach is based on ab initio 
methods, which involve reasoning from first principles. The second approach, often termed heuristic 
methods, is based on some form of pattern matching, using knowledge of existing protein structures. 
Ab initio methods rely on molecular physics, and ignore any relationship of the molecule with other 
proteins. Heuristic methods, in contrast, use information contained in known protein structures. 
Figure 9-11 shows a flowchart of the methods available for determining or predicting protein 
structure from protein sequence data.

Figure 9-11. Computational Methods of Protein Structure Prediction versus 
Experimental Protein Structure Determination Methods. Ab initio and 

heuristic methods promise to provide less accurate but more timely results, 
compared to experimental methods that can require a year or more of 

research per molecule.



The difference between the two approaches can be appreciated with parallel approaches in 
archaeology. When a fossilized skeleton of a small animal is discovered, one approach to 
reconstructing the physical structure of the animal and its lifestyle is to reason from first principles, 
using the size, arrangement, thickness of the various bones, the size of the brain case, and other 
physical indicators, such as the bowing of the long bones (which indicate the amount of musculature 
present). Wear patterns on the teeth might suggest a diet rich in grains, and the presence of canines 
may suggest the animal was omnivorous.

The second approach to assessing the fossil of the extinct animal is to compare the skeleton with 
those of known animals. The leg and arm bones may approximate those of small modern monkey, for 
example. The teeth may approximate those of a modern primate, with large, flat molars and 
prominent canines. The relative size of the brain case, when compared to present-day monkeys, 
might give an indication of the relative intelligence and social lifestyle of the extinct animal, based on 
current primates.

Comparing fossilized skeletons of animals with those of modern animals is frequently practiced 
because it's easy, rapid, and to the best of our knowledge, fairly accurate. Reasoning from first 
principles is usually reserved for those cases where there is nothing resembling the newly discovered 
fossil in the current fossil record. In many cases, the methods overlap and complement each other. 
For example, first principles may be used to reconstruct the general body shape and stature of the 
extinct animal, but give no indication of the skin or hair coloring. However, by extrapolating current 
behavior and habitat knowledge of current species, a good guess can be made as to the composition 
and color of the skin, fur, or feathers.

Similarly, in bioinformatics, ab initio and heuristic methods of determining protein structure are 
commonly used in parallel or sequentially because of the accuracy limitations of either approach 
when used alone. For example, hand editing is commonly applied to ab initio data to improve the 
accuracy of the results. The primary methods used in the two basic approaches are reviewed here, 
with an emphasis on the underlying modeling and simulation techniques involved in each method.

Ab Initio Methods



Pure ab initio methods of determining protein structure are based on sequence data and the physics 
of molecular dynamics. Newtonian physics, atomic-level forces, and solving equations for the most 
stable (minimum free energy) conformation or structure form the basis for these methods. Reasoning 
from first principles assumes that the shape of a protein can be defined as a function of the amino 
acid sequence, the temperature, pressure, pH, and other local conditions without knowledge of the 
biology associated with the molecule. For example, the fact that a protein unfolds or becomes 
denatured at elevated temperatures and reverts to its normal, active, folded state can be modeled 
irrespective of the structure or function of the protein. However, unlike our knowledge of physics or 
other hard sciences, our understanding of the first principles of molecular biology is largely 
incomplete. As a result, attempts thus far at using first principles as the basis for determining protein 
structure have been successful primarily as a means of defining limited areas (finishing) of the global 
protein architecture. For example, with the overall protein structure approximately known, reasoning 
from first principles can be used to define a particular bend in the structure.

Because of the computational demands associated with ab initio methods, assumptions and 
simplifications are required for all but the smallest proteins. For example, just as the models of 
individual neurons discussed earlier are composed of simple equations, instead of considering the 
dozens of variables affecting each atom and bond in a real neuron, a common simplifying assumption 
is that protein structure can be computed from bond lengths, bond angles, and torsion (dihedral) 
angles (see Figure 9-12).

Figure 9-12. Ab Initio Protein Structure Determination. Based on the 
protein's amino acid sequence (primary structure), secondary and tertiary 
structures are computed. Tertiary structures typically takes the form of xyz 
coordinates for each atom in the protein molecule. Many ab initio methods 

assume that protein secondary and tertiary structures are a function of 
bond lengths, bond angles, and torsion angles.

Additional assumptions are that bond lengths are constant, and that bond length is a function of the 
two atoms involved in the bond. Bond angles, which are a function of the relative position of three 
atoms, are also assumed to be constant. Bond angles, which are limited to the range of about 100 to 



180 degrees, are a function of the type of atoms involved and the number of free electrons available 
for bonding.

Torsion angles, which are a function of four atoms, are considered to be variable, and range from 0 

to 360 degrees. The three principal dihedral angles are commonly referred to as omega ( ), psi 
(Ψ), and phi (Φ), as illustrated in Figure 9-13. Together, they define the protein backbone for each 
amino acid in a polypeptide chain. Omega, the Cα-to-Cα torsion angle about Cβ and N, is assumed to 
be constant at 180 degrees. Psi, the N-to-N dihedral angle about Cα and Cβ, and Φ, the Cβ-to-Cβ 
torsion angle about the bond between the N and Cα, are restricted because of the interaction of 
residues attached to the backbone. Typical values for phi and psi are –57 and –47 for an alpha helix 
and –119 and 113 for a beta sheet, respectively.

Figure 9-13. Key Dihedral Angles—Omega (Ω), Psi (Ψ), and Phi (Φ). The 
angles refer to the torsion about the two planes defined by the two atoms 

to either side of the labeled bond.

A graph called the Ramachandran plot describes the allowed combinations of phi versus psi for a 
protein molecule (see Figure 9-14). One way to model a protein structure is to limit the values of psi 
and phi for a particular dihedral angle to those allowed by the Ramachandran plot. The 
Ramachandran plot is useful in constructing a model of a protein because the values for psi and phi 
used in the model must be in agreement with the allowed values shown in the plot.

Figure 9-14. Ramachandran Plot from SWISS-PDBViewer Showing Phi 
versus Psi for Glutamine Synthetase.



A major consideration in defining bond and torsion angles is whether to use the traditional Cartesian 
coordinate system or internal coordinates. The Cartesian coordinate system, with origin 0 and three 
orthogonal axes, commonly labeled x, y, and z, is used by the major protein databases, including the 
PDB (see Figure 9-15). For example, the first atom in the sequence for Deoxy Human Hemoglobin, 
PDB entry 1A3N, contributes to the first amino acid in the sequence, Valine (VAL). The coordinates 
for the first atom, a Nitrogen atom (N), are 10.720 (x) 19.523 (y), and 6.163 (z). Also listed are the 
occupancy (21.36), the frequency with which the atom is present in the protein, and temperature 
(1.00), which is a measure of the uncertainty in the position of the atom in the crystalline protein. 
The listing also indicates the role of each atom in the sequence. For example, the second atom is an 
alpha carbon, while the fifth atom is a beta carbon.

Figure 9-15. PDB Entry for Deoxy Human Hemoglobin, PDB ID 1A3N. It 
shows Cartesian coordinates for the first amino acid (Valine) in the 

sequence.



Whereas the Cartesian coordinate system maps atoms involved in a protein structure relative to an 
absolute special geometry, internal coordinate schemes define all angles and positions relative to an 
arbitrary structure, such as the first bond in an amino acid sequence. The use of an internal 
coordinate scheme often provides a computational advantage over a Cartesian system, especially 
when thousands of atoms are involved. However, working with an internal coordinate system often 
makes it difficult to relate protein structures that are not connected, and it's difficult to determine 
absolute distances between molecules and atoms.

The assumption that a protein's secondary structure can be completely defined as a function of bond 
lengths, bond angles, and torsion angles, while not always valid, greatly simplifies the computations 
involved. However, in some instances, even limiting consideration of protein structure to bond 
lengths, bond angles, and torsion angles is too computationally intensive. For example, modeling 
protein-protein interactions, with each protein molecule composed of perhaps several thousand 
atoms, in an aqueous environment with several hundred-thousand water molecules, is currently 
practically impossible on desktop hardware and may require days of supercomputer time. As a means 
of simplifying the computations, protein molecules are commonly simplified by representing certain 
chemical groups as points or ellipses that are either attracted to or repelled by surrounding water 
molecules.

The overall process of determining or predicting tertiary protein structure from a known primary 
structure or sequence is illustrated in Figure 9-16. Given a sequence of amino acids, the first step is 
to generate a reasonable secondary structure by using bond lengths, angles, and torsion angles. The 
next phase of the process, generating the tertiary structure, involves methods such as molecular 
dynamics and Monte Carlo methods to create a library of tertiary protein structure candidates.

Figure 9-16. General Ab Initio Protein Structure Prediction Process.



Molecular dynamics involves using Newtonian physics to calculate the force on each atom and move 
that atom a distance in a small unit of time. The process is repeated until a pre-determined time limit 
is reached. The two major limitations of molecular dynamics in generating tertiary candidates are 
round-off error and computation overhead. With longer runs of the program, round-off errors tend to 
accumulate. This usually becomes apparent when the total energy of the protein under study begins 
to drift. Determining the tertiary structure of a protein based on physical principles alone is 
challenging because of the sheer number of possible folds.

Assuming that there are three possible conformations for a given amino acid—a helix, sheet, or 
coil—the number of folds is equal to 3n, where n is the number of amino acids or residues in the 
protein. This relationship between the possible number of conformations and amino residue count is 
illustrated in Figure 9-17. Considering that a molecule with only 100 residues would have 3100 or 5.2 
x 1047 folds, computationally examining every fold using Newtonian physics would take several 
lifetimes on the fastest supercomputer. Generating every possible tertiary structure candidate for a 
typical protein, such as Glutamine Synthetase, which has over 5,600 residues, is unlikely without the 
invention of fundamentally new form of computing. Currently, generating a 3D structural candidate 
with about 50 residues (with 350 folds) requires several hours of high-end workstation time. Because 
the process may be repeated thousands of times in the creation of a library of candidates, months of 
computer time could be involved in the project.

Figure 9-17. Residue Count versus Possible Conformations for Protein 
Molecules. The number of possible conformations for protein molecule with 

n residues is 3n.



Given a library of 3D structure candidates, the most promising structures are filtered from the less 
promising structures. A common method of filtering is to use the Metropolis Algorithm to identify the 
most stable molecular conformations. This method is based on the assumption that the native 
conformation of a protein is the conformation with the lowest free energy. This method works for 
many proteins, but not others. For example, prions (proteinaceous infectious particles) are 
energetically unstable and are more stable in their disease-inducing state. Similarly, not all proteins 
go to a lowest energy state in nature. Some proteins fold independently, whereas other proteins 
require chaperones—molecules that act as catalysts—to fold.

Once the top protein structure candidate is identified, it is validated and visualized. Validation 
typically refers to comparing the predicted protein structure with a structure derived from NMR and X-
ray crystallography experiments. That is, ab initio methods are still being perfected. Eventually, ab 
initio methods may provide enough accuracy and handle molecules large enough to supplant 
experimental methods. However, for now, validation involves assigning a figure of merit to the 
predicted structure, based on comparison to the gold standard. The most often-used figure of merit 
in protein structure comparison is the root mean squared deviation (RMSD). The calculation for 
RMSD, expressed in Angstroms, is shown in Figure 9-18.

Figure 9-18. Root Mean Squared Deviation (RMSD) Calculation. N = number 
of atoms. D = the distance in Angstroms between corresponding atoms in 

the experimental and predicted protein structures.



Perfectly identical structures would have an RMSD of 0; matching short to moderate-length protein 
structures typically have RMSDs in the 1–3 Angstrom range. A problem with RMSD is that it doesn't 
take the size of the protein into account, and therefore the significance of the RMSD score can't be 
taken as an absolute measure across all proteins. An RMSD of 5 or 6 Angstroms may be intolerable in 
a molecule with only 50 residues, but perfectly acceptable in large protein molecules for applications 
such as searching structure databases for known protein structures. However, even as a relative 
measure, RMSD is valuable when working within a single family of proteins because the size of 
structures will be about the same.

In addition to the RMSD measure, a variety of visualization techniques are available to provide 
qualitative measures of similarity. Visualizing the protein structure is typically performed through the 
use of any number of freely available protein rendering engines on the Web, such as RasMol, 
Chimera, or SWISS-PDBViewer, as described in Chapter 5, "Data Visualization." An important note in 
the use of visualization software as an adjunct to validation is that many visualization engines 
incorporate embedded simulations in order to derive structure from simple bond angle data (see 
Figure 9-19) and may introduce uncertainty or bias in the output renderings. For example, 
visualization packages that work with the PDB data format create images of molecules based on rules 
and assumptions contained within the visualization package. Because rules and assumptions vary 
from one tool to another, there may be significant differences among the graphic output produced by 
these systems. In contrast, tools expecting ANS.1 format data don't rely on an embedded simulation 
to create the visual output, and their output is free of bias.

Figure 9-19. Embedded Simulation. Many visualization tools incorporate 
embedded simulation systems (top) in order to create the data necessary 

for visualization. Tools that expect data in the PDB data format are included 
in this category.



Before leaving the discussion of ab initio methods, the Rosetta method is worth mentioning because 
it is widely recognized as one of the most promising of the protein structure prediction methods. The 
Rosetta method typically involves breaking up a protein of unknown structure into words of three and 
nine amino acids in length. The fragment libraries that are used to limit the conformations of these 
segments are extracted from one of the online protein structure databases. Monte Carlo methods are 
used to identify conformation combinations with the lowest free energy. The sequential construction 
of protein structures is repeated thousands of times using independent simulations that start from 
different random number seeds. The resulting structures or candidates are clustered and a candidate 
from the centers of each of the largest clusters is selected as the predicted structure.

The Rosetta method is based on the assumption that the distribution of conformations sampled by a 
local amino acid sequence is taken as an approximation of the set of local conformations that a given 
sequence segment in a protein of unknown structure would have available during the folding process. 
Given the possible conformations that each segment can assume, the combination of local 
conformations with the lowest overall energy is taken as a candidate structure.

Although this method, which has been used with very good results with protein segments of up to 
about 90 residues in length, is often billed as form of ab initio protein structure prediction, it actually 
represents a hybrid method because it incorporates data from a library of protein structures.

Heuristic Methods

While ab initio methods of protein structure prediction can be used to identify novel structures from 
sequence data alone, they're too computationally intensive to work with all but the smallest proteins. 
For most proteins of unknown structure, short of X-ray crystallography and nuclear magnetic 
resonance (NMR) studies, heuristic methods offer the fastest, most accurate means of deriving 
structure from amino acid sequence data. Heuristic methods use a database of protein structures to 
make predictions about the structure of newly sequenced proteins. A basic premise of heuristic 
methods is that most newly sequenced proteins share structural similarities with proteins whose 
structures and sequences are known, and that these structures can serve as templates for new 
sequences. It's also assumed that because relatively substantial changes in amino acid sequence may 
not significantly alter the protein structure, similarity in sequences implies similarity in structure.

The primary limitation of a heuristic approach to protein structure prediction is that it can't model a 
novel structure. There must be a suitable template—meaning that the sequences of the template and 
the new protein can be aligned—available to work with as a starting point. For this reason, heuristic 
approaches often have difficulty with novel mutations that induce structural changes in the new 



(target) protein molecule. Within the constraints of these assumptions and limitations, the 
advantages of heuristic methods over ab initio methods are significant, and include improved 
accuracy and an ability to work with large protein molecules as opposed to protein fragments. In 
addition, the potential time savings of heuristic over experimental methods is a driving force for 
investment in heuristic methods from the pharmaceutical and private investment communities.

The main heuristic method of predicting protein structure from amino acid sequence data is 
comparative modeling—that is, finding similarities in amino acid sequence, independent of the 
molecule's lineage. Comparative modeling is sometimes confused with homology modeling. However, 
homology implies ancestral relationships, and assumes that proteins from the same families share 
folding motifs even if they don't share the same sequences. In contrast, comparative modeling 
assumes that proteins with similar amino acid sequences share the same basic 3D structure.

The basis for comparative modeling is typically the PDB, which contains descriptions of 3D structures 
of proteins and other molecules as determined by NMR and X-ray crystallography experiments. 
Another source of modeling data is the Molecular Modeling Database (MMDB), which combines PDB 
data with cross references to sequence, chemical, and structural data. It's important to note that the 
protein structures defined within PDM, MMDB, and virtually every other protein structure database 
are based on assumptions that may not be completely valid. For example, the common assumption 
that similar amino acid sequences result in similar protein structures is known to have exceptions.

Comparative modeling is an iterative, multi-phase process. As outlined in Figure 9-20, given protein 
sequence data, the main phases of the process are template selection, alignment, model building, 
and evaluation. 3D visualization is often performed as part of the evaluation phase. The key activities 
in each phase of the comparative modeling process are outlined here.

Figure 9-20. Comparative Modeling Process. Not illustrated is the optional 
use of ab initio methods at the end of the model building phase to reduce 

errors in the computed structure.

Template Selection

The first phase of the comparative modeling process, template selection, involves searching a 
template database for the closest match or matches to the new (target) molecule, based on the 
target's amino acid sequence. The goal of template selection is to discover a link between the target 



protein and a known protein structure. This usually involves the use of a protein structure template 
databases, such as the PDB. Selecting an appropriate group of database entries from the database to 
serve as structure templates is typically based on some form of sequence comparison or threading.

Pairwise sequence comparison involves searching sections of the template candidate for amino acid 
sequences that are similar to sequences in the target protein. A key decision in sequence comparison 
is how similar is similar enough. Multiple sequence comparison relies on an iterative algorithm that 
expands the template search to include all reasonable candidate templates from the template 
databases. As a result, multiple sequence comparison is more sensitive and more likely to find 
suitable templates in the template database.

Threading involves aligning the sequence of the target protein with the 3D structure of a template to 
determine whether the amino acid sequence is spatially and chemically similar to the template. 
Threading can be thought of as searching through a bin of factory-second gloves, looking for a glove 
that fits, where the hand is the target protein and the gloves represent templates. Some gloves may 
be able to accommodate only four fingers (no thumb), whereas others might have a channel for a 
sixth finger. These gloves represent templates that don't match the target protein. Gloves that, on 
visual inspection (the gloves aren't actually tried on—yet) can accommodate five fingers on the 
proper hand—assuming the hand is "normal"—are retained as potential templates. Similarly, 
templates that best fit the target protein are identified for use later in the comparative modeling 
process.

There are various forms of threading. For example, in contact potential threading, which is based on 
the analysis of the number and closeness of contacts between amino acids in the protein core, the 
idea is to position amino acids and compute empirical energies from the observed associations of 
amino acids. The most energetically stable conformation is the most likely protein structure. A more 
complex form of threading involves modeling energies from first principles. This method is based on 
dynamic programming techniques and is a recursive method of solving a problem that involves 
saving intermediate results in a matrix or table so that they can be used for future calculations. 
Regardless of the technology used, the goal is to find the template that best fits the target protein's 
structure. Template selection is complicated because not only do different sequences adopt the same 
fold, but many combinations of amino acids can fit into the same 3D conformation.

Alignment

The goal of the alignment phase of comparative modeling is to align the sequence of polypeptides in 
the target sequence with that of the template structure in order to position the target and template in 
the same 3D orientation. Continuing with the glove scenario, alignment involves placing the hand in 
the glove so that all of the fingers fill the appropriate sections of the glove. Many of the alignment 
procedures are based on dynamic programming techniques, often supplemented with manual 
methods based on visual inspection of the molecule.

Model Building

Once the libraries of templates that match the target protein have been identified, the actual model 
building or assembly can begin. Ideally, the structure of one of the templates will exactly fit the 
definition of the target protein, suggesting that the structure of that target is identical to that of the 
template. However, this almost never occurs. For any given target-template pair, there are likely to 
be several bends or kinks in the template backbone that don't align with the sequence in the target 
protein. Because a single change in only one bond angle can result in a major change in the 
conformation of a protein molecule, there is a better chance of identifying a fit if parts of the 
template are pieced together, one at a time. The issue in this approach is how big a piece of template 
structure to use.

One approach, rigid body assembly, uses large segments of the template that are dissected at 
natural folds and reassembled over the superimposed structure of the target molecule. The accuracy 
of model building through rigid body assembly can be increased if parts from several templates are 
available because there is an increased chance that a sub-assembly of the molecule—a rigid 



body—will be available that closely matches the sequence in a corresponding area in the target 
protein, as illustrated in Figure 9-21. The use of rigid bodies can be compared to building a house 
from prefabricated rooms, complete with walls, ceilings, closets, and windows.

Figure 9-21. Rigid Body Assembly of Protein Structure. The target protein 
structure backbone (right) is defined by rigid bodies (large protein 

structure segments) from the three protein backbone templates (left).

Segment matching is a more flexible approach to model building, compared to rigid body assembly. 
The goal is to identify areas on structure templates that match areas in the target protein with similar 
sequences. These short matching segments in the template are used as guiding positions in the 
target molecule, as illustrated in Figure 9-22. Returning to the house-building metaphor, segment 
matching is like using prefabricated walls, floors, and ceilings. Compared to using prefabricated 
rooms, there are many more pieces to deal with, but it's more likely that the resulting structure will 
fit the architecture's plans (the sequence data) because of the flexibility allowed by the finer 
granularity of the available parts.

Figure 9-22. Short Segment Assembly of Protein Structure. Short structure 
segments (top) with sequences matching those of the target protein 

(bottom) are used to define the 3D structure of the protein, segment-by-
segment.



Modeling by satisfaction of spatial constraints is a technique that uses data from a variety of sources 
to constrain the physical configuration of the target protein molecule. Such techniques use data 
employed in ab initio modeling, such as data on bond lengths, bond angles, dihedral angles, and the 
free energy associated with various molecular geometries. Data from experimental studies, such as 
NMR and electron microscopy, can also be used to further constrain the allowable structure of the 
target protein. One of the advantages of constraint-based modeling is that the method is inherently 
extensible and capable of incorporating any new data or technology into the body of constraints.

Evaluation

In evaluating comparative modeling results, it's important to remember that heuristic modeling, like 
ab initio methods, is an experimental process, and that even the best methods rarely achieve 
accuracies approaching 70 percent. As such, the modeling-evaluation process is typically repeated 
dozens of times before a reasonable target structure is constructed. In this evaluation process, 
visualization is key as a first-pass screening tool used to validate gross measures, such as whether 
the model has the correct fold.

For a more quantitative evaluation, a measure of target-template similarity can be used. The greater 
the similarity of the model with the closest template, as measured by RMSD, the more likely the 
model is an accurate prediction of the actual structure. A target model that is radically different from 
any of the templates used to construct it isn't likely to be a valid structure. Comparative modeling 
isn't intended to model novel structures—an area where ab initio methods shine—but to build upon 
existing structure models. Returning to the archeology analogy, if the bones of a newly discovered 
early primate are found, the feet should be below the pelvis, and the arms attached to the shoulder 
joints, for example. A reconstruction in which the head faces backwards— like the model of a new 
protein—isn't likely to be a valid structure. It could be a new species with a backward-facing head, 
but a close examination of the cervical and thoracic vertebrae (reasoning from first principles or ab 
initio modeling) would likely suggest the head faces forward.

In comparative modeling, this inclusion of ab initio modeling to check the validity of bond lengths, 
bond angles, and torsion angles is termed finishing. An evaluation of free energy is sometimes used 
in the evaluation phase as well. The working assumption is that a correct protein structure has less 
free energy (is more stable) than a protein structure that is in an incorrect conformation.



In cataloging potential sources of errors, it's important to consider that the accuracy of protein 
structure modeling is inherently limited by the accuracy and purity of the NMR and X-ray 
crystallography data that form the basis of protein structure templates. Each experimental method is 
associated with specific artifacts that should be considered when the results of comparative modeling 
or ab initio predictions are evaluated. For example, both techniques produce erroneous data if there 
is lack of homogeneity in the protein samples. In the more time-intensive X-ray crystallography, 
these errors appear as a range of values instead of a single value for the distance between two 
atoms. In contrast, with NMR methods, the data returned for inter-atomic distances is often a single 
value that represents an average value. As such, errors in NMR data that result from populations of 
proteins in the sample may be more difficult to detect. However, in many instances, choosing NMR 
over X-ray crystallography or vice versa isn't possible, especially in niche areas. For example, NMR 
techniques are limited to small- and medium-sized protein molecules.



 
Systems Biology

Just as genomics research, which focuses on sequencing of human and other genomes, is being 
supplanted by proteomic research as the work of sequencing has become commonplace, proteomic 
research has a limited lifespan as well. Eventually, the dozens of computer-based methods of protein 
structure modeling and the numerous tools that support these methods will be replaced by one or 
two accepted methods, and the focus of the bioinformatics community will move up another level 
toward functional proteomics. Following this progression to its natural conclusion, the focus of 
bioinformatics will eventually converge with clinical medicine at the cellular and organ-system 
level—so-called systems biology.

A major challenge in modeling and simulating systems biology is integrating high- and low-level 
models so that a more accurate picture of the entire biological process can be obtained. Integrating 
models of protein structure and function with those of biochemical pathways promises to provide 
insight into disease processes and, by extension, the most efficacious designer drugs.

Although some researchers are working with systems biology today, for the most part they are 
limited by both data and computational methods and power. A single cell might contain tens of 
thousands of molecules, each interacting with each other in complex ways not yet understood. 
Furthermore, not only must researchers understand the function of normal cells, but they must be 
able to model and simulate cells involved in cancer or HIV, for example.

Today, the focus is on what can be practically accomplished with current technology and data, such 
as creating physiologically complete models and simulations of the heart, pancreas, and liver. 
Although very broad clinical simulations of these and other organs have been developed for teaching 
purposes, the kinds of models applicable to drug research are at a much greater level of detail and 
complexity and require Linux clusters or a mainframe to run them in real time. With time, these 
requirements will be more easily met, as affordable desktop computing power continues to increase 
in performance. What remains is for researchers to discover how to best apply this hardware toward 
solving the next generation of bioinformatics challenges.



 
Tools

Modeling and simulation are complex operations that tax even the most advanced hardware. 
Developing modeling and simulation systems de novo requires knowledge of advanced computing 
techniques, from Markov Modeling to network computing and numerical calculus. Fortunately, a wide 
variety of modeling simulation tools is available on the Web and from commercial vendors. As listed 
in Table 9-2, there are tools specifically designed to aid modeling and simulation in bioinformatics as 
well as tools for general-purpose modeling. For example, a tool such as Prospect (PROtein Structure 
Prediction and Evaluation Computer Toolkit), a threading-based protein structure prediction program, 
can be used as part of a comparative modeling process. A commercial system, such as Extend, can 
be used to determine the most cost-effective means of staffing the research lab, based on a model of 
individual researcher output and the overall protein structure modeling process.

Table 9-2. Modeling and Simulation Tools.

Tool Examples

Databases CATH, GenBank, GeneCensus, ModBase, PDB, Presage, SWISS-PROT+TrEMBL

Template Search 123D, BLAST, DALI, FastA, Matchmaker, PHD, PROFIT, Threader, UCLA-DOE 
FRSVR

Sequence Alignment BCM Server, BLAST, Block Maker, CLUSTAL, FASTA3, Multalin

Modeling Coposer, Congen, CPH Models, Dragon, ICM, InsightII, Modeller, Look, 
Quanta, Sybyl, Scwrl, Seisss-Mod, What If

Verification Anolea, Aqua, Biotech, Errat, Procheck, ProCeryon, Prosall, PROVE, SQUID, 
VERIFY3D, WHATCHECK

Visualization CHIMERA, SWISS-PDBViewer, RasMol, Pymol

Academic SLAM III

Commercial Extend, Crystal Ball, MedModel, ProModel, Simul8, Micro Saint, ACSL, Arena, 
GPSS/H, iThink, MAST, MODSIM III, Simprocess, Taylor II

In considering the tools in Table 9-2, it's important to consider that most of these are in 
flux—especially those developed for bioinformatics-specific roles. New releases of existing systems 
and new programs that replace current programs are a constant occurrence. In contrast, the 
commercial, general-purpose programs are more stable, in part because of demand from a variety of 
arenas that don't include bioinformatics. Of course, as discussed previously in the section on 
fundamentals, it's imperative to understand the assumptions made by the simulation system 
designer and then to decide if those assumptions are in agreement with your needs.



 
On the Horizon

The availability of affordable, powerful computer hardware and software affects more than simply the 
throughput of modeling and simulation experiments in bioinformatics. A common finding in 
simulation-based R&D is that as more computer processing power becomes available, the time 
required to run a simulation doesn't decrease significantly. Instead, researchers tend to increase the 
complexity of the underlying models in order to provide higher-resolution—and presumably more 
realistic—simulations. This phenomenon is most obvious in the motion picture industry in which 
computer-animated figures, which are based on models of synthetic characters, have become 
virtually indistinguishable from real actors. For example, the T-1000 robot in Terminator II, the first 
use of a simulated actor in a major motion picture, is virtually indistinguishable from a human actor.

Similarly, in the life sciences, increased access to computing power is resulting in the development 
and use of more complex, higher-resolution models and simulation systems. This is critical, because 
inadequate resolution can lead to incorrect conclusions. For example, a model of protein-protein 
interaction that doesn't take temperature, pH, and the presence or absence of sugars and other 
molecules in the local environment into consideration may incorrectly predict a level of interaction 
that wouldn't be possible in reality.

Work is underway to develop increasingly complex modeling and simulation software that is designed 
to use the ever-present next-generation of desktop computer hardware and operating systems. 
There is also considerable activity in the areas of heuristic control of simulations, as well as 
advancing cluster, grid, and mainframe computing. This power is being directed at rapid computation 
and is enabling researchers to consider additional phenomena that are relevant to the structure and 
function of proteins, such as the role of functional glycomics, for example. Approaches to realizing 
more computational throughput includes making existing simulation code parallel so that it can make 
use of multiple processors, and of special, high-performance mainframe hardware architectures used 
by IBM's SP-2 Blue Gene, and similar machines.



 
Endnote

For researchers who focus on modeling the 3D structure of proteins, the biannual meeting of the 
Critical Assessment of Techniques for Protein Structure Prediction (CASP) is a moment of truth. 
Participants, whose future funding often rests on the results of their efforts, are challenged with the 
task of using their computer algorithms to predict the precise 3D structure of an array of relatively 
small proteins. Results are judged by comparing predicted structures with those determined 
experimentally through NMR or X-ray crystallography methods. Before the competition was limited to 
fully automated means of structure prediction, one of the top performers at the conference wasn't an 
algorithm running on a supercomputer or Linux cluster, but a mere human—Alexey Murzin of the 
Medical Research Council's Laboratory of Molecular Biology in Cambridge, England.

Murzin's predictions of protein structure, which are based on biological heuristics, cast such a doubt 
over the need for computational methods that there was talk of cutting government funding to the 
computer laboratories involved in structure prediction. Even though Murzin is now barred from 
officially competing in the current CASP meetings, his heuristic methods consistently compare 
favorably with the best computational solutions.

The human-machine competition in bioinformatics, like the competition between Garry Kasparov and 
a chess-playing computer in 1997, is likely to eventually be won by the machine, if for no other 
reason than the lack of human experts to predict the structure of the thousands of proteins 
discovered every year. However, even as the price of computing power drops, Murzin's performance 
suggests that simply adding faster processors isn't the best solution, and that a combination of ab 
initio and heuristic methods will eventually provide the most accurate, consistent, and affordable 
predictions of protein structure.



 

Chapter 10. Collaboration
 Crystal structure of Colicin E3 in complex with its immunity protein. PDB entry 1JCH. 

Image produced with PDB Structure Explorer.

The chess board is the world, the pieces are the phenomena of the universe, the 
rules of the game are what we call the laws of Nature. The player on the other side is 
hidden from us. We know that his play is always fair, just and patient. But we also 
know, to our cost, that he never overlooks a mistake, or makes the smallest 
allowance for ignorance

—Thomas Henry Huxley

The highly publicized fracas between the publicly sponsored Human Genome Project and the 



commercial Celera Genomics often overshadows the remarkable fact that the former involved the 
collaboration of 20 laboratories in 6 countries. Although academics in the bioinformatics field struggle 
for tenure, publications, and discoveries just as vehemently as researchers in other fields of 
academia, bioinformatics is characterized by an unusually high degree of collaboration among the 
researchers seeking to further the fields of genomics and proteomics.

At least part of the reason for this level of cooperation is the reward system established for sharing 
data. Virtually all molecular biology journals require authors to submit the sequence or structure 
described in their manuscripts to public databases prior to publication. What's more, unlike only a 
decade ago, many universities now consider software development as a type of publication worth 
consideration when the author is up for promotion or tenure. Another factor is that, unlike other 
fields such as nuclear physics, where the results of some multi-billion dollar experiment is put into 
the hands of perhaps a dozen scientists to evaluate, there is a flood of data that couldn't possibly be 
handled in a dozen scientist's lifetimes. Without the thousands of investigators developing tools and 
analyzing sequences and structures as they are generated, the field would be at a standstill. Perhaps 
everyone realizes that there's more than enough data and associated challenges to go around, and 
that it's only through cooperation and parallel exploration that the full potential of genomics and 
proteomics can be realized in our lifetimes.

This chapter explores the technologies and processes that can be used to facilitate collaboration in 
bioinformatics, starting with the "Collaboration and Communications" section, which distinguishes 
between communications and collaboration on the basis of technology, introduces many of the 
concepts underlying communications and collaboration, and focuses on real-time versus 
asynchronous methods. The remainder of the chapter deals with the issues underlying 
communications in bioinformatics. For example, the "Open Source" section looks at how the rise in 
popularity of open-source software has made a major impact on the development of bioinformatics 
programs. "Standards" explores the role of standards in bioinformatics, from file formats to operating 
systems, and their affect on day-to-day operations. Finally, the "On the Horizon" and "Endnote" 
sections consider the future of communications and the role of commercialization in making many of 
the dreams in bioinformatics research a reality.



 
Collaboration and Communications

When the Human Genome Project started in 1990, Web browsers hadn't been invented, cell phones 
were lunchkit-sized luxury items, the volume of e-mail was a distant fourth behind telephone, fax, 
and surface mail communications, and academic journal publishers expected printed manuscripts for 
submissions. Even the National Library of Congress didn't recognize electronic documents as 
copyrightable material.

Today, e-mail competes head-on with surface mail and the telephone as a means of communications 
in business and academia. Networks support real-time collaboration between researchers distributed 
around the globe, and academic publishing revolves around timely e-mail submissions. Cell phone 
and personal digital assistants (PDAs) are not only everyday business tools, but they're fashion items 
for high-school and college students. As another indicator of the shift in perception of the increased 
worth of electronic communications, the National Library of Congress changed its policy on electronic 
documents and accepted the first copyright application for an electronic book—this author's The 
Hitchhikers' Guide to the Wireless Web—in July of 2001.

Engineers commonly characterize electronic communications as either asynchronous or synchronous. 
Fax, e-mail, streaming video, online journals, bulletin boards, newsgroups, and voicemail are forms 
of asynchronous communications. Synchronous or real-time communications includes the use of the 
telephone, instant messaging, chat rooms, and videoconferencing. Regardless of whether it's 
synchronous or asynchronous, communications implies that there is a common language—or at least 
a common intermediary language—and that there is a communications channel between sender and 
receiver with a bandwidth that is compatible with the data transfer rate requirements. There is also 
an underlying assumption that the communication is of reasonable quality, in terms of signal-to-noise 
ratio, and that the data contained in the communication is valuable to the recipient. For example, 
computer-based real-time videoconferencing requires a relatively high-bandwidth communications 
channel, such as a connection to the Internet via DSL, cable modem, or Ethernet, and the computer 
hardware to support the transmission and reception of data with a reasonably short time delay (∆T) 
of up to a few hundred milliseconds between the sender and the receiver.

Electronic communication is essential to most R&D activities in bioinformatics. However, collaboration 
is even more valuable. Collaboration—the act of working in a group to achieve a common 
goal—follows the basic model defined in Figure 10-1, but is much more focused and interactive than 
simple communications. As illustrated in Figure 10-2, collaboration builds upon a communications 
infrastructure. In order to achieve the common goal, there is a real or virtual place for collaborators 
to work and share perspectives, to view common work, and to interactively evaluate and critique 
each others' contributions to achieving the goal.

Figure 10-1. Collaboration and Communications Model. The time delay (∆T), 
which is a function of the system design and bandwidth, defines the level of 

communications and collaboration possible.



Figure 10-2. Collaboration-Communications Hierarchy. Collaboration builds 
upon the capabilities of a functional communications infrastructure.

Communications and collaboration rely on a variety of technologies for the creation, modification, 
use, and transfer of data—activities that, taken together, constitute knowledge management. They 
include a variety of authoring tools for creating content and developing user interfaces, as well as 
database management systems (DBMSs) and controlled vocabularies for archiving data, plus 
software and hardware for creating a communications infrastructure. In addition, there are 
visualization and analysis aids, including tools for creating graphics, animations, and simulations. As 
described in the following sections, the technology requirements increase as a function of the 



collaboration-communications hierarchy.

Asynchronous Communications

The most common form of asynchronous electronic communications in bioinformatics is e-mail and its 
derivatives, including bulletin boards and newsgroups, Web postings, online publications, streaming 
(pre-recorded) video, and fax. The real benefit of asynchronous communications—minimal disruption 
of workflow—is also its main limitation. The recipient of an asynchronous message, such as an e-
mail, has the option of viewing the message in his or her own time, or simply ignoring it. On the 
other hand, the technical infrastructure requirements for asynchronous electronic communications 
are modest. A wireless, self-contained PDA is all that is needed to send and receive e-mail through 
the Internet or private network.

Synchronous Communications

Synchronous communication generally requires a more robust technical infrastructure than does 
asynchronous communication, especially in terms of bandwidth to support a higher level of 
interactivity. Video conferencing, instant messaging, and chat rooms are examples of synchronous 
communication that are useful in bioinformatics R&D. Although the telephone is the popular real-time 
communications device, real-time videoconferencing technology is increasingly popular because of its 
affordability and ability to minimize the time-consuming travel associated with face-to-face meetings.

The technology required to support real-time videoconferencing over the Internet or an intranet can 
involve little more than installing an inexpensive digital camera and software driver for each 
networked workstations that will be conferenced in. These systems are typically used for their video 
capabilities; the audio component of the communications is carried by a telephone. Although 
inexpensive videoconferencing systems produce somewhat jerky images up to a few hundred pixels 
in height and width on each workstation screen, they provide an enhanced level of communication 
over a traditional telephone conversation. Full-screen, high-resolution videoconferencing that can 
provide more than a talking head requires a much more expensive, high-bandwidth 
videoconferencing system. What's more, these systems, which can cost more than a high-end 
workstation, require several dedicated ISDN lines or other high-bandwidth connectivity to the 
Internet or other network for adequate performance.

Asynchronous Collaboration

Technologically, asynchronous collaboration can be supported by e-mail and voicemail 
communications exchanged according to a prearranged schedule or on an as-needed basis. That is, 
collaboration can be viewed as a layer of management or process control over a basic 
communications infrastructure. For example, one of the most significant formal asynchronous 
collaborations in bioinformatics is the submission of protein structures to the Protein Data Bank 
(PDB). Although collaborators could simply e-mail their results to PDB staff, quality control 
communications issues wouldn't be able to be properly addressed in a timely manner with manual 
methods. Instead, collaborators are required to use the Auto Dep Input Tool (ADIT) utility provided 
by the Research Collaboratory for Structural Bioinformatics (RCSB). ADIT accepts X-ray, NMR, and 
electron microscopy structure data, validates the data, and creates reports detailing the quality of the 
submission. A benefit of technologies that support asynchronous one-to-many collaborations like 
making submissions to the PDB is that significant collaborations can be established with minimal 
demands on the contributor's time and resources.

Synchronous Collaboration

Because the key technological issues in synchronous collaboration are time, reliability, and 
bandwidth, this type of collaboration requires a more robust synchronous communications 
infrastructure. Furthermore, the ideal system supports work-centered interactivity that supercedes 
what is possible through simple telephone communications, even if supplemented by desktop 



videoconferencing. As such, synchronous collaboration necessarily incorporates technologies that 
provide a virtual common workspace, such as an electronic whiteboard, and a means of working with 
applications and data interactively.

Synchronous collaboration draws upon many of the technologies and processes developed in the field 
of knowledge management. For example, the creation and acquisition of data benefit from 
technologies such as data mining, text summarizing, a variety of graphical tools, and a variety of 
information-retrieval methodologies. Similarly, archiving and access are facilitated by databases and 
database management tools. In addition, virtually all of these technologies require an infrastructure 
that is not only capable of supporting moderate to high-speed connectivity, but that provides privacy, 
security, and fault-tolerance as well.

As an example of the technologies supportive of synchronous collaboration, consider the options 
available for working with applications and data interactively. Three popular synchronous or real-time 
collaboration technologies are peer-to-peer screen sharing, commercial online conferencing services, 
and application-specific integrated collaboratories, as illustrated in Figure 10-3. Each of these 
technologies allows collaborators to see and control, either directly or indirectly, an application 
running on a remote workstation.

Figure 10-3. Collaborative Application Sharing Options. Popular methods of 
synchronous collaboration range from point-to-point screen sharing over 

the telephone network (top), to Internet-based commercial online 
conferencing services (middle) and application-specific integrated 

collaboratories (bottom).

Peer-to-peer screen sharing allows a user with the appropriate access privileges to connect to and 
take control of a remote workstation. This form of screen sharing is especially popular in training and 
troubleshooting situations, where a collaborator can demonstrate how to perform an operation in an 



application, and then watch as the collaborator performs the operation. PcAnywhere™ from 
Symantec is an example of several of the commercial peer-to-peer collaborative systems that 
supports two collaborators through a dedicated Microsoft Windows application that runs on the 
workstations involved in the collaboration.

Commercial online conferencing services extend the screen-sharing model by using a third-party 
Internet server that can support hundreds of simultaneous users without burdening the host 
machine. WebEx™ from WebEx Communications is an example of a browser-based, fee-for-use, 
multi-user collaborative system that enables collaborators to share presentations, documents, 
applications, voice, and video using Windows, MacOS, or Solaris operating systems.

Both peer-to-peer screen sharing and online conferencing services allow a remote collaborator to see 
and interact with a program running on another computer, using either dial-up or high-speed 
communications. However, even with a high-bandwidth communications medium, these technologies 
don't offer the degree of interaction and level of collaboration possible with an inherently shareable 
application. This is in part because screen-sharing programs don't support local video acceleration 
hardware to increase 3D rendering speed. In the case of peer-to-peer screen sharing, rendering 
speed on the remote workstation is limited by the capabilities of the host machine and the bandwidth 
of the connection. The same issues apply to browser-based multi-user systems, with the caveat that 
the demands on the host machine are minimized because it only has to communicate with the 
commercial server.

The most advanced form of application sharing is to use applications specifically designed as 
integrated collaboratories. An example of this level of application sharing is the Chimera molecular 
modeling system. The Chimera Collaboratory Extension of the program enables multiple collaborators 
to interactively model 3D protein structures in real-time. The Chimera Collaboratory, when combined 
with a high-bandwidth communications network, represents the next best thing to working on a 
molecule in the same room with collaborators.

The collaborative environments provided by applications such as Chimera are generally superior to 
peer-to-peer screen sharing and online conferencing services because of the collaboratory 
architecture. For example, each user of Chimera has a separate copy of the application running on 
their workstation, as well as a local copy of the modeling data. As a result, each workstation is 
responsible for its own rendering and database access, and isn't excessively burdened by having to 
send a screen image to a server or another workstation. In addition, Chimera supports the OpenGL 
graphics standard, which enables the application to take advantage of local graphics-acceleration 
hardware. To avoid chaos when a large number of collaborators are working together in Chimera, one 
collaborator is arbitrarily assigned the hub, which the other collaborators can join and leave at will. 
The collaborator controlling the hub can pass on authority of controlling a session to another 
collaborator at any time.

Application-specific integrated collaboratories are commonly referred to as groupware, which is 
typically defined as any software that enables group collaboration over a network. Groupware ranges 
from niche applications, such as molecular modeling, programming, and scheduling, to general-
purpose utilities that can support a variety of collaborative activities. These utilities include electronic 
whiteboards, shared document libraries, authoring tools, videoconferencing tools, instant messaging, 
text forums, and screen sharing.

Electronic whiteboards, which are expressly designed for group collaboration, are virtual whiteboards 
that enable multiple collaborators to take turns authoring and modifying hand-drawn or computer-
generated graphics, highlighting points of interest on digital images, or presenting a digitized slide as 
part of a presentation. Shared document-authoring tools are designed to enable multiple authors to 
create and edit a document online. Text forums are synchronous, text-based systems that allow 
group postings of responses to text messages. Most text forums are also asynchronous to the extent 
that they are self-archiving. A record of text interchanges is maintained as a database for review by 
other collaborators. Related utilities, such as instant messaging, that broadcast or exchange short 
text messages, may be used to extend collaboration to users with cell phones and wireless PDAs and 
laptops.



Videoconferencing—the real-time, one-to-one and one-to-many broadcasting of video and audio—is 
often configured to use the telephone lines for audio and the Internet or other network for the video 
channels. This is because brief interruptions in the packets of data passing through the Internet 
result in annoying dropouts in the audio signal, even though the interruption may not be noticeable 
with video because of the persistence of the image to the human eye. When there is ample network 
bandwidth available, videoconferencing may be extended to multimodal conferencing, that is some 
combination of electronic whiteboard, a text forum, audio communications, and multiple-channel 
videoconferencing—as a means of enabling real-time collaboration.

From a practical perspective, the limitations on the level of collaboration possible as a function of the 
bandwidth of the communications channel can best be appreciated by exploring the relationship 
between the level of interactivity versus the maximum number of simultaneous users that can be 
supported by a system. As illustrated in Figure 10-4, because e-mail is asynchronous, it can support 
a large number of users, but with little interactivity. Online text forums, which may involve real-time 
communications, offer more interactivity but can support fewer simultaneous users. As the user 
capacity of the text forum system is approached, interactivity will drop as a function of the available 
server resources.

Figure 10-4. Interactivity versus Maximum Number of Users for 
Collaborative Technologies. The typical tradeoff is of interactivity versus 

the number of collaborators that can be accommodated.

Shared authoring tools, such as the Chimera Collaboratory Extension or a general-purpose shared 
document editor, offer highly interactive levels of collaboration, but can only support a relatively 
limited number of participants. Multimedia conferencing, which integrates applications such as video 
conferencing, electronic whiteboards, screen-sharing applications, and shared authoring tools, offers 
the greatest flexibility in collaboration and the highest potential level of interactivity. However, it also 
demands the most of the communications infrastructure, and typically supports the fewest number of 
collaborators. Groupware that enables multimedia conferencing is often limited more by the 
bandwidth of the underlying network than by any inherent limitations in the application software or 



workstation hardware.

It's important to note that a robust communications infrastructure and tools capable of supporting 
the interactive interplay and exchange of data are necessary but insufficient to foster collaboration. 
Collaborations are built around interested, engaged, and motivated participants with a common 
vision. The concept of people- and project-centered communities of practice, as used in the field of 
knowledge management, seems most applicable here. The best collaborations, whether in real or 
virtual workspaces, can be facilitated by technology, but not dictated or even directed by it. In 
addition, some tasks are better performed in a hierarchical collaborative environment in which a 
team leader performs all of the work, based on suggestions from the other collaborators.

For example, consider that simulations are an excellent means of exploring what-if scenarios in an 
interactive format. As communication tools, simulations can be used to illustrate complex processes 
and dynamic relationships—such as protein docking—in an easy-to-understand, visual form. 
However, enabling peer-to-peer collaborative simulation building, in which each participant can take 
turns defining the parameters of the simulation from their perspective, isn't necessarily desirable. 
The exception is when collaborators have a shared vision of how the simulation should function and 
share the working assumptions of the underlying models. Without this shared vision, there is a 
significant risk that the resulting simulation won't reflect the best art of any of the collaborators.

The considerations of technology-enabled collaboration in bioinformatics aren't limited to small group 
projects such as constructing a molecule over the Internet, but extend to institutions and 
government supporters. For example, the Research Collaboratory for Structural Bioinformatics 
(RCSB), one of the major collaboratories in bioinformatics, is a consortium consisting of the 
Biochemistry Department of Rutgers, The State University of New Jersey, the San Diego 
Supercomputer Center (SDSC) at the University of California, San Diego (UCSD) and Department of 
Biochemistry, University of Wisconsin-Madison. Similarly, the funding of the RCSB is through an 
equally diverse collaboration. The PDB is operated by Rutgers, The State University of New Jersey; 
the SDSC at USCD; and the National Institute of Standards and Technology (NIST), with funds from 
the National Science Foundation, the Department of Energy, the National Institute of General Medical 
Sciences, and the National Library of Medicine.



 
Standards

Communications and collaboration are based on standards that span low-level file formats and 
hardware signal protocols to high-level application program interfaces (APIs) and user interface 
designs. Standards don't simply appear overnight, but, as illustrated in Figure 10-5, they normally 
evolve over months and years along a stepwise path from independent niche solutions to full 
interoperability.

Figure 10-5. Evolution of Standards. The data uniformity stage represents 
the first real instantiation of standards.

The evolution of standards normally progresses from independent niche solutions to interdependent 
interoperability with multiple data sources, applications, and application areas. Niche solutions tend 
to be internally focused, addressing a particular need within a lab or project, such as the need to 
model a particular protein molecule. The tool and data accessibility stage of standards evolution 
involves sharing among groups with a common focus or problem area, such as structure analysis. 
The data uniformity stage of standards evolution involves active cooperation that may include the 
formation or participation of ad hoc or formal standards organizations. The interoperability stage of 
standards evolution is characterized by interaction with standards organizations outside of the 
bioinformatics community.

The progression from niche solution to interoperability represents a potential path of progression. 
However, most niche solutions never evolve to the tool and data accessibility stage of standards, and 
fewer still progress to the data uniformity or interoperability stages of standards evolution. Consider 
the characteristics of each stage of the evolution of standards in more detail in the following sections.

Niche Solutions

The path to standards typically starts as a body of niche solutions that are designed to satisfy specific 
needs, without regard (or time to regard) for connectivity with other systems in order to solve other 
problems. Examples of early niche solutions in bioinformatics include stand-alone dot-matrix 
alignment programs that required sequence data to be either typed or pasted into the program, and 
whose output had to be manually copied and pasted into other applications. Hundreds of other niche 
solutions have been developed as well, from programs that perform data conversion from a particular 
NMR file format to one compatible with a homegrown analysis program, to interface tools that 



facilitate low-level communications between applications. Most of these niche solutions never leave 
the laboratory in which they are developed because the niche solutions can't be generalized to other 
laboratories. The few applications that do address general problems in a typical bioinformatics 
laboratory may progress to the next phase of standards evolution, tool and data accessibility.

Tool and Data Accessibility

The tool and data accessibility phase of standards evolution involves restricted sharing of the niche 
solutions among the members of the bioinformatics R&D community. Applications that have the 
greatest general appeal to other researchers are typically either distributed through academic and 
government-sponsored consortia or transformed into commercial ventures. In either case, there is a 
lack of data uniformity, and applications may be very useful or of no practical value, depending on 
the problems that need to be addressed.

This stage of standards evolution represents the status of applications in many areas of 
bioinformatics today. For example, consider the many varied file formats in use by the relatively 
small number of bioinformatics-specific applications, illustrated in Table 10-1.

Table 10-1. Major Bioinformatics File Formats.

ASN.1

DNAStrider

EMBL

Fitch

GCG

GenBank/GBFF

IG/Stanford

MmCIF

MSF

NBRF

Olsen

PAUP/NEXUS

PDB

Pearson/FASTA

Phylip/Philip3.2

PIR/CODATA

Plain/Raw

Pretty

Zuker

The number and variation of file formats used for nucleotide and protein data is an indicator of the 
amount of variability in the applications used in bioinformatics computing. Although bioinformatics is 
moving toward file format and application standards, there are hundreds of file formats in use. Many 
of these formats are application-specific and associated with niche solutions that are designed to 



solve a local problem as quickly and as efficiently as possible.

Making niche tools, their file formats, and the data they generate generally accessible is a major step 
in the evolution of standards. This phase represents an opportunity for larger academic or 
commercial players to position their proprietary formats as standards. The advantage of making tools 
and data openly available to a group of potential collaborators is that the best tools tend to attract 
the greatest number of users. These users in turn perpetuate the tools and the data formats that 
they support throughout the bioinformatics community, eventually making some tools de facto 
standards, simply because they perform their functions very efficiently or effectively. The most 
popular tools are often rewritten to enable sharing by supporting a uniform data format.

Data Uniformity

There are numerous reasons for developing data uniformity or a common file format for popular 
applications. A common file format for applications reduces the cost of maintenance and data 
archiving, minimizes the likelihood of data loss and results in more efficient use of software tools. 
Another motivation for establishing data uniformity through standards is to improve the reliability of 
searching the online bioinformatics databases. However, evolving to the data-uniformity stage of 
standards requires more than simply publishing data format specifications; it requires active 
cooperation among software and hardware developers.

Although cooperation may occur though a one-on-one relationship, in most cases there are either ad 
hoc group collaborations or formal standards groups. In either case, politics and capital are typically 
major deciding factors in which tools establish the standards. For example, a group of universities 
collaborating on a project may informally agree on a particular hardware, operating system, and 
application standard to facilitate sharing of data and applications. Similarly, a commercial venture 
that has built its product around a particular file structure, for example, may stand to lose 
considerable money if their format isn't selected as the industry standard.

The data uniformity stage of standards evolution is product- and industry-specific. For example, there 
are competing standards for NMR data formats. Most of the more than 20 manufacturers of NMR 
equipment support their own proprietary data format exclusively. Moreover, there may be several 
different formats supported by different product lines from the same NMR manufacturer. For 
example, there are the GE Omega, GN, and QE file formats, the Varian Gemini, XL, Unity, Inova, and 
VXR formats, and the Nicolet 1180 and 1280 file formats.

While the NMR market has yet to crystallize around a single data format, the standards issue appears 
much more certain in the area of protein structure data. The macromolecular crystallographic 
information file (mmCIF) format has a good chance of becoming the industry standard, in part 
because of a collaboration between the NIST and the RCSB. The two organizations are working to 
develop data and data-exchange standards based on the mmCIF format and eXtensible Markup 
Language (XML) over the Web.

Interoperability

The final stage of standards evolution—interoperability—is the ability of a device or application to 
work seamlessly with tools and devices from multiple industries. True interoperability isn't limited to 
bioinformatics, but extends to general-purpose tools, such as databases and spreadsheets, and to 
other specialized areas, such as NMR equipment. Interoperability makes it possible for a Universal 
Serial Bus (USB) printer to work with a Dell workstation running Linux or a Macintosh computer 
running OS X, or for an NMR machine to output files directly to a format compatible with the PDB.

Ultimately, interoperability extends beyond bioinformatics and molecular biology, potentially to 
encompass devices and software in every industry. As such, a bioinformatics application should be 
able to share data and link seamlessly with applications used in other industries, including Microsoft's 
suite of office products, Adobe's line of graphics creation and editing tools, and Oracle's suite of 
database tools. Achieving true interoperability involves following industry standards for everything 



from APIs, database data structures, operating system and network protocols, and user interface 
design, to magnetic media formats and cable connector designs.

Achieving interoperability necessarily involves national and international standards organizations (see 
Table 10-2). Although organizations such as NIST may be peripherally involved in the data uniformity 
stage of standards development, these organizations are intimately involved in achieving 
interoperability. For example, in the digital imaging industry, which includes manufacturers of digital 
cameras, flash-RAM, and developers of photo-editing software, interoperability is due to the work of 
the Joint Photographic Experts Group (JPEG) and the Motion Picture Experts Group (MPEG). The JPEG 
standard is recognized worldwide as a standard for compressing continuous-tone still images (digital 
photographs), just as the MPEG standard is used for digital motion pictures. Many graphics 
applications support several industry standards to maximize the odds of interoperability with other 
graphics applications. For example, in addition to supporting its own proprietary file format, Adobe 
Photoshop can import most of the graphics formats used by the most popular graphics applications 
available for workstations. For the same reason, the RasMol molecular modeling program supports 
data in graphics interface format (GIF), encapsulated PostScript (EPS), ASCII or raw, Windows 
bitmap (BMP), Apple PICT, and Sun Rasterfile (RAST).

Table 10-2. Standards Organizations. In addition to this sampling of 
standards organizations that affect bioinformatics, there are hundreds of 

additional standards working committees that informally influence 
standards.

ACR/NEMA American College of Radiology/National Electronic Manufacturers Association

ANSI American National Standards Institute

ASTM American Society for Testing and Materials

CEN European Committee for Standardization

EDIFACT Electronic Data Interchange for Administration, Commerce, and Transport

EUCLIDES European Clinical Data Exchange Standard

FCC Federal Communications Commission

HCFA Health Care Financing Administration

HHCC Georgetown Home Health Classification

HIPAA Heath Insurance Portability and Accountability Act

HISP Healthcare Informatics Standards Board

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

ISO International Standards Organization

JPEG Joint Photographic Experts Group

NANDA North American Nursing Diagnosis Association

NIST National Institute of Standards and Technology

OSI Open Systems Interconnection

UCC Uniform Code Council

Some standards are holdovers from previous systems that no longer exist. For example, GIF was 
introduced in 1987 by the now-defunct CompuServe online service as a proprietary format. GIF 



remains popular as an image format for Web pages because the images are compact and can be 
interlaced. Loading an interlaced image, which produces a melting effect on the screen as the 
alternate lines of the image are loaded, is especially useful with low-bandwidth connections. Users 
aren't left staring at a blank screen, waiting for the complete graphics file to download. Even though 
CompuServe is no longer a contender in the online market, the standard it introduced remains. 
Similarly, some standards are based on technologies developed for other purposes. For example, EPS 
is based on PostScript, a device-dependent page-description language developed by Xerox and 
commercialized by Adobe Systems for laser printers. Other graphics standards are so popular on 
particular hardware platforms that they are supported to guarantee that those hardware devices can 
access the images. For example, the BMP format is native to Microsoft Windows, and PICT is native 
to Apple's Macintosh.

Interoperability entails more than simple file formats. For example, although JPEG and MPEG file 
formats have helped the digital imaging market, standards for physical media and the associated 
electronics are equally important. Many of these standards arose from organizations outside of the 
digital imaging industry. The same situation exists in bioinformatics, where external organizations 
have a major influence on standards.

Table 10-2 lists a sample of the standards organizations that either directly or indirectly affect 
bioinformatics standards. Applications and devices that follow standards established by these 
organizations are compatible with data and devices from multiple developers and vendors. 
Conversely, those who ignore the standards do so at their own peril. The downside of ignoring 
standards depends on whether they are enforced or voluntary. For example, the Institute of Electrical 
and Electronics Engineers (IEEE) establishes standards for everything from signal levels in cables to 
and from NMR machines to the data bus inside of a workstation. Because the IEEE is a self-policing 
industry-sponsored organization, it's up to individual manufacturers and developers to abide by the 
IEEE's published standard guidelines. If their software or hardware doesn't comply with the IEEE 
standards, then these components can't be marketed as IEEE-com. In contrast, the Federal 
Communications Commission (FCC), which deals with issues such as allowed operating frequencies 
and power levels, can enforce its rulings. Failure to heed FCC standards for handling signals from an 
NMR machine or a wireless network can result in fines for the developer.

Most of the standards organizations are established to make life easier, not harder, on developers 
and end-users. For example, NIST is a federal technology agency that works with industry to 
"develop and promote measurements, standards, and technology to enhance productivity, facilitate 
trade, and improve the quality of life". Similarly, the Uniform Code Council (UCC), which defines 
standards for the bar code labels that are used to track tissue specimens, microarray cartridges, and 
clinical radiographs, provides the guidelines on the use of barcodes that have helped revolutionize the 
workings of a modern experimental laboratory. Its mission is to enhance interoperability through 
establishing and promoting multi-industry standards for product identification and related electronic 
communication.

The extent of interoperability may be global, such as worldwide communications standards, or limited 
to a cluster of industries, such as healthcare. For example, in network communications, there are 
virtually universal standards for the communications infrastructure, including Ethernet, Fiber 
Distributed Data Interface (FDDI), Integrated Services Digital Network (ISDN), and x.25 (packet 
switching). These standards allow computer systems around the world to exchange data with each 
other, regardless of equipment manufacturer. An Ethernet-compatible device will work with an 
Ethernet network anywhere in the world. Similarly, when it comes to e-mail there are worldwide 
standards, including MIMI, BinHEX, ASCII, and Uuencode, that allow e-mail with an attached file to 
be sent by America On-Line (AOL) executing on a Macintosh computer to be received by a 
workstation running Microsoft Outlook under Microsoft Windows XP.

Similarly, in the medical industry, which encompasses computer systems dedicated to research and 
dozens of specialties in clinical medicine, there are standards that allow interoperability between 
devices and applications, especially clinical systems from different vendors. For example, when it 
comes to combining clinical data from one application with data from another, there are several 
coding systems available: the Systematized Nomenclature of Medicine (SNOMED), the Nursing 
Outcomes Classification (NOC), the European Clinical Data Exchange Standard (EUCLIDES) the World 
Health Organization (WHO) Drug Dictionary, and the Medical Subject Headings (MESH) coding 



system.

Operating systems and browser environments are areas where interoperability is possible because of 
standardization around a handful of operating systems and Web browsers (either the Netscape 
Navigator or Internet Explorer). Although Windows is the most popular operating system worldwide, 
the most popular operating systems used in bioinformatics are various flavors of UNIX, followed by 
Windows 95/98/NT/2000/XP and MacOS/OS X. Linux is the most popular version of UNIX used on 
Intel-compatible workstations. Systems based on the X-Windows System—a consortium-developed 
open source client-server system—running on top of UNIX are common on high-end workstation 
hardware from DEC and Sun Microsystems. Globus, the most popular distributed operating system 
for creating high-performance clusters, is typically used with dozens to hundreds of inexpensive PCs 
in order to create a grid computer.

However, there is often a connectivity issue with hardware running other operating systems, even 
though the major operating system companies provide software utilities to network computers 
running some version of their operating system. At the lowest level, most systems support file 
transfer between disparate systems. However, executing software designed for, say X-windows under 
MacOS requires an appropriate emulator—software that allows users of each platform to access and 
use programs written to run on the other. X-Windows emulators are available for both Windows and 
the MacOS. Similarly, there are built-in utilities to the MacOS that allow Macintosh users to read files 
from Windows-formatted disks, and emulator programs allow a Macintosh to execute programs 
written for Windows. However, emulators are typically too slow for many computationally intensive 
bioinformatics applications, many of which already tax the hardware platform running in native mode 
on the intended hardware.

Standard interfaces that enable communication between software applications and users (graphical 
user interfaces—GUIs) and between programs and the operating system (application programming 
interfaces—APIs) also support interoperability. For example, a common GUI decreases the learning 
curve for someone working with a new program. A user fluent with a few programs written for 
Windows should be able to quickly learn other Windows-based programs that follow the same GUI 
standards. Both Apple and Microsoft have published standard GUI guidelines for software developers 
in order to foster a common look-and-feel among applications running under the same operating 
system.

Similarly, the standardization of APIs, the interfaces between applications and the underlying 
operating system, reduces the burden on programmers who must otherwise devise novel methods of 
making operating system calls every time they create a new program. Following an API standard, 
such as the IEEE P1520 standard for networks, allows programmers to learn and use one set of 
programming routines, regardless of the application and differences in the underlying hardware.

Before discussing grass-roots methods of standardizing applications and application development, it's 
important to consider that interoperability doesn't imply identical results. For example, several 
protein structure rendering programs may be interoperable, in that they can read and write the same 
data formats and seamlessly share results with other applications. However, the results of each 
program may be different, depending on the underlying algorithm and assumptions used by the 
programmer. Rendering programs that use the PDB file format must interpret the bonding 
information, typically using different algorithms. One way around this dilemma is to use a file format 
such as the MMDB, which contains explicit bonding information. As a result, protein structures are 
consistently rendered.

Open Source

As noted in the discussion of standard tool and data accessibility, one way for a company or 
academic laboratory to influence the development of standards is to simply offer to let developers in 
other companies use the formerly proprietary standards with no or nominal license fees. Giving away 
a standard has benefits to all parties involved. For the original standards developer, offering a 
standard to the industry provides it with a competitive advantage in the marketplace. Not only does it 
have a high level of expertise, but its engineering investment in the standard may provide the 



developer with a depth of knowledge that would otherwise take years to attain.

Conversely, for laboratories without a standard of their own, it may make economic sense to use a 
system that has already been debugged and is available immediately, depending on the relationship 
of the developers. For example, rivals Oracle, Sun Microsystems, and Microsoft typically don't support 
the "standard" offered by each other. When Sun Microsystems offered its Java as a platform-
independent programming language, many developers in software industries throughout the world 
began using it. What makes Java so attractive, and the reason it provides interoperability between 
hardware platforms, is because Sun Microsystems didn't simply offer the standard to the world in the 
form of a specifications document. Instead, it created tutorials, easy-to-use software installation 
utilities, code samples, and support. It also actively markets Java as a tool for interactive Web 
development. Today, Sun maintains Java for Windows and UNIX, while Apple Computer maintains a 
version for its Macintosh computers. Java isn't without its various flavors, however. To get a piece of 
this market, Microsoft sells J++ for Windows, which is a superset of Java.

Sun's backing of Java—its free programming language standard—is unusual. More common and 
increasingly significant are grass-roots activities that offer programming language standards and, 
most importantly, support. Open-source software has become the basis for much of the software 
development in bioinformatics. Open-source software isn't freeware or shareware, in which programs 
are simply given away or sold at a nominal price, respectively, but the product of an organic 
community of dedicated developers and users. The description of the Apache Software Foundation on 
its Web site provides an apt description of the concept of open-source software:

"The Apache Software Foundation provides support for the Apache community of 
open-source software projects. The Apache projects are characterized by a 
collaborative consensus based development process, an open and pragmatic software 
license, and a desire to create high quality software that leads the way in its field. We 
consider ourselves not simply a group of projects sharing a server, but rather a 
community of developers and users."

What makes open-source software so special is that the source code is provided, free of charge. 
Programmers are encouraged to modify the code as they see fit. The main restriction is that the 
relevant open-source provider must be acknowledged on any products that incorporate any part of 
the open-source code. The Apache File Server, TCL, Python, PHP, PERL, the Linux operating system, 
Jakarta, and Apache XML are all s of open-source languages and systems that have heavily 
influenced bioinformatics. These and other open-source languages and products are typically 
developed by volunteers, and there is no paid staff associated with development. Many of the 
applications developed in bioinformatics are based on open-source languages. For example, the 
Chimera Collaboratory Extension is written in Python, an extensible, easy-to-use language that is 
also used in data mining and natural language processing applications.



 
Issues

Despite a history of over a decade of international cooperation in sequencing the human genome, 
there remain several impediments to realizing the full potential of collaboration in bioinformatics. 
Many issues are external to the bioinformatics field, and are tied to the internal politics and 
economics of international pharmaceutical companies. In addition, there are several internal issues 
associated with establishing and maintaining collaborations. As described in the following paragraphs, 
these include platform dependence, security, intellectual property, and economics.

Platform Dependence

There's something to be said for a world in which everyone is limited to single make and model of 
desktop computer. For example, if the bioinformatics community standardized on vanilla 1 GHz 
Pentium IV computers running Linux, managing networks, creating applications, and sharing files and 
applications would be non-issues. However, computationally intensive applications, such as sequence 
alignment, might require weeks or months of processing time. Similarly, without a graphics hardware 
accelerator card, the rendering of protein structures on the screen would be excruciatingly slow. 
Many third-party software packages, including general-purpose office software and utilities, may not 
work as expected or at all.

For better or worse, we work in a world dominated by a few computer hardware manufacturers and 
operating system developers. As a result, users become accustomed to one kind of hardware or one 
set of tools, and come to depend on having the look and feel of a familiar interface available when 
they work. For example, to the regular user of a Sun workstation, the Mac's keyboard and mouse 
may feel foreign, and the slight difference in the layout of the keys may initially result in an 
abnormally large number of typing errors.

Most basic human-computer interface issues associated with platform dependence have yet to be 
resolved. This is especially true in a market that attempts to differentiate commodity computer 
hardware in terms of personality or even color—factors that don't directly affect the performance or 
usefulness of applications running on the computer.

One area in which platform dependence has been addressed is in tool development, especially in 
platform-independent programming languages and applications. For example, Java is popular in part 
because it's available for virtually every desktop hardware–operating system combination in general 
use. As a result, developers aren't limited to a particular hardware platform, but they can easily 
migrate an application written in Java from one platform to the next.

Security

Collaboration implies trust and requires a degree of connectivity between workstations and other 
devices. Whenever this connectivity takes the form of a wired or wireless connection to the Internet, 
internets, or an intranet, it represents a security risk. Every Web server or workstation connected to 
the Internet is a potential target for hackers, and wireless devices represent an easy portal of entry 
for sophisticated hackers. Although some cyberattacks, such as denial of service, are directed at 
specific servers, the greatest threats to the typical bioinformatics lab are computer viruses, worms, 
or Trojan horses.

Improving security entails the use of anti-virus utilities, software or hardware firewalls to protect a 
network from unauthorized external access, password protection of sensitive documents, and the 
ability to train staff on security procedures. A robust security infrastructure is especially critical in 
commercial laboratory settings where corporate espionage is a constant threat, and in academic 
laboratories working on sensitive projects that may be of interest to those who would use biologicals 
as weapons.



Intellectual Property

When it comes to collaboration, there are two major camps: academia and business. At the individual 
researcher level, the motivations for collaboration are typically the same in each camp—the thrill and 
challenge of pushing the envelope of scientific discovery while achieving personal career 
advancement. At higher levels in business and academia, the dimension of economics is usually 
added to the mix. Lab administrators are necessarily concerned with continuing funding from 
corporate, government, or other sources. With the prospect of substantial economic gain looming on 
the horizon, many organizations have taken steps to secure their intellectual property rights through 
the U.S. Patent and Trademark Office before revealing or sharing their research findings with other 
researchers.

This practice of obtaining temporary exclusivity to use a gene or gene sequence is much more 
prevalent in commercial laboratories than in academia. As in other industries, patents provide the 
holder with some degree of protection for their economic investment in developing a particular 
molecule. For example, a pharmaceutical firm would be foolish to invest millions of dollars toward the 
development of a molecule that it hadn't patented or licensed from the patent owner.

The publication of significant research findings is often delayed by years because of the slow review 
process used within the U.S. Patent and Trademark Office. Although some of this delay is attributable 
to the normal workings of the patent office, much of the delay is due to the huge number of genetic 
patent applications submitted to the office in the past few years. Companies are quick to patent 
every new sequence in the event that it might prove to be invaluable one day. As a lottery of sorts, 
the odds are very good that several patents will pay off handsomely in the near future, with big 
Pharma paying for licensing rights.

Although much has been made of the patent practices of companies such as Celera Genomics, 
academia has its own problems. For example, there are several suits pending over who should be 
credited with the original sequencing technology. Apparently, the sequencing method developed by a 
researcher was patented surreptitiously by the lab director. As a result, millions of dollars of income 
and the academic credit for the R&D were allegedly misdirected. The converse condition exists as 
well, in that there is a practice of intellectual property theft by researchers working in commercial 
and academic laboratories. This problem is apparently especially prevalent with foreign researchers 
who come to work in U.S. laboratories.

Economics

In every commercial or academic endeavor, progress is a function of operating costs and the 
availability of funding. For example, overhead, payroll, hardware, software, and infrastructure costs 
represent the main expenditures for a typical bioinformatics laboratory. Web servers, workstations, 
and network cables, routers, firewalls, and related hardware are fortunately commodity items that 
tend to follow a trend of decreasing price-to-performance ratio.

One of the largest variables in the economics of establishing and maintaining a bioinformatics 
laboratory capable of collaborating with the larger bioinformatics community is obtaining software for 
servers, workstations, and high-performance clusters. Throughout most of this book, the focus has 
been on open-source and freely available academic software. The intent is to introduce readers who 
are interested in gaining practical experience in bioinformatics computing to software that can be 
downloaded from the Web and run within a few minutes. However, from an economic perspective, 
"free" software isn't necessarily superior to commercial software.

Consider the criteria for evaluating the suitability of a commercial product for a hypothetical 
bioinformatics project. As illustrated in Figure 10-6, the typical criteria for evaluating a software or 
hardware solution range from price (the initial cost) to synergies with previously installed hardware 
and software. Assuming a typical software product, such as a database for storing sequence data, a 
primary concern is the technology fit, which is a measure of the compatibility of the product with 



existing hardware, operating systems, and other legacy technologies. Another key issue is support, 
as measured by the responsiveness of the vendor or developer to calls for help by way of phone, e-
mail, or the Web. Product functionality, a reflection of the software's ability to supply needed tools, 
adherence to standards, licensing terms, and cultural fit should be considered. For example, a tool 
designed for Microsoft Windows, even though functional, may not fit into the culture of a lab using 
computers based on the Linux operating system.

Figure 10-6. Product Selection Criteria for a typical commercial product 
with a hypothetical comparison of a commercial and academic or open-

source product.

The comparison of any two software products should be performed on a case-by-case basis. The 
hypothetical comparison of two products illustrated in Figure 10-6 highlights the key issues of 
support, licensing arrangements, price, and cost in deciding between commercial and open-
source/academic products. For example, even though the purchase price of a commercial database 
may be several thousand dollars, compared to a free open-source database, the overall cost of the 
open-source software to the laboratory may be greater. The initial purchase price plus any annual 
licensing and maintenance fees have to be balanced against the internal resources that would likely 
be required to properly configure and maintain open-source software. Depending on the maturity and 
popularity of the open-source software and the availability of computer-savvy staff, it may be less 
expensive over the operating lifetime of the software to purchase a commercial product. Because the 
availability of affordable assistants who are willing to work with, modify, and maintain non-
commercial products differs from lab to lab and institution to institution, there isn't a clear rule for 
when to make the extra up-front investment in a commercial product.

Many open-source products, such as PERL, Python, and Linux are technically solid, with large user 



bases, and online tutorials and reference texts available for support. However, it's unreasonable to 
expect an open-source project that is staffed by volunteer programmers to provide 24-hour hotline 
support. If this level of handholding is required, then the options are either to go with a commercial 
product that offers full support or to use a commercial house that supports open-source products. 
Several successful companies make a handsome profit every year by providing telephone, e-mail, 
and even on-site support for open-source and other freely available software.

Inevitably, the products and processes that are the most accurate, useful, and useable enter the 
commercial arena in some form. As the current R&D projects associated with bioinformatics software 
evolve into maintenance and support projects, many of the research labs will focus their attention on 
the next new thing in bioinformatics. When this happens, the commercial houses will be left with the 
opportunity—and burden—of maintaining and upgrading the software tools, hardware, and various 
experimental devices that are still evolving in bioinformatics laboratories around the world.



 
On the Horizon

The future of collaboration in bioinformatics is intimately tied to advances in the information 
technology industry and to establishing clear intellectual property rights agreements between 
industry, government, and academia. Technologically, several patterns are emerging. There appears 
to be a simultaneous move toward pervasive computing—the any-time, any-place access to data and 
computing power. Most of these capabilities will come about through advances in networking, such as 
new wireless network designs, improved network security measures, an emphasis on storage area 
networks and other distributed storage solutions, and high-speed (10 Gigabit) Ethernet.

The current Wi-Fi or 802.11b wireless standard, which operates at 11 Mbps, will soon be replaced by 
systems capable of both Wi-Fi and higher-speed 802.11a wireless communications, which provides 
54 Mbps connectivity. Similarly, the current 10 Mbps Ethernet standard, which hasn't changed 
appreciably since 1979, is being upgraded industry-wide to 10 Gbps, starting with the backbone 
connections. Both of these developments are making network-based storage—a component of 
pervasive computing—a practical alternative to local storage.

With the threat of non-specific cyberterrorism and the increased motivation for the theft of 
bioinformatics research data, new security technologies and improved internal processes are 
inevitable. The bioinformatics laboratory of the next decade will likely resemble the work 
environment depicted in the science-fiction thriller GATTACA, in which a battery of biometric tests, 
including DNA analysis, are routinely used to identify every employee and track their movements—all 
in the name of national security.



 
Endnote

Most, if not all, of the major technological advances of the 20th Century, from aviation and space 
flight to nuclear power, computers, and germ warfare, have been tied to military funding. For 
example, the first major advances in electronic computing were the direct result of military need for 
computer-based encryption and decryption systems in World War II. In their military-funded work to 
potentiate the effects of mustard gas in the battlefield, Goodman and Gilman developed the first 
cancer chemotherapy in the 1940s. The walkie-talkie, developed for troops in World War II, laid the 
foundation for the cellular phone service. Later, during the cold war with Russia, the U.S. military 
establishment funded the nascent field of AI as a means of automatically decoding Russian text. 
Similarly, the progenitor of the Internet was developed as a nuclear-proof communications link 
between military centers of operation and academic institutions involved in nuclear weapon R&D. 
Today, the U.S. military is the largest market for supercomputers and high-performance computing 
clusters.

One of the long-standing interests of the U.S. military has been offensive and defensive biological 
weapons. With the increase in military R&D funding following the events of September 11, 2001, this 
interest has taken on a new urgency. The first public information on next-generation biological 
warfare R&D was released in July of 2002, when it was reported that scientists at the State University 
of New York at Stony Brook had successfully synthesized the Polio virus. The research, funded by the 
Defense Advanced Research Projects Agency (DARPA), demonstrated that a living, lethal virus could 
be constructed in the laboratory, based on the published genetic sequence, like the one in Figure 10-
7.

Figure 10-7 Polio Virus Sequence from Entrez.

                       POLIO VIRUS SEQUENCE

   1 ctgcagtcct catgtactat ggtagtgcca tggattagca acaccacgta tcggcaaacc

  61 atagatgata gtttcaccga aggcggatac atcagcgtct tctaccaaac tagaatagtc

 121 gtccctcttt cgacacccag agagatggac atccttggtt ttgtgtcagc gtgtaatgac

 181 ttcagcgtgc gcttgttgcg agataccaca catatagagc aaaaagcgct agcacagggg

 241 ttaggtcaga tgcttgaaag catgattgac aacacagtcc gtgaaacggt gggggcggca

 301 acatctagag acgctctccc aaacactgaa gccagtggac caacacactc caaggaaatt

 361 ccggcactca ccgcagtgga aactggggcc acaaatccac tagtcccttc tgatacagtg

 421 caaaccagac atgttgtaca acataggtca aggtcagagt ctagcataga gtctttcttc

 481 gcgcggggtg catgcgtgac cattatgacc gtggataacc cagcttccac cacgaataag

 541 gataagctat ttgcagtgtg gaagatcact tataaagata ctgtccagtt acggaggaaa

 601 ttggagttct tcacctattc tagatttgat atggaactta cctttgtggt tactgcaaat

 661 ttcactgaga ctaacaatgg gcatgcctta aatcaagtgt accaaattat gtacgtacca

 721 ccaggcgctc cagtgcccga aaaatgggac gactacacat ggcaaacctc atcaaatcca

 781 tcaatctttt acacctacgg aacagctcca gcccggatct cggtaccgta tgttggtatt

 841 tcgaacgcct attcacactt ttacgacggt ttttccaaag taccactgaa ggaccagtcg

 901 gcagcactag gtgactccct ttatggtgca gcatctctaa atgacttcgg tattttggct



 961 gttagagtag tcaatgatca caacccgacc aaggtcacct ccaaaatcag agtgtatcta

1021 aaacccaaac acatcagagt ctggtgcccg cgtccaccga gggcagtggc gtactacggc

1081 cctggagtgg attacaagga tggtacgctt acacccctct ccaccaagga tctgaccaca

1141 tatggattcg gacaccaaaa caaagcggtg tacactgcag gttacaaaat ttgcaactac

1201 cacttggcca ctcaggatga tttgcaaaac gcagtgaacg tcatgtggag tagagacctc

1261 ttagtcacag aatcaagagc ccagggcacc gattcaatcg caaggtgcaa ttgcaacgca

1321 ggggtgtact actgcgagtc tagaaggaaa tactacccag tatccttcgt tggcccaacg

The creation of the Polio virus from scratch gives "textbook medicine" a new meaning. Although the 
technology used to create a deadly virus could also be used to create new vaccines, a group with 
access to a microbiology laboratory could create new, designer biological warfare agents that are far 
more deadly than the Ebola virus. As such, making the sequence data on deadly pathogens freely 
available on public databases, and even publishing the descriptions of basic microbiology techniques, 
could be deemed a threat to national security.

This research highlights numerous ethical, political, and social issues that directly affect researchers 
in the field of bioinformatics computing. For example, do the public biological databases amount to 
publishing the plans for weapons, complete with instructions on how to synthesize the biological 
payloads? Should a subset of biological data be off-limits to the public, non–U.S. laboratories, or 
anyone without a demonstrable "need to know?" Should the publication of any type biological data on 
known or potential biological warfare agents, such as Figure 10-7, be banned? What of the online 
databases maintained by other countries, such as SWISS-PROT? Should collaboration be limited or 
monitored by local governments, the WHO, or other organization?

An examination of the nuclear and computing industries and how threats have been addressed might 
provide some guidance on how to address the issue of synthetic biologicals. When Britain's Ministry 
of Defense recently made public the information describing in detail the make-up of a nuclear bomb, 
there was highly publicized opposition from those who contend that the disclosure amounts to giving 
potential terrorists a blueprint to create an atomic bomb. However, the Ministry of Defense countered 
that the Web is replete with plans to make atomic bombs (a Google search for "atomic bomb plans" 
in August of 2002 reveals 59,600 hits), and that the accusations were groundless. Others contend 
that the real issue is controlling plutonium, not the plans for a bomb. Some rebuke this position by 
highlighting the amount of weapons-grade plutonium that is "missing" from the dismantled Soviet 
atomic arsenal.

Another view is that information on how to build an atomic bomb from the Ministry of Defense is 
more likely to be believed by terrorists than are the plans posted anonymously on the Web. 
Assuming extensive testing isn't performed on the resultant bomb, if one or two key elements of the 
Ministry's plans are intentionally in error, then the terrorist's time, effort, and plutonium would be 
wasted on a failed attempt at building and exploding an atomic bomb.

Following this scenario, is it acceptable, in the interest of national security, to post erroneous 
information in the online biological databases? For example, should the sequence definition of 
potential biohazards, such as the Polio virus sequence in Figure 10-7, contain intentional errors that 
reduce the potency of the virus (the synthetic Polio virus created at State University of New York isn't 
as infectious as the natural virus because of 18 genetic markers intentionally inserted into the virus)? 
In addition, should the errors be used to indicate the source of the sequence data as well as render 
the viruses harmless?

In the computing industry, the U.S. has a long-standing practice of barring the export of computers, 
including desktop and laptop computers, capable of being used in weapons systems or in weapons 
design. As a workaround, groups in Asia, the Middle East, and elsewhere have developed high-
performance computing clusters using Sony PlayStation II hardware, which is easy to purchase on 



the open market. In a similar vein, it's impossible to stop a country from importing every piece of 
medical equipment that might somehow be used develop bioterrorism materials.

Clearly, the culture of open collaboration and sharing of information in bioinformatics is at odds with 
recent national security concerns as well as those opposed to genetic research on religious or other 
grounds. It remains to be seen how concerns for privacy and security in the name of the common 
good will affect the efficiency and effectiveness of collaboration between researchers involved in 
bioinformatics and molecular biology research. What is certain is that molecular biology and 
bioinformatics computing aren't fields in which major decisions will be made by stereotypical 
scientists dressed in white lab coats, working quietly and diligently in a wet lab. Practitioners and 
practices in both fields will be open to public scrutiny. They'll also have to bear the brunt of political 
legislation regarding cloning, genetically modified foods, and designer drugs, and will likely be the 
focus of heated ethical debates. We do live in interesting times.
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