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Foreword

Mechanical properties of materials such as dislocation generation, fatigue, creep,
crack propagation, or electrical migration in strip conductors are to a large extent
determined by their microstructure. Therefore, the details of the microstructures
have a strong impact on the life expectancy of a material in a given component.
Materials microstructures are examined by optical microscopy, by scanning
electron microscopy, and by transmission electron microscopy, often when loaded
in situ mechanically or chemically.

Ultrasonic imaging as used in non-destructive testing is applied for defect
detection in a component. Non-destructive materials characterization by ultrasonic
imaging can be used to study the microstructure of optically nontransparent solids,
in particular, metals employing scattering. In both cases, the acoustic waves
penetrate into the materials, enabling one to study the microstructure of materials
within the volume, to detect small defects, to study adhesive interfaces, and also to
gain information about elasticity as well as absorption (also called internal fric-
tion). Ultrasonic waves of frequencies from approximately 20 kHz—2 GHz are used
for acoustical imaging and mechanical spectroscopy. In acoustic imaging tech-
nologies, the contrast in reflection and transmission provides a map of the spatial
distribution of elasticity, density, ultrasonic absorption and scattering, and the
occurrence and distribution of defects. These parameters in turn may be used to
obtain information on the mechanical properties as defined above, although often
only by calibration with test components of known properties because the inter-
relatedness of the various parameters is often too complex, so that an appropriate
analytical formula does not exist. There are many books, handbooks, and review
articles providing a detailed account of acoustical imaging for medical, material
science, and non-destructive testing applications.

Acoustical imaging modes can be classified into near-field imaging techniques,
focusing techniques, and holographic techniques. Examples of near-field imaging
techniques are contact oscillators like the Fokker bond test system for monitoring
adhesive bonds in an airplane wing. They are operated in a frequency range
covering some kHz to some 100 kHz. Their spatial resolution depends on the
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antenna size, i.e., the probe size and not on the frequency and hence on the
wavelength employed.

Due to the smaller scale of components, in particular, in microelectronics, there
was always the demand to obtain higher and higher spatial and temporal resolu-
tions in acoustical imaging systems. This became possible with (a) the ever-
increasing capabilities of computers allowing one to store the huge amount of data
which followed; (b) the use of operating frequencies beyond 20 MHz for obtaining
higher spatial resolution based on focusing probes, and (c) the increase of the
bandwidth of the electronic receiving system to increase the temporal resolution of
the imaging system. This led to the development of scanning acoustic microscopy
(SAM), sometimes also called high-frequency C-scan imaging. Whereas, the
physical principle of SAM was known for a long time, it took some efforts in the
1980s to engineer reliable systems. At room temperature, the highest frequency
attainable in SAM is approximately 2 GHz, because the attenuation in the liquid
water used as couplant necessary to transmit the ultrasonic signals from the
acoustic lens to the material to be examined becomes so high that more than 99 %
of the ultrasonic power gets absorbed. Even if one uses liquid metals like gallium
or mercury as a couplant serving also for impedance matching, the situation does
not improve much. Wavelengths at GHz frequencies are some micrometers,
depending on the sound velocity. Hence, in an acoustical imaging system using a
focusing transducer or an acoustical lens, the spatial resolution is at most 1 pum.
Having this technological barrier in mind, it was logical to exploit the principle of
near-field imaging, where the resolution is given by the size of the antenna and less
by the frequency. This comes at the cost of being able to image only the surface of
a component or a material. Such efforts have been undertaken by various groups
parallel to the development of SAM.

A further step toward higher resolution based on the near-field principle became
possible with the advent of scanning tunneling microscopy (STM) and later of
atomic force microscopy (AFM). There were early attempts to construct a near-
field ultrasonic microscope based on an STM which, however, was not much
pursued because it could only be used in high vacuum and on metals. The situation
changed with the invention of the AFM. In atomic force microscopy, a micro-
fabricated elastic beam with a sensor tip at its end is scanned over the sample
surface and generates high-resolution images of surfaces. The tip radius is typi-
cally from a few nm to 100 nm. The contact radius at the surface is much smaller
and even atomic resolution is possible with an AFM. It can be operated in ambient
conditions for many applications. Thus, it was natural to combine AFM with
ultrasonics in order to exploit its high, resolution capacity for acoustical imaging.

Very early in the development of atomic force microscopy, dynamic modes
such as force modulation where the cantilever or the sample surface is vibrated,
belonged to the standard equipment of most commercial instruments, allowing one
to image the surface of a material, where the contrast depends on the elasticity, the
friction, and the adhesion of the tip—sample contact, in particular on compliant
materials. The quantitative determination of the Young’s modulus of a sample
surface with an AFM was a challenge however. Especially when stiff materials
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such as metals or ceramics were encountered, the image contrast due to elasticity
was very low in force modulation, because the spring constants of common AFM
cantilevers, ranging from 0.01 to 70 N/m, are then much lower than the tip—sample
contact stiffness. This barrier can be overcome by using the atomic force acoustic
microscopy (AFAM) technique, or by ultrasonic atomic force microscopy
(UAFM), or similar schemes. One measures the resonances of atomic force can-
tilevers with the tip contacting the specimen surface, hence often the term contact
resonances is used for this class of dynamic atomic force microscopies. From such
measurements, one can derive the local contact stiffness k* and by using a suitable
mechanical model for the contact stiffness, one can invert k* data to measure the
local indentation modulus M. The indentation modulus is an elastic constant which
accounts for the compressive and the shear deformations in the contact zone
between isotropic or anisotropic materials. Similarly, one can gain information on
the anelastic part of the indentation modulus, which entails information on the
local friction and adhesion within the contact zone and on the material’s internal
friction within the contact volume. In AFAM, the cantilever with its tip plays the
role of the horn in impedance spectroscopy or of the contact oscillators in the
Fokker bond tester and the tip—sample contact serves to probe the local mechanical
impedance. Due to the small tip radii, the spatial resolution at the surface of the
material examined is, however, much smaller and of nanoscale, and resolution
much below 10 nm can be obtained if measurement parameters are set right. As it
turned out, there is a multitude of factors determining the obtainable spatial res-
olution, the physical background of the contrast, and the oscillatory behavior of the
cantilever when using an AFM tip as acoustical near-field antenna. It stems from
the richness of the forces between tip and surface which can be adhesive, elastic,
electrical, and magnetic in a linear and nonlinear fashion and because an AFM
cantilever can be excited to many vibrational modes.

The authors contributing to this book, perfectly edited by F. Marinello,
D. Passeri, and E. Savio, give a first-hand account on the status of the various AFM
contact-resonance techniques, the theory of their operation, and the tip—sample
contact mechanics. The authors provide many examples of applications and
therefore serve the AFM as well as acoustical imaging communities and also those
who want to apply these techniques for studying elastic, anelastic, and mechanical
properties on the scale of some nanometers, and finally those who want to further
develop the techniques.

What might lie ahead? I think that an improved spatial resolution can be
achieved by using tips with radii much below 50 nm loaded with static forces of
some nN to some 10 nN. This would allow one to examine compliant materials
and hence may open the door to image biological samples and to obtain quanti-
tative data as discussed in a chapter of the book. Such improved contact-resonance
techniques should allow one to image the nanostructure of materials as well and to
shed more light on the local phenomena which are behind adhesion, hardness,
yield stress, elastic stresses, closing the circle to conventional acoustical imaging.
Then, there is the urgent need to increase the depth sensitivity of the contact-
resonance techniques for defect detection which can be achieved by an opposite
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approach, using very stiff cantilevers or exploiting the higher cantilever modes
with their effective higher stiffness and larger contact radii. This calls for wear-
resistant tips. Finally, by using modulated propagating waves in the GHz range
demodulated by the nonlinear tip—sample contact, one should be able to exploit
ultrasonic scattering to study detailed features of the microstructure, for example,
of materials employed in microelectronics, defects buried in wafers deeper than
the Hertzian contact stress-field or in biological cells.

Saarbriicken and Gottingen W. Arnold



Foreword

Advancements in virtually all areas of science and technology demand materials
with improved performance. In the past decades, we have witnessed new materials
being continually introduced for commercial use in diverse areas like electronics,
construction, transportation, textiles, and in medical devices and implants. Key to
these new developments is the ability to engineer materials on the nanoscale by
incorporating a multitude of components and geometric features. The resulting
heterogeneity and complexity of materials call for novel characterization tech-
nologies with nanoscale spatial resolution.

Scanning probe microscopes, in particular, atomic force microscopes have
played an important role in visualizing materials with nanoscale features. Owing to
their mechanical operation principles, there is now a significant potential for the
use of atomic force microscopes in measuring and mapping mechanical properties
of nanoscale materials. A variety of techniques has already been introduced and
their accuracy and range of applicability are continuously improving with an
accelerating pace. Consequently, a vast literature on this subject has emerged. In
that regard, Francesco Marinello, Daniele Passeri, and Enrico Savio have put
together a great sourcebook on scanning probe microscopy-based nanomechanical
characterization. This timely book provides a good introduction to newcomers and
a thorough source of references and reviews for those already in the field.

Despite the popularity of atomic force microscopes in imaging nanoscale
materials, generating quantitative information about material properties has proven
difficult. As contributing author Donna C. Hurley puts it; developments in this field
have been successful in generating “pretty pictures” from the nanoscale world,
with qualitative contrast mechanisms. Characterization of advanced materials,
however, requires reliable quantitative measurements of mechanical properties.
Inaccuracies can be introduced to the measurements at various stages of infor-
mation transduction. The book investigates two of the most critical stages in great
depth: the contact mechanics that govern tip—sample interactions and the dynamics
of the vibrating cantilever. Both intuitive and rigorous treatments of these subjects
merge in the book, allowing readers from various backgrounds to benefit from the
material.
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Once equipped with the basic understanding of the underlying theories of
contact mechanics and cantilever dynamics, the reader finds contributed chapters
from leading experts in acoustic AFM and related experimental techniques,
reviewing what is possible in the current state of the art. The authors share
valuable tips in getting reliable measurements. I find it especially helpful that the
book devotes a chapter for an in-depth comparison of the quantitative measure-
ments obtained by scanning probe microscopy with more established techniques
like instrumented indentation and surface acoustic wave spectroscopy.

The book includes contributions beyond the more established methods. The rise
in demand for research in developing advanced nanomaterials is fueling the
expansion of the nanomechanical characterization toolbox. Tools geared toward
“soft matter” and tools providing contrast from below the surface of materials are
rapidly advancing. By incorporating several examples of new techniques,
including the applications of acoustic characterization techniques in biological
problems, the book provides a breadth of topics that makes it a valuable source-
book for anyone interested in nanomechanical analysis.

Columbia University, New York, USA Ozgur Sahin



Preface

The rapid progress of nanotechnologies poses significant challenges in manufac-
turing and characterization. Scanning Probe Microscopy (SPM) techniques have
significantly contributed to such development, allowing characterization of a
number of properties at the microscale and nanoscale. Having been invented for
the morphological investigation of surfaces, SPM has represented the basis for the
development of techniques where the tip is used for probing physical properties
and the SPM position control system is used for imaging such properties on the
samples surface, simultaneously to their topography.

The combination of scanning probe microscopy, and in particular of Atomic
Force Microscopy (AFM) with ultrasound techniques, led to the development of
acoustic AFM (A-AFM) and acoustic SPM (A-SPM) opening up to a number of
measuring techniques which allow surface mechanical properties imaging.

In A-AFM, piezoelectric transducers are used to set the sample surface or the
AFM cantilever into vibration at ultrasonic frequencies that are well above the
cutoff frequency of the electronics, so that the oscillations are not compensated by
the feedback. As a consequence such oscillation does not influence the standard
topographical reconstruction, and on the other hand, the ac component of the
deflection signal is not suppressed and thus can be subsequently analyzed. The
particular way in which ultrasonics and SPM are combined is different for each
specific technique and allows collection of different information.

Readers working in different fields of nanotechnology, material science, and
biology will find in this book a comprehensive overview of such A-SPM tech-
niques, presented by evidencing similarities and peculiarities. We proudly say that
the most widely recognized scientists and researchers have contributed to the 17
chapters of the present volume, discussing acoustic SPM techniques both from the
theoretical and from the practical points of view. The volume is divided into three
parts.

The first part includes three chapters on subjects that form the basis of all
A-SPM techniques, namely, the contact mechanics describing the tip—sample
interaction, the analytical models for the dynamics of the cantilevers interacting
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with the sample in the different A-SPM modalities, and numerical methods for
their simulation.

The second section describes the most important A-SPM techniques empha-
sizing recent advances: Atomic Force Acoustic Microscopy (AFAM), Ultrasonic
Atomic Force Microscopy (UAFM), Scanning Microdeformation Microscopy
(SMM), Ultrasonic Force Microscopies (UFM) and related techniques, Scanning
Near-Field Ultrasound Holography (SNFUH), and Torsional Harmonic Atomic
Force Microscopy (TH-AFM). Two chapters are dedicated to quantitative data
extrapolation, presenting strategies for enhancing the sensitivity of such techniques
allowing exploitation of measuring performance and discussing the main points of
data post processing, providing hints and strategies for repeatable analysis of
surface data sets. The presentation of A-SPM techniques is completed with a
comparison between quantitative elastic measurements by A-SPMs and conven-
tional techniques (i.e., nanoindentation and surface acoustic wave spectroscopy).

The third section reviews applications of A-SPM. Two chapters are devoted to
quantitative aspects in the characterization of friction and internal friction and in
subsurface imaging. Finally, the last two chapters describe some recent results in
the quantitative mechanical characterization of polymers and of biological
samples.

We gratefully acknowledge the support of all authors. We also wish to thank
Springer, and in particular Mr. Claus Ascheron, for his initiative to setup this
volume and his organizational work. We sincerely hope that readers will find this
volume scientifically stimulating and rewarding.

Padua, Rome Francesco Marinello
Daniele Passeri
Enrico Savio
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Cantilever cross-section area

Contact radius

Cantilever thickness

Young modulus of the cantilever

Reduced modulus of the contact

Storage modulus

Loss modulus

Young’s moduli of the tip and of the sample
Frequency

Free resonance frequency

Is the static load, i.e. the normal component of instantaneous
force interacting between the tip and the surface, in the

coordinate system of the sample surface

Lateral load, i.e. the normal component of force interacting
between the tip and the surface in the coordinate system of the

sample surface

Time-averaged force between tip and sample
Tilt of the cantilever relatively to the surface
Reduced shear modulus of the contact
Adhesion energy

Phase

Normal damping constant

Lateral damping constant

Tip height

Initial sample indentation

Equilibrium indentation

Normal contact stiffness

Lateral contact stiffness

Static spring constant of the cantilever
Wave numbers of the nth eigenmode
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Linear contact stiffness

Total length of the cantilever
Actual distance between the tip and the chip
Effective length of the cantilever
Wavelength

Quadratic contact stiffness
Indentation modulus

Effective mass of the cantilver
Additional or concentrated mass
Nanosecond (107%) s

Tip radius of curvature

Radius of contact area
Differential contact stiffness
Density of the cantilever

Film thickness

Relaxation time

The Poisson’s ratios of the tip and of the sample

Cantilever width
Equilibrium cantilever deflection
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Acronyms

AFAM
AFFM
AFM
AM-AFM
CM

DOF
FEA
FFM
FM-AFM
FMM
FRF
HFM
NC-AFM
NI
SAFM
SAM
SAWS
SLAM
SMM
™
UAFM
UFM
W-UFM

Atomic Force Acoustic Microscopy
Acoustic Friction Force Microscopy
Atomic Force Microscopy

Amplitude Modulation AFM
Concentrated Mass

Degree of Freedom

Finite Elements Analysis

Friction Force Microscopy

Friction Modulation AFM

Force Modulation Microscopy
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Chapter 1
Acoustic Scanning Probe Microscopy:
An Overview

D. Passeri and F. Marinello

Abstract In this chapter, which serves as an introduction to the entire book, an
overview is given of techniques resulting from the synergy between ultrasonic meth-
ods and scanning probe microscopy (SPM). Although other acoustic SPMs have
been developed, those reviewed in this book are either the earliest proposed tech-
niques, which are most widespread, extensively used, and continuously improved,
or have been recently developed, but have been proved to be extremely promising.
The techniques are briefly introduced, emphasizing what they have in common, their
differences, their capabilities, and limitations.

1.1 Touching Instead of Seeing

The invention in the 1980s of the two main scanning probe microscopy (SPM)
techniques, namely atomic force microscopy (AFM) [1] and scanning tunneling
microscopy (STM) [2-5], extended the significance of microscopy, giving it a wider
acceptation beyond its mere etymological significance. Deriving from the Greek
utkpov (transliterated as ‘mikron’, meaning ‘small’) and okoméw (transliterated
as ‘skopeo’, meaning ‘I see’ or ‘I look’), the word ‘microscopy’ recalls the idea of
seeing ‘by eyes’ and thus by instruments where the visualization of objects is based
on the collection of the light diffracted by them by means of suitable lenses. The
observability of small objects is thus limited by the wavelength A of the particular
electromagnetic radiation used for illuminating them: the lower the A the higher the
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resolution, where the latter can be evaluated for instance by the Abbe’s criterion
as A/2NA, where NA is the numerical aperture of the optical lens. To increase the
resolution, A must be reduced. Such a requirement suggested the use of radiation
more energetic than visible light, leading to the invention of X-ray and electron
microscopy.

SPM techniques are based on a completely different idea. A tip is brought in
close proximity to the sample surface and then is moved across it in two directions
(namely, the x and y axes). At each point of the surface, which is divided into a
homogeneous array of points, a physical parameter is monitored. In the case of
STM, such a parameter is the tunneling current flowing between the (conductive)
sample and the (conductive) tip. In the case of AFM, such a parameter is the deflection
of the cantilever at the extremity of which the tip is mounted. More precisely, the
monitored parameter is the cantilever static deflection in AFM contact mode, while
it is the amplitude of the oscillating cantilever in AFM semi-contact mode. These
parameters can be collected at each point of the scanned area and reported in maps
that qualitatively reflect the sample morphology (the open feedback loop mode).
In practice, this operation mode exposes the tip to the risk of abrupt damage and
thus is scarcely used except in case of very flat sample surfaces (e.g., when atomic
resolution is required). Alternatively, the acquired parameter is used as the input
signal of a feedback loop that maintains a constant value over the scanned surface by
acting on a piezoelectric transducer in the vertical direction, namely, the z axis (the
closed feedback loop mode). This modifies the cantilever-to-sample distance by an
amount Az that is equal to the local height variation of the surface. The value of Az
at each point of the scanned area is reported in a map that quantitatively reflects the
sample topography. It is worth noting that in the case of AFM operation in contact
mode, the closed feedback loop ensures that the surface is scanned at constant value
of the cantilever deflection and thus of the force exerted between tip and sample,
which is an important requirement in contact mode acoustic AFM techniques, as
described below.

As discussed in the following, imaging performed by touching (in the sense of
a tip coming into close interaction with the surface), rather than seeing, the surface
has its own disadvantages, but on the other hand offers the possibility of going
beyond topography by developing unique tools for the qualitative and/or quantitative
characterization of several physical properties of the sample surface.

1.1.1 Facing the Limitations...

The reconstruction of a sample morphology by touching and scanning its surface has
its own disadvantages. As a direct consequence of touching the surface, collected
images are the convolution of both surface features and tip shape, resulting in artifacts
that can seriously compromise the quality of the image (e.g., nanoparticles on flat
surfaces may lead to images where the apex of the tip is reproduced inverted in
correspondence with each nanoparticle) unless a proper deconvolution is performed
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[6]. Moreover, in the case of soft samples like polymers or biological specimens,
the interaction between tip and sample may contaminate the former and/or damage
the latter [7]. These drawbacks can be prevented or reduced by operating in semi- or
non-contact mode instead of contact AFM mode.

As a consequence of scanning, movement limitations are introduced by both the
z direction (vertical) piezoelectric actuator and the x and y direction (in-plane) scan-
ners. The limitation of the vertical range implies a sufficient flatness of the surface
to be analyzed: when such a requirement is not met, only restricted portions of the
surface can be imaged, thus reducing the statistical meaning of the SPM investiga-
tion. The limitation of the in-plane scanners does not allow the visualization of large
areas even for perfectly flat samples, thus not permitting overall visualization of sur-
faces, fast selection and positioning on specific sample regions, or characterization of
features with widely different magnifications, all characteristics that, conversely,
allow electron microscopy to collect images that in some cases are admittedly aston-
ishing.

1.1.2 ... and Converting them into Opportunities

Despite such disadvantages, imaging by touching and scanning the sample surface
turned out to represent a key feature that determined the success of SPM techniques
as the basis for the development of a wide number of tools to image, measure, and
map several physical properties simultaneously with samples’ topography. Touching
surfaces allows one to probe mechanical, electric, and/or magnetic (e.g., by using
AFM cantilevers coated with conductive and/or magnetic films) properties. Scan-
ning surfaces allows one to repeat such measurements at each point and thus to map
the measured physical properties over the surface simultaneously with the morpho-
logical reconstruction. In some cases new techniques have been developed based on
standard SPM setups, while in other cases researchers have reproduced at micro- and
nanoscales techniques already available at macroscales. For example, the tip is used
from time to time as an indenter, as the probe of a multimeter, etc. Such an approach
enables measurements with nanometrical lateral resolution and the collection of
qualitative maps of properties beyond the topography, although they are generally
affected by artifacts induced by topography itself. Gathering accurate quantitative
data is nevertheless limited by the nonideal instrumental parameters such as the real
shape of the tip. Theoretical models are thus needed to analyze data that are based
on, but generally more complex than, those used by more conventional instruments.
A comprehensive review of such techniques far exceeds the aims of this book. In the
following we limit our attention to some of the techniques that combine ultrasonic
methods with AFM tools for the surface and subsurface mechanical characterization
of samples.
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1.2 Two Points of View

Acoustic or ultrasonic SPM (A-SPM) refers to a class of several different tech-
niques that are characterized by the use of almost standard SPM setups, integrated
with some modified electronics and/or mounting specifically functionalized tips.
Both AFM and STM setups have been used for developing A-SPM techniques (A-
AFM and A-STM, respectively). Nevertheless, in the following we refer only to the
AFM-based ones, which are undoubtedly more widespread and versatile. In A-
AFMs, piezoelectric transducers are used to set the sample surface and/or the AFM
cantilever into vibration at ultrasonic frequencies that are well above the cutoff fre-
quency of the electronics, so that the oscillations are not compensated by the feed-
back. This ensures that such oscillation does not influence the standard topographical
reconstruction, as well as that the ac component of the deflection signal is not sup-
pressed and thus can be subsequently analyzed. These two represent the key points
for the simultaneous acquisition of topography and acoustic signal images. The par-
ticular way in which ultrasonics and SPM are combined is different for each specific
technique and will be described in detail through the chapters of the book. Here, the
interest is focused on the common features of these techniques. The enrichment pro-
duced by the combination of ultrasonics and SPM can be fully understood by looking
at such a combination from two different and complementary points of view. From
the first viewpoint, A-SPM techniques can be regarded as nanoscale versions of
dynamic indentation tests: the SPM tip replaces standard indenters and the effect
of ultrasounds is to modulate the indentation of the sample surface. From the sec-
ond viewpoint, A-SPMs can be regarded as nanoscale versions of scanning acoustic
microscopy techniques: the tip is used for probing the acoustic wave field with high
spatial resolution, far beyond the limitation imposed by other methods such as the
use of piezoelectric transducers, light wave diffraction, X-ray scattering, or electron
reflection. These two points of view are characterized by different approaches, mod-
els, and mathematical instruments for rationalizing the results of the experiments.
Such grouping can be somewhat limiting, since each technique can be described in
terms of each of the two approaches; however, it can be useful to understand the role
of ultrasonics in SPM-based techniques.

1.2.1 Modulating the Indentation of the Surface

Used for setting into vibration the sample surface and/or the cantilever, acoustic
waves produce a modulation in the cantilever-sample distance. In case of infinitely
stiff sample and tip, such a modulation is entirely observed as the modulation of the
cantilever deflection. In the case of a sample much more compliant than the cantilever,
the modulation results partially in the modulation of the cantilever deflection and
partially in a variation of the penetration depth of the tip into the sample surface: the
softer the sample, the higher the modulation amplitude of the indentation and the
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lower that of the cantilever deflection. Therefore, the oscillating component of the
cantilever deflection can be acquired at each point of the scanned area, thus obtaining
an image which is related to the surface elastic modulus. This idea forms the basis of
the force modulation microscopy (FMM) technique [8, 9], which has been proved to
allow qualitative elastic imaging of soft samples like polymers. Implementation of
FMM on materials with higher elastic modulus is indeed limited by the availability
of standard cantilevers with sufficiently high spring constant values. In this sense, the
merit of ultrasonics is the stiffening of AFM cantilevers at high frequencies: in other
words, the cantilever dynamic spring constant values are far higher than the static
ones. Therefore, ultrasonics enables dynamic indentation measurements by AFM on
relatively stiff samples, especially when combined with ad hoc designed cantilevers
having higher static spring constants [10, 11] and/or tips harder than the standard Si
or SizNy4 ones [12].

1.2.2 Detecting the Near-Field Acoustic Waves

Widely used for nondestructive testing, ultrasonic waves are employed in the
so-called scanning acoustic microscopy (SAM) technique [13—15], which enables
the imaging of sample surface elastic properties at submicrometer scale with resolu-
tion that highly depends on the ultrasonic wavelength in the investigated material. In
areflection acoustic microscope in the linear regime, the resolution is slightly better
than that established by the Rayleigh criterion for a conventional microscope and is
0.5119/NA, where Aq is the ultrasonic wavelength and NA the numerical aperture
of the acoustic lens [16]. Acoustic microscopy takes advantage of the use of surface
acoustic waves (SAWSs) (also known as Rayleigh waves), whose amplitude exponen-
tially decays into the material as the distance from the surface increases. In other
words, SAW energy is confined in a volume of material underneath the surface down
to a depth of a few times the wavelength. Therefore, acoustic microscopy is sensitive
to the mechanical properties of the material in a volume included from the sample
surface to a depth of a few times the wavelength into its interior. The contrast in
SAM images is therefore produced by the variation of elastic modulus, as well as by
the presence of subsurface defects, voids, and delamination [15]. The acoustic field
diffracted by an object is generally composed of both propagating and evanescent
waves [17]. The former can be collected by SAM, while the latte—whose amplitude
exponentially decays as a function of the distance from the object—cannot propagate
up to the piezoelectric transducer acting as the receiver. As the spatial Fourier trans-
form of the diffracting object is involved, the smaller its dimension the more predom-
inant is the evanescent component with respect to the propagating one [17]. The spec-
trum emerging from nanosized objects that are easily detectable by AFM is generally
only composed of evanescent waves, and thus such objects are invisible to SAM. Nev-
ertheless, if the diffracting features are at the interface or under but in proximity to
the surface investigated by AFM, the tip can be used as a mechanical probe to collect
the evanescent—but not yet extinguished—diffracted waves. In practice, the unique
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lateral resolution enabled by SPM techniques suggested to employ both AFM [18, 19]
and STM [20-22] for studying SAWs propagation and related phenomena (reflection,
mode conversion, diffraction, scattering, interaction with elastic inhomogeneities at
nanoscale) [23]. Use of SPM probes for detecting evanescent acoustic waves is the
same idea that led to scanning near-field optic microscopy (SNOM) [17, 24-26],
where AFM is used for collecting diffracted evanescent electromagnetic waves from
nanometrical objects. Thus, the combination of ultrasonics and SPM results in the
realization of a class of near-field acoustic microscopy techniques that allow us to
extend to the nanometer scale some of the imaging capabilities of SAM. In particular,
acoustic SPM techniques enable the visualization of subsurface mechanical discon-
tinuity, variations in the elastic modulus, presence of buried nanostructures, voids,
lack of adhesion, delamination, and dislocations.

1.3 An Intimately Nonlinear World

A-SPM techniques are based on the tip—sample interaction, which is modulated by
the excitation of acoustic oscillations. Limiting our discussion to A-AFM techniques,
these can be based either on AFM semi-contact or contact mode. In A-AFMs based
on AFM semi-contact mode, the tip—sample force and indentation increase from
zero to a peak value and then decrease again during a period of the cantilever oscil-
lation which is the reciprocal of one of the cantilever free resonances (generally the
first). In techniques based on AFM contact mode, the tip—sample force and inden-
tation oscillate at ultrasonic frequencies around their static setpoint values. Each A-
AFM technique has an intimate nonlinear nature. This can be clearly recognized by
considering that the tip—sample interaction, described by the Lennard-Jones poten-
tial, derives from intermolecular forces that dramatically vary as a function of the
distance and thus on the time when the tip—sample separation is modulated [27].
From the point of view of continuum mechanics, the tip—sample interaction can be
described as a spring whose elastic constant is the tip—sample contact stiffness k*.
Even neglecting more complex effects (adhesion, capillarity...) and limiting to the
simple elastic contact between a sphere (the tip) and a plane (the sample), the spring
is nonlinear as k* varies with the normal load exerted between tip and sample [28].
Thus, even in absence of second order effects, the mechanics of the contact between
the tip and sample is an intrinsically nonlinear phenomenon. Therefore, A-SPM tech-
niques force the user to cope with nonlinearities. This may represent a difficulty, since
it may force one to use complicated models or to perform experiments in a range
where the linear approximation is valid. Nevertheless, it can turn out to be an advan-
tage [29-32], as nonlinear effect can be used as the basis for the development of new
A-SPM techniques as well as to extend the characterization capabilities of ‘linear’
A-SPM methods. In the following, we give a short overview of A-SPM techniques—
limiting our discussion to those described in this book—illustrating how they deal
with nonlinearity.
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Atomic Force Acoustic Microscopy In atomic force acoustic microscopy (AFAM)
[33-36], the tip scans in contact mode the surface of the sample whose back side
is coupled to an ultrasonic piezoelectric transducer. The transducer excites out-of-
plane oscillation of the surface, resulting in the modulation of both the cantilever
deflection and the tip—surface indentation. The resonance frequencies of the sample—
tip-cantilever system depend on the tip—sample contact stiffness k*, which in turn
depends on the local elastic modulus of the sample surface. The stiffer the sample,
the higher the k*, the higher the resonance frequencies. Collecting the oscillation
amplitude at fixed ultrasonic frequency gives images qualitatively reflecting the sur-
face elastic properties [37], while acquiring the local contact resonance frequencies
allows the quantitative mapping of the elastic modulus [38—41]. Being based on
frequency detection, accurate elastic modulus measurements require linear AFAM
resonance curves.

Ultrasonic Atomic Force Microscopy In ultrasonic atomic force microscopy (UAFM)
[42, 43], the piezoelectric transducer is bonded to the cantilever chip instead of to the
sample. This avoids the contamination of the sample and allows the analysis of highly
irregular samples for which a proper coupling of the back side with the transducer is
difficult to realize. A secondary advantage is that UAFM is somewhat more familiar
to standard AFM users who are well aware of the possibility of coupling a transducer
to the cantilever chip, as it is used for making the cantilever oscillating when oper-
ating in AFM semi-contact mode. Conversely, UAFM spectra often exhibit spurious
resonances [44] that must be suppressed by proper clamping of the cantilever [45, 46]
or—as recently proposed—by using specially designed cantilevers excited directly
instead of through their holder [47]. UAFM uses an approach similar to the AFAM
one for the imaging and the measurement of the elastic properties of the sample
by acquiring resonance frequency and quality factor of the cantilever whose tip is
in contact with the surface [48]. Therefore, accurate modulus measurements with
UAFM also require the acquisition of linear spectra. In the case of stiff samples, both
AFAM and UAFM experience the sensitivity reduction as the contact resonance fre-
quencies reach their saturation values which correspond to the resonance frequencies
of the pinned-end cantilever [49]. In this case, higher flexural modes can be used.
Alternatively, a smart solution to such a limitation consists in using concentrated
mass cantilevers that are obtained by depositing a particle of hundreds of nanograms
on the cantilever backside in proximity to the tip [50].

Scanning Microdeformation Microscopy Scanning microdeformation microscopy
(SMM) [10, 51] has a similar approach, taking advantage of AFM xyz scanners
and tracking hardware in combination with specifically designed and fabricated can-
tilevers with increased spring constant stiffness, which oscillate in contact with the
sample surface at frequencies ranging from a few to tens of kilohertz. The SMM
sensor is larger than standard AFM ones. In particular, the tip is made of materi-
als harder than standard Si or Si3Ny (typically diamond or sapphire) and it has a
radius of curvature at the apex which is one or two orders of magnitude larger than
for standard probes [52, 53]. This reduces the possibility of imaging at nanoscale
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but increases the reliability of quantitative elastic modulus measurements: because it
operates at mesoscales, it is less sensitive to variations in the contact area not induced
by the elastic modulus but by the topography. The contact resonance frequency shift
is measured (and thus linear spectra have to be acquired) to evaluate the sample
elastic modulus using the same models of AFAM and UAFM, with the further sim-
plification that the use of hard and stable tips allows to neglect their deformations
during indentation.

Although relying on the acquisition of linear spectra for the quantitative evalu-
ation of elastic modulus, interesting applications have been proposed for AFAM,
UAFM, and SMM operating in nonlinear regime. Relying on the high frequency
stiffening of the cantilever, nonlinearities in AFAM have been used for reconstruct-
ing the force—distance curve on stiff samples [54], where the cantilever static spring
constant prevents the acquisition of the same curves by quasi-static AFM indentation
which conversely finds application on compliant materials like polymers [55-57] or
biological samples [58—61]. Nonlinear spectra collected by UAFM that showed either
softening or stiffening typical of nonlinear oscillators have been used for detecting
and imaging subsurface dislocations and lattice defects in high oriented pyrolytic
graphite (HOPG) [62, 63] as well as delamination and voids at thin films/substrates
buried interfaces [45]. Finally, SMM allows acquisition of the characteristic ‘non-
linear signature’ of materials, which is obtained by studying the evolution of the
amplitude of higher harmonics of the fundamental contact resonance frequency as a
function of the excitation signal amplitude for a fixed value of the normal load [64].
Such a ‘nonlinear signature’ has been suggested for the elastic characterization of
materials, the characterization of mechanical inhomogeneity, and the detection of
subsurface defects [64].

Ultrasonic Force Microscopy In contrast to the aforementioned techniques that
require oscillation in the linear regime for the reliable evaluation of the sample elastic
modulus, ultrasonic force microscopy (UFM) [65-67] purposely exploits the nonlin-
ear region of the tip—sample interaction for the qualitative and quantitative imaging
and measurement of sample elastic modulus. In UFM, the tip is in contact with the
surface of a sample whose back side is coupled to a piezoelectric transducer. The
latter is driven by a signal, oscillating at ultrasonic frequency and whose amplitude
is modulated by a ramp, thus setting into out-of-plane vibration the sample surface
with the consequent oscillation of the tip—sample indentation. When the maximum
variation of the indentation equals the static indentation and thus the pull-off point
is reached, a periodic discontinuity in the cantilever static deflection occurs. The
cantilever deflection signal can be visualized by an oscilloscope and analyzed by
a lock-in amplifier in order to estimate the tip—sample contact stiffness, which is
inversely proportional to the amplitude of the driving signal at which the pull-off
occurs [65, 67]. Therefore, UFM is a nonlinear A-SPM technique because the signal
for the elastic imaging and measurement is obtained from the discontinuity between
the in-contact and out-of-contact region of the force—distance curve.
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Scanning Near-Field Ultrasound Holography The intrinsical nonlinearity of the tip—
sample contact is exploited by scanning near-field ultrasound holography (SNFUH)
[68, 69], where the tip is in contact with the surface of a sample bonded to a piezoelec-
tric transducer. Here, the sample surface and the cantilever oscillate at two ultrasonic
frequencies whose difference is the contact resonance frequency of the system. As
a result of the nonlinearity of tip—sample interaction, a signal at the frequency dif-
ference is generated whose phase is collected and mapped simultaneously to the
topographic characterization. On the same principle is based the so-called resonant
difference frequency atomic force ultrasonic microscopy (RDF-AFUM) [70]. In con-
trast to the previously mentioned techniques, where the development of a suitable
model allows the quantitative evaluation of the sample elastic modulus, the contrast
in the SNFUH phase image may be related only qualitatively to the elastic properties
of the sample. Notwithstanding this limitation, SNFUH has been demonstrated to
be a versatile tool for the characterization of nanoscale subsurface features of sam-
ples. SNFUH has been used to detect defects at buried interfaces in interconnect
architectures [71] and for the subsurface imaging of cells, revealing the intracellular
structures [68] as well as the presence of internalized submicrometrical and nano-
metrical objects either biological (malaria parasites) [69] or synthetic (nanoparticles)
[72, 73].

Torsional Harmonic Atomic Force Microscopy Quite outside the classification based
on linear/nonlinear tip—sample interaction and more in general the group of A-SPM
techniques as no oscillations at ultrasonic frequencies are directly excited by the
cantilever nor by the sample, torsional harmonic atomic force microscopy (TH-
AFM) [74, 75] is a tapping-mode based AFM technique that takes advantage of
the use of T-shaped cantilevers with the tip offset from the cantilever long axis.
During tapping (at frequencies of tens of kilohertz), the intermittent tip—sample
interaction generates a torque around the long axis exciting the torsional modes (at
ultrasonic frequencies) of the cantilever which are enhanced by its shape. While
the cantilever vertical deflection signal is used for the morphological reconstruction
as in standard AFM tapping mode, its torsional signal is acquired and analyzed
to extract the tip—sample force waveform. From such a curve, the force-separation
curve is reconstructed and the tip—sample contact stiffness is evaluated, thus allowing
the quantitative sample elastic modulus measurement provided a suitable contact
mechanics model is assumed (as in AFAM, UAFM, SMM, and UFM). TH-AFM has
been demonstrated to allow accurate quantitative elastic modulus measurements and
mapping on several polymeric samples with elastic modulus varying between 1 MPa
and 10GPa [75].
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1.4 Applications

As evidenced by the above discussion, classical A-SPM applications fall into two
categories, namely the quantitative measurement and imaging of elastic modulus and
the detection of subsurface features, which are associated to both similar and different
problems to be addressed. Obviously, each technique requires suitable electronics for
the acquisition of the specific signal needed for the subsequent analysis. Moreover, the
electronics have to fulfill specifications regarding the acquisition rate when imaging
is to be performed. The reason for this is to avoid too slow scan rates and thus too long
image acquisition times that may compromise the reliability of the measurement due
to drift and variations in the experimental parameters.

1.4.1 Quantitative Elastic Modulus Measurement

1.4.1.1 Cantilever Model

Accurate quantitative measurements of sample elastic modulus require realistic
models of the cantilever and/or the tip—sample contact. Efforts have been made
to take into account as many experimental parameters as possible when describing
the cantilever [76, 77]. From the simplest model where the tip—sample contact is
modeled as an elastic spring of constant £* and the cantilever mass is assumed to
be concentrated in a single point, subsequent improvements have introduced the
description of the cantilever as a beam with distributed mass, the tip not placed at
the very end of the beam, nonzero tip height, cantilever and tip inclination, normal
damping at the contact by a dashpot y* in parallel with £* [78, 79], and the effect of
lateral forces by a parallel lateral contact stiffness ki, and lateral dashpot y1,; [76, 77].
Finally, a nonuniform cantilever cross section along the axis can be taken into account
[80—-83]. Such improvement in the models is fundamental in particular for AFAM
and UAFM, which use standard AFM setups, while it is a less pressing requirement
for SMM, which uses ad hoc designed probes. The simpler models permit analytical
solution, while the more comprehensive ones may require approximate solution or
finite element methods (FEM) [80-85].

1.4.1.2 Contact Mechanics

The simplest model for describing the tip—sample contact is assuming a spherical
tip normally indenting an ideally flat surface, with the only forces acting being the
elastic ones generated by the stress field neglecting adhesion (namely, the Hertz
model [28]). Nevertheless, van der Waals, capillary, and adhesive forces have to be
considered for a more realistic description of the contact depending on the specific
experimental conditions. These forces, characterized by different distances where the
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interaction is experienced (being identified as ‘long-range’ and ‘short-range’ forces),
can act either outside or inside the contact area and are described by different models,
namely the Derjaguin-Muller-Toporov (DMT) [86] and the Johnson-Kendall-Roberts
(JKR) [87], respectively. Therefore, for a correct interpretation of experimental data
it is essential to understand the nature of the forces acting between tip and sample,
which consequently is a mandatory issue in all the A-SPM techniques aiming at the
quantitative measurement of sample elastic modulus.

1.4.1.3 Tip Wear

Probably the most intriguing issue to deal with in quantitative A-SPM techniques
is the uncertainty in the geometry and in the mechanical properties of the tip. As
for the former, commercial brand new AFM tips are assured by the supplier to have
a fixed maximum apex curvature radius (generally 10nm for standard cantilevers),
whose actual value is therefore unknown. Moreover, during a measurement session
the tip geometry may experience both gradual and abrupt modifications [43, 88-90].
The former is produced by continuous wear. The latter can be produced by sudden
crashes with surface asperities, detachment of the layer possibly coating the tip, or
by plastic deformation occurring when the pressure in the contact area is comparable
with the tip yield strength [90].

Tip wear more seriously affects measurements on stiff samples than on soft ones,
where nevertheless contamination of the tip by material from the sample is more
likely to occur. Moreover, tip wear is more severe in contact mode than in tapping
mode as the interaction time in tapping mode is limited to a fraction of the period of
the cantilever oscillation, also considering that normal loads between tip and sample
in contact A-SPM techniques are generally some orders of magnitude higher than
those used in standard AFM imaging. On this basis, TH-AFM is expected to be
the least affected by tip wear among the techniques described in this book, as it
operates in tapping mode on soft samples, while such an effect has to be carefully
considered when using contact mode A-SPM methods. To limit the abrasion of the tip,
the tip—sample interaction has to be reduced. Lower values of static load can be
used, but this could increase the effect of adhesion and capillarity forces. To reduce
interaction time, acquisition time at a single point has to be reduced. Increasing the
images scan rate would be desirable for reducing the time needed for a single image
acquisition, thus reducing drift between two subsequent images, which for instance
is detrimental when two frequency maps have to be acquired on the same area as
for the elastic modulus maps reconstruction by AFAM [38-40]. Nevertheless, the
increase in scan rate has been demonstrated to increase the wear rate [91]. Abrupt
contacts with surface asperities can be limited by reducing vibration of the system and
properly selecting the feedback parameters. Finally, tip wear can be reduced by using
tips entirely made or coated by materials harder than standard Si. The former strategy
is that used in SMM, where sapphire or diamond tips are mounted. Tips coated with
hard materials such as diamond-like carbon (DLC) have been demonstrated to ensure
superior stability under continuous wear during measurements [12], but may incur
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in sudden detachment from the tip itself. Moreover, the mechanical properties of the
coatings are generally unknown, thus undermining the reliability of the measurements
unless they are contextually characterized in the A-SPM experiment as described
below. Finally, a strategy going in the opposite direction and applicable when high
lateral resolution is not needed consists in intentionally flattening standard tips or
tips coated with materials that easily undergo plastic deformations, which increases
the stability during measurements as the relatively wide contact area ensures low
stress at the tip—sample interface [50, 90].

1.4.1.4 Calibrations

Quantitative elastic modulus evaluation from the measurement of k* requires knowl-
edge of the tip—sample contact area and of the tip elastic modulus, which can be
evaluated by calibration measurements on reference samples. Supposing a spherical
apex with known elastic modulus, its curvature radius and thus the contact area can
be retrieved by a single measurement on a single reference sample. In this case, the
radius of the tip and that of the contact area are independent and dependent on the
applied load, respectively. Similarly, supposing a flat punch tip, a single measure-
ment on a single reference sample allows calculation of the radius of the contact area,
which is independent on the exerted load. When performing mechanical imaging of
the surface, the calibration of the contact area radius enables conversion of the whole
k* map into one of the elastic modulus. To this aim, an ‘external” sample can be used
as in reference [92] or a ‘self-calibration’ can be performed using a portion of the
k* map corresponding to a material with known elastic properties [38, 41, 93, 94].
Moreover, the assumption of a spherical or flat shape of the tip can be removed, and
the real geometry of the apex can be evaluated by contact stiffness measurements as
a function of the applied load [43, 88, 90, 95]. Such curves allow one to identify the
most suitable model for the apex, which is generally intermediate between the two
ideal cases of spherical and flat tip [88, 95]. Finally, performing the tip calibration
before and after the measurement session allows the effect of wear to be monitored
[12]. Reliable measurements of elastic modulus of the sample require knowledge of
the modulus of the tip, unless the latter is much higher than the former, allowing
one to neglect the deformation of the tip during periodical indentation of the sample.
The elastic modulus of standard Si tips can differ from that of monocrystalline Si
in the tip crystallographic direction due to the presence of both the oxide layer and
the amorphous material at the apex [96]. The mechanical properties of coated tips
are generally unknown: this is due to the difference between the elastic properties
of thin films and of the corresponding bulk materials. Moreover, the effect of the
mechanical properties of the tip itself is generally not negligible, since it acts as a
substrate for the few nanometer to few tens of nanometer thick coatings. To measure
the elastic modulus of the tip, the aforementioned calibration procedures have to be
performed using at least a second reference sample [95, 96].
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1.4.1.5 Measurable Mechanical Parameters

Almost all the quantitative A-SPM techniques rely on the evaluation of the tip
sample contact stiffness k*. This allows estimation of the sample indentation mod-
ulus M that is related to both the Young’s modulus £ and the Poisson ratio v by the
relation M = E/ (1 - vz). The evaluation of E requires an independent knowledge
of or an assumption about the value of v. In a recent development of AFAM, shear
wave piezoelectric transducers have been used in AFAM setup to excite in-plane
oscillation of the sample surface at ultrasonic frequencies. This enabled the acquisi-
tion of both the flexural and torsional contact resonance frequencies from which E
and v were independently measured [97]. The indentation modulus (or the combina-
tion of Young’s modulus and Poisson ratio) describes the response to quasi-static or
dynamic indentation of an elastic material, when the viscoelastic effect is negligible,
i.e., no delay is observed between the applied force and the resulting penetration.
On the contrary, in case of viscoelastic materials such as polymers, the response to
dynamical indentation is described by a complex modulus or alternatively by two
parameters, the storage modulus E’ and the loss modulus E”. These are respec-
tively the in-phase and quadrature component of the sample mechanical response,
i.e., the real and imaginary part of the viscoelastic complex modulus of the sample.
A well-established macroscopic technique enabling the measurement of E” and E”
is dynamic indentation or dynamical mechanical analysis (DMA) [98, 99], while at
submicrometer scale a tool has been developed that combines nanoindentation and
force modulation and takes advantage of SPM scanners to produce significant results
[100-102]. A-SPM techniques have been also employed for mechanical character-
ization of viscoelastic materials. AFAM has been recently extended to the study of
such materials by developing suitable models for the analysis of experimental reso-
nance curves to extract storage and loss moduli [103, 104]. The capability of SMM
of allowing the evaluation of E’ and E” of polymeric samples has been recently
demonstrated by comparison with standard DMA measurements [53, 105]. Finally,
the quantitative measurement of contact stiffness, quality factor, and damping and
their dependence on the applied load enable the investigation of friction [106, 107].

1.4.1.6 Artifacts

The last issue to note when interpreting maps of stiffness or elastic modulus is
the possibility of topography induced artifacts. The measured contact stiffness is
related to the elastic modulus via the contact area. In the aforementioned models,
the sample surface is considered ideally flat due to the nanometer scale of the tip
radius of curvature. Actually, in the case of surfaces with nanoscale features, such
an assumption cannot be verified. In this case, any change in the contact area due
to a change in the topography produces a variation in contact stiffness that could
be misinterpreted as a variation of the elastic modulus. For asperities on the surface
smaller than the contact area, e.g., on the top of nanostructures, the effective contact
area is reduced and thus the contact stiffness. Conversely, at the grain boundaries
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on granular films, contact can be established between the side of the tip and several
grains in the so-called ‘multi-asperities contact’ [108]. In this case, the effective
contact area is increased with respect to the ‘true’ contact area at the top of the grain,
and the apparent result can ensue of grain boundaries stiffer than the core, which is
nonphysical according to general experience [108].

1.4.2 Subsurface Imaging

During the periodical indentation of the surface, a stress field is generated into the
sample. Depending on the amount of stress, the material underneath the surface at
a certain depth contributes to the sample mechanical response [109]. As a rule of
thumb, the volume of material contributing to the contact stiffness has the dimensions
of a few times the contact radius [110]. Therefore, A-SPM techniques can probe the
sample down to a depth of few contact radii and thus have to be considered near-
surface instead of surface characterization techniques. Mechanical inhomogeneities
in this volume, such as buried nanostructures and interfaces, voids, delamination, and
lack of adhesion at buried interfaces, produce a contrast in the acoustic image. This
is expected to be more pronounced when the buried features are near the surface.
Similarly, due to diffraction of the near-field acoustic waves, deeply buried nanostruc-
tures are expected to appear more enlarged with respect to their real dimension than
nanostructures near the surface. A-SPM techniques have indisputably demonstrated
their capability for imaging subsurface features using ad hoc prepared samples [69,
111-114]. In particular, A-SPM quantitative measurements of contact stiffness have
shown good agreement with theoretical calculations of reduced adhesion at buried
interfaces [111, 115] and of subsurface voids [112]. Apart from the admittedly amaz-
ing results attained on test samples, more theoretical and/or experimental efforts are
required for the interpretation of subsurface imaging of real samples. To explain some
features in the contact stiffness versus load dependence and in the nonlinear spectra,
the modeling of cracks and voids as sources of acoustic nonlinearities was performed
[43, 45, 116]. Alternatively, electronic interconnect architectures have been cut to
demonstrate the capability of A-SPM techniques for imaging subsurface voids [71].
Finally, in some cases, as in the subsurface imaging of cells exposed to nanoparticles,
the comparison with blank control samples allowed a better interpretation of A-SPM
images [72, 73].

1.5 Why a Book on Acoustic AFM Techniques?

Since the first pioneering works, where inventors of A-SPM techniques reported
their use in single experiments mainly for validating and demonstrating their poten-
tial for application on different kinds of samples, the community of A-SPM users has
continuously increased. To get an idea of the increasing diffusion of A-SPM tech-
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niques, Fig. 1.1 reports the results of a bibliographic research performed at the begin-
ning of July 2011 using a scientific search engine (SciVerse Scopus). Figure 1.1a
shows the cumulative number of publications from 1986 (first description of AFM
[1]) to each year (partial data are available for 2011) retrieved by inserting the full
name of FMM, AFAM, UAFM, SMM, UFM, SNFUH, RDF-AFUM, and heterodyne
force microscopy (HFM) [117] in Title, Abstract, and Keyword fields. TH-AFM has
been purposely excluded in the research since the technique is not yet a well estab-
lished and accepted name, although it is rapidly emerging and has been used very
recently in several works [118—121]. Note also that some recent publications do not
report the complete name of the techniques in any of the mentioned above searching
fields and, thus, the number of A-SPM publications is expected to be underesti-
mated. Therefore, the following statistics can give only a partial and underestimated
indication of the spreading of A-SPMs. Figurel.1a indicates an almost constant
increasing rate in the number of scientific works since 1993. Figure 1.1b shows the
cumulative list of authors deduced by the same bibliographic research, which in turn
demonstrates that such an increase is ascribable not only to the continuous scien-
tific production of the original proposers of A-SPMs but primarily to the constant
increase of researchers involved in such techniques. While continuing the research
for improving the existing techniques and developing new ones, some A-SPM tech-
niques are now standardized and are available as tools in commercial SPM setups.
Therefore, a new community of A-SPM users-only researchers is developing besides
that of inventors and improvers. Nevertheless, our personal experience indicates that
A-SPMs are still considered to be niche or at least ‘exotic’ techniques by the scanning
probe and atomic force microscopy community. To ‘quantify’ our feeling, a similar
bibliographic research has been performed using the names of:

e the principal electric AFM (E-AFM) techniques—electric force microscopy
(EFM), spreading resistance microscopy (SRM), scanning capacitance microscopy
(SCM), and scanning Kelvin probe microscopy (SKPM)

e magnetic force microscopy (MFM).

The research was done again in Title, Abstract, and Keyword fields. Figure 1.1c
compares the absolute number of publications for each year on A-SPM, E-AFM,
and MFM. The diffusion of A-SPMs is limited, being two or three times lower
than that of E-AFM techniques and about ten times lower than that of MFM. Note
that a contribution to the higher diffusion of MFM is that it was proposed earlier
[122-124]. Finally, Fig. 1.1d reports the same data of Fig. 1.1c divided by the num-
ber of publications each year retrieved by inserting only AFM in Title, Abstract, and
Keyword fields. Data for A-SPM and E-AFM are approximately constant, indicating
that the diffusion rate of such techniques is the same for AFM, whose primary use is
obviously the topographical characterization. Figure 1.1d gives the impression that
the diffusion MFM does not keep pace with that of AFM. The increasing interest in
acoustic SPM techniques for surface and subsurface mechanical imaging stimulated
the idea of a volume collecting advances in early techniques and describing some of
the most promising recent developments. Some of the techniques described in this
book have been already included in books among other not acoustic SPM techniques
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Fig. 1.1 Evolution as a function of the year of: a Cumulative number of publications in A-SPM
field; b Cumulative number of authors publishing in A-SPM field; ¢ Absolute number of publications
on A-SPMs (open squares) compared to that on electric (open circles) and magnetic AFM (open
triangles); d Relative number of publications (i.e., the absolute number of publications divided by
the number of publications on AFM) on A-SPMs (open squares) compared to that on electric (open
circles) and magnetic AFM (open triangles). Partial data (till July) are available for 2011

[125-128]. The primary reason for a book devoted to A-SPM techniques is that it
could be useful both for researchers already expert in one or more A-SPMs, who
would be stimulated to explore and improve new techniques, and for standard SPM
users, who could find among the described techniques the most suitable for their
particular field of interest. To this aim, besides some explanatory examples of appli-
cation reported contextually to the description of the techniques, a few chapters have
been added dealing with the comparison of the potentialities of A-SPM techniques
for particular applications which represent present and future challenges of A-SPMs
(friction, subsurface imaging, polymers, and biological samples), even if this has led
to some overlap.



1 Acoustic Scanning Probe Microscopy: An Overview 17

1.6 About this Book

The book is divided into three parts. The first part includes three chapters on sub-
jects that form the basis of all A-SPM techniques, namely, the contact mechanics
describing the tip—sample interaction (Chap. 2), the analytical models for the dynam-
ics of the cantilevers interacting with the sample in the different A-SPM modalities
(Chap. 3), and numerical methods for their simulation (Chap. 4). The second section
describes the most important A-SPM techniques emphasizing their recent advances:
AFAM (Chap.5), UAFM (Chap.6), SMM (Chap. 8), UFM and related techniques
(Chap.9), SNFUH (Chap. 10), and TH-AFM (Chap. 11). Chapter 7 deals with a strat-
egy for enhancing the sensitivity in AFAM and UAFM by using cantilevers with a
concentrated mass added at their end. The presentation of A-SPM techniques is com-
pleted with a comparison between quantitative elastic measurements by A-SPMs and
conventional techniques (i.e., nanoindentation and surface acoustic wave spec-
troscopy) which is the subject of Chap. 12. Finally, Chap. 13 discusses the main points
of data post processing, providing hints and strategies for repeatable analysis of sur-
face data sets. The third section reviews some particular applications of A-SPMs. Two
chapters are devoted to quantitative aspects in the characterization of friction/internal
friction (Chap. 14) and subsurface imaging (Chap. 15) by A-SPM techniques. Finally,
Chap. 16 describes some recent results in the quantitative mechanical characteriza-
tion of polymers and Chap. 17 the quantitative mechanical imaging of biological
samples.
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Chapter 2
Contact, Interactions, and Dynamics

E. Barthel

Abstract In this shortintroduction to tip—surface interaction, we focus on the impact
of adhesion on the elastic contact of small spherical bodies. Standard notions are
first reviewed but more complex contact conditions involving coatings or roughness
are also considered. Special attention is devoted to dynamic response and ensuing
dissipation.

2.1 Introduction: Contact and Adhesion

As the denomination suggests, in force microscopies, such as atomic force mi-
croscopy (AFM), ultrasonic force microscopy (UFM), etc. the interaction between
the tip and the substrate lies at the core of the technique. Despite the A(tomic) in
AFM, several atoms usually participate in the interaction, so that continuum scale
approaches are relevant. The aim of this chapter is to explain some of the basic ideas
underlying the adhesive contact of small objects like tips.

A distinctive feature here is the presence of curvature: one of the surfaces, the tip,
is axisymmetric and curved, with radius of curvature R, so that the tip shape f () is

approximately
2

-
f@r)= 2R 2.1

where r is the radial coordinate. Within the limitations of the following developments,
this shape is also a good approximation to the local shape of a sphere, and for historical
reasons we will often refer to the tip as the sphere. The other surface, the substrate,
is flat.
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In a basic view of the tip coming to the surface, the two surfaces initially sit at a
separation distance d (Fig.2.1a) along the symmetry axis and the gap between the
surfaces is d 4+ f (r). When the surfaces are brought together, they come into contact
as point contact and subsequently develop a contact area with finite size as the
load increases (Fig. 2.1b). In terms of interactions, more or less long-range attractive
interactions result in adhesion while short-range Born repulsion will provide for the
contact side of the problem. It is the coupling of these interactions with continuum
scale mechanical response which we consider here.

Sections 2.2, 2.3, 2.4 and 2.5 consist in an exposition of standard results for sphere
contact mechanics while Sects. 2.6, 2.7 and 2.8 contain developments on the impact
of more advanced features: coatings, roughness, and dissipation, keeping in mind
some dynamic issues relevant for AFM.

The chapter has been designed for a reasonably straightforward reading. Beyond
a mere enumeration of results, we also want to provide some hints as to the physical
origin of the results. These details, and also more advanced ideas, which we believe
would obstruct linear reading, appear in boxes. A first reading could omit all the
frames while more advanced understanding should be obtained by their later perusal.

2.2 Adhesionless Contact: Stiffness

In this section we assume no interaction between the surfaces and investigate elastic
contact. We bring the surfaces from “far away” (Fig.2.1a) into contact (Fig.2.1b).
Without loss of generality (see frame 1) we assume that it is the tip which is elastic.
The reduced modulus is E* = E/(1 — v?), where E is Young’s modulus and v the
Poisson ratio. The flat is rigid.

Frame 1: Contact—response and boundary conditions

The results presented here are exact under a number of hypotheses, including
absence of friction and small deformations. However, they are quite robust. A
good example of deviations with large deformation and the resulting breakdown
of the sphere/flat symmetry can be found in [1].

Within linear elasticity, if both surfaces are curved, the curvatures R;” Uadd up
to provide the overall curvature R~!. If both tip and substrate feature significant
compliances, the compliances add up as

= (E,/(l - \;,2))_l + (Es/(l - vsz))_l 2.2)

Moduli are in the 100 GPa range for stiff materials, but can drop considerably
for polymers, down to 2 GPa for vitreous polymers or 10 MPa for elastomers.
Contact radii in the present context are of the order of 10nm.
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2.2.1 Hertz: Contact Radius and Loading

We consider quasi-static response at contact. Due to the elastic deformation of the
sphere, contact develops when increasing the load F. Actually, by ‘contact’ we
mean: inside the contact zone the normal displacement at the surface is specified so
as to cancel the initial shape f(r). In this way the contact zone is the area in which
the normal surface displacement (imposed by the contact boundary conditions) are
prescribed for the elastic problem. The short-range repulsion has actually been turned
into displacement boundary conditions [2].

In addition to the load F, another characteristic of the contact is the penetration §.
It is the rigid body displacement incurred by the undeformed parts of the sphere, far
away from the contact. This rigid body displacement is made possible by the local
deformation close to the contact area. Note that positive § means penetration while
positive F means compression. For adhesionless contact the geometry is such that
if the sphere were to rigidly interpenetrate the flat by the same penetration §y (a),
then the undeformed sphere would intersect the r axis at a radius equal to v/2a
(Fig.2.1b). From force and penetration, we can calculate the work expended by the
remote loading to form the contact (frame 2), and also the work recovered when the
contact breaks. A difference between these two means hysteresis and dissipation.

Coming closer to the contact itself, the geometry of the contact zone is defined by
the contact radius a. To accommodate the deformation and especialy the flattening
of the parabolic profile (Eq.2.1) of the elastic sphere inside the contact zone, a
distribution of normal surface stresses arises at the interface. Hertz [3] demonstrated
that the solution takes the form of an ellipsoidal distribution of contact stresses

A %,/1 — (r/a)? (2.3)

Pm

where p,, is the mean contact pressure.

The force as a function of contact radius is found from the integration of the
contact stress distribution Eq.2.3: in the Hertzian theory the (compressive) contact
force is

Fu( = 4£°2 4)
= T3R '
and the mean pressure is
Fu(a) 4E*a
Pm = = (2.5)

ma® 37 R
Finally the relation between penetration and contact radius results from the con-

dition of zero stress at the contact edge and is

Cl2

Sy (a) = < (2.6)
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Fig. 2.1 Adhesionless contact: a sphere of radius R approaching a plane at a distance §; b after
contact, when there is no adhesion: the contact radius is a and the penetration is ;7 . The undeformed
sphere shape (dashed line) intersects the r axis at V2a

Appearances to the contrary this relation is highly non trivial and results from the
calculation of the deformation outside the contact zone due to the stress distribution
Eq.2.3 inside.

Equations 2.4 and 2.6 are the contact equations for the adhesionless contact of an

elastic sphere on a rigid plane as a function of contact radius a.

Frame 2: Hertz model—Approximate derivation

If we observe the deformation of the elastic body, the surface displacements are
of the order of the penetration §. By a very approximate geometrical argument,
we estimate

SR =a’ (2.7)

By Saint-Venant’s principle, we know that these displacements penetrate into
the body over a typical distance equal to the contact radius a. As a result, the
typical deformation is §/a and the elastic energy for the penetration § can be

calculated as:
1 (8)\ 5
e=—-E(—-) a (2.8)
2 a

from which the relation for the force Eq. 2.4 results:

de E*
Fla) = — ~ —a> 2.9
(a) 5 =R (2.9)
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and the stiffness defined by Eq.2.11
S(a) ~ E*a (2.10)

This last result is much more general than the specific case of sphere contact.
Indeed it applies for all axisymmetric geometries (flat punch, cone) and depends
only on the contact radius. The reason for this invariance is the absence of
adhesion. The variation of the contact radius with penetration does depend on
shape, but does not contribute to the stiffness because the stresses at the edge of
the contact are zero. We will see in a later section that this result is significantly
modified with adhesion, in which case these stresses are finite.

2.2.2 Contact Stiffness

For dynamic problems such as those of interest in this book, the quantity which is
directly relevant is the contact stiffness defined by

S(a) = d—F (2.11)
dé

In the Hertzian theory, the contact stiffness is given by the equation:
S(a) = 2aE* (2.12)

The most interesting feature is that the stiffness depends only on the contact radius
a. This means that for different punch shapes and different loads, the same stiffness
will be obtained if the contact radius is the same.

Since the contact radius a varies with load as Eq.2.4, it is clear that the sphere
contact—unlike a simple spring—does not have a constant stiffness, but that stiffness
increases as the load increases. The consequences of this intrinsic nonlinearity will
be emphasized in Sect.2.8.1.

This result is remarkable because it was obtained in the framework of linear
elasticity. The intimate reason is that the area over which the contact boundary
conditions apply (specified by the contact radius a) change as a function of loading.
In this sense, contact is a typical example of geometrical nonlinearity.

2.3 Interactions: Adhesion

Adhesive interactions will modify this picture significantly. Let us consider again
the case where the two surfaces face each other at some distance, as in Fig.2.1a. We
will briefly discuss these interactions, the force they produce on the tip and finally
their impact when they couple with elastic deformation.



26 E. Barthel

2.3.1 Interactions: Derjaguin Approximation

When surfaces are brought together within some distance d, they start to experience
“long-range” interactions. The nature of the interactions involved is best investigated
from the interaction force they produce, which can be measured by AFM or other
devices such as Surface Forces Apparatus (SFA) [4]. Here, we consider the case
where this interaction is attractive, eventually leading to adhesion.

We can quantify this attraction by an interaction potential V (k). V is defined for
two unit surface areas facing each other with a gap 4. The reference state is for infinite
separation so that V(co) = 0. In fact infinity is reached rapidly since the range of
the interactions J;y is of the order of a few 10nm or less. For a curved surface facing
a flat at a distance d, there is a simple relation between the interaction force F(d)
and the interaction potential V. This relation, called the Derjaguin approximation [5]
(frame 3), which neglects all deformation induced by the interaction stresses, states
that

F(d) =27 RV(d) (2.13)

Note that V must be negative for the attractive interactions to result in an attractive
(i.e. negative) force.

Frame 3: Derjaguin approximation

Given the interaction potential, the normal surface stress distribution is obtained
by Eq.2.18. The surface integral of this stress distribution gives the total force

o0

F(d) =27 / drro(r) (2.14)

0

Taking into account the parabolic shape Eq.2.1, the surface integral can be
turned into an integral over the gap A resulting into

7 v
F(d) = —27 / RS- 2.15)
d

from which Eq.2.13 results.

2.3.2 Nature of the Interactions

A large variety of interactions has been identified, collectively known as surface
forces. A full gamut of such interactions is to be found in polar liquids, especially
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water, but this is less relevant to the present topic. In vacuum, electrostatic interac-
tions give rise to complex problems due to their long-range nature, whereby simple
calculations such as frame 3 do not apply.

2.3.2.1 Van der Waals Interaction

Van der Waals interactions are often quoted as the typical surface interactions. It is
true that due to material polarisability, van der Waals interactions are always present.
Moreover, they lend themselves to a degree of mathematical sophistication verging
on fine art [6]. Finally, at longer distances they are well approximated by the simple
analytic form:

A

Vi =152

(2.16)

where A is the Hamaker constant, of the order of 1 x 107207, For all these reasons,
van der Waals forces have become the archetype of surface forces.
Inserting Eq. 2.16 into Eq. 2.13 we obtain the van der Waals force between tip and

substrate,
AR

Fd) =~

(2.17)
an expression which is often used in the literature (see Sect.2.3.4).

We now turn to the interaction stresses og. The normal stress at the surface
resulting from the interactions is given by the derivative of the interaction poten-
tial:

h) = —d—V (2.18)
o(h) = a .
Typical values for interaction stresses resulting from van der Waals forces can be
calculated using Eq. 2.18 with a cutoff distance of about 0.1 nm. A stress in the range
of o9 ~ 1 GPa appears.

2.3.2.2 Liquid Meniscus

In ambient atmosphere, for hydrophilic surfaces, the interaction will be primarily
mediated by a thin layer of adsorbed water, which forms a capillary bridge between
the surfaces. This example has also been studied in great detail because it is both
very frequent and relatively simple [7].

In this case the interaction stresses are a constant og which is given by the hydrosta-
tic pressure inside the liquid meniscus. If the liquid in the meniscus is at equilibrium,
the chemical potential in the liquid is constant and so is the pressure. Then

00 =y/r0 (2.19)
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Fig. 2.2 Adhesive contact
between sphere—plane silica
surfaces. The interaction is
mediated by a meniscus of
liquid, with a linear force dis-
tance plot typical for an equi-
librium state of the meniscus.
After [8]

where the surface tension of the liquid y lies around 0.1J/m? while the radius of
curvature rq of the liquid meniscus is, for ordinary vapor pressures, in the nanometer
range. As a result the order of magnitude of the interaction stresses is significantly
smaller for liquid meniscus than for van der Waals interactions, about 100 MPa at
most.

In this case Egs. 2.13 and 2.18 show that the interaction potential is linear, so that
the force is:

F(d) = —2n R2y (1 - i) (2.20)
2ro

for 0 < d < 2rg. The radius of curvature of the meniscus rg is therefore also the
range of the adhesive interactions. This linear behavior is clearly evidenced in some
SFA experiments (Fig.2.2).

2.3.3 Adhesive Contact with Weak Interactions

We now bring the surfaces into contact in the presence of adhesive interactions. The
logical extension of the Derjaguin approximation is the Derjaguin Muller Toporov
(DMT) model [9], which assumes that contact occurs exactly as with the Hertzian
model (Sect.2.2.1). Here, it is considered that the interaction stresses do not bring
about significant deformation of the elastic bodies, and the force resulting from this
interaction Fyyess can be calculated as if acting on a body deformed by the contact
stress distribution only. Put otherwise, we assume that the magnitude of the contact
stresses largely exceed the interaction stresses. If calculated strictly, the details of
this model are rather tedious [10] but a good approximation has been provided by
Maugis [11]. He has suggested a Hertzian model plus a constant force offset
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Fig. 2.3 a Hertz versus DMT model in normalized units. The DMT model results from a simple
force offset. b Hertz versus JKR model. The JKR is obtained by point by point translation along
the tangent to the Hertz model by a displacement equal to the neck height §,qn. The shaded area
is the energy expended in the stretching of the neck. Also shown as small dashed lines are the
contact stiffnesses for fixed contact radius (Hertzian stiffness, marked ‘h’) and for free contact
radius (JKR stiffness, marked ‘j”) (see Sect.2.8.5). Note that in the extreme case selected here,
these two stiffnesses actually have opposite signs

Firess = —2mwR (2.21)
resulting in a remote loading (Fig.2.3a)
F(a) = Fg(a) —2nwR (2.22)
Continuity with Eq.2.13 is ensured because the adhesion energy w > 0 obeys
w=-V(d=0) (2.23)

From Eq.2.22, it becomes clear that the main effect of adhesion is to increase the
contact radius for a same external load, since the load acting on the contact F (a)
is the remote loading F'(a) plus the adhesive contribution 2 w R. Energy is gained
from the adhesive interactions but balanced by the increased elastic energy stored
due to larger contact area.

In the DMT model however, the contact stiffness is not affected by the interaction.
For the same contact radius it is still given by the Hertzian expression Eq. 2.12.

2.3.4 Impact of Adhesion on Dynamic Response in AFM

Direct evidence for such long-range interactions has been found in various types of
AFM measurements. Here, we illustrate the concept in an experimental configuration
where oscillation amplitudes much larger than the interaction range are used. The
oscillatory motion of the tip can be fully reconstructed, duly taking into account the
small part of the trajectory where interaction of the tip with the surface occurs [12].
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Fig. 2.4 Reconstruction of
the interaction potential from
the large amplitude oscillatory
response of an AFM tip-
cantilever. Beyond 10 A a van
der Waals attractive potential
is evidenced while the contact
compliance sets in at smaller
relative distances. From [12].
Copyright (1999) by the
American Physical Society
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Long-range interactions and contact have been taken into account using Eqgs. 2.17 and
2.22 respectively. Profiles of such interactions between a tungsten tip and a silicon
substrate has being inferred from the measured frequency and phase shifts (Fig.2.4)

and found to agree well with van der Waals forces.

Frame 4: Adhesive contact—Approximate derivation

The true nature of the adhesive contact of a curved body is a competition between
a gain in adhesion and the ensuing elastic energy penalty (Hertzian term). In
the DMT model, the energy gain is obtained from the integral of the interaction
potential over the gap as in the calculation of the Derjaguin approximation

(frame 3).

In another approach [5], the adhesive energy gain is estimated from the ad-

hesion energy w and the contact area so that the total energy is

1 (8)\?
e~ -F (—) a® — rwad®
2 a

The relation for the force is

de E* ;4
Fla)= —>~—a’ —7Rw
dé R

showing that the adhesive contribution is of the order of 7 Rw.

(2.24)

(2.25)
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Although this rough estimate is useful for a preliminary discussion, the
derivation we have used is actually flawed. In writing the adhesive term 7 wa?
we implicitly assumed that for an infinitesimal variation of the contact radius
a, the variation in adhesion energy is proportional to the variation of contact
area. This implies that the gap shape around the contact edge is sharp enough
to exhaust the interaction range. However such a sharp gap shape has an elastic
energy penalty which must be taken into account as in Sect.2.4.

2.4 Coupling with Strong Interactions

So far, the coupling was quite simple since elastic deformation results from the
contact stresses only (Eq.2.3). Further difficulties arise when the adhesive stresses
themselves are large enough to induce significant deformation of the surface, bringing
more than a simple additional load (frame 4).

2.4.1 JKR Model

Taking this additional surface deformation into account is a more complex problem.
Fortunately, the limit case where considerable deformation occurs can be treated
relatively simpley.

Frame 5: The JKR model
The flat punch elastic energy is
1 (8}
e=-E (—) a’ (2.26)
2 a
so that the energy release rate is
1 de E*52 2.27)
" 2mada T a '
Equilibrium results from
G=w (2.28)
so that
aw
aadh >~ £ (2.29)
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Fig. 2.5 Adhesive contact:
cusp at the contact edge in the
JKR model, demonstrating
the typical JKR flat punch
displacement

Johnson, Kendall and Roberts (JKR) have shown that the deformation induced
by the interactions amounts to an additional flat punch deformation (Fig.2.5). The
resulting flat punch displacement (see frame 5) is central to the JKR theory [13]:

2mraw
Jadh = 4/ £ (2.30)

Here, we take 8,4 positive but in fact adhesion induces a reduction of the penetra-
tion (for a given contact radius) so that a minus sign appears in the contact equations:

dkr(a) = 6 (a) — adn(a) (2.31)
Fixr(a) = Fy(a) — S(a)8agn(a) (2.32)

The force has been derived using the flat punch displacement and stiffness according
to Eq.2.12. This adhesive contribution in Eqs.2.31 and 2.32 amounts to a translation
along the tangent to the Hertzian curve, which is schematized in Fig.2.3b. The set
of Egs.2.30, 2.31 and 2.32 together forms the JKR theory. Note that these equations
are often presented spelled out, which may be less illuminating.

2.4.2 Pull-Out Force

The pull-out force is the maximum tensile force which needs to be applied to break
the adhesive contact and rip the sphere off the surface. Somewhat by accident, and
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for the sphere only, the pull-out force is nearly independent of the type of adhesive
contact model
F =—amrwR (2.33)

Itis clear that @ = 2 in the DMT limit. From Eq. 2.32 and looking for the minimum,
we can calculate that « = 3/2 in the JKR case. This value results from the balance of
the two energy terms: around pull off, both (compressive) contact load and (tensile)
interaction load are of the order of mrwR.

Frame 6: Is adhesion relevant ?

Equation 2.33 is specific to the sphere geometry. Most if not all other cases (tip
shapes or symmetry) do not offer the same simplicity. Under the assumption of
sphere geometry, a question in order is: under which type of loading is adhesion
relevant? To answer this question we balance interaction load (of the order of
mwR) and contact load. From 2.24 we deduce that adhesion steps in when

7 R%w 173
a:( £ ) (2.34)

The contact load turns out to be dominant above these values of contact radius.
In our case, for a comparatively rigid solid, this contact radius is of the order of
1 nm and the load is of the order of 10nN.

If the pull-out force is barely dependent upon the model, a question may arise: is
the choice of contact model of limited consequences and somewhat arbitrary or is
there a good reason to pay attention to which contact model to use? If the pull-out
force is not very revealing itself, these contact models involve very different stress
distributions: beyond the mere pull-out force, model-dependent responses are to be
expected. This is the case for example in Sects.2.7 and 2.8. For this reason a more
general picture is needed and we now consider how the adhesive interactions are
coupled with the contact problem in more detail.

2.5 AFM Tips: An Intermediate Case?

2.5.1 Adhesive Interactions Revisited: Contact Problem

In fact in both the DMT and the JKR models, the details of the interactions do not
appear. We are dealing with limit cases and in the end the adhesion energy w remains
as the only relevant parameter for the description of the physical process of adhesion.
In the more general case, the adhesive interactions induce tensile stresses over some
area around the contact zone: this area is called the cohesive zone (Fig.2.6). Due
to the finite range of the interactions the cohesive zone extends over a distance
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Fig. 2.6 Adhesive contact:
schematics of the impact of
adhesive interactions on the
local deformation around the
contact zone (cohesive zone
model). ¢ is the outer limit
of the region over which
interaction stresses act. Finite
range of the interactions
result in a lateral extension
€ = ¢ — a of the area over
which the interaction stresses
operate

€ = ¢ —a. This distance will come out useful when the dynamics of the contact edge
is calculated (Sect.2.8).

In the general case, calculation of the impact of the interaction stresses on the
deformation is not an easy task. For recent attempts see [14, 15]. None of these
models lends itself to simple explanations however. Let us only mention that the
calculation proceeds as in frame 3, but this time taking into account the deformation
directly due to the interaction stresses. The contact equations are then

S1kr (@) = 8 (a) — Saan(a) (2.35)
Fikr(a) = Fr(a) — S(@)8adn(a) — Fitress (2.36)

revealing the mixed JKR-DMT character of the solution. However, neither 8,4 (a)
nor Fyess 1S given by the JKR (Eq.2.30) or DMT (Eq.2.21) model but rather by one
of the more general expressions available in the literature, such as [2, 11, 16].

In these models the interaction stresses are defined by Eq.2.18 where £ is the gap
between the surfaces. They form the boundary conditions outside the contact area.
There is a difficulty: due to elastic response the gap itself is affected by the interaction
stresses. As a result a self-consistent treatment is called for. It has been shown that
the finer details of the interaction potential (or the surface stress distribution) are not
relevant and play a role only to higher order [2]. Therefore, in most cases, for the
coupling between the interactions and the contact mechanics, only two entities must
be considered: adhesion energy w and the interaction stresses with magnitude op. In
this context, following Eqgs. 2.18 and 2.23, it appears that the range of the interactions
8int obeys

8into0 =~ w (2.37)

For numerical simplicity, the interaction stresses are often considered constant
throughout the cohesive zone [11]. This is the so-called Dugdale-Barrenblat model.
In the case of the Dugdale-Barrenblat model, in Eq.2.37 equality applies.
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2.5.2 Which Model: Does Adhesion Induce Deformation?

We now discuss the general features of the adhesive contact depending upon inter-
action, loading, and geometry, in the spirit of the “adhesive map” by Greenwood
and Johnson [17]. The relevance of the adhesive contribution is examined in frame
6. Here, we consider whether adhesion affects deformation or not, i.e., whether we
are close to the DMT or to the JKR model or in some intermediate case. Based on
our earlier considerations on interaction stresses, a characteristic parameter emerges
when comparing interaction stresses and contact stresses. We introduce the Tabor
parameter [18]

A — (2.38)

o

where o stands for the contact stresses.
In the absence of adhesion o = p,, (Sect.2.2.1). In the range where adhesion is
significant (frame 6), the load F is of the order of ww R and the contact stresses are

F we? )"

An interesting consideration arises if the Tabor parameter A is expressed in terms
of penetration: then it is found that

1)
A~ adh

(2.40)

Sint

If the flat punch displacement §,4p is large compared to the range of the interactions
dint, then the cohesive zone size is small, and adhesion energy is transferred between
the interface and the tip by large elastic deformations located close to the contact
edge as embodied by the flat punch displacement, resulting in the neck at the contact
edge (Fig.2.5). This is a fracture-like process, central to the JKR limit.

Note however that the neck has to be stretched out upon rupture. However when
the sphere comes to the surface, contact forms at a penetration equal to zero since
the interaction is short ranged. As a result, hysteresis appears, as illustrated by the
shaded area in Fig. 2.5b.

On the contrary, if the flat punch displacement is comparatively small (A < 1),
adhesion energy transfer operates directly through the work done by the interaction
stresses in the displacement of the sphere surface. This is the DMT limit where the
cohesive zone size is large. Since the interaction range is large the contribution of
the interaction to the stiffness is zero, and the stiffness is the Hertzian stiffness as
already mentioned.

Intermediate cases appear for A >~ 1.
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2.5.3 Small Tips

Given the typical values for interactions and the typical contact radii of AFM tips,
we find that for comparatively rigid surfaces 8,4y, is of the order of 0.1 nm. It is quite
clear that the pure JKR theory is unlikely to apply in our case.

This means that the tip has to be considered as comparatively rigid compared
to the attractive interactions. The deformation incurred during the adhesive contact
is primarily the deformation of the Hertzian adhesionless contact but for the stiffer
types of adhesive interactions, with small decay lengths. A may range around 1 and
the adhesive contact acquires partial JKR character. This is typically the case for
ultra-high vacuum measurements. An example of such a case is shown in Fig.2.7.
In contrast, under ambient conditions a longer ranged interaction dominates, which is
due to the presence of adsorbed water. The resulting meniscus induces an interaction
shown in Fig.2.2 with a range of several nanometers, and the contact will be in
a typical DMT state. One of the rare cases where a contact close to a true JKR
case could be obtained is polymeric surfaces where low modulus and high effective
adhesion energies are expected to result in large A through Egs.2.30 and 2.40.

For small tips, in the intermediate range, the cohesive zone size is of the order of
the adhesive contact radius and the typical contact stresses upon pull-off are in the
range of og. This is similar to fiber problems: the average stress at the surface of the
tip, or rupture stress increases dramatically and eventually reaches the theoretical
interface stress when the size of the contact area decreases [19, 20].

2.6 Films

Thin films and coatings are ubiquitous in technological applications. Here, we
consider the case of contact to coated substrates.

2.6.1 Stiffness

As mentioned earlier (frame 2), the deformation field affects the elastic body to a
typical depth of the order of the contact radius a. It is important to note that this
depth is only indirectly related to the penetration §, through Eq.2.6 for example.
In the case of an elastic property mismatch between the coating and the substrate,
the macroscopic response will be affected by the presence of the substrate beneath
the film if the film thickness is less than several times the contact radius. To estimate
the impact of the film, one can suggest to use Eq.2.6 with film values to infer the
contact radius. It will be necessary to consider the full solution if this contact radius
is not significantly smaller than the film thickness. If this is the case, exact solutions
have been calculated [23-25] which can be used fairly easily.
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Fig. 2.7 Friction force (assumed to be proportional to contact area) and model for the adhesive
contact area as a function of load. The data are best fitted with an intermediate adhesive contact
model where neither pure JKR nor pure DMT models apply. From [21]. Copyright (1997) by the
American Physical Society

Note that the problem is especially significant in the case of an elastomeric film,
which is somewhat liquid-like and therefore incompressible. Due to the suppression
of shear deformation because of confinement, the effective response of the film
(Fig.2.8) is driven by the bulk modulus which is considerably larger than the shear
modulus because of incompressibility.

2.6.2 Adhesion

For adhesive contacts, the film may have two very different types of impacts. On the
one hand, the film is likely to change the interactions between the tip and the surface,
and thus the values of the adhesion energy w and the interaction stresses op. On
the other if the film thickness is not large enough according to the criterion outlined
above, then the substrate effect will affect the contact response. The contact equa-
tions should then take adhesion into account [26]. In the more elaborate case where
contact zone radius, film thickness, and cohesive zone size become comparable,
recent calculations could become useful although they are by no means numerically
simple [27].

Note however that a most salient feature in this case is that, for identical adhesion
energy w, the pull-out force is barely affected by the presence of the coating. This idea
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Fig. 2.8 Load as a function of normalized contact radius for sphere—plane contacts on acrylate
films. Confinement results in an increase of the film modulus so that the glass sphere compliance
must be taken into account. Adapted from [22] with permission from Springer

must be brought in relation to our previous remark in Sect.2.4.2: the pull-out force
results from a balance between contact and adhesion energies. The result turns out to
be independent from the mechanical properties of the half-space if it is homogeneous.
In fact, this dependence is only barely reintroduced if homogeneity is lost as when a
coating is present.

2.7 Roughness

Generally speaking, surface roughness impacts contact problems strongly. However,
the real complexity arises from the statistical nature of the roughness coupled to the
nonlinear nature of even the most basic contact, namely Hertzian contact [28]. In this
sense roughness is likely to alter the qualitative response of a contact. The simplest
possible example is an exponential distribution n o« exp(—z/t) of summit heights
with identical curvatures R~!. Here, 7 is the standard deviation of the roughness.
Then the density d. of summits in contact with a flat surface obeys

d. xexp(—d/t) 241
where d is counted from the mid-plane of summit heights. Summing individual

summit areas and forces over this exponential distribution we obtain that both total
area and total force are also proportional to d.. As a result, and in contrast to the
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results of Sect.2.2.1, force and true contact area are now proportional, an idea which
is central to our understanding of the laws of friction [29].

In addition, roughness will compete with attractive interactions. It is this issue for
which more insight can be provided. In terms of adhesive contact, it is well known in
practice that for rather rigid materials, a very limited amount of roughness suppresses
the adhesion of a sphere brought to a surface. For weak interaction stresses as in the
DMT contact model, the typical lengthscale involved is the interaction range 8iy;.
Itis clear that for a roughness T small compared to this interaction range the attractive
interactions can still be accounted for as in Sect.2.3.3. In the other limit where the
deformation incurred through attractive interactions are sizeable, the characteristic
distance which emerges is the JKR flat punch displacement 8,4,. This idea has been
elegantly demonstrated by Fuller and Tabor [30]. A handwaving argument goes as
follows: the (tensile) contribution of each asperity to the adhesion force is a constant
of the order of mwR; on the other end, the (compressive) contact force generated
by each asperity grows faster than linearly with penetration §, following Eq.2.4.
For a roughness distribution with standard deviation t, the sum of the repulsive
contributions will far exceed the attractive contributions if the roughness distribution
obeys

T 2 Sadh (2.42)

For the case of interest here, it is possible that the tip will interact with a limited
number of asperities. In this case the statistical approaches are of a somewhat limited
relevance and one must rely on the more demanding and less general calculation of
distributions of local configurations [31].

2.8 Dynamics

We now consider a tip impinging on a surface. In keeping with the rest of this
chapter, the viewpoint is the mechanics of a sphere touching a surface. The sphere is
considered as free, with initial velocity v, and the rest of the system, and especially
the cantilever and its mechanics, is not taken into account. Our aim is to understand
dissipation during contact. However, this part of the question is much less advanced
than the quasistatic part.

In agreement with the views developed here, friction is not considered, although
in some cases it could account for a significant part of dissipation during dynamic
contacts. In this restricted frame, the dissipated energy is all the energy which is not
fed back to the remote loading when the surfaces have ceased to interact. There are
many processes active in this area. For the adhesionless contact, two processes fail to
restore all the energy injected in the contact: (1) acoustic emission and (2) material
dissipation, which may occur through delayed elastic response (viscoelasticity) or
non-elastic response (plastic deformation). If adhesion is present, several additional
processes must be mentioned: (3) the physics of adhesion may be partly irreversible
(the adhesion energy is different for a growing and a receding interface); and if
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adhesion induces additional deformation, as in cases close to the JKR limit: (4) the
rupture may occur by instability and part of the energy involved is not restored to
the remote loading; (5) material dissipation (as in 2) may result from deformations
specific to the adhesive process.

In this area, the number of in-depth studies is quite restricted. Here, we will only
hint at a few directions. We will start from the (reversible) elastic rebound of an
adhesionless sphere. Then we will qualitatively consider the impact of dissipative
mechanisms (1), (2), (4), and (5).

2.8.1 Sphere Impact

If we assume a free sphere of mass m impinging on an elastic adhesionless surface,
contact leads to rebound. Taking into account the non-constant stiffness at contact
(Sect.2.2.2), conservation of energy during rebound implies

1 [(ds)\> 8 1
—m(— — E*VR8? = —mug? 2.43
2" (dt) LTS P 243)

where vy is the sphere velocity at impact. Maximum penetration occurs when % =0

so that

il

s — muo? 2.44
max = W (2.44)
1
(mv02R2)5 (2.45)
Amax = 16 x .
=E
To evaluate the rebound, d§/d¢ can be integrated numerically from Eq.2.43. In fact
a linear approximation
8 t
=sin (71—) (2.46)
‘Smax TC

has been shown to perform well [32], where the typical contact time is

1
8 2 3
T, = o ™™ ~ 3 ( m ) (2.47)

) E¥ Rug
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2.8.2 Inertial Effects

Dealing with acoustic frequency excitations, it is useful to estimate whether inertial
effects are significant, that is to say whether acoustic waves will be generated during
such a contact. An estimate can be obtained as follows: an acoustic mode obeys

d
pd—;) = —dive (2.48)

where v is the velocity field, p the density, and o the stress field. Order of magnitude
estimates from frame 2 show that we remain in the quasistatic limit as long as

8 8
<« E= 2.49
'OTL.Z <E— (2.49)
or a
?a" < JE/p (2.50)
Cc

which is the sound velocity. For a free sphere with incident velocity vy and mass m,
the criterion is :
E*U03 R3 3

(T) <L+ E/p (2.51)

which is consistent with standard estimates of the dissipation induced by acoustic
waves during contacts (Egs. 11 and 12 in [32]). For a free sphere of mass m, the
criterion becomes independent upon radius since m o< p R>. For an incident velocity
of about 1 x 1072ms~", a high value for a tip touching a surface, it appears that
acoustic emission is negligible.

2.8.3 Material Dissipation: Contact Area

To account for dissipation during contact, we couple contact zone deformation
with out-of-phase material response. This case has been considered in a classical
paper [33] with a viscous type of dissipation. The viscous constant 7 relates dissi-
pative stress to deformation rate. If v; is the velocity of the sphere after contact (see
frame 7)

V] 1/5

— =1-gy, (2.52)
vo

2
* 5
g~ (E ﬁ) (2.53)

where

T Ex m
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To relate the viscous parameter n with materials properties, it should be noted that
the characteristic frequency is

W — (2.54)

For elastomers the estimate seems consistent with the observed dissipation parameter
v/vg = 0.65 [34].

Frame 7: Contact—Dissipation

In the spirit of frame 2, we assume the elastic solution is perturbed by a first
order dissipative term.

Ovisc == Né (2.55)

where strain is 5
€~ — (2.56)

a

and strain rate 5
~ 2.57
€ e (2.57)

The elastic and the dissipative terms are in parallel. Then the energy dissipated
during one contact is

3

Ediss ~ N€€a” > NdmaxAmax Vo (2.58)
From energy balance
1 1
—mvi? + Egiss = —muvg> (2.59)
2 2
so that for small velocity variations
(‘: .
Lo (2.60)

vo %mvo2

from which Eq.2.52 results.

2.8.4 Adhesion Hysteresis: Elastic Instability

If the contact is in a JKR type of limit, then the neck formed upon contact needs
to extend up to 8,gn before rupture occurs. Using Eqs.2.30 and 2.34 this stretching
energy is about
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2R4 5\3
&~ (”Tw) (2.61)

This energy is spent by the remote loading to stretch the neck but is not gained
upon coming-in since the interaction range §ip; << 8agn 1s small and the neck does
not form during surface approach. In short, this is the amount of energy lost in one
contact cycle. This elastic instability is a common mechanism for adhesive energy
dissipation [35, 36]. Of course, if A is of the order of one (i.e. we are not in a full
JKR case) only a fraction of this energy will be dissipated by instability.

ol —

2.8.5 Material Dissipation: Contact Edges

In the same regime, dissipation induced by material response may occur due to
high rate deformation close to the contact edge. This is often the case for polymeric
materials. The additional dissipation incurred can be phenomenologically modeled
as an effective adhesion which depends upon contact edge velocity da/d¢ [37] as

G(da/dt) = w(l + ¢(da/dr)) (2.62)

where power laws are often used for the dissipative function ¢. Relation be-
tween ¢ and the dynamic response of the polymer involved has been demonstrated
experimentally [37] but theoretical justifications involving contact edge deformation
processes are only partly successful to date [38—41].

Nonetheless, the phenomenological relation Eq. 2.62 is very useful. As an example
we consider again the rebound dynamics for macroscopic balls [34]. During rebound,

the characteristic velocity is
da Amax

=~ 2.63
dr T. ( )

and the characteristic angular frequency is
~ Lda | dmax 1 (2.64)

edt ~ € T,
where € is the cohesive zone size. Note that for a macroscopic sphere, this frequency

is much higher than for contact zone dissipation (Eq. 2.54), due to the typical small
size of the cohesive zone. The additional dissipated energy is

Ediss = Tamax G (da/dr) (2.65)

The results fit rebound experiments on elastomers extremely well [34].



44 E. Barthel

Another remarkable result is that in an oscillatory experiment the stiffness of a
JKR contact depends upon frequency in a non-trivial manner. Indeed, for dissipative
materials, the high frequency motion of the contact edge may be hindered by large dis-
sipation at high strain rates. Then the stiffness must be calculated at constant contact
radius: it is the Hertzian stiffness. On the other hand, at comparatively low frequen-
cies, the contact edge is free to move during oscillations and the contact stiffness must
be calculated from Eq.2.32 at constant adhesion energy. These two cases have been
shown in Fig.2.3b) as two straight lines marked 4 (Hertzian stiffness) and j (JKR
stiffness). This transition has been very clearly observed for polydimethylsiloxane
(PDMS) elastomers by oscillatory nanoindentation experiments with a micron-sized
sphere [42].

2.9 Conclusion

We have outlined a few results on the adhesive contact of tips to surfaces. We have
drawn on the body of theories devoted to spheres to discuss contact and the resulting
contact stiffness.

We have emphasized the fact that in the presence of attractive interactions, leading
to adhesion, the results are impacted in a non-trivial way. We have briefly discussed
typical interactions which can be met with during AFM operation. We have shown
in which way these interactions couple with elastic deformation. If the surface com-
pliance is low enough, the adhesive interactions induce additional local deformation
which alter the physics of the contact. Due to their small radius, AFM tips were
shown to lie in the stiff to intermediate regime. Pure JKR case is not expected.

The impact is not directly perceptible from the bare pull-out force. Even when
homogeneity breaks down, such as with a coating, the pull-out force is still only
very moderately affected. More contrast appears when dealing with rough surfaces.
However, it is when the dynamics of the response is considered that the strong impact
of the low surface compliance really appears in full light, resulting in additional,
specific dissipation mechanisms.
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Chapter 3
Cantilever Dynamics: Theoretical Modeling

John H. Cantrell and Sean A. Cantrell

Abstract To provide a measure of flexibility and symmetry regarding the descrip-
tion of tip-sample interactions, a dynamical model is presented for which the can-
tilever tip and the sample surface are treated as independently damped simple har-
monic oscillators passively coupled via the nonlinear tip-sample interaction forces.
The sample oscillations are assumed to occur in the coupling from a small ele-
ment of surface mass (active mass) attached to the remainder of the sample for
which the spring constant is the sample stiffness constant. The analytical model
reduces to a pair of coupled nonlinear differential equations, the general solutions
of which are obtained using a matrix iteration procedure. The general solutions are
applied to the quantitative assessment of signal generation and contrast mechanisms
in atomic force acoustic microscopy (AFAM), force modulation microscopy (FMM),
ultrasonic force microscopy (UFM), ultrasonic atomic force microscopy (UAFM),
amplitude modulation atomic force microscopy (AM-AFM), and scanning near-
field ultrasonic holography (SNFUH) including the related heterodyne force atomic
force microscopy (HF-AFM) and resonant difference-frequency atomic force ultra-
sonic microscopy (RDF-AFUM). In addition to obtaining quantitative expressions
for surface contrast mechanisms, contrast mechanisms from subsurface features are
accounted in the model for AFAM, FMM, UFM, and SNFUH.
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3.1 Introduction

Atomic force microscopy (AFM) [1] has rapidly developed from a quasi-static detec-
tion technology into a fully dynamic nanoscale characterization tool. The devel-
opment of new materials and devices produced from nanostructural constituents
has placed increasing demands on the development of new measurement meth-
ods to assess physical properties at the nanoscale. Dynamic implementations of
the AFM, collectively called dynamic atomic force microscopy (d-AFM) (known
also as acoustic-atomic force microscopy and scanning probe acoustic microscopy),
utilize the interaction force between the cantilever tip and the sample surface to
extract information about sample physical properties. Such properties include elastic
moduli, adhesion, viscoelasticity, embedded particle distributions, device integrity,
and topography. The most commonly used d-AFM modalities include amplitude
modulation-atomic force microscopy (AM-AFM) (including intermittent contact
mode or tapping mode) [2], ultrasonic atomic force microscopy (UAFM) [3], force
modulation microscopy (FMM) [4], atomic force acoustic microscopy (AFAM)
[5, 6], ultrasonic force microscopy (UFM) [7, 8], heterodyne force microscopy
(HFM) [9] scanning near-field ultrasonic holography (SNFUH) [10], resonant
difference-frequency atomic force ultrasonic microscopy (RDF-AFUM) [11], and
variations of these techniques [12—19].

To model properly the various d-AFM modalities, it is necessary to reduce the
modalities to their basic operational characteristics. Central to all d-AFM modalities
is the AFM. The basic AFM consists of a scan head, an FM controller, and an
image processor. The typical scan head consists of a cantilever with a sharp tip, a
piezoelement stack attached to the cantilever for cantilever control, and a light beam
from a laser source that reflects off the cantilever surface to a photo-diode detector
used to monitor the motion of the cantilever as the scan head moves over the sample
surface. The output from the photo-diode is used in the image processor to generate
the micrograph.

The d-AFM output signal is derived from the interaction between the cantilever
tip and the sample surface. The interaction occurs via an interaction force F that is
highly dependent on the tip-sample separation distance z. A typical force-separation
curve is illustrated in Fig. 3.1. Above the separation distance z 4 the interaction force
is negative, hence attractive, and below z4 the interaction force is positive, hence
repulsive. The separation distance z g is the point on the curve at which the maximum
rate of change of the slope of the curve occurs and is thus the point of maximum
nonlinearity on the curve (the maximum nonlinearity regime).

Modalities such as AFM, AM-AFM, and UAFM are available for surface and
near-surface characterization, while UFM, AFAM, FMM, HFM, SNFUH, and RDF-
AFUM are generally used to assess deeper (subsurface) features at the nanoscale.
A schematic of the basic equipment arrangement for various d-AFM modalities is
shown in Fig.3.2. The arrangement used for AFAM and FMM is shown in Fig.3.2
where switch A is closed and switch B is open. AFAM and FMM utilize ultrasonic
waves transmitted into the material by a transducer attached to the bottom of the
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Fig. 3.1 Interaction force
plotted as a function of the
separation distance z between
cantilever tip and sample
surface
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sample. After propagating through the bulk of the sample, the wave impinges on
the sample top surface where it excites the engaged cantilever. The basic equipment
arrangement used for UFM is the same as that for AFAM and FMM. However, the
cantilever tip for UFM is set to assure tip-sample engagement near the maximum
nonlinearity regime of the force-separation curve. The UFM output signal is a static
or “dc” signal resulting from the interaction nonlinearity.

The equipment arrangement for HFM, SNFUH, and RDF-AFUM is shown in
Fig.3.2 where the indicated switches are in the closed positions. Similar to the AFAM,
FMM, and UFM modalities, HFM, SNFUH, and RDF-AFUM employ ultrasonic
waves launched from the bottom of the sample. However, in contrast to the AFAM,
FMM, and UFM modalities, the cantilever in HFM, SNFUH, and RDF-AFUM is also
driven into oscillation. HFM, SNFUH, and RDF-AFUM operate in the maximum
nonlinearity regime of the force-separation curve, so the nonlinear interaction of
the surface and cantilever oscillations produces a strong difference-frequency output
signal. For the AM-AFM modality only the cantilever is driven into oscillation and
the rest or quiescent tip-sample separation distance may be set to any position on the
force-separation curve, even for operation where the quiescent separation distance
lies well beyond the region of strong tip-sample interaction, i.e., where the quiescent
separation zo >> zp. For UAFM the cantilever is set in constant forced contact with
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the sample surface, while the cantilever is driven at ultrasonic frequencies with small
oscillation amplitudes.

Various approaches to assessing cantilever probe dynamics have been published
[7, 8, 20-35]. We present here a general, yet detailed, analytical treatment of the
cantilever and the sample as independent systems in which the nonlinear interaction
force provides a coupling between the cantilever tip and the volume element of
sample surface involved in the coupling [coupled independent systems (CIS) model].
The general equations of cantilever dynamics are reduced to a set of local, phase-
correlated, damped harmonic oscillator equations corresponding to the temporal
components in the solution space of the governing dynamical equation. The set
collectively defines the eigenmodes of cantilever motion.

A polynomial expansion is developed to represent the tip-sample interaction force
that accounts for cantilever-to-sample energy transfer. The polynomial expansion is
first applied in obtaining solutions to the commonly used single system model of
cantilever dynamics where the cantilever, as a single dynamical system, is subjected
to external forces and boundary conditions. Analytical expressions for the image
contrast mechanisms are obtained with particular emphasis on the contributions of
conservative and non-conservative forces to the contrast. Finite drive amplitudes are
shown to generate harmonics of the drive frequency resulting from the nonlinear-
ities in the tip-sample interaction forces. The finite drive amplitudes are shown in
Appendix B also to generate fractional harmonics (including subharmonics) result-
ing from the nonlinearities in the tip-sample interaction forces. The stability of the
subharmonic solutions is discussed analytically and routes to chaotic cantilever
motion are addressed. The higher order expansion coefficients in the polynomial
expansion are shown in Appendices A and C to be responsible for the occurrence of
both amplitude bifurcation and resonance bifurcation, respectively, which are often
observed upon cantilever-sample contact.

Also addressed in Appendix C is the concern, sometimes cited in the literature,
that conventional spring models (i.e., spring models with fixed spring constants) fail
to describe cantilever dynamics adequately, particularly at drive frequencies much
larger than the fundamental cantilever resonance frequency. It is shown from group
renormalization methods (often used in high energy physics and in descriptions of
critical phase transitions in condensed matter) that over a small range of frequencies
near the arbitrarily chosen renormalization scale (reference frequency), cantilever
dynamics can be treated quite accurately as that of a conventional spring with a point
mass. Outside this frequency range, the cantilever dynamics is modeled accurately by
the renormalization method as spring dynamics with frequency-dependent stiffness
and damping parameters.

Limitations of the single system model are discussed that beg consideration of
the CIS model of cantilever-sample dynamics wherein the cantilever and sample are
treated as fully symmetric, independent, oscillatory systems coupled by a mutual
interaction force. The symmetry of the governing dynamical equations in the CIS
model allows direct application of the model to the various d-AFM modalities cited
above. General solutions of the CIS model are found to first order in the nonlinearity
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and applied to the assessment of signal generation for each of the d-AFM modalities
cited. Contrast mechanisms in the CIS model are addressed.

3.2 General Dynamical Equations and Eigenmodes of Cantilever
Motion

The cantilever of the AFM is able to vibrate in a number of different modes in free
space corresponding to various displacement types or modes (flexural, torsional,
longitudinal, shear, etc.) with corresponding resonant frequencies and effective stiff-
ness constants. Although any cantilever shape or displacement type of cantilever
oscillation can in principle be used in the analysis to follow, for definiteness and
expediency we consider only the flexural modes of a cantilever modeled as a rec-
tangular, elastic beam of length L, width a, and height b. We assume the beam to be
clamped at the position x = 0 and unclamped at the position x = L, as indicated in
Fig.3.3. We consider the flexural displacement y(x, ¢) of the beam to be subjected
to some general force per unit length H (x, t), where X is the position along the beam
and t is time. The dynamical equation for such a beam is [36]

Fy(x.1)

*y(x, 1)
I——= 4 i = H(x,1) (3.1)

E
B x4

PBAB

where Ep is the elastic modulus of the beam, I = ab?/12 is the bending moment of
inertia, pp is the beam mass density, and Ap = ab is the cross-sectional area of the
beam.

The solution to Eq. (3.1) can be obtained as a superposition of the natural vibra-
tional modes of the unforced cantilever as

NERED I ACTMG! (32)
n=1

where 7, is the nth mode cantilever displacement (n = 1, 2, 3, ...) and the spatial
eigenfunctions Y, (x) form an orthogonal basis set given by [36]

sin — sinh
Y,,(x):( in g, x — sinh g,x

) (sin g,x — sinh g,x) 4+ (cos g,x — cosh g, x) .
cos gnx + cosh g, x

(3.3)
The flexural wave numbers ¢, in Eq.(3.3) are determined from the boundary
conditions as cos(g, L) cosh(g, L) = —1 and are related to the corresponding modal

angular frequencies w,, via the dispersion relation q;‘ = a),zl ppAp/EpI. The general
force per unit length H (x, ¢) can also be expanded in terms of the spatial eigenfunc-
tions as [37]
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Fig. 3.3 Schematic of cantilever tip-sample surface interaction: z is the quiescent (rest) tip-surface
separation distance (setpoint), z the oscillating tip-surface separation distance, 7, the displacement
of the cantilever tip (positive up), 1, the displacement of the sample surface (positive down), k.,
is the nth mode cantilever stiffness constant (represented as an nth mode spring), m, the cantilever
mass, kg the sample stiffness constant (represented as a spring), m; the active sample mass, and
Fy, F1, and F; are the first three interaction force ‘conservative’ expansion coefficients

H(x,1) =Y By()Y,(x). (3.4)

n=1
Applying the orthogonality condition

L

/Ym(x)Yndx = Lmn (3.5)
0

(8mn are the Kronecker deltas) to Eq. (3.4), we obtain

L
Ba(t) = / HE, Yo (€) de. (3.6)
0

We now assume that the general force per unit length acting on the cantilever
is composed of a cantilever driving force per unit length H.(x,t), an interaction
force per unit length Hr (x, t) between the cantilever tip and the sample surface,
and a dissipative force per unit length H;(x, r) [35]. Thus, the general force per
unit length H (x, ) = H.(x,t) + Hr(x,t) + Hy(x, t). We assume that the driving
force per unit length is a purely sinusoidal oscillation of angular frequency w. and
magnitude P.. We also assume the driving force to result from a drive element (e.g.,
a piezo-transducer) applied at the point x. along the cantilever length. We thus write
H.(x,t) = P.(cosw.t)§(x — x.) where §(x — x.) is the Dirac delta function. The
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interaction force per unit length Hr (x, t) of magnitude Pr is applied to the cantilever
tip at x = xr and is not a direct function of time, since it serves as a passive
coupling between the independent cantilever and sample systems. We thus write the
interaction force per unit length as Hr (x, t) = Pré(x — xr). We assume the modal
dissipation force per unit length H;(x, t) to be a product of the spatial eigenfunction
and the cantilever displacement velocity given as H;(x, t) = — Pz Y, (x)(dne,/dt).
The coefficient B, (t) is then obtained from Eq. (3.6) as

By (t) = PeYy(xc)(coswet) + Pr¥y(xr) — [Pa [ Yn(x)dx](dne,/dt) — (3.7)
where the integration in the last term is taken over the range x = Oto x = L.

Substituting Egs. (3.2) and (3.4) in (3.1) and collecting terms, we find that the dynam-
ics for each mode n must independently satisfy the relation

d2ne, (1) d*Y, (x)
PBABYn(X)%'i‘EBI d;4 Nen = PeYy(x0)Y,(x) cos ot
; d
P Y, () Ya(x) + [Py / ABIEES (3.8)
0

From Eq.(3.3) we write d*Y,, (x)/dx* = qj‘l Y,,. Using this relation and the dis-
persion relation between ¢, and w,, we obtain that the coefficient of 7., in Eq.(3.8)
is given by EI(d*Y,(x)/dx%) = wﬁPBAB. Multiplying Eq.(3.8) by Y,,,(x) and
integrating from x = 0 to x = L, we obtain

Metjen + Yen Nen + kenen = Fecoswet + F (3.9

where the overdot denotes the time derivative operator d/df, m, = ppApgL is the
total mass of the cantilever and F. = PpLY, (x.). The tip-sample interaction force
Fis defined by F = PrLY,(x7) and the cantilever stiffness constant k., is defined
by kep = mcwﬁ. The damping coefficient y,, of the cantilever is defined as y., =
P;L [ Y,(x)dx. Note that for a given mode n the effective magnitudes of the driving
term F, and the interaction force F are dependent via Y}, (x.) and Y;, (x7), respectively,
on the positions x. and x7 at which the forces are applied. The damping factor, in
contrast, results from a more general dependence on x via the integral of Y, (x) over
the range zero to L. If the excitation force per unit length is a distributed force over
the cantilever surface rather than applied at a point, then the resulting calculation for
F. would involve an integral over Y, (x) as obtained for the damping coefficient.
The interaction force F in Eq.(3.9) is derived without regard to the cantilever
tip-sample surface separation distance z. Realistically, the magnitude of F is quite-
dependent on the separation distance. In particular, various parameters derived from
the force-separation curve play essential roles in the response of the cantilever to all
driving forces. We consider that the interaction force not only involves the cantilever
at the tip position x7 but also some elemental volume of material at the sample
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surface. To maintain equilibrium it is appropriate to view the elemental volume of
sample surface as a mass element m; (active mass) that, in addition to the interaction
force, is subjected to a restoring force from material in the remainder of the sample.
We assume that the restoring force per unit displacement of m; is quantified by the
sample stiffness constant k.

The interaction force F is in general a nonlinear function of the cantilever
tip-sample surface separation distance z, as shown in Fig.3.1. The interaction force
results from a number of possible fundamental mechanisms including electrosta-
tic forces [38], van der Waals forces [39], interatomic repulsive (e.g., Born-Mayer)
potentials [40], Casimir forces [41], chemical bonding forces [42], and hydroxyl
groups formed from atmospheric moisture accumulation on the cantilever tip and
sample surface [43].

Since the force F(z) is common to the cantilever tip and the sample surface
element, the cantilever and the sample form a coupled dynamical system. Figure 3.3
shows a schematic representation of the various elements of the coupled system.
The dynamical equations expressing the responses of the cantilever and the sample
surface to all driving and damping forces may be written for each mode n of the
coupled system as

Meien + Ventlen + Kenlen = Fe cos ot + F(2) (3.10)
mgijs + ysiis + ks = Fy cos(wgt +6) + F(2) (3.11)

where 7., (positive up) is the cantilever tip displacement for mode n, n; (posi-
tive down) is the sample surface displacement from its equilibrium position, w, is
the angular frequency of the cantilever oscillations, wy is the angular frequency of
the sample surface vibrations, y, is the damping coefficient for the cantilever, y; is
the damping coefficient for the sample surface, F, is the magnitude of the cantilever
driving force, F is the magnitude of the sample driving force that we assume here
to result from an incident ultrasonic wave generated at the opposite surface of the
sample. F(z) is the nonlinear tip-sample interaction force and z is the instantaneous
distance between the cantilever tip and the sample surface. We assume, as shown in
Fig.3.3, that z —z9 = (1. +ns) where zg is the quiescent separation distance between
the cantilever tip and sample surface. The factor 6 in Eq. (3.11) is a phase contribution
resulting from the propagation of the ultrasonic wave through the sample material
and is considered in more detail in Sect.3.4.1.

3.3 Single System Model of Cantilever Dynamics

In most treatments of cantilever dynamics the cantilever is considered to be a sin-
gle dynamical system subjected to external forces and constraints, including the
cantilever tip-sample surface interaction forces. As shown by the solution to the
beam equation given in Sect. 3.2, the cantilever dynamics at a given point on the
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cantilever can be represented by a set of oscillators with each oscillator being mod-
eled as a mass attached to a damped spring. Each spring has a stiffness constant and
damping coefficient appropriate to the mode under consideration and is subjected to
external forces. The model is often referred to as the spring model and the cantilever
dynamics is assessed from the modal solutions of Eq.(3.10) alone. In other single
system approaches the dynamics is obtained by absorbing the driving and damping
forces in the boundary conditions for the elastic beam equation. The sample sur-
face displacement 7 is not generally considered directly in single system models
of cantilever dynamics in part because the focus has been on the dynamics of the
cantilever only. The influence of 1, on the cantilever dynamics is usually considered
only indirectly by assuming such influences to be manifested in the interaction force
or in the boundary conditions. Strictly, neglecting 1, completely would correspond to
assuming the sample stiffness constant k; to be infinitely large in Eq. (3.11). Before
developing the CIS model, it is useful to consider the implications of the single
system approach as represented by the spring model.

3.3.1 Polynomial Expansions of the Interaction Force

To explore the features of the single system model, we ignore 1y directly [and thus
Eq.(3.11)] and consider an appropriate expansion of the interaction force F that
accounts for the relevant influences of the cantilever-sample interactions. Although
the dependence of the interaction force F on z alone accounts for effects associated
with the instantaneous separation between the cantilever tip and sample surface, it
does not account for the dynamic transfer of energy from the cantilever to the sample
surface without specifically solving for the effects of surface dynamics. Such an
accounting can be obtained indirectly in the single system spring model by absorbing
the effects of the surface dynamics in the interaction force. We absorb the surface
dynamics by assuming a dependence of the interaction force on the time derivative
of the cantilever sample separation distance dz/dr = z = 3, (dne,/dt) = D", en
in addition to z — zp = Zn Nen such that F = F(z, z). We thus seek solutions to
Eq.(3.10) by expanding F = F(z, z) in a polynomial series which we write as [44]
(note: We have taken Fjo — F;, Fo; — S;,and F; ;(i, j #0) — R; j(i, j # 0) in
reference [44])

F(z,2) =[Fo+ Fi(z — 20) + Fa(z — 20)* +---]
+ (8124 224+ 1+ [Ri1(z —20) @) + - -]
=[Fo+ Fitien + Fanl, + -+ 14 [Stiien + Sani, + -1
+ [Rinentien + -1 (3.12)

where the F;, S;, and R;; are expansion coefficients (i and j are nonnegative integers).
In the last equality of Eq.(3.12) mode coupling has been ignored, resulting in a
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suppression of the sum over the various modes (i.e., we assume that z — zo = ¢,
and z = 1, for each mode n). The mode decoupling is justified on the grounds that to
a reasonable approximation only the mode whose resonance is closest to the driving
frequency dominates the interaction. The cantilever response from the inclusion of
all modes is the focus of Appendix C where group renormalization methods are used
to obtain the cantilever dynamics from the coupling of the modes via interaction
force nonlinearities.

The expansion coefficient Fj is the interaction force gradient and plays a role in
the interaction force similar to that of the cantilever spring constant. The S; (i =
1,2,3,...) coefficients in Eq.(3.12) account for the transfer of energy from the
cantilever to the sample during tip-sample interactions and are thus ‘dissipation’
coefficients in the expansion. This is easily seen by substituting Eq. (3.12) in (3.10)
and comparing terms on each side of the resulting equation. It is apparent that the
S1 coefficient plays a role in the interaction force similar to that of the cantilever
damping term y.. The remaining S; coefficients are higher order dissipative terms.
Zero values of the dissipative terms thus imply that no cantilever-to-sample energy
transfer occurs and that the sample surface is infinitely stiff (i.e., no sample surface
oscillations occur). We also note the appearance of cross terms in Eq.(3.12) with
expansion coefficients R;; (i, j # 0) that make a contribution to both conservative
and dissipative forces and also vanish in the limit of an infinitely stiff surface.

We point out that if Eq. (3.12) were a Taylor series, the coefficients in the expan-
sion would be evaluated as derivatives of the interaction force function at a given
cantilever tip-sample separation. Although the agreement between the function and
a truncated polynomial series of the function in this case would be optimized in
the immediate vicinity of a given tip-sample separation z and time derivative z, the
truncation could result in a sharp divergence from that of the actual function over
the range of cantilever oscillation as the result of a complicated dependence of the
interaction force on z and z. In such case the cantilever dynamics may not be accu-
rately predicted by a truncated Taylor series expansion. This is particularly true if
the cantilever oscillations span a range of tip-sample separation between the nearly
free-space and highly nonlinear interactive regimes such that the period of cantilever
oscillation spends a non-trivial amount of time in regions for which the divergence
is pronounced. Increasingly more terms in the expansion are needed to properly
represent the cantilever oscillations as the amplitude of the drive force F, increases.
Even for small oscillation amplitudes more terms in the expansion are needed, if the
quiescent separation between the cantilever and sample surface is near the highly
nonlinear portion of the force-separation curve.

An alternative and improved evaluation of the expansion coefficients of Eq. (3.12)
that accounts for the functional behavior of the interaction force over the entire range
of cantilever oscillations can be obtained from considerations of linear algebra and
inner product spaces. Assuming symmetry of the oscillations about the cantilever
quiescent position, we place the interaction force function in the space of smooth
functions over the relevant ranges of cantilever displacements, 7 € [—9max, "max]»
and displacement rates, 17 € [—7max, 7max ], and equip the space with an inner product
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Nmax  Tmax
(8, h) = / / g, Mh(n, n)dnda. (3.13)

—Nmax —Nmax

where g and £ are elements of the inner product space. (If the oscillations are not
symmetric, the inner product can be modified phenomenologically to account for
the deviation from symmetry.) In this scheme, we minimize the square of the norm
of the difference between the actual function and its projection onto the span of the
second-order of truncation of the polynomial series. The square of the norm of a
function is the inner product of the function with itself. We thus write the second
order truncation of the series in Eq.(3.12) as f(n,n) = [Fo + Finen + anfn] +
[S179en + Szf]gn] + [R110ennenl, let g = h = (F—f) and from Eq. (3.13) minimize

Nmax f]max
(F = f).(F— ) = / / (FG. i) — fnppPdndi  (3.14)

—Nmax —Nmax

with respect to F;, S;, and R;;.

The expansion coefficients are obtained by substituting f(n, ) in Eq.(3.14),
taking derivatives with respect to each of the coefficients F;, S;, and R;; in f(n, 1),
setting each derivative to zero, and solving the resulting system of linear equations.
Performing this procedure, we find that the first few expansion coefficients are given
as

1 . . .
Fo= s [ 1402 (F 1) = 150 (F i) = 152 (Fo )
nmaxnmax (3 15)
. .
F = 43— [(F,m], (3.16)
nmaxnmax
b [3(F. 1) = e (F. 1) (3.17)
2 = —. b T] - n 9 9 .
16nr5nax7]max max
Si= 7 ——— [F.il, (3.18)
r)maxnmax
s 15 [S(F 2y — 52 (F 1>] (3.19)
2= T .z s - B s .
lénmaxnrsnax " max
and
Ryt = ———— [{F,n)]. (3.20)
AN ax Minax

We note that the series in Eq.(3.12) is quite different from that of the Taylor
series. The coefficients of the Taylor series are evaluated at a single point, while the
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coefficients in Eq.(3.12) are determined by appropriate averages of the interaction
force F(n, ) over the entire range of oscillatory motion as obtained in Egs. (3.15)—
(3.20). Such averaging provides a more robust accounting of the interaction force
over the entire range of oscillatory motion and leads to requiring fewer terms in
the expansion than would be needed in a Taylor series to cover the same range of
oscillation amplitude.

3.3.2 Dynamical Effects of the Expansion Coelfficients

Substituting Eq. (3.12) in (3.10), we obtain [44]

Metien + Ven — S Nen + (ken — F1)Nen = Fecos oct + Fo + F2773n + F377§n + e

(3.21)
Itis apparent from Eq. (3.21) that F leads to a change in the effective spring stiffness
constant of the cantilever as the result of cantilever-sample contact and thus plays the
role of an effective interaction force gradient. We point out that ‘contact’ is defined
as that period of time, however briefly, that the cantilever is under the influence of
the tip-sample interaction force F[z(t), z(t)]. Similarly, it is seen from Eq.(3.21)
that S plays the role of a damping coefficient resulting from the interaction force
that occurs in addition to the damping coefficient y,, provided by the cantilever.
A negative value of S; means that energy is transferred from the cantilever to the
sample via the interaction force coupling [44].

Since the transfer of energy is a dynamic process in d-AFM, the sample surface
must necessarily oscillate during the energy transfer. If the interaction force were
dependent only on z(t), there would be no accounting for surface oscillations, since
from Eqgs. (3.18)—(3.20) the dissipative S, (and R,,;,) terms are then zero. This implies
that the sample surface is infinitely stiff (no energy transfer). However, the inclusion
of an independent dissipative (time derivative) term z in the interaction force leads
to nonzero S, (and R,,,) terms and allows for the possibility of surface oscillations
[44]. For S, to be nonzero it is thus essential that contributions from sample surface
oscillations appear via Z in the interaction force F.

The various expansion coefficients, Fy , Fi,F> , etc., play significant, sometimes
surprising, roles in the d-AFM output signals. For example, amplitude bifurcation
is well-documented in the literature and is a significant source of image “streaking”
[34, 45, 46]. The role that the expansion coefficients play in the solution to Eq. (3.21)
leading to amplitude bifurcation is shown in Appendix A.

3.3.3 Image Contrast in Dynamic Atomic Force Microscopy

Any change affecting the oscillatory characteristics of the cantilever in d-AFM can
lead to a change in the amplitude and phase of the cantilever output signal. Variations
in material physical properties, such as the elastic moduli, viscosity, or even surface
topography can lead to such changes. If the change results from signals acquired
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at two different points in a line scan, the difference in the cantilever output signal
from the two points defines the ‘contrast’ between the two points. Image contrast
can be generated either from changes in the amplitude or phase signal from the can-
tilever. The choice depends on the d-AFM modality being used and the information
needed for the sample material. In UFM only the amplitude signal is available for
image contrast. In AM-AFM, HFM, SNFUH, and RDF-AFUM, however, contrast is
usually generated from the phase signal using constant amplitude control, since it
allows simultaneous images to be acquired from both variations in sample material
properties and topographies. The operation of AM-AFM in constant amplitude con-
trol is commonly called frequency modulation AFM or FM-AFM, since the output
signal is derived from shifts in the resonance frequency during scanning.

It is often assumed that image contrast for relevant d-AFM modalities operating
in constant amplitude control results only from dissipative forces acting in the can-
tilever tip-sample surface interaction region of the AFM. The assumption is based on a
misinterpretation of the findings of several papers published in the late 1990s per-
taining to AM-AFM [47-49]. For example, Cleveland et al. [48] show that “phase
imaging is performed with the amplitude held constant by a feedback loop, so itis only
when the tip—sample interaction losses vary that phase contrast will be observed.”
Although their finding is certainly true, it is often interpreted to mean that variations
in the dissipative forces alone generate the image contrast using constant amplitude
control.

More recently, Schroter et al. [50] argue that for images generated at constant
amplitude the variation in the ‘dissipative’ forces are not the result of a variation in a
true material property but are driven by the variation in the conservative forces. They
conclude that the only directly measurable true material property that drives phase
contrast in constant amplitude control are the variations in the conservative forces. We
show analytically that both conservative and dissipative forces must be considered
in constant amplitude d-AFM operation but that phase contrast can be assessed
either from conservative or dissipative force parameters alone when operating near
cantilever resonance.

We consider the assessment of contrast mechanisms within the context of the
single system spring model using the polynomial expression given in Eqs.(3.12)
and (3.21) to characterize the interaction force F(z, z) [44]. The salient features of
phase contrast can be obtained from a consideration of the linear terms alone in the
expansion. We assume a solution of the form 7., = Renc,0 exp(iw,;), and substitute
the expression in Eq. (3.21), neglecting the static and nonlinear terms. We obtain the
solution 1., = Neno cos(wt + ¢) where the amplitude 7,0 of the cantilever output
signal is given by

F.
"= , 3.22
et [(keft — mew?)? + y 20?1/ (3.22)
the output phase ¢ by
¢ = — tan_l )/Cﬁ:a) (323)

ket — mew?’
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the effective stiffness constant keg by

ket = ken — F1, (3.24)
and the effective damping coefficient yesr by

Yeff = Yen — S1. (3.25)

Resonance occurs at a frequency w. = w; such that dngo /da)g = 0. From
Eq. (3.22) we obtain that at resonance

7/2
keft — mew? = ﬁ (3.26)
C

During scanning the only variables in the spring model are kef and yefr. For constant
amplitude control, An.,0 = 0 and we obtain from Eq. (3.22) that the variation Akegr
is related to the variation Ay, as

2
Yeff W,

Aketf = — 3
eff — MW7

AYefr- (3.27)

For operation near resonance, we substitute the resonance condition Eq.(3.26) in
(3.27) to obtain

2mew? o1/2m e kett — me?)
Akeff = — Aveft = — 5 Avef- (3.28)
Veff kett — me7

The phase variation A¢ (phase contrast) that occurs during constant amplitude
scanning is obtained from Eq. (3.23) as

Veft W (kett — mcwH)we
= TR 5 Akeft — AP R s Avett  (3.29)
(ketr mc‘”]) + Verr@g (keft — mewz)= + Veff@e

Ag

where the first and second terms in the equality represent the conservative and
dissipative contributions, respectively. Equation (3.29) can be written in terms of
a relationship between A¢ and conservative force parameters alone by employing
Eqgs. (3.26) and (3.28) to obtain

, [ \/ 2mew? (kefr — mew?)
| ket — mew)? + 2mew? ket — mew?)
Cmead) V2 (kefr — meaw?)3/?

(kett — mew})? + 2m s (kefr — mew?)

]Akeff (3.30)
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when operating in constant amplitude control near the cantilever resonance. Note

that Akesr = A(ken — F1) = —AF]. A similar equation can be written for A¢ in
terms of dissipative force parameters Yefrand Ayetr = A(Yen — S1) = —AS] as
8m3w? 2mey 2o
Ap=—1— 6212 s+ — cefzfz 5t Avefr- (3.31)
Vet T 4MEV@T  Vegr + MYy

Although both terms in the brackets of Egs. (3.30) and (3.31) are written in terms
of either conservative or dissipative force parameters alone, the first term in the
brackets of each equation is the contribution associated with conservative forces and
the second term is that associated with dissipative forces. It is interesting to note that
the ratio of the dissipative to the conservative contributions in Eq.(3.30) is (kegr —
mca)%)/chw%, while from Eq.(3.31) the ratio is given as yesz/4m§a)f. Although
the equations hold strictly for operation at the contact resonance frequency wi, the
expressions yield a useful approximation for d-AFM operation in constant amplitude
control when operating near the free-space resonance. Under such conditions the ratio
(ketr — mcw%)/chwE ~ —F] /2mca)g. Assuming a typical value m, & 10°10 kg, F1
of order 1 Nm™!, and operating frequencies w, in the range 0.05—-1.0 MHz, we obtain
that the magnitude of (—F;/ 2mca)f) ranges from roughly 2.0 at w, = 0.05MHz to
roughly 0.005 at w, = 1.0 MHz. Thus, the relative dissipative and conservative
force contributions to the phase contrast are highly sensitive to the oscillation drive
frequency. At low drive frequencies dissipative forces dominate phase contrast, while
at high drive frequencies conservative forces dominate phase contrast. It is important
to remember that both F| and S are coefficients in the polynomial expansion of the
interaction force F(z, ).

The above derivation is based on the assumption of operation in the linear regime
of the force-separation curve for the relevant d-AFM modalities. For the nonlinear
regime of operation the inclusion of nonlinear terms in Eq.(3.21) leads to more
complicated expressions for the cantilever output amplitude and phase signals, as
shown in Sect. 3.3.4. However, the conclusion that both conservative and dissipative
forces contribute to the phase image contrast remains true, even for constant ampli-
tude control. It is, of course, apparent that both conservative and dissipative forces
contribute to amplitude contrast.

3.3.4 Harmonic Generation

We consider in more detail the effects on the cantilever dynamics of the static and
nonlinear terms in the polynomial expansion of the interaction force by includ-
ing the terms in the dynamical equation for the cantilever given by Eq.(3.21). We
solve the equation using a perturbative procedure [35, 44, 51] whereby we re-write
Eq.(3.21) as
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Meijen + Yefflen + keftNen = Fe cos wet + Fo + 85F27Izn + - (3.32)

and let
Nen = 1 + esn’) +e2n@ + - (3.33)

where 775?1) is the zeroth-order solution to Eq. (3.32), ng,) is the first-order solution,
né%) is the second-order solution, etc. The parameter ¢; in Egs. (3.32) and (3.33) is a
scaling factor used to track the order of the approximation being considered. When
€5 1S set to unity, we recover the solution to the original Eq.(3.21). We consider
only solutions to first order, which is also first order in the nonlinearity. Substituting
Eq.(3.33) in (3.32) and equating terms of the same degree in ¢; , we obtain the

zeroth-order equation
meiiD + verri® + kern'Q) = Fe cos et + Fo (3.34)
and the first-order equation
meiily) + verrily) + ketrnly) = F2nG)? (3.35)

The solution to Eq.(3.34) is

O — ¢ + & cos(wet + p) (3.36)
where
Fo
g= 2 (3.37)
ke
Fe
£ = , (3.38)
\/ (kett — mcw?)? + ygg?
and —
¢ = —tan~ | Lo (3.39)

ket — mcw?

We substitute the solution né(,)z) given by Eq.(3.36) in (3.35) and solve the resulting
expression to obtain the first order solution

(D = ¢y + ¢1 cos(wt + 2¢) + & cosRwt + 24 + ) (3.40)

where .
Fy(e? + 5£7)
[0 B —

, (3.41)
ketf
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2Feé
= : (3.42)
\/ (ketr — mew?)? + y20?
P}
o= 0 , (3.43)
ket — 4mew?) + 4y
and )
o = —tan~ ! —ZLEfe (3.44)

ket — 4mcw?

The solution to Eq.(3.21) to first order in the nonlinearity is obtained from
Eqgs.(3.33), (3.36), and (3.40) after setting the scaling parameter &, = 1. We get

nen =10 + 1) = 0o + Q1 cos(wr + B) + QacosRut +2¢ +a)  (3.45)

where
Qo = (¢ + 20). (3.46)
01 = (& + ¢ + 28081 cos )2, (3.47)
0r = &2, (3.48)
and

_1 &éosin¢ + ¢y sin2¢
£y cosp + {1 cos2¢

B = tan (3.49)

We see from Eq.(3.45) that the solution of Eq.(3.21) to first order has static,
linear oscillatory, and nonlinear oscillatory components resulting from the first-order
nonlinear term F» r)gn in the polynomial expansion of F(z). Further iterations in the
perturbation procedure corresponding to higher order in the scaling factor ¢, lead to
the inclusion of higher order harmonics in the solution to Eq.(3.21).

For an appropriate range of values of the dynamical parameters, including drive
frequency, the interaction force nonlinearities that lead to the generation of harmon-
ics are known to stimulate the generation of subharmonics [51]. The nonlinearities
also lead to modal interactions that result in the resonance bifurcations reported in
the literature [52, 53] whereby a cantilever resonance mode is split into multiple
modes upon cantilever-sample ‘contact.” An analytical discussion of subharmonic
generation and routes to chaos in d-AFM is given in Appendix B. Resonance bifur-
cations in d-AFM are shown in Appendix C to be predicted from an application of
the group renormalization method to the nonlinear coupling of cantilever modes.
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3.3.5 Connection Between Model Parameters and Material
Properties

The results so far obtained are derived from the single system model where the
effects of the sample surface displacements 1 are absorbed in the interaction force
in the spring model representation (or for equivalent representations where the
effects of 5 are absorbed in the boundary conditions). One of the critical con-
nections, explicitly or implicitly stated, between the cantilever oscillations and the
sample physical properties occurs in the spring model through the relation k* = Fj,
where k* is an effective spring constant of the interaction force. The connection
occurs via the shift in the cantilever resonance frequency. The only other possible
link between cantilever oscillations and the sample physical properties in the spring
model is via the interaction-force damping coefficient S;. Indeed, as pointed out in
Sect.3.3.2, S1 accounts for the transfer of energy from the cantilever to the sample
via the interaction force. Although the parameters F and S; collectively account for
the effects of the sample physical properties in the spring model, the de-convolution
of specific sample physical properties from an assessment of F and S is not at all
straightforward.

The transfer of energy from an oscillating cantilever through S} in the spring
model implies that the sample surface receiving the energy must itself oscillate. To
maintain equilibrium the amplitude of surface oscillations for a given energy input is
necessarily determined by a sample restoring force that, like the restoring force for
cantilever dynamics, can be modeled as a surface spring with a an effective stiffness
constant k;. The magnitude of k; is often assessed by the Hertzian contact method
that provides a static measurement of k. The transfer of energy from the cantilever,
however, does not occur statically but rather at cantilever oscillation frequencies. The
energy transfer is dynamic and must be accounted dynamically, just as the effective
nth mode cantilever stiffness constant k., (n = 1,2,3,...) is a dynamic quantity
whose magnitude is assessed in free-space by its dependence on the modal oscillation
frequency w.,. Evidence for the necessity of a dynamic modulus is apparent in
certain applications of d-AFM. For example, the use of an effective dynamic modulus
or equivalently of the surface acoustic impedance is central to the assessment of
delaminations and voids in layered materials using UAFM [16].

From physical and symmetry considerations it is advantageous and appropriate
to view the vibrating sample as a system independent of the cantilever and to assess
ks in free-space, just as k. is evaluated in free space. It is reasonable to expect that
kg depends on the various free-space vibration modes of the sample in a way similar
to that of k., for the cantilever. For present considerations, however, we assume that
the value of k; is adequately approximated by the value obtained from the Hertzian
contact method. It is important to note that just as the cantilever stiffness constant k.,
is independent of the interaction force, so k; must be independent of the interaction
force.
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3.4 Coupled Independent Systems Model of Cantilever-Sample
Dynamics

The occurrence of independent stiffness constants k., and k; for the cantilever and
sample, respectively, begs direct consideration of the surface displacement 5, in
tip-sample dynamics. The inclusion of the variable 7, in addition to the cantilever
displacement 7. in the expansion of the interaction force F(z) means from Fig. 3.3 that
we must write (z — z9) = (1 + 715). The inclusion of 7, in the expansion necessitates
two dynamical equations for solution. One dynamical equation is Eq. (3.10). The sec-
ond dynamical equation is Eq. (3.11) describing damped oscillatory displacements
ns of the sample surface that is subject to the same cantilever tip-sample surface
interaction force F(z) as that of the cantilever. We thus consider that the cantilever
and sample can be treated analytically as two independent, damped, oscillatory sys-
tems coupled by a mutual interaction force. We shall call this model the coupled
independent systems (CIS) model.

From Egs. (3.10), (3.11), and (3.16) we accordingly write the governing temporal
equations as

Metien +Yeten+ (ke — F1)nen — Fing = F¢ cos wct+F0+F2(ncn+ns)2+' -+ (3.50)

myijs + ysns + (ks — F)ng — Finep = Fy cos(wgt +0) + Fo + F2(en + ns)z +--

(3.51)
where m; is the “active” mass of the sample participating in the surface oscillations.
We note that it is no longer necessary to include the time derivative z in the interaction
force F(z), since the transfer of energy from the cantilever to the sample is accounted
directly in the CIS model by the mutual coupling defined by F(z). Thus, the interaction
force damping (energy transfer) coefficient S; is eliminated in Egs. (3.50) and (3.51).
The sample damping coefficient, in analogy to the cantilever damping coefficient, is
denoted by y;.

We point out that Egs. (3.50) and (3.51) are obtained assuming that the cantilever is
arectangular beam of constant cross-section. Such a restriction is not necessary, since
the mathematical procedure leading to Eqgs. (3.10) and (3.11), hence to Egs. (3.50)
and (3.51), is based on the assumption that the general displacement of the cantilever
can be expanded in terms of a set of eigenfunctions that form an orthogonal basis set
for the problem. For the rectangular beam cantilever the eigenfunctions are shown in
Sect.3.2 to be ¥, (x) defined by Eq. (3.3). For some other cantilever shape a different
orthogonal basis set of eigenfunctions would be appropriate. However, the mathe-
matical procedure followed in Sect.3.2 would lead again to Egs. (3.50) and (3.51)
with values of the coefficients appropriate to the different cantilever geometry.

The phase factor 6 in the driving term of Eq. (3.51) results from the difference in
phase between the ultrasonic wave launched at the sample surface opposite to that of
cantilever contact and the oscillations resulting from the ultrasonic wave incident on
the cantilever side of the sample. Variations in 6 result from features embedded in the
sample that produce changes in the ultrasonic velocity and wave amplitude, hence
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cantilever output signal. Before obtaining solutions to Egs. (3.50) and (3.51) for the
various d-AFM modalities cited in the introduction, we consider an assessment of 4.

3.4.1 Variations in Signal Amplitude and Phase from Subsurface
Features

Following the “propagating wave” approach for assessing continuous waves [54], we
consider a traveling stress wave of unit amplitude of the form e™** cos (w5t — kx) =
Re[e™®¥e!(@s!=k¥)] where « is the attenuation coefficient, x is the propagation
distance, wjy is the angular frequency, ¢ is time, k = w;s/c, and c is the ultrasonic phase
velocity, propagating through a sample of thickness a /2. We assume that the wave is
generated at the bottom surface of the sample by an ultrasonic transducer attached at
the position x = 0 and that the wave is reflected between the top and bottom surfaces
of the sample. We assume that the most important effect of the reflections is simply
to change the direction of wave propagation. Phase changes from transducer bonding
and compound transducer-sample resonances are not included. The following results
are thus most applicable for measurements using non-contacting ultrasonic excita-
tion sources such as capacitive transducers, electromagnetic acoustic transducers,
and optical excitation sources, since compound resonator effects are avoided.

For continuous waves the complex waveform at a point x in the material consists
of the sum of all contributions resulting from waves which had been generated at the
point x = 0 and have propagated to the point x after multiple reflections from the
sample boundaries. We thus write the complex wave A1) as

A(l‘) — e—axei(w_;t—kx)[l + e—(aa+ika) R e—n(aa+ika) 4]

1

00
__—ax i(wgt—kx) —(aa+ika) n __—ax i(wst—kx)
— % S [e ] — % g 352

n=0

where the last equality follows from the geometric series generated by the infinite
sum. The real waveform A(t) is obtained from Eq.(3.52) as

A(t) = Re[A(1)] = e (AT +A)1/? cos(wst —kx —p) = e~ B cos(wst —kx—)

(3.53)
where wa '
A = e%* — coska ’ (3.54)
2(coshaa — coska)

A — sin ka (3.55)

2= 2(coshaa — coska)’ ’

ink

¢ =tan~! — 007 (3.56)

% — coska’
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and
B=(A24+A)2 = (1472 — 2% coska) /2. (3.57)

The evaluation (detection) of a continuous wave at the end of the sample opposite
to that of the source is obtained by setting x = a/2 in the above equations. It is
at x = a/2 that the AFM cantilever engages the sample surface. In the following
equations we set x = a /2.

The above results are derived for a homogeneous specimen. Consider now that
the specimen of thickness a/2 having phase velocity ¢ contains embedded mate-
rial of thickness d/2 having phase velocity c;. The phase factor ka = wsa/c in
Egs. (3.53)—(3.57) must then be replaced by ka — { where

1 1 Ac Ac
v = wyd (— — —) = wsd— = kd—, (3.58)
c  cq c

and Ac = ¢4 — c. We thus set x = a/2 and re-write Egs.(3.53), (3.56),
and (3.57) as

At) = e~ B cos I:a)st - (k“z;w - q%] (3.59)
where ik "
A 1 sin(ka —
¢ = tan 70 —costka — )’ (3.60)
and .
B =[1+e 2% —2¢ % cos(ka — y)]~ /2. (3.61)

We have assumed in obtaining the above equations that the change in the attenuation
coefficient resulting from the embedded material is negligible.

For small ¢ we may expand Eq.(3.59) in a power series about iy = 0. Keeping
only terms to first order, we obtain

$=0¢+Ag (3.62)
where
Ap = —y [ e* coska — 1 ] (3.63)
N (e — coska)? + sin®ka | ’
Equation (3.59) is thus approximated as
~ A k ~
A(r) = e % B cos (a)st — ?a — ¢+ % — A¢) = e~/ B cos(wyt + 0)
(3.64)

where L
9=—(X+Ax)=—(7a+¢—%+A¢), (3.65)
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k
X =75 +9. (3.66)
and
Ay = W+A¢— 1//|:1_|_ e* coska — 1 i| (3.67)
X=73 N 2 (ev@ — coska)? +sinka |’ '

Equation (3.67) reveals that the total phase contribution at x = a/2 is 6 and, from
Egs. (3.65) and (3.67), that the phase variation resulting from embedded material
is —Ay.

The fractional change in the Young modulus AE/E is approximately related
to the fractional change in the ultrasonic longitudinal velocity Ac/c as AE/E =~
AC11/C11 = (2Ac/c) + (Ap/p) where p is the mass density of the sample and
Cq; is the Brugger longitudinal elastic constant. If the fractional change in the mass
density is small compared to the fractional change in the wave velocity, we estimate
the relationship between AE/E and Ac/c as AE/E =~ 2Ac/c. This relationship
may be used to express v, given in Eq. (3.58) in terms of Ac/cq = (¢/cq)(Ac/c),
in terms of AE/E.

3.4.2 Solution to the Coupled Dynamical Equations

We solve the coupled nonlinear Egs. (3.50) and (3.51) for the steady-state (particular)
solution by first writing the coupled equations in matrix form as [35]

Miy+yn+kn—Fin=F;T 4+ Fo+ Fanes + - - - (3.68)

me 0 Nen ve 0 ) (kcn - F 0 )
M= S , V= . k= ;
(0 ms) 7 (775) 4 (Oys 0 ks — F1
_(Fc O _ CcoS wet _( Fo _ (0 Fy
Fa= ( 0 Fs)’ r= (cos(a)st—i—é))’ Fo= (Fo) Fr= (F1 0 )
) O) ((Ucn+’7s)2)
Fr = , and ngg = .
? ( 0 F fles (Nen + 77s)2
We solve Eq.(3.68) using the perturbative procedure given in Sect.3.3.4 where
the zeroth-order solution is obtained by neglecting the nonlinear expansion terms in
Eq. (3.68) and solving the resulting expression. The first-order solution is obtained by
substituting the zeroth-order solution in the nonlinear terms of Eq. (3.68) and solving
the resulting expression. It is important to recognize that the procedure provides
solutions for both the cantilever tip and the sample surface displacements—a result
stemming from the symmetry of the governing dynamical equations, Egs. (3.50) and

(3.51). The procedure is much too lengthy to reproduce here in full detail. Thus,
only the salient features of the procedure leading to the steady state solution for the

where
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cantilever displacements 7., are given. The solutions for the sample displacements
ns mostly correspond to an interchange of cantilever and sample parameters in the
solution set for 7.

We begin by writing

Nen = 77591) + 7781) = &en +&cn + Lens (3.69)

and
ns =+ = g5 + & + ¢ (3.70)

where ng(,),) = gcn+E&c With g, and &, representing the zeroth-order (i.e. linear) static
and oscillatory solutions, respectively, for the nth mode cantilever displacement. The

term ngl,) = C.p 1s the first-order (i.e., nonlinear) solution for the nth mode cantilever
displacement. The terms n§0) =g+ & and nf‘l) = {, are the corresponding zeroth-

order and first-order displacements for the sample surface.

3.4.2.1 Zeroth-Order Solution

The zeroth-order solution is obtained by neglecting the nonlinear terms in the matrix
Eq.(3.68) to obtain a static solution &., and an oscillatory solution &., for the
cantilever. The static solution is given by

ks Fo
En = . (3.71)
« kcnks —F (kcn + kv)
The oscillatory solution is given by
écn = Qec cos(wet + e — Pee) + Qs cOs(wst — Pyg + 0) (3.72)
where
¢cc =
tan_l oc (Ysken + veks) — wg()/smc + Yems) — Froc(ys + ve)
kenks + msmcw? - wg(mskcn +mcks + vevs) — Filken + ks — mswcz‘ - mcwg) '
(3.73)
¢ss =

1 ws (Ysken + yeks) — wg(ysmc + yems) — Fros(vs + ve)

kenks + msmcw? - wg(mskcn +meks + yevs) — Filken + ks — mstz - ma%) |

(3.74)

tan
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Oce =Fe{lks — F1 — mswz]z + Vszwcz-}l/z{[kcnks + 7”’%"/’14'5021
- wcz‘(mskcn + meks + yeys) — Filken + ks — mswg - mcwg)]2

+ [we (Vsken + veks) — wi(ysmc + Yemy) — Froc(ys + VL')]Z}_I/Q,
(3.75)

and

Ocs =Fs Fi{lkenks + msmcw;1 - O)E(mskcn +meks + yeys)
= Filken + ks = myw] = mew))

+ [ws (Vsken + veks) — ws(ysmc + Yemy) — Frog(ys + Vc)]z}_]/z'
(3.76)

3.4.2.2 First-Order (Nonlinear) Solution

The first-order (nonlinear) solution 1781) = ¢y, for each mode n of the cantilever is
considerably more complicated, since it contains sum-frequency, difference-
frequency, and generated harmonic-frequency components in addition to linear and
static components. The solution nﬁ.}} = {¢p 1s thus written as

Elz) = é‘cn = gcn,stat + é‘cn,lin + Ecn,diff + gcn,sum + {cn,harm (3-77)

where ¢y star 1S the static or “dc” contribution generated by the nonlinear tip-surface
interaction, ., 1in 1S the generated linear oscillatory contribution, ¢, giff is the
generated difference-frequency contribution resulting from the nonlinear mixing of
the cantilever and sample oscillations, ¢, sum 1S the generated sum-frequency contri-
bution resulting from the nonlinear mixing of the cantilever and sample oscillations,
and &¢p harm are generated harmonic contributions.

Generally, the cantilever responds with decreasing displacement amplitudes as the
drive frequency is increased above the fundamental resonance, even when driven at
higher modal frequencies (Note: for some cantilevers the second resonance mode has
the largest amplitude). Dynamic AFM methods do not generally utilize harmonic or
sum-frequency signals. For expediency, such signals from the first-order solution will
not be considered here. Only the static, linear, and difference-frequency terms from
the first-order solution are relevant to the most commonly used d-AFM modalities.

The static contribution generated by the nonlinear interaction force is obtained
to be

1 ks F>r
2 [kcnks - Fl (kcn + kc)]
+2Q0cc Qe co8(ttee — 2¢c¢) + 205 Qs COS O] (3.78)

[2e) + Q% + Q% + 07 + O3,

é‘cn ,stat —
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where
(kcn + ks)FO

kcnks - Fl (kcn + ks) '

(3.79)

g0 =

Ose = FeFif{lkenks + msmcwj - wg(mskcn +meks + yevs)
— Frken + kg — mswg - mcwg)]2

+ [wc (Vsken + veks) — wg(ysmc + yems) — Froe(ys + Vc)]2}71/27

(3.80)
Oss = Fllken — F1 — mcwg]2 + chwf}l/z{[kcnks + msmc@;L
- a)g(mskcn + meks + yeys) — Filken + ks — mswz - mcwz)]z

+ [ws (Vsken + veks) — wS(ysmc + yemy) — Fros(vs + yc)]z}_l/z,

(3.81)
1 VsWc

=1t —_— 3.82
Qcc an ke — F| — msw% ( )
o5y = tan™! Ve®s (3.83)

ken — F1 — mew?

and ¢, is given by Eq.(3.73), Q.. by Eq.(3.75) and Q. by Eq.(3.76).
The linear oscillatory contribution ¢., 1in generated by the nonlinear interaction

force in the first order solution is obtained to be

D,
é‘cn,lin = 2R

SOFZ[QEC + Q?C +2Q¢c Qe cos acc]l/z cos(wet — 2¢cc + Be + ee)

ce

D
+ 2R—580F2[Q§S + 02 42055 Qs cos ]2

s

cos(wst — 2¢55 + Bs + phss +0) (3.84)
where .

Yoo = tan—1 —Qee SN ec (3.85)

“ Qcc COsee + Ose ' .
[hss = tan ! Oy Sin argg (3.86)

> QOss cos gy + Oes ' ’
fo=tan”! L, (3.87)

s — MsWwg

By =tan~! — (3.88)



72 J. H. Cantrell and S. A. Cantrell
D¢ = [(ks — msoD)* + yiw?'/?, (3.89)

Dy = [(ks — mso))* + y2w?1'/?, (3.90)

Ry = {lkenks + msmcw? - wéz(mskcn +meks + yeys)
— Fr(ken + kg — mswg - mcwg)]z + [ws (Vsken + veks)
— &) (ysme + yemy) — Fios(ys + v P}/2, (3.91)

and

Ree = {lkenks + msmcw? - wg(mskcn + meks + YeVs)
— Filken + kg — mxwz ]2 + [ (Ysken + veks)

. —

— W (Ysme 4 yemy) — Froe(ys + o) IP}V2. (3.92)

2
mew;)

The difference-frequency contribution ¢., giff generated by the nonlinear interac-
tion force in the first-order solution is obtained to be

Cen, diff = Gy cos[(we — wg)t — Pee + Pss + Bes — Ges + T — 0] (3.93)

where

Dy 2 N2 2 N2 2 N2 2 N2
R“ F2{Qcc ch + Qxc st + Qcc st + ch Qsc
cs

+20c¢ Qs Qse Oss cOs(ttee + 0rgs) + ngc Qs Qs COS O
+20¢¢ ng Qe COS e + ZQ%C Qs Qs COS O
+20cc Qs Qes Qs cos(ttee — ass)}l/zv (3.94)

G, =

Des = Jlks = my(@c — @) P + y2(@c — )7, (3.95)
Res =/ R%, + R%,, (3.96)

Res1 =kenks — mgken (e — ws)z —mckg(we — ws)z +mgme(we — ws)4

— Yevs(we — ws)z — Filken + ks — mg(we — (Us)z — me(we — ws)z]»
(3.97)

Resy = (0e — wg) (yske + yeks) — (0c — a)s)3(ysmc + Yemy)
— Fi(we — w5)(¥s + ve), (3.98)
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R
$os = tan~! 292, (3.99)
Rcsl
Bu = tan—! Vs (@e = @s) (3.100)
o ks —mgs(we — ws)2 ' ’
and
r— tan_l OccQes sinaee — Qge Oy sindgy + Qe Qs SIN(Aee — Ctyy)
QccQes COstee + Qe Qs €OS sy + Qe Qs COS(Aee — Og5) + Q(gs ]QOs]C)

3.4.3 Signal Generation for Various d-AFM Modalities
in the CIS Model

The treatment in the CIS model of the cantilever and sample as coupled indepen-
dent systems introduces a high degree of symmetry in the mathematical analysis.
The symmetry allows considerable flexibility in quantifying the cantilever-sample
dynamics for a variety of d-AFM modalities. We apply the CIS model to the assess-
ment of the cantilever output signal for the most frequently used d-AFM modalities
including heterodyne force microscopy, scanning near-field ultrasonic holography,
resonant difference-frequency atomic force ultrasonic microscopy, ultrasonic force
microscopy, atomic force acoustic microscopy, force modulation microscopy, ampli-
tude modulation atomic force microscopy, and ultrasonic atomic force microscopy.

We note that for the range of frequencies generally employed in d-AFM the
contribution from terms in the solution set involving the mass of the sample element
my is small compared to the remaining terms and may to an excellent approximation
be neglected in the following applications of the CIS model.

3.4.3.1 Heterodyne Force Microscopy, Scanning Near-Field Ultrasonic
Holography, and Resonant Difference-Frequency Atomic Force
Ultrasonic Microscopy

Heterodyne force microscopy [9], scanning near-field ultrasonic holography [10], and
resonant difference-frequency atomic force ultrasonic microscope [11] employ an
ultrasonic wave launched from the bottom of a sample, while the AFM cantilever tip
engages the sample top surface. The cantilever in RDF-AFUM is driven at a frequency
differing from the ultrasonic frequency by one of the contact resonance frequencies of
the engaged cantilever. As pointed out in the introduction the tip-sample interaction
force varies nonlinearly with the tip-surface separation distance (see Fig. 3.1). During
the mixing of the forced cantilever and sample oscillations the nonlinearity of the
mutual interaction force generates a difference-frequency output signal from the
cantilever. The maximum difference-frequency signal amplitude occurs when the
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cantilever oscillation amplitude and tip-sample quiescent separation distance are
optimized to produce the maximum magnitude of the nonlinearity parameter F;
in the polynomial expansion of Eq.(3.16). Maximum nonlinearity occurs near the
bottom of the force curve as shown in Fig. 3.1. There the maximum change in the slope
of the force versus separation curve (hence maximum interaction force nonlinearity)
occurs. We shall call this region of operation the maximum nonlinearity regime.

Variations in the amplitude and phase of the bulk wave due to the presence of
subsurface nano/microstructures and features as well as variations in near-surface
material parameters produce variations in the amplitude and phase of the difference-
frequency signal. The variations in the difference-frequency signal are used to
generate spatial mappings (micrographs) of the subsurface and near-surface struc-
tures. Most commonly, the micrographs are obtained from variations in phase (phase
imaging) using constant amplitude control.

The dominant term or terms for the cantilever difference-frequency displacement
in Egs.(3.2) and (3.69) depend on the values of k., for the free-space modes of
cantilever oscillation, Aw = (w. — ws), and the value of the nonlinearity coef-
ficient F> obtained for an appropriate oscillation amplitude and quiescent separa-
tion distance zp for which the maximum difference-frequency signal occurs. The
maximum difference-frequency signal occurs when the tip-sample separation dur-
ing oscillation encompasses the region near zp in Fig.3.1. We designate the free-
space mode n corresponding to the difference-frequency contact resonance occurs as
n = p. The dominant difference-frequency component in Eqgs. (3.2) and (3.69) is thus
Nep = Nep,ditf = {ep,dift and is given by Eq.(3.93) for n =p as

Cep,diff = Gp cos[(we — @)t — ¢ec + Pss + Bes — Ges + T — 0] (3.102)

where G, given by Eq.(3.94), and the phase terms in Eq.(3.102) are obtained
from Egs. (3.65), (3.73), (3.74), (3.82), (3.83), (3.99)—(3.101). Since Egs. (3.99) and
(3.100) only involve factors pertaining to the difference-frequency Aw, the appro-
priate cantilever stiffness constant to use in the equations is k.,. Equations (3.73)
and (3.82), however, only involve factors pertaining to the cantilever drive frequency
w¢, while Egs.(3.74) and (3.83) only involve factors pertaining to the sample drive
(ultrasonic) frequency ws. The cantilever drive frequency w. and ultrasonic fre-
quency w;y are usually set near (but not necessary equal to) higher resonance modes
n = q and n = r, respectively, of the engaged cantilever. In such case the appropriate
cantilever stiffness constant is k., for n = g and k., for n = r. For relatively small
difference-frequencies, it may occur that g = r. If @, and wy are not set at or near
a resonance modal frequency of the engaged cantilever, then it may be necessary to
include several terms in Egs. (3.2) and (3.69) corresponding to multiple values of g
and r.

The equations for G, and the phase terms in Eq.(3.102) may be obtained from
Eqgs. (3.80), (3.81), (3.94)—(3.98) where the terms involving the sample mass m; may
be dropped to an excellent approximation. For ultrasonic wave and cantilever drive
frequencies in the low megahertz range we obtain, settingAw = (v, — wy), that
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A
Bo ~ tan~! LA (3.103)
ks
k kep) (Aw) — Aw)? — F A
bes ~ tan~! (Yeks + s cp)( ) Vsmg( w) 1(Ye + ¥s)( w)z . (3.104)
kcpks — (mcks + yeys)(Aw)” — Fy [kcp + ks — me(Aw)?]
bec tan~! (Veks + yskeg)we — Vs;ncwg - Fi(ye + Vs)wc2 7 (3.105)
kchs — (mcks + Vch)wc — F (kcq + ks — mcwc)
bes ~ tan~! (Veks + ysker)ws — Vsmcwg3 — Fi(ye + vs)ws (3.106)

kerks — (mckg + )/cys)a)Ag — Filke, + ks — mcwg) '
and G, is given by Eq. (3.94) where

cs

RCS

~ k2 + yH(A0) Y P [kepks — (Aw)? (meks + veys)

— Fi(kep + ks — me(Aw)*)T?
+ [(Aw) (yskep + Veks) — (Aw) ysme — Fioe(ys + ve)1P}—1/2, (3.107)

Oce ® Fellks — Fi1* + y2 o} 2 [kegks

- w?(mcks +Yevs) — Fi (kcq + ks — mcwg)]z
1
+ [wc(Vskeq + veks) — @ ysme — Fiaoe(ys + ve)l* — > (3.108)

Qss ~ Fyllks — Fi1> + y202} Plkerk
— w} (mcks + vevs) — Filker + ks —mea})]?
+ (w5 (Vsker + Veks) — @3 ysme — Fioe(ys + vo) 1> — % (3.109)
Qcs ~ FyFilkerks — f (meks + yeys) — Filker + kg — meo]))?
+ [ws (Vsker + Veks) — @) ysme — Faog(vs + v — % (3.110)
and
Qye & FeFilkegks — wp(meks + veys) — Filkeq + ks — mew))]”

1
+ [@e(Vskeq + Veks) — @ ysme — Fioe(ys + ve) 1> — 3 (3.111)
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The phase term I' in Eq. (3.102) is given by Eq. (3.101) and is quite complicated.
However, advantage can be taken of the fact that k; is generally large compared
to other terms in the numerators of Q.., Qss, Ocs, and Q,.; the denominators of
these terms are very roughly all equal. Hence, the magnitudes of Q.. and Qg are
usually large compared to those of Qs and Q.. The Q. O,y term thus dominates
in Eq. (3.101) and we may approximate I" as

1 Vs@Wc —1 VeWs
——F —tan P —
ks — Fy ker — F1 — mew;

(3.112)

I' ® o, — oy = tan™

To the extent that I' may be approximated by Eq.(3.112) we may approximate G,
as

Dy
Gp ~ P Qccst- (3.113)
s

R

RDF-AFM operation requires that the difference-frequency correspond to a
contact resonance mode of the cantilever. No such requirement is imposed on HFM
or SNFUH. However, it is important to be aware that if the difference-frequency is
larger than the lowest contact resonance but not near a higher contact resonance,
a single difference-frequency mode p does not generally dominate the signal out-
put. For such cases a sum of the largest modal contributions must be used to assess
the signal output. If the difference-frequency is set well below the lowest modal
frequency of the engaged cantilever, the appropriate equations are those with p equal
to the lowest modal frequency of the engaged cantilever but the magnitude of the
output signal would not be optimized.

3.4.3.2 Ultrasonic Force Microscopy

In ultrasonic force microscopy [7, 8] the cantilever drive frequency w. and drive
amplitude F, are zero, while the surface drive amplitude F; and the drive frequency
wy of the wave generated by the transducer at the bottom of the sample are nonzero.
UFM can be operated at very large frequencies, even in the gigahertz range. Although
the vibration response of the cantilever is certainly quite small at such frequencies,
operation at a quiescent separation distance zq corresponding to the nonlinear regime
of the force-separation curve, such that F, is maximum, will produce a detectable
static or “dc” signal from the interaction nonlinearity. The generated static signal is
called the ultrasonic force.

The nonlinear force-separation interaction in the CIS model results in a static
displacement of the cantilever 7 s given as

Nc,stat = Z Y, (-xL)ncn,stat (3.114)

n

where ¢y star 1S the contribution from mode n given by
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Nen,stat = €en + Cen,stat s (3.115)

and the zeroth-order contribution &, and the first-order contribution &, st are given
by Egs.(3.71) and (3.78), respectively. Terms in Eq.(3.78) involving Q.. and Qg
are zero, since F¢ is zero for UFM. We assume operation of the UFM in the nonlinear
regime of the force curve where F; is maximized. We approximate the nonzero terms
Qg5 and Q¢ in Eq. (3.78) by (3.109) and (3.110), respectively. We obtain

ks

St = F
flenstat kcnks - Fl (kcn + ks){ 0

F
+ 7[283 + Q% + 0% + 205055 cos ags 1) (3.116)

where ¢ is given by Eq.(3.79) and oy, is given by Eq. (3.83). To the extent that Qg
is much larger than Q. because of the occurrence of kg and yw; in the numerator
of Qys, Eq.(3.116) may be simplified by dropping the terms involving Q..

It is interesting to note that the &, and ¢, terms in Egs. (3.115) and (3.116) do not
explicitly involve the sample surface drive amplitude F; and frequency w;. These
terms predict that a static signal exists even without the presence of an ultrasonic
wave propagating through the sample and results directly from the interaction of the
cantilever with the sample surface via the static term F{ in the polynomial expansion
of the interaction force. The ¢, stat terms in Eqgs. (3.115) and (3.116) involving the
Q factors depend directly on the magnitude of F; and strongly on the surface drive
amplitude F; and frequency wy. This means that only the contributions stemming
from the nonlinearity in the cantilever tip-sample surface interaction force respond
directly to variations in the surface drive amplitude and thus to surface and subsurface
physical features of the material giving rise to variations in Fy. The magnitude of the
contribution ¢¢, star is strongly dependent on the surface oscillation amplitude and the
cantilever tip-sample surface quiescent separation z,, since the value of the nonlinear
stiffness constant F> that dominates these contributions is highly sensitive to the
oscillation amplitude and z,. Indeed, F; attains a maximum value for oscillations
near the bottom of the force-separation curve of Fig.3.1.

Since 7nen star 1 dependent on both Fy and kg , amplitude scans of the sample
contain information about the elastic stiffness of the sample through k; as well as
information about subsurface features via the dependence of the amplitude on Fj.
The dependence on y; means that UFM is sensitive to viscous properties of the
sample as well.

3.4.3.3 Atomic Force Acoustic Microscopy and Force
Modulation Microscopy

For both atomic force acoustic microscopy [5, 6] and force modulation microscopy
[4] the cantilever drive amplitude F,. and frequency w. are zero. As in UFM, the
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surface drive amplitude F; and the frequency w; are nonzero. However, unlike UFM,
the surface drive frequency is limited to a range of frequencies that produce measur-
able displacement amplitudes of cantilever oscillation. The cantilever displacement
amplitude 7y 1in corresponding to the nth mode is obtained as ¢ 1in = &cn + Len.lin,
where the zeroth-order contribution &, is given by Eq. (3.72) with the term involving
Q.. setequal to zero and the first-order contribution &, jin is given by Eq. (3.85) with
all terms involving Qg. and Q.. set equal to zero. We obtain

Nen,lin = Hi cos(wst — ¢ss +0 + Ay) (3.117)
where
Hy = [Q% + W] +20c Wi cos(Bs + pss — dss)1'/2, (3.118)
W—Z& F>[0? 2 492 172 3.119
1= R €0 Z[st + ch + 2055 Qcs COSa55] /7, (3. )
Ss

and .

Al = tan~! sin(Bs + tss — Pss) (3.120)

cos(Bs + sy — Pss) + (QCS/WI).

If the oscillation amplitude and quiescent distance zq are set for AFAM operation
well away from the highly nonlinear region of the force-separation curve where F; is
sufficiently small, then we may approximate 7., from the zeroth contribution alone
as

Nen,lin ~ gcn ~ ch COS(L()SI - ¢ss + 9) (3121)

where Q. is given by Eq.(3.110), ¢4 by Eq.(3.106), and 6 by Eq.(3.65). Small
values of F, can be achieved when operating in the region of the force-separation
curve well above zp or well below zp (see Fig.3.1). Usually, the AFAM is operated
in hard contact where the tip-sample interaction force is repulsive over at least a
portion of the oscillation cycle. If the oscillation amplitude and quiescent distance zg
are sufficiently small, F is large and negative, and F> is negligible. The harmonically
generated signals resulting from the interaction force nonlinearity are then negligible
and the AFAM may be said to operate in the “linear detection regime.”

3.4.3.4 Amplitude Modulation-Atomic Force Microscopy

The amplitude modulation-atomic force microscope modality (also called intermit-
tent contact mode or tapping mode) [2] is a standard feature on many atomic force
microscopes for which the cantilever is driven in oscillation (F, and w. are nonzero),
but no surface oscillations resulting from bulk ultrasonic waves are generated (i.e.,
Fs and w; are zero). The cantilever is driven at ultrasonic frequencies. As with
AFAM and FMM, the general equation for the cantilever output 1., is given as
Nendin = &en + Cen lin, Where for AM-AFM &, is given by Eq. (3.72) with the term
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involving Q. set equal to zero and &, 1in is given by Eq. (3.74) with all terms involv-
ing Qs and Qg set equal to zero.
The expression for 1¢y Jin 18

Nen,lin = H; cos(wet — Pee + A2) (3.122)
where .
Ay = tan~! sin(Be + tee — GPee — Aee) ’ (3.123)
cos(Be + thee — Gee — ee) + (Qec/ W)
Hy = [ch + W22 +2QccWrcos(Be + thee — Pee — acc)]l/za (3.124)
and
D 2 2 12
Wy = 2R 80F2(QCC + Qsc +2Qcc Qsc COS Aee) (3.125)

ce

where Q.. is given by Eq.(3.108), Q. by Eq.(3.111), ¢, by Eq.(3.105), ptcc by
Eq.(3.85), g9 by Eq.(3.79); acc, B¢, De, and R, are given by Eqs. (3.82), (3.87),
(3.89), and (3.92), respectively, with the terms involving m; set equal to zero.

The complexity of the cantilever response 7., 1in is greatly reduced, if, as for
AFAM and FMM, the oscillation amplitude and quiescent distance zg are set for AM-
AFM operation well away from the highly nonlinear region of the force-separation
curve where F; is sufficiently small. As for AFAM and FMM, small values of F; can
be achieved when operating in the region of the force-separation curve well above
zp or well below zp (see Fig.3.1). Usually, AM-AFM is operated such that zg is
well above z g. If the oscillation amplitude is such that the tip-sample separation also
remains well above z, then F> is relatively small and the AM-AFM is said to operate
in the soft contact (also called non-contact) regime of operation. Otherwise, the
operation is considered to occur in the hard contact regime, especially if intermittent
contact is made with the sample surface. For the non-contact regime of AM-AFM
operation, we obtain to a reasonable approximation

Nen,lin =~ Qcc cos(wet — dee). (3.126)

3.4.3.5 Ultrasonic Atomic Force Microscopy

UAFM [3] utilizes a cantilever tip in permanent forced contact with the sample
surface. Ultrasonic oscillations are usually induced in the cantilever either through
the cantilever base or directly through the cantilever. The oscillation amplitude is
usually kept small, so that F> is sufficiently small that harmonic oscillations are not
generated. The operational characteristics of UAFM usually falls in the linear range
of the force-separation curve where Eq.(3.126) for AM-AFM applies. It is clear
from Egs. (3.126), (3.105), and (3.108) that the output signal from the cantilever is
dependent on k;, s, and F1, and is thus sensitive to both conservative and dissipative
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forces. The polynomial coefficient F7 is an independent parameter in the CIS model,
but can be related to ks and y; by invoking the resonance condition 3¢, jin/d@* = 0.
We emphasize, as pointed out in Sect. 3.3.5, that k; is a dynamic modulus and is thus
dependent on the frequency of the drive oscillation, as in the case for the cantilever
stiffness constant k.,. The use of an effective dynamic modulus [3], or equivalently
of the surface acoustic impedance [16], is central to the detection of delaminations
and voids in the assessment of layered materials using UAFM. The success of UAFM
in detecting subsurface features serves to validate the view that kg in the CIS model
is a dynamic modulus.

For sufficiently hard contact and sufficiently small oscillation amplitude, Fj is
large and negative. We approximate ¢.. and Q.. in such case as

1 (Vs + ve)oe

~tan” ! ——2 T
Pec ken + ks — mew?

, (3.127)

and
F.

Qee ¥ [(ken + ks — mewd)? + (s + ye)2w2]V/2

(3.128)

3.4.4 Image Contrast in the CIS Model

The equations for cantilever signal generation are derived in the CIS model in terms
of the sample stiffness constant k;, the sample damping coefficient y;, and the inter-
action force polynomial expansion coefficients Fy, F, and F>. If, in an area scan of
the sample, these parameters remain constant from point-to-point, the image gener-
ated from the scan would be flat and featureless. However, the parameters generally
vary from point to point on the sample surface and lead to variations in the cantilever
output signal that is interpreted as material contrast. Indeed, variations in the sample
stiffness constant kg, for example, can lead to an assessment of variations in the
Young modulus, since kg is dependent on the Young modulus, and when combined
with variations in the damping coefficient y; can lead to an assessment of material
viscoelasticity.

The variations in the material and interaction force expansion parameters pro-
duce changes in both the amplitude and phase of the cantilever output signal
for HFM, SNFUH, RDF-AFUM, FMM, AFAM, AM-AFM, and UAFM but only
changes in the amplitude are relevant to UFM. In the single system model the mate-
rial and interaction force parameters are kerr and yerr and lead to the variations
Aketf = A(ke — F1) = —AF) (k. is constant) and Ayesr = A(y — S1) = —AS1 (Ve
is constant) in the expressions for phase image contrast. Phase image contrast in
the linear approximation for AM-AFM operation in constant amplitude control is
specifically addressed in Sect.3.3.3 for the single system model where it is shown
that the equations for phase contrast are simplified considerably when operating in
cantilever resonance with constant amplitude control.
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In the CIS model the independent material and interaction force parameters are Ky,
F1, and y;. The occurrence of three independent parameters leads to more compli-
cated expressions for image contrast, even in the linear approximation. For example,
phase contrast for AM-AFM operation in the non-contact regime is obtained in the
CIS model from Eq. (3.105) as the variation in ¢... We get from Eq. (3.105) that

—[(Ve + vs)wc F1 + 23 ys1 ks + [Yewek? + (ve + vs) Ve vs@S1AF] + [y2olks + wcks F12]Ays

A¢cc =
(2 w?k? + [(ve + yo)2a? + k2IFE = 2y 0tk Fi + vE v od)

(3.129)

We note from Eq. (3.129) that phase contrast in the CIS model depends not
only on variations in the parameters kg, F|, and yy, but on the initial values of kj,
F1, and y; as well. For operation near the resonant frequency, however, one of the
parameters can be expressed in terms of the other two parameters via the solution to
the resonance relation 0 Q.. / Bwf = 0.If also operating in constant amplitude control,
the solution to the relation A Q.. = 0 allows the expression of one of the parameter
variations in terms of variations in the other two parameters. Thus, when operating
in constant amplitude control near resonance, the solutions to 9 Q../ 8a)3 = 0 and
A Q. = 0 can be used to reduce Eq.(3.129) to an expression involving only two
of the variables kg, F, and ys, and two of the variations Akg, AF7, and Ay;. The
procedure does not lead to the degree of simplification for Eq.(3.129) that occurs
for the corresponding equation in the single system model (see Sect.3.3.3), but the
reduction to two independent variables is nonetheless helpful in assessing the phase
contrast analytically and experimentally.

Expressions for both amplitude and phase image contrast, similar to that of
Eq. (3.129) for phase contrast, can be obtained for each of the other d-AFM modali-
ties, but page limitations prevent such an assessment here. The reader can obtain the
contrast equations for a particular regime of operation for a given d-AFM modality
straightforwardly from the signal generation equations for the modality of interest.
For example, phase contrast in the nonlinear regime of operation for AFAM can be
obtained from the variations A¢p = (—A¢s + A0 + AAq) in Eq.(3.117) or for
amplitude contrast from the variation A H; where H; is given by Eq.(3.118).

Notwithstanding the more complicated expressions for image contrast, the advan-
tage of the CIS model is that all material and interaction force parameters appear
directly in the signal generation and contrast equations; and that each model parame-
ter is unambiguously linked to a specific material property. The material properties
are thus in principle assessable utilizing a particular -AFM modality or a combina-
tion of d-AFM modalities. Further, the sample stiffness constant k; is decoupled from
F1 and the symmetry of the governing dynamical equations places the analysis of
cantilever and sample oscillations on equal footing. The physical and mathematical
symmetry of the cantilever and sample dynamics enables the direct evaluation of the
various d-AFM modalities presented here.



82 J. H. Cantrell and S. A. Cantrell

3.5 Conclusion

The various dynamical implementations of the atomic force microscope have become
important nanoscale characterization tools for the development of novel materials and
devices. To understand the operational characteristics, signal generation, and image
contrast from the various d-AFM modalities we have presented a general, yet detailed,
mathematical model of cantilever dynamics as an oscillating cantilever coupled to
a sample through a mutual interaction force. For definiteness we assume that the
cantilever is a rectangular beam of constant cross-section, the dynamics of which are
characterized by a set of eigenfunctions that form an orthogonal basis for the solution
set. The general equations of cantilever dynamics are reduced to a set of local, phase-
correlated, damped harmonic oscillator equations. The set reflects the geometrical
space defined by the cantilever shape and collectively defines the eigenmodes of
cantilever motion. The equations account for the positions on the cantilever of drive
forces, damping forces, tip contact with the sample, and boundary conditions. For
some other cantilever shape a different orthogonal basis set of eigenfunctions would
be appropriate. However, the mathematical procedure used here would lead again to
a set of local, phase-correlated, damped harmonic oscillator equations with values
of the coefficients appropriate to the different cantilever geometry. Practicably, this
means that the shape of the cantilever is not as important in the solution set as knowing
the cantilever modal resonant frequencies, obtained experimentally. An advantage
of the approach is that the solution set can be expanded to include nonlinear modes
generated by the nonlinearity of interaction forces for large cantilever or sample drive
amplitudes.

One of the most significant factors affecting the cantilever dynamics is the can-
tilever tip-sample surface interaction force. The analytical solution to the dynamical
equations usually entails a series expansion of the interaction force. Even for small
oscillation amplitudes, more terms in the expansion are needed, if the quiescent
separation between the cantilever and sample surface is near the highly nonlinear
portion of the force-separation curve. Although using more expansion terms leads to
increasingly better approximations to the solution, the task becomes ever more daunt-
ing algebraically as the number of terms increases. A polynomial expansion based
on linear algebra and inner product spaces is developed to represent the tip-sample
interaction force that somewhat reduces the number of terms needed in the iterative
approximation procedure for solving the dynamical equations. The coefficients in
the polynomial expansion are responsible for significant features of the cantilever
dynamics. For example, the higher order coefficients in the expansion explain the
occurrence of amplitude bifurcation (see Appendix A) as well as the generation of
both harmonic and subharmonic modes of oscillation (see Appendix B). The cou-
pling of the cantilever oscillation modes by the interaction force nonlinearity leads
via the group renormalization method to an explanation of often observed resonance
bifurcation upon cantilever-sample contact (see Appendix C). The general validity
of the spring model is also addressed in Appendix C.
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The cantilever dynamics are first treated using the single system model for which
the effects of sample surface oscillations are absorbed within the interaction force
itself. The model leads to expressions of image contrast involving, in the linear
approximation, only variations in the F and S interaction-force expansion coeffi-
cients. The connection between the cantilever oscillations and the sample physical
properties occurs implicitly in the single system model through the relation k* = F7,
where k* is an effective spring constant of the interaction force. The connection
occurs via the measured shift in the cantilever resonance frequency determined by
F1. Another link between the cantilever oscillations and the sample physical prop-
erties in the single system model is via the interaction-force damping coefficient S;.
Although the parameters Fj and S collectively account for the effects of the sam-
ple physical properties in the single system model in the linear approximation, the
de-convolution of specific sample physical properties from an assessment of F and
S1 is not at all straightforward and has sometimes led to confusion and controversy.

To provide a greater measure of flexibility and symmetry regarding the description
of tip-sample interactions, a dynamical model is presented for which the cantilever tip
and the sample surface are treated as independently damped simple harmonic oscil-
lators passively coupled via the nonlinear tip-sample interaction forces. The analyt-
ical model, called the CIS model, reduces to a pair of coupled nonlinear differential
equations. The general solutions, obtained using a matrix perturbation procedure, are
applied to the quantitative assessment of signal generation for the most commonly
used d-AFM modalities. A notable feature of the CIS model is the treatment of the
sample stiffness constant kg similarly to that of the cantilever stiffness constant k.
No effective spring constant k* is necessary to connect to sample physical properties
as for the single system model. The sample physical properties in the CIS model
are ascertained in the linear approximation through kg, the sample damping coef-
ficient y,, and the expansion coefficient F;. Although the occurrence of the three
independent parameters kg, Y., and F; leads to more complicated expressions for
signal generation and image contrast, notable advantage is gained in having a more
direct link between the cantilever output signal and the sample physical properties.
For d-AFM operation in the highly nonlinear regime of the force-separation curve
(as is always the case for HFM, SNFUH, RDF-AFUM, and UFM) the analytical
expressions for the amplitude must also include higher order expansion terms such
as F,. The nonlinearity also results in phase terms that appear in both the output
amplitude and phase signal in addition to that obtained in the linear approximation.

Acknowledgments SAC thanks the US Department of Energy, Washington, DC, for support under
Prime Award DE-SC0001764.

Appendix A: Amplitude Bifurcations

A general assessment of the effects of the various expansion coefficients Fy, F1, F2,
etc., on the frequency and amplitude in the solution to Eq.(3.21) can be achieved
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Fig. 3.4 Amplitude bifurcation resulting from the creation of a fold in the amplitude versus fre-
quency curve. The left-oriented fold for the case depicted in the figure gives rise to stable upper
(ne < 0) and lower (n. < 0) oscillation amplitudes (amplitude bi-stability) represented by the
solid portion of the curves for drive frequencies below the free-space resonance frequency wg. The
dashed portion of the lower curve is an unstable region of the curve that produces a third oscillation
amplitude not observed experimentally

most expediently by taking n., — n¢, Yen — Ve, and ke, — ke in Eq.(3.21), and
assuming that in first-order approximation n. = ¢+ 1.0 cos w.t where c is a constant.
Substituting the expression in Eq. (3.21), neglecting harmonic frequency terms in the
resulting expression, and solving the resulting equation, we obtain

12 1/2

F\> 4FyF, 2F2? F.
e A (wg_—‘)_ 02 22,2 e (A.1)

i -
me m? m2 ¢ Menco

where wy is the free-space resonance frequency of the cantilever. It is seen directly
from Eq. (A.1) that F leads to a shift in wq that is dependent via Eqs. (3.14) and
(3.16) on the amplitude of cantilever oscillation, the quiescent separation distance
20, and the sign of F7.

The product term Fy F> in Eq. (A.1), where Fj is the static term and F; is the first
nonlinear term in the polynomial expansion of the interaction force, also leads to a
shift in wy, the shift direction being dependent on the signs of F and F,. However,
the F, term alone in Eq. (A.1) leads to a bifurcation in the cantilever oscillation
amplitude that produces upper and lower amplitude versus frequency curves over
specific ranges of drive frequency. The bifurcation results from the left-oriented fold
shown in Fig.3.4 where from Eq.(A.1) the absolute oscillation amplitude |7.| is
plotted as a function of the drive frequency w.. We point out that since Eq. (A.1)
does not include the effects of damping, the resonance “peak” in the figure is not
closed. The factor (2F22 77%0 / m%) in Eq. (A.1) is responsible for the frequency shift in
the “peak’ of the resonance curve that increases with an increase in the oscillation
amplitude n.o. The increasing shift in the resonance peak with increasing amplitude
produces the fold shown in Fig.3.4.
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Since F; is squared in Eq. (A.1), the frequency of the resonance “peak” decreases
with increasing amplitude irrespective of the sign of 3, and results in the left-oriented
fold shown in the figure. It is apparent from the figure that three possible oscillation
amplitudes .o are possible when the drive frequency w, lies within the fold. Only
the upper and lower amplitudes are stable and lead to the experimentally observed
amplitude bi-stability; the middle amplitude is unstable and not seen in experiments.
It is emphasized that the curve folding (peak frequency shifting) from F; is quite
independent of the frequency shift produced by F; and the product FyF,. F1 and
Fo F, shift the entire resonance curve to larger or smaller frequencies — not a portion
of the curve leading to folding, as is the case for F.

To more clearly delineate the role of F3 in the frequency-amplitude relation, we
repeat the derivation leading to Eq.(A.1) using only the terms F; and F3 in the
polynomial expansion. We now assume that in first-order approximation 7, =
neocosw.t and substitute the expression in Eq.(3.21). Again neglecting harmonic
frequency terms in solving the resulting expression, we obtain

Fi 3F; F. \'?
W, = a)% - — — ——7]30 — < . (A.2)
me 4dme me1co

Equation (A.2) shows that F3 plays a role similar to that of F; in the frequency-
amplitude relationship. However, unlike F; in Eq. (A.1), F3 appears to the first power
in Eq. (A.2). This means that the frequency of the resonance “peak” increases or
decreases in accordance with the sign of F3, producing either a right-oriented or
left-oriented fold, respectively.

Amplitude bifurcation is well-documented in the literature [34, 45, 46] and is
often attributed to the occurrence of attractive and repulsive components in the
force-separation curve. Equations (A.1) and (A.2) show, however, that amplitude
bi-stability is a consequence only of the nonlinearity in F(z) (represented in Eq. (A.1)
by the tem F; and in Eq. (A.2) by F3). The attractive and repulsive components in the
interaction force affect only the magnitude and sign of the expansion coefficients.
The upper amplitude curve in Fig. 3.4 corresponds to the case where the cantilever
oscillations are 180 degrees out of phase with the drive force (F./n.0 < 0), while
the lower amplitude curve corresponds to the case where the cantilever oscillations
and drive force are in phase (F./n.0 > 0).

Appendix B: Subharmonic Generation and Routes to Chaos

We show in Sect.3.3.2 that nonlinearity in the interaction force leads to a shift in
the resonance frequency with increasing drive amplitude. In Sect. 3.3.4 we find that
the nonlinearity also generates harmonics of the driving force frequency. For an
appropriate range of values of the dynamical parameters, including drive frequency,
the interaction force nonlinearities that lead to the generation of harmonics is known
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to stimulate the generation of subharmonics [S1]. This is seen, for example, from a
3

consideration of the forced Duffing equation X + ax + ex° = I" cos wt.
Let T = wt and re-write the Duffing equation as [51]
o’x" +ax +ex’ =T cost (B.1)

where the prime symbol in Eq. (B.1) denotes the operator d/dr. We look for solu-
tions of Eq. (B.1) having period 6;r (corresponding to frequency w/3). Letting w
= wq + &wi, substituting in Eq. (B.1), and using the perturbation procedure given
Sect.3.3.4 where ¢ = &, we obtain the zeroth- and first-order perturbation equations,
respectively, as

wigx"o 4 axg = I cos T (B.2)

and

/
wgx" 4 ax; = —2wow1x'y — x{. (B.3)

The periodicity condition, 67, applied to Eq. (B.2) means that @y = 3./a. The
solution to Eq. (B.2) [zeroth-order solution to Eq. (B.1)] is thus

x0(T) =a1/3cos%t+b1/3 sin%r — 8%0051. (B.4)
Although Eq. (B.4) suggests the possibility of a period-3 solution, it does not
guarantee the solution. The second-order perturbation equation, Eq. (B.3), is used to
determine the conditions on the coefficients a1 /3 and b1 /3 that allows the generation of
a subharmonic. Such a determination is not straightforward and shall not be presented
here (for details see Jordan and Smith [51]). We simply point out that the conditions
allow the generation of the 1/3 subharmonic for Eq.(B.1), but a similar solution
for the 1/2 subharmonic is not allowed when ¢ is small. Even when the conditions
permit a given subharmonic, the subharmonic may not be observed experimentally.
Whether a given subharmonic is observed experimentally depends on the stability
of the subharmonic.
We now consider the cantilever dynamical equation. Subharmonic stability for the
cantilever dynamical equation (3.21) is more conveniently addressed by re-writing
Eq.(3.21) in dimensionless form as

x4+ Tex' + Q%x = focost + fo+ fox> +--- (B.5)

where

Yelf o2 _ kett o

mew mew w ’
F. Fo c P ¢ (B.6)
fc = 5 fO = 5 f2 = 5.
mew mew mew
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Equation (B.5) is an example of a second-order nonlinear ordinary differential equa-
tion of general form
x" = flx,x', 7). (B.7)

The stability of any solution to Eq.(B.7) can be assessed by first reducing Eq. (B.7)
to a system of first-order equations as

X =g,y 1), Y=gy 1) (B.8)
or in matrix form as
X' =G(X, 1) (B.9)
where
x:(x), x’:(’“i), G(X,z)z(gl(x’y”)). (B.10)
y y 82(x, y,7)

Let X be a solution to Eq.(B.9) and E be a small perturbation to the solution
such that
X=X,+E (B.11)

[ Xs = &
s—(ys), & (77) (B.12)

Substituting Eq. (B.11) in Eq. (B.9), we obtain

where

Xi+E8 =GX;+E, 7). (B.13)
If E is sufficiently small, we may reduce Eq. (B.13) to the linear matrix equation
E=GX;+E,7)— G (X5, T) X A(T)E (B.14)

where A is a 2 x 2 linear matrix. Equation (B.13), known as the first variational
equation, implies that the stability of the solution x; to Eq. (B.5) is the same as the
stability of solutions E to Eq.(B.9) and, hence, to Eq.(B.7) [51].

We apply the above results to Eq. (B.5) by re-writing Eq. (B.5) as a pair of first
order differential equations given in matrix form by

(X y g1(x, y,7)
X= (y’) - (—Fcy - Q% + fo+ fox? + fccosr) - (gz(x, 3 f)) =60,
(B.15)
Itis straightforward to show that Eq. (B.15) is identical to Eq. (B.5) by differentiating
the top element on both sides of the second equality and substituting the bottom
elements in the resulting expression. We now write
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_(*) _ xs +& _ -
X = (y) = (Ys+77) =X+ & (B.16)

and substitute Eq.(B.16) in (B.14) to get

()-(20)- |
Y e+ ~Te(ys +1) = Qs +8) + fo + folxs +8) + fecost )

(B.17)
Expanding the quadratic term in Eq. (B.17), retaining only the first power of £, and
subtracting X, = G (X, t) from the resulting expression, we obtain

%'/ — ]”
(’7/) B (—Fcn—92§+2f2xsg)~ (B.18)

Differentiating the top elements on both sides of the equality in Eq.(B.18) and
substituting the bottom elements in the resulting expression, we obtain the second
order linear differential equation

E'+TE +(QF —2fox)E =0. (B.19)

The factor x; in Eq.(B.19) is a solution to Eq. (B.5) which, from Sect.3.3.4, we
approximate to first order as x; &~ (fo/ Q) + A cos t. Writing

£(r) = e WPt (o) (B.20)
and substituting both x; and Eq. (B.20) in (B.19), we obtain Mathieu’s equation (in
standard form) [55]

"4 (a4 Bcost)e =0 (B.21)

where in the present case

2 2
1 wr 1 " FoFro
o= ip2_pfo2 @y L ver \©_, Fobaer (B.22)
4 Q2 o 4 \mew? w§
and
A
B=-2HA=-2—"r. (B.23)
mew

The solutions to Mathieu’s equation for a given value of « occur in alternating
regions or bands of stability and instability as the magnitude of § increases [note
from Eq. (B.23) that 8 increases with oscillation amplitude A]. The Mathieu equation
belongs to the class of linear differential equations with periodic coefficients. The
general solutions to such equations, known as Floquet solutions, are of the form [51]

() = ce’" P() (B.24)
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where P(7) is a periodic function with minimum period 7, p is the Floquet index,
and c is a constant. The Floquet indices for Eq. (B.21) are obtained from solutions
to the expression

2T — p(a, Be’T +1=0. (B.25)

The factor ¢(«,B) is not known explicitly. However, writing u = exp(pT) and sub-
stituting in Eq. (B.25) yields a quadratic equation that can be solved for p, hence
for p, as a function of ¢(«,B). Thus, the solution p to Eq. (B.25) in terms of
¢(w,B) determines the stability or instability of the solution to the Mathieu equation,
Eq. (B.21), for a range of values of ¢ («, ). The ranges of values of ¢(«,B) lead to
a plot of « versus B showing alternating regions of stability and instability.

The solutions to Eq. (B.25) corresponding to regions of stability lead to solutions
of the Mathieu equation of the form [56]

(0.¢] (0.¢]
é—(r) — eiUT Z Cneil’lf — eith Z cneil’la)l (B26)

n=—0oo n=—00

where the Floquet index takes the value p =iv (v real) and ¢, are constants. A
fractional value of v leads to fractional harmonics (including subharmonics). In the
unstable regions of the a-f plot the solutions are given as [56]

$(t) =17 Pi(1) + c2¢” 7T Pa(7) (B.27)

where p = o (o real), c; and ¢, are constants, and Pi(t) and P,(t) are periodic
functions. It is clear from Eq.(B.25) that in the regions of instability at least one
solution is unbounded as the result of exponential growth and is, in fact, the origin
of the instability.

Numerical solutions of the Mathieu equation reveal that not all solutions in the
regions of instability are unbounded. Kim and Hu [57] show from numerical calcu-
lations that upon entering regions of instability from a region of stability the fun-
damental oscillation undergoes a cascade of period-doubling or pitchfork bifurca-
tions that culminates in the establishment of bounded, chaotic motion. They also
found that upon encountering the region of stability from a region of instabil-
ity, the instability becomes stable through a reverse pitchfork or period-doubling
bifurcation. However, the occurrence of a stable oscillation does not necessarily mean
re-establishment of the fundamental oscillation frequency. For example, numerical
solutions of the damped Duffing equation with « = —1 and ¢ = 1 reveal the appear-
ance of a period-five stable solution upon entering the second stable region from the
preceding unstable region [51]. Such a solution is allowed by Eq. (B.26). Experimen-
tal AM-AFM measurements show that the stable oscillation frequency upon entering
a second stability region is highly dependent on the initial conditions [58].

Itis important to note from Eqs. (B.22) and (B.23) that both & and j are dependent
on F, and w, while o depends additionally on yef and wg. From Egs. (3.19) and (3.20)
F> and yeff = ¥ — S1 vary with the amplitude of oscillation. When the amplitude
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of oscillation is such that the tip-sample separation distance enters the strong force
region (near the sample surface) of the force-separation curve, the variation in F;
and S can be substantial. Such changes affect « and $ and thus the solutions of the
Mathieu equation with an increase in drive amplitude.

Appendix C: Renormalization Methods

As indicated in Sect. 3.2 the general cantilever dynamics is quite properly described
in terms of an infinite set of superimposed, damped, harmonic oscillators (modes),
each with an associated free-space resonance frequency. Typically, the mode with the
largest contribution to the cantilever displacement amplitude is chosen for consider-
ation, the others ignored, and the cantilever modeled as a set of decoupled oscillators
as given by Eqs. (3.21). However, the nonlinearity of the tip-sample interaction force
leads to the possibility of interactions among the modes that produce significant
effects in the cantilever dynamics. Such possibilities are affirmed in amplitude ver-
sus frequency spectra taken from AFAM experiments [52, 53]. The spectra very
often reveal the bifurcation of a single free-space resonance into multiple resonances
upon cantilever-sample contact.

We show that resonance bifurcation is analytically predictable and occurs as the
result of nonlinear modal interactions [44]. Our analytical approach is quite similar to
that of group renormalization used in quantum field theory and in the description of
critical phase transitions in materials. In the present application of renormalization,
deviations of the cantilever displacements 7., from that expected for the spring
model at frequencies well away from some initially chosen renormalization reference
frequency are formally absorbed into the model by allowing the parameters in the
model to vary with frequency. Since the mathematical machinery is analogous to
that of the renormalization group, we adopt the language used in the mathematical
formalism for renormalization: in the present model the chosen reference frequency
is the ‘renormalization scale,” the model parameters are said to ‘run’ with the scale,
and the theory is said to be ‘renormalized.’

To obtain the appropriate equations of motion that couple the separate modes, we
take nen — Mns Yen — Vu, and ke, — ky, on the left-hand side of Eq.(3.21), and
we = wand ey = Y. Ny (Where Zt =1{1,2,...}) on the right-hand side of

meZ+
Eq. (3.21). For present purposes it is expedient to ignore the dissipative terms in the

expansion of Eq.(3.12) involving the coefficients S,. The implications of nonzero
S, will be considered following the renormalization. We thus obtain the dynamical
equations that account for mode coupling as [44]

2
Lynn = Fecoswt + Foo+ Fio D mm+Fao [ D o | +--+ (CD)

meZ* meZ+
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where the operator L, = (mc % + % + kn) . The greater difficulty in accounting

for mode coupling is apparent: a single, nonlinear differential equation, Eq.(3.21),
has been traded for an infinite number of coupled ones, Eq. (C.1). The renormalization
method is quite appropriate to handle such a situation.

L, can be inverted outside its nullspace to obtain the particular solution [44]

- 1 - . -
m = 27 G(O0) Fon + 3 Fe (2n62(w)ezwr n 2n02(_w)e—lwt)

0 [ G =) (3 n)
meZ+
2

+ Fa / ' G —1) [ D )|+ C2)

meZ+

(Note: the 0 superscript is a label, not an exponent) where GQ (t — 1) is the Green
function for L, L,G% = §(t — t'):

Gl —1') = / de/ GO (a)e! =1, (C.3)
—1

3 .
2wm, (a)’2 -2 iﬁa)’)

ne ne

Gl = (C.4)

We sum over all modes to obtain the total cantilever deflection 1, and define the

function
"= > G (C.5)
nezZ+t
along with the corresponding Fourier transform G’ = > 6;9,. We obtain from
nezZt

Eqg. (C.2) anintegral equation for the total cantilever deflection 7. (the exact parameter
of interest) as [44]

- 1 - . -
ne@ =3 n =21G°(0) Foo + SFe (2nG0(w)e’wf + 2nG0(—w)e—’wf)
neZ+

(C.6)

+ Fio / dr'GO(t — ) [ne(t)] + Fao / dr'G(t — )P + -+ .

For a given driving frequency w, the nonlinearity of the tip-sample interaction
force is known to generate harmonic terms Iw (I € Z¥) as shown in Sect.3.3.4. In
solving Eq. (C.6) the generation of harmonics leads us to consider the ansatz [44]
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ne(t) =Y ae'’” = (C.7)
leZ

. - 1 - . - .
> are’ =27GO(0) Fog + SFe (27[G0(a))e’“)t +2r GO(—w)e—lwf)
leZ

+ Flo Z GO(Jw)aje”wt
JeZ

+ Fy Z Gl(J + K)wlajage VKo ... (C.8)
(J,K)EZ2

where Z is the set of integers. The Fourier coefficients a; determine the cantilever
amplitude that is experimentally observed at the frequency |/|w. Explicitly, the ampli-
tude is given as A(/w) = 2 |ay|, which follows from the reality condition n. = n,
where the star denotes complex conjugation. The non-triviality of the coefficients
ay |I| > 1) reflects the nonlinearity of the interaction force.

Using the orthogonality of the Fourier basis, we obtain from Eq. (C.8) the recursion
relation [44]

~ 1
ar =21G(Iw) |:§Fc(81,1 +81,-1) + Foody,0 + Froar + Fao Z ajaj—j +---
JeZ
(C.9)

We note that if G°(/w) were the Fourier-space Green function 62(1 w) for a single
harmonic oscillator mode n, Eq.(C.9) would have the same form as that for the
typical solution found for a decoupled mode 7. In such case the exact solution for the
total cantilever displacement would look identical to that of a linear spring subjected
to nonlinear forces—a more immediately tractable problem mathematically than the
one at hand. This suggests that, in analogy to Eq. (C.4) for GS (Iw), G° should be
expressed as

~0 _ —1
G (w) = K@) G (C.10)
2mwm, (a)2 - a))
me me

where K and G are the renormalized cantilever spring and damping coefficients,
respectively.

When transforming Eq. (C.10) to ‘time’-space, the Green function is completely
characterized for purposes of integration by its poles and residues. Poles must nec-
essarily occur in Eq. (C.10) at

. Vn dkyme — }/2

2m, 4m? . 1D

c
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where the real part of €2, is the free-space resonance of the cantilever corresponding
to the nth mode. K and G must be real-valued functions that, due to constraints on
the location of the poles, must satisfy

K(Q2,) =k, (C.12)
G(2,) = yn. (C.13)
With these constraints the poles of GY are {Q,} and Res [GO(Q,L)] =

~ —1
Res [Gg(sz,,)] S (2n,/4mckn - y,g) . Equations (C.10)~(C.13) lead to the
explicit functional forms

K(w) = LLIC I:mca)z + —} + Re I:mca)z + —} (C.14)
Re(w) 271 GO(w) 27 GO(w)
G(w) = le [m w® + ;] (C.15)
~ Re(w) ‘ 27G(w) ‘

where G in Eqgs.(C.14) and (C.15) is calculated from the infinite sum given by
Egs.(C.4) and (C.5).
From Egs. (C.9) and (C.10) we re-write the recursive solution as

~ 1
aj =2 G(lw) | Foodr,0 + EFC((Sl,l +d7,-1) + Fao Z ajaj—j +---

JeZ\{0,1}
~ (C.16)
where the interaction force-modified Green function G is given by
~ ~ =1 .
G(w) = [1 — ZnUGO(w)] GO(w)
= —1 (C.17)
( (K(w) +Re(0)) (0G(w) + Irn(a)))
2rme| w?— —i
me Me

o = (Fio +2Fxao+ - - ). (C.18)

‘We note that for nonzero dissipation terms S, and R,,,, the expansion in Eq.(C.1)
would pick up S, and R, terms that lead to additional sigma-like terms, similar to
that of Eq. (C.18), in the denominator of Eq. (C.17).

We now consider a particular application of the renormalized model that demon-
strates resonance bifurcation. Since the running of the renormalized parameters with
frequency necessarily results in the appropriate multi-peak, free-space resonance
spectrum, it is reasonable to suspect that the nonlinear interactions, smoothly intro-
duced to the cantilever system as the cantilever engages the sample surface, would
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mix the peaks and bifurcate the resonances. For example, the running of the parame-
ters in the vicinity of a given resonance peak from one parameter value to a second
value should result in two contact resonance peaks in place of the given free-space
resonance peak. To demonstrate resonance bifurcation, we wish to plot the cantilever
amplitude as a function of its driving frequency and observe a splitting in the local
maxima of the curve.

We begin by assuming that the cantilever output signal is passed through a lock-in
amplifier such that all frequencies except the drive frequency are filtered out. Thus,
only the amplitudes corresponding to / = & 1 are of interest and the amplitude is
A = 2|ay|. In such case the nonlinear components of the interaction force vanish
from the recursion relation given by Eq. (C.16), if Eq. (C.16) is solved iteratively for
a4 by recursively substituting the relation in Eq. (C.16) into the a; on the right-hand
side. The resulting expression is

as) = 7G(xw)F,. (C.19)

It is emphasized that for an infinitely stiff sample surface Eq.(C.19) is exact and
is numerically equivalent to results obtained by starting with the beam equation and
applying a nonlinear interaction force at the tip-sample boundary. In most cases
the sums defining G® and o converge quite rapidly, so practicably the sums can
be truncated with accurate results. The extension of the model to include the more
realistic case of an elastic sample surface is more complicated and is the subject of
current research. The present model, nonetheless, predicts the resonance bifurcation
observed in AFAM experiments quite well.

To calculate the right-hand side of Eq.(C.19), we must determine G%(+w) and
o, and use the relationship given by Eq.(C.17) to obtain G(+w). To determine
GO(:I:a)), we use the rough approximations &, ~ kin* and Vn R y1n2 in Egs. (3.14)
and (3.15) for the cantilever modal stiffness constants and damping coefficients,
respectively [44]. The exact relationships depend, of course, on the cantilever shape
and the experimental environment. If the driving frequency is close to the free-
space cantilever resonance frequency, then large n terms contribute minimally to the
calculation of G, ap, used in Eq. (C.18) to obtain o, is calculated recursively from
Eq.(C.16) to order (F.)*F, as

a0 ~ 27 G0(0) [Foo + (2né°(w))2(Fc)2on] . (C.20)

We assume a damping coefficient y; = 107% N s m~!, cantilever mass m, =
10~%kg, fundamental resonance frequency w; = 22kHz, and cantilever stiffness
constant k; = 0.484Nm~!. We assume typical force parameters F. = 10~/ N,
Foo=—10"°N, Fjo = —1 Nm™!, and F>y = 10° N m~2. We point out that not all
values of the force and damping parameters are found experimentally to give rise to
resonance bifurcations. The same is true for the present renormalization model. The
values chosen above are all within the range of parameter values typically found for
AFAM operation. The specific values given above are found to generate the triple
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Fig. 3.5 Cantilever displacement amplitude plotted as a function of drive frequency for free-space
cantilever oscillations (dashed curve) and for cantilever engagement with the sample surface (solid
curve) [44]

bifurcation resonance bifurcation given in Fig.3.5, while many other parameters
values do not generate resonance bifurcations in the model at all.

The calculated amplitude of the cantilever as a function of the driving frequency
w is plotted in Fig 3.5 for both the free-space and surface-engaged cantilever using
the renormalized model. The multiple free-space resonance modal peaks (dashed
line) are clearly shown. Resonance bifurcation and frequency shifting is apparent in
the curve for the engaged cantilever (solid line). The free-space resonance at angular
frequency 22 kHz is shown to bifurcate into three resonances: at angular frequencies
19, 22, and 51 kHz. We point out that the number of bifurcation resonances predicted
in the present model is quite sensitive to the values of the cantilever parameters used
in the calculation. This is in agreement with the findings of Arnold et al. [52] who
report both double and triple bifurcation resonances in the frequency spectra for
various materials and cantilevers. Zhao et al. [53] report experimental data showing
the bifurcation of a 22 kHz free-space resonance (w/27) into resonances at roughly
19, 31, and 60kHz.

Renormalization can also be used to address the concern that conventional spring
models (for which the cantilever has fixed cantilever spring and damping constants)
fail to describe cantilever dynamics adequately, particularly at drive frequencies much
larger than the fundamental cantilever resonance frequency. We begin by noting that
although the form of the Fourier-space Green function in Eq. (C.10) is similar to that
of the harmonic oscillator, the differential operator associated with the Green function
Gt — 1) = — [27(mew? — K(0) — iG(w)o] ' explio(t — t')]dw does not
actually correspond to that of a conventional harmonic oscillator due to the running
of the renormalized stiffness and damping parameters with frequency. Rather, it
corresponds, as shown above, to that of a superposition of harmonic oscillators
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due to the structure of the poles. However, Eq. (C.9) reveals that the amplitude of
the cantilever at the excited frequencies (w and its harmonics) depends solely on
the Fourier-space Green function at those frequencies. Thus, if the renormalization
scale wq is chosen to be sufficiently close to an integral multiple of the driving
frequency of interest, we can use the renormalized values K (wo) and G (wp) in G%to
recover approximately harmonic behavior in a neighborhood of frequencies around
the renormalization scale.

To better illustrate why this is so, consider a function f{x) in a neighborhood of
some point xp. One can obtain a good approximation to f{x) in a given neighborhood
by expanding f{x) about x in a Taylor series and keeping only the zeroth order term
provided the neighborhood is sufficiently small. As one moves the neighborhood
by changing xq, the parameter f(xp) also changes. In the case of the renormalized
cantilever parameters, if one intends to measure cantilever behavior at a frequency /o,
it is necessary to determine experimentally K (wg) and G (wq) for a renormalization
scale w, near lw before the theoretical spring model gains predictive power. Once the
parameters at the renormalization scale are determined, w can be changed slightly
without necessarily needing to determine new values.

There may be situations where the frequency at which cantilever dynamics of
interest are probed is not an integral multiple of the driving frequency. In such
cases, the procedure generalizes naturally to choosing a renormalization scale in
the neighborhood of this probed frequency. In application, this is similar to the
previously established practice of throwing away the least excited modes in the
modal sum that determines the total cantilever deflection amplitude and keeping only
the mode with resonance closest to the probed frequency. However, in this former
practice, it would become awkward to choose a ‘most excited” mode if the probed
frequency were between two resonance frequencies. Moreover, throwing away an
infinite number of modes could underestimate the total cantilever deflection even if
the mode contributions are individually small.

Quantitatively, the above amounts to the following. Eq. (C.6) demonstrates that
the cantilever deflection can be expressed as

ne(t) = / dt'G% (t —t')Nn. (') , 1] (c21)

where N is some function that characterizes the interactions governing cantilever
dynamics. Writing N[n.(¢), t] = % fda)N(a))e“"t and using Egs. (C.3), (C.5), and
(C.10), we obtain

-1

27me (a)2 - —K”(:)) —i —G,r(l‘:’)w

ne(t) = / doG(w)N (w)e'! = / do N(w)e™".
- (C.22)
If N (w) is sharply peaked in the range [w], w>] or if the signal is probed in a frequency
range [w1, wz], then we have
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w2 )
0t = [ do _ F(@e

o 2mme (a)2 — —Kni‘:)) — i—G’fl“C)) a))

w2

—1 - .
~ / do N(w)e" (C.23)
dm (wz _ Ky) _ iG(wo)w)
i ¢ me me

for some wg € [w] — &1, w2 +62],0 < & K w;.

Remarkably, Eq.(C.23) shows that the (observed) cantilever behavior is very
nearly identical to that of a conventional spring. We note that in most cases, the
integral bounds should symmetrically include [—w>, —w1], but, due to the reality
conditions imposed on the integrand, the bounds [—w2, —1] can be accounted by
keeping the original bounds and adding a term in the integrand that differs triv-
ially from the integrand already considered. Consequently, the above result is quite
general.

If the probed frequency deviates significantly from wq (that is, if in the above
wo ¢ [w1 — €1, w2 + &2]), it becomes necessary to calculate K (w) and G (w), or GO,
explicitly, or to measure a new set of renormalized parameters at a new renormal-
ization scale. Exact precision requires calculating G using an infinite sum of terms,
each term being given by Eq. (C.4). However, calculations to any desired accuracy
can be obtained by truncating the sum and measuring a finite number of parameters
k,, and y, corresponding to modes {n} closest to wp and w.

Although renormalization methods are initially applied here as a means to explain
resonance bifurcation, the utility of renormalization in AFM modeling cannot be
over-stated. Since d-AFM modalities are controlled completely by the cantilever
driving frequency, the application of the renormalization method allows for the
accurate interpretation and modeling of cantilever dynamics as conventional spring
and point-mass dynamics with fixed cantilever parameters for driving frequencies
sufficiently close to the renormalization scale regardless of the value of scale. This
suggests that although quantitative, conventional spring models of cantilever dynam-
ics are insufficient over a large range of frequencies, they can be ‘tuned’ to any fre-
quency such that over a given, sufficiently smaller range they, indeed, yield accurate
predictions. Over wider ranges, cantilever dynamics can be understood qualitatively
as spring dynamics with frequency-dependent stiffness and damping parameters.

References

1. G. Binnig, C.F. Quate, Ch. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930-933
(1986)

2. Q. Zhong, D. Inniss, K. Kjoller, V.B. Elings, Fractured polymer/silica fiber surface studied by
tapping mode atomic force microscopy. Surf. Sci. Lett. 290, L688-1L.692 (1993)

3. K. Yamanaka, A. Noguchi, T. Tsuji, T. Koike, T. Goto, Quantitative material characterization
by ultrasonic atomic force microscopy. Surf. Interface Anal. 27, 600-606 (1999)



98

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

J. H. Cantrell and S. A. Cantrell

P. Maivald, H.J. Butt, S.A. Gould, C.B. Prater, B. Drake, J.A. Gurley, V.B. Elings, P.K. Hansma,
Using force modulation to image surface elasticities with the atomic force microscope. Nan-
otechnology 2, 103-106 (1991)

U. Rabe, W. Arnold, Acoustic microscopy by atomic force microscopy. Appl. Phys. Lett. 64,
1493-1495 (1994)

. U.Rabe, S. Amelio, M. Kopychinska, S. Hirsekorn, M. Kempf, M. Goken, W. Arnold, Imaging

and measurement of local mechanical properties by atomic force micrscopy. Surf. Interface
Anal. 33, 65-70 (2002)

. 0. Kolosov, K. Yamanaka, Nonlinear detection of ultrasonic vibrations in an atomic force

microscope. Jpn. J. Appl. Phys. 32, L1095-L1098 (1993)

. K. Yamanaka, H. Ogiso, O. Kolosov, Ultrasonic force microscopy for nanometer resolution

subsurface imaging. Appl. Phys. Lett. 64, 178-180 (1994)

. M.T. Cuberes, H.E. Alexander, G.A.D. Briggs, O.V. Kolosov, Heterodyne force microscopy of

PMMA/rubber nanocomposites: nanomapping of viscoelastic response at ultrasonic frequen-
cies. J. Phys. D Appl. Phys. 33, 2347-2355 (2000)

G.S. Shekhawat, V.P. Dravid, Nanoscale imaging of buried structures via scanning near-field
ultrasonic holography. Science 310, 89-92 (2005)

S.A. Cantrell, J.H. Cantrell, P.T. Lillehei, Nanoscale subsurface imaging via resonant
difference-frequency atomic force ultrasonic microscopy. J. Appl. Phys. 101, 114324 (2007)
L. Muthuswami, R.E. Geer, Nanomechanical defect imaging in premetal dielectrics for inte-
grating circuits. Appl. Phys. Lett. 84, 5082-5084 (2004)

D.C. Hurley, K. Shen, N.M. Jennett, J.A. Turner, Atomic force acoustic microscopy methods
to determine thin-film elastic properties. J. Appl. Phys. 94, 2347-2354 (2003)

R.E. Geer, O.V. Kolosov, G.A.D. Briggs, G.S. Shekhawat, Nanometer-scale mechanical imag-
ing of aluminum damascene interconnect structures in a low-dielectric-constant polymer. J.
Appl. Phys. 91, 9549-4555 (2002)

0.V. Kolosov, M.R. Castell, C.D. Marsh, G.A.D. Briggs, T.I. Kamins, R.S. Williams, Imaging
the elastic nanostructure of Ge islands by ultrasonic force microscopy. Phys. Rev. Lett. 81,
1046-1049 (1998)

G.G. Yaralioglu, F.L. Degertekin, K.B. Crozier, C.F. Quate, Contact stiffness of layered mate-
rials for ultrasonic atomic force microscopy. J. Appl. Phys. 87, 7491-7496 (2000)

Y. Zheng, R.E. Geer, K. Dovidenko, M. Kopycinska-Miiller, D.C. Hurley, Quantitative
nanoscale modulus measurements and elastic imaging of SnO; nanobelts. J. Appl. Phys. 100,
124308 (2006)

M. Kopycinska-Miiller, R.H. Geiss, D.C. Hurley, Contact mechanics and tip shape in AFM-
based nanomechanical measurements. Ultramicroscopy 106, 466-474 (2006)

M.T. Cuberes, Intermittent-contact heterodyne force microscopy. J. Nanomater. 2009, 762016
(2009)

S. Hirsekorn, U. Rabe, W. Arnold, Theoretical description of the transfer of vibrations from a
sample to the cantilever of an atomic force microscope. Nanotechnology 8, 57-66 (1997)

L. Nony, R. Boisgard, J.P. Aime, Nonlinear dynamical properties of an oscillating tip-cantilever
system in the tapping mode. J. Chem. Phys. 111, 1615-1627 (1999)

K. Yagasaki, Nonlinear dynamics of vibrating microcantilevers in tapping-mode atomic force
micrscopy. Phys. Rev. B 70, 245419 (2004)

H.-L. Lee, Y.-C. Yang, W.-J. Chang, S.-S. Chu, Effect of interactive damping on vibra-
tion sensitivities of V-shaped atomic force microscope cantilevers. Jpn. J. Appl. Phys. 45,
6017-6021 (2006)

J. Kokavecz, O. Marti, P. Heszler, A. Mechler, Imaging bandwidth of the tapping mode atomic
force microscope probe. Phys. Rev. B 73, 155403 (2006)

K. Wolf, O. Gottlieb, Nonlinear dynamics of a noncontacting atomic force microscope can-
tilever actuated by a piezoelectric layer. J. Appl. Phys. 91, 4701-4709 (2002)

U. Rabe, K. Janser, W. Arnold, Vibrations of free and surface-coupled atomic force microscope
cantilevers: theory and experiment. Rev. Sci. Instrum. 67, 3281-3293 (1996)



3 Cantilever Dynamics: Theoretical Modeling 99

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

U. Rabe, S. Amelio, E. Kester, V. Scherer, S. Hirsekorn, W. Arnold, Quantitative determination
of contact stiffness using atomic force acoustic microscopy. Ultrasonics 38, 430—437 (2000)
J.A. Turner, S. Hirsekorn, U. Rabe, W. Arnold, High-frequency response of atomic-force micro-
scope cantilevers. J. Appl. Phys. 82, 966-978 (1997)

J.A. Turner, Nonlinear vibrations of a beam with cantilever-Hertzian contact boundary condi-
tions. J. Sound Vib. 275, 177-191 (2004)

A. San Paulo, R. Garcia, Unifying theory of tapping-mode atomic force microscopy. Phys.
Rev. B 66, 041406(R) (2002)

R.W. Stark, W.M. Heckl, Higher harmonics imaging in tapping-mode atomic-force microscopy.
Rev. Sci. Instrum. 74, 5111-5114 (2003)

R.W. Stark, G. Schitter, M. Stark, R. Guckenberger, A. Stemmer, State-space model of freely
vibrating surface-coupled cantilever dynamics in atomic force microscopy. Phys. Rev. B 69,
085412 (2004)

H. Holscher, U.D. Schwarz, R. Wiesendanger, Calculation of the frequency shift in dynamic
force microscopy. Appl. Surf. Sci. 140, 344-351 (1999)

R. Garcia, R. Perez, Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47, 1-79
(2002)

J.H. Cantrell, S.A. Cantrell, Analytical model of the nonlinear dynamics of cantilever tip-
sample surface interactions for various acoustic atomic force microscopies. Phys. Rev. B 77,
165409 (2008)

L. Meirovitch, Analytical Methods in Vibrations (Macmillan, New York, 1967)

LI.S. Sokolnikoff, R.M. Redhefter, Mathematics of Physics and Modern Engineering (McGraw-
Hill, New York, 1958)

B.M. Law, F. Rieutord, Electrostatic forces in atomic force microscopy. Phys. Rev. B 66, 035402
(2002)

M. Saint Jean, S. Hudlet, C. Guthmann, J. Berger, Van der Waals and capacitive forces in
atomic force microscopies. J. Appl. Phys. 86, 5245-5248 (1994)

T. Eguchi, Y. Hasegawa, High resolution atomic force microscopic imaging of the Si(111)-
(7x7) surface: contribution of short-range force to the images. Phys. Rev. Lett. 89, 266105
(2002)

H.B. Chan, V.A. Aksyuk, R.N. Kleiman, D.J. Bishop, F. Capasso, Nonlinear micromechanical
Casimir oscillator. Phys. Rev. Lett. 97, 211801 (2001)

M.A. Lantz, H.J. Hug, R. Hoffmann, P.J.A. van Schendel, P. Kappenberger, S. Martin, A.
Baratoff, H.-J. Giintherodt, Quantitative measurtement of short-range chemical bonding forces.
Science 291, 2580-2583 (2001)

J.H. Cantrell, Determination of absolute bond strength from hydroxyl groups at oxidized
aluminum-epoxy interfaces by angle beam ultrasonic spectroscopy. J. Appl. Phys. 96,
3775-3781 (2004)

S.A. Cantrell, J.H. Cantrell, Renormalization, resonance bifurcation, and phase contrast in
dynamic atomic force microscopy. J. Appl. Phys. 110, 094314 (2011)

R. Garcia, A. San Paulo, Attractive and repulsive tip-sample interaction regimes in tapping-
mode atomic force microscopy. Phys. Rev. B 60, 4961-4967 (1999)

R. Garcia, A. San Paulo, Dynamics of a vibrating tip near or in intermittent contact with a
surface. Phys. Rev. B 61, R13381 (2000)

J. Tamayo, R. Garcia, Effects of elastic and inelastic interactions on phase contrast images in
tapping-mode scanning force microscopy. Appl. Phys. Lett. 71, 2394-2396 (1997)

J.P. Cleveland, B. Anczykowski, A.E. Schmid, V.B. Elings, Energy dissipation in tapping-mode
atomic force microscopy. Appl. Phys. Lett. 72, 2613-2615 (1998)

B. Anczykowski, B. Gotsmann, H. Fuchs, J.P. Cleveland, V.B. Elings, How to measure energy
dissipation in dynamic mode atomic force microscopy. Appl. Surf. Sci. 140, 376-382 (1999)
K. Schréter, A. Petzold, T. Henze, T. Thurn-Albrecht, Quantitative analysis of scanning force
microscopy data using harmonic models. Macromolecules 42, 1114-1124 (2009)

D.W. Jordan, P. Smith, Nonlinear Ordinary Differential Equations: An Introduction for Scien-
tists and Engineers (Oxford, New York, 2007)



100 J. H. Cantrell and S. A. Cantrell

52. W. Arnold, A. Caron, S. Hirsekorn, M. Kopycinska-Miiller, U. Rabe, M. Reinstédler, in Atomic
Force Microscopy at Ultrasonic Frequencies,ed. by R.C. Bradt, D. Munz, M. Sakai, K.W. White
Fracture Mechanics of Ceramics (Springer, New York, 2005), pp. 1-11

53. Y.-J.Zhao, Q. Cheng, M.-L. Qian, Frequency response of the sample vibration mode in scanning
probe acoustic microscope. Chin. Phys. Lett. 27, 56201-56204 (2010)

54. D.I. Bolef, J.G. Miller, in High-Frequency Continuous Wave Ultrasonics, ed. by W.P. Mason,
R.N. Thurston, Physical Acoustics, vol. VIII (Academic, New York, 1971), pp. 95-201

55. J. Mathews, R.L. Walker, Mathematical Methods of Physics (Benjamin, New York, 1964)

56. G. Blanch, Mathieu functions, in Handbook of mathematical functions with formulas, graphs,
and tables, ed. by A. Abramowitz, I.A. Stegun (US Department of Commerce, Washington,
1970)

57. S.-Y. Kim, B. Hu, Bifurcations and transitions to chaos in an inverted pendulum. Phys. Rev. E
58, 3028-3035 (1998)

58. S. Hu, A. Raman, Chaos in atomic force microscopy. Phys. Rev. Lett. 96, 036107 (2006)



Chapter 4
One-Dimensional Finite Element Modeling
of AFM Cantilevers

Richard Arinero and Gérard Lévéque

Abstract In order to account for realistic cantilever geometries and tip—sample
interactions, finite element methods (FEM) can be powerful alternatives. In this
chapter, we opted to use a one-dimensional (1D) FEM model for the cantilever
beam, which permits to treat the exact vibration of the beam in the contact mode,
regardless of its shape (rectangular as well as triangular beams) and excitation mode
(by the beam holder, by the sample, by a localized, or distributed force). Based on
a classic finite element scheme, it is easy to program for a non-specialist user and
as rapid as the usual analytical models. We demonstrate that the mode of excitation
of the beam strongly influences the cantilever’s frequency response in the contact
mode. This chapter is therefore an attempt to propose in a simple numerical model,
a tool allowing a deeper understanding of the dynamic mechanical response of the
AFM probe in contact with a viscoelastic sample.

4.1 Introduction

All methods consisting of making vibrate the AFM cantilever in contact mode
and recording the parameters of the vibration are generally identified as “acoustic
methods”. Some methods are often based on the analysis of amplitude (and phase)
after a periodic excitation (either at low or high frequency), whereas some others
focus on contact resonance frequency measurements. All these methods concern not
only flexural vibrations, but also torsional vibrations. The major problem encountered
is related to the observed contrast which is not always precisely quantified. Indeed,
many factors like adhesion and friction are involved in the tip—sample interaction and
play a role in image formation. Other constraints come from cantilever-tip-sample
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models which are often over-simplified. For instance, it is admitted that spring-mass
models [1, 2] are only valid under certain conditions and do not predict the true fre-
quency response. The best approximation is the cantilever beam model [3—7] where
an inclined beam and tip are coupled with a sample represented by vertical and
horizontal springs. But only rectangular beams are modeled and always in a linear
regime. Moreover, for large amplitudes, nonlinear effects may occur [5-8] (diode
effect) but have not been introduced yet in the beam equations. In order to account
for realistic cantilever geometries and tip—sample interactions, finite element meth-
ods (FEM) can be powerful alternatives. Several authors have already followed this
option. In most cases, they used commercial software [9—13]. These tools are easy to
implement but are not very adaptable to all the situations encountered during AFM
operations. They can be considered as black boxes to which it is not possible to access
and to perform some specific task. Mendels et al. [9] used Ansys™ FEM codes for
evaluating the spring constant of AFM cantilevers. They introduced a hybrid method
based on the minimization of the difference between the modeled and experimentally
full-field displacement maps of the cantilever’s surface at different resonant frequen-
cies. A similar approach was adopted by Espinoza-Beltran et al. [10]. They followed
a specific procedure in which they considered the main geometrical features of com-
mercial cantilevers, as well as the elastic anisotropy of silicon single crystals. The
data were fitted in a two-step procedure using the free and contact resonances of the
first and third bending mode. Muller et al. [11] have investigated the 3D mechanical
deformations of V-shaped cantilevers. They were able to calculate force constants
and detection angles for tip displacement in the three spatial directions. Caron et al.
in Ref. [12] carried out FEM calculations to identify lateral cantilever modes. They
have shown that in AFM experiments in-plane deflection of standard cantilevers is
not negligible and can also be used for imaging shear elastic properties of a sample
surface. Finally, we can also mention the work of Parlak et al. [13] who described
a 3D FEM analysis of the contact between the AFM tip and a substrate with finite
subsurface structures. They were able to simulate the contact stiffness measured by
the AFM tip on the surface of a sample with buried nanoscale structures. This 3D
model was destined to be applied to electromigration defects detection.

Homemade FEM models exist and are much more versatile. A 3D FEM model of
tip-cantilevers systems was proposed by Song et al. [14, 15]. This versatile model
was adapted to tapping-mode simulations, as well as torsional resonance and lateral
excitation mode, but has not been applied to model contact resonance and flexural
amplitude as studied in the frame of acoustics methods.

In this chapter, we preferred to use a 1D FEM model for the cantilever beam, which
permits to treat the exact vibration of the beam in the contact mode, disregarding its
shape (rectangular as well as triangular beams) and excitation mode (by the beam
holder, by the sample, by a localized, or distributed force). Based on a classic finite
element scheme, it is easy to program for a non-specialist user and as rapid as the usual
analytical models. We demonstrate that the mode of excitation of the beam strongly
influences the cantilever’s frequency response in the contact mode. This chapter is
therefore an attempt to propose in a simple numerical model a tool allowing a deeper
understanding of the mechanical response of the AFM microscope.
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We begin by describing in detail the 1D FEM model. The kinematic parameters
involved in the discretization of the beam are first identified and the construction
of the mass and stiffness matrix associated with each element is then explained, as
well as the steps leading to the global system matrix. Then, we describe how the tip
and the contact with the sample are introduced in the model. Finally, in the last part,
we analyze the solutions obtained from the FEM model. The effect of the excitation
mode is studied, as well as the effects of both normal and tangential contact stiffness.
The concepts of apparent and real force, providing a complete description of the
tip—sample interaction, are finally discussed.

4.2 Finite Element Model for a Beam

The cantilever geometry is described in a transverse plane in Fig.4.1, in the same
way as in Refs. [4] and [5]. The beam is tilted by an angle « relative to the sample.
It is defined by the length L, the width b (depending on x in the case of a triangular
cantilever), the thickness e, the tip height & (supposed of conical shape), the tip
mass M, and the mechanical properties of the beam material (Silicon oriented in the
< 110 > crystallographic direction). The tip—sample interaction is described in the
linear regime by two complex constants, the normal stiffness k and the tangential
stiffness k7, which include all forces and damping at the working frequency. We
chose a finite element model for the beam vibration, because all the above features
can be included easily.

4.2.1 Kinematic Parameters

We used a classic FEM, as described in Ref. [16], limited to the pure flexion case
(there is no extension of the beam). The beam is decomposed in N thin slices (or
elements) perpendicular to the (Ox) axis, and a “1D” description of the beam flexure
is adopted, as detailed below. Each element AB is taken with the same length A
(A = 2 m) and has four degrees of liberty, also called kinematic parameters, which
are the transverse displacements z4 et zp, and the corresponding slopes 64 et fp at
the extremities nodes A and B (Fig.4.2).
We define {g} the vector composed of the kinematic parameters:

{g) ={gi=14} ={za 04 25 05} (4.1)
We make the assumption that at each instant ¢, the deformation of the element

AB (which will be an element of the cantilever) can be expressed by a third-order
polynomial function of the form:

Z(y) = a1 + azy + a3y* + asy? (4.2)

where a1, a», a3 and a4 are adjustable constants.
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Fig. 4.1 On Scale scheme of
the vibrating cantilever beam
in contact with a sample, for
the two extreme positions.
The shape of the cantilever
is deduced from the model,
with a tip supposed to slide on
a hard sample. Amplitude is
amplified by a factor 1,000, in
order to make the deformation
visible. Reproduced with per-
mission from [21]. Copyright
2003, American Institute of
Physics

Fig. 4.2 Beam element
defined 4 kinematic para-
meters
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Introducing particular values of Z at points A and B, we can write:

Z () =2aP1 (y) +04D2 (y) +28P3 () + 05P4 (y) (4.3)

where ®; (y) are also third-order polynomial functions obtained by identification
with Eq. (4.3). These functions are called interpolation functions of the element A B.
A classical calculation [14] yields the following expression:
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3 2 3 2 2 3
Z(y):[ _L+ y } +[y_i+y_}9

3y 2y ooy
22 - 0 4.4
+[A2 A3]ZB+[ Nl (4.4)

which can be written under a matricial form:
4
Z(y) =D 0 (g (4.5)

g; are sinusoidal functions of the pulsation w, in such way that:

Oq;i _
Wi 4.6
o = v (4.6)

4.2.2 Matricial Form of Kinetic Energy: Mass Matrix

The kinetic energy of an element A B expresses as:

A
Tip — % / peb( ) @.7)
0

where p is density of silicon.
By derivating expression (4.5) with respect to time, we obtain:

0z
(—) ——w222¢ () ®; (¥)giq; (4.8)

i=1 j=1

Thus, it comes:

_w2 —Ldz T
i

2
w
== {z404z808}" [Mapl{zA0az508) (4.9)

The coefficients m;; are relative to the (symmetrical) mass matrix [Mg] of the
element AB. They are defined by:
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A

mij =/peb<1>i M ®; (y)dy =mj; (4.10)
0

Integer calculations in expression (4.10) lead to the following form of [M4p]:

156 22A 54 —13A
pebA | 22A 4A%7 13A —3AZ
420 | 54 —13A 156 —22A

13A —3A% —22A 4A?

[MaB] = (4.11)

4.2.3 Matricial Form of Elastic Potential Energy: Stiffness Matrix

The elastic potential energy of an element A B expresses as:

A
% —1/E1 0z d (4.12)
AB—2 82 y .
0

where I = ¢>b/12 is the moment of inertia of the beam section and E is the Young’s
modulus of silicon in the < 110 > direction (169 GPa).
By derivating expression (4.5) with respect to y, we obtain:

Za i (y) : (4.13)

i

( ) ZZM,[@ 0 9 ] (4.14)

dy?

Thus, it comes:
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Finally, we have:

1
Wap = > 2 2 kijgiq; = 3@ [(Kas){q)
(4.15)

1
Wag =5 (24042808} [Kapl{z4042508)

The coefficients k;; are relative to the (symmetrical) stiffness matrix [K 4p] of the
element A B. They are defined by:

1
82d>i 82d>j
kij = El . .dy = kji (4.16)
Y y

Integer calculations in expression (4.16) lead to the following form of [K 4p]:

12 6A —12 6A
Eeb | 6A 4A% —6A 2A2
12A3 | =12 6A 12 —6A

6A 2A% —6A 42

[KaBl = (4.17)

4.2.4 Mesh with N Elements: Global Matrix Construction

Let us consider a cantilever beam of length L discretized in N elements of matricial
indexes n(n = 1, N) and of width A = L/N as shown in Fig.4.3. Both extremities
of each element are called « nodes>. There are thus N + 1 nodes for the whole beam.
An element of index 7 is localized between nodes of index n’ = n andn’ =n + 1;
it possesses four degrees of freedom (z,/—p, On/=n, Zn'=n+1€t O —nt1)-

Finally, the whole beam is well defined by 2N + 2 parameters, included in the
vector {g}:

{gy=1{z1 00 22 02 -~ o zy Op -+ -} W=1LN+1) (418

The mass matrix [M,,] and the stiffness matrix [ K, ] relative to elements of index
n are given by expressions (4.11) and (4.17), respectively. It is possible to introduce a
particular value of the width b (n) and the thickness e (n) for each element. This is how
we take into account the specific geometry of cantilever, rectangular or triangular.

The coefficients of the matrix [M,,] et [ K}, ] are noted m 1(7) et ki('.’) withi = 1, 4 and
Jj =1, 4. Then, we can build the global mass matrix [My] and the global stiffness
matrix [Kiy], which are matrix of dimension 2N + 2, according to the method of
assembly described in Fig.4.4. On the diagonal, the terms correspond to the sum
of the matrix coefficients of two consecutive beam elements. Finally, we obtain the
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Fig. 4.3 Discretization of the cantilever beam in N elements of length A. The extremities of each
element are called “nodes”

Elementn=1

Elementn =2

My My My My £ ]
2 MRy My Bty

Elementn=3
¥

12N +2
3
3
3

Elementn=N

J=
Y

PERN_FIN-T PRN_PIN PRN_FINeT PIIN-12Ne2 :
LMy an-g NN PN INsT PN N2
MINGIIN-T MRNGI2N MINGIINT MINeI2Ned |
F Myne2IN-1 MING2IN TN INGl PRNG2 ING

I=LIN+2

Fig.4.4 Construction of the global mass matrix by assembly of the matrix relative to each beam ele-
ment. On the diagonal, the terms correspond to the sum of the matrix coefficients of two consecutive
beam elements. The global stiffness matrix is built in an identical way

global matrix [ Mi,] and [ Ko(] of coefficients m; and kjy where [ = 1, 2N + 2 and
J =1,2N + 2, in such way that:

1
M2p+12n+1 = mﬁJr ) + mg’?
1
M2 2 = myy ) +myy (4.19)

(n+1) (n)
Mon+2 2n+1 = M2p41 2n+2 = Moy +mgyy

The other coefficients are equal to zero.
The coefficients k; y of the global stiffness matrix are obtained in an identical way.
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4.2.5 Free and Forced Vibration Analysis

Let us consider the matrix [S]:
[S] = [Kiot] — w* [Mior] (4.20)

The coefficients of [S] are given by S;7 = kj7 — w?myy where I = 1,2N + 2 and
J=1,2N+2.

By analogy with classical point mechanics, free vibrations (natural frequencies
and mode shapes) are calculated by solving the following linear system:

[S1{g} =0 (4.21)

The system is homogeneous and to obtain nontrivial solutions, we need to solve
the following equation:
det[S]=0 (4.22)

To study the forced vibrations response, the Lagrange equation of the system has
to be solved:

[SHq} = {F} (4.23)

The vector {g} [expression (4.18)] is the solution of the system at the angular fre-
quency w and {F} is a vector formed by forces F,s et moments I, applied at each
node.

To take into account the air damping, one can introduce a force at each node
Faamping = iwaz proportional to the velocity. The damping coefficients a can be
calculated theoretically according to the laws of aerodynamics applied to thin plates,
but one can rather find them by an empirical adjustment of experimental free reso-
nance curves.

The air damping matrix [A] for the whole beam can be written as:

o OO
(e

0 (4.24)

=

=

Il
o o coco=a
© o cooco

Finally, [S] expresses as:

[S] = [Kiot] — w* [Mio] + iw [A] (4.25)
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Fig. 4.5 Schema of the tip
attached to the cantilever at
a node n, and the contact
with the sample occurs at
point c. The tip is supposed
to be rigid and to interact
with only one beam node.
The contact interaction is
modeled by two springs
with stiffness ky and k7.
Reproduced with permission
from [21]. Copyright 2003,
American Institute of Physics

4.3 Model for the Tip

The presence of the tip at the extremity of the cantilever is schematized on Fig. 4.5.
The tip is supposed of conical shape and indeformable. It is attached to the beam
at a node n/p and the contact with the sample at point ¢ is modeled by the normal
contact stiffness ky and the tangential contact stiffness k7. The tip mass m, and
inertia moment I with respect to the center of mass G, are given by:

7rlhp

m; =

2 2
3h 3L) (4.26)

d 16 =m (=
ame o m’(80+20

where £ is the tip height, r the radius of the cone’s base and p the density of silicon.
In the coordinate system (Oyz), the velocity of the center of mass G is:

S h, .
Vo =iw (Zn’pk + Zen,”l) (427)
Then, the kinetic energy of the tip can be written as:

2
1 5, 1 00w, 1 5[, 2 32\
Trip = EmPVG + EIG o1 = zmpw Zn/p + E + % en;, (4.28)

/
p

An additional mass matrix AM,,;} relative to the node n
sion (4.28). It can be expressed as:

is deduced from expres-
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AM, w’m [1 0 } (4.29)
== 2 .
i ! 0 10 + 20

The coefficients of AM are summed with the other coefficients Mon!,—1 20!, ~1 and
man!, 2!, of the global mass matrix [Mio].

The potential elastic energy of the contact expresses as (The elastic energy of the
tip is supposed to be null):

1
Wcontact = E (kNZg + kT YCZ) (430)

Y. and Z, are the coordinates of the contact point ¢ in the coordinate system (OY Z).
They verify the relations:

Y; = hﬁn; cosa + zu, sinc and Z; = —h9,,/p sin a + Zn), COS @ 4.31)

An additional stiffness matrix AKn/p relative to the node n;, is deduced from expres-
sion (4.30). It can be expressed as:

AK, =

[kT sinffa +kycos2a  hsinacosa (kp — ky) i|
P

. . 4.32
hsinacosa (kr — ky) h? (kT cos? o + ky sin? a) ( )

The coefficients of AK”/’) are summed with the other coefficients kzn/p,l 20,1
k2n/p 20, kg,,;),l 2n, et k2n’p 20,1 of the global stiffness matrix [ Ko]-

The values of ky and k7 depend on the contact mechanical properties and will be
detailed further.

4.4 Solutions of the Finite Element Model

The solution of the forced vibration analysis (4.23) gives the deformation of the
beam as a complex transverse amplitude z (y), for each frequency. The photodetector
signal recorded by the microscope (in the case of a laser detection), and analyzed by a
lock-in amplifier, is proportional to the flexion slope z’ (y;) at the abscissa y; of the
laser impact on the beam. Assuming small-amplitude oscillations z’ (y;) is nearly
equal to the flexion angle 6, calculated at the corresponding node ;. The photode-
tector signal is usually calibrated, using static force-distance mode, to directly give
the tip vertical displacement. In vibrating mode, however, the flexure of the beam
is different than in static mode, then the measured signal amplitude is not equal to
the true amplitude of vibration of the tip. Then we introduce the notions of: true
normal (vertical) and true tangential (horizontal) amplitudes, Ay and A7 respec-
tively, corresponding to the amplitude of the beam at the node n/p where the tip apex
is located, and apparent amplitude A 4 measured directly from the lock-in amplifier.
This allows a complete study of cantilevers vibrating in contact with a sample. A 4,



112 R. Arinero and G. Lévéque

Fig. 4.6 Amplitude of oscillation of a free cantilever beam (Cantilever A in Table 4.1), with an
electrostatic excitation. The true vertical amplitude of the tip apex (A y normal), the true horizontal
amplitude (A7 tangential), and the apparent amplitude (A 4), as measured by the lock-in amplifier
are reported. Reproduced with permission from [21]. Copyright 2003, American Institute of Physics

Ay and A7 are defined by:

Ap = s0n; (4.33)
Ay =Z. = —h9,,/’) sin v + Zn), COS (v (4.34)
Ar =Y, = hGn; cosa + zy, sin « (4.35)

where s is the coefficient of proportionality between the apparent amplitude A4 and
the flexion angle 6,,.

Figure 4.6 represents the amplitude of vibration of a free cantilever (Cantilever A
in Table4.1), excited by a distributed electrostatic force. In this example the relative
position of tip y,, and and the laser y; are considered to be the same, i.e., 95 % of
the total cantilever length. We have A4 = Ay at low frequencies as expected, and
large differences elsewhere in the curves. The free resonance frequency appears at
34 kHz and the second harmonic resonance occurs at 202kHz, where A4, Ay and Ar
present simultaneous maxima. This is not the case for anti-resonance, for instance
an anti-resonance in the apparent amplitude is obtained near 119kHz, indicating that
the beam at the abscissa y;(laser impact) vibrates in pure translation (without slope
variation), at this frequency. We also observe anti-resonance on the true amplitude
Ay and Ar curves (150 and 159kHz), indicating that the tip apex moves either
horizontally or vertically at these frequencies.
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Table 4.1 Dimensions of the cantilever and of the tip

Type A B C D
Cantilever shape Triangle Rectangle Rectangle Triangle
Beam length L 180 180 180 265
Beam width b 50 50 50 85
Beam thickness e 0.8 0.8 0.8 0.8
Tip length i 5 5 20 17
Tip base radius r 1 1 4 4

Tip apex radius R .050 .050 .050 .100
Free first frequency f} 34.19 27.37 25.30 17.82
Free second frequency f> 202.5 171.6 161.8 98.5
Sliding contact frequency f| 128.7 129.1 134.8 74.5
Nonsliding contact frequency f{’ 161.1 184.5 184.5 92.8
Ratio f2/fi 5.92 6.27 6.40 5.52
Ratio f|/f1 3.71 4.72 5.33 4.18
Ratio f/'/fi 3.84 6.74 7.29 5.21

The dimensions are in um, and the frequencies in kHz. Resonance frequencies are obtained by finite
elements analysis. Reproduced with permission from [21]. Copyright 2003, American Institute of
Physics

Using the proposed 1D finite element model, it is now tried to appreciate the
importance of various specific factors to each experiment, such as the excitation
mode, the shape of the cantilever, or normal and tangential contact stiffness effects.

4.4.1 Effect of the Excitation Mode

It is pointed out that different methods are employed to excite the cantilever,
either by using the bimorph actuator fixed near the clamped extremity of the beam
[17, 18] or by using a piezoelectric element located under the sample holder
[19, 20]. Other methods consist of applying external forces, distributed along the
cantilever by means of an electrostatic pressure [21, 22] or localized on one single
part via a magnetic element [23-25]. The excitation mode is taken into account in the
finite element model by introducing, in each case, the corresponding external force
vector {F'}.

4.4.1.1 Excitation by the Cantilever Holder

If the beam holder is moved in sinusoidal translation, with an amplitude a, then
z1 = a and 01 = 0, and system (4.23) is modified as follows:
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F100 0 (21 ]

f a

010 O 01 0

00 S33 S34 S35 S36 22 0
00 S43 S44 Sas Sae x 1 6 =10 (4.36)

Ss3 Ss4 Ss55 Ss56 S57 Ssg 23 0

Se3 Sea Se5 Se6 S67 Ses 03 0

4.4.1.2 Excitation via the Sample Holder

If the sample is moved in sinusoidal translation, with an amplitude @, then a normal
force Fy = aky is applied at point c. The resulting action on the node n;, is composed
of a force and a moment: F), n, = aky cosa and T, n = —ahky sin a. The clamped
end condition (appearing in cases 4.4.1.2—4.4.1.4) expresses asz; =0and 0 = 0.
Then, the two first lines of the system are ignored and will not be reported in the

following cases. The resulting system is:

[ S33 S34 S35 S35 ] 0
S43 Sas Sas Sae éz 0
Ss3 Ss4 Ss5 Ss6 S57 Ss8 2 0
Se63 Se4 Se5 Se6 Se7 Ses §3 0
x {17 1= 4.37)
n Fn;,
en;, Fn;?

4.4.1.3 Excitation by a Localized Magnetic Force

If aforce of magnitude Fnag 1s applied via a magnetic element supposed punctual and
situated on the node n’ (not necessarily identical to node n , the resulting system is:

[ S33 S34 S35 S35 ] )

S43 Sas Sa5 Sa6 22 0

Ss3 S54 855 Ss56 Ss57 Ss8 ) 0

S63 Se4 S65 S66 S67 Ses 3 0
03 0

x - (4.38)

in’ Fmag
0, 0
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4.4.1.4 Excitation by a Distributed Electrostatic Force

If an electrostatic force is applied on the beam, a force is applied on each node.
The expression of the elemental forces depends on the geometry of the capacitor
formed by the beam and the sample holder. For an insulating sample, electrostatic
charges at the sample surface must also be taken into account. Generally, the exact
electrostatic pressure on the beam is difficult to estimate and an approximate value
Pelec = 1/220V? /d? is taken, depending on the variable beam-sample distance d (the
expression is exact for a plane parallel metallic capacitor). Then, Felec = ADb Pelec 1S
estimated on each node and noted F>, F3, ...
The system becomes:

[ S33 S34 S35 S35 ] )
S43 Saa Sas5 Sae 22 £
Ss3 S54 Ss55 Ss56 Ss57 Ss8 ) 0
S63 Se4 S65 S66 S67 Ses §3 (1)7 3
x§ 73 = (4.39)
in’ Fy
0, 0

4.4.1.5 Comparison of Excitation Modes

The results obtained for cases presented in Sects.4.4.1.2—4.4.1.4 (Cantilever A in
Table4.1), introducing a typical value for the contact stiffness of a polymer are
reported on Fig.4.7.

The conclusions are obvious:

e The resonance frequency is the same for any excitation mode. This first remark
is evident, if we consider that the resonance frequency, in absence of damping,
is given by det ([Kot] — w? [Mior]) = 0 [Eq. (4.22)], which is independent of the
force distribution;

e The true amplitude Ay is very different to the measured A 4;

e The true amplitudes are very sensitive to the excitation modes, and may exhibit
anti-resonance for some frequencies;

e Theratio Ay/A4 and A7 /A4 are given by the numerical model, which can serve
to estimate the true amplitudes in any case. At the resonance, they are only deter-
mined by the proper vectors of Eq.(4.22), and are also independent of the force
distribution.

To resume, the finite element model allows a complete description of the vibration
of the beam, in any excitation case. Moreover, the model predicts the true vibration
amplitude and the apparent amplitude as recorded by the lock-in amplifier. It is
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Fig. 4.7 Amplitude of oscil-
lation of a cantilever beam, in
contact with a sample charac-
terized by arbitrary stiffness
values ky = 100 N/m and
kr = 67 N/m, for the types
of excitation mentioned in
Sect.4.4.1. Solid thick line
apparent amplitude (A4
normalized to 1nm at zero
frequency). Thin line vertical
amplitude (Ay). Dotted line
horizontal amplitude (A7).
Reproduced with permission
from [21]. Copyright 2003,
American Institute of Physics

R. Arinero and G. Lévéque
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Fig. 4.8 Forces between the -5 : . . . .
sample and the tip in function
on the normal stiffness ky cal- 5.5 Normal
culated at the first resonance = 6l \
frequency and in absence of 5
viscous damping. The tan- = -85
gential stiffness is supposed § \
equal to k7 = 2/3ky for a g < Apparent
nonsliding contact. The exci- .75
tation force is taken constant. 3 \
Reproduced with permission -
from [21]. Copyright 2003, Tangential
American Institute of Physics -85

-2 -1 ] 1 2 3 4

log,, (ky in N/m)

evident in Fig. 4.7, that in the used frequency range, the apparent vibration amplitude
is very different to the true amplitude, which can now be estimated.

4.4.2 Concepts of Apparent and Real Force

The same results like in previous section can be presented in the form of apparent force
Fa = kj A4, real normal force Fy = ky Ay and real tangential force Fr = kT AT
applied on the sample. The case of cantilever A in Table 4.1 is represented in Fig. 4.8.
Forces have been calculated at first contact resonance frequency. The curves indicate
that normal and tangential forces very strongly and differently depending on the
sample stiffness. For soft samples, the sinusoidal part of the normal force is greater
than the tangential force, whereas the opposite occurs for hard samples. This point
also has repercussions in the analysis of nonlinearity effects due to large vibration
amplitude, because the larger force will be the first to reach the nonlinear threshold,
which is not always the normal force, as assumed in the “diode effect” [5, 8] analysis.
Another possible interpretation of Fig. 4.8 is that when the sample is soft (low values
of ky), the normal force being superior to the tangential force, the conditions are
optimized for a nonsliding contact, whereas for rigid samples (high values of ky), a
sliding contact may occur. This hypothesis will be verified in Sect.4.4.4.

4.4.3 Effect of the Beam Shape

The beam shape can be taken into consideration by introducing in the model a variable
width along the cantilever as presented in Fig.4.9. The function b (n) represents the
value of the width attributed at each element n. It is shown that a triangular shape is
equivalent to a rectangular one of which the width would be the double of each arm
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Fig. 4.9 Top view of the real geometry of a triangular cantilever as taken into account in the Finite
Element Model (Cantilever A in Table4.1). A variable value of the width is attributed to each
element (180 elements in that case)

200
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@
=
g 100} Triangular
o cantilever
o
s
= 50l
@
& Rectangular
cantilever

0 i i i i i
-3 -2 -1 0 1 2 3 4 5
log,, (ky in N/m)

Fig. 4.10 Resonance frequency of the cantilever, the tip being in contact with a sample, character-
ized by its normal stiffness ky. The tangential stiffness is assumed to be k7 = 2/3ky. Triangular
cantilever A (Black line) and rectangular cantilevers B and C (Red and Blue lines respectively)
are compared, as well as the effect of tip height (short tip 5 wm, long tip 20 wm). Cantilever and
tip dimensions (for A, B and C) are given in Table 4.1. Reproduced with permission from [21].
Copyright 2003, American Institute of Physics

and would be terminated by a function reproducing the diminution of the total width
at the extremity. b (n) can be estimated from optical observations.

Resonance frequency versus the normal stiffness is plotted in Fig.4.10 for two
classic cantilever shapes (A and B in Table4.1), rectangular or triangular (all dimen-
sions of the cantilever and tip are taken equal). The tangential stiffness is supposed
equal to k7 = 2/3ky.
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Fig. 4.11 Resonance fre- 100
quency (Cantilever D) in Nonsliding
Table 4.1, in two cases:

the sliding contact case PU3S58
k7 = 0 and the nonsliding
contact kr = 2/3ky. The
anti-resonance frequency is
indicated by the small segment
of curve. Dots experimental
points corresponding to two
polyurethane samples. Repro-
duced with permission from
[21]. Copyright 2003, Ameri-
can Institute of Physics 20 i A
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The effect of the beam shape is mainly to modify the frequencies of the two
extreme cases, the free (ky = 0 and the clamped cases (ky — o0). For hard samples
(ky in the 1,000 N/m range), the rectangular beam appears superior to the triangular
one, because of the greater slope d f1 /dky, indicating a better sensitivity to the sample
stiffness.

We reported also on Fig.4.10 the effect of the tip height & for the rectangular
beam (B and C in Table4.1). We observe that the free resonance frequency and the
hinged frequency are only slightly modified. The main effect lies in the 10-100 N/m
range, where the curve for the long tip presents much higher slope than the curve
corresponding to the short tip. The long tip induces a strong bending moment on
the beam, resulting in a greater sensitivity to the sample properties. For quantitative
experiments, it is desirable to count on a precise frequency-stiffness curve, which can
be used as areference function. The curve then allows us to deduce from the measured
frequency, the stiffness, and the elastic constant of the sample. The curve obtained
by taking the beam and tip dimensions as given by the constructors is generally
approximate, and it is preferable to adjust the dimensions in order to obtain a good
fit of the free frequencies (first and second modes) and of some contact frequencies
on known standard samples.

4.4.4 Effect of Normal and Tangential Stiffness

Figure4.11 presents the calculated resonance frequency of the beam (Cantilever
D in Table4.1) in function of the normal stiffness. Two cases for the tangential
stiffness are introduced (k7 = Oforasliding contactand kr = 2/3ky for anonsliding
contact), which gives different calculated resonance frequencies. We observe that the
tangential stiffness has little influence on the resonance frequency of the beam, up to
a certain ky value (around 10N/m in Fig.4.11), and diverges strongly for superior
values. This means that experiments in the lower part of the curve is not sensitive to
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Fig. 4.12 Top apparent
amplitude versus excitation
frequency (Cantilever D in
Table 4.1) calculated for a
different contact stiffness. The
tangential stiffness is taken
as kr = 2/3ky. All curves
include a damping effect,
obtained by multiplying the
stiffness real values by the
arbitrary complex number:
14 i/5, in order to be more
similar to the experimental
curves below. Bottom appar-
ent amplitude measured on
a polyurethane sample (PU
3420) for an applied force
increasing from —8.7nN
(closed to the pull-off force)
to 89 nN. Reproduced with
permission from [21]. Copy-
right 2003, American Institute
of Physics

the tangential forces, the opposite behavior occurs in the upper part. The origin of
this behavior is probably related to the remark made above relative to the amplitude
of the forces in Fig. 4.8.

This discussion cannot be made without a experimental illustration, then experi-
mental results for two known polyurethane samples are also presented in Fig.4.11.
One sample (PU3420) has a low stiffness, and lies in the part of the calculated curve
independent on k7. The other sample (PU3558) is stiffer and agrees well with the
nonsliding curve. We conclude that, at the frequency of the experiments, the tip
and the sample can be considered as “stuck together,” and that a strong tangential
force is acting on the tip.

The dots in Fig.4.11 report the experimental data for different applied normal
forces. Changing the normal force induces a change in the contact area and contact
stiffness. The contact stiffness in Fig. 4.11 is calculated according to the DMT model,
and line up correctly on the calculated curves. The JKR model gives a slightly
inferior fit for these samples. We also observe that the points for the PU3420 sample
seems to arrange in two groups, with a gap near 46 kHz. This strange behavior is
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interpreted here by the presence of an anti-resonance in that frequency range. This
anti-resonance induces a dissymmetry in the resonance curve (Fig.4.12), which shifts
the measured resonance frequencies. Theoretically, the frequencies for resonance
and anti-resonance are equal for ky &~ 1.2nN, and for this value the resonance
disappears. This corresponds to a range of bad experimental conditions, for this
particular cantilever.

The calculated and experimental curves reported in Fig.4.12 are very similar,
indicating that the numerical model fits the reality well. A constant damping has
been introduced in the calculated curves, in order to be more similar to the experi-
mental curves, by taking the stiffness complex value proportional to (1 + i/5). The
experimental widths of the resonance still appear larger than the calculated ones,
indicating that a larger imaginary part is needed to fit the observed width.

4.5 Conclusion

In this chapter, a 1D finite element model of AFM cantilevers is described. The dis-
cretization process is detailed and the matricial form of kinetic and elastic potential
energy of each element is defined. These steps allow building the system to solve,
composed of global mass and stiffness matrixes. It is explained how both free and
forced vibration analysis can be carried out. The proposed model made possible to
analyze the exact vibration in the contact mode, whatever the shape and the excitation
mode. Moreover, it is simple to program and as rapid as the usual analytical meth-
ods. It was shown that excitation mode strongly influences the frequency response
of the cantilever. Anti-resonances were observed on the frequency response. Those
can sometimes disturb measurement on certain samples. We analyzed the real ampli-
tudes, normal and tangential, as well as the real forces. We established assumptions
concerning the nature of tip—sample contact during experiments. For the samples of
low rigidity, the presence of a nonsliding contact is highlighted, and the threshold
of nonlinearity can be reached under the effect of the normal force. For more rigid
samples, this is the opposite assumption that can be made.
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Chapter 5
Atomic Force Acoustic Microscopy

U. Rabe, M. Kopycinska-Miiller and S. Hirsekorn

Abstract This chapter shortly reviews the scientific background of Atomic Force
Acoustic Microscopy (AFAM), the basic theoretical models, the experimental tech-
niques to obtain quantitative values of local elastic constants, and non-linear AFAM.
Analytical and finite element models describing transverse flexural vibrations of
AFM cantilevers with and without tip-surface contact are recapitulated. The mod-
els are suitable for micro fabricated silicon cantilevers of approximately rectangular
cross section which are typically used in AFAM. Experimental methods to obtain
single-point as well as array measurements and full spectroscopy images are dis-
cussed in combination with the respective reference methods for calibration. In a
non-linear AFAM experiment, the vibration amplitudes of the sample surface and
the cantilever are measured quantitatively with an interferometer at different excita-
tion amplitudes, and the full tip-sample interaction force curve is reconstructed using
a frequency dependent transfer function.

5.1 Introduction

In the beginning of the 1990s, atomic force microscopy (AFM) [1] became increas-
ingly well known, commercial instruments were available and relatively easy to
handle, and images demonstrating nanometer scale and even “atomic resolution”
were published. On the other hand, the emerging progress in nanotechnology pro-
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vided a need to examine materials non-destructively at nanometer scale. A common
non-destructive inspection method is ultrasonic microscopy [2], which is used to
reveal flaws and inhomogeneities inside components and materials and to measure
elastic properties with high precision. However, as implied by Abbe’s principle,
a conventional acoustic microscopy can hardly reach nanometer local resolution.
Therefore, a variety of combinations of AFM with acoustic microscopy were devel-
oped with the aim to make atomic or nanometer local resolution available to ultrasonic
probing. Examples for such inventions are atomic force acoustic microscopy (AFAM)
[3], Ultrasonic Force Microscopy (UFM) [4], ultrasonic atomic force microscopy
(UAFM) [5], scanning acoustic force microscopy (SAFM) [6], and scanning microde-
formation microscopy (SMM) [7]. The main difference to conventional microscopy
is that—instead of using a focusing lens or transducer—the ultrasonic waves are
detected or excited locally with the tip of a scanning force microscope. In this case,
the local resolution is determined by the tip-sample contact radius of a few nanome-
ters, and not by the acoustic wavelength, which can be orders of magnitude larger.
One general limitation of such near-field microscopes is that the high local resolu-
tion is only attained in the near field, i.e., in close proximity to the tip. This means
that AFAM and related techniques provide mainly information on the sample sur-
face or sample regions in close proximity to the surface—in contrast to conventional
ultrasonic techniques using propagating waves. Ongoing research on subsurface con-
trast using mixing and heterodyning techniques is currently extending these limits
(Chap. 10).

Different strategies are possible to detect ultrasonic vibration with an AFM. In
techniques like UFM (Chap. 9) and SAFM the AFM sensor is treated as an oscillator
having a resonant frequency that is considerably lower than the ultrasonic frequency.
The nonlinearity of the tip-sample interaction forces is exploited to down-convert
the high-frequency ultrasonic signal into a frequency range, which is detectable by
the AFM cantilever. In techniques like AFAM, UAFM (Chap. 6), or SMM (Chap. 8)
ultrasonic sample surface vibration is directly detected by exciting vibration modes
of the cantilever beams with frequencies equal to the excitation frequencies. A variety
of other dynamic operation modes of the AFM are known, in which the cantilever is
vibrated while the sample surface is scanned, and the amplitude, phase, or resonant
frequency is recorded. In AFAM and related modes, the sensor tip of the AFM is
constantly in contact with the sample surface while the cantilever vibrates (Fig.5.1).
The flexural and torsional resonance frequencies of commercial cantilevers with
lengths of a few hundreds micron are predominantly higher than 20kHz, and hence
in the ultrasonic frequency range. The tip-sample forces in the contact area influence
the mechanical boundary conditions of the cantilever, and therefore its frequencies
increase considerably compared to the frequencies in air. The shift of the resonance
frequencies is evaluated to measure lateral and normal sample surface stiffness and
elasticity, and the width of the resonance peaks is used to measure viscoelasticity
[8] and internal friction [9] (Chap. 14) in the sample. If the amplitude of vibration
is increased above a critical threshold, the resonance curves develop plateaus or
asymmetries, which are typical for nonlinear oscillators (Sect. 5.5).
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Fig. 5.1 AFM cantilever vibrating in contact with a sample surface. The vibration of the cantilever
is excited by an out-of-plane sample surface vibration. The mechanical forces of the tip-sample
contact area influence the resonance frequencies of the system. The repulsive tip-sample contact is
visualized on the right hand side

In the AFAM-mode, an ultrasonic wave is excited inside the sample by a conven-
tional transducer (a piezoelectric element) attached to one side of the sample. The
ensuing out-of-plane or in-plane sample surface vibration transfers to the tip of the
AFM and excites a forced flexural (Fig.5.1), lateral bending, or torsional vibration
of the cantilever, respectively. Wave phenomena in the sample such as reflection and
interference are not exploited in AFAM, in contrast, multiple reflections in the sam-
ple should be avoided because interference patterns at the sample surface can lead
to sample surface areas with low vibration amplitudes. A sample surface amplitude
as homogeneous as possible in the scanned area is favorable. AFAM is a contact-
resonance technique, which probes the local elastic properties of the sample. In the
last years, the term contact-resonance AFM (CR-AFM) [10, 11] has been intro-
duced as a generic term comprehending all methods, in which the contact-resonance
frequencies of the cantilevers are measured as a function of position and evaluated
to obtain elastic and inelastic sample surface properties. Some authors understand
CR-AFM as an extension of force modulation microscopy [12] to higher frequencies
[13, 14]. Contact resonances can not only be used to measure mechanical properties
of the sample surface, but they are also proved to be useful for signal enhancement
in other contact techniques such as piezo-mode AFM [15, 16].

5.2 Analytical and Finite-Element Models for AFAM

AFM cantilevers are small flexible beams, which are suspended at one end and free
at the other end that carries the sensor tip (Fig.5.2). As a response to dynamic exci-
tation, AFM cantilevers exhibit different sets of vibration modes, such as transverse
and lateral flexural and torsional modes. All types of modes show an infinite set
of resonance frequencies, which depend on the shape, the geometrical dimensions,
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Fig. 5.2 Scanning electron micrographs showing a a side-view of an AFM cantilever made of
single crystal silicon, b a view from the bottom side where the tip is mounted, and ¢ the mechanical
model of an AFM cantilever with constant cross-section (clamped-free beam)

the material of the cantilever, and on its mechanical boundary conditions. A vari-
ety of microfabricated cantilevers are available. Cantilevers with triangular shape
(V-shape) were used for contact-resonance spectroscopy [17], and their vibration
modes were studied with analytical and finite-element models [18, 19]. In the follow-
ing, only cantilevers with approximately rectangular shape will be treated, because
their vibration can be described with relatively simple analytical models. Lateral
contact-modes of rectangular cantilevers with bending vibration in width direction
[20] and torsional modes can be used to measure in-plane elastic tip-sample forces
and friction [21, 22]. If torsional contact-resonances are evaluated quantitatively in
addition to flexural modes, a second elastic constant of the sample, the Poisson’s
ratio, can be obtained [10]. However, this chapter will restrict to transverse flexural
modes, i.e., flexural modes with deflections in thickness direction of the cantilever.

5.2.1 Analytical Model of the Cantilever Vibrating in Air

The Euler—Bernoulli equation describes transverse flexural vibration of a straight
beam with constant cross-section [23]:
o* 0 0?
y gy +pA Yy

El— A —_—
e Ot ot?

e =0. (5.1)

Here, x is the coordinate in length direction of the beam (Fig.5.2¢), E is the Young’s
modulus of the cantilever, p is its mass density, A is the area of its cross-section, [
is the area moment of inertia, and 7 is a damping constant expressing the internal
friction in the cantilever and dissipation caused by air. In case of a rectangular cross-
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section of the cantilever with width w and thickness b, the area moment of inertia
is I = wb?/12. A harmonic solution in time with angular frequency w = 27 f is
searched for the local deflection y(x, f) at position x:

iax

—QX

Y, 1) = y(x) - y() = (a1e™ + aze” ™ +aze'™ + age M), (5.2)
where ayp, a, a3, and a4 are constants and i is the imaginary unit. By substituting
the general solution Eq. 5.2 into the equation of motion Eq. 5.1, one obtains the

dispersion relation for a flexural wave with complex wave number

4, 2 _ _LypA
Ela™ +ipAnw — pAw " =0= agr == E(w Finw). (5.3)

If the second term in the partial differential Eq.5.1, which contains the damp-
ing is omitted, the wave number k = 27/ is real, and the dispersion equation
simplifies to:

A (kL)> 1 [EI
EI* — pA? =0= k=220 D E L (54
pav =0= Y 7 T ey O

The boundary conditions of the beam of finite length L depend on its suspension and
on the tip-sample forces. Without surface contact a cantilever can be considered as
a clamped-free beam Fig. 5.2c, the small mass of the sensor tip is neglected. In this
case, the mechanical boundary condition at the clamped end (x = 0) and at the free
end (x = L) are as follows:

2
y@) =0 2260 =0
x=0: Oy x=1L: Py . (5.5)
5 =0 S =0

By substituting the general solution 5.2 into the boundary conditions, a characteristic
equation is found, which defines the discrete wave numbers k,, n = {1, 2, 3, -- -} of
the resonant modes of the system:

cosk,L coshk,L +1=0. (5.6)

The first seven roots of Eq. 5.6 are listed in Table 5.1.

The resonance frequencies of the clamped-free beam are obtained by using the
normalized wave numbers in Table 5.1 and the dispersion Eq. 5.4. For a beam with
rectangular cross-section (A = wb) the result is:

k,L)> b | E k,L)?
_ kL) b [ E _ (kal)” 5.7)
2 L2\ 12p &

In
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Table 5.1 The first seven normalized wave numbers &, L of the clamped-free beam and the corre-
sponding resonance frequency ratio f,/f]

n 1 2 3 4 5 6 7
knL 1.875 4.694 7.855 10.996 14.137 17.279 20.420
fulf1 1 6.27 17.55 34.39 56.84 84.91 118.60

The geometrical and material data of the cantilever can be combined in a constant
cc defined as:
12p

CC:L 2 ﬁ (58)

The resonance frequencies f,, are proportional to the square of the wave numbers,
which means that the phase velocity of the flexural modes is not constant, i.e., the
modes are dispersive and not equidistant. However, equation 5.7 shows that the
frequency ratio of the flexural modes is independent of the material and geometry
data of the cantilever. The ratio of the higher resonance frequencies to the first flexural
frequency is shown in the third row of Table 5.1.

The resonance frequencies of the clamped-free cantilever play an important role in
quantitative AFAM. The geometrical data of the commercial cantilevers made of sin-
gle crystal silicon are subject to unavoidable deviations caused by the batch fabrica-
tion process. These geometrical variations cause wide frequency and spring-stiffness
ranges for the same type of cantilever (up to 100 % variation is possible depending
on the beam type). It is time consuming to measure the geometrical dimensions of
individual beams by optical or electron microscopy. Furthermore, the errors in the
obtained geometry data are so high that the resonance frequencies calculated with
these data are not precise enough. It is relatively easy to measure the first few flexural
resonance frequencies of a cantilever in air either using forced vibration excited at the
cantilever holder or just by observing the noise spectrum. In spite of the air damping
the Q-values of the lower modes are generally much higher than 50 [24], therefore
the free resonance frequencies can be measured with high precision, and they can
be used to calculate the cantilever constant cc. Some authors suggest to retrieve the
geometrical cantilever dimensions from the frequencies of their higher modes and
use these data for calibration of the spring constants [25-27].

A comparison of the experimental frequency ratio to the theoretical one shows how
well commercial rectangular cantilevers fit the model [24, 28]. The Euler-Bernoulli
beam equation does not take into account shear deformation and rotary inertia, which
is only a good assumption if thickness b and width w are much smaller than the length
L. Thin, long, and soft cantilevers like the ones used for contact and lateral force
mode obey much better this requirement than the thicker, shorter, and stiffer can-
tilevers with static spring constants of 20 N/m and more that are used for intermittent
contact and non-contact techniques. Furthermore, the geometry of real cantilevers
differs from the model, for example the cross-section is not exactly constant and of
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Fig.5.3 Mechanical model of
an AFM cantilever with con-
stant cross-section vibrating
in contact with a sample sur-
face (clamped spring-coupled
beam)

trapezoidal form, and the suspension is not infinitely stiff and symmetrical [29] but
made of silicon like the cantilever (see Fig.5.2). For example, the higher resonance
frequencies of silicon cantilevers of the approximate dimensions (225 pm x 30 pm
x 7 pwm [30]) are slightly lower than the frequencies predicted by the flexural beam
model [28]. The same tendency and order of magnitude of frequency deviation from
the Euler model is obtained theoretically when the flexural vibration frequencies of
AFM cantilevers are calculated with the more precise Timoshenko beam model [31].
The difference between the Euler—Bernoulli model and the Timoshenko model was
examined theoretically for the free resonance frequencies and the contact-resonance
frequencies including damping [32].

5.2.2 Contact-Resonance Models

In linear AFAM, the vibration amplitude of the tip is assumed to be small, and the
tip-sample forces such as elastic forces, adhesion forces and viscoelastic forces are
represented by linear springs and dashpots. The complete mechanical model for
linear contact resonance vibration is shown in Fig.5.3.

The length of the cantilever from the clamped end to the free end is L. The sensor
tip is located at position L, and Ly = L — L is the distance between the sensor tip
position and the free end. Forces normal to the surface are represented by the normal
contact stiffness k* and the contact damping y, and forces lateral to the surface are
represented by the lateral contact stiffness k", and a lateral contact damping i .
For technical reasons the cantilever is tilted with respect to the surface by an angle
ag (11-15°). The characteristic equation of the model defined in Fig.5.3 can be
found by defining two solutions for the two parts of the cantilever. The boundary
conditions at the clamped end (zero displacement and slope) and the free end (zero
bending moment and shear force) are the same as in Eq. 5.5. At the tip position
x = L1, additional boundary conditions arise, which contain the shear force and the
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bending moment caused by the tip-sample forces, and which ensure the continuity
of displacement and slope at x = L where the two partial solutions meet.

The characteristic equation of the complete system including tip position, lateral
forces and damping can be found in the literature [28]. Four simpler versions of
models for quantitative AFAM without contact damping are shown in Fig.5.4. The
models and their characteristic equations are special cases of the complete solution
in [28]. The characteristic equations of these models are as follows:

(a) Simple model (24):

ke

I (ky, L)3 (1+cosk, L coshk,L) + (sink, L coshk, L — sinhk, L cosk,L) =0

(5.9)

(b) Tip-position model [8, 24, 33]:

2 ke
3% (ky, L1) (1 4+ cosk, L coshk,L)

+ (sink, Ly coshk, L — sinhk, L cosk,Ly) - (1 4+ cosk, L, coshk, L)
— (sinky Ly cosh k,, Lo— sinh k;,, L, cosk, L») - (1—cosk, L coshk,L{) =0
(5.10)

(c) Lateral force model without tip position [13, 34]

1k 5 h? kF
Ek_i (knL)* A + (kyL)® — (sin2 ao + kL“ cos? ao) D

h kLat : :
+ 2 (kp, L) — sm Q COS o 1) sin(k,, L) sinh(k, L)

*

k ki h?
+k,L (cos2 ap + I]C“at sin ao) B + 3-Lat

. 5C=0 .11

(d) Lateral force and tip-position model [10]:

2 ke sh* (., Ka 2
§k_*(k L1) A+ (ky, L1) I sin” g + o cos“aq ) - [D1Ay — DC]
1

h kik,dt
~|—2(k,,L1) —smaocosao o -1
Ly

- [sin(ky, L1) sinh(k, L{) A3 + sin(k, L>) sinh(k,, L2)C1]
*

k
+k, L (COS2 oo + ]:at sin ao) [B1Ay — B2Cq]

k¥ h?
+3-5 1A, =0, (5.12)

ke L%
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Fig. 5.4 Mechanical models without damping for contact-resonance vibration. a simple model b
tip-position model ¢ lateral force model d tip-position and lateral force model

where

A =1+ cos(k, L) cosh(k, L)

B = sin(k, L) cosh(k, L) — sinh(k, L) cos(k, L)

C =1 —cos(k,L)cosh(k, L)

D = sin(k, L) cosh(k,, L) + sinh(k,,L) cos(k, L). (5.13)

The subscripts 1, 2 are used in cases where the argument is k, L1, or k, L2,
respectively. For example:

A1 = l4cos(k, L) cosh(k,L{) and A» = 1+cos(k, Ly) cosh(k,L>). (5.14)

The same holds for B, C, and D. The static flexural spring constant k¢ of the cantilever
is used to normalize the contact stiffness k*. A variety of methods are known to
determine the static spring constant k¢ [35, 36].

The contact-resonance frequencies are obtained numerically by finding the roots
ky L of the characteristic equations, and by using the dispersion relation 5.7 to cal-
culate the resonance frequencies f;,. In a contact-resonance experiment, the inverse
problem arises: contact-resonance frequencies f, are measured, and the aim is to
calculate the contact stiffness. As already discussed above, it is favorable to use the
resonance frequencies of the clamped-free beam and the known wave numbers in
Table 5.1 to calculate the cantilever parameter cc. In cases where the frequency
ratio of the modes deviates from the Euler model, each contact-resonance frequency
should be used in combination with the free resonance frequency of the same mode
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number:
fn,Cont
(knL)cont = CCy/ fn,Cont = (ky L)Free
fn,Free
. fn,Cont
for example: (k1 L)cont = 1.8751 (5.15)
n,Free

Equation 5.9 describing the model in Fig. 5.4a can then be solved for the normal-

ized contact stiffness k*/kc:

(a) Simple model:

(b)

(©)

ke (knL)3 (1 + cosky L cosh ky L)
kc ~ 3(—sink,L coshky, L + sinh k, L cos k, L)

(CC\/fn,Cont)S [1 -+ cos (cc/fn,Cont) cosh (cc/ fu,Cont) ]

3 [_ sin (CC fn,Cont) cosh (CC\/ fn,Cont) + sinh (CC fn,Cont) COs (CC Jn,Cont ] .
(5.16)

Tip position as a parameter to fit the analytical model to the real cantilever
has been discussed in different publications [37, 38]. The tip position L/L has
either to be estimated from optical micrographs or it can be determined by fitting
the tip position using at least two different contact-resonance frequencies. The
wave numbers of the two parts of the cantilever are:

L ,C Lo C
(knL1)cont = — (ky L) Free fn ont (knL2)cont = — (kp, L) Free fn ont )
L fn Free L f n,Free

(5.17)
The contact stiffness for the tip-position model is obtained by solving the char-
acteristic Eq.5.10 for k* /kc.
Tip-position model:

kK 2(keL)* A
ke 3(=B1Az+ ByCy)

(5.18)

With increasing complexity of the models, more parameters are needed for the
evaluation. The height of the sensor tip & (typical values 10-17 um) is usually
specified by the cantilever manufacturers, and the cantilever tilt angle «y is a
technical parameter of the AFM instrument. Models (c) and (d) contain two
unknown tip-sample spring constants, the normal contact stiffness k*, and the
lateral contact stiffness k.. The ratio k{, /k* ranges between 2/3 and 18/19
for most materials with an average value of 0.85 (13). If one assumes the ratio
k{ ../ k*to be known, Eqs.5.11 and 5.12 can be solved for k*/ k¢ :

Lateral force model without tip position (k;,, # 0):
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k* ¢L? L2 \?  (k,L)*L2A
—) =-— —) - , (5.19)
ke )1 6¢, h2C 6¢, h>C 9¢, L2C

where cp = k', /k* is the known lateral to normal contact stiffness ratio and

2
s = (k L)3h— sin? ag + ¢, cosZ ag ) D
- n L2 0 P 0

h
+2 (knL)2 — sin ay Cos ag (cp — 1) sin(k, L) sinh(k,, L)

+ k, L (cos oy + ¢ sin’ ao) B (5.20)

(d) Lateral force and tip-position model (k;,, # 0)

« 2 2 2 4,2
k B vl vL3 2 (ko L1)* h2A 5.21)
ke )1 6¢,h2CiA; 6¢,h2C1 Ay 9¢,h2C1Ay ~

where cp is again the lateral to normal contact stiffness ratio and

hZ
v = (k,,Ll)3 ? (sin2 oo + ¢ cos’ ao) [D1Ay — DyCy]
1

h
+2 (knL1)? - sin ag cos o (¢, — 1)
1
- [sin(k,, L) sinh(k, L1) A2 + sin(k, Ly) sinh(k,L2)C1]
koL, (Cos ao + ¢, sin ao) [B1As — B,Cy] (5.22)

The advantage of analytical models is that they can be directly solved for the
contact stiffness and that they can be quickly evaluated with varying parameters.
Analytical models become increasingly complicated if more details in the shape of
the cantilever like the triangular end (dagger shaped cantilever) [39], the suspension
[29] or shear stiffness and rotary inertia are considered [32].

5.2.3 Finite-Element Models (FEM)

Several publications can be found in the literature presenting numerical models and
finite-element (FE) calculations of AFM cantilevers and their vibrations [14, 26]
[17, 27] (Chap.4). In order to improve quantitative evaluation of AFAM by FEM,
important details in the geometric shape, the elastic anisotropy of single crystal
silicon cantilevers, and the elasticity of the suspension of AFM cantilevers should be
considered in the model. An FE model was created, which considers the geometrical
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Fig. 5.5 Schematic sketch
of the cantilever a with its
coordinate system {x’,y’,z’}
inclined by an angle 6 relative
to the sample surface coor-
dinate system {X,Y,Z}. The
tip-sample forces are modeled
by three springs with spring
constants k* and k™[, for
vertical and lateral contact
stiffness, respectively; b FE
model of the cantilever after
meshing [40]

shape of the cantilevers with a trapezoidal cross-section and a triangular free end, the
cubic symmetry of silicon single crystal, and the elastic coupling of the cantilevers to
the holder [40]. Figures 5.2a and 5.2b show scanning electron micrographs (SEM) of
a commercial single crystal silicon cantilever. For the geometrical model, a Cartesian
coordinate system with the x’-, y’-, and z’-axes in the cantilever length, thickness,
and width directions, respectively, was used (Fig.5.5). These axes coincide with the
crystallographic axes [110], [001], and [110] of the cubic single crystal material,
respectively. Figure 5.5b shows the FE model of the cantilever after meshing. It
comprises 3D tetrahedral elements with linear dimensions of about 1.5 pm in average
for both the beam and the tip. In the regions where higher strain was to be expected,
the density of the grid elements was increased. The tip-sample contact forces were
modeled as three springs in a coordinate system {X, Y, Z} aligned to the sample
surface (Figs.5.5b). The coordinate system {X, ¥, Z} was chosen to coincide with
the cantilever system {x’, y’, z'} for = 0°. The spring constants k* and k;",, are the
tip-sample contact stiffness values in out-of-plane (Y-axis) and in-plane direction
(X- and Z-axes), respectively. The FE model was fitted to the experiments in a two-
step iterative procedure. In a first step, the measured free resonance frequencies of
the lowest bending, torsional, and lateral bending modes of an individual cantilever
were used to fit the geometrical cantilever dimensions. Subsequently, tip length and
cantilever inclination o were fitted to match the measured CR frequencies of the
first and the third bending mode. The FE model also allows a precise calculation
of the spring constant k¢ of the cantilever. With the obtained FE cantilever model,
the remaining free bending as well as the torsional resonances were predicted and
compared to the experimental spectra. For the first three bending modes and for the
first free torsional mode errors less than 1 % were achieved [40], which means that
the model presented in Fig.5.5 is able to simulate the free resonance frequencies of
the cantilevers more precisely than the usual analytical models.
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In order to investigate the influences of the different geometrical parameters on
the resonance frequencies, several cantilevers of similar shape with only small differ-
ences in their geometrical dimensions were examined. It was shown that the modeling
of the shape and elasticity of the sensor tip and of its contact to the sample surface
are the most critical points rather than the differences in the analytical and the more
realistic FE model of the cantilever geometry.

AFAM measurements on fused silica and nickel were numerically modeled to
obtain values of out-of-plane, k*, and in-plane, k™| 4, stiffness [40]. The normal
spring constant for a cantilever inclined relative to the sample surface was determined
by FEM, and used to calculate the static force from the static cantilever deflection.
The obtained normal contact stiffness values were within the range covered by the
theoretical values for nickel and for fused silica calculated with the Hertzian contact
model and a tip radius of 80 nm. The values obtained for the in-plane surface stiffness
k*Lat were too low as compared to those calculated from contact mechanics theories.
This was probably due to tip-sample interactions involving contamination layers that
were not included in the model.

5.3 Experimental Methods for Quantitative AFAM

The AFAM technique employs the contact-resonance frequencies of an AFM can-
tilever for quantitative measurement of elastic properties of sample surfaces. In the
last years, several methods have been developed to measure the contact-resonance
frequencies and to determine the sample surface properties. An important aspect of
quantitative AFAM is the strategy to determine the geometrical and material para-
meters of the tip and the cantilever [41], which have to be known in order to calculate
the sample surface properties.

5.3.1 Experimental Setup

A schematic sketch of a typical AFAM setup is shown in Fig. 5.6. In the configurations
discussed here, the investigated sample is placed on top of an ultrasonic transducer.
The amplitude of the cantilever vibrations is measured with the laser beam deflection
detector of the AFM. The frequency and the amplitude of the longitudinal wave that
propagates in the sample are controlled by a waveform generator. Contact-resonance
spectra are measured by recording the amplitude of the cantilever vibration as a
function of the excitation frequency.

As indicated in Fig. 5.6, one can utilize different approaches to acquire a contact-
resonance spectrum. One can use a lock-in amplifier to analyze the photodiode sig-
nal at the excitation frequency. In this case, the transducer is excited with a single
frequency. To create the contact-resonance spectrum, the frequency is changed step-
wise, and the amplitude component of the lock-in output signal is digitized, sent to
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Fig. 5.6 Schematic representation of the AFAM experimental set-up

a computer and plotted as a function of the excitation frequency. A lock-in amplifier
can be easily combined with AFM instruments, and it can be used for the real-time
acquisition of qualitative AFAM images, where the amplitude of the cantilever vibra-
tions at a fixed frequency is evaluated as a function of position and used as an imaging
quality. However, even in combination with a down-converter [37], lock-in amplifiers
are relatively slow when used in the spectroscopy mode. A short sweep time is essen-
tial for the acquisition of a statistically significant amount of data. For a fast spectral
analysis, an analog frequency modulation detector [42] and a digital-signal-processor
based resonance tracking system were developed [43]. Furthermore, one can excite
the transducer with a pulse and extract the spectrum by fast fourier transformation
(FFT) of the cantilever vibration signal. It is favorable to tailor the frequency content
of the pulse in such a way that its spectrum comprehends an appropriate interval
around the center frequency of the contact resonance, like in the band excitation
method [44].

5.3.2 Single Point Measurements

In the early work in AFAM single point measurements were performed, i.e., the
contact-resonance spectra were acquired at a single position on the sample surface at
several static loads [33, 39, 45, 46]. The CR frequencies of at least two contact modes
are needed to allow for the tip-position determination required for models Fig. 5.4c
and d. Figure 5.7 presents the CR frequencies measured on fused silica and single
crystal silicon samples for the first and the second contact modes. A commercially
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Fig.5.7 aContact-resonance frequencies f1,cons and f2, con; measured on the single crystal silicon
(Si) and fused silica reference samples. b Normalized contact stiffness k*/ k¢ calculated from the
resonance frequencies presented in a

available AFM beam (L = 225pum, » = §um, w = 38 wm) was used, with free
resonance frequencies of 175kHz and 1,081 kHz for the first and the second mode,
respectively. The spring constant of the cantilever was about 45 N/m. The static load
applied to the tip increased from 90nN to 1350nN in 20 steps.

As can be seen in Fig.5.7a, the contact-resonance frequencies recorded for the
fused silica sample are significantly lower than those measured on the single crystal
silicon sample because the elastic constants of fused silica are lower than those of
silicon. Accordingly, the values of the normalized contact stiffness k*/k¢ calculated
for fused silica are lower than those calculated for silicon for each value of the applied
static load (Fig. 5.7b). In addition, the dependence of the resonance frequency values
on the applied static load contains information about the tip-sample geometry. A
systematic record of stiffness—load curves during a series of measurements also
holds information on the changes in the tip shape and dimension.

Usually, the single point measurements are done in a precisely defined sequence.
First, the contact-resonance frequencies are measured on a reference sample for at
least two contact modes at several values of the static load. Then, the resonance
frequencies are measured on the unknown sample at exactly the same values of the
static loads like those used on the reference sample. The recurrence of the refer-
ence measurement closes the sequence, which is usually repeated several times. The
repetition with recurrence to the reference sample is necessary to account for the
influence of the tip wear on the accuracy of the AFAM measurement.

The single point measurements must be repeated at several random locations on the
sample surface to create a statistically significant data base. The tip-sample contact
occurs at an area of few tens of nanometers squared. Small local differences in the
surface morphology and the unpredictable progress of the tip wear [47] influence the
measurement of the CR frequency values (Chap. 13). In typical AFAM measurements
with a stiff cantilever (k¢ = 30—40N/m), the contact-resonance frequencies can be
measured with an accuracy of about 0.2 and 1 % for the first and the second mode,
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Fig. 5.8 Grid measurements of the contact-resonance frequencies performed on surfaces of Au
and MgF, samples for the (a) first and (b) second mode. Histograms of the occurrence of a contact-
resonance frequency value for the (c) first and (d) second contact mode (49). The data used to create
the images and histograms were provided by G. Stan, NIST, Gaithersburg, Maryland, USA

respectively [48]. These relatively small values of the measurement error may lead
to about 5-10% of uncertainty in the calculated values of the tip-sample contact
stiffness k*.

5.3.3 Grid Measurements

An alternative to the single point measurements are grid measurements, where an
array of measurement points is distributed over a certain area [49]. Figures 5.8a and
b present the grid images obtained on Au and MgF, samples for the first and the
second mode, respectively.

The images consist of 10 x 10 points measured on an area of 3 x 3 wm. The free
resonance frequencies of the cantilever used in this experiment were 114 and 725kHz
for the first and the second mode, respectively. The contact-resonance frequency data
were evaluated statistically to obtain a histogram of occurrence of a given frequency
value. Examples of such histograms calculated form the grid images presented in
Fig.5.8a and b are presented in Fig.5.8c and d for the first and the second mode,
respectively. As can be easily seen, the distribution of the contact-resonance fre-
quency values measured for the first mode on Au and for the first and second modes
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on MgF, can be described by a Gaussian curve. The values of the second contact-
resonance frequency measured for the gold sample show a bimodal distribution. In
this case, the split in the values of the CR can be associated with a sudden change
in the tip shape, which also explains the sudden change in the contrast of the corre-
sponding grid image (Fig. 5.8b). The CR frequency value with the highest occurrence
count is determined from the histograms and used to calculate the tip-sample contact
stiffness k*.

Grid measurements deliver low resolution images, which inform immediately on
the uniformity of the samples in their elastic properties. Furthermore, the grid mea-
surement yields values of the contact resonance-frequencies that are representative
for the tested area. However, the tip scans the sample surface while relatively high
static loads are applied. Continuous scanning of the sample promotes tip wear, which
changes the contact-resonance frequencies. Therefore, the tip should be worn inten-
tionally to a certain amount prior the grid measurement such that the progress in wear
is less pronounced than in the case of a new, sharp tip [50]. As all the measurements
are performed at the same static load, no additional information on the tip geometry
is available. Such information can be either obtained by performing additional single
point measurements on a reference sample or by for example SEM studies of the tip
geometry [33, 51].

5.3.4 Contact-Resonance Frequency Images

Single-point or grid measurements work well on flat, homogenous samples. However,
in case of multiphase materials, such as polycrystalline samples or composites con-
taining phases with different elastic properties, difficulties arise in the interpretation
of the frequency statistics.

Therefore, the number of points in the frequency image must be increased to
generate a more detailed map. In most of the reported studies the CR images consist
of 128 x 128 points or more [34, 53—58]. In most of the cases, the images are acquired
for the first and the second contact mode. The contact-resonance frequencies of the
two modes are used later for calculation of the contact stiffness image. Figure 5.9
shows topography (a) and contact-resonance frequency images (b, c) of a blanket
film of organosilicate glass (SiOC) containing trenches filled with deposited copper
lines [52]. The SiOC film was approximately 280 nm thick. The topography image
shows the blanket film and the copper “fingers.” The contact-resonance frequency
images clearly reveal the areas corresponding to the glass and copper “fingers.”

5.4 Contact Mechanics and Calibration Methods

The previous sections dealt with the experimental procedures to measure contact-
resonance frequencies. The contact-resonance frequencies and one of the mod-
els describing the cantilever dynamics that are explained in detail in Sect.5.2 are
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Fig. 5.9 a Topography and contact-resonance frequency images obtained for b the first and ¢ the
second mode for an organosilicate glass containing copper filled trenches [52]. The images were
provided by D.C. Hurley, NIST, Boulder, Colorado, USA

utilized to calculate the normalized contact stiffness k*/k¢. In order to obtain elastic
constants of the sample surface from the local contact stiffness, contact mechanics
models, such as for example Hertz or Maugis models [59] are needed. The Hertzian
model describes the contact between two nonconforming elastic bodies of general
anisotropy [60]. In the simplest case, the bodies are mechanically isotropic, the
sample is considered as flat and the sensor tip is represented by a hemisphere with
radius R (see Fig.5.1). If a normal force F;, acts, a circular contact area forms with

radius ac:
ac = 3F,R/4E*. (5.23)

It is important for the validity of the model that the contact area is small compared
to the tip radius, i.e. ac < R. If the adhesion forces are so small that they can
be neglected, the normal force F;, is given by the static deflection of the cantilever
multiplied with the spring constant of the cantilever F,, = dkc, where d is the
cantilever deflection. The normal contact stiffness k* is in this case:

k* = 2acE* = J6E*2RF,. (5.24)

E* is the reduced Young’s modulus that combines the elastic properties of the tip (t)
and the sample (s) in the following equations:

1 1—-v 1=
FE ot R (5.25)

where Ey, E;, vy, vy, are the Young’s moduli and the Poisson’s ratios of the surface
and the tip, respectively. AFM sensor tips made of single crystalline silicon are not
elastically isotropic, and this holds for other tip and sample materials as well. In
special cases of symmetry Eqgs.5.24 and 5.25 remain valid if the isotropic reduced
elastic modulus E/(1-?) is replaced by an indentation modulus that is calculated
numerically from single crystal elastic constants [61, 62]:

I T
I 5.26
E MM (5:26)
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where M and M, are the indentation modulus of the sample and the tip, respectively.
The required symmetry holds for silicon sensor tips, which are oriented in (001)
crystallographic direction.

5.4.1 Single Reference Method

The expression for the contact stiffness presented in Eq. 5.24 contains two unknown
parameters, namely, the tip radius R and the reduced Young’s modulus E* of the sam-
ple. One method to obtain these data involves using a reference sample with known
elastic properties [45]. The contact stiffness k* is determined at several static loads
for the reference sample. These values of k* will be referred to as “reference contact
stiffness” k.;. They are compared to the values of the contact stiffness obtained for
the sample with unknown elastic properties k; at the same static load F), as used for
the reference measurements. Using Eqs. 5.24-5.26, an expression for the indentation
modulus of the sample M, can be derived that is independent of the tip radius and
the static load:

&y :\3/_6RF"E3<2 :jE_z (527)
ki VORFRESD \ Eg
k*\"?
Ef = Egy (kTA) ) (5.28)
ref
M, = ! Ly (5.29)
s = E;k Mt . .

As already mentioned in Sect. 5.3.2, the contact stiffness variation as a function of
static load contains information on the tip geometry. An increase of the contact stiff-
ness k* with the static load F;,, follows from Eq. 5.24 if the tip apex has hemispherical
geometry. As the tips wear and break, different tip shapes arise (see Fig.5.10). If the
values of k* remain constant, a flat punch geometry can be assumed, and the radius
of the contact area ac can be assumed to be constant. Different tip shapes can be
considered by introducing a tip geometry factor n, changing between 1 and 3/2 for
a flat punch and a sphere, respectively. Equation 5.28 is replaced by

* * k;k "

ES =E; (kT) . (5.30)
ref

SEM images of various AFM tips used in AFAM experiments confirmed that the

contact stiffness—load dependence is strongly influenced by the tip geometry and

that consideration of the geometry factor n may improve the accuracy of the AFAM

measurement [33]. Figure 5.10 shows examples of the normalized contact stiffness
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Fig. 5.10 a Normalized contact stiffness k*/k¢ as a function of cantilever deflection d. The data
sets were obtained with tips with geometries of b flat punch and ¢ hemisphere confirmed by corre-
sponding scanning electron micrographs [51]

values obtained for a fused silica sample with two cantilevers with very similar spring
constants k¢ but sensor tips of different geometries [51].

The single reference sample calibration does not only allow for efficient elimina-
tion of the dependence of the contact stiffness on the tip geometry but also eliminates
the static spring constant of the cantilever. However, a detailed analysis of AFAM
experimental data showed that the values obtained for the indentation modulus M
were either too large if the reference sample was much stiffer than the unknown
sample or too low if the reference sample was more compliant than the tested sample
[48, 63]. Furthermore, the elastic constants of the sensor tips were not always known,
especially in cases where the tip was coated for example with a diamond layer or
diamond like carbon layer to improve its wear resistance.

5.4.2 Dual Reference Method

If two different reference samples are available, each of the samples can be used
for calibration, and the results can be averaged, or the contact stiffness data can be
used to eliminate not only the tip geometry parameter, but also the tip indentation
modulus M. The two reference samples are chosen such that their elastic constants
bracket the elastic properties of the unknown samples. By comparing the values of
the contact stiffness k" and k3 measured for two reference samples at the same static
load and using Eqgs.5.24 and 5.26, the expression for the indentation modulus M;
takes the following form [48]:

a1 (1))

K" ’
(() w2 =)
2

MIZ
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Table 5.2 AFAM results for the indentation modulus of a niobium film
Sample Literature values [GPa] ~AFAM results [GPa]

Reference: Glass Reference: Si Average
n=1 n=3/2 n=1 n=32 n=1 n=3/2
Niobium 116-133 88+9 9014 127+7 122+ 10 106 =12 105 £ 18

The values were obtained using the single reference method for each of the two reference sam-
ples individually and subsequent averaging. Two different tip geometries, flat punch (» = 1) and
hemisphere (n = 3/2) [39], were used

where M1 and M> are the indentation moduli of the two different reference samples.
With this method, the elastic properties of diamond coated tips [62] were determined,
using silicon and strontium titanate single crystal samples as a reference. Hurley et al.
[39] used two reference samples of borosilicate glass (M, = 85 GPa) and silicon single
crystal (Ms; = 139 GPa) that bracketed the expected values of the indentation modulus
for a tested niobium sample (Mnp = 116-133 GPa). The indentation modulus of
niobium was calculated by using each reference material individually and subsequent
averaging of the results. As can be seen from the data presented in Table 5.2, the values
of the indentation modulus My, obtained for niobium films depended strongly on
the choice of the reference material. Employing the glass reference sample yielded
values of My, that were much lower than those expected from the literature values.
On the other hand, using silicon as a reference sample, the values of My, were
close to the upper limit expected for the indentation modulus of niobium. Averaging
yielded results that were in good agreement with the literatures data as well as the
indentation modulus My, obtained by nanoindentation measurements performed on
the same niobium film.

Several authors observed an increasing difference between the expected inden-
tation modulus and the value obtained by AFAM with increasing difference in the
elastic properties of the unknown and the reference samples [48, 63]. This prob-
lem is especially pronounced for sharp tips. Stan et al. [49] used the dual reference
method and Eq. 5.31 to determine the indentation modulus of a silicon tip. A variety
of samples such as Au (111), CaF; (100), Si (100), and MgF, (001) were used and
yielded results in the range from 60 to 180 GPa, depending on the choice of the ref-
erence sample, the tip position parameter, the influence of the lateral stiffness, and
the tip geometry. The authors explained these large variations in the values of M; by
discrepancy in the actual shape of the AFM tip and the assumptions of the existing
models for the contact mechanics. Despite these variations, the reason of which will
have to be examined in future, it was also shown in this study that the dual reference
method allows to measure the indentation modulus with an accuracy of about 3 %.
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Fig. 5.11 a Normalized contact stiffness and b indentation modulus images obtained for SiOC
thin film sample with copper filled trenches [52]. The images were provided by D.C. Hurley, NIST,
Boulder, Colorado, USA

5.4.3 AFAM Image Calibration

During the last ten years, the development of methods for fast acquisition of contact-
resonance spectra [43, 42] opened the possibility to take contact-resonance frequency
images with an increasing number of points. Once such contact-resonance frequency
images are obtained for at least two modes, the calibration techniques discussed in the
previous sections can be applied to create a contact stiffness image. Figure 5.11 shows
(a) the normalized contact stiffness and (b) the indentation modulus obtained for the
SiOC glass thin-film sample with the copper filled trenches presented in Fig.5.9.

The contact stiffness image was calculated pixel-by-pixel from the contact res-
onance images of the two modes. To obtain a calibrated image of the indentation
modulus, one can use the single or dual reference method [55, 62]. However, a cali-
bration before or after taking an image with 16,000 points and more is problematic, as
the tip shape might change because of wear. The elastic constant image in Fig.5.11b
was obtained using a part of the contact stiffness image with known elastic constants
for calibration [64]. For this “self calibration,” additional single point measurements
were performed directly on the SiOC film using a borosilicate glass as a reference
material. Then, the value of the reduced Young’s modulus of 44 GPa obtained for the
SiOC film was used as a reference E:‘ef for the rest of the image. In order to obtain
a value for the reference contact stiffness k;‘ef/kc, an average value was calculated
directly from the contact stiffness image in the SiOC region. A similar self-calibrating
approach was used in Refs. [53, 57].

5.5 Nonlinear AFAM

In most of the quantitative contact-resonance spectroscopy measurements the
tip-sample contact is modeled as a system of linear springs and dashpots. However,
the various physical forces acting between the tip and the surface depend nonlinearly
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on the distance. Linear approximations are restricted to tip-sample displacements
covering small parts of the interaction force curve, i.e., to small vibration amplitudes
of the tip-sample distance. If operated beyond these limits the nonlinearity of the sys-
tem becomes noticeable. In the regime of small nonlinearity, when the tip remains
in contact with the sample surface during its vibration cycle, the contact resonance
curves become asymmetric. They develop a steep edge at frequencies below the
contact resonances, and the maximum shifts to lower frequencies in case of soften-
ing nonlinearity [65]. Hardening nonlinearity causes a reversed behavior. Nonlinear
effects are further noticeable by higher or subharmonics in the spectrum of the can-
tilever vibration [66—68]. An experimental procedure based on perturbation analysis
and higher order spectra measurements was proposed [67, 68] to identify the inter-
action force in a third-order polynomial approximation around the static set-point.
Single mode excitation [67] and modal interactions in the presence of two-to-one
auto-parametric resonance between two modes [68] was considered.

The downwards shift of the contact- resonance frequency as well as the genera-
tion of higher and subharmonics in the cantilever vibration with increasing excitation
amplitude were numerically simulated for a pure Hertzian contact [69, 70] and for
a Hertzian contact with adhesion forces added [71]. Experimental investigations of
contact-resonance frequency variations and higher harmonics generation caused by
the nonlinear part of a Hertzian contact were carried out by a scanning microde-
formation microscope [72]. Different vibration amplitudes and static loads were
considered.

An analytical model of the nonlinear dynamics of cantilever tip-sample inter-
actions for various acoustic AFM modes treats the cantilever and the substrate as
independent linear systems coupled by a nonlinear force acting between the sensor
tip and a small sample volume [73] (Chap. 3). Equations for the maximum nonlinear-
ity regime, i.e. around the minimum of the force curve, were obtained by perturbation
theory using a second order polynomial expansion of the force curve. Equations for
the hard contact (linear) regime were also derived.

5.5.1 Evaluation of the Full Force Curve

The nonlinear AFAM methods mentioned above have access only to a small part
of the tip-sample interaction force curve around the static set-point. A more gen-
eral approach allows the reconstruction of the full curve as a function of the tip-
sample distance [74, 75]. A frequency dependent transfer function (7w) was derived
for the flexural contact modes of an AFM cantilever modeled as a beam with
constant cross-section. The cantilever contact-vibration amplitudes were measured
quantitatively at increasing amplitudes of excitation. The time signals were Fourier
transformed to obtain the spectra of the cantilever vibration. By multiplying the
measured cantilever vibration spectra with the transfer function and subsequent
Fourier back-transformation, the nonlinear contact and adhesion forces were calcu-
lated as a function of time. Additionally, the sample surface vibration was measured
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Fig. 5.12 a Set-up of a commercial AFM combined with a heterodyne interferometer to measure
absolute vibration amplitudes of the cantilever and the sample surface; b Examples for calibrated
spectra Y(f) of the cantilever vibration obtained by FFT [74]

in close proximity to the cantilever tip. With these data the tip-sample interaction
forces as a function of the tip-sample distance were reconstructed.

A schematic sketch of the experimental setup is shown in Fig. 5.12. Like in linear
AFAM the cantilever was forced to flexural vibrations by vertical sample surface
vibrations excited with an ultrasonic transducer below the sample. The static set-point
of the cantilever was controlled by the beam-deflection detector and the feedback loop
of the AFM. A heterodyne Mach—Zehnder interferometer (bandwidth: ~100kHz—
80MHz) was used for calibrated detection of ultrasonic vibrations. By a dichroic
beam splitter added to the AFM the green beam of the interferometer was directed
to the cantilever. Two mirrors were used to position the focal spot on the surface of
the cantilever. The mirrors and the focusing lens were mounted on a motor-driven
translation stage. In this way, the focal spot could be exactly positioned and the entire
cantilever could be scanned during experiments to examine the shapes of the modes.

Figure 5.13 shows scans of the surface of the cantilever during nonlinear contact
vibration. A single crystal silicon cantilever (Nanosensors, NanoWorld, Neuchatel,
Switzerland, length ~485 wm, static spring constant ~0.2 N/m) and a polished PZT
ceramic sample were used for these experiments. For reconstruction of the force
curve, the focal spot of the interferometer was directed to a fixed position on the
cantilever as close to the tip position as possible. The calibrated time signal of the
interferometer y(f) was stored by a fast digitizer card and subsequently filtered and
Fourier transformed. Thus, the spectral representation of the cantilever deflection
Y(f) was obtained. Examples for spectra at different amplitudes of excitation are
shown in Fig.5.12b. The spectra contain the amplitude of the excitation frequency,
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Excitation frequency 175 kHz, 2nd Harmonic 3rd Harmonic
2nd flexural eigen-mode
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Fig.5.13 Measured cantilever vibration in contact with a PZT sample, excitation at the 2nd flexural
contact eigen-mode of 175kHz; the mode shapes of the vibration of the 1st to the 6th harmonic
were detectable

and it can be clearly seen that the amplitudes of the harmonics increase with increas-
ing amplitude of excitation. In order to improve the signal-to-noise ratio multiple
spectra were acquired and averaged continuously. By repositioning the focal spot of
the interferometer, the amplitudes and phases of the sample surface vibration were
measured in the vicinity of the sensor tip. Fourier transformation revealed a spectrum
containing only the excitation frequency proving that there was no signal distortion
by the transducer.

The frequency dependent transfer function (7w) follows from the theory of
flexural vibrations of a rectangular beam of constant cross-section [74, 76]. The
deflection y(x, ) of the beam is a function of the spatial coordinate x in longitudinal
direction and of the time ¢ described by the Euler—Bernoulli equation 5.1. Due to
the linearity of this differential equation the principle of superposition is valid, and
the general solution may be written as the sum of a part constant in time (the static
deflection of the beam) and an infinite number of harmonic oscillations of circular
frequency w [77, 78]:

y(x, 1) = 23: B+ > [Y(x, w)el! + (Y(x, w)ei“”)*],
v=0 w

y(t) = y(L1,t), L1 = tip position; (5.32)
3
_ i’ a(w)x _ 4 ﬁ 2 _ ﬂ =
Y (x, w) —Z()[A,,(w)e ],a(w) = | Sw (1 lw),Y(w) — Y(L,,w).
(5.33)

The constants B, and A, (w), v = {0, 1, 2, 3}, are determined by the mechanical
boundary conditions of the beam.

Once the tip is in contact to the vibrating sample surface the cantilever is forced
to vibrations via the tip-sample interaction forces F. The forces depend on the tip-
sample distance and on the relative tip-sample velocity, which in turn are time-
dependent because of the vibration. As a consequence the force acting onto the tip
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Fig. 5.14 a Tip vibration ygy,(f); b amplitude and ¢ phase of the transfer function T(w);
d reconstructed force F(f). The four different signals in figures (a) and (d) correspond to four
different amplitudes of excitation (0.5, 2, 5, and 10 Vpp), which were applied to the ultrasonic
transducer

and indirectly onto the cantilever becomes a function of time, F(¢), which may be
expressed in terms of a Fourier series fiw). Note, F is not directly, but indirectly
time-dependent due to its distance and velocity dependency. The described relations
yield the frequency dependent transfer function 7(w). A detailed derivation is given in
[74]. Multiplication of the cantilever vibration spectra Y(w) with the transfer function
T(w) yields the Fourier components fiw) of the force F(¢), which then follows by
Fourier back-transformation. This procedure is schematically depicted in Fig.5.14.
Figure 5.14a shows a small time interval of filtered tip vibration signals ydyn (),
Figs.5.14b and ¢ show amplitude ||7'|| and phase 6(7T) of the transfer function T(w),
and Fig.5.14d shows a small time interval of the force F(¢). The four signals in
Figs.5.14a and d were obtained with the same static deflection of the cantilever, but
with different amplitudes of excitation applied to the transducer.

Dynamic interaction forces as function of the tip-sample distance can be obtained
by correlating the difference of the measured cantilever vibration and sample surface
vibration, i.e., the dynamic part of the tip-sample distance zdyn () = yayn(?) — a(?),
(see Figs.5.14a and 5.15a) and the force F(¢) (Fig.5.14d). As shown in Fig.5.15¢
for several different excitation amplitudes, dynamic force—distance hysteresis loops
were obtained. The extrema in distance of the loops are reversal points in the relative
sample surface—sensor tip movement, i.e., points with a relative sample surface—
sensor tip velocity of zero. Those points cannot contain damping forces, i.e., can be
used to reconstruct the quasistatic force curve from dynamic force—distance hystere-
sis loops. This means that each force hysteresis loop will yield at least two points
of the quasistatic force curve. The map of all extrema of 20 force loops is shown
in Fig.5.16a. The force loops were obtained from a measurement series with 20
different amplitudes of excitation ranging from 0.5 to 10V [75].

Due to the lower cutoff frequency of 100kHz of the heterodyne interferometer, it
was not possible to measure the absolute static cantilever and sample surface posi-
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Fig. 5.15 a Surface vibration amplitude a(?); b dynamic part of the tip-sample distance zqyn(¢) =
Ydyn(t) — a(t), and ¢ time-dependent force as a function of tip-sample distance. The four different
signals in the figures correspond to four different amplitudes of excitation 0.5, 2, 5, and 10 Vpp,
which were applied to the ultrasonic transducer. The points with zero tip-sample velocity correspond
to the maxima and minima of zqyn(#) and are marked with arrows in ¢ [75]

Fig. 5.16 Reconstructed force curve, a quasistatic forces obtained from the turning points of the
hysteresis loops some of which are shown in Figs.5.15¢ and 5.15b corrected force curve obtained
by shifting each pair of turning points in horizontal direction as indicated by the arrows in a
[74, 75]

tions. The static cantilever deflection was kept constant during the measurements by
the feedback loop of the AFM. Only ac-signals were applied to the ultrasonic trans-
ducer. However, the nonlinearity of the interaction forces can cause an increase of
the mean tip-sample distance with increasing ultrasonic excitation amplitudes. The
feedback loop of the AFM compensates for this additional static tip deflection as it
does for thermal drifts. The distance between the cantilever and the rest position of
the sample surface is unknown. Therefore, the force curve reconstructed as described
above (Fig.5.16a) has to be corrected with respect to an unknown static shift. In a
simple tentative approach, it was assumed that the contact stiffness was approxi-
mately constant in the repulsive region entailing a force curve being approximately
linear at high loads in the repulsive region. The slope of the linear force curve was
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defined by the pair of turning points deduced from the elliptic hysteresis loop with
the lowest amplitude of excitation stemming from a vibration, which covers only an
approximately linear range of the interaction force curve. Each pair of data points
from the other hysteresis loops was shifted parallel to the horizontal axis, so that the
left points of the pairs formed a straight line corresponding to the contact stiffness
in the repulsive region. The arrows in Fig.5.16a show an example of how one pair
of points was shifted. The quasistatic force curve corrected in this way is plotted in
Fig.5.16b. The center of the linear hysteresis loop generated by the low amplitude
excitation was chosen as zero-point of the horizontal axis displaying the corrected
tip-sample distance z*. As the vibration is sinusoidal and consequently symmetric to
the origin, this zero-point corresponds to the initially chosen static set-point position.

A direct and quantitative measurement of the cantilever vibrations was achieved
by combining an AFM with a heterodyne Mach—Zehnder interferometer. No a pri-
ori assumptions about the shape of the force curve and the kind of forces were
required. The force curve shown in Fig.5.16c was obtained with a soft cantilever
with a spring constant of approximately 0.15N/m. In quasistatic measurements the
cantilever jumps into contact when the tip-sample force gradient becomes larger than
the spring constant of the cantilever. The dynamic approach presented here allows
one to reconstruct intervals of the force curve which are not accessible in quasistatic
measurements.

5.6 Conclusions

In this chapter frequently used mechanical models and experimental methods were
reviewed, which have been used in quantitative AFAM. In many different applica-
tions AFAM or CR-AFM has proven to be a very useful tool for measurement of
elastic constants with high local resolution. Since the invention of AFAM, there has
been strong progress in its theoretical as well as in its experimental aspects. For
example, the analytical and finite-element models for the theoretical description of
the cantilever vibrations have been improved, the influence of the different parame-
ters on the quantitative results, and various aspects of sensitivity have been examined.
While the first quantitative AFAM results were obtained with single point measure-
ments, the acquisition of contact-resonance frequency images is now state of the art
due to the development of methods for fast acquisition of contact-resonance spectra.
However, despite the advantages of CR imaging, AFAM amplitude imaging can be
the technique of choice in cases where the contact-resonance frequency variations
in the scanned area are small. In addition to linear AFAM, nonlinear AFAM tech-
niques were treated. With an approach based on a transfer function of the cantilever
beam, the full non-linear tip-sample force curve can be reconstructed from mea-
surements with soft cantilevers with spring constants of approximately 0.2 N/m. In
contrast to linear contact-resonance spectroscopy, which exploits the shift of the res-
onant frequencies, the reconstruction of the nonlinear forces is based on amplitude
measurements, which are more difficult in AFM than frequency measurements.
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Chapter 6
Ultrasonic Atomic Force Microscopy UAFM

Kazushi Yamanaka and Toshihiro Tsuji

Abstract A version of scanning probe acoustic technique was developed as
ultrasonic atomic force microscopy (UAFM), where higher order mode cantilever
vibration is excited at its base (support). It enables precise imaging of both topography
and elasticity of stiff samples such as metals and ceramics, without a need for bonding
atransducer to the sample. By virtue of this advantage, a range of unique analysis and
hardware has been developed. In this chapter, after briefly summarizing the concept
of UAFM, basic mathematical analysis, mechanical, and electronic instrumentation
are described, including a noise-free cantilever holder and analogue/digital fast res-
onance frequency tracking circuit. The final section describes illustrative examples
first realized by this technique as an introduction for later chapters of applications
(e.g. subsurface defects).

6.1 Conceptual Design

6.1.1 Forced Vibration of Cantilever from the Base

An atomic force microscope (AFM) [1] uses a cantilever to measure nanoscale irregu-
larities on the surface of a sample, utilizing the deflection of the cantilever supporting
a tip owing to the force acting between the sample surface and the tip. Methods have
been proposed to measure the distribution of contact stiffness by detecting the vibra-
tion of the AFM cantilever when the sample is vibrated at or higher frequency than
its resonance frequency (frequency range of ultrasound), while the vertical control
is realized via the static cantilever deflection [2-5]. They can measure the elasticity
of stiff materials. Note that it is not possible in the force modulation mode where the
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sample is vibrated at a frequency much lower than resonance frequency in vertical
direction [6], not in the lateral direction [7].
However, since the sample has to be bonded to an ultrasonic vibrator,

(1) Selection of optimum adhesive for each sample is required.

(2) Adhesives contaminate the sample and cannot be used with LSI wafers and other
samples requiring a high degree of cleanness.

(3) A large or irregularly shaped sample is hard to vibrate uniformly.

(4) Unwanted resonance peaks of the sample overlap cantilever resonances, degrad-
ing the precision.

These disadvantages are overcome by the ultrasonic atomic force microscopy
(UAFM) [8-21] in which the cantilever rather than the sample is vibrated, without
requiring the sample to be bonded to a vibrator. With suppression of both spurious
vibration of cantilever base (chip to mount the cantilever to cantilever holder) and
nonlinear jumping of the tip, a wealth of information is conveniently obtained from
the clear spectra of fundamental and higher order modes of deflection, torsion, and
lateral bending vibration of the cantilever.

6.1.2 Tracking Quantitative Information, Directional Control, and
Resonance Frequency

The cantilever vibration spectra in contact with the sample were found to be strongly
dependent on the excitation power [10]. However, if the excitation power is small
enough, the resonance peak width decreases and the peak frequency increases to
a certain limiting value. In this condition the tip-sample contact is kept linear, and
satisfactory agreement between the measured and calculated frequency is obtained.
The agreement is further improved by taking into account the lateral stiffness. More
quantitative information on the elasticity of the sample is obtained from the contact
load dependence of the frequency, where contact stiffness of a non-spherical tip
shape is derived from the Sneddon—Maugis formulation, and the tip shape index is
estimated by an inverse analysis of the load—frequency relation. A further advantage
is the evaluation of not only the vertical, but also the lateral stiffness by simultaneous
measurement of deflection and torsional vibration [9]. It was demonstrated on a
ground silicon wafer [10].

The modulus can be calculated using the resonance frequency obtained from the
peak frequency of a spectrum, and the loss modulus is calculated using the Q factor
defined as the ratio of the peak frequency to its width. However, measurement of
spectra takes a long time (typically 5s for one point for an average of 10times).
Consequently, mapping of the resonance frequency and the Q factor takes a very
long time (~91h for a 256 x 256 pixels image).

A resonance-tracking scheme was developed to reduce the time required for map-
ping the resonance frequency [13]. Furthermore, if we use the analytical relationship
between the peak height of resonance and the Q factor obtained by the theory of
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UAFM, we can measure the Q factor from the vibration amplitude at resonance.
Based on this i.e., advanced UAFM was developed for mapping both the resonance
frequency and Q factor of the sample. Here the frequency is not fixed but automat-
ically tuned to instantaneous resonance frequency determined by the stiffness of
sample.

6.2 Analysis

6.2.1 Effective Enhancement of Cantilever Stiffness

As an essential point of UAFM, cantilever stiffness is effectively enhanced by higher
order resonances, as pointed out by the first paper of UAFM [8].

As the most comprehensive introduction, the first five vibration modes are illus-
trated in Fig. 6.1. The cantilever with a fixed boundary at the right-hand side has an
elastic boundary shown by the small rectangular column which represents stiffness of
sample. The deformation is negligible in n = 1 and 2 modes. Consequently, a small
variation of stiffness of sample would not cause significant change in the cantilever
vibration amplitude. On the other hand, the sample is significantly compressed at
the n = 4 mode and stretched at n = 5 mode. Consequently, a small variation of
stiffness of sample would cause some change in the deformation of sample and thus
the cantilever vibration amplitude. And this change will be detected by the laser
probe.

This is the clearest demonstration of the property that the cantilever softer than
the sample stiffness is effectively stiffened at higher order modes. This property is
used to measure elasticity of stiff samples using a soft cantilever. The reason for this
stiffening is explained by the inertia of the cantilever as well as the formation of nodes
along the cantilever axis. The distance between the sample and the closest node is
much less than the original cantilever length, resulting in the effective shortening of
the cantilever.

6.2.2 Stiffness, Q Factor, and Nonlinear Parameter in Resonance
Spectra

6.2.2.1 Criterion to Avoid Plastic Deformation

The start point for any reliable measurement is the repeatability. Plastic deformation
of tip and/or the sample are the most serious obstacle to repeatability since it is a
irreversible process. But it is lucky that we have a good criterion to judge if plastic
deformation takes place.
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Fig. 6.1 Effective enhance- VM Fix
ment of cantilever stiffness at
higher modes (FEM analysis n=1

of cantilever vibration) [8]

n=2

n=3

n=4

n=5

If the von Mises stress oy calculated from stress components is larger than the
yield stress, plastic deformation will take place. Maximum oy under the tip-sample
contact is approximately given by

oy = 0.309 (6.1)

where o9 = 1.5F / (waf) is the maximum normal stress in the contact area, where
a. = (3R FL/4K*)1/3 is the contact radius, R is the tip radius, K* is the effective
modulus of tip/sample pair, and F is the contact force. Assuming typical parameters
of AFM, K *of 100 GPa, and contact force of 250 and 2,400 nN, the contact diameter
and Mises stress are evaluated in Table 6.1.

In Table6.1, it is noted that oy, is fairly large in spite of small F|, due to very
small a.. Therefore, we have the following concern about;

(1) Yield and wear of samples
The cases (a) and (b) are for radius R = 50 nm of slightly worn tip and (c) and (d)
are for R = 100 nm of severely worn tip. At (a), oy, is as large as 3.2 GPa, much
larger than yield stress o, of typical metals listed in Table 6.2, which is usually
less than 1 GPa = 1000 MPa. Since some metals such as Gold (Au) is very soft,
it easily undergo plastic deformation at the contact force | exceeding 1000 nN.
This point should be taken care when applying not only UAFM but also related
techniques in this book. One should always know approximate tip radius R. It
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Table 6.1 Von Mises stress for some sets of tip radius R and contact force F|

Tip Contact Contact Max normal Von Mises
radius R(nm) force F| (nN) diameter 2a.(nm) stress o0o(GPa) stress oy(GPa)
(a 50 250 6.7 10.7 32
(b) 50 2,400 14.2 22.7 6.8
(¢) 100 250 11.4 3.6 1.1
(d) 100 2,400 243 7.7 23

Table 6.2 Yield stress oy of typical materials

Material Yield strength o, (MPa)
Structural steel ASTM A36 steel 250
Steel, API SL X65 (Fikret Mert Veral) 448
High density polyethylene (HDPE) 26-33
Polypropylene 12-43
Stainless steel AISI 302 —Cold-rolled 520
Titanium alloy (6% Al, 4% V) 830
Aluminum alloy 2014-T6 400
Copper 99.9% Cu 70
Silkworm silk 500
Kevlar 3620

2

3)

is useful to observe the appearance of sample surface in the noncontact mode
AFM image after spectra measurement.
Wear of tip
Even for a silicon tip whose o is 5 to 9 GPa, yield may occur at o, larger than
5 GPa. Moreover, the tilt of cantilever (typically about 11° in common AFM)
further increases the o, due to surface friction. Consequently, severe wear of Si
tip should take place at condition above o, = 5GPa. The tip will be worn and
the radius increases to e.g. 100nm (d), and the resonance frequency will also
increase. Hence, frequent measurement of reference sample is required when
they use F| > 1000nN to obtain reliable data.
Spatial resolution degradation
The contact diameter representing the resolution is more than 10 nm in Table 6.1,
except for the case (a). Therefore, to achieve spatial resolution about 5nm, con-
tact force should be less than 250 nN with a tip without wear. Hence, users need
care if images are taken at high loads.
The worn tip also causes artifacts. The contrast of grooves and grain boundary
can be inverted by the compensation of multi-asperity contact. Moreover, the
simple relation

k* =2a.K* (6.2)
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Fig. 6.2 Principle of UAFM.
a AFM. b UAFM in the first (@
resonance. ¢ UAFM in the
second resonance

Cantilever

Subsurface
Defect and
Delamnation Node

()

cannot be employed for contacts without axial symmetry. If it is used, over
compensation may easily take place resulting in an inverted artifact. There is
no established relation to be employed to convert the contact stiffness to local
modulus value.

6.2.2.2 Analysis of Stiffness and Q Factor

The principle of UAFM for the analysis of stiffness and subsurface defects is shown
in Fig. 6.2 [10]. When resonance vibration is excited to the cantilever, elastic defor-
mation of the sample is caused by effective stiffening of the cantilever due to the
inertia effect (Fig.6.2b) as well as shortening of the lever due to the formation of
nodes (Fig.6.2¢) as proposed previously.

In a model of UAFM cantilever with distributed mass, the slope of the cantilever
is given by

0z(x)
\%4 =
(x) o
_ B it | o X x Lo X . X
_(MO/Z)Lle smhﬁL1 sm/é’L1 B(w)(smﬂL1 —i—smhﬁle)
+D(w)(cos B hG-)
w)(cos le cos L
B(w) = SSh 4+ a(CS, + SCp) D(w) = CSp+ SCh +2aCCy,

(14+CCp) +a(CSy — SCp)’ ~ (1+CCp) + a(CSy, — SC)

(6.3)
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Fig. 6.3 Relation between
the Q factor and the maximum
peak height Viax of a peak
formed around 2 ~ 0.87
when and k*/k. = 200.
Five different values of I" =
v/~/ Mk, were assumed ~0.5,
1,2,5,and 10

60

(o]
o

H
[=]

Amplitude V, dB

30

8.6 8.8 9 9.2
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where z is the deflection of cantilever, u¢ is the vibration amplitude of cantilever
base, w is the angular frequency, L is the actual distance between the tip and the
base (cantilever length), and S = sing, S, = sinh 3, C = cos 3, C;, = cosh f3,
a=—1/33@k*/ ke + i3I 3%), 8 = 3142 [13]. The factor 2 = w//ke/M is
the normalized frequency and I" = ~/+/ Mk, is the normalized damping coefficient,
where M is the mass of cantilever, k. is the cantilever stiffness, k* and ~ are the
contact stiffness and damping coefficient between tip and sample. Because the slope
is proportional to the signal measured by optical-deflection AFM, Eq.(6.3) is an
analytical expression of the UAFM spectrum at a given location x of the laser beam
spot.

Figure 6.3 shows spectra calculated using Eq.(6.3) with I' = ~// Mk, =
0.5,1,2,5,10 and k*/k. = 200, for the laser beam spot at the end of cantilever
(x = Ly) [13]. The Q factor is calculated as the ratio of peak frequency £2
to the 3dB-width AS2. Inset of Fig.6.3 shows the relation between the Q factor
and the peak height of resonance Vip,x, showing clear linearity between them. Though
the linearity is an approximate relation, it holds over a reasonably wide range of nor-
malized damping coefficient I". For example, the ratio between the Q factor and the
maximum peak height Vinax, O/ Vimax, remains almost constant (0.413~0.422) over
arange of I" from 0.1 to 10.0 for the normalized contact stiffness k*/ k. of 200. For
k* / k¢ larger than 200, the variation of Q/ Vinaxis even smaller. Thus, the peak height
of resonance can be employed as a measure of the Q factor. The analysis can be
further improved by considering the lateral stiffness [22], tilt of the cantilever [10],
and shape of the tip.

The Q factor is determined by the internal friction of the sample and by the water
or contaminant film on the sample. Although other factors such as the air damping,
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clamp of cantilever base to the ultrasonic transducer and defects within the cantilever
change the Q factor, their effect is usually small or uniform, and therefore, does not
significantly affect the contrast in the image.

To verify quantitatively such an effect, we use the continuum theory to describe
vibration of the cantilever with a tip in contact with the sample. For analysis of exper-
iments, lateral stiffness [9, 22] and the oblique sample surface [23] are considered.
The frequency equation of the cantilever is

C-Cr(PQ—14+D*+S-Cp(P+Q)+C-S,(P—Q)+2S-Sp/POD+1+PQ—D>=0

6.4)
b Ea 0~ B(L1/h)?
3(k*/ ko) (r sin® o + cos? ) 3(k*/ ko) (r cos? ¢ + sin® @)
1— 2 2 k*
PR ek £ .58 and r = -t 6.5)
(r + tan? ) (r tan? ¢ + 1) k*

in which § = kL is the product of the wavenumber x and the cantilever length L,
k* is the vertical (out-of-plane) contact stiffness, kfjat is the lateral (in-plane) contact
stiffness, k. is the cantilever stiffness, and ¢ is the angle between the lever axis (the
x-axis) and the sample surface. When the parameters (r, p, L1/ h, k*/k.) are given,
Eq.(6.4) is solved for § and Eq.(6.4) gives the resonance frequency

4 2 2
A 3w pA
K4 = (ﬁ) _wpra w_p% (6.6)
Ly EI keLy

In the limit of r — 0 and ¢ — 0, we obtain Q — oo and hence

ke
3k*

B3(1 + cos (B cosh 3) = cos 3sinh 3 — sin 3 cosh 3 6.7)

which is the original equation for ultrasonic AFM [5, 8].

6.2.2.3 Detrimental Nonlinear Spectra

Another obstacle to achieve reliable measurement is the nonlinearity. To show this,
three silicon cantilevers with a silicon tip were used. The nominal length, width,
thickness, and stiffness of the cantilever were L1 = 444 um,a = 73 um,b = 3.5 um
and k. = 1.5Nm~!, respectively. The spectra of tip 1 around the second resonance at
the static load of 30nN on a soda-lime glass are shown in Fig. 6.4. Different level of
excitation power was applied to the piezoelectric transducer attached to the cantilever
holder. For clear comparison, each spectrum is shifted by 5 dB from preceding spectra

[9].
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Although the first step for quantitative evaluation is the precise measurement of
resonance frequency, it turned out that this is not an easy task. It was found that the
width decreases and the peak frequency increases as the excitation power is reduced
from —10 to —25dBm. However, if the resonance frequency f, and Q factor are
plotted as functions of excitation power in Fig.6.5, it was possible to estimate the
limiting value of f, and Q as 321.5kHz and 162, respectively, as the power was
extrapolated to zero. Moreover, approximately constant values were obtained by
reducing the excitation power to less than —25 dBm. We name the spectra measured
in such conditions ‘linear spectra’.

It has been suggested that the width of the spectra is related to the viscosity or
energy dissipation at the tip-sample contact [5, 22, 23] and it is possible to evaluate
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the viscosity from the peak width. However, because the width is generally dependent
on the excitation power, as shown in Figs. 6.4 and 6.5, it is not possible to evaluate
correctly the viscosity from the nonlinear spectra. It is essential to suppress the
nonlinearity for reliable viscosity measurement.

To explain the shape of the observed linear and nonlinear spectra, an intuitive
model is shown in Fig.6.6 [10]. If the excitation power is low, the variation of
the tip-sample indentation during one cycle of vibration should be small and the
contact stiffness at every moment can be regarded to be constant during one vibration
cycle. Then the spectra consist of a single peak corresponding to a single value of
contact stiffness. However, if the excitation power is increased, an intermittent contact
results and the contact stiffness changes its magnitude during the vibration circle.
The stiffness is small while the tip is detached from the sample. Then, the vibration
spectra averaged over one cycle may be approximated by the sum of component
spectra for different contact stiffness. The total spectra are therefore broader and
the peak frequency is lower than the linear spectra. If the amplitude of component
vibration is not uniform, then the total spectra will be asymmetric. The qualitative
features of the observed spectra are consistent with this model. For quantitative
prediction of the observed spectra, more precise analysis of the nonlinear vibration
is introduced in later part of this chapter.

6.2.2.4 Relation Between UAFM and UFM

Similar but another type of nonlinearity is described in the model of UFM [2, 3].
When an amplitude-modulated (AM) high-frequency vibration is excited on the sam-
ple or on the cantilever support, a vibration at the modulation frequency is generated
by a demodulation or ‘mechanical diode’ effect due to the nonlinear tip-sample con-
tact. In order to understand the relation between these two nonlinear effects, it is
useful to compare the threshold power for linear spectra Py with that for nonlinear
demodulation of the AM vibration Pp.

According to investigation in the same experimental conditions as these of Fig. 6.4,
the threshold power Pp was ~0dBm, which is significantly higher than the threshold
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for linear spectra Py, (—25dBm, as shown previously). Correspondingly, the carrier
frequency providing the maximum demodulation was 300kHz at just above Pp
which is lower than the linear resonance frequency of 321kHz. This result shows
that the tip-sample contact is still nonlinear even at a power of <Pp. The reason
why Pp is higher than Pp is because a stronger nonlinearity is required for the
demodulation effect than for the resonance shift.

Although both effects have the same physical origin, i.e. the nonlinear force-
distance (or indentation) relation, they can be distinguished because the influence
of the excitation power on the visibility of these effects is opposite. As shown in
Fig.6.4, the resonance frequency can be measured only in the low power range,
where well-defined spectra are obtained. It becomes difficult to identify the peak at
powers above —5dBm, where the spectra are severely broadened and distorted. On
the other hand, in our theoretical study on the nonlinear imaging method UFM, we
showed that the demodulation effect becomes significant only at powers higher than
Pp. Moreover, it was found that above the threshold power Pp the tip is pulled off
from the sample surface, overcoming the adhesion force F,. Therefore, the nonlinear
effect responsible for the demodulation depends not only on the elasticity but also
on the adhesion force, bringing another complexity into play.

The images obtained in the demodulation or the mechanical diode mode are some-
times very clear and sensitive to variation of material properties or to the existence of
subsurface defects. However, it is difficult to extract quantitative information from
these nonlinear modes because the nature of the tip-sample contact is quite complex
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at large amplitude vibration under the adhesion force, as discussed above. Further
study is needed on this subject.

6.2.2.5 Useful Nonlinear Spectra

Although nonlinearity is usually an obstacle for reliable measurement, nonlinearity
might be useful for some kinds of measurements. Which are employed in difficult
objects where other method using linear measurement is not available. In macro-
scopic ultrasonics, the typical object is closed cracks or delaminations [16]. In UAFM,
dislocations in graphite is most clearly characterized not only by linear but also by
nonlinear spectra [12, 14, 15]. Though dislocation observation had been for acad-
emic interests when it was first reported, it may help diagnosis of recent graphene
devices.

In Fig. 6.7, origin of the linear and nonlinear spectra at a subsurface gap is illus-
trated [15, 21]. First, note that the load acting on the contact area between the UAFM
tip and sample is the sum of the static load and the vibration force. In terms of these
two forces, the behavior of a subsurface gap is classified into three cases as shown
in Fig. 6.7a—c. Solid lines represent the tip position and the gap deformation due to
the static load and dotted lines represent those due to the vibration force.

Figure 6.7d shows the contact stiffness as a function of tip position. Thick solid
and broken lines represent the contact stiffness at defect-free areas and defect areas,
respectively. Broken arrows indicate the vibration of the tip position, and the open
circle shows the average position in the case of Fig. 6.7c. When the gap is sufficiently
wider than the vibration amplitude of the tip, the gap is not closed during the vibration
(Fig.6.7a). When the gap is slightly wider than the static displacement of the tip, the
gap is not closed by static displacement but by the increasing load period of the vibra-
tions (Fig. 6.7b). Since the contact stiffness increases as the gap is closed (Fig. 6.7d),
it is called a stiffening nonlinear spring and may be called the ‘subsurface tapping
mode’. On the other hand, when the gap is narrower than the static displacement, it
is closed by static displacement but opened during the decreasing load period of the
vibrations (Fig. 6.7c). Since the contact stiffness decreases as the gap is opened, it
is called a softening nonlinear spring. It is similar to the typical behavior at the pull
off, so it may be called the ‘Subsurface pull off’.

This type of nonlinear vibration can be analyzed by a number of different
approaches. But, in this work we adopt the simplest approach using the Duffing
equation for a nonlinear vibration, since it gives a simple analytic solution for the
stiffening or softening stiffness during vibration. The Duffing equation is given by

CH+ ¢+ x1C+ X3¢ = eV 22+ Meos 27, (6.8)

where ( is the tip displacement, 7 is time, I” is a damping coefficient, x| is a linear
stiffness coefficient, x3 is a nonlinear stiffness coefficient, (g is an excitation ampli-
tude, £2 is an excitation frequency. All quantities are dimensionless. The positive 3
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represents the stiffening spring and the negative x3 represents the softening spring.
For the harmonic vibration, since the fundamental frequency component having the
period 27r/£2 predominates over the higher harmonics, the periodic solution takes
the form

¢ =(1sin 27+ (pcos 27. (6.9)

Substituting Eq.(6.9) into Eq.(6.8), and equating the coefficient of the terms
containing sin §£27 and cos §27 separately to zero yields

[(92 - X1 - 3/4><3C§)2 + QZFZ] G =a(22+1?), (6.10)

where Cg = (12 + 422.

Figure 6.8a shows calculated spectra for the Duffing oscillator, where frequency
is gradually increasing. Parameters are chosen so as to qualitatively reproduce the
measured spectra at the subsurface dislocation in graphite shown in Fig. 6.8b where
ke = 4.6N/m and fy = 38.2kHz.

Spectrum 1 is a linear spectrum with xy3 = 0 (x1 = 52.0,(g = 03, "' =
0.04). The linear spectrum is symmetric with regard to the peak frequency. Spectrum
2 is a nonlinear spectrum with xy3 = —0.9 (x1 = 50.0,(g = 0.3, I" = 0.05),
representing the softening spring since the peak is shifted to a lower frequency
owing to the third-order term. Spectrum 3 is a nonlinear spectrum with 3 = 0.9
(x1 =45.0,(g = 0.3, I" = 0.05), representing the stiffening spring. The behavior
is the opposite of the situation in spectrum 2 and the peak is shifted to a higher
frequency. Branches represented by dashed lines are unstable solutions, which cannot
be realized physically. The softening spring can be explained by the gap behavior
shown in Fig. 6.7c and the stiffening spring is explained by the gap behavior shown
in Fig.6.7b.

Figure 6.9 shows the observation of the subsurface edge dislocation in a highly
oriented pyrolytic graphite (HOPG) crystal where k. = 2.4N/m and fy = 28kHz.
Figure 6.9a is the topography showing small depression due to subsurface stacking
fault. Figure 6.9b is an UAFM image showing a pair of dislocations. Figure 6.9c is a
schematic illustration showing narrow and wide gaps with respect to the tip vibration
amplitude (~0.1 nm).

Figure 6.8b shows the resonance spectra measured at the positions L, N, and W of
the images in Fig. 6.9c. Spectrum L is symmetric with regard to the peak. However,
spectrum N shows the peak shifted to alower frequency and W shows the peak shifted
to a higher frequency. The essential features of these spectra are reproduced by the
calculated spectra shown in Fig. 6.8a. Therefore, it has been proved that the nonlinear
analysis was reasonable and the gap under position W was an open gap, given in
Fig.6.7b and that under position N was a closed gap given in Fig.6.7c. For more
rigorous analysis of nonlinear vibration, the theory of contact acoustic nonlinearity
in the field of nonlinear ultrasonic nondestructive evaluation may be applied.
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More practical example of nonlinear spectra is found in microelectronic devices
[19-21]. A chromium (Cr) electrode was fabricated on a lead magnesium niobate—
lead titanate (0.65 Pb(Mg, /3Nb2/3)03 — 0.35 PbTiO3, PMN-PT) substrate using
the lift-off process. Figure 6.10 was obtained using the cantilever with k. = 5.0N/m
and fp = 36.1kHz. The topography of an area on the edge of an electrode shows a
thickness of 240 nm in Fig. 6.10a. In the UAFM resonance frequency image shown in
Fig.6.10b, the darker area had lower resonance frequency, indicating lower contact
stiffness. The low frequency region was probably due to delamination. To confirm
this, spectra were measured at positions A, B, C, and D in Fig.6.10b. The peak
frequency decreased from A to D, indicating a decrease in contact stiffness. Moreover,
asymmetric shapes of spectrum B and C indicate the contact vibration of the gap,
typically predicted by the calculated spectra of Fig. 6.8a.



6 Ultrasonic Atomic Force Microscopy UAFM

Onm BT ().54nm

97V BT 4,68V

Tip
(c)
L Nw
1
Extra-half Edge C plane
plane dislocation

1

Fig. 6.9 Edge dislocation of HOPG crystal. a Topography showing small depression due to subsur-
face stacking fault. b UAFM image showing a pair of dislocation. ¢ Schematic illustration showing
narrow and wide gaps with respect to tip vibration amplitude (~0.1 nm)

(b)

(a)

'Cll"“_el:étlitrpde_lr. v

'.250
485 w522 kHz

Resonance frequency of
the 2nd deflection mode

Cumy

’ Substrate
(PMN-PT)

Topography

Amplitude (dB) (Shiftedby—25dB in each spectrum)

460 480 500 520 540
Frequency(kHz)

Resonance spectra

Fig. 6.10 Observation of subsurface delamination of Cr electrode. a Topography of Cr electrode
deposited on substrate with thickness of 240nm. b UAFM resonance frequency image in second

deflection mode. ¢ Spectra measured at positions A to D

6.2.3 Quantitative Evaluation of Elasticity

When and only when the linear spectra are obtained, quantitative evaluation of elas-

ticity becomes feasible [10].
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The linear spectra of three different materials (soda-lime glass, GL; graphite, GR;
polystyrene, PS) are presented in Fig. 6.11. Figure 6.1 1a represents the first resonance
(such as in Fig. 6.1b) and Fig. 6.11b the second resonance (Fig. 6.1c). Both spectra of
different materials are separated according to the difference in contact stiffness, but
the second resonance has better separation due to the effective stiffening by inertia
and the formation of nodes as predicted in the reference 8. The peak frequency f
of each spectra together with the free resonance frequency are plotted in Fig.6.12
against the contact stiffness k* normalized by the lever stiffness k.. The contact
stiffness was estimated by using the approximated equation (Eq. 6.7). For estimation
of the contact radius, the tip was imaged using a porous silicon sample with remaining
sharp silicon crystals within it. The contact radius a, was estimated to be 20nm. More
precise estimation of the contact radius is presented in a later section.

The calculated resonance frequency, assuming E = 169GPa, p = 2.3 x
103kgm~3 and using Eq.(6.7), is also plotted by the solid curve in Fig.6.12. The
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agreement between measured and calculated frequencies is acceptable. Because the
agreement for tip 3 at a large value of s,/ k was rather poor, we examined the effect
of lateral stiffness by Eq. (6.5) and the ratio r = 0.8. The angle ¢ was assumed to be
zero. The agreement was then improved as shown by dotted curve and it is shown that
quantitative evaluation of the sample contact stiffness is thus possible using the linear
theory of UAFM and linear spectra. We may conclude that the ‘linear’ spectra really
reflect the linear tip-sample contact described by linear theory. In contrast, under
conditions where the resonance frequency and Q factor vary as the excitation power
varies, we have a certain kind of nonlinearity. Such nonlinear spectra should not be
used in quantitative analysis. The nature of nonlinear spectra have been discussed in
Sect.6.2.2.3.

6.2.4 Frequency-Stiffness Relation Depending on the Type
of Differential Equation

In the preceding part of this chapter, we assumed that the vibration is deflection
mode shown in Fig. 6.13a. The deflection vibration of a cantilever in the x — z plane
is expressed as
d? d*

S L EISS =0 6.11)

A_
PR ax

where E is Young’s modulus, p is the density, A is the cross-section and 7 is the area
moment of inertia.

However, Eq.(6.11) has a rather special property that the spatial derivative of x
is in fourth order. This property brings important feature of stiffness enhancement
at higher order modes. To show this, it is useful to study another type of differential
equation of torsional vibration shown in Fig. 6.13b excited by a transducer attached
to a cantilever base. It was introduced into the field of this book in 1998 as lateral
UAFM [9], followed by later publications (e.g. [24, 25]). The equation of motion
for the torsional vibration is

9?0 9?0
Jp— —Ci— =0 6.12
pPJIP atz t axz ( )
where 6 (x, t) is torsional angle, Jp is polar moment of inertia and C; is torsional
rigidity of the cantilever. Note that the spatial derivative of x is in second order.
For a rectangular cantilever, Jp = a’b/12 and C; = (1/3)Gab>(1 — 0.63b/a)
where G is the shear modulus. The solution to (6.12) is given by

O(x,t) = (C1 cos %jx + Cj sin %x) (A coswt + Bsinwt), (6.13)
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where b = 4/C;/(pJp). The boundary condition at x = 0is # = 0 (no torsion). If we
assume that the tip stick to the sample and there is no slip, the boundary condition
at x = L is C;00/0x = Fyh (balance of the torsional moment) where Fyis the
lateral force exerted on the cantilever by the sample and / is the height of tip. Since
the lateral displacement of the tip is /0, the lateral force is given by Fj; = —k{, 0,
where k{',, is the shear stiffness of contact of the tip and sample. Substituting the
solution of (6.13) into the boundary conditions, we obtain a frequency equation,

2 cos =Ly + h2ki, sin = 14
C,Zcos ZLI + Lat S0 ZLI =0. (6.14)

A typical relation between the resonance frequencies of the first three modes
and the ratio of shear stiffness k', and cantilever torsional rigidity C; is plotted in
Fig.6.14b. It is interesting to note that the resonance frequency of the three modes
changes in almost the same range of log (Llhzkf:at/ C,) between —1 to 2. This is
in contrast to the deflection vibration (Fig.6.14a, where the range of log (k*/k.)
producing resonance frequency shift differs among the different modes. It is worth-
while mentioning here that it is not easy to establish the no-slip contact of the tip
and sample, but it may be realized by increasing the normal force and monitoring
the phase of the cantilever torsional vibration as the sample is laterally vibrated.

If the resonance frequency is measured, k[, is obtained from (6.14) as

CiwLy [pJp [pJp
ki, = ———— | —— cot —wLy ). 6.15
Lat L1/’l2 Ct co ( Ct el ( )

At first sight, (6.15) gives negative-stiffness &/, but the angular resonance fre-
quency is allowed only in the range where the cotangent term on the right-hand side
is negative and hence k', is always positive. The shear stiffness k", is related
to the shear moduli and Poisson’s ratio of both tip and sample and the contact
radius a.. Since we have other two equations connecting the elastic constants, that
is, K*=[(1—v3)/Er + (1 - yg)/ES]‘1 and G5 = Eg/2(14vs), we have three
equations for three unknown constants Eg,Gg, and vs. Then, these constants can
be uniquely determined from measurements of k* and k.. The feasibility of this
approach will be investigated in a future work.

Although perfect determination of vertical and lateral stiffness is a difficult task,
the simultaneous measurement of deflection and torsional vibration is the first step
for this goal. The benefit of simultaneous measurement of deflection and torsional
vibration is appreciated in this respect.

As an illustrative example, evaluation of defects on machined surface is shown.
At ten different points on the surface of a machined silicon surface ground with a
diamond wheel, second-order deflection, and first torsional spectra were recorded
as in Fig. 6.15. General trends are noticed: when the deflection resonance frequency
is low, the torsional resonance frequency is also low; when the deflection resonance
frequency is high, the torsional resonance frequency is also high. This result shows
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that when the vertical stiffness is reduced due to machining damage, the lateral
stiffness is also reduced, which implies that the damage is rather isotropic, probably
due to averaging of numerous small defects.

Another possible reason for the variation of resonance frequency is the effect
of sample tilt, as theoretically predicted by Eq.(6.4). However, although a tilt in a
particular direction does not always shift the deflection and torsional resonance to
the same direction, the measured resonance frequency was usually shifted to the
same direction. Therefore, the effect of tilt is not so dominant as the reduction of
stiffness, in the present case. This conclusion can only be derived by simultaneous
measurement of deflection and torsional vibration.

Moreover, because the tilt can be measured in AFM from the topographic data,
there is in principle a way to compensate for the effect of tilt on the variation of
resonance frequency. To demonstrate experimentally the possibility of this approach,
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Fig. 6.15 Deflection (left) and torsional (right) spectra of a cantilever with the tip in contact with
ten different points on a ground silicon wafer

the reliability of experiment should be enhanced by using the improved measurement
and analysis described in the previous sections.

6.3 Instrumentation

6.3.1 Possibility of Large Sample Stage

Figure 6.16 shows an implementation of UAFM based on a contact mode AFM. A
high frequency vibrator attached to the cantilever base is driven in the high frequency
range of 50kHz to 10MHz. Resultant vibration of the cantilever is detected by
a photodiode and processed by using a lock-in amplifier, network analyzer or a
special phase-locked loop (PLL) circuit. Linear and nonlinear detection schemes are
employed. In the linear detection scheme, the high frequency signal is measured at
the same frequency. In the nonlinear scheme, the high frequency signal is amplitude-
modulated by a low frequency signal in the frequency range of 1 to 10kHz. Instead
of the high frequency signal, the low frequency signal is measured. The advantage
of nonlinear scheme is that we can use commercial AFM without modification.
Moreover, use of low frequency signal is favorable for achieving a high signal to
noise ratio. However, the analysis is not simple and precise. Further comparison
between these two modes has been discussed in Sect. 6.2.2.4.

Since we directly vibrate the cantilever in UAFM, it is similar to the noncontact
(NC) mode and tapping mode AFM. However, the use of higher mode is unique
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Fig. 6.16 An implementation of UAFM [8]

to UAFM. Also, we use very low vibration amplitude of less than 1nm, so that we
can control the contact force to a very low level of less than 0.1 nN. Finally, it is
emphasized that there is no problem in the inspection of large samples (e.g. silicon
wafers for VLSI) and irregularly shaped samples (e.g. turbine blades or magnetic
disk heads), since the tedious transducer bonding to the samples is not required.

6.3.2 Suppression of Spurious Vibration

To improve the precision of dynamic AFM using cantilever vibration spectra, a
simple but effective method for suppressing spurious response (SR) was developed.
The dominant origin of SR was identified to be the bending vibration of the cantilever
substrate, by the analysis of the frequency of SR.

Here, we show a convenient method for clamping the displacement of the base,
where the bending rigidity of the base is enhanced by gluing a rigid plate (clamping
plate: CP) to the base for the suppression of SR. The purpose of this method is
not a shift of SR to higher frequencies but significant reduction of SR amplitude.
Figure 6.17 shows a cantilever chip onto which a Si wafer as the CP is glued with
epoxy adhesive (CP chip). The CP chip can be used with an ordinary cantilever
holder.
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Figure 6.18 shows a set of spectra measured under the NC and contact conditions.
In these figures, black curve shows spectra using the as-purchased chip and blue
curve shows the CP chip, where the latter is shifted by —50dB. It was found that the
response S was suppressed by the CP. Therefore, the enhancement of the bending
rigidity of the base by using the CP is proved to be useful for the suppression of SR.
This method is more convenient than the first method using the rigid cover, since an
ordinary cantilever holder can be used here.

Successive NC spectra of the first deflection (NCD1) mode obtained to investigate
the reproducibility when attaching and detaching the cantilever chip to the holder.
It was shown that the reproducibility of SR suppression was sufficiently high. It
was also found that the method with the CP was more effective than the method
with the trenches [26], considering that the reproducibility of the former method was
significantly higher than that of the latter method. It is noted that the same effect of
the CP is achieved by fabricating base with a thicker plate than that used for ordinary
cantilever chips.
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Fig. 6.19 Phase-locked loop circuit for the mapping of resonance frequency and Q factor

6.3.3 Electronics for Resonance Frequency Tracking and Q Factor
Mapping

In the present instrumentation, the mapping of resonance frequency and Q factor is
realized by the PLL circuit depicted in Fig.6.19, where the cantilever vibration is
excited by a voltage-controlled oscillator (VCO) [13, 27]. The input voltage V of the
VCO is adjusted to realize resonance when the tip is in contact with the sample. Then,
the cantilever deflection signal detected by the photodiode (PD) is split into two parts
and one part is low-pass-filtered (LPF) to control the z position of the sample. The
other part is band-pass-filtered (BPF) and its phase is compared with that of the VCO
output signal. The phase difference between them is adjusted with a variable phase
shifter ¢ to equate the phase comparator output V;y to a reference voltage VR F.

After connecting the switch, we start raster scanning of sample. If the resonance
frequency is changed, the phase signal is also changed. Then, the output Vg of
the error amplifier caused by the phase change is added to the VCO input in order
to recover the resonance. In this manner, the cantilever is always vibrated at the
resonance frequency and the vibration amplitude represents the Q factor.

Whereas the resonance frequency tracking described above is similar to that of the
frequency modulation mode of noncontact AFM (NC-AFM), the vibration amplitude
of the cantilever is quite different. Although it is very large (>10nm) in NC-AFM, it
should be small (<1 nm) in UAFM, in order to keep the tip always in linear contact
with the sample, namely the contact stiffness £* should not deviate from its static
value. Thus, we should control carefully the driving power of the cantilever in UAFM.
To determine the optimum driving power, we monitor the vibration spectrum and
find the largest possible power where the spectrum still remains symmetrical and
sharp, immediately before becoming asymmetrical and broad. Thus, both a good
signal-to-noise ratio and linear contact are realized.
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Fig. 6.20 Images of carbon fiber and epoxy resin in a CFRP

6.4 Illustrative Examples

6.4.1 Heat Treatment of Advanced Carbon Fiber for Reinforced
Plastics

As an application, we show images of a carbon fiber and epoxy resin in a carbon
fiber reinforced plastics (CFRP) in Fig. 6.20, at a contact force of 200nN including an
adhesion force F, of —70nN, using a diamond-coated silicon tip. The cantilever had
a stiffness of 5N/m and length of 450 wm [13]. The vibration amplitude and phase
are determined by the measurement of spectra, when the piezoelectric transducer
at the base of the cantilever was driven at a power of —35dBm (10735 mW). The
resonance frequency increased from 38.5kHz at free resonance to 176 kHz for the
carbon and 171kHz for the epoxy. The Q factors were 180-200 for the carbon and
100-110 for the epoxy. The peak for both the carbon and epoxy had a symmetrical
shape, indicating the linear contact stiffness at this driving power for the particular
transducer used. It should be noted that we obtained the nonlinearity at power levels
above —25dBm.

Figure 6.20b, ¢ are the resonance frequency and Q factor images obtained at
a contact force of 200nN corresponding the topography in Fig.6.20a. Conversion
from the maximum peak height to the Q factor was experimentally performed using
power spectra obtained at the carbon and epoxy area such as those shown in Fig. 6.3.
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The measurement of spectra provides useful information, but it takes a long time
(typically 5 s for one point for an average of 10times). Consequently, mapping of the
resonance frequency and Q factor takes a very long time (~91 h for a 256 x 256 pixels
image). On the other hand, the method using PLL circuit succeeded in mapping them
in 45 min as shown in Fig. 6.20b, c. As a result, 121 times speeding up was attained.
Moreover, more than 1,300 times speeding up was possible for smaller area.

The images Fig.6.20b, ¢ showed that epoxy was much softer and more viscous
than the carbon. Within the carbon and epoxy areas, the brightness was almost uni-
form. However, we noted a small but reproducible variation within the carbon area.
As shown in the frequency and Q factor profiles in Fig. 6.20 obtained along the ver-
tical lines in Fig.6.20b, c, the resonance frequency at the core was lower than that
at the rim by 0.5-1 KHz. Similarly, the Q factor at the core was lower than that at
the rim by 20-40. These differences are probably due to the radial difference in the
degree of stabilization during heat treatment, an important parameter for achieving
high strength.

6.4.2 Extremely Soft Domain Boundary of Efficient Ferroelectric
Materials

The development of ferroelectric materials and devices has required the better under-
standing of not only the ferroelectric domain but also the ferroelectric domain bound-
ary (DB) called domain wall. For example, the movement of ferroelectric and fer-
roelastic DB significantly enhanced the piezoelectric coefficient of the ferroelectric
thin film. One of the origins of the polarization fatigue in ferroelectric thin film is
the pinning of the movement of the ferroelectric DB.

The width of the DB was attributed in the order of 1-10nm [28], which has been
studied by several methods, such as the transmission electron microscopy [29], scan-
ning nonlinear dielectric microscopy (SNDM) [30], and atomic force microscopy
[31]. Although the SNDM may provide dielectric information, we believe that the
mechanical information is also important because the piezoelectric deformation and
the polarization switching are related to the mechanical behavior of the domain and
the DB.

We reported an evidence of the reduction of the stiffness at the ferroelectric DB
in a lead zirconate titanate (Pb(Zr,,Ti;—,))O3, PZT) ceramic [17, 18]. We observed
ferroelectric domains in PZT ceramics by the 2D mapping of the resonance frequency.

For imaging the ferroelectric domains, piezoresponse force microscopy (PFM)
was used [32]. Commercially available bulk PZT ceramics were investigated (sam-
ple 1: NEC Tokin Cooperation N-21, sample 2: Fuji Ceramics Cooperation C-82).
Sample 1 was an unpoled material. Because sample 2 was a poled material, it was
annealed in order to obtain random domain configuration. These were lapped by
diamond slurry and polished by colloidal silica slurry and alumina paste for sample
1 and sample 2, respectively. They were glued to sample holders with silver paste. We
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Fig. 6.21 Observation of domains in a PZT

used an Au coated and a CVD diamond film coated Si cantilevers for sample 1 and
sample 2, respectively, purchased from Nanosensor. We performed the experiments
in ambient air at 23 °C with the relative humidity in the range of 40-60 %.

First, we show the applicability of the UAFM to the stiffness evaluation of the PZT.
Figure 6.21(a) shows a contact AFM topography of an area of sample 1. Figure 6.21b
shows a PFM image of the same area as Fig. 6.21a representing the phase shift of the
deflection vibration to the AC voltage applied between the tip and the bottom elec-
trode (PFM image). The frequency and the amplitude of the AC voltage were 4kHz
and 5 Vp-p, respectively. There was a stripe pattern with a period of 250 nm repre-
senting differently oriented domains. It may be 90° domain structure. Figure 6.21c
shows a UAFM image representing the resonance frequency at the third deflection
mode (UAFM image). Darker color represents higher resonance frequency, indicat-
ing higher contact stiffness. The stripe pattern in the UAFM image was related to the
domains. As a result, it was demonstrated that the UAFM can evaluate the different
elasticity due to the differently oriented domains of PZT. This is a result similar to
Ref. [33].

After confirming the applicability of the UAFM to PZT, we now applied it to the
evaluation of the stiffness at the DB. Figure 6.22a shows a topography of an area
of sample 2 with the load F of 1,200nN. Figure 6.22b shows a PFM image of the
same area where the applied AC voltage was the same as that in Fig. 6.21b. Because
uniformly bright and dark regions represent the ferroelectric domains, the boundaries
between them represent the DBs. It may be 180° DBs because of the wavy shape.
Although the phase difference was much less than 180°, it may be explained by
the integral piezoelectric response due to randomly polarized grains stacked in the
normal to the surface and the capacitive force between the cantilever and the bottom
electrode. Figure 6.22c shows a UAFM image at the second deflection mode.

There were string-like structures showing lower resonance frequency. When we
compare the same area surrounded by the dotted squares, we note that the string-
like structures observed in Fig. 6.22c corresponded to the DBs observed in the PEFM
image, Fig. 6.22b. At the same time, it does not correspond to the edge of the surface
relief because the edge is out of the zone surrounded by the dotted square in Fig. 6.22a.
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Table 6.3 Variation in the stiffness of the DB normalized by that of domain, Epp/Ep, depending
on the half width of the DB, w

w (nm) 1 2 5 8.72
Eps/Ep 0.179 0.587 0.826 0.880

The relation between the DB and the edge is illustrated in Fig. 6.2d. Therefore, it was
verified that the string-like structures were the DBs and not topographic artifacts.

Figure 6.23 shows a bird’s-eye view of the zone surrounded by the dotted square
shown in Fig. 6.22c. The apparent half width of the DB was in the range of 20-30 nm,
which was widened due to finite contact area.

In order to obtain an insight into the nature of the DB based on the above observa-
tion, we analyzed the stiffness on the DB. The resonance frequency f, = 492.7kHz
within the domain gives the contact stiffness k* = 1, 305N/m, using cantilever
vibration theory. When the load F, the Young’s modulus at the domain Ep and the
Poisson’s ratio v are 1,200nN, 117 GPa and 0.34, respectively, the tip radius R and
the contact radius a. are 55.1 and 8.72 nm, respectively, using Hertzian contact the-
ory. When F', R, a. are identical within the image, f. = 489.7kHz on the DB gives
the averaged Young’s modulus E = 103 GPa.

In order to evaluate the contribution of the Young’s modulus of the DB Epg to
the E, we approximate the application of the stress in the experiment to that in the
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unidirectional fiber-reinforced composite materials and apply the linear mixture law
of the Young’s modulus [34]. The averaged modulus E is expressed by

E=(—Rpp) Ep + RosEpB, (6.16)

where Ep and Epp are the Young’s moduli of the domain and the DB and Rpg is
the area ratio of the DB to the total contact, respectively. The Rpg is expressed by

2
) + % — arccos “bB , (6.17)

dc

2
Rpp = ; adtls 1— (wDB

dc dc

where wpg is the half width of the DB. We estimated the stiffness of the DB nor-
malized by that of the domain, Epg/Ep, for 4 different values of wpp as listed in
Table 6.3. As a result, we found, for the first time, that the stiffness at the DB is much
lower than that of the domain when we assume that the width of the DB is smaller
than the calculated contact radius (8.72nm). As shown in Table 6.3, Epg/Ep is as
low as 0.587 if wpg is 2nm.

Finally, we discuss possible explanations of this finding.

(i) The disorder of the lattice at the DB; the imperfection of the crystal may reduce
the stiffness.

(i1) The ability of the switching of the domain; the switching accompanies the move-
ment of the DB. It may be facilitated by the reduction of the stiffness at the DB
because the polarization of the domain is constrained by the minimum state of
the sum of the strain energy and the electrostatic energy. Therefore, the ability
of the switching of the domain may reduce the stiffness.

(iii) The reduction of the piezoelectric stiffening; when the polarization charge is
not compensated during the application of the stress, the stiffness is enhanced
because of the depolarization field (piezoelectric stiffening).

In the experiment of the UAFM, the polarization on the domain may lead to
the piezoelectric stiffening, because the small contact area cannot compensate all
polarization charge over the domain. On the other hand, because the spontaneous
polarization of the lattice is rotated at the DB, the average polarization on the DB
is smaller than that on the domain. As a result, the piezoelectric stiffening on the
DB is smaller than that on the domain. Therefore, the reduction of the piezoelectric
stiffening may reduce the stiffness.

We estimate the order of the reduction in the case of (iii), using the variation in
stiffness coefficient ¢ between the electrical conditions of the constant electric field
and the constant electric displacement, represented by the superscripts of E and D,
respectively [35]. The ratio of stiffness coefficients is expressed by

E

¢ 2
C—Dzl—k , (6.18)
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where k represents the electromechanical coupling coefficient in the poling direction.
When we use the coupling coefficient, cf3 /cf)3 becomes 0.44 that is consistent with
the result of Epp/Ep=0.587.

6.4.3 Friction and Shear Elasticity on Surface Layer by Lateral
Force Modulation

As explained in Sect. 6.2, UAFM has modes of deflection and torsion. Since the tor-
sional stiffness of cantilever is usually comparable to that of shear stiffness of sample,
lower frequency than resonance may be used for the shear stiffness evaluation. In this
frequency range, vibration of sample is not difficult using standard scanner for the
AFM raster scan. Therefore, a technique was developed as lateral force modulation
LM-AFM [7], a closely related technique of UAFM [8]. It is useful for evaluation
of friction and shear elasticity on surface layer.

Figure6.24 shows the principle of LM—AFM where the sample is laterally
vibrated at a frequency much lower than that of torsional resonance. As shown in
Fig.6.24a, a flat area with high friction leads to a small static angle ¢ and a large
vibration amplitude A# of cantilever torsion when the sample is laterally vibrated.
A tilted area with low friction shown in Fig. 6.24b leads to a large 6 and small A#.
Thus, when a conventional friction force microscopy (FFM) is used, it is difficult to
precisely measure frictional force because of the curvature of the surface, as shown
in Fig.6.24c. However, the LM—AFM is not significantly affected by the local tilt
angle 6 because it uses the vibration amplitude A6 of cantilever torsion to evaluate
the friction.
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Figure 6.25 shows a carbon nanotube (CNT) PS (polystylene) composite [21].
The CNT is emerging on a polystyrene (PS) matrix, a promising light-weight high-
strength conductive material, whose section is illustrated in Fig. 6.24c. Figure 6.25a
shows the topography of an area with embedded and partially exposed CNT. The
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cantilever with k. = 0.098 N/m and f; = 11kHz was used. FFM images shown in
Fig.6.25b, c demonstrate geometrical artifacts of PS owing to the large tilt 6.

A LM-AFM image of Fig. 6.25d demonstrates only CNT with lower friction or
lateral contact stiffness. This feature of LM—AFM is useful for precise evaluation
of magnetic recording instruments, lubricant on a medium, and contamination of
engineering surfaces that are not necessarily atomically flat. For precise evaluation
of lateral contact stiffness, the sliding of the tip needs to be suppressed. In LM—AFM,
this has been achieved by monitoring the phase signal of torsion vibrations.

6.5 Conclusion

It was shown that the vibration spectra of UAFM and related techniques are strongly
dependent on the excitation power of the cantilever vibration. The resonance peak
width decreases and the peak frequency increases as the excitation power is reduced
while the power is above a certain threshold level. Controlling the excitation power,
we obtained linear spectra independent of the excitation power. Using the linear spec-
tra, satisfactory agreement between the measured and calculated peak frequency was
obtained by assuming a consistent tip-sample contact stiffness. Further improvement
by taking into account the non-spherical tip shape will be described somewhere in this
book using the Sneddon—Maugis formulation of contact elasticity, and the tip shape
index was estimated by an inverse analyzes of load—frequency relation. Application
to evaluation of vertical and lateral stiffness on a ground silicon wafer is described
by the simultaneous measurement of deflection and torsional vibration.

Appendix A
The deflection vibration of a cantilever is expressed in the x — —z plane as
P Y+ EI ¢ _, (A1)
PRar T e T

where E is Young’s modulus, p is the density, A is the cross-section and / is the
area moment of inertia. In the case of a rectangular lever of width a and thickness b,
I = ab’/12. At the end of the lever where x = L , the deflection of the lever z (x, f)
produces a displacement of the apex of the tip of length & as [h(0z/0x), z] and the
—z component of the shear force E 1 (9°z/0x>) caused by the vertical (out-of-plane)
contact stiffness k* of sample is

0
F, =k* (—ha—i sin ¢ cos ¢ 4 7 cos? <p) (A2)
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and the bending moment E 1 (0%z/0x?) is
* 0z . 2 .
My = —hk hé)_ sin” ¢ — zsin Y cos (A3)
X

when the tip is in contact with the sample with oblique angle ¢ with respect to the
x-axis. Similarly, those forces caused by the lateral (in-plane) contact stiffness kf',,
are

0
Fi = ki y (ha—i sin ¢ cos ¢ + z sin? <p) (A4)
and
* 0z 2 .
My = —hki ha—x COS™ (o — zSin oS (AS)

Then the boundary conditions at x = L are

Pz A 0z
622 ) 0z N
EIW = _kLath a - kLachZ (A7)

where IQ; = k*cos? 6 + kl”imsinzap, l%f’:at = ki, cos? ¢ + k*sin’p and IQI"iatV =
(k{ , — k™) cos @ sin . It is noted that if the vertical and lateral stiffness are identical
(k* = k{,) then ]glfatV = 0 and IQ; = lgfat = k* and Eqgs. (A6) and (A7) do not
depend on the tilt angle ¢. This is in contrast to Ref. [6] where lgiiatV = 0 does

not hold when 12’(, = Igfat. Equation (6.4) is obtained by substituting a solution of
Eq. (A1) into the boundary conditions (A6) and (A7).
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Chapter 7
Enhanced Sensitivity of AFAM and UAFM

by Concentrated-Mass Cantilevers

Mikio Muraoka

Abstract The mechanical resonance of an atomic force microscopy (AFM)
cantilever whose tip is in contact with a sample surface, namely the contact res-
onance, provides a measure of the local elasticity of a sample. It has been applied to
measurements of the elastic modulus on a nanometer scale in dynamic AFM, such as
atomic force acoustic microscopy (AFAM) and ultrasonic atomic force microscopy
(UAFM). For stiff samples such as metals and ceramics, the contact stiffness between
a tip and a sample is much larger than the stiffness of a cantilever, and thus the tip
can hardly penetrate a sample. It results in a reduced sensitivity in the elasticity
measurements. This chapter introduces a solution to the problem, that is the use of
concentrated-mass (CM) cantilevers. We discuss the theoretical background of CM
cantilevers in AFAM and UAFM to clarify the enhanced sensitivity and some advan-
tages, and present some experimental results including the measurements of elastic
modulus of thin films.

7.1 Introduction

It is well-known that when an atomic force microscopy (AFM) cantilever is driven
to vibrate with small deflection amplitude, the presence of an interactive force F
between a tip mounted on the cantilever and a sample surface, or more precisely
the gradient dF/dz, modifies the resonant frequency [1]. When the force gradient is
small, the vibration dynamics is approximately expressed with a point-mass model,
and the fundamental resonant frequency of the cantilever is simply given by:
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1 ke — (dF/dz)., dF/dz).,
ooz \/Az 5 \/l_ﬂ, oD

Meff ke

where k. and megr are the spring constant and effective mass of the cantilever, respec-
tively. The coordinate z denotes a separation between the tip and sample, and z, is
its value at an initial equilibrium. If the sample exerts an attractive force on the tip
with a positive force-gradient, the spring constant will effectively soften. As a result,
the resonant frequency will decrease. Then the force gradient can be detected by
measuring the amplitude, phase or frequency change of the vibration [1]. This is
the principle of the so-called non-contact (NC) mode, which has been applied to
magnetic-force or electrostatic-force imaging (e.g., [2, 3]).

In contrast to the NC mode, where the tip is initially positioned away from a
sample (z,>0), let the tip be initially in contact with a sample (z, < 0). When the
tip is driven to vibrate with amplitude small enough for linear vibration under the
contact-mode operation, one can detect the contact stiffness k7,, which is defined as
ky, = —(dF/dz),,. The contact resonance is shifted to a higher frequency when the
contact stiffness is larger, as expected from Eq. (7.1). Because the contact stiffness
reflects the elastic modulus of the sample on the nanometer scale, one could determine
the elastic modulus from measuring the contact resonant frequency. In 1996, the
detection of elasticity was first achieved by sinusoidally modulating the position
of the sample [4] and of the cantilever [5] at ultrasonic frequencies. The former
and latter instrumentations are called atomic force acoustic microscopy (AFAM)
and ultrasonic atomic force microscopy (UAFM), respectively. It is also noted that
a scale-up version, i.e., micrometer-resolution version, had been reported, named
scanning microdeformation microscopy (SMM) [6].

While the force gradient is significantly small in the case where the tip is separated
from the sample, the contact stiffness normally takes large values. For stiff sam-
ples such as metals and ceramics, the normalized contact stiffness k@/kc reaches to
around 103, The relation of the resonant frequency (fres) versus contact stiffness (k;‘,)
drastically changes from the point-mass model that gives Eq.(7.1). The sensitivity
Of fres tO k’\k, is reduced because the vibration modes of a relatively soft cantilever
tend to be in energetically low states where the tip can hardly penetrate a sample.
To overcome the problem, the use of higher resonance modes of the cantilever is
suggested, where effectively stiffening of the cantilever at higher modes improves
the sensitivity to some extent [4, 5].

The nonzero tip height provides another difficulty in detecting the contact stiffness.
The tip motion vertical to a sample surface is always accompanied by the rotational
motion around the tip-mounted site of the cantilever. The resulting lateral motion of
the tip apex increases with the tip height. Therefore, the resonant frequency depends
on the lateral contact stiffness as well as on the vertical contact stiffness. The deter-
mination of the vertical stiffness requires additional measurements or assumptions
on the lateral stiffness.

As an alternative way of enhancing the sensitivity, concentrated-mass (CM)
cantilevers were introduced in 2002 [7]. CM cantilevers are fabricated by gluing
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Fig. 7.1 SEM image of

a concentrated-mass (CM)
cantilever for enhancing the
sensitivity to the contact stiff-
ness in the contact resonance
techniques, where the tungsten
particle with a mass of magq
= 540 ng is glued on the tip
and the mass ratio is o = 12.
Reprinted with permission
from [9]. Copyright 2005
Institute of Physics Publishing

a heavy particle at the extremity of a cantilever, see Fig.7.1. The particle, which
is located on the tip, generates an inertia force enough for the tip to penetrate stiff
samples. When the mass of an attached particle is approximately four times larger
than that of the cantilever, the vibration dynamics can be approximated by that of the
point-mass model. Therefore, CM cantilevers allow one to use the simple formula
Eq.(7.1) even for large values of kj,/k.. In addition, the inertia enhancement at the
tip site reduces the rotational tip motion, and thus the resonant frequency depends
only on the vertical stiffness [8]. The enhanced sensitivity due to the use of CM
cantilevers has been demonstrated in AFAM [9].

Meanwhile, mass-loaded cantilevers can be found in the literatures for various
purposes [7, 10—-13]. To make clear the difference between the CM cantilevers and
the others, we here give a brief review. Attachment of a tungsten sphere as a known
mass to the end of a cantilever was used to calibrate the spring constant of the can-
tilever [ 10], where the sphere was detachable because they were attached with natural
adhesion. A magnetic particle glued at the end of a cantilever was utilized to directly
exert a magnetic force on the tip by applying a magnetic field to the particle in mag-
netic force modulation microscopy (MFMM) [11]. MFMM works below the contact
resonant frequency, i.e., in quasistatic situation, to detect the elasticity of a sample.
Therefore, it seems to have the less sensitivity in the detection, especially for stiff
samples, than that of the resonance techniques, i.e., AFAM and UAFM. It should
be noted that MFMM uses the attached particle for the magnetic force excitation,
not for the inertia enhancement as in the CM cantilevers. In magnetic resonance
force microscopy (MRFM), which is a scanning probe technology that measures the
weak magnetic force between a microscopic magnet and the magnetic moments in a
sample, a mass-loaded cantilever that was monolithically microfabricated was devel-
oped to reduce thermal noise coming from higher order modes of the cantilever [12].
A CM attachment to a certain position across the length of a cantilever was proposed
to tune the resonant frequencies to coincide with the higher harmonics generated in
a tapping mode AFM by the nonlinear tip—sample interaction force [13]. The mass-
loaded cantilevers addressed above differ from the CM cantilevers [7] in that the
attached or loaded masses are not used to enhance the inertia force of the tip.
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In the contact resonance techniques, i.e., AFAM and UAFM, the cantilever vibra-
tion changes from linear to nonlinear when the excitation amplitude is increased.
The nonlinear phenomena were investigated experimentally [14, 15] and theoreti-
cally [16, 17]. They suggested that the cyclic jumping of the tips near the contact
resonance could be useful to experimentally determine the attractive force. The CM
cantilevers would be also useful for such nonlinear applications because the vibration
dynamics can be approximately simplified to that of a point-mass model.

In the subsequent sections, we discuss why the CM cantilevers make the con-
tact resonance sensitive to the contact stiffness and obey the simple dynamics of
a point mass model. We start with some investigations of theoretical formulas on
forced vibrations of CM cantilevers whose tip interacts with a sample, where some
closed-form solutions are given for steady-state forced-vibrations under nonlinear
tip—sample interactions. Then the tip height effects on the resonant frequency are
discussed. The final section demonstrates applications of CM cantilevers in AFAM
and UAFM, including measurements of the elastic modulus of diamond-like carbon
thin film on a substrate.

7.2 Theory of Concentrated-Mass Cantilevers

7.2.1 Forced Vibration

7.2.1.1 Nonlinear Tip—Sample Interaction

Letus consider a typical case of the contact resonance techniques, AFAM and UAFM,
in combination with a concentrated-mass (CM) cantilever. The cross-section of the
cantilever is rectangular and uniform along the longitudinal axis. The fundamental

natural frequency féﬁl of the free cantilever before the CM attachment and the spring
constant (k.) are usually given as specifications of a commercial AFM cantilever,
or can be experimentally determined [10, 18, 19]. By driving a z-scanner, a sample
surface is brought into contact with the tip, and then the equilibrium contact force F,
is set to an arbitrary constant value, where F, (= k.w,) is determined by measuring
the equilibrium deflection w, of the cantilever end.

After this initial setting, the cantilever in contact with the sample surface is oscil-
lated by application of an AC voltage to the piezoelectric element attached on the
base plate where the cantilever is supported in UAFM [5, 15, 20-22]. In another type
of excitation, i.e., AFAM, the sample is oscillated by use of a piezoelectric element
inserted beneath the sample [4, 14, 23-26]. The sample oscillation method is also
used for nonlinear detection of tip—sample interactions in ultrasonic force microscopy
(UFM) [27]. The induced deflection is denoted by w(x, ) (i.e., total deflection minus
equilibrium deflection), where x is an axial coordinate originating at the fixed end
and ¢ is the time. To analyze w(x, 1), we consider forced vibration of a cantilever
which is modeled as having its end connected to a nonlinear spring and a dashpot,
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Fig. 7.2 A model of
concentrated-mass (CM)
cantilevers, which are driven 2 wix, 1) mass
to vibrate by the modulation
of the sample or cantilever
positions, under nonlinear
tip—sample interactions. The
cases of upo=0, us=0, and
upo =us0, correspond to
AFAM, UAFM, and the direct
force modulation, respectively

Monlinear Dashpot

spring 4

.

as shown in Fig.7.2. The nonlinear spring represents the effect of tip—sample inter-
action on vibrations around the equilibrium position. The dashpot expresses viscous
and friction damping near the tip—sample contact region. This damping is dominant
over the others coming from the cantilever itself such as aerodynamic and internal
damping of the cantilever. For the sake of simplicity, the CM attached at the end
of the cantilever is assumed to be a point mass with a mass of m,q4q, the height and
mass of the tip are neglected, and the slight tilt (=15 °) of the cantilever relative to a
sample surface in the actual setting is also neglected. These simplifications are vali-
dated for CM cantilevers as shown in Sect.7.2.2. The fixed end of the cantilever and
the sample surface are oscillated with the forced displacements u;, = uppsinwt and
us = Usosin wt, respectively, where w (= 27f) is the angular frequency. The deflection
of the simplified cantilever corresponds to w(x, f) in AFAM when upo = 0 and in
UAFM when uo = 0. In addition, when equating the amplitude upo with w0, one can
equivalently deal with the direct force modulation where the CM is directly oscillated
by force, see Sect.7.2.1.3. The case of cantilevers without CMs in UAFM (m,gq =
uso = 0) has already been analyzed in our work [17], which gives some analytical
closed-form solutions. This section extends our analysis into the case of muqq # 0
and uz0 # 0.

Let w,(x, 1) be the relative deflection defined as w, (x, t) = w(x, t) — ug. On the
basis of beam vibration theory [28, 29], the equation of motion is described by

. (1) 2 (1) 4 " 2
w,(x,t)+(2nffree) (Z/Afm) w!” (x, 1) = ugow?® sin ot (7.2)

where the dots and the primes denote the partial derivatives with respect to ¢ and x,
2 4
respectively. The coefficient of the second term, (27r 1 (1)) (l / Al ) , equals flex-

free free
(D

ural rigidity E7 divided by mass per unit length pA of the cantilever, where Ag..
(=1.875) is the smallest root of the frequency equation for free cantilevers with-
out CMs, and [ is the length of the cantilever. Also the coefficient is expressed by
keI*1(3mean), where the formula k. = 3EI/I> and mean = pAl are used. The boundary
conditions are given as
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wr(0,1) = (upo — us0) sinwt, w,.(0,1) =w",(,1) =0, (7.3a)
— kP /3w (1, 1) = AF — ciy (I, 1) — magaltor (L, 1) + iis]. (7.3b)

Equation (7.3b) expresses a condition imposed on the force acting on the cantilever
edge (x = I), where the coefficient equals flexural rigidity, AF is the restoring force
of the nonlinear spring, and ¢ denotes the damping coefficient.

Due to the nonlinearity of the spring, w,(x, ) contains several frequency com-
ponents (i.e., a DC component, harmonics, and subharmonics) in addition to the
fundamental component of w in steady-state vibration. The motion can be expressed
as the Fourier series:

wy(x,t) =wx,t) —uy = Wolx) + Z W, (x) sin[nwt — ¢, (x)]. (7.4)

n=1

If the subharmonic components are negligibly small, the terms in the summation in
Eq. (7.4) correspond directly to the fundamental and harmonic components. For this
case, the harmonic balance method is effective for the nonlinear analyzes [30]. Using
Eqgs. (7.2-7.4), we can derive the following conditions imposed on harmonic balance
(see Appendix I):

T
Wo(l) = T / AFdt, (7.5a)
‘ 0
. Ly chw
Wa (D) sinpn (1) | W(hn) + sk, | 4 | = | Wa(D) cos gu(D)
5 T
=T / AFcosnotdt (n =1,2,3,...), (7.5b)
0

cnw

ke

— Wa(l) cos ¢, (1) [\P(?»n) + %aki] + ( ) Wi (1) sin ¢ (1)

+ [(ubo — us0)®(Ay) — uso |:‘1’(/\n) + %0‘)»3“ dn

T
2
= /AF sinnwtdt (n=1,2,3,...), (7.5¢)
kT
0
where 3
WL, = A; (1 4 cos A, cosh Ay,) (7.62)

3(cos A, sinh A,, — sin A, cosh ,,)’
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(7.6b)

A h A
@(An)=wn)(c°s n - COsh A )

1 + cos A, cosh A,

1/4 1/4
[ n PA 3m
Ay = )‘lgr]e)e fTJ:) =1 (E) Vo = (%) JVho, (7.6¢)
free

Q= Madd/Mcan- (7.6d)

The important parameter « is the ratio of the CM (= mgq) to the mass mc,, of the
cantilever without the CM. T = 1/f = 2n/w, and §1,, is the Kronecker symbol; i.e.,
81, =0(n # 1)and 811 = 1. All the components W, () (n=0, 1, 2, ...) and the phase
delay angles ¢, (1) (n =1, 2, 3, ...) must satisfy Eq. (7.5a—c).

The relationship between the force acting on the AFM tip and the tip—sample
separation z [i.e., the force curve F(z)] is generally complex, and an exact, explicit
description is difficult. For the contact states (z < 0), we use the half-empirical, half-
theoretical formula [31]:

4
F(2) = 3E*V =Rz} — Fc - V2mwaa E*(—R2)* = Feon(2) (2 0), (7.7
where E* is the effective Young’s modulus, which is defined as

1/E* = (1 _ uf) JE, + (1 _ v,z) /E, (7.8)

where E; and v; (i = s and ¢) are the Young’s moduli and the Poisson’s ratios,
respectively. The subscripts s and ¢ denote the sample and the AFM tip, respectively.
R is the tip radius, wyq is the Dupré adhesion energy (the work per unit area for
separating the interface), and F¢ is the attractive force at zero separation. The first
term of Eq.(7.7) represents Hertzian contact repulsion, and the remaining terms
approximate the adhesion effect. The two parameters; i.e., the adhesion energy (waq)
and the attractive force at zero separation (F¢), characterize the surface chemical
properties. When the attractive effect is due to van der Waals attractive interaction,
the so-called DMT theory [32] gives the simple relation Fc=2 w Rw,q. However, in
the general case, relating F¢ with wyq is difficult.

Also, for small separations 0 < z < R, we introduce a master curve applicable
to several attractive interactions:

: Fr “ F
FRO==2 1775~ 20 Gy = Fem R), (7.
O == 2 n T 2 Ty~ @ O <2< R (090

m
Z Fy = Fe, (7.9b)
k=1
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where Fy and Dy (k=1, 2, ..., m) are fitting parameters. The first summation can
represent capillary forces due to water adsorption on the surfaces, and capacitance
forces due to a potential difference between the sample and tip [31]. The second
summation can express van der Waals forces and electrostatic forces due to electric
charges (patch charges) [31].
In our nonlinear vibration model, the restoring force from the nonlinear spring
(AF) is expressed by
AF = F[ze +wr(, )] = Fe, (7.10)

where z,(<0) is the equilibrium z position (—z, is the equilibrium penetration depth)
and F, = F(z.). The contact stiffness (k;‘,) corresponds to —dF/dz at z = z,, as men-
tioned in Sect.7.1. While the tip is in contact with the sample [z, + w;-(I, f) < 0], the
first term takes the form of Eq. (7.7). For the other intervals, when the tip is jumping
off the sample surface [z, + w, (I, f) > 0], the first term is described by Eq. (7.9a).

It is difficult to analytically integrate Eq.(7.5a— c). Here we approximate w(x, f)
by taking into account only the two main components Wy(x) and Wy (x):

wr(x, 1) = Wo(x) + Wi (x) sin[wt — ¢1(x)]. (7.11)

For Wy (1), W1(I), and ¢1(I), we use the simple notations Wy, W1 _and ¢, respectively.
The component Wy corresponds to the DC liftoff or diode effect, which has been
used for detecting the tip—sample interaction in UFM [27]. Also, we may assume
Wi > 0. Then, the integrals (n = 1) in Eq. (7.5b, ¢) can be related with each other as
follows:

T T
1
- /AF coswtdt = — /AF sin wtdr. (7.12)
sin ¢ cos ¢
Here we introduce the function defined as
) T
Wo, Wi z,) = ——— | AF coswtdt. 7.13
(W, Wisz0) = sm¢1/ o (7.13)
0

Using Egs. (7.5b, ¢), (7.12), and (7.13), we obtain the following equations for the
deflection amplitudes of the cantilever end and the delay phase angle:

{(po — us0)O (A1) — 10 [W(A1) + and/3])
[W0) +ard/3 — 1 (Wo, Wis 20)]* + (coo/ke)?

Wi = (7.14a)

_(cw/kc)
W) +art/3 = x1(Wo, Wis ze)

tan ¢ = (7.14b)
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The DC and @ components of amplitude must satisfy Eqgs. (7.5a) and (7.14a). The
delay of phase angle (¢1) is determined by Eq. (7.14b). The other equations (n > 2)
in Eq. (7.5b, c) are neglected, in accordance with the concept of the harmonic balance
method [30].

The phase angles at the transition from contact to separation 61(= wt;— ¢1) and
from separation to contact 0,(= wtr— ¢1) are described by

—Z¢ — W,
61 = 7 — 0 = Arcsin —-— 0. (7.15)
1
Then, analytically integrating the right-hand side of Eq. (7.5a), we obtain
91 92
Wo = ! /F (z)do + ! /F (z)do Fe
0% 27k.R cont< 2k R ) P k. R
6,21 01
— — F,
= Co(Wo, W1; ze) + So(Wo, Wi; ze) — R’ (7.16)
C

where z =z, + Wo+ Wsin6 and the upper bar denotes the value normalized by R; i.e.,
() =()/R. The @st term Co(Wo, W1; Z.) is expressed as an infinite series, and the
second term Sp(Wy, W1; Z.) is expressed in closed form (see Appendix II). Similarly,

for Eq.(7.13), we have

01 0
1
X1 = Tk Wy sin gy / Feont(2) cos( + ¢1)do + / Fepa(z) cos(0 + ¢1)do
6,271 01
= C1(Wo, Wi; Ze) + S1(Wo, Wi; Z). (7.17)

The expressions of C 1(W0, Wi, Ze) and S1(Wo, Wi, Ze) are shown in Appendix II.
Equation (7.16) gives the relationship between the shift in average position (Wy) and
amplitude (W7). The amplitude is determined from Eqgs. (7.14a) and (7.17).

In the case of perfect contact, where the tip is always in contact with the sample
surface during vibration, we obtain relatively simple formulas for nonlinear vibration
(set AB =6,— 0 to zero in Appendix II):
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00 (k) (= [k/2] 2p
= gz | =i k 2p\ =k—2p (W1
Wo_k k! WO+Z;(21’)(P "o 2 ’

p:

=1

(7.18)
S R )
x1(Wo, WiiZe) = — > T
k=1
[(k+1)/2] — 2p-2
% Z/ k 2p Wk—2p+l & b
2p —1 p B 2 '
p=1

(7.19)

where the Gauss notation and the simple notation of a binomial coefficient are used
(see Appendix IT). The function g(z) [= Fcont/(kcR)] represents normalized interactive
force in the contact situation, and the derivative is given by

L
g“‘)@:%
_ T(k—3/2) (4E*RY  _3ps
T T(-3/2) ( 3k, )(_Z)

Fk—3/4) (V2ZTwaE RY 34
T T(=3/4) ( ke )(_Z) ’

(7.20)

where I'(x) is the Gamma function [["(x+1)=x I"(x)].

Figure 7.3 shows an example of theoretical predictions (broken curves) by using
Eqgs. (7.14-7.20) for the second resonance spectra measured in UAFM [15] (solid
curves), where a glass surface was observed with a normal cantilever. The simulations
were carried out by finding the roots Wy and Wy of Egs. (7.14a) and (7.16) under the
condition of uzg = 0 and appropriate values on the tip—sample interaction [17]. Our
simulation explains well the drastic change in a shape of resonance curves due to the
increase in excitation power P. For low excitation powers (—20, —25, and —30 dBm),
the amplitudes simulated around the resonance frequency almost coincide with the
experimental amplitudes. However, the simulation deviates from the experimental
amplitudes for larger excitation powers (>-20dBm). It is noted that these cases
of discrepancy correspond to large nonlinear vibrations where the tip jumps out of
the sample surface. In such large nonlinear vibrations, harmonics and subharmonics
appear and the damping effect becomes stronger than that at perfect contact. The
discrepancy is considered to be due to the neglect of the appearance of harmonics and
subharmonics and the assumption of constant damping coefficient. For the situation
of perfect contact, the theory was successfully applied to the determination of the
elastic modulus and adhesion energy [17].
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Fig. 7.3 A comparison of the
theoretical prediction (broken
curves) with the experimental
contact spectra [15] (solid
curves), which were observed
for a glass surface by UAFM
with a normal cantilever. The
parameter P is the excita-
tion power. For P less than
—15dBm, the tip meets the
perfect contact without any
jumping out of the sample
surface, where the theory well
explains the measurements.
Reprinted from [17]

7.2.1.2 Linear Tip—Sample Interaction

If the amplitude is so small that V_VIZP (»=1,2,3,...) may be neglected, Eqs. (7.18)
and (7.19) become the expressions of linear vibrations Wo=0and x1 = —gV (z,) =
k”\‘,/kc, respectively. Hereafter, we omit the subscript 1 in the symbols Wy, ¢1, A1,
etc. for linear vibration. Substituting x| = kj,/k., in Eq.(7.14a, b), the amplitude W
and phase delay ¢ at the end of the cantilever (x = /) are described by

w

_ o — us0)0G) — usol¥ () + ai/3]]

(7.21a)

JIWG) +aid/3 =k fe P + (cof ke)?

tan ¢ =

—(cw/ke)
W) +art/3 — ki [k’

(7.21b)

A= )‘1Erle)e f/ff(rl)e = (3mcan/kc)l/4 Vo, (7.21c)
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where the damping coefficient (c¢) is related with the quality factor Q (see
Appendix III).
For low damping, we can approximate the resonance condition as

W) 4 art/3 =kl /ke. (7.22)

Equation (7.22) coincides with the frequency equation of natural vibrations. For
a = ky, = 0, it gives W(A) = 0 and thus the frequency equation of clamped-free
(or fixed-free) beams, 1 + cosicoshi = 0, which is by equating the numerator of

Eq. (7.6a) with zero. Let Xge)e denote the nth order solution:

free

= 1.875, 4.694, 7.855, 10.996, 14.137,.... (7.23)

The limit kj, — oo in Eq.(7.22) leads to W(A) — oo for finite values of A
and thus to the frequency equation of clamped—pinned (or fixed-simply supported)
beams, tanhX = tani, which is obtained by setting the denominator of Eq. (7.6a) zero.
The nth order solution )‘gilr)l is given by

)Lgi?l =3.927, 7.069, 10.210, 13.352, 16.493,.... (7.24)

When kj, increases, the nth order solution 1 of Eq. (7.22) approaches /\Effﬂ’ whatever
o takes. Therefore, the possible range of A" is

0<a® <l Al <am <l (=234, (7.25)

7.2.1.3 Derivation of Effective Point-Mass Models

As we have seen in the preceding sections, the vibration dynamics of cantilevers in
contact with a sample seems somewhat complicated even with the linear tip—sample
interaction. However, if the excitation frequency [f = w/(27)] is limited to close
vicinities of the resonances, one may find an effective point-mass model for each of
the resonances. The presence of the effective models, whose possibility depends on
values of o and kj,/k., could allow one to substitute the following approximation in
Eq.(7.21a, b):

W)+ art/3 — k5 ke ~ (megre® — k) / ke, (7.26)

where megr is the effective mass, and ké’flf) [= megr(@™)?] is the effective spring con-
stant near the nth order resonance. The right side of Eq. (7.26) corresponds to w X /k.,
where X is the mechanical reactance. Let us call the left side of Eq. (7.26) the reac-
tance relative.
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Here, let us seek out the effective point-mass models. For a small difference A(w?)
= w’—(w™)?, the reactance relative is approximated by
W)+ art/3 — kb /k,
NG + a3~k ke
+ [ 143w G200/ |+ ma | [0 = @702 /e,
(7.27)

where Egs. (7.6a, d) and (7.21c¢) are used, and

2sin A sinh A 3
D) = - . + - (7.28)
cosAsinhA —sinAcoshA A

If A is the exact solution of Eq. (7.22), the first three terms in the right side of
Eq. (7.27) disappear, and then Eq. (7.27) suggests that the expression in the braces
corresponds to the effective mass (megr). Unfortunately, megr is not a constant in
general, but depends on the resonant frequency. The effective point-mass model
does not always exist near the resonances.

When the cantilever is a normal one without the CM and the sample is very soft,
thatis « < 1 and k}/k; < 1, we have the approximation W(A™") ~ 0, where
)L(n) ~ )\(”)

free» and then find the effective point-mass model with the effective mass:

Meff = Mcan/4 + Madd, (7.29)

and the effective spring constant:
4
K =k + &y = [(AEFJe) / 12} ke + K. (7.30)

where kg") is often called the dynamic (or effective) spring constant of cantilevers,
which have no attached masses, and approximately equals to k. for the fundamental
resonance (n = 1). Meanwhile, Eq.(7.30) predicts that for a < 1 and kj/k. < 1,
the application of the higher modes does not provide any enhanced-sensitivity in
detecting k7, because Aw = a)gle)e k;‘,/(Zkg")) =ky/ (kﬁ")mm)l/ 2 isreduced when kg")
increases. The reduced sensitivity is also predicted in the NC mode by substituting
—(dF/dz),, for kj,.

In AFAM and UAFM using normal cantilevers (¢ < 1), k},/k. normally takes
not small values. There is no available point-mass models because the resonance
condition W(A™) ~ k;/kc does not allow one to find any effective mass that is
independent of the resonant frequencies. Instead of the point-mass models, one is
required to solve the resonance condition for A" directly. For stiff samples such as
metals, the sensitivity of the fundamental resonant frequency to kJ, is known to be
reduced but can be improved by using the higher order resonances [4, 5].
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Apart from the limitation of close vicinities of the resonances, let us consider now
two cases in which effective point-mass models are available. One is the excitation
at low frequencies with any values of « (0 < A < Ay ~2.5 for o = 0, the upper limit
Ay depends on o, and Ay — )»gr)l as @ — 00), which leads to the fundamental-mode
vibration in the range of —1 < ky,/k. < (ky,/kc)y ~2.5 for a = 0, the upper limit
(ky/ke)y depends on a, and (k§/k.)y — oo with . Using Taylor series expansion
of W(x) around A = 0: W(A) ~ —1 + (11/140)A* together with Eq. (7.21c), we have
the approximation to the reactance relative:

WG+ art/3 = ki ke ~ {133/1400mean + maaal? = (ke +K3)} /kes (731)

where the coefficient 33/140 &~ 0.236. Equation (7.31) shows the effective point-mass
model with the effective mass, megr = 0.236 mcan + Madd, connected to the two parallel
springs, k. and kj,. This confirms that the fundamental resonant frequency for any
values of o takes the same form as Eq.(7.1) with kj, substituting for —(dF/dz)., .

Another case in which the forced vibration can be approximated by an effective
point-mass model is the use of CM cantilevers with & > 4. In this case, the model is
applicable at almost all the frequencies of practical interest. Figure 7.4 plots the sum
of frequency-dependent terms W (1) + aA*/3 in the reactance relative, as a function
of L. The graphs explain the effect of the CM on the reactance relative. That is, when
the mass ratio (o) exceeds around 4, the term ar*/3 dominates over the sum of the
frequency-dependent terms [i.e., W(1)<aA*/3], except near the specific resonances
of A= )L;}I)l (=3.927), )‘;(3%1)1 (=7.069), etc., which correspond to the case where the end
of the cantilever is pinned (or simply supported). Hence, we are allowed to neglect
W () in the reactance relative:

W) +art /3 — kG ke & ad® )3 — K ke = (madde - k;) Jke.  (1.32)

Note that Eq.(7.32), which is valid for « > 4, makes relatively large errors for
small values of A(< 2) and kj,/k. (< 20). In this case Eq. (7.31) is available rather
than Eq. (7.32). If Eq. (7.31) with o > 4 is extrapolated to the case for larger values
of ky,/kc, we see it to equal Eq. (7.32), approximately. Thus, we reach the following
approximation to the reactance relative for CM cantilevers with « > 4.

W)+ ant/3 — Kl ke ~ [meffwz — (ke + k;)] Jke, (7.33)

where megr = 0.236mcan + magd, and hereafter we approximately use Eq.(7.29) for
mefr. The resonant frequency is given by

1 ke + kS kY
freszz_\/ - v :fO\/l‘i‘_Vy (7-34)

T\ Metr ke
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Fig. 7.4 Plots of the sum of
frequency-dependent terms in
the reactance relative, W(X)
+ aA%/3, as a function of A,
which is a parameter propor-
tional tof'/z, see Eq. (7.21c¢).
The broken curves show the
second term, aA*/3

Fig. 7.5 The normalized
resonant frequency versus
contact stiffness for the CM
cantilever (o =6, solid curves),
a normal cantilever (« = 0,
broken curves), and the point-
mass model Eq.(7.34) (thin
solid curve, which coincides
the curve A-B-C-D). For the
point-mass model, the nor-
malized resonant frequency
is expressed by (A )2(1 +
40)~V2(1 + k5 7Kk) /2 from
Eq.(7.34)

where fj is the fundamental resonant frequency of the CM cantilever in no interac-
tion with the sample (k7, = 0). Figure 7.5 shows the normalized resonant frequency

f(”)[(kgrlge)z/ ff(rli] = (A")2 versus the normalized stiffness (k3 /kc) for the CM can-
tilever with « = 6, where the calculation is carried out by using Eq. (7.22), and the
result for the CM cantilever is compared with the normal cantilever (o = 0) before
the attachment of the CM. We see from Fig.7.5 that the CM cantilever yields the
apparently-connected segments A-B-C-D in solid curves, which consists of parts
of the 1st to 3rd resonance curves (n = 1 ~ 3). The segments are well fitted by
Eq.(7.34) within the line width. The horizontal lines corresponds to the specific
resonances A" = A('iﬁ. It should be also noted that the curve consisting of the seg-
ments for the CM cantilever looks very steep, compared to the result for the normal
cantilever. The slope indicates the sensitivity in AFAM and UAFM, which will be
discussed in Sect.7.2.1.4.

Note that Egs.(7.33) and (7.34) are applicable to almost all the range of fre-
quency, except near the specific resonances of the cantilever with one end pinned,
as mentioned above, and to each of AFAM and UAFM as long as one uses the CM
cantilevers. On the other hand, the amplitude (W) and the phase delay (¢) of the
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relative deflection (w,) at the cantilever end, see Eq.(7.21a, b), are rewritten as

_ ke (upo — us0)O ) — uso(mefr? — ke)|

w
\/[meff(,()z — (ke + ké)]2 + (cw)?

, (7.352)

—Cw

tanp = .
¢ meffa)2 — (ke + kT/)

(7.35b)

With upg = 0, i.e. AFAM, the first term in the numerator of Eq. (7.35a), which
contains the function ®(A), can be neglected for A > 2 and o > 4, and then we
acquire the complete expression that contains only quantities in the effective point-
mass model. In the case of upg = us0, we also have the complete expression. If ug is
changed along with w so as to make the term usoMefrw? be a constant value, denoted
by P§*, we obtain the formula on the direct force modulation for relatively high
frequencies w > 2 fj, where the CM is directly oscillated with an external force
Pt = P§* sin wr. In the formula converted in this way, the relative quantities like
W should be regarded as the absolute ones. This corresponds to MEFMM where the
attached magnetic particle satisfies the requirement o > 4 for the CM cantilevers.
On the other hand, UAFM where u, = 0, unfortunately, does not allow us to obtain
the complete expression because there remains ®(X), which has some nature coming
from the distributed mass of the cantilever.

When the absolute deflection w(l, r) = w, (1, f) + u, at the cantilever end is expressed
by w(l, £) = Wapssin(w? — ¢ aps ), the amplitude Wy, and the phase delay ¢qps are related
with the relative ones W and ¢ as:

Waps = W\/ sin? ¢ + [cos ¢ + (ug0/ W)12, (7.36a)

tan gaps = sin@/(cos ¢ + uzo/ W). (7.36b)

7.2.1.4 Sensitivity in Detecting Contact Stiffness

The slope in the relation of resonant frequency versus the contact stiffness, see
Fig.7.5, means the sensitivity in the detection of sample elasticity by AFAM and
UAFM. First, we define the non-dimensional sensitivity S as the ratio of the normal-
ized increase in the resonant frequency, Af/f" to that in the contact stiffness,
Ak’{,/k;‘, [7, 17]. Using Eq. (7.22) together with Eq. (7.21c), we obtain the expression:

* (n) (n) (n)y4
§= ( ky, )df 2l (A + a(AY)* /3] (7.37)

F0 ) Tk T AW OM)S M) £ (1+ da)(AM)3/3]°

For the CM cantilevers, the effective point-mass model, Eq. (7.34), simplifies the
sensitivity:
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Fig. 7.6 The sensitivity, defined by a Eq. (7.37), b Eq. (7.39), and ¢ Eq. (7.40), for the CM
cantilevers (o = 6, solid curves) as a function of the normalized contact stiffness, in comparison
with that for the normal cantilevers (« = 0, broken curves). The thin solid curves in a and ¢ show
Eqgs. (7.38) and (7.41), respectively

S~ (1)K [ke) /(1 + K/ ko). (7.38)

When increasing the normalized stiffness, the sensitivity increases and then reaches
a constant value of 0.5. This value is the maximum of the sensitivity defined by
Eq. (7.37). Figure 7.6a shows the sensitivity as a function of the normalized stiff-
ness for the CM cantilever with o« = 6, compared to that for the normal cantilever
(o = 0). The calculations have been made with Eq. (7.37) together with Eq. (7.22).
The enhancement of the sensitivity by the use of the CM cantilever is understood
from Fig.7.6a.

When the CM and normal cantilevers having the same fundamental resonant
frequency with the end free are compared, we may modify the sensitivity in the way
that Af™ is normalized by using each of the fundamental resonant frequencies of
the cantilevers with the end free (fy and ff(réifor the CM and normal cantilevers,
respectively). Then, we have the sensitivity S* for the CM cantilever:

I df(") (A("))2
S* = —V) =J1+4 S, 7.39
(fo a; VT "‘( 23 ) (73
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where, for the normal cantilevers (o = 0), fy should be replaced by ff(rll, while the
right-hand side remains valid. Figure 7.6b shows the comparison for this case. We
see that the CM cantilever (« = 6, solid curves) significantly improves the sensitivity
within almost the entire range of the normalized stiffness.

In the sensitivities defined above, the change in the contact stiffness is normalized
with the contact stiffness to which we want to know the sensitivity. These sensitivi-
ties clearly indicate the performance of detecting the contact stiffness for relatively
stiff samples or soft cantilevers (kj,/k. > 1). Especially, in the case where macro-
scopically homogeneous stiff-samples are evaluated or imaged for fluctuations of the
surface elasticity, the relative change in the contact stiffness is important, and thus
the sensitivities would be useful. In contrast, these sensitivities would not be suitable
for relatively soft samples or stiff cantilevers (kj,/k. < 1) because they approach
zero as ky,/k. — 0. Instead, one may use the definition where the change in k7, is
normalized with the spring constant of the cantilever k. [27], which is similar to that
in the NC mode:

ke df® s*
So=\— = .
fo) dki W) +a(Am)*/3

(7.40)

The sensitivity Eq. (7.40) is applicable to making a comparison between the CM
and normal cantilevers with the same fundamental resonant frequency fy = ff(nl:)e’ as

shown in Fig. 7.6¢. For the CM cantilevers, the effective point-mass model, Eq. (7.34),

simplifies the sensitivity:
So ~ (1/2)/\/1 4+ k} [ ke. (7.41)

The sensitivity Sy takes the maximum of 0.5 as kj,/k. — 0. From Fig.7.6c, we see
that the relation of Sy versus kj /k. for the CM cantilever (o = 6) approximately
coincides with that for the point-mass model Eq. (7.41), as expected, and the CM
cantilever improves the sensitivity especially at higher values of kj,/k..

7.2.2 Effects of Lateral Stiffness

The actual cantilevers have nonzero tip heights. The deflection angle at the end of the
cantilevers imposes a rotational motion on the tips, and induces a lateral motion of
the contact point on sample surfaces. As a result, the resonant frequency is influenced
by the lateral contact stiffness, as well as the vertical contact stiffness. In addition,
a tilt of the cantilevers is given relatively to sample surfaces in the actual setup.
The tilt also causes the resonant frequency to depend on the lateral contact stiffness.
Some studies for AFAM and UAFM discussed these effects for normal cantilevers
[14, 15, 33, 34]. In contrast, it was proved for the CM cantilevers that these effects
are significantly suppressed, and that the approximation by the effective point-mass
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model, such as Eq. (7.34), is still valid [8]. Furthermore, if one uses rod-like CMs that
enhance the rotary inertia, see Fig.7.7, the lateral contact stiffness can be detected
independently of the vertical one from another contact resonance that depends only
on the lateral stiffness [8].

In this section, we introduce the unique features of the CM cantilevers, according
to the work [8]. It is assumed in the theoretical model that the CM is a thin rod of
mass m,gq and length [,,,. A tip of length (height) 4 is attached at a distance /; from
the end of the CM rod, see Fig.7.8. The rod is connected to the end of the flexural
cantilever of mass m¢,y and length /. The gravitational center of the rod is at a distance
l¢ from the connected end (/g = [,,/2 for uniform rods). The tip-sample interaction
is represented by the vertical contact stiffness k7, and the lateral contact stiffness k7 .
The CM cantilever is tilted with an angle of ¢, and has a spring constant k. relating
the deflection at the tip site to the force acting in the tip direction.

Let us consider now natural flexural vibrations of the cantilever with small-
amplitudes and negligible small damping. The equation of motion is described by

w(x, 1)+ (EL/pA)w” (x,1) = 0. (7.42)

The flexural rigidity to mass per unit length of the cantilever is described by
El/(pA) = 1%k /(Bmcan), Where kg is the spring constant of the flexural part.
The spring constant k.o is related to k. by k.o = kc[1 + 3(L/]) + 3(1,/)*], which
is obtained from elementary flexural theory. The boundary conditions are given by
w(0, 1) = w/(0, 1) = 0. The conditions for the shear force acting the cantilever F =
(keo/3)w"' (1, 1) and for the bending moment M = (k.ol3/3)w” (1, 1) are derived from
the equations of translational motion and rotational motion on the gravitational center
of the CM rod:

F =hkyw( + 1, 1) +kpyw' (¢, 0)h + magaw” ( + g, 1), (7.43a)

M = —lkyw( 41, 1) +kpyw' (1, 0OR  — Tepyw(d + 1, 1) + kpw'd, 1)h] h
— magaw” (I + g, )lg — Jyw' (I +Ig, 1), (7.43b)

where J;,, is the moment of inertia on the gravitational center of the CM rod. The
symbols with a hat are the effective contact stiffness that contains the effect of the
tilt angle g, defined as [15]:

IEV =k}, cos’ g + k} sin’gq
kp =k cos’ q + kjsin®q . (7.44)
kry = (kj — ki) cosg sing

Substituting the solution form w(x, ) = Z(x)sin(£2t — ¢) into Eq. (7.42), we have
the form of the mode function Z(x):
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Fig. 7.7 SEM image of the rod-like CM cantilever, where the CM is made by cutting a gold wire
of 30 wm in diameter into a length of /,, = 100 wm. The other data of the cantilever are as follows:
ke = 0.86N/m, [ = 187 wm, [; = 0.55;,, h = 24 pm, myqq = 1.38 g, o = 44.9, lo= 1,,/2, the first
resonant frequency fy = 4.9885kHz, and the second resonant frequency fo,= 61.5kHz with the end
free. The second resonance (fo,) provides the rotational tip motion (see Fig.7.10)

Fig. 7.8 A model of vibra-
tions of the CM cantilevers
whose tip is in contact with a
sample. The tip-sample inter-
actions are represented by the
linear springs in the vertical
and lateral directions, where
the rod-like CM is simplified
as a thin rigid segment with the
mass mygq and the length 7,

Z(x) = Kysin(éx/l)+ Kycos(éx/l)+ Kzsinh(éx/1) + Kqcosh(éx /1), (7.45)

where & = 2'2Bmeanlkeo)'/*, and 2 and ¢¢ are natural angular frequency and
constant phase angle, respectively. Again we substitute the solution together with
Eq. (7.45) in all the boundary conditions. Then we have conditions on the coefficients
K to K4, which determine the frequency equation:

Co+ Cicos&écoshé + Crsiné coshé + C3cos & sinhé + Cysiné sinhé =0,
(7.46)
where
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Co=14+PQ—-—D Dy — PakV, Ci=—-14+PQ+ DDy + PatV,
Cr=P+0 - PQut {148 U/ + Jc/ (mual?) ]}
+2PDi (/1) + Q&% / 1),
Ci=P =0+ PQat {1 -8 [Ue/?+ Jc/ (maat®) ]}
+2PDi (/1) + Q& D2,
Cys =2 PQD Dy —2PQat*(ly/1) + 208/ 1),
V=1- Qa&’Jc/(maaal®) +2D1(l; — 1) /1
+ (D1/D2)Jc [ (magal®) + g — 10)? /171,
P =& /[3(k} / keo)(cos® g + rsin” g)],
0 = £/[3(h/ (K} /keo) (r cos* g + sin® q)],
Dy = (r — D tang/[(h/1)(r +tan’ q)], Dy = (h/1)(r — 1) tang /(1 4 r tan? g),
r=kj/ky,
Je = n(maaaly,/12). (7.47)

The coefficient 7 in the equation for J¢ is an adjustment factor counting for effects
of a non-zero diameter of the CM rod. The solutions & of Eq. (7.46), which give
the natural frequencies £2, and also approximate the resonant frequency measured
in AFAM and UAFM using the CM cantilevers.

Figure 7.9 shows an example of variation in the frs versus kj, relation when
increasing the length (/) of an attached Au rod from /,,, =0 with keeping the original
length of the cantilever [ + [, = 242 pum and the diameter of the rod. The other data
are the same as those in Fig.7.7. The tilt angle ¢ is set a typical value of 14°, and
the stiffness ratio r is assumed 0.8. The values of (kqo/Mcan)'/%/(277) and n are set
48.713kHz and 1.582, respectively, so as to equate the prediction of the first and
second resonant frequencies, fy and fo,, under the free end for /,, = 100 wm with
the experimental data shown in the caption of Fig.7.7. With an increase in [, a
steep curve appears like ABC in Fig. 7.9b, which coincides with the effective point-
mass model, namely Eq. (7.34), in spite of presence of the lateral contact stiffness.
This means that the attachment of the CM suppresses a rotational motion of the tip.
It is also interesting that another steep curve appears like DEF in Fig.7.9c with a
further increase in [,,,.

Figure 7.10 shows the vibration modes at several points on the curves in Fig. 7.9c.
It should be noted that, for the curve connecting the points A2-B2-C1-D1-E1-H2
(correspond to the curve DEF in Fig. 7.9¢), the vibration modes always have a node
at the tip. This means that the tip motion becomes purely rotational and interacts
only with the lateral contact stiffness. The rotational vibration of the tip can be
approximated with the one-freedom model shown in Fig.7.11:
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Fig. 7.9 Effects of the length /,, of the CM on the relation between the resonant frequency and the
normalized vertical contact stiffness, where the tip mass is added to m,q4q in calculation of the mass
ratio . The cases are given: a for a normal cantilever (/,,= 0, & = 0.094, and g = 0), b for a CM
cantilever similar to the type shown in Fig.7.1 (/,,= 30 pm, @ = 11, and 8 = 0.2), and ¢ for a CM
cantilever similar to the type shown in Fig.7.7 (,,= 100 um, o = 45, and B = 13). Reprinted with
permission from [8]. Copyright 2007 Institute of Physics Publishing

fom £ \/HTk?_f 1+(k3) e (7.48)
res = fog ke 00 ke ) 402 + 30,0 + 322 '

where k., is the spring constant of the spiral spring that provides a restoring moment
M against the rotational motion with the angle ¢ of the rod-like CM around the
fixed axis on the tip, see Fig.7.11b. The angular spring constant k., is related to the
translational spring constant k.. The relation is given by k., = M/p = (4/3)(12 + 311
+ 31[2)2kc from elementary flexural theory. Although the curve connecting the points
A2-B2-C1-D1-E1-H2 apparently shows a dependence on the vertical stiffness k7, in
Fig.7.10, itis, indeed, independent of k}, because it is fitted well by Eq. (7.48), which
predicts a dependence only on the lateral stiffness. When changing the stiffness ratio
(r), the curve connecting the points A2-B2-C1-D1-E1-H2 also changes in accordance
with Eq. (7.48) while the curve connecting the points the curve connecting the points
A1-B1-C2-D2-E2-H2 keep stationary.

We confirmed from additional analyzes that the effective point-mass model,
Eq. (7.34), is still valid for kj, detection if « is larger than about 4 and 6 is less
than about 15 °. Furthermore, the spiral-spring model, Eq. (7.48), is also applicable
if the ratio of inertia moment, 8, defined by the following, is larger than about 4.
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Fig. 7.10 Vibration modes of
the CM cantilever that has a
large moment of inertia on the
tip (c in Fig. 7.9). Reprinted
with permission from [8].
Copyright 2007 Institute of
Physics Publishing

Fig. 7.11 a The spiral-spring
model that is equivalent to
the vibration mode with the
rotational tip motion. b The
static problem in which the
CM cantilever pinned at

the root of a tip is subject
to the moment, for determin-
ing the spiral-spring constant
keg

B = (madal2)/ (meanl®) = a (/1>

211

(7.49)

This finding leads us to expect simultaneous detections of the vertical and lateral
stiffness without their interaction. If the tip—sample friction is large, resulting in no
slips of the tip, one can detect the lateral stiffness from the unique mode that provides
the rotational (or lateral) tip motion by using the CM cantilevers [8], without any
additional experiments such as the excitation of the torsional vibrations [15] or the

assumption on the value of the stiffness ratio [14].

7.3 Experimental Demonstrations with CM Cantilevers

7.3.1 Contact Spectra and Elasticity Mapping

7.3.1.1 Experimental Procedure

A rectangular cantilever made of single-crystalline silicon (Masch Co. Ltd., Type
NSCI12-F, 35 x 250 x 2 wm, spring constant 1 N/m, fundamental resonant frequency
46 kHz) was used for the main body of the CM cantilever. The silicon tip attached to
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the cantilever had an apex radius of about 10 nm and was coated with a 25-nm-thick
W, C or Pt/Ti film to prevent contact damages such as wearing. Brittleness of the
W, C coating ensures a stable tip shape but results in a relatively short lifetime due to
abrupt detachment from the silicon tip. The Pt/Ti coating does not detach, but rather,
easily undergoes plastic deformation. A tip with the latter coating was intentionally
deformed under a contact load of 1-2 N to give it a flat-ended shape. The flat tip
greatly simplifies the evaluation of elastic modulus in AFAM (see Sect.7.3.2.1).

A tungsten (W) particle was selected as the concentrated mass because of its high
density. An adequate-sized particle was picked up from a pinch of pure tungsten
powder (Kojundo Chemical Lab. Co. Ltd., Deoxidized powder, 53 um mesh pass)
by a micropipette in 3D micromanipulation under an optical microscope. The mass
selected ranged from about 200 to 540 ng, which corresponds to o = 5—12. The W par-
ticle was glued on the tip in the micromanipulation, where a UV-curable adhesive was
used for convenience. Figure 7.1 shows an example that was fabricated in this way.

Atomic force microscopes (JEOL Co. Ltd., JSPM-4200 or SII Co. Ltd., SPI3700-
SPA270) were used with a few modifications for imaging elasticity and acquiring
contact resonance spectra. A piezoelectric element was inserted beneath a sample.
Cantilever vibrations were measured by an optical lever technique using a position
sensitive detector (PSD), which was a standard function of the systems (JSPM-
4200 and SPA270). Because the CM cantilevers allowed the target contact-resonance
to appear at lower frequencies in comparison with normal cantilevers, the built-in
PSD, whose response was in the frequency range less than about S00kHz, was
available. The signal of cantilever vibrations and the sinusoidal excitation voltage
as the reference signal were fed to a lock-in amplifier through a heterodyne down-
converter. The function generator, the heterodyne down-converter, and the lock-in
amplifier were controlled by a personal computer with GP-IB interfaces.

The cantilever was brought into contact with a sample. The contact force (F,)
was set to several different values from 100 to 900nN to determine a resonant peak
sensitive to the contact stiffness. The time-averaged cantilever deflection signal,
which corresponds to the contact force, was maintained through a built-in feedback
circuit in the case of the so-called contact mode, where the electronic circuit is not
subjected to sinusoidal signals at ultrasonic frequencies.

For imaging elastic heterogeneity of a surface, so-called slope detection was used
for observing a shift in resonant frequency [38]. Excitation frequency was fixed near
a resonant frequency sensitive to variations in contact stiffness. A shift in resonant
frequency thus was observed through a change in the cantilever amplitude. When the
damping is homogenous, such slope detection exhibits heterogeneity of the contact
stiffness which varies with sample elasticity.

7.3.1.2 Contact Resonances for W,C—-Coated Tips
and Pt/Ti-Coated Flat Tips

The W>C-coated tip had an apex radius of about 35nm, i.e., a non-flat geometry.
Thus, the contact force (F,) influenced the contact area. The contact stiffness and
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Fig. 7.12 The measurements
of the contact resonance
spectra for a glass surface by
UAFM in combination with
the CM cantilever equipped
with a W,C-coated normal
tip. Reprinted with permission
from [9]. Copyright 2005
Institute of Physics Publishing

Fig. 7.13 The second resonance spectra measured, a for a glass surface using the CM cantilever
with the W, C-coated normal tip (G2 in Fig.7.12), and b for Si(100) wafer surface using the CM
cantilever with the Pt/Ti coated flat tip. Reprinted with permission from [9]. Copyright 2005 Institute
of Physics Publishing

resonant frequency are also expected to depend on the contact force. Figure7.12
shows the spectra observed for the optical glass slide surface in UAFM using the
CM cantilever with the W»C-coated tip. The spectra are compared at several values
of F,. Arrows Gi (i = 1, 2, 3) indicate the resonant peaks. The numeral i denotes the
order of resonance. The vertical lines Fi (i = 1, 2, 3) indicate the fundamental, second,
and third resonant frequencies in no interaction with the sample. As expected, the
first and third contact resonance (G1, G3) arose near the free resonance (F2, F3). For
these trivial modes, the end deflection is zero like at a pinned end.

On the other hand, the second contact resonant frequency G2 clearly depended
on F,. Figure7.13a shows a detail near the second resonance in Fig.7.12, where
the resonant frequency can be seen to increase with the contact force, and hence,
with the contact stiffness. This indicates a contact resonance sensitive to variations
in contact stiffness. In addition, all the resonant frequencies obeyed the theory of
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Fig. 7.14 The resonant fre-
quency versus the normalized
contact stiffness, where the
measurements (Fig.7.12) are
compared with the theoreti-
cal prediction (see Fig.7.5).
Reprinted with permission
from [9]. Copyright 2005
Institute of Physics Publishing

Fig. 7.15 AFAM images of a topography and b elasticity (contact stiffness) for optical slide glass,
obtained using the normal cantilever with the W,C-coated tip. The contact force was 190nN. The
2nd resonant frequency was 532kHz. The excitation frequency was set 528 kHz. Reprinted with
permission from [9]. Copyright 2005 Institute of Physics Publishing

CM cantilevers reasonably well, as denoted by circles in Fig.7.14, where kj, was
estimated from a modified Hertzian contact model [31].

Figure 7.13b shows spectra for an etched Si(100) wafer, measured with the Ti/Pt-
coated flat tip in AFAM. The resonant peak sensitive to the contact stiffness can be
identified by the fact that the resonant peak is located apart from the trivial resonant
frequencies (F2: 171.1kHz, F3: 530.0kHz). In contrast to the normal tip (Fig.7.13a),
the resonant frequency (around 236 kHz) seems to be independent of the contact force
for the flat tip. This finding reflects the constant contact area observed in the case of
the flat tip.

7.3.1.3 Elasticity Mapping

Figures7.15 and 7.16 show the topography and elasticity (or more precisely contact
stiffness) images for an optical glass slide. Figure7.15 was obtained for the nor-
mal cantilever with the W,C-coated tip. Figure 7.16 was acquired by using the CM
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Fig. 7.16 AFAM images of a topography and b elasticity (contact stiffness) for optical slide glass,
obtained by using the CM cantilever (o« = 5) with the W C-coated tip. The contact force was 190 nN.
The 2nd resonant frequency (G2) was 224 kHz, and the excitation was made at 215 kHz. Reprinted
with permission from [9]. Copyright 2005 Institute of Physics Publishing

Fig. 7.17 AFAM images of
a topography and b elasticity
for a Ti sheet surface, obtained
with the CM cantilever having
the Pt/Ti flat tip, which was
excited at a frequency of
286kHz under a contact
force of 875nN. Reprinted
with permission from [9].
Copyright 2005 Institute of
Physics Publishing

cantilever (o« = 5) with the W,C-coated tip. In the topographical image (a), bright
areas indicate high altitude. In Fig. 7.16a, the maximum difference in height (PV: Peak
to Valley) is about 350 nm. In elasticity images (b), bright areas indicate soft surfaces.
It is noted that the elasticity image obtained using the CM cantilever (Fig.7.16b)
reveals a clear contrast, indicative of the heterogeneous properties of the polished
glass surface. By contrast, the normal cantilever does not produce meaningful con-
trast for elasticity (Fig.7.15b). Unfortunately, contact resonant peaks, such as those
in Fig.7.13a, disappeared suddenly after several scans. This was due to detachment
of the W, C coated tip followed by tip disruption.

Figure7.17 shows AFAM images of a Ti sheet (0.1 mm thick), for which the CM
cantilever with a Pt/Ti-coated flat tip. The elasticity image in Fig.7.17 reveals grains
tens of nanometers in size, which are not observed in the topography. Figure7.18
is a close-up of a large grain in Fig.7.17. The elasticity image in Fig.7.18 clearly
shows the heterogeneity of the grain boundary. It also reveals darker (i.e., stiffer)
patterns inside the grain. Contact resonance at points a, b, and ¢ was actually shifted,
as shown in Fig.7.18c, so as to increase the contact stiffness. The pattern inside
the grain seems to be due to piling up of dislocations like slip bands or crystal
anisotropy of the exposed uneven surface, i.e., the fact that the crystallographic
orientation normal to the exposed surface depends on the normal direction of the
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Fig. 7.18 AFAM images of a topography and b elasticity for the Ti sheet surface, closed up at
the region denoted by the rectangular in Fig.7.17a. ¢ The resonance spectra corresponding to the
positions a, b, and ¢ in b. Reprinted with permission from [9]. Copyright 2005 Institute of Physics
Publishing

surface of the single grain. Each image mentioned above was acquired at an excitation
frequency slightly lower than the resonant frequency. When an excitation frequency
was set to be higher than the resonance, the elasticity image reversed contrast. This
provides undisputed evidence that the contrast of elasticity images is mainly due
to the variation of contact stiffness, rather than heterogeneous viscosity damping.
It is also noted that the contact stiffness depends on local roughness within the
contact area of the sample surface in addition to local elasticity. The effects of local
roughness on images may not be ignored, especially for grain boundaries and slip
bands. Furthermore, other geometrical artifacts should be noted, which appear on
steep areas like the inclined surfaces of coarse grains in Figs.7.17 and 7.18. In such
regions, it may be difficult to achieve full contact of the flat tip due to the large tilt
and the contact area may be significantly reduced. Indeed, all the bright areas in the
elasticity images of Figs.7.17b and 7.18b, corresponding to low contact stiffness,
are located on the inclined surfaces of coarse grains in the topography (Figs.7.17a
and 7.18a).

7.3.2 Quantitative Evaluation for Elastic Modulus

7.3.2.1 Calibration Curve

In order to evaluate sample surfaces for elastic modulus by AFAM and UAFM, one
is required to relate the contact stiffness with elastic modulus of samples. Theories
of contact mechanics e.g., [35, 36] provide some theoretical formulas for the relation
between the contact force and the penetration, which predicts the contact stiffness.
Also, empirical formulas based on in part their theories and some experiments are
available e.g., [31], see Eq. (7.7). These formulas suggest that the contact stiffness
(k},) is proportional to the radius a of the contact area:
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5 =2aqE*, (7.50)

where the radius @ normally depends on the contact force (F, ), the tip-apex geometry,
the effective Young’s modulus (E*), see Eq. (7.8), and the adhesion between the tip
and sample. Effects of the adhesion force on the contact stiffness cannot be ignored
in AFAM and UAFM, where profiles of actual tip-apexes are not simple [15] but
frequently assumed to be spherical (precisely parabolic) [4, 7, 14, 17, 20, 23-26, 33].
By contrast, a flat tip maintains a constant contact area independent of the adhesion
force and the contact force. This ensures that the contact stiffness is also constant. A
real flat tip may have a slightly rough and rounded apex surface. However, a constant
contact area can be achieved provided the contact force is sufficient [9].

For stiff samples like metals and ceramics, ky,/k. > 1, Eq. (7.34) approximates
to:

Ky ke = (fres/ fo)* - (7.51)

Equations (7.8), (7.50), and (7.51) give the relationship between the contact resonant
frequency and the effective Young’s modulus E;[= Ey/(1 — v%)] of a sample:

fres = 2AEFEE/(E} + E), (7.52)

where E; [=E//(1 — vt2)] is the effective Young’s modulus of the tip. The coefficient
A is a factor proportional to the radius of the contact area, defined as:

A =af}/ke. (7.53)

Note that the contact radius (a) is constant for the flat tips. Predetermining values
of E} and A with some reference surfaces, we can evaluate the effective Young’s
modulus of a sample (fres) from Eq. (7.52) and measurements of the resonant
frequency.

Typical references include silicon wafers Si(100), Si(111), a sapphire wafer
Al;03(0001), and a diamond wafer C(100). Their elastic moduli are calculated in
[9, 37] from the crystal moduli determined by ultrasonic velocity techniques for bulk
samples [38]. Figure 7.19 shows examples of spectra for the references observed by
using the CM cantilever (« = 11, k. =0.65 N/m) with the flat Pt/Ti tip, which measured
fo=9.917kHz. Fitting Eq. (7.52) to the relationship between the measurements of
fres and the effective Young’s moduli calculated, we determined A and E*, which are
hard to measure or estimate directly. Figure 7.20 shows the least-squares fit obtained
for the references. It yielded A = 0.2496 4 0.0061 (+20) m/kg and E; = 184.6 £
8.8 (£20)GPa, where o is a standard deviation. Use of the values of A, k. and fy
produced a reasonable contact radius a = 1.7 nm. Also, the value of E] is comparable
to the averaged value for bulk platinum (196 GPa) and bulk titanium (129 GPa). The
square of the correlation coefficient (> = 0.9987) of the fit confirms the validity of
the theory on the CM cantilevers.
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Fig. 7.19 The measurements 150 — T T
of contact resonance spectra [ Al,04 (0001)
for the reference surfaces, the = Si (100) 6nm-DLC
Co—Cr coated substrate, and E i (Sputter)
the DLC thin films on the ° 100 si (111)10nm(-:3|bc ]
substrate. Reprinted with per- ° VD)
mission from [37]. Copyright = [ .
2010 Springer g 50 I\m Diamond (100)
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Fig. 7.20 The calibration 300 T T 1 T T
curve for the determination of Eq.(7.52) R
the effective Young’s modulus = R Dramond
of samples. Reprinted with =3 = (100)
permission from [37]. Copy- 5 250 - AL,O, (0001)
right 2010 Springer S
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7.3.2.2 Evaluation of Thin Films

Let us introduce now an example of the evaluation of thin films for elastic modulus
[37]. The thin films are diamond-like carbon (DLC) films of 6 nm thick and 10nm
thick, which were deposited on a substrate by sputtering a carbon target in Ar gas
and by plasma-assisted chemical vapor deposition (CVD), respectively. The film
thickness was estimated based on the deposition time. The substrate was a hard disk,
which consisted of metallic multilayers for magnetic record and a glass substrate,
namely 50-nm-thick Co—Cr-alloy layer, 70-nm-thick Ti-alloy layer, 0.6-mm-thick
glass substrate. Also the substrate without DLC coating was tested for the elastic
modulus.

Theoretical models on indentation of a layered half-space for a circular punch
proved the validity of the following empirical formula [39]:

1 1 ¥ tfilm 1 Y tfilm
= 1 —exp(— _ Yffim ) 7.54
g o () e (). o
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where Ef, and EJ, are the effective Young’s moduli of a film and a substrate,
respectively. The coefficient y is a function of a/tg1m, where fg1y, is the film thickness.
The numerical result on a relation of y and a/tg, was graphically shown in [39].
Note that the symbol a in [39] is defined as the square root of the contact area, which
differs from the definition of a (the radius of the contact area) in (Eq. 7.54), and then
y multiplied by 7 !'/?equals the symbol « in [39]. The numerical data can be well

fitted by the following formula [37].

y =0 @/tm)™ / [@/tm)" + 2@/ tam)? + 3] (7.59)

where co = 0.4684, ¢, = 0.009968, c3 = 1.004, n0 = 0.4910, nl = 1.736, and
n2 = 6.607 are the coefficients determined by a nonlinear least square fit.

The samples coated with the 6-nm-thick DLC film (Sputter) and the 10-nm-
thick DLC film (CVD) measured fres = 240.4 £ 1.6 (£20) kHz and fes = 239.6
=+ 0.5 (£20) kHz, respectively. The DLC coating shifted the resonant frequency to
higher than that of the sample without DLC coating [fres = 229.8 &+ 1.6 (£20)kHz
(F, =500nN)]. Also, the values of f.s for the two DLC films were alike despite the
different thickness. This does not mean that the resonance is free from the substrate
effects.

The effective Young’s modulus of a sample was determined from the curve in
Fig.7.20 to be E} =310.5 £ 11.4, 305.2 & 3.5, and 247.8 £ 8.2GPa for the hard
disks with 6-nm-thick DLC (Sputter), 10-nm-thick DLC (CVD), and without DLC
coating, respectively. The errors are in the 95 % confidence regions. The last one
corresponds to E7 . Substituting the values of E and E into Eq. (7.54), we
obtained the effective Young’s moduli of the films, where y was calculated using
a=1.7nm and tg)y, = 6 or 10nm. The moduli were Ef; | =391.8 4+ 34.7 (£20)GPa
and 345.1 &£ 8.5 (£20) GPa for the 6-nm DLC (Sputter) and the 10-nm DLC (CVD),
respectively. The presence of substrate effects was clear in that the values of E} for
the 6-nm-film-coated and 10-nm-film-coated samples were 20 and 10 % less than the
corresponding values of Ef, . respectively. The values of Ef  were within range
of the values reported for several DLC films, from 100 to 800 GPa [40—43]. Also a
good precision of 20 < 10 % was attained. An error in a/tg)m also causes uncertainty
of the results. A postulated error of 20 % in a/tgs), results in a relatively small error
of about 5 and 2.5 % in Elil‘flm for the DLC films of 6 nm thickness (a/tgi, = 0.283)
and 10nm thickness (a/tgim = 0.17), respectively. The resulting error increases with
altgim. Therefore, the contact radius (a) should be minimized.

The indentation depth &5, namely the total displacement §(= —z, = F/k})
minus the tip deformation, can be estimated by taking account of the contribution
of a sample, k} = 2aE}, in the contact stiffness. The estimate was §; = F./k] =
0.57 and 0.77 nm for the 6-nm-DLC and 10-nm-DLC samples, respectively. These
indentation depths are 10 % or less of the film thickness. The substrate effect should
be carefully considered even when AFAM is applied. The present method provides
the AFAM method of determining the elastic modulus for ultrathin films, eliminating
the influence of a substrate. The sensitivity-enhanced AFAM in combination with the
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CM cantilevers proved to be sensitive enough for the determination of the ultrathin-
film elasticity and to have the excellent repeatability and reliability.
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Appendix I

Substituting Eq. (7.4) into Eq. (7.2) and then setting the coefficients of sinnwt and
cosnwt to zero, we obtain differential equations for the vibration modes Wy(x),
W, (x)sing, (x), and W,(x)cos¢,(x). The general solutions are obtained easily, and
are of a form containing four arbitrary coefficients. Three of the four coefficients can
be determined from Eq. (7.3a).

Wo(x) = Wo(D)x>(31 — x)/(21%), (A.1a)
W, (xX)singn(x) = —Ap Y (x: Ay) (n=1,2,3,...), (A.1b)
W, (x) cos ¢n(x) = B, Y (x; Ap)+[(upo—uso)U (x; Ay)—us0ldtn, (n=1,2,3,...),

(A.1lc)
where

A A sin A sinh A A A
Y (x; Ay)= (sin tnX sinh nr) _ $ cos nt_ cosh nt ,
[ l COS A, + cosh A, l l

hi A A A
U(x; i) = _ GO A Y (eos 270 _ cosh 220 ) 4 cosh 2E (A.2b)
cos A, + cosh A, l l l

The coefficients Wy(l), A,, and B, are determined from the remaining boundary
condition, given by Eq. (7.3b).
Differentiating Eq. (A.1a—c) and then eliminating A, and B,, by means of Eq. (A.1b
and c¢), we have
W' (1) = =3/ PHYWo(D), (A32)

(W, (x) sin ¢, ()], = B/BYW, (D) sing, (DWW (L) (n=1,2,3,...), (A.3b)
[Wi(x) €08 ¢y (X)]” = = 3/ 1) Wiy (1) cos ¢ (DW () — (3/1°)

X [(upo — us0)O(Ap) —uso VAo, m=1,2,3,...).
(A.3¢)
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Using the remaining boundary condition Eq. (A.3b) together with Eq. (7.4), and
(A.3a—c), we obtain the relationship

keWo(l) + Z[chn(l) sin @ (W (An) + cnw W, (1) cos ¢ (1)
n=1

+ Madd (nw)* Wy (1) sin ¢y, (1)] cos nowt
+ D {—ke Wn (1) cos ¢ (W (1)
n=1

+ ke[ (upo — us0)© (X)) — usoW (Ay) 181,
+ cnwW, (1) sin ¢, (1) — maga(nw)?
X [W, (1) cos ¢, (1) +us081n]} sinnwt = AF. (A4)

The left-hand side of Eq. (A.4) shows the Fourier expansion of the effective interac-
tion force (A F). Therefore, we obtain Eq. (7.5a—c) from Eq. (A.4) together with the
relation (nw)? = Arke/(3mean)-

For the approximation of negligible higher harmonics, if the values Wi (/) and
¢1(D) at the cantilever end are determined from Eq. (7.14a and b), one can obtain the
coefficients A and B; in the mode functions Eq. (A.1b and c):

Wi () tan ¢1 (1)

Al = , A5
: Y(l; A1)+/1 + tan? ¢ (1) (A-32)
A
! [(upo — us0)U (5 A1) — 1501 (A.5b)

B| = -
tang1(l) Y5 A1)

Appendix II

For mathematical convenience, we expand Fioni(z) at z = z. in a Taylor infinite
series of the power of z — z,(= Wy 4+ Wjsinf) and then expand each power; i.e.,
(Wo + W;sind)¥, into binomial series. Termwise integration of the infinite series is
performed analytically by use of the following indefinite integrals:

-1
5 _(=DP | K L (2p) sin2(p —r)o 2p
/Slnp0d9—22—p rzéo(—l) (r)?+(—l)/’(p)9 s

(A.6a)

—prtt 2 2p—2r+1)0
/sin2P+‘ odo = D7 > -1y 2p+ 1) cos@pm2r+ D0y )
22p = r 2p —2r +1
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where p is a positive integer and the following notation is used for the binomial
coefficient. \
) [ — (A.6c)
r rl(n —r)!

Then we obtain

CO(Woa Wl 5 Ze)

A6 oo (“(ze) W2\ (20 i (1)
=(1__)’kR ; Wit 2 (p) (P )WO p(Tl)
2 2 gM@) k\ wir (7 Qe Y sinl(r—25)40/2]
_;kgl k! rgl (r)WO ’(71) sg() (s) o ’

(A7)
where [k/2] and [(r — 1)/2] are the Gauss notations, which denote the largest integers
less than k/2 and ((r — 1))/2, respectively. A6 is the interval of phase angle when the
tip jumps out of the sample surface.

0 G+W=-W)
A0 = { 7 —2Arcsin[(—Z. — Wo)/ Wil (|Ze + Wo| < W) . (A.82)
27T (Ze + W() > Wl)

A6 =0indicates the case of perfect contact and Af =27 the case of perfect separation
during vibration. The function g(z) is the normalized interactive force:

8() =

Fcont(z) _ (4E*R) (__)3/2 — (i) — (@> (__)3/4
kR \3k ) ° keR ke s
(A.8b)

The indefinite integral of Fgepa(ze+ Wo+ Wisind) can be obtained without series
expansion. We obtain

_ ( Fi \— _
So(Wo, Wi Ze) = —z R D Go1(Wo, Wi; Ze, Dy)
k=1 ¢

_z(

k=s+1

)Dk Goo(Wo, Wi Ze, Dy, (A9)

C

where
1

GO](W()le;Ze’B) = — — J—
70/ (D + 2o + Wo)? — W}

D + (D + 7. + Wp) sin(A6/2)
cos(86/2),/ (D + Ze + Wo)? — W?

X | arctan
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D — (D + 7. + Wp) sin(A6/2)
—Arctan — — — ,
cos(A6/2),/ (D +Ze + Wo)? — W?
(A.10a)

D + 7, + W
(5+Ze+WO)2_ le

Gor(Wo, Wi; Ze, D) =

T — Wi sin(A6/2)

x| Go1t(Wo, Wi52e, D) — —=—=—"—=—|.
7D(D +Z. + W)

(A.10b)

The function arctan(x) takes the principal value Arctan(x) when z, + Wp < 0, and
becomes 7 + Arctan(x) when z, + Wy > 0. Equation (A.10a) is also applicable to
(D + 7.+ Wp)? < le. In this case, the elemental functions in Eq. (A.10a) may be

extended to the complex region.
Similarly, we have

Ci (WO, Wl; Ze)

_ k+1)/2
ey [y
2 m )&k < \2p-1 p

p=

— \ 2p—2
— w
ng A (71) :|

1S g®E) | &k =y (WY 8 1
e 2 ()m(s) 2(7)

k=1 r=1 s=0
Sinl(r =25 + 1)A6/2]
r—2s+1
2 AN F M@
~_ sin— S ek A1l
w2 |:kCR+k=1 k0 @11

N ~
— Fr Dy, = = _ —
S1(Wo, Wi52e) = =2 (k ) (:) G11(Wo, Wi; Ze, Dy)
= \kRJ \W
m - 2
Fi Dy — - =
-2 > ( (:) Go(Wo. WiiZe. Di). (A.12)
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where
D+ 7.+ Wo

G11(Wo, Wi; Z, D) =
11(Wo, Wy; 2z, D) ( W1

_ — A6O
Gor(Wo, Wi z., D) — ——, (A.13a
) 01 (Wo, Wi; Z¢, D) W, ( )

(5+23+W0)2
(D + 7 + Wo)2 — W2
— 2
|41 ) — =
X || =———=) Goa(Wo, Wi; Z, D)
[(D+Ze+W0 ‘
W) sin(A6/2) ]

G12(Wo, Wi; Z, D) =

(A.13b)

Appendix IIT

In order to relate the damping coefficient (¢) with the quality factor (Q), let us consider
the case of linear contact vibration with low damping. For the nth order resonance,
the amplitude W™ at x = [ is approximated by using Eq. (7.21a):

(W) = k2 { w0 = us0)© (1) = uso [ W () +a (1)° /3]}2 /

(co™)? (A.14)

where 0™ = (A)2[k./(Bmean)]/?, and A" is the nth root of Eq. (7.22). Let 2Aw
denote the full width at half maximum W2 = (W ™)2/2, where Aw=w—ao™ = 2™
AMA™ | After expanding the denominator of Eq. (7.21a) around the resonance and
then neglecting higher order small terms, we substitute Eqs. (7.21a) and (A.14) in
the condition W2 = (W))2/2, and then obtain

Awjo®™ = +2c0™ / {km) [(1 + 4a) (,\<n))3 /3w (W)) ® (,\(n))“ .

(A.15)
According to the definition of Q, i.e., 1/Q = 2| Awllo™, we can relate ¢ with Q:

ke [W (A Amy4/3 Ky
o= c[ ( ) + o )/]= 1% ’ (A.16)
200™s 200™s

where S is the sensitivity to the contact stiffness, defined by Eq. (7.37). If a resonance
spectrum is experimentally obtained for linear contact vibration, we can determine
the damping coefficient from Eq. (A.16).
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Chapter 8

Scanning Microdeformation Microscopy:
Advances in Quantitative Micro- and
Nanometrology

P. Vairac, J. Le Rouzic, P. Delobelle and B. Cretin

Abstract The SMM is a well known scanning acoustic probe technique. Recently in
the last years in order to optimize this metrological instrument a sensitivity study was
carried out to adapt the stiffness of the microcantilevers to the encountered contact
stiffnesses. The accuracy of the measurement is so optimized for the elasticity of the
sample to characterize. Problems coming from the sliding of the tip on the surface
and their effects were exhibited. New specific geometries of microcantilevers were
conceived to reduce these perturbations. Their use reduced significantly the slip and
so led to a better determination of the resonance frequencies, even for high amplitudes
of vibration. In a last part a study of mechanical characterization was realized on
polymers using DMA, SMM and nanoindentation. The use of different techniques
enables to obtain complementary measures (viscoelastic characterization for several
decades).

8.1 Introduction

Knowledge of the mechanical properties of materials at local scale has become a
major issue in engineering because of the miniaturization of devices. The devel-
opment of microelectromechanical systems (MEMS) was possible, all thanks to
the deposition techniques of thin films (submicron thickness). Most of the time,
MEMS are composed of multiple layers of different materials. However, the mechan-
ical properties of such surfaces are difficult to predict. They can vary considerably
depending on the techniques cleanroom used. Moreover, at such scales, it is difficult
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to use the laws of continuum mechanics to predict the mechanical behavior of these
thin films. It is therefore vital to have reliable measurement techniques to meet these
needs.

During the last 20years, near-field microscopes have been developed in order
to increase the lateral resolution and to measure different local properties of the
investigated material. Main achieved systems have been derived from the AFM.
The combination between AFM and acoustics, often designed AFAM emerged after
1992 [1-6]. Many features have been discovered and have been investigated from
both theoretical to experimental domains. All these near-field microscopes have a
behavior based on the concept of force modulation microscopy (FMM).

The force modulation microscope was first introduced by Maivald and et al. [7].
A periodic displacement at low frequency (few kHz) is imposed on the sample using
a piezoelectric ceramic. The tip in contact with the sample follows the harmonic
vibrations. Measuring the amplitude of the displacement of cantilever provides infor-
mation on local variations of elasticity of the sample. Use of cantilevers with high
stiffness leads to large applied forces and facilitates contacts plastic nature limiting
the possibilities of quantitative measurements of the elasticity of the surface. A vari-
ant of this technique is to apply an external force at the end of the cantilever. This
is called direct force modulation as opposed to the previous method, which is called
indirect force modulation. Practically, this external force can be applied either locally
with a magnet glued to the end of the lever subjected to a harmonic magnetic field
created by a coil, or more broadly with a magnetic film deposited on the entire lever
[8, 9]. Compared to an indirect force modulation cantilever stiffness is low enough,
and reduces the risk of plastic deformation.

The scanning microdeformation microscope (SMM) is also a dynamic force
microscope, but conversely to the most part of near-field microscopes based on the
AFM, the sensor is magnified by one or two orders of magnitude [1, 2, 10]. The
SMM can operate in transmission mode: a piezoelectric ceramic detects the acoustic
amplitudes transmitted through the sample allowing subsurface imaging. The other
way of detection is to measure the amplitude and the phase of the vibration of the
cantilever with a high sensitive optical interferometer pointing onto the cantilever
in elastic contact with the sample. The radius of the SMM sensor tip is larger than
the radius of an AFM tip and for this reason models used to characterize the tip—
sample interaction are easier to apply allowing “true” quantitative measurement of
elastic properties of sample, even if the lateral resolution is lower than in AFM-based
techniques.

The aim of this chapter is to present the last advances in term of quantitative mea-
surement at local scale particularly with the SMM, and how it can be complementary
to other mechanical tools for local characterization.

This chapter describes for the first time the SMM and the physical basis of the
behavior and modeling. A specific study dedicated to optimization of the sensitivity
SMM is detailed, showing that it is necessary to adapt the stiffness of the micro-
cantilevers to the encountered contact stiffnesses. The accuracy of the measurement
is so optimized for the elasticity of the sample to characterize. In some operating
ranges of these near-field microscopes, the sliding effect of tip on the surface of
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Fig. 8.1 Experimental setup of the SMM which allows to control the static force between the
tip and the sample and to measure quantitatively the vibration of the sample surface with a high
sensitivity

the sample generates in many cases a problem of localization of the measurement
and nonlinear perturbations. In order to reduce these effects, specific geometries of
microcantilever have been studied. Their use reduced significantly the slip and so
led to a better determination of the resonance frequencies, even for high amplitudes
of vibration.

The last part of the chapter is devoted to a complete study of local properties of
polymers by coupling the measurement results obtained with the SMM with two
others techniques: nanoindentation and dynamic mechanical analysis (DMA). The
use of different techniques enables to obtain complementary measures on viscoelastic
characterization for several decades.

8.2 The Scanning Microdeformation Microscope

8.2.1 The Experimental Setup

The experimental setup called SMM is shown in Fig.8.1. As in AFM a three-axis
translation unit supports the sample. The vertical axis enables to adjust the value of
the static contact force.
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The head of the microscope is composed of a piezoelectric transducer, the can-
tilever and the tip (made of diamond or sapphire and not of silicon as in standard AFM
where the tip is obtained by chemical etching of the cantilever). This hybrid sensor
can be considered as an electromechanical resonator whose frequency is related to
the tip—sample interaction. The tips can be standard pickup needles of sapphire (15—
45 m radii), or specific diamond tips with radius down to 0.6 wm. Depending on
the tip radius and the applied force, the contact radius is in the 50 nm-2 pm range.

The tip is kept in flexural vibration with the low frequency generator. The het-
erodyne interferometer is used as a noninvasive sensor to detect quantitatively the
amplitude and the phase of the vibrating cantilever and the surface sample. The prin-
ciple of this interferometer developed for out-of-plane vibrations measurement is
completely described in Refs. [11-13]. After the electronic demodulation, a lock-in
amplifier allows to obtain a high sensitivity. In ideal conditions, the ultimate sensi-
tivity is about 1fm/,/Hz.

Moreover, we used on the SMM the classical optical beam deflection system
modified to obtain a dynamic detection of the static deflection of the cantilever.
More precisely, we modulated the laser diode and we detected the amplitude and the
phase of the static deflection with a lock-in amplifier. By this way, it is possible to
evaluate the static force and the static indentation on the sample.

This microscope is an effective tool to image surfaces and subsurfaces with het-
erogeneous local elasticity or to characterize elastic properties of a material. Some
examples of images presented below demonstrate these characteristics.

First presented sample is a silicon wafer (360 pm thickness, crystalline orientation
[100]). Parallel grooves have been etched on one face, the opposite face remained
polished. A cross-section of the sample which was coupled to the support with an
ultrasonic gel is showed Fig. 8.2a. Scanned surface is the plane face of the sample
where the grooves are optically invisibles. Figure 8.2b shows the frequency image
obtained with a tip having a 40 wm radius.

Subsurface grooves appear as parallel black stripes (the harder the sample surface,
the higher the frequency).

The second sample is made of duralumin (AU4G). A 50 um diameter tungsten
wire was inserted in a diffusion bond. The sample was cut and polished progressively,
so that the tungsten wire just appeared on the sample side Fig. 8.3a. In the image area,
the tungsten wire-surface spacing is estimated to be 25-35 pm. The frequency image
in Fig.8.3b obtained at 17 kHz shows the detection capability of the SMM. Small
scratches resulting from contact can be observed on the sample surface.

The presented results demonstrate that the SMM can give images of subsurface
defects with image contrast related to the properties of the microdeformation volume
in the case of polished surfaces.

In a more quantitative method of operation we use the SMM to determine the
local Young’s modulus of material. So, we put the tip in contact with the sample and
we apply an additional static force by vertically displacing the clamped end of the
cantilever. Then we scan the excitation frequency. The resonant frequency depends
on the static force applied via the contact stiffness. Currently, measuring the reso-
nant frequency, we can estimate the local contact stiffness and then with a suitable
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Fig. 8.2 a Geometry of the
etched silicon sample. b Image
of the subsurface grooves
obtained at 18kHz with a
frequency variation of 100 Hz
(image size 2,000 x 2,000 pm)
[2]

model, the local Young’s modulus with high accuracy. Other ultrasonic noninvasive
methods such as atomic force acoustic microscope, ultrasonic force microscopy, or
AFM spectroscopy with heterodyne interferometer make such a characterization on
the nanometer scale but with less accuracy, because the contact model must take
into account additional forces on this scale [14—17]. We can also notice the nanoin-
dentation and particularly Continuous Stiffness Measurement technique, which is a
destructive method which enables local elasticity measurements [18].

8.2.2 The Basic Model

‘We have used a continuous model [19, 20] (Fig. 8.4) to describe the physical behavior
of the SMM, and to obtain Young’s moduli values of tested samples from the mea-
sured contact resonant frequencies. The cantilever is represented as a beam interact-
ing with the sample through two springs k* and k;,;. The piezoelectric bimorph trans-
ducer action on the cantilever has been modeled as simple mass m,, and spring k.

The longitudinal interaction stiffness k* and the lateral interaction stiffness k¢
have to be known in order to evaluate the stiffness of the sample. On a mesoscopic
scale and in the ideal case of flat sample, k* can be estimated by using the classical
contact theory of Hertz when the tip (assumed to be a spherical indenter of radius R)
contacts the sample [21]:
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Fig. 8.3 a Cross-section of
the sample. b Microdeforma-
tion image of the tungsten
wire obtained at 17 kHz with a
frequency variation of 500 Hz
(image size 500 x 500 pwm)[2]

k* = (6RE**Fy)'/* = 2E*a (8.1)

where a is the contact radius, and E* the effective Young’s modulus of the tip—sample
contact.

As previously described, a sinusoidal vibration of the cantilever base is used as
excitation, but a variable displacement offset of the sample Az is also introduced to
provide a static force. Thus, this static force applied on the sample is related to Az
and to the longitudinal stiffness by the following expression:

Fy = kek” Az ~ kA (8.2)
0% fophr 0T et '

(This approximate relation can be applied for k* > k. where k. is the stiffness of
the cantilever).
With:
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Fig. 8.4 Model used to y
describe the behavior of the
SMM

kP

1 _1—u3+1—y§_1—u§ ©3)
E* E E, — E '

where E;, v; and Ej, v; are, respectively, Young’s modulus and Poisson ratio of the
tip and the sample.

Mindlin theory on the contact between a sphere and a plane [21] makes possible to
take into account the lateral stiffness and gives the relation between the longitudinal
and lateral stiffness,

G*
kiar = 4k*E 8.4)

With G* the reduced shear modulus expressed as:

-1
. (2(1 )@= |, 2 +Vs)(2—’/s)) (8.5)
Et ES
And finally:
~ 2(1 - VS) *
kiat &~ —(2 ) k (8.6)

The most classical way to study this mechanical model is to solve the fourth-order
differential equation for flexural vibrations of the cantilever [19, 20] with the different
applied boundary conditions:

oty %y
El—; A— =0 8.7
oxt TP @7
where E is Young’s modulus, / the area moment of inertia, p the volume density,
and A the cross-section of the cantilever. This equation describes the propagation of

the dispersive flexural waves with the following relation:
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Elu} — pAwr =0 (8.8)

wy, being the angular frequencies and y,, the associated eigenvalues.
Assuming a general solution of the following type for Eq.8.7:

y(x, 1) =[C; (AT) + C2 (A7) + C3 (BT) + C4 (B7)] /"
= y(x)e/! (8.9)

where: AT = cos(ux)T cosh(ux) and BT = sin(ux) T sinh(px)

The constants Ci_4 are determined by the boundary conditions applied to the
cantilever.

At the excitation end of the cantilever (x=0) the boundary conditions are:

6;()6) —0

o X (8.10)
Pyx) _ kp ) RLTIC))

o3 EI’ El_ 02

At the interaction end (x = L), we can express the boundary conditions as:

0? kia 12 9%
O30 _ Ny LT
Ox EIl EIl Ot @.11)
Py (x) Kk ) + m 0%y(x) .
o3 Bl T EL o2

Assuming that the displacement of the center of the mass m in the x direction is
smaller than that of the tip extremity by a factor /. /[ (/. is the distance between the

center mass of the tip and the cantilever and I the length of the tip).
The general solution (Eq. 8.9) and its derivatives are reported in these four bound-
ary conditions and we obtain these relations between the constants Cj_4:

C3=0
k mpw?
Cy=0Cy with 0=——L—+ =P
WwEI P EI
G
C

B(cos L + cosh L) — (sin L + sinh L)
Bl(—cos uL + cosh pL) — O(sin pL + sinh pL)] — [(— sin L + sinh L) + 6(cos uL — cosh 1L)]

(8.12)
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G
sz =
(cos uL — cosh L) — a(sin L — sinh L)
a[—6(cos L + cosh L) + (sin L + sinh pL)] — [€(sin L — sinh L) + (cos pL + cosh pL)]

(8.13)

3
: — J2) — Jad
with o = yER— and 3 = PR
1 T TTEl T EI

Finally the characteristic equation of the system is obtained by:

[B(cos pL + cosh L) — (sin L + sinh pL)
Bl(—cos uL + cosh uL) — O(sin L + sinh pL)] — [(— sin gL + sinh L) + 60(cos L — cosh pL)]
_ (cos uL — cosh L) — a(sin L — sinh L)
" a[—6(cos uL + cosh L) + (sin puL + sinh 1L)] — [@(sin pL — sinh L) 4 (cos pL + cosh 1L)]

(8.14)

and the solutions p,L of (8.14) computed with the software Maple, allow us to
compute the resonance frequencies w, by using Eq. 8.8.
The solution y(x, ¢) can be expressed in the form:

C
y(x,t) =y |:(cos px + cosh ux) + C—2(COS px — cosh px)
1
+0(sin px — sinh ,ux)] e (8.15)

Depending on the parameters that we seek to determine, we will resolve the direct
or the inverse problem.

e Direct problem: Knowing the Young’s modulus of the sample, we can evaluate,
with the Hertz contact, the contact stiffness corresponding to some static force.
Then from the stiffness of contact, we determine the eigenvalues p,,. We obtain
the frequencies of vibration modes and their associated deformation shape.

e Inverse problem: We measure experimentally the resonant frequency of the can-
tilever that is injected into the model. We deduce the eigenvalue associated ;.
With the model, we can then estimate the contact stiffness k*. Hertz’s theory
provides us a final measurement of Young’s modulus of the sample.

Figure 8.5 shows the calculation performed on a silicon surface (100) with a static
force of 0.8 mN. We experimentally measure a frequency of 28,050 Hz for the first
mode, which corresponds to an eigenvalue 11 L = 4.607. We therefore find a contact
stiffness of 163,036 N.m~!. Finally, taking 0.28 for Poisson’s ratio, we calculate a
Young’s modulus of 129.1 GPa.
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Fig. 8.5 Example of solution
in the case of a silicon sample

8.3 Optimization of the SMM

8.3.1 The Theoretical Study

In this part, we present the study of the sensitivity optimization of our system the
SMM. The flexural contact modes of vibration of the cantilever have been modeled.
We discuss the matching between the cantilever stiffness and the contact stiffness,
which depends on the sample material. In order to obtain the best sensitivity, the
stiffnesses must be the closest one to each other. Because the length of the cantilever
directly affects its stiffness, the cantilever geometry can be optimized for different
materials. We have validated this study with measurements on a soft material the
Polydimethylsiloxane (PDMS) with a cantilever optimized for materials of Young’s
moduli of some megapascals. Experimental results obtained with two different sam-
ples have shown the high sensitivity of the method for the measurement of low
Young’s moduli [22, 23].

The sensitivity of our measurement system can be defined as 0 f/0k* or 0 f/OE*
which represents the variation of resonant frequency for a variation of contact inter-
action or local elasticity. Actually, we need to obtain the greatest shift frequency for
two materials of different Young’s moduli. Such considerations have already been
treated for AFM in force modulation by Chang [24], Wu et al. [25], Turner and Wiehn
[26]. For all the sensitivity study we considered that the beam is clamped because the
spring k, modeling the bimorph interaction depends on the cantilever and cannot be
applied here. We plotted the normalized sensitivity of the first three flexural modes
versus contact stiffness for a beam with a length of 4mm and with £* = 0.68 kj,
(Fig. 8.6). We can see that for soft materials, the first mode is the most sensitive. But
when contact stiffness increases and reaches nearly a hundred times the cantilever
stiffness, the second mode becomes the most sensitive. And for larger values of con-
tact stiffness the third mode becomes the most sensitive too. We can also notice that
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Fig. 8.6 Normalized flexural
sensitivity df/dk™ as a function
of contact stiffness k* (normal-
ized by the cantilever stiffness
k), with ki = 0.68 k* for
a cantilever with a length of
4 mm, a width of 400 wm, and
a thickness of 150 wm for the
first three modes

the first mode becomes always less sensitive when the contact stiffness is greater,
whereas for the other modes the sensitivity first decreases and increases again to
reach a local maximum before decreasing with the contact stiffness. We can also plot
the following expression: Sy = (9 f/0k*)(k*/f) which represents better the ability
to distinguish two different materials with Young’s moduli close to each other than
sensitivity does. Actually, Sy is well appropriate because it takes into account the
working frequency and contact stiffness. Sy has been plotted for a cantilever with
a length of 4mm versus contact stiffness (Fig.8.7). We can see that the curves are
different from those of the sensitivity. Sy has a global maximum, whereas precedent
sensitivity always decreases with contact stiffness for the first mode. Besides curves
appear quite symmetrical on each side from this maximum. By means of this para-
meter, we highlight precisely the contact stiffness which maximizes the ability to
measure elastically close materials. For the first mode, Sy reaches a maximum for a
contact stiffness of nearly ten times the cantilever’s one, 1,000 times for the second
mode, and 10,000 times for the third mode. We can also notice that the range of high
value of Sy is large for the first mode but is reduced for the second mode and even
more for the third one.

In order to have the best sensitivity, the cantilever stiffness k. and the contact stiff-
ness k* must be close. In fact, if k* is far bigger than k., the cantilever will totally
bend. Whereas if k. is far bigger than k*, the tip will indent the sample. The cantilever
stiffness k. equals 3E.I/L3, I being the area moment of inertia I = bh>/12 for a
rectangular section beam, w being the width of the beam, and 7, the thickness. Obvi-
ously, the parameters which most affect the stiffness are the length and the thickness
of the beam because they are cubed in the expression of k.. Theoretically, the effect
of other parameters such as w, R, or the tip height & are negligible for this application,
but no generalization is allowed. So, we have only focused our study on the length of
the cantilever it is easier and faster to fabricate on the same wafer beams of different
lengths than different thicknesses by cleanroom techniques. We made the sensitiv-
ity study for a static force of 0.5 mN. Normalized first flexural mode sensitivity
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Fig. 8.7 Normalized flexural
sensitivity (df/dk™) x k*/ fas a
function of contact stiffness k*
(normalized by the cantilever
stiffness k), with kjpe = 0.68
k* for a cantilever with a
length of 4 mm, a width of 400
pm, and a thickness of 150
wm for the first three modes

Fig. 8.8 Normalized flexural
sensitivity (df/dE) x E/ f for
a cantilever with a thickness
of 150 wm, width of 400 um
for the first contact mode
(with a static force of 0.5 mN)
as function of the length of
the cantilever for different
Young’s moduli of the sample

Sy = (Of/0k*)(k*/f) is plotted for beam lengths from 1 to 7mm and materials of
Young’s moduli of 10 MPa, 1 GPa, and 100 GPa (Fig. 8.8). Thickness is assumed to
be 150 wm and width of 400 wm. We can notice that, depending on Young’s modulus,
sensitivity is increasing or decreasing with the length of the cantilever. Actually for a
100 GPa Young’s modulus material, the best sensitivity is obtained with a length of
2mm, whereas for a 10 MPa Young’s modulus one, it is with the length of 7mm. So
the cantilever with a length of 7mm is optimized to characterize very soft materials.
In fact with this cantilever, contact stiffness with Young’s moduli of some tens of
gigapascals, such as silicon or silica, k* (*150,000 N/m) is nearly 1,000 times greater
than k. (*150N/m). So Sy is a very useful parameter to compare the efficiency of
our measurement system for different materials.
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Fig. 8.9 Theoretical defor-
mation shapes of the first
flexural mode in contact with
Si02 and PDMS

8.3.2 Experimental Validation

We have validated this precedent study by characterizing a very soft material by
the cantilever with a length of 7mm. A sapphire tip with a length of 0.7 mm and a
radius of curvature of 45 um was used. We chose PDMS. PDMS is a silicon-based
viscoelastic polymer. Mechanical properties of this material vary with preparation
conditions. Actually, Young’s moduli values can fluctuate in the range of 100 kPa to
some megapascals depending on this preparation [27].

We used two different PDMS samples with thicknesses of some millimeters pre-
pared in different conditions and different aging times. To characterize PDMS we
put the spot of the laser at the end of the cantilever because it is where the amplitude
of vibration of the first contact mode is the greatest whereas for harder materials the
maximum is on the middle of the beam. The model agrees with these observations
(see Fig.8.9). We can also notice that for hard materials the bimorph interaction
spring k;, has a real influence on the modulus computed and has to be fitted with
a known sample, whereas with PDMS the value of k, does not hardly change the
result. Figure 8.10 shows resonances on the first sample of PDMS for different static
loads. We can observe the shift frequency and that the amplitude decreases versus the
static force because of damping, whereas with an elastic material such as silicon we
observed that amplitude increases with the force. To estimate Young’s modulus of
the sample we realized 15 successive measures in the same conditions. Static force
applied was 150 WN because this load provides the best sensitivity (the best slope
of frequency vs. force). A new contact was obtained for each measurement and we
recorded the magnitude spectrum. The dispersion of amplitude is nearly 0.75 A and
80Hz in frequency. So, we obtain a mean value for the frequency close to 4.18 kHz.
And thanks to the model by taking 0.48 for v, we computed Young’s modulus of
3.4MPa. (£0.3 MPa by considering sensitivity and frequency dispersion). We took
1.7 MPa for the static Young modulus (dynamic mechanical measurement value).
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Fig. 8.10 Experimental spec-
tra of amplitude of vibration
(first mode) as a function

of frequency in contact with
the first PDMS sample for a
driving voltage of the bimorph
of 0.5 V and for different static
forces

Fig. 8.11 Experimental spec-
tra of amplitude of vibration
(first mode) as a function of
frequency in contact with the
two different PDMS samples
for a static force of 150 uN
and for a driving voltage of
the bimorph of 1V

We did the same for our second PDMS sample, and we finally measure a mean
resonant frequency of 4.53kHz and also for Young’s modulus a value of 5.5 MPa
(£0.3 MPa).

We took 2.8 MPa for the static Young modulus (dynamic mechanical measurement
value). The SMM has already been tested on standard hard materials such as silicon
and silica [13, 20, 28] and leaded to a precision of nearly 5% with the model we
are using. We are able to characterize two very soft samples with Young’s modulus
difference of some megapascals. The shift frequency difference between the two
materials is 350Hz (see Fig. 8.11). For example, the shift frequency difference with
the same cantilever between silica (72 GPa) and silicon (100) (130 GPa) is nearly
1kHz (see Table8.1). Experimentally the sensitivity has increased by a factor of
10,000. Sy also has increased by a factor of 3.
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Table 8.1 Frequency shifts and sensitivities for stiff and flexible materials with a cantilever with
a length of 7mm

Materials Si0,/Si Different PDMSs
A shift frequency 1 kHz 350Hz
Sensitivity 0.015Hz/MPa 167 Hz/MPa

Sy 47 x 1073 136 x 1073

Fig. 8.12 Illustration of the sliding of the tip on the surface during contact

8.3.3 New Cantilever Geometries

One of the major issues in scanning force microscopy is the application of tangential
forces between the tip and the sample during contact. Actually when tangential force
becomes too high, the tip slides on the surface (Fig.8.12). This leads to prevent a
good localization of the measurement and to limit the quantification of the local
contact stiffness.

In atomic force microscopy, stick & slip can occur. The tip alternately sticks and
slides on the surface when the force is too high. In dynamic mode, nonlinearities
can appear in the contact resonance curves indicating a loss of contact stiffness, for
example in lateral force microscopy [29].

Specific geometries of resonant cantilevers for scanning force microscopy aimed
to reduce sliding between tip and sample have been designed and studied. These
cantilevers have been designed for the SMM.

With a classic rectangular cantilever, dynamic sliding can be observed on the
contact resonance curves. Actually when excitation voltage Vexc becomes too high,
nonlinearities appear.

The amplitude of vibration does not increase linearly with the excitation and the
resonance frequency decreases (Fig. 8.13). It can be explained by the loss of lateral
contact stiffness due to sliding.

Sliding can be reduced by increasing the static force applied and by using a stiffer
cantilever but still occurs for a bit higher amplitude of vibration. The underestimation
of the contact stiffness leads to limit the quantification of the local elastic constants.
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Fig. 8.13 Evolution of the amplitude of vibration and the resonant frequency as a function of the
excitation voltage

Fig. 8.14 Scheme of the
geometry of the new can-
tilevers conceived

So we have thought to specific geometries of resonant cantilevers to prevent the tip
from sliding on the surface.

A W-shaped cantilever has been imagined, using a simple mechanism of correc-
tion, to keep the tip vertical during contact (Fig. 8.14). The tip is located on the center
of the cantilever. Actually by choosing an appropriate ratio between the lengths /4
and 