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Córdoba
Argentina

Ezequiel Pedro Marcos Leiva
INFQC-CONICET
Universidad Nacional de Córdoba
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Córdoba
Argentina

ISSN 1571-5744
ISBN 978-1-4614-3267-8 ISBN 978-1-4614-3643-0 (eBook)
DOI 10.1007/978-1-4614-3643-0
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2012938545

© Springer Science+Business Media New York 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com


Preface

Exceeding the limits of the academic realm where it started, the “nanowave” or
current nanotechnology trend, has already reached the industrial and governmental
markets and nanotechnology has thus become a key area of public interest,
since not only researchers—but also politicians and economists—have realized the
social and economic implications of the developments in this field. In fact, Think
nano to earn giga will probably become one of the favorite expressions in the
business world in the future, as it is widely accepted that—after microtechnology—
nanotechnology is the technology of the next century. Metallic and semiconducting
nanoparticles—subject of the present book—currently represent one of the most
tangible applications in nanotechnology.

From the point of view of academic research, nanoparticles show remarkable
properties due to the transition from the atomic quantum mechanical behavior to the
classical behavior which governs bulk materials, making them ideal candidates for
testing and developing new theories.

In particular, metallic nanoparticles seem to be promising materials for potential
applications in various technological areas related to different spheres of human life
ranging from catalysis of chemical reactions to cancer detection and healing

As it usually happens in cases of hasty technological developments, the urge for
generating these new nanomaterials is so strong that in many cases things are put
to work—and they work pretty well!—without much wondering about the subtle
reasons behind such results. After all, life evolution, a typical nanophenomenon,
just happened that way. This lack of modeling of nanophenomena—as compared
to the abundant experimental research—is of course not on purpose, but rather the
result of the intrinsic complexity of modeling systems and situations where chemical
and physical phenomena are strongly entangled. For instance, light absorption by
nanoparticles, a typical physical phenomenon, may be found to be strongly modified
by the chemical nature of molecules chemically bound to them. Thus, the quantum
physical tools usually used to study the collective excitation of electrons in a
metal must be coupled with the quantum chemical tools that describe binding in
molecules, a challenge addressed in this book.
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vi Preface

Awakening the interest of experimental researchers in the newest modeling tools
applied to metal nanoparticles is one of the main goals of the present book. Thus, in
ten chapters written by experts in the field we present the most advanced techniques
employed to model and simulate metallic nanoparticles, with emphasis on their
application to experimental results. These tools range from statistical mechanics and
molecular dynamic simulations to very specific quantum mechanical calculations.

Since many of the topics represent cutting edge research developments, we
hope this work will help fill the existing gap between theory and experiment of
nanosystems, promoting fruitful exchanges between both approaches.

Córdoba, Argentina Marcelo Mario Mariscal
Oscar Alejandro Oviedo

Ezequiel Pedro Marcos Leiva
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René Fournier and Satya Bulusu

4 Optical Properties of Metal Nanoclusters from an
Atomistic Point of View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Christian F.A. Negre and Cristián G. Sánchez

5 Spin-Fluctuation Theory of Cluster Magnetism . . . . . . . . . . . . . . . . . . . . . . . . 159
R. Garibay-Alonso, J. Dorantes-Dávila, and G.M. Pastor

Part III Thermodynamics and Kinetics Using Semiempirical
Approaches

6 Global Optimization of Free and Supported Clusters . . . . . . . . . . . . . . . . . . 195
Riccardo Ferrando

7 Structure and Chemical Ordering in Nanoalloys: Toward
Nanoalloy Phase Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Christine Mottet

vii



viii Contents

8 Modelling Janus Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Francesca Baletto

9 Modeling of Protected Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Jimena A. Olmos-Asar and Marcelo M. Mariscal

10 Thermodynamic Modeling of Metallic Nanoclusters . . . . . . . . . . . . . . . . . . . 305
Oscar A. Oviedo and Ezequiel P.M. Leiva

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351



Part I
Recent Advances in High Resolution

Electron Microscopy



Chapter 1
Experimental and Simulated Electron
Microscopy in the Study of Metal
Nanostructures

Sergio Mejı́a-Rosales and Miguel José-Yacamán

1.1 Introduction

One of the most exciting features of nanostructures relays on the fact that matter
organized as objects at the nanoscale may have chemical and physical properties
different from those of the same material in its common bulk presentation. This size-
dependent properties are related to several physical phenomena, such as quantum
behavior, high surface-to-volume ratio, and thermal effects [1, 2]. Far from being
an unfortunate fact, the unique properties of nanostructures may in principle be
fine-tuned to be used for a specific purpose, but to be able to dominate matter at this
range of sizes, high precision tools must be used in order to investigate, measure, and
modify the physical and chemical characteristics of the nanostructures. The problem
is similar to the one of constructing a phase diagram for the bulk materials, but
taking also into consideration size and shape, besides temperature and crystalline
structure. Several groups have concentrated some of their efforts to this task (with
varying degrees of success), but these attempts are inherently incomplete or, at best,
restricted to one specific material and to a narrow range of sizes and temperatures
[3, 4]. On the other hand, these studies are generally based either on theoretical
results or on indirect experimental measurements, and there is just a relatively
small number of papers that concentrate on first-hand measurements of the detailed
crystal structure and local chemical composition of the nanostructures. This is, to
certain degree, understandable: A detailed analysis of the structure and composition
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4 S. Mejı́a-Rosales and M. José-Yacamán

Fig. 1.1 (a) Model of AuPd particle of 923 atoms used to simulate the features of the particle
shown in (e); (b) the corresponding simulated TEM image; (c) overlap of parts (a) and (b);
(d) calculated FFT pattern for the simulated particle. In the model, blue spheres represent Pd atoms,
and yellow spheres correspond to Au atoms. Reprinted with permission from [6]. Copyright 2007
American Chemical Society

requires sub-nanometric resolution, and the electron microscopy facilities capable
of reaching this resolution are not always easy to access. Besides, the interpretation
of the electron micrographs is not always straightforward, since the intensity signal
that correlates with the atomic positions depends not only on the length of the
atomic columns parallel to the direction of the electron beam, but also on the
chemical species, and on the microscope’s parameters at which the micrograph was
obtained [5]. Thus, the solution to the problem of extracting a third dimension from
the information contained in a strictly two-dimensional image has to be similar
to the one that the human mind uses to recognize macroscopic objects sensed by
the naked eye: through (a) the comparison of the observed patterns against simple
models acquired by previous experience or inherited, and (b) the rough estimation
of the probability of a particular model to correspond to the pattern, taking into
consideration a small set of rules. An example of this use is shown in Fig. 1.1, taken
from [6]. Here, a TEM micrograph of a gold-palladium nanoparticle of 2 nm of
diameter shows that some specific spots on the particle have a different intensity
from the rest (Fig. 1.1e); a model is proposed in Fig. 1.1a, and a simulated TEM
micrograph, shown in Fig. 1.1b, is obtained. The image of the ball-and-stick model
is superposed on the simulated TEM image (Fig. 1.1c), and a correlation is found
between the position of the spots and some specific sites at the surface of the particle,
where a Pd atom is surrounded by Au atoms that are not in the same plane of the
Pd atom. It is likely that these specific isolated Pd sites have a relevant effect on the
chemical activity of the particle, and at least one theoretical study has investigated
these kind of sites [7].

In Fig. 1.1, as in the other figures where we present simulated TEM micrographs,
we used the SimulaTEM program developed by Gómez-Rodrı́guez et al. that, unlike
other programs with similar purposes, allows non-periodic structures as input [8].
The principles underlying the creation of this kind of simulated TEM micrographs
(and also the real ones) will be discussed in the following sections.

This chapter deals with the specific issues that need to be considered in order
to make an adequate interpretation of the micrograph of a nanostructure, with
a particular emphasis in the imaging of nanoalloys. We will concentrate in the
use of high angular annular dark field scanning transmission electron microscopy
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(HAADF-STEM) imaging, since in this technique the electron signal is strongly
dependent on Z, the atomic number of the atoms that form the structure [9], which
makes it the most appropriate choice for the study of metal nanoparticles.

This review does not intend to be a complete essay on the simulation of electron
microscopy but a hands-on guide for researchers interested in the generation of
high resolution electron micrographs of metal nanostructures. In accordance with
this approach, we will only discuss briefly the working principles of electron
microscopy, the role of aberration correctors, and how the theory supporting the
imaging of micrographs can be used to simulate the imaging process, to concentrate
later on the practical issues to be taken into consideration in the comparison
and interpretation of real and simulated electron micrographs of nanostructures.
The first sections give a comprehensive (but incomplete) review of the fundamental
concepts related to the TEM and HAADF-STEM techniques, and to the multislice
method of simulation. The remaining sections will discuss the use of real and
simulated HAADF-STEM micrographs for the recognition of nanoalloys, using for
this purpose several examples of shapes, sizes, and compositions.

1.2 The Transmission Electron Microscope in a Nutshell

In order to study the structure of matter at Angstrom and even sub-Angstrom
resolution, a beam with a wavelength on the same order of magnitude is needed.
The electron microscope accelerates electrons with a potential difference of several
hundreds of kV in order to produce a beam with this range of energies. In modern
electron microscopes, the electrons are usually produced by a cold field-emission
gun. The beam is filtered to make it practically monochromatic, and a system of
condenser lenses narrows the beam divergence angle. The resulting beam interacts
with the specimen, and the transmitted beam is collected by an objective lens and
projected to the image plane, normally a ccd array. A simplified schematic diagram
is shown in Fig. 1.2.

The electron beam interaction with the sample is better understood if one
considers the sample electrostatic potential or, more specifically, the projected
potential of the sample. Let’s assume as a starting point that the sample is a periodic
crystal, and that its electrostatic potential is described by φ(r). The projected
potential will of course depend on the structural information of the sample, and
also on the temperature. Then, the interaction of an electron of relativistic mass m
with the sample is described by

[
− h2

8π2m
∇2 − eφ(r)

]
Ψ(r) = EΨ(r),

with the original electron wave described by a simple plane wave:

Ψ0 (r) = exp{i(ωt − 2πk0 · r)} .
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electron beam 
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objective 

objective 
aperture 

image plane 

Fig. 1.2 An overly
simplified diagram of the
conventional transmission
electron microscope

The solution to the Schrodinger equation will describe the electron wave function
after interacting with the sample. Even with the periodicity assumption, the solution
cannot be found directly without making additional simplifications. We will come
back to this point in the section devoted to approximation methods of calculation.

The objective lens, located after the sample in a TEM, focuses the electron
beam, which mathematically can be described by the Fourier transform of the
wave at the exit of the sample. The objective lens is far from a perfect lens,
and it will introduce aberrations in the image-plane wavefunction (the optical
elements after the condenser lens, in charge of the amplification, won’t produce
important aberrations to the image). High resolution microscopes include in their
design aberration correctors that make sub-Angstrom resolution possible. In an ideal
microscope, without any aberrations, the image observed will be directly related to
the squared modulus of the image-plane wavefunction [5].
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1.3 Aberrations

Aberrations will occur, though, and this implies that not all the Fourier components
of the wave function will transfer equally. The contrast transfer function (CTF) is a
broadly used quantity that determines the range of characteristic spatial frequencies
that can be directly interpreted in a TEM image. In other words, the CTF imposes
the conditions at which “what you see is what you get.” In a concise way, the
electron wave function at the image plane will be related to the CTF applied to
the wavefunction just at the exit of the sample. Objective apertures will affect the
CTF, as well as the spatial coherence of the electron beam and its wavelength:

CTF(k) =−sin
[π

2
Csλ 3k4 +πΔzλ k2

]
.

Here, Cs is the spherical aberration of the objective lens, and Δzis its defocus.
The special case where

Δz =−
√

4/3Csλ

is known as the Scherzer condition, and at Scherzer defocus the CTF does not
change its sign in a large spatial frequency range, and hence all distances in this
range can be interpreted directly as they appear in the image [5, 10]. Figure 1.3
shows the plot of two CTF, calculated for two different values of Cs. Both graphs
were calculated at the same voltage (200 kV). The dark blue CTF was generated

0 2 4 6 8 10
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Fig. 1.3 Contrast transfer functions (CTF) for two different values of Cs. The darker line
represents a CTF calculated at a Cs of 0.01 mm, and the lighter wavy line was calculated at a
Cs of 1.2 mm. Both CTFs were obtained at Scherzer conditions
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Fig. 1.4 HRTEM simulation of a cubic fcc gold nanostructure obtained at three different values of
Cs aberration; (a) Toy representation of the nanostructure, and simulated TEM micrographs with
(b) 0.01 mm of Cs aberration; (c) 0.1 mm of Cs aberration; (c) 1.0 mm of Cs aberration. All the
micrographs were simulated at the Scherzer condition

Fig. 1.5 HRTEM simulations of a cubic fcc gold nanostructure calculated at different defocus
values. The image labeled as (d) corresponds to the Scherzer defocus

for a Cs of just 0.01 mm, trying to simulate the conditions in a Cs-corrected TEM.
In this virtual TEM, the theoretical resolution is of 0.08 nm. The light blue CTF was
calculated with a Cs of 1.2 mm, for comparison purposes. In this case, the theoretical
resolution is 0.25 nm, not quite good for the measurement of interatomic distances.
Both CTFs were obtained at Scherzer conditions. The curves were plotted using the
CtfExporer software created by M. V. Sidorov [11].

The generation of TEM images at the Scherzer condition allows that atomic
positions to correspond with dark spots in the micrograph, if the beam is parallel to
the axis zone and the aberrations are small. The effect of aberrations in the resolution
should be obvious from the CTF, but it is always interesting to see this effect directly
on the images, real or simulated. A comparison of three simulated TEM micrographs
is made in Fig. 1.4 for the same sample, a small fcc cubic volume of gold atoms.
The figure shows that even at Scherzer defocus the images are difficult to interpret if
aberrations are not as small as in Fig. 1.4b, and that the effect of spherical aberration
may appear particularly remarked at the border of the structure.

Figure 1.5 shows the results of conventional HRTEM simulations of a section of
a gold lattice at different values of defocus, Scherzer included (-50 Angstrom). The
voltage was 200 kV at all cases, and a small Cs aberration of 0.01 mm was used, with
zero astigmatism. At Scherzer defocus, the atomic columns are completely resolved,
even at the surface of the structure.
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1.4 High Angle Annular Dark Field Scanning Transmission
Electron Microscope

From the point of view of the reciprocity theorem, the STEM is optically equivalent
to an inverted TEM, in the sense that if the source and the detector exchange
positions, the electron ray paths remain the same [10]. In the STEM, the objective
lens—and all the relevant optics—is positioned before the specimen (see Fig. 1.6).
For the specific case of the Annular Dark Field (ADF) detector, only the electrons
scattered between θ1 ≤ θ ≤ θ2 contribute to the image, since these are the electrons
that reach the annular detector. Working at 200 kV (appropriate for imaging
metals), in a typical HAADF-STEM microscope the inner angle θ1 of the ADF
detector is set around 50 mrad, and the outer angle θ2 is set around 100–200 mrad.
At these range of voltages, the electrons momentum is large enough to require a
relativistic treatment, and the use of Schröedinger equation to analyze the system
is not completely correct without some adjustments at the values of mass and
wavelength (strictly speaking, one should use the relativistic Dirac equation instead
of Schröedinger’s, but this would greatly complicate the already nontrivial set of
equations.)

electron beam 

objective 

sample 

scanning 
coils 

objective 
aperture 

HAADF detector 

Fig. 1.6 Simplified diagram
representing the functioning
principle of the
HAADF-STEM microscope
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STEM differs from conventional TEM in that, unlike conventional TEM, the
electron beam interacts only with a small section of the sample at a time, and the
scan process is the one in charge of generating the image as a whole.

But even before taking care of the scanning issue, it is appropriate to review the
different methods used to simulate the imaging process of a single area section of
the sample. Some approximations are needed in each of these methods, and here we
will present them in a succinct way. The reader is encouraged to review elsewhere
the details of the methods and the justifications behind the approximations [10].

1.5 Approximation Methods

In the Weak Phase Object (WPO) approximation, useful for very thin samples, it is
assumed that the electrons are scattered only once by the sample, so the projected
potential can be averaged. When the observed sample can be regarded as a WPO, the
image is linearly related to the object wavefunction. Even though this is not strictly
the case in nanometer-sized structures, we will nevertheless follow this approach,
and additional considerations will be taken later.

First, we can assume that the linear image approximation is valid, which means
that we take as valid that the intensity g(r) on the image is obtained by a linear
convolution of the ideal image of the sample f (r) with the point spread function of
the microscope h(r):

g(r) =
∫

f
(
r′
)

h
(
r− r′

)
dr′ = f (r)⊗ h

(
r− r′

)
;

or, in reciprocal space,

G(u) = H (u)F (u) .

F(u) is the Fourier transform of the specimen function, and H(u) is the CTF. The
reciprocal vector u is the spatial frequency. The fact that the intensity on the image
is the convolution of f (r) and h(r) means that each point in the image is a collective
result of the whole of the sample.

In the WPO approximation, the specimen function is approximated by

f (x,y) = 1− iσVt (x,y) ,

where the projected potential Vt(x,y) is very small since the sample is very thin. But
of course, this is not the case in the imaging of metal nanoparticles.

In the Bloch Wave Approximation, the electron wavefunctions are considered as
linear combination of Bloch waves, and each reflection is considered explicitly. The
BWA is extensively used in periodic systems, but the computing time scales at N3,
where N is the number of Bloch waves. Several simulation packages, such as JEMS,
have implemented BWA in an efficient manner [12].
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1.6 The Multislice Method

The basic idea underlying the multislice method is that the potential of the sample
can be approximated by defining a number of slices of thickness dz, and projecting
the potential due to the atoms of a particular slice to the central plane of this slice
(see Fig. 1.7).

Thus, a solution to the electron wavefunction is obtained for one slice, and used
as input for the calculation of the next slice [13]. This means that the choice of
very thick slices will speed up the calculations, but the potential function will be
poorly approximated. On the other hand, the use of very thin slices will improve
the calculation of the projected potential, but the errors due to approximations will
accumulate and undermine the final result. The appropriate choice of the number
of slices is an issue that requires a generous amount of effort and computing
time, and the final decision must consider the benefits of a fast calculation (STEM
simulations by the very nature of the technique are computationally expensive and
the computing time depends on both the number of slices and the scan resolution)
against the benefits of a very precise calculation (that may be critical in quantitative

Projection plane 1

Projection plane 2

Projection plane 3

Projection plane 4

Projection plane 5

slice 1

slice 2

slice 3

slice 4

slice 5

incident beam

propagated beam

propagated beam

propagated beam

propagated beam

exit beam

specimen

Fig. 1.7 The principle of the multislice method. The sample is sliced, and the potential due to the
atoms of a particular slice is projected on a plane; the electron wavefunction corresponding to that
slice is then used as input for the interaction with the next slice
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STEM). As pointed out by Ishizuka [14], the multislice method requires several
approximations that could be critical in the interpretation of results for inclined
illumination, so the orientation of the sample may also affect the final result.

1.7 STEM Intensity Dependence on Atomic Number

In a series of papers in the 1970s by Crewe et al., it was found that the annular
detector in a HAADF-STEM microscope collects a large amount of the elastic
scattered electrons, in such a way that the intensity of the signal collected by the
HAADF detector will have a dependence on the scattering cross section, and thus
on the atomic number of the atoms present in the sample [15]. Pennycook, one of
the pioneers in the technique, gives arguments to this dependence to be close to
Z3/2 (see [9]). In order to investigate how the intensity signal generated by the
HAADF detector depends on the atomic number of a column formed by just one
atom of a specific element, we performed a simulation of HAADF for a system of
16 isolated atoms laying on a plane perpendicular to the microscope column. The
resulting image is shown in Fig. 1.8, where the positions of the atoms are labeled by
the symbols of their respective chemical element.

The HAADF image intensity measured over a line that passes through the center
of the atomic positions is shown in Fig. 1.9. Here, it can easily be noted that the
contrast between heavy and light atoms is remarkably high.

The maxima in Fig. 1.9 are plotted against the atomic numbers in Fig. 1.10, and
a least squares adjustment shows that the HAADF signal follows approximately a
Z1.46 relation. This dependence is very close to the prediction of Pennycook.

All of the STEM simulations shown and discussed in this chapter, including the
simulations presented in the next sections, were made using the commercial version
of the xHREM package, a proprietary software designed and coded by Ishizuka [14].
The xHREM suite uses an algorithm based on the Fast Fourier Transform method,
and it allows the use of a large number of slices, as many as 1,000 in the latest
editions.

1.8 The Interpretation of an Image

How can we infer the shapes, sizes, and composition of the objects studied under
the electron microscope? The problem of interpretation of electron micrographs
is similar to the problem that the human mind has to solve to make a correct
interpretation of the two-dimensional images imprinted on the retina. As the
experimental psychologist Steven Pinker puts it: Optics is easy but inverse optics
impossible [16]. The solution to this factual impossibility lays on the capacity of
the human mind to make educated assumptions about the observed objects and their
surroundings, or, as Pinker explains,
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Fig. 1.8 STEM-simulated micrograph showing the intensity signal due to the presence of atoms
of different elements

“The answer is that the brain supplies the missing information, information about
the world we evolved in and how it reflects light. If the visual brain “assumes” that
it is living in a certain kind of world—an evenly lit world made mostly of rigid part
with smooth, uniformly colored surfaces—it can make good guesses about what is
out there.” [16]

The interpretation of the electron microscope images must be made under
the same kind of assumptions: As a first approximation, one considers that the
nanostructures are laying on an even surface (usually carbon), and that in inner
regions of the nanostructure and far from twin boundaries, point-defects and
dislocations, the atomic arrangement is close to that of the bulk. Furthermore, it
is assumed that the electron beam and the nanoparticle, like the human visual brain,
live in a certain kind of world where some geometries are more expected than others.
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Fig. 1.9 HAADF-STEM intensity signal (arbitrary units) for several chemical elements

Fig. 1.10 STEM intensity vs. atomic number obtained by STEM simulation. The least-squared
regression predicts an intensity dependence as Z1.46
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Fig. 1.11 Upper row: Atomistic model of a cuboctahedral gold nanoparticle, and the calculated
projected potentials for each slice. Lower row: Output wavefunctions of each slice. The model was
divided into ten slices, but only the nontrivial ones are presented

As it was mentioned before, the approximations used in the different simulation
techniques are strictly true only when the sample is thin enough for the linear as-
sumption to be correct. One of the most common approaches to implement HRTEM
simulation take this assumption as the starting point, and for instruction purposes,
the discussion of other difficulties will be avoided. The reader is encouraged to
read the excellent text by Kirkland on this matter [10]. On the remaining of this
section, we will concentrate on the use of the multislice method for the simulation
of HAADF-STEM micrographs, and on the technical issues that may simplify—or
make practically impossible—an interpretation of a simulated image.

1.8.1 The Problem of Slicing a Sample

As was pointed out before, in the multislice method the sample is dissected into
several slices, each treated independently through an averaged projected potential.
The selection of the number of slices is a tricky job, and it will depend on
the thickness of the sample (the size of the nanostructure in the case of metal
nanoparticles), the orientation, and the computational capabilities. The projected
potential is calculated for each slice, and the corresponding output wavefunction
is obtained. Figure 1.11 shows the result of the calculation of potentials and
wavefunctions for a model of a gold cuboctahedral nanoparticle. The model was
dissected into ten slices (only the relevant ones are represented in the figure).

If the number of slices is increased, the number of projected potentials will
increase as well. This will reflect on the final result of the image, as can be seen
in Fig. 1.12, where a model of an icosahedral gold particle—shown in Fig. 1.12a—
was used to generate two simulated STEM micrographs, being the only difference
between both the number of slices, 10 in (b), 20 in (c). It is not a simple task to
find out which of the images follows in a better way the experimental one, since the
orientation and lattice parameters must be considered.

For the rest of the chapter, in order to compare the figures related with the
Z-contrast in STEM, we will use STEM simulations where the samples have been
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Fig. 1.12 (a) Atomistic model of an icosahedral gold nanoparticle; (b) STEM simulation of the
nanoparticle, using ten slices; (c) STEM simulation of the nanoparticle, using 20 slices

divided into ten slices, irrespective of the model being used in the simulations.
We encourage the reader interested in the multislice method to dedicate generous
amounts of time to try out different slicing possibilities.

1.8.2 Orientations

One of the first pieces of information that appear when analyzing electron mi-
crographs of metal nanostructures is that there is a remarked tendency for the
particles to appear with some specific geometries. The reason for this tendency is
mostly energetic (apparently these geometries imply the best compromise between
surface energy, conservation of crystal structure, energy of twinning boundaries, and
surface/volume ratio), but it is well established that the specific geometry depends
not only on the chemical constitution of the particle, but also on its size, and on
the specific details of the kinetics involved in the synthesis process [2]. Typical
geometries in mono and multimetallic particles include decahedra, icosahedra,
tetrahedral, and cuboctahedra. How evident the shape of a particle is depends on
how close is the particle to the ideal geometry, and also on the orientation of the
particle with respect to the electron beam. Figure 1.13 exemplifies this for the case
of a small icosahedral gold particle.

1.8.3 Chemical Composition

Returning back to the issue of the Z-contrast dependency on STEM, we take
advantage of the previous figure to compare it against the simulated STEM
micrographs of particles of the same size and shape, but with different composition.
Figure 1.14 shows the STEM-simulated images of an icosahedral Aucore − Pdshell

particle, at the same orientations used in Fig. 1.13. The orientation of (b) and (b′)
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Fig. 1.13 Icosahedral gold nanoparticle at three different orientations, and their corresponding
STEM-simulated images

Fig. 1.14 Aucore − Pdshell nanoparticle at three different orientations, and their corresponding
STEM-simulated images
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Fig. 1.15 Pdcore − Aushell nanoparticle at three different orientations, and their corresponding
STEM-simulated images

is 30◦ with respect to (a), and (c) and (c′) are rotated 90◦ with respect to (a). The
difference in intensity between core and shell are evident.

A particle with the opposite relative concentration is used in the STEM sim-
ulations shown in Fig. 1.15. Here, the particle’s core and shell are not as easily
distinguishable as in the previous case, since, unlike the opposite composition, the
thickness of the gold regions compensates the difference in the atomic number of
the elements (see Fig. 1.16).

The signal generated by a true Au-Pd nanoalloyed particle is different enough
from the core-shell cases to be directly identified. Figure 1.17 shows the results of
the STEM simulations for this particle. The relative composition of this particle is
close to 50%–50%, and both species are distributed randomly along the whole of
the particle.

How can the Z-contrast capabilities of HAADF-STEM be used in the investiga-
tion of real metal particles? As an example, consider the Au-Co particle presented
in Fig. 1.18a. This particle was produced by the coalescence of a gold particle with a
cobalt particle, both originally synthesized by inert gas condensation and deposited
on a carbon substrate. After deposition, the system was subjected to a heating pro-
cess [17]. The particle in Fig. 1.18a is shown in false colors to remark the differences
in intensity (red is more intense, blue is less intense). Chemical analysis showed that
the low intensity regions were rich in cobalt and oxygen—the cobalt oxidized with
the thermal treatment)—while the high intensity region was rich in gold. A model
consisting on a decahedron with a gold core and a CoO external region was prepared
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Fig. 1.16 Diagram of a
Pdcore −Aushell nanoparticle,
showing that gold volume
fraction explains the poor
contrast between core and
shell in a STEM micrograph

Fig. 1.17 Nanoalloyed Au-Pd icosahedral nanoparticle at three different orientations, and their
corresponding STEM-simulated images
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Fig. 1.18 (a) STEM micrograph of a Au-Co nanoparticle, shown in false colors (red: high
intensity, blue: low intensity). (b) Atomistic model used to describe the particle on (a); yellow
spheres represent gold, blue spheres are cobalt, red spheres are oxygen. (c) The small squared
region marked in (a) is substituted for the STEM simulation of the squared region marked in (b),
and (d) the real micrograph of this region is compared against (e) the simulated one. The real and
simulated line intensity profiles are also shown for comparison. Adapted from [17]. Reproduced
with permission from The Royal Society of Chemistry (RSC)

to investigate the Co-Au interface; this model is shown in Fig. 1.18b. The model
does not intend to reproduce exactly the shape of the particle, but to give a qualitative
description of the particle. Figure 1.18c is a composite of the real image and a small
section generated by STEM simulation; the corresponding real section is shown in
Fig. 1.18d, and compared against the simulated micrograph (Fig. 1.18e). The two
intensity profiles represented by lines in (d) and (e) are also shown for comparison.
As can be seen, the simulated STEM micrograph succeeds in reproducing the main
features of the real image. This result exemplifies the use of STEM simulations for
an approximate description of composition and shape of metal particles.

Quantitative STEM simulation at atomic level is quite more complicated.
Fluctuations in intensity on the background of a STEM micrograph can be of the
same order of magnitude than the intensity generated by a single metal atom, and
in multimetallic systems the problem becomes combinatorial. Nevertheless, the
use of single-tilt tomography holders altogether with Cs correctors and 3D image
reconstruction algorithms allow a very precise description of shapes and structures
in nanoparticles, even at atomistic level [18–20].

1.8.4 Thermal Effects

The scattering strength is controlled by the effective form factor that depends on the
value of the Debye–Waller factor, and variations in this factor may strongly affect
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Fig. 1.19 Comparison between two simulated STEM micrographs of a cuboctahedral nanoparti-
cle. (a) Debye–Waller set to zero. (b) Debye–Waller set at 0.69

the STEM signal. It is usual to find that an electron microscopy simulation program
calculate the effective form factors through the Mott formula [21]. The Debye–
Waller factor is not necessarily the same at the nanoscale than the bulk value. Buffat
[22] measured a decrease in the Debye–Waller factor in gold particles ranging from
0.85 in 20 nm particles, to a value of 0.69 in 2 nm particles. We used this value to
simulate a gold cuboctahedral particle and compare the result against a simulation
where the Debye–Waller factor was set to zero. Both images are shown in Fig. 1.19.
As can be noted, the thermal effects may be a determining factor on the contrast in
ultra-high resolution STEM micrographs, and should not be underestimated.

1.8.5 Interatomic Distances

One of the most straightforward uses of TEM and STEM is the measurement of
distances based on the intensity peaks (or valleys in bright field imaging) on the
micrographs. For this direct kind of measurements, it is assumed that the spatial
frequencies are uniformly transferred, this is, that the transfer function does not
change its sign in the range of spatial frequencies that correspond to interatomic
distances. Even if this condition is accomplished, this does not warranties the
match between the measured and the real distances, since also the orientation of
the sample has to be considered. The interpretation, though, is not necessarily
straightforward: First, even in the best tuned-up TEMs, the background intensity
is not homogeneous, and this can complicate the interpretation of distance measure-
ments at the vicinity of the borders of a particle. Second, usually the interplanar
distances are measured as an average over several planes, since the variance in
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Fig. 1.20 (a) Sub-Angstrom resolution FePt icosahedral nanoparticle. (b) Interplanar (111)
distances vs. position of shell (shell 0 is the external shell). (c) TEM simulation of model
nanoparticle. In order to reproduce the measurements of the interplanar distances, the distribution
of Pt must follow the percentages shown in (b). Reprinted with permission from [23]. Copyright
2009 American Chemical Society

the size of a spot that represents a single atomic column is on the same order of
magnitude as the interplanar distance itself. High resolution STEM simulations
can be used to verify the experimental measurements, if an appropriate atomistic
model is taken for granted. Consider for example the case of FePt icosahedral
nanoparticles [23], as the one shown in Fig. 1.20. FePt nanoparticles with sizes on
the range of [5, 6] nm were produced by an inert gas condensation, which implies
that there is no passivation agent on the surface of the particles. Their structure
was analyzed as icosahedral with shell periodicity. The sub-Angstrom resolution
was achieved by focal series reconstruction, and it was enough to extract the
position of individual atomic columns with a precision of about 0.002 nm, and to
measure shell spacing differences of 0.02–0.03 nm. The measurements showed that
the external shells of the nanoparticle were more spaced that the inner ones, a trend
that could be interpreted as a consequence of the segregation of Pt to the external
shells (see Fig. 1.20b). Comparative Molecular Dynamics calculations used jointly
with electron microscopy simulations (Fig. 1.20c) confirmed that the structural
relaxations could be attributed to Pt segregation at the outer shells generating a
specific concentration gradient.

1.9 STEM, Geometrical Phase Analysis, and Its Range
of Validity

Sub-Angstrom resolution in TEM and STEM, altogether with the ability of tilting
the samples to orientations where a specific zone axis coincides with the direction
of the electron beam, opens the possibility of analyzing the structures from a
geometric perspective in order to obtain a strain map of the lattice. This possibility is
particularly important in metal structures with Platonic and Archimedean polyhedral
shapes, where strains may not be evenly distributed. An archetypical example of
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this is the decahedron, that in order to exist as a closed structure formed by five
tetrahedra, it has to deform its atomic lattice, originating internal strain. A com-
monly used method to measure strains directly from high resolution micrographs is
the one called geometric phase analysis, or GPA in short [24]. The method, which in
principle can be applied to any image with two or more sets of periodicities, is based
on the local measurement of amplitude and geometric phase in reciprocal space, i.e.,
by the measurement of the displacement of lattice fringes in the Fourier transform of
the image. There exist free and paid versions of the GPA code, both implemented to
work as add-ons of the DigitalMicrograph suite [25]. The measurement procedure,
in a nutshell, is as follows: (1) The power spectrum of the image (the squared
modulus of the Fourier transform of the micrograph) is calculated; each periodicity
present in the image will generate a bright spot in the power spectrum, and the
dispersion of the spot will be at least partially due to variations in the structure. (2)
A region of interest enclosing a particular bright spot is selected; this will be the
reciprocal area where the phase variations will be measured. (3) The phase image is
calculated following the relation

Pg (r) =−2πg ·u(r) ,

where g is the reciprocal vector that defines the periodicity. (4) A reference area
is chosen, and the phase image is recalculated, referenced to this area. The ideal
reference area must be a region where the periodicity is not distorted, i.e., where the
non-referenced phase image does not change abruptly. (5) The process is repeated
for a second region of interest, since two sets of lattice fringes are needed for the
calculation of strains. The displacement vector is expressed in terms of the base
vectors defining the two periodicities:

u(r) =− 1
2π

[Pg1 (r)a1 +Pg2 (r)a2] ,

where
gi ·a j = δij.

(6) The strain tensor is calculated:

εij =
1
2

(
∂ui

∂u j
+

∂u j

∂ui

)
,

and (7) rotations of the lattice are calculated:

ωij =
1
2

(
∂u j

∂xi
− ∂ui

∂x j

)
.

Johnson et al. [26] calculated in this way the strain distribution in a decahedral
gold 17-nm-radius nanoparticle, using a high resolution Aberration-corrected TEM
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Fig. 1.21 (a) TEM micrograph of a fivefold gold nanoparticle. The scale bar is 10 nm long.
(b) Shear strain map obtained by geometric phase analysis. Adapted by permission from Macmillan
Publishers Ltd: [26], copyright 2007

image obtained with a Tecnai F20 ST (FEI) microscope. The results are shown in
Fig. 1.21.

They found that, in order to close the 7.35 degree gap left by five perfect
tetrahedra, each tetrahedron is strained nonhomogeneously (see Fig. 1.21b).

Is it possible to use STEM micrographs to generate strain maps by GPA? It would
be interesting to give it a try, since the contrast in STEM may be as good as or
even better than that of conventional TEM, and the interpretation of STEM is more
direct than the interpretation of TEM, but the scanning process may introduce some
artifacts in the geometric analysis. This source of error can be partially overcome by
aligning the scan parallel to a principal axis of strain [27], or by rotating the STEM
image and then repeating the GPA process.

The use of GPA on STEM micrographs is exemplified in Fig. 1.22. Here, a
decahedral gold particle very well orientated along its fivefold axis was imaged
by HAADF-STEM, and subjected to GPA analysis using the GPA Phase plugin
for DigitalMicrograph by HREM Research, based on the original algorithm by
Hytch [24]. Here we can note a qualitatively different strain distribution from the
particle of Fig. 1.21; in this case, the strain is distributed nonhomogeneously in each
tetrahedron, and some almost horizontal stripes of higher strain than the rest of the
particle appear crossing the frontiers between adjacent tetrahedra. Whether these
stripes are related to the scanning process is still uncertain, and here we present
the results to remark the need of double checking the GPA results by improving
the statistics of the measurement, repeating the GPA process to several micrographs
of the same particle, rotating the micrographs (or even the sample), and carefully
filtering the images.



1 Experimental and Simulated Electron Microscopy... 25

Fig. 1.22 (a) HAADF-STEM micrograph of a fivefold gold nanoparticle. (b) Shear strain map
obtained by geometric phase analysis

1.10 Conclusions

Electron microscopy at sub-Angstrom resolution has reached such a high level of
precision that we can investigate the composition and structure of metal nanopar-
ticles in an atom-by-atom fashion. This gives an invaluable capacity for the study
of the interaction of metal and alloy nanostructures with biological tissue, since
now it is possible to look for structure/function correlations in real time, and with
a resolution high enough to investigate individual bonds. The simultaneous use
of real and simulated microscopy makes the process of interpreting a micrograph
more science and less craftsmanship, and gives the conclusions extracted from the
measurements a more quantitative and less speculative character. Some conditions
must be fulfilled to take full advantage of the top electron microscopy facilities when
studying metal nanostructures: The capacity of preparing high quality samples, a
fair understanding of the interaction between the sample and the electron beam, a
conscious awareness of the capabilities and limitations of the different instruments
and techniques, and the familiarity with different analysis approaches. And, above
all, the essential element: an experienced and skillful microscopist.
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Co–Au interface in bimetallic nanoparticles: a high resolution STEM study. Nanoscale 2:2647
18. Gontard LC, Dunin-Borkowski RE, Gass MH, Bleloch AL, Ozkaya D (2009) Three-

dimensional shapes and structures of lamellar-twinned fcc nanoparticles using ADF STEM.
J Electron Microsc 58:167–174

19. Kimoto K et al. (2007) Element-selective imaging of atomic columns in a crystal using STEM
and EELS. Nature 450:702–704

20. Muller DA (2009) Structure and bonding at the atomic scale by scanning transmission electron
microscopy. Nat Mater 8:263–270

21. Ishizuka K (2002) A practical approach for STEM image simulation based on the FFT
multislice method. Ultramicroscopy 90:71–83

22. Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A
13:2287

23. Wang R et al. (2009) FePt Icosahedra with magnetic cores and catalytic shells. J Phys Chem C
113:4395–4400

24. Hytch M, Snoeck E (1998) Quantitative measurement of displacement and strain fields from
HREM micrographs. Ultramicroscopy 74:131–146

25. Mitchell DRG, Schaffer B Scripting-customised microscopy tools for Digital Micrograph
(TM). Ultramicroscopy 103:319–332

26. Johnson CL et al. (2007) Effects of elastic anisotropy on strain distributions in decahedral gold
nanoparticles. Nat Mater 7:120–124

27. Diercks D, Lian G, Chung J, Kaufman M (2011) Comparison of convergent beam electron
diffraction and geometric phase analysis for strain measurement in a strained silicon device. J
Micros 241:195–199

http://www.maxsidorov.com
http://cimewww.epfl.ch/people/stadelmann/jemsWebSite/jems.html


Part II
Electron Structure, Optics, and Magnetism



Chapter 2
Density-Functional Theory of Free
and Supported Metal Nanoclusters
and Nanoalloys

Alessandro Fortunelli and Giovanni Barcaro

The recent years have witnessed an explosive surge in the development and
applications of computational science. The availability of increasingly more power-
ful, faster, and cheaper computers and of an increasing number of computational
packages (many of which freely accessible) that are more and more reliable,
efficient, and user-friendly has stimulated this surge, and a large community of
computationally oriented people is now active in practically all fields of science,
ranging from both experimental and theoretical researchers to undergraduate and
graduate students. The field of metal nanoclusters and nanoalloys is no exception to
this general trend. Paralleling the impressive recent advances in the experimental
characterization techniques [92, 116, 126, 154], in the latest years an increasing
number of theoretical and computational studies have appeared on this topic,
especially dealing with the prediction of the structural properties of these systems,
and also extending to magnetic, optical and catalytic response. This explosive
behavior is not without its drawbacks. A risk of indiscriminate use is always present,
also considering the fact that a bit of empiricism is required in the choice of the
numerical parameters of the simulations. This risk can be avoided if the basic
concepts on which first-principles approaches rely are kept in mind. The aim of
this chapter is to provide an introductory description of these basic concepts and
tools, and at the same time to present examples of recent applications which can
give a flavor of what is the current status of the research in this field.

The chapter is organized as follows. We first present a brief basic introduction to
first-principles approaches, focusing special attention on advantages and limitations
of density-functional theory (DFT). The problem of how to achieve accurate
structural predictions in the field of metal nanoparticles and nanoalloys is then
dealt with, and a multi-scale computational protocol is discussed. The use of
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electronically and/or structurally “magic” clusters is successively described together
with the associated advantages and assured simplifications. Attention is then focused
on supported clusters, highlighting specific concepts and issues related to these
systems. Three illustrative examples of the application of the techniques previously
described are then presented, to provide the reader with some concrete test cases.
A brief section on dynamic processes such as growth and how they can be dealt
with at the first-principles level concludes the presentation, followed by a chapter’s
summary.

2.1 First-Principles Approaches to the Theoretical
Description of Metal Nanoclusters and Nanoalloys

Let us start by defining a general framework for our analysis: the considerations
that follow can be found in standard textbooks [42,95] and are here summarized for
the convenience of the reader. The phenomena we are interested in involve energies
typically in the range from a few cm−1 to a few tens of electron-Volts (eV). In this
energy range, which includes much of chemistry, molecular, and solid state physics
and materials science, the behavior of the system is well described by one variant of
Quantum Mechanics (QM). Specifically, for systems constituted of light elements,
a full solution of the Schrödinger equation [132] would provide an accurate de-
scription of the system, whereas for systems containing heavy elements relativistic
corrections, described for a single electron by the Dirac equation [46], come into
play. Even though, in fact, the typical energies and thus the physics of the valence
electrons (those determining the chemistry of the system) are nonrelativistic, the
interaction of the valence electrons with the core ones, i.e., the electrons closer to
and strongly affected by the proximity to the nuclei and whose speed can approach
that of light, appreciably modifies the field in which valence electrons move and
thus ultimately their chemical behavior, with gold being the prototypical example
in this context [125]. Metal nanoclusters and nanoalloys, both bare and in various
environments, perfectly fit in this framework, in the sense that bonding in these
systems can be accurately described by QM. The problem, however, is that it is
impossible with the present computational resources to obtain accurate solutions
even of the nonrelativistic Schrödinger equation for systems exceeding few particles
(nuclei and electrons). One is therefore necessarily led to some sort of approximate
theoretical treatments, which are traditionally distinguished into first-principles and
(semi-)empirical ones. Theoretical approaches are named “first-principles” when
they do not rely on input sources other than basic physical constants, such as the
Planck’s constant and the speed of light in vacuum. In these approaches one aims at
an explicit (though approximate) description of the electronic wave function of the
system. With respect to empirical approaches, in which the bonding interactions are
expressed in terms of analytic functions of the system coordinates containing atomic
or molecular parameters fitted on experimental or theoretical data, first-principles
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methods tend to be more accurate but certainly much more demanding in terms
of computational resources, and thus applicable to a more restricted set of material
systems. To study more complex systems, a multi-scale approach is usually invoked.
This approach, which will be described in the next section, is based on the idea that
systems containing a limited number of atoms are best described by rigorous first-
principles approaches which are also used to single out the basic interactions and
phenomena occurring in these systems, while by increasing the number of atoms the
same physics of the system simplifies and some details of the Quantum Mechanical
description become progressively less important, whereas those still surviving as
essential can be described in terms of a limited set of effective parameters. For
definitiveness, we assume to work from the start in the so-called Born–Oppenheimer
approximation [32], i.e., we take advantage of the much larger mass of the nuclei
with respect to electrons and thus of their lesser mobility to solve the electronic
problem at fixed nuclear coordinates, then providing the nuclei with a potential
energy surface (PES) for their movement, and considering residual effects such as
electron–phonon coupling as perturbations.

The main problem in solving the Schrödinger equation for the electrons in the
Born–Oppenheimer approximation is that the electronic wave function has a strong
many-body character. In other words, the behavior of an electron in any region of
space in principle depends on the relative position of all the other electrons. The first
decisive simplification (or approximation) therefore consists in disentangling the
behavior of a single particle (electron) from that of the rest of the system, and thus
to formulate the many-body problem in terms of uncoupled or independent sets of
single-particle equations. In the simplest instance, this is realized in the Hartree–
Fock approximation, whose equations are the following:

⎛
⎝− h̄2

2m
∇2 +V(r)+

∫ ∑N
j=1

[
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′)ϕ j(r′)

]
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−
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∑
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(∫ ϕ∗
j (r
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In (2.1) the (− h2

2m ∇2) term is the kinetic energy operator, the V (r) term is the

external electrostatic potential due to the nuclei,
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j=1[ϕ
∗
j (r
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∫ ρ(r′)
|r−r′|dr′,

and ∑N
j=1(

∫ ϕ∗
j (r

′)ϕ j(r′)
|r−r′| dr′) are the Coulomb and exchange operators, respectively,

describing the average field generated by all the electrons, and λi is the one-electron
or orbital energy of the ϕi(r) orbital, while ρ(r) is the total electron density.
The Hartree–Fock equations are obtained by assuming that the electronic wave
function can be written as a (properly anti-symmetrized) product of wave functions
for each single electron (i.e., a so-called Slater determinant) and minimizing the
total energy as a function of the ϕi(r) orbitals (the wave functions for the single
electrons). As can be seen from (2.1), according to the Hartree–Fock approximation
one has to solve a single-particle (or one-electron) Hamiltonian and to derive
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the single-particle (or one-electron) wave functions (or orbitals) and energies,
from which the total energy of the system can be obtained. As the Coulomb
and exchange operators in turn depend on the one-electron orbitals ϕi(r), the
Hartree–Fock equations are usually solved in a self-consistent fashion, in which
trial orbitals are used to construct the Coulomb and exchange operators and thus
the Hartree–Fock Hamiltonian, from whose solution one derives new orbitals that
are again used as input to build a new Hartree–Fock Hamiltonian and so on until
convergence is achieved. It should be noted that—due to the nonlinear character
of the Hartree–Fock equations—the total energy does not coincide with the sum of
the single-particle or orbital energies: this is necessary to avoid double-counting of
the Coulomb and exchange contributions and is a typical feature of single-particle
approaches, at variance with the original Schrödinger equation which is many-body
but linear. The advantages of the Hartree–Fock approximation are apparent: the
complexity of the complete solution of the Schrödinger equation reduces to finding
an average description of the electron cloud which produces an effective field in
which the electrons themselves move. This implies a self-consistent character of
the problem: the average or effective field generated by the one-electron orbitals
must be consistent with the motion predicted for electrons moving in this same
field. The switch from linear to nonlinear mathematics entails well-known issues
(e.g., convergence problems, that in some cases can be severe). These issues should
always be kept in mind when applying black-box electronic structure codes, but this
drawback is more than compensated by the enlargement of the set of systems that
can now be treated. Presently, self-consistent calculations can indeed be conducted
on systems composed of several thousand electrons, and further progress (both in
terms of the size of affordable systems and in terms of speed of computations)
are expected to come about in the future following the continuous advances in
hardware and software. An important feature in this respect is that, even though
the interaction between the single particle (electron) and the effective field in which
the particles are moving needs to be described, it is possible to devise techniques
which exploit the local character of this particle/field interaction and achieve so-
called “linear scaling,” i.e., a simple proportionality between the size of the system
(typically the total number of atoms, N) and the cost of the simulation [70]. It should
be noted that linear scaling is far from being automatically achieved: a naively
implemented Hartree–Fock method scales as N3−4, while an advanced and very
accurate post-Hartree–Fock method such as coupled cluster perturbation expansion
including single and double excitations and a perturbative treatment of triple
excitation (CCSD-T) in principle scales as N7−8 if the simplifications due to locality
of interactions are not exploited. This means that doubling the size of the system
entails a computational cost at least eight times higher for an untamed Hartree–
Fock calculation (and up to 256 times higher for an untamed CCSD-T calculation).
A proper and efficient numerical solution of the single-particle equations is therefore
mandatory to extend the scope of simulations to realistic systems.

Apart from technical issues of efficient implementation, what is lacking in the
Hartree–Fock approximation from the first-principles point of view is the treatment
of correlation effects, i.e., the phenomena and the energy contributions due to the
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fact that electrons in reality do not move in an average or effective field generated
by the other electrons, but interact among each other in a many-body fashion, so
that their motion is “correlated.” This aspect becomes crucial when electrons get
close in real space: the associated effects are grouped under the term of short-range
correlation. For example, one speaks of the Coulomb hole, i.e., the depletion in
the pair electron density with respect to the Hartree–Fock predictions due to the
Coulombic repulsion when two electrons approach each other. Still relying on an
explicit description of the electronic wave function, one can improve upon the
Hartree–Fock approximation by using so-called post-Hartree–Fock or “ab initio”
first-principles approaches. In these approaches variational or perturbative methods
are applied to expand the electronic wave function in terms of excitations with
respect to the Hartree–Fock wave function (the Slater determinant): by moving one
electron from an orbital which is occupied in the ground-state Slater determinant
to an unoccupied (or virtual) orbital, one obtains a single excitation, by moving
two electrons from occupied to virtual orbitals one obtains a double excitation,
etc. Configuration Interaction (CI) or multi-configuration self-consistent-field (MC-
SCF) are the most popular among the post-Hartree–Fock variational methods,
while Moeller-Plesset (MP) or Coupled Cluster (CC) methods are eminent among
the perturbative methods [140]. In principle, these approaches can reach a high
accuracy. However, one main difficulty lies in the inefficient description of short-
range correlation or the Coulomb hole, associated with the slow convergence of
the expansion of the two-body electronic wave function for small values of the
relative electron distance in terms of product functions of the coordinates of the
two electrons. For metal clusters, other problems also come from so-called long-
range correlation effects. Metallic systems in fact as a rule present a very small
band or HOMO-LUMO gap, i.e., a very small energy difference between their
highest occupied molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO). This makes them quite different from insulating systems in terms
of localization properties of the electronic wave function [96] and convergence of
post-Hartree–Fock methods, as it entails the presence of a wealth of low-energy
electronic excitations and the need of a delicate balance in the description of
their interaction to achieve an accurate assessment of the system energetics. It can
be recalled in this connection that the Hartree–Fock approximation is known to
describe very poorly a system which is usually taken as model of the metallic
bond, i.e., the electron gas or “jellium” (an idealized system composed of electrons
moving in a constant external potential). In detail, it is known that the band width
and the density of electronic states at the Fermi level (i.e., the energy threshold
between occupied and unoccupied orbitals) are severely exaggerated at the Hartree–
Fock level [87]. Remnants of this behavior can be observed also for metal clusters,
undermining the use of the Hartree–Fock exchange in hybrid DFT approaches for
these systems (see below) [63].

The problems associated with short-range and some long-range correlation
effects can be overcome by DFT. DFT in its Kohn–Sham version is a single-particle
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(or one-electron) method. Its equations are therefore formally equivalent to the
Hartree–Fock ones, and read:

(
− h̄2

2m
∇2 +V(r)+

∫
(r′)

|r− r′|dr′+Vxc[ρ(r)](r)
)

ϕi(r) = λiϕi(r) (2.2)

where the exchange operator in the Hartree–Fock equations is now replaced by
an exchange-correlation (or xc-) operator, Vxc[ρ(r)], which is a functional of the
electron density, thus an xc-functional. Two theorems from the 1960 [80,88] assure
that the method is in principle exact, i.e., that it exists an exact xc-functional of
the electron density such that the total energy constructed on the basis of the one-
electron orbitals derived from the solutions of (2.2) provides the exact energy of the
system. It should be noted in passing that, as in the Hartree–Fock case, the nonlinear
character of the Kohn–Sham equations makes that the total energy is not the sum
of one-electron energies. The problem is that the exact xc-functional is unknown.
Even worse, in the few exactly soluble model cases in which it has been possible to
derive the correct expression for the xc-functional, this has proved to be extremely
complicated. It is thus generally thought that knowledge of the exact xc-functional is
tantamount to the exact solution of the Schrödinger equation and is thus practically
out of question. The goal of the present research is to derive increasingly accurate
approximations to the exact xc-functional. This goal is often framed within the so-
called Jacob’s ladder [121], which allows one to rank the various approximations to
the exact xc-functional according to a well-defined hierarchy. The xc-functionals
currently most commonly employed are the first two rungs of the ladder: the
local density approximation (LDA), in which the xc-functional is composed of
the Slater exchange (simply proportional to the third root of the electron density)
[47, 136] plus a correlation functional parametrized on accurate results derived for
the homogeneous electron gas, and the generalized gradient approximation (GGA),
in which LDA is correct via terms depending on the gradient of the electron density
[118–120]. LDA and GGA are called local or semi-local xc-functionals. Other very
common xc-functionals consist in a mixture of a GGA exchange and the Hartree–
Fock exchange, and are named hybrid xc-functionals [24]. It should be noted that
the Hartree–Fock exchange is a functional not of the one-electron density but of the
one-electron density matrix [100]:

ρ(x,x′) = N
∫

Ψ(x,x2, . . . ,xN)×
∫

Ψ∗(x′,x2, . . . ,xN)dx2 . . .dxN (2.3)

where Ψ(x,x2, . . . ,xN) is the many-electron wave function and x is a compound
coordinate representing space (r) and spin variables. It can be noted that the
electron density is the diagonal part of ρ(x,x′) : ρ(x) = ρ(x,x). The fact that the
Hartree–Fock approximation implies the use of the one-electron density matrix
rather than the one-electron density has consequences from both in-principle and
practical points of view. From an in-principle point of view, this opens the way to
xc-functionals explicitly depending on one-electron orbitals. This is advantageous
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in some respect. In particular, local or semi-local xc-functionals inherently suffer
from the self-interaction correction (SIC) error, i.e., an erroneous attribution of a
correlation energy even to single-electron systems [117]. The use of the density
matrix instead of the density allows hybrid xc-functionals to correct for this error.
From a practical point of view, however, the evaluation of the Hartree–Fock
exchange is numerically more complicated than that of a functional of the electron
density. To make an example, while hybrid xc-functionals have been implemented
in periodic codes using localized basis functions since a long time [48], their
implementation in periodic codes using extended or delocalized (plane waves)
basis sets is recent and computationally demanding [131]. Moreover, auxiliary
basis sets for expanding the electron density can be introduced and utilized to
achieve linear scaling [49, 58, 59, 133], but the extension to the density matrix
is more complicated [150]. In this connection, recent hybrid xc-functionals take
advantage of so-called range-separation [76], i.e., they partition the 1/r12 term in
the Hartree–Fock exchange into a short-range and a long-range component, thus
allowing a much more efficient numerical evaluation. The advantage of using hybrid
xc-functionals is recognized when treating insulators or in general systems with
a substantial HOMO-LUMO gap, such as oxides, but also organic molecules, for
whose energetics the introduction of a Hartree–Fock term is often beneficial [24].
Also the description of the magnetic properties of transition metal complexes is
often improved by the use of hybrid DFT approaches [22]. As mentioned above,
these advantages can be undermined in the case of metal clusters (or in general
gap-less systems) by an erroneous treatment of the electron-gas bonding [63].
A promising recent approach in this respect is represented by modulating the
Hartree–Fock component by a space-dependent factor [143] in such a way that
different parts of the systems are described by a different combination of Hartree–
Fock and GGA exchanges [36, 143].

An extension of DFT is the so-called DFT+U method [5]. In this approach,
a Hubbard U term [83] is added to the DFT Hamiltonian, consisting of an energy
penalty for the double occupation of specific orbitals, see Fig. 2.1. This addition
improves upon the description of localized electronic states via DFT and is widely
used, e.g., to treat magnetic insulator such as NiO [41]. The U value can in principle
be evaluated a priori, but it is a common practice to derive it empirically by
comparison with experiment, see, e.g., [19]. One of the advantages of the DFT+U
approach is that it is possible to add the U term selectively on certain atoms.
In this way, one can describe composite systems such as metal/oxide ones by
simultaneously retaining a satisfactory treatment of the metal component (described
via a GGA DFT method) together with a fair description of the oxide component
(via the DFT+U approach). In this connection, it can be added that the U value for
the oxide layer at the interface with a metal support should be reduced with respect
to the value appropriate to the bulk because of screening effects [4, 19], as depicted
in Fig. 2.1.

Another source of inaccuracy in the standard DFT approach is represented by
long-range correlation effects connected with dispersion effects. Their origin lies in
the dynamical polarization of the electron cloud induced by the presence of electrons
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Fig. 2.1 Definition of the Hubbard Hamiltonian

belonging to nearby species. These are as a norm quantitatively smaller than typical
bonding contributions, but originate terms in the PES decaying as inverse powers
of atom–atom distances, and are thus awkward to describe in standard DFT using
a functional of the electron density whose tails decay exponentially outside the
atoms [96]. The most common way to include these effects is to add semiempirical
corrections to the total energy [61, 72, 142].

Apart from the so-called ab initio or post-Hartree–Fock approaches, first-
principles methods that go beyond DFT also exist. Among these post-DFT methods
we can mention the random phase approximation (RPA) [112] and the so-called GW
approach [112]. A different path to the solution of the Schrödinger equation passes
through methods of statistical integration such as the Quantum Monte Carlo one
[27]. Despite the intrinsically high computational demands of these methods, their
use is constantly increasing and it can be foreseen that it will become widespread in
a next future, especially for those systems and properties for which DFT has known
limitations.

Despite these limitations and the on-going research of improved and more versa-
tile xc-functionals and on post-DFT approaches, DFT is the first-principles method
most often employed in calculations on metal nanoclusters and nanoalloys, as it cur-
rently represents the best compromise between accuracy and computational effort.
Being a single-particle (or one-electron) method, it can scale linearly with the size
of the system, i.e., it presents the lowest computational cost among first-principles
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approaches. Moreover, it is thought to efficiently describe short-range correlation
effects and long-range effects associated with electron-gas bonding, which are
both difficult to deal with by using post-Hartree–Fock or ab initio first-principles
approaches (see the discussion above). Many black-box packages are nowadays
available to perform a wide range of electronic structure simulations within DFT,
from total energy calculations, to structure optimizations, to the search for saddle
points, to response properties, etc. Some of them are open-source codes that can be
freely downloaded from the Web, and an increasing number of them has graphical
interfaces that allow users to build up the system of their interest with a modest
effort (for one example among the many possible ones, see e.g. [69, 89]). A risk
of indiscriminate use is of course present, especially considering the fact that a
bit of empiricism or at least consolidated experience is strongly required in the
crucial choice of numerical parameters able to produce results that are numerically
robust and make physical sense. This risk is reduced if the basic principles behind
such simulations are kept in mind. In any case the availability of such packages
(cumulating decades of experience in applied mathematics and being continuously
developed and improved) has significantly widened the scope and enhanced the
impact of computational disciplines on both basic and applied research and even
on industrial applications.

2.2 Tools for Structure Prediction: A Hierarchical
Multi-Scale Approach

Among the peculiar features of the metallic bond, the two ones that are probably
the most important in the study of the structural properties of metal nanoclusters
and nanoalloys are its “greedy” and nondirectional (or, better, scarcely directional)
character [101, 115]. As greedy character, it is meant that the coordination number
of a metal atom can reach high values, spanning from 0 to 12 or more (coordination
numbers of 13, 14 are also observed [64]) with a relatively slow saturation in
terms of bond energies, i.e., the average bond strength is only slowly decreasing
with increasing the coordination number. Moreover, the metal–metal interaction
is scarcely directional: even though in some transition metals such as Au the
hybridization of s and d orbitals entails some bonding directionality [75, 110, 125],
especially for simple metals one encounters a nearly isotropic dependence of the
bond energy on the bond angular variables.

These two features makes that metal nanoclusters present a highly “fluxional”
character, i.e., they can be found in structurally rather different configurations which
however all lie in a narrow energy range. This effect is particularly apparent in small
clusters. To make an example, the energy differences between the global minimum
and the lowest-energy isomers of small Ag clusters in the gas-phase or adsorbed on
defected oxide surface—namely, the Fs-defected MgO(100) surface (see the next
sections for more details on this surface)—are reported in Fig. 2.2 [12]. It can be



38 A. Fortunelli and G. Barcaro

Fig. 2.2 Energy differences between the global minimum and the lowest-energy isomers of small
Ag clusters in the gas-phase or adsorbed on the Fs-defected MgO(100) surface

Fig. 2.3 Some examples of structural motifs which are observed in metal nanoclusters

seen that the lower values for such differences amount to at most 0.1–0.2 eV, and
that the effect of the interaction with the surface in this case is to further increase
this fluxional character, i.e., to reduce these energy differences.

It is thus an experimental observation with a sound theoretical basis that metal
nanoparticles and nanoalloys can exhibit an impressive variety of different structures
and morphologies: some representative examples are shown in Fig. 2.3. The fact
that the PES of a metal cluster system is characterized by a large number of
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Fig. 2.4 Hierarchy of computational methods for structure prediction as a function of the size of
the particle

local minima with relatively small energy differences represents a challenge at the
theoretical/computational level if accurate quantitative predictions are sought for.
A convenient connection can be made here with the general topic and the theory
of rough energy landscapes [148]. This feature is in fact shared by many different
materials, such as biological molecules and amorphous polymers, so that general
tools have been developed to tackle this problem.

In the field of metal nanoclusters, the most successful approaches that have been
developed in recent years to perform a systematic sampling of their PES are based
on a hierarchy of length scales, i.e., in these approaches the choice of the theoretical
modeling to be employed in performing simulations on a specific system is tuned
according to its size, as illustrated in Fig. 2.4. The idea behind this hierarchical
approach is to use for systems of different size the approach which is most efficient
and also makes physical sense for each one of them.

All the methods aimed at a systematic sampling of the PES are based on global
optimization techniques [130], i.e., those computational techniques aimed at finding
the absolute minimum (or global minimum) of a mathematical function which can
be very complex and exhibit very many minima differing by small energy amounts
(as in the case of metal clusters due to their fluxional character). This is the problem
of sampling in the most efficient and at the same time thorough way a very complex
and rough PES. One of the simplest and most efficient techniques among global
optimization ones is the so-called Monte Carlo with minimization or Basin-Hopping
(BH) algorithm. This approach has been proposed more than 20 years ago [91]
and used in pioneering investigations in the field of gas-phase metal nanoclusters
(described within empirical potentials) conducted by Doye and Wales [146, 147].
It is pictorially described in Fig. 2.5. In this algorithm, Metropolis Monte Carlo
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Fig. 2.5 Schematic (one-dimensional) depiction of the Basin Hopping (BH) or Monte Carlo with
minimization approach

walks are performed on a modified PES, which is obtained by associating with each
point of the configuration space the energy of its closest local minimum. In practice,
the BH algorithm consists of the following steps:

1. An initial random configuration of the metal cluster is chosen, a local geometry
optimization is performed, and the final energy (the fitness parameter) is
registered as E1.

2. Starting from the relaxed configuration, the atoms of the metal cluster are
subjected to a random move, a new local geometry optimization is performed,
and the final energy is registered as E2.

3. A random number (rndm) between 0 and 1 is generated and the movement of
step 2 is accepted only if exp[(E1–E2)/kB T ]> rndm (Metropolis criterion).

4. Steps 2 and 3—the Monte Carlo steps—are repeated a given number of times.

Depending on the kB T parameter, which plays the role of a fictitious temperature,
some high-energy configurations are accepted and the search is able to explore
different structural motifs (belonging to different funnels of the PES) of the metal
cluster. A crucial point in the implementation of the BH search is choice of
the random move. This can be simply a spatial “kick,” realized by randomly
displacing the Cartesian coordinates of all atoms up to a certain amount, or more
sophisticated choices, such as short runs of unstable Molecular Dynamics (MD)
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especially effective for larger clusters. In the case of multicomponent systems such
as alloyed nanoclusters or nanoalloys, an important random move is an exchange
of the coordinates of two species, as realized in the BH exchange-only algorithm
[28]. The thoroughness of the BH search is much increased when the BH protocol
is coupled with structural recognition algorithms, i.e., algorithms which classify
geometrical configurations as belonging to a given structural motif (or structural
family). For example, this can be a fcc motif, or a icosahedral, or decahedral one,
or more exotic ones, as depicted in Fig. 2.3. Structural recognition is achieved by
defining one or several order parameters, i.e., analytic functions of the systems
coordinates such as those derived from a common neighbor analysis [81]. The
coupling between the BH algorithm and structural recognition can be realized
in many ways. In the simplest case, one can group a posteriori the low-energy
configurations obtained by the BH search into structural families, as in the DF-
EP approach (see below). In more sophisticated protocols, one can use structural
recognition to orient the BH search, i.e., to avoid parts of the PES that have been
already explored or belong to a structural funnel which is not of interest. A further
enhancement of the thoroughness of the BH search is obtained by performing both
unseeded BH searches and (usually shorter) seeded searches starting from properly
chosen initial configurations, for example from structures belonging to motifs found
at nearby sizes or from structures found at the same size for other metals (system
comparison from databases), see [54] and the chapter by Riccardo Ferrando in this
book for an overview of the many possibilities. Other popular global optimization
tools comprise genetic algorithms (see, e.g., [86]).

The hierarchy described in Fig. 2.4 is implemented in the following way. For
small clusters (with a number of atoms, N, less than a few tens, presently N ≤
40), it is computationally feasible to conduct a global optimization (in the form
of the BH algorithm) using energy and forces derived from DFT in the so-called
DF-BH method, see, e.g., [6] for one of the first implementations for gas-phase
metal clusters and [12] for the first implementation for supported metal clusters. A
scheme of the DF-BH scheme is shown in Fig. 2.6. It makes sense to use a DFT
approach for such small clusters since in this size range the metallic bond is not yet
(or not fully) developed, the systems have a pronounced molecular character, and the
transferability of empirical potentials (EP) is extremely limited. In short, for small
clusters the finite character of the system is best described at the first-principles
level.

For medium-size clusters (presently 40 ≤ N ≤ 200), the DF-BH approach
becomes progressively less and less feasible, and more approximate methods such
as EP must be employed. An efficient possibility is to replace the DF-BH approach
with a combination of DFT and EP simulations, in the DF-EP method. In this
approach, proposed in [10, 29] and reviewed in [54], an EP for the given system is
first selected (or developed). Second, a thorough global optimization search using,
e.g., the BH technique with structural recognition algorithms is conducted using this
EP. Third, the low-energy configurations produced by the BH search are grouped
into structural families or basins. Fourth, a few of the low-energy configurations
belonging to each structural basin are subjected to local geometry relaxation
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Fig. 2.6 Schematic implementation of the DF-BH method

using a DFT method, and the changes in the relative energy ordering of the
structural families are analyzed. Finally, if these changes highlight inconsistencies
or inaccuracies in the EP, the DFT results are used to refine the EP in a self-
consistent process. The idea behind this approach is that in this size range the system
progressively tends toward bulk metallic behavior, which is however not yet fully
developed: for such systems, the EP can be in error in predicting the relative energy
ordering among the various structural families, but it should be more accurate for the
lowest-energy configurations belonging to the same structural family, see Figs. 2.7
and 2.9 for a schematic description of the DF-EP approach.

For yet larger clusters (presently 200 ≤ N ≤ 1,000), even performing DFT
calculations becomes progressively unfeasible, at least to conduct them in large
numbers, and one has to rely entirely on global optimization searches based on
EP approaches. The size of the system justifies the use of an EP and thus an
average description of the metallic bond. At some point (the current limit is around
1,000–2,000 atoms) even the BH algorithm using EP becomes computationally
unaffordable. An efficient solution then is to use extrapolations based on structural
motifs. The idea is that for these large particles the competing motifs have
been singled out and are known, so that large clusters belonging to these motifs
can be constructed and locally optimized and their energy can be compared to
predict energetic crossover and phase transformations among structural families [7].
As discussed in the next section “magic” structures are very helpful in defining a
convex envelope of the energetics of structural families as functions of the size of the
cluster. Moreover, in this size range some details of the structural relaxation which
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Fig. 2.7 Schematic implementation of the DF-EP method

are thought to be reasonably well described by EP become less and less important.
Effective models based on site energetics thus become more and more accurate and
have been successfully used [1, 124].

Such a hierarchical approach to structure prediction can thus be rephrased or
recast in terms of a multi-scale framework, see Fig. 2.8.

Starting from few-atom systems in which DFT can be routinely applied, the first
and from the point of view of the topic of this chapter the most crucial step of such
a multi-scale approach is depicted in Figs. 2.8 and 2.9, and connect first-principles
or QM calculations, e.g., DFT ones, with EP modeling. From an analysis of QM
calculations one singles out the basic physics of the system and which are the basic
physical ingredients that an empirical force field must contain. An analytic EP is
then built and used in a thorough search combined with structure recognition. The
energy ordering among the competing structural families predicted by the EP is then
tested and cross-checked at the DFT level. If this test suggests that an improvement
of the EP is necessary, a new fit of the EP parameters is conducted, a new EP
is generated, and a thorough search is performed again using the newly derived
parameters. This search may (and often will) produce a different set of structural
motifs, whose low-energy configurations are then tested and cross-checked again
at the DFT level. This procedure is repeated as many times as needed until self-
consistency is achieved.
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Fig. 2.8 Multi-scale framework for structure prediction

Fig. 2.9 Flow diagram of the DF-EP approach
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Fig. 2.10 Schematic depiction of the intersection of computational methods for different length
scales and their overlap regions

From personal experience, the achievement of self-consistency between DFT and
EP is often important, and its lack points to an intrinsic deficiency in the physical
principles upon which the EP has been built. Development of an EP, apart from
being considered an art in itself [122], is therefore also important in stimulating a
deeper analysis of the DFT results from which a sounder knowledge of the physics
of the system usually derives. It happens in fact that the first version of the EP
predicts an energy landscape which is rather different from the DFT one, and self-
consistent refinement is strongly needed. This is realized by an enlargement of
the fitting set, i.e., the set of configurations which are included in the fit of the
EP parameters, which corresponds to an increase of information on the physics of
the system. In this respect, the “overlap” regions of the length scale framework in
which both approaches (DFT and EP in the present case) can simultaneously be
applied assume a crucial importance, see Fig. 2.10. These are the regions in which
it is important to achieve as large a structural diversity as possible [54].

2.3 Magic Clusters

Magic metal clusters are aggregates of metal atoms which present electronic
and/or structural shell closure, often associated with a peculiar energetic stability.
Structural shell closure is achieved when the number of atoms is such that a
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high-symmetry structural motif is completed, such as icosahedral, decahedral, and
octahedral, see Fig. 2.3. When the electrons of the cluster complete a valence shell,
and a substantial energy gap (of the order of 1–2 eV) exists between the HOMO and
LUMO levels, an electronic shell closure is also achieved, usually rationalized in
terms of the jellium model [44], i.e., a model in which an electron gas of nearly free
valence electrons is assumed to move in a homogeneous ionic background, with
the predicted magic numbers of valence electrons for the spherical homogeneous
jellium model at N = 2, 8, 20, etc. The great interest arisen by magic clusters
from an experimental point of view lies in the expectation that their high stability
favors the synthesis of fully monodisperse systems, while structural and electronic
shell closures may entail peculiar properties, which may lend themselves to
use in technological applications. Structure–property relationships are particularly
transparent for magic clusters.

Small magic clusters are particularly interesting in terms of electronic shell
closure, and thus of electronic properties. To make one example, in Fig. 2.11 the first
example of a surface magic (binary) metal cluster is presented, which is also helpful
to exemplify what can typically be expected in this field. Small PdAgN clusters in
the gas phase, studied via a DF-BH algorithm in [13], present a transition from
planar to 3D global minimum structures between PdAg4, which is still planar, and
PdAg5, which is 3D. PdAg6, however, represents an exception to this rule, and is
still planar due to an electronic shell-closure effect. Assuming in fact that Pd has a
d10 configuration as in the single atom (and thus formally no valence electrons) and
counting 1 valence electron per Ag atom, one finds for PdAg6 a total of six valence
electrons, thus achieving shell closure in the 2D jellium model. This stabilizes the
planar configuration with respect to the compact one despite the fact that compact
configurations are more stable than planar ones already for PdAg5. The HOMO-
LUMO gap of the planar global minimum of PdAg6 is indeed significant: 1.51 eV,
to be compared with the 1.1 eV gap of PdAg8. PdAg6 has also a 3D isomer which
is only slightly higher in energy than the planar global minimum (energy difference
of 0.15 eV, see Fig. 2.11). This isomer has a HOMO-LUMO gap reduced due to
breaking of the planar symmetry: 1.1 eV. When these small Pd-Ag clusters are
deposited on an Fs-defected MgO(100) surface (see the next section for more details
on this surface), the interaction with the surface favors a configuration in which the
Pd atom is bound directly to the defect (Pd interacts with the surface more strongly
than Ag) and the geometry is distorted to 3D to allow a better adhesion of the crown
of Ag atoms to the surface. Furthermore, the Fs defect now contributes with two
electrons to the valence electron count (see the next section), for a total of eight
valence electrons, thus achieving shell closure for the 3D spherical homogeneous
jellium model. The HOMO-LUMO gap for the supported cluster is indeed higher
than its 3D analogue in the gas phase, being restored to about 1.5 eV.

For larger clusters, electronic shells get closer in energy and electronic shell
closure effects become progressively less important (see however a nice example
in [3]). Structural shell closure instead can still play a relevant role in assuring an
extra stability to magic structures [44]. Apart from the extra stability associated with
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Fig. 2.11 Small PdAgN clusters studied via a DF-BH algorithm both in the gas-phase and
supported on the Fs-defected MgO(100) surface (see text for details). Reproduced with permission
from [13]. Copyright 2007 American Chemical Society

shell closure, structurally magic clusters are also very helpful in other respects in the
theoretical analysis. Magic clusters in fact as a rule exhibit high symmetry, which
can be exploited in several ways.

First, some first-principles codes (especially those utilizing localized basis sets)
can efficiently exploit the point group symmetry to reduce the computational effort
[2, 74]. This reduction can reach up to the order of the symmetry group in some
parts of the code (e.g., the calculation of the Coulomb two-electron integrals in
codes using finite basis sets) or even up to a power of the order of the symmetry
group higher than one in some other parts (e.g., the dimension of the matrices to be
diagonalized can be reduced by a factor roughly equal to the order of the symmetry
group, so that the computational effort to diagonalize them is reduced by a power of
the symmetry group of at least two).

Second, structurally magic clusters can be useful in structure prediction, as
mentioned in the previous section, see Fig. 2.4. It is in fact possible to construct large
clusters belonging to a given structural motif, locally optimize their structure, and
obtain the behavior of the binding energy as a function of size for the given structural
motif [7]. Moreover, as it is known that the energy of metal clusters belonging
to a given structural family often present an irregular behavior with cluster size
between non-magic structures, due to the different site energies of atoms belonging
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Fig. 2.12 Shell structure in the 38-atom truncated octahedral cluster

to incomplete shells, drawing the envelope of the binding energy as a function of
size for the magic or structurally shell closed configurations provides a convenient
way of defining the minimum of the excess energy for that particular motif, and thus
allows one to study the ideal energetic crossover and phase transformations among
different motifs [56].

Moreover, the full point group symmetry can be used to partition the atoms
into symmetry “orbits” or symmetry “shells” [62, 148], i.e., groups of symmetry-
equivalent species (which are converted into one another by the operations of the
symmetry group). Just to make a very simple example, let us consider a 38-atom
truncated octahedral cluster, as shown in Fig. 2.12. It is made of an inner (core)
shell of six octahedral atoms and an outer shell of 32 atoms. The number of orbits is
three: orbit-1 is formed by the six atoms of the inner shell; orbit-2 by the eight atoms
at the center of the (111) facets, and orbit-3 by the 24 atoms on the (100) facets.
One can thus describe a 38-atom cluster by defining the coordinates of only three
atoms. In passing we note that, in general, a given truncated octahedral cluster is
characterized by two indexes: the length of the edge of the complete octahedron and
the number of layers cut at each vertex. A similar analysis can be done for the other
structural motifs that are commonly encountered in the study of metal nanoclusters
and nanoalloys, some of them shown in Fig. 2.3. They range from simple pieces of
a crystal lattice, such as variously truncated octahedral (from regular octahedra to
cubes) for the fcc lattice, to noncrystalline arrangements, such as all those containing
fivefold symmetry axes: icosahedra and (possibly Marks-truncated) decahedra [97].
More recently also poly-icosahedra [129] or in general poly-tetrahedra, and mixed
or hybrid arrangements combining in various ways crystalline and noncrystalline
motifs have been shown to be competitive for medium-sized (especially alloyed)
clusters.
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Fig. 2.13 Definition of nanoalloys

Magic structures are also important in the study of nanoalloys. Combining
nanostructured metal systems or metal nanodots with alloying results in a class of
systems of great interest in terms of both basic and applied science: alloyed metal
nanoparticles or nanoalloys [55, 85], see Fig. 2.13.

These systems have several applications ranging from catalysis, to optics and
magnetism. The reasons of their importance lie in the fact that additional structural
motifs with respect to pure systems can be created, and the chemical and physical
properties of the particles can be tuned by varying the composition and the degree
of atomic mixing (chemical ordering or compositional structure). Ag–Au particles,
for example, exhibit a different optical response depending on whether they are
core-shell or random solutions [33]. Mechanical properties are equally known to be
strongly affected by surface segregation [25]. The precise arrangement of the species
in the particle is also important in catalysis, dominated by processes occurring at
surface or subsurface shells, and changes in the segregation pattern under operating
conditions have been observed [141]. Several mixing patterns have been described
in the literature [55], such as core-shell or in general multishell ordering (in
which concentric shells of different elements alternate), random solutions, ordered
arrangements (more or less related to the known ordered phases of bulk alloys),
and Janus-like segregation typical of immiscible components. To compare the
stability of nanoalloys of different chemical composition, a very useful concept
is that of mixing energy. Its definition represents the natural generalization of the
corresponding concept used for bulk alloys and was proposed for the first time in
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[62] in the context of empirical methods and later applied to DFT energetics in [53],
and reads:

Δ[NA, NB] = Ealloy[NA, NB]−NAEA [N]/N −NBEB [N]/N (2.4)

where Ealloy[NA, NB] is the global minimum energy of a nanoalloy cluster composed
of NA atoms of the species A and NB atoms of the species B, N = NA +NB is the
total number of atoms in the cluster, EA[N] is the global minimum energy of a
pure cluster of N atoms, and EB[N] is the corresponding quantity for the B species.
Δ[NA, NB] is the mixing energy of the given nanoalloy at a specific composition,
i.e., the energy released by mixing NA A-type clusters and NB B-type clusters all of
size N to produce N alloyed clusters of size N with composition (NA, NB), with
all clusters in their global minimum configuration, divided by N. The quantity
Δ[NA, NB] provides a measure of how thermodynamically favorable is alloying at the
given size and composition. In the context of the study of the compositional structure
of nanoalloys, theoretical methods can provide relevant information which nicely
complements and sometimes prefigures experiment, but the prediction of the correct
chemical ordering is not an easy task, especially at the first-principles level, due to
the combinatorial increase in the number of possible “homotops” (isomers sharing
the same skeletal structure and composition but differing in the mixing pattern) [85].
In general, for a cluster with a given structure and N atoms of which NA of species
A and NB of species B, one has (N)!/((NA)!(NB)!) possible different homotops. A
possible solution to this problem is to consider structurally magic clusters. In this
approach, proposed in [62], the point group symmetry is exploited to partition the
atoms into symmetry orbits: the degrees of freedom of the system are thus reduced
from N to the number of symmetry-inequivalent orbits, Norb, and correspondingly
the number of distinct homotops is exponentially decreased, making first-principles
simulations feasible even for medium-sized particles. For example, the segregation
patterns of face-centered-cubic-like (fcc-like) PdPt nanoparticles in the size range
between 38 and 201 atoms and over a broad range of compositions was recently
studied [20], finding that the interplay of metal–metal homo- and hetero-interactions
produces an unusual Pt surface segregation in Pd-rich particles (in spite of the larger
Pt bulk energy) and a novel patchy multishell pattern around equimolar composition
in which each shell is decorated by “patches” of like atoms, see Fig. 2.14.

In this connection it can be added that another very efficient tool to drastically
reduce the computational effort and to enlarge the scope of systems amenable to
first-principles simulations is based on the use of periodic models, see, e.g., [103].
Instead of studying a 0D nanodot, in fact, one can consider a 1D or “wire” model,
as depicted in Fig. 2.15. In this figure, the correspondence between a truncated
octahedral 0D cluster, supported on a square-symmetry oxide surface to a 1D wire in
which the section of the cluster is replicated ad infinitum, is clearly shown. As in the
case of magic clusters, in this approach one exploits symmetry (in this case, periodic
symmetry) to strongly reduce the number of nonequivalent atoms (in this case, those
contained in the unit cell). In Fig. 2.15 the indexes defining the level of truncation of
the wire corners are shown. These often correspond to the Wulff (for free particles)
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Fig. 2.14 Basic ideas behind the symmetry shell or orbit approach and the associated simplifica-
tions in the computational sampling of the chemical ordering phase space, with two examples of
magic structures and their subdivision into symmetry orbits

or Wulff–Kaishev (for supported particles) construction, i.e., the optimal shape of
the wire predicted by proportioning the truncations to the surface and interfacial
energies, see [71, 78] for more details. The simplifications assured by the use of
wire models in terms of reduction of the number of atoms in the unit cell and
also of the degrees of freedom of the system are apparent. Through the use of such
models, 1D system with a unit cell of 110–120 atoms can be constructed resembling
or mimicking 0D particles with 7–8 times this number of atoms, which would be
otherwise extremely expensive or hardly affordable with the present computational
facilities.

Structurally magic clusters can finally be very useful in the prediction of the
properties of metal nanoclusters and nanoalloys.

For example, an approach based on the study of magic clusters has recently been
applied to investigate the optical properties of Au clusters in the size range of 150–
170 atoms with various shapes [50]. In this case, the use of symmetry can reduce
by orders of magnitude the computational effort, as the electronic excitations which
make up the optical response can be catalogued into appropriate irreducible repre-
sentations of the symmetry group, and the interactions among excitations belonging
to different irreducible representations are automatically null by symmetry. The size
range around 150–200 atoms is about the maximum that can be confidently treated
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Fig. 2.15 Study of supported binary particles via a 1D wire approach. Reproduced with permis-
sion from [21]. Copyright 2011 American Chemical Society

when studying optical response using current computational resources even with a
full exploitation of point group symmetry, but future developments can probably
double this size limit in the next future. The approach employed in [50] is currently
being extended to other pure metal nanoclusters (such as Ag) and from pure metal
nanoclusters to the study of the optical properties of nanoalloys, i.e., Ag–Au and
other alloyed nanoclusters, and coupled with 1D (wire) models [51].

As another example, magic clusters can be used in the study of magnetic
properties of metal nanoclusters and nanoalloys. In Fig. 2.16 a 34-atom Co-Pt
cluster with L12 chemical ordering is shown supported on the MgO(100) surface.
Partitioning the atoms of the cluster into layers and shells allows one to investigate
the spin–spin coupling constants in this cluster. The results (also shown in Fig. 2.16)
indicate that significant spin–spin coupling constants are found in the cluster. Other
magnetic properties such as the magnetic anisotropy energy (MAE), i.e., the energy
difference between different orientations of the magnetization axis of a nanoparticle,
can in general be also calculated. An approach similar in spirit to this one is
presently being developed in which a wire model is applied to investigate interface
effects on the magnetism of CoPt particles supported on MgO(100) [21].
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Fig. 2.16 Magnetic ordering in PtCo nanoparticles supported on MgO(100)

2.4 Supported Clusters

One important issue in surface chemistry and catalysis is to clearly identify the effect
of dimensionality on the chemical reactivity of heterogeneous systems, and this has
produced the new field of nanocatalysis, i.e., catalysis by pure and alloyed metal
particles with dimensions in the nanometer range [77]. However, a major general
problem that needs to be overcome in the applications of metal nanoparticles and
nanoalloys is related to the intrinsic instability of the nanoparticles: due to their
high surface/volume ratio, nanoparticles tend to decrease their energy by coalescing
into larger particles (Ostwald ripening and sintering processes). This makes their
characterization difficult and the exploitation of their innovative properties on a
long time scale or under realistic reaction conditions nontrivial. Being intrinsically
unstable, nanoparticles can only survive in the presence of kinetic barriers which
avoid mass transfer and agglomeration processes, due, e.g., to the presence of
surfactants or when stabilized by specific nanoparticle–substrate interactions. In this
context, metal oxide substrates are often used as supports for the growth of metal
particles, as defects in oxides have been demonstrated to be effective in stabilizing
metal nanoparticles [65]. This practice has prompted a wealth of surface science
studies [52] in which model metal-on-oxide systems are created by depositing gas-
phase atoms or preformed clusters onto a single-crystal oxide surface, and then the
processes of adsorption, diffusion, and self-organization are characterized in great
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Fig. 2.17 Processes of adsorption, diffusion, and self-organization of metal atoms deposited on an
oxide surface

detail, see Fig. 2.17. This section is concerned with the theoretical description of
the structure of supported metal nanoparticles and nanoalloys. It can be added in
passing that a very important topic but one which has not been much investigated
from the theoretical point of view is the thermal stability of the supported particles.
This is a central issue especially in heterogeneous catalysis when the reactions to be
catalyzed are strongly exothermic (as in the case of CO and NO oxidation catalyzed
by gold particles [84]), as the evolved heat can induce particle detachment from the
substrate, Ostwald ripening and sintering [114] leading to larger particles and/or to
the loss of beneficial particle/substrate interactions [38,98], and thus to deactivation
of the catalyst.

The first issue to be faced when studying the structure of supported metal
nanoparticles concerns the epitaxial relationships between the substrate and the
particles. In the case of oxides made of simple metals, such as MgO, metal atoms
prefer to stay on top of O atoms [99,155], see Fig. 2.18, a phenomenon which can be
rationalized. The metal/substrate interaction can in fact be partitioned into several
contributions. First, the Coulomb potential generated by the ionic surface induces
electrostatic effects: the metal system polarizes under the influence of the oxide
electrostatic field. The induced polarization can in turn polarize the charge cloud
of the oxide atoms: in the case of, e.g., MgO, this effect will of course be much
larger for the diffuse and “soft” oxygen anions than for the compact and “hard”
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Fig. 2.18 Schematic structure of the regular MgO(100) surface (left), potential energy surface
of a metal atom deposited on this surface (right), and comparison of lattice parameters for MgO
and selected metals (bottom). Reproduced with permission from [11]. Copyright 2006 American
Chemical Society

magnesium cations. Another effect (which however is not taken into account in
standard DFT calculations) is due to the dispersion interactions originating in the
dynamical polarization of electron clouds by the presence of nearby electrons (see
the first section of this chapter). This effect will again be larger for metal positions
on-top of oxygen rather than magnesium. Finally, a chemical (covalent) bonding
component can also be present even in simple oxides, in which case it will as a rule
be larger for the oxygen anions than for the cations. Three effects thus conjure to
make oxygen anions more favorable adsorption sites than metal cations in simple
oxide supports such as MgO(100). It can be noted in passing that a full analysis of
the metal/surface interaction in prototypical cases has not yet been developed due to
the computational burden of performing accurate ab initio or post-DFT calculations
on relatively large systems [94], thus free from SIC errors and including dispersion
interactions, but it would be very interesting to ascertain the weight of the various
contributions and investigations are being conducted in this direction [31].

A subtle effect which is particularly important in determining the structure of
small cluster is the so-called “metal-on-top” effect [8]. This is an increase in the
metal–surface interaction energy due to the presence of metal atoms on top of the
atom directly in contact with the oxide substrate, and is connected with the fact that
the electron density of metal atoms sitting on top of oxygen ions is repelled and
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polarized away from the surface: the presence of other metal atoms on top of those
directly in contact with the oxide that can receive this excess of electron charge thus
decreases the energy.

Other effects are connected with epitaxial relationships, see Fig. 2.18. Since
metal atoms prefer to stay on top of oxygen atoms and the O–O first-neighbor
distance for example in MgO(100) is 2.97 Å, if the optimal metal–metal distance
in the bulk is smaller than this value (as it is usually the case), the lattice mismatch
between the substrate and the growing particle will produce frustration and strain
that need to be alleviated. For nanoparticles, this mismatch will be even more
pronounced than for extended systems as a consequence of the shrinking of metal–
metal distances due to the reduced coordination. This strain can be reduced by
the creation of interfacial dislocations [66], i.e., defect lines at the interface by
which the nanoparticles achieve a better match to the substrate. Another possibility
is to develop exotic morphologies which are not favored in the bulk but become
favored because of a better adhesion and interfacial energy, a possibility which is
particularly likely if the lattice mismatch between metal and oxide is large [56]. Of
course, these interface-stabilized phases must eventually produce a crossover to the
thermodynamically stable bulk phase, depending on the growth conditions and on
the associated kinetic energy barriers [56].

Concerning the metal/surface interaction, an issue which has long been debated
in the theoretical literature is that of the charge transfer between the metal and the
oxide. For a single Au atom on the regular MgO(100) surface as a model of an ionic
and inert oxide surface, it has been proved both experimentally and theoretically
that no much charge transfer exists, but rather a significant polarization of the
Au electron cloud [155]. However, other systems may be different. Some useful
information in this regard can be drawn from an analysis of extended model systems
such as oxide ultra-thin films on metal surfaces [67]. These are composite systems
formed by a very thin (ultra-thin) film, i.e., few-monolayer-thick, of an oxide
grown on a single-crystal metal surface, see Figs. 2.19 and 2.20, and are interesting
in a variety of ways, e.g., in this context to study the basics of metal/surface
interaction. The availability of extended metal/oxide interfaces is interesting from an
experimental point of view as it allows one to use space-averaged characterization
techniques rather than local probes. In some cases a charge transfer between the
metal and oxide components has then been clearly demonstrated. For example, it has
been shown that MgO(100) yields electronic charge to Mo(100) [113]. This charge
transfer strongly reduces the surface dipole moment of the Mo(100) surface, and
thus its work function, i.e., the amount of energy necessary to take one electron from
the interior of the system and bring it to the vacuum. It can thus be expected that
sufficiently large Ag nanoparticles deposited on MgO(100) will acquire electronic
charge from the substrate. The opposite effect, i.e., a transfer of electronic charge
from the metal support to the oxide, can be found in other metal/oxide combinations.
For example, it is found for a monolayer of NiO on the same Ag(100) substrate,
see Fig. 2.19 for a pictorial view. In this picture, it can also be appreciated that
the charge transfer is much reduced in passing from an NiO monolayer to a NiO
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Fig. 2.19 Electron density difference plots are shown between the composite oxide-on-metal
systems and the separated fragments. Red regions represent an increase in the electronic density,
whereas blue regions represent a depletion. Reproduced with permission from [134]. Copyright
2011 American Chemical Society

bilayer, a subtle effect proving that charge exchange between interacting systems
depend sensitively on dimensionality and geometrical parameters.

The work function of a system is an important quantity, as it determines its redox
properties. Charge transfer effects modulating the work function are thus relevant
as they can appreciably modify properties such as adsorption or interaction with
deposited species. For example, it has been shown that the work function of the
system composed of a MgO(100) ultra-thin film grown on Ag(100) is particularly
low, due to the transfer of electronic charge from the oxide to the metal. In this
case the work function is so low that it becomes smaller than the electron affinity of
small Au clusters deposited on top in such a way that the Au clusters can therefore
acquire a sizable charge from the metal support, get negatively charged and thus
exhibit very unusual morphologies, being planar and parallel (fully adhering) to the
surface instead of perpendicular to it or compact [93, 128]. Other so far unexplored
possibilities concern the use of external electric fields to modify charge transfer
effects at the interface and thus orient the physics and chemistry of adsorption. This
in principle can be realized via a simple condenser arrangement, see Fig. 2.20, a
possibility which is currently being investigated.

So far we have mainly considered regular, undefected oxide surfaces. It has been
shown however that metal cluster can easily diffuse on regular, undefected surface
[9, 107, 153] (see also the final section). This implies that a perfect surface can
be unable to stabilize metal nanoparticles and avoid the danger of sintering. It is



58 A. Fortunelli and G. Barcaro

Fig. 2.20 Use of external electric fields to influence charge transfer effects at a metal/oxide
interface and orient the physics and chemistry of adsorption

therefore believed that surface defects play a crucial role as trapping and nucleation
centers. Defects can be distinguished into local and extended. Two examples of
prototypical local defects that have been studied in great detail are the oxygen
vacancy (or Fs-center) and the double vacancy (DV) on the MgO(100) surface. The
Fs defect is obtained by removing a neutral oxygen atom from the surface, thus
leaving behind a cavity filled with two electrons trapped by the Madelung potential
created by the surface. It is usually chosen as an example of a neutral local defect,
but charged Fs-centers obtained by removing one or both trapped electrons have also
been studied [108]. The DV defect on the MgO(100) surface is instead obtained by
removing a MgO neutral pair from the surface, thus leaving behind a larger cavity
with no trapped electrons. Extended as opposed to local defects are for example
step edges. Other possibilities include combinations of local defects with extended
ones such as Fs-centers at steps, corners, kinks, etc. [39]. The importance of such
defects on the properties of oxide surfaces as supports for the growth of metal
clusters has been widely debated. Clearly, the way of preparing the surface plays
a crucial role in determining the relative abundance of the various types of defects,
and this may have a bearing on the adsorption properties of the oxide surface, and
hence on the catalytic activity of metal nanoparticles supported on it, which might
help explaining why heterogeneous catalysis is often considered as a kind of “black
magic.” What can be certainly said at the theoretical level is the fact that the presence
of a defect appreciably modifies the PES of metal atoms around the defect center
[11, 106]. Let us consider for example the absorption of a single Au atom on the
regular and defected MgO(100) surface. We fix the Au position in the plane parallel
to the oxide surface and optimize its distance from the surface. Figure 2.21 shows
the resulting absorption topography, that is, the equilibrium distance and absorption
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Fig. 2.21 Potential energy surface for adsorption of a single Au atom on the regular (upper left and
middle images) and Fs-defected (lower left and middle images) MgO(100) surface. Plot of electron
density at a Fs defect (upper right image). Reproduced with permission from [11]. Copyright 2006
American Chemical Society

energy as a function of the in-plane position, for both the regular (middle panel)
and the defected (left-hand panel) surfaces [11]. A completely different energy and
equilibrium distance landscape is immediately apparent in the two cases. On the
regular surface, one finds a rather flat PES, exhibiting minima in correspondence
of the oxygen atoms, maxima on the magnesium atoms, and saddle points on the
hollow sites, with a maximum adhesion energy of 0.91 eV and energy barriers of
about 0.2 eV for the diffusion between neighboring oxygen sites. Correspondingly,
the equilibrium height exhibits minima at 2.30 Å on the oxygen sites, maxima at
2.71 Å on the magnesium sites, and saddle points at 2.40 Å on the hollow sites.
The in-plane distance between the energy minima corresponds to the MgO lattice
parameter of about 2.97 Å: this value is larger than the typical Au–Au distances
(the Au–Au distance in the bulk is 2.885 Å, smaller distances are normally found in
Au nanoclusters), thus inducing a frustration (mismatch) in the metal growth on the
MgO(100) surface. The presence of the Fs defect completely alters this situation,
with the resulting potential energy and equilibrium height surfaces exhibiting three
major features:

(a) The energy minimum in correspondence of the defect site is much deeper, with
an adhesion energy of 3.07 eV.
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(b) A large basin of attraction is produced around the defect, with an adhesion
energy of 1.62 eV on the magnesium atoms first-neighbors to the vacancy (to be
compared to a value of 0.5 eV for the regular surface), extending its influence
up to third neighbors, and exhibiting an approximate cylindrical symmetry: this
is due to a strong perturbation of the electrostatic potential outside the surface
with respect to the regular, undefected system, which affects the polarization
and thus the adhesion characteristics of the metal atom.

(c) There is a large difference between the equilibrium distance atop the defect
(about 1.8 Å), strongly reduced with respect to the absorption onto the regular
surface, and that atop the neighboring sites (2.65 Å on the magnesium and
2.59 Å on the oxygen sites first-neighbors to the vacancy, respectively), for
which an increase in the absorption energy unexpectedly corresponds to an
almost general increase in the equilibrium distance. The equilibrium distance
then slowly relaxes to the values typical of the adsorption on the regular surface
as the Au atom gets farther from the defect. The topography of the equilibrium
distance as a function of the in-plane coordinates thus corresponds to a “crater”
around the Fs center.

These three features determine the characteristics of the metal growth around the Fs

defect:

(a) Due to the strong interaction of gold with the oxygen vacancy, this defect can
act as an efficient trapping center for the nucleation of metal clusters.

(b) The approximate cylindrical symmetry of the adhesion energy around the defect
site ensures the metal clusters a considerable rotational freedom, by which the
clusters can rotate on the surface keeping the atom atop the defect fixed, as the
adhesion energy to the surface is essentially determined by the distance of the
site with which the metal atom is interacting from the defect, rather than by its
chemical identity.

(c) The strong variation of the equilibrium distance around the defect site finally
entails that the growth of metal clusters is frustrated not only horizontally
with respect to the surface, due to the mismatch between MgO and Au
lattice parameters, but also vertically, due to the appreciable difference in the
equilibrium height for the atom interacting directly with the Fs center and the
neighboring atoms interacting with the surrounding sites, a feature which can
be described as a “double frustration.”

In the right-hand-side of Fig. 2.21, the electron density contour of the HOMO orbital
of the Fs-defected MgO(100) surface is shown [16]. The shape of this orbital, which
lies in the band gap of the insulator oxide and presents a strong s-character, shows
how the two electrons trapped in the cavity are not fully confined by the Madelung
potential of the solid; their density, on the contrary, protrudes out of the cavity and
extends also above the sites around the vacancy. This partially explains the strong
perturbation to the metal/surface interaction associated with the presence of the
defect.
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Fig. 2.22 Defects randomly distributed or organized according to a regular nanopattern on a
surface

As the catalytic activity and in general all the properties of metal nanoparticles
are strongly size dependent, reducing size dispersion is obviously an important
goal. Furthermore, particle–particle distances are also important in determining the
collective properties of an ensemble of metal nanoparticles. A lively line of the
current research is thus concerned with metal oxide substrates used as templates for
the growth of size-selected and ordered nanoparticle arrays [68]. In this connection
and in relation with surface defects, this is tantamount to know whether the defects
are randomly distributed over the surface or are organized in regular patterns, i.e.,
in other words, the topic of surface nanopatterning [34], see Fig. 2.22. The latter
possibility is very intriguing as it has the advantage of automatically reducing the
size dispersion [90] and allowing one to study cluster–cluster interaction [68]. It has
been shown in fact both theoretically and experimentally that an ordered array of
defect trapping centers can narrow the size distribution of metal particles growing on
a support down to 5–10% with respect to 30–40% expected for random nucleation.
Furthermore, new properties can arise when regular arrays of metal nanoparticles are
created. In this case, a hierarchical material is obtained where the primary building
blocks are organized to create a long-range-ordered secondary structure, a super-
lattice of the primary building blocks. In such a hierarchical material, nanoscale
forces between the building blocks are active, which can generate new collective
functionalities originated by the ensemble behavior of the metal particles [40, 144].
As an example, regular arrays of metal NPs allow to control the resonance frequency
of the localized surface plasmon [37], and they are good candidates for sensors and
extremely high-density data storage devices [149].

The adsorption of ligand molecules on supported metal clusters has finally been
studied by DFT methods. We conclude this section with two such examples which
are of interest in the field of catalysis. In Fig. 2.23, the optimal co-adsorption modes
of an undissociated O2 molecule or an O atom on small Ag clusters supported
on a DV-defected MgO(100) surface are shown [14]. This system, which will
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Fig. 2.23 Adsorption of atomic and molecular oxygen on DV-MgO(100) supported silver clusters.
Adsorption energies (in red) in eV. Oxygen, magnesium, and silver atoms are represented by light
blue, red, and gray spheres, respectively. Reproduced with permission from [14]. Copyright 2007
American Physical Society

be discussed in more detail in the next section, is also interesting to investigate
whether being a surface magic cluster—Ag8 on the DV-defected MgO(100) surface
is one such clusters (see the next section)—can make a difference in the chemical
properties of the metal particles. First, it can be seen from Fig. 2.23 that O binds
preferentially to a triangular facet of the metal clusters, in agreement with the known
behavior on crystal surfaces. Moreover, the peculiarity of Ag8 is apparent, as its
reaction energy with O is more than 0.5 eV smaller than that of the other clusters,
due to both structural (shape of the cluster and exposed facets) and electronic effects.
The results for the interaction with O2 are in line with these findings and present an
additional structural effect. O2, in fact, can adsorb on Ag clusters interacting through
a single O atom, with the second O atom pointing away from the MgO surface
(mode I) or with the second O atom pointing toward the surface and interacting
with a Mg ion (mode II). Both interaction modes are possible for Ag6, Ag8, and
Ag10, but it is interesting to observe that in the case of Ag6 and Ag8, the interaction
energy with O2 is larger by roughly 0.3–0.4 eV in interaction mode II with respect
to interaction mode I, whereas in the case of Ag8, modes I and II have practically
the same interaction energy. This is due to the more compact structural arrangement
of Ag8, which does not present overhangs of metal atoms on the MgO(100) surface



2 Density-Functional Theory of Free and Supported... 63

Fig. 2.24 Adsorption of an oxygen molecule on gas-phase and MgO(100)-supported silver
trimers. Relative energies in eV

and thus does not favor the interaction of the O atom not directly bound to the metal
cluster with the surface. This is interesting, as an interaction mode II connected
with the presence of overhangs has been hypothesized to affect the catalytic activity
of Au clusters [103]. Smaller interaction energies with incoming species could be
useful when a fine-tuning of the cluster catalytic activity is sought for.

A clear example of the fact that the presence of the oxide surface can make a
big difference on the chemical properties of supported metal clusters is presented in
Fig. 2.24, where it is shown that according to DFT predictions the dissociation of an
O2 molecule is energetically unfavorable on a gas-phase Ag3 cluster but becomes
thermodynamically favored when Ag3 is supported even on the regular undefected
MgO(100) surface which is the classical example of an inert support. This is crucial
on the chemical properties of supported Ag3, as this can thus become an active
oxidation catalyst [43]. A similar phenomenon occurs for Au3 clusters, of particular
interest as it is associated with the unexpected catalytic activity of Au nanoclusters.

Larger clusters can also be treated, see examples in Fig. 2.25. For example, the
adsorption of ligands on metal nanoparticles and nanoalloys can be studied via DFT
methods (Fig. 2.25a) and how this modifies the structure of the particles [30] or
the chemical ordering (segregation) within an alloyed nanoparticle [151]. Ligands
can in fact reshape the particles in reaction conditions, a phenomenon more and
more often observed as the detail of experimental characterization improves [79]
and which can be predicted at the theoretical level, see, e.g., [105] and Fig. 2.25b.
Finally, one can take a further step and study reactions paths [109].
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Fig. 2.25 Change in shape and chemical ordering in nanoparticles as a consequence of adsorption
processes. (a) An fcc 38-atom model for studying adsorption of a CO molecule at the center
of (111) facets of binary nanoalloys with different chemical environments, leading to tuning of
adsorption energies by alloying and possible segregation inversion. (b) Left: reshaping of supported
Ag nanoparticles as a consequence of oxygen adsorption at two O2 pressures; right: reaction
mechanism of propene on an oxidized Ag surface. Reproduced with permission from [105, 151].
Copyrights 2010 American Chemical Society and 2011 Elsevier

2.5 Three Examples

In the following, we will briefly discuss three illustrative examples of applications
of DFT to the study of metal clusters, taken from the authors’ own work. The aim is
to provide test cases in which the concepts introduced in the previous sections can
be exemplified.

As mentioned in a previous section, surface magic clusters are clusters exhibiting
enhanced stability on a particular surface. The structure and energetics of AgN
clusters both in the gas-phase and adsorbed on a defected MgO(100) terrace were
studied using a DF-BH approach [14]. In this work, the search for the lowest-energy
structures of small AgN (N = 2–10) clusters on a simple but realistic system—
a MgO(100) terrace exhibiting a DV neutral local defect—was performed. The
choice of a DV-defected MgO(100) terrace is justified by the fact that MgO(100)
is one of the most studied oxide supports for the growth of model metal catalysts
[78], that Ag clusters diffuse rapidly on the regular surface and are thus able to
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Fig. 2.26 Global minima of silver clusters both in the gas-phase and supported on an Fs-defected
MgO(100) surface. Reproduced with permission from [12]. Copyright 2007 Wiley

reach surface defects which act as strong trapping centers, and that the DV is
thought to be the most common neutral local defect on UHV-cleaved MgO(100)
terraces [23]. A schematic view of the results is presented in Fig. 2.26. A single
structural transition can be observed for gas-phase clusters: from planar to compact
configurations at size 8 [106]. At variance, two different structural transitions can
be observed for the supported clusters: from planar to compact at size 6 and from
compact structures exhibiting fivefold symmetry axes to compact structures that
are distorted pieces of an fcc lattice at size 10. The presence of the defected
surface thus makes an appreciable difference on the structural properties of these
small Ag clusters. Moreover, an analysis of the energetics of such clusters showed
that Ag8 has the highest incremental formation energy, while Ag9 has the second
lowest incremental formation energy, as for PdAg6, see the inset in Fig. 2.11. In
other words, the cluster/defected-surface interaction strongly reinforces the magic
character of Ag8, thus producing a system with peculiar chemical and electronic
properties: a substantially larger stability and a larger HOMO-LUMO gap than
neighboring sizes. Additionally, Ag8 exhibits a more compact structure with respect
to the neighboring sizes, with no Ag atoms hanging over the MgO surface, and this
has consequences on its chemical properties, as discussed in the previous section.
The magic character of Ag8 suggests the possibility of selectively producing it via a
properly devised synthetic method, a possibility so far unfortunately unexplored.

Somewhat larger clusters can be investigated via a DF-EP approach, as dis-
cussed in the previous sections. Clusters containing few tens of atoms can present
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Fig. 2.27 Some structural motifs of small palladium clusters adsorbed on MgO(100) surface.
Reproduced with permission from [15]. Copyright 2007 American Physical Society

nanofacets of different symmetries and orientations, edges between nanofacets,
corners (in some cases truncated corners), and overhangs at the interface with the
support, see Fig. 2.27. These nanoscale features give a variety of adsorption sites,
with different symmetries and properties, confined in a very small region of space,
which can be very important for applications. For example, this may originate low-
energy pathways for chemical reactions, as in the case of the CO+NO reaction
on Pd clusters adsorbed on MgO, in which a low-temperature reaction mechanism
is observed in small nanoclusters (below 30 atoms) but not in larger clusters or
bulk surfaces [152]. It can be noted that overhangs in Au/MgO(001) clusters have
been suggested to be very favorable sites for CO oxidation [104]. For Pd clusters
on MgO(001), experimental evidence [78] indicates fcc structures in (001) epitaxy
with the substrate for clusters of sizes N ∼ 100 atoms and more. On the other hand,
DFT calculations show that very small clusters, below ten atoms, present a different
epitaxy, such as a tetrahedron for Pd4, a square pyramid for Pd5, and an octahedron
for Pd6. A transition to structures with (001) epitaxy must occur somewhere below
100 atoms, but the actual size is experimentally unknown. Empirical potentials are
not fully informative, as they give different answers depending on the model, so that
accurate DFT results are needed. These were obtained in [15], in which a systematic
search for the lowest-energy structures of Pd clusters adsorbed on the regular
MgO(001) surface was performed via a DF-EP approach [10,13,54]. Clusters were
adsorbed on the flat regular oxide surface and not on surface defects, mimicking
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deposition at low temperatures: deposition at sufficiently low temperatures or high
fluxes may cause the growth of metal clusters on regular terrace sites. In the spirit
of the DF-EP approach, the database of candidate structures to be re-optimized at
the DFT level was constructed to include clusters belonging to several different
structural families, and not simply the lowest-energy isomers of the prevailing
family.

The results were interesting. Between 10 and 15 atoms, a competition among
three main structural motifs was found: epitaxial (Epi), icosahedral (Ih), and
decahedral (Dh) clusters, see Fig. 2.27. Epi clusters are epitaxial clusters obtained
from the perfect square-basis pyramid of 14 atoms: an atom is added on a triangular
facet of the pyramid to produce the cluster Epi15. The Ih family comprises the
perfect Mackay icosahedron of 13 atoms (Ihb

13), and a distorted icosahedron (Iha
13),

which presents a better matching with the substrate and a much lower energy.
The Dh family is made of fragments of a decahedron presenting a fivefold axis
which runs parallel to the MgO(001) surface, such as Dh15, see Fig. 2.27. It was
found that Epi structures clearly prevail for N ≥ 12. As expected, metal–oxide
interaction is not strong enough to cause a 2D cluster growth: the most stable cluster
shapes are three dimensional. However, the metal–substrate interaction is crucial
in determining the best cluster structures. In the gas phase, Ih and Dh clusters are
much more stable than fcc truncated pyramids. However, this is not sufficient to
counterbalance the better adhesion to the substrate of Epi clusters for N ≥ 12. For
example, at size N = 13, neither the undistorted icosahedron nor a buckled biplanar
structure, which are favored in gas phase, can compete with the (001) epitaxy
truncated pyramids. At N = 30, the most favorable Epi clusters are the perfect
pyramid (Epib30) and a structure presenting truncations and overhangs (Epia30), while
non-epitaxial structures can be classified as trilayers (Tl) and bilayers (Bl), see
Fig. 2.27. The best Tl structure (Tla30) has its bottom layer in good (001) epitaxy with
the substrate, but the second and third layers do not continue this arrangement. Both
Bl structures present (111) facets in contact with the substrate. It can be noted that
Epi structures are lower in energy at N = 30, with larger differences than for N < 15:
(001) epitaxy is more and more favored as size increases. Moreover, overhangs are
found to be already present for clusters in the size range 15 ≤ N ≤ 30. A single
overhanging atom is found in Epi15. More significantly, well-developed overhanging
atomic rows are present in Epia23, which is clearly lower in energy than the structures
without overhangs, and even in Epia30, which is slightly better than the complete
pyramid Epib30, see Fig. 2.27, a particularly significant fact as Epib30 is a magic
structure for the pyramidal motif. Structures with overhangs optimize metal–metal
interactions at the expense of the adhesion with the substrate, since metallic bonding
is improved by a more compact cluster shape, while adhesion suffers from the
decrease of the number of atoms in the cluster basis. However, the “metal-on-top”
effect partially compensates this decrease by an improvement of the adhesion energy
per basal atom: basal atoms on an edge below an overhang better adhere to the
substrate than other basal edge atoms. In summary, in [15] it was demonstrated that
the transition toward fcc clusters in (001) epitaxy with the MgO substrate is taking
place between sizes 11 and 13. At variance with the behavior of smaller clusters,
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from these sizes on, the metal–substrate interaction becomes crucial, so that the
best Pd/MgO(001) clusters are not only different from the best gas-phase Pd clusters
but also grow in very good fcc (001) epitaxy with the underlying MgO lattice. The
results for N around 30 show that the energy difference between epitaxial and non-
epitaxial clusters becomes larger with increasing size, which supports the transition
from non-epitaxial to epitaxial configurations. In epitaxial clusters, overhanging
atomic rows are developed already at quite small sizes. Standard empirical potentials
are unable to quantitatively predict the actual structures of the most stable clusters
around N = 13 and the details of the shapes of larger clusters, such as preferential
truncations and overhangs, due to the neglect of energy contributions such as the
metal-on-top one effect.

As a last example we will consider a different environment: surfactant coating
of metal nanoparticles in the homogeneous phase producing colloidal suspensions.
Colloidal suspensions of transition metals are formed by metal nanoparticles
which are stabilized by protective shells/layers to prevent coalescence phenomena
[123]. The possibility of effectively stabilizing nanometric metallic particles with
a high surface/volume ratio in solution allows for a quickly growing number of
technological applications of such colloidal suspensions [26]. Bottom-up methods
to produce these systems are based on the synthesis of metallic particles starting
from elementary constituents, i.e., single atoms, ions, or small clusters. These
methods primarily consist on the reduction of metal salts via chemical processes, the
use of electrochemical techniques, the controlled decomposition of organometallic
metastable compounds, or the aggregation of metallic species in low oxidation
states. A large number of stabilizing species, donor ligands, polymers, and surfac-
tants are used to control the growth of the freshly formed metallic particles and
to protect the growing units from coalescence into the thermodynamic equilibrium
phase (the bulk crystal). In this context, the use of olefinic complexes of metals in
a low oxidation states proves to be a clean route for obtaining colloidal suspensions
of mono- and bimetallic particles. Experimental evidence has in fact shown that
in the presence of only the solvent molecules, the stability of these suspensions
at room temperature is limited to a few days, while with the use of surfactants
the stability of metal aggregates is extended to a few months. The effective
mechanisms by which growth eventually takes place, however, are not known, and
are difficult to investigate experimentally, due to the lack of proper characterization
tools able to furnish information on reactive processes in situ and in real time.
Computational approaches can provide a very useful support in this sense. In [18],
such an enterprise was undertaken in the specific case of neutral small Pt clusters
interacting with surfactants in which the ligand is based on unsaturated organic
groups. In detail, a theoretical first-principles study of the Ptn(ligand)m(n = 1,3)
metallorganic complexes was performed, by varying the number of metal atoms
and the nature and number of organic coordinate ligands (specifically, vinylic and
arylic ligands), see Fig. 2.28. Several conclusions were drawn from such a study.
First, the fact that the Pt/C=C interaction has a many-body character, i.e., the
binding energy appreciably decreases with the number of interacting C=C units.
Second, the weaker binding of aromatic species with respect to vinylic species, due
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Fig. 2.28 Structures of Ptn(ligand)m(n = 1,3) metallorganic complexes in the case of vinylic
(eth = ethylene) and arylic (Φ = benzene) ligands

to the need of disrupting π-electron conjugation, which makes that a third aromatic
molecule does not bind to a doubly coordinated Pt center, thus leaving it free for
further aggregation. Third, the relatively low values of the ligand detachment energy
barriers from a fully coordinated Pt center that can be overcome at room or slightly
higher temperatures. Fourth, the fact that two binding mechanisms between a small
Pt cluster and a C=C bond: one involving the formation of σ bonds between Pt
and C atoms (σ -interaction mode) and one in which the metal/ligand interaction
takes place through a donation/back-donation mechanism (π-interaction mode).
Additionally, two regimes could be distinguished in the growth of coated Pt clusters:
a “coordinatively saturated”’ regime, in which the ratio among the number of
ligands and the number of metal atoms is high and the ligand/organic π-interaction
mode is preferred, and a “coordinatively unsaturated” regime, in which this ratio
is low and the ligand/organic σ -interaction mode is preferred. The coordinative
unsaturation typical of the latter regime favors more complicated, reactive processes,
such as oxidative insertion of Pt atoms into a C–H bond. These conclusions were in
tune with available experimental data, and suggested a positive role of theoretical
simulations in the study of the nucleation and growth of metal clusters in the
homogeneous phase in terms of accurate prediction of the energetics and of the
kinetic growth parameters.
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2.6 Growth

So far we have focused on static processes and structure prediction, and we
have roughly described length-rescaling ideas. Kinetic processes such as diffusion
and reaction have been simply mentioned, and the corresponding time-rescaling
approaches have not been described [145]. However, it is known that length and time
scales are intimately associated, in the sense that—very roughly—the interesting
dynamics of larger systems become progressively slower. In this section, we will
briefly touch upon this subject on which a huge literature is present.

At the lowest end, i.e., the fastest, of the time scales, it is possible to conduct first-
principles MD simulations. In these simulations, both the electronic and the nuclear
degrees of freedom can be simultaneously described. This implies a time step of
the order of hundredths of femtoseconds (i.e., roughly 10−17–10−16 s). Considering
that current simulations typically run for at most 106 steps, it derives that these
simulations can cover a time span of at most tens of picoseconds. One of the most
popular among these approaches is the Car–Parrinello method [35]. An important
possibility is realized when the process of interest requires a description at the
Quantum Mechanical level and occurs on a fast time scale but involves only a limited
part of the system, with this part being coupled to a possibly complex environment
(such as a solvent) whose evolution can be described classically. In such a case it is
reasonable to describe the interesting part of the system at the Quantum Mechanical
first-principles level, and the environment at the Classical or Molecular Mechanics
level, giving rise to so-called QM/MM hybrid approaches [135]. These approaches
fall within the general problem of embedding [82], i.e., the problem of setting up
appropriate boundary conditions when attention is focused on a subset of a larger
system whose behavior is supposed to be known and one aims at taking advantage of
this to simplify and reduce the computational effort. Embedding techniques can be
used both at the dynamical and at the static level: one popular embedding approach
is the ONIOM protocol [60, 139].

A crucial issue using first-principles approaches in dynamical studies is whether
it is possible to simulate time scales longer than few picoseconds. The answer can
be affirmative if the process under study is an activated one. An activated process
is one in which the system oscillates most of the time in the neighborhood of a
given local minimum or inherent structure [137, 138], which is left by overcoming
an energy barrier to jump into another local minimum, and so on. Several strategies
can be devised to deal with this problem [145]. One strategy is to first single out
all (or as many as possible) local minima in the PES, and then establish how they
are connected via saddle points. Such information is often graphically summarized
in terms of disconnectivity diagrams [148]. A complete knowledge of the topology
and connectivity of the inherent structures would allow one to predict the system
behavior as a function of temperature (both thermodynamics and kinetics: phase
diagram and evolution), via, e.g., kinetic Monte Carlo simulations [127]. In these
simulations one starts from a given local minimum, enumerates the possible paths
leaving this minimum, and realizes the transition to one of them selected according
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Fig. 2.29 Vacancy diffusion inside a Ag37 cluster

to a Metropolis criterion. From a technical point of view, an exhaustive search of
all the low-energy local minima at the first-principles level can be conducted via
the global optimization algorithms discussed in previous sections. Saddle points
and energy barriers can also be found using first-principles approaches. One can
distinguish two cases, according to whether one has a knowledge of the initial and
final configurations of the local minima to be connected or not. In the former case,
the Nudged Elastic Band (NEB) method [102] is one of the most popular to find the
reaction path between the two configurations and is implemented in many electronic
structure codes, even though other methods have been proposed as numerically more
robust [45]. If knowledge on the final configuration is lacking, then the search for
the local minima connected to the starting structure can be conducted via several
methods, see, e.g., [111]. To make a simple example, the process of diffusion of a
vacancy (i.e., a vacancy-atom exchange) in the core of a truncated octahedral Ag37
cluster is graphically shown in Fig. 2.29.

A phenomenon in the field of supported metal clusters that can be typically
studied via this type of approaches is self-organization and growth by deposition
of metal atoms from the gas-phase. The adsorption configurations that are the local
minima of the system and the diffusion mechanisms connecting them can be singled
out, and the corresponding energetics evaluated in detail. An interesting fact, already
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Fig. 2.30 Diffusion energy barriers of small palladium, gold, and silver clusters diffusing on the
regular MgO(100) surface

mentioned in the previous sections, which has been discovered via first-principles
simulations [9, 107, 153] is that small metal clusters can diffuse on a regular oxide
surface even faster than adatoms, see Fig. 2.30.

As the surface on which deposition occurs is usually composed of regular
terraces and various kinds of defects, with the latter acting as trapping centers,
the mobility of metal species is crucial in determining whether nucleation occurs
preferentially at defects or on the flat surface. Fast diffusion causes nucleation
at defects only, whereas slow diffusion allows nucleation also on flat terraces.
Epitaxial relationships are important in determining cluster mobility. For metals
on MgO(100), already dimers and trimers may not stay flat on the surface in
their lowest-energy configuration due to the metal-on-top effect [8] mentioned in
a previous section. For example, neutral copper, silver, and gold dimers prefer
to stay vertical on regular MgO(001) terraces, even though the situation can be
different on ultrathin films, where gold clusters can be charged. Palladium dimers
stay horizontal, but palladium trimers adopt a vertical configuration. Due to these
subtle epitaxial effects, small clusters can present a variety of interesting diffusion
mechanisms. Due to the difficulty of directly measuring diffusion coefficients and of
imaging diffusion processes in experiments, most of the available results in this field
have been obtained in the domain of theory and simulations. However, information
about the mobility of adatoms and small clusters can be inferred from the effects that
such mobility has on quantities that can be more easily measured at the experimental
level. At the theoretical level, it is found that the diffusion of metal adatoms and
small clusters on the MgO(100) surface can occur via a variety of processes.
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Fig. 2.31 Diffusion mechanisms of trimer and tetramer clusters on the regular MgO(100) surface.
Reproduced with permission from [9, 17]. Copyrights 2005 American Physical Society and 2007
Institute of Physics

Apart from simple hopping between favorable adsorption sites, rotation, sliding,
leapfrog, walking, concertina, flipping, twisting, rolling, and rocking mechanisms
have been shown to take place, depending on the type of metal (i.e., the features
of its interaction with the surface) and the size of the cluster [57], see Fig. 2.31.
Moreover, it is also found that diffusion of small clusters and not only adatoms is
crucial to reconcile theoretical predictions and experimental data, see Fig. 2.32. In
an experiment that has stimulated much theoretical work [73], Pd adatoms were
deposited on MgO(001) in a wide range of temperatures, from 200 to 800 K, and
the temperature-dependent island density was measured. This density was found
to be constant from 200 to about 600 K, and to drop suddenly down above this
temperature. The constant island density until low temperature was an indication
of nucleation at defects down to low temperatures, with a negligible proportion of
terrace nucleation. The experimental estimate of the diffusion energy barrier was
less than 0.3 eV, at variance with DFT calculations, predicting it to be 0.34–0.41eV.
The discrepancy between the experimental estimate and the calculations was solved
by noting that small clusters, up to the tetramer, also strongly contribute to the
mobility of palladium down to 200 K, as trimers or tetramers are in fact even more
mobile than monomers. Therefore, in determining whether nucleation occurs either
on terrace sites or at defects, the mobility of monomers and of small clusters must
be taken into account.
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Fig. 2.32 Experiment-theory comparison in the case of small palladium clusters diffusing and
growing on the MgO(100) surface. Reproduced with permission from [9,73]. Copyrights 2000 and
2005 American Physical Society

This type of approaches can be employed for studying not only growth, but
also other interesting dynamical phenomena, with heterogeneous catalysis being
the most prominent, and is expected to become commonplace in a next future.

2.7 Summary and Perspectives

In this contribution, which is far from being exhaustive especially in terms
of literature citation (and we apologize in advance with the colleagues whose
important contributions have not been quoted mainly for reasons of space or
needs of presentation), we have tried to present what in our opinion are the
specific (sometimes unique) features of the chemical bond in metal nanoclusters
and nanoalloys from the theoretical point of view. We have discussed some of the
most advanced first-principles (especially DFT) techniques to model and simulate
these systems, and pointed out their advantages and limitations. With an eye on
a non-specialized audience, we have tried to make these methods understandable
to nonexperts (experimentalists and students alike), making large use of pictorial
representations and highlighting why and how these tools can be helpful. In
particular, attention has also been focused on concepts and methods which can be
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developed from a theoretical point of view which can help rationalizing the available
data, provide a general framework for experimental investigations, and hopefully
set the ground for a predictive computational science. We showed that interesting
results have already been obtained in several cases and suggested that many more
are likely to be expected in the next future, considering the increasing accuracy
of first-principles methods, the advances in and the ever-increasing accessibility
of computer hardware and software by which the application of first-principles
approaches is becoming feasible in practice to a large set of users via commonly
available computational resources. In particular in the field of the properties of
metal nanoclusters and nanoalloys: catalytic, optical, magnetic, etc., we believe that
computational methods are nowadays finally becoming able to treat realistic systems
with sufficient accuracy and will give a decisive contribution to future advances
in both basic and oriented research and industrial applications. We tried to limit
the overlap with other contributions in this book, even though a certain amount of
duplication is probably unavoidable, and not necessarily a serious drawback. Our
hope is that this brief contribution will help bringing theory closer to experiment
and promoting interdisciplinary research in this field.
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Chapter 3
Closed-Shell Metal Clusters

René Fournier and Satya Bulusu

3.1 Introduction

Metal clusters are studied for many reasons, including modeling heterogeneous
catalysts, understanding how physical properties and chemical reactivity evolve in
the intermediate size regime between molecular species and solids, and trying to
create building blocks for new materials [1]. The latter requires clusters, and cluster
assemblies, that are stable under normal conditions. This is challenging. Taking the
viewpoint of the solid state, metal clusters represent the ultra finely divided form of
a solid, with an extremely high surface area and very large surface energy. They are
inherently unstable [2]. So, one may ask, why go through the trouble of trying to
make materials out of clusters, and how?

There are many known examples of clusters Xn with properties that are very
different from their bulk counterparts and which sometimes vary abruptly with n.
This includes atomic structure [3, 4], electronic structure [5], magnetism [6, 7],
thermodynamic properties [8], optical properties [9, 10], and chemical reactiv-
ity [11–14]. Here are some examples. The energetically favored atomic structure
of small Run [15, 16], Rhn [3], Osn, and Irn [17] clusters is basically fragments
of the simple cubic (sc) crystal, not fragments of fcc, hcp, or bcc crystals. Ptn [4]
clusters also have rather open structures. Further, many studies showed evidence of
gold clusters with planar or cage structures [18]. Small clusters of Rh and Mn are
magnetic [6,7] (they have nonzero saturation magnetization) even though Rh(s) and
Mn(s) are not ferromagnetic. Clusters usually melt at a lower temperature than the
bulk, so their chemical reactivity in the liquid state can sometimes be investigated.
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The reactivity of Al+100 toward N2 chemisorption was studied around the melting
point of Al+100 (640 K). It was found that the activation barrier to N2 chemisorption
decreased sharply as temperature rose above 640 K [14]. Unlike most clusters, Snn

(n ≈10–30) clusters have a higher melting point than the bulk [8], and some of
them do not melt—they sublime [19]. As it turns out, the geometric structure of
Sn−n (n = 18–25) is also unique [20]. The optical absorption (plasmon resonance)
of AgxAuy clusters varies with composition and morphology [9] and can be tuned
by laser irradiation annealing [10].

It has been noted that certain stable quasispherical clusters bear similarities to
atoms. These so-called superatoms could open up new avenues for chemistry [21].
Interestingly, the general concept of superatom (or quasiatom) also applies, with
some modifications, to excitons, impurities, and confined atoms [22].

On the other hand, individual atoms in a cluster Xn differ in many ways from
atoms of the same element in the gas phase or condensed phase. Atoms in clusters
(e.g., a Cu atom in Cu3) could emulate another element (e.g., Rh(g) or Rh(s))
at specific cluster size [23]. If cluster nuclearity and structure can be controlled,
this kind of “transmutation” can be exploited to create cheaper alternatives to
costly catalytically active elements, or for designing alloy surfaces with properties
intermediate between those of pure elements [24]. The selectivity and activity of
bimetallic catalysts [25,26] is sometimes rationalized with similar concepts of active
sites with specific geometric and electronic properties.

For all those reasons, clusters look like promising building blocks for a multitude
of materials with unusual or extreme properties. Further, these properties could in
principle be tuned by varying the size and composition, sometimes even by addition
or removal of a single atom. There remains a crucial question: how could one
possibly make stable materials out of inherently unstable building blocks?

There are two main strategies for stabilizing clusters. The first is to embed
them, as quickly as they are formed, inside a host crystal [27, 28], for example,
alumina [29] or a cryogenic Ne matrix [30] or a zeolite [31]. A similar idea is to
deposit clusters on a support [32]. Sometimes thin films are made with a morphology
that depends strongly on deposition energy [33]. If the goal is to isolate unperturbed
clusters, low-energy deposition with a soft landing technique [34, 35] is ideal. On
the other hand, one could take advantage of cluster–surface interactions to create
entirely novel cluster structures [36]. The second strategy is to chemically modify
the surface of clusters to make them inert [37,38]. Essentially, a high surface energy
material (the metal) gets coated with a low surface energy material which can be a
simple ligand like CO [39], or an organic compound with a high metal affinity at
one end so that it can bind to the metal cluster [40].

Two other things can help in addition to the two basic strategies. Firstly, one
can downplay the stability aspect and shift efforts, instead, on creating conditions
where clusters are formed in situ and get used immediately [41]. This is particularly
useful in catalysis [25]. Secondly, one can start with metal clusters that are already
stable relative to other metal clusters, in order to achieve better overall stability after
embedding or passivation. This is where the concept of closed-shell metal clusters
becomes especially relevant.
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The words “closed shell” can mean two things for metal clusters. A n-atom
cluster has closed atomic shells [42] if it is quasispherical in shape and has a
relatively small surface area compared to the average of clusters of the same
composition but with (n+ 1) and (n− 1) atoms. It has a closed electronic shell
if it has a large absolute hardness η , where η is half the difference between the
ionization energy and the electron affinity, compared to the clusters with (n+ 1)
and (n− 1) atoms. In molecular orbital theory, a large η correlates with a large
HOMO-LUMO gap. The electron count for such a cluster should correspond to
a shell closing in a simplified model of electronic structure such as the jellium
[43–45] (shell closings at 2, 8, 18, 20, 34, 40, . . . electrons) or pseudo-atom (shell
closings at 2n2 electrons). Generally, one expects that closed atomic shells would
impart thermodynamic stability because of the smaller surface area (smaller surface
energy), and impart kinetic stability because of the smaller number of distinct
surface sites available for chemical reactions. Metal clusters with closed electronic
shells should have thermodynamic and kinetic stability, for much the same reasons
molecules with a “good Lewis structure” are stable. Quasispherical clusters with
atomic closed shells are called doubly magic clusters (DMCs) if they simultaneously
possess closed electronic shells. They are called superatoms if they are relatively
stable, and their adjusted electron count (Ne −N∗

e ) (N∗
e is the count for a closed

shell), their properties, and their chemical behavior resemble those of an atom [21].
For example, Al13 and Al−13 have quasispherical structures. With its 40 electrons,
according to the jellium model, Al−13 is a DMC (it could also be viewed as a “super-
argon” atom), and with 39 electrons, Al13 is the superatom equivalent to a halogen
atom (“superchlorine”). Indeed, the electron affinity [46] and chemistry [21] of Al13

were found to be similar to those of a Cl atom.

3.2 Atomic Shells

As a rule, geometric structures with closed atomic shells tend to be energetically
favored because they often (but not always) have a high symmetry, high mean coor-
dination, low surface area, and low strain. The most compact arrangements of n rigid
atoms, with fixed nearest-neighbor (NN) distances, follow the sequence triangle,
tetrahedron, trigonal bipyramid (TBP, two face-sharing tetrahedra), and face-capped
TBP (three tetrahedra). This polytetrahedral (PT) sequence can continue only with
the introduction of distortions [47]. Already, in the 7-atom pentagonal bipyramid
(PBP), there are 2%–3% variations in NN distances, and in the 13-atom icosahedron,
the central-to-surface NN distance is compressed by 5% relative to the surface-to-
surface NN distance. Figure 3.1 shows some of the most stable LJ clusters below
n = 60 (n = 4,7,13,19,55).

With minor variations, simple pair potentials have energy global minima (GM)
that follow the PT sequence, often up to at least N = 55. The GM for the 6–12
Lennard–Jones (LJ) potential are PT up to N = 30, and mixed structures made
of fused PT units (13-atom icosahedra) and centered pentagonal prism (13-atom
CPP) units for N ≥ 31 with two exceptions: the N = 6 and N = 38 GM which
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LJ4 LJ7 LJ13 LJ19 LJ55

a b c d e

Fig. 3.1 Stable clusters in the Lennard–Jones global minima sequence

both have Oh symmetry structures. The PT structures are favored because they
have a very large number of NN pair interactions Npairs and nearly minimize
surface area, A, and surface energy, Es, while keeping bond strain to roughly 6%
or less. Later, we will refer to the mean coordination c of a n-atom cluster: it is
defined as c = 2Npairs/n. The energetic disadvantage in PT is the strain energy, Eσ ,
associated with geometrical distortions at N > 6. In contrast, fragments of the fcc
crystal structure have no strain: their pair distribution function g(r) has only one
sharp NN peak. The difference in Es between PT and fcc-like structures grows
roughly as the power two-thirds of the number of atoms, n2/3. The difference in
Eσ grows roughly as n. As a result, GM structures obtained from pair potentials are
characterized by a transition from PT to fcc-like structures at some n that depends
on details of the potential [48]. This value of n, usually larger than 100, depends
a lot on the range of a pair potential. For n ≈10–100, very long-range potentials
favor quasispherical highly strained disordered PT structures, intermediate range
potentials favor icosahedral structures, and short-range potentials favor strain-free
fcc fragments [49].

Generally speaking, there is correlation between cohesive energies, mean coor-
dination c, and surface area A. We will take the LJ GMs [50] as a general purpose
structural model and see how c and A evolve with size, keeping in mind that
clusters of most elements adopt structures that are different from the LJ GMs. We
calculate an effective surface area A for a cluster by considering overlapping spheres
centered at the nuclear positions. Each sphere is assigned a radius Rs = 1.72×Rnn/2
where Rnn is the diatomic equilibrium distance. The combined surface area of
the overlapping spheres is N × 4πR2

s × f , where f is the fraction of points on
sphere j that is closer to nucleus j than any other nucleus, averaged over j = 1,N.
The surface energy Es for a metal cluster is modeled by a formula [51] using
(a) the empirical fact that surface energies of metals are roughly 16% of their
cohesive energies [52] and (b) a proportionality factor obtained by taking the surface
area per atom calculated for a cluster and dividing it by the average of surface
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Fig. 3.2 Models of cluster cohesive energy

areas per atom calculated for fcc(100) and fcc(111) planar surfaces with the same
overlapping spheres model. With this metal surface model (MSM), we calculate a
cluster cohesive energy Ec(n) and its dimensionless variant Ec(n)/Ec(bulk)≤ 1.

If one neglects long-range interactions and strain, and assuming that the
maximum coordination is 12, the dimensionless cohesive energy Ec(n)/Ec(bulk)
of clusters governed by additive pair potentials is c/12. In metals, however, an
atom’s contribution to the total energy goes roughly as the square root of its
coordination number [53], therefore, Ec(n)/Ec(bulk) ≈√c/12. Figure 3.2 shows
c/12 and

√
c/12 calculated for the GM structure of LJ clusters, along with two

models of dimensionless cohesive energies Ec(n)/Ec(bulk): the empty circles are
calculated directly with the LJ potential, and the empty squares are derived from
our MSM. We also show experimental (collision-induced dissociation) Nin [54]
binding energies that were scaled to intersect the

√
c/12 curve near N = 18 (filled

squares) and density functional theory (DFT) Lin energies [55] scaled in the same
way (filled triangles). The way Nin and Lin energies are scaled is not very important
because we are interested primarily in the shapes of the curves in Fig. 3.2, not their
absolute values.

The LJ curve (circles) is intermediate between the c/12 and
√

c/12 curves
because long-range contributions make non-negligible positive contributions to
Ec(n)/Ec(bulk). These long-range interactions surely outweigh the short-range
strain; otherwise, the GM of LJ clusters would be fcc-like. The MSM (squares)
gives a curve that goes roughly as

√
c/12. This is not trivial because the square-root

dependence of metal cohesive energies is obtained from consideration of electronic
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energy levels [53], not geometry. The curves for the scaled Lin DFT energies, and
the scaled Nin experimental energies, are intermediate between c/12 and

√
c/12 but

are closer to the latter. The relatively low cohesive energies of Nin are probably due
to the nonzero promotion energy needed to bring triplet ground-state (. . . 3d84s2) Ni
atoms to the hypothetical . . . 3d94s1 doublet (spin-unpolarized 4s1) configuration of
a Ni atom in a Nin cluster. By comparison, promotion energy plays a minor role
in Lin. The second difference can also be used to examine the size evolution of a
cluster property “X”:

Δ2X(N) = X(N)− [X(N+ 1)+X(N− 1)]/2.

It may not be clear from Fig. 3.2, but the biggest values in Δ2 occur at these n:
4,(6),13,(19),(23),(26),(29),(38),55 for (c/12); and 4,(7),13,(19),(23),(26),
(29),(46),55 for the Lennard–Jones (LJ) energy. These can be considered to be
atomic shell closing in LJ clusters, with minor shell closing shown in parentheses.
The MSM energy applied to those same LJ structures gives almost the same
maxima in Δ2, with two interesting exceptions (underlined): n = 4,6,13,19,23,26,
38,43,55. The n= 38 maximum helps explain an anomaly in the LJ sequence: aside
from n = 6, n = 38 is the only LJ GM with a fcc-like structure.

We now consider closed shells in a strict geometric sense [42]. The number of
atoms in a icosahedron with K closed shells is

NK = (10/3)K3− 5K2 +(11/3)K− 1

that is NK = 13,55,147,309,561,923, . . . The cuboctahedra and truncated decahe-
dra with K shells obey the same formula. Geometric shell closing for some of the
other shapes occur at these numbers of atoms [42]:

NK = (2/3)K3 +(1/3)K octahedron (fcc)

NK = (1/6)K3 +(1/2)K2+(1/3)K tetrahedron (fcc)

NK = 16K3 − 33K2+ 24K− 6 cuboctahedron, hexagonal faces (fcc)

NK = 4K3 − 6K2 + 4K− 1 rhombic, dodecahedron (bcc).

Some of the most stable clusters in the LJ and MSM series are indeed closed-shell
in the geometric sense: tetrahedron (n = 4), octahedron (n = 6), and icosahedron
(n = 13,55). The n = 38 cluster is the n = 44 closed shell octahedron with its six
lowest coordination atoms removed. The smallest among the other stable clusters
(n = 7,19) have large c and/or small surface area for other reasons: LJ7, a PBP, is
a “half icosahedron” (one pentagonal ring) and LJ19 is a double icosahedron (three
stacked pentagonal rings, and two central atoms). The n =23, 26, 29, 43, and 46
cases are more complicated.

The second smallest closed-shell tetrahedral clusters at n = 20 is the observed
form of Au−20 [56]. In analogy to the octahedral structures n = 44 and n = 38 (LJ38),
one can make a rounder cluster by removing the four apex atoms of tetrahedral X20.
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Fig. 3.3 Compact structures in the lithium clusters global minima sequence

This yields a 16-atom structure that was proposed on the basis of experiments and
DFT calculations for gold clusters [18] and various bimetallic clusters [57].

The balance between Es and Eσ is such that it favors PT and icosahedra for
small clusters modeled by the LJ potential (and other potentials) and favors fcc-like
structures in systems with more strain—larger clusters and elements governed by
harder potentials [49] (this would seem to include the elements Tc, Re, and Pt [58]).
Lithium, and maybe a few other elements, effectively has a softer potential than LJ.
This gives rise to many highly strained (in a geometrical sense) Lin structures [59]
characterized by two or more peaks in the NN part of their pair distribution
function [55]. These structures may be unique among elemental clusters, but they
could be quite common in AxBy bimetallics where the size difference between atoms
of A and B provides a mechanism for drastically decreasing Eσ . Figure 3.3 shows
the Lin structures that seem most relevant as possible GM for bimetallics. Strain is
not a factor in the smaller clusters (n= 4,7,10), but we show them because they have
been proposed for various metal clusters. The Li10 structure is a prolate combination
of two PBP sharing four atoms. The Li11, Li14, and Li19 GM have 1, 2, and 3 interior
atoms, respectively. In the LJ sequence, clusters with that many interior atoms are
reached only at N =13, 19, and 23, respectively. At least one bimetallic equivalent to
Li11, CuSn+10, has been characterized as a DMC [60,61]. The Li16 and Li19 structures
are not spherical (Li16 is prolate, Li19 is slightly oblate), so it is unclear whether
bimetallic DMC could be derived from them.

Figure 3.4 shows a few other compact quasispherical cluster geometries and three
cage structures. The X6 and X19 structures are Oh symmetry fragments of a close-
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Fig. 3.4 Various closed-shell and cage cluster structures

packed crystal structure, X11 is the D4d symmetry equivalent of the icosahedron,
and X14 is a PT structure made by capping the faces and edges of a tetrahedron. The
icosahedral cage structure X12 is a low-energy isomer for Be12 [62], maybe even
its GM. The 16-atom cage (Fig. 3.4f) is the experimentally determined structure of
Au−16 [18,63,64] and is the calculated GM for several A4B12 bimetallic clusters that
have a large HOMO-LUMO gap [57]. The 32-atom cage (Fig. 3.4g) was found as a
GM candidate for Au32 (Zhang, private communication).

3.3 Electronic Shells

It is useful to think of a metal cluster Mn as being made of n M+p ions and np
electrons. To a first approximation, the np electrons are delocalized over the whole
cluster. A better description uses molecular orbitals to describe the np electrons with
a set of distinct one-electron states. If we assume that the ionic charge +np = Z is
concentrated at the center, then we view the cluster as a pseudo-atom with one-
electron states that are the familiar atomic orbitals—1s, 2s, 2p, 3s, 3p, 3d, . . . The
other extreme is to assume that the ionic charge +np = Z is completely delocalized
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over the volume 4πR3/3 of a sphere of radius R—this is the spherical jellium
model (SJM). In that case, one finds one-electron states with radial distributions and
energies qualitatively different from atomic orbitals. They are, in order of increasing
energy, 1s 1p 1d 2s 1f . . . Clearly, these two simplified models (pseudo-atom and
SJM) lead to different electron counts for electronic shell closings. The pseudo-atom
is rarely, if ever, applicable to metal clusters. But the SJM successfully explains a
lot of data about metal clusters [44, 45]. However, other models, each with their
own shell closing electron counts, become more relevant than the SJM when the
structure of a cluster departs from that of a compact uniform sphere: the pseudo-
atom model does not have predictive ability, but it gives a rationale for why shell
closings occur at 18 but not 20 in doped metal clusters A@Bn where the central ion
A+q has q > 2 [65–67]; the ellipsoidal jellium model (EJM) [43], a refinement of
the SJM, can account for energy-shape trends in Agn and other metal clusters [80];
all-metal aromaticity has been invoked to rationalize the stability of some planar
metal clusters [69–71], with (4n+ 2) electrons in closed-shell systems; “spherical
aromaticity” may be relevant for some endohedrally doped clusters including the
possibility of stable spdf-like 32-electron systems [72]; coincident electronic and
nuclear shells (i.e., the spatial overlap of the radial distributions for nuclei and
electrons) explain trends in calculated stabilities for A4B12 bimetallic clusters [73].

Electronic shells can be defined for metal clusters as for atoms. The mean
radius associated with one-electron states generally increases with energy. So the
np electrons (more exactly, the np states that describe them) fall into shells. It is
easier to look at shell structure through energy. Define the k’th ionization energy
IEk of a cluster “X” as the energy difference between the ground states of X+k and
X+k−1:

X+k−1 → X+k + e− ΔE = IEk.

A plot of the IEk’s of a cluster as a function of k will show a steady increase. More
interestingly, it also shows comparatively large gaps at specific values k∗, indicating
shell closing at np− k∗. In molecular orbital (MO) theory, one would see a larger
gap in the energy vs charge curve when a completely filled set of degenerate orbitals
loses one electron.

Experimental evidence for electronic shells comes from the IE’s (first ionization
energies) of neutral clusters with different numbers of atoms [74]. A classical
model for the charging of metal spheres gives a formula for IE vs cluster size that
completely ignores shell closing effects [75]:

IE = W + e2/2(R+ a).

In this equation, R, the cluster’s radius, is proportional to N1/3, (R+ a) is the radial
centroid of excess charge (a is normally between 1.1 and 1.4 bohr), and W is
the bulk work function. By fitting experimental data to this formula, one gets a
reference function IEfit(N). The differences (IEobserved(N)− IEfit(N)) readily point
to electronic shell closings: large positive values show shell closings, and large
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negative values indicate that the np’th electron is the single electron in a new
shell (the cluster is analogous to a alkali atom). However, the most compelling
experimental evidence for shells (atomic or electronic) is the relative abundance
of clusters in mass spectra [76–78].

Electronic shells in metal clusters are normally explained with the EJM [43–45].
In the EJM, the jellium is bounded by an ellipsoid instead of a sphere, but orbitals
still follow the energy order (filling order) 1s 1p 1d 2s 1f 2p 1g 2d 3s 1h . . . giving
electron counts of 2, 8, 18, 20, 34, 40, 58, 68, 70, 92, . . . Small changes in the
potential felt by electrons (i.e., small changes in the assumed distribution of positive
charge) changes the energy gap between states, or even their order. So, for instance,
shell closings may be found for ne = 34 but not ne = 40 in some cases, or vice-
versa, or for both ne = 34 and ne = 40. Also, in bimetallic systems where the two
metals have very different electron densities (e.g., NaZn, KZn), jellium energy levels
can get inverted and produce new electron counts at shell closings such as ne = 10
[76, 79].

The EJM accounts quite well for the unusually high atomization and ionization
energies in clusters of group 1, group 2, and group 11 and a few other elements.
It also accounts for the energetically preferred shapes of some clusters [80]. At
large cluster size, the energy minima of E(ne) (at ne = 2,8,20,34 . . . ) caused by
electronic shell display a supershell structure: the magnitude of shell closing effects
becomes very small in the neighborhood of some values of ne. In particular, the
effect of shell closing on energy is almost zero in the range ne = 800 to ne = 1,000
but is very large in the range ne = 1,800 to ne = 2,200 [76].

Metal clusters that are very far from spherical, such as planar and cage structures,
call for models completely different from the EJM. The stability of some planar
(or strongly oblate) metal clusters has been explained by aromaticity [70, 81]. With
the discovery of golden cages [18], it was realized that, in metal clusters constrained
to a cage structure, the atomic and electronic magic numbers must be different from
those of 3D structures. A doubly magic cage cluster, like Au32, may turn out to
be energetically favored over any 3D structure [82]. A stable DMC cage would be
interesting because of the many ways it could be modified by inclusion of a central
dopant atom or small molecule.

3.4 AB Ordering in Bimetallic Clusters

The atomic structure of bimetallic clusters AxBy (x+y= n) can be described by a Xn

parent structure and a list of the x atomic sites being occupied by atoms of element A
(homotop). If the parent structure Xn has no symmetry, there are n!/(x!y!) possible
homotops. These can have very different energies, and only one or a few of them
are normally present in experiments on small clusters.

There are three limit types of atom ordering in AxBy clusters: maximally mixed
(MM), left-right segregated (LRS), and core-shell (CS) structures. In a MM case,
the cluster equivalent of a metal alloy, the number of A-B NN pairs is maximized or
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nearly so: in a sense, the A/B interfacial area SAB is maximized. In a LRS structure,
there is a roughly circular dividing surface between atoms of A and atoms of B.
This structure minimizes SAB and can give rise to a significant electric dipole. In a
CS structure, all atoms of A are closer to the center-of-mass than atoms of B. This
minimizes SAB under the condition that the surface area of A be zero. In a CS cluster
where A and B have very different electronegativities, there could be significant
radial charge separation and surface charge, but there is no net electric dipole.
A fourth type of structure, “onion layers” (OL) [83, 84], has alternating concentric
shells of A and B and may be viewed as a variation on the CS structure. The AxBy

clusters that best fit the concept of closed atomic shells are those that (a) are derived
from a closed atomic shell Xn parent structure and (b) are CS, or OL, or perfectly
ordered MM structures.

It is possible to control the AB ordering by varying the method of preparation
of clusters (kinetic control) [85–87]. For example, qualitatively different homotops
of AgxAuy were made by changing the sequence of Ag and Au deposition on
an alumina substrate [88]. An important application of bimetallic CS clusters is
biosensing [89].

Compared to elemental clusters, bimetallics offer many more possibilities for
achieving multiple stability criteria. For instance, polyicosahedral clusters Xn may
be favored because they maximize the number of NN pairs, but disfavored because
of strain. In a CS polyicosahedral Ax@By cluster, however, the strain could be
greatly reduced by combining atoms of A that are smaller than atoms of B. This
was shown theoretically to be the case for Cux@Agy and Nix@Agy ((x,y) =(13,32),
(8,30), (6,32), (7,27)) [90], and experiments showed Ag-Ni clusters with CS
structure [29].

At this point, it is useful to summarize structural principles that have been
proposed by several authors over the years. Structural principles are used to
design or rationalize clusters with special stability that satisfy two or more criteria
(DMCs). Note that in the list below, for example, P1 and P3 cannot be satisfied
simultaneously. We can rationalize the wide variety of observed cluster structures
as being the result of competition between different principles (different physical
effects) [91]. We refer the reader to earlier reviews and papers for detailed
discussions [44, 45, 49, 76, 90–94].

(P1) Surface area A—A tends to a minimum, and the mean coordination c to a
maximum.

(P2) Strain—structures with a single narrow peak in the pair distribution function
g(r) are favored, especially for elements with a large IE.

(P3) Cage-forming tendency—The contribution of a metal atom j to binding
energy goes roughly as

√
c j. As a result, if we compare several structures

having the same mean coordination c, the one where all atoms have nearly
equal coordinations is favored. This effect is more pronounced in elements
with a large IE (e.g., Be and Au).

(P4) Square-forming tendency—high-cohesive energy elements with strong d–d
bonding (e.g., Os and Ir) tend to favor 90-degree bond angles.
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(P5) EJM shapes—elements of groups 1, 2, and 11, as well as Al, are well described
by the jellium model, and their clusters’ overall shapes (spherical, oblate, or
prolate) tend to conform to the EJM predictions.

(P6) Magnetism-symmetry—there can be competition between high-spin, high-
symmetry structures and low-spin Jahn-Teller distorted structures.

A consequence of P6 is that computational studies where cluster structure was
assumed to have high symmetry (geometry optimization was ignored or incomplete)
would often overestimate the spin magnetic moment.

Structural principles for AB ordering in bimetallics AxBy are that A and B will
have a tendency to:

(P7) Mix if they have very different electronegativities.
(P8) Segregate if they have very different surface energies.
(P9) Segregate into a CS Ax@By structure if RB is significantly larger than RA.

(P10) Segregate if one element has a stronger interaction to the environment
(support, ligand, or ambient gas).

(P11) When the cluster’s surface is made of A and B, the element with the lowest
cohesive energy generally occupies the sites with lowest coordination.

(P12) When the difference in cohesive energies (Ec,A −Ec,B) is large positive, the
number of A–A bonds (not the total number of bonds) is maximized, and B
atoms solvate Ax.

3.5 Examples of Closed-Shell Clusters

Here we simply show a collection, which is far from exhaustive, of closed-
shell metal clusters. In each case, we give a label, “(e)” (experimental) or “(c)”
(computational), references, and sometimes a comment. The next section will give
more detailed descriptions for a few select clusters.

Examples of atomic shells [42] are found mainly among nonmetals [95]: Arn

(n =13, 19, 25, 55, 71, 87, 147) (e) [96, 97]; Xen (n =13, 19, 25, 55, 71, 87, 147)
(e) [98]; Xe+n (n =13, 16, 19, 23, 25, 29) (e) [99] (the largest clusters investigated
had 40 atoms). In what follows, we arranged closed-shell metal clusters into a few
groups. A few references to met-cars and some Sn- and Pb-containing clusters are
included even though they are not strictly metal clusters.

3.5.1 Atomic Shells

• Ban (n=13, 19, 23, 26, 29, 32) (e) [100] and (c) [101]: these clusters are believed
to be weakly bound and adopt icosahedral structures.

• Aun (n =20, 32) [102, 103].
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3.5.2 Electronic Shells

• Nan (n =8, 20, 40, 58, 92) (ec) [92].
• Na−7 , Na−19 (ec) [104,105]: observed and computed angle-resolved photoelectron

spectra of metal cluster anions.
• Cu+n , Ag+n , CumAg+n−m (ne = n− 1 =8, 20) (e) [106].
• Ag8 (c) [107].
• AunX+

m (X=Cu, Al, Y, In) (e) [108]: several closed electronic shells are
identified.

• Mgn, Znn, Cdn (2n =20, 36, 40, 56, 60, 64, 70, 92 or 94, 108 or 112, 124, 138 or
140) (e) [109]: mass abundances.

• NbAl4− (ne = 18) (e) [110]: unreactive toward O2.
• Al2−4 (ce) [69, 71]: planar all-metal aromatic system.
• Al−n (n = 13,23,37) (e) [11]: these are unreactive toward O2.
• In+n (ne = 3n− 1 = 8,20), CunIn+m ((n,m) = (0,3),(3,2),(6,1) or ne = 8).
• Sn10 (ec) [20]: evidence that larger Sn clusters contain well-defined Sn10 and Sn9

subunits.
• X2−

12 (X=Sn, Pb) (ec) [111, 112]: icosahedral cage.

3.5.3 Mixtures of Atomic and Electronic Shells

• CunAl+m ((n,m) = (6,5) or ne = 20, and (n,m) = (10,11) or ne = 40), Ag6Al+

(e) [106]: many other magic numbers were observed, not all of which are
explainable with electronic shells.

• Pb+n (n =7, 10, 13, 17, 19) and CunPb+m ((n,m) =(1,6), (2,5), (3,5), (6,1))
(e) [106]: atomic structure is presumably the determining factor for these clusters,
except for Cu6Pb+ (ne = 8). The reason for the stability of Cu3Pb+5 is unclear. It
appears that stability is governed mainly by atomic structure in Pb-rich clusters
and by electronic structure in Cu-rich clusters.

• Au32 (ec) [18, 63]: presumed to have a cage structure.

3.5.4 Doubly Magic Clusters

• Al−n (n =13) (ec) [11, 21]
• X@Al−12 (X =Ge, Sn, Pb) (ec) [113]
• Cu@Al12− (c) [114]
• BAl−12 (e) [115] and B2Al−11 (c) [116]
• Cu@Sn+10 (ec) [60, 61]
• Aun (n = 20) [102, 103]
• W@Au12 (c) [117]
• Al@Pb+10 (D4d symmetry), Al@Pb+12 (Ih symmetry) (ec) [118]
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3.5.5 Singly Doped Clusters, ABn

• PbNa6 (e) [119].
• MAl13 (M=H, Au, Li, Na, K, Rb, Cs) (ne = 40) (ec) [120].
• LiAl13 (ec) [121–123].
• AgAl13 [124].
• BiAln (n =3, 5) [70].
• XAl3, XAl5 (X=As, Sb) [81].
• CuAl−22 (ec) [125]: this cluster is very unreactive toward O2. This was ascribed to

its singlet ground state and large HOMO-LUMO gap. However, the large gap is
not explained by the spherical jellium model but, instead, by an interplay between
geometric and electronic structure akin to crystal field splitting.

• MSn12 (M= Pt, Pd), Bi2Sn10, Sb2Sn10 (c) [126].
• Mo@Cu12 [127].
• Sc@Cu16+ (ne = 18) (ec) [66]: a truncated tetrahedron Cu cage with a central

Sc atom, its calculated HOMO-LUMO gap is 2.05 eV s.
• Co@Ag10+, V@Ag14+, Ti@Ag15+, Sc@Ag16+ (ne = 18) (ec) [128].
• M@Au−12 (M=V, Nb, Ta) (ne = 18) (ec) [129]: doped icosahedral gold cages.
• XAu+n (X= Sc to Ni) (e) [130]: the observed electronic shell closings at different

n for different dopant, and the jellium model, are used to make inferences about
the number of itinerant electrons (3 for Sc, 4 for Ti, only 1 for Ni, etc.).

• AlPb+n (n = 9, 10, 12) (c) [131].

3.5.6 Other Bimetallics and Intermetalloids

• Pd2@Ge4−
18 (e) [132]: isolated as a salt and characterized by X-ray diffraction.

• Pd2@Sn4−
18 (e) [133]: isolated as a salt and characterized by X-ray diffraction.

• Pt2@Sn4−
17 (e) [134]: characterized by NMR and X-ray diffraction. This chapter

has many references to earlier work on ligand-free “intermetalloid” clusters.
• A4B12 (c) [73]: calculated (B3LYP) HOMO-LUMO gaps of 2.5 eV and 2.3 eV

for Td symmetry Mg4Ag12 and Mg4Au12, respectively.
• Al@Al12Au−20, Al12Au2−

20 (c) [68]: icosahedral symmetry compound fullerene
cages similar to Au32.

3.5.7 Passivated Metal Clusters

• [Au13(PMe2Ph10)Cl2] (PF6)3 (e) [135]: this cluster has a Au5+
13 (ne = 8) DMC

core.
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• Au108(p-MBA)44 (p-MBA=p-mercaptobenzoic acid) (e) [40, 136]: it has 44
surface Au atoms that are “nonmetallic” (passivated with ligands) and a core
of 58 Au atoms.

• [N(C8H17)4][Au25(RS)18] (R=CH2CH2Ph) (ec) [137, 138].

3.5.8 Metal-Carbon Compound Clusters

• M8C12 (M=Ti, V, Zr, Nb) (e) [139–143]
• C10@Au18 (c) [144]

3.6 Description of Some Closed-Shell Clusters

3.6.1 Golden Pyramid (Au20) and Golden Cages (Au−
16, Au−

17)

Gold in bulk form is often considered an inert metal (noble metal), and its
importance in the field of catalysis and surface science has been overlooked. On the
other hand, the isolation and detection of carbon-free hollow cages and nanotubes
have attracted much interest in the field of nanoscience. But it was only in the late
1980s, when CO oxidation on supported gold Au/TiO2 was reported [145], that
the interest in the field of gold catalysts and gold nanostructures awakened. Since
then, gold clusters and nanoparticles were the subject of intense research activity.
They hold great promise for applications in catalysis, medical sciences, and sensors.
More recently, it has been shown that gold clusters have unusual catalytic properties
for selective oxidation of CO [146], are oxidation resistant [147], enable selective
binding of DNA [148], and have potential applications in nanoelectronics [149,150].

With the increase in atomic number, the electron’s relativistic mass becomes
greater than the rest mass. As a result, the effective Bohr radius decreases for inner
electrons with large speeds. The direct consequences of relativistic effects are the
radial contractions of s-type orbitals, spin-orbit splitting effects, and relativistic
expansion of d-type and f -type orbitals [151]. Due to relativistic effects, gold
exhibits unusual properties compared to copper and silver. In gold, 6s orbital
contraction and 5d orbital expansion reduce the energy gap between the 6s and
5d orbitals. This leads to an outer electronic configuration 2D5/2 (d9s2) instead of
2S1/2 (d10s1). This, in turn, means that the participation of d electrons in bonding
is more pronounced in gold. So, in gold clusters, we can expect some directionality
in the bonding due to the participation of d orbitals. This contrasts with copper and
silver clusters where s-type metallic bonding dominates. These relativistic effects
lead to very surprising results. For example, small copper and silver clusters favor
3D shapes, like most metal clusters, but small neutral gold clusters exhibit planar
structures. The medium-sized gold clusters exhibit a variety of structures including
flat, cage, pyramidal, and tubular structures.
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The Au20 cluster has been characterized as a small tetrahedral piece of fcc gold,
with a small relaxation [102]. Each of the four faces represents a (111) surface.
This cluster has a very high surface area because all the atoms are on the cluster
surface and a large fraction are at corner sites with low coordination. There are
three different kinds of atoms in the Td structure: 4 at the apexes, 4 at the center of
each face, and 12 along the edges. They have different coordination environments
and may be viewed as different surface sites for binding molecules (such as CO, O2,
CO2) for catalysis. The large HOMO-LUMO gap of Au20 suggests that it is a highly
inert and stable molecule and may possess novel chemical and physical properties.

A combined theoretical and experimental study of the structures of Au−n in the
medium size range (n =15–20) has shown that clusters with n =16–18 possess
unprecedented cage structures [18, 64]. In particular, Au−16 has an interesting
tetrahedral structure (see Fig. 3.4f) with an inner diameter of about 5.5 Å and
has been compared to a fullerene. The cage structures of Au−16 and Au−17 have
been confirmed by electron diffraction studies [63], and thus, they are the first
experimentally confirmed, and smallest possible, gold cages. The large empty space
inside these cage clusters immediately suggested that they can be doped with
a foreign atom to produce a new class of endohedral gold cages analogous to
endohedral fullerenes. A gold cage containing a central atom was first predicted
for a series of icosahedral clusters M@Au12 (M=W, Ta, Re+) based on the 18-
electron rule [117,152] and was subsequently confirmed experimentally [129,153].
However, since Au12 itself does not possess a cage structure, the dopant atom
with the appropriate electron count must play an essential role in holding the cage
together. Following the discovery of the hollow gold cages, Au−16 and Au−17, many
different types of atoms could be used as dopants to form new endohedral gold
clusters. Copper atom-doped Au−16 and Au−17 have been observed and characterized
using photoelectron spectroscopy (PE) and DFT calculations. The similarity in the
PE spectra of Au−16 and Cu@Au−16 species suggests that the Cu doping does not alter
the geometric and electronic structures of the Au−16 cluster anion significantly, which
is only possible if Cu is trapped inside the Au−16 cage. The Au−16 cluster anion itself
is unique in that its PE spectrum does not exhibit an energy gap similar to that for
other even-sized gold clusters in this size range. The high electron binding energies
and the lack of an energy gap suggest that neutral Au16 is open shell, probably in a
triplet ground state. This means that two extra electrons would be required to reach
a closed-shell 18-electron Au2−

16 ion. Because of the high electron affinity of Au, the
Cu atom can be viewed as donating an electron to the gold cage, effectively giving
Cu+@Au2−

16 which has a stable closed-shell Au2−
16 dianion. The spectrum of the

doped cluster anion Cu@Au−17 is also very similar to that of the parent gold cluster
Au−17 except that there is one low binding energy peak followed by a large energy
gap in the spectrum of the Cu-doped cluster. The new peak will arise because Au−17
is a closed-shell species with 18 valence electrons; therefore, the extra electron is
expected to enter its LUMO and give rise to the low binding energy peak in the
PE spectrum of the Cu@Au17 cluster anion. The spectral similarity again suggests
that the Cu dopant induces very little structural change in the Au−17 cage except
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that it donates one electron. All these observations again imply that Cu stays in the
center of the Au17 anion cage (Cu+@Au2−

17 ) and does not perturb the electronic and
geometric structures of the cage significantly.

3.6.2 Ligand-Protected Gold Clusters

Stability of metal clusters in the gas phase can be explained using concepts of
electron shell closing and atomic shell closing. But even the most stable clusters
made in the gas phase have the tendency to coalesce and are short lived. One
way to protect clusters from coalescing is to attach ligands to their surface. The
ligands form a protective layer and stabilize the cluster electronically by with-
drawing the delocalized electrons from the surface. Halides (Cl−) and substituted
thiols (SR) are electron-withdrawing ligands commonly used to stabilize clusters.
Au102(SC7O2H5)44 is a prime example of a ligand-protected cluster that has been
well characterized both experimentally [40] and by DFT calculations [136]. The
details of synthesis and crystallization methods can be obtained from Jadzinsky
et al. [40]. The structure of the cluster was obtained by X-ray crystallography.
The questions now arise of how to interpret the stability of the cluster. Large-scale
DFT calculations were used to solve the electronic structure of this cluster [136].
Just as in the case of pure metallic clusters, electron shell closing can be used
to explain the stability of ligand-protected clusters both in the gas phase and in
solution. According to this theory, stability is associated to a total valence electron
count ne = 2, 8, 18, 34, 58, 92, 138, and so on. With electron-withdrawing ligands,
the stability criterion has to be modified slightly so that ne is calculated with the
equation ne = NV −L−Q. In that equation, N is the number of core metal atoms,
V is their atomic valence, L is the number of electron-withdrawing ligands, and
Q is the total charge on the complex. For the Au102 passivated cluster, ne = 58
which satisfies the total electron count required for the stability. The 102 Au atoms
can be divided into two groups: 79 core atoms and 23 atoms that bind to ligands.
The 79-atom metallic core has a D5h symmetry structure, while the 23 other Au
atoms form RS–Au–SR units. The calculated HOMO-LUMO gap is 0.5 eV. This is
relatively large for a metal cluster of this size and partly explains the stability of
that cluster. The detailed examination of the DOS profiles showed that the 79 metal
core atoms are in a neutral state and the 23 surface Au atoms are in an oxidized
state. It can be concluded from this observation that the 79 core atoms are fully
covered by the RS–Au–RS units with each surface Au atom covalently bonded to
at least one sulfur atom. The superatom concept holds good to explain stabilities of
ligand-protected gold clusters of different sizes that were observed experimentally.
For example, Au39(PPh3)14Cl6 [154] in its anionic state has ne = 34. In order to get
this electron count, one considers that the PPh3 is a weak ligand and should not be
used in calculating ne with the above formula. Therefore, out of 40 electrons (39 Au
atoms and a minus charge), 6 participate in bonding with the 6 chlorine atoms:



98 R. Fournier and S. Bulusu

the remaining 34 electrons on the Au39 core are responsible for the shell closings.
The calculated (DFT) HOMO-LUMO gap is 0.8 eV [154], consistent with the
stability of this cluster.

3.6.3 Superatoms

A superatom is a stable quasispherical cluster with physical and chemical properties
similar to those of an atom isovalent to it. Al−13 is a good example of a superatom
because it satisfies both atomic shell closing and electronic shell closing rules. It
has a icosahedral geometry which is considered to be one of the most stable atom
packing geometries. With 40 electrons, its electron configuration in the jellium
model is 1s2 1p6 1d10 2s2 1f14 2p6. Shell closing occurs after filling the second
p-type subshell which makes Al−13 isovalent to a halogen anion and closest, in a
sense, to Cl−. Likewise, Al13 may be viewed as a chlorine superatom. However, it
should be noted that Al13 is not particularly stable and that it is strongly distorted
relative to the Ih icosahedron. Therefore, it is maybe more correct to view Al13 as a
“superchloride ion precursor” rather than a “superchlorine atom.”

Al−13 was produced by laser vaporization and characterized by mass spectrom-
etry [155]. Similar to a halide ion, Al−13 was predicted to form ionic bonds with
electropositive elements of the periodic table and covalent bonds with alkyl groups
analogous to haloalkanes. When Al−13 was reacted with iodine or HI, it acted as a
superhalogen [155]. The mass spectral analysis showed the formation of Al13I−.
The structure of this complex, obtained by quantum chemical calculations, showed
that the I atom is attached to one end of the icosahedral Al13 while the negative
charge resided on the opposite end. It is clear, in this reaction, that the superatom
does not get distorted even in the presence of highly reactive iodide. This is because
the electron affinity of Al13 is roughly 3.4 eV while that of I is 3.05 eV, so the Al−13
unit is conserved. At higher iodine concentration, the reaction produces a series of
Al13I−x compounds where x is even [156]. It is known that an odd number of iodine
atoms are involved in the formation of polyhalides. So one can rationalize Al13I−x (x
even) compounds by considering Al13 itself as a halogen atom (or superatom). This
is confirmed both by mass spectroscopic analysis and ab initio calculations [155].

3.7 Concluding Remarks

Small metal clusters are fascinating because they often display unique properties
and chemical reactivity not seen in condensed phases. Whichever way one looks
(structure, magnetism, thermodynamic properties, chemical reactivity, etc.), the
physics and chemistry of clusters are full of surprises. The unusual properties of
some of the clusters derive from their small size itself. Others stem from the low
atomic coordinations (high surface area) found in clusters. Others, yet, can be
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attributed to electronic shell effects which are important, in a relative sense, only in
small (N � 100) clusters. Low coordination and electronic shell effects in clusters
often create geometrical structures totally different from fragments of the bulk and
that, in turn, impacts all other properties.

But what makes clusters interesting is often also what makes them unstable.
Simple considerations of surface area and surface energies show that Xn metal
clusters (n � 1000) have a strong tendency to coalesce into larger particles.
Therefore, an important challenge is to make relatively stable Xn or AxBy metal
clusters and, concurrently, understand principles that govern their stability in order
to guide the search for additional stable clusters. It is generally found that the most
stable clusters are those that simultaneously satisfy two or more criteria (doubly
magic clusters, DMCs), in particular, atomic and electronic shell closings. The
chemistry of metalloid compounds and Zintl ions is inspiring searches for stable
clusters at the boundary of metallic and main group elements.

Another challenge, which we only briefly mentioned in this chapter, is to protect
clusters by trapping them inside a matrix, or on a support, or by passivating their
surface with ligands. In principle, there is a danger that, in the process of protecting
metal clusters, one may lose some or all of the unique properties that made them
interesting in the first place. However, the literature on DMCs and cluster-assembled
materials gives ample evidence that protected clusters remain a fascinating new class
of chemical species.

Small clusters have been studied in the gas phase for over 30 years, and
finely divided metals and supported clusters have a longer history still. But from
a synthetic chemistry and applications perspective, clusters are still relatively
new. The field of fullerenes, nanotubes, graphenes, and generally, carbon-based
nanomaterials and their analogs is evolving very fast, with many actual and potential
applications. Likewise, in the bottom-up approach to metal clusters, there is a
realistic hope that completely new avenues will open up in chemistry and materials,
along with important applications. This should happen as more and more metal
cluster building blocks get discovered—superatoms, passivated superatoms, cage
clusters, high-symmetry endohedrally doped clusters, core-shell bimetallics, other
high-symmetry bimetallics, Zintl-like clusters—and as the methods for making,
protecting, and assembling them get better.
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77. Näher U, Hansen K (1994) J Chem Phys 101:5367
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82. Pyykkö P (2007) Nature Nanotech 2:273–274
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Chapter 4
Optical Properties of Metal Nanoclusters
from an Atomistic Point of View

Christian F.A. Negre and Cristián G. Sánchez

4.1 Introduction

Optical properties of metal nanoclusters are related to their great capacity of
absorbing light in the visible region, and they are among the most important
properties concerning these clusters. Following light absorption, there is a collective
electronic excitation of electrons which is known as a plasmon excitation [1–3]; the
electric field of the incident photon produces a coherent oscillation of the metal
conduction electrons. This situation can be represented with the scheme of Fig. 4.1.
When the electron cloud is displaced with respect to the nuclei, a restorative force
arises from the Coulombic interaction between electrons and nuclei, creating the
oscillatory motion. This is, in general, a dipolar oscillation if the nanoparticle (NP)
is much smaller than the wavelength of the incident light. The latter is known as
the quasistatic approximation. Under this condition, the incident field is uniform
inside the NP and the interactions can be treated by means of simple electrostatic
considerations.

On the other hand, if NPs are larger than the wavelength of the incident light,
multipolar oscillations can occur. For quadrupolar modes, for example, half of the
electrons are oscillating parallel to the incident field vector, while the other half
oscillates perpendicular to the field. This mode produces no net change in the dipole
moment. Collective electronic oscillations are also present in the bulk material,
but in the case of NPs the degree of confinement and the large surface to volume
ratio decrease the plasmon resonance energy from UV to the visible range and make
absorption features extremely sensitive to shape, size, and surface condition [1,4–6].
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Fig. 4.1 Scheme showing plasmonic excitation in tune with an oscillating incident field

Plasmonic excitations have been observed in both large-size clusters, with a few
tens of nanometers radius, and very small clusters formed by a few hundred atoms.
Regarding large clusters and bulk material, surface plasmons are well described in
terms of the Mie1 electrodynamic theory [1,3–5]. Theoretical calculations using this
theory have revealed, for example, that peak widths in absorption spectra vary with
1
R , where R is the particle radius [7]. Small clusters, on the other hand, exhibit a
more complex behavior with a high degree of UV-VIS peak fragmentation, and the
relation of peak width with 1

R is no longer valid, due to quantum scattering. There is
currently no theory or simulation method that can cover all NP sizes, and ab initio
methods apply only to very small particles [8].

Mie theory does not apply to nanoclusters of any shape and size, but this is not
the case of the DDA (discrete dipole approximation) electrodynamic method [9].
In this method, the object of interest is represented through a cubic grid of N
polarizable elements. The cluster being treated can occupy any point in the cubic
space, which implies that any particle shape can be handled with this method. Each
element of the discretized space behaves as a dipole, whose polarizability depends
on the material through the dielectric function of the metal [2, 10]. This strategy
allows the calculation of the induced cluster polarization by the presence of an
oscillating external electric field. Although this method yields results that in many
cases match experimental data, it has three main drawbacks: (a) It does not account
explicitly for atomic structure; (b) In many cases, the result may depend on the
discretization degree; (c) Finally, topological problems regarding to the limit of the
metallic surface in particles having surface defects are introduced [9]. The latter can
produce unphysical results.

In order to overcome these disadvantages, methods for calculating optical
properties of small particles must be based on models in which the atomistic nature

1In 1908, Mie proposed a solution of Maxwell equations to describe the extinction spectra of
spherical particles of arbitrary size.
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of matter is addressed. For the case of metals such as Au, the frequency of the
plasmon resonance is influenced by electrons in the d band. This fact introduces
serious problems when trying to implement a quantum method to calculate optical
properties. These problems are due to the difficulty of representing interband
transitions of conducting electrons [1]. Hence, a high detail of valence orbitals
in transition metals must be taken into account when implementing quantum
descriptions. In classical methods, the effect of d electrons is implicitly included
in the metal dielectric function [11].

Experimentally, the study of plasmon dynamics is performed with different
techniques that allow the determination of absorption spectra [7, 12–14] and the
decay of excitations [15–17] of individual particles. The latter are based on double
pulse techniques which permit independent resolution of relaxation times, of
both electronic and vibrational modes [18, 19]. The most advanced experimental
techniques allow, for example, the study of the interaction of individual NPs
with single molecules [20, 21] and the mutual influence exerted on their optical
properties.

UV-VIS spectroscopy is an essential tool to study the optical properties of metal
nanoclusters. Spectral features of large NPs are characterized by two parameters
that describe the main peak of the absorption spectra. These parameters are: the
wavelength (or energy) of the surface plasmon resonance (SPR), at which the
maximum of the absorption takes place, and the peak width. The peak width is
closely related to the lifetime of the plasmonic excitation. High values of peak
width correspond to a collective excitation of electrons that rapidly decays when
the incident field is suddenly turned off.

According to the usual interpretation, the plasmon relaxation (coherent oscil-
lation decay) occurs in two stages. The first decay is due to the decoherence of
electrons which are part of the plasmon excitation, a process known as Landau
damping [1,22]. This process occurs at intrinsic electronic speeds (Fermi velocity);
it is therefore ultrafast and takes place at times of the order of femtoseconds
(see Fig. 4.2). After the end of the first decay step, the result is a sea of hot
electrons with random movement, that can transfer energy to nuclear motion
(through electron–phonon interaction). The ability to produce NPs with particular
spectral features requires a deep understanding of the decaying processes. The
initial plasmon damping is the responsible for the homogeneous broadening of
plasmon absorption peaks. Analytical applications such as surface-enhanced Raman
spectroscopy (SERS) require the maximization of excitation lifetimes in order to
increase local field effects [15].

Factors that produce peak broadenings can be classified into two groups:
homogeneous and inhomogeneous broadenings. Factors that have to do strictly with
intrinsic properties of individual NPs, such as shape and surface condition, are
known as homogeneous broadening [7]. Most of the optical experiments require
clusters to be embedded in a nonmetallic matrix in order to stabilize them in
solution. A homogeneous broadening is produced by the interaction of the metal
with the protective matrix. On the other hand, spectra determined when dealing
with a mixture of NPs of different shapes have a broadened peak as a result of the
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average over every individual spectrum associated with each shape. The latter is a
key contributing factor to what is known as inhomogeneous broadening [23].

For small NPs, electronic excitations resemble more the scenario found in
molecular systems, in which discrete electronic transitions are related to peak
positions. The smaller the aggregate, the more fragmented the absorption spectrum.
When the particle becomes large, the definition of a resonant plasmonic peak is the
result of a kind of correspondence principle, since in this case the electrons behave
classically.

The energy contained in the plasmonic excitation is finally dissipated to the
surrounding environment. The direct mechanism of dissipation is the coupling
with phonons in which the nuclear lattice becomes vibrationally excited. The heat
stored in the NP finally dissipates to the environment molecules. This principle
has powerful applications, such as, for example, to propose treatments to remove
tumor tissue in cancer therapies when particles are adequately functionalized. The
other way of dissipating energy is a radiation mechanism where the involved NP
behaves as an antenna emitting electromagnetic waves as a consequence of electron
movement. This mechanism can be very significant in large NPs, greater than
50 nm [1, 2]. Every relaxation mechanism yields, as a consequence, a broadened
peak in the absorption spectra. Broadenings produced by energy dissipation pertain
to the classification of homogeneous. On the other hand, without any dissipation,
Landau damping also produces homogeneous broadening. Whenever the cluster is
small, the electronic dissipation is smaller and the peak widths become very narrow,
coming to resemble spectral lines [8].

As mentioned above, models that use continuous electrodynamics do not take
into account the atomistic nature of matter [2, 10] and are only suitable for large
particles in which the approximation of a continuum metallic model is reasonable.
First-principle calculations, such as time-dependent density functional theory [24]
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(TDDFT), are limited to the study of particles formed by several tenth of atoms
[25–28]. Only by representing the metal as a jellium it is possible to treat larger NPs
within the TDDFT [29] formalism, underlying the drawback that it is not possible
to represent the metal atomic structure.

The method that will be presented here represents an intermediate step between
first-principle calculations and continuum electrodynamics. We will explain the use
of a self-consistent tight-binding (TB) Hamiltonian and the formalism of quantum
dynamics to allow a fully quantum description of electrons and the inclusion of
atomistic structure of matter in order to study the plasmon dynamics. Depending on
the degree of detail of the TB description, this method has the advantage of being
able to address systems with thousands of atoms, reaching experimental sizes.

The purpose of this chapter is to show an alternative tool for studying the
absorption spectra of metallic NPs considering the influence of the shape, size,
and surface so as to kick-start towards understanding the influence of the atomistic
structure in the absorption spectra of metallic NPs.

4.2 Tight-Binding Method

The tight-binding method (TB) is one of the most widely used electronic structure
calculation methods in condensed matter. It has been applied to a wide range of
systems, going from semiconductors to transition metals. In quantum chemistry,
the most exact results are provided by ab initio methods, in which the only
approximation is given by the use of an incomplete basis and the choice of the
exchange correlation functionals in the case of DFT. However, one of the strong
disadvantages regarding the application of these methods is the impossibility of
treating extended systems formed by several thousand of atoms. TB methods give
the possibility of treating larger systems with a great quantity of atoms, or to study
the behavior of a system during longer periods of time when performing a dynamical
study [30].

There is no single model or theory to describe the method of TB; it is only a
variation and modification of the usual quantum mechanical methods, i.e., DFT. We
usually have energy sites 〈φi|Ĥ|φi〉 = �i and couplings or hoppings 〈φi|Ĥ|φ j〉 = Vi j

of the Hamiltonian matrix H, and through the latter, we can represent the electronic
structure of interest. This coupling parameters that enter in the H matrix give a very
tangible idea of the bond constitution. Widely speaking, using a TB method involves
modeling electronic properties of a system using couplings and on-site energies no
matter what basis was used or how they were derived.

The Hückel method, for example, is only a TB method where the onsite and
coupling parameters α and β act as � and V . In general, if each site is associated
with a particular atom, couplings between a minimal basis of localized atomic
orbitals, constituted by one “s” orbital, tree “p” orbitals, and five “d” orbitals per
atom, are used. The valence wave function constructed with these atoms is part
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of the chemical bonds in most materials. Transition metals are characterized by
being bonded by “s” or “d” orbitals. Most of materials that are not constituted
by transition elements (insulators or semiconductors) possess bonds constituted
principally by the overlap of a linear combination of “s” and “p” atomic orbitals.
The latter suggests that the TB method is closely related with linear combination
of atomic orbitals (LCAO) [31] which is principally focused on the atomic orbitals
(shape and symmetry) rather than the constitution of the H matrix as it is the case
of the TB method.

The reliability of TB methods depends on the approximations that are made. The
need to reduce computational cost is satisfied by further approximations such as the
following: to ignore the two- and three-center integrals, assume that atomic orbitals
are orthogonal, etc. One of the factors that contribute to the quality of TB models is
what is known as transferability. This means that the aforementioned model could
be transferred to other situations or systems without lowering its original predictive
power. The numerical complexity of TB methods increases, usually with N3, N
being the number of the atomic orbitals of the system. The order of the method, in
this case, is the power with which the numerical complexity varies. For the case of
metallic systems, it is difficult to reduce the order of the method; this is because the
Hamiltonian matrix elements that are found outside the main diagonal (responsible
of the electron delocalization) have significant values [32].

In the following section, we will see how it is possible to determine TB
parameters from considering the Hamiltonian H in a localized atomic basis. Finally,
we will show how to deduce TB parameters from a full DFT framework in order to
obtain the DFTB method.

4.2.1 Two- and Three-Center Integrals

Let {I,J, . . .} be a set of atomic center positions and {μ ,ν, . . .} a set of localized
atomic orbitals in each of the previous atomic positions. We know that:

HIμJν = 〈Iμ |Ĥ|Jν〉= 〈Iμ |T̂ |Jν〉+ 〈Iμ |V̂ef|Jν〉, (4.1)

where

〈Iμ |T̂ |Jν〉=
∫
〈Iμ |r〉

{−�2

2

}
〈r|Jν〉dr (4.2)

and 〈Iμ |r〉= φIμ(r−RI) is the wave function that represents the orbital μ located at

I and r is the spatial coordinate. −�2

2 is the kinetic energy operator written in atomic
units. We see that the integral of the right-hand side of (4.2) is a two-center integral
because the result depends on the positions of both I and J atoms.

The V̂ef operator is an addition of other operators: V̂ef = ∑K V̂e f ,K ; therefore,
Vef(r) = ∑K Vef,K(r−RK), which is the effective potential that an electron would
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feel at position r. For evaluating 〈Iμ |V̂ef|Jν〉, it is necessary to solve two- and three-
center integrals:

〈Iμ |V̂ef|Jν〉= 〈Iμ |∑
K

V̂ (K)
ef |Jν〉= 〈Iμ |V̂ (I)

ef |Jν〉+ 〈Iμ |V̂ (J)
ef |Jν〉+ 〈Iμ | ∑

K �=I,J

V̂ (K)
ef |Jν〉

︸ ︷︷ ︸
Three-center integral

(4.3)

in which the last term of the right-hand side is called a three-center integral. When
the orbitals are situated at the same atom, the latter expression is composed by two-
and one-center integrals:

〈Iμ |V̂ef|Iν〉= 〈Iμ |∑
K

V̂ (K)
ef |Iν〉= 〈Iμ |V̂ (I)

ef |Iν〉︸ ︷︷ ︸
One-center integral

+〈Iμ | ∑
K �=I

V̂ (K)
ef |Iν〉

︸ ︷︷ ︸
Two-center integrals

(4.4)

The TB method neglects three-center integrals, and two-center integrals are not
calculated explicitly, but they are parameterized. This means that the functional
form of a particular orbital is not taken into account, but the matrix elements are
modeled directly as a function of the atomic positions. For the case of extended
systems, the functional form of the matrix elements is fitted to bulk properties such
as the filling of the s band, the lattice parameter, the binding energy, etc. [32]. Those
methods that parameterize the coupling integrals using experimental data are known
as semiempirical TB methods. However, there is no guarantee that parameters
adjusted empirically are transferable to other physical systems. Transferability is
only guaranteed if the meaning of the parameters and their relation are well known
and if there is a way to calculate them in a direct way within a theoretical formalism.
The theoretical formalism used for this purpose is DFT, whose relation with TB
methods will be explained in the following section.

4.2.2 DFT-Based TB

As it was mentioned in the previous section, in TB methods, the matrix elements are
usually parameterized to the band structure of a reference system. As a consequence,
many-body effects are contained in the matrix elements. The transferability of the
TB methods can be improved by taking into account mainly two modifications:
the use of nonorthogonal basis sets and the implementation of a self-consistent
method. This improvements are taken into account in the TB method based in
first-principle formalisms. The TB method based in DFT, known as DFTB (density
functional tight-binding), is a method based on the second-order expansion of the
Kohn-Sham (KS) functional with respect to charge fluctuations. This procedure
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ensures a proper distribution of charge and satisfies the electro-neutrality condition.
Improved self-consistent versions work better for both metals and molecules than
the primitive non-self-consistent versions [33].

The DFTB method can be seen as an intermediate step between a simple
semiempirical TB and DFT itself. A DFT implementation can be found in the
DFTB+ code which is a program based on the sparsity of the Hamiltonian matrix
for efficiently calculating the electronic structure [34, 35]. This code was used for
finding the initial ground state (GS) that is used as an input in quantum dynamics
for studying plasmon dynamics in NPs. In this section, we will develop the self-
consistent DFTB method from a second order expansion of the KS functional. This
procedure was developed by Frauenheim et al. and the details of it can be found
in [36, 37].

After some algebra, the KS functional can be rewritten as [38]:

EKS[n(r)] =∑
i

fi〈ψi|T +Veff|ψi〉− 1
2

∫
n(r)VH(r)dr

−
∫

n(r)Vext(r)dr+Exc[n(r)], (4.5)

where n(r) is the electron density at position r with Veff = VH(r)+Vxc(r)+Vext(r).
VH(r) is the Hartree potential which takes into account the electron–electron
interaction for independent particles; Vxc(r) is the exchange correlation potential,
and Vext(r) is the external potential which gives the nuclear–electron interactions.
The second term of the right-hand side of (4.5) corrects for the double counting
produced by the term Veff.

Replacing n by n0 + δn2 and expanding Exc[n(r)] around n0 to second order, we
have:

EKS[n(r)] =∑
i

fi〈ψi|T |ψi〉−E0
H −

∫
n0(r)Vxc[n

0(r)]dr

+Exc[n
0(r)]+

1
2

∫ ∫
C(r,r′)δn(r)δn(r′)dr dr′ (4.6)

with:

C(r,r′) =
1

|r− r′| +
δ 2Exc

δn(r)δn(r′)n0

(4.7)

Here, n0 is the electron density function over the isolated atoms when they are
not forming bonds in a molecular system. Linear terms in δn vanish for each density
n0. Thus, it is possible to separate what comes from the self-consistent system in

2This is a standard mathematical approach used to express the functional around n0 for small
charge fluctuations, such as those arising from bonding.
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two terms: one depending on n0 and other that depends only on δn. The term that
depends only on n0 together with the nuclear repulsion, enters in Erep (a repulsive
pair potential).

Erep =−E0
H −

∫
n0(r)Vxc[n

0(r)]dr+Exc[n
0(r)] (4.8)

This quantity only raises the total energy of the system and is independent of charge
fluctuations, thus, it will not contribute to an eventual quantum dynamics (constant
terms contribute with zero to the Liouville equation).

The term of (4.6) that depends on δn is responsible for the variation of energy
with the fluctuations of charge and, in consequence, it is the most important term in a
self-consistent TB method. The common non-self-consistent DFTB method simply
neglects this term:

ETB =
occ

∑
i
〈ψi|H0|ψi〉+Erep (4.9)

Therefore, for the non-self-consistent case, the KS equations are solved in a basis of
localized atomic orbitals. For this purpose, a Slater orbital basis is chosen. Elements
of Hμ,ν = 〈μ |H0|ν〉 for obtaining the Hamiltonian matrix within this basis are
calculated after solving KS equations.

Going back to the self-consistent case, when an atomic basis is employed, the
fifth term of the right-hand side of (4.6) is parameterized analytically as a function
of the distance between orbitals γAB(|RA −RB|) and orbital charges ΔqA/B:

1
2

∫ ∫
C(r,r′)δn(r)δn(r′)dr dr′ =

1
2 ∑

AB

∫ ∫
C(r,r′)ABδnA(r)δnB(r

′)dr dr′

=
1
2 ∑

AB

γAB(|RA −RB|)ΔqAΔqB

Therefore, for the self-consistent case, we have:

ETB[n(r)] =
occ

∑
i
〈ψi|H0|ψi〉+ 1

2 ∑
AB

γABΔqAΔqB +Erep. (4.10)

In the large distance limit, the exchange correlation term contained in γAB goes to
zero and only the part of Coulombic interaction between the two charges ΔqA and
ΔqB remains nonzero. On the other hand, when both orbitals lay in the same site, the
parameter γAA = UA can be approximated as the difference between the ionization
energy and the electron affinity. As in the simple non-self-consistent TB, the latter
is related to the chemical hardness of the atom.

If we now introduce a localized Slater orbital base and apply the variational prin-
ciple to functional of (4.10), we finally have the following generalized eigenvalue
equation:
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∑
νI

CνI(Hμν − �ISμν) = 0 (4.11)

with

Hμν = 〈φμ |Ĥ0|φν 〉+ 1
2

Sμν ∑
X
(γAX + γBX)ΔqX . (4.12)

Sμν = 〈μ |ν〉 being the overlap matrix elements between orbital basis elements.
Elements of H, S and γ are parameterized as a function of the inter-orbital distance
(atomic sites distances). We have to remark the fact that the many body interacting
contribution of electrons (electron interaction at the DFT level) is implicit in the γ
and U parameters:

γAB = γAB(UA,UB, |�RA −�RB|) (4.13)

Charge fluctuations ΔqX = qX − q0
X are obtained from Mulliken analysis. For the

case of non orthogonal orbitals these are:

qX =
1
2

occ

∑
i

ni ∑
μ∈X

N

∑
ν
(C∗

μiCνiSμν +C∗
νiCμiSνμ), (4.14)

where ni is the population of the |ψi〉 molecular orbital and N is the total number of
orbitals.

The self-consistent DFTB method is suitable when bonds with a great redistri-
bution of charge between the two bound atomic species are present, particularly
in heteronuclear molecules and polar semiconductors [36, 37]. In this case, Ĥ is a
function of the density matrix ρ̂ (Ĥ = f (ρ̂)), or more precisely:

Hi j = H0
i j +

1
2

UiΔqiδi j +∑
j �=i

γi jΔq j (4.15)

The second term of the right-hand side of (4.15) can be interpreted as the correction
of the energy of orbital |i〉 by the excess of population in this orbital. The third
term corrects for the on-site energy due to the charge distribution in the rest of the
orbitals. The first approximation to parameter γi j for the case of an orthogonal TB
model is γi j =

1
4π�0Ri j

; this is just the Coulombic interactions between different on-

sites charges. This equation is the same as (4.12), with the only difference that in
the first one we have considered an orthogonal system to achieve a direct physical
interpretation of γi j factors.

4.2.3 Semiempirical TB for Noble Metals

In many cases, it is possible to use a simple orthogonal TB method to describe
the electronic structure of noble metals. We will briefly describe the TB model
developed by Sutton et al. [39]. This model allows to calculate properties of
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metals such as Au, Ag, and Cu. It is orthogonal and self-consistent and has only
one orbital per site (atom), which makes it appropriate for systems with large
numbers of atoms3 [32,40,41]. The Hamiltonian possess exactly the shape of (4.15).
Where Δqi = 2(ρii − 1/2) is the Mulliken charge on each site. γi j is a function of

the interatomic distance γi j = K/
√

R2
i j +K2/U2, with K = e2/4π�0 interpolating

smoothly between on-site interaction U and the Coulombic interaction at largest
separations. The parameter U , as in the case of DFTB, is related with the chemical
hardness of the atomic species and corresponds to the difference between its
ionization energy and electronic affinity. The matrix elements H0

i j = H0(Ri j) are
function of the distance between atoms. The functional form of the matrix elements
is the following [39]:

H0
i j =−�c

2

(
a

Ri j

)q

(4.16)

where i and j underscripts designate atomic sites at different separations Ri j, � is an
energy scale factor, a is a characteristic length (usually the lattice parameter), and c
and q are just constants that control the shape of the hopping distance dependence.
These parameters are fitted to reproduce several properties of the bulk metal such as
lattice parameter and compressibility.

For a periodic structure, the diagonal elements of ρ are all the same and have
a value between zero and one that corresponds to the s band filling of the specie.
Partial fillings obtained in Sutton’s work are related with a rehybridization between
s, p, and d orbitals [39].

4.3 Time Evolution of the Density Matrix

The time evolution of the density matrix is governed by the following equation:

∂ ρ̂
∂ t

=− i
h̄

[
Ĥ, ρ̂

]
(4.17)

This expression is known as the Liouville–von Neumann equation, and is
nothing but a representation of the well-known time-dependent Schrödinger
equation [42, 43].

If we consider a basis B = {μ ,ν, . . .} of localized orbitals, then ( ∂ρ
∂ t )μν = 〈μ |−

i
h̄

[
Ĥ, ρ̂

] |ν〉=− i
h̄ [H,ρ ]μν , where H and ρ are the respective matrix representations

in the basis B for the corresponding operators.
The time evolution of the ρ matrix is obtained by means of a numerical

integration of (4.17). With respect to the integration algorithm, the following simple

3For the case of DFTB, we need nine orbitals per site (one s orbital, three p orbitals, and five d
orbitals) in order to represent metals such as Ag, Au, and Cu.
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Fig. 4.3 Electronic current evolution between atoms for a 561 gold cuboctahedral NP, calculated
with the time-dependent density matrix after the application of a perturbation in a shape of a step.
(a) t = 0.0 fs. (b) t = 0.2 fs. (c) t = 0.5 fs. (d) t = 20.0 fs. The figure shows the current vectors
(dark arrows) calculated for each pair of neighbors in a transversal section of the NP

scheme is used, because it preserves the trace of ρ (which is a constant of motion)
all over the dynamics:

ρ(t +Δt) = ρ(t −Δt)+ 2Δt
∂ρ
∂ t

(t) (4.18)

Δt being the integration time step. With the time evolution of the density matrix, it
is possible to determine the evolution of any expectation value A as A(t) = tr(ρ̂Â).

As an example of the results obtained from the numerical integration of the
density matrix equation of motion after the application of an external perturbation,
Fig. 4.3 shows the evolution of current vectors between interatomic bonds of
neighboring atoms for a transversal section of a gold NP. Together with the
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current, the potential generated by the charge fluctuation is also shown. Electronic
movements in metallic NPs have a strong resemblance to classical fluids dynamics.
This resemblance becomes stronger the larger the system [44].

4.3.1 Dipole Moment and Expectation Values

Given the dynamics of the density matrix, it is possible to determine the time
evolution of the expectation value of a given operator. For studying plasmon
dynamics, we will be interested in Mulliken charges, eigenvalues, dipole moments,
electric currents in molecular bonds, the electric field,4 and interatomic forces. The
first two properties of the list above are trivially obtained from the density matrix
at each time step. For example, Mulliken charges in an orthogonal tight-binding
representation are calculated as:

qI = ZI − ∑
μ∈I

[
ρOA]

μμ , (4.19)

where qI is the on-site charge at atom I, ZI is the effective nuclear charge associated
with each site5 and the set {μ} is the set of atomic orbitals on site I. Moreover,
the energy levels of the system are calculated directly as they are given by the
eigenvalues of the Hamiltonian matrix.

When considering optical properties, the most important expectation value is the
dipole moment, since, as we will show below, it is necessary to obtain the absorption
spectra of a metallic cluster. In order to obtain the time evolution of the dipole
moment, it is only necessary to apply the classical dipole moment formula at each
time step:

〈μ(t)〉= ∑
I

rIqI(t) (4.20)

where charges qI(t) are obtained from applying (4.19) and rI is the vector position
of the atom I.

4.3.2 Optical Properties

In this section, we will discuss about the interaction of matter with external electric
fields under the linear response regime, and how to use the information contained in
the time evolution of the dipole moment in order to obtain spectroscopic information
of the system.

4This is important when studying near-field effects as it is explained in Sect. 4.8.
5The formula for calculating the on-site charges, in general, depends on the TB model.



118 C.F.A. Negre and C.G. Sánchez

When incident electric fields are much smaller than the internal fields of the
system, the latter is considered to be in the linear response regime [45, 46]. The
time evolution of the expectation value of any operator Ô, can be expressed as
a convolution between the applied perturbation and the response function of the
system:

〈O(t)〉= 〈O(0)〉+
∫ ∞

−∞
χ(t − τ)V(τ)Θ(t − τ)dτ = 〈O(0)〉+ χ(t)∗V(t) (4.21)

where χ(t) is the system response function and V is an applied external perturbation.
The Heaviside function (Θ(t − τ)) serves to enforce the causality principle.6

Equation (4.21) can be read as: the response 〈O(t)〉 is linear with respect to the
impulse force V (t), with the response function χ(t) as coefficient of proportional-
ity [45].

In particular, for the case of the dipole moment, we have:

〈μ(t)〉=
∫ ∞

−∞
α(t − τ)E(τ)Θ(t − τ)dτ, (4.22)

where E(τ) is the electric field used to apply a perturbation over the system and
α(t − τ) is the polarizability. Written in the frequency domain, after using the
convolution theorem, the last expression can be expressed as follows [47]:

〈μ(ω)〉= α(ω)E(ω). (4.23)

From the knowledge of the time evolution operator of the system, it is possible to
obtain an analytic expression of 〈μ(t)〉 after applying the Kubo formula7:

〈μ(t)〉=
∫ ∞

−∞
− i

h̄
〈[μH(t − τ),μ ]〉E(τ)dτ, (4.24)

where μH(t − τ) is the operator μ in the Heisenberg picture [48]. From the last
formula, we can immediately recognize that α(t − τ) =− i

h̄ 〈[μH(t − τ),μ ]〉, which
gives a formula to express the polarizability [45].

The fact that the electric field has three components suggests that the polariz-
ability should be expressed as a matrix so as to make the induced dipole moment
dependent on the direction of the applied field. In other words, the polarizability is
in general an anisotropic magnitude and must be written as a tensor [49]. Thus we
have:

6The causality principle states that the effect is followed by the cause and not the reverse. It can
be seen that for τ larger than t (cause before effect) the function Θ(t − τ) is 0. The advantage of
introducing the function Θ(t − τ) is that it allows to extend the limits of the integral of (4.21) to
infinity.
7This expression is also valid for a generic operator O(t) where we have: 〈O(t)〉 =∫ ∞
−∞− i

h̄ 〈[OH (t − τ),O]〉V (τ)dτ .
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⎛
⎝ μx(ω)

μy(ω)

μz(ω)

⎞
⎠=

⎛
⎝αxx(ω) αxy(ω) αxz(ω)

αyx(ω) αyy(ω) αyz(ω)

αzx(ω) αzy(ω) αzz(ω)

⎞
⎠
⎛
⎝Ex(ω)

Ey(ω)

Ez(ω)

⎞
⎠ (4.25)

By diagonalizing the α matrix, we obtain three eigenvectors that indicate the
direction of the principal axes of polarizability (v1, v2, and v3). This makes it
possible to determine the direction of maximum polarizability corresponding to the
axis having the largest associated eigenvalue. The average polarizability is defined
as: ᾱ = (αv1 +αv2 +αv3)/3, where αv1 is the polarizability along v1 and thus for
the other two terms.

The imaginary part of the average polarizability ᾱ represents a measurable
quantity related with the photoabsorption cross section [50]:

σ(ω) =
4πω

c
ℑ(ᾱ), (4.26)

where c is the speed of light.

4.4 Initial Perturbation

In order to make the density matrix evolve in time, it is necessary to apply an
initial perturbation to the system. This perturbation moves the system from its initial
ground state. The new state is no longer an eigenstate of the Hamiltonian, and
thereafter, it evolves along a trajectory described by the integration of (4.17) [45].

The perturbation enters directly into the Hamiltonian of the system as an
additional time-dependent matrix, i.e.:

H(t) = H0 +V (t). (4.27)

As a consequence, the electrons feel the influence of an external potential
V (t) and respond to it according to the time-dependent Schrödinger equation. The
Hamiltonian constructed in (4.27) is quite general and describes the situation of
atoms, molecules, and solids under the action of, for example, a time-dependent
electric field [51].

The shape and duration of the perturbation depends on the phenomenon to be
simulated. For example, if some information about electronic excitations of the
system is needed, a perturbation in the shape of a Dirac delta must be used, in order
to excite all the system frequencies [26]. It is also possible to reproduce the effect of
an oscillating electric field generated by the effect of a laser [51] over an irradiated
system.

The most useful ways to induce a perturbation V for studying plasmon dynamics
are the following: the pulse-type perturbation, which excites all the system frequen-
cies; the step-type perturbation, used to suddenly apply an external electric field;
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and the laser-type perturbation, used to apply an oscillating field so as to represent
an electromagnetic wave.

In the case of using an orthogonal basis to represent the electronic structure of the
system (orthogonal TB), the effect of the perturbation V (t) is nothing but an on-site
energy shift. As a consequence,V (t) will have a diagonal representation f (t), where
fi(t) is the variation of the site energy of the i-th orbital. For a general nonorthogonal
case (with nonzero interorbital overlap), we have:

H = H0 +
1
2
(S f + f S), (4.28)

where Sμ,ν = 〈μ |ν〉, is the overlap matrix. Equation (4.28) is reduced to (4.27) for
S = I, where I is the identity operator.

The most natural way to perturb the electronic structure of a system is by the
action of an electric or magnetic field. For the case of homogeneous electric fields,
it is known from classic electrostatics that the potential at the site i is calculated
as: Vi = −eF · ri. This suggests that if the electric field is uniform throughout the
system for each time coordinate, that is, F(ri, t) = F(r j, t) for every coordinate ri

and r j, (4.27) can be rewritten as:

Ĥ(t) = Ĥ0 − eE(t)r̂ = Ĥ0 +E(t)μ̂ (4.29)

The latter is known as the dipole approximation and comes from considering
that the system is too small to perceive changes in the electric field on the spatial
coordinates [1].

4.5 Absorption Spectra

In this section, we will describe the method used to obtain the absorption spectrum
for both molecular and metal nanoclusters systems. First, the ground state of the
system is found by using the most appropriate model to represent the electronic
structure. Then we perform a quantum dynamical simulation preceded by the
application of an initial perturbation that excites all frequencies of the system (see
Sect. 4.4). The coupling with the external field of the initial perturbation is included
in the Hamiltonian via the dipole approximation, as shown in (4.29). Both pulse and
step perturbations can be used for this purpose.

From the time evolution of the density matrix, we can obtain the evolution
of the dipole moment, which is the expectation value needed to determine the
polarizability. The duration of the simulation is regulated based on the following two
considerations: on the one hand, the size of the system to deal with, which depends
mainly on available computational power, and on the other hand, the frequency
range of interest. For the latter, if the information required is at low frequency, long
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Fig. 4.4 (a) Dipole moment as a function of time for a truncated octahedron of 4,033 Au atoms
following the application of an initial perturbation in a shape of a step. (b) Absorption spectrum.
Here, abscissa axis is in eV. x(nm) = 1239.84
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times should be simulated with a large integration step. If the information needed
is at high frequency, short times should be simulated with a small integration step.
The longer the simulation time and the smaller the integration step used, the better
the resolution of the peaks of the absorption spectrum.

Once the dynamics are obtained, a numerical Fourier transformation of μ(t) is
performed. From (4.23) we can solve for the frequency-dependent polarizability, the
imaginary part of which is proportional to the absorption spectrum [26]. The latter
is nothing but the deconvolution of the applied initial perturbation:

α(ω) =
μ(ω)

E(ω)
. (4.30)

Function E(ω) is obtained from the analytical Fourier transforms of E(t) which,
in the case of the pulse and step, are E(ω) = E0 and E(ω) = iE0

ω , respectively. We
will show some results found with this procedure in Sects. 4.6 and 4.7 for spectral
calculation purposes.

In Figs. 4.4 and 4.5, we can see the dipole moment evolution, together with
the absorption spectra for a metallic cluster and an organic molecule, respectively,
after the application of a pulse-shaped perturbation. For the organic molecule, we
can observe that the dipole moment does not decay in time; this is not the case
of metallic clusters for which the plasmon excitation has an intrinsic electronic
lifetime. For the case of a molecular system, it is necessary to include an external
artificial width by multiplying μ(t) by an exponential decaying function before
performing the Fourier transform in order to compensate for the finite length of
the dynamics.
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Fig. 4.5 (a) Dipole moment as a function of time for a p-cresol molecule following the application
of an initial perturbation in a shape of a step. (b) Absorption spectrum

4.6 Some Results Concerning Metal Nanoclusters

The scope of this section is to study the absorption spectra of metallic NPs by
considering the influence of shape, size, and surface condition with atomistic detail.
The latter may be the first step towards a sharp understanding of the atomic level
structure influence on optical properties. In this section, we will show some results
concerning the absorption spectra of NPs of different size and shapes as those shown
in Fig. 4.6. We have studied spheres and spheroids varying the aspect ratio, as well
as polyhedral solids.

The electronic structure of these gold NPs is represented through a TB Hamil-
tonian as the one detailed in [32, 40, 41] for which the main characteristics
were explained in Sect. 4.2.3. Spectral features are determined by the procedure
previously described in Sect. 4.5. In this case, a step-shaped perturbation is used
with E0 = 0.01 eV/Å. The average polarizability over the three main axes is used
for all the results shown here. Absorption spectra were verified to be independent
of the applied initial field intensity, meaning that simulations were performed under
the linear response regime for which the frequency-dependent polarizability can be
extracted from the dipole moment by using (4.30).

4.6.1 Estimation of Au+ Permittivity

It was found that, by using the vacuum dielectric constant (�r = 1) for the Coulombic
expression in (4.16), the plasmon resonance energies are too high when compared
with experimental data. Instead of �r = 1, a value of �r = 6.96 was used to obtain
the results that are shown below. This �r value was fitted to obtain the plasmon
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Fig. 4.6 Different kinds of aggregates: (a) tetrahedron, (b) octahedron, (c) cube, (d) cuboctahe-
dron, (e) truncated octahedron, (f) icosahedron, (g) decahedron, (h) Marks decahedron, (i) sphere.
Reprinted with permission from J. Chem. Phys. 129, 034710 (2008). Copyright (2008) American
Chemical Society

resonance energy of a large radius particle as the one predicted by Mie theory for
a Au sphere in the dipole approximation [4, 11]. Within the TB model, �r can be
interpreted as the relative permittivity of the medium given by the cores, including
d electrons. The fitted value corresponds to a polarizability that is in between the
one of a Au+ ion and a neutral Au atom and therefore within a reasonable physical
range. Electrons of the d shell in metallic atoms make s electrons to see an �r value
higher than the one for vacuum due to their intrinsic polarizability. The vacuum
permittivity, expressed in units of eV, fs, and Å, is 5.52×10−3. Moreover, according
to the classical Clausius–Mossoti equation [3], we have that the local polarizability
as a function of the permittivity for a metallic sphere is:

α =
3

4πρN

(
�− 1
�+ 2

)
(4.31)
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Fig. 4.7 (a) Variation of E vs. N−1/3 for each � value. In this case, the larger the � value, the lower
the intercepts of the linear fits obtained in the graphs. We have chosen seven � values between
6 and 12, and they correspond to the points shown in graph b. (b) Variation of the intercept of
the graphs of (a) with varying � values. Points in the graph are fitted to the function: E(�) =
8.056�(−0.66) +0.256

where the density ρN calculated for the case of Au fcc with a lattice parameter of
4.08 Å is 0.005889 1/cm3. Finally, formula (4.31) is rewritten as:

α = 4.053829

(
�− 1
�+ 2

)
(4.32)

This expression allows to obtain an approximation to the local polarizability in
function of the � value. In this equation, α units are expressed in Å3.

Numerical calculations determining the energy of the plasmon resonance for
different values of � were performed for a series of metallic spheres with N ranging
from 1,400 to 3,000 in order to obtain an extrapolated value when N tends to infinity
(E∞)(very large clusters). In Fig. 4.7a, we show graphs of E vs. N−1/3 for different
� values varied from 6 to 12.

By plotting the intercepts as a function of �, we obtain a power law that allows
for interpolation and further determination of the � value for a plasmon resonance
energy of 2.5 eV (see Fig. 4.7b). The latter value is the one predicted by classic
electrodynamics for a large Au sphere within the quasi-static approximation [11].
From this procedure, the � value that produces the correct plasmon energy for a large
sphere is 6.9628.8 Using this value in (4.32) gives a local polarizability of about
2.7 Å3. Polarizability values calculated from DFT are of 1.4 Å3 for Au+ and 5.48 Å3

for Au. Free electrons in plasmonic excitations would be feeling an intermediate
polarizability.

8The same procedure was carried out for Ag yielding a value of � =3.015.
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If we think of a Drude model, in which the metal is nothing but a sea of electrons
embedding positively charge cores, it would be reasonable to think of electrons
seeing an electric permittivity induced only by Au+ cations. From a less naive
point of view, we could think that if Au+ cations are embedded in s electrons, they
get softer making the medium more polarizable. Our model should respond with
a local polarizability generated by d electrons partially perturbed by the presence
of s electrons. The latter situation can be found in a Hg+ ion, which yields a DFT
polarizability value of 3.4 Å3, which is closer to the value obtained for our method.

4.6.2 Spectral Features

As it can be seen from Fig. 4.2, the decay time of the plasmon oscillation is of
several femtoseconds. The density matrix dynamics, obtained from the Liouville
equation integration, does not have any external dissipation mechanism (there is no
electron–phonon interaction); however, the induced dipole moment evolution finally
decays. This decay mechanism can be explained from both quantum and classical
considerations. The plasmon excitation can be viewed as a superposition of many
excitations which are oscillating phase coherently at early stages. As the dynamics
proceeds, the excitations begin to dephase from each other and the oscillation is
destroyed (Fig. 4.8). This phenomenon is known as Landau damping. As it will be
seen later, each physical defect at cluster surface acts as a scatterer, which deviates
the collective motion of electrons and finally destroys the dipole signal.

The decay time is much shorter than characteristic atom vibrations and, in
consequence, plasmon decay proceeds as if the atoms of the nuclear lattice
were frozen at their equilibrium positions. Absorption spectra for different cluster
families were calculated, reaching sizes up to 4,000 atoms (4-nm diameter) [52].

4.6.3 Spherical Particles

Spheres are constructed by cutting a spherical piece of metal centered at an atom
of an fcc lattice. The absorption spectra for spherical clusters show a Lorentz-
like functional shape, for which the maximum absorption peak reveals a linear
dependence with respect to the surface to volume ratio. This relation is given by
N−1/3, N being the number of atoms in the particle (see Fig. 4.9).

The peak shifts bathocromically with increasing cluster size, which is in good
agreement with experimental observations [1]. Peak intensity grows with the volume
of the solid, as it is expected for an increasing polarizability given by the linear
growth in the number of electrons with increasing particle size.

The perfectly defined Lorentzian shape of the absorption peak is attributed to
the lack of surface defects on the sphere surface. Among these accidents, we
can mention the vertex and edges always presented in polyhedral particles, which
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Fig. 4.8 Picture depicting the dephasing of initially in phase waves with different Lorentzian
distributed frequencies as a function of time
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Fig. 4.9 (a) Absorption spectra for a series of spherical aggregates going from 429 to 3,043 atoms.
The plasmon peak red shifts with the increase of size. Peak intensity grows linearly with particle
size. (b) Plasmon resonance energy as a function of the inverse cube root of the atom number
together with its corresponding linear fits. Reprinted with permission from J. Chem. Phys. 129,
034710 (2008). Copyright (2008) American Chemical Society
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Society

are main contributing factors to plasmon dephasing. Full width at half maximum
(FWHM) possesses an oscillatory dependence with respect to the surface to volume
ratio, but the average follows a linear trend, as it can be seen in Fig. 4.10 [53].

4.6.4 Prolates and Oblate Spheroids

With the aspect ratio9 being different to one, particles become spheroid-like
shaped [54,55]. We have studied prolates and oblates cut from an fcc atom-centered
lattice. This shapes possess two principal axes that are equal and a third which is
different from the others. In the case of prolates, the third axis is longer than the,
others and the inverse is true for the case of oblates. All aggregates considered here
have in average 2,000 atoms, and the spectra were calculated by only changing the
aspect ratio from oblate to prolate.

Spectra observed in Fig. 4.11 are bimodal, and each peak can be associated to
the collective oscillation of the electrons in the direction of some principal axis of
the particle (two of them are equal in length, so, only two peaks are observed).
The resonance at larger frequencies corresponds to shorter axes. The peak intensity
grows with the length of the corresponding axis, in a similar fashion to the trends
observed with respect to the behavior of the intensity with the particle size, shown
before. The peak energy, however, becomes smaller with increasing the length of
the corresponding axis. The relative intensities of the two resonances are the result

9The aspect ratio of a molecular system, in general, is defined by Bonnett et al. as the ratio between
the longest and shortest vertex of a regular parallelepiped of minimum volume, that can host the
whole molecular system [54].
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Fig. 4.11 Spectra for the case of prolates (a) and oblate (b) spheroids with aspect ratios of 3 and
1/3, respectively. Spectra for the case of spheres with the same quantity of atoms are included as
a reference. Both peaks correspond to z and x (or y) polarization directions. The x-axis is different
from the others. Reprinted with permission from J. Chem. Phys. 129, 034710 (2008). Copyright
(2008) American Chemical Society

of different causes: the increase in intensities when the axis of polarization becomes
larger and the degeneration produced by the fact that two axes are of equal length.
Oblate spheroids show a higher intensity for the peak that correspond to smaller
energies, because this resonance is degenerate and corresponds to longer axes. In
the case of prolates, the effect produced by enlarging the mayor axis eventually
overcomes the degeneracy, and dominates the spectra.

Figure 4.12 shows how the two resonances corresponding to different axis are
split as the z/x differs from one. Lines in plots correspond to a fit with a power law in
the shape of axα +b. There is a quantitative agreement between the energy shifts as
a function of the aspect ratio shown here and those from Lance Kelly et al. in [2]. In
the oblate case, the lowest resonance peak corresponds to a polarization along x and
y axes. For the extreme cases, the lowest energy peak dominates the spectra because
those of higher energy, corresponding to shortest axes, eventually become negligible
in intensity. Particles in the shape of disks or needles have only one resonance
energy peak. In both cases, there is a very small axis which does not contribute to
the absorption spectra. Average absorption spectra10 are shifted bathochromically
(to lower energies or longer wavelengths) when the aspect ratio is increased and a
monotonic relation exists between the observed shifts and the structural deviation
respect to a sphere define as ζ = b−a

a , where b and a corresponds to the mayor
and minor axes, respectively [55], as can be seen in Fig. 4.12b. As shown below,
the same is observed for polyhedral particles. In comparison with the energy shift
caused by the particle size, a change in shape has a greater influence in determining
the plasmon energy. Researchers engaged to tune the resonance frequency must be
focused in controlling particle shape.

10This is a weighted average by the peak intensity.
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Fig. 4.12 (a) Peak position as a function of the aspect ratio for a series of spheroids for
polarizations z and x directed. Oblates correspond to aspect ratios smaller than one, and the inverse
is true for prolates. (b) Weighted average of the peak position as a function of the spherical
deviation. Reprinted with permission from J. Chem. Phys. 129, 034710 (2008). Copyright (2008)
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4.6.5 Surface Condition

The surface condition of a particular cluster is an important factor in determining
both the energy and the lifetime of the plasmon excitation. For determining the
influence of the surface condition, spectra for a series of spherical particles with
different concentration of surface defects were calculated. These defects where
introduced as absorbed atoms with a low coverage degree. Spheres of about 2,000
atoms were used. In Fig. 4.13, the influence of the concentration of surface defects
both in the absorption energy and width is observed.

The strong influence of adsorbates on the plasmon resonance features, partic-
ularly in the lifetimes of the excitation, can be explained by the fact that the
plasmon is a surface phenomenon. Accidents present on the cluster surface act as a
source of friction for electrons, making the energy of the oscillation to decrease
and the coherence to be drastically attenuated. The term friction has been used
in a loose sense since no dissipation mechanism was introduced in the model.
Electrons dispersed by defects slow down their speed component in the direction
of the plasmon propagation, producing a net decrease of the collective velocity and
in consequence, decreasing the resonance energy. This result shows qualitatively
that any attempt to predict the plasmonic lifetime must take into account the details
of the surface condition. In Sect. 4.7, we will see that even the presence of stabilizers
adsorbed onto the particle surface has a great influence on plasmon lifetime.
The phenomenon described above cannot be studied with classical electrodynamic
methods; this is a strong advantage of using the tools introduced here.
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Fig. 4.13 Peak position (a) and peak width (b) as a function of surface defect concentration. The
surface defects were introduced by adding adatoms onto a 2,000-atom particle surface. Reprinted
with permission from J. Chem. Phys. 129, 034710 (2008). Copyright (2008) American Chemical
Society

4.6.6 Polyhedral Particles

There is clear experimental evidence that NPs have a well-defined symmetry and
that are not necessarily an amorphous conglomerate of atoms [56, 57]. Some
aggregates are characterized by having a quantized growth, where only certain
number of atoms are permitted for each size for a given shape [58]. In this way,
it is possible to obtain a whole family of clusters (with different sizes but equal
shapes) in an iterative way by adding atoms onto the surface of one of them to
obtain the subsequent in size. In this way, for example, for cuboctahedral clusters11

(see Fig. 4.14), we have that N = 1
3 (10n3+15n2+11n+3), where N is the number

of atoms of the cluster and n is the order occupied within the family [59].
Polyhedral families studied here are: tetrahedra, octahedra, cubes, cuboctahedra,

truncated octahedra, icosahedra, decahedra and Marks decahedra (see Fig. 4.6). As
an example, in Fig. 4.15, we show spectra for a series of cuboctahedra, and Marks
decahedra. Cuboctahedra show only one absorption peak, which is red shifted with
increasing the particle size. This peak is not perfectly Lorentzian as was the case
for spherical particles. Marks decahedra, on the other hand, show bimodal spectra
similar to those observed for an oblate spheroid. In general, we observe that the
shape of the peak is deviated from a purely Lorentzian shape for every studied
geometry and it depends on the shape of the cluster; however, it is always possible
to identify a principal absorption peak. This principal absorption peak was used for
further characterizations.

11This function also applies for icosahedral particles.
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Fig. 4.14 First members of cuboctahedral family. From left to right: N =13, 55, 147, and 309
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Fig. 4.15 Spectra for a series of cuboctahedra (a) and Marks decahedra (b). As in the case of
spheres, the main resonance peak is shifted towards smaller energies when the atom number
is increased, while the peak intensity is increased due to increasing volume. Reprinted with
permission from J. Chem. Phys. 129, 034710 (2008). Copyright (2008) American Chemical
Society

In Fig. 4.17 we have plotted the principal peak energy as a function of the inverse
of the cube root of the atom numbers subtracting the extrapolation to infinite size
(E∞) with the purpose of emphasizing slope differences. The linear dependence
and the surface to volume ratio observed for spheres are also verified in polyhedral
particles. The slope of the linear dependence is smaller for spherical particles, while
for less spherical particles, this dependence is more pronounced. The dependence
of the frequency with surface to volume ratio has been observed experimentally
and theoretically and predicted from other models [1]. The novel aspect presented
here is the dependence of the slope with the shape. The spherical deviation can be
characterized from a single parameter ζ as follows:

ζ =
rb − ra

ra
(4.33)
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Fig. 4.17 (a) E − E∞ as a function of the inverse of the cube root of the atom number in the
particle, for a series of polyhedral particles. Here, E is the peak resonance energy. (b) E (E∞) as
a function of the spherical deviation. Cubes and octahedra have the same value of ζ . The same
symbols were used for representing the points corresponding to each cluster shape in both graphs.
Reprinted with permission from J. Chem. Phys. 129, 034710 (2008). Copyright (2008) American
Chemical Society

where ra and rb are the internal and external radii of the convex solid, corresponding
to the radius of the contained sphere and the containing sphere, respectively (see
Fig. 4.16). This quantity is the same as the one defined for spheroids where b = rb

and a = ra.
Slopes of the linear fits in Fig. 4.17 increase in a monotonous way with ζ , being

the sphere-shaped cluster the one showing the smaller dependence of the resonance
energy with the solid size.

The resonance energy extrapolated to infinite size (E∞) shows a linear depen-
dence with the spherical deviation as shown in Fig. 4.17b. Due to the linear relation
with the surface to volume ratio, a change in size for large particles produces a small
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change in the plasmon resonance energy which is principally determined by the
particle shape. Less spherical particles will have resonances at lower energies with
the sphere as an upper bound. As it was emphasized for the case of the spheroids,
shape control provides a more sensitive mechanism than size to control the energy
of the main absorption peak. In the case of very small particles (N < 1,000), small
changes in the number of atoms will produce big changes in the surface to volume
ratio, making the size to be an important factor only for small particles. Values of E∞
cover an energy range of about 1 eV, showing that the shape can have a determining
influence in the plasmon resonance energy.

The fact that the sphere is an upper bound for the resonance energy and that
this energy is lower for less spherical particles can be understood by analogy
with spheroids. For the spheroid case, the resonance energy corresponding to the
longest polarization axis is shifted to lower energies with increasing aspect ratio.
In the case of polyhedral particles, radii of the contained and containing spheres
are different and, the same as in the spheroids case, there are two characteristic
lengths. Whenever, one of the characteristic lengths grows at the expense of the
other, the resonance energy is therefore shifted to lower values. On top of this,
surface structure, such as edges act in a similar way to the case of adsorbates,
lowering the resonance energy.

Excitation lifetimes characterized through the peak width of the principal
resonance are hard to define for non-spherical aggregates because in these cases
peaks are not purely Lorentzian. No systematic trends of the width with the shape or
size were found. Excitation lifetimes of polyhedral particles possess an oscillatory
dependence with particle size and show significant differences between different
shapes. Hence, it is not possible to identify a systematic trend within the data. This
results can be explained in terms of the presence of surface imperfections. Surface
defects such as edges lower the resonance energy and the lifetime. Different shapes
have different surface structures, and this is the reason of the lack of a universal
characterization of the resonance lifetime. It is important to note that the latter is a
quantum effect produced by electron scattering within the cluster surface.

In the above analysis, Marks decahedra, decahedra, and icosahedra were not
included. The reason for this is that these solids do not follow the trends found
for regular polyhedra. In the case of decahedra, most of the spectral features can be
interpreted as the one of an oblate spheroid. Values of peak energy, however, differ
due to the presence of polyhedral faces. Icosahedra are a special case of regular
solids as they are formed by the aggregation of 20 tetrahedra with fcc internal
structure (the same is true for decahedra) [60] but do not have fcc structure as
a whole. Significant deviations of the trends were observed for icosahedra with
respect to regular solids; however, the slope and the intercept of the linear fit
in function of N−1/3 are similar to those found for the tetrahedra and spheres,
respectively.
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Fig. 4.18 (a) Spectrum of a 1,415 Au atoms icosahedral NP with a monolayer of Ag (Au@Ag),
together with the corresponding spectra for Au and Ag NPs of the same size and shape of the
core as a reference. (b) Spectrum of a 1,415 Ag atoms icosahedral NP with a monolayer of Au
(Ag@Au), together with the corresponding spectra for Au and Ag NPs of the same size and shape
of the core as a reference

4.6.7 Bimetallic Nanoparticles

Bimetallic nanoparticles, in particular, core@shell NPs, possess very special optical
properties. Great variations of their spectral features are obtained with their struc-
tural and composition modification. The relative modification of the radii of the core
and the shell produces spectral shifting in very wide ranges that are sometimes even
as important as the morphological modification in a one-component NP [61]. Both
shifting and spectral width are hard to predict with classical methods, in particular
when sizes are smaller than 3-nm diameter [62], where quantum effects are more
important.

This section deals with the calculation of the spectral features of a series of
bimetallic NP from dynamical simulations of the plasmonic excitation using the TB
model explained in (4.2.3). In this case, we have employed the TB parameters of
silver detailed in [39] with �r = 3.015 following the procedure described in (4.6.1).
For calculating the matrix elements between orbitals of different metals, we have
utilized the average of the parameters for the semiempirical TB description of both
metals. This is a rough way of having an approximation of the polarizability of the
alloy. A difference in orbital energy sites was introduced according to the difference
in metal work functions.

In Fig. 4.18a, we show the result of adding a monolayer of Ag onto a 1,415
icosahedral Au particle (Au@Ag). We observe that the incorporation of even a
single layer of Ag makes the resonance energy shift to higher values, resembling the
situation found for Ag with respect to spectral features [62]. In this case, two effects
are in opposite directions. These are the bathochromic shift due to the increase in
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Fig. 4.19 (a) Spectra of an
icosahedral 1,415 NP
composed by 50% N/N of Ag
and Au atoms randomly
distributed

size that occurs when adding a new metal layer and the hypsochromic shift due to
the addition of a metal with a higher resonance energy. Adding an Ag extra layer
does not cause further changes in the peak energy because the effect of size becomes
dominant.

For the case of the addition of Au onto an icosahedral particle of Ag (Ag@Au),
a synergistic effect is observed between the size effect and the metal shell effect.
Surprisingly, the plasmon resonance peak appears at energies even lower than the
ones obtained for the naked Au NP.

The same procedure was applied to a 50/50 Au/Ag NP alloy. Atoms in this
NPs were randomly distributed so as to have a good mix of both types of atoms.
According to these calculations, the result of having an alloy is the formation of a
very broad resonance peak with an energy that remains between the energy of the
two metals separately. This behavior cannot be predicted from classical models as
in these calculations a dielectric function for the alloy must be introduced regardless
of atomistic detail. The latter makes the peaks of the alloys to be narrower than real
ones [63] due to the neglect of internal electron scattering in the disordered system
which has a very strong effect on plasmon dephasing (see Fig. 4.19).

4.6.8 Some Conclusions

The plasmon oscillation decay and its fundamental frequency are determined by
the cluster shape and size. The frequency of this fundamental oscillation shows a
linear dependence with the surface to volume ratio for particles of the same size, for
which their slopes depend in a monotonous way with the sphericity. For similar-
sized particles, those that are less spherical possess lower resonance energies.
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Shape has an important influence in the absorption spectra of a metallic particle;
thus, significant control of the resonance energy can be exerted by controlling the
atomistic shape of the cluster or its aspect ratio (sphericity).

Surface condition also has a great influence over spectral features, principally,
on the excitation lifetime. Surface defects act as scatterers lowering electron speed
due to friction (in the sense explained above) increasing plasmon dephasing. The
complex surface structure of the polyhedral cluster makes the spectra to strongly
deviate from the purely Lorentzian shape observed for spherical particles .

As a main conclusion of this section, we have the fact that the shape of the
cluster at the atomic level has a great influence on the absorption spectra of metal
NPs. Because of the latter, new models that could include the atomistic details
and provide quantitative information as well, are needed in order to help to the
fabrication of materials with desired optical properties.

4.7 Effect of Molecular Adsorbates

In this section, we will address a brief study, the main characteristics of the influence
of molecular adsorbates (capping agent) on the absorption spectra of spherical NPs
by means of a simple TB model. We have built a special TB model to include the
coupling to the cluster surface of a general molecule represented by a two level
system characterized by its HOMO-LUMO gap. We will see how the presence of
adsorbates can shift and widen the plasmon resonance peaks. For strong couplings,
a splitting of the main resonance peak is achieved and the two resultant resonances
are localized in different regions of the capped nanoparticle.

4.7.1 Introduction

It is well known from experimental results that for preparing NP colloidal suspen-
sions, it is necessary to employ some stabilizing agent to prevent the aggregation
and further precipitation [64, 65]. Stability of the colloidal suspension can be
achieved by several ways: a chemical one, where stabilizing agents are bonded
to the particle with strong covalent bonds through functional groups such as –SH,
–SeH, or –COOH; an electrostatic mechanism which works by controlling the width
of the electric double layer that surrounds the particle, thus preventing coalescence;
and finally, a steric method which employs organic polymers to prevent particle
aggregation [66]. The adsorbates can also be used as a way to identify specific
compounds, as vectors to deliver therapeutic agents or to bind the NPs to a potential
electronic circuit [67, 68]. Adsorbates that have acid-base character can also make
the plasmon resonance to be sensitive to the pH of the solvent [69].

It is well known that the surrounding medium influences the optical properties
of NPs suspensions [1]. In a simple description, the surrounding medium acts as
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a dielectric material, decreasing the plasmon excitation energy by means of the
stabilizing surface charge oscillations on NPs [3]. The effects on the excitation
lifetimes are more difficult to describe using simple electrostatic models that cannot
capture the effect of adsorbates on the underlying electron dynamics [71]. Mie
theory allows to calculate the plasmon resonance energy by including the effect
of adsorbates as a dielectric shell [72]; however, the influence of the adsorbates is
also important at low coverages (less than a monolayer) where both a dielectric
function and a suitable layer width are difficult to define. An atomistic description
that takes into account the electronic structure of the particle and the adsorbates
as a whole is mandatory in the description of the entire problem. Some of the
effects produced by the adsorbates on the resonance width can be qualitatively
described with the decaying mechanism through the chemical interface, commonly
known as chemical interface damping [73, 74]. According to this model, electrons
being part of the plasmon excitation can tunnel in or out from the states of the
adsorbate that are near the Fermi level, loosing coherence in this process and thus,
making the plasmon excitation lifetime to decrease. This image has been useful
to qualitatively describe the effects produced by the surrounding medium to the
width of the plasmon excitation [18, 73, 75]. Adsorbates can also transfer charges
to the particle modifying the plasmon resonance energy and its width [74, 76].
Although this scheme is attractive from the physical point of view because (through
modifications of the classical theory) it can successfully describe some effects
that surface modification produces [76], it cannot explain the complex interaction
between molecules and plasmon excitations. The latter is due to the fact that a
great energy resonance shift can be produced when the molecular excitations of
adsorbates are in resonance with plasmon excitation [21], yielding a splitting of the
peak into two distinct resonances [77]. This scheme cannot describe the relationship
between the decay and the chemical nature of adsorbates [78]. In Sect. 4.6 we have
shown that the presence of simple adsorbates as metallic atoms of the same nature
of those of the cluster possesses a significant effect both in the energy and resonance
width [52] that are linear with the surface concentration.

In sections below, we will show how the TB model used in Sect. 4.6 can be
adapted to describe the adsorbed molecule modeled within a simple molecular
adsorbate. With this strategy, it is possible to describe the effects of adsorbates
on spectral features with special attention on its dependence with the molecules
HOMO-LUMO difference and the coupling strength to the particle surface.

4.7.2 Model and Simulation Method

The electronic structure of the system is represented by using the same TB model
as the one of Sect. 4.6. The electronic structure of adsorbates is presented via a
two-level system Hamiltonian (TLS) characterized by two parameters, the coupling
with surface (NP), given by parameter γ and the coupling between sites of TLS
characterized by the δ matrix element (Fig. 4.20). The atom of the adsorbed
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Fig. 4.20 Schematic
representation of the system
Hamiltonian: δ = Hi j

(atom–atom). γ = Hi j

(atom–metal). Reprinted with
permission from [70]

molecule which is near the metallic surface (atom A) is located in an fcc site of the
particle lattice chosen at random and the second atom (atom B) is located so as to
make the diatomic molecular axis perpendicular to the particle surface. The Hubbard
parameter U for the adsorbate was chosen to be 10 eV, which is approximately what
corresponds for C atoms. The ground state density matrix evolves after applying an
electric field as the case for bare metallic clusters (see Sect. 4.6). The absorption
spectra is calculated in the same way that for the case of Sect. 4.6.

4.7.3 Some Results

All the calculations shown below were performed for a spherical particle of 1,985
Au atoms of approximately 20 Å radius extracted from an fcc Au lattice. Four
hundred and eighty (24%) of the NP atoms are located at the surface. Seventy-
five diatomic molecules were adsorbed randomly covering approximately 17%
of the cluster surface (Fig. 4.21). Calculations were repeated for a coverage of
36%, and results for this calculation will be compared when significant differences
from the low coverage situation are encountered. This cluster possess a plasmon
resonance frequency at 370 nm with a peak width of 27.62 nm when no adsorbates
are present at the surface. Figures 4.22 and 4.23 show contour maps of the peak
width and resonance energy for a range of values of parameters γ and δ . This
parameters are related with the surface interaction and the HOMO-LUMO gap of the
diatomic molecule, respectively, as shown in Fig. 4.21. Plasmon resonance energy
is influenced by the presence of molecular adsorbates which produce resonances to
shift their frequency, widening peaks (making changes on plasmon lifetimes) and
splitting the main resonance into two different excitations depending on the value
of the aforementioned parameters.

Parameter δ can be easily related with the HOMO-LUMO difference of the
adsorbate, if the molecule behaves ideally as a TLS |δ | ≈ (LUMO−HOMO)/2.
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Fig. 4.21 Nanoparticle of
1,985 Au atoms, partially
recovered with 75 diatomic
adsorbates. Reprinted with
permission from [70]

Fig. 4.22 Peak width dependence on Hamiltonian parameters which describes the interaction with
surface (γ) and the coupling between sites of the TLS in the diatomic molecule (δ ). Changes
are expressed as a percentage of the resonance width for the bare sphere. Values shown in this
map correspond to the plasmon excitation even for the case of two resonances. Reprinted with
permission from [70]

We will derive an expression that can be useful to establish the strength of the
adsorption in terms of the coupling to surface parameters. We know from [32] that
the energy for a TB model can be calculated as E = Tr(ρH) +V eff

N . Where ρ is
the system density matrix, H is the Hamiltonian matrix and V eff

N is the effective
potential that accounts for Coulombic interactions and repulsion between internal
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Fig. 4.23 Resonance energy dependence on Hamiltonian parameters: The interaction with surface
(γ) and the coupling between sites of the TLS in the diatomic molecule (δ ). Contours correspond
to the difference between the resonance wavelength for the caped sphere and the bare sphere
expressed in nm. Values shown in this map correspond to plasmon excitation even for the case
of two resonances. Reprinted with permission from [70]

cores. The force is then calculated by taking the derivative of the latter expression:
F(r) = − ∂Tr(ρH)

∂ r − ∂VN
∂ r . If we integrate the work differential from the equilibrium

distance r0 to infinity, we obtain the value for the adsorption energy:

|Eads(r)|=
∣∣∣∣
∫ ∞

r0

(
∂Tr(ρH)

∂ r
+

∂VN

∂ r

)
dr

∣∣∣∣
If conditions are favorable for adsorption and both systems are neutral, the above
expression can be rewritten as:

|Eads(r)|=
∣∣∣∣
∫ ∞

r0

∂Tr(ρH)

∂ r
dr

∣∣∣∣−
∣∣∣∣
∫ ∞

r0

∂VN

∂ r
dr

∣∣∣∣
Therefore,

|Eads(r)| ≤
∣∣∣∣
∫ ∞

r0

∂Tr(ρH)

∂ r
dr

∣∣∣∣
By rewriting Tr(ρH) for the sites involved in the interaction, i.e., atom A and the
atom which is closer to the surface (S), we have:

|Eads(r)| ≤
∣∣∣∣
∫ ∞

r0

4ℜ(ρA,S)
∂γ
∂ r

dr

∣∣∣∣≤
∣∣∣∣
∫ ∞

r0

4
1
2

∂γ
∂ r

dr

∣∣∣∣
Finally, solving the integral, the last expression yields:

|Eads| ≤ |2γ| (4.34)
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We can consider this in order to have an upper bound for the adsorption energy. If we
think of thiol molecules adsorbed onto a Au surface (having an absorption energy
Eads ≈ −2 eV) as a reference, the formula above tells us that the γ parameter to be
used to model a S–Au bond is larger in absolute value than 1.0 eV. This means that if
the γ parameter is smaller than 1 eV, we will be representing molecules with weaker
bonds than for the case of S–Au. This divides the map of Figs. 4.23 and 4.22 into
two regions, of weak and strong adsorption zones if |γ| values are lower or higher
than 1.0 eV, respectively.

For the weak adsorption regime, corresponding to |γ| values lower than 1 eV,
the effect of the adsorbates in the plasmon resonance features influences mainly
the width of the resonance that can be even twice the value for the particle
without adsorbates. The resonance frequency, however, is shifted to higher values
not exceeding 10 nm. The effect of the resonance width can be interpreted by the
fact that adsorbates act as surface impurities that interfere with the electron path,
decreasing coherence and increasing Landau damping [52], an effect that is present
even at lower values of the coupling parameter |γ|. The scattering effect is originated
from both charge transfer entering molecular adsorbates and changes of the local
electronic structure of the surface atoms, due to changes in bond orders and the
local density of states at energies near the Fermi level. Within this regime which
corresponds roughly to the lower third of the γ −δ plane of Figs. 4.22 and 4.23, the
total dependence on δ is small and monotonic; this is not the case for strong surface
couplings, where there is a great influence of adsorbates on spectral characteristics.
When coupling to the surface (given by parameter γ) is increased, scattering effects
are more pronounced, causing a monotonic increase of the resonance width, which
depends in a non-monotonic manner with the inter-site adsorbate coupling (given
by δ ).

The effect of decoherence caused by adsorbates is reflected on the values of peak
width. High values of peak width imply stronger decoherence. This decoherence
effect has a maximum efficiency at a value of γ of about −1.6 eV at 17% coverage
regardless of inter-site coupling. For higher coverage, the maximum effect on the
width of the resonance occurs at lower values of |γ| (−1.1 eV at 36% coverage).
The effect on the resonance energy is much less pronounced than in the case of the
resonance width. For the case we have explored, changes in plasmonic frequency
are usually smaller than a few nm; however, the width of the resonance can be
increased by more than 200%. As in the case of the resonance width, for the weak
absorption regime, adsorbates produce a small effect in the resonance energy. When
|γ| is higher that 1 eV, however, both bathochromic and hypsochromic shifts are
observed, depending on the value of the parameter δ . For small HOMO-LUMO
gap values, adsorbates cause a blue shift, a tendency which is reverted when the
HOMO-LUMO gap is increased. The results of this study are qualitatively similar
to those found in literature for environments or adsorbates that interact weakly
with the metal surface such as SO2 [73] or tetraalkylammonium [78, 79] and those
for particles prepared by the citrate method [75]. In these cases, the adsorbates
cause a significant broadening of the resonance. Quantitative comparisons however,
are difficult to accomplish due to the lack of structural details reported on the
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experimental systems. The experimental results show that thiol-coated NPs have a
significant widening in their resonances, which can be large to the point of making
the resonance undetectable [78, 79].

This is consistent with our findings for large values of |δ | (corresponding to a
large HOMO-LUMO difference such as for alkane chains) and large coupling with
surface via S–Au bonds (corresponding to large |γ| values). For strong couplings
to the surface and small enough values of |δ |, the molecular resonance approaches
the plasmon energy from above (from higher energy). When the two excitations
are close in energy, the plasmon resonance peak widens significantly and shifts
to the blue. The latter corresponds to the region of the maximum (red area) in
Fig. 4.22. Similar effects to those described here have been observed experimentally
for molecular excitations in resonance with the plasmon excitations on coated silver
nanoparticles [21]. When adsorbates excitations become lower than the plasmon
resonance energy, the peak is split into two different excitations. This effect can
be observed in detail in Fig. 4.24 where we have plotted the absorption spectra
for fixed values of γ = −1.4 eV and a series of δ values that goes from −0.2 to
−1.2 eV. In Figs. 4.23 and 4.22, only the spectral features for the highest energy
(purely plasmonic) resonance are plotted.

The nature of these two excitations can be determined by applying an electric
field oscillating in tune with each one of these resonances. Figure 4.25a shows the
dipole moment of the particle as a function of time when illuminating at plasmon
resonance energy (for δ = −0.2 eV and γ = −2.0 eV). As shown in the figure, the
electronic system reaches a quasi-steady state after 20 fs of constant illumination
due to the finite lifetime of the plasmon excitation. Figure 4.25b shows the standard
deviation of atomic charges with respect to their values in the ground state caused
by excitations, as a function of the distance to the NP center.

The lower energy excitation is localized on the adsorbates. Through a detailed
analysis of charge distribution, we can see that the lowest energy resonance
corresponds to an in-phase oscillation of molecular dipoles located on opposite sides
of the NP. Molecular excitations are coupled through the NP via the conduction
electrons. Therefore, the coupling of molecular excitations only occurs when the en-
ergy of these excitations is smaller than the plasmon energy. These new excitations
resemble a dimer exciton, in which the oscillations of molecular dipole moments
are coupled in phase. However, in this case, the electrostatic coupling between the
molecular dipoles occurs via the NP, allowing significant coupling through long
distances. The cross section of these exciton oscillation is orders of magnitude
higher than that of molecular adsorbates, due to the great distance involved. Similar
couplings of molecular excitons have been observed experimentally [80].

4.7.4 Conclusions

As a first step in developing a better understanding of the effect of surface chemistry
on the spectral characteristics of metal nanoparticles, we have built a simple model
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Fig. 4.24 Splitting of the plasmon resonance as a function of the diatomic coupling parameter δ
for a fixed value of the coupling to the particle of γ =−1.4 eV. The highest energy peak corresponds
to pure plasmon excitation, while the lowest excitation is located on the adsorbates layer. Reprinted
with permission from [70]

that can encompass a wide range of adsorbates and couplings to the surface. The
adsorbates can produce peak broadening without altering the resonance energy even
if couplings with surface are weak. When increasing the coupling with the NP
surface, the peak width becomes larger, although the molecular excitation energies
differ from the SPR. When the molecular excitation is in resonance with the plasmon
excitation, the effects are most important. Adsorbates with excitations below the
SPR excitation can produce new spectral features due to exciton coupling between
adsorbates, mediated by the metal NP. Due to its extreme simplicity, this model can
only give qualitative descriptions of possible trends. A more precise understanding
of the complexity of the phenomena promoted by surface adsorbates on plasmon
resonance requires a more sophisticated model of the electronic structure of the
system, such as those provided by DFTB [36].
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Fig. 4.25 (a) Variation of the
dipole moment with time for
a NP as a response to a laser
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4.8 Near Field Properties

4.8.1 Introduction

In this section, near-field properties arising from surface plasmon dynamics are
described by means of quantum dynamics simulations using the method detailed
above [81]. Unlike far-field properties, studied by means of the evolution of the
dipole moment, in this section, we will study local details of the magnitude and
distribution of the electrodynamic field generated around a metallic particle during
plasmon excitation. Influence of shape and surface condition on the surface electric
field distribution will be addressed. It also highlights the importance of the effects of
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the tunneling current in diminishing the enhancement in the inter-particle region of
metal dimers. Finally, we make a direct comparison with calculations from classic
electrodynamics. The importance of atomistic structure in the shape of hot spots
(zones with high enhancement values) is also highlighted as well as and the solution
of the border problems found in classical methods [82]. The importance of the
study of field enhancement induced by plasmon dynamics is related with Raman
spectroscopy. Raman effect is a low-intensity scattering process where a small part
of incident photons are dispersed with a different energy when interacting with
molecules [83]. The fraction of light that is involved in this process is very low.
Only one of each 107 photons is scattered in this manner. When molecules are
adsorbed on a metallic surface, the intensity of the Raman signal is amplified by
a factor of about 6 orders of magnitude [84]. This phenomenon was first observed
in 1974 on 6G Rhodamine molecules adsorbed on a silver electrode [85]. The
spectroscopic technique derived from this phenomenon is known as SERS [86].
Employing this analytic technique enables the observation of Raman spectra of very
dilute solutions and allows, for example, single-molecule detection [87,88]. Despite
the advances in the experimental application of this phenomenon, there is no clear
explanation of the mechanism that governs the amplification of the Raman signal
that gives rise to SERS [82]; however, it has been suggested that two contributions
are responsible for this effect: one of chemical origin, given by the changes in the
polarizability of the adsorbed molecule [84] upon adsorption, and another purely
electromagnetic (or physical), given by the local electric field in which the molecule
is immersed when adsorbed. The physical mechanism is explained by the fact that
electric fields generated by the plasmons of the irradiated metal surface cause the
adsorbed species to “feel” an oscillating electric field of higher intensity, resulting
into a Raman signal amplification [82]. In some experiments, this phenomenon
depends strongly in the molecule involved [84]. Therefore, the differences of the
chemical species must be taken into account and represent the chemical contribution
of the SERS phenomenon. This chemical effect is less intense than the physical
one, but both contribute to Raman amplification. Classical calculations have shown
that using some particular arrangements of metal nanoclusters, the square of the
local field is amplified in seven orders of magnitude without taking into account
the chemical contribution [89]. The intensity and energy of the plasmon oscillation
in metal nanoclusters strongly depend on the shape of the aggregate and surface
condition [2,52]; therefore, these structural aspects must be taken into account when
studying near-field properties. Stronger enhancement effects are observed when the
metallic surface is more complex [90].

Most of the actual calculations of local electric field enhancements values
are exploratory and qualitative. There are no systematic studies showing general
field trends up to now; nevertheless, Perassi et al. have developed a technique
to characterize the enhancement based on the variation of the trapped volume
(VTV) [91]. Since the electric field distribution around an illuminated particle is
highly inhomogeneous, it is not possible to assign a single value to the enhancement
in order to characterize a particular nanocluster.
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Here, we show results of the influence of the shape and surface structure of a
silver metallic aggregate on the amplification of the local electric field in order
to determine which are the most important structural aspects that influence its
amplification and compare them with classical results. We show that in some cases
remarkable differences exist between classical and quantum near-field distribution
results.

In this section, we focus on the influence of shape and surface structure of
metallic aggregate on the amplification of the local electric field from a quantum
point of view, with perspectives to a further systematization of the results and the
possibility of studying smaller systems. As far as we know, this is the first direct
quantum and classical comparison of electric field enhancement in metal clusters
conformed by hundred of atoms.

4.8.2 Electronic Structure

In this section, we will show results from calculations employing two types of TB
methods. One of this is the one used in Sect. 4.6 for determining optical properties of
metal nanoparticles. The other Hamiltonian we have used is that of DFTB explained
in Sect. 4.2.2 that allows for a more detailed description of the electronic structure
since it includes all valence electrons. For the first simple TB description, we have
studied gold nanostructures larger than 500 atoms, while for the case of DFTB, we
employ Ag NPs smaller than 500 atoms, due to the higher computational cost of
this method. Employing Au or Ag particles produces different result for the electric
field values, but this does not affect the general conclusions drawn from the results.

4.8.3 Simulation Method

The density matrix of the particle ground state in the presence of a static electric
field is determined first. At t > t0, the field is removed in a short period of time, and
the particle, which is no longer in a stationary state, evolves in time following the
Liouville equation, which can be numerically integrated as explained in Sect. 4.3.
Electric field used for the initial applied perturbation is the same as those for
Sect. 4.6, which are small enough (E0 = 0.01 eV/Å) to ensure the system to be in the
linear response regime. The induced electric field due to the electronic motion as a
function of time can be calculated in any point of the space (over the NP surface)
from the following equation:

E(r, t) = ∑
i

qi(t)
4π�0�

(ri − r)
‖ri − r‖3 (4.35)
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qi(t) being the charge on atomic site i. Applying a Fourier transform, we can obtain
the value of E in the frequency domain. This is:

E(r,ω) = Ft(E(r, t)). (4.36)

The quantity of interest is: |E|2(r,ω) = E(r,ω) ·E∗(r,ω). Finally, the electric field
enhancement factor is calculated as:

Γ =
|E|2(r,ω)

|Estep|2(r,ω)
(4.37)

where Estep(r, t) = (1−Θ(t))E0 is the applied initial perturbation. From now on,
the term field will be used to refer to the field enhancement factor Γ.

The field enhancement factor can be calculated at any point at or above the
particle surface. For the case of the present work, the field was calculated over a
transversal section that passes through the center of mass of the NP. This has been
used for both TB representations explained above. The problem associated with the
utilization of the semiempirical TB is that it implies the introduction of a dielectric
constant for the d electrons in the metal. If a charge is located at a point near the
metallic surface, the electric field generated by the atoms immediately close to the
surface must be calculated taking into account the vacuum permittivity. On the other
hand, the electric field generated by the atoms inside the metal must be calculated
taking into account the permittivity imposed by the internal electrons of the metal.

Here, we make the following approximation: if a charge is located near the
surface, the field generated by metallic atoms would have to be calculated taking
into account the relative permittivity, different from vacuum. For the Au atoms in
the semiempirical TB method, we have employed �r =6.98 (see Sect. 4.6). This
approximation is valid whenever the charge is close to the metallic surface. For
points located far from the metallic surface, there exists artificial shielding coming
from considering the presence of the metal instead of vacuum, making fields to be
less intense that they would have to be. Within the DFTB method, since d electrons
are taken explicitly into account, we do not have a different permittivity inside the
metal, and the latter problem does not exists, which gives more reliable values of
local field enhancement but restricts the analysis to small clusters.

The field enhancement factor is a function of the incident photon frequency.
Moreover, the enhancement factor is a function of both the position and frequency
Γ = Γ(ω ,r). For all cases analyzed here, the enhancement factor was calculated
at the frequency of maximum enhancement. In Fig. 4.26, we observe that plots of
Γ(ω) coincide in shape and position with the absorption spectra of the nanocluster,
but a slight frequency shift can be seen. In this case, the frequency of the maximum
of Γ(ω) is slightly higher than the frequency of plasmon oscillation. This difference
is mainly due to the fact that the field enhancement factor is a local property, and
this is not true for the dipole moment.
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Fig. 4.27 (a) Cross section for a 3,043 Au atoms sphere that shows Γ distribution. (b) Cross
section for a 3,281 Au atoms octahedra. We observe that the electric field is accumulated at the
corners. The square section of both figures have 80.0× 80.0 Å2

4.8.4 Semiempirical TB

Employing the TB semiempirical model, we have calculated the local field enhance-
ment for a transversal section of two metallic NPs of different shapes (sphere and
octahedra). In Fig. 4.27 a, the distribution of the field enhancement factor over
a transversal NP section can be seen. We see that the highest field intensity is
distributed in a dipolar fashion, aligned with the polarization vector E.

Black circles observed in Fig. 4.27 have 1.4 Å radius, (approximately the van der
Walls radii for Au and Ag) and serve to identify the position of the Au atoms in the
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cross section. The electric field inside the metal is not taken into account as it has
very high values compared to the external ones and it is not physically relevant.

In the case of the octahedral NP, electric fields are accumulated at the tips. In this
case, the amplification factor is an order of magnitude larger than in the case of the
sphere. This result looks familiar, because it is well known from electrostatics that
charges are concentrated at the surface; thus, intensifying the electric field. If the
surface has defects like edges or sharp tips, the electric field enhancement will be
higher. The latter is nothing but the phenomenon known as electrostatic tip effect,
discovered by Franklin in 1753, which states that the charge density increases when
the convexity of the solid surface containing this charges is greater [92].

We have also performed some calculations on prolate and oblate spheroids. It was
noted that if we have an oblate shape and the external field is applied along the minor
axis direction, the generated field is distributed over a large area of low convexity,
making fields lower. When the shape is prolate and the polarization direction is
along the major axis, the charge must be accumulated in a smaller area of high
convexity resulting in a larger field enhancement.

One of the fundamental problems in the calculation of Γ factors is to delimit
the metallic border. It is very difficult to determine where to locate the metal-
vacuum delimitation in a classical method since for the classical calculations the
amplification factor increases as we approach the surface and, therefore, it is not
possible to assign a value to characterize the near-field properties of a given NP [82].
As mentioned in the introduction, Perassi et al. solved this problem by informing the
volume contained in a field isosurface12 [91]. In the case of the calculations shown
here, it is observed that the assignment of atomic radius trivially solves this problem
because a given metal is characterized by the maximum field that is situated beyond
the atomic radius of the atoms of the metal surface.

In Fig. 4.28, we observe the local field dependence for the interparticle region
in dimers formed by spherical NPs of 1,205 Au atoms. Both the polarization axis
and the direction of plasmon-induced oscillation are collinear to the main axis that
binds the particle. The first thing to stress is the magnitude of the emerging field
that is a 100 times higher (Γ = 10,000) than the incident field, which agrees with
the findings of [93].

When there is a current between the two plates of a capacitor, the emerging field
inside, it is reduced [92]. By analogy with the short-circuited capacitor, it is natural
to find that fields are smaller when the NPs are very close together (Fig. 4.29). This
can be explained by the fact that when NPs are sufficiently close together, the matrix
elements connecting orbitals from one to the another are not zero, and therefore,
there is a charge transfer during plasmon oscillation. In the case of Fig. 4.28a, NPs
are at a distance of first neighbors, which is equivalent to say that they are in a direct
contact. Therefore, the electronic transfer is so intense that the enhancement is zero.
The latter is consistent with the experimental results obtained by Novotny et al.
in [94] and simulations performed by Northlander et al. employing TDDFT [93]

12The field isosurface is the surface for which we have a constant value for the amplification factor.
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Fig. 4.28 Local field enhancement for a cross section in NP dimers of 1,205 Au atoms, with d
(a), 1.5d (b), 2.0d (c), 2.5d (d), 3.0d (e), 3.5d (f), where d is the first neighbor distance that for the
case of Au fcc is 2.88 Å. The square of these figures has 40.0× 40.0 Å2

4 6 8 10 12
d / Å

0.0

5.0×103

1.0×104

1.5×104

Γ

Fig. 4.29 Field enhancement
factor as a function of the
inter-particle distance for the
case of the dimers of
Fig. 4.28. A maximum at
about 5.5 Åinter-particle
distance is observed

for jellium sphere dimers. The phenomenon of interparticle charge transfer not only
affects near-field properties, but in general, all optical properties are affected [95].

On the other hand, at large distances, field enhancement also decays, but in this
case, the decay is attributed to a purely Coulombic effect. Moreover, we observe that
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Fig. 4.30 Contour plot for
the function E2(x,y) for a
point dipole. In this case,
units are arbitrary

hot spot size increases considerably, indicating that the field that at shorter distances
was concentrated in a very small region, is now spread over a larger area.

The lines of isofield have the same behavior as the one expected for the field
emerging from the inter-site region of an electric dipole as it is shown in Fig. 4.30.
When the aggregates are smaller, the situation differs from the electrostatic case as
shown in Fig. 4.31.

The U parameter for the chosen TB Hamiltonian description, acts as a force that
prevents charges from accumulating at atomic sites. This parameter accounts for the
compressibility of electron gas and therefore can be used as a measure of it.

The electron gas compressibility influences the intensification of the electric
field. In Fig. 4.32, we show the decay of Γ in the zone of maximum enhancement,
and the point at which the field is calculated is separated from the border of the
cluster. This suggests that the inertia of the moving charges forces them to compress
at the end of the oscillation pathway. If the surface has sharp tips (areas of high
convexity), the effect of charge compression coerces with the effect of the tip
making large fields. If the above reasoning is correct and the electronic front wave
has a certain inertia, we should expect much more intense fields for larger clusters.
This behavior is depicted in Fig. 4.33.

4.8.5 DFTB Hamiltonian

Using this TB Hamiltonian, it is possible to have a more specific detail of the
electronic structure of the system. We do not have the problem of whether or not
to use a different permittivity because the effect of d electrons is explicitly taken
into account in the Hamiltonian. The main disadvantage of using this Hamiltonian
is that it only covers small systems with less than 500 atoms because of its higher
computational cost. In this work, we have compared our quantum calculations with
results arising from classic electrodynamics.
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Fig. 4.31 Local field enhancement for a cross section in NP dimers formed by truncated octahedra
of 201 Ag atoms, separated at 1.5d (a), 2.0d (b), 2.5d (c), 3.0d (d), 4.0d (e), where d is the first
neighbor distance that for the case of Ag is 2.89 Å. The square of these figures has 40.0× 40.0 Å2

Classical simulations were done by using the DDA method13 (discrete dipole
approximation) because it is particularly efficient for small aggregates or isolated
NPs embedded in an environment with different dielectric properties and can be
applied to various shapes of metallic clusters. In this method, the object of interest
is an array of N cubic polarizable volumes [9]. The optical resonance for this
arrangement is determined in a self-consistent manner, solving the induced dipole
moment in each volume element. The result of this procedure can be used to
determine the far-field properties (extinction coefficient or dispersion) as well as
near-field properties, like the electromagnetic field near an aggregate surface. It has
the disadvantage that the value of field strength near the edge of the metal depends
on the space discretization [96].

Figure 4.34 shows a comparison made on a 309 atoms cuboctahedron for
the classical (a) and quantum mechanical method (b). Beyond the differences in
the details of the field distribution, the overall distribution is very similar and

13These simulations were performed by E. Perassi and E. Coronado of the Physical Chemistry
Department, Faculty of Chemistry, UNC, as part of a collaborative work.
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magnitudes of the fields are approximately equal. We can also notice that the
quantum calculation shows more detail at the atomistic level than the classical
calculation. This is the case of the nodes that can be seen at the particle corners
for the quantum case.

When the figure of the aggregate becomes more complex (i.e., it has tips),
classical and quantum fields differ both in magnitude and distribution. The quantum
calculation shows a drastic enhancement of the field at the end of the octahedron
vertex in Fig. 4.35b, while for the classical calculation, there is a different distribu-
tion, resembling the situation of Fig. 4.27b for a cuboctahedron 10 times larger. We
can also observe that the hot spot size is much larger in the quantum case, which
means that it is enough to have sharp tips for having a great enhancement zone even
if these solids are small.
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Fig. 4.34 Comparison between classical and quantum simulations for a 309 atoms Ag cubocta-
hedron: (a) classical simulation using DDA. (b) quantum simulation using a DFTB Hamiltonian.
The square of these figures has 40.0× 40.0 Å2

Fig. 4.35 Comparison between classical and quantum simulations for a cuboctahedron of 489 Ag
atoms: (a) classical simulation using DDA. (b) quantum simulation using DFTB Hamiltonian. The
square of these figures has 40.0× 40.0 Å2

4.8.6 Conclusions

The method presented here offers a quantum alternative to calculate the local electric
field enhancement in metal nanoclusters. It has the advantage of including the
atomistic structure of the NP, solving the problem of borders mentioned at the
introduction. Field values calculated using either electronic structure methods give
similar results to those found by classical methods. The distribution of the fields,
however, widely differs from the classical results when particles are small and have
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surface defects. Surface features such as corners make the quantum field much
more intense than what is observed for classical results. When the electron gas
compressibility is larger, higher electric field amplifications can occur. In the area
between two particles, the field is very intense and there is an optimal distance where
it reaches a maximum value. For longer distances, the field decays by electrostatic
effects, and at shorter distances, charge transfer effect makes the fields to be less
intense. The amplification factor increases approximately linearly with the size of
the particle.
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57. Xu X, Saghi Z, Gay R, Möbus G (2007) Nanotechnology 18:1–8
58. Martin TP (1996) Phys Rep 273:199–241
59. Wales D (2003) Energy landscapes: applications to clusters, biomolecules and glasses.

Cambridge University Press, Cambridge
60. Wales D (2004) Energy landscapes: applications to clusters, biomolecules and glasses.

Cambridge University Press, Cambridge
61. Hubenthal F, Ziegler T, Hendrich C, Alschinger M, Trager F (2005) J Phys Chem 34:165–168
62. Zhang J, Tang Y, Weng L, Ouyang M (2009) Nano Lett 9:4061–4065
63. F. Hubenthal, N. Borg and F. Träger, Appl Phys B (2008) 93: 39–45
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Chapter 5
Spin-Fluctuation Theory of Cluster Magnetism

R. Garibay-Alonso, J. Dorantes-Dávila, and G.M. Pastor

5.1 Introduction

The magnetism of small clusters, nanoparticles, and nanostructures is the subject
of a very intense research activity driven by strong fundamental and technological
interests. One the one side, one would like to understand how the properties of the
electrons of an atom changes as they become part of a cluster of increasing size and
how their magnetic behavior changes with the system dimensions. On the other side,
small magnetic clusters can be used to store information in high-density recording
media as well as in spintronic devices.

Transition-metal (TM) clusters in particular have been investigated with a variety
of experimental techniques many of which originate from related disciplines such as
molecular, surface, and solid-state physics [1–19]. Stern–Gerlach (SG) deflection
measurements on size-selected cluster beams have provided information on the
average magnetization per atom μ̄N(T ) of isolated clusters as a function of the
nozzle temperature T . Remarkable temperature dependencies of μ̄N have been thus
reported for different magnetic TMs [6–11, 17]. For example, the experiments on
NiN with 40 ≤ N ≤ 600 atoms show that the magnetization curves are qualitatively
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similar to the bulk, except for an important finite-size broadening of the transition
Curie temperature TC beyond which paramagnetic behavior is observed [7, 9]. In
the case of CoN , one observes that μ̄N(T ) is about 0.1–0.5 μB

1larger than the bulk
magnetization M(T ) for 50 ≤ N ≤ 600 and 100 K≤ T ≤ 1,000 K [7,17]. Moreover,
at low temperatures, 100 K≤ T ≤ 500 K, the magnetization per atom is found to
increase slightly with T . This is an unusual effect that is not observed in the solid.
In Fe clusters, the temperature dependence derived from experiment is qualitatively
different from that of Ni or Co clusters. For 250 ≤ N ≤ 600, one observes a rapid,
almost linear decrease of μ̄N(T ) with increasing T (T ≤ 500–600 K). For T ≥ 300 K,
μ̄N(T ) is significantly smaller than the bulk M(T ), even though at T = 0 it was larger
[TC(Fe bulk) = 1,043 K]. As the cluster size increases (250 ≤ N ≤ 600), μ̄N(T )
decreases, further making the difference between cluster and bulk magnetizations
even larger [7]. This trend is expected to change for larger Fe clusters, although no
experimental evidence seems to be available so far.

From the point of view of theory, mean-field electronic calculations of ground-
state properties have been quite successful in predicting a large variety of experi-
mental results on the magnetic behavior of clusters at low temperatures [20–31].
This includes in particular the determination of average magnetic moments per
atom [21–28], the spin and orbital contributions [29], the magnetic order within
the cluster, the magnetic anisotropy energies [30], etc. In contrast, studies of cluster
magnetism at finite temperatures in the framework of electronic theories remain
far more scarce [32–34]. This is quite remarkable since a correct description of
the temperature dependence of the magnetic properties is crucial for understanding
the physics of the underlying many-body problem as well as for controlling the
behavior of magnetic clusters in view of technological applications such as high-
density storage media and memory devices. It is the purpose of this chapter to
review some of the recent progress made in this field by applying functional-integral
methods to realistic many-body Hamiltonians.

One of the major current challenges for the theory of magnetism is to understand
how the stability of the magnetic order at finite temperatures depends on the size,
composition, and dimensionality of nanostructures. Simple trends—for example,
in the size dependence of the “Curie” temperature TC(N), above which the spin
correlations are destroyed within clusters—seem very difficult to infer a priori. On
the one side, taking into account the enhancement of the ground-state local magnetic
moments μ0

l and d-level exchange splittings Δεd
Xl = εd

l↓ − εd
l↑ between minority

and majority-spin states, one could expect that TC(N) should be larger and that
the ferromagnetic (FM) order should be more stable in small clusters than in the
bulk. However, on the other side, the local coordination numbers are smaller at the
cluster surface, and therefore, it should be energetically easier to disorder the local
magnetic moments by flipping or canting them. If the latter effect dominates, TC(N)
should decrease with decreasing coordination or N. In addition, possible changes
or fluctuations of the cluster structure may also affect significantly the temperature

1As usual, μB = eh̄/2mc = 5.79×10−5 eV/T stands for the Bohr magneton.
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dependence of the magnetization [35–39], in particular for systems like FeN and
RhN which show a remarkable structural-dependent magnetic behavior already at
T = 0 [24, 25, 40–44].

The well-known strong sensitivity of the d-electron properties on the local
environment of the atoms suggests that reliable conclusions on cluster magnetism
at finite T must be based on an electronic theory that takes into account, not only
the fluctuations of the magnetic degrees of freedom, but also the itinerant character
of the d-electron states. Moreover, the theoretical description of finite T should
recover the ground-state limit and its wide diversity of behaviors as a function
of size, structure, bond length, etc. Only in this way one may hope to be able to
understand even more challenging and technologically important phenomena such
as the temperature dependence of orbital moments and magnetic anisotropy energy
which measures the stability of the magnetization direction. Simple localized-spin
models, for example, based on the Heisenberg or Ising model [45], are not expected
to be predictive unless they incorporate the electronic effects responsible for the
size dependence of the local magnetic moments and of their exchange couplings.
In fact, previous studies of itinerant magnetism in clusters, films, and surfaces have
already shown that the effective exchange interactions Jlm between nearest neighbor
(NN) moments μl and μm depend quite strongly on the local environment of the
atoms [32, 46–48].

In this chapter, we review the formulation and application of a functional-
integral theory of cluster magnetism that incorporates the environment dependence
of the electronic structure of itinerant d-electrons as well as the temperature-
induced fluctuations of the spin degrees of freedom. Section 5.2 presents the
theoretical background starting from a realistic d-band many-body Hamiltonian and
deriving the expressions for the relevant observable properties by using a functional-
integral approach to electron correlations and spin fluctuations. The model extends
Hubbard and Hasegawa’s bulk electronic theory of itinerant magnetism [49–55]
in several respects: (a) it incorporates the local-environment dependence of the
electronic structure, which is central to nanostructures (Pastor (1989) PhD. Thesis,
Freie Universität Berlin, unpublished), (b) it allows to quantify the effect of local
fluctuations of the exchange fields, thereby revealing a remarkable environment
dependence of the cluster spin-fluctuation energies; and (c) it takes into account
the collective fluctuations of all the local magnetic moments in the cluster, which
removes completely any of the usual single-site approximations. This is particularly
important when the size of the cluster is comparable to or smaller than the
extent of short-range magnetic correlations [56]. Sections 5.3–5.4 are concerned
with representative applications, giving particular emphasis to the environment
dependence of the magnetic behavior as a function of size, structure, and interatomic
distances. In Sect. 5.3, the low-temperature limit of the local spin-fluctuation
energies ΔFl(ξ ) at different atoms l is analyzed as a function of the exchange
fields ξ . The interplay between fluctuations of the module and of the relative
orientation of the local magnetic moments is discussed. A remarkable dependence
of the spin-excitation spectrum on the local atomic environment is thereby revealed.
Section 5.4 is concerned with the stability of short-range magnetic order (SRMO)
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in TM clusters at finite temperatures. A simple relation between the low- and high-
temperature values of the average magnetic moment per atom is derived from which
an important degree of SRMO is inferred in FeN and NiN even at temperatures above
TC. In Sect. 5.5, the results of Monte Carlo simulation on Fe clusters are discussed
including the temperature dependence of the average magnetization per atom, local
magnetic moments, and spin-correlation functions. Finally, Sect. 5.6 summarizes the
main conclusions by pointing out some interesting future research perspectives.

5.2 Theoretical Background

The Hamiltonian describing the magnetic properties of TM nanostructures can be
written in the form

Ĥ = Ĥ0 + ĤI, (5.1)

where the first term

Ĥ0 = ∑
l,α ,σ

ε0
l n̂lασ + ∑

l �=k
α ,β ,σ

tαβ
lk ĉ†

lασ ĉkβ σ (5.2)

describes the single-particle electronic structure of the valence d-electrons in the
tight-binding approximation [24, 25].2 The contributions of s and p electrons are
neglected here for simplicity since they are expected to affect both spin directions
essentially in the same way. As usual, ĉ†

lασ (ĉlασ ) refers to the creation (annihilation)
operator of an electron with spin σ at the orbital α of atom l (α ≡ xy, yz, zx, x2 −y2,
and 3z2 − r2), and n̂lασ = ĉ†

lασ ĉlασ is the corresponding number operator. ε0
l stands

for the bare d-orbital energy of the isolated atom and tαβ
lk for the hopping integrals

between atoms l and k. The second term

ĤI =
1
2 ∑

l,α ,β
σ ,σ ′

′ Uσσ ′ n̂lασ n̂lβ σ ′ (5.3)

approximates the interactions among the electrons by an intra-atomic Hubbard-like
model, where Uσσ ′ refers to the Coulomb repulsion between electrons of spin σ
and σ ′. The prime in the summation indicates that the terms with α = β and
σ = σ ′ are excluded. U↑↓ = U↓↑ = F(0) is the average direct Coulomb integral
and U↑↑ = U↓↓ = U↑↓ − J, where J = (F (2) + F (4))/14 is the average exchange
integral. The F (i) stands for the radial d-electron Coulomb integrals allowed by
atomic symmetry [57]. These are obtained by taking the ratios F (0)/F(2) and
F (4)/F(2) from atomic calculations (Mann, Los Alamos Sci. Lab. Report LA-3690,

2For the sake of clarity, a hat (ˆ) is used to distinguish operators from numbers.
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1967 (unpublished)) and by fitting the value F (2) to reproduce the bulk Fe spin
moment at zero temperature. For simplicity, we neglect in Eqs. (5.2) and (5.3)
the dependence of the d-level energies and Coulomb integrals on the orbital α ,
retaining the dominant spin dependence due to exchange. Notice that Eq. (5.3)
does not respect spin-rotational symmetry since the exchange terms of the form
Ĥxy = −∑l,α<β Jαβ (Ŝ

−
lα Ŝ+lβ + Ŝ+lα Ŝ−lβ ) have been dropped (see also Eq. (5.4)) [58].

Nevertheless, this is not expected to be a serious limitation in the present work, since
we are interested in studying the effects of spin fluctuations on broken-symmetry
FM ground states.

5.2.1 Partition Function and Derived Properties

The finite-temperature magnetic properties of clusters are derived from the canoni-
cal partition function Q = exp{−β Ĥ}, where Ĥ stands for the many-body Hamil-
tonian given by Eqs. (5.1)–(5.3) and β = 1/kBT . In the case of isolated clusters,
the temperature T refers to that of the cluster source that defines the macroscopic
thermal bath with which the small clusters are in equilibrium before expansion [16].
Thermal average refers then to the ensemble of clusters in the beam. For deposited
clusters the temperature is defined by the support. Keeping the number of atoms
N and the number of electrons nd , fixed (canonical ensemble) corresponds to
the experimental situation found in charge- and size-selected beams or at inert
(insulating) supports.

The partition function is solved by extending the functional-integral formalism
developed by Hubbard and Hasegawa for periodic solids [49–55] to the case of
finite systems with arbitrary symmetry (Pastor (1989) PhD. Thesis, Freie Universität
Berlin, unpublished) [32]. To this aim, we rewrite the many-body interaction ĤI as

ĤI = ∑
l

(
U
2

N̂2
l − JŜ2

lz

)
, (5.4)

where N̂l = ∑ασ n̂lασ is the number operator at atom l, Ŝlz = (1/2)∑α(n̂lα↑− n̂lα↓)
is the z component of the local spin operator, and U = (U↑↓ +U↑↑)/2. Note that
Eq. (5.4) includes the self-interaction terms U↑↑n̂2

lασ/2 = U↑↑n̂lασ/2 which are
canceled out by redefining the d-energy levels as ε0

l −U↑↑/2. For the calculation
of the canonical partition function Q, the quadratic terms in Eq. (5.4) are linearized
by means of a two-field Hubbard–Stratonovich transformation within the static
approximation [59, 60]. Thus, a charge field ηl and an exchange field ξl are
introduced at each cluster site l, which describe the finite-temperature fluctuations
of the d-electron energy levels and local exchange splittings, respectively. Using the
notation � = (ξ1, . . . ,ξN) and � = (η1, . . . ,ηN), Q is given by

Q ∝
∫

d� d� exp{−β F ′(�,�)}, (5.5)
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where the free energy F ′ associated with the exchange fields ξ and η is given by

F ′(�,�) =
1
2 ∑

l

(
Uη2

l +
J
2

ξ 2
l

)
− 1

β
ln
{

Tr
[
exp
{−β Ĥ ′}]} . (5.6)

The effective Hamiltonian

Ĥ ′ = ∑
l,α ,σ

ε ′lσ n̂lασ + ∑
l �=k

α ,β ,σ

tαβ
lk ĉ†

lασ ĉkβ σ (5.7)

describes the dynamics of the d-electrons as if they were independent particles
moving in a random alloy with energy levels ε ′lσ given by

ε ′lσ = ε0
l +Uiηl −σ

J
2

ξl . (5.8)

The thermodynamic properties of the system are obtained as a statistical average
over all possible distributions of the energy levels ε ′lσ throughout the cluster. The
approach is known as the static approximation, which is exact in the atomic limit
(tαβ

lm = 0, ∀l �= m) where no fluctuations are present, and in the noninteracting limit
(Uσσ ′ = 0).

For T → 0, the dominating field configuration (�0,�0) corresponds to the saddle
point in the free energy F ′(�,�). This is determined from the self-consistent
equations

∂F ′

∂ξl

∣∣∣∣
0
=

J
2
(ξ 0

l − 2〈Ŝlz〉′) = 0 (5.9)

and

∂F ′

∂ηl

∣∣∣∣
0
= U(η0

l + i〈N̂l〉′) = 0, (5.10)

where 〈. . . 〉′ indicates average with respect to the single-particle Hamiltonian
H ′. Replacing Eqs. (5.9) and (5.10) in Eq. (5.8) yields the known mean-field
approximation to the energy levels ε ′lσ [24, 25]. The present approach provides
therefore a proper finite-temperature extension of the self-consistent tight-binding
theory developed in [24, 25] for the ground state.3

In this work, we are interested in the temperature dependence of the magnetic
properties which are dominated by the low-lying spin fluctuations. Moreover, J �
U , which implies that the energy involved in local charge fluctuations is much larger

3Recent applications of the mean-field approach to TM clusters and nanostructures at T = 0 may
be found, for example, in [29] and [61–63], and in references therein.
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than the spin-fluctuation energies. Therefore, it is reasonable to neglect the thermal
fluctuations of the charge fields ηl . For each exchange-field configuration �, we
set ηl equal to the saddle point of F ′(�,�) which is given by iη l = νl = 〈N̂l〉′.
Physically, this means that the charge distribution νl = 〈N̂l〉′ is calculated self-
consistently for each exchange-field configuration ξ . Since the νl are implicit
functions of ξ , one may write

Q ∝
∫

d� exp{−β F ′(�)}, (5.11)

where the free energy

F ′(�) =−1
2 ∑

l

(
Uν2

l −
J
2

ξ 2
l

)
− 1

β
ln {Tr[exp{−β Ĥ ′}]} (5.12)

associated with � depends only on the exchange variables ξl that describe the
relevant fluctuations of the spin degrees of freedom. Notice that F ′(�) in Eqs. (5.11)
and (5.12) is actually a shorthand for F ′(�,�(�)) where �(�) refers to the saddle-
point value of � for the exchange configuration �. The integrand in Eq. (5.11) is
proportional to the probability P(�) = [exp{−β F ′(�)}]/Q of the exchange-field
configuration �.

The thermodynamic properties are obtained by averaging over all possible � with
exp{−β F ′(�)} as weighting factor. For example, the local spin magnetization ml =
2〈Ŝlz〉 at atom l is given by

ml(T ) =
2
Q

∫
d� exp

{
β
2 ∑

l

(
Uν2

l −
J
2

ξ 2
l

)}
Tr[Ŝlz exp{−β Ĥ ′}] (5.13)

=
2
Q

∫
d� 〈Ŝlz〉′ e−β F′(�), (5.14)

where 〈Ŝlz〉′ is the average spin moment at atom l according to the effective single-
particle Hamiltonian Ĥ ′, which depends on the fluctuating �. Taking into account
that

∂F/∂ξl =
J
2
(ξl − 2〈Ŝlz〉′), (5.15)

one may rewrite Eq. (5.14) as

ml(T ) =
1
Q

∫
d� ξl e−β F ′(�). (5.16)

Thus, the local magnetization at atom l is equal to the average of the exchange
field at the same atom. Equation (5.16) justifies the intuitive though not quite
rigorous association between the fluctuations of the local moment 2〈Ŝlz〉 at atom
l and those of the exchange field ξl . Notice that in Eqs. (5.14) and (5.16), the
restriction ∑l ξl ≥ 0 or positive total cluster moment ∑l〈Ŝlz〉 ≥ 0 must be enforced in
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order to avoid trivially vanishing results for the average magnetization due to time-
inversion symmetry. This applies to any finite-system calculation and correspond to
the experimental situation where the cluster moment is aligned along an external
magnetic field. We therefore compute the local magnetizations from

ml(T ) =
1
Q

∫
d� sgn

(
∑

l

ξl
)

ξl e−β F′(�). (5.17)

The cluster magnetization per atom mN is determined by averaging the z component
of the total spin operator Ŝz = ∑l Ŝlz under the constraint 〈Ŝz〉′ ≥ 0. This is given by

mN(T ) =
2
N
〈|Ŝz|〉= 1

N ∑
l

ml(T ), (5.18)

which corresponds to the cluster average of the local magnetizations ml . The previ-
ous definitions of local and average magnetizations are equivalent to the constraint
of positive magnetization used in Monte Carlo simulations of phenomenological
spin models like the Ising model [64]. In this way, the local magnetizations ml(T )
can be determined for different local environments in analogy to the layer by layer
magnetizations in thin films.

An alternative definition of the average magnetic moment per atom is provided by

μN(T ) =
2
N

√
〈Ŝ2

z 〉, (5.19)

where

〈Ŝ2
z 〉=

1
Q

∫
dξ 〈Ŝ2

z 〉′ e−β F′(ξ ) (5.20)

denotes the average of the square total spin. Using Eq. (5.15), one can express 〈Ŝ2
z 〉

in terms of the exchange-field averages as [49–52]

4〈Ŝ2
z 〉=−2N

β J
+

1
Q

∫
d� �2 e−β F′(�), (5.21)

where �2 = (∑l ξl)
2. The first term in Eq. (5.21) cancels the trivial contribution to

〈�2〉 that is present even if H ′ is independent of ξ . The magnetic order within the
cluster and its stability at finite T are characterized by the correlation functions

γlk = 4〈ŜlzŜkz〉=− 2
β J

δlk +
1
Q

∫
d� ξlξk e−β F′(�) (5.22)

between the magnetic moments at atoms l and k. Notice that 4〈Ŝ2
z 〉 = ∑lk γlk.

Positive (negative) values of γlk for l �= k indicate ferromagnetic (antiferromagnetic)
correlations which tend to enhance (reduce) the total magnetization per atom μN(T ).
The diagonal elements of γlk are related to the local magnetic moments
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μl = 2
√
〈Ŝ2

lz〉=
√

γll (5.23)

at atom l. It should be noted that temperature fluctuations in itinerant-electron
magnets not only affect the spin-spin-correlation functions, for example, by de-
stroying the ground-state FM order in FeN , but can also modify the size of the
local spin polarizations μl . This contrast, with localized magnetism where spin and
charge degree of freedoms are well separated. In the applications, it is interesting
to investigate the different temperature scales yielding changes of the various γlk, in
order to infer which local moments fluctuate more or less easily and which are the
moments that trigger the breakdown of the cluster magnetic order.

5.3 Low-Temperature Spin-Fluctuation Energies

The free-energy difference

ΔF(�) = F(�)−F(�0) (5.24)

with respect to the minimum or ground-state value F(�0) determines the probability
that the exchange-field fluctuation Δ� = � −�0 is realized at a given T . ΔF(�) can
be regarded as the spin-fluctuation energy associated with � since the fluctuations
of � are responsible for the fluctuations of the spin moments 〈Slz〉′. In clusters
and other non-periodic systems, it is very interesting to analyze the spin-fluctuation
energies ΔF(�) from a local point of view and to clarify the relation between the
local contributions to ΔF(�) and the temperature dependence of the spin moments
μl . It is then useful to introduce the probability

Pl(ξ ) =
1
Q

∫
∏
m�=l

dξm exp{−β F(ξ1, . . . ,ξl−1,ξ ,ξl+1, . . . ,ξN)} (5.25)

=
1
Q

exp{−β Fl(ξ )} (5.26)

of having the value ξ for the exchange field at atom l, since in terms of Pl(ξ ), one
may write

μl(T ) =
∫

ξ Pl(ξ ) dξ . (5.27)

Thus, the temperature-dependent local spin magnetization is equal to the average
of the local exchange field. Equation (5.27) justifies the intuitive association
between the fluctuations of the local moment μl = 2〈Ŝlz〉′ at atom l and those of
the exchange field ξl . The local free energy Fl(ξ ) is obtained by averaging over
all possible values of ξm for m �= l [see Eqs. (5.25) and (5.26)]. Notice that the
temperature dependence of Fl(ξ ) is in general far more complex than that of F(�)
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since the local Fl(ξ ) involves averaging over the fluctuations of fields at all other
sites m, in particular at the NNs of l which are sensitive to SRMO.

A first insight on the magnetic behavior of 3d transition-metal clusters at T > 0
can be obtained by considering the low-temperature limit of Fl(ξ ). For T → 0,
the integration in Eq. (5.25) may be simplified by setting ξm = ξ 0

m for m �= l [see
Eq. (5.9)]. The local free-energy difference

ΔFl(ξ ) = Fl(ξ )−Fl(ξ 0
l ), (5.28)

with ξ 0
l = μ0

l being the local moment of atom l at T = 0, represents the energy
involved in an exchange-field fluctuation at atom l above the Hartree–Fock ground
state. ΔFl(ξ ) determines the probability of the fluctuation Δξ = ξ − ξ 0

l and thus
conditions the stability of the ground-state magnetic order within the cluster at
finite T . As it will be discussed below, ΔFl(ξ ) has often two minima at ξ+ = ξ 0

l
and ξ− � −ξ 0

l . At T > 0, the FM order is reduced by spin fluctuations involving
transitions between these two minima and by more or less asymmetric Gaussian-
like fluctuations around them. For small clusters, the directional fluctuations of
the local moments are expected to dominate since the reduction of coordination
number should enhance the local character of the spin excitations. As the cluster
size increases, the fluctuations of the amplitude of μl or ξl should also become
important, particularly for the case of Ni clusters, which indicates a crossover to
a more itinerant behavior. In the following, we present and discuss representative
results for low-temperature limit of the local free energies Fl(ξ ) and the resulting
spin-fluctuation energies ΔFl(ξ ) in FeN and NiN clusters with N ≤ 51 atoms [see
Eq. (5.28)]. Comparing the ΔFl(ξ ) for different sizes, interatomic distances, and
atoms l within the cluster provides useful information on the stability of the
local magnetizations and its environment dependence. In particular, it allows us
to identify the atoms which trigger the decrease of the magnetization at low T
(see [32]).

5.3.1 FeN Clusters

In Fig. 5.1, results are given for ΔFl(ξ ) in small Fe clusters: Fe2, Fe4 tetrahedron,
Fe6 square bipyramid, and Fe9 with bcc-like structure [24, 25]. The corresponding
structures are illustrated in Fig. 5.2. First of all, one observes that ΔFl(ξ ) > 0
for all ξ �= μ0

l , which indicates, as expected, that in these clusters the FM order
is stable at low temperatures. For the smallest clusters, i.e., Fe2 and Fe4, Fl(ξ )
shows two minima located at the exchange fields ξ+ = μ0

l and ξ− � −μ0
l , where

μ0
l refers to the ground-state magnetic moment. This double-minimum structure

indicates that the dominant magnetic excitations are flips of the magnetic moments,
keeping their amplitude approximately constant. In fact, at finite T , the probability
Pl(ξ ) ∝ exp{−β ΔFl(ξ )} has two maxima at ξ+ and ξ−. It is thus more probable to
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Fig. 5.1 Local
spin-fluctuation energy
ΔFl(ξ ) = Fl(ξ )−Fl(ξ 0

l ) as a
function the exchange field ξ
at different atoms l of
FeN clusters: (a) Fe2, (b) Fe4
(tetrahedron), (c) Fe6 (square
bipyramid), and (d) Fe9
(bcc-like) as illustrated in
Fig. 5.2. Results are given for
bulk NN distances d/db = 1
(full curves) and for relaxed
NN distances (dashed
curves). In (c) and (d) the
dots refer to the atom l = 1
with the largest local
coordination number (i.e., the
central atom for Fe9) and the
crosses to one of the surface
atoms, l = 2 (see Fig. 5.2c
and d)

find ξ �−μ0
l than ξ � 0. In the case of Fe6 and Fe9, Fl(ξ ) also shows two minima

for the lowest coordinated atoms l = 2, which have the largest local magnetic
moments μ0

l at T = 0. In these cases, as in Fe2 and Fe4, only moderate or small
fluctuations Δξ = ξ − μ0

l are possible with an excitation energy ΔFl(ξ ) smaller
than the energy ΔFl(ξ−) = Fl(ξ−)−Fl(ξ+) required to flip the local moment. In
contrast, for the most coordinated atoms which have smaller μ0

l (e.g., the central
atom in bcc-like Fe9), one observes a single minimum in Fl(ξ ), which implies that
the fluctuations of the amplitude of the local moments dominate.

The fact that very small clusters and in particular the atoms having the smallest
local coordination numbers zl show such a Heisenberg- or Ising-like behavior
should not be surprising. On the one side, the kinetic-energy loss ΔEK caused by
flipping a local magnetic moment (ξ � μ0

l → ξ � −μ0
l ) decreases with decreasing

zl since the perturbation introduced by flipping ξl is in general less important when
l has a small number of neighbors and since the contribution of atom l to EK is
approximately proportional to

√
zl (second-moment approximation). On the other

side, the exchange energy ΔEX = (J/4)∑l μ2
l is basically a local property which is
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Fig. 5.2 (Color online) Illustration of the structures considered in the calculations for FeN and
NiN clusters: (a) tetrahedron, (b) square bipyramid, (c) bcc9, (d) pentagonal pyramid, (e) bcc13,
(f) fcc13, (g) fcc43, and (h) bcc51. Notice that in the case of fcc43 and bcc51, a symmetrical
transversal cut is shown for the sake of clarity

much less affected by the change of sign of ξ . Thus, when zl is reduced, the local
character is enhanced and it becomes energetically more favorable to have ξ �−μ0

l
than ξ � 0. At this point, one may anticipate that at finite T , when statistically some
of the fields ξm at NNs of l have negative values, Fl(ξ ) should tend to develop a
second minimum close to ξ− �−μ0

l . Such a behavior has already been observed in
bulk and thin-film calculations [48–53].

ΔFl(ξ ) depends strongly on the local environment of the different atoms within
the cluster, as clearly illustrated by the results for Fe15 shown in Fig. 5.3. Besides the
central atom and its first NNs, which show similar behaviors as in Fe9, one observes
that the FM order is particularly stable at the outermost shell l = 3. The larger spin-
flip energy ΔF3(−ξ 0

3 ) is favored by the larger local moment μ0
3 found at these atoms,

which in this case compensates the reduction of local coordination number zl at the
cluster surface (for l = 3, there are four first NNs and one second NN). However,
notice that this trend is not always followed. For example, the atoms at the second
shell (crosses in Fig. 5.3) show a much smaller ΔFl(−ξ 0

l ), despite having similar μ0
l



5 Spin-Fluctuation Theory of Cluster Magnetism 171

-3 -2 -1 0 1 2 3

ξ (μB)

0.2

0.4

0.6

0.8

1.0

ΔF
l(ξ

) 
(e

V
)

d/db=0.96

0.2

0.4

0.6

0.8

1.0

ΔF
l(ξ

) 
(e

V
)

d/db=1

Fe15

a

b

Fig. 5.3 Local
spin-fluctuation energy
ΔFl(ξ ) = Fl(ξ )−Fl(ξ 0

l ) as a
function of the exchange field
ξ at different atoms l of Fe15
with bcc-like structure. Dots
refer to the central atom
(l = 1), crosses to the first NN
shell (l = 2), and open circles
to the outermost shell (l = 3).
The numbers l are the same
as labeled in Fig. 5.2e.
Results are given for (a) bulk
NN distance d/db = 1 and
(b) relaxed NN distance
d/db = 0.96. The dashed
curve in (a) refers to
bulk bcc Fe

and similar zl as the atoms in the outermost shell (for l = 2, there are four first NNs
and three second NNs). A remarkable environment dependence of ΔFl(ξ ) is also
found in smaller clusters, for example, in Fe6 and Fe9, as shown in Fig. 5.1.

It is also interesting to determine how ΔFl(ξ ) depends on the interatomic
distances in order to infer the effects of structural distortions on the cluster
magnetization curves. If the ground-state energy is optimized by changing the NN
distances keeping the cluster symmetry unchanged (uniform relaxation), a bond-
length contraction is usually obtained in TM clusters (d < db) [24, 25]. In Fig. 5.1,
results are given for Fe9 using d/db = 0.92 [24, 25]. In this case, one finds strong
quantitative changes in Fl(ξ ) as a function of ξ . First, one observes shifts of
the positions of the minima at ξ 0

l that reflect the reduction of the local magnetic
moments at T = 0. Moreover, there is an important reduction (about a factor 10
for l = 2 in Fe9) of the free energy ΔFl(−ξ 0

l ) = Fl(−ξ 0
l )−Fl(ξ 0

l ) required to flip a
local magnetic moment at the surface atoms. A similar large reduction of the “Curie”
temperature TC(N) is expected to occur upon relaxation since in first approximation,
TC(N) should be proportional to 〈ΔFl(−ξ 0

l )〉l . Conversely, if the exchange integral
J is increased or if the NN distances are expanded, one obtains an enhancement
of the local moments μ0

l as well as an increase of the local spin-fluctuation
energies. At the same time, a more pronounced double minimum is found in ΔFl(ξ ),
particularly at the cluster surface, which is characteristic of the localized regime.
The larger stability of FM order with increasing ratio J/W , between the exchange
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Fig. 5.4 Local
spin-fluctuation energy
ΔFl(ξ ) as a function of the
exchange field ξ at different
atoms l of Fe51 with bcc-like
structure and bulk NN
distances (d/db = 1). Dots
refer to the central atom
(l = 1), crosses to the first NN
shell (l = 2), open circles to
the second NN shell (l = 3),
and triangles to the outermost
shell (l = 5) as labeled in
Fig. 5.2h. The dashed curve
refers to bulk bcc Fe

interaction J and the effective d-band width W , is qualitatively in agreement with
exact-diagonalization studies of finite-temperature properties of clusters using the
single-band Hubbard model [38, 39].

In Fig. 5.4, results are given for Fe51 with bcc-like structure. In this case, we
also observe a tendency to spin reversals at the surface atoms l = 5 and the typical
two-minimum form of ΔF5(ξ ). At inner atoms, the amplitude fluctuations Δξ =
ξ −μ0

l around the Hartree–Fock minimum are energetically more favorable, at least
in the present low-temperature limit. This is probably related to the smaller values
of μ0

l and to the larger coordination numbers of inner atoms. Notice that the form
of ΔFl(ξ ) depends significantly on l. For the central atom (l = 1), the behavior is
similar to that of the bulk. Other sites (l = 2 and 5) tend to favor spin reversals, while
for l = 3, flipping a spin requires a much higher energy than in the solid. Therefore,
a very interesting site dependence of μl(T ) can be expected. Nevertheless, it should
be noted that the trends in ΔFl(ξ ) are likely to change at finite temperatures since
the inner atoms will be affected by the fluctuations of the surrounding surface sites
and vice versa.

The results shown in Figs. 5.1 and 5.4 reflect the strong sensitivity of the
magnetic properties of 3d TM clusters to the local environment of the atoms.
ΔFl(ξ ) is actually much more sensitive to size and structure than the magnetic
moments at T = 0. The effect is most clear in small clusters where the local
magnetic moments are nearly saturated and therefore depend weakly on the site
l or on precise cluster geometry. The strong environment dependence of the spin-
fluctuation energies suggests that temperature-induced structural fluctuations could
also play a role on the magnetic behavior at finite T . In fact, recent calculations
including correlations effects exactly within the single-band Hubbard model have
revealed the importance of structural changes and structural fluctuations to the
temperature dependence of the magnetic properties of clusters [35–39]. Comparing
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results for different l, one finds that the spin-flip energy ΔFl(−ξ 0
l ) does not scale

simply with the local coordination number zl (see Figs. 5.1 and 5.4). This implies
that the effective exchange couplings between local magnetic moments cannot be
transferred straightforwardly from one environment to another. Electronic structure
effects due to the itinerant character of the d-electrons are therefore important, as
already found near the surfaces of macroscopic TMs [46, 47]. The present results
for ΔFl(ξ ) may be used to infer which are the atoms that trigger the decrease of
the average magnetization of the cluster with increasing T . For example, in Fe9 and
Fe51, the local magnetization μl(T ) should decrease most rapidly at the outermost
shells l = 2 and l = 5, respectively (see Figs. 5.1d and 5.4). In contrast, μ3(T ) at the
outermost shell of Fe15 should depend more weakly on T since ΔF3(ξ ) is larger.

5.3.2 NiN Clusters

In Figs. 5.5 and 5.6, results are given for NiN clusters having N ≤ 43 atoms.
For the smallest sizes, the considered structures are the tetrahedron (N = 4) and
the pentagonal pyramid (N = 6). For N ≥ 13, the cluster have fcc-like structures
formed by a central atom and the successive shells of its nearest neighbors. The
corresponding structures are illustrated in Fig. 5.2. In contrast to Fe clusters, the
dominant spin excitations in NiN involve mainly amplitude fluctuations of the local
exchange fields around the Hartree–Fock moments, which are characterized by a
single minimum in ΔFl(ξ ). The same type of behavior is also observed in the case
of bulk Ni (see Fig. 5.6). This is probably due to the fact that the magnetic moments
at T = 0 are much smaller in Ni than in Fe. Let us recall that ΔFl(ξ ) also shows
a single minimum in FeN when the local moments at T = 0 are small (e.g., at the
central atom in Fe9). Only in Ni2 one observes that negative values of ξ � −μ0

l
are, if not more probable, at least as probable as ξ = 0. The dimer behavior can be
interpreted as an enhancement of the local character of the spin fluctuation in very
small Ni clusters due to the strong reduction of the local coordination number and
of the kinetic energy of the d-electrons.

As in the case of Fe, ΔFl(ξ ) is much more sensitive to cluster size and to
changes in the interatomic distances than the magnetic moments at T = 0. For
example, in small NiN , the magnetic moments are saturated and are thus nearly
independent of cluster structure and local atomic environment. Nevertheless, ΔFl(ξ )
presents significant quantitative changes as a function of l and N (see Fig. 5.5) which
let us expect interesting changes in the temperature-dependent properties. Notice,
moreover, that bond-length contractions (d < db) usually result in a reduction of
ΔFl(ξ ) even if μ0

l remains unchanged. Comparing surface and inner atoms, it is
interesting to observe that the spin-fluctuations energies are in general smaller at
the cluster surface, i.e., as the local coordination number is smaller (see Figs. 5.5
and 5.6). Thus, one expects that in Ni clusters, the surface atoms should drive the
decrease of the average magnetization per atom as T increases.
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Fig. 5.5 Local
spin-fluctuation energy
ΔFl(ξ ) = Fl(ξ )−Fl(ξ 0

l ) as a
function of the exchange field
ξ at different atoms l of NiN
clusters: (a) Ni2, (b) Ni4
(tetrahedron), (c) Ni6
(pentagonal pyramid), and
(d) Ni13 (fcc-like structure).
Results are given for bulk NN
distances d/db = 1 (full
curves) and for optimized NN
distances (dashed curves). In
(c) and (d), dots refer to the
atom l = 1 with the largest
local coordination number
(i.e., the central atom for
Ni13) and the crosses to one
of the surface atoms l = 2
(see Fig. 5.2d and f)

5.3.3 Discussion

The low-temperature limit of the local spin-fluctuation energies ΔFl(ξ ) at different
atoms l in FeN and NiN clusters has revealed a variety of new interesting be-
haviors concerning the dependence of ΔFl(ξ ) on the atomic site l, on the cluster
structure and interatomic distances, as well as qualitative differences between the
Fe and Ni clusters. This certainly encourages further investigations. However, the
low-temperature limit of ΔFl(ξ ) cannot be taken as a straightforward means of
estimating the temperature TC(N) above which the FM order is lost within the
cluster. Notice that the Curie temperature is not the energy necessary to flip a spin at
T = 0 but rather the temperature at which it costs no free energy to flip one [49–52].
In other words, collective fluctuations of ξm at sites m �= l modify the effective
spin-excitation energies, thereby reducing the stability of the FM order. Moreover,
the low-temperature limit of ΔFl(ξ ), where all but one field ξl are kept equal to
the T = 0 value, ignores that the local exchange fields at different sites fluctuate
in some correlated fashion showing some degree of SRMO. Fluctuations of the
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ensemble of exchange fields modify the magnetic environment at which individual
spin fluctuations occur and should be therefore taken into account in quantitative
studies at finite T .

Besides the temperature TC(N), one is interested in the size dependence of
the temperature TSR(N) above which thermal fluctuations destroy the short-range
correlations between the local magnetic moments, for example, between NN μl .
A significant degree of SRMO is observed in the bulk and near the surfaces
of Fe, Co, and Ni [46, 47, 65, 66]. This holds even for T > TC, i.e., after the
average magnetization M(T ) vanishes [TSR(b) > TC(b)]. For small clusters having
a radius R smaller than the range of SRMO, it is no longer possible to increase the
entropy without destroying the energetically favorable local magnetic correlations.
In addition, the degree of SRMO is likely to depend on the details of the electronic
structure and on cluster size [56]. The single-site spin fluctuations considered in
this chapter ignore short-range magnetic correlations among the local magnetic
moments. In the framework of the previous functional-integral theory, SRMO
manifests itself as correlations between the exchange fields at neighboring sites.
For example, in the FM case, 〈ξlξm〉 > 〈ξl〉〈ξm〉 for NN atoms i and j. Therefore,
it is worth to perform systematic temperature-dependent simulations by treating the
fluctuations of all spin degrees of freedom on the same footing. In the following
Sect. 5.4, the importance of SRMO is analyzed, while the results of Monte Carlo
simulations are reviewed in Sect. 5.5.
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5.4 Short-Range Magnetic Order in Transition-Metal
Clusters

The experimental results for the temperature dependence of the magnetization per
atom μN(T ) of FeN (25 ≤ N ≤ 700, 100 K≤ T ≤1,000 K) and NiN (40 ≤ N ≤ 600,
100 K≤ T ≤700 K) [6, 7] show that for all studied sizes, μN(T ) decreases with
increasing T , reaching an approximately constant value above a characteristic size-
dependent temperature TC(N), which corresponds to a magnetically disordered
state [45]. The magnetization above TC(N), μN(T >TC), was found to be signifi-
cantly larger than μN(T=0)/

√
N, the value corresponding to N randomly oriented

atomic magnetic moments [6, 7]. This is a very interesting and a priori puzzling
finding since the results for randomly oriented moments should be independent
of the details of the interactions between the local moments or, in other words,
independent of the underling Hamiltonian. It is the purpose of this section to analyze
the observed large values of μN(T >TC) by taking into account the existence of
a certain degree of SRMO in these clusters above TC(N), which is similar to the
one observed in the bulk and near surfaces. In this way, the results for μN(T ) at
low and high temperatures can be brought into agreement with model independent
predictions (see [56]).

The degree of SRMO within the cluster can be characterized by the average
number of atoms ν involved in a SRMO domain. The magnetization per atom of
a N-atom cluster at T > TC(N) is then approximately given by

μN(T>TC) � μN(T=0)
√

ν/N, (5.29)

which represents the average
√〈μ2〉 of N/ν randomly oriented SRMO domains,

each carrying a magnetic moment ν μN(T = 0). The disordered-local-moment
picture, i.e., the situation without SRMO, corresponds thus to ν = 1. The actual
value of ν for 3d TM can be estimated first from known bulk and surface results
[46, 47, 65, 66]. For bulk Fe, Haines et al. [66] have retrieved a range of SRMO
near TC of about 5.4 Å (at least 4 Å), which corresponds to ν � 15 (up to next
nearest neighbors). Similar values are obtained in calculations of SRMO in Fe bulk
and Fe surfaces [46, 47]. For FeN clusters, one finds a particularly high stability
of ferromagnetism for N � 15. The energy gain associated with the development
of the magnetic moments, ΔE(N) = E(μ)− E(μ=0), is quite large around this
size: ΔE(15)− ΔE(bulk) � 0.3 eV [24, 25]. Furthermore, the energy involved in
flipping a single local magnetic moment within Fe15—as calculated by extending
Hubbard–Hasegawa’s spin-fluctuation theory of itinerant magnetism [49–52] to
finite clusters—is about 0.1 eV larger than for the bulk [32]. Therefore, ν = 15
seems a reasonable estimation of the degree of SRMO in Fe clusters. For Ni, the
SRMO is generally expected to be stronger than for Fe [65].

Table 5.1, summarizes our results for μN(T >TC). The comparison between
experiment and the results neglecting SRMO (i.e., with ν = 1) is very poor. The root
mean square deviation σ amounts to σ = 0.75μB for FeN and σ = 0.21μB for NiN .
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Table 5.1 Average magnetization per atom (in μB) of FeN and NiN
clusters at high temperatures [T > TC(N)] as calculated from Eq. (5.29),
where ν refers to the size of the SRMO domain. For Fe νsrmo = 15, and
for Ni νsrmo = 19–43. The experimental results are estimated from [6, 7]

N ν = 1 ν = νsrmo Expt.

FeN 50–60 0.47–0.38 1.61–1.48 1.6±0.2
82–92 0.33–0.31 1.26–1.20 1.2±0.2
120–140 0.27–0.25 1.05–0.97 0.9±0.1
250–290 0.16–0.15 0.63–0.59 0.4±0.05
500–600 0.10–0.09 0.38–0.36 0.4±0.05

NiN 140–160 0.06–0.05 0.39–0.24 0.36±0.16
200–240 0.05–0.04 0.33–0.20 0.24±0.16
550–600 0.03–0.02 0.17–0.11 0.11±0.08

This rules out the disorder-local-moment picture for Fe and Ni clusters, as it is also
the case for the bulk and for plane surfaces [46, 47, 65, 66]. On the contrary, the
results including SRMO are in very good agreement with experiment for both FeN ,
with ν = 15, and NiN , with ν = 19–43 [σ(FeN) = 0.12μB and σ(NiN) = 0.06μB,
see Table 5.1]. These values of σ are of the order of the experimental uncertainties
(about 7% [6, 7]). One concludes that the low- and high-temperature measurements
of μN(T ) of Fe and Ni clusters [6,7] are in accord and that the large observed values
of μN(T>TC) provide a clear evidence for the existence of SRMO in these clusters
above TC(N). These conclusions are also consistent with known surface and bulk
properties of itinerant magnetism [46, 47, 65, 66].

Equation (5.29) can also be used to infer the degree of SRMO in clusters from
the experimental results for μN(T=0) and μN(T>TC). For example, assuming that
ν is independent of N, the value of ν which minimizes the mean square deviations
between the outcome of Eq. (5.29) and the experimental results for FeN (25 ≤ N ≤
700) is ν = 13–15. Two reasons should be mentioned, however, which indicate that
from Eq. (5.29), one should tend to underestimate ν to a certain extent. First, in 3d
TM, there is a reduction of the local magnetic moments as we go from T = 0 to
T = TC, which is a consequence of the itinerant character of the d-electrons and
which amounts to about 10–15% in the solid [46, 47, 49–52]. Second, the statistical
averages 〈|μ |〉, which is the experimentally relevant one, and

√〈μ2〉, which is
the one used for deriving Eq. (5.29), differ: 〈|μ |〉 ≤√〈μ2〉 with 〈|μ |〉 ∝

√〈μ2〉
(see [45]). Taking this into account, the degree of SRMO that one derives for
the clusters might result to be somewhat larger than what is generally accepted
in the corresponding solids, which could be related to the increase of the local
magnetic moments and exchange splittings as calculated for T = 0 [21–25]. Clearly,
the existence of SRMO alone cannot explain the full temperature dependence of
μN(T ). As in the solid, there are many element-specific features to consider, such
as the details of the electronic densities of states, the d-band filling, the Coulomb
interaction strengths, and so on. These challenging questions are investigated in the
following section.
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5.5 Monte Carlo Simulations of Finite-Temperature
Properties

The calculation of the partition function and derived magnetic properties involves
two averages. The first one concerns the electronic degree of freedom of the effective
single-particle Hamiltonian Ĥ ′ and the second one the functional integration over
the spin degrees of freedom. In practice, the averages over Ĥ ′ are performed by
using a grand-canonical ensemble with a �-dependent chemical potential that yields
the appropriate fixed total number of electron electrons for all �. The average
occupation of the eigenstates of Ĥ ′ are given by the Fermi function f (ε). Thus, the
charge distribution and local spin moment for each exchange-field configuration are
obtained straightforwardly by integrating the local densities of states (DOS) ρlασ (ε)
of Ĥ ′ as

νl = 〈N̂l〉′ =
∫ +∞

−∞
∑
ασ

ρlασ (ε) f (ε)dε (5.30)

and

〈Ŝlz〉′ = 1
2

∫ +∞

−∞
∑
ασ

σρlασ (ε) f (ε)dε . (5.31)

The local DOS can be efficiently computed by using Haydock–Heine–Kelly’s
recursion method [67].

In order to determine the relevant magnetic properties of an N-atom cluster,
one needs to evaluate integrals over N exchange fields where each point involves
an electronic calculation that is almost as involved as a ground-state one. The
integration procedure must be therefore efficient and unbiased. In this context, the
simple Metropolis Monte Carlo (MC) method [68] very often fails or needs far too
long ergodicity times, if the energy landscape is complex, showing numerous local
minima separated by large barriers. As shown in Sect. 5.3, this is the case for the free
energy F ′(�) of Fe clusters since the magnetic states of positive and negative fields
are in general separated by significant barriers. Several improvements have been
proposed to overcome this difficulty [69–74]. The ergodicity times can be drastically
reduced if several simulations are performed at different temperatures in a parallel
way, enabling the exchange of configurations between the various temperatures [74].
In the exchange MC method, one considers many replicas of the system of
interest, each of which is simulated simultaneously and independently at a different
temperature using a conventional Metropolis MC algorithm. In addition to the usual
local updates of the spin configurations �, one allows the exchange of configurations
at nearby temperatures according to a Metropolis criterion, taking into account the
involved energy difference between the configurations. This introduces additional
nonlocal Markov steps by which a simulation at low temperature can escape from
local minima. Further details of the parallel-tempering MC method may be found
in [74], while specific applications in the context of the spin fluctuation of itinerant
magnetism are discussed in [75]. In the following, we discuss results for the
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temperature dependence of the average magnetizations, μN(T ) and mN(T ), local
magnetic moments μl , and pair-correlation functions γlk for FeN clusters having
N ≤ 24 atoms.

5.5.1 Average Magnetization

The results for temperature dependence of the average magnetization μ̄N given
by Eq. (5.19) are shown in Fig. 5.7. Among the general common features of all
curves, we observe the low-temperature saturation of μN for small clusters [μN(T →
0) � 3.0μB for N ≤ 6] and the enhancement of μ̄N(0) with respect to the bulk
for N = 15 and 24. In the other extreme, at high temperatures (T � 4,000 K), μN
is approximately constant as expected for a randomly disordered magnetic state.
Notice that the high-temperature values are somewhat smaller than μN(0)/

√
N,

which would be the result predicted by a simple localized Ising-like model.4 This
reflects a moderate though significant reduction of the local magnetic moments μl ,
which can be ascribed to the delocalized character of the d-states. Notice that the
high-temperature limit of μN , as well as of the local moments μl to be discussed
below, is essentially independent of the details of the electronic structure and of the
cluster geometry. It is mainly a statistical local effect. The temperature dependence
linking the low and high T limits is not universal, i.e., it depends strongly on the
cluster geometry and on the details of the single-particle spectrum. Remarkably,
a strong structural dependence of μN(T ) is found, even in situations where the
ground-state moments are saturated and therefore do not depend significantly on
structure (e.g., in small clusters). The differences in μ̄N(T ) are found to be very
important in Fe3 and to lesser extent in Fe4 and Fe5 (see Fig. 5.7). However, notice
that at high temperatures, in the disordered-local-moment regime, the differences in
μN or mN among different isomers disappear completely even in cases where the
deviations at low and intermediate temperatures are important (e.g., Fe3 chain and
triangle, or Fe5 bipyramid and trust). This occurs for T � 2,500–3,000K, where
the pair-correlation functions essentially vanish.

The stability of cluster ferromagnetism can be quantified by the size-dependent
temperature TC(N) corresponding to the inflection point in μN(T ). In the ther-
modynamic limit, TC(N) should converge to the bulk Curie temperature [45].
However, the physics behind TC(N) in small clusters should be different from the
behavior expected in large nanoparticles and solids. In large systems, TC defines
naturally the temperature above which the long-range magnetic order disappears.
Nevertheless, as discussed in Sect. 5.4, there is clear experimental evidence for a
significant degree of SRMO in TM clusters above TC [6,56]. The size of the SRMO
domains near TC has been estimated to be ν = 15–19 atoms [56]. For clusters
that are smaller than the range of SRMO, it is no longer possible to increase the

4As in an N-step random walk the root mean square average of the total magnetic moment per
atom of a cluster having N uncorrelated local moments of size μ0 is μ0/

√
N.
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entropy without destroying the energetically favorable local magnetic correlations.
Therefore, the cluster “Curie” temperature in the limit of N � ν should tend to
a higher temperature TSR(N) above which thermal fluctuations destroy the short-
range correlations between the local magnetic moments, for example, between NN
μl . This is probably the reason for the relatively large values of TC(N) derived from
our calculations: TC(N) � 1,500–2,500K except for linear Fe3 [TC(3) � 750 K] and
square pyramid Fe6 [TC(6) � 750 K].
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Larger clusters like Fe15 and Fe24 have their own special interest since the
present non-saturated spin moments, in contrast to the already discussed smaller
ones. Moreover, 15–20 atoms is the typical size of a SRMO domain in Fe.
For Fe15, the average magnetic moment at very low temperatures is μ15(0) =
2.75μB and μ24(0) = 2.25μB. These values are in agreement with previous
works [24, 25, 76–79]. As T increases, μN(T ) remains close to the ground-state
magnetization up to T � 800–1,000 K. Here it starts a rapid decrease, reaching
the disordered-local-moment limit for T � 2,500 K, where μN � μN(0)/

√
N. The

fact that at these temperatures μ̄N is close to the average of randomly oriented
local moments indicates that these clusters are completely disordered without any
significant SRMO being left (N = 15 and 24 at T � 2,500 K). This is in agreement
with our previous discussion suggesting that TC(N) � TSR(N) for N � ν , and is
confirmed by more detailed calculations of the correlation functions γlk. From the
inflection point of μN(T ), we obtain TC � 1,500 K which is not far from the bulk
value T CPA

C (bulk) =1,600 K calculated using the same model and the coherent
potential approximation (CPA) [48]. Interestingly, in the case of Fe24, we find a
slight low-temperature increase of μ24(T ) with respect to μ24(0) (see Fig. 5.7).
This unusual behavior reflects temperature-induced changes in the local electronic
structure corresponding to the occupations of higher-spin states. A similar effect has
been observed experimentally on large Co clusters [6, 17].

It is interesting to compare the temperature dependence of μN for the most
compact and highly symmetric clusters (N = 2–5) since the coordination numbers
increase here very fast, almost linear with N. Remarkably, the calculations show that
as N increases, μN(T ) decreases more rapidly with T (see Fig. 5.7). This means that
at T > 0, the ferromagnetic order becomes comparatively less stable as N and the
coordination number z increases. This trend is strictly opposite to the predictions of
simple spin models (for instance, the Ising model). In fact, if one would attempt to
derive an effective Ising or Heisenberg NN exchange coupling constant J by fitting
our electronic calculations, one would conclude that J decreases rapidly with N
or z (like 1/z or faster). Obviously, this surprising behavior has to be ascribed to
the itinerant character of the d-states. As z increases, the d-band width increases
and with it the relative importance of the kinetic energy as compared to the local
exchange energy. This effect appears to be so strong in the case of small Fe clusters
that it overcomes the fact that with increasing z the perturbation introduced by the
fluctuations of an exchange field ξl affects a larger number of atoms and should thus
imply a higher excitation energy.

5.5.2 Local Moments and Spin Correlations

The temperature dependence of the magnetic order within the cluster can be
analyzed in more detail by considering the spin-correlation functions γlk [see
Eq. (5.22)]. Comparing the various local moments μl =

√γll and interatomic γlk
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allows us to understand the behavior of μN =
√

∑lk γlk from a local perspective
and at the same time gain a useful insight on the environment dependence of
finite-temperature cluster magnetism. Figures 5.8 and 5.9 show our results for the
pair-correlation functions and for the square of the local magnetic moments μ2

l = γll

of FeN clusters. The suffixes of γlk correspond to different nonequivalent atoms
or pairs of atoms. An important feature common to all considered clusters is the
remarkable stability of the local moments μ2

l at finite temperatures, which are
reduced by at most 20–30% with respect to the ground state, even at the highest
considered temperatures. Similar results are found in thin films and bulk Fe [48].
This simplifies the analysis of the temperature-dependent properties, at least to some
extent, since in first approximation we may consider that the fluctuating moments
have a fixed size. Thus, the magnetic moments preserve a local character despite
the fact that the d-electrons are delocalized. This is physically quite plausible since
the formation of local moments involves an energy of the order of Jμ2

l /4 that is
much larger than the typical spin-fluctuation energies. In addition, the narrowing of
the d-band in clusters reduces the kinetic or band energy and tends to enhance the
localized or directional character of spin fluctuations [24, 25]. The only exception
we found to these trends is the moment at the center of a bcc-like Fe15 cluster. As
will be discussed below, this is related to the fact that the T = 0 local moments are
not saturated at this atom.

The temperature dependence of γ12 for Fe2 and Fe3 (triangle) follows the behav-
ior of the corresponding μN(T ) curves as expected for highly symmetric clusters
having local moments μl that depend weakly on temperature. One observes that the
ground-state ferromagnetic coupling is almost fully preserved up to a relatively high
temperature T �1,500 K. Above this temperature, γ12 decreases monotonically,
remaining positive and approaching zero (γ12 � γ11) at approximately T � 4,000 K.
For T � 4,000 K the local moments fluctuate in an uncorrelated way and μN �
μl/

√
N. As a first example of the role of cluster structure, it is interesting to compare

the triangle with the linear chain. In linear Fe3, the ground state is ferromagnetic
with saturated moments μl(0) � 3μB, and therefore, the first NN and second
NN correlation functions at T = 0 are γ12(0) � γ13(0) � 9. However, in this
case, γ12 and γ13 decrease very rapidly, almost linearly in T already at very low
temperatures (see Fig. 5.8c). Moreover, γ13 changes sign at T � 1,500 K, showing
weak antiferromagnetic (AF) correlations between second NNs (γ13 < 0). These
antiferromagnetic correlations together with the fast decrease of the ferromagnetic
NN γ12 are responsible for the rapid decrease of μN(T ) with increasing T . It is
interesting to analyze the origin of the second NN antiferromagnetic correlations
since they are also found in other clusters (N = 4–6) and since they provide some
insight into the nature of the dominant spin fluctuations. First of all, one should
notice that a negative γ13 cannot be understood in terms of uncorrelated local spin
fluctuations or unconditional probabilities p+(i) and p−(i) = 1− p+(i) of having
up and down moments at different sites i. In fact, in this case, one would have,
using for simplicity a spin-1/2 Ising model, γ13 = 1− 4p2

+(1− p+) > 0 for all p+.
Intuitively, in absence of any special correlations, it is clear that positive γ12 and γ23

should imply a positive γ13. However, if one considers the correlated probabilities
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labeled in the inset figure
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p1 = p+++, p2 = p++− = p−++ and p3 = p+−+ of all different configurations on
a linear trimer (∑i ξi ≥ 0), it is easy to show that γ13 = 1− 4p2. This is negative
provided that p3 does not increase significantly when p1 decreases with increasing
T [γ13 < 0 ⇔ p2 > (p1+ p3)/2]. In other words, γ13 < 0 indicates that the dominant
spin fluctuations in the linear trimer take place at the extremes of the chain, while
spin flips at the central site are much less frequent. As we shall see, a similar analysis
applies to larger clusters where the fluctuations at the lowest coordinated sites also
dominate over those at the highest coordinated ones (e.g., the rhombus Fe4, trust
Fe5, and square bipyramid Fe6).

The pair-correlation functions of the Fe4 clusters having rhombohedral and
tetrahedral geometry are shown in Fig. 5.8c and d. Qualitatively, the tetrahedron
resembles the triangle, while the rhombus shows the same main features as the
linear trimer with ferromagnetic coupling between first NNs and antiferromagnetic
coupling between second NNs above a certain T (see Fig. 5.8e for γ13 and
γ24, respectively). As before, the antiferromagnetic correlations result in a faster
decrease of the average magnetization with increasing temperature.

Figure 5.9 shows the pair-correlation functions of FeN for 5 ≤ N ≤ 15. For Fe5,
we always find ferromagnetic-like correlations between NNs (γi j > 0), both for
the bipyramid (Fig. 5.9a) and for the trust (Fig. 5.9b). In contrast, the second NNs
correlations are antiferromagnetic-like above a temperature T � 1,500–2,500K,
depending on the structure and pair of sites. This can be qualitatively understood
by analogy with the linear trimer as an indication that the spin fluctuations at the
atoms lying at the extremes of the cluster (e.g., i = 4 and j = 5 in the bipyramid,
and i = 1 and j = 3 or 5 in the trust) are much more frequent than the fluctuations
of the inner atoms. Notice that negative γi j are only possible when the average
magnetic moments have significantly decreased. Comparing the various γi j of the
two considered Fe5 isomers, one first of all notes the larger dispersion of the
results for the trust, a logical consequence of its lower symmetry. Moreover, one
observes that the correlations in the trust decrease in general more rapidly than in the
bipyramid. This is consistent with the idea that spin fluctuations are more frequent
in weakly coordinated environments. However, for some particular pairs of atoms
in the trust (e.g., i = 1 and j = 4), the FM correlations are systematically stronger
than for any pair of atoms in the bipyramid. In the case of Fe6, the pair-correlation
functions decrease much faster with increasing T than in any of the previously
discussed clusters (see Fig. 5.9c). Moreover, the AF correlations between second
NNs are particularly strong here (γ14 and γ56 < 0). They set in at about T = 700 K
and vanish only above T = 3,000 K. In contrast, the FM-like correlations γ12 and γ15

are rather weak and disappear above T = 1,000 K. The conjunction of these effects
explains the very rapid decrease of μN(T ) and mN(T ) in this cluster (see Fig. 5.7).

The characteristic behavior found in very small low-symmetry clusters, i.e., FM
correlations for first NNs and AF correlations for second NNs above T � 1,500, no
longer applies to Fe15. In this case, all the correlation functions are positive (see, in
particular, γ1,10 and γ24 in Fig. 5.9c). Furthermore, the correlation functions between
the pairs involving the central atom i = 1 (γ12 and γ1,10) as well as the central local
moment μ1 show an unusual temperature dependence. They start from rather small



186 R. Garibay-Alonso et al.

values at T = 0, and then increase with increasing T , as if they were driven by the
still strong FM correlations between all the other atoms in the cluster (see Fig. 5.9c).
A change of trend and a decrease of γ12 and γ1,10 are only observed when the
fluctuations are so important that the correlations between the atoms i= 2–15 start to
decrease. This effect is most probably due to changes in the local electronic structure
with temperature. It suggests that low-energy states with higher spin are occupied at
T > 0. A similar behavior has been found in other clusters showing non-saturated
ground-state moments including fully correlated exact-diagonalization studies of
Hubbard clusters (López-Urı́as and Pastor, unpublished).

5.5.3 Bond-Length Relaxation Effects

The effects of structural relaxations local environment on the magnetic properties
of FeN clusters have been investigated by varying the NN distance r. In this way,
the interplay between kinetic and Coulomb energies can also be explored since r
controls the d-band width and the energy associated with electron delocalization
through the distance dependence of the hopping integrals ti j [80–82]. In this work,
we apply the relation ti j ∼ r−5 as derived in [80–82]. As a result, the effective
coupling constants between the local moments can be manipulated. In Fig. 5.10,
the average magnetization curves μN(T ) of Fe5, Fe6, and Fe15 are given for
different values of r. Before discussing the temperature dependence of μN(T ), a
few comments on the ground-state moments μN(0) are due. For large interatomic
distances, one obtains saturated μN(0) = 3μB, as expected for a very narrow d-band
width. As r decreases, μN(0) remains first saturated until r lies below a critical value
that depends on size and structure [24, 25] (see Fig. 5.10). Finally, for very short
r, the ground-state ferromagnetic order breaks down, and μN(0) → 0. Notice that
the changes in μN(0) with r are very abrupt in small clusters due to the extreme
discreteness of the single-particle spectrum.

At finite temperatures, one observes very different behaviors depending on the
values of r. Let us first consider large distances where the ground-state moments
are saturated. For the considered values of r (r/rb = 1.00–1.05), μN(T ) decreases
faster with increasing T when the NN distances are shorter. This is consistent
with the trends found in smaller compact clusters, where a larger size or higher
coordination number implies a reduction of the cluster “Curie” temperature. In
this range of NN distances, magnetism is more stable when the delocalization or
band energy is smaller (larger r/rb). Notice that all the curves start at the same
saturated magnetization per atom μN(0) = 3μB. Therefore, the higher TC(N) cannot
be ascribed to an enhancement of the local moments. If one attempts to interpret
these results in the framework of an Ising or Heisenberg model, one must conclude
that the effective exchange coupling between local moments Jlk increases with
increasing NN distance. Of course, this trend cannot hold in the limit of very large r.
One actually observes that the effective Jlk goes over a maximum and then decreases
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if r is further increased. A similar distance dependence of TC has been found in thin
Fe films [48].

A more interesting temperature dependence of μN(T ) is found at smaller NN
distances, where the T = 0 moments are not saturated and eventually almost vanish
for very small r due to strong d-band broadening. Here, we observe a remarkable
enhancement of μN(T ) with increasing T that indicates, as already mentioned
before, the presence of higher-spin states that are populated at finite temperatures. At
the same time, the local magnetic moments μl also increase with T . A similar effect
is most probably at the origin of the finite-temperature increase of the magnetic mo-
ments observed in beam experiments on large Co clusters [6,17]. Notice, moreover,
that the simple relation for randomly orientated spins, μN(T > TC) = μN(0)/

√
N,
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is no longer valid in this range of NN distances. These results illustrate very clearly
the important interplay of spin fluctuations and electronic structure and the subtle
competition between localized and itinerant aspects of d-electron magnetism.5

5.6 Discussion

The finite-temperature magnetic properties of FeN clusters have been determined
in the framework of a spin-fluctuation functional-integral theory and a parallel-
tempering Monte Carlo simulation approach. In this way, both the cluster-specific
electronic structure and the collective fluctuations of the magnetic degrees of
freedom at all atoms are treated on the same footing. This is an important
improvement with respect to single-site approximations [32, 48–53], which allows
us to take into account and quantify the degree of SRMO in clusters. The study has
revealed a variety of new interesting behaviors concerning the dependence of the
finite-temperature magnetic properties of clusters as a function of size, structure,
and interatomic distances. A remarkable non-monotonous temperature dependence
of the average and local magnetizations has been found. The role of the local atomic
environment has been studied by means of the interatomic spin-correlation functions
and by varying the NN bond lengths. We have shown that simple Heisenberg or
Ising models are not applicable straightforwardly to Fe clusters, since the electronic
structure contributions and the itinerant character of the d-electrons are crucial for
determining the magnetic behavior at finite temperatures.

A few comments should be made concerning the possible role of fluctuations
of the cluster structure that can be induced by temperature and that could coexist
with spin fluctuations of electronic origin considered in this chapter. Previous
exact-diagonalization studies on the single-band Hubbard model have shown that
the isomerization energies of magnetic clusters are often comparable to the spin-
excitation energies (López-Urı́as and Pastor, unpublished). Although we expect
the stability of ground-state structures to be higher in realistic d-band calculations,
it is also true that the contributions of structural fluctuations to the temperature
dependence cannot be excluded a priori. The effect could be particularly significant
in weak unsaturated ferromagnets like FeN , which magnetic moments are known
to be very sensitive to structure already for T = 0 [24, 25]. Moreover, as shown
in this chapter, the stability of ferromagnetism at finite T also depends on cluster
geometry. Therefore, the population of low-energy isomers can modify μN(T ), even

5From Fig. 5.10 it is possible to infer the distance dependence of cluster “Curie” TC(N). Despite
changes as a function of size and structure, TC(N) always remains of the same order of magnitude
as in the bulk. The actual value of TC is the result of an interplay between two effects directly
related to the reduction of the coordination numbers: the enhancement of local magnetic moments
and the reduction of the number of NN couplings. For some clusters, this may lead to incidental
compensations and to values of TC(N) close to the bulk one. However, in most cases one of the
contributions dominates over the other (see Fig. 5.10).
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if the T = 0 moments of the excited isomers are nearly the same as for the optimal
geometry. In strong ferromagnets, the excited isomers are usually quite disordered
magnetically when one reaches the temperatures at which they are significantly
populated. In this case, their contribution to the ensemble average leads to a more
rapid decrease of μN(T ). However, in systems with unsaturated moments, it is
also conceivable to find excited isomers for which ferromagnetism is stronger and
comparatively more stable. In such a situation, an increase of μN(T ) is possible.
More detailed investigations taking into account electronic spin fluctuations and
structural rearrangement on the same footing are certainly most interesting.

The results discussed in this chapter encourage further theoretical developments.
The present functional-integral approach to spin fluctuations and the local method of
calculations of the electronic structure are well suited to investigate more complex
systems with reduced symmetry, such as clusters and nanostructures on surfaces or
substrate effects on thin films. In particular, another interesting extension concerns
the effects of the interactions at interfaces with nonmagnetic substrates in order
to achieve a more realistic comparison with experiments on clusters deposited on
surfaces. In addition, a number of methodological improvements seem worthwhile.
The spin rotational symmetry of the effective Hamiltonian H ′ could be restored by
introducing vector exchange fields ξi at each atom i. Thus, noncollinear magnetic
order and transversal fluctuations of the exchange fields could be taken into
account. These are likely to affect the magnetization curves and probably reduce the
calculated values of TC. As already discussed, incorporating structural fluctuations
in the statistical average process is also desirable. Last but not least, the model can be
readily extended to take into account spin–orbit interactions [30], and dipole-dipole
interactions that are responsible for magnetic anisotropy and for spin reorientation
transitions (SRT). In fact, temperature-driven SRT in thin films have been observed
since long time ago [83–87]. The reorientation transitions are often interpreted phe-
nomenologically in terms of competition between magnetic anisotropy free energy
(MAFE) and dipole–dipole anisotropy. The theory presented in this work, should
serve as a starting point to characterize the dominant electronic contributions and to
reveal the microscopic mechanisms underlying such a remarkable phenomenon.
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39. López-Urı́as F, Pastor GM (2005) J Magn Magn Mater 294:e27
40. Jinlong Y, Toigo F, Kelin W (1994) Phys Rev B 50:7915
41. Jinlong Y, Toigo F, Kelin W, Manhong Z (1994) Phys Rev B 50:7173
42. Wildberger K, Stepanyuk VS, Lang P, Zeller R, Dederichs PH (1995) Phys Rev Lett 75:509
43. Nayak SK, Weber SE, Jena P, Wildberger K, Zeller R, Dederichs PH, Stepanyuk VS, Hergert W

(1997) Phys Rev B 56:8849
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Chapter 6
Global Optimization of Free and Supported
Clusters

Riccardo Ferrando

6.1 Introduction

Aggregates of atoms of nanometric sizes (denoted as clusters or nanoparticles in
the following) have been widely studied in the last decades due to their intriguing
properties. In many cases, these properties depend on the nanoparticle structure,
which in turn depends on size and, in the case of multi-component systems,
on composition. For this reason, considerable efforts have been devoted to the
determination of nanoparticle structures, both by experiments and calculations (see,
e.g. [1]).

From the computational point of view, the problem is to determine the lowest-
energy structure of a nanoparticle, starting from the knowledge of its size and
composition. This is a highly non-trivial task, due to the enormous number of
possible structures that a nanoparticle of given size and composition can assume.
These structures belong to a large variety of structural motifs. These motifs comprise
fragments of the bulk crystal structure (crystalline motifs) and structures that
have no counterpart in the bulk crystal (noncrystalline motifs) such as icosahedra,
decahedra and polyicosahedra [1,2]. The noncrystalline motifs are possible because
the constraint of lattice periodicity does not apply to nanoparticles, so that a much
larger variety of structures is possible than in the bulk case.

For bi- and multi-component systems, the geometric structure is not the only
important feature of the nanoparticle that has to be determined. In fact, it is
important also to determine the way in which the different species are arranged
within the nanoparticle, i.e. to determine its chemical ordering. Restricting to bi-
component nanoparticles, we can identify several chemical ordering patterns, such
as the core-shell, multi-shell, randomly intermixed, phase-ordered, and quasi-Janus
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patterns [3–11]. The number of possible chemical ordering patterns is enormous
even for a given fixed geometric structure [12].

The possible structure of a nanoparticle of given size and composition can be
identified with the stability points, i.e. with the local minima of its potential energy
surface (PES) [13]. The PES is a function of the coordinates of all atoms of the
nanoparticle and is denoted as E({r}). In the following, we assume that E({r}) is
known and focus on the methods that are currently used to explore it and to search
for its low-energy minima. The search for the lowest minimum on the PES is usually
known as global optimization of the PES.

In practical cases, the form of E({r}) is determined either by first-principle
methods (of which the most popular is density functional theory (DFT) [14])
or by atomistic interaction potentials, such as embedded atom method (EAM)
potentials [15], or second-moment approximation tight-binding (SMATB) poten-
tials [16–18].

First-principle methods are of general applicability, and in many cases, they are
of great accuracy. Their main drawback is that they are very demanding from the
computational point of view. This poses rather severe limits on the system sizes
that can be actually treated and that are of a few ten atoms for single-element
nanoparticles [19, 20]. And also for these small-size clusters, a true thorough
exploration of the PES can be extremely cumbersome.

On the other hand, also atomistic approaches suffer from several drawbacks. In
fact, the validity of an atomistic potential must be carefully checked for each system
separately, because the approximations involved in atomistic modeling are not easily
controllable a priori. Moreover, atomistic potentials miss specific quantum effects
such as the electronic shell closure effect, which is important for clusters of small
sizes (see [21] for a discussion of the interplay between geometric and electronic
shell closure in AgCu and AuCu clusters of 40 atoms). For these reasons, the
validity of atomistic approaches is strongly system dependent. However, atomistic
approaches present several advantages. In fact, once an atomistic potential is
validated, it allows an efficient and thorough exploration of the PES of large
systems, containing hundreds of atoms [22]. Moreover, an atomistic potential can be
used for studying many important processes well beyond the determination of low-
energy structures. In fact, it allows the simulation of melting, growth, collision and
coalescence of nanoparticles on long, experimentally relevant time scales [4,5,7,23–
26] that are not at all accessible to first-principle methods even for small clusters.

In order to overcome the drawbacks of first-principle and of atomistic potential
modeling, a hybrid approach has been adopted by several groups [3, 6, 22, 27–39].
This approach consists of two steps. In the first step, an atomistic PES is defined
and searched for by some global optimization procedure. The significant structural
motifs are singled out, and a structural database is constructed in such a way that it
contains the lowest minima of each structural motif. In the second step, the lowest
minima of each motif are locally relaxed by first-principle methods, usually by DFT.
After this relaxation, the results of the atomistic model can be compared to those
resulting from the first-principle relaxation. If necessary, an effort can be made in
trying to improve the atomistic potential parameterization, and the procedure can be
iterated from the first step.
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In the following chapters, we assume that the method for calculating the PES
(either atomistic or first-principle) has been already chosen, so that we can focus
on the global optimization procedures for exploring the PES and finding its low-
energy minima. Applications to specific cases are discussed, both for gas-phase and
substrate-supported nanoparticles.

6.2 Global Optimization Methods

The complexity of the problem of finding the lowest minimum of a function of many
variables, such as the PES, is due to the large number of minima that such a function
can present. In fact, we should expect an exponential increase of the number of local
minima with size, as follows from a simple argument [40–43]. Let us divide the
nanoparticle into ns equivalent subsystems of N atoms each. Under the rather crude
approximation that every subsystem has independent stable configurations, we find:

nmin(nsN) = [nmin(N)]ns , (6.1)

whose solution is an exponential

nmin(N) = ecN , (6.2)

where the constant c depends on the system. As an example of the explosive growth
of the number of minima with size, it has been estimated that in Lennard–Jones
clusters, the number of minima increases from about 1,500 for size 13 to at least
1040 for a cluster of 40 atoms [44].

The complexity of global optimization drastically increases when considering
bi- or multi-component systems. Let us consider a binary cluster of a given
geometric structure. For a single-component system, this corresponds to a single
local minimum. For a binary system, we can think of exchanging the positions
of atoms of different species, thus obtaining new structures which share the same
geometry (apart from some local relaxation) but with different chemical ordering.
Isomers sharing the same geometry but differing in chemical ordering are known as
homotops, a term that has been introduced by Jellinek and Krissinel [45]. In a AmBn

binary cluster, the number of homotops is given by

Nhomotops =
(n+m)!

n!m!
. (6.3)

Many of these homotops can be symmetry equivalent, but Nhomotops is easily a huge
number, with a factorial increase with system size.

From these considerations, one may deduce that the problem of finding the
global minimum for PES of interest cannot be solved in practical cases. Indeed,
the rigorous solution of this problem would imply to sample all minima of the PES
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and compare their energies. This is clearly impossible for sizes exceeding a few
atoms. For this reason, we note that all structures that will be denoted as “global
minimum” (GM) in the following have to be intended as a putative global minima.

However, one must keep in mind that the practical scope of global optimization
is to sample the low-energy part of the PES, i.e. the part of the PES whose statistical
weight is important at low temperatures, and not to find of a single deep minimum.
For example, it is not really important to find the best homotop out of an enormous
number of them, but to single out the typical low-energy chemical ordering pattern,
which usually corresponds to a large number of similar homotops that are in the
same energy range.

Keeping this in mind, there are some features of nanoparticle PES that render
global optimization feasible in most cases. Nanoparticle PES are usually organized
in funnels [13, 46, 47]. A funnel is a region of the PES in which the pathways to its
absolute minimum are sequences of monotonically decreasing minima separated by
low-energy barriers. Within a given funnel, it is rather easy to develop an algorithm
which quickly leads to its bottom. Minima belonging to the same funnel usually
present similar structures. We can, for example, single out icosahedral funnels,
decahedral funnels etc., on the same PES.

When the PES is organized in funnels, the main difficulty of its global optimiza-
tion is finding all of them. In practical cases, funnels are usually separated by huge
energy barriers, so that it is quite common that a search procedure remains trapped in
the funnel that is encountered first. Another difficulty is that, when the nanoparticle
size is large, even exploring a single funnel may become cumbersome.

In summary, a good global optimization algorithm should be able first to explore
different funnels without being trapped forever in the initial one and then to
reach quickly the minima at the bottom of each funnel. Several types of global
optimization algorithms have been developed and applied to nanoparticles and
nanoalloys.

Several algorithms have been developed in recent years and widely applied to
the global optimization of nanoparticles. These comprise simulated annealing (see
[48, 49] and references therein), genetic algorithms [50–52], minima hopping [53]
and basin hopping (BH) [54]. In the following, we focus on the BH algorithm.

6.3 Basin Hopping

In this section, we concentrate on the BH algorithm, which has proved to be a very
efficient global optimization tool. The structure of the BH algorithm is simple. It is
a Monte Carlo algorithm with local minimization. However, its efficiency strongly
depends on which moves are adopted to generate new configurations in the Monte
Carlo procedure. For this reason, we concentrate in some details on the description
of the main types of moves used in the simulations. Finally, we focus on two
different algorithms, the parallel excitable walkers (PEW) and the HISTO algorithm,
which have been developed as possible improvement of the BH algorithm.
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Fig. 6.1 Schematic one-dimensional representation of the transformation of a PES (red line)
into a staircase function (blue line). From the right panel, it is evident that this transformation
favours those points in configuration space that belong to basins of low-energy minima. Before the
transformation, point D has a higher energy than point S. After the transformation, the opposite is
true, with an exponential gain in the probability of sampling point S in an equilibrium simulation
(from [43])

6.3.1 Structure of the BH Algorithm

The BH algorithm [54] is based on the thermal equilibrium sampling of a modified
PES. In fact, the PES is transformed by associating at each point {r} the energy of
the closest local minimum, i.e. the energy that is reached by a local minimization
procedure starting at {r}. In this way, the PES E({r}) is transformed into a
staircase function Ẽ({r}), as schematically shown in Fig. 6.1. The transformed
PES is then sampled by a Metropolis Monte Carlo procedure at a given simulation
temperature T . This temperature is a parameter chosen in order to maximize the
efficiency of the simulation.

As shown in Fig. 6.1, the transformation to Ẽ exponentially increases the prob-
ability of sampling the basins of low-energy minima. In order to understand this,
consider two points in configuration space {rS} and {rD}, belonging to different
basins (as in Fig. 6.1) with ΔE = E({rD})− E({rS}) > 0. In an equilibrium
simulation on E , the probability of visiting D is smaller than the probability of
visiting S by a factor exp[−ΔE/(kBT )]. However, after the transformation to Ẽ , the
energy of D becomes lower than the energy of S because D belongs to the basin of
a deeper local minimum. In this case, the probability of visiting D becomes larger
than the probability of visiting S by the factor exp[Δ Ẽ/(kBT )], where Δ Ẽ > 0 is
the energy difference between the two local minima. It is also important to note that
the transformation to Ẽ lowers the barriers between different local minima to the
maximum possible extent, while keeping the energies of the local minima unaltered.
However, this transformation does not eliminate the energy barrier between different
funnels.

The structure of a BH search is quite simple. In a unseeded search, the initial
configuration is generated by choosing randomly the coordinates of the cluster
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atoms within a given (usually cubic or spherical) box. This random configuration
is locally minimized. After this first local minimization, which gives Ẽ0, a loop
is started. At step n in the loop, the locally minimized structure obtained at step
n− 1 (of energy Ẽn−1) is perturbed by some kind of elementary move (see below
for the description of typical moves), whose scope is to drive the cluster outside the
basin of its present local minimum. After the move, local minimization is applied,
so that the energy of a new trial local minimum, Ẽt

n, is obtained. If Ẽt
n ≤ Ẽn−1, the

transition to the new minimum is always accepted, putting Ẽn = Ẽt
n. If Ẽt

n > Ẽn−1,
the move is accepted, with probability exp[−(Ẽt

n − Ẽn−1)/kBT ]. When the move
is accepted Ẽn = Ẽt

n; if it is refused, Ẽn = Ẽn−1. Each time the simulation reaches
a local minimum which is lower than all minima that were previously visited, the
putative global minimum is updated. In a seeded search, the initial configuration is
not chosen randomly, but it is some already known local minimum. From this seed,
the simulation proceeds in the same way as an unseeded simulation.

The simulation temperature T is the only parameter that can be tuned in order to
achieve the best efficiency of the algorithm. This is a very attractive feature of the
BH algorithm, which does not require elaborate tuning procedures to achieve a good
degree of efficiency. However, the choice of T may sometimes become problematic
because conflicting needs are to be satisfied. In fact, when exploring a single funnel,
the choice low T is more efficient, because it does not allow moves leading to energy
increases, and therefore, the simulation is likely to arrive quite fast at the funnel
bottom. On the other hand, if the simulation needs to explore different funnels, a
high T is more appropriate, because the barriers separating the funnels are high
and are not significantly lowered by the transformation to Ẽ . As we will see in the
following, the optimal temperature may also depend on the type of move which is
adopted in the simulation.

6.3.2 Elementary Moves

In the BH algorithm, the choice of appropriate elementary moves is crucial for the
efficiency of the search. Generally speaking, a move is a perturbation of a local
minimum structure. This perturbation should take into account two contrasting
needs. First, the perturbation should be strong enough to lead the system outside
the basin of its present local minimum. In fact, after a weak perturbation, local
minimization drives the system back to the same configuration. In this case, the
move is accepted by the Monte Carlo rule, but this does not produce a true change of
configuration. However, the perturbation cannot be too strong, because a very strong
perturbation is likely to drive to a very-high-energy local minimum which would not
be accepted by the Monte Carlo rule. This would lead to very low acceptance rates
giving a inefficient sampling of the PES. Depending on the system, a move must
thus be tuned in order to achieve a reasonable acceptance rate of true configuration
changes.

Here below follows a list of the most common moves used in BH searches.
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6.3.2.1 Shake Move

Each atom is displaced from its present position within a sphere of radius rs (of
within a cube of given size [54]).The efficiency of the shake move is quite sensitive
to the choice of rs. Typical values of rs are close to half of the nearest-neighbour
distance between atoms. Smaller rs are usually not sufficient to drive the cluster out
of a local minimum. Larger rs are likely to produce very low acceptance rates. The
value of rs can also be adjusted on the fly to achieve a target acceptance rate. Variants
of the shake move displace only a fraction of the cluster atoms (even a single atom)
or displace surface atoms by larger amounts than inner atoms.

6.3.2.2 Brownian Move

A short molecular-dynamics (or Langevin) simulation is run at high temperature TB.
Compared to the shake move, the Brownian move takes into account the features of
the PES, so that it is less likely to produce unphysical configurations leading to
very-high-energy minima, at the same time allowing strong rearrangements of the
cluster. Moreover, it has been shown that molecular dynamics is very efficient in
finding quickly low-lying saddle points that are likely to be connected to low-energy
minima [55]. A disadvantage of this move with respect to the shake move is that the
move itself is a short simulation run, which however requires several steps needing
need computer time. This may slow down the search procedure by a non-negligible
amount.

6.3.2.3 Shell Move

It is designed to improve the arrangement of the cluster surface. A single surface
atom is displaced to a random position within a spherical shell which roughly
corresponds to the external atomic layer of the cluster. The choice of the surface
atom to be displaced can be made by assigning a probability depending on
coordination, in order to move undercoordinated atoms and help them to find more
favourable positions.

6.3.2.4 Exchange Move

This move is specific to bi- or multi-component systems. The positions of two atoms
of different species are exchanged. This moves is very important for optimizing
chemical ordering in nanoalloys. Variants of this move include tailored exchanges
[22]. For example, in a system which is known to segregate element B to the cluster
surface, a tailored exchange can be defined as an exchange which involves only
surface atoms of species A and inner atoms of species B.
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An important point that has to be taken into account is that the optimal BH
temperature T (not to be confused with the temperature of the Brownian move TB)
can depend on the specific move. As an example, let us consider the case of a binary
system like AgPd, which shows a rather strong tendency to intermixing of the two
species, producing however randomly intermixed configurations [38] in the interior
part of the nanoparticles. In a BH search with shake moves, optimal temperatures
for AgPd are above 1,000 K. These temperatures are necessary in order to obtain
a good acceptance rate for moves producing significant changes in the geometric
structure of the cluster. The same applies to the Brownian moves. On the contrary,
in a BH search with exchange moves, the optimal temperatures are as low as 100 K.
This is due to the fact that the energy difference between homotops can be very
small, so that high T leads to the acceptance of high-energy homotops, with a
worse optimization of chemical ordering. Because of this temperature difference,
it is usually more efficient to run first a simulation with shake (or Brownian) moves,
which serves to optimize the geometric structure. Then, seeded simulations at low
T are run to optimize the chemical ordering of the significant geometries. Another
way to overcome this problem is to assign different temperatures T to the different
moves within the same simulation.

6.3.3 Parallel Excitable Walkers Algorithm

As explained previously, the transformation of the PES into a staircase function
eliminates all energy barriers between minima belonging to a descending sequence.
However, barriers between different funnels are not in such kind of a sequence, so
that they are essentially unaltered by the PES transformation. As a consequence, a
BH run can easily remain trapped inside the funnel to which its initial configuration
belongs. To avoid this trapping, high-simulation temperatures may be used, but this
could deteriorate the efficiency of sampling the funnel bottoms.

An approach that tries to combine the efficiency of BH in sampling the low-
energy parts of funnels with an increased probability of exploring several different
funnels is the PEW algorithm [56]. In the PEW algorithm, nw Monte Carlo walkers
perform BH searches of the PES in parallel. These walkers interact with each other
by a rule based on an order parameter. The order parameter p({r}) should be chosen
in such a way that different funnels are associated with different intervals of p.

A neighbouring relation between walkers is defined in the order parameter space.
Given a distance δ , walkers a and b are neighbours if they satisfy

|p({ra})− p({rb})| ≤ δ . (6.4)

Another quantity which defines the PEW algorithm is the excitation energy E∗,
which is used to facilitate the moves of walkers that have neighbours. The algorithm
is structured as follows. At each step of the simulation, one walker is randomly
chosen. If this walkers has no neighbours, its move is either accepted or refused
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according to the usual Metropolis criterion applied to Δ Ẽ , exactly as in standard
BH. If this walker has at least one neighbour, the Metropolis criterion is applied
to Δ Ẽ − E∗, where E∗ is the excitation energy. This amounts to increasing the
energy of the initial local minimum of the walker by the quantity E∗. Walkers
with neighbours have thus much larger probability of having their moves accepted,
so that they are likely to escape away from their neighbours. This procedure has
proven to be efficient in exploring multiple-funnel PES [56], in both single-element
nanoparticles and in nanoalloys. Typical values of E∗ are in the range of 0.5 eV for
transition metal nanoparticles. The distance δ is chosen in such a way that 2nwδ
is about half of the variation range of p. The use of the excitation energy allows to
employ low-simulation temperatures (in the range 100–500 K), so that walkers with
no neighbours are very efficient in arriving at the bottom of their funnels.

The efficiency of the PEW algorithm depends on the choice of the order
parameter. An order parameter is well chosen if it associates well-separated intervals
to different funnels. Parameters deriving from the common neighbour analysis [57]
have proven to be effective since they are able to distinguish crystalline structures,
decahedra, icosahedra and polyicosahedra. Also, parameters measuring the degree
of intermixing, such as the percentage of heterogeneous nearest-neighbour bonds,
can be quite useful.

A good feature of the PEW algorithm is that it is robust against a bad choice of
the order parameter (typically, a choice of an order parameter which associates the
same range of values to different structural motifs). In fact, with a good choice of
the order parameter, the PEW algorithm can achieve relevant improvements over
pure BH. With a bad choice of the order parameter, the performance of PEW is
essentially as good as that of BH [43, 56].

6.3.4 Basin Hopping with Memory: HISTO Algorithm

Another approach which may improve BH takes into account the history of the sim-
ulation, i.e. the memory of previously visited minima. In fact, while searching the
PES for lower and lower minima, it may seem useless to explore again those regions
which have been already visited. The HISTO algorithm uses the order parameter p
to build up a coarse-grained memory of the regions of the PES that have already been
visited. This algorithm adopts the same kind of approach of the energy landscape
paving (ELP) algorithm of Hansmann and Wille [58] and of the metadynamics of
Laio and Parrinello [59]. The main difference with respect to the ELP is that the
HISTO algorithm samples the transformed PES after local minimization. On the
other hand, the metadynamics is a molecular-dynamics procedure.

In the HISTO algorithm, a normalized histogram H is constructed on the fly by
reporting the frequencies of visited minima which belong to different intervals of
the order parameter space. The quantity E∗ is defined by

Ẽ∗ = Ẽ +wH(p), (6.5)
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where w is a positive weight and H(p) is the height of the histogram for the value
p of the order parameter which is associated with the minimum of energy Ẽ . The
Metropolis criterion is applied to Δ Ẽ∗:

Δ Ẽ∗ = Ẽ2 − Ẽ1 +w[H(p2)−H(p1)]. (6.6)

If the order parameter interval of minimum 1 has been more frequently visited than
the interval of minimum 2 one has, H(p1) > H(p2), and therefore Δ Ẽ∗ < Δ Ẽ .
This means that the memory term increases the acceptance probability of moves
to configuration 2. On the contrary, if H(p2)> H(p1), the move is hindered.

The efficiency of the HISTO algorithm has been checked against BH and PEW
in several examples [43,56]. The HISTO algorithm is more sensitive to the choice of
the order parameter than PEW. If the choice is appropriate, improvements over BH
can be more spectacular than in PEW. On the contrary, if the choice of p is such that
different funnels are not mapped to different intervals, the performance of HISTO
easily deteriorates. This is due to the following reason: If the order parameter assigns
overlapping intervals to structures belonging to different funnels, to avoid revisiting
order parameter regions which have been already explored can lead to an incomplete
sampling of parts of the PES which may contain low-energy minima.

6.4 Global Optimization of Free Nickel Clusters

In this section, we consider the global optimization of pure Ni nanoparticles in gas
phase. The PES of the nanoparticle is given by an atomistic SMATB interaction
potential [60]. The results shown in this section are to be compared to those reported
in the following about the structures of oxide-supported Ni nanoparticles.

6.4.1 Atomistic Model

In the atomistic model for Ni, the total potential energy E of the nanoparticle is
written as the sum of single-atom contributions Ei, i.e. E = ∑Ei. Ei is a many-body
term which depends on the ensemble {r} of the coordinates of all Ni atoms. Its
functional form is derived within the second-moment approximation to the tight-
binding model [16, 17] and reads:

Ei = Eb
i +Er

i (6.7)

with

Er
i = ∑

j �=i,ri j<rc

Aexp

[
−p

(
ri j

r0
− 1

)]
; (6.8)
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Eb
i =−

{
∑

j �=i,ri j<rc

ξ 2 exp

[
−2q

(
ri j

r0
− 1

)]} 1
2

, (6.9)

where ri j is the distance between atoms i and j and r0 = 2.49 Å is the nearest-
neighbour distance in bulk Ni. rc is the cut-off radius, which is usually chosen to
include a few shells of neighbours [60]. The parameters (A,ξ , p,q) are usually
fitted to experimental bulk quantities. In this case, we use the values p = 11.73,
q = 1.93, A = 0.084470 eV and ξ = 1.404973 eV and a cutoff radius extending to
the fifth-neighbour distance. This parameter set has been shown to reproduce well
the experimentally observed structures for Ni nanoparticles adsorbed on magnesium
oxide [37].

6.4.2 Results for Free Ni Clusters

We consider the size range from 38 up to about 100 atoms. The global optimization
searches have been performed by means of BH and PEW algorithms [60].
Both algorithms perform well in this size range, which does not require huge
computational efforts.

The global optimization searches show that the dominant motif in this size range
is icosahedral because most of global minima are either incomplete icosahedra
(below size 55, which is the geometric magic size for a perfect icosahedron) or
icosahedra with an atomic island on its surface (above 55 atoms). In Fig. 6.2, we
report the lowest-energy structure found for N = 65. This consists of the magic
icosahedron of 55 atoms capped by an island with anti-Mackay stacking [61], which
means that the island is adsorbed on hcp-like sites instead of fcc-like sites. With
increasing size, the best islands shift to the usual Mackay fcc stacking. Exceptions
to the predominance of icosahedra are size 38, which is a magic size for the fcc
truncated octahedron, and sizes around 75 and 101, where we find Marks decahedra
(see Fig. 6.2).

As we will see in the following, the interaction with the MgO substrate will
strongly modify the preferential structures of Ni nanoparticles.

6.5 Global Optimization of Oxide-Supported Metallic
Clusters: Ni, Ag and Au on MgO(001)

In this section, we focus on some applications of global optimization algorithms to
the search for the low-energy structures of oxide-supported metallic nanoparticles.
In the following examples, we consider the same substrate, the (001) surface of
magnesium oxide and three different metals, nickel, silver and gold. The MgO(001)
substrate presents a checkerboard arrangement of O and Mg sites. For Ni. Ag and
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Fig. 6.2 Structures of gas-phase clusters. Top row: decahedral lowest-energy structures for sizes
75 (left) and 101 (right). Bottom row: two views of the lowest-energy structure at size 65. It is a 55-
atom icosahedron capped by an island in anti-Mackay stacking. Atoms of the island are depicted
in light grey. From [60]. Reproduced by permission of the PCCP Owner Societies

Au, the preferred adsorption sites are on top of oxygen atoms [37, 60, 62, 63].
Therefore, the lattice of adsorption sites is of square symmetry, with a distance
between nearest-neighbour oxygen sites of about 2.98 Å.

Qualitative considerations show that we can expect that these metals may
produce quite different structures on the MgO(001) substrate. In fact, Ni is
characterized by a large lattice mismatch with the substrate. In bulk Ni, the
distance between nearest neighbours is of 2.49 Å, which is much smaller than
the distance between oxygens. On the other hand, Au and Ag present a much
smaller lattice mismatch since their bulk nearest-neighbour distances are of 2.89
and 2.88 Å, respectively. These metals differ also with respect to the intensity of the
interaction with the substrate: Ag interacts weakly, Ni interacts strongly and Au is
intermediate [37, 62].
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6.5.1 Atomistic Model for the Metal-Substrate Interactions

The PES of the oxide-supported nanoparticles is modeled as follows. The binding
energy E of the adsorbed nanoparticles is written as a sum of two contributions:

E = Emet +Esub, (6.10)

where Emet is the metal–metal part, which is modeled by a SMATB potential as in
the case of free nanoparticles and Esub represents the metal–substrate interaction.
Esub is written as a sum of single-atom terms:

Esub = ∑
i

Ei
sub, (6.11)

where the sum is on all atoms of the nanoparticle.
For Ei

sub, a many-body PES for metal–MgO(001) interactions is fitted on first-
principles calculations in order to take into account the main features of the
metal–MgO interaction [64]. This is a weak metal–oxide interaction, with no
interdiffusion and small interfacial charge transfer, which is due principally to
polarization and van der Waals interactions, with only a small contribution from
covalent metal–oxygen bonds. This interaction is of many-body character, i.e. it
depends on the metal coverage, so that a metal atom surrounded by other metal
atoms has a weaker interaction with the substrate than an isolated adatom. A rigid
substrate is assumed. The dependence of the interaction of a metal atom on the
distance from the substrate (z) is reproduced via a Morse-like function, whereas a
cosine function is used to model the dependence of the interaction energy on x and
y coordinates. The functional form of Ei

sub is [65]:

Ei
sub(xi,yi,zi,Zi) = a1(xi,yi,Zi)

×
{

e−2a2(xi,yi ,Zi)[zi−a3(xi,yi,Zi)]− 2e−a2(xi,yi,Zi)[zi−a3(xi,yi,Zi)]
}
,

with

a j(xi,yi,Zi) = b j1(xi,yi)+ b j2(xi,yi)e−Zi/b j3(xi,yi)

and

b jk(xi,yi)=c jk1+c jk2 {cos(χxi)+cos(χyi)}+c jk3 {cos(χ(xi+yi))+cos(χ(xi−yi))}.

Zi is the number of metal nearest neighbours of atom i and χ = 2π/a, with a the
oxygen–oxygen distance in the substrate. The x and y coordinates are parallel to the
< 110 > directions. Zi is calculated including all neighbours within 1.25 r0, with
r0 the nearest-neighbour distance in the bulk metal. The metal-substrate interaction
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has thus 27 parameters c jkl that must be fitted. To some extent, the specific details
of the fitting procedure are metal dependent. A more complete description of the
fitting procedure can be found in [62, 65].

6.5.2 Global Optimization Results for Ni, Ag and Au
on MgO(001)

6.5.2.1 Ni/MgO(001)

Ni/MgO(001) is a system characterized by a huge lattice mismatch between the
nearest-neighbour distance in solid Ni and the lattice of adsorption sites on MgO.
Moreover, the interaction of Ni with the substrate is rather strong. Because of the
lattice mismatch, we expect that Ni will not accommodate easily in the cube-on-
cube epitaxy which would continue naturally the substrate lattice. On the other hand,
the strong interaction with the substrate indicate that adsorption is likely to produce
major structural changes compared to the gas-phase structures shown in the previous
section.

This is indeed the case. The global optimization results show that, for sizes
below 40 atoms, there is no indication in favour of a preferential motif. However,
when size increases above 40 atoms, a clear preference for hcp clusters is evident.
In fact, almost all global minima found in the range 40–100 atoms belong to the
hcp motif [60]. The preferential stability of hcp structures is confirmed also by DFT
calculations on selected motifs for different sizes in this range [37]. We note that
bulk Ni is an fcc crystal and that small Ni clusters are icosahedral in this range;
therefore, the interaction with the substrate is crucial in stabilizing the hcp motif.
In fact, in the hcp clusters, the close-packed planes (which alternate in ABABAB
stacking) are perpendicular to the substrate and oriented in such a way that the
c-axis of the hcp lattice coincides with either the (100) or the (010) direction of the
substrate, as shown in Fig. 6.3.

For sizes larger than 100 atoms, global optimization becomes more and more
difficult, but still feasible up to sizes of 500 atoms. For these large sizes, we have
noted a better efficiency of the PEW algorithm with respect to BH and HISTO.
The global minima still belong to the hcp motif. However, stacking faults begin to
appear in the nanoparticles, i.e. in some parts of the cluster, some ABC sequence of
close-packed planes can be seen [37].

When nanoparticle size increases further, we expect that a transition to the bulk
fcc structure will take place. Unfortunately, the transition size is too large for being
investigated by means of global optimization tools. In order to find this transition,
hcp and fcc clusters have been built up for geometric magic sizes, locally relaxed
and compared [37]. These calculations have shown that the transition from hcp to fcc
clusters takes place in the size range between 2,000 and 2,500 atoms, corresponding
to nanoparticle diameters of 4.5 nm in the surface plane.
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Fig. 6.3 Representative structures of the three significant structural motifs of 40-atom Ni
nanoparticles on MgO: (a) fcc(001) motif, (b) fivefold motif, (c) hcp motif. From top to bottom,
side, top and bottom views of the dots. The bottom view shows only the atoms that are in contact
with the substrate. The fcc cluster presents a bad matching with the substrate already for small
sizes. The fivefold motif is a decahedral fragment whose fivefold axis is parallel to the substrate
surface. The hcp cluster presents a typical zigzag pattern at the interface with the substrate. This
pattern matches the lattice of adsorption sites quite well. Reprinted with permission from [37].
Copyright 2008 American Chemical Society

These results are in good agreement with the experimental observations. This
system has been studied experimentally by Tian et al. [66], who observed hcp
Ni nanoparticles on MgO(001) for diameters below 5 nm and a transition to fcc
structures for larger sizes. Moreover, they observed also the presence of more and
more fcc stacking faults in the hcp nanoparticles as size increases.

6.5.2.2 Ag/MgO(001)

Ag presents a rather small lattice mismatch with MgO(001), and its interaction
with the substrate is weaker than for Ni. We expect that the small size mismatch
would favour a fcc cube-on-cube epitaxy. This is indeed the case. The global
optimization searches show that three structural motifs are in competition for sizes
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Fig. 6.4 Nanoparticles in fcc(001) and fcc(111) epitaxy (left and right columns, respectively).
In the bottom row, we show the facet in contact with the substrate. Reprinted with permission
from [62]

from 40 atoms on. Two motifs are fcc clusters, which differ by the type of epitaxy.
The first motif is denoted as the fcc(001) motif because clusters belonging to this
motif are in cube-on-cube epitaxy and present a (001) facet in contact with the
substrate. The second motif is denoted as the fcc(111) motif because the clusters
present a (111) facet in contact with the substrate, as shown in Fig. 6.4. A (111) facet
has a worse matching with the square MgO(001) surface; however, it is possible to
build up clusters with a larger contact area in this way, and this may compensate
for the weaker adhesion per unit area. The third motif is decahedral, being made of
decahedral fragments with the fivefold axis running parallel to the substrate.

According to the global optimization results, the fcc(001) motif is the most
favourable in the size range up to 300 atoms [62] (the maximum size at which global
optimization has been performed for this system). The lowest-energy clusters for
size 90 are shown in Fig. 6.5. The second motif is the decahedral one, and the least
favourable is the fcc(111) motif. Note that according to the same atomistic model,
gas-phase clusters would not adopt fcc structures, but icosahedral or decahedral
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Fig. 6.5 Lowest-energy isomers for Ag/MgO(001) at size 90. Two fcc(001) clusters (top row), a
decahedral and a fcc(111) cluster are shown, together with their energy difference from the global
minimum, which is the structure in the top left panel. Reprinted with permission from [62]

ones, in this size range [23, 24, 67]. The interaction with the substrate is thus
crucial in determining the nanoparticle structure. At variance with Ni/MgO, Ag
nanoparticles adopt the same structure as bulk Ag, which is fcc.

It is interesting to study the competition of these motifs for sizes larger than
300 atoms. In fact, the Wulff–Kaischew construction [68, 69] predicts a transition
from the fcc(001) to the fcc(111) epitaxy in the limit of large sizes [62], in which the
fcc(111) epitaxy should be slightly favoured. The competition between fcc(001) and
fcc(111) clusters has thus been investigated by building up structures at geometric
magic sizes, finding that the fcc(001) motif prevails at least up to 3,000 atoms.

Also, for Ag/MgO(001), our results compare favourably with the experiments. In
fact, fcc(001) structures are experimentally observed for all sizes [70,71]. Moreover,
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the aspect ratio (i.e. the ratio between the diameter in the x− y plane and the height
of the cluster) of these experimental fcc(001) clusters is close to the aspect ratio of
the optimal clusters obtained in the simulations [62].

6.5.2.3 Au/MgO(001)

The lattice mismatch between Au and MgO is small as in the case of Ag, but the
interaction with the substrate is stronger. The global optimization searches single
out the same motifs as in Ag for sizes between 40 and 300 atoms [62]. Note that,
for smaller sizes, DFT calculations indicate that the lowest-energy structures are
either two-dimensional leaflets or empty cages [63, 72]. For sizes above 40 atoms,
the lowest-energy motif is fcc(001), as in Ag. At variance with Ag, the second motif
is fcc, and the third is decahedral. Indeed, fcc(001) and fcc(111) motifs are in rather
close competition. This suggests that there could be a crossover with increasing size,
also because the Wulff–Kaischew construction indicates that the fcc(111) epitaxy
should be clearly lower in energy in the limit of macroscopic crystals. For this
reason, the energetics of fcc(001) and fcc(111) nanoparticles have been investigated
for sizes above 300 by building up perfect structures at geometric magic numbers.
It turns out that there is a crossover towards the fcc(111) epitaxy for sizes above
1,200 atoms [62].

Let us compare these findings with the experimental results. The results by
Pauwels et al. [73] show that Au/MgO(001) nanoparticles of sizes up to about
1,000 atoms are fcc nanocrystals in (001) epitaxy. This is consistent with our
findings of a crossover above 1,000 atoms. Moreover, the aspect ratios of our optimal
clusters fall in the interval of the experimentally measured aspect ratios that are
however covering a rather wide interval, while the simulated aspect ratios fall in a
narrower interval. The experiments confirm also that a crossover to fcc(111) epitaxy
should take place, even though the crossover size is no yet determined. In fact, the
observation of much larger nanocrystals (diameter of 10 nm and more) shows a
majority of fcc(111) structures [69].

6.6 Conclusions

In conclusion, we have shown that global optimization techniques are reliable tools
for searching for the low-energy structures of nanoparticles for systems and sizes of
interest in experiments. The global optimization searches are often able to single
out unexpected nanoparticle structures, both for free gas-phase clusters and for
supported clusters. The results of these searches can be readily compared with
experimental results. Moreover, the knowledge of low-energy minima is the starting
point from which the statistical mechanics of a nanoparticle can be studied on a
firm basis. For these reasons, we believe that the development of more and more
efficient algorithms to deal with systems and models of increasing complexity is a
very important field in nanoscience.
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Chapter 7
Structure and Chemical Ordering
in Nanoalloys: Toward Nanoalloy Phase
Diagrams

Christine Mottet

7.1 Introduction

Bulk alloys have received a large interest in the second part of the twentieth century
with the industrial development in the transports, the nuclear energy, or catalysis.
Indeed, the mixing of two or more metals has become a way to improve and
design new properties either mechanical or electronic but also in the heterogeneous-
catalysis for the activity/selectivity of the reactions. A fundamental study of the
order and structure of bulk alloys has been given by F. Ducastelle [1] where the
modern tools of solid state physics (electronic structure and statistical dynamics) are
described to understand ordering effects in alloys and to determine phase diagrams.
The phase diagrams represent the different phases of a system as a function of
its concentration and the temperature (zero pressure). It is an essential tool in
order to address a system, at least for what concerns its equilibrium properties [2].
These phases (order or phase separate) are the results, at low temperature, of the
interatomic interactions. In a simple pair interaction model, the way to characterize
the tendency of a system made of element A and element B to order or phase separate
is given by the sign of the so-called V interactions defined as:

V =
1
2
(VAA +VBB− 2VAB), (7.1)

where VAA, VBB, and VAB are the homo-atomic and heteroatomic pair interactions.
These interactions being negative, V >0 means the system has the tendency to
order and V <0 means the system prefers to phase separate. In the first case, the
system makes ordered phase (ordered compounds) at low temperature which can
chemically disorder above a critical temperature, while remaining on a crystalline
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solid (solid solution) before melting at higher temperature. In the second case, the
solubility limit increases with the temperature until it leads to a solid solution at high
temperature eventually or not before melting. More recently, the alloys have been
studied in presence of a surface (alloys surfaces) giving rise to possible “surface
alloys” which were new compounds developed near the surface [3].

Following the size reduction, the new systems of interest are the alloy nanopar-
ticles or “nanoalloys”. These systems have been used a long time ago, for example,
in antic art or medieval stained glass, because of their optical properties (various
color) but of course in a fully empirical way. The first to identify devised metal
(gold) particles in colloidal solutions was Michael Faraday at the Royal Institution
in 1857 [4]. Today, these metallic nanoparticles are widely used in many different
industrial domains such as the chemical industry but still in a rather empirical way.
The fundamental research on these systems aims at rationalizing the link between
the structure and the chemical activity of nanoparticles and nanoalloys [5, 6].
Experimental and theoretical studies of bimetallic clusters showed that the size
effect associated with the alloying effect provides interesting catalytic properties
notably in the optimization of the reactivity/selectivity [7,8]. With the recent devel-
opment of nanotechnology and nanosciences, bimetallic clusters found also some
applications in various domain going from the ultra-high density data storage [9]
to plasmonic [10, 11] and biomedical applications [12–14]. The first review on
nanoalloys has been realized by Ferrando et al. [15] in 2008, following a Faraday
discussion [16]. The goal of this contribution is to make a short review on the
recent theoretical developments in the description of phase diagrams in nanoalloys.
This means how to include the finite size effects and the size variation in the
structure and chemical ordering of nanoalloys going from some hundreds to some
thousands of atoms in a particle. Some experimental studies will be reported in
order to compare the theory with the experiences. Theoretical tools are essentially
the numerical simulations using molecular dynamics or Monte Carlo simulations
with semiempirical potentials. Density functional theory (DFT) is only used when
it is possible, which means at small size (less than about 200 atoms) and zero
temperature in the ground state.

The theoretical model will be described in the second part. The third and
fourth part will be devoted to, respectively, the phase order tendency systems (with
example on Co-Pt, Pd-Au, . . . ) and to the phase separation systems (Cu-Ag). The
discussion and conclusions will be given in Sect. V.

7.2 Theoretical Model

We use numerical simulations to describe the theoretical phase diagrams of
nanoalloys. The statistical methods are in general the Monte Carlo simulations
performed either in the canonical ensemble or, the semi-grand canonical ensemble,
and eventually, the parallel tempering method in order to better characterize the
transition in some cases. Molecular dynamics methods can be used to describe
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the melting transition but are much less efficient than Monte Carlo methods in
concentrated alloys. Finally, global optimization methods or quenched molecular
dynamics are used to determine the ground state structures at 0 K. These statistical
approaches require a quite simple energetic model (semiempirical potential) in order
to be able to perform a great number of total energy calculations to explore the
energy landscape. The one we chose here is a many-body potential [second moment
approximation (SMA)] derived from the electronic structure in the framework of the
tight-binding approximation. This model combines the lessons of the tight-binding
ising model (TBIM) on a rigid lattice and the SMA, taking into account essentially
the difference in the bandwidth of the two constituents but authorizing lattice
relaxations. Whereas the first method has proven to give a rigorous description of
order/disorder effects in bulk and surface alloys, on rigid lattice, the second one
takes into account the interatomic distance variation such as the complex atomic
relaxations in a fivefold symmetry cluster, but with an oversimplification of the
order/disorder phenomena. We will see at the end that a new method with an
approximation to the fourth moment could be able to better integrate the coupling
between chemical ordering and atomic relaxation but with the lost of the analytical
form of the potential. However, the recursion method used to calculate the energy up
to the fourth moment is still much faster than ab initio methods, enabling to perform
Monte Carlo simulations on quite large time scale and size scale systems. Finally,
DFT methods are used either in fitting the semiempirical potentials or to determine
more accurately the lower energy structure of different isomers.

7.2.1 Energetic Model

Many aspects of ordering phenomena in alloys have been described using an effec-
tive tight-binding Ising model obtained by developing the energy in a perturbation
form with respect to the energy of the disordered state on a rigid lattice [17,18]. Such
a model has been extended to the surfaces of alloys, referred to as the TBIM [19].
It describes in a realistic way surface segregation and ordering phenomena at
bimetallic surfaces [20, 21] and in nanoalloys [22–25]. Similar approaches using
the Cluster Expansion Method (CEM) [26] have been performed with effective
interactions fitted to ab initio total energy calculations [27, 28].

However, to study the coupling between structural and chemical arrangements
in the peculiar case of clusters, one has to be able to go beyond the rigid lattice
assumption of the TBIM in order to perform atomic relaxations in the same time
as the optimization of the chemical configuration. This has been done partially
in the “hybrid cluster expansion” method [29] where the structural relaxations
effects have been introduced through the effective cluster interactions to model
the lattice distortion energy. However, to my knowledge, this method has not been
applied up to now on nanoalloys. The other alternative to model nanoalloys is then
to define an interatomic potential depending on the distances between the atoms
which allows both to displace and to exchange atoms of different species. This is
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the case of the many-body potential derived within the SMA of the tight-binding
model [30, 31], which is equivalent to other semiempirical potentials such as the
embedded atom method (EAM) [32], the effective medium theory (EMT) [33],
the Finnis–Sinclair potential [34, 35], and more recently, the bond-order potential
applied to nanoalloys [36,37]. Such potentials have been widely used for pure metal
clusters [38–41] and nanoalloys [42–51]. But it is necessary to emphasize that such
models are, in principle, not sufficient to account properly for ordering effects. In
particular in the SMA model, the hopping integrals introduce only nondiagonal
disorder, whereas most ordering effects in transition alloys have been explained by
including essentially diagonal disorder effects in the TBIM scheme [1], assuming
the hopping integrals to be independent of the nature of the atoms. A consistent
treatment of both chemical and structural effects requires to go beyond the second
moment model. Nevertheless, it is possible to use the SMA potential but with a
parametrization which takes into account the main results of the TBIM, as discussed
in the following [52].

7.2.1.1 The Tight-Binding Ising Model

When only chemical order in an AcB1−c alloy is studied on a rigid lattice, the tight-
binding formalism allows us to derive some effective pair interactions describing
chemical ordering and segregation effects near a surface. In this model, the (small)
part of the total energy of the system, which involves the chemical configuration
dependence, obeys the following Hamiltonian:

Heff = ∑
n

pn

(
Δheff

n − ∑
m�=n

Vnm

)
+ ∑

n,m�=n

pn pmVnm, (7.2)

where:

• pn is the occupation number equal to 1 or 0 depending on whether the site n is
occupied or not by an atom of type A (for a binary alloy AcB1−c, pn = 0 means
that the site n is occupied by an atom of type B).

• The local surface field Δheff
0 is identical to the difference in surface energies

between the pure constituents A and B (Δheff
0 = γA − γB) and Δheff

p = 0 if p �= 0.
• The (alloy) effective pair interaction:

Vnm =
1
2
(V AA

nm +V BB
nm − 2VAB

nm ) (7.3)

between atoms at sites n and m characterizes the tendency to bulk ordering (V>0)
or to phase separation (V < 0). It is negligible in general for fcc alloys beyond
first neighbors; this is why we will use V = Vnm in the following, considering
only the first neighbors.
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Because of the rigid lattice assumption made in the TBIM, such model does
not treat the possible atomic relaxations induced by the size mismatch between the
two components. Moreover, in the particular case of clusters which present some
bulk symmetry deviations together with important atomic structure relaxations,
we need to go beyond the TBIM assumption in order to treat reasonably the
geometrical effects.

7.2.1.2 The SMA Model

Within SMA [30], the band energy of an atom of type i located at site n is
proportional to the square root of the second moment of the local density of states,
leading to the many-body character of the potential. This band energy term writes

Eb
n,i({p j

m}) =−
√√√√ ∑

m
rnm<rc

∑
j=A,B

p j
m ξ 2

i j e
−2qi j

(
rnm
ro
i j

−1

)
(7.4)

and is counterbalanced by a repulsive term of the Born–Mayer type

Er
n,i({p j

m}) = ∑
m

rnm<rc

∑
j=A,B

p j
m Ai j e

−pi j

(
rnm
ro
i j

−1

)
, (7.5)

where rnm is the distance between the atoms at sites n and m, ro
ii, i = A,B is the

first-neighbor distance in the pure metal i, ro
i j =(ro

ii+ro
j j)/2 if i �= j, and rc is the cut-

off distance for the interactions. {p j
m} represents the chemical configuration of the

system, in which p j
m is the occupation number (as mentioned before) equal to 1 or 0

depending on that the site m is occupied or not by an atom of chemical type j, ( j =
A,B) (for a binary alloy AB, pA

m = 1− pB
m = pm). The parameters (Ai j, pi j, qi j, ξi j)

are fitted to different experimental values: the cohesive energies, atomic radii, and
elastic constants of the pure elements and solution energies for the alloys.

The total energy of the system is then written as follows

Etot({pi
n}) = ∑

n
∑

i=A,B

pi
n

(
Ei,b

n ({p j
m})+Ei,r

n ({p j
m})
)
. (7.6)

The parametrization of the SMA potential should take into account the segrega-
tion driving forces of the TBIM which are:

• The difference in surface energies: the element with the lower surface energy is
the one with the tendency to segregate.

• The alloying effect with the tendency to make ordered phases (V > 0) with an
oscillating profile near the surface and the segregation of the majority species or
to phase separation (V < 0) with one element at the surface and the other in the
core.

Plus the size mismatch: the element with the larger atomic size will segregate
because of the anisotropy of the potential in tension/compression.
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As the semiempirical potentials usually underestimate the surface energy, it is
important to fit at least the difference of the surface energies in order to get the
right segregating metal. Concerning the mixed parameters, they have to be fitted
in order to reproduce the main properties of the bulk phase diagram [2]. A very
detailed study has been performed on the description of the surface segregation
driving forces into these three elementary contributions (surface energy, alloy effect,
and size mismatch) in order to get a universal description for any type of transition
metal alloys and at least concerning systems sufficiently different as Cu-Ag and Co-
Pt [53]. As a conclusion, even if these contributions are more or less coupled, it has
been found that the difference of atomic radii of the components leads to a variation
of the effective pair interactions as used in the TBIM between the surface and the
bulk (or the core).

To go beyond these models, we developed recently a fourth moment approxima-
tion (FMA) still in the tight-binding framework but with the advantage to combine
in the same approach the diagonal disorder (which was neglected in the SMA) and
the nondiagonal disorder. Thanks to this extension in moments of the description
of the electronic density of states, it has been possible to describe general maps
ranging any metallic alloys according to its tendency to make ordered or separated
phases [54] as a function of the difference in the d orbital levels of each elements
of the system (diagonal disorder), the difference of its d bandwidth (nondiagonal
disorder), and the average d band filling in the alloys. As compared to before
where this tendency to order or phase separate was only considered through the
diagonal disorder [1], this new approach allowed to include very important systems
such as Cu-Au or Co-Pt where the weak diagonal disorder (≤1) prevented to class
them in the right place. We expect to use such nonanalytical potential in Monte
Carlo simulations to describe nanoalloys as it has proven to be very efficient in the
description of carbon nanotube on Ni clusters [55] or Ni clusters [56].

7.2.2 Statistical Models

Different statistical methods are used depending on the problem addressed. There
are two traditional classes of methods: molecular dynamics [57] and Monte
Carlo [58] simulations. Both these methods are able, theoretically, to reach er-
godic sample in order to define the equilibrium configuration in complex energy
landscape. However, molecular dynamics is more suited to describe in a first approx-
imation some dynamics (kinetics) phenomena, whereas Monte Carlo simulations are
essentially devoted to characterize equilibrium states. Molecular dynamics needs to
use an analytical potential in order to derive atomic forces, whereas Monte Carlo
simulations can be used with more complicated expressions (nonanalytical) of the
energy. These methods can be used at finite temperature but also near 0 K, in order
to find the ground state. This is the case, for example, of the quenched molecular
dynamics where the system is directed toward the nearest energy minimum (local
minimum energy). Such method is not able to find the global-minimum energy,
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i.e., the structure with the optimal chemical order with the more stable state. The
best methods to use in such case are the global optimization methods which are
explicated in this book in the chapter of Riccardo Ferrando.

In this chapter, we will use the canonical molecular dynamic method, at constant
temperature, with the Andersen thermostat [59] to simulate the melting properties
of some magic core-shell nanoalloys and some diluted nanoalloys. Such transition
implying mainly a structural transition rather a chemical order transition, the
molecular dynamic simulation is well suited. Indeed, molecular dynamic on solid
phases is not realistic because of its too long time scale. One step of the simulation
is being scaled on the vibration frequency of one atom in the solid, i.e., about one
femtosecond; a current simulation represents not much than one millisecond in real
time, which corresponds to 1,000 mega steps of calculations. It is worth noticing that
such time scale is nevertheless relevant in what concerns some growth processes
in nanoalloys since the atomic diffusion mechanisms are probably accelerated
in clusters as compared to the bulk, thanks to the large proportion of surface
atoms [44]. The quenched molecular dynamic is also used in order to optimize the
atomic structure at 0 K, after Monte Carlo simulations which are more efficient to
optimize the chemical configuration.

Concerning properly the chemical order transition in solid states, Monte Carlo
simulations are much more suited because they allow to perform “unphysical”
atoms exchanges between atoms of different species without taking into account
the diffusion processes as in molecular dynamic simulations. Monte Carlo steps,
including random atomic displacements and random exchanges of atoms of different
nature, allow a good exploration of the energy landscape. Each Monte Carlo step is
accepted with a Boltzmann probability according to the Metropolis criterion [60]:

acc(C →C′) = min

{
1,exp

(
−E(C′)−E(C)

kT

)}
. (7.7)

There are several thermodynamical ensembles to perform Monte Carlo simu-
lations among which we will consider in particular the canonical and semi-grand
canonical ones. Both keep the temperature constant, and we choose to keep the
pressure constant (varying the volume). The canonical ensemble keeps the number
of atoms of each species constant, whereas the semi-grand canonical ensemble
keeps the chemical potential difference between the two species constant which
means that the total number of atoms is constant but the concentration varies. Such
ensemble enables to describe all the compositions of alloys at a given temperature
giving access to segregation isotherms in alloys surfaces [3].

Finally, the parallel tempering method [61] is a very powerful tool for achieving
ergodic sampling in complex energy landscapes. Indeed, apart from the fact that
it can eliminate the hysteretic behavior during heating/cooling cycles, it also
provides much more accurate and statistically converged equilibrium quantities
in order to explore possible phases coexistence (bistability) during the transition
in order to characterize the nature of the transition (first order or second order).
The method consists in running simultaneously different classical Monte Carlo
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simulations (trajectories) at a specific temperature and the different trajectories
can be exchanged (swap of the configurations) from one temperature to another
according to the Metropolis-like probability:

acc(C →C′) = min

{
1,exp

[(
1

kT ′ −
1

kT

)
(E(C′)−E(C))

]}
(7.8)

The exchange between two configurations (or replicas) will occur only if the
potential energy distributions of adjacent replicates overlap with each other, as the
swap will precisely take place in the overlapping region.

7.3 Melting Transition in Nanoalloys

The melting properties have a high impact on many applications of nanoclusters
since knowing the variation of the melting temperature as a function of the cluster
size, it is expected to decrease sensibly with cluster size below a diameter of
5 nm [62, 63], following the Pawlow theory. As a consequence, it is necessary to
control the temperature if we want to keep their solid structure. Inversely, some
applications of the nanoparticles seem to require the liquid nanodroplets as the
catalytic growth of carbon nanotubes [64].

We consider here the alloying effect on the melting transition in some particular
cases where the composition influences the melting temperature. We would like
to emphasize that the cluster structure plays an important role in the variation of
the melting temperature. By considering magic polyicosahedral core-shell nanoal-
loys [45], we have shown that their particular stability leads to a significant increase
of their melting temperature as compared to the pure systems of same size. This
specific stability is induced by the size mismatch between the two components
which increases the stability of complex fivefold symmetry structures which are
not stabilized in pure clusters. To push this effect to its limit, we considered only
one impurity and obtained a significant increase of the melting temperature well
correlated with the size mismatch between the impurity and the constituent metal of
the cluster [65].

7.3.1 Melting of Magic Polyicosahedral Core-Shell Nanoalloys

A new family of core-shell nanoalloys, predicted by global optimization with
SMA potentials and confirmed by density functional calculations, presents very
interesting melting properties as they melt at higher temperature than the pure
equivalent size clusters. This new family of nanoalloys of sizes between 34 and
55 atoms are formed by a core of Cu or Ni atoms and a shell of Ag atoms. The bulk
Cu-Ag and Ni-Ag alloys form a large miscibility gap in their bulk phase diagram [2]
which induces also a strong phase separation in the cluster under the shape of a
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Fig. 7.1 Polyicosahedral clusters with Ni or Cu atoms in yellow and Ag atoms in gray. From the
left to the right, the (27,7)pIh7 has a decahedral core of 7 atoms and an anti-Mackay overlayer of 27
Ag atoms. The (32,6)pIh6 has been called a pancake structure with the six inner atoms placed on a
regular hexagonal ring. The (30,8)pIh8 is the perfect core-shell structure including the maximum
number of core atoms at size 38 (in competition with an FCC truncated octahedron (TOh)). Finally,
the (32,13)pIh12 corresponds to the complete anti-Mackay icosahedron of 45 atoms, with a perfect
Ih13 core (adapted from [45])

core-shell structure with the silver whose surface energy is the lower in the shell.
However, this is not the main driving force to get such polyicosahedral structure.
The specific structures as illustrated in Fig. 7.1 result also from the high lattice misfit
between the two elements (12–14%). They are called polyicosahedral (pIh) as they
are built by packing elementary Ih13 clusters. Four pIh are displayed in Fig. 7.1 with
6, 7, 8, to 13 Cu or Ni atoms in the core and the others of Ag at the surface.

DFT calculations [66] showed that these structures present not only a minimum
of energy as compared to other isomers but also some electronic characteristics as a
large HOMO-LUMO gap and a magnetic moment in the case of Ni-Ag systems [45].
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Fig. 7.2 Melting of the
(27,7)pIh7 with Cu or Ni in
the core (respectively circles
and squares) and pure Ag,
Cu, and Ni clusters of
38 atoms (respectively stars,
diamonds, and triangles).
The top panel shows the
molecular dynamics caloric
curves δ E (in eV) versus T
(in K), where δ E =
E −EGM −3(N −1)kBT ,
EGM being the ground state
(global minimum) and the
other part, the harmonic
contribution. The middle
panel reports the probability
of finding the cluster in its
global-minimum structure as
a function of T . The bottom
panel reports the vibrational
specific heat per degree of
freedom (in units of the
Boltzmann constant kB)
(adapted from [45])

As a result of such properties at 0 K, in the steady state, we also investigated
the thermodynamic properties of such structure, in particular the (27,7)pIh7. Using
molecular dynamics and the SMA potentials, the caloric curve of the Cu7Ag27 and
Ni7Ag27 has been calculated together with the probability of finding the cluster in
its global minimum as a function of the temperature (structural order parameter)
and the vibrational specific heat in the harmonic superposition approximation
(Fig. 7.2). As compared to the same quantities for pure clusters of 38 atoms (i.e.,
the nearest magic size for pure systems), we can see that the nanoalloys of
34 atoms melt at much higher temperature than the pure clusters of the constitutive
metals with 38 atoms. According to the Pawlow theory, the slight size difference
between the pure clusters and the nanoalloys would be in favor of a decreasing
melting temperature with decreasing size. However, such theory is rather adapted
to larger sizes. From the point of view of bulk alloys phases diagram, and in
particular concerning the Cu-Ag and Ni-Ag systems, they both present an eutectic
corresponding to a lowering of the melting temperature of the alloy compared to the
pure metals, which is in the opposite from what happens in nanoalloys.

The melting behavior of the nanoalloys is clearly in opposition with the bulk
alloys’ behavior. The reason comes from the very high stability of the structure of
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Fig. 7.3 Left panel: snapshots from the melting dynamic molecular simulations: pure Ag55 (top
row), Ag54Ni (middle row) and Ag54Pd (bottom row) at different temperature. The impurity is
colored. Right panel: caloric curves using the same energy definition as in Fig. 7.2 for Ag clusters
of 55 and 147 atoms. Pure Ag clusters (crosses) and Ag clusters with Cu (squares), Pd (diamonds),
and Au (asterisk) impurity (adapted from [65])

the nanoalloys which, thanks to the difference in atomic size, accommodates these
pIh structures by removing the strain in compression in the core. Indeed, usually, the
fivefold symmetry structures optimize the surface at the expense of the core which
undergoes a strong compression. It has been shown that removing the central atoms
of icosahedra improved their stability [67]. Here, it is shown that replacing the core
atoms by smaller ones allows to form new pIh structures which are more stable than
pure systems. This result has been generalized on a large family of systems [68].

7.3.2 Single Impurity Effect on the Melting of Nanoclusters

As mentioned just before, the size mismatch between the two elements of the
nanoalloys seems to be the most important driving force to stabilize magic core-shell
nanoalloys. Pushing this argument to its limit, we have investigated the extreme case
with only one impurity in the cluster [65]. Figure 7.3 displays the snapshots of pure
Ag cluster of 55 atoms with the Ih structure and with one Ni or Pd impurity. We see
clearly that the pure cluster and the cluster with one Pd impurity are melted at 600 K,
whereas the cluster with one Ni impurity is still icosahedric at this temperature.

The caloric curves (Fig. 7.3) performed on these clusters including also Cu and
Au impurities show that the melting transition is shifted toward higher temperature
according to the atomic size of the impurity. The smaller the impurity the higher the
melting temperature. We check on these curves for the 55 atoms size and the 147
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Fig. 7.4 Atomic stress on the central site σcore and impurity solution energy ΔEimp for icosahedral
clusters of different magic sizes together with the one in the bulk phase [2] for comparison. The
symbols are the same as in Fig. 7.3 (adapted from [65])

atoms size that the Ni impurity with the smaller atomic radius (14% misfit) leads to
the more shifted melting transition, followed by Cu then Pd, and finally Au (with no
misfit) which does not influence the transition.

The correlation between the size of the impurity and the strain and the chemical
nature of the impurity in terms of solution energy has been performed and is
illustrated in Fig. 7.4. The calculations are performed at 0 K. They confirm the
correlation between the stability of the clusters (higher melting point) and the size
mismatch of the impurity compared to Ag. The higher stress is obtained in the pure
cluster or with the impurity of gold which makes almost no difference, whereas the
stress decreases when the atomic size of the impurity decreases. Also we observe
the stress increases for all the systems as a function of the cluster size. Concerning
the dissolution energies, we notice that for the gold impurity, it is almost the same
in the cluster than in the bulk there is a slight difference for the palladium impurity,
and it is almost opposite in the case of the Cu and Ni impurity. Allowing the
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atomic relaxations around the impurities, we can conclude that the chemical effect
is strongly counteracted by the stress effect which is much more important in the
clusters than in the bulk.

7.4 Segregation Transition in Cu-Ag Nanoalloys

The core-shell structures mentioned in the precedent section were a result of a strong
size mismatch and a difference in surface energy leading the element with the lower
surface energy at the surface. The other important driving force for such core-shell
structure is the tendency to phase separation, preventing the alloy to mix. I will
now discuss in more details and in a larger size range the segregation transition
in nanoalloys. We consider the Cu-Ag system as it presents a strong tendency to
phase demixion and all the driving forces lead to the surface segregation of silver.
We will report here the work performed by the group of B. Legrand, J. Creuze, F.
Berthier, and coworkers [69]. This system has attracted much interest in the past
to describe theoretically and experimentally the surface segregation phenomena
on alloy surfaces (see [3]). Surface segregation is a very important phenomena in
practical for alloy surfaces and interfaces applications, mainly in the cases of thin
films as used in microelectronics and magnetic multilayers. The same phenomena
occurs in the bimetallic nanoparticles where we observe the formation of core-
shell nanoalloys or Janus nanoparticles (see the contribution by F. Baletto in this
book). A nice experimental observation of these structures has been performed
by C. Langlois et al. [70], where the image by transmission electron microscopy
(TEM) shows clearly the bimetallic nanoparticles and the demixion of the Cu and
Ag phases inside one particles. The experimental sizes of the nanoclusters are still
much larger than the one usually considered in the theoretical investigations. Also,
the experimental precision does not allow to distinguish the composition at the
surface layer, as we will discuss in the following using numerical simulations. This
is why the theoretical approach is still very important and complementary to the
experimental study (Fig. 7.5).

The superficial segregation in bimetallic Cu-Ag nanoparticles has been addressed
using different approximations: the TBIM energetic model on rigid lattice with
Monte Carlo and mean-field approximation analysis [24, 25, 71], and the SMA
energetic model allowing atomic relaxations with Monte Carlo simulations [72] in
canonical and semi-grand canonical ensembles.

Taking a model cuboctahedron system on a rigid lattice, it presents four types of
inhomogeneous sites at the surface (the (111) and (100) facets, the edges, and the
vertices) and the core sites which differ essentially by their coordination numbers
(see Fig. 7.6). Hence, in the mean-field approximation where the short-range order
is neglected, the system is described as an ensemble of p classes with homogeneous
concentrations cp according to the well-known segregation equation:

cp

1− cp
=

c
1− c

exp

(
−ΔHseg

p

kBT

)
, (7.9)
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Fig. 7.5 Energy filtered
imaging by transmission
electron microscopy
(EFTEM) of Cu-Ag
nanoparticles with
color-coded chemical map
(Ag in blue/dark and Cu in
yellow/bright). Note the
presence of pure Ag
nanoparticles that have
nucleated separately on the
substrate (adapted from [70])

Fig. 7.6 Segregation isotherms (T =1,100 K) of a cuboctahedral cluster of 3,871 atoms for the
different classes of sites of the external shell (vertices with solid line and squares, edges with
dashed line and circles, (100) facets with dotted line and up triangles, (111) facets with dashed-
dotted line, and down triangles and core with dashed-dotted line and diamonds). The lines
represent the mean-field calculations and the symbols the Monte Carlo simulations (adapted
from [25])

where c is the bulk concentration in the Cu1−cAgc alloy and ΔHseg
p is the segregation

energy to put an impurity atom from the bulk to the surface. This expression is
commonly used in semi-infinite systems where the bulk concentration reference is
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well defined. This is no more the case in clusters where the finite size induces a
coupling between the surface and core concentration, and the core concentration
is not equal to the nominal concentration c. This is why it is more convenient
in nanoparticles to use the semi-grand canonical ensemble which keeps constant
the difference in chemical potentials: Δ μ = μAg − μCu and let evolve the average
concentration c in the cluster. The last equation can be expressed in the following
way (see [25] for more details):

cp

1− cp
= exp

(
−ΔHperm

p −Δ μ
kBT

)
exp

(
4

T p
c

T
cp

)
, (7.10)

where ΔHperm
p is the permutation energy corresponding to the energy balance due

to the transformation of an impurity atom of type B in an atom of type A on a
p-class site and T p

c is the critical temperature of phase transition T p
c =− ZpV

2kB
, where

Zp is the coordination number in the p-class. The segregation isotherms (in silver
concentration) are shown in Fig. 7.6 for each type of surface sites and in the core as
a function of Δ μ .

At temperature higher than the critical temperature of the miscibility gap, first-
order phase transitions (van Der Waals loop) are not expected. The segregation
isotherms are continuous, and the mean-field approximation is quite equivalent to
the Monte Carlo simulations. As a function of Δ μ or NA, the surface segregation
begins at the corners, then on the edges and on the different facets following the
increasing order of coordination numbers, as expected from the linear dependence
of ΔHperm

p with the coordination number. As a function of the Ag atoms number,
we notice that once the surface is pure in Ag, the core begins only very slowly to
be enriched in silver, leading to a core/shell structure even at high temperature. The
facets segregation is very similar to the corresponding semi-infinite alloy surfaces
modeled in the same way. The equivalent of Fig. 7.6 is shown in Fig. 7.7 at lower
temperature (T =300 K) where only the stable states have been represented (the
metastable and unstable states of the van der Waals loop have been suppressed) [24].
We observe an inversion of the order of segregation between the facets sites, the
(111) facets being enriched before the (100) ones, these transitions being much
more abrupt for the facets (first order) and the mean-field calculation differs from
the Monte Carlo simulations. In fact, there is a coupling between the facets and the
edges which is stronger for the (111) facets. As this coupling depends on the cluster
size and also its morphology, this reversal should disappear for larger sizes and
other truncated octahedra. If Monte Carlo simulations and mean-field approach are
in good agreement about the relative position of the isotherms, they differ on their
nature: the transitions in the mean-field approximation are of first order for the edges
and facets, whereas they are continuous in Monte Carlo for any kind of site, even
if they present a very stiff variation in a narrow Δ μ range for the facets. By a more
detailed study of the facets segregation, we notice that the facet is inhomogeneously
enriched: it begins to be colored by silver atoms from the border (near the edges) to
the center.
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Fig. 7.7 Segregation isotherms (T =300 K) of a cuboctahedral cluster of 3,871 atoms for the
different classes of sites of the external shell (same symbols as in Fig. 7.6) (adapted from [24])

Moreover, at the neighborhood of the transition, looking at two instantaneous
configurations of the clusters (Fig. 7.8), we observe that some of the (100) facets are
pure in silver, whereas some other are pure in Cu and the same facet, at two different
instants, change from pure Ag to pure Cu. This is why it has been interesting to plot
the instantaneous facet concentration as a function of the number of Monte Carlo
steps (Fig. 7.8). When considering one single facet, the transition is sharp between
a pure Ag facet and a pure Cu facet, whereas when considering all the (100) facets
(there are 6), the average concentration is intermediate because there is no collective
transition of all the facets. Some of the facets play the role of a reservoir for the
transition of other ones.

This study on rigid lattice using the TBIM model puts in evidence interesting
results on the type of transition concerning the surface segregation but also on
the wetting phenomenon [24] which is not detailed here. However, concerning the
nanoclusters, such hypothesis does not take into account all the strain effects which
are very important in the clusters. In the following, we will consider the atomic
relaxations performing atomic displacements in Monte Carlo simulations using the
many-body SMA potential on a 405-atom TOh at 300 K [72]. The segregation
isotherms are illustrated in Fig. 7.9 for the four different types of surface sites at
300K. The range of Δ μ is chosen in order to consider only the outer shell enrichment
in Ag, the underlying shells remaining Cu pure. These isotherms are continuous and
reversible but display quite stiff variations, especially the one of the (100) facets.

To detail this variation, Fig. 7.10 plots the evolution of the concentration of the six
(100) facets as a function of the number of Monte Carlo steps for Δ μ =0.39 eV. We
observe also a dynamical equilibrium between two configurations, as in the TBIM
approximation, but now, the chemical transition is accompanied by a structural
change of the shape of the facets from square to diamond shape, as illustrated in
Fig. 7.10. Moreover, the transition of one facet is no more independent of the others,
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Fig. 7.8 Two snapshots obtained by Monte Carlo simulations at T =300 K for Δ μ = 0.476 eV.
Cu atoms are in white and Ag atoms in black. On the right side, the instantaneous concentrations
for one individual (100) facet (a) in the same conditions as the snapshots and for the average
concentration on all the (100) facets (b) as a function of the number of Monte Carlo steps
(from [24])

Fig. 7.9 Segregation isotherms at T =300 K on the 405-atom TOh with the different site
concentrations “c” of the outer shell: vertices, edges, (001) and (111) facets (adapted from [72])
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Fig. 7.10 Evolution of the concentration “c” of the 6 (001) facets (a), of a unique (001) facet (b),
and of the angles (θ1,θ2) of one (001) facet (c) as a function of the Monte Carlo steps (MCS) at
300 K and Δ μ =0.39 eV. On the right, the representation of the cluster with the square (90,90) and
the diamond (70,110) shape. Ag atoms in gray and Cu atoms in yellow (adapted from [72])

and all the six facets are changing collectively in order to allow the morphological
transformation. Plotting the angles of these facets, we can follow the structural
variation of the facets which is exactly correlated to the chemical variation of
composition of the facets from Cu pure (square shape) to Ag pure (diamond shape).
This diamond shape corresponds to a pseudo (111) facet orientation of the Ag
atoms on top of the (001) underlying Cu facet, which recalls the heteroepitaxial
structure obtained in the deposition of one monolayer of Ag on a Cu(001) infinite
substrate [73,74] where the Ag surface adopts an hexagonal structure on the square
substrate. However, the size of the cluster facet is much smaller than the optimal
c(10× 2) Ag/Cu(001) obtained in the semi-infinite system.
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Fig. 7.11 (top row) Chiral structure of Ag107Cu85. (middle row), Achiral pentaIh structure of
Ag90Cu56. (bottom row) Achiral eptaIh structure of Ag102Cu75 (adapted from [75])

In nanoclusters, the structure being so flexible, we can expect also a lot of
possible coupling between the chemical and the atomic structure. As an example,
and to remain with the same Ag-Cu alloys, global optimization calculations at 0 K
(see the contribution by R. Ferrando in this book) has shown the stability of high-
symmetry core-shell chiral structures in many nanoalloys (AgCu, AgCo, AgNi,
and AuNi), all of them presenting a strong size mismatch between the core atoms
and the surface shell atoms [75]. The chiral shell (see Fig. 7.11) is obtained by
a transformation of an anti-Mackay icosahedral shell by a concerted rotation of
triangular atomic islands which breaks all mirror symmetries. This transformation
becomes energetically favorable as the cluster size increases, for example, at the
size of Ag132Cu147 with the same SMA potential as used before, but at a larger size
(Ag212Cu309) if we consider another parametrization of the SMA potential in order
to better fit the small nanoalloys on DFT calculations. Indeed, ab initio calculations
do not stabilize the chiral structure of the Ag132Cu147 system, but there are no DFT
calculations at larger size to confirm the prediction of the other potential.
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7.5 Order/Disorder Transition in Co-Pt Nanoalloys

Other categories of alloys concern the one with the ordering tendency (Cu-Au, Fe-
Pt, Co-Pt). For ultra-high density magnetic recording [76], the systems composed
of one 3d ferromagnetic metal and one 5d metal present a strong spin–orbit
coupling in order to increase the magneto-crystalline anisotropy. This is particularly
interesting to increase the blockage temperature of the nanoparticles preventing
their superparamagnetism at room temperature [77]. The question arises whether
the nanoparticles can be ordered at any size as in the bulk where the L10 ordered
phase displays an important magneto-crystalline anisotropy with the alternance of
pure atomic layers of the two metals. For example, an article by Miyazaki et al. [78]
in 2005 stipulated that the ordering of L10 Fe-Pt nanoparticles was entirely inhibited
for sizes less than 2 nm. However, the order/disorder transition as a function of
cluster size has been further investigated demonstrating experimentally the ordering
of nanoparticles as small as 2 nm in size [77, 79, 80]. In the following, we will
consider the Co-Pt nanoparticles in a range of size of 1–3 nm and compare the
theoretical results to experimental ones performed in TEM and grazing incidence
X-ray diffraction (GIXD).

The structure and chemical ordering of Co-Pt nanoalloys at 0 K, in the ground
state, has been investigated depending on the cluster size by global optimization
(for sizes smaller than 150 atoms) and by Monte Carlo and quenched molecular
dynamics for larger sizes up to 2,500 atoms. Below one hundred of atoms, the Co-Pt
nanoclusters present polyicosahedral structures (see Fig. 7.12) with on the surface
both pentagonal and hexagonal Pt rings containing, respectively, one and two Co
atoms in their center [81]. Going to the core and the center of the cluster, the radial
distribution illustrated in Fig. 7.12 shows an alternance of Pt and Co shells, starting
with a Pt atoms at the center and with Co atoms in the more external surface
shell. This is a clear signature of the tendency to order at the difference of the
typical core-shell structures illustrated before. Between 100 and 600–700 atoms,
the structure is decahedric with a chemical order resembling the L10 phase but
along an alternance of hexagonal atomic planes (see Fig. 7.13). This structure is
obtained either by global optimization for size up to 150 atoms and by Monte Carlo
and quenched molecular dynamics, starting with a decahedron structure. At larger
sizes, the FCC TOh ordered according to the L10 phase is the equilibrium structure.
In Fig. 7.13, the energy optimization is performed by Monte Carlo simulations
at finite temperature for the chemical ordering including atomic displacements
and completed by quenched molecular dynamics simulations for the final atomic
relaxation. The structural transition between Dh at small sizes and TOh at large sizes
is predicted at about 2–2.5 nm within the tight-binding semiempirical potential used
in this study [80].

We will then consider the order/disorder transition in the FCC TOh structure
at finite temperature to study in which condition it is possible to obtain the L10

ordered phase. The order/disorder transition is characterized by an order parameter
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Fig. 7.12 Global-minimum structure of the Pt29Co29 system (Co atoms in white spheres and Pt
atoms in dark spheres) with its radial distribution. Distances are calculated with respect to the
geometrical center of the cluster. The cluster exhibits an alternance between Pt and Co shells, with
the outer shell made up of Co atoms (adapted from [81])

Fig. 7.13 Phase diagram at
0 K (ground state) of Co-Pt
clusters representing the
energy difference as referred
to the FCC truncated
octahedron (TOh) for
nonperiodic structures as the
icosahedron (Ih) and the
decahedron (Dh) of different
magic sizes (TOh: 201, 314,
405, 807, 1,289, 2,075,
2,951 atoms, Ih: 309, 561,
923, 1,415, . . . and Dh: 318,
434, 766, 1,067, 2,802, . . . ) at
equi-concentration (adapted
from [80])
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Fig. 7.14 Long-range order parameter of Co-Pt systems from Monte Carlo simulations: bulk (full
line) and clusters of 1,289 atoms (circle), 807 atoms (square), and 405 atoms (triangle). TEM
illustration of an ordered Co-Pt cluster (adapted from [79])

which is equal to one in the L10 ordered phase and to zero in the disordered
phase. Monte Carlo simulations in canonical ensemble are used to find the equi-
librium configuration at finite temperature, starting from the ordered structures,
and increasing progressively the temperature. The long-range order parameter of
the bulk and clusters from 2 to 3 nm are displayed in Fig. 7.14. The bulk critical
temperature has been shifted in order to scale with the experimental one. In fact,
our model finds a temperature about 200 K lower than the experimental one. We can
notice on this figure that the critical temperature of disordering of the nanoclusters
decreases as the cluster size decreases. This result is in nice agreement with the
experimental study by TEM [77, 79] or by X-ray diffraction [80] and by other
theoretical studies [22,27,36,82]. We notice also that the transition becomes less and
less sharp as the cluster size decreases, and in the same time, the hysteresis which
is not shown here is more and more narrow. These arguments favor a progressive
transition in case of finite size systems as compared to bulk one.

The nature of the order/disorder transition in nanoalloys has been questioned
notably by theoreticians [23]. But also experimentally [80]. Using Monte Carlo sim-
ulations based on a lattice-model framework, calculating the canonical distribution
functions, it has been shown that the size dependence of the order/disorder tempera-
ture and the continuous nature of the ordering transition can be understood as being
natural manifestations of a disordering mechanism that is surface induced [23].
Using the SMA potential which allows atomic relaxations, we performed parallel
tempering Monte Carlo simulations to alleviate slow convergence and circumvent
hysteretic behavior. By this method, we have shown the coexistence between
ordered and disordered phases, as evidenced by the bimodal distributions for the
bulk sample and 807-atom TOh Co-Pt cluster (Fig. 7.15).

While the disordered phase nucleates from local surface defects as illustrated in
Fig. 7.16, it requires significant lattice deformations to proceed completely. Indeed,
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Fig. 7.15 Energy and order parameter μ = nCoCo+nPtPt−nCoPt
nCoCo+nPtPt+nCoPt

where nAB is the number of pairs of
first neighbors of type A and B as a function of the temperature averages obtained from parallel
tempering Monte Carlo simulations. Co-Pt nanoparticles of 807 and 405 atoms in the TOh structure
are compared to a bulk sample with 512 atoms in the simulation box. The same colors are kept to
represent the heat capacity Cv and the fluctuations of the order parameter μ . Finally, the canonical
distributions of the order parameter μ is represented on the right side for the three systems (adapted
from [83])

we found that the tetragonalization of the L10 phase, associated to the order/disorder
transition as compared to the FCC disordered phase, is a clear signature of the
transition in the Monte Carlo simulations, as in the experiments where either by
TEM but also by GIXD, we can follow the ordering through the appearance of
superlattice peaks at high annealing temperatures. In Fig. 7.17, the GIXD spectra
of Co-Pt nanoparticles [80] grown in situ and observed during the annealing are
represented at different temperatures during the growth (right panel of Fig. 7.17).
The experimental spectra are fitted with simulated ones obtained from the modeled
clusters as presented in Fig. 7.13 but in the disordered chemical state. Until 900 K,
the nanoparticles are disordered and then, at 900 K, we observe the two peaks of
superstructure corresponding to the tetragonalization of the ordered L10 phase. On
the left panel of Fig. 7.17, the GIXD calculated spectra are displayed for different
values of the order parameter (LRO) in order to fit the experimental one. The best
fit is obtained for a coexistence of an ordered and a disordered state in the same
particle, as illustrated in Fig. 7.16, which can be understood also in the experimental
sample as a coexistence of fully ordered nanoparticles and fully disordered ones
at the same time. This is the first experimental signature of a bistability in phase
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Fig. 7.16 Probability that an element differs from its reference in the perfect-ordered 807-
atom nanoparticle as a function of its coordination, at the transition temperature. The results
are shown for three samples of configurations in the ordered and disordered phases of the
coexistence regime and for the transition state ensemble using the parallel tempering Monte Carlo
simulations. Adapted from [83]. On the right, the 807-atom TOh cluster is represented with color
code corresponding to average probabilities obtained by canonical Monte Carlo: in red/blue, a
probability of one to have a Co/Pt atoms on the site, and in green, a probability of one-half

Fig. 7.17 On the right panel, experimental and calculated GIXD spectra of Co-Pt clusters at
increasing temperature during the growth in situ. As the temperature increases, the structure
evolves from Ih to Dh and FCC TOh. The insets show the snapshots of the simulated clusters.
A vertical dashed line corresponding to the FCC(100) line is given for comparison. On the left
panel, calculated GIXD spectra for different long-range order (LRO) parameters of the FCC
TOh Co-Pt clusters and their comparison with the experimental one obtained at 900 K (adapted
from [80])
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transition of nanoparticles. This result is comparable to the theoretical one obtained
in the precedent section concerning the bistability in the segregation transition of
the Cu-Ag nanoalloys.

7.6 Conclusions

The study of the atomic structure and chemical ordering of nanoalloys is a
fundamental task with a lot of industrial applications needing to build a strong
link between the theoretical and experimental characterization of these systems
in order to elaborate nanoalloy phase diagrams and the technical applications in
various domains such as the heterogeneous catalysis, the ultra-high density magnetic
storage, some optical properties in plasmonic, and some biomedical applications.
The physical and chemical properties of these objects are very sensitive to their size,
structure, and morphology, all depending on their elaboration condition. The recent
numerical simulations in relation with very controlled experiments allow to draw
a first picture toward nanoalloy phase diagrams as it has been shown here in two
typical systems with the phase separation tendency (Cu-Ag) and with the ordering
tendency (Co-Pt).
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Chapter 8
Modelling Janus Nanoparticles

Francesca Baletto

8.1 The Janus World: An Introduction

In 1992, during his Nobel speech, P.-G. de Gennes raised the concept of “Janus
particles,” referring to them as “new animals” [1,2]. These new animals were Janus
grains, first made by Casagrande and Veyssié [3,4]. They are named after the ancient
Roman god Janus, who has two faces simultaneously looking to the future and to
the past. The Casagrande’s grains have similarly two sides: one apolar while the
other polar, with obviously two opposite behaviours, as schematically reported in
Fig. 8.1.

Somehow, as discussed in the following, this concept has been extended and a
“Janus principle” has been proposed whenever a small particle is formed by the
combination of two incompatible elements and it presents two opposite regions [6].
An additional requirement is that its size has to be small enough to ensure that its
motion is Brownian when it is on suspension. Usually, this requirement is satisfied
when the considered particle has a diameter less than a few micrometers [7].

The Janus principle has been widely applied in colloidal physics, where these
objects have a special architectural feature of two different chemical make-ups; the
most common one is to have opposite polarity, for example, being hydrophilic on
one side and hydrophobic on the other. In the last few years, the term Janus has been
extended to describe not only the half–half geometry, but different particles such as
dendritic macromolecules, block copolymer micelles, or inorganic materials [5]. All
these systems respect the Janus balance, which has been defined as the ratio between
the energy required to move the Janus particle itself from the water–oil interface into
the oil phase divided by the energy required to move it in the water phase [8]. This
is a critical parameter for the description of Janus particles and for the control of
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Fig. 8.1 Schematic representation of compartmentalised colloidal particles with various architec-
tures. The blue and red sides are characterised by opposite polarity. Reproduced from Walther and
Müller [5], by permission of The Royal Society of Chemistry

Fig. 8.2 Left panel: geometrical, α , and contact, β , angles in a Janus particle at the oil–water
interface. α is a measure of how large the polar and apolar hemispheres are. Right panel: behaviour
of the adsorption energy (top) and Janus balance (bottom) as a function of α . Adapted with
permission from Jiang and Granick [8]. Copyright AIP Journal

their geometry and coverage during the fabrication of the particle itself. The Janus
balance has been shown to depend strongly on the angle between the oil–water
interface and the level of the hydrophobic hemisphere, as shown in the left panel of
Fig. 8.2, where the main consequence is that the half–half composition may not be
the best geometry for certain applications. In these cases, it has been preferred to use
the terminology “patchy particle”, meaning a particle with at least one well-defined
patch through which it can experience a strongly anisotropic, highly directional,
interaction with other similar particles [9,10]. The Janus particles can be considered
as a special case among the patchy world.
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Fig. 8.3 Left panel: optical microscopy images of single Janus droplets produced in a microfluidic
synthesis using two (a–c) or three (d) immiscible monomers, and average size. Right panel:
fluorescence images of cluster of Janus spheres made with two immiscible polymers at water–
oil interface. Scale bar is 100 μm. Adopted with the permission from Nie et al. [11]. Copyright
2006 American Chemical Society

Although not strictly unique to Janus systems, one of their most fascinating
properties is the ability to form a porous layer at the boundary of two regions
(i.e. water–air or water–oil) through which molecules can still diffuse. What de
Gennes has described as a “skin that can breathe”, identifies small amphiphilic Janus
particles which behave as surfactants at the water–air interface without forming
a dense and impermeable layer, but allowing a chemical exchange between the
two “worlds” thanks to the interstices among the Janus spheres themselves [2].
These nanoparticles can also be used in other important fields like drug or gene
delivery, as building blocks for assembly of supra-structures. They can be employed
as electronic displays and nano-motors, where the signal transduction generated by
the fact that hydrophobic sides must face one another is exploited: when a nearest
neighbour rotates, the next-nearest neighbour must follow and so on down the line.

Colloidal bi-compartmentalised particles, and their naturally formed clusters can
provide different fluorescence images depending on the relative fraction of the
aggregating part, as reported in early experiments by the Kumacheva’s group [11],
and reported in Fig. 8.3.

Very recently, it has been thought to associate the flexibility and complexity of
soft matter to other branches of physics, where a concept like the Janus principle
can be applied to a novel class of metamaterials which simultaneously present two
distinct regions. Examples are provided by a single optical device acting as a lens
and as a beam shifter [12], a self-assembly of bimetallic atoms with a non-magnetic
and a magnetic face [13], or a optical and a magnetic part [14]. In the following, the
“Janus nomeclature” is going to be used for the description of bimetallic nanoalloys
presenting an asymmetry in their chemical pattern, even in the core region, for which
two distinct parts can be recognised, as in colloidal soft matter.
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In this chapter, the attention is focused on the metallic alloying which represents
one of the most important and fundamental mechanisms to modify the behaviour
and properties of a material. With the manipulation of their size and shape,
nanoscale systems offer a huge variety of ways to explore the interdependence
between finite size and surface effects in order to obtain nanomaterials with desired
physical and chemical properties [15, 16]. Playing with size and chemical ordering,
bimetallic clusters with new and interesting magnetic, optical and catalytic features
can be produced. First of all, let us explain why a bimetallic nanoparticle can be
associated to a Janus bead.

Generally speaking, a bimetallic nanoparticle, made of metals A and B, can
present various chemical orderings ranging from mixed to completely segregated
morphologies [15, 17], as depicted schematically in Fig. 8.4. Mixed alloys can be
either random or ordered, as the case for the L10 geometry of AuCu and AuAg
alloys [18–20], while segregated motifs often manifest themselves as a core/shell
order where a core of metal A is surrounded by a B-shell [21, 22], or multishell
alloys, where the A and B metallic layers are alternating as A–B–A [23] or A–B–A–B
[24]. When two metallic elements are mixed at the nanoscale, one possible chemical
pattern is having a layered structural motif reminiscent of the Janus architecture, as
cartooned in the middle row of Fig. 8.4.

Although in the last decade, a huge effort has been done to produce and to
model core–shell bimetallic motifs, for their possible use as nano-catalysts, the
preparation of bi-compartmentalised particles is still in its infancy. With a successful
preparation of these clusters, a new chemistry, based on nanoparticles instead
of atoms, could be envisioned, in which combining specific physical properties
(e.g. optical, magnetic, electrical) results in revolutionary material combinations.
Bimetallic Janus clusters can, for example, be applied as magnetic switchers
and to create structural colouration, via plasmonic effects, on fibres and textiles.
This can potentially transform the textile industry in anti-counterfeiting, positive
identification of paper or clothing, and/or the development of fibres and woven
materials with cloaking properties within certain wavelength ranges. Since the
physical and chemical properties of a nanoparticle are a direct consequence of its
electronic structure, which depends on its geometrical configuration, our main aim
is to be able to design clusters with the optimal geometry for a given application
simply by tuning their size and chemical composition [16].

After a brief summary of the state-of-the-art in the modelling of colloidal
Janus particles, a discussion on how the growth of metallic nanoalloys can be
modelled by means of molecular dynamics simulations follows, with a focus under
which conditions chemical asymmetries can be observed and tailored. Different
methodologies are reported, although for a complete review of the use of atomistic
numerical simulations for the description of physical and chemical properties of
nanoparticles, we refer to other specific texts; see, for example, Barnard [25],
Johnston [26], Ferrando et al. [27] and references therein.
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Fig. 8.4 Chemical patterns in bimetallic nanoalloys: (1 and 2), completely alloyed (1) random,
and (2) ordered. Different segregation motifs: (3) Janus; (4) Core/shell and (5) multi-shell

8.2 Colloidal Janus Particles

After the work of Casagrande et al. [3,4], a huge effort has been put into fabricating
Janus grains whose intrinsic surface chemical anisotropy leads to asymmetric
interaction offering the possibility of spontaneous clusterisation, as is the case for
phospholipids [28]. Under microscope, some interesting structures were observed—
e.g. micelles and the elongated string shapes have formed when individual Janus
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beads polymerise into superstructures. The engineering of colloidal surfaces,
specifically the controlled design of their anisotropy, and the patchy formation have
attracted the attention of many researchers dedicated to the improvement of the
synthesis techniques as well as to the exploration of novel technological applications
[29–31].

To this end, over the last two decades many preparation methods have been
proposed, developed, and implemented including Pickering emulsions, controlled
surface nucleation, partial masking, tunable liquid optics, sensors, micro-rheological
probes and microfluidic techniques. The interested reader is directed to recent
reviews, like, for example, Walther and Müller [32], Perro et al. [5] and Pawar
and Kretzschmar [33], and to references therein for more detailed information.
In particular, microfluidic-based assembly offers a quite straightforward procedure
to form clusters of colloidal granules with well-controlled size, morphology, and
composition [28,34]. The self-aggregation of Janus particles, being the most simple
example of surfactant molecules characterised by a solvophilic and a solvophobic
side, is one of the most promising bottom-up process to tailor and design materials
with target properties. Being inspired by the large variety of structures present in the
phase diagram of colloidals, ranging from micelles to lamellae to unimers, the study
on how Janus spheres cluster and on their phase separation has attracted recently a
lot of attention. Janus particles, contrary to micelles, show a clear phase separation
and even a gas–liquid critical point, although a micellar phase is still present at low
temperatures [35–38].

Theoretical models, usually based on Monte Carlo (MC) numerical simulation
technique, have been put forward in order to take into account the effect of direc-
tionality of the short-range attractive forces on the fluid–solid phase boundaries.
One of the first attempts to model Janus colloidals was performed by Hong and
co-workers [34], where the authors considered spherical shells made of more than
12,000 particles, packed following the Hardin’s icosahedral algorithm [39], and the
interaction between two particles is modelled as an attractive or repulsive square
well potential, depending on the relative sign of their facing hemispheres. Using a
potential width equal to 10% of the diameter of the Janus sphere, a pair potential
has been fitted, taking into account all the possible orientations of a pair. The so-
fitted colloidal pair potential has been subsequently used to describe the interaction
of Janus particles, modelled as hard spheres, in MC numerical simulations where
periodic boundary conditions have been applied. After a quite long thermalisation
annealing time, the cluster shapes obtained from MC simulations were compared
to experimental data obtained by epifluorescence microscopy measurements. The
agreement has been found to be excellent as reported in Fig. 8.5. Additionally, it
has been demonstrated that the charge asymmetry of individual Janus particles is
preserved even when they cluster together.

Recently [36], grand-canonical Monte Carlo simulations have been used to
investigate the phase diagram of the assembly of Janus beads; see Fig. 8.6. Each
Janus sphere has been modelled as hard-core particle of diameter, σ , and the one-
patch Frenkel’s model [40], inspired by the electrostatic repulsion of hydrophilic
regions and the attraction of hydrophobic ones, has been applied.
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Fig. 8.5 Comparison between epifluorescence images (in green) and Monte Carlo simulations as a
function of the cluster size. Each Janus particle of the cluster has the two hemispheres near-equally
positive and negative charged (yellow- and red-coloured regions). Reproduced with the permission
from Hong et al. [34]. Copyright 2006 American Chemical Society

A large number of particles have been considered to avoid size effects, and a
simulation box size between 7- and 24-fold the diameter of the Janus sphere has
been chosen. The total energy per particle is monitored as a function of density
and temperature. First of all, it should be noted that the phase diagram depends
strongly on the relative coverage of the patchy sphere itself, as reported in panel
(a) of Fig. 8.6. The interaction between Janus objects is hard core, except when
the segment jointing their centre passes through their two attractive hemispheres.
In this case, they interact via a square well potential of depth u0 and a range half
the diameter of the Janus particle itself. As main result, and quite surprisingly, it
has been found that the coexisting curve in the P–T plane is characterised by a
negative slope, meaning that the gas phase is more stable thanks to the formation
of orientation ordered agglomerates, as micelles and/or vesicles, while the liquid
phase is stabilised by a directional entropic contribution, as depicted in the panel (b)
of Fig. 8.6.
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Fig. 8.6 Panel (a): phase diagram of the one-patch Kern–Frenkel model as a function of the
coverage of the sphere ranging between 0.5 (Janus case, green–purple) and 1 (hard sphere case,
purple). Panel (b): zoom in of the phase-diagram of the Janus particles showing the gas–liquid
coexistence lines. A schematic representation of simulation snapshots at different densities, taken
at kBT

u0
= 0.27. Adapted from Sciortino et al. [37]. Reproduced by permission of PCCP Owner

Societies
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Fig. 8.7 Clustering of Janus spheres: micelles and vesicles, depending on the number of particles
in the cluster. Taken from Sciortino et al. [37]. Reproduced by permission of PCCP Owner
Societies

If their number is less than 20, Janus spheres agglomerate as micelles, where
the attractive hemispheres all point towards the centre. Vesicles appear at larger
sizes, where a double-layer motif with a repulsive outer shell is formed, as shown in
Fig. 8.7. It should be added that the stability of these clusters depends strongly on
their entropy, due to the internal flexibility of the spheres within the aggregate, and
on the cluster morphology, both of which are controlled by the range width of the
potential [37, 41].

The kinetics and chemical anisotropy during the assembly of colloidal Janus
particles have been studied combining molecular dynamics (MD) simulations and
experimental data [42]. Here, NVT ensemble MD simulations, using a velocity-
Verlet algorithm and a Langevin thermostat, have been carried out in a simulation
box 15-fold the Janus diameter σ , and periodically repeated along x and y axis while
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the top and bottom walls are represented by truncated Lennard–Jones potentials. The
attractive potential between Janus particles depends on their distance and angles
between the director and the separation lines, with a sufficiently small interaction
range to ensure contact interactions. A gravitational force of 0.54 kBT

σ has been
added along the z-axes in order to allow sedimentation during the aggregation
process. The agreement between numerical and experimental data is excellent,
where at both levels the formation of small and stable clusters has been shown
to happen before their equilibration into helices for an average cluster size of 4–6
Janus beads. Additionally, since the helix formation is a direct consequence of the
directionality of the pairwise interaction, it can be tuned by salt concentration: at
high salt levels, an irreversible aggregation is caused by van der Waals forces, while
at low to middle salt concentrations, the assembly of Janus particles can experience
a hydrophobic attraction and the number of nearest neighbour is limited to six.

8.3 Bimetallic Janus Nanoparticles

At the nanoscale, when referring to metallic objects with a diameter below 100 nm
which are neither in their solid nor molecular state, two important facts have to be
borne in mind: the ratio of the number of surface to the volume atoms is large and the
translation invariance has not to be imposed. The first consideration implies that
the surface effects on the cohesive properties of the particle are not negligible; while
the second means that even non-crystallographic geometries, e.g. fivefold axis, are
allowed. Because of that, clusters do not react as bulk metals do, due to the different
facets they expose and their localised or extended defects. The major consequence
is that the electronic structure of metallic nano-aggregates and their mechanical and
thermal stability depend strongly on their morphology. Thus, the identification of the
geometrical motif of a nanoparticle as a function of its size is of crucial importance.
In the case of nanoalloys, thanks to our growing ability in controlling their size
and stoichiometry, there is a quite strong need of mapping the chemical ordering of
multi-metallic nano-objects towards their size and chemical composition in order to
create “new” materials matching specific requirements [15]. The outlook of possible
chemical orderings for a bimetallic object has been schematically cartooned in
Fig. 8.4. Only recently amid the numerical computational modelling community the
interest in tailoring asymmetries in metallic nanoalloys has been growing, thanks to
their various technological applications. The phase diagram of bimetallic clusters
could be dramatically different from bulk. For example, the melting transition
can be depressed or increased depending on the particle shape and number of
impurities [43–48]; immiscible metals in the bulk could became miscible at the
nanoscale, as AgFe; surface segregation effect can be dramatic (as for the case
of bi-compartmentalised, or Janus, cluster reported in panel (c) of Fig. 8.4). A
rather complete thermodynamic analysis of the segregation/mixing, based on the
calculation of the Gibbs energy, has been reported in Shirinyan and Wautelet [49]
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and Vallée et al. [50]. However, this analysis is limited to the case of spherical
objects, and the effect of the shape has been introduced only through an effective
geometrical factor.

Generally speaking, segregation effects, present in both core/shell and Janus like
chemical patterns, are due essentially to the interplay between size mismatch of
atomic species (since bigger atoms try to be at the surface) and surface energies
(the outer shell is likely formed by the chemical species with the lowest surface
energy). The immiscibility/miscibility gap are driven, therefore, by the high surface-
to-volume ratio and the surface free energies together with the tendency of clusters
to coalesce at temperatures smaller than their melting ones. Hence, it is extremely
intriguing to calculate and to measure the phase diagram of nanoalloys, addressing,
in particular, when they are completely mixed or when a segregation happens,
leading to a core/shell or a bi-compartmentalised morphology. The reader interested
in the modelling of phase diagram is redirected to the chapter in this book by Mottet.
Chemical asymmetries are usually driven by out-of-equilibrium reactions during
the growth process, resulting in an average shape which corresponds neither to the
lowest energy minimum nor to the free-energy minimum structure. Although all
the efforts in developing efficient techniques, such as genetic algorithms and basin
hopping methods [51–53], to find the best structure at a given size and chemical
composition, these tools are unable to give any information about the mechanical
and thermal stability of the cluster itself. Nonetheless, even the knowledge of the
minimum free-energy surface, when the entropic effects are directly considered,
both in the quasi-harmonic approximation [54] or throughout the Metadynamics
methods [55, 56], as recently applied to the study of gold [57] and salt clusters
[58], is sometimes not sufficient for the prediction of the average cluster shape
and its chemical pattern. Thus, the kinetic of the formation process is crucial to
the full design and characterisation of bimetallic objects. It has been widely shown
already for monometallic systems [59–61] that the final geometry of a nanoparticle
is strongly influenced by the growth process because the short experimental time,
of the order of milliseconds, allows the observation of kinetic trappings. These
trappings can be due to the higher temperatures history, or to the memory of
the geometrical shape at smaller sizes or to a partial coalescence, as observed in
Yacaman’s experiments of gold–palladium and gold–cobalt clusters; see Fig. 8.8.

As a result, it is important to model the growth of nanoalloys in order to
understand their chemical ordering as a function of size and composition and to
complete the outlook arising from the sampling of their lowest energy sequences
and free-energy landscape.

Atom clusters can be produced in different ways by means of either chemical or
physical processes and assembled into materials that can be studied by a variety
of conventional surface science techniques. In the following the discussion is
limited to the modelling of the growth as happens in a gas-condensation apparatus,
with a particular focus to inert gas aggregation (IGA) sources. As other physical
preparation techniques, including thermal ablation and ionic erosion, these sources
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Fig. 8.8 Left panel: temporal evolution of AuPd clusters of 11 nm obtained via coalescence:
(a) approaching; (b) first contact and reorientation of the planes; (c, d) neck formation and melting
of surface atoms with planes that tend to align; (e) surface and core have a different contrast;
(f, g) surface layer is still visible, and the neck of coalescence continues to align; (h) surface
reconstruction appears, as indicated by arrows; and (i) the boundary between the particles is
visible; the coalescence is still partial. Reproduced with the permission from Yacamán et al. [62].
Copyright 2005 American Chemical Society. Right panel: Cs corrected STEM–HAADF images of
AuCo clusters with a brighter gold rich zone. Adapted by Mayoral et al. [63] by permission of The
Royal Society of Chemistry

allow for a better control of the size of the cluster with respect to chemical routes
which usually present a broader size and shape distribution. Anyway, for a detailed
review of different vapour-phase synthesis of nanoparticles, the reader is directed to
a recent review [64].

In IGA sources, schematically reported in Fig. 8.9, metal clusters are produced
by evaporation and then condensation from a vapour in an inert gas atmosphere
with a typical growth timescale of the order of a few milliseconds, for objects of
several nanometers in diameter. The final nanoparticle geometry depends on the
growth rate, usually tunable through the pressure and the mixture of the inert gases
used, i.e., neon or argon/neon mixture [65–68]. Cluster morphology, as well as their
chemical ordering in the case of bimetallic systems, can be systematically measured
by microscopy measurements, like atomic force, scanning tunnelling and higher-
resolution transmission electron microscopy. The scanning transmission electron
microscopy (STEM) has been demonstrated possessing capability of exploring the
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Fig. 8.9 Inert gas aggregation source: (a and b) gas and cooling water lines, (c) linear drive
actuator, (d) vacuum pump, (e) partial pressure inside the aggregation chamber (∼0.01 Torr),
(f) cooling lines, (g) cluster zone formation, (h) metallic vapour (crucible), (i) skimmers, (j)
nanoparticle beam and (k) partial pressure outside the aggregation chamber (typical values around
10−4 Torr). Reprinted with permission from Gracia-Pinilla et al. [65]. Copyright 2008 American
Chemical Society

Fig. 8.10 Effect of the camera length (reciprocal of the collection angle) on HAADF images for
AgCu nanoparticles: 520 mm (a), 285 mm (b), 100 mm (c) and 52 mm (d). The particles labelled by
arrows underwent a contrast inversion. In panel (d), this is large enough to cancel partly the Bragg
diffraction. Thus, the contrast can be attributed to the different chemical species in the sample.
Taken from Langlois et al. [70], reproduced with the permission of corresponding authors

three-dimensional shape and structure of nanoparticles, especially, when used in
association with the high-angle annular dark field (HAADF) imaging technique
[69]. The STEM–HAADF method has been used to detect variation in chemical
composition down to single-atom level in suitable samples; it can be successfully
used to distinguish between chemical species characterised by a high Z-contrast
[70–74], as reported in the right panel of Fig. 8.10.

Thanks to these techniques, we have got a strong experimental evidence of
bimetallic clusters with asymmetries that can be identified as Janus-like, as reported
in Fig. 8.8, for the gold–palladium case, and Fig. 8.11, after the co-deposition of
copper–silver clusters.
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Fig. 8.11 HAADF–STEM measurements showing both core/shell and Janus chemical ordering
for AgCu clusters. Adopted from Langlois et al. [72]. Reproduced by permission of Springer
Publisher

From a computational point of view, there are few alternative ways to model
the formation of metallic cluster, in contact with a thermal bath, based on classical
molecular dynamics (cMD) numerical simulations:

• The coalescence of two pre-existing (parent) nanoparticles, where the daughter
object is obtained from their collision. Critical parameters are the relative kinetic
energy of the parent cluster and their impact factor.

• The one-by-one growth, where the cluster grows by the addition of atoms one-
by-one starting from a small seed. Critical parameters are the deposition rate and
the temperature T , kept constant.

• The cooling of liquid droplets, when the cluster is formed in a liquid state and
then solidifies. The cluster size is kept fixed during the overall simulation and the
temperature is reduced at a given rate, which is the main parameter to be set.

• Clusters are in contact with a liquid environment, where their shape and chemical
ordering can vary due to the presence of chemicals around it, but their size
remains the same.

It is worthy noting that, despite the importance of coated metallic nanoalloys,
especially in biomedical applications, the modelling of the growth of mono- and
bimetallic nano-objects in a wet environment is poorly documented and today this
is limited to the case of gold cluster coated with thiols [75]. Before dealing with
their details, the reason why a classical approach is adopted needs to be explained.

In the case of small systems, with a size less than several hundreds of atoms,
with the today computational resources is possible to simulate times of the order
of several tens of microseconds, which is comparable with experimental timescales.
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On the other hand, the use of cMD is justified whenever the interatomic interaction
can realistically be described in terms of empirical potentials, such as Gupta [76],
Rosato–Guillope–Legrand [77], Sutton–Chen [78] and embedded atom [79]. In all
these cases, the cMD approach offers an accurate and detailed description of the
growth process, allowing for the description of the microscopic details leading
to structural transformations, since it does not imply restrictive choices about the
possible processes or the assumption of some rate theory to hold, as done, for
example, in canonical Monte Carlo simulations. It has to be said, however, that
growth of supported clusters or very large clusters require longer CPU time, for
which the molecular dynamics tool is unfortunately too expensive. In these cases,
kinetic Monte Carlo (KMC) is still to be preferred for the study of their chemical
ordering and to detect their structural changes [80].

A final comment regards that, due to the intrinsic size limit, very few computa-
tional works have lead to bi-compartmentalised nanoparticles, which realistically
could appear at large sizes. Moreover, the study of magneto-optical properties
of bimetallic nanoparticles will require more accurate computational tools, such
as spin density-functional-theory (DFT) and even all-electron-density-functional-
theory, which are available only for small sizes, in most cases less than 200 atoms.
To overcome this limit, the idea resides in coupling an efficient semi-empirical
approach in order to get the most favourable structures from an energetic and ther-
modynamically point of view, with a spin-DFT approach, for the description of the
magneto-optical properties, restricted to these sets of particles, or to smaller ones but
with the same chemical motif. This should lead to the explanation of how magneto-
optical properties depends on particle size and stoichiometry. However, this lies
beyond the scope of this chapter which is focus on the modelling of asymmetries in
nanoalloys, and we refer to other works for an explicit treatment of computational
simulations and for the parametrisation of analytical theories [25, 81–83].

In the next sections, a detailed summary of the computational techniques based
on cMD is discussed. The attention is put on case studies where Janus segregation
has been observed: the coalescence of gold and platinum clusters of same size and
same geometry, which leads easily to the formation of quite well-defined Janus
objects with a prolate ellipsoidal shape 40 ps after the collision of the two parents
clusters; the one-by-one and cooling of silver and cobalt nanoalloys which can lead
to core–shell or quasi-like Janus patterns depending on the cobalt concentration.

8.4 Coalescence of Janus Nanoalloys

Coalescence refers to the physical process where two colliding objects merge to
form a single new aggregate. In nanocluster physics, the formation of metal particles
by condensation in an inert gas atmosphere has supposed to happen via coalescence
of small and medium clusters inside the chamber. This hypothesis has been sup-
ported by the observation of “necklace-like” aggregates in first experiments where
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Fig. 8.12 Time evolution in a vapour-gas source: the final shape can be almost spherical or
necklace agglomerate, depending if the collision time is faster than the sintering process. Taken
from Zachariah and Carrier [87] with the permission of Pergamon publisher granted by CCC

metallic particles were grown in evaporation gas sources [84–86]. A schematic
representation of the temporal evolution of the process is depicted in Fig. 8.12.

Within the classical nucleation theory, the activation barrier of the formation
process is a balance between the bulk and the surface contributions to the free
enthalpy of newly formed aggregates. A coalescence procedure has been applied
for a variety of substances. For pure chemical species, the parameter describing
the nucleation can be identified as the ratio of the vapour pressure of the system
and the vapour pressure of the nucleating substance at the same temperature.
For binary mixtures, instead, the partial pressure of one species divided by the
pure substance vapour pressure at the same temperature should be used as order
parameter to describe nucleation [88]. In addition, when the formation happens
through coalescence, during the “collision” the total surface area of the cluster
decreases, leading to the heating of the particle itself. This competes with the heat
transfer by conduction to the colder carrier gas and radiation. This heating has to be
taken into account when modelling the collision process [89].

The coalescence mechanism has been applied for the study of the nucleation
of both monometallic [66, 90, 91] and bimetallic systems [92–95], in particular to
detect the thermal evolution, stability versus melting. One of the first computational
applications has been performed for the analysis of how the rate of coalescence
influences the final morphology in the case of silicon particles, where the Si–Si
interaction has been modelled by Stilling–Weber potential [96]. An average tem-
perature behaviour is reported in Fig. 8.13 where two silicon nanoparticles of 240
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Fig. 8.13 Time evolution of the inertia momentum (dark) and of temperature (grey) of daughter
aggregate after the collision of 240 Si atoms particles. Typical snapshots during the simulation are
reported as well. Taken from Zachariah and Carrier [87] with the permission of Pergamon publisher
granted by CCC

atoms are colliding after being equilibrated at 600 K. Rather independently of the
chemical species considered, three main stages can be envisioned in the coalescence
process, modelled through constant-energy molecular dynamics simulations:

• Equilibration: the parent clusters have been equilibrated at the desired tempera-
ture, and the averaged properties of each cluster have been collected.

• Collision: the two clusters are displaced at a distance between 0.4 and 0.6 nm
where the atom–atom interaction is still weak. The same velocity with opposite
sign is assigned to each particle in order to generate collision. The centre of
mass (COM) of the total system has conveniently been chosen as reference, in
order to avoid a non-zero linear momentum due the to momentum conservation.
The choice of the impact parameter, meaning the distance between the direction
lines of the parent clusters, and their momentum are the critical parameters of the
simulation [14].

• Nucleation and relaxation: the structural evolution of the daughter aggregate is
analysed towards the time and the temperature.
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It has been generally found that a neck rapidly forms between the colliding particles,
which transforms into a spherule, and slowly approaches a sphere, as depicted in
(8.8). The sintering is essentially driven by surface diffusion and, therefore, by
the energy barriers which characterise the jump and exchange of adatoms. The
exponential behaviour of the diffusion coefficient by the temperature, justifies the
sensitivity to temperature. If the gas temperature around the cluster is high enough,
the particle temperature increases due to heat release from coalescence (surface
energy contributions) will be faster than the heat transferred to the surroundings.
This will effectively increase the temperature of the cluster. If the gas is quite cold,
conduction and radiation will dominate, and thus the particle will roughly remain at
the gas temperature [97]. Therefore, when T is low enough to allow for allowing a
solid–solid coalescence, the final structure will result to be highly defected with a
considerable number of stacking faults, due to the finite timescale. Nonetheless, a
complete melting can occur after the collision, and the formed cluster can solidify
inside or outside the aggregation chamber. In the specific case of lead clusters [66],
the authors have introduced a collision time of 1 ns, comparable with typical times
of an IGA source. The collision of two icosahedral objects of 565 atoms, put at an
initial distance of 0.5 nm, was followed by constant-energy MD simulations. After
the collision, a neck is formed between the particles and its growth releases surface
energy, causing the heating of the cluster. An almost spherical shape was reached
just after 0.5 ns. In this way, the authors were able to detect how the final shape
depends on the heating and whether—or not—the cluster undergoes to a melting
transition.

Quite recently, the coalescence procedure has been applied for the study
of bimetallic clusters, as reported by Paz et al. [14], Li et al. [92] and
Mariscal et al. [95]. A cartoon of different snapshots at different stages and
temperatures after the collision with a zero impact parameter of Cu682 and Ni682

clusters is reported in Fig. 8.14.
Many of the studies available in literature consider a zero impact factor, meaning

that the two colliding particles have been aligned along a specific axis. On the other
hand, in the case of bimetallic nucleation, the impact parameter should influence
the final shape of the particle, as recently demonstrated by Mariscal and co-workers
[14]. They have analysed the effect of introducing a non-zero impact parameter ξ ,
defined as the distance between the two COM with respect to the direction of the
initial momenta, divided by the radius of the two clusters, as depicted in Fig. 8.15.

The main consequence of applying a small but non-zero impact parameter,
0 < ξ < 1, is that the formed aggregate will acquire a vibrational–rotational dy-
namics coupled with the translation one, which could affect its final geometry and
chemical order. If the collision momenta are large and for cluster configurations
close to a spherical shape, the effect of ξ can be averaged over different initial
orientations of the two nanoparticles, without loosing in the qualitative picture,
as schematically summarised in Fig. 8.16, where the temporal evolution of gold–
platinum clusters (Au586 and Pt586 initially presenting a crystalline geometry) is
shown for different impact factors (y-axis) and for two different initial momenta
(upper and lower panel).
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Fig. 8.14 Panel (a): initial Cu and Ni cluster after being thermalised at 640 K. For (b–e) panel,
the left column refers to the whole structure, while the right one is a cross-section. Temperature is
changing from 640 K (a and b) to 920 K in panel (c), to 1,080 K (d) and 1,400 K (e). Taken from
Li et al. [92] with the permission of Springer publisher



262 F. Baletto

Fig. 8.15 Definition of the
impact parameter ξ in
reduced units. Reproduced
from Paz et al. [14] with the
permission of AIP

It is important to point out that when high momenta are considered, Ptshell-
Aucore and Janus–like motifs are formed for impact factor lower or bigger than 0.49,
respectively. While the Janus-like formation takes place when ξ is bigger than 0.49,
showing that the shell formation is slowed down as the impact factor increases.
This can be due to a decreasing of the potential energy just after the collision
(increment of the total average coordination), to an increasing of the internal energy
of the cluster, to the elongation of the neck between the two colliding particles. An
analysis is provided by the same authors and summarised in Fig. 8.17, where the
shape is roughly divided in spheres, oblates and prolates, or equivalently in terms
of their axes a, b and c. These geometries can be identified by the triaxial parameter
k = ln(ca/b2): the prolate has a positive k, an oblate motif a negative one, while a
sphere is characterised a = b = c and k = 0.

For 0.49 < ξ < 0.98, the shape of the daughter aggregate is a prolate one and a
Janus chemical pattern can be observed. A spherical and probably core/shell particle
result at lower ξ and when the collision of the parent cluster is quite kinetic.

8.5 The One-by-One Growth of Janus Nanoalloys

The one-by-one growth technique [98, 99] has been used to successfully study the
growth of bimetallic nanoparticles [100]. Its importance resides in the ability of this
simple model to detect kinetic effects during the formation of particles, and to show
segregation effect in silver alloys, as the core/shell, the three onion-core shells and
Janus-like motifs [13, 23].

This model follows the deposition–diffusion–aggregation method used to mimic
the formation of island on flat surfaces. The building up of a cluster is due to the
deposition of adatoms onto a small seed which is in contact with an inert gas, which
acts as a thermal bath and keeps the temperature constant, as depicted in Fig. 8.18.
The incoming adatom adsorbs on a cluster and it is free to move on the surface, to
reach and attach on islands or steps, as happens on a flat surface, or to penetrate
in the core. Desorption is allowed, although it has been never observed in the case
of metallic or bimetallic systems, even because the adsorption energies in metallic
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Fig. 8.16 Different snapshots arisen after collision of Au586 (golden sphere) and Pt586 (dark)
as a function of their impact parameter ξ , as defined in the text. Two different momenta, 200
and 400 m/s, top and bottom panels, respectively, have been considered. Time is reported on the
horizontal axes, where t = 0 ps is the beginning of the simulation itself. Reproduced from Paz
et al. [14] with the permission of AIP
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Fig. 8.17 Time evolution of the triaxial parameter k, as defined in the text, for different impact
parameters. The final shape after coalescence is a prolate one, except for ξ = 0.98 where the
steep increase is due to the detachment of the particles. Reproduced from Paz et al. [14] with the
permission of AIP

Fig. 8.18 Schematic representation of the one-by-one growth: atoms in red are deposited one-by-
one over a free nanoclusters

system are quite high, larger than 1 eV (while at room temperature the Boltzmann
factor is ∼0.023 eV). The presence of the thermal bath leads to the introduction of an
Andersen thermostat [101], where the average collision frequency of the thermostat
ν , has been chosen according to two opposite needs: ν has to be large in order to
have an efficient thermostat, but it must be not too large because the thermostat must
not influence the diffusive properties [99].

Free nanocluster growth simulations started from a small seed, taken from one of
the best minima for a given metallic system, and further atoms have been deposited
one by one at time intervals τd. The initial position of the incoming particle is chosen
on a random point on a large sphere centred around the COM of the nanoparticles
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and far enough in order to neglect the interaction with the seed itself. It approaches
towards the cluster with a constant velocity corresponding to a typical evaporation
temperature of the material and in such a way that its kinetic energy is smaller
than the adsorption energy. Between two subsequent depositions, all the atoms of
the cluster are thermalised at the desired temperature T , and they are free to move
following the Newton’s equations, solved throughout the velocity-Verlet algorithm
[102]. The deposition time τd is the reciprocal of the adatom flux φM given by

φM =
PAeff√

2πmMkBT
, (8.1)

where T and P are the temperature and pressure of the metallic vapour, respectively,
the atomic mass is mM and the effective area of the cluster is Aeff. Referring again
to the case of inert gas sources, the flux has been estimated to be of the order of one
atom each 100 ns [103, 104], being quite close to the simulation deposition time of
one atom per several nanoseconds, used for studying the formation of clusters up
to a radius of 1.5–2 nm. The growth process can be analysed monitoring the excess
energy, Δ , defined as

Δ =
Etot −

(
NAg�coh

Ag +NCo�coh
Co

)

N3/2
tot

, (8.2)

where Etot is the total energy of the cluster and �coh is the cohesive energy of an
atom in its bulk crystal. A stable structure is identified by a dip in the Δ quantity.

As a prototype application of the one-by-one model, the case of silver–cobalt
is considered here. When cobalt is deposited over silver, it has been shown that
silver–cobalt nanoalloys can present controlled asymmetries already at small sizes.
First, cobalt atoms have been deposited over small silver seeds, such as the icosahe-
dron Ag–Ih55 and the decahedron Ag–Dh75 [105]. Except, low temperatures, where
the formation of asymmetric structures is very likely at an initial stage of the growth,
the core/shell structures have been observed after the addition of 30 or 60–70 cobalt
atoms. The latter corresponds to a rather spherical shape and with an external Agshell,
equivalent to the anti-Mackay icosahedron at Ntot =127 atoms, as found when Ag is
deposited on a Co seed [100]. It is worth noting that the Dh75 undergoes a complete
structural transformation towards an icosahedral shape after the deposition of a few
cobalt atoms. Anyway, as soon as the initial silver seed is slightly bigger, such as the
decahedron, Dh146, and the icosahedron, Ih147, the formation of asymmetric Janus-
like motifs happens when the cobalt concentration is smaller than 30%, as reported
in Fig. 8.19. Low growth temperatures favour the formation of asymmetries, while,
above 550 K, the growth over Ag–Dh146 leads to a fully structural transformation
towards a core/shell structure, where cobalt is forming an icosahedral core of 147
atoms and silver is displaced over an anti-Mackay stacking, reminiscent of the
perfect Ag132Co147 [100]. The formation of a well-defined core is highlighted by
deep dips in the Δ quantity around NCo

dep ∼ 174, as shown in the left column of
Fig. 8.19.
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Fig. 8.19 Energy in excess Δ during the deposition of Co (light grey) over Ag (dark grey), Ih147
(top) and Dh146 (bottom) at different temperatures, from bottom to up: T = 450 K, up-triangle;
T = 550 K square and T = 650 K, circle. For cobalt poor composition, a Janus-like asymmetry
(first snapshot) is formed which evolves towards an icosahedral core/shell structure (second
snapshot) for Co concentration higher than 30%

When the deposition has been performed over bigger Ag cores, like the trun-
cated octahedron at 201 atoms, TO201 and the icosahedron Ih309, the asymmetry
formation results in a rather wide range of chemical compositions. In both the
considered cases, the formation of Janus-like structures appears when a perfect
Co(core)/Ag(shell) is joined to a pure silver clusters, as shown in the dips of the
excess energy, Δ in Fig. 8.20, especially at high temperatures.

This is mainly due to the fact that, at these sizes, the best adsorption sites for
cobalt are around subsurface positions where Co atoms bunch up, respecting an
icosahedral packing, thanks to the softness of their interatomic potential [105],
and as revealed by a geometrical analysis of the environment of each pair of
nearest neighbour. This leads to the formation of an object delimited by (1 1 1)
facets and presenting a Janus-like order, with two well-separated regions: one pure
silver cluster and a well-defined cobalt icosahedral core covered by a silver layer
over an hcp stacking. It is worth noting that these AgCo Janus-like structures
naturally evolve towards a core/shell geometry for cobalt concentration of more than
40–45% for a medium-size nanoparticle, suggesting that chemical asymmetries can
be tailored playing with the relative stoichiometry.
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Fig. 8.20 Deposition of Co atoms over 201 and 309 Ag cores, upper and lower panel, respectively.
Janus-like motifs have been obtained at different temperatures and for Co concentration up to
30–40%. Symbols as in Fig. 8.19

To fully demonstrate this idea, the deposition of silver atoms over the core/shell
obtained at Ag146Co178 has been considered. One-by-one growth simulations have
clearly shown that Ag preferentially agglomerates on one side of the core/shell,
around one fivefold axis, allowing the formation of a well-defined Janus-like cluster
as soon as the cobalt concentration drops below 47% as demonstrated by analysing
the distance between the COM of the cobalt and silver regions, respectively, ΔrCOM,
as a function of the chemical composition of the cluster, as reported in Fig. 8.21.
The increase of this quantity shows the formation of a Janus chemical pattern as
silver is deposited.

8.6 Cooling into Janus Nanoalloys

As it has been found in experiments, such as inert gas aggregation and vapour
condensation, and allowed in coalescence and one-by-one growth modelling, the
formation of a nano-objects should not take place in a solid phase but they can build
up as liquid droplets and then solidify [25]. Their final shape is, therefore, driven by
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Fig. 8.21 Evolution of the distance between the centre of mass of Ag (dark) and Co (light)
regions as silver is deposited showing the transition from a core/shell to a Janus-like motif. Typical
initial and final snapshots are shown. Dotted line is the distance between the COM of the whole
cluster and the one of Ag subcluster (dotted line), while the broken line is the distance between the
COM and the Co subunits centre

the cooling process, that can take place inside or outside the condensation chamber.
In the latter case, the cooling is dramatically fast due to the free expansion in the
vacuum. Let us focus on the solidification inside the chamber, which depends on
the choice of temperature and pressure of the gas. In order to mimic a thermal
contact with a cold atmosphere, the cluster should be frozen at a rate τc = ∂T

∂ t .
The experimental rate of reference in an inert gas-aggregation source for cooling
a spherical object of effective area Aeff, is given, similarly to (8.1),

φC =
PAeff√

2πmGkBTG
, (8.3)

where the temperature, TG, and pressure P are referred to the inert gas. In the
harmonic approximation, the energy loss per collision with an inter-gas atom is
roughly ∂T

∂ t ∼ φC ΔE
3NkB

leading to a reference value of 10−1 K/ns for a cluster of 1
nm radius, and an inert gas at room temperature at a pressure of 3 mbar.

cMD simulations have been performed keeping constant the cluster size N
and rescaling the temperature accordingly with a freezing rate similar to the
experimental one. An Andersen thermostat has been applied to change and to
monitor the temperature of the cluster during the overall simulation. Since the
process has been performed at fixed N, one can refer to this model as “growth at
constant size” [106].

Between two subsequent temperatures, all the atoms are free to move accordingly
with Newton’s equation of motion, and the physical quantities are averaged after
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Fig. 8.22 Starting with a liquid seed with a given chemical composition and size. The temperature
is lowered with a fixed rate, ΔT

δ t , where ΔT ∼ 5 K and δ t is between 10−10 and 10−7 s

a short equilibration time at each new temperature. A schematic cartoon of the
simulation process is reported in Fig. 8.22. It has been found to be more realistic,
varying the temperature of small quantities, between 5 and 10 K, and reducing
the time interval δ t between 105 and 107 time step, which for a metal is in the
range of few femtoseconds [106]. For a detailed description of the effect of the
cooling rate, the reader is redirected to Shibuta and Suzuki [107] and VanHoang
and Odagaki [108].

Freezing simulations can help us to determine the likeliest configuration at high
temperatures and to check if any and which kinetic trappings appear during the
solidification process. Moreover, it is an efficient tool to establish the thermal
stability of a given structural motif or chemical ordering with respect another as
a function of temperature [109–112].

In the previously proposed paradigmatic example of silver–cobalt, nanodroplets
at Ntot = 235 and 265 with different chemical compositions have been considered.
Their freezing temperatures are 570± 10 K and 600± 10 K, respectively. To detect
the freezing/melting transition has been found extremely helpful to introduce the
common neighbour analysis (CNA), which is more sensitive than other order
parameter such as the Lindemann criterion [113]. The CNA geometrical analysis
is based on the assignment to each pair of first neighbours of a triplet of integers
(r,s, t), where r is the number of common nearest neighbours of two atoms of the
couple, s is the number of nearest-neighbour bonds among these r atoms, and t is the
length of the longest chain which can be formed with the s bonds. The liquid/solid
transition can be monitored considering the percentage (P) of (r,s, t) = (5,5,5),
(4,2,1) and (4,2,2), which describe the bulk and the P(3,1,1) and the P(3,2,2) for
the description of (1 1 1) surfaces [88,114]. As soon as the cluster become solid, the
CNA percentages present a drastic change, rather simultaneously if core and surface
melts/freezes at the same time. In particular, a jump of P(5,5,5) means the formation
of solid fivefold symmetries, as reported in Fig. 8.23.
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Fig. 8.23 CNA percentages as a function of T for a (AgCo)265 cluster. The solidification is
identified by their fast change, happening almost simultaneously around 650 K. Colour scheme:
P(5,5,5), up-triangle; P(4,2,2), star; P(4,2,1), circle; P(4,3,3), square; P(3,1,1), diamonds; P(3,2,2),
crosses

Fig. 8.24 Final snapshots after freezing of Ag147Co48, Ag201Co34, Ag201Co64 and Ag147Co118
confirming the formation of Janus-like chemical ordering when the cobalt concentration is less
than 40%

The Janus-like structural motif has been easily identified in the final snapshot
in all the considered cases with a cobalt concentration lower than 40%, as reported
in Fig. 8.24, demonstrating the delicate role played by the chemical composition
during the cluster formation.

In summary, the formation of chemical asymmetries, such as the Janus-like
motif, in metallic nanoalloys has been reported. It has been shown that this type
of segregation is mainly due to kinetic effects proper to the growth process and
the short experimental timescale. Three different numerical simulation procedures
have been identified to mimic this out-of-equilibrium process: coalescence, one-
by-one growth and cooling. Notwithstanding their differences, these procedures are
based on cMD, where velocity-Verlet algorithm is used for the numerical solution
of the Newton’s equation of motion and the atomic interactions are described by
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empirical potentials. The methodology is quite well established; nonetheless, more
studies should be carried out, given the variety of metallic nanoalloys for which
both geometrical and chemical anisotropies can be exploited for technological
applications, in particular as magnetic switchers.
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Chapter 9
Modeling of Protected Nanoparticles

Jimena A. Olmos-Asar and Marcelo M. Mariscal

9.1 Why Study Nanoparticles?

Systems in the range between 1 and 50 nm have an intermediate size between single
molecules and bulk materials. This is why they exhibit unique electronic properties
which obey quantum-mechanical rules [1] that strongly depend on particle size
and shape, as well as on interparticle interactions and protecting agents, if there
were some. In these small systems, the outer electrons can tunnel between close
particles. Mobile electrons are trapped and oscillate collectively, resulting in a
plasmon resonance band. All quantum effects occur when the de Broglie wavelength
of the valence electrons is of the order of the size of the particle itself.

On the other hand, unlike bulk metals, nanoparticles (NPs) can show some
insulator character due to the fact that sometimes there is a gap between valence
and conduction band. As a result, conduction—as well as other properties—can
be tuned by varying the temperature, which confers NPs many applications in
nanoelectronics, biosensing and catalysis [2, 3].

Perhaps the most important characteristic of materials at the nanoscale is the fact
that they have a large fraction of their atoms on the surface. Since the volume of a
nanoparticle decreases faster than the surface, when the nanoparticle size decreases,
there is a limit where almost all atoms belong to the surface. This high ratio surface-
to-volume gives to these materials unique properties, due to the fact that those atoms
on the surface have a different surrounding from that in the bulk, and thus have a
direct interaction with the close environment.

J.A. Olmos-Asar • M.M. Mariscal (�)
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e-mail: jimenaolmos@gmail.com; marmariscal@fcq.unc.edu.ar

M.M. Mariscal et al., Metal Clusters and Nanoalloys: From Modeling to Applications,
Nanostructure Science and Technology, DOI 10.1007/978-1-4614-3643-0 9,
© Springer Science+Business Media New York 2013

275



276 J.A. Olmos-Asar and M.M. Mariscal

9.2 Why Passivate Nanoparticles?

There are several methods for synthesizing metal nanoparticles. As the properties
of these materials strongly depend on their size and shape, it is desirable to have
a method of synthesis that allows scientist to have a well-distributed sample,
with a narrow dispersion of sizes. Small particles tend to aggregate in order to
reduce surface energy. For avoiding coalescence, agglutination or agglomeration
and keeping them in a disperse state, these metal systems are usually passivated,
in most cases by means of adsorption of some selected organic molecules. This
passivation also allows controlling particle shapes and sizes in chemical synthesis.

In addition, adsorption of some specific organic compound serves as protection
agent, for avoiding reaction of the metal with the media. Moreover, the protecting
agent is the one exposed to the environment. So, many properties of the nanoparticle
depend on the protecting ligands, for instance, solubility and chemical reactivity.

Recently, the functionalization of NPs by the adsorption of some specific
receptors to the surface has had big implications in biomedicine. These agents react
specifically with another agent in the human body, acting as a target. This is having
applications in tumor targeting [4], cancer therapy, drug delivery [5], biosensors, etc.

One of the most widely investigated systems is perhaps gold NPs covered by
alkanethiols molecules. One of the reasons for this is that gold NPs are among the
most stable metal NPs [6]. Gold is easy to obtain and it is quite inert: it does not
react with atmospheric oxygen or with many chemicals, and it does not oxidize
under its melting point [7]. On the other hand, it is well known that the S–Au
bond has a strong covalent character, with high adsorption energy. So, there are
relatively simple routes of synthesis, where self-assembly plays an important role.
Also, these systems are chemically stable. Some of the methods produce a narrow
size distribution sample, while in others, it is necessary to fraction the product with
some technique based on the mass.

9.3 Chemical Synthesis and Passivation

We will mostly refer now to one of the most common systems: gold NPs.
The molecules that attach to the metal surface can be described as composed of

three different parts: a head group that bounds to the surface through covalent, non-
covalent, or ionic interactions; a spacer part that makes up the interphase between
the metal core and the medium; and a terminal group that is in direct contact with
the environment.

The head group or linker determines how strong the interaction between the
molecule and the metal is, and this bonding energy is usually independent of the rest
of the molecule. The stronger the attachment of the surfactant, the more stable the
passivated system is. If covalent bond is formed between the linker and the substrate,
chemical adsorption is said to occur.
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The spacer chains of adjacent molecules interact via van der Waals and/or ionic
interactions, and confer stability to the adsorbed monolayer. If molecules interact
strongly, the monolayer will be well packed, and the nanoparticle will be more
protected. Steric effects can play an important role in the self-assembly process
when voluminous molecules are used, and these, in turn, can partially control the
interaction between passivated systems.

The tail or terminal group can be chosen for functionalizing the nanoparticle, and
it determines the properties of the outer layer, which is, in fact, the one that interacts
with the environment. For example, if charged polymers are employed as passivants,
multilayers of opposite charged molecules can be obtained onto the surface; on the
other hand, affinity with the media can be managed through some groups, such
as –NH2, –COOH or –OH that make the system hydrophilic and –CH3 or –CF3

that turn the system hydrophobic. The possibility of choosing the terminal group of
molecules in such a way that they can selectively bond to specific targets represents
an important challenge to medical and technological applications.

In the 1950s, Turkevitch [8] presented one of the most popular methods of
synthesis of gold NPs by reduction of chloroauric acid (HAuCl4), using sodium
citrate as both reducing and capping agent in water. With this method it is possible
to obtain nearly spherical NPs of approximately 20 nm, but the size is not controlled
in the synthesis procedure, although if the sample is sufficiently stirred, the particles
could be uniformly distributed. In the 1970s, Frens [9] proposed a procedure for
preselecting the diameter of the NPs (between 16 and 147 nm) obtained just by
controlling the ratio between reducing/stabilizing agents and gold amount.

In the 1990s, it was found that NPs could be stabilized by the addition of
alkanethiols of different chain lengths [10].

The appearance of the Brust–Schiffrin method [11] for synthesizing gold NPs
had a great impact in this area, because it allows to obtain in an easy way
thermally and air-stable gold NPs [6] of controlled size (between 1.5 and 5.2 nm
in diameter) and low dispersity. Moreover, the synthesized NPs can be redissolved
in an organic media and then functionalized. The reaction is held in a two-phase
system. In this technique, AuCl−4 is transferred to toluene (anticoagulant) using the
tetraoctylammonium bromide (TOAB) as phase-transfer and stabilizing agent, and
sodium borohydride (NaBH4) as reducing agent. It is known that TOAB is a weak
stabilizing agent for gold nanocrystals; so NPs can grow with the addition of more
reducing agents, and this growth will depend on the TOAB/Au ratio and the speed
of addition of the NaBH4 [12]. To prevent aggregation, another stabilizing agent
is added to the media: alkanethiols, which strongly bind to the surface and keep
passivated NPs in a colloidal dispersion with a defined size for a long time. This
procedure is schematized in Fig. 9.1.

With this method, mostly icosahedral and cuboctahedral structures of 1–3 nm are
obtained. Size is controlled by tuning the thiol/gold ratio. The larger the ratio, the
smaller the average sizes. On the other hand, monodispersity can also be improved
by fast reductant addition and cooling. Moreover, small sizes are produced when
reaction is stopped immediately after reduction or adding voluminous ligands [6].
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Fig. 9.1 Scheme of the two-phase Brust–Schiffrin method for synthesis of gold nanoparticles

Fig. 9.2 Scheme for ligand exchange in passivated nanoparticles

The Brust–Schiffrin method was extended to other thiol ligands rather than
alkanethiols, like xanathes, di- and tri-thiols, and disulfides [13–15]. Anyway, the
latter are not as good stabilizers as thiols. This opened the way for synthesizing
gold NPs with different functional ligands [16–19]. The method was also modified
to be performed in only one phase, where the thiol/Au3+ ratio controls the sizes
of the NPs. Moreover, interchange of ligands has been studied [20], as shown
schematically in Fig. 9.2. The exchange makes it possible to modify synthesized
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NPs, replacing the adsorbed molecules by others that cannot be used in the synthesis
procedure (because of, for example, incompatibilities with the medium conditions).

Concerning the mechanisms involved in the Brust–Schiffrin methods, there still
exists a controversy about the intermediate steps. It was previously believed that
the intermediate step in two-phase Brust–Schiffrin reactions involves the generation
of soluble Au(I) alkanethiolate species. However, very recently it has been shown
that tetra-alkylammonium metal complexes appear as precursors of two-phase
reactions, while Au(I) thiolates are shown to be precursors of one-phase reactions
conducted in polar solvents. These mechanisms were proposed after using [1]H
NMR spectroscopy [21] to quantify the existence of the species mentioned.

In 2009, Perrault and Chain proposed a synthesis method that uses hydroquinone
as a reducing agent in aqueous solution with gold seeds [22]. These seeds start to
grow and can also catalyze the reduction of more Au(III) onto their surfaces. To
control all process, citrate can be used as stabilizer. Seeds can be produced by the
method proposed by Frens [9], complemented with the Perrault method. In this way,
larger NPs can be produced (30–250 nm).

Recently, another method of synthesis has been proposed [23], in which it
is possible to obtain naked gold NPs in an aqueous solution, with a nearly
monodisperse size distribution, around 3 and 5 nm. HAuCl4 is reduced with NaBH4,
just stabilizing HAuCl4 and NaBH4 with HCl and NaOH. Gold NPs obtained are
then covered with dodecanethiol and transferred to hexane just by stirring of a mix
of water, hexane, and acetone. All subproducts remain in the water–acetone phase,
while passivated NPs are in the organic phase, so, there is no need of washing after
synthesis. These coated NPs stay in the air–toluene interface of a toluene droplet
and form a 2D monolayer film, which remains as such after toluene evaporation,
forming a monolayer of auto-assembled coated NPs, spatially uniform, which can
be then deposited onto any substrate.

The two-phase Brust–Schiffrin method has been extended to triphenylphosphine
(PPh3) in order to improve the synthesis of Schmid’s cluster [24]. PPh3 and NaBH4

are added to a mixture of water and toluene, using HAuCl4 ·3H2O and N(C8H15)4Br
[25]. With this method, bigger particles are obtained, and the NP diameter increases
with reaction time and temperature [26].

Other wet techniques for synthesizing NPs are based on the generation of
the metal particle inside some microemulsion, micelle, membrane, and other
amphiphilic systems in the presence or absence of thiols [27,28]. The surfactant acts
maintaining the required environment for the formation of the NP and stabilizing
it, as well as transferring the metal ions to the organic phase. Obtained NPs have
narrow size dispersion, and they can pack in a 2D array. In addition, polyelectrolytes
can serve as stabilizers of NPs, functionalizing them at the same time [29, 30].
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9.4 Chemical Functionalization of Clusters
and Nanoparticles

Functionalization of capped NPs can be achieved by some of the following methods:
by exchange of some of the ligands attached to their surface, by reactions on the
existing protecting agent, or by the combination of these two methods.

The exchange of ligands has been applied in the Brust method [11], for example,
replacing the citrate by thiol molecules, which strongly bind to the surface of gold
NPs, or simply by replacement of some thiol for another molecule. If the exchange
is randomly located, then the number of exchanged ligands follows a Poisson
distribution [31].

Another example is the replacement of some capping agent by single-stranded
(ss) DNA with defined sequence. This modified NP can bind specifically to
another ssDNA by base-pairing interactions [32] and self-assemble. Murray et al.
[33] proposed another method for functionalizing NPs, in which they adsorb two
noncomplementary oligonucleotides to gold NPs, and then add to the solution an
oligonucleotide duplex with ends complementary to the two sequences attached
to the NPs. Self-assembly of nanocrystals then occurs, thermally reversible by
denaturation.

9.5 Simulating Nanoparticles

The aim of computer simulations is to offer some explanation to experimental
results, to predict some expected results, or even more, to give some answers about
systems that, a priori, cannot be managed experimentally.

Nanomaterials can be simulated under two levels of theory. The first one involves
ab initio or quantum mechanics methods, which are based on solving Schrödinger
equation, and calculating the electronic structure of all atoms in the system, or
estimating the electronic density of the system. The second group involves classical
methods, where electronic information is included in semiempirical potentials that
describe interactions between particles. These potentials are adjusted to reproduce
some properties of the systems, and it is preferable that they are transferable. This
means that they can be used in the simulation of other systems or under different
conditions.

Ab initio calculations are the most reliable method, as a complete electronic
description can be obtained. However, these methods have a high computational
cost. It is necessary to have powerful computer hardware and still having it, only
small systems can be achieved, and results are obtained in a relatively long time.

Moreover, classical simulations allow handling bigger systems and, because
of the possibility of simulating a large amount of particles, more experimental
conditions can be reproduced. Besides, classical simulations reproduce van der
Waals interactions better than some quantum methods, through the introduction of
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experimental results in the parameterization of the force field. It is well known that
density functional theory (DFT) calculations underestimate the weak van der Waals
interactions, which are a direct result of long-range electron correlation. However,
reliable, robust, and transferable semiempirical potentials are the key for performing
classical simulations.

Calculations show that computational effort for the quantum mechanical for-
mulations of the electronic structure of atomic systems scale as the cube of the
number of atoms of the system. This makes it very difficult to reach system sizes
larger than a few hundreds of atoms. However, with the introduction of linear-
scaling algorithms in the last decade, the so-called O(N) methods can achieve
systems of nearly 103 atoms and, in the case of quantum molecular dynamics, a
few picoseconds can be run. With classical simulations, systems of more than one
million atoms can be handled, and molecular dynamics can be performed simulating
over the microsecond scale.

For the sake of clarity, from here on we are going to differentiate systems as
a function of their sizes. We are going to define “nanoclusters” as those systems
where the metal core contains up to 100–150 atoms, and NPs as all other larger
system within the nanoscale.

Using ab initio methods, only nanoclusters and a few NPs, mostly in vacuum,
can be simulated.

9.6 What Is It Interesting to Study When Simulating
Nanoparticles?

Passivated NPs consist of a core (usually metallic) and a capping agent (usually
some organic molecule). When the molecule that can attach to a given substrate is
identified, it can be interesting to know, for example, how many of these molecules
can adsorb onto the surface, and then calculate a coverage degree. Another important
quantity to obtain is adsorption energy and preferred adsorption site of a molecule
on a crystalline surface. Structural analysis can also be interesting as morphology
of passivated NPs and molecular rearrangement after adsorption.

Simulations can give us some results that cannot be obtained or are difficult to
get from experiments, and can help understand what is happening in the systems
when reactions take place. Simulations and real experiments must work in parallel
to answer to different problems and generate more questions.

Gold NPs covered with thiols have been intensively studied, both experimentally
and theoretically. One topic that caused discussions and lots of studies for many
years is the binding site of alkanethiolates on the gold surfaces.

In the 1980s, the first experimental results showed that alkanethiols and disulfurs
self-assemble on gold perfect surfaces to form self-assembled monolayers (SAMs)
[34–36]. This self-assembly implies spontaneous formation of nanometric units that
form a secondary structure from simple building blocks [34]. SAMs of alkanethiols
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Fig. 9.3 Scheme of an organized monolayer on a crystalline substrate

Fig. 9.4 Adsorption sites on perfect crystalline surfaces. (a) on-top site on a (111) surface;
(b) bridge site on a (111) surface; (c) hollow site on a (111) surface; (d) hollow site on a (100)
surface

on gold are easy to prepare, thermally stable, and allow the functionalization of the
surface by selecting the terminal group. The great stability of these SAMs is mostly
due to the non-covalent van der Waals interactions between the alkyl chains, which
adopt a uniform molecular tilt [35].

The head group is the functional part of the molecule that directly attaches to the
substrate, see a schematic representation of a SAM supported on a metal substrate
in Fig. 9.3. On perfect crystalline surfaces, adsorption sites are well defined and
differentiated by the coordination of the head group: in (111) surfaces, there are
one mono-coordinated site (on-top), one bi-coordinated site (bridge), and two tri-
coordinated sites (hollow-fcc and hollow-hcp); in (100) surfaces, there is no tri-
coordinated site, but a tetra-coordinated one (hollow). All these sites are shown in
Fig. 9.4.

Electron diffraction [36] and STM images [37] showed a hexagonal arrangement
of the molecules onto the substrate, and the proposed adsorption site was a hollow
tri-coordinated one.

Immediately, simulations of these systems started to play an important role.
The first semiempirical pair-wise potentials were devised to handle the strong
covalent interaction S–Au. Kautman and Klein simulated a SAM of alkanethiols
onto a Au planar surface [38]. The functional form of the employed potential was a
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12-3 one, fitted to reproduce adsorption energy, estimated from thermal desorption
measurements of dimethyl disulfide on a (111) Au surface. Adsorption energy of a
molecule on a surface is calculated as

Eadsorption = Emolecule−substrate −Emolecule −Esubstrate

where Emolecule−substrate is the energy of the total system after adsorption, Emolecule

is the energy of the molecule in vacuum in gas phase, and Esubstrate is the energy of
the clean metal surface.

In the 1990s, after the publication of the first ab initio calculations of gold
surfaces coated with alkanethiols [39], a pair-wise additive Morse potential for
simulating alkanethiol adsorption onto smooth, immobile perfect (111) surfaces
(atomically described) was used. Within this approximation, SAMs onto gold were
simulated in planar substrates [40] and NPs [41, 42]. In the first case, a coverage
degree of 0.33 ML was found and mostly a (

√
3×√

3)R30◦ superlattice. In the case
of NPs, it must be noted that the use of this potential is not accurate, because it
would work only with perfect planar (111) surfaces (edges, corners, and more open
facets are not taken into account during the parameterization).

Using these additive potentials, highly coordinated sites are preferred for the
adsorption of a molecule on the surface, because total potential energy is lowered as
more bonds are formed. However, they were useful, because the predicted site was
the most coordinated one.

Some years later, a controversy appeared on ab initio calculations for the
adsorption site of methanethiol onto Au (111) surfaces. On the one hand, some
results still predicted a three-coordinated hollow site [43, 44]. On the other, a new
site was proposed, which is a hybrid between the bridge and the hollow-fcc site, and
it was denominated fcc-bridge [45–48].

The controversy got worse when, in 2003, the result of an experiment of scanned-
energy and scanned-angle photoelectron diffraction (PD) was that CH3S adsorbs on
a mono-coordinated on-top site on the surface at room temperature [49], the site
that had been found in theoretical results to have the lower adsorption energy. This
result was supported by normal-incidence X-ray standing waves (NIXSW), which
also found molecules exclusively adsorbed on the on-top site [50]. Deficiencies
in theoretical methods, coverage effects, and surface reconstruction at elevated
temperature were proposed as possible explanations to this discrepancy.

This issue promoted new ab initio calculations. Already in 2002, a work by
Molina and Hammer [51] warned that defects on planar gold surfaces cannot be
neglected. They proposed that the formation of the (

√
3×√

3)R30◦ superlattice is
stabilized by the presence of vacancies on the surface. The energetic cost of gener-
ating these holes and adatoms is compensated by the gain of the adsorption of the
molecule in these sites. The energy needed to create each vacancy was estimated as

Edefect = EAu(reconstructed) + nEAu(bulk)−EAu(perfect)

where EAu(perfect) is the energy of the unconstructed Au (111) surface, EAu(reconstructed)
is the energy of the reconstructed surface, EAu(bulk) is the energy per atom in the
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bulk phase, and n is the number of vacancies created in the unit cell. Calculations
revealed that adsorption of thiol molecules (at least of short-chain) on-top gold
adatoms, which are placed on a hollow site on the surface, is the most favorable
adsorption site. These results were later supported by another ab initio calculations
[52], where it was predicted that the S group adsorbs not only on an isolated Au
adatom but also on a (

√
3×√

3)R30◦ structure. The calculated S–Au distance was
shorter than that on a perfect surface, indicating a stronger binding.

In 2006, new NIXSW measurements [53] led to the conclusion that it is not the
alkanethiolate bound to the adatom on the surface, but a complex Au–SR (where R
is the alkyl chain), the one which may be occupying either of the two hollow sites
on the Au (111) substrate. The facile movement of these complexes on the surface
[52] provides an explanation to the interchange between the different observed
superlattices.

A new model for the adsorption of methanethiolate on Au (111) surfaces was
proposed based on a scanning tunneling microscopy (STM) study [54]. In this
model, an Au adatom mediates de-adsorption of a pair of RS species, forming
structures of the type RS–Au–SR, where both molecules are asymmetrically
antiparallel to each other, separated by the adatom. It is known that metal adatoms
are formed spontaneously at elevated temperatures.

DFT calculations show that in these RS–Au–SR complexes, the thiol group of
each molecule attaches an on-top site to the surface, whereas the Au adatom is
placed on a twofold bridge site. Therefore, each S atom forms two bonds with Au:
one bond to the gold adatom, and another bond to the underlying gold atom in the
lattice. As expected, the presence of the adatom increases the adsorption energy of
both attached molecules.

Each of the formed units is highly stable, and can be imaged by STM at voltages
up to 4.5 V without any evidence of diffusion or decomposition, and can sustain
currents up to 20 nA, whereas simple SR molecule shows diffusion with pulses of
less than 1 V and currents of only 1 nA [54].

Further support for this model is the observation of lifting of the Au (111)
22×√

3 -herringbone reconstruction, which always occurs in thiolate self-assembly.
It suggests that the reconstruction can provide Au adatoms by ejecting them for
relaxing the surface structure.

Quantum molecular dynamics of methylthiolate (MT) on gold (111) were
performed starting from molecules at an on-top position in the metal [55]. Quickly,
the adsorbates migrate to bridge sites, or the novel motif MT–Au–MT, which have
lower potential energies. These simulations are short (10 ps of trajectory after 4 ps of
equilibration) because of the complexity of the calculation, and in 4 ps the molecule
migrates, and the new structures keep on stables for the remaining 10 ps of run.
It was also noted that, starting from molecules onto bridge positions, migration
to the motif structure is possible just by raising temperature, which indicates that
the process has some activation energy barrier, but reachable at lower temperatures
in longer times of simulations. The conclusion was that both, bridge and motif
configurations, coexist in equilibrium.
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It was also stated that the motif configuration is not consistent with the
(
√

3×√
3)R30◦ superlattice, but the mix of bridge and motif configurations can

form this superstructure.
Nagoya and Morikawa [56] made a study of adsorption energy of methylthiolate

on many sites onto Au (111), and compared them. The MT–Au–MT configuration
was found to be the most stable among all, and they pointed out that, although it
is energetically expensive to generate adatoms pulling them out from the perfect
surface, the bonding of the molecules to this new adatom is very strong, which
significantly stabilizes the motif creation. In the case of adsorption of a single MT
on the adatom, this bond is also strong, but it is only one, and it is not enough to
compensate for the energy expenditure in generating the adatom. Supporting the
existence of the motifs, they found a strong correlation between their theoretical
results for the adsorption energy in this configuration and available experimental
data.

In 2007, the full structure of a Au102 cluster protected by p-mercaptobenzoic
acid (p-MBA) was experimentally determined through crystallization and X-ray
analysis [57]. It was found that the metallic core is protected with 44 p-MBA
molecules. In fact, there exist an internal core, with Marks decahedra structure,
of 79 gold atoms, and it is protected by complexes RS–Au–SR (SR in this case
is p-MBA). Hence, Au102(p−MBA)44 compound is more precisely described as
Au79[Au23(p−MBA)44]. The stability of this structure can be explained because it
implies a geometrical and electronic closed shell [58] (each gold atom contributes
with one valence electron, and 44 are bonding p-MBA).

The electronic structure of this passivated system was determined later [59], and
it was found that the internal 79 atoms core is neutral in charge (metallic state),
whereas the gold forming the complexes RS–Au–SR are oxidized. The external
Au23(p−MBA)44 shell is composed by 19 RS–Au–SR units, and 2RS–(Au–SR)2

units, attached to the surface in on-top positions. So, since there are 21 units, 42
available on-top positions are necessary. Au79 has only 40 atoms on the surface.
This is solved by double anchoring onto two gold atoms.

A relatively large gap between highest occupied molecular orbital (HOMO) and
lowest occupied molecular orbital (LUMO) in this structure suggests electronic
stability. In fact, in this system, there exists a 58 closed electronic shell, with all
Au core atoms passivated, which means that all atoms have at least one covalent
bond.

So far, it was clear that, for short-chain alkanethiols, the presence of adatoms and
vacancies and the formation of complexes RS–Au–SR were of vital importance in
the adsorption process. Moreover, these complexes were observed experimentally
for low and high coverage, and the results were supported by DFT calculations.

As adsorption energies for alkanethiols of longer chains are similar to those of
methanethiol on different surface sites, it is natural to assume that the structural
motif RS–Au–SR can be formed within longer chain SAMs. It was shown [60]
that for hexanethiol (HT), the RS–Au–SR configuration is the most stable one,
in competition with the bridge position when vacancies exist on the surface.
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Because of the possibility of interconversion between these adsorption sites, it is
suggested that both static and dynamic disorders are expected to exist in the Au
(111) interface.

Quantum molecular dynamic simulations were performed to compare short and
long chain molecules, and they showed that in the case of HT, intermolecular
interactions hampered the dynamics; consequently, the interconversion between
sites is reduced with respect to the MT case. For example, the initial on-top
configuration evolves to a more stable one for both molecules, but the process takes
4 ps in the case of HT at 500 K, whereas the conversion is seen in less than 1 ps for
the MT at similar temperatures. At 300 K, formation of RS–Au–SR structure was
observed for MT after 4 ps, but not observed for HT in the 10 ps of the simulation
duration.

Because of molecule–molecule interactions, HT chains retain an ordered hexag-
onal structure, with a defined tilted angle of about 30◦ with respect to the normal to
the surface in high coverage SAMs, in contrast with MT SAMs, where the surface
is more dynamic. These observations suggested that, for the formation of hexagonal
superstructures, some key aspects are needed: similar concentrations of adatoms and
vacancies on the surface (in the case of long chains alkanethiols, more localization
of these defects is needed, because of the reduced mobility due to longer alkyl
chains); SR groups should be located onto bridge or RS–Au–SR (with molecules
onto on-top sites) configuration in similar proportions; and alkyl chains must retain
an hexagonal array. Although the SAM is ordered, the Au-S interface is affected by
a dynamical disorder because of the delocalization of adatoms and vacancies on the
surface. Packing is given by the alkyl chains, which leads to an ordered interface.

Grönbeck and collaborators [61] have performed DFT calculations of different
adsorption models proposed in the literature on perfect and defective Au surfaces.
All configurations resemble the c(4× 2) superlattice.

The studied structures are shown in Fig. 9.5 together with the S–Au bond distance
and the total energy difference, ΔE , defined as:

ΔE = E [α]−E [4RS/Au(111)]− xE [Au(bulk)]

where E[α] is the energy of each structure and E[4RS/Au(111)] is the energy of
a unit cell with four RS molecules attached to bridge-fcc positions. In Fig. 9.5,
structure 1 corresponds to the bridge adsorption onto an unreconstructed Au (111)
surface. Starting from CH3SSCH3 molecules, the dissociative adsorption energy is
about 0.39 eV, which is very low compared to the experimental value estimated from
temperature-programmed desorption (about 1.3 eV) [62]. In structure 2, the energy
required to generate adatoms leads to positive adsorption energy, the adsorption
process being endothermic. If the MT is allowed to bridge between gold adatoms,
as in structure 3, polymers of the form (Au−SR−)x can be formed, and the
adsorption now is exothermic. More stabilization is gained in the formation of
tetramers, as in structure 4, because strain is reduced when angles Au–S–Au are
close to 90◦. Structure 5 contains molecules attached to near gold vacancies, and
this configuration is preferred over those previously mentioned, even over structure
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Fig. 9.5 Gronbeck’s atomic models of optimized structures. The total energy difference with
respect to 1 is reported in eV per unit cell. The average Au-S distances (Å) are shown in parenthesis.
Atomic color codes: orange (Au), yellow (S), gray (C), and white (H). Au adatoms are shown in
blue. Reprinted with permission from [61]. (Copyright 2008 by the American Chemical Society)

6, which contains a mix of two RS groups adsorbed onto a bridge position close
to a Au vacancy and two forming a RS–Au–SR complex. Structure 7 contains all
RS–Au–SR motifs with chains in a trans configuration, and is similar in energy to
structure 1. However, if the molecules are positioned in a cis configuration, as in
structures 8 and 9, the adsorption process becomes highly exothermic. It suggests
that adsorption energy is strongly dependent on molecular orientation. Although
structure 6 also has molecules in a cis configuration, more energy stabilization is
gained in the formation of more RS–Au–SR motifs.

The adsorption of molecules forming RS–Au–SR complexes on the surface
enables sulfur sp [3] hybridization and the existence of Au–S–Au angles close to
90◦. The energy required to form the adatoms is strongly compensated by the gain
in adsorption energy of the complex. The bond between complexes and the surface
is polar-covalent. Although RS–Au–SR is anionic, calculated charge transference is
negligible.
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Table 9.1 Calculated adsorption energy for RS onto perfect and defected Au (111) surfaces

Adsorption site Adsorption energy (eV) Basis Functional Reference

On-top −1.43,−1.00 Pw GGA [47]
−1.42 Pw GGA-PBE [55]
−1.34 Pw GGA-PBE [56]
−1.40 Pw GGA-PBE [60]

Bridge −1.67,−1.19 Pw GGA [47]
−1.72 Pw GGA-PBE [55]
−1.71 yPw GGA-PBE [56]
−1.70 Pw GGA-PBE [60]

Bridge-fcc −1.72,−1.25 Pw GGA [47]
−1.73 Pw GGA-PBE [48]
−2.30 (lc) triple-ζ STOs BP86 [52]
−1.92 (hc) triple-ζ STOs BP86 [52]
−1.46 Pw GGA-PBE [56]
−0.39a Pw GGA-PBE [61]

Hollow −1.49,−1.03 Pw GGA [47]
−1.49 Pw GGA-PBE [48]

Adatom −2.94 (lc) triple-ζ STOs BP86 [52]
−2.43 (hc) triple-ζ STOs BP86 [52]
−1.35 Pw GGA-PBE [56]

RS–Au–SR −2.40 Pw PW91 [54]
−1.83 Pw GGA-PBE [55]
−1.95 Pw GGA-PBE [56]
−1.90 Pw GGA-PBE [60]
−1.23b Pw GGA-PBE [61]

lc low coverage, hc high coverage, pw plane waves, STOs, Slater type orbitals
aThis result takes into account the dissociation energy of RSSR
bThis result takes into account the energy for the formation of the adatom

As a summary, we collect in Table 9.1 some of the calculated values of adsorption
energy of alkanethiols on Au surfaces from different authors.

Summing up, results shown above are a typical example of how simulations
can be helpful to elucidate some problems. Simulations always go in parallel with
experiments, answering questions, and generating new challenges to be measured.

9.7 First Principles Calculations: Simulating Nanoclusters

As we stated before, first principles calculations are very expensive, in a computa-
tional jargon. Even if we had large supercomputers, only small systems could be
handled.

In most of these calculations, energy optimizations are performed, neglecting
entropy effects, which in the case of molecular adsorption at a finite temperature
cannot be neglected a priori. For doing this, Schrödinger equation is solved
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(or Kohn–Sham equations in the case of DFT) only with the input of atomic
identities and coordinates, and energy is calculated as a function of the atomic
positions. Taking derivatives of the energy landscape, forces are obtained, and the
system evolves to the energy minimum, which means, cero forces. This is the reason
why, in this type of simulations, local wells and minima are explored from the initial
configuration, and the initial guest structures are of crucial importance.

The initial configuration can be chosen in several ways. Semiempirical calcu-
lations results (e.g., from global minimization algorithms or classical molecular
dynamics) can be used as the starting point for the geometry optimization. If
experimental evidence is available, such as X-ray diffraction or microscopy images,
coordinates can be taken from that information.

If forces are used to solve Lagrangian equations, quantum molecular dynamics
can be performed, and the time evolution of the system is obtained. Nevertheless,
only short times can be simulated (c.a. few nanosecond in best cases), because
these operations are extremely expensive. If the second derivative of the energy
is taken, the Hessian matrix is obtained, and vibrational modes can be calculated by
diagonalizing it.

• A Paradigmatic Example: Au38(SCH3)24

Passivated nanoclusters have been synthetized and isolated in the last years. One of
the first and smallest passivated nanosystems successfully isolated in large quantities
in solution was Au38(SCH3)24 [63, 64]. The first ab initio calculation of passivated
clusters deals with this system, determining its electronic structure, geometry, and
other relevant properties [65]. It is known that bare gold nanoclusters of 38 atoms
adopt truncated octahedral morphology [66]. In that study [65], they started from
a classical molecular dynamics result of the structure of the bare cluster using
the embedded atom (EAM) potential, and relaxed it with ab initio calculations,
obtaining essentially the same structure. After this relaxation, the metal core was
passivated by 24 methylthiolate (SCH3) molecules symmetrically placed onto the
(111) facets. The system was optimized, and relaxation of the inner and outer corner
gold atoms was observed, through expansion of some interatomic distances.

Density of states (DOS) were obtained for both bare and passivated clusters.
In general, they noted in the passivated system addition of two narrow bands
corresponding to molecular orbitals, shift of gold states, filling of the gap, and
reduction of holes around the Fermi level.

Regarding charge transfer, results showed a deficit of about two electrons in the
gold core, transferred to the molecular layer. This charge movement could explain
the expansion of the Au–Au distance in the core, due to the Coulombic increased
repulsion between nuclei. It was also found that extra addition or removal of charge
takes place only in the molecular environment.

Garzón et al. [67] found that, after molecular adsorption, structural deformation
is observed in the metal core due to the strong interaction between sulfur and
gold atoms, and some sulfur atoms are incorporated into the cluster surface.
This deformed structure has a lower energy minimum than the ordered structure
proposed by Häkkinen et al. [65]. The results were obtained using scalar-relativistic
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norm-conserving pseudopotentials, as well as plane wave as basis set. They also
calculated chirality of this bare and passivated nanocluster [68] and showed that
achiral clusters can become chiral, as in the case of Au38(SCH3)24, or clusters that
are already chiral can increase their index of chirality, as in the case of Au28, when
passivated. On the other hand, charge transference is found to occur with different
patterns [67], in contrast to the results of the previous model [65]. It is interesting to
mention that in a previous work [69], they had demonstrated that amorphous bare
gold clusters coexist with crystalline ones.

At the time in which both works were performed, the polymeric passivant
structures (Au−SR−)x were still unknown, and because of this all 38 gold atoms
were considered as an entire core, and only molecules were taken as the protective
agents. However, in Garzón’s model, some structures of the form RS–Au–SR
and RS–Au–SR–Au–SR are present in the nanocluster surface. Nevertheless, the
importance of these motifs was still unrecognized.

A few years later, the structure of the Au38(SCH3)24 was relaxed using a different
correlation-exchange functional [70], and an ordered and symmetric structure was
found, with six planar cyclic tetramers of the form (AuSCH3)4 as protecting agents.
They stated that bonding in thiol-protected gold nanoclusters can be viewed as a
competition between maximizing cohesion energy and forming ring-like complexes
on the surface, which reduces the number of gold–gold bonds in the core. Calculated
charge transfer was about 4.5 electrons from the metal atoms to the thiolates. These
authors also stated that all calculations performed to elucidate the structure of
passivated clusters use SCH3 as passivating agents. If longer molecules were used,
chain–chain and steric effects would not be negligible in the prediction of the most
stable configuration. Ordering promoted by these intermolecular interactions should
make disordered cores energetically unfavorable.

These results clearly show that the predictions made by DFT depend on the
exchange-correlation functional chosen. However, the last work mentioned above
introduced a key concept: part of the gold atoms—all of which had been thought
of as an entire core before—can be forming part of the protective layer, and the
remaining atoms constitute the internal core, and both kinds of atoms are different.

After the experimental elucidation of the total structure of the Au102(p−MBA)44

[57], which reveal the existence of motifs of the form RS–Au–SR and RS–Au–SR–
Au–SR onto the surface, it was proposed that instead of the cyclic tetramers [71],
this kind of passivant should be present in Au38(SCH3)24. In that work, the authors
created polymeric structures by hand, passivating the initial truncated octahedron
and relaxing the system with DFT calculations, and they found a disordered core
of 24 gold atoms, covered with four linear RS–Au–SR–Au–SR and six RS–Au–SR
motifs.

That structure was later reconsidered by the same authors [72] who proposed
another configuration in which a disordered core of 23 gold atoms are protected
with six RS–Au–SR–Au–SR and three RS–Au–SR motifs. This structure appears to
be more stable, but still has a disordered core.

At the same time, Zeng et al. [73] proposed a face-sharing bi-icosahedral Au23

core protected by six RS–Au–SR–Au–SR and three RS–Au–SR motifs. The main
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difference with the previous model is the ordering in the internal core, which makes
the structure more stable. This model also presents good agreement with optical
spectrum and X-ray diffraction experiments [74].

• Au102(p−MBA)44

In 2007, the synthesis, crystallization, and atomic description of the Au102

(p−MBA)44 cluster made by Kornberg and collaborators [57] provoked a
breakthrough in total structural determination of protected gold nanoclusters.
The structure was described as an internal 49-atom core with Mark’s decahedra
geometry and two 20-atom caps in the poles of the core. It gives as a result an 89-
atom structure with fivefold symmetry. The remaining 13 atoms lie in the equator
of the cluster without any symmetry due to the interaction between these atoms and
protecting molecules, which confers chirality to the system.

Another description was made for this cluster [75]. It was described as a 79-
atom internal core with truncated decahedral geometry, where two 15-atom caps are
placed at the poles, rotated with respect to the ideal decahedral shells, placing all the
40 surface atoms in a common sphere. The remaining 23 atoms form the external
shell and connect molecules with the internal core. So, the structure can be better
named as Au79[Au23(p−MBA)44].

The great stability of the system was attributed to the fact that each of the
gold atoms donates a valence electron and 44 of these electrons are taken by the
molecules into localized orbitals. Then, 58 electrons remain in the metallic cluster,
corresponding to an electronic closed shell. Noble metal clusters with a closed shell
have a large HOMO-LUMO gap, which confers stability to these systems.

Geometric analysis was performed for Au102(SCH3)44 cluster. Starting from
coordinates obtained from the crystallographic experiment but replacing p-MBA by
SCH3 molecules, local minima was found by DFT calculations [76]. The authors
state that since the structural configuration is almost the same as with p-MBA,
electronic structures can be compared.

In this analysis, it is considered that if five extra vertex atoms are also considered
with the 49 Mark’s decahedra internal core, a perfect 54-atom decahedral structure
can be seen. This can be viewed as five 20-atom tetrahedral subunits forming
a non-perfect “penta-star” with fivefold symmetry. This structure is intrinsically
strained, because of solid-angle deficiency, and it is not energetically stable. This
fact indicates that the presence of the passivant is what makes this decahedral
structure favorable. At each side of the penta-star, five wings (eight rhombuses and
two triangles) are seen. The 13 equatorial atoms described by Jadzinsky et al. [57]
consist of five atoms from the corner of the penta-star and eight from the corner of
the wings. On the top of the wings, an additional pentagonal cap is formed at each
side of the structure.

Hence, the need of formation of 88 total Au-RS bonds leads to a configu-
ration that can be viewed as a multilayer structure: Au54(penta-star)@Au38(ten
wings)@Au10(two pentagon caps), see Fig. 9.6.

Electronic calculations were performed under DFT formalism for bare and
passivated Au102 nanocluster. A big difference in values of HOMO-LUMO gaps
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Fig. 9.6 (a) Perfect tetrahedral Td −Au20; ∠abc = 70.53◦. (b) Graphitic anatomy of embedded
Au102 structure. An Au54 penta-star consists of five twinned Au20 tetrahedral subunits (in five
colors). Ten wings (taking 38 Au atoms) include eight rhombuses and two triangles (in blue), five
on each side of the penta-star. The Au54 penta-star (in blue) plus the wings (in yellow) form a
Au92 structure. Adding a five-atom pentagonal cap (in red and green) on each side of the Au92
gives rise to the Au102 structure. Reprinted with permission from [76] (Copyright 2008 by the
American Chemical Society)

of these structures was found. In the case of bare metal cluster, the gap is
notably smaller than in the protected one, what indicates that the last is chemically
more stable, and gives a support to the application of a spherical Jellium model
to passivated metal nanoclusters. To have another evidence of this fact, extra
calculations were performed on other systems, showing that configurations with
closed electronic shells are largely more stable than others [76]. Charge analysis
shows that slight electronic transfer occurs between metal and thiolate groups. In
general, for a Aum(SCH3)n cluster, each gold atom donates an electron, and each
molecule accepts one into a localized state, and total effective number of valence
electrons can be estimated as m–n. Higher stabilities are found when this number
corresponds to a closed electronic shell.

Walter and collaborators [59] have performed a DFT study of several gold
clusters covered by different passivants. They suggest that in the passivation
processes, electronic shell closure, sterically complete protective layer and compact
and symmetric metal core play an important role. In that work, a large HOMO-
LUMO gap was also found for Au102(RS)44, and it was also stated that small charge
transfer between internal Au79 core and Au23(RS)44 protective shell occurs, and
bonds are weakly polarized. The positive charging of the surface atoms induces
formation of holes in the 5d10 shell of Au, which indicates magnetic behavior.

It was also found that the energy gap present in passivated nanoclusters is almost
not sensitive to the adsorbed thiolate, although molecules in the gas phase exhibit
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very different energy gaps [77]. However, the presence of an aromatic ring in aryl
thiolates modifies the charge distribution, and it may change surface dipoles and
position of energy levels, and with it, electron affinities and ionization potentials.

The adsorption energy of each p-MBA radical in a staple motif onto a Au102

cluster fully passivated was estimated to be −1.96eV. When calculations are
performed for a p-MBA radical in a unique adsorbed staple motif, the estimated
value is slightly higher: c.a. −2.16eV. The decrease in adsorption energy when
increasing the coverage degree can be attributed to the steric repulsion between
adsorbed molecules, and the limitation of gold atoms to relax [76].

In all ab initio calculations of this system, local minimizations of the previous
known structure are performed, and the results show that this configuration is
energetically stable. It was found that adding or removing some molecule or group,
these ordered structures are not stable anymore due to the lack of a closed electronic
shell [59, 75].

9.8 Modeling Passivated Nanoparticles

In order to avoid any confusion with the terminology, we recall the differences
on systems according to their sizes. Before, we have defined “nanoclusters” as
all systems where the metal core contains up to 100–150 atoms and NPs as all
larger systems within the nanoscale. In what follows, we will refer to modeling of
protected nanoparticles, mainly tackled with semiempirical interatomic potentials
and mean-field approximations. First-principle calculations are practically absent in
the present scale (nanoparticles diameter: 2–20 nm) due to the high computational
cost needed to treat such large amount of particles. For instance, a nanoparticle of
approximately 2 nm contains 147 core atoms and 70 surfactant molecules, leading
to a total number of atoms of 1,057 (for dodecanethiol within the united atom
approximation).

As stated in previous sections, one of the most studied surfactant-protected
metal nanoparticles is thiol-passivated Au NPs, due to the fact that they have many
potential applications in several areas. For instance, it is worth noting the imminent
application of these systems in novel methods to diagnose and treat cancer, drug
delivery, etc.

With regard to semiempirical approaches, it is worth mentioning the pioneer
work performed by Luedtke and Landman [41, 42, 78] where the structure, dynam-
ics, and thermodynamic aspects of gold nanocrystallites passivated by alkylthiolates
and the energetics of formation of superlattices made through the assembly of passi-
vated nanoclusters were investigated by means of molecular dynamics simulations.

In those early works, Luedtke and Landman focused on two prototype systems:
Au140 and Au1289 and they found that in the passivated forms of Au140(C12H25S)62

and Au1289(C12H25S)258, the thiol molecules adsorb on the (111) and (100)
crystalline facets of the nanocluster/nanoparticles to form compact monolayers. The
SAMs on the nanocrystallites were found to form larger packing densities compared



294 J.A. Olmos-Asar and M.M. Mariscal

to dodecanethiol SAM on flat Au(111). Despite the impressive work presented by
Landman, in such studies the gold atoms of the nanocrystallites were kept fixed
during the entire dynamics simulation. Therefore, the structural information of
the gold nanoparticles—a very important aspect to understand the properties and
structures of capped nanoparticles, particularly considering the strong interaction
between S and Au—was unavailable. In all the works by Landman, the bonding
interaction between S and Au was modeled via a pair-wise additive Morse potential
with the following functional form:

US−Au (r) = De exp(−β (r− re)) [exp(β (r− re))− 2]

where De = 0.4eV, β = 1.3Å
−1

, and re = 2.9Å. These parameters are known to
correctly reproduce binding energies, equilibrium distances, and vibrational force
constants of alkyl thiolates adsorbed on planar gold surfaces.

Zachariah and coworkers [79] have reported a molecular dynamics study of
an all-mobile-atom approach to study the mechanochemical stability of thiol-
protected Au NPs. In their work, they reported that the surface of gold nanoparticles
becomes highly corrugated by the adsorption of thiol molecules. In addition, it was
shown that as temperature increases, alkanethiol molecules go through the gold
nanoparticles even at temperatures much lower than the melting temperature of gold
nanocrystallites.

However, the interatomic potential used to describe the S–Au interface fails to
represent the bond-order dependence of the S–Au bond, due to the fact that they used
a pair-wise Morse potential (similar to the Landman’s approach), parameterized
to reproduce the adsorption energy of thiols on Au(111) perfect flat surfaces.
Therefore, it is trivial to understand that the S− head group of the thiolate molecules
will try to over-coordinate with Au atoms in order to minimize the overall internal
energy of the system. As a consequence, the use of additive pair-wise potentials with
non-fixed metal atoms will produce unrealistic results.

Vlugt and coworkers [80] have reported a Monte Carlo study of gold nanocrystals
protected with alkyl thiols, with and without explicit solvent (n-hexane). They
found that the geometry of the gold surface strongly influences the formation and
structure of the capping monolayer. Even more, they showed that the solvent plays
an important role in the thermodynamic properties of thiol monolayers on both
flat Au(111) surfaces and nanoparticles. Therefore, they stated that phenomena
observed in vacuum may be different from those observed in solution. To perform
the MC simulations they used the Hautman and Klein [38] potential, where
an unidirectional effective potential is used indistinctly for planar Au(111) and
curved surfaces (nanoparticles). The effective potential between S and Au is taken
according to the following function:

Veff (z) =
C12

(z− z0)
12 − C3

(z− z0)
3
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where z represents the distance of a united atom to the Au surface, and C12, C3,
and z0 are fitted parameters to reproduce adsorption energy on a hollow site of a
planar Au(111) surface. Therefore, as in the case of Landman’s approach, any local
environment effects are neglected.

Very recently, Jiménez et al. [81] reported a molecular dynamics simulations
of SAMs of alkanethiol molecules on gold nanoparticles to determine the surface
per ligand molecule as a function of the NPs size. For their molecular dynamics
calculations they employed a classical Morse potential to describe the S–Au bond
with parameters taken from a study of self-assembly of 1,4-benzenedithiolate (BDT)
on a Au (111) surface [82] and all gold atoms were held fixed during the simulation.
A very good agreement with experimental estimations was found in the coverage
degree as a function of the nanoparticles diameter. They also conclude that the
nearest CH2 group to the surface plays the most important role in the value of the
surface tension.

As shown in previous sections, ab initio theoretical calculations using DFT show
that the energy and the adsorption site of alkanethiols on metallic substrates depend
very strongly on the coordination number of the thiolate groups, as well as on the
coordination of Au atoms.

In view of the large amount of DFT results, and considering the evolution of dif-
ferent S–Au adsorption models, Olmos-Asar and Mariscal [83, 84] have developed
a new semiempirical potential to accurately describe molecular adsorption on metal
surfaces, by introducing local environment effects in the functional form.

The main characteristic of the potential is the existence of variable parameters
of the Morse potential function that depend on the bond order of both the head
group of the molecule (i.e. sulfur, nitrogen, etc.) and the closest metal atoms. This
is carried out by introducing a bond-order nj(Mol,Metal), dependence on the De and
re parameters of the Morse function. The first one takes into account the binding
energy and the second one the equilibrium bond distance. The modified Morse
potential function can be described by the following functional form:

VMol−Metal = De
(
n j(Mol,Metal)

)
exp
[−α

(
r− re

(
n j(Mol,Metal)

))]
{

exp
[−α

(
r− re

(
n j(Mol,Metal)

))]− 2
}

where De(n j(Mol,Metal)), α , and re(n j(Mol,Metal)) are fitted parameters and the bond
order is calculated as follows:

n j = ∑
i�= j

f (rij)

f (r) =

⎧⎪⎨
⎪⎩

1
0
1
2 − 15

16

[
Y (r)− 2

3Y (r)3 + 1
5Y (r)5

]
⎫⎪⎬
⎪⎭

r ≤C1

r ≥C2

C1 < r <C2
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Fig. 9.7 Adsorption sites considered for the fitting procedure: (a) on-top (b) bridge (c) hollow
(111) (d) on-top adatom—inset: lateral view—(e) staple motif “RS–Au–SR” and (f) hollow (100).
Reprinted with permission from [84]—(Copyright 2011 by the PCCP Owner Societies)

where:

Y (r) =
2r−C2 −C1

C2 −C1

For thiolate molecules adsorbed on gold, the values of C1 = 2.75Å and C2 = 3.45Å
are chosen in order to obtain a smooth slope in the f (r) function, but maintaining all
configurations used for the fitting procedure with well-defined bond-order values.
When using amines on gold surfaces, the values considered are: C1 = 3.55Å and
C2 = 3.80Å5. For calculating gold bond orders, the same functions are used, but
taking C1 = 2.90Å and C2 = 4.06Å.

For thiol-gold system, to obtain the set of parameters mentioned above, six
adsorption sites on different surfaces are considered during the fitting procedure:
i.e., two mono-coordinated sites (on-top in a perfect (111) flat surface and on a Au
adatom), one bi-coordinated site (the bridge position on a perfect (111) surface), one
tri-coordinated site (the hollow position in a (111) surface), a tetra-coordinated site
(the hollow position in a perfect (100) surface), and the staple motif (RS–Au–SR)
mentioned in the previous section (see Fig. 9.7).

In each of the configurations selected, with the molecule adsorbed on the equi-
librium position (it implies head group-metal distance at the re value), De parameter
was changed self-consistently, keeping α as a constant, until the adsorption energy
value predicted by DFT calculations was reproduced. The optimized values are
shown in Table 9.2.
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Table 9.2 Optimized values of the parameter De and re in the six selected configurations for both
alkylthiolates and alkylamines on gold surfaces. De in eV units and re in Å

Adsorption site Thiol/Au De Thiol/Au re Amine/Au De Amine/Au re

On-top (111) 0.404764 2.43 0.189 2.45
On-top (100) − − 0.231 2.38
Bridge (111) 0.271479 2.64 0.058 3.23
Hollow (111) 0.286784 2.68 0.051 3.41
Hollow (100) 0.293681 2.81 0.049 3.58
Top/adatom Au (111) 1.759618 2.30 1.039 2.23
Motif (RX-Au-XR)/XR 0.782176 2.55 − −

Figure 9.8 shows the resulting potential energy surfaces (PES), which were
constructed using the six configurations mentioned above (without low-coordination
sites on non-perfect surfaces) through cubic splines interpolations of the form:

De = Da
e

[
2

(
n− na

nb − na

)3

− 3

(
n− na

nb − na

)2

+ 1

]

+Db
e

[
3

(
n− na

nb − na

)2

− 2

(
n− na

nb − na

)3
]

in order to obtain values at intermediate positions, while satisfying the continuity of
the potential energy landscape (Da

e ,D
b
e are the values of the potential depth at the

limits a and b of each interval and na,nb the bond orders at those points).
In the case of thiols, the adsorption on the staple motif is the most favorable

adsorption site, followed by the adsorption on the on-top Au adatom, which fully
agrees with previous DFT calculations [85].

In the case of amines, the top position was found to be the most favorable site,
but in general there are no considerable effects on the bond order, and in principle
the use of classical Morse functions will describe accurately the main features of
the system, particularly on the capping effect. However, it is interesting to mention
that the modified Morse potential can reproduce the top position by means of simple
MD calculations or local relaxations, indicating the power of the method, since any
pair-wise potential without local environment effects (like conventional Morse) will
predict adsorption on high coordinated sites in order to minimize overall internal
energy of the system.

In Fig. 9.8, PES obtained are shown for two paradigmatic cases: alkylthiol and
alkylamines on gold surfaces.

The new semiempirical potential has been used to explore some key properties
of dodecanethiolate and dodecaneamine protected gold clusters and nanoparticles
of various sizes and core geometries. For a direct comparison, in Fig. 9.9, two
Au nanoparticles of similar size are shown. As can be seen, the structure of the
particles presents the same behavior, i.e. a strong surface disorder with nonexistence
of crystalline structure.
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Fig. 9.8 Potential energy surfaces (PES) for amines (top panel) and thiols (lower panel) adsorbed
on gold surfaces

Fig. 9.9 A comparison between two gold nanoparticles capped by alkanethiol molecules of very
similar size. (Left) HRTEM image; (right) simulated
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Fig. 9.10 Dodecanethiol-protected Au nanoparticles. Coverage degree as a function of the
nanoparticles size for different core geometries. Reprinted with permission from [84]—(Copyright
2011 by the PCCP Owner Societies)

In Fig. 9.10 the maximum coverage degree for nanoparticles of different geome-
try, i.e., cuboctahedra (CO), icosahedra (Ico), and regular decahedra (Dh) for several
sizes, are shown. We define the coverage degree (θ ) as the ratio between the number
of adsorbed molecules and the initial number of surface gold atoms in the NP. As can
be noted in the figure, the coverage degree increases markedly as the nanoparticle
diameter decreases, reaching a limit value close to one when the NP diameter is
near 1 nm. It is important to note that when the nanoparticles diameter reaches a
value of approximately 4 nm, the coverage degree tends toward the value of the
planar surface, i.e. 0.33 ML (marked in Fig. 9.10 with a solid green line). Note that
an experimental estimation [86] of the coverage degree is also plotted, as well the
results taken from the early work by Landman [42] and the novel discoveries by
Kornberg [57] and coworkers.

As we mentioned at the beginning of the section, most of the previous potentials
fail to study the structure of the gold atoms due to the fact that they were held fixed
during the fitting procedure. Langevin dynamics have been performed for both thiol-
and amine-protected Au nanoparticles, to explore the internal structure of passivated
gold nanoparticles and to compare the effect of hard and soft surfactant molecules,
respectively. Simulations were performed at a constant temperature of 300 K by
coupling the system to an external bath.

Simulations were carried out starting from relaxed Au cores and adding later on
an excess of randomly distributed dodecanethiolate or dodecaneamine molecules
around the relaxed Au NP. Within this approach, the adsorption sites are not
assumed a priori and molecules are, in principle, able to diffuse on the gold surface.
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Fig. 9.11 Left: bare; middle: dodecanethiol; right: dodecaneamine protected Au nanoparticles of
difference sizes with icosahedral core

Moreover, concerted diffusion processes are allowed during the dynamics evolution.
In Fig. 9.11, the atomic structures of bare and passivated Au nanoparticles are shown
for different core sizes. In the case of dodecanethiolate surfactant, for clusters
and small NPs, the icosahedra structure is completely lost due to the strong S–
Au interaction, comparable in magnitude to the Au–Au interaction on the outer
layers of the gold clusters. At 300 K, there is a competition between perpendicular
bonding (S–Au) and lateral ones (Au–Au). As the nanoparticles diameter increases,
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Fig. 9.12 Pair distribution functions for bare (black lines), dodecanethiol (blue), and dode-
caneamine (red) protected Au clusters and nanoparticles of difference sizes with icosahedral core

the surface of the NPs appears slightly disordered, but the internal core keeps the
icosahedra structure. In the case of softer surfactants such as amines, the gold core
remains intact as expected, on account of the low bonding energy between N–Au
−0.28–0.59eV, compared to −1.34–2.21eV for S–Au.

Inspection of the atomic configurations, by means of computing the pair distri-
bution function

gr =
V
N2

〈
N

∑
i

N

∑
j �=i

δ (r− rij)

〉

reveals the structural disorder in the case of thiol molecules (see Fig. 9.12). How-
ever, in the case of amine-protected particles the Au core preserves the characteristic
peaks of bare icosahedral gold NPs.

At this point it is interesting to compare the structures predicted with experimen-
tal evidence. One of the most sensitive techniques to monitor the atomic structure
of nanoparticles is aberration-corrected STEM coupled with a HAADF detector.
Very recently [83], it has been revealed that when the nanoparticles size is lower
than 2–3 nm, the surface of dodecanethiolate-protected gold nanoparticles is highly
disordered. In addition, when the gold clusters are smaller than 2 nm, a crystalline
structure cannot be resolved by aberration-corrected STEM. Evidence of small Au
nucleus and isolated adatoms and chain of gold with unusual Au–Au distances are
also observed.
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A different approach to study surfactant-protected nanoparticles is the work
reported by Schapotschnikow [87], where the potential of mean force (PMF)
between alkylthiol capped Au nanoparticles, using atomistic simulations, was
computed. The potential well depth reported ranges from 30kbT for nanoclusters
(Au147) to 180kbT for nanoparticles of Au561. The minimum of the PMF lies at a
distance of approximately 1.25 times the distance of the core diameter (defined as
twice the radius of gyration). Results suggested a strong thermodynamic stability of
the nanoparticles structures. To obtain the PMF between two nanoparticles Steered
MD was needed, using classical force fields and fixed gold atoms.

Chakrabarti and collaborators [88] have reported a study of the assembly of
surfactant-protected gold nanoparticles by both phenomenological modeling and
computer simulations. They have developed an effective NP–NP pair potential by
treating the ligands molecules as flexible polymer chains and considering a free
energy of mixing approaches. Even more, they included elastic contributions from
compression of the ligands to the effective NP–NP potential. The pair potential
was later on used to perform Brownian Dynamics simulations to obtain a broad
perspective in the dispersed-phase to solid-phase transition.

9.9 Summary

In this chapter, we have discussed the most outstanding experiments concerning
surfactant-protected nanoparticles. In particular we have focused on thiol-capped
metal nanosystems, due to their potential applications in a wide range of areas.
The exciting future of thiol–Au clusters and nanoparticles lies in their biological
applications as hybrid biological-inorganic systems.

We have considered the most significant efforts to understand the complexity
of these systems from theoretical considerations. In this sense, we have shown
a wide diversity of models, high-accuracy calculations, and computer simulation
techniques applied to the modeling of protected metallic clusters and nanoparticles.

The development of new semiempirical approaches give thermodynamics and
kinetics a new and significant role, since with the introduction of new methodologies
along with the enormous growth in computer power, the future seems very
promising for this field of research.
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Chapter 10
Thermodynamic Modeling of Metallic
Nanoclusters

Oscar A. Oviedo and Ezequiel P.M. Leiva

10.1 Historical Development

Gas–liquid, gas–solid, and liquid–solid phase transitions, among others, have drawn
the attention of numerous scientists for more than a century [1, 2]. In 1878,
Gibbs presented his celebrated manuscript “On the equilibrium of heterogeneous
substances” [1], where a thermodynamic theory devoted to the understanding of the
behavior of interfaces between fluids and solids was formulated for the first time.
In that formulation, Gibbs introduced the concept of “dividing surface” as a mental
construction for the structure of the interface, according to which, all the excess
thermodynamic quantities depend on the location of this dividing surface that is
defined according to each case. It is remarkable that although Gibbs presented his
theory for both fluids and solids at the same time, most advances have been made
in liquid condensation from the vapor phase [3]. According to Finney and Finke
[4], the first review and compilation concerning work on nucleation and growth of
metallic nanoparticles (NPs) was undertaken only in 2008.

The theoretical treatment for the formation of a nucleus depends on its nature,
that is, fluid or solid. In Gibbs’ model [1, 2] this is a natural consequence of
the definition of surface tension. While the thermodynamic definition implies
accounting for the work of surface formation per unit area, the mechanical definition
involves an excess of surface stress. Both definitions have different values for a
solid, but the same for a fluid. Shuttleworth [5] and later Herring [6] related both
definitions on the basis of mechanical considerations and settled the theoretical basis
for the experimental determination of both. A recent compilation on these topics
applied to chemical equilibrium may be found in the review work by Rusanov [7].
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Matemática y Fı́sica, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba,
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The most important concept to understand the properties of nucleation and
growth of heterogeneous systems is surface tension, and probably the most
widespread model used to compute such properties is that developed within the
classical nucleation theory (CNT) [3]. This was originally developed by Volmer
and Weber [8], Becker and Döring [9], Frenkel [10], and Zeldovich [11]. The CNT
model was settled on the basis of the fluctuation theory and has as a final goal
the computation of the rates at which these fluctuations occur. The latter drive the
particles of the systems to become a fragment of the new nanophase [12]. Within
this approach, a cluster of the new phase is represented as a nucleus with spherical
symmetry and the same density as the stable bulk phase. This nucleus is immersed
in a metastable phase with ideal properties. A particularly relevant concept that
emerged from this formulation is that of critical cluster size (or critical nucleus
size), which refers to a cluster where the rate of growth and dissolution are exactly
the same. Thus, clusters smaller than this will tend to disintegrate rather than to
grow, and the opposite will occur with clusters larger than the critical one. The
notable aspect of this model is the presence of an uncharged interface. The latter
is characterized by its surface tension, which is assumed to be equal to that of a
piece of macroscopically sized material. The cluster is considered to be in a diluted
medium to such an extent that London–van der Waals interactions between the
clusters may be considered negligible [13–16].

Many schemes and improvements to the CNT have been developed. For example,
Buff [17, 18] extended the classical concepts to consider curved surfaces, using
the mechanical and thermodynamic definition of surface tension developed by
Shuttleworth [5]. A remarkable prediction using this model was made in the 1960s
by Walton, who showed numerically that the critical nuclei size obtained in many
experiments should contain less than seven atoms [19].

In 1961, Lothe and Pound (L&P) [20] discussed on the need to incorporate
new contributions to the free energy of cluster formation that Volmer and Weber
had not originally considered [8]. While the classical theory of nucleation was
related to the formalism developed by Gibbs for infinite interfaces, the new
contributions suggested by L&P resulted from considering the finite nature of the
phenomenon. L&P argued that a statistical mechanical description should include
the translational, rotational, and vibrational terms of the cluster being formed, since
these terms correspond to the treatment of finite systems. This consideration was
denominated “translational-rotational paradox in nucleation theory” and sparked
a heated discussion that is still going on today [21–24]. Reiss et al. [25, 26]
considered this problem and proposed modifications to the CNT, based on a suitable
representation of the statistical mechanical model. These authors noted that it is
actually necessary to consider only the contribution due to translation of the center
of mass of the cluster.

For their part, Langer et al. [27–29] and Katz et al. [30] showed that the
nucleation rate may be formally estimated, using some considerations based on
kinetics equation. Choosing the equilibrium state under saturation conditions as
the reference state, these authors arrived at the same conclusions as those drawn
from the CNT. However, some inconsistencies emerged between both approaches
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(thermodynamic and kinetic). Katz et al. [31] and then Girshick et al. [32] showed
that the wrong choice of the excess of free energy in the CNT introduced an
error in the determination of the nucleation rate, thus originating inconsistencies
between both formulations. An empirical modification was proposed that allowed
the interpretation of several experiments [31–33], but the physical/mathematical
explanation was far from being understood.

In the 1990s, the increasing computational power allowed a new way to compare
the predictions of theoretical models with experiment, which resulted in the
so-called “computer simulations” [34–38]. For example, Duijneveldt et al. [39]
estimated the free energy barriers that separate crystalline phases from their liquid
counterparts. These early computer experiments generally used hard spheres or
Lennard–Jones potentials, which limited the extrapolation of their behavior to that
of metallic systems. However, they were already able to predict changes in structure
of NP with increasing size, like the bcc to fcc transition. At the same time, density
functional calculations started to be applied to the calculation of properties of very
small clusters [40]. Most of these computer simulations have been devoted to study
the nucleation of liquid drops from a gas phase, or to consider the formation of
solid phases from a supersaturated gas. The application of computational studies to
the nucleation of solid phases from a solution has been rather scarce, and most
approximations to these problems are rooted in extrapolations from the liquid–
gas and solid–gas studies mentioned above. The first attempt to such an approach
was undertaken in the early 2000s by Ciacchi et al. [41–43], who analyzed the
nucleation of Pt in aqueous solution on the basis of density functional theory (DFT)
calculations.

Going back to the developments in the theoretical field, in 1996 Ford [44]
extended the concepts of nucleation and growth adding the so-called second theorem
of nucleation and growth to the standard formulation (first theorem). While the first
theorem refers to the changes of nucleation rate with supersaturation, the second
theorem refers to the changes of nucleation rate with temperature. As noted by Ford
[44], the basic assumptions of CNT are a good approximation to relatively large
NPs, where the deviations of the thermodynamic properties from bulk properties
are only attributed to the existence of an interface. In this approach, a large NP
is envisaged as consisting of two parts, a bulk and a surface. While the former is
assumed to keep the properties of the bulk phase, the surface tension of the latter
is assumed to have the value for an infinitely large flat surface. An improvement
to this assumption is to consider the change of the surface tension with NP size.
This approach was introduced for example in the equations derived by Tolman
[45] and Plieth [46], which appears to be suited to describe NPs of intermediate
sizes. However, in the case of small NPs, like for example one made of 100
atoms or less, the deviations of thermodynamic properties from bulk properties are
related not only to the existence of the interfacial region but also to the specific
assumptions of the model. For example, the mass density of a 100 atoms NP
may be remarkably different from that of the bulk state, and even the meaning
of surface tension becomes questionable. In this small-size limit, the proper tools
to describe the thermodynamic behavior of the system is nanothermodynamics,
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statistical mechanics, and of course quantum mechanics. In the late 1950s, Hill
[47] developed an extension of thermodynamics to small systems, which is now
addressed as nanothermodynamics [48]. This is a generalization of macroscopic
thermodynamics, where the latter is included.

A further improvement undertaken by Ford [49] was the derivation of exact
expressions for the two nucleation theorems. Many problems, such as the law
of mass action [50], the positional entropy [51], and the discrepancy between
the kinetic and thermodynamic approaches discussed above, were enlightened
and solved. However, the practical application of this theoretical framework to
simulations and/or experiments requires the choice of a model for a NP (e.g., the
definition of its physical limits), and depending on this, the nucleation rate becomes
different [52–54]. Since the previous concepts were not developed for the nucleation
of solids in solution, such effects as electrochemical equilibrium, ligands, solvent,
etc. were not originally included in them.

The increasing computational power mentioned above has acted in two ways
on the evolution of nucleation and growth modeling. On one hand, it acted on
evaluating and testing efficiently the theory of nucleation [55–57]. On the other
hand, the availability of interaction potentials with improved accuracy [58] has
shortened the gap between theory and experiment. Nowadays, it is common to find
TEM-imaging of NPs with sizes that make it possible to simulate their behavior in
a computer (see for examples Chap. 1 by Mejia-Rosales and Yacamán in the present
book). However, much care must be taken when extrapolating the results from
simulations to experiment. As noted by Reguera et al. [22], the kind of fluctuations
that the system is allowed to perform is determined by the constraints applied to the
system, and these are different for the different simulation ensembles. For example,
one cannot simply straightforwardly extrapolate the results obtained in the canonical
ensemble to the analysis of nucleation, which takes place mostly under different
conditions.

Regarding its application to electrochemical systems, recently Oviedo et al.
[59] have presented an extension of the classical nucleation and growth model to
the so-called core–shell NPs. Motivated by the control of electrodeposition in the
synthesis of bimetallic NPs in liquid phase [60], these authors formulated a model
that describes the electrodeposition of a metal on a nanostructure made (or not) of a
different material. In this approach, the structure of bimetallic NPs may be obtained
as a function of the deposition potential, the concentration of depositing species,
and temperature.

The methods for the synthesis of NPs are generally based on a kinetic control of
the reaction conditions [61]. These concepts were originally introduced by LaMer
in the 1950s [62], applying the theory of nucleation and growth, which considers
the system out of equilibrium. However, recent advances in the theoretical–
computational field have shown that under electrochemical control it should be
possible to control the decoration of NP core seeds on purely thermodynamic
grounds [63, 64]. It is worth mentioning that the latter assessment is still waiting
for experimental confirmation.
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10.2 Theoretical Background

10.2.1 Nanothermodynamics

For systems containing a large (massive) number of particles, that is, of the order
of Avogadro’s number, NAv ∼ 1023, nowadays there is a very well developed
framework that allows the determination of their thermodynamic properties [65].
Phenomena like conversion of heat into work, phase transitions, and critical points
are clear examples of the predictive power of thermodynamics. There are even
slight modifications to this machinery that allow computation of thermodynamic
properties for systems sized down to a few nanometers [5, 6, 45, 46]. This is
possible since macroscopic thermodynamics describes the most probable behavior
of macroscopic systems where fluctuations are negligible. As an example, let us
consider the energy fluctuations in a system made of water molecules. In the
canonical ensemble, the relative energy fluctuations, σU , will be given by σU =
(kT 2CV )

1/2/Ū , where Ū and CV are the average internal energy and heat capacity
at constant volume, respectively. The substitution of numerical values at room
temperature shows that these fluctuations are of the order of 10−10% for N = 1020

and 1% for N = 20, showing that these fluctuations may be small but meaningful
for very small water clusters. On the other hand, similar calculations for Au yield
10−10% and 10−1% for the same number of particles, showing that in the case of a
metal energy, fluctuations are one order of magnitude smaller. However, this is an
approximation and exact heat capacities should be employed. As another example,
let us consider an icosahedral arrangement of size N, and analyze for which size
the number of surface atoms, Nsurf, is lower than 10%. The total number of atoms
N can be written as N = (10m3 + 15m2+ 11m+ 1)/3, where m is an integer and
represents an element of the icosahedra family. Using this formula we can state that
Nsurf ∼ 10% if N ∼ 6×104, which translated into a size would yield and icosahedron
of ca. 6 nm radius in the case of Au. Thus, we see that for systems smaller than
6× 104 atoms (or 6 nm), the number of surface atoms will be relatively important,
so their contribution to the properties of the system (like melting point, for example)
cannot be ignored.

From the previous discussion we see that the predictive power of macroscopic
thermodynamics starts to fade when the size of the piece of matter considered
is below a few nanometers. Thus, many objects considered in nanoscience and
nanotechnology put into question the knowledge of conventional thermodynamics
and show that their behavior is far from being explained by this discipline. The
decrease in the melting temperature of NPs [66, 67], and the reversion of phase
stability between diamond and graphite [68] are classical and representative—but
by no means unique—examples. Along the lines of the previous examples, we can
include nucleation processes which only involve a few atoms. Classical definitions
of clusters may no longer be valid at the nanoscale, and theoretical predictions
may deviate strongly from experimental behavior if these features are not properly
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accounted for [69]. This point is particularly important in the case of metals, where
binding energies are of the order of the electron-volt (eV), i.e., considerably larger
than thermal energy at room temperature (0.023 eV) [70].

Statistical mechanics and quantum mechanics are undoubtedly key tools to
understand materials at the nanoscale, but the computational (and theoretical) effort
to get a proper description of their properties is too large, even for the fastest
computers existing nowadays. This is so because even setting aside the quantum
nature of matter, the number of variables required to characterize the system at a
molecular level is extremely large: 6N for a piece of matter made of N atoms. In
contrast, in macroscopic thermodynamics we only need a few variables (typically
three, four, etc.) to characterize its behavior [65]. It is for this reason that it is
necessary to develop extensions of thermodynamics that would be able to predict
correctly the properties of matter at this scale, using only a reduced number of
variables.

Almost 50 years ago, in a visionary approach, Terrell L. Hill settled the
theoretical basis to understand matter at the nanoscopic scale in his book “Ther-
modynamics of Small Systems” [47]. Keeping the pace of “nano times,” this
theoretician extraordinarius [71] gave this area of study a new name: he called it
nanothermodynamics [48], so we keep this terminology.

Before starting with the consideration of the main features of nanothermody-
namics, we want to emphasize that in the present chapter we will only refer to the
equilibrium state or its close neighborhood. We refer the reader interested in the
consideration of small systems out of equilibrium and the consequences of their
size for the three laws of thermodynamics, to the discussions of Esfarjani et al. [72]
and Gross et al. [73].

In the following discussion, we will focus on the open system formulation
applied to the formation of metallic NPs. The reader may find in Hill’s book other
related systems and ensembles [47].

As analyzed by Hill [47], let us consider an ensemble made of ξ one-component
systems, all equivalent, distinguishable, and independent. Each of them has a
fixed center of mass and is characterized by the variables N, P, and T . Some of
the previous considerations are not strictly necessary, but allow eliminating the
translational degrees of freedom. Rotational degrees of freedom are not included
at this stage, but will be considered in the next section. The fundamental differential
equation for the macroscopic system constituted by the whole ensemble is:

dUT = T dST −PdVT + μdNT (10.1)

where subindex T means total, and we have defined UT = ξŪ , ST = ξ S, VT =
ξV̄ , and NT = ξ N, which correspond to the internal energy, entropy, volume, and
total number of particles of the ensemble, respectively. To extend this formalism to
nanothermodynamics, it is necessary to add a new term to (10.1), corresponding to
the change of the number of systems in the ensemble, so we get:

dUT = T dST −PdVT + μdNT + εdξ (10.2)
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where ε is denominated subdivision potential and is defined as ε =(∂UT/∂ξ )ST ,VT ,NT .
The meaning of ε will be clarified later on. We note that the present formalism
implies that the functional form of the energy is UT = UT (ST ,VT ,NT ,ξ ), instead
of the usual one UT = UT (ST ,VT ,NT ) in macroscopic thermodynamics; UT is a
first-order homogeneous function with respect to ST ,VT ,NT , and ξ . Integration of
(10.2) leads to:

UT = TST −PVT + μNT + εξ (10.3)

and its subsequent division by ξ leads to the generalization of Euler’s equation to
nanothermodynamics:

Ū = T S−PV̄ + μN + ε (10.4)

where we can see the occurrence of the new term ε , not included in macroscopic
thermodynamics. Differentiation of (10.4) and use of (10.2) lead to:

dε =−SdT + V̄dP−Ndμ (10.5)

which is the generalization of Gibbs–Duhem equation to small systems (dε = 0
in macroscopic thermodynamics). This shows that the subdivision potential is a
function of the form: ε = ε(T,P,μ). Thus, (10.2), (10.4), and (10.5) are the nanoth-
ermodynamic counterparts of well-known macroscopic thermodynamic equations.

Since relative fluctuations are small in macroscopic systems, in a given problem
one can choose between different ensembles on the basis of mathematical conve-
nience. However, we have seen that this may not be the case of nanoscopic system,
so that it is necessary to derive the equations for each of the ensembles. Thus, if a
global approach to a given problem involving theory, simulations, and experiments
is attempted, it is necessary that both the theoretical modeling and the simulations
reflect the experimental conditions. Another remarkable feature of nanosystems
is that we have to abandon the macroscopic concept of intensive and extensive
variables. In nanothermodynamics, some of the properties that in the macroscopic
limit did not depend on the system size now will. However, following Hill’s didactic
approach, we will refer to the behavior of extensive and intensive properties in the
macroscopic limit.

Surface effects play a fundamental role in nanothermodynamics. This bears
direct consequences for the interactions between systems and their reservoirs,
since—in contrast with the macroscopic treatment—these interactions cannot be
neglected. In the N, P, and T ensemble, the nexus between nanothermodynamics
and statistical mechanics is given by the equation:

kT ln [ΔT (N,P,T )] = TST −UT −PV̄ (10.6)

where ΔT corresponds to the open partition function of the whole ensemble, made of
ξ one-component systems. Due to the equivalence, independence, and distinguisha-
bility of the systems, we have ΔT (N,P,T ) = [Δ(N,P,T )]ξ , where Δ(N,P,T ) is the
open partition function of a single system. Taking into account (10.3), (10.6) may
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be rewritten as:

− kT ln [Δ(N,P,T )] = μN + ε (10.7)

in macroscopic thermodynamics the rhs of (10.7) is just (μN). However, in
nanothermodynamics we find the term (μN + ε), which serves as a nexus with
statistical mechanics.

It must be pointed out that the small systems that we will study in the present
chapter are too small to be modeled by macroscopic thermodynamics, but still large
enough to be able to model “extensive” properties as continuous variables. The
nanothermodynamics formalism may characterize systems, even when they are very
small [47].

We illustrate now the origin of the subdivision potential ε . Let us think of a
macroscopic system defined by a metal piece (one component) at temperature T .
The Gibbs free energy is G(N,P,T ) = Ng(P,T ) where N is the number of atoms in
the system and g(P,T ) is the free energy per particle. In this (macroscopic) limit,
g(P,T ) = μ = (∂G/∂N)P,T . If we divide the system into two macroscopic pieces,
say 1 and 2, then the free energy of system 1 can be computed from G1(N1,P,T ) =
N1g(P,T ), and that of system 2 from G2(N2,P,T ) = N2g(P,T ). We can note that
the free energy per particle is the same in both systems; this is the principle of
thermodynamic extensivity. If we divide the system successively, say 1020 times,
then each system will contain a few thousand atoms. If we assume that each system
has a compact (3D) structure, about half of the atoms may be on its surface, therefore
the number of atoms in the surface and inside the nanostructure will be comparable.
In this (nanoscopic) limit, we can no longer calculate the free energy for the i-system
as Gi(Ni,P,T )=Niμ , but we can still write Gi(Ni,P,T )=Niμ̂ where μ̂ = μ̂(Ni,P,T )
is now not only a function of P and T but also of the number of particles Ni. μ̂
contains correction terms that must be added for the proper calculation of the Gibbs
free energy. This correction will contain terms of the type N2/3

i , N1/3
i , lnNi, etc., due

to surface, curvature, and rotational contributions (among others), which must be
taken into account. It can be shown that [47]:

Gi (Ni,P,T ) = g(P,T )Ni +α (P,T )N2/3
i +β (P,T )N1/3

i + . . . (10.8)

where we can see that only in the macroscopic limit (Ni → ∞) these quantities
are negligible with respect to the first term on the rhs. Thus, we find that in the
nanoscale it is necessary to specify the size of the system for a proper (and correct)
thermodynamic characterization so that small systems have one more degree of
freedom than large ones.

We can now take the derivative of (10.8) with respect to N, for constant P and T
to get:
(

∂Gi (Ni,P,T )
∂Ni

)
P,T

= g(P,T )+
2
3

α (P,T )N−1/3
i +

1
3

β (P,T )N−2/3
i + . . . (10.9)
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Fig. 10.1 Schematic representation of (a) P vs. V̄ and (b) μ̂ vs. P isotherms for a small system
containing N atoms at a temperature at which the related macroscopic system presents a first-order
phase transition between two states

Further multiplication by N results in:

μN = g(P,T )N +
2
3

α (P,T )N2/3
i +

1
3

β (P,T )N1/3
i + ... (10.10)

and taking into account (10.7), we find that the subdivision potential is given by:

ε =
2
3

α (P,T )N2/3
i +

1
3

β (P,T )N1/3
i + ... (10.11)

Summarizing, the subdivision potential is related to all nanoscale contributions.

10.2.2 Phase Transitions in Nanothermodynamics

A macroscopic system may present discontinuities in the variation of some of
its thermodynamic functions below its critical point. The latter corresponds to
the definition of a first-order phase transition. In principle, these discontinuities
are very sharply defined only in the limit of infinitely large systems. In contrast,
small systems may exhibit a gradual change in their thermodynamic functions. The
occurrence of a first-order phase transition in the macroscopic material does not
necessarily imply that this will also be the case in the nanoscopic scale. Even if this
is the case, the transition will not necessarily occur in the same interval of order
parameter. The decrease in the melting point with NP size is a good example of the
latter.

Isothermal P vs. V̄ and μ̂ vs. P state curves for a nanosystem are shown
schematically in Fig. 10.1. The smooth change in P and/or μ̂ indicates that the
phase transition occurs gradually and not in an abrupt fashion, as it is the case in
a macroscopic system.
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It is clear that we cannot formally study the phase transition because there is no
discontinuity. However, if we accept the two-states approximation, which consists
in the assumption that there are only two states available for each system [74], we
can state two important theorems on the basis of the simple geometric constructions
shown in Fig. 10.1. There, we show the pressure and chemical potential as a function
of volume and pressure, respectively, for a nanosystem that presents two different
states, as could be the case of the gas–liquid transition to yield a nanodrop. We find
a gradual change of P and μ̂ , shown in the full lines of Fig. 10.1. On the other hand,
the discontinuous lines on the left and on the right of each curve show the evolution
of the pressure or chemical potential for a very large system. These could represent
the evolution of a gas (state 1) and of a liquid (state 2) at constant N and T .

In the first place, we have the so-called equal-distances theorem. If the experi-
mental curve P vs. V̄ and their extrapolations P1 and P2 are available (see Fig. 10.1a),
it is possible to draw a segment parallel to the V̄ axis, such that it connects the two
extrapolated curves so that the segment is divided by P(V̄ ) curve into two equal
parts. We will denote the P value where the parallel segment is located with P0.
This value corresponds to the pressure at which the population in the ensemble is
ξ1 = ξ2. The segment and the point are marked in Fig. 10.1a. The same geometrical
construction may be made for μ̂ vs. P isotherms (see Fig. 10.1b).

The second theorem corresponds to that of equal-areas. This theorem establishes
the equality of areas in curves P vs. V̄ , shaded in gray in Fig. 10.1a. It can be shown
that the following equation is valid:

P0∫
P1

(V̄1 − V̄)dP =

P2∫
P0

(V̄ − V̄2)dP (10.12)

where the meaning of the different limits are denoted in the figure. The simultaneous
application of the two theorems allows the analysis of phase transitions in a
nanosystem and the identification of P0.

10.2.3 The Hill and Chamberlin Metastability Model

In the present section we will focus on the problem of metastability and stability of
nanosystems. With this purpose, we will use the model of Hill y Chamberlin (HC)
[75] originally developed to study the conversion of metastable (nanometric) drops
of a liquid into its bulk phase. Before starting the discussion of the HC model, it
must be noted that the grand canonical partition function Ξ(μ ,V,T ) or the partition
function of a completely open system ϒ(μ ,P,T ) may be reduced to a function of
(μ ,T ) if we consider that the system is incompressible. Following Hill, we will
denote the partition function of such a system with ϒ(μ ,T ). A demonstration for a
similar case may be found in Hill’s book, page 59 (Vol I) [47].
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The partition function of an incompressible, completely open system may be
written as follows:

ϒ(μ ,T ) =
∞

∑
N=1

Q(N,T )exp [μN/kT ] (10.13)

If we further consider that the system is made of a spherical cluster, Q(N,T ) takes
the form:

Q(N,T ) = c(T )N4 exp
[
−α(T )N2/3 + μ0N/kT

]
(10.14)

The term c(T )N4 corresponds to rotational and translational contributions, α(T ) is
proportional to the surface tension, and the term μ0N/kT is related to the partition
function of N molecules in the bulk liquid phase (assuming Einstein model for a
system of harmonic oscillators). Replacing (10.14) into (10.13) we get:

ϒ(μ ,T ) = c(T )
∞

∑
N=1

N4 exp
[
−
(

ϕN +α(T )N2/3
)]

(10.15)

where the coefficient of saturation has been defined as ϕ = (μ0 − μ)/kT . If ϕ > 0,
the system is in a subsaturation region; if ϕ < 0, the ensemble is in supersaturation
conditions. If ϕ = 0, the ensemble is right at the saturation limit. We note that
temperature cannot change the sign of ϕ , but it can change its intensity. Thus, the
effects driven by μ may become more or less evident, depending on T .

Going back to the previous discussion, the probability of observing a cluster
made of N atoms may be written as follows:

PN(μ ,T ) =
c(T )N4 exp

[−(ϕN +α(T )N2/3
)]

ϒ(μ ,T )
(10.16)

The main idea in the HC model is to analyze nanodrop stability in terms of the
numerator of PN(μ ,T ), since ϒ(μ ,T ) is fixed for given μ and T . Then, a plot of
f (N,μ ,T ) defined as f (N,μ ,T ) = PN(μ ,T )ϒ(μ ,T ) will present the same behavior
as PN(μ ,T ) out of a constant factor. A more suitable form to represent f is to make
the changes of variables n = α3/2N and δ = α−3/2ϕ to get:

f (N,μ ,T ) = f (n) = n4 exp [−δn]exp
[
−n2/3

]
(10.17)

Figure 10.2a shows a contour plot of f (n) as a function of δ and log(n) at 300 K.
We have selected to this purpose four representative iso-saturation lines, δ =
0, −0.04,−0.07, and −0.09, which are plotted in Fig. 10.2b–e. Each of the factors
in (10.17) has been marked in Fig. 10.2b–e to illustrate the different contributions to
f (n). Generally speaking, we can mention that the surface component is always a
decreasing quantity (green curve), and that its value depends on the surface energy
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Fig. 10.2 (a) Contour plot of the function f (n) defined in (10.17) at a constant temperature.
Contributions of the different factors in (10.17) at diverse values of the supersaturation δ . (b)
δ = 0, (c) δ = −0.04, (d) δ = −0.07, and (e) δ = −0.09. In (b)–(e) the green curve has been
multiplied by a factor 104 to fit into scale. See discussion in the text
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of the NP being formed. The rotational–translational contribution (red curves)
is always a monotonically increasing function. The product of the two former
components (the case of δ = 0, black curve) determines a maximum of f (n)
around log(n) ≈ 2.6 (Fig. 10.2b). This maximum indicates a finite probability of
finding nanodrops of a given size at δ = 0 and is a consequence of the rotational–
translational contribution. At moderate supersaturation conditions, for example
δ = −0.04, the term containing the chemical potential (blue curve) starts to be
noticeable, and the maximum of f (n) is shifted toward larger n values, while its
value increases (see Fig. 10.2c). At larger supersaturations, for example δ =−0.07,
Fig. 10.2d, the behavior remains the same, and a steep increase is found in f (n)
above log(n) ≈ 7. This sudden increase in f (n) after the maximum denotes the
mathematical divergence of the probability density for n → ∞, as a consequence of
the fact that the supersaturation term is dominating the probability density for large
nanodrop sizes. In the HC model, this divergence is associated with the occurrence
of the bulk liquid phase.

In Fig. 10.2d, it can be noted that in the region 5.7 < log(n) < 7 the probability
density of finding a liquid nanodrop is practically negligible. The two-state approx-
imation mentioned in Sect. 10.2.2 [74] suggests that this zone of low probability
acts as a bottleneck for the transition of a n-sized liquid nanodrop toward the
bulk liquid phase. However, this situation reaches a limit at larger supersaturations.
For example, Fig. 10.2e shows that at δ = −0.09 the region where f (n) ∼ 0 has
disappeared, and it can be expected that small fluctuations, even of one particle,
may lead to the transition to the bulk liquid. At very large supersaturations (not
shown here) the metastable nanodrop should no longer be observed, remaining
only a monotonic growth toward the bulk phase. In Fig. 10.2a it can be observed
how the region corresponding to the bottleneck progressively becomes thinner with
increasing supersaturation. The rate at which the steep increase in f (n) moves
toward small n for decreasing δ is larger than the rate at which the metastable
state moves toward large n. This is represented by white broken lines in Fig. 10.2a.
The broken line on the left shows the position of f (n) maximum, while the broken
line on the right shows the evolution of a point at which f (n) = 103. Although the
two lines have not converged to a representative point in the region analyzed in
Fig. 10.2a, it can be seen that the dark blue region (bottleneck), i.e., the one with
a negligible probability, has disappeared for δ = −0.09, so that the system will no
longer be confined to a metastable state at this supersaturation value.

The bottleneck in Fig. 10.2 represents a kinetic hindrance for the phase transition
under consideration. The size of the gap may be related to an activation energy [76],
in the sense that if this activation energy is large enough (wide probability gap),
the transition will not take place in the timescale of experiment. This “confination”
allows the computation of the thermodynamic properties of the nanodrops, even
when their structures do not correspond to a global minimum of the free energy of
the system.

From the previous analysis it emerged the idea of what Hill and Chamberlin
called physical convergence of the probability density [75]. When the mathematical
divergence is shifted to large drop sizes (δ → 0−, to denote that we are approaching
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the zero from small negative values), and we are interested in the calculation of
properties of the metastable liquid drop, the sum in (10.15) may be truncated to
give:

ϒ(μ ,T ) = c(T )
N0

∑
N=1

N4 exp
[
−
(

ϕN +α (T )N2/3
)]

(10.18)

where N0 corresponds to a value of N at the minimum of the argument of the sum.
Note that N0 = N0(μ ,T ) is a function of chemical potential and temperature. As
it is always the case, knowledge of the partition function allows calculation of all
properties related to the metastable nanodrop.

When the system is in undersaturation conditions (δ > 0), no divergence is
found in the probability density, since under these conditions the sum (10.15)
always converges. At moderate undersaturations (δ → 0+, to denote that we are
approaching the zero from small positive values), f (n) presents a maximum and the
nanodrop properties may be evaluated straightforwardly, since the local maximum
in f (n) is also a global one.

All the previous concepts will be very useful to analyze the behavior of core/shell
NPs as described in Sect. 10.4.

10.2.4 Nucleation Theorems

As pointed out in Sect. 10.1, currently there is a nucleation and growth theory,
deduced from statistical mechanics that allows contrasting models, simulations, and
experiments. Many improvements were achieved along the evolution of the theo-
retical framework. One of the most widely accepted alternatives is that developed
by Ford [49, 55]. This derivation of the nucleation theorems was developed on the
basis of statistical–mechanical and kinetic considerations that we will not discuss
here, since there are very clearly discussions of them in the reference material
[44, 49, 55, 77]. In these publications, Ford defined the saturation coefficient as
s = Ne

1/Nes
1 , where Ne

1 and Nes
1 are the number of monomers in the supersaturated

and saturated phases, respectively. With this definition, the first nucleation theorem
can be summarized in the following equation:

(
∂ lnJ
∂ lns

)
T
= 1+N∗ (10.19)

where J is the nucleation rate and N∗ is the number of particles of the critical cluster
size, measured at a constant temperature.

The second nucleation theorem relates the changes in J with temperature at a
constant supersaturation, and can be written as:

(
∂ lnJ
∂T

)
lns

=
1

kT
[L− kT +ΔU(N∗)] (10.20)
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where L is the latent heat per particle at the vapor-condensed phase transition, and
ΔU(N∗) is the excess of internal energy of the liquid drop, defined as: ΔU(N∗) =
U(N∗)−N∗UL, where UL is the internal energy in the bulk liquid state. Defined
in this way, ΔU(N∗) contains the surface energy as a major contribution. In Sect.
10.2.8, we will extend these concepts to the nucleation of a crystalline phase via an
electrochemical process.

10.2.5 Size Distribution of Nanoparticles

In this section we analyze a model for the estimation of the size distribution of NPs.
This quantity is very important because it is directly related to the experimental
histograms.

We start with the classical statistical mechanical representation of the partition
function in the grand canonical ensemble:

Ξ(μ ,V,T ) =
∞

∑
N=0

1
N!h3N

∫
dΓ exp{− [H(N)− μN]/kT} (10.21)

where H(N) is the Hamiltonian of a system containing N atoms, Γ is a 6N
dimensional vector, defined in the phase space of N particles, and h is Planck’s
constant. The integral in (10.21) is subtended to all the region of the phase space
available for the system. The term N! takes into account the indistinguishability of
the atoms that make up the NPs.

In the following section we discuss some implications of (10.21) for metallic
NPs. Let us analyze a given cluster, for example that corresponding to N = 3. The
integral will be

∫
exp{−[H(3)− 3μ]/kT}dΓ . This integral computes all possible

configurations containing three atoms in a volume V at temperature T and chemical
potential μ . This evaluation involves infinite possibilities, since the three atoms may
assume diverse configurations that range from a compact triangular arrangement up
to a gas-like structure, where they are widely separated from each other. Due to
the nature of metal bond, many of these configurations will have relatively large
configurational energies, and just a few structures need to be taken into account at
the time of modeling the growth of the new phase. To fix ideas, let us consider the
case of three Au atoms in three representative configurations, as shown in Fig. 10.3.

Figure 10.3 represents three possible configurations compatible with the same
μ , V and T . Considering nearest-neighbor interactions only, we find 3, 2, and 1
bonds in Fig. 10.3a, b, and c, respectively. As an example, let us assume that the
average binding energy per Au–Au bond is approximately −0.64 eV and that the
interactions are additive. Let us also consider room temperature conditions, where
kT amounts to ca. 0.023 eV. The relative probability of observing any of these
configurations prel

i, j will be given by prel
i, j = exp[−(Ui −Uj)/kT ], where Ui and Uj

are the energies of the corresponding configurations. Using the binding energies



320 O.A. Oviedo and E.P.M. Leiva

N = 3 N = 3 N = 3

m,V,T m,V,T m,V,Ta b c

Fig. 10.3 Three possible configurations of a three-atom arrangement. These correspond to (a) 3,
(b) 2, and (c) 1 nearest-neighbor interactions. See text for discussion

mentioned above, we get prel
2,3 = 1013 and prel

1,3 = 1025, showing that on purely
energetic grounds those structures that differ in more than a bond show extremely
different probabilities of existence, being the more compact structures strongly
favored. However, the less compact structures often present a larger number of
isoenergetic configurations that must be taken into account when estimating the
relative probability of the different structures. Thus, from an entropic viewpoint and
at finite temperatures, those systems with a larger number of configurations will
be favored. How many configurations, let say Ω , compatible with given energy,
are necessary to counterbalance the previous energetic effects? To estimate this
point, let us make the following computations. To have comparable energetic and
entropic contributions, we must have ΔU ≈ T ΔS. Assuming that all configurations
with the same number of bonds have identical weights, we can estimate the entropic
contribution from S = k lnΩ . This yields a number of configurations of the order
of Ω ∼ 1013 and Ω ∼ 1025 for those systems differing in one and two bonds,
respectively. There is certainly no such number of possibilities in the way of
arranging, clusters with, say 3 or 2 bonds. In the case of the configuration in
Fig. 10.3c, rather than being considered a three atomic one, it will be computed
as consisting of two different clusters: one containing 1 atom and the other 2.
According to this discussion, in the case of metallic NPs, a good approximation
is to consider the lowest energy configurations or their equivalent, those presenting
the closest packed configurations. For a more detailed discussion, the reader may
consult the reference [63].

The next step consists in writing the Hamiltonian of a N−atoms system as the
sum of small contributions, H(N) ≈ ∑imax

i=1 nih(i) where ni and h(i) refer to the
number of clusters of size i and their corresponding Hamiltonian, respectively. The
upper value of the sum index, imax, is assumed to be larger than the critical size [77].
Thus, for example, for the configuration in Fig. 10.3c, the number of clusters with
1 and 2 atoms are n1 = 1, and n2 = 1; h(1) and h(2) are the one- and two-particle
Hamiltonians, respectively.

The mass balance involves the condition N = ∑imax
i=1 ini, which in the last example

is N = (1× 1)+ (2× 1) = 3. This approximation has the implicit assumption that
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we are dealing with noninteracting clusters. If the clusters are suitably separated in
space (diluted solutions), the previous approximation will be valid.

Assuming that the clusters behave as ideal gas mixtures [77], (10.21) can be
rewritten as:

Ξ(μ ,V,T )≈ ∑
{ni}

(
∞

∏
i=1

Zni
i

ni!

)
(10.22)

where the sum now corresponds to the different population distributions. Zi =
1

i!h3i

∫ ′ ∏i
j=1 dΓ exp{−[F(i)− μ i]/kT} corresponds to a modified canonical par-

tition function. The next usual step consists in calculating the most probable
distribution, that is, the most often observed at equilibrium. The mathematical
problem is solved by differentiation of the logarithm of equation (10.22) with
respect to the distribution ni:

∂
∂ni

∞

∑
i=1

ln

(
Zni

i

ni!

)
= 0 (10.23)

along with the mass balance condition given above. This procedure leads to the
equilibrium distribution ne

i :

ne
i = exp{− [F(i)− iμ]/kT} (10.24)

where it is now clear that the most probable distribution is closely related to the
excess of free energy with respect to the gas phase.

The chemical potential μ may be referred to the chemical potential of the satu-
rated phase μs, according to μ = μs+kT lns, where s is a saturation coefficient. The
preceding equations are strictly valid to study cluster formation in undersaturation
regions and at the saturation limit, since in this region the population ne

i does not
diverge for i → ∞. However, the preparation methods of metal NP are generally
carried out in the supersaturation region [61]. To study properties of NP in these
conditions, it is usually assumed that the system may be kept in a “constrained
equilibrium,” so that the preceding equations remain valid. Multiplying and dividing
(10.24) by n1 yields:

ne
i = n1 exp{− [F (i)+ kT lnn1 − i(μs + kT lns)]/kT} (10.25a)

ne
i = n1 exp{− [W (i)+ ikT lns]/kT} (10.25b)

where W (i) is the work of formation. Equation (10.25b) is the most widely used
expression to estimate the nucleation rate along with (10.19). This is made for
example by inserting W (i) evaluated at i = N∗ in (10.19).
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10.2.6 Contributions to the Free Energy of Metal
Nanoparticles

In this section, we analyze models for the statistical mechanical treatment of the
different contributions to the free energy of metal NPs.

F(i) in (10.25a) contains different contributions: static, vibrational, rotational,
and translational. If the partition function is assumed to be separable in the form:

Q(i,V,T ) = exp

[
−U static(i)

kT

]
qvibraqrotaqtrasla (10.26a)

then the free energy may be written as:

F(i) =U static(i)+Fvibra(i)+F rota(i)+F trasla(i) (10.26b)

where the upper index denotes the type of the contributions. To estimate the order
of magnitude of the different terms in (10.26b) we can use some simple models
of statistical mechanics. The static energy, U static(i), corresponds to the potential
energy calculated at the average positions of the atoms constituting the NP. Its
values depend on the choice of the model and the interaction potentials employed.
In the many-particles metal systems, the usual choice are semiempirical potentials
like EAM [78], Tight Binding [79], and MEAM [80]. For small systems, DFT
calculations [81] are becoming an option due to the increasing computational power
available. Good compilations for metallic systems can be found in the reviews of Li
[82] and Xiao [83].

The vibrational contribution may be estimated from the fluctuations of the atomic
positions from their average value. An often used approximation consists in approx-
imating the potential energy as a quadratic function of the atomic displacements.
In the classical limit, each vibrational mode contributes in the amount kT/(h̄ω),
where h̄ and ω are h/2π and the angular frequency of the mode respectively. The
vibrational contribution of a cluster containing i atoms may be written as:

qvibra =
3i−6

∏
j=1

kT
h̄ω j

(10.27)

The rotational and translational contributions correspond to the 6 degrees of freedom
not included in (10.27). The rotational contribution, involving 3 degrees of freedom,
may be calculated according to the classical approximation as:

qrota = π1/2
(

8π2IkT
h2

)3/2

(10.28)

where I represents the momentum of inertia of the NP with respect to its center of
mass in the case of an spherical particle.
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Finally, the translational contribution due to the 3 remaining degrees of freedom
may be calculated from:

qtrasla =V

(
2πMkT

h2

)3/2

(10.29)

where M is the reduced mass of the NP. Since the connection between statistical me-
chanics and the free energy in the canonical ensemble is: F(i) = −kT lnQ(i,V,T ),
the total free energy, as given by (10.26b), may be obtained from:

F (i) =U static (i)− kT ln

[
3i−6

∏
j=1

kT
h̄ω j

]
− kT ln

[
π1/2

(
8π2IkT

h2

)3/2
]

− kT ln

[
V

(
2πMkT

h2

)3/2
]

(10.30)

Similar arguments may be used to calculate the chemical potential of a neutral atom
of mass m in the gas saturated phase:

μs =U static − kT ln

[
V

(
2πmkT

h2

)3/2
]

(10.31)

The quantity F(i) in (10.30) minus i times (10.31), defines an excess of free energy,
which takes into account the stabilization/destabilization of i atoms in the gas phase
upon formation of the NP, see (10.24). Estimation of the most important contribution
to F(i) indicates that it is of the order of ∼ i2/3, thus supporting the application of
(10.15). However, (10.30) and (10.31) deliver extra terms which are also important
in the case of small NPs.

10.2.7 Electrochemical Nucleation

The theoretical methodology by which this phenomenon has been theoretically
analyzed was developed initially by Gibbs [1, 2] in 1878. For an infinite planar
interface in equilibrium, the results obtained by Gibbs’ model are identical to those
obtained using a model that consists of an interfacial region of finite width. This
is a good reason to assume that the formulation is essentially correct [84]. Going
beyond the traditional experiments with planar interfaces [85, 86], Fonticelli et al.
[60] have shown the possibility of modifying the deposition potential in NPs by a
suitable redox couple. Figure 10.4 summarizes both approaches.

If an electron transfer occurs at the metal/solution interface between species that
may or may not be in both phases, we are dealing with an electrochemical system
and the prediction of their equilibrium properties is a matter of electrochemical
thermodynamics.
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Fig. 10.4 Schematic representation of an electrochemical system for metal deposition on (a) a
bulk electrode and (b) a nanoparticle in solution. In both cases β is the solution phase and α is the
metal phase

The thermodynamic treatment of an electrochemical interface involving an NP—
like the one shown in Fig. 10.4b—may be tackled in a very similar way to that of
the infinitely flat phase shown in Fig. 10.4a. If the NP radius is large enough, the
interface may be considered to be a planar one, and its energy will differ from the
bulk phase by a term of the type γA, where γ is the surface tension and A the area.
To introduce the influence of the cell electrode potential, the usual strategy is the
introduction of the charge transfer equilibrium explicitly and the replacement of
the electrochemical potential of one of the species in solution by the electrostatic
potential of the electrode. The reader may consult the book by Bockris et al. [84]
for a more detailed discussion.

In the following approach, we want to develop a valid formulation even for the
case of small NPs, where the concept of surface energy becomes ambiguous due to
the absence of properly defined bulk and surface regions. For this reason, we will
avoid any reference to this quantity and its influence should come out in the limit of
large NPs.

Metal deposition on an NP in solution, see Fig. 10.4b, is usually accomplished by
adding a reducing agent Ru that oxidizes itself to yield Ou+n species, to a solution
containing the metal ions to be deposited, according to the following half-reaction:

Ru → Ou+n + ne− (10.32)

where u represents the charge of the reduced species and n denotes the number
of electrons transferred in the half-reaction. This reaction allows further formation
of nuclei and their subsequent growth via a redox mechanism. When clusters of a
single metal Me are generated, we have to consider:

p
(
Mez++ ze

)→ Mep (10.33)

where z denotes the charge of the ion being reduced and p is the number of
atoms constituting the NP. Some other chemicals (i.e., ligands) may occur in the
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Fig. 10.5 Thermodynamic view of an electrochemical system made of a nanoparticle, a redox
couple, and metal ions, which is connected with heat, Mez+, Ru, and Ou+n reservoirs. The system
is composed of two subsystems: the so-called “nano” part, which contains the nanoparticle, and
the solution, called “macro” part. Both subsystems are in thermal, mechanical, and electrochemical
equilibrium

stoichiometry of half-reaction (10.33), but we will ignore them at this point for the
sake of simplicity. We will incorporate the ligands in Sect. 10.4.

When seed growth takes place on the same preexisting NP, we will rewrite
(10.33) as:

m
(
Mez++ ze−

)
+Mep → Mep+m (10.34)

Adding half-reactions (10.32) and (10.34), we get:

mMe+z +
z
n

mRu +Mep → Mep+m +
z
n

mOu+n (10.35)

This reaction describes the formation of an NP made of p + m atoms through
a chemical redox reaction. In order to consider the relative stability of different
structures, we need to define a suitable thermodynamic function for this system.
Since the usual electrochemical conditions are constant pressure and temperature,
the proper quantity is the Gibbs free energy. Furthermore, we assume that NP
formation takes places in an environment where the electrochemical potentials of
the reducing species μ̃R, the oxidized species μ̃O, and the metal ions being reduced
μ̃Mez+ are fixed. For the sake of simplicity, we use the nomenclature G̃ = G̃(μ̃ ,P,T ).
We now recall the discussion made in Sect. 10.2.3 to note that the metallic NP are
incompressible, so G̃(μ̃ ,P,T )→ G̃(μ̃ ,T ).

We consider the system to be made of two parts. One, denoted as “nano” part,
corresponds to the NP, and the other, denominated as “macro” part, corresponds
to the rest of the system, containing the solution with the Mez+, Ru and Ou+n

participating in the reaction. Figure 10.5 shows a schematic picture of the system.
The free energy change associated with reaction (10.35) can be written as [59]:

ΔG̃ = ΔGnano +ΔNOμ̃O −ΔNRμ̃R −ΔNMe+z μ̃Me+z (10.36)
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where ΔNO, ΔNR, and ΔNMez+ are the changes in the number of Ou+n, Ru, and Mez+

species. Then, according to (10.36) and taking into account the stoichiometry:

ΔG̃ = ΔGnano +
z
n

mμ̃O − z
n

mμ̃R −mμ̃Me+z (10.37)

The electrochemical potentials for type A species (which A = Ou+n, Ru, and Mez+)
can be written as:

μ̃A = μA − zAφ (10.38)

where μA is the chemical potential of A species and φ is the electrostatic potential.
The value of the electrochemical potentials μ̃A is constant in all the system
(thermodynamic equilibrium). If we chose a point in the bulk of the solution, μA will
take the bulk value μbulk

A and φ will be equal to the average electrostatic potential in
the solution φbulk. Thus, taking into account (10.37) and (10.38), we have:

ΔG̃ = ΔGnano +
z
n

mμbulk
O − z

n
mμbulk

R −mμbulk
Mez+ (10.39)

Adding and subtracting mμMe(bulk), where μMe(bulk) is a chemical potential of the
bulk metal, we get:

ΔG̃ = ΔGnano +
z
n

mμbulk
O − z

n
mμbulk

R −mμbulk
Mez+ +mμMe(bulk)−mμMe(bulk) (10.40)

To identify the different contributions in the last equation, we consider the formation
of Me+z ions from the bulk metal phase, according to the following redox reaction:

Me(bulk)+
z
n

Ou+n → Me+z +
z
n

Ru (10.41)

The thermodynamic potential difference for this reaction can be obtained using
standard thermodynamics [87], and it is related to the electrical potential difference
of the electrochemical cell:

− zFΔE =
z
n

μbulk
R + μbulk

Me+z − z
n

μbulk
O − μMe(bulk) =−zFη (10.42)

Since this potential difference defines an overpotential η with respect to the bulk
deposition of the metal Me at the metal activity aMe+z , we will replace ΔE by η in
the subsequent equations. With this provision, and substituting (10.42) into (10.40),
we get:

ΔG̃ =
(
GMem+p −GMep

)−mμMe(bulk) +mzFη (10.43)

where we have replaced ΔGnano = (GMem+p −GMep), which corresponds to the free
energy change resulting from the addition of m atoms to the p-atoms NP. The term:

Φ(m, p) =
(
GMem+p −GMep

)−mμMe(bulk) (10.44)
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Fig. 10.6 Qualitative scheme of the excess of Gibbs energy, ΔG̃(η ,m,0), as a function of the
number of atoms of the conglomerate m without initial seed (p = 0). Note the monotonically
growing behavior for η ≥ 0 and the occurrence of a maximum for η < 0

clearly defines an excess of free energy with respect to the bulk metal Me, so we
finally end up with:

ΔG̃(η ,m, p) = Φ(m, p)+mzFη (10.45)

This is an equation formally identical to that employed to analyze nucleation and
growth phenomena [85,86], where usually η is a negative quantity currently written
as ΔG = Φ(m)−mzF |η |. However, we will use it in the form (10.45), since it also
makes sense for η > 0, and it will be found to be applicable to NP seed growth too.

We will discuss now qualitatively the behavior of ΔG̃(η ,m, p) for p = 0, that is,
the generation of a NP without the existence of any previous seed. According to
Sect. 10.2, the first term of the right side of (10.45) is proportional to m2/3 and the
second one (electrochemical term) is proportional to m. Thus, the electrochemical
factor has a larger power dependence on m than the surface term and the former will
predominate in the limit m → ∞. Thus, the behavior of ΔG̃(η ,m,0) will be of two
different types, depending on whether η ≥ 0 or η < 0. This situation is shown in
Fig. 10.6.

In the first case, η ≥ 0, the electrochemical factor will add the mono-
tonic growing function mzFη to the surface energy term Φ(m,0), so that
∂ΔG̃(η ,m, p)/∂m|η≥0 > 0 for all m. This behavior is the natural consequence
of the increasing area of the growing NP.

In the second case, where η < 0, the electrochemical contribution will add
a monotonic decreasing term to the monotonic increasing surface term, so that
a maximum will come up at m = m∗, corresponding to the critical cluster size
discussed in the introduction and used in (10.19). This situation is illustrated
qualitatively in the broken line of Fig. 10.6, and corresponds to systems where the
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Fig. 10.7 Energy excess, ΔŨ(η ,m,0), as a function of the number of atoms m in a metal NP for
octahedra (black lines) and icosahedra (red lines) (a) η = 0 and (b) zη =−75 mV. Some selected
numbers of atoms were marked with arrows in the figure

thermodynamic stable state is the bulk material. The application of a more negative
over-potential shifts m∗ to lower values, but the maximum still persists.

Figure 10.7 shows the energetic contribution ΔŨ(η ,m,0) to ΔG̃(η ,m,0) for the
growth of a Au-NP with two different crystalline structures. It can be observed
that the overall behavior is that described in Fig. 10.6. However, the presence of
a crystalline structure generates growth on different facets, evident in the saw tooth
behavior of the curve, something that is characteristic of this type of systems
[63, 64]. The layer-by-layer growth characteristic for these metastable systems
[61, 88] may be understood in terms of the presence of local minima, separated
by barriers of the order of the eV.

The beginning of crystal growth (nucleation) takes place under supersaturation
conditions. That is, the electrochemical potential of the metal ions must be larger
than that corresponding to the bulk phase (η < 0). This difference determines
electrochemical supersaturation.

Undersaturation and supersaturation conditions in electrochemical systems at
equilibrium for a bulk system and for a NP are illustrated in Fig. 10.8. In the case of
bulk materials, the set of equilibrium points is defined by Nernst equation, shown in
Fig. 10.8 by a continuous line:

Eeq = E0
Me/Mez+ +

RT
zF

ln

(
aMez+

aMe

)
(10.46)

where E0
Me/Mez+ is the standard potential, aMez+ is the ion activity, and aMe is the

activity of the bulk metal atoms, usually assumed as equal to 1 for convenience.
The region located below the equilibrium curve corresponds to supersaturation

conditions E−Eeq = η < 0, i.e., potential/activity pairs where metal ions would get
deposited.

The opposite case, points located above the equilibrium line, corresponds to
electrochemical undersaturation η > 0. In this region, electrochemical dissolution
of the metal deposit should occur. When η = 0, both phases are in thermodynamic
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Fig. 10.8 Qualitative scheme of the variation of the deposition potential as a function of the ion
activity. The continuous black curve shows the infinitely flat surface at equilibrium conditions, the
broken red curve shows the “equilibrium” line for a given size of NP, and the dotted-line blue curve
shows a line corresponding to underpotential deposition conditions

equilibrium and the solid curve in Fig. 10.8 indicates stability limits for very large
metal crystals.

As stated above, usually aMe is a constant equal to 1 for pure and bulk condensed
metal phases. However, in the case of a NP, the “equilibrium” potential for a given
aMez+ should occur at points below that corresponding to the bulk metal (dotted line
in Fig. 10.8), yielding formal values of aMe > 1. We wrote “equilibrium” because the
states represented in the dotted line are actually unstable points of the free energy of
the system. For a given NP size, a potential can be found where this NP is the critical
one. A small (finite) change in the number of particles would turn it unstable, leading
alternatively to its dissolution or to its growth toward the bulk state. On the other
hand, stable states may be obtained in the case of cavity decoration [89], as long as
the interaction of the metal being deposited is stronger with the substrate that with
itself. For a detailed discussion on the stability of electrochemical nanostructures,
the reader should consult the reference [89].

As in the case of the bulk material, the driving force for NP formation is the
overpotential η , which is related to the electrode potential via (10.42). Figure 10.8
shows two different ways to force nucleation and growth in electrochemical sys-
tems. On one hand, by decreasing the deposition potential (generating overpotential)
at a constant metal activity, corresponding to the motion along a vertical line, say
from point (2) to P. On the other hand, by increasing the activity of the ion being
deposited, corresponding to the motion along the horizontal line, say from point (1)
to P. Both possibilities are valid and show the potentiality of electrochemistry for
inducing nucleation and growth processes. The first mechanism is the one usually
employed to generate nanostructures via potentiostatic or galvanostatic control
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[85, 86]. The second one has been used to induce localized electrodeposition of
a metal. In this method, a metal from the electrolyte solution is deposited onto the
uncovered part of a STM tip, and a potential pulse is applied to it, producing local
supersaturation that leads to a nucleation and growth process [90–97]. This method
appears particularly appealing as compared to other top-down nanostructuring
methods, since mechanical contact is not established between the tip and the surface
and in principle any mechanical damage should be prevented.

10.3 Size Control Based on Kinetic Effects

In the discussions of the previous section, it was shown that most of the methods
employed in the formation of NPs require a supersaturation to proceed. Different
alternatives exist to control the size of NPs in this regime. Since the system is not in
equilibrium, we will denote these methods as kinetic-based ones.

10.3.1 Burst Nucleation

Research on the preparation of monodisperse NPs dates back to the 1950s. LaMer
and his colleagues proposed the concept of “burst nucleation” [62]. In this process,
many nuclei are generated at the same time, and then these nuclei start to grow.
Because all of the particles nucleate almost simultaneously, their growth histories
are nearly the same. This is the essence of the “burst nucleation” process which
makes it possible to control the size distribution of the ensemble of particles as a
whole during growth. “Burst nucleation” has been adopted as an important concept
in the synthesis of monodisperse NPs. As a synthetic strategy, this method is often
referred to as “the separation of nucleation and growth.” In this homogeneous
nucleation process, there exists a high free energy barrier, mainly due to the
appearance of a new interface between the new (growing) phase and the original
one (precursor).

How does burst nucleation work? Let us make the following gedanken experi-
ment, where we will take some snapshots of our system. At a given moment, the
precursor agent is injected. Let us further assume that diffusion is infinitely fast, so
that matter is uniformly dispersed all over the volume of the system, and that its
temperature remains unchanged. As matter is added to the system, the saturation
coefficient s goes from a small value to a value close to the unity. A typicals
point in this region would be for example point P1 in Fig. 10.9b. The work of
nucleation should be similar to that described in curve P1 in Fig. 10.9a. If we were
able to take an infinitely large snapshot of the system to observe many NPs, we
would find that their size distribution would be given by (10.25b). When s = 1, the
equilibrium concentration has been reached. Upon further addition of matter, the
saturation coefficient grows above unity, locating the system in the supersaturation
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Fig. 10.9 (a) Typical free energy profile for the growth of a NP according to the classical
nucleation model. (b) LaMer plot, change of saturation as a function of time

region. Supersaturation increases continuously until the injection of matter stops.
This point corresponds to step II, called “the nucleation stage.” At this moment,
the amount of metallic precursor is maximal, so that the metal activity and s take
their largest value. This corresponds to the point marked as P2 in Fig. 10.9b. The
work of nucleation under these conditions will look like the curve P2 in Fig. 10.9a.
At this time, the critical nucleus N∗ reaches its lowest value. As the system is in
supersaturation conditions, very frequently growth nuclei are formed, many of them
being unstable, but occasionally large fluctuations are produced such that these
fluctuations overcome N∗. These NPs are stable and begin their growth toward the
bulk state. At the same time as these nuclei grow, other new nuclei are formed, and
the precursor concentration decreases drastically. The situation at this intermediate
time is for example that of point P3 in Fig. 10.9b, and its work of nucleation is
described by curve P3 in Fig. 10.9a. In LaMer’s curves this corresponds to the third
stage of the process, and the latter is generally called the “growth stage.” When
the precursor concentration decreases, s decreases and N∗ displaces toward larger
values. At this stage the probability of nucleation is relatively low. This prevents the
formation of new nuclei and favors the growth of those already existing. Growth
continues and s decreases asymptotically. At that moment, the critical nucleus has
reached a very large value, a typical point for this situation has been marked as P4

in Fig. 10.9a, b. At this stage, the nucleation process is practically suppressed and
only the growth of nucleus previously formed is observed.

The experiment described above is the essence of the separation between the
nucleation and growth processes. As the transition time between stages I and II
becomes faster, the monodispersity of the NPs formed increases.

Modification of the initial conditions such as temperature (see (10.20) of second
nucleation theorem) and/or injection rate of precursor [98] may improve or worsen
the monodispersity of the NPs formed.

Two different techniques that apply the concept of homogeneous nucleation to
synthesize monodisperse NPs in organic solutions are available: “hot-injection”
[99–102] and “heating-up” methods [103]. The first produces a high degree of
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supersaturation by the rapid injection of excess precursor into a hot surfactant
solution, resulting in burst nucleation by relieving the excess free energy due
to supersaturation. Note that according to (10.19) and (10.20), temperature and
supersaturation conditions modified nucleation rate. The heating-up method is a
batch process in which the precursors, reagents, and solvent are mixed at a low
temperature and heated up to a certain temperature to initiate the crystallization
reaction. Because of its simplicity, this method is particularly favorable for large-
scale production.

The LaMer picture discussed so far has some limitations concerning the predic-
tion of NP sizes, since it is assumed that the surface tension γ is a constant. However,
this value is strongly size dependent for nanometer-sized NPs. As NP size decreases,
the ratio of surface atoms to bulk atoms dramatically increases. As a result, there
is a strong driving force, especially for NPs with a size of a few nanometers,
leading to the minimization of the surface free energy by reconstructing the surface
structure or by changing the crystal structure (e.g., through phase transitions or
lattice contraction). This driving force also plays an important role in the formation
of “magic number” metal clusters, which are composed of some particular numbers
of metal atoms [104]. The occurrence of this “configurational magic numbers” is
attributed to the extra stability of closed-shell structures.

10.3.2 Focusing and Defocusing Effects

The first theoretical studies on the narrowing of size distribution during the cluster
growth process were performed by Reiss in the 1950s [105]. In this model, known as
the “growth by diffusion” model, the growth rate of spherical NPs depends solely on
the flux of the monomers supplied to the particles (J). In this case, the relationship
between the monomer flux and the growth rate is given by:

J =
4πr2

Vm

dr
dt

(10.47)

where Vm is the molar volume of the bulk crystal. If the average distance between the
NPs is large enough, then the diffusion layer formed at the periphery of each of them
is undisturbed. Consequently, it is possible to treat each growing NP independently.
For each spherical NP in a homogeneous medium, there is a concentration gradient
around it with spherical symmetry. Fick’s law gives the flux J of monomers,
diffusing through the surface of a sphere enclosing the NP:

J = 4πx2D
daMe

dx
(10.48)
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where D is the diffusion coefficient, aMe is the activity Me, and x(≥r) is the distance
from the center of the NP. If J is assumed to be a constant, using (10.47) and (10.48),
we obtain:

dr
dt

=
VmD

r

(
aMe(bulk)− aMe(surf)

)
(10.49)

where aMe(bulk) and aMe(surf) are the metal activity of the bulk solution and the
activity at the surface of the NP. In this simple model, the growth rate of a particle is
inversely proportional to its radius. The time variation of the radius distribution σ2

can be written as:

d
(
σ2
)

dt
= 2VmD

(
aMe(bulk)− aMe(surf)

)[
1− r̄

(
1
r

)]
(10.50)

where r̄ and 1/r̄ are the mean values of r and 1/r, respectively. It can be shown
that for an ensemble of spherical NPs, the variation of the radius distribution σ2

decreases during growth. Thus, for aMe(bulk) > aMe(surf), the right-hand side of
(10.50) is always negative. In other words, the variance of the size distribution of
an ensemble of NPs always decreases regardless of the initial size distribution, as
long as all of the NPs are growing and no additional nucleation occurs. This is a
self-regulating mechanism of the size distribution during the growth process and
is often referred to as the “focusing” effect. However, the previous model [106] is
an oversimplification because it does not consider the reaction kinetics of crystal
growth and its dependence on NP size.

In order to introduce the kinetics of NP growth, it is necessary to take into
account the change in chemical potential μMe(r) that a spherical crystal with radius
r undergoes with respect to the bulk crystal μMe(bulk). This may be expressed by the
following equation:

Δμ = μMe(r)− μMe(bulk) = γ
∂A

∂NMe
(10.51)

where A is the surface area. Assuming a spherical geometry for the NP leads to:

Δμ =
2γVm

r
(10.52)

which is known as Gibbs–Thomson relation. The activated complex theory (ACT)
can be adopted to assess the effect of the chemical potential change of a crystal on
the precipitation and dissolution reactions. According to ACT, the variation of the
precipitation kp and the dissolution kd constant with Δμ is given by:

kp = k0
p exp [−αΔμ/kT ] = k0

p exp

[
−α

2γVm

rkT

]
(10.53a)

kd = k0
d exp [(1−α)Δμ/kT ] = k0

d exp

[
(1−α)

2γVm

rkT

]
(10.53b)
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In these equations, α is the transfer coefficient and k0 is the rate constant for the bulk
crystal (r →∞) [107]. Qualitatively, (10.53a) and (10.53b) reveal that small NPs will
tend to dissolve rather than to grow, as compared with larger ones, due to their higher
chemical potential. This effect contradicts the “focusing” mechanism, leading to a
larger size dispersion in the NP ensemble. To combine this effect with Reiss’ model,
the assumption that aMe(bulk) is constant for all NPs should be modified. The atomic
fluxes toward/from the surface of a NP due to precipitation/dissolution (Jp and Jd ,
respectively) are given by:

Jp = 4πr2k0
paMe(bulk) exp

[
−α

2γVm

rkT

]
(10.54a)

Jd = 4πr2k0
d exp

[
(1−α)

2γVm

rkT

]
(10.54b)

The net flux J corresponding to the sum of Jp and Jd can be rewritten in a
dimensionless form [107]:

dr′

dτ ′
=

s− exp [1/r′]
r′+K exp [α/r′]

(10.55)

where r′ and τ ′ are related to r and t by constant factors, and K is also a system-
dependent positive constant [107]. Since s > 1 in the supersaturation region, (10.55)
shows that dr′/dτ ′ has always a positive value. This is clearly a “defocusing” effect,
showing that monodispersity cannot be improved by this way. The value of the
dr′/dτ ′ = 0, where precipitation and dissolution velocity are equal is r∗, which is
related to N∗.

According to Park et al. [107], for an ensemble of particles, it is very difficult
to trace the time evolution of the size distribution, mainly because aMe(bulk) is not
a constant but rather a function of the size of all the particles in the ensemble.
Furthermore, the growth rates also depend on aMe(bulk). This mutual dependence
makes it very difficult, if not impossible, to derive the time evolution of the
particle size distribution analytically. Simulations may be helpful to understand this
phenomenon [108, 109].

10.3.3 Critical Cluster Size in Electrochemical Nucleation
and Growth

As mentioned above, in many of the experimental situations, critical nuclei contain
less than seven atoms in the case of the gas–liquid phase transition [19]. In the
particular case of metal NPs, and assuming that the critical cluster is only produced
by particle collision, it is not probable that this is made of more than three particles.
The energy values reported by Lee [110] show that the deposition potential that
should be applied to make the three-atoms clusters the critical one, is extremely
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large. This value, of the order of -3 eV for Au, is far too large as compared
with any known value of a redox couple able to reduce the metal ions. However,
experiments show that reactions take place and NPs are formed! What is missing in
the theoretical considerations?

There are actually no fundamental flaws in the theory, but rather omissions and
oversimplifications. Critical clusters are generally made of a few particles. In this
scale size they may be charged or not, may present several oxidation states, may
be complexed with water, with protecting molecules, etc. Thus, the experimental
reality is much more complex than we have simulated or modeled. For example,
Wang et al. [111] found that the reduction of HAuCl4 occurs before the formation
of the Au0 cluster, involving Au(I) intermediate species, but this behavior cannot
be extrapolated to other systems. Henglein et al. [112–114] have proposed the
formation of PdII(NH3)4Cl2 and PtIICl2(H2O)2 intermediates for the formation
of Pd and Pt NPs, respectively. The presence of ammonia, water molecules, and
chloride ions may bond Pd or Pt ions, stabilizing them and producing a decrease
in the free energy of reaction for the formation of the critical nucleus. The effect
produced by ligands is even more controversial. While the increase in ligand
concentration produces smaller NPs in the case of Au or Ag [115], the opposite
effect is observed in the case of CoPt NPs [116]. As we see, the effect of the
synthesis medium plays a decisive role in the determination of the critical cluster
size.

10.4 Size Control Based on Thermodynamic Effects

From the preceding section, we note that the free energy cost for NP growth must
be compensated by supersaturation and/or the application of an overpotential. Thus,
it is not possible, on thermodynamic grounds, to control the size of NPs since it is
necessary to bring the system out of equilibrium to produce the nucleation process.
However, we will see that when a second metal component is introduced in the
system, the situation may be different, in the sense that the status of the NP may be
controlled thermodynamically. In this section we discuss two models that may help
to visualize these ideas.

10.4.1 Bimetallic Nanoparticles

In the present section we make considerations similar to those elaborated in
Sect. 10.2.7. Figure 10.10 shows a scheme of the model; note the similarities and
differences with Fig. 10.5. We will not consider here ligand effects; these will be
introduced in the next section. The conclusions of the present discussion will be
valid when the interaction of ligands with the metal is not too important or when it
remains about the same all along the reaction. The same approach could be used
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Fig. 10.10 Schematic representation of the model employed to study metal deposition to yield a
bimetallic nanoparticle

to study the formation of alloyed NPs, within a double grand canonical system
[117]. We assume that these bimetallic clusters are made of two components, Me
and S, arranged in such a way that the system is made of small core(S)/shell(Me)
aggregates where the core atoms are not ionic species. This model corresponds to an
experimental design where a metal core is modified by another material; this core
is built in a previous synthesis routine. The reader can find experiments using this
approach in reference [60].

For the present purpose, we consider a small incompressible bimetallic NP
immersed in a liquid solution containing ions of the species being deposited (Me).

We begin by considering the completely open partition function in the component
Me of a single NP ϒ(μMe,NS,T ). This is related to the corresponding canonical
partition function Q(NMe,NS,T ) through:

ϒ(μMe,NS,T ) =
∞

∑
NMe=0

Q(NMe,NS,T )exp

[
NMeμMe

kT

]
(10.56)

where NMe is the number of Me atoms deposited on a core made of NS atoms of
metal S. In principle, the sum runs over all positive integers but we will find that it
can be drastically reduced on physical grounds, as proposed in the HC model, see
discussion on Sect. 10.2.3.

In order to write (10.56) in a more suitable form, we will consider that the
Helmholtz free energy of the bulk metal Me, say FMe(bulk)(NMe,T ), can be written
in terms of its partition function QMe(bulk)(NMe,T ) according to:

FMe(bulk)(NMe,T ) =−kT lnQMe(bulk)(NMe,T ) (10.57)

In the case of a bulk piece of Me made of NMe atoms, the chemical potential of Me,
say μMe(bulk), is given by:

μMe(bulk) =
FMe(bulk) (NMe,T )

NMe
(10.58)
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Then, the free energy of a piece of bulk metal Me made of NMe atoms will be
given by:

FMe(bulk) (NMe,T ) = NMeμMe(bulk) (10.59)

With this in sight, we can rewrite (10.56) as:

ϒ(μMe,NS,T ) =
QMe(bulk) (NMe,T )

QMe(bulk) (NMe,T )
ϒ(μMe,NS,T )

=
∞

∑
NMe=0

exp
{−[F (NMe,NS,T )−FMe(bulk) (NMe,T )

−NMeμMe +NMeμMe(bulk)
]
/kT

}
(10.60)

That can be rearranged to yield:

ϒ(μMe,NS,T )=
∞

∑
NMe=0

exp
{[

F (NMe,NS,T )−FMe(bulk) (NMe,T )−NMeΔμMe
]
/kT

}

(10.61)

where we have defined the quantities: ΔμMe = μMe −μMe(bulk) and F(NMe,NS,T ) =
−kT lnQ(NMe,NS,T ). Thus, ΔμMe represents an excess of chemical potential with
respect to the chemical potential of the bulk Me material.

On the other hand, we can multiply and divide by the canonical partition function
of the core (made only of metal S):

ϒ(μMe,NS,T )
Q(NS,T )
Q(NS,T )

= exp [F (NS,T )/kT ]
∞
∑

NMe=0
exp{− [ΔF (NMe,NS,T )+NMeΔμMe]/kT}

(10.62)
where we have defined ΔF(NMe,NS,T ) = F(NMe,NS,T )− F(NS,T )− FMe(bulk)
(NMe,T ) and F(NS,T ) = −kT lnQ(NS,T ). Note that ΔF(NMe,NS,T ) corresponds
to the excess of free energy of the Me type atoms in the cluster referred to the bulk
metal Me.

In the case of electrochemistry, we can replace ΔμMe by −zFη . However, it must
be kept in mind that in the electrochemical environment, we can under-saturate or
super-saturate the solution via concentration or potential changes, see Fig. 10.8. In
the electrochemical jargon, η > 0 corresponds to underpotential deposition (upd)
conditions, while η < 0 correspond to overpotential (opd) deposition. In short,
while opd corresponds to the usual case of metal deposition on a surface of the
same metal, upd may occur when a metal is deposited on a surface of a different
metal, as long as it shows a stronger affinity for this foreign surface than for itself.
This phenomenon leads to an apparent violation from Nernst equation, since metal
adatoms may subsist on a surface at a potential at which they should dissolve [118].
A hypothetical E vs. lna upd line is shown in Fig. 10.8, see dotted-line (blue) curve.
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Fig. 10.11 Qualitative scheme of the excess Helmholtz free energy as a function of the number of
atoms for the formation of a shell on a core of a different metal. (a) When the interaction among
shell atoms is stronger than the interaction between shell and core atoms; (b) when the interaction
among shell atoms is weaker than the interaction between shell and core atoms

It will be shown that the behavior of ΔF may be of two different types at
η = 0, depending on the interactions between system components. The situation
is illustrated qualitatively in Fig. 10.11a, b [59, 89].

The curves shown in Fig. 10.11a correspond to the case where the interaction
between shell atoms is comparable with (or larger than) the interaction between
shell and core atoms. In this case, the behavior of the curve of excess of free energy
is monotonically increasing with NMe at zero overpotential. This behavior is similar
to that of the energy curves found for the formation of pure metal NPs, as illustrated
in Sect. 10.2.7 (Fig. 10.6). The curves shown in Fig. 10.11b correspond to the case
where the interaction between shell atoms is weaker than the interaction between
shell and core atoms. In this case, ΔF shows a negative slope for a small NMe, with
the slope becoming positive beyond a certain NMe value, say Nmin

Me . This type of
systems yields a thermodynamic stable core–shell structure, which may be stable
even at positive ηs. In fact, according to (10.62), the application of a positive η
will add a linear function, shifting Nmin

Me to lower values, but the minimum may still
persist and will be a global one, see Fig. 10.11b. On the other hand, if a negative
overpotential is applied to the system, the minimum will still remain, but will define
a metastable state, since the global minimum will correspond to the bulk Me deposit
(NMe → ∞).

Taking into account that ΔF presents static, vibrational, rotational, and transla-
tional contributions, as discussed for a small particle in Sect. 10.2.6, we can write:

ΔF (NMe,NS,T ) = ΔU static
i +ΔFvibra

i +ΔFrota
i +ΔF trasla

i (10.63)

where ΔU static
i corresponds to the excess of binding energy of the Me adatoms in

the NP with respect to the cohesive energy of bulk metal Me. It can be shown that
only ΔU static

i makes a meaningful contribution to ΔF(NMe,NS,T ) [119–121], so that
a reasonable approximation to (10.62) is:
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Fig. 10.12 Energy excess as discussed below (10.63) for the deposition of (a) Ag atoms and (b)
Pd atoms on a Au NP made of 1,289 atoms with octahedral structure. The different color lines
denote in both cases the completion of a monolayer

ϒ(η ,NS,T ) = A(NS,T )
∞

∑
NMe=0

exp
{
−
[
ΔU static(NMe,NS,T )− zFNMeη

]
/kT

}

(10.64)

where A(NS,T ) is a function of the structure of the core and the temperature.
Figure 10.12 shows the behavior of ΔU static(NMe,NS,T ) as a function of the number
of metal atoms constituting the shell, NMe, for the deposition of Ag atoms on a
Au(1289) truncated octahedral NP and for the deposition of Pd atoms on a Au(1289)
NP. We note that the general behavior is similar to Fig. 10.11. However, the discrete
atomic nature and the packing of atoms in the NP produce deviations from the
simplified behavior shown there. A magnification of Fig. 10.12a (see inset) shows a
more complex saw tooth behavior, with 14 maxima, grouped in two families (6+8).
These maxima correspond to a 2D nucleation and growth phenomenon located on
each of the facets of the truncated octahedron. However, this saw motif should be
wiped out by thermal effects at 300 K. While decoration of the NP is expected at
different overpotentials for the system Ag/Au(1289) (Fig. 10.12a), no decoration
is predicted for the system Pd/Au(1289) in a wide potential range (Fig. 10.12b).
This variety of behavior is similar to the occurrence of upd and opd depositions
on planar surfaces. So, we can correlate these observations with the strength of
the interaction of Me atoms with S on perfect plane infinite surfaces. In the first,
Ag/Au, the interaction of Ag adatoms with Au atoms on flat surfaces is stronger
than the interaction between Ag atoms in the bulk state. This is an upd system
and the consequence of this is the formation of a monolayer of Ag on Au at
underpotentials. In the other system, the interactions of Pd with Au is smaller than
the bulk Pd cohesive energy and overpotential deposition is expected. Thus, in a first
approach we could conclude that decoration of a metal core by a different one may
be predicted on the previous knowledge of the similar process for planar surfaces.

To analyze the thermodynamic stability of the system in the underpotential region
(undersaturation), it is not necessary to appeal to extra-thermodynamic assumptions,
since in these region the partition function mathematically converges to finite values
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(see Sect. 10.2.3). We will focus our discussion on the system Ag/Au(OT1289),
which is the one presenting a behavior different from that predicted by CNT.

The assumption made in the HC model is analogous to (10.17) in that we can
define a modified probability g(NMe) by:

g(NMe) =
f (NMe)

f (Nmax
Me )

(10.65)

with f (NMe) given by:

f (NMe) = P(NMe,η ,NS,T )ϒ(η ,NS,T )

= exp
{
−
[
ΔU static (NMe,NS,T )− zFNMeη

]
/kT

}
(10.66)

and f (Nmax
Me ) is the maximum probability found in the region between NMe = 0 and

the bottleneck, see Fig. 10.11b.
Figure 10.13a depicts contour plots describing the behavior of g(NMe) at different

under/overpotentials for the prototypical Ag/Au(1289) system (compare similitudes
and differences with HC model in Fig. 10.2a). It is possible to force the global min-
ima to occur in the underpotential deposition zone, since ϒ(η ,NS,T ) is convergent
in this region, see Fig. 10.13b. For this cluster size, decoration may be selected to
occur alternatively at [111] plus [100] facets or only at [100] facets, both in the upd
range.

As it is the case of the HC model for supersaturation conditions, the partition
function diverges in the overpotential deposition region, so that it is necessary to
consider its physical convergence, see Fig. 10.13c. From this figure we can see
that the overpotential required to cause shell massive growth is between -100 and
-220 mV. These overpotential values could be suitably controlled experimentally by
using alternatively a potentiostat or a redox couple in solution.

Besides the metal pair involved, metal deposition in the present systems has an
interesting new condiment with respect to the bulk material that is provided by
NP size. Figure 10.14 shows simulations of the behavior of g(NMe) for the case of
deposition of Ag atoms at η = 0 on Au-NP of different sizes used as growth seeds.
It must be noted that for small NPs the highest normalized probability density is
found at NMe = 0. This clearly indicates the nonoccurrence of spontaneous core–
shell formation at η = 0. Something very different is found for large NPs, where
two important phenomena are observed comparing the results for Au(1289) and
Au(2406) NPs. First, the weight of g(Nmax

Me ) in the distribution becomes relatively
more important as NS increases. Second, the coverage of the NP increases with
increasing core size, NS. In fact, at η = 0 the most probable coverage for Ag
on Au(1289) is 75% while for Au(2406) it is 80%. From these results, it can be
inferred that in the limit NS →∞ the NP should reach 100% coverage, with a sharply
peaked distribution function. The former is a natural consequence of the decrease
of the fraction of border atoms for increasing NP size. We can summarize the
previous discussion by stating that depending on core size we may have upd or opd
on NPs.
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Fig. 10.13 Computer simulations corresponding to Ag deposition on a Au(OT 1289) nanoparticle
at different deposition potentials (a) contour plots of the distribution function in (10.65). The white
region does not fit into scale, since the partition function is normalized according to (10.65); see
discussion below. Cross sections along constant η are shown for (b) underpotential conditions
with η = 0,4, and 6mV distribution function defined in (10.66) and (c) overpotential deposition,
distribution function defined in (10.65). Representative structures are shown in the figure. Similar
calculations were performed in [63]

10.4.2 Ligand-Assisted Growth of Metallic Nanoparticles

Gold Nanoparticles (Au-NPs) is by far the most commonly analyzed system in the
literature, being the subject of reviews specifically devoted to them [122]. A large
number of synthesis methods of Au-NPs are based on the reduction of Au(III) to
metallic Au. In this and many other reactions, ligand effects may be important
and should be included in the theoretical considerations. The present section is
devoted to these effects. The reader is advised to refresh the concepts developed
in Sect. 10.3.3.
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Fig. 10.14 Probability density according to (10.66) of having a certain number of Ag atoms
deposited on different Au cores as a function of the number of atoms conforming the shell at
zero overpotential. The core sizes are NS = 38, 201, 586, 1289, and 2,406

The method developed by Turkevitch et al. [123, 124] in 1951 consisting in the
reduction HAuCl4 by citrate in aqueous solution is probably the most widespread
method to synthesize Au-NPs. Two decades later, Frens [125, 126] showed the
possibility of Au-NPs size control via modification of the mole ratio of the
precursors in the electrolyte solution, in this case citrate/Au. Another method of
widespread use is addressed in the literature as the Brust NPs synthesis [127]. Unlike
Turkevich’s reaction, the original Brust’s scheme consists in a two-phase reaction
(organic/aqueous) using NaBH4 as reducing agent. The strong reducing power of
the latter allows obtaining relatively small Au-NPs. In subsequent works, Brust
et al. [128] extended the synthesis method to routines involving a single phase.
In this type of synthesis, it is also possible to control NP size by modifying the
ratio of precursors, in this case thiol/Au [129, 130]. Leff et al. [131] have further
extended Brust’s synthesis to the use of primary amines as passivating agents. As
in the previous case, size control was achieved through variation of the capping
agent/Au ratio, though particle sizes were larger in the case of amines than for
thiols. These authors suggested that the stability of the particles appears to be largely
kinetic, rather than thermodynamic, in nature. This contradicts the observation
made by Leff et al. [132] in the case thiol-capped Au-NPs, according to whom
size control was based on thermodynamic grounds. Most of the other methods
used to make small Au-NPs (1–5 nm) also take advantage of the strong capping
action of thiols. Capping agents include disulfides [133], polymers with mercapto
and cyano functional groups [134], and dendrimers [135]. In general, varying the
capping agent concentration allows size control between 1 and 4 nm with reasonable
monodispersity.
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Other size control parameters (fine tuning) are the lateral interaction of the
capping agent. For example, in the case of nonionic alkanethiol-stabilized Au-NPs,
changes in molecular lengths produced small differences in particle size [136]. In the
quaternary ammonium alkylisocyanides [137] and alkylamine [138] cases, longer
alkylic chains promotes a decrease in the average size of NPs. Other less common
alternative routines have been developed for Au-NPs synthesis; the reader is referred
to the reviews done by Daniel [122], Tao [139], and Templeton [140] for further
details.

Recently, it has been experimentally demonstrated that ligand molecules may
control particle formation by thermodynamic rather than kinetic means. In this
respect, Klabunde and coworkers discovered a process that they denominated
“digestive ripening.” Upon heating a highly polydisperse gold colloid with ligand
excess, it was found that it evolved into a nearly monodispersed system [141–145].
The explanation proposed is that larger particles break down in solution, while at
the same time small particles grow until they reach a stable size. This process is the
reverse of “Ostwald ripening” which, driven by the tendency to lower the surface
energy, always favors particle growth. Although this method of generating colloidal
NPs is not generally applicable, it has been extended successfully to the production
of various types of metal NPs.

As can be inferred from the previous bird-eye view of the synthesis methods
of NPs, there is a huge amount of work and experience in this area, for which
a theoretical counterpart is missing or has only been scarcely developed. A first
important step in this direction was taken by Leff et al. [132]. These authors
developed a model based on thermodynamic considerations to explain the variation
in the size of Au-NPs with the gold/thiol reactant molar ratios, obtaining a good
agreement between experimental and theoretical predictions. This fact seems to be
an indication that in the case of their synthesis method the size control of the NPs
is driven by thermodynamics. On the other hand, Kuo et al. [146] have reported
on the functionalization of monolayer-protected Au-NPs, considering ligand place-
exchange reaction for different systems. In this work, a thermodynamic model
was proposed, based on the Gibbs–Thomson equation. According to the latter
modeling, a weaker headgroup-gold adsorption should develop larger NPs. In spite
of their apparent achievements, some of the theoretical models present gaps in their
formulations. In some cases, their predictions are not completely in rule with the
experimental observation, requiring further corrections to deliver proper results.

10.4.3 Modeling of the Stability of Capped Nanoparticles

To introduce a model for the present problem, let us consider an experimental setup
where a monodisperse set of NPs is put in contact with ligands present in solution
at a certain temperature and concentration. Thus, the total number of atoms and the
number of ligand molecules is a constant, so that the proper ensemble to use is the
N, P, and T one.
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Fig. 10.15 Model employed
to analyze the stability of
capped nanoparticles. The
nanoparticle radius is given
by rNP = rcore + rligand, where
rcore and rligand correspond to
the core metal radius and the
effective thickness of the
ligand layer

In the next discussion we follow the derivation given by Kuo et al. [147],
deviating from it in the points concerning the use of the chemical potential for the
reasons we explain in detail below.

Let us consider an ensemble made of ξ spherical, all identical NPs, specified by
the variables NMe, P, and T . Let rNP be the NP radius, given by rNP = rcore + rligand,
where rcore and rligand correspond to the core metal radius and the effective thickness
of the ligand layer, respectively. Figure 10.15 shows a scheme of the geometrical
arrangement of the model. Similar to the CNT discussed in the previous sections,
we will assume that the system is diluted enough to neglect the interactions between
neighboring NPs.

The free energy of this ensemble may be written as:

Gtotal = ξ GNP = ξ
(
GNP(bulk) +GNP(surf) +GNP(ads)

)
(10.67)

where GNP corresponds to the Gibbs free energy of the stabilized NP, composed by
the free energy of the bulk part of the NP, GNP(bulk) (internal atoms), the free energy
of the surface of the NPs, GNP(surf) (surface atoms), and the free energy of the ligand
molecules, GNP(ads). Written in the present way, Gtotal is an extensive quantity (see
discussion in Sect. 10.2.1). At difference with the assumption in the model proposed
by Kuo et al. [147], two different chemical potentials arise in nanothermodynamics
[47], namely μ and μ̂ .1 While the former is given by μ = (∂G/∂NMe)P,T , the latter
is related to the Gibbs free energy of the system according to:

μ̂ =
GNP

NMe
(10.68)

In the case of infinitely large (macroscopic) systems μ̂ = μ and GNP = μNMe, but
this assumption may not be valid for a NP. Equation (10.68) may be written as a
function of μ according to:

μ = μ̂ +NMe

(
∂ μ̂

∂NMe

)
P,T

(10.69)

1Do not confuse this quantity with the electrochemical potential, denoted here with μ̂ .
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In the case of macroscopic systems, (∂ μ̂/∂NMe)P,T = 0, so we recover the
equivalence valid in extensive systems. However, in the present case the correct
approach is to write the free energy of the naked NP, GNP(core), as a bulk term, plus
a surface correction like (10.69):

GNP(core) = GNP(bulk) +GNP(surf) = μMe(bulk)NMe +αN2/3
Me (10.70)

where α is positive and proportional to the surface tension γ . Note that according to
(10.70) the chemical potential of the naked NP is given by:

μ = μMe(bulk) +α
2
3

N−1/3
Me = μMe(bulk) +

3αrMe

2rNP
(10.71)

Equation (10.71) yields the correct dependence of the chemical potential with the
radius of the naked NP [Gibbs and Thomson equation, (10.52)]. When the adsorbate
contribution (10.67) is now used to calculate the free energy of the nanosystem,
we get:

Gtotal = ξ
[μMe(bulk)

r3
Me

r3
NP + 4π

(
γ +ρLGads

per ligand

)
r2

NP

]
(10.72)

where rMe is the radius of a Me metallic atom and ρL is the ligand surface density.
Writing now the (10.72) in terms of the total number of Me atoms, and considering
mass conservation (NT = ξ NMe) we get:

Gtotal = NT

[
μMe(bulk) + 3vMe

(
γ +ρLGads

per ligand

) 1
rNP

]
(10.73)

Gtotal contains a bulk and a surface term, in agreement with the physical expectation.
If the interaction of the ligand with the NP overcompensates the free energy required
for the formation of the surface of the NP, the parenthesis in (10.73) is negative.
In this case, the free energy of the systems reaches a maximum for rNP → 0. On
the other hand, if the parenthesis is positive, the minimum free energy is reached
for large rNP values, corresponding to the Ostwald ripening situation. Besides the
mathematics, the physical interpretation of (10.73) is straightforward. If the surface
energy of the NP is dominant, the free energy of the system will be minimized
decreasing the number of NP (ξ ), leading to the ripening phenomenon referred
to above. On the other hand, if the ligand adsorption energy overcompensates the
surface energy effect, the number of NP increases and each NP will reduce their
size, collapsing to the atomic state. In summary, no local minima are predicted and
no thermodynamic control of NP size may be expected from the previous model.

The original derivation of Kuo et al. [147] contains an additional (linear) term
in the parenthesis of (10.73), leading to the prediction of stable NPs. However,
we see that this term is not obtained when considering the proper dependence
of the chemical potential with the radius. Therefore, it is worth analyzing if an
extension of the model shown above can be made to include a term of this type that
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has a well-defined physical basis and allows for a proper evaluation of this effect.
According to the proposal of Hill [47] or the discussion given by McClurg [147],
after the macroscopic and surface terms, the first leading contribution that should
be taken into account, in the metal NPs, is the dependence of the free energy on the

curvature, which is proportional to N1/3
Me . Thus, the improved equation for the free

energy is:

Gtotal = ξ
[
NMeμinner +αN2/3

Me +β N1/3
Me +Gads

NP

]
(10.74)

where β is a coefficient related to the curvature energy. The translational and
rotational contributions have been omitted, since their dependence on NMe is weaker

than N1/3
Me , as discussed in Sect. 10.2.6. Taking into account that NMe = 4πr3

NP/3vMe,
we get:

Gtotal = NT

[
μMe(bulk) + 3vMe

(
γ +ρLGads

per ligand

) 1
rNP

+
3
2

vMeσ
1

r2
NP

]
(10.75)

where σ is curvature energy. The extremum condition, ∂Gtotal/∂ rNP = 0, for (10.75)
leads to:

r∗NP =
−σ

γ +ρLGads
per ligand

(10.76)

Equation (10.76) leads to a physically reasonable result only if (γ+ρLGads
per ligand)< 0.

Thus, an extremum can be found only if the surface energy of the NP is
overcompensated by the adsorption energy of the ligand. Replacement of (10.76)
into the second derivative of the free energy shows that the extremum is a minimum.
The curvature energy determines the critical size of the NP. If the curvature energy
is large, the particles will attain its equilibrium shape at a larger radius.

It can be noted that (10.76) shows that there is a threshold in the value of
the free energy of adsorption, for the ligand to be able to stabilize the NP at a
finite radius. To estimate this, in the case of metallic NPs, we consider the surface
energy of Au as reported in reference [148] (γ = 0.787 eV nm−2) and the ligand
surface density from reference [132] (ρL = 0.467 Lig n m−2). The threshold value
for Gads

per ligand is ∼ −1.60 eV. Ligands with a weaker binding energy could only

keep NP in a metastable state. DFT calculations show that Uads
per ligand at 0 K is of the

order of −0.60 eV, −2.00 eV and −2.40 eV for CH3NH2, CH3S−, and CH3COO−,
respectively [149]. This may give a hint of why NPs stabilized by amino and thiol
groups present such different behaviors in their stability, as discussed in Sect. 10.4.2.
For a further analysis on capped nanoparticles, see Chap. 9 by Olmos and Mariscal
in this book.

To finish the present section, we want to note that a correct description of the
behavior of molecule-stabilized NPs may include equilibrium with charged species,
like for example Au3+ � Au+� Au0 and /or CH3S− � CH3SH [150]. In these
cases, potential control will aid in the selection of synthesis conditions for particle
size optimization. The introduction of other effects like hydrophobicity and surface
coverage is also desirable, as well as a proper statistical mechanical description in
the style of that presented in Sect. 10.4.1.
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10.5 Conclusions and Perspective

In the present chapter we have given an overview about different ways of modeling
the thermodynamic properties of metal NPs, mainly from a statistical mechanical
viewpoint. While nucleation and growth processes have been studied and modeled
during many decades, the main efforts were directed to the study of liquid drops and
metallic systems have been treated less extensively. The study of bimetallic systems
from the perspective described in the present chapter is fairly recent, and was mainly
directed to core–shell structures, since for these systems relatively inexpensive
computer simulations can be performed. For these systems, interesting features
appear concerning the stability/metastability of different structures, which provide
stimulus for future experiments. Finally, the influence of ligands species on the
stability of NPs is starting to be studied, and this appears as a particularly interesting
field, where size and shape of nanoparticles may be controlled. In this respect,
some of the important issues to be considered and introduced in the modeling are
the electrochemical nature of the process by which the NPs are generated and the
existence of equilibrium between the ligand species in solution and those adsorbed,
since in many cases the species interacting with the NPs are different from those in
solution. Finally, the less developed aspect is the kinetic one, and this concerns size
and shape control by changing the synthesis conditions. In this respect, there is still
much to do on the theoretical field, in a synchronous effort with proper experiments.
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109. Hrubý J, Labetski DG, van Dogen MEH (2007) J Chem Phys 127:164720



350 O.A. Oviedo and E.P.M. Leiva

110. Lee HM, Ge M, Sahu BR, Tarakeshwar P, Kim KS (2003) J Phys Chem B 107:9994
111. Wang J, Boelens HFM, Thathagar MB, Rothenberg G (2004) Phys Chem Chem Phys 5:93
112. Michaelis M, Henglein A (1992) J Phys Chem 96:4719
113. Belloni J (2006) Catal Today 113:141
114. Henglein A, Giersig M (2000) J Phys Chem B 104:6767
115. Henglein A, Giersig M (1999) J Phys Chem B 103:9533
116. Shevchenko EV, Talapin DV, Schnablegger H, Kornowski A, Festin Ö, Svedlindh P, Haase M,
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119. Rojas MI, Sanchez CG, Del Pópolo MG, Leiva EPM (2000) Surf Sci 453:225
120. Oviedo OA, Rojas MI, Leiva EPM (2006) Surf Sci 51:3526
121. Chui YH, Grochola G, Snook IK, Russo SP (2007) Phys Rev B 75:033404
122. Daniel MC, Astruc D (2004) Chem Rev 104:293
123. Turkevitch J, Stevenson PC, Hillier J (1951) Discuss Faraday Soc 11:55
124. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) J Phys Chem B

110:15700
125. Frens G (1973) Nature Phys Sci 241:20
126. Frens G (1972) Colloid Polymer Sci 250:736
127. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) J Chem Soc Chem

Commun 801.
128. Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely C (1995) Chem Soc Chem Commun 1655
129. Frenkel AI, Nemzer S, Pister I, Soussan L, Harris T, Sun Y, Rafailovich MH (2005) J Chem

Phys 123:184701
130. Zanchet D, Hall BD, Ugarte D (2000) Chem Phys Lett 323:167
131. Leff DV, Brandt L, Heath JR (1996) Langmuir 12:4723
132. Leff DV, Ohara PC, Heath JR, Gelbart WM (1995) J Phys Chem 99:7036
133. Yonezawa T, Yasui K, Kimizuka N (2001) Langmuir 17:271
134. Teranishi T, Kiyokawa I, Miyake M (1998) Adv Mater 10:596
135. Zhao MQ, Sun L, Crooks RM (1998) J Am Chem Soc 120:4877
136. Yonezawa T, Yasui K, Kimizuka N (2001) Langmuir 17:271
137. Yonezawa T, Imamura K, Kimizuka N (2001) Langmuir 17:4701
138. Wikander K, Petit C, Holmberg K, Pileni MP (2006) Langmuir 22:4863
139. Tao AR, Habas H, Yang P (2008) Small 3:310
140. Templeton AC, Wuelfing WP, Murray RW (2000) Acc Chem Res 33:27
141. Lin XM, Sorensen CM, Klabunde KJ (2000) J Nanoparticle Res 2:157
142. Soeva SI, Klabunde KJ, Sorensen CM, Dragieva I (2002) J Am Chem Soc 124:2305
143. Soeva SI, Prasad BLV, Uma S, Stoimenov PK, Zaikovski V, Sorensen CM, Klabunde KJ

(2003) J Phys Chem B 107:7441
144. Pradad BLV, Stoeva SI, Sorensen CM, Klabunde KJ (2003) Chem Mater 15:935
145. Stoeva SI, Zaikovski V, Prasad BLV, Stoimenov PK, Sorensen CM, Klabunde KJ (2005)

Langmuir 21:10280
146. Kuo C-T, Yu J-Y, Huang M-J, Chen C-H (2010) Langmuir 26:6149
147. McClurg RB Flagan RC (1998) J Colloid Interface Sci 201:194
148. Perdew JP, Wang Y (1991) Phys Rev Lett 66:508
149. Oviedo OA, Zoloff-Michoff ME, Leiva EPM Manuscript in preparations
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